1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_HIGHMEM_H #define _LINUX_HIGHMEM_H #include <linux/fs.h> #include <linux/kernel.h> #include <linux/bug.h> #include <linux/mm.h> #include <linux/uaccess.h> #include <linux/hardirq.h> #include <asm/cacheflush.h> #ifndef ARCH_HAS_FLUSH_ANON_PAGE static inline void flush_anon_page(struct vm_area_struct *vma, struct page *page, unsigned long vmaddr) { } #endif #ifndef ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE static inline void flush_kernel_dcache_page(struct page *page) { } static inline void flush_kernel_vmap_range(void *vaddr, int size) { } static inline void invalidate_kernel_vmap_range(void *vaddr, int size) { } #endif #include <asm/kmap_types.h> #ifdef CONFIG_HIGHMEM extern void *kmap_atomic_high_prot(struct page *page, pgprot_t prot); extern void kunmap_atomic_high(void *kvaddr); #include <asm/highmem.h> #ifndef ARCH_HAS_KMAP_FLUSH_TLB static inline void kmap_flush_tlb(unsigned long addr) { } #endif #ifndef kmap_prot #define kmap_prot PAGE_KERNEL #endif void *kmap_high(struct page *page); static inline void *kmap(struct page *page) { void *addr; might_sleep(); if (!PageHighMem(page)) addr = page_address(page); else addr = kmap_high(page); kmap_flush_tlb((unsigned long)addr); return addr; } void kunmap_high(struct page *page); static inline void kunmap(struct page *page) { might_sleep(); if (!PageHighMem(page)) return; kunmap_high(page); } /* * kmap_atomic/kunmap_atomic is significantly faster than kmap/kunmap because * no global lock is needed and because the kmap code must perform a global TLB * invalidation when the kmap pool wraps. * * However when holding an atomic kmap it is not legal to sleep, so atomic * kmaps are appropriate for short, tight code paths only. * * The use of kmap_atomic/kunmap_atomic is discouraged - kmap/kunmap * gives a more generic (and caching) interface. But kmap_atomic can * be used in IRQ contexts, so in some (very limited) cases we need * it. */ static inline void *kmap_atomic_prot(struct page *page, pgprot_t prot) { preempt_disable(); pagefault_disable(); if (!PageHighMem(page)) return page_address(page); return kmap_atomic_high_prot(page, prot); } #define kmap_atomic(page) kmap_atomic_prot(page, kmap_prot) /* declarations for linux/mm/highmem.c */ unsigned int nr_free_highpages(void); extern atomic_long_t _totalhigh_pages; static inline unsigned long totalhigh_pages(void) { return (unsigned long)atomic_long_read(&_totalhigh_pages); } static inline void totalhigh_pages_inc(void) { atomic_long_inc(&_totalhigh_pages); } static inline void totalhigh_pages_dec(void) { atomic_long_dec(&_totalhigh_pages); } static inline void totalhigh_pages_add(long count) { atomic_long_add(count, &_totalhigh_pages); } static inline void totalhigh_pages_set(long val) { atomic_long_set(&_totalhigh_pages, val); } void kmap_flush_unused(void); struct page *kmap_to_page(void *addr); #else /* CONFIG_HIGHMEM */ static inline unsigned int nr_free_highpages(void) { return 0; } static inline struct page *kmap_to_page(void *addr) { return virt_to_page(addr); } static inline unsigned long totalhigh_pages(void) { return 0UL; } static inline void *kmap(struct page *page) { might_sleep(); return page_address(page); } static inline void kunmap_high(struct page *page) { } static inline void kunmap(struct page *page) { #ifdef ARCH_HAS_FLUSH_ON_KUNMAP kunmap_flush_on_unmap(page_address(page)); #endif } static inline void *kmap_atomic(struct page *page) { preempt_disable(); pagefault_disable(); return page_address(page); } #define kmap_atomic_prot(page, prot) kmap_atomic(page) static inline void kunmap_atomic_high(void *addr) { /* * Mostly nothing to do in the CONFIG_HIGHMEM=n case as kunmap_atomic() * handles re-enabling faults + preemption */ #ifdef ARCH_HAS_FLUSH_ON_KUNMAP kunmap_flush_on_unmap(addr); #endif } #define kmap_atomic_pfn(pfn) kmap_atomic(pfn_to_page(pfn)) #define kmap_flush_unused() do {} while(0) #endif /* CONFIG_HIGHMEM */ #if defined(CONFIG_HIGHMEM) || defined(CONFIG_X86_32) DECLARE_PER_CPU(int, __kmap_atomic_idx); static inline int kmap_atomic_idx_push(void) { int idx = __this_cpu_inc_return(__kmap_atomic_idx) - 1; #ifdef CONFIG_DEBUG_HIGHMEM WARN_ON_ONCE(in_irq() && !irqs_disabled()); BUG_ON(idx >= KM_TYPE_NR); #endif return idx; } static inline int kmap_atomic_idx(void) { return __this_cpu_read(__kmap_atomic_idx) - 1; } static inline void kmap_atomic_idx_pop(void) { #ifdef CONFIG_DEBUG_HIGHMEM int idx = __this_cpu_dec_return(__kmap_atomic_idx); BUG_ON(idx < 0); #else __this_cpu_dec(__kmap_atomic_idx); #endif } #endif /* * Prevent people trying to call kunmap_atomic() as if it were kunmap() * kunmap_atomic() should get the return value of kmap_atomic, not the page. */ #define kunmap_atomic(addr) \ do { \ BUILD_BUG_ON(__same_type((addr), struct page *)); \ kunmap_atomic_high(addr); \ pagefault_enable(); \ preempt_enable(); \ } while (0) /* when CONFIG_HIGHMEM is not set these will be plain clear/copy_page */ #ifndef clear_user_highpage static inline void clear_user_highpage(struct page *page, unsigned long vaddr) { void *addr = kmap_atomic(page); clear_user_page(addr, vaddr, page); kunmap_atomic(addr); } #endif #ifndef __HAVE_ARCH_ALLOC_ZEROED_USER_HIGHPAGE /** * __alloc_zeroed_user_highpage - Allocate a zeroed HIGHMEM page for a VMA with caller-specified movable GFP flags * @movableflags: The GFP flags related to the pages future ability to move like __GFP_MOVABLE * @vma: The VMA the page is to be allocated for * @vaddr: The virtual address the page will be inserted into * * This function will allocate a page for a VMA but the caller is expected * to specify via movableflags whether the page will be movable in the * future or not * * An architecture may override this function by defining * __HAVE_ARCH_ALLOC_ZEROED_USER_HIGHPAGE and providing their own * implementation. */ static inline struct page * __alloc_zeroed_user_highpage(gfp_t movableflags, struct vm_area_struct *vma, unsigned long vaddr) { struct page *page = alloc_page_vma(GFP_HIGHUSER | movableflags, vma, vaddr); if (page) clear_user_highpage(page, vaddr); return page; } #endif /** * alloc_zeroed_user_highpage_movable - Allocate a zeroed HIGHMEM page for a VMA that the caller knows can move * @vma: The VMA the page is to be allocated for * @vaddr: The virtual address the page will be inserted into * * This function will allocate a page for a VMA that the caller knows will * be able to migrate in the future using move_pages() or reclaimed */ static inline struct page * alloc_zeroed_user_highpage_movable(struct vm_area_struct *vma, unsigned long vaddr) { return __alloc_zeroed_user_highpage(__GFP_MOVABLE, vma, vaddr); } static inline void clear_highpage(struct page *page) { void *kaddr = kmap_atomic(page); clear_page(kaddr); kunmap_atomic(kaddr); } static inline void zero_user_segments(struct page *page, unsigned start1, unsigned end1, unsigned start2, unsigned end2) { void *kaddr = kmap_atomic(page); BUG_ON(end1 > PAGE_SIZE || end2 > PAGE_SIZE); if (end1 > start1) memset(kaddr + start1, 0, end1 - start1); if (end2 > start2) memset(kaddr + start2, 0, end2 - start2); kunmap_atomic(kaddr); flush_dcache_page(page); } static inline void zero_user_segment(struct page *page, unsigned start, unsigned end) { zero_user_segments(page, start, end, 0, 0); } static inline void zero_user(struct page *page, unsigned start, unsigned size) { zero_user_segments(page, start, start + size, 0, 0); } #ifndef __HAVE_ARCH_COPY_USER_HIGHPAGE static inline void copy_user_highpage(struct page *to, struct page *from, unsigned long vaddr, struct vm_area_struct *vma) { char *vfrom, *vto; vfrom = kmap_atomic(from); vto = kmap_atomic(to); copy_user_page(vto, vfrom, vaddr, to); kunmap_atomic(vto); kunmap_atomic(vfrom); } #endif #ifndef __HAVE_ARCH_COPY_HIGHPAGE static inline void copy_highpage(struct page *to, struct page *from) { char *vfrom, *vto; vfrom = kmap_atomic(from); vto = kmap_atomic(to); copy_page(vto, vfrom); kunmap_atomic(vto); kunmap_atomic(vfrom); } #endif #endif /* _LINUX_HIGHMEM_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_CGROUP_H #define _LINUX_CGROUP_H /* * cgroup interface * * Copyright (C) 2003 BULL SA * Copyright (C) 2004-2006 Silicon Graphics, Inc. * */ #include <linux/sched.h> #include <linux/cpumask.h> #include <linux/nodemask.h> #include <linux/rculist.h> #include <linux/cgroupstats.h> #include <linux/fs.h> #include <linux/seq_file.h> #include <linux/kernfs.h> #include <linux/jump_label.h> #include <linux/types.h> #include <linux/ns_common.h> #include <linux/nsproxy.h> #include <linux/user_namespace.h> #include <linux/refcount.h> #include <linux/kernel_stat.h> #include <linux/cgroup-defs.h> struct kernel_clone_args; #ifdef CONFIG_CGROUPS /* * All weight knobs on the default hierarhcy should use the following min, * default and max values. The default value is the logarithmic center of * MIN and MAX and allows 100x to be expressed in both directions. */ #define CGROUP_WEIGHT_MIN 1 #define CGROUP_WEIGHT_DFL 100 #define CGROUP_WEIGHT_MAX 10000 /* walk only threadgroup leaders */ #define CSS_TASK_ITER_PROCS (1U << 0) /* walk all threaded css_sets in the domain */ #define CSS_TASK_ITER_THREADED (1U << 1) /* internal flags */ #define CSS_TASK_ITER_SKIPPED (1U << 16) /* a css_task_iter should be treated as an opaque object */ struct css_task_iter { struct cgroup_subsys *ss; unsigned int flags; struct list_head *cset_pos; struct list_head *cset_head; struct list_head *tcset_pos; struct list_head *tcset_head; struct list_head *task_pos; struct list_head *cur_tasks_head; struct css_set *cur_cset; struct css_set *cur_dcset; struct task_struct *cur_task; struct list_head iters_node; /* css_set->task_iters */ }; extern struct cgroup_root cgrp_dfl_root; extern struct css_set init_css_set; #define SUBSYS(_x) extern struct cgroup_subsys _x ## _cgrp_subsys; #include <linux/cgroup_subsys.h> #undef SUBSYS #define SUBSYS(_x) \ extern struct static_key_true _x ## _cgrp_subsys_enabled_key; \ extern struct static_key_true _x ## _cgrp_subsys_on_dfl_key; #include <linux/cgroup_subsys.h> #undef SUBSYS /** * cgroup_subsys_enabled - fast test on whether a subsys is enabled * @ss: subsystem in question */ #define cgroup_subsys_enabled(ss) \ static_branch_likely(&ss ## _enabled_key) /** * cgroup_subsys_on_dfl - fast test on whether a subsys is on default hierarchy * @ss: subsystem in question */ #define cgroup_subsys_on_dfl(ss) \ static_branch_likely(&ss ## _on_dfl_key) bool css_has_online_children(struct cgroup_subsys_state *css); struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss); struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgroup, struct cgroup_subsys *ss); struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgroup, struct cgroup_subsys *ss); struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry, struct cgroup_subsys *ss); struct cgroup *cgroup_get_from_path(const char *path); struct cgroup *cgroup_get_from_fd(int fd); int cgroup_attach_task_all(struct task_struct *from, struct task_struct *); int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from); int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts); int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts); int cgroup_rm_cftypes(struct cftype *cfts); void cgroup_file_notify(struct cgroup_file *cfile); int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen); int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry); int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, struct pid *pid, struct task_struct *tsk); void cgroup_fork(struct task_struct *p); extern int cgroup_can_fork(struct task_struct *p, struct kernel_clone_args *kargs); extern void cgroup_cancel_fork(struct task_struct *p, struct kernel_clone_args *kargs); extern void cgroup_post_fork(struct task_struct *p, struct kernel_clone_args *kargs); void cgroup_exit(struct task_struct *p); void cgroup_release(struct task_struct *p); void cgroup_free(struct task_struct *p); int cgroup_init_early(void); int cgroup_init(void); int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v); /* * Iteration helpers and macros. */ struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos, struct cgroup_subsys_state *parent); struct cgroup_subsys_state *css_next_descendant_pre(struct cgroup_subsys_state *pos, struct cgroup_subsys_state *css); struct cgroup_subsys_state *css_rightmost_descendant(struct cgroup_subsys_state *pos); struct cgroup_subsys_state *css_next_descendant_post(struct cgroup_subsys_state *pos, struct cgroup_subsys_state *css); struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset, struct cgroup_subsys_state **dst_cssp); struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset, struct cgroup_subsys_state **dst_cssp); void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags, struct css_task_iter *it); struct task_struct *css_task_iter_next(struct css_task_iter *it); void css_task_iter_end(struct css_task_iter *it); /** * css_for_each_child - iterate through children of a css * @pos: the css * to use as the loop cursor * @parent: css whose children to walk * * Walk @parent's children. Must be called under rcu_read_lock(). * * If a subsystem synchronizes ->css_online() and the start of iteration, a * css which finished ->css_online() is guaranteed to be visible in the * future iterations and will stay visible until the last reference is put. * A css which hasn't finished ->css_online() or already finished * ->css_offline() may show up during traversal. It's each subsystem's * responsibility to synchronize against on/offlining. * * It is allowed to temporarily drop RCU read lock during iteration. The * caller is responsible for ensuring that @pos remains accessible until * the start of the next iteration by, for example, bumping the css refcnt. */ #define css_for_each_child(pos, parent) \ for ((pos) = css_next_child(NULL, (parent)); (pos); \ (pos) = css_next_child((pos), (parent))) /** * css_for_each_descendant_pre - pre-order walk of a css's descendants * @pos: the css * to use as the loop cursor * @root: css whose descendants to walk * * Walk @root's descendants. @root is included in the iteration and the * first node to be visited. Must be called under rcu_read_lock(). * * If a subsystem synchronizes ->css_online() and the start of iteration, a * css which finished ->css_online() is guaranteed to be visible in the * future iterations and will stay visible until the last reference is put. * A css which hasn't finished ->css_online() or already finished * ->css_offline() may show up during traversal. It's each subsystem's * responsibility to synchronize against on/offlining. * * For example, the following guarantees that a descendant can't escape * state updates of its ancestors. * * my_online(@css) * { * Lock @css's parent and @css; * Inherit state from the parent; * Unlock both. * } * * my_update_state(@css) * { * css_for_each_descendant_pre(@pos, @css) { * Lock @pos; * if (@pos == @css) * Update @css's state; * else * Verify @pos is alive and inherit state from its parent; * Unlock @pos; * } * } * * As long as the inheriting step, including checking the parent state, is * enclosed inside @pos locking, double-locking the parent isn't necessary * while inheriting. The state update to the parent is guaranteed to be * visible by walking order and, as long as inheriting operations to the * same @pos are atomic to each other, multiple updates racing each other * still result in the correct state. It's guaranateed that at least one * inheritance happens for any css after the latest update to its parent. * * If checking parent's state requires locking the parent, each inheriting * iteration should lock and unlock both @pos->parent and @pos. * * Alternatively, a subsystem may choose to use a single global lock to * synchronize ->css_online() and ->css_offline() against tree-walking * operations. * * It is allowed to temporarily drop RCU read lock during iteration. The * caller is responsible for ensuring that @pos remains accessible until * the start of the next iteration by, for example, bumping the css refcnt. */ #define css_for_each_descendant_pre(pos, css) \ for ((pos) = css_next_descendant_pre(NULL, (css)); (pos); \ (pos) = css_next_descendant_pre((pos), (css))) /** * css_for_each_descendant_post - post-order walk of a css's descendants * @pos: the css * to use as the loop cursor * @css: css whose descendants to walk * * Similar to css_for_each_descendant_pre() but performs post-order * traversal instead. @root is included in the iteration and the last * node to be visited. * * If a subsystem synchronizes ->css_online() and the start of iteration, a * css which finished ->css_online() is guaranteed to be visible in the * future iterations and will stay visible until the last reference is put. * A css which hasn't finished ->css_online() or already finished * ->css_offline() may show up during traversal. It's each subsystem's * responsibility to synchronize against on/offlining. * * Note that the walk visibility guarantee example described in pre-order * walk doesn't apply the same to post-order walks. */ #define css_for_each_descendant_post(pos, css) \ for ((pos) = css_next_descendant_post(NULL, (css)); (pos); \ (pos) = css_next_descendant_post((pos), (css))) /** * cgroup_taskset_for_each - iterate cgroup_taskset * @task: the loop cursor * @dst_css: the destination css * @tset: taskset to iterate * * @tset may contain multiple tasks and they may belong to multiple * processes. * * On the v2 hierarchy, there may be tasks from multiple processes and they * may not share the source or destination csses. * * On traditional hierarchies, when there are multiple tasks in @tset, if a * task of a process is in @tset, all tasks of the process are in @tset. * Also, all are guaranteed to share the same source and destination csses. * * Iteration is not in any specific order. */ #define cgroup_taskset_for_each(task, dst_css, tset) \ for ((task) = cgroup_taskset_first((tset), &(dst_css)); \ (task); \ (task) = cgroup_taskset_next((tset), &(dst_css))) /** * cgroup_taskset_for_each_leader - iterate group leaders in a cgroup_taskset * @leader: the loop cursor * @dst_css: the destination css * @tset: taskset to iterate * * Iterate threadgroup leaders of @tset. For single-task migrations, @tset * may not contain any. */ #define cgroup_taskset_for_each_leader(leader, dst_css, tset) \ for ((leader) = cgroup_taskset_first((tset), &(dst_css)); \ (leader); \ (leader) = cgroup_taskset_next((tset), &(dst_css))) \ if ((leader) != (leader)->group_leader) \ ; \ else /* * Inline functions. */ static inline u64 cgroup_id(struct cgroup *cgrp) { return cgrp->kn->id; } /** * css_get - obtain a reference on the specified css * @css: target css * * The caller must already have a reference. */ static inline void css_get(struct cgroup_subsys_state *css) { if (!(css->flags & CSS_NO_REF)) percpu_ref_get(&css->refcnt); } /** * css_get_many - obtain references on the specified css * @css: target css * @n: number of references to get * * The caller must already have a reference. */ static inline void css_get_many(struct cgroup_subsys_state *css, unsigned int n) { if (!(css->flags & CSS_NO_REF)) percpu_ref_get_many(&css->refcnt, n); } /** * css_tryget - try to obtain a reference on the specified css * @css: target css * * Obtain a reference on @css unless it already has reached zero and is * being released. This function doesn't care whether @css is on or * offline. The caller naturally needs to ensure that @css is accessible * but doesn't have to be holding a reference on it - IOW, RCU protected * access is good enough for this function. Returns %true if a reference * count was successfully obtained; %false otherwise. */ static inline bool css_tryget(struct cgroup_subsys_state *css) { if (!(css->flags & CSS_NO_REF)) return percpu_ref_tryget(&css->refcnt); return true; } /** * css_tryget_online - try to obtain a reference on the specified css if online * @css: target css * * Obtain a reference on @css if it's online. The caller naturally needs * to ensure that @css is accessible but doesn't have to be holding a * reference on it - IOW, RCU protected access is good enough for this * function. Returns %true if a reference count was successfully obtained; * %false otherwise. */ static inline bool css_tryget_online(struct cgroup_subsys_state *css) { if (!(css->flags & CSS_NO_REF)) return percpu_ref_tryget_live(&css->refcnt); return true; } /** * css_is_dying - test whether the specified css is dying * @css: target css * * Test whether @css is in the process of offlining or already offline. In * most cases, ->css_online() and ->css_offline() callbacks should be * enough; however, the actual offline operations are RCU delayed and this * test returns %true also when @css is scheduled to be offlined. * * This is useful, for example, when the use case requires synchronous * behavior with respect to cgroup removal. cgroup removal schedules css * offlining but the css can seem alive while the operation is being * delayed. If the delay affects user visible semantics, this test can be * used to resolve the situation. */ static inline bool css_is_dying(struct cgroup_subsys_state *css) { return !(css->flags & CSS_NO_REF) && percpu_ref_is_dying(&css->refcnt); } /** * css_put - put a css reference * @css: target css * * Put a reference obtained via css_get() and css_tryget_online(). */ static inline void css_put(struct cgroup_subsys_state *css) { if (!(css->flags & CSS_NO_REF)) percpu_ref_put(&css->refcnt); } /** * css_put_many - put css references * @css: target css * @n: number of references to put * * Put references obtained via css_get() and css_tryget_online(). */ static inline void css_put_many(struct cgroup_subsys_state *css, unsigned int n) { if (!(css->flags & CSS_NO_REF)) percpu_ref_put_many(&css->refcnt, n); } static inline void cgroup_get(struct cgroup *cgrp) { css_get(&cgrp->self); } static inline bool cgroup_tryget(struct cgroup *cgrp) { return css_tryget(&cgrp->self); } static inline void cgroup_put(struct cgroup *cgrp) { css_put(&cgrp->self); } /** * task_css_set_check - obtain a task's css_set with extra access conditions * @task: the task to obtain css_set for * @__c: extra condition expression to be passed to rcu_dereference_check() * * A task's css_set is RCU protected, initialized and exited while holding * task_lock(), and can only be modified while holding both cgroup_mutex * and task_lock() while the task is alive. This macro verifies that the * caller is inside proper critical section and returns @task's css_set. * * The caller can also specify additional allowed conditions via @__c, such * as locks used during the cgroup_subsys::attach() methods. */ #ifdef CONFIG_PROVE_RCU extern struct mutex cgroup_mutex; extern spinlock_t css_set_lock; #define task_css_set_check(task, __c) \ rcu_dereference_check((task)->cgroups, \ lockdep_is_held(&cgroup_mutex) || \ lockdep_is_held(&css_set_lock) || \ ((task)->flags & PF_EXITING) || (__c)) #else #define task_css_set_check(task, __c) \ rcu_dereference((task)->cgroups) #endif /** * task_css_check - obtain css for (task, subsys) w/ extra access conds * @task: the target task * @subsys_id: the target subsystem ID * @__c: extra condition expression to be passed to rcu_dereference_check() * * Return the cgroup_subsys_state for the (@task, @subsys_id) pair. The * synchronization rules are the same as task_css_set_check(). */ #define task_css_check(task, subsys_id, __c) \ task_css_set_check((task), (__c))->subsys[(subsys_id)] /** * task_css_set - obtain a task's css_set * @task: the task to obtain css_set for * * See task_css_set_check(). */ static inline struct css_set *task_css_set(struct task_struct *task) { return task_css_set_check(task, false); } /** * task_css - obtain css for (task, subsys) * @task: the target task * @subsys_id: the target subsystem ID * * See task_css_check(). */ static inline struct cgroup_subsys_state *task_css(struct task_struct *task, int subsys_id) { return task_css_check(task, subsys_id, false); } /** * task_get_css - find and get the css for (task, subsys) * @task: the target task * @subsys_id: the target subsystem ID * * Find the css for the (@task, @subsys_id) combination, increment a * reference on and return it. This function is guaranteed to return a * valid css. The returned css may already have been offlined. */ static inline struct cgroup_subsys_state * task_get_css(struct task_struct *task, int subsys_id) { struct cgroup_subsys_state *css; rcu_read_lock(); while (true) { css = task_css(task, subsys_id); /* * Can't use css_tryget_online() here. A task which has * PF_EXITING set may stay associated with an offline css. * If such task calls this function, css_tryget_online() * will keep failing. */ if (likely(css_tryget(css))) break; cpu_relax(); } rcu_read_unlock(); return css; } /** * task_css_is_root - test whether a task belongs to the root css * @task: the target task * @subsys_id: the target subsystem ID * * Test whether @task belongs to the root css on the specified subsystem. * May be invoked in any context. */ static inline bool task_css_is_root(struct task_struct *task, int subsys_id) { return task_css_check(task, subsys_id, true) == init_css_set.subsys[subsys_id]; } static inline struct cgroup *task_cgroup(struct task_struct *task, int subsys_id) { return task_css(task, subsys_id)->cgroup; } static inline struct cgroup *task_dfl_cgroup(struct task_struct *task) { return task_css_set(task)->dfl_cgrp; } static inline struct cgroup *cgroup_parent(struct cgroup *cgrp) { struct cgroup_subsys_state *parent_css = cgrp->self.parent; if (parent_css) return container_of(parent_css, struct cgroup, self); return NULL; } /** * cgroup_is_descendant - test ancestry * @cgrp: the cgroup to be tested * @ancestor: possible ancestor of @cgrp * * Test whether @cgrp is a descendant of @ancestor. It also returns %true * if @cgrp == @ancestor. This function is safe to call as long as @cgrp * and @ancestor are accessible. */ static inline bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor) { if (cgrp->root != ancestor->root || cgrp->level < ancestor->level) return false; return cgrp->ancestor_ids[ancestor->level] == cgroup_id(ancestor); } /** * cgroup_ancestor - find ancestor of cgroup * @cgrp: cgroup to find ancestor of * @ancestor_level: level of ancestor to find starting from root * * Find ancestor of cgroup at specified level starting from root if it exists * and return pointer to it. Return NULL if @cgrp doesn't have ancestor at * @ancestor_level. * * This function is safe to call as long as @cgrp is accessible. */ static inline struct cgroup *cgroup_ancestor(struct cgroup *cgrp, int ancestor_level) { if (cgrp->level < ancestor_level) return NULL; while (cgrp && cgrp->level > ancestor_level) cgrp = cgroup_parent(cgrp); return cgrp; } /** * task_under_cgroup_hierarchy - test task's membership of cgroup ancestry * @task: the task to be tested * @ancestor: possible ancestor of @task's cgroup * * Tests whether @task's default cgroup hierarchy is a descendant of @ancestor. * It follows all the same rules as cgroup_is_descendant, and only applies * to the default hierarchy. */ static inline bool task_under_cgroup_hierarchy(struct task_struct *task, struct cgroup *ancestor) { struct css_set *cset = task_css_set(task); return cgroup_is_descendant(cset->dfl_cgrp, ancestor); } /* no synchronization, the result can only be used as a hint */ static inline bool cgroup_is_populated(struct cgroup *cgrp) { return cgrp->nr_populated_csets + cgrp->nr_populated_domain_children + cgrp->nr_populated_threaded_children; } /* returns ino associated with a cgroup */ static inline ino_t cgroup_ino(struct cgroup *cgrp) { return kernfs_ino(cgrp->kn); } /* cft/css accessors for cftype->write() operation */ static inline struct cftype *of_cft(struct kernfs_open_file *of) { return of->kn->priv; } struct cgroup_subsys_state *of_css(struct kernfs_open_file *of); /* cft/css accessors for cftype->seq_*() operations */ static inline struct cftype *seq_cft(struct seq_file *seq) { return of_cft(seq->private); } static inline struct cgroup_subsys_state *seq_css(struct seq_file *seq) { return of_css(seq->private); } /* * Name / path handling functions. All are thin wrappers around the kernfs * counterparts and can be called under any context. */ static inline int cgroup_name(struct cgroup *cgrp, char *buf, size_t buflen) { return kernfs_name(cgrp->kn, buf, buflen); } static inline int cgroup_path(struct cgroup *cgrp, char *buf, size_t buflen) { return kernfs_path(cgrp->kn, buf, buflen); } static inline void pr_cont_cgroup_name(struct cgroup *cgrp) { pr_cont_kernfs_name(cgrp->kn); } static inline void pr_cont_cgroup_path(struct cgroup *cgrp) { pr_cont_kernfs_path(cgrp->kn); } static inline struct psi_group *cgroup_psi(struct cgroup *cgrp) { return &cgrp->psi; } static inline void cgroup_init_kthreadd(void) { /* * kthreadd is inherited by all kthreads, keep it in the root so * that the new kthreads are guaranteed to stay in the root until * initialization is finished. */ current->no_cgroup_migration = 1; } static inline void cgroup_kthread_ready(void) { /* * This kthread finished initialization. The creator should have * set PF_NO_SETAFFINITY if this kthread should stay in the root. */ current->no_cgroup_migration = 0; } void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen); #else /* !CONFIG_CGROUPS */ struct cgroup_subsys_state; struct cgroup; static inline u64 cgroup_id(struct cgroup *cgrp) { return 1; } static inline void css_get(struct cgroup_subsys_state *css) {} static inline void css_put(struct cgroup_subsys_state *css) {} static inline int cgroup_attach_task_all(struct task_struct *from, struct task_struct *t) { return 0; } static inline int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry) { return -EINVAL; } static inline void cgroup_fork(struct task_struct *p) {} static inline int cgroup_can_fork(struct task_struct *p, struct kernel_clone_args *kargs) { return 0; } static inline void cgroup_cancel_fork(struct task_struct *p, struct kernel_clone_args *kargs) {} static inline void cgroup_post_fork(struct task_struct *p, struct kernel_clone_args *kargs) {} static inline void cgroup_exit(struct task_struct *p) {} static inline void cgroup_release(struct task_struct *p) {} static inline void cgroup_free(struct task_struct *p) {} static inline int cgroup_init_early(void) { return 0; } static inline int cgroup_init(void) { return 0; } static inline void cgroup_init_kthreadd(void) {} static inline void cgroup_kthread_ready(void) {} static inline struct cgroup *cgroup_parent(struct cgroup *cgrp) { return NULL; } static inline struct psi_group *cgroup_psi(struct cgroup *cgrp) { return NULL; } static inline bool task_under_cgroup_hierarchy(struct task_struct *task, struct cgroup *ancestor) { return true; } static inline void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen) {} #endif /* !CONFIG_CGROUPS */ #ifdef CONFIG_CGROUPS /* * cgroup scalable recursive statistics. */ void cgroup_rstat_updated(struct cgroup *cgrp, int cpu); void cgroup_rstat_flush(struct cgroup *cgrp); void cgroup_rstat_flush_irqsafe(struct cgroup *cgrp); void cgroup_rstat_flush_hold(struct cgroup *cgrp); void cgroup_rstat_flush_release(void); /* * Basic resource stats. */ #ifdef CONFIG_CGROUP_CPUACCT void cpuacct_charge(struct task_struct *tsk, u64 cputime); void cpuacct_account_field(struct task_struct *tsk, int index, u64 val); #else static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {} static inline void cpuacct_account_field(struct task_struct *tsk, int index, u64 val) {} #endif void __cgroup_account_cputime(struct cgroup *cgrp, u64 delta_exec); void __cgroup_account_cputime_field(struct cgroup *cgrp, enum cpu_usage_stat index, u64 delta_exec); static inline void cgroup_account_cputime(struct task_struct *task, u64 delta_exec) { struct cgroup *cgrp; cpuacct_charge(task, delta_exec); rcu_read_lock(); cgrp = task_dfl_cgroup(task); if (cgroup_parent(cgrp)) __cgroup_account_cputime(cgrp, delta_exec); rcu_read_unlock(); } static inline void cgroup_account_cputime_field(struct task_struct *task, enum cpu_usage_stat index, u64 delta_exec) { struct cgroup *cgrp; cpuacct_account_field(task, index, delta_exec); rcu_read_lock(); cgrp = task_dfl_cgroup(task); if (cgroup_parent(cgrp)) __cgroup_account_cputime_field(cgrp, index, delta_exec); rcu_read_unlock(); } #else /* CONFIG_CGROUPS */ static inline void cgroup_account_cputime(struct task_struct *task, u64 delta_exec) {} static inline void cgroup_account_cputime_field(struct task_struct *task, enum cpu_usage_stat index, u64 delta_exec) {} #endif /* CONFIG_CGROUPS */ /* * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data * definition in cgroup-defs.h. */ #ifdef CONFIG_SOCK_CGROUP_DATA #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID) extern spinlock_t cgroup_sk_update_lock; #endif void cgroup_sk_alloc_disable(void); void cgroup_sk_alloc(struct sock_cgroup_data *skcd); void cgroup_sk_clone(struct sock_cgroup_data *skcd); void cgroup_sk_free(struct sock_cgroup_data *skcd); static inline struct cgroup *sock_cgroup_ptr(struct sock_cgroup_data *skcd) { #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID) unsigned long v; /* * @skcd->val is 64bit but the following is safe on 32bit too as we * just need the lower ulong to be written and read atomically. */ v = READ_ONCE(skcd->val); if (v & 3) return &cgrp_dfl_root.cgrp; return (struct cgroup *)(unsigned long)v ?: &cgrp_dfl_root.cgrp; #else return (struct cgroup *)(unsigned long)skcd->val; #endif } #else /* CONFIG_CGROUP_DATA */ static inline void cgroup_sk_alloc(struct sock_cgroup_data *skcd) {} static inline void cgroup_sk_clone(struct sock_cgroup_data *skcd) {} static inline void cgroup_sk_free(struct sock_cgroup_data *skcd) {} #endif /* CONFIG_CGROUP_DATA */ struct cgroup_namespace { refcount_t count; struct ns_common ns; struct user_namespace *user_ns; struct ucounts *ucounts; struct css_set *root_cset; }; extern struct cgroup_namespace init_cgroup_ns; #ifdef CONFIG_CGROUPS void free_cgroup_ns(struct cgroup_namespace *ns); struct cgroup_namespace *copy_cgroup_ns(unsigned long flags, struct user_namespace *user_ns, struct cgroup_namespace *old_ns); int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen, struct cgroup_namespace *ns); #else /* !CONFIG_CGROUPS */ static inline void free_cgroup_ns(struct cgroup_namespace *ns) { } static inline struct cgroup_namespace * copy_cgroup_ns(unsigned long flags, struct user_namespace *user_ns, struct cgroup_namespace *old_ns) { return old_ns; } #endif /* !CONFIG_CGROUPS */ static inline void get_cgroup_ns(struct cgroup_namespace *ns) { if (ns) refcount_inc(&ns->count); } static inline void put_cgroup_ns(struct cgroup_namespace *ns) { if (ns && refcount_dec_and_test(&ns->count)) free_cgroup_ns(ns); } #ifdef CONFIG_CGROUPS void cgroup_enter_frozen(void); void cgroup_leave_frozen(bool always_leave); void cgroup_update_frozen(struct cgroup *cgrp); void cgroup_freeze(struct cgroup *cgrp, bool freeze); void cgroup_freezer_migrate_task(struct task_struct *task, struct cgroup *src, struct cgroup *dst); static inline bool cgroup_task_freeze(struct task_struct *task) { bool ret; if (task->flags & PF_KTHREAD) return false; rcu_read_lock(); ret = test_bit(CGRP_FREEZE, &task_dfl_cgroup(task)->flags); rcu_read_unlock(); return ret; } static inline bool cgroup_task_frozen(struct task_struct *task) { return task->frozen; } #else /* !CONFIG_CGROUPS */ static inline void cgroup_enter_frozen(void) { } static inline void cgroup_leave_frozen(bool always_leave) { } static inline bool cgroup_task_freeze(struct task_struct *task) { return false; } static inline bool cgroup_task_frozen(struct task_struct *task) { return false; } #endif /* !CONFIG_CGROUPS */ #ifdef CONFIG_CGROUP_BPF static inline void cgroup_bpf_get(struct cgroup *cgrp) { percpu_ref_get(&cgrp->bpf.refcnt); } static inline void cgroup_bpf_put(struct cgroup *cgrp) { percpu_ref_put(&cgrp->bpf.refcnt); } #else /* CONFIG_CGROUP_BPF */ static inline void cgroup_bpf_get(struct cgroup *cgrp) {} static inline void cgroup_bpf_put(struct cgroup *cgrp) {} #endif /* CONFIG_CGROUP_BPF */ #endif /* _LINUX_CGROUP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 /* SPDX-License-Identifier: GPL-2.0 */ /* * Type definitions for the multi-level security (MLS) policy. * * Author : Stephen Smalley, <sds@tycho.nsa.gov> */ /* * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com> * * Support for enhanced MLS infrastructure. * * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc. */ #ifndef _SS_MLS_TYPES_H_ #define _SS_MLS_TYPES_H_ #include "security.h" #include "ebitmap.h" struct mls_level { u32 sens; /* sensitivity */ struct ebitmap cat; /* category set */ }; struct mls_range { struct mls_level level[2]; /* low == level[0], high == level[1] */ }; static inline int mls_level_eq(struct mls_level *l1, struct mls_level *l2) { return ((l1->sens == l2->sens) && ebitmap_cmp(&l1->cat, &l2->cat)); } static inline int mls_level_dom(struct mls_level *l1, struct mls_level *l2) { return ((l1->sens >= l2->sens) && ebitmap_contains(&l1->cat, &l2->cat, 0)); } #define mls_level_incomp(l1, l2) \ (!mls_level_dom((l1), (l2)) && !mls_level_dom((l2), (l1))) #define mls_level_between(l1, l2, l3) \ (mls_level_dom((l1), (l2)) && mls_level_dom((l3), (l1))) #define mls_range_contains(r1, r2) \ (mls_level_dom(&(r2).level[0], &(r1).level[0]) && \ mls_level_dom(&(r1).level[1], &(r2).level[1])) #endif /* _SS_MLS_TYPES_H_ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 /* SPDX-License-Identifier: GPL-2.0 */ /* * Runtime locking correctness validator * * Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra * * see Documentation/locking/lockdep-design.rst for more details. */ #ifndef __LINUX_LOCKDEP_H #define __LINUX_LOCKDEP_H #include <linux/lockdep_types.h> #include <linux/smp.h> #include <asm/percpu.h> struct task_struct; /* for sysctl */ extern int prove_locking; extern int lock_stat; #ifdef CONFIG_LOCKDEP #include <linux/linkage.h> #include <linux/list.h> #include <linux/debug_locks.h> #include <linux/stacktrace.h> static inline void lockdep_copy_map(struct lockdep_map *to, struct lockdep_map *from) { int i; *to = *from; /* * Since the class cache can be modified concurrently we could observe * half pointers (64bit arch using 32bit copy insns). Therefore clear * the caches and take the performance hit. * * XXX it doesn't work well with lockdep_set_class_and_subclass(), since * that relies on cache abuse. */ for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++) to->class_cache[i] = NULL; } /* * Every lock has a list of other locks that were taken after it. * We only grow the list, never remove from it: */ struct lock_list { struct list_head entry; struct lock_class *class; struct lock_class *links_to; const struct lock_trace *trace; u16 distance; /* bitmap of different dependencies from head to this */ u8 dep; /* used by BFS to record whether "prev -> this" only has -(*R)-> */ u8 only_xr; /* * The parent field is used to implement breadth-first search, and the * bit 0 is reused to indicate if the lock has been accessed in BFS. */ struct lock_list *parent; }; /** * struct lock_chain - lock dependency chain record * * @irq_context: the same as irq_context in held_lock below * @depth: the number of held locks in this chain * @base: the index in chain_hlocks for this chain * @entry: the collided lock chains in lock_chain hash list * @chain_key: the hash key of this lock_chain */ struct lock_chain { /* see BUILD_BUG_ON()s in add_chain_cache() */ unsigned int irq_context : 2, depth : 6, base : 24; /* 4 byte hole */ struct hlist_node entry; u64 chain_key; }; #define MAX_LOCKDEP_KEYS_BITS 13 #define MAX_LOCKDEP_KEYS (1UL << MAX_LOCKDEP_KEYS_BITS) #define INITIAL_CHAIN_KEY -1 struct held_lock { /* * One-way hash of the dependency chain up to this point. We * hash the hashes step by step as the dependency chain grows. * * We use it for dependency-caching and we skip detection * passes and dependency-updates if there is a cache-hit, so * it is absolutely critical for 100% coverage of the validator * to have a unique key value for every unique dependency path * that can occur in the system, to make a unique hash value * as likely as possible - hence the 64-bit width. * * The task struct holds the current hash value (initialized * with zero), here we store the previous hash value: */ u64 prev_chain_key; unsigned long acquire_ip; struct lockdep_map *instance; struct lockdep_map *nest_lock; #ifdef CONFIG_LOCK_STAT u64 waittime_stamp; u64 holdtime_stamp; #endif /* * class_idx is zero-indexed; it points to the element in * lock_classes this held lock instance belongs to. class_idx is in * the range from 0 to (MAX_LOCKDEP_KEYS-1) inclusive. */ unsigned int class_idx:MAX_LOCKDEP_KEYS_BITS; /* * The lock-stack is unified in that the lock chains of interrupt * contexts nest ontop of process context chains, but we 'separate' * the hashes by starting with 0 if we cross into an interrupt * context, and we also keep do not add cross-context lock * dependencies - the lock usage graph walking covers that area * anyway, and we'd just unnecessarily increase the number of * dependencies otherwise. [Note: hardirq and softirq contexts * are separated from each other too.] * * The following field is used to detect when we cross into an * interrupt context: */ unsigned int irq_context:2; /* bit 0 - soft, bit 1 - hard */ unsigned int trylock:1; /* 16 bits */ unsigned int read:2; /* see lock_acquire() comment */ unsigned int check:1; /* see lock_acquire() comment */ unsigned int hardirqs_off:1; unsigned int references:12; /* 32 bits */ unsigned int pin_count; }; /* * Initialization, self-test and debugging-output methods: */ extern void lockdep_init(void); extern void lockdep_reset(void); extern void lockdep_reset_lock(struct lockdep_map *lock); extern void lockdep_free_key_range(void *start, unsigned long size); extern asmlinkage void lockdep_sys_exit(void); extern void lockdep_set_selftest_task(struct task_struct *task); extern void lockdep_init_task(struct task_struct *task); /* * Split the recrursion counter in two to readily detect 'off' vs recursion. */ #define LOCKDEP_RECURSION_BITS 16 #define LOCKDEP_OFF (1U << LOCKDEP_RECURSION_BITS) #define LOCKDEP_RECURSION_MASK (LOCKDEP_OFF - 1) /* * lockdep_{off,on}() are macros to avoid tracing and kprobes; not inlines due * to header dependencies. */ #define lockdep_off() \ do { \ current->lockdep_recursion += LOCKDEP_OFF; \ } while (0) #define lockdep_on() \ do { \ current->lockdep_recursion -= LOCKDEP_OFF; \ } while (0) extern void lockdep_register_key(struct lock_class_key *key); extern void lockdep_unregister_key(struct lock_class_key *key); /* * These methods are used by specific locking variants (spinlocks, * rwlocks, mutexes and rwsems) to pass init/acquire/release events * to lockdep: */ extern void lockdep_init_map_type(struct lockdep_map *lock, const char *name, struct lock_class_key *key, int subclass, u8 inner, u8 outer, u8 lock_type); static inline void lockdep_init_map_waits(struct lockdep_map *lock, const char *name, struct lock_class_key *key, int subclass, u8 inner, u8 outer) { lockdep_init_map_type(lock, name, key, subclass, inner, LD_WAIT_INV, LD_LOCK_NORMAL); } static inline void lockdep_init_map_wait(struct lockdep_map *lock, const char *name, struct lock_class_key *key, int subclass, u8 inner) { lockdep_init_map_waits(lock, name, key, subclass, inner, LD_WAIT_INV); } static inline void lockdep_init_map(struct lockdep_map *lock, const char *name, struct lock_class_key *key, int subclass) { lockdep_init_map_wait(lock, name, key, subclass, LD_WAIT_INV); } /* * Reinitialize a lock key - for cases where there is special locking or * special initialization of locks so that the validator gets the scope * of dependencies wrong: they are either too broad (they need a class-split) * or they are too narrow (they suffer from a false class-split): */ #define lockdep_set_class(lock, key) \ lockdep_init_map_waits(&(lock)->dep_map, #key, key, 0, \ (lock)->dep_map.wait_type_inner, \ (lock)->dep_map.wait_type_outer) #define lockdep_set_class_and_name(lock, key, name) \ lockdep_init_map_waits(&(lock)->dep_map, name, key, 0, \ (lock)->dep_map.wait_type_inner, \ (lock)->dep_map.wait_type_outer) #define lockdep_set_class_and_subclass(lock, key, sub) \ lockdep_init_map_waits(&(lock)->dep_map, #key, key, sub,\ (lock)->dep_map.wait_type_inner, \ (lock)->dep_map.wait_type_outer) #define lockdep_set_subclass(lock, sub) \ lockdep_init_map_waits(&(lock)->dep_map, #lock, (lock)->dep_map.key, sub,\ (lock)->dep_map.wait_type_inner, \ (lock)->dep_map.wait_type_outer) #define lockdep_set_novalidate_class(lock) \ lockdep_set_class_and_name(lock, &__lockdep_no_validate__, #lock) /* * Compare locking classes */ #define lockdep_match_class(lock, key) lockdep_match_key(&(lock)->dep_map, key) static inline int lockdep_match_key(struct lockdep_map *lock, struct lock_class_key *key) { return lock->key == key; } /* * Acquire a lock. * * Values for "read": * * 0: exclusive (write) acquire * 1: read-acquire (no recursion allowed) * 2: read-acquire with same-instance recursion allowed * * Values for check: * * 0: simple checks (freeing, held-at-exit-time, etc.) * 1: full validation */ extern void lock_acquire(struct lockdep_map *lock, unsigned int subclass, int trylock, int read, int check, struct lockdep_map *nest_lock, unsigned long ip); extern void lock_release(struct lockdep_map *lock, unsigned long ip); /* * Same "read" as for lock_acquire(), except -1 means any. */ extern int lock_is_held_type(const struct lockdep_map *lock, int read); static inline int lock_is_held(const struct lockdep_map *lock) { return lock_is_held_type(lock, -1); } #define lockdep_is_held(lock) lock_is_held(&(lock)->dep_map) #define lockdep_is_held_type(lock, r) lock_is_held_type(&(lock)->dep_map, (r)) extern void lock_set_class(struct lockdep_map *lock, const char *name, struct lock_class_key *key, unsigned int subclass, unsigned long ip); static inline void lock_set_subclass(struct lockdep_map *lock, unsigned int subclass, unsigned long ip) { lock_set_class(lock, lock->name, lock->key, subclass, ip); } extern void lock_downgrade(struct lockdep_map *lock, unsigned long ip); #define NIL_COOKIE (struct pin_cookie){ .val = 0U, } extern struct pin_cookie lock_pin_lock(struct lockdep_map *lock); extern void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie); extern void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie); #define lockdep_depth(tsk) (debug_locks ? (tsk)->lockdep_depth : 0) #define lockdep_assert_held(l) do { \ WARN_ON(debug_locks && !lockdep_is_held(l)); \ } while (0) #define lockdep_assert_held_write(l) do { \ WARN_ON(debug_locks && !lockdep_is_held_type(l, 0)); \ } while (0) #define lockdep_assert_held_read(l) do { \ WARN_ON(debug_locks && !lockdep_is_held_type(l, 1)); \ } while (0) #define lockdep_assert_held_once(l) do { \ WARN_ON_ONCE(debug_locks && !lockdep_is_held(l)); \ } while (0) #define lockdep_recursing(tsk) ((tsk)->lockdep_recursion) #define lockdep_pin_lock(l) lock_pin_lock(&(l)->dep_map) #define lockdep_repin_lock(l,c) lock_repin_lock(&(l)->dep_map, (c)) #define lockdep_unpin_lock(l,c) lock_unpin_lock(&(l)->dep_map, (c)) #else /* !CONFIG_LOCKDEP */ static inline void lockdep_init_task(struct task_struct *task) { } static inline void lockdep_off(void) { } static inline void lockdep_on(void) { } static inline void lockdep_set_selftest_task(struct task_struct *task) { } # define lock_acquire(l, s, t, r, c, n, i) do { } while (0) # define lock_release(l, i) do { } while (0) # define lock_downgrade(l, i) do { } while (0) # define lock_set_class(l, n, k, s, i) do { } while (0) # define lock_set_subclass(l, s, i) do { } while (0) # define lockdep_init() do { } while (0) # define lockdep_init_map_type(lock, name, key, sub, inner, outer, type) \ do { (void)(name); (void)(key); } while (0) # define lockdep_init_map_waits(lock, name, key, sub, inner, outer) \ do { (void)(name); (void)(key); } while (0) # define lockdep_init_map_wait(lock, name, key, sub, inner) \ do { (void)(name); (void)(key); } while (0) # define lockdep_init_map(lock, name, key, sub) \ do { (void)(name); (void)(key); } while (0) # define lockdep_set_class(lock, key) do { (void)(key); } while (0) # define lockdep_set_class_and_name(lock, key, name) \ do { (void)(key); (void)(name); } while (0) #define lockdep_set_class_and_subclass(lock, key, sub) \ do { (void)(key); } while (0) #define lockdep_set_subclass(lock, sub) do { } while (0) #define lockdep_set_novalidate_class(lock) do { } while (0) /* * We don't define lockdep_match_class() and lockdep_match_key() for !LOCKDEP * case since the result is not well defined and the caller should rather * #ifdef the call himself. */ # define lockdep_reset() do { debug_locks = 1; } while (0) # define lockdep_free_key_range(start, size) do { } while (0) # define lockdep_sys_exit() do { } while (0) static inline void lockdep_register_key(struct lock_class_key *key) { } static inline void lockdep_unregister_key(struct lock_class_key *key) { } #define lockdep_depth(tsk) (0) #define lockdep_is_held_type(l, r) (1) #define lockdep_assert_held(l) do { (void)(l); } while (0) #define lockdep_assert_held_write(l) do { (void)(l); } while (0) #define lockdep_assert_held_read(l) do { (void)(l); } while (0) #define lockdep_assert_held_once(l) do { (void)(l); } while (0) #define lockdep_recursing(tsk) (0) #define NIL_COOKIE (struct pin_cookie){ } #define lockdep_pin_lock(l) ({ struct pin_cookie cookie = { }; cookie; }) #define lockdep_repin_lock(l, c) do { (void)(l); (void)(c); } while (0) #define lockdep_unpin_lock(l, c) do { (void)(l); (void)(c); } while (0) #endif /* !LOCKDEP */ enum xhlock_context_t { XHLOCK_HARD, XHLOCK_SOFT, XHLOCK_CTX_NR, }; #define lockdep_init_map_crosslock(m, n, k, s) do {} while (0) /* * To initialize a lockdep_map statically use this macro. * Note that _name must not be NULL. */ #define STATIC_LOCKDEP_MAP_INIT(_name, _key) \ { .name = (_name), .key = (void *)(_key), } static inline void lockdep_invariant_state(bool force) {} static inline void lockdep_free_task(struct task_struct *task) {} #ifdef CONFIG_LOCK_STAT extern void lock_contended(struct lockdep_map *lock, unsigned long ip); extern void lock_acquired(struct lockdep_map *lock, unsigned long ip); #define LOCK_CONTENDED(_lock, try, lock) \ do { \ if (!try(_lock)) { \ lock_contended(&(_lock)->dep_map, _RET_IP_); \ lock(_lock); \ } \ lock_acquired(&(_lock)->dep_map, _RET_IP_); \ } while (0) #define LOCK_CONTENDED_RETURN(_lock, try, lock) \ ({ \ int ____err = 0; \ if (!try(_lock)) { \ lock_contended(&(_lock)->dep_map, _RET_IP_); \ ____err = lock(_lock); \ } \ if (!____err) \ lock_acquired(&(_lock)->dep_map, _RET_IP_); \ ____err; \ }) #else /* CONFIG_LOCK_STAT */ #define lock_contended(lockdep_map, ip) do {} while (0) #define lock_acquired(lockdep_map, ip) do {} while (0) #define LOCK_CONTENDED(_lock, try, lock) \ lock(_lock) #define LOCK_CONTENDED_RETURN(_lock, try, lock) \ lock(_lock) #endif /* CONFIG_LOCK_STAT */ #ifdef CONFIG_LOCKDEP /* * On lockdep we dont want the hand-coded irq-enable of * _raw_*_lock_flags() code, because lockdep assumes * that interrupts are not re-enabled during lock-acquire: */ #define LOCK_CONTENDED_FLAGS(_lock, try, lock, lockfl, flags) \ LOCK_CONTENDED((_lock), (try), (lock)) #else /* CONFIG_LOCKDEP */ #define LOCK_CONTENDED_FLAGS(_lock, try, lock, lockfl, flags) \ lockfl((_lock), (flags)) #endif /* CONFIG_LOCKDEP */ #ifdef CONFIG_PROVE_LOCKING extern void print_irqtrace_events(struct task_struct *curr); #else static inline void print_irqtrace_events(struct task_struct *curr) { } #endif /* Variable used to make lockdep treat read_lock() as recursive in selftests */ #ifdef CONFIG_DEBUG_LOCKING_API_SELFTESTS extern unsigned int force_read_lock_recursive; #else /* CONFIG_DEBUG_LOCKING_API_SELFTESTS */ #define force_read_lock_recursive 0 #endif /* CONFIG_DEBUG_LOCKING_API_SELFTESTS */ #ifdef CONFIG_LOCKDEP extern bool read_lock_is_recursive(void); #else /* CONFIG_LOCKDEP */ /* If !LOCKDEP, the value is meaningless */ #define read_lock_is_recursive() 0 #endif /* * For trivial one-depth nesting of a lock-class, the following * global define can be used. (Subsystems with multiple levels * of nesting should define their own lock-nesting subclasses.) */ #define SINGLE_DEPTH_NESTING 1 /* * Map the dependency ops to NOP or to real lockdep ops, depending * on the per lock-class debug mode: */ #define lock_acquire_exclusive(l, s, t, n, i) lock_acquire(l, s, t, 0, 1, n, i) #define lock_acquire_shared(l, s, t, n, i) lock_acquire(l, s, t, 1, 1, n, i) #define lock_acquire_shared_recursive(l, s, t, n, i) lock_acquire(l, s, t, 2, 1, n, i) #define spin_acquire(l, s, t, i) lock_acquire_exclusive(l, s, t, NULL, i) #define spin_acquire_nest(l, s, t, n, i) lock_acquire_exclusive(l, s, t, n, i) #define spin_release(l, i) lock_release(l, i) #define rwlock_acquire(l, s, t, i) lock_acquire_exclusive(l, s, t, NULL, i) #define rwlock_acquire_read(l, s, t, i) \ do { \ if (read_lock_is_recursive()) \ lock_acquire_shared_recursive(l, s, t, NULL, i); \ else \ lock_acquire_shared(l, s, t, NULL, i); \ } while (0) #define rwlock_release(l, i) lock_release(l, i) #define seqcount_acquire(l, s, t, i) lock_acquire_exclusive(l, s, t, NULL, i) #define seqcount_acquire_read(l, s, t, i) lock_acquire_shared_recursive(l, s, t, NULL, i) #define seqcount_release(l, i) lock_release(l, i) #define mutex_acquire(l, s, t, i) lock_acquire_exclusive(l, s, t, NULL, i) #define mutex_acquire_nest(l, s, t, n, i) lock_acquire_exclusive(l, s, t, n, i) #define mutex_release(l, i) lock_release(l, i) #define rwsem_acquire(l, s, t, i) lock_acquire_exclusive(l, s, t, NULL, i) #define rwsem_acquire_nest(l, s, t, n, i) lock_acquire_exclusive(l, s, t, n, i) #define rwsem_acquire_read(l, s, t, i) lock_acquire_shared(l, s, t, NULL, i) #define rwsem_release(l, i) lock_release(l, i) #define lock_map_acquire(l) lock_acquire_exclusive(l, 0, 0, NULL, _THIS_IP_) #define lock_map_acquire_read(l) lock_acquire_shared_recursive(l, 0, 0, NULL, _THIS_IP_) #define lock_map_acquire_tryread(l) lock_acquire_shared_recursive(l, 0, 1, NULL, _THIS_IP_) #define lock_map_release(l) lock_release(l, _THIS_IP_) #ifdef CONFIG_PROVE_LOCKING # define might_lock(lock) \ do { \ typecheck(struct lockdep_map *, &(lock)->dep_map); \ lock_acquire(&(lock)->dep_map, 0, 0, 0, 1, NULL, _THIS_IP_); \ lock_release(&(lock)->dep_map, _THIS_IP_); \ } while (0) # define might_lock_read(lock) \ do { \ typecheck(struct lockdep_map *, &(lock)->dep_map); \ lock_acquire(&(lock)->dep_map, 0, 0, 1, 1, NULL, _THIS_IP_); \ lock_release(&(lock)->dep_map, _THIS_IP_); \ } while (0) # define might_lock_nested(lock, subclass) \ do { \ typecheck(struct lockdep_map *, &(lock)->dep_map); \ lock_acquire(&(lock)->dep_map, subclass, 0, 1, 1, NULL, \ _THIS_IP_); \ lock_release(&(lock)->dep_map, _THIS_IP_); \ } while (0) DECLARE_PER_CPU(int, hardirqs_enabled); DECLARE_PER_CPU(int, hardirq_context); DECLARE_PER_CPU(unsigned int, lockdep_recursion); #define __lockdep_enabled (debug_locks && !this_cpu_read(lockdep_recursion)) #define lockdep_assert_irqs_enabled() \ do { \ WARN_ON_ONCE(__lockdep_enabled && !this_cpu_read(hardirqs_enabled)); \ } while (0) #define lockdep_assert_irqs_disabled() \ do { \ WARN_ON_ONCE(__lockdep_enabled && this_cpu_read(hardirqs_enabled)); \ } while (0) #define lockdep_assert_in_irq() \ do { \ WARN_ON_ONCE(__lockdep_enabled && !this_cpu_read(hardirq_context)); \ } while (0) #define lockdep_assert_preemption_enabled() \ do { \ WARN_ON_ONCE(IS_ENABLED(CONFIG_PREEMPT_COUNT) && \ __lockdep_enabled && \ (preempt_count() != 0 || \ !this_cpu_read(hardirqs_enabled))); \ } while (0) #define lockdep_assert_preemption_disabled() \ do { \ WARN_ON_ONCE(IS_ENABLED(CONFIG_PREEMPT_COUNT) && \ __lockdep_enabled && \ (preempt_count() == 0 && \ this_cpu_read(hardirqs_enabled))); \ } while (0) #else # define might_lock(lock) do { } while (0) # define might_lock_read(lock) do { } while (0) # define might_lock_nested(lock, subclass) do { } while (0) # define lockdep_assert_irqs_enabled() do { } while (0) # define lockdep_assert_irqs_disabled() do { } while (0) # define lockdep_assert_in_irq() do { } while (0) # define lockdep_assert_preemption_enabled() do { } while (0) # define lockdep_assert_preemption_disabled() do { } while (0) #endif #ifdef CONFIG_PROVE_RAW_LOCK_NESTING # define lockdep_assert_RT_in_threaded_ctx() do { \ WARN_ONCE(debug_locks && !current->lockdep_recursion && \ lockdep_hardirq_context() && \ !(current->hardirq_threaded || current->irq_config), \ "Not in threaded context on PREEMPT_RT as expected\n"); \ } while (0) #else # define lockdep_assert_RT_in_threaded_ctx() do { } while (0) #endif #ifdef CONFIG_LOCKDEP void lockdep_rcu_suspicious(const char *file, const int line, const char *s); #else static inline void lockdep_rcu_suspicious(const char *file, const int line, const char *s) { } #endif #endif /* __LINUX_LOCKDEP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 /* SPDX-License-Identifier: GPL-2.0 */ /* * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk). * * (C) SGI 2006, Christoph Lameter * Cleaned up and restructured to ease the addition of alternative * implementations of SLAB allocators. * (C) Linux Foundation 2008-2013 * Unified interface for all slab allocators */ #ifndef _LINUX_SLAB_H #define _LINUX_SLAB_H #include <linux/gfp.h> #include <linux/overflow.h> #include <linux/types.h> #include <linux/workqueue.h> #include <linux/percpu-refcount.h> /* * Flags to pass to kmem_cache_create(). * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set. */ /* DEBUG: Perform (expensive) checks on alloc/free */ #define SLAB_CONSISTENCY_CHECKS ((slab_flags_t __force)0x00000100U) /* DEBUG: Red zone objs in a cache */ #define SLAB_RED_ZONE ((slab_flags_t __force)0x00000400U) /* DEBUG: Poison objects */ #define SLAB_POISON ((slab_flags_t __force)0x00000800U) /* Align objs on cache lines */ #define SLAB_HWCACHE_ALIGN ((slab_flags_t __force)0x00002000U) /* Use GFP_DMA memory */ #define SLAB_CACHE_DMA ((slab_flags_t __force)0x00004000U) /* Use GFP_DMA32 memory */ #define SLAB_CACHE_DMA32 ((slab_flags_t __force)0x00008000U) /* DEBUG: Store the last owner for bug hunting */ #define SLAB_STORE_USER ((slab_flags_t __force)0x00010000U) /* Panic if kmem_cache_create() fails */ #define SLAB_PANIC ((slab_flags_t __force)0x00040000U) /* * SLAB_TYPESAFE_BY_RCU - **WARNING** READ THIS! * * This delays freeing the SLAB page by a grace period, it does _NOT_ * delay object freeing. This means that if you do kmem_cache_free() * that memory location is free to be reused at any time. Thus it may * be possible to see another object there in the same RCU grace period. * * This feature only ensures the memory location backing the object * stays valid, the trick to using this is relying on an independent * object validation pass. Something like: * * rcu_read_lock() * again: * obj = lockless_lookup(key); * if (obj) { * if (!try_get_ref(obj)) // might fail for free objects * goto again; * * if (obj->key != key) { // not the object we expected * put_ref(obj); * goto again; * } * } * rcu_read_unlock(); * * This is useful if we need to approach a kernel structure obliquely, * from its address obtained without the usual locking. We can lock * the structure to stabilize it and check it's still at the given address, * only if we can be sure that the memory has not been meanwhile reused * for some other kind of object (which our subsystem's lock might corrupt). * * rcu_read_lock before reading the address, then rcu_read_unlock after * taking the spinlock within the structure expected at that address. * * Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU. */ /* Defer freeing slabs to RCU */ #define SLAB_TYPESAFE_BY_RCU ((slab_flags_t __force)0x00080000U) /* Spread some memory over cpuset */ #define SLAB_MEM_SPREAD ((slab_flags_t __force)0x00100000U) /* Trace allocations and frees */ #define SLAB_TRACE ((slab_flags_t __force)0x00200000U) /* Flag to prevent checks on free */ #ifdef CONFIG_DEBUG_OBJECTS # define SLAB_DEBUG_OBJECTS ((slab_flags_t __force)0x00400000U) #else # define SLAB_DEBUG_OBJECTS 0 #endif /* Avoid kmemleak tracing */ #define SLAB_NOLEAKTRACE ((slab_flags_t __force)0x00800000U) /* Fault injection mark */ #ifdef CONFIG_FAILSLAB # define SLAB_FAILSLAB ((slab_flags_t __force)0x02000000U) #else # define SLAB_FAILSLAB 0 #endif /* Account to memcg */ #ifdef CONFIG_MEMCG_KMEM # define SLAB_ACCOUNT ((slab_flags_t __force)0x04000000U) #else # define SLAB_ACCOUNT 0 #endif #ifdef CONFIG_KASAN #define SLAB_KASAN ((slab_flags_t __force)0x08000000U) #else #define SLAB_KASAN 0 #endif /* The following flags affect the page allocator grouping pages by mobility */ /* Objects are reclaimable */ #define SLAB_RECLAIM_ACCOUNT ((slab_flags_t __force)0x00020000U) #define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */ /* Slab deactivation flag */ #define SLAB_DEACTIVATED ((slab_flags_t __force)0x10000000U) /* * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests. * * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault. * * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can. * Both make kfree a no-op. */ #define ZERO_SIZE_PTR ((void *)16) #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \ (unsigned long)ZERO_SIZE_PTR) #include <linux/kasan.h> struct mem_cgroup; /* * struct kmem_cache related prototypes */ void __init kmem_cache_init(void); bool slab_is_available(void); extern bool usercopy_fallback; struct kmem_cache *kmem_cache_create(const char *name, unsigned int size, unsigned int align, slab_flags_t flags, void (*ctor)(void *)); struct kmem_cache *kmem_cache_create_usercopy(const char *name, unsigned int size, unsigned int align, slab_flags_t flags, unsigned int useroffset, unsigned int usersize, void (*ctor)(void *)); void kmem_cache_destroy(struct kmem_cache *); int kmem_cache_shrink(struct kmem_cache *); /* * Please use this macro to create slab caches. Simply specify the * name of the structure and maybe some flags that are listed above. * * The alignment of the struct determines object alignment. If you * f.e. add ____cacheline_aligned_in_smp to the struct declaration * then the objects will be properly aligned in SMP configurations. */ #define KMEM_CACHE(__struct, __flags) \ kmem_cache_create(#__struct, sizeof(struct __struct), \ __alignof__(struct __struct), (__flags), NULL) /* * To whitelist a single field for copying to/from usercopy, use this * macro instead for KMEM_CACHE() above. */ #define KMEM_CACHE_USERCOPY(__struct, __flags, __field) \ kmem_cache_create_usercopy(#__struct, \ sizeof(struct __struct), \ __alignof__(struct __struct), (__flags), \ offsetof(struct __struct, __field), \ sizeof_field(struct __struct, __field), NULL) /* * Common kmalloc functions provided by all allocators */ void * __must_check krealloc(const void *, size_t, gfp_t); void kfree(const void *); void kfree_sensitive(const void *); size_t __ksize(const void *); size_t ksize(const void *); #ifdef CONFIG_HAVE_HARDENED_USERCOPY_ALLOCATOR void __check_heap_object(const void *ptr, unsigned long n, struct page *page, bool to_user); #else static inline void __check_heap_object(const void *ptr, unsigned long n, struct page *page, bool to_user) { } #endif /* * Some archs want to perform DMA into kmalloc caches and need a guaranteed * alignment larger than the alignment of a 64-bit integer. * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that. */ #if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8 #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN #define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN #define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN) #else #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) #endif /* * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment. * Intended for arches that get misalignment faults even for 64 bit integer * aligned buffers. */ #ifndef ARCH_SLAB_MINALIGN #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long) #endif /* * kmalloc and friends return ARCH_KMALLOC_MINALIGN aligned * pointers. kmem_cache_alloc and friends return ARCH_SLAB_MINALIGN * aligned pointers. */ #define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN) #define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN) #define __assume_page_alignment __assume_aligned(PAGE_SIZE) /* * Kmalloc array related definitions */ #ifdef CONFIG_SLAB /* * The largest kmalloc size supported by the SLAB allocators is * 32 megabyte (2^25) or the maximum allocatable page order if that is * less than 32 MB. * * WARNING: Its not easy to increase this value since the allocators have * to do various tricks to work around compiler limitations in order to * ensure proper constant folding. */ #define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \ (MAX_ORDER + PAGE_SHIFT - 1) : 25) #define KMALLOC_SHIFT_MAX KMALLOC_SHIFT_HIGH #ifndef KMALLOC_SHIFT_LOW #define KMALLOC_SHIFT_LOW 5 #endif #endif #ifdef CONFIG_SLUB /* * SLUB directly allocates requests fitting in to an order-1 page * (PAGE_SIZE*2). Larger requests are passed to the page allocator. */ #define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1) #define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT - 1) #ifndef KMALLOC_SHIFT_LOW #define KMALLOC_SHIFT_LOW 3 #endif #endif #ifdef CONFIG_SLOB /* * SLOB passes all requests larger than one page to the page allocator. * No kmalloc array is necessary since objects of different sizes can * be allocated from the same page. */ #define KMALLOC_SHIFT_HIGH PAGE_SHIFT #define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT - 1) #ifndef KMALLOC_SHIFT_LOW #define KMALLOC_SHIFT_LOW 3 #endif #endif /* Maximum allocatable size */ #define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX) /* Maximum size for which we actually use a slab cache */ #define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH) /* Maximum order allocatable via the slab allocator */ #define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT) /* * Kmalloc subsystem. */ #ifndef KMALLOC_MIN_SIZE #define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW) #endif /* * This restriction comes from byte sized index implementation. * Page size is normally 2^12 bytes and, in this case, if we want to use * byte sized index which can represent 2^8 entries, the size of the object * should be equal or greater to 2^12 / 2^8 = 2^4 = 16. * If minimum size of kmalloc is less than 16, we use it as minimum object * size and give up to use byte sized index. */ #define SLAB_OBJ_MIN_SIZE (KMALLOC_MIN_SIZE < 16 ? \ (KMALLOC_MIN_SIZE) : 16) /* * Whenever changing this, take care of that kmalloc_type() and * create_kmalloc_caches() still work as intended. */ enum kmalloc_cache_type { KMALLOC_NORMAL = 0, KMALLOC_RECLAIM, #ifdef CONFIG_ZONE_DMA KMALLOC_DMA, #endif NR_KMALLOC_TYPES }; #ifndef CONFIG_SLOB extern struct kmem_cache * kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1]; static __always_inline enum kmalloc_cache_type kmalloc_type(gfp_t flags) { #ifdef CONFIG_ZONE_DMA /* * The most common case is KMALLOC_NORMAL, so test for it * with a single branch for both flags. */ if (likely((flags & (__GFP_DMA | __GFP_RECLAIMABLE)) == 0)) return KMALLOC_NORMAL; /* * At least one of the flags has to be set. If both are, __GFP_DMA * is more important. */ return flags & __GFP_DMA ? KMALLOC_DMA : KMALLOC_RECLAIM; #else return flags & __GFP_RECLAIMABLE ? KMALLOC_RECLAIM : KMALLOC_NORMAL; #endif } /* * Figure out which kmalloc slab an allocation of a certain size * belongs to. * 0 = zero alloc * 1 = 65 .. 96 bytes * 2 = 129 .. 192 bytes * n = 2^(n-1)+1 .. 2^n */ static __always_inline unsigned int kmalloc_index(size_t size) { if (!size) return 0; if (size <= KMALLOC_MIN_SIZE) return KMALLOC_SHIFT_LOW; if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96) return 1; if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192) return 2; if (size <= 8) return 3; if (size <= 16) return 4; if (size <= 32) return 5; if (size <= 64) return 6; if (size <= 128) return 7; if (size <= 256) return 8; if (size <= 512) return 9; if (size <= 1024) return 10; if (size <= 2 * 1024) return 11; if (size <= 4 * 1024) return 12; if (size <= 8 * 1024) return 13; if (size <= 16 * 1024) return 14; if (size <= 32 * 1024) return 15; if (size <= 64 * 1024) return 16; if (size <= 128 * 1024) return 17; if (size <= 256 * 1024) return 18; if (size <= 512 * 1024) return 19; if (size <= 1024 * 1024) return 20; if (size <= 2 * 1024 * 1024) return 21; if (size <= 4 * 1024 * 1024) return 22; if (size <= 8 * 1024 * 1024) return 23; if (size <= 16 * 1024 * 1024) return 24; if (size <= 32 * 1024 * 1024) return 25; if (size <= 64 * 1024 * 1024) return 26; BUG(); /* Will never be reached. Needed because the compiler may complain */ return -1; } #endif /* !CONFIG_SLOB */ void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment __malloc; void *kmem_cache_alloc(struct kmem_cache *, gfp_t flags) __assume_slab_alignment __malloc; void kmem_cache_free(struct kmem_cache *, void *); /* * Bulk allocation and freeing operations. These are accelerated in an * allocator specific way to avoid taking locks repeatedly or building * metadata structures unnecessarily. * * Note that interrupts must be enabled when calling these functions. */ void kmem_cache_free_bulk(struct kmem_cache *, size_t, void **); int kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **); /* * Caller must not use kfree_bulk() on memory not originally allocated * by kmalloc(), because the SLOB allocator cannot handle this. */ static __always_inline void kfree_bulk(size_t size, void **p) { kmem_cache_free_bulk(NULL, size, p); } #ifdef CONFIG_NUMA void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment __malloc; void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node) __assume_slab_alignment __malloc; #else static __always_inline void *__kmalloc_node(size_t size, gfp_t flags, int node) { return __kmalloc(size, flags); } static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node) { return kmem_cache_alloc(s, flags); } #endif #ifdef CONFIG_TRACING extern void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t) __assume_slab_alignment __malloc; #ifdef CONFIG_NUMA extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s, gfp_t gfpflags, int node, size_t size) __assume_slab_alignment __malloc; #else static __always_inline void * kmem_cache_alloc_node_trace(struct kmem_cache *s, gfp_t gfpflags, int node, size_t size) { return kmem_cache_alloc_trace(s, gfpflags, size); } #endif /* CONFIG_NUMA */ #else /* CONFIG_TRACING */ static __always_inline void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t flags, size_t size) { void *ret = kmem_cache_alloc(s, flags); ret = kasan_kmalloc(s, ret, size, flags); return ret; } static __always_inline void * kmem_cache_alloc_node_trace(struct kmem_cache *s, gfp_t gfpflags, int node, size_t size) { void *ret = kmem_cache_alloc_node(s, gfpflags, node); ret = kasan_kmalloc(s, ret, size, gfpflags); return ret; } #endif /* CONFIG_TRACING */ extern void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc; #ifdef CONFIG_TRACING extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc; #else static __always_inline void * kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) { return kmalloc_order(size, flags, order); } #endif static __always_inline void *kmalloc_large(size_t size, gfp_t flags) { unsigned int order = get_order(size); return kmalloc_order_trace(size, flags, order); } /** * kmalloc - allocate memory * @size: how many bytes of memory are required. * @flags: the type of memory to allocate. * * kmalloc is the normal method of allocating memory * for objects smaller than page size in the kernel. * * The allocated object address is aligned to at least ARCH_KMALLOC_MINALIGN * bytes. For @size of power of two bytes, the alignment is also guaranteed * to be at least to the size. * * The @flags argument may be one of the GFP flags defined at * include/linux/gfp.h and described at * :ref:`Documentation/core-api/mm-api.rst <mm-api-gfp-flags>` * * The recommended usage of the @flags is described at * :ref:`Documentation/core-api/memory-allocation.rst <memory_allocation>` * * Below is a brief outline of the most useful GFP flags * * %GFP_KERNEL * Allocate normal kernel ram. May sleep. * * %GFP_NOWAIT * Allocation will not sleep. * * %GFP_ATOMIC * Allocation will not sleep. May use emergency pools. * * %GFP_HIGHUSER * Allocate memory from high memory on behalf of user. * * Also it is possible to set different flags by OR'ing * in one or more of the following additional @flags: * * %__GFP_HIGH * This allocation has high priority and may use emergency pools. * * %__GFP_NOFAIL * Indicate that this allocation is in no way allowed to fail * (think twice before using). * * %__GFP_NORETRY * If memory is not immediately available, * then give up at once. * * %__GFP_NOWARN * If allocation fails, don't issue any warnings. * * %__GFP_RETRY_MAYFAIL * Try really hard to succeed the allocation but fail * eventually. */ static __always_inline void *kmalloc(size_t size, gfp_t flags) { if (__builtin_constant_p(size)) { #ifndef CONFIG_SLOB unsigned int index; #endif if (size > KMALLOC_MAX_CACHE_SIZE) return kmalloc_large(size, flags); #ifndef CONFIG_SLOB index = kmalloc_index(size); if (!index) return ZERO_SIZE_PTR; return kmem_cache_alloc_trace( kmalloc_caches[kmalloc_type(flags)][index], flags, size); #endif } return __kmalloc(size, flags); } static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node) { #ifndef CONFIG_SLOB if (__builtin_constant_p(size) && size <= KMALLOC_MAX_CACHE_SIZE) { unsigned int i = kmalloc_index(size); if (!i) return ZERO_SIZE_PTR; return kmem_cache_alloc_node_trace( kmalloc_caches[kmalloc_type(flags)][i], flags, node, size); } #endif return __kmalloc_node(size, flags, node); } /** * kmalloc_array - allocate memory for an array. * @n: number of elements. * @size: element size. * @flags: the type of memory to allocate (see kmalloc). */ static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags) { size_t bytes; if (unlikely(check_mul_overflow(n, size, &bytes))) return NULL; if (__builtin_constant_p(n) && __builtin_constant_p(size)) return kmalloc(bytes, flags); return __kmalloc(bytes, flags); } /** * kcalloc - allocate memory for an array. The memory is set to zero. * @n: number of elements. * @size: element size. * @flags: the type of memory to allocate (see kmalloc). */ static inline void *kcalloc(size_t n, size_t size, gfp_t flags) { return kmalloc_array(n, size, flags | __GFP_ZERO); } /* * kmalloc_track_caller is a special version of kmalloc that records the * calling function of the routine calling it for slab leak tracking instead * of just the calling function (confusing, eh?). * It's useful when the call to kmalloc comes from a widely-used standard * allocator where we care about the real place the memory allocation * request comes from. */ extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long); #define kmalloc_track_caller(size, flags) \ __kmalloc_track_caller(size, flags, _RET_IP_) static inline void *kmalloc_array_node(size_t n, size_t size, gfp_t flags, int node) { size_t bytes; if (unlikely(check_mul_overflow(n, size, &bytes))) return NULL; if (__builtin_constant_p(n) && __builtin_constant_p(size)) return kmalloc_node(bytes, flags, node); return __kmalloc_node(bytes, flags, node); } static inline void *kcalloc_node(size_t n, size_t size, gfp_t flags, int node) { return kmalloc_array_node(n, size, flags | __GFP_ZERO, node); } #ifdef CONFIG_NUMA extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long); #define kmalloc_node_track_caller(size, flags, node) \ __kmalloc_node_track_caller(size, flags, node, \ _RET_IP_) #else /* CONFIG_NUMA */ #define kmalloc_node_track_caller(size, flags, node) \ kmalloc_track_caller(size, flags) #endif /* CONFIG_NUMA */ /* * Shortcuts */ static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags) { return kmem_cache_alloc(k, flags | __GFP_ZERO); } /** * kzalloc - allocate memory. The memory is set to zero. * @size: how many bytes of memory are required. * @flags: the type of memory to allocate (see kmalloc). */ static inline void *kzalloc(size_t size, gfp_t flags) { return kmalloc(size, flags | __GFP_ZERO); } /** * kzalloc_node - allocate zeroed memory from a particular memory node. * @size: how many bytes of memory are required. * @flags: the type of memory to allocate (see kmalloc). * @node: memory node from which to allocate */ static inline void *kzalloc_node(size_t size, gfp_t flags, int node) { return kmalloc_node(size, flags | __GFP_ZERO, node); } unsigned int kmem_cache_size(struct kmem_cache *s); void __init kmem_cache_init_late(void); #if defined(CONFIG_SMP) && defined(CONFIG_SLAB) int slab_prepare_cpu(unsigned int cpu); int slab_dead_cpu(unsigned int cpu); #else #define slab_prepare_cpu NULL #define slab_dead_cpu NULL #endif #endif /* _LINUX_SLAB_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * NetLabel System * * The NetLabel system manages static and dynamic label mappings for network * protocols such as CIPSO and RIPSO. * * Author: Paul Moore <paul@paul-moore.com> */ /* * (c) Copyright Hewlett-Packard Development Company, L.P., 2006, 2008 */ #ifndef _NETLABEL_H #define _NETLABEL_H #include <linux/types.h> #include <linux/slab.h> #include <linux/net.h> #include <linux/skbuff.h> #include <linux/in.h> #include <linux/in6.h> #include <net/netlink.h> #include <net/request_sock.h> #include <linux/refcount.h> struct cipso_v4_doi; struct calipso_doi; /* * NetLabel - A management interface for maintaining network packet label * mapping tables for explicit packet labling protocols. * * Network protocols such as CIPSO and RIPSO require a label translation layer * to convert the label on the packet into something meaningful on the host * machine. In the current Linux implementation these mapping tables live * inside the kernel; NetLabel provides a mechanism for user space applications * to manage these mapping tables. * * NetLabel makes use of the Generic NETLINK mechanism as a transport layer to * send messages between kernel and user space. The general format of a * NetLabel message is shown below: * * +-----------------+-------------------+--------- --- -- - * | struct nlmsghdr | struct genlmsghdr | payload * +-----------------+-------------------+--------- --- -- - * * The 'nlmsghdr' and 'genlmsghdr' structs should be dealt with like normal. * The payload is dependent on the subsystem specified in the * 'nlmsghdr->nlmsg_type' and should be defined below, supporting functions * should be defined in the corresponding net/netlabel/netlabel_<subsys>.h|c * file. All of the fields in the NetLabel payload are NETLINK attributes, see * the include/net/netlink.h file for more information on NETLINK attributes. * */ /* * NetLabel NETLINK protocol */ /* NetLabel NETLINK protocol version * 1: initial version * 2: added static labels for unlabeled connections * 3: network selectors added to the NetLabel/LSM domain mapping and the * CIPSO_V4_MAP_LOCAL CIPSO mapping was added */ #define NETLBL_PROTO_VERSION 3 /* NetLabel NETLINK types/families */ #define NETLBL_NLTYPE_NONE 0 #define NETLBL_NLTYPE_MGMT 1 #define NETLBL_NLTYPE_MGMT_NAME "NLBL_MGMT" #define NETLBL_NLTYPE_RIPSO 2 #define NETLBL_NLTYPE_RIPSO_NAME "NLBL_RIPSO" #define NETLBL_NLTYPE_CIPSOV4 3 #define NETLBL_NLTYPE_CIPSOV4_NAME "NLBL_CIPSOv4" #define NETLBL_NLTYPE_CIPSOV6 4 #define NETLBL_NLTYPE_CIPSOV6_NAME "NLBL_CIPSOv6" #define NETLBL_NLTYPE_UNLABELED 5 #define NETLBL_NLTYPE_UNLABELED_NAME "NLBL_UNLBL" #define NETLBL_NLTYPE_ADDRSELECT 6 #define NETLBL_NLTYPE_ADDRSELECT_NAME "NLBL_ADRSEL" #define NETLBL_NLTYPE_CALIPSO 7 #define NETLBL_NLTYPE_CALIPSO_NAME "NLBL_CALIPSO" /* * NetLabel - Kernel API for accessing the network packet label mappings. * * The following functions are provided for use by other kernel modules, * specifically kernel LSM modules, to provide a consistent, transparent API * for dealing with explicit packet labeling protocols such as CIPSO and * RIPSO. The functions defined here are implemented in the * net/netlabel/netlabel_kapi.c file. * */ /* NetLabel audit information */ struct netlbl_audit { u32 secid; kuid_t loginuid; unsigned int sessionid; }; /* * LSM security attributes */ /** * struct netlbl_lsm_cache - NetLabel LSM security attribute cache * @refcount: atomic reference counter * @free: LSM supplied function to free the cache data * @data: LSM supplied cache data * * Description: * This structure is provided for LSMs which wish to make use of the NetLabel * caching mechanism to store LSM specific data/attributes in the NetLabel * cache. If the LSM has to perform a lot of translation from the NetLabel * security attributes into it's own internal representation then the cache * mechanism can provide a way to eliminate some or all of that translation * overhead on a cache hit. * */ struct netlbl_lsm_cache { refcount_t refcount; void (*free) (const void *data); void *data; }; /** * struct netlbl_lsm_catmap - NetLabel LSM secattr category bitmap * @startbit: the value of the lowest order bit in the bitmap * @bitmap: the category bitmap * @next: pointer to the next bitmap "node" or NULL * * Description: * This structure is used to represent category bitmaps. Due to the large * number of categories supported by most labeling protocols it is not * practical to transfer a full bitmap internally so NetLabel adopts a sparse * bitmap structure modeled after SELinux's ebitmap structure. * The catmap bitmap field MUST be a power of two in length and large * enough to hold at least 240 bits. Special care (i.e. check the code!) * should be used when changing these values as the LSM implementation * probably has functions which rely on the sizes of these types to speed * processing. * */ #define NETLBL_CATMAP_MAPTYPE u64 #define NETLBL_CATMAP_MAPCNT 4 #define NETLBL_CATMAP_MAPSIZE (sizeof(NETLBL_CATMAP_MAPTYPE) * 8) #define NETLBL_CATMAP_SIZE (NETLBL_CATMAP_MAPSIZE * \ NETLBL_CATMAP_MAPCNT) #define NETLBL_CATMAP_BIT (NETLBL_CATMAP_MAPTYPE)0x01 struct netlbl_lsm_catmap { u32 startbit; NETLBL_CATMAP_MAPTYPE bitmap[NETLBL_CATMAP_MAPCNT]; struct netlbl_lsm_catmap *next; }; /** * struct netlbl_lsm_secattr - NetLabel LSM security attributes * @flags: indicate structure attributes, see NETLBL_SECATTR_* * @type: indicate the NLTYPE of the attributes * @domain: the NetLabel LSM domain * @cache: NetLabel LSM specific cache * @attr.mls: MLS sensitivity label * @attr.mls.cat: MLS category bitmap * @attr.mls.lvl: MLS sensitivity level * @attr.secid: LSM specific secid token * * Description: * This structure is used to pass security attributes between NetLabel and the * LSM modules. The flags field is used to specify which fields within the * struct are valid and valid values can be created by bitwise OR'ing the * NETLBL_SECATTR_* defines. The domain field is typically set by the LSM to * specify domain specific configuration settings and is not usually used by * NetLabel itself when returning security attributes to the LSM. * */ struct netlbl_lsm_secattr { u32 flags; /* bitmap values for 'flags' */ #define NETLBL_SECATTR_NONE 0x00000000 #define NETLBL_SECATTR_DOMAIN 0x00000001 #define NETLBL_SECATTR_DOMAIN_CPY (NETLBL_SECATTR_DOMAIN | \ NETLBL_SECATTR_FREE_DOMAIN) #define NETLBL_SECATTR_CACHE 0x00000002 #define NETLBL_SECATTR_MLS_LVL 0x00000004 #define NETLBL_SECATTR_MLS_CAT 0x00000008 #define NETLBL_SECATTR_SECID 0x00000010 /* bitmap meta-values for 'flags' */ #define NETLBL_SECATTR_FREE_DOMAIN 0x01000000 #define NETLBL_SECATTR_CACHEABLE (NETLBL_SECATTR_MLS_LVL | \ NETLBL_SECATTR_MLS_CAT | \ NETLBL_SECATTR_SECID) u32 type; char *domain; struct netlbl_lsm_cache *cache; struct { struct { struct netlbl_lsm_catmap *cat; u32 lvl; } mls; u32 secid; } attr; }; /** * struct netlbl_calipso_ops - NetLabel CALIPSO operations * @doi_add: add a CALIPSO DOI * @doi_free: free a CALIPSO DOI * @doi_getdef: returns a reference to a DOI * @doi_putdef: releases a reference of a DOI * @doi_walk: enumerate the DOI list * @sock_getattr: retrieve the socket's attr * @sock_setattr: set the socket's attr * @sock_delattr: remove the socket's attr * @req_setattr: set the req socket's attr * @req_delattr: remove the req socket's attr * @opt_getattr: retrieve attr from memory block * @skbuff_optptr: find option in packet * @skbuff_setattr: set the skbuff's attr * @skbuff_delattr: remove the skbuff's attr * @cache_invalidate: invalidate cache * @cache_add: add cache entry * * Description: * This structure is filled out by the CALIPSO engine and passed * to the NetLabel core via a call to netlbl_calipso_ops_register(). * It enables the CALIPSO engine (and hence IPv6) to be compiled * as a module. */ struct netlbl_calipso_ops { int (*doi_add)(struct calipso_doi *doi_def, struct netlbl_audit *audit_info); void (*doi_free)(struct calipso_doi *doi_def); int (*doi_remove)(u32 doi, struct netlbl_audit *audit_info); struct calipso_doi *(*doi_getdef)(u32 doi); void (*doi_putdef)(struct calipso_doi *doi_def); int (*doi_walk)(u32 *skip_cnt, int (*callback)(struct calipso_doi *doi_def, void *arg), void *cb_arg); int (*sock_getattr)(struct sock *sk, struct netlbl_lsm_secattr *secattr); int (*sock_setattr)(struct sock *sk, const struct calipso_doi *doi_def, const struct netlbl_lsm_secattr *secattr); void (*sock_delattr)(struct sock *sk); int (*req_setattr)(struct request_sock *req, const struct calipso_doi *doi_def, const struct netlbl_lsm_secattr *secattr); void (*req_delattr)(struct request_sock *req); int (*opt_getattr)(const unsigned char *calipso, struct netlbl_lsm_secattr *secattr); unsigned char *(*skbuff_optptr)(const struct sk_buff *skb); int (*skbuff_setattr)(struct sk_buff *skb, const struct calipso_doi *doi_def, const struct netlbl_lsm_secattr *secattr); int (*skbuff_delattr)(struct sk_buff *skb); void (*cache_invalidate)(void); int (*cache_add)(const unsigned char *calipso_ptr, const struct netlbl_lsm_secattr *secattr); }; /* * LSM security attribute operations (inline) */ /** * netlbl_secattr_cache_alloc - Allocate and initialize a secattr cache * @flags: the memory allocation flags * * Description: * Allocate and initialize a netlbl_lsm_cache structure. Returns a pointer * on success, NULL on failure. * */ static inline struct netlbl_lsm_cache *netlbl_secattr_cache_alloc(gfp_t flags) { struct netlbl_lsm_cache *cache; cache = kzalloc(sizeof(*cache), flags); if (cache) refcount_set(&cache->refcount, 1); return cache; } /** * netlbl_secattr_cache_free - Frees a netlbl_lsm_cache struct * @cache: the struct to free * * Description: * Frees @secattr including all of the internal buffers. * */ static inline void netlbl_secattr_cache_free(struct netlbl_lsm_cache *cache) { if (!refcount_dec_and_test(&cache->refcount)) return; if (cache->free) cache->free(cache->data); kfree(cache); } /** * netlbl_catmap_alloc - Allocate a LSM secattr catmap * @flags: memory allocation flags * * Description: * Allocate memory for a LSM secattr catmap, returns a pointer on success, NULL * on failure. * */ static inline struct netlbl_lsm_catmap *netlbl_catmap_alloc(gfp_t flags) { return kzalloc(sizeof(struct netlbl_lsm_catmap), flags); } /** * netlbl_catmap_free - Free a LSM secattr catmap * @catmap: the category bitmap * * Description: * Free a LSM secattr catmap. * */ static inline void netlbl_catmap_free(struct netlbl_lsm_catmap *catmap) { struct netlbl_lsm_catmap *iter; while (catmap) { iter = catmap; catmap = catmap->next; kfree(iter); } } /** * netlbl_secattr_init - Initialize a netlbl_lsm_secattr struct * @secattr: the struct to initialize * * Description: * Initialize an already allocated netlbl_lsm_secattr struct. * */ static inline void netlbl_secattr_init(struct netlbl_lsm_secattr *secattr) { memset(secattr, 0, sizeof(*secattr)); } /** * netlbl_secattr_destroy - Clears a netlbl_lsm_secattr struct * @secattr: the struct to clear * * Description: * Destroys the @secattr struct, including freeing all of the internal buffers. * The struct must be reset with a call to netlbl_secattr_init() before reuse. * */ static inline void netlbl_secattr_destroy(struct netlbl_lsm_secattr *secattr) { if (secattr->flags & NETLBL_SECATTR_FREE_DOMAIN) kfree(secattr->domain); if (secattr->flags & NETLBL_SECATTR_CACHE) netlbl_secattr_cache_free(secattr->cache); if (secattr->flags & NETLBL_SECATTR_MLS_CAT) netlbl_catmap_free(secattr->attr.mls.cat); } /** * netlbl_secattr_alloc - Allocate and initialize a netlbl_lsm_secattr struct * @flags: the memory allocation flags * * Description: * Allocate and initialize a netlbl_lsm_secattr struct. Returns a valid * pointer on success, or NULL on failure. * */ static inline struct netlbl_lsm_secattr *netlbl_secattr_alloc(gfp_t flags) { return kzalloc(sizeof(struct netlbl_lsm_secattr), flags); } /** * netlbl_secattr_free - Frees a netlbl_lsm_secattr struct * @secattr: the struct to free * * Description: * Frees @secattr including all of the internal buffers. * */ static inline void netlbl_secattr_free(struct netlbl_lsm_secattr *secattr) { netlbl_secattr_destroy(secattr); kfree(secattr); } #ifdef CONFIG_NETLABEL /* * LSM configuration operations */ int netlbl_cfg_map_del(const char *domain, u16 family, const void *addr, const void *mask, struct netlbl_audit *audit_info); int netlbl_cfg_unlbl_map_add(const char *domain, u16 family, const void *addr, const void *mask, struct netlbl_audit *audit_info); int netlbl_cfg_unlbl_static_add(struct net *net, const char *dev_name, const void *addr, const void *mask, u16 family, u32 secid, struct netlbl_audit *audit_info); int netlbl_cfg_unlbl_static_del(struct net *net, const char *dev_name, const void *addr, const void *mask, u16 family, struct netlbl_audit *audit_info); int netlbl_cfg_cipsov4_add(struct cipso_v4_doi *doi_def, struct netlbl_audit *audit_info); void netlbl_cfg_cipsov4_del(u32 doi, struct netlbl_audit *audit_info); int netlbl_cfg_cipsov4_map_add(u32 doi, const char *domain, const struct in_addr *addr, const struct in_addr *mask, struct netlbl_audit *audit_info); int netlbl_cfg_calipso_add(struct calipso_doi *doi_def, struct netlbl_audit *audit_info); void netlbl_cfg_calipso_del(u32 doi, struct netlbl_audit *audit_info); int netlbl_cfg_calipso_map_add(u32 doi, const char *domain, const struct in6_addr *addr, const struct in6_addr *mask, struct netlbl_audit *audit_info); /* * LSM security attribute operations */ int netlbl_catmap_walk(struct netlbl_lsm_catmap *catmap, u32 offset); int netlbl_catmap_walkrng(struct netlbl_lsm_catmap *catmap, u32 offset); int netlbl_catmap_getlong(struct netlbl_lsm_catmap *catmap, u32 *offset, unsigned long *bitmap); int netlbl_catmap_setbit(struct netlbl_lsm_catmap **catmap, u32 bit, gfp_t flags); int netlbl_catmap_setrng(struct netlbl_lsm_catmap **catmap, u32 start, u32 end, gfp_t flags); int netlbl_catmap_setlong(struct netlbl_lsm_catmap **catmap, u32 offset, unsigned long bitmap, gfp_t flags); /* Bitmap functions */ int netlbl_bitmap_walk(const unsigned char *bitmap, u32 bitmap_len, u32 offset, u8 state); void netlbl_bitmap_setbit(unsigned char *bitmap, u32 bit, u8 state); /* * LSM protocol operations (NetLabel LSM/kernel API) */ int netlbl_enabled(void); int netlbl_sock_setattr(struct sock *sk, u16 family, const struct netlbl_lsm_secattr *secattr); void netlbl_sock_delattr(struct sock *sk); int netlbl_sock_getattr(struct sock *sk, struct netlbl_lsm_secattr *secattr); int netlbl_conn_setattr(struct sock *sk, struct sockaddr *addr, const struct netlbl_lsm_secattr *secattr); int netlbl_req_setattr(struct request_sock *req, const struct netlbl_lsm_secattr *secattr); void netlbl_req_delattr(struct request_sock *req); int netlbl_skbuff_setattr(struct sk_buff *skb, u16 family, const struct netlbl_lsm_secattr *secattr); int netlbl_skbuff_getattr(const struct sk_buff *skb, u16 family, struct netlbl_lsm_secattr *secattr); void netlbl_skbuff_err(struct sk_buff *skb, u16 family, int error, int gateway); /* * LSM label mapping cache operations */ void netlbl_cache_invalidate(void); int netlbl_cache_add(const struct sk_buff *skb, u16 family, const struct netlbl_lsm_secattr *secattr); /* * Protocol engine operations */ struct audit_buffer *netlbl_audit_start(int type, struct netlbl_audit *audit_info); #else static inline int netlbl_cfg_map_del(const char *domain, u16 family, const void *addr, const void *mask, struct netlbl_audit *audit_info) { return -ENOSYS; } static inline int netlbl_cfg_unlbl_map_add(const char *domain, u16 family, void *addr, void *mask, struct netlbl_audit *audit_info) { return -ENOSYS; } static inline int netlbl_cfg_unlbl_static_add(struct net *net, const char *dev_name, const void *addr, const void *mask, u16 family, u32 secid, struct netlbl_audit *audit_info) { return -ENOSYS; } static inline int netlbl_cfg_unlbl_static_del(struct net *net, const char *dev_name, const void *addr, const void *mask, u16 family, struct netlbl_audit *audit_info) { return -ENOSYS; } static inline int netlbl_cfg_cipsov4_add(struct cipso_v4_doi *doi_def, struct netlbl_audit *audit_info) { return -ENOSYS; } static inline void netlbl_cfg_cipsov4_del(u32 doi, struct netlbl_audit *audit_info) { return; } static inline int netlbl_cfg_cipsov4_map_add(u32 doi, const char *domain, const struct in_addr *addr, const struct in_addr *mask, struct netlbl_audit *audit_info) { return -ENOSYS; } static inline int netlbl_cfg_calipso_add(struct calipso_doi *doi_def, struct netlbl_audit *audit_info) { return -ENOSYS; } static inline void netlbl_cfg_calipso_del(u32 doi, struct netlbl_audit *audit_info) { return; } static inline int netlbl_cfg_calipso_map_add(u32 doi, const char *domain, const struct in6_addr *addr, const struct in6_addr *mask, struct netlbl_audit *audit_info) { return -ENOSYS; } static inline int netlbl_catmap_walk(struct netlbl_lsm_catmap *catmap, u32 offset) { return -ENOENT; } static inline int netlbl_catmap_walkrng(struct netlbl_lsm_catmap *catmap, u32 offset) { return -ENOENT; } static inline int netlbl_catmap_getlong(struct netlbl_lsm_catmap *catmap, u32 *offset, unsigned long *bitmap) { return 0; } static inline int netlbl_catmap_setbit(struct netlbl_lsm_catmap **catmap, u32 bit, gfp_t flags) { return 0; } static inline int netlbl_catmap_setrng(struct netlbl_lsm_catmap **catmap, u32 start, u32 end, gfp_t flags) { return 0; } static inline int netlbl_catmap_setlong(struct netlbl_lsm_catmap **catmap, u32 offset, unsigned long bitmap, gfp_t flags) { return 0; } static inline int netlbl_enabled(void) { return 0; } static inline int netlbl_sock_setattr(struct sock *sk, u16 family, const struct netlbl_lsm_secattr *secattr) { return -ENOSYS; } static inline void netlbl_sock_delattr(struct sock *sk) { } static inline int netlbl_sock_getattr(struct sock *sk, struct netlbl_lsm_secattr *secattr) { return -ENOSYS; } static inline int netlbl_conn_setattr(struct sock *sk, struct sockaddr *addr, const struct netlbl_lsm_secattr *secattr) { return -ENOSYS; } static inline int netlbl_req_setattr(struct request_sock *req, const struct netlbl_lsm_secattr *secattr) { return -ENOSYS; } static inline void netlbl_req_delattr(struct request_sock *req) { return; } static inline int netlbl_skbuff_setattr(struct sk_buff *skb, u16 family, const struct netlbl_lsm_secattr *secattr) { return -ENOSYS; } static inline int netlbl_skbuff_getattr(const struct sk_buff *skb, u16 family, struct netlbl_lsm_secattr *secattr) { return -ENOSYS; } static inline void netlbl_skbuff_err(struct sk_buff *skb, int error, int gateway) { return; } static inline void netlbl_cache_invalidate(void) { return; } static inline int netlbl_cache_add(const struct sk_buff *skb, u16 family, const struct netlbl_lsm_secattr *secattr) { return 0; } static inline struct audit_buffer *netlbl_audit_start(int type, struct netlbl_audit *audit_info) { return NULL; } #endif /* CONFIG_NETLABEL */ const struct netlbl_calipso_ops * netlbl_calipso_ops_register(const struct netlbl_calipso_ops *ops); #endif /* _NETLABEL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _KBD_KERN_H #define _KBD_KERN_H #include <linux/tty.h> #include <linux/interrupt.h> #include <linux/keyboard.h> extern struct tasklet_struct keyboard_tasklet; extern char *func_table[MAX_NR_FUNC]; extern char func_buf[]; extern char *funcbufptr; extern int funcbufsize, funcbufleft; /* * kbd->xxx contains the VC-local things (flag settings etc..) * * Note: externally visible are LED_SCR, LED_NUM, LED_CAP defined in kd.h * The code in KDGETLED / KDSETLED depends on the internal and * external order being the same. * * Note: lockstate is used as index in the array key_map. */ struct kbd_struct { unsigned char lockstate; /* 8 modifiers - the names do not have any meaning at all; they can be associated to arbitrarily chosen keys */ #define VC_SHIFTLOCK KG_SHIFT /* shift lock mode */ #define VC_ALTGRLOCK KG_ALTGR /* altgr lock mode */ #define VC_CTRLLOCK KG_CTRL /* control lock mode */ #define VC_ALTLOCK KG_ALT /* alt lock mode */ #define VC_SHIFTLLOCK KG_SHIFTL /* shiftl lock mode */ #define VC_SHIFTRLOCK KG_SHIFTR /* shiftr lock mode */ #define VC_CTRLLLOCK KG_CTRLL /* ctrll lock mode */ #define VC_CTRLRLOCK KG_CTRLR /* ctrlr lock mode */ unsigned char slockstate; /* for `sticky' Shift, Ctrl, etc. */ unsigned char ledmode:1; #define LED_SHOW_FLAGS 0 /* traditional state */ #define LED_SHOW_IOCTL 1 /* only change leds upon ioctl */ unsigned char ledflagstate:4; /* flags, not lights */ unsigned char default_ledflagstate:4; #define VC_SCROLLOCK 0 /* scroll-lock mode */ #define VC_NUMLOCK 1 /* numeric lock mode */ #define VC_CAPSLOCK 2 /* capslock mode */ #define VC_KANALOCK 3 /* kanalock mode */ unsigned char kbdmode:3; /* one 3-bit value */ #define VC_XLATE 0 /* translate keycodes using keymap */ #define VC_MEDIUMRAW 1 /* medium raw (keycode) mode */ #define VC_RAW 2 /* raw (scancode) mode */ #define VC_UNICODE 3 /* Unicode mode */ #define VC_OFF 4 /* disabled mode */ unsigned char modeflags:5; #define VC_APPLIC 0 /* application key mode */ #define VC_CKMODE 1 /* cursor key mode */ #define VC_REPEAT 2 /* keyboard repeat */ #define VC_CRLF 3 /* 0 - enter sends CR, 1 - enter sends CRLF */ #define VC_META 4 /* 0 - meta, 1 - meta=prefix with ESC */ }; extern int kbd_init(void); extern void setledstate(struct kbd_struct *kbd, unsigned int led); extern int do_poke_blanked_console; extern void (*kbd_ledfunc)(unsigned int led); extern int set_console(int nr); extern void schedule_console_callback(void); /* FIXME: review locking for vt.c callers */ static inline void set_leds(void) { tasklet_schedule(&keyboard_tasklet); } static inline int vc_kbd_mode(struct kbd_struct * kbd, int flag) { return ((kbd->modeflags >> flag) & 1); } static inline int vc_kbd_led(struct kbd_struct * kbd, int flag) { return ((kbd->ledflagstate >> flag) & 1); } static inline void set_vc_kbd_mode(struct kbd_struct * kbd, int flag) { kbd->modeflags |= 1 << flag; } static inline void set_vc_kbd_led(struct kbd_struct * kbd, int flag) { kbd->ledflagstate |= 1 << flag; } static inline void clr_vc_kbd_mode(struct kbd_struct * kbd, int flag) { kbd->modeflags &= ~(1 << flag); } static inline void clr_vc_kbd_led(struct kbd_struct * kbd, int flag) { kbd->ledflagstate &= ~(1 << flag); } static inline void chg_vc_kbd_lock(struct kbd_struct * kbd, int flag) { kbd->lockstate ^= 1 << flag; } static inline void chg_vc_kbd_slock(struct kbd_struct * kbd, int flag) { kbd->slockstate ^= 1 << flag; } static inline void chg_vc_kbd_mode(struct kbd_struct * kbd, int flag) { kbd->modeflags ^= 1 << flag; } static inline void chg_vc_kbd_led(struct kbd_struct * kbd, int flag) { kbd->ledflagstate ^= 1 << flag; } #define U(x) ((x) ^ 0xf000) #define BRL_UC_ROW 0x2800 /* keyboard.c */ struct console; void compute_shiftstate(void); /* defkeymap.c */ extern unsigned int keymap_count; #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_ATOMIC_H #define _ASM_X86_ATOMIC_H #include <linux/compiler.h> #include <linux/types.h> #include <asm/alternative.h> #include <asm/cmpxchg.h> #include <asm/rmwcc.h> #include <asm/barrier.h> /* * Atomic operations that C can't guarantee us. Useful for * resource counting etc.. */ /** * arch_atomic_read - read atomic variable * @v: pointer of type atomic_t * * Atomically reads the value of @v. */ static __always_inline int arch_atomic_read(const atomic_t *v) { /* * Note for KASAN: we deliberately don't use READ_ONCE_NOCHECK() here, * it's non-inlined function that increases binary size and stack usage. */ return __READ_ONCE((v)->counter); } /** * arch_atomic_set - set atomic variable * @v: pointer of type atomic_t * @i: required value * * Atomically sets the value of @v to @i. */ static __always_inline void arch_atomic_set(atomic_t *v, int i) { __WRITE_ONCE(v->counter, i); } /** * arch_atomic_add - add integer to atomic variable * @i: integer value to add * @v: pointer of type atomic_t * * Atomically adds @i to @v. */ static __always_inline void arch_atomic_add(int i, atomic_t *v) { asm volatile(LOCK_PREFIX "addl %1,%0" : "+m" (v->counter) : "ir" (i) : "memory"); } /** * arch_atomic_sub - subtract integer from atomic variable * @i: integer value to subtract * @v: pointer of type atomic_t * * Atomically subtracts @i from @v. */ static __always_inline void arch_atomic_sub(int i, atomic_t *v) { asm volatile(LOCK_PREFIX "subl %1,%0" : "+m" (v->counter) : "ir" (i) : "memory"); } /** * arch_atomic_sub_and_test - subtract value from variable and test result * @i: integer value to subtract * @v: pointer of type atomic_t * * Atomically subtracts @i from @v and returns * true if the result is zero, or false for all * other cases. */ static __always_inline bool arch_atomic_sub_and_test(int i, atomic_t *v) { return GEN_BINARY_RMWcc(LOCK_PREFIX "subl", v->counter, e, "er", i); } #define arch_atomic_sub_and_test arch_atomic_sub_and_test /** * arch_atomic_inc - increment atomic variable * @v: pointer of type atomic_t * * Atomically increments @v by 1. */ static __always_inline void arch_atomic_inc(atomic_t *v) { asm volatile(LOCK_PREFIX "incl %0" : "+m" (v->counter) :: "memory"); } #define arch_atomic_inc arch_atomic_inc /** * arch_atomic_dec - decrement atomic variable * @v: pointer of type atomic_t * * Atomically decrements @v by 1. */ static __always_inline void arch_atomic_dec(atomic_t *v) { asm volatile(LOCK_PREFIX "decl %0" : "+m" (v->counter) :: "memory"); } #define arch_atomic_dec arch_atomic_dec /** * arch_atomic_dec_and_test - decrement and test * @v: pointer of type atomic_t * * Atomically decrements @v by 1 and * returns true if the result is 0, or false for all other * cases. */ static __always_inline bool arch_atomic_dec_and_test(atomic_t *v) { return GEN_UNARY_RMWcc(LOCK_PREFIX "decl", v->counter, e); } #define arch_atomic_dec_and_test arch_atomic_dec_and_test /** * arch_atomic_inc_and_test - increment and test * @v: pointer of type atomic_t * * Atomically increments @v by 1 * and returns true if the result is zero, or false for all * other cases. */ static __always_inline bool arch_atomic_inc_and_test(atomic_t *v) { return GEN_UNARY_RMWcc(LOCK_PREFIX "incl", v->counter, e); } #define arch_atomic_inc_and_test arch_atomic_inc_and_test /** * arch_atomic_add_negative - add and test if negative * @i: integer value to add * @v: pointer of type atomic_t * * Atomically adds @i to @v and returns true * if the result is negative, or false when * result is greater than or equal to zero. */ static __always_inline bool arch_atomic_add_negative(int i, atomic_t *v) { return GEN_BINARY_RMWcc(LOCK_PREFIX "addl", v->counter, s, "er", i); } #define arch_atomic_add_negative arch_atomic_add_negative /** * arch_atomic_add_return - add integer and return * @i: integer value to add * @v: pointer of type atomic_t * * Atomically adds @i to @v and returns @i + @v */ static __always_inline int arch_atomic_add_return(int i, atomic_t *v) { return i + xadd(&v->counter, i); } #define arch_atomic_add_return arch_atomic_add_return /** * arch_atomic_sub_return - subtract integer and return * @v: pointer of type atomic_t * @i: integer value to subtract * * Atomically subtracts @i from @v and returns @v - @i */ static __always_inline int arch_atomic_sub_return(int i, atomic_t *v) { return arch_atomic_add_return(-i, v); } #define arch_atomic_sub_return arch_atomic_sub_return static __always_inline int arch_atomic_fetch_add(int i, atomic_t *v) { return xadd(&v->counter, i); } #define arch_atomic_fetch_add arch_atomic_fetch_add static __always_inline int arch_atomic_fetch_sub(int i, atomic_t *v) { return xadd(&v->counter, -i); } #define arch_atomic_fetch_sub arch_atomic_fetch_sub static __always_inline int arch_atomic_cmpxchg(atomic_t *v, int old, int new) { return arch_cmpxchg(&v->counter, old, new); } #define arch_atomic_cmpxchg arch_atomic_cmpxchg static __always_inline bool arch_atomic_try_cmpxchg(atomic_t *v, int *old, int new) { return try_cmpxchg(&v->counter, old, new); } #define arch_atomic_try_cmpxchg arch_atomic_try_cmpxchg static __always_inline int arch_atomic_xchg(atomic_t *v, int new) { return arch_xchg(&v->counter, new); } #define arch_atomic_xchg arch_atomic_xchg static __always_inline void arch_atomic_and(int i, atomic_t *v) { asm volatile(LOCK_PREFIX "andl %1,%0" : "+m" (v->counter) : "ir" (i) : "memory"); } static __always_inline int arch_atomic_fetch_and(int i, atomic_t *v) { int val = arch_atomic_read(v); do { } while (!arch_atomic_try_cmpxchg(v, &val, val & i)); return val; } #define arch_atomic_fetch_and arch_atomic_fetch_and static __always_inline void arch_atomic_or(int i, atomic_t *v) { asm volatile(LOCK_PREFIX "orl %1,%0" : "+m" (v->counter) : "ir" (i) : "memory"); } static __always_inline int arch_atomic_fetch_or(int i, atomic_t *v) { int val = arch_atomic_read(v); do { } while (!arch_atomic_try_cmpxchg(v, &val, val | i)); return val; } #define arch_atomic_fetch_or arch_atomic_fetch_or static __always_inline void arch_atomic_xor(int i, atomic_t *v) { asm volatile(LOCK_PREFIX "xorl %1,%0" : "+m" (v->counter) : "ir" (i) : "memory"); } static __always_inline int arch_atomic_fetch_xor(int i, atomic_t *v) { int val = arch_atomic_read(v); do { } while (!arch_atomic_try_cmpxchg(v, &val, val ^ i)); return val; } #define arch_atomic_fetch_xor arch_atomic_fetch_xor #ifdef CONFIG_X86_32 # include <asm/atomic64_32.h> #else # include <asm/atomic64_64.h> #endif #define ARCH_ATOMIC #endif /* _ASM_X86_ATOMIC_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM kmem #if !defined(_TRACE_KMEM_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_KMEM_H #include <linux/types.h> #include <linux/tracepoint.h> #include <trace/events/mmflags.h> DECLARE_EVENT_CLASS(kmem_alloc, TP_PROTO(unsigned long call_site, const void *ptr, size_t bytes_req, size_t bytes_alloc, gfp_t gfp_flags), TP_ARGS(call_site, ptr, bytes_req, bytes_alloc, gfp_flags), TP_STRUCT__entry( __field( unsigned long, call_site ) __field( const void *, ptr ) __field( size_t, bytes_req ) __field( size_t, bytes_alloc ) __field( gfp_t, gfp_flags ) ), TP_fast_assign( __entry->call_site = call_site; __entry->ptr = ptr; __entry->bytes_req = bytes_req; __entry->bytes_alloc = bytes_alloc; __entry->gfp_flags = gfp_flags; ), TP_printk("call_site=%pS ptr=%p bytes_req=%zu bytes_alloc=%zu gfp_flags=%s", (void *)__entry->call_site, __entry->ptr, __entry->bytes_req, __entry->bytes_alloc, show_gfp_flags(__entry->gfp_flags)) ); DEFINE_EVENT(kmem_alloc, kmalloc, TP_PROTO(unsigned long call_site, const void *ptr, size_t bytes_req, size_t bytes_alloc, gfp_t gfp_flags), TP_ARGS(call_site, ptr, bytes_req, bytes_alloc, gfp_flags) ); DEFINE_EVENT(kmem_alloc, kmem_cache_alloc, TP_PROTO(unsigned long call_site, const void *ptr, size_t bytes_req, size_t bytes_alloc, gfp_t gfp_flags), TP_ARGS(call_site, ptr, bytes_req, bytes_alloc, gfp_flags) ); DECLARE_EVENT_CLASS(kmem_alloc_node, TP_PROTO(unsigned long call_site, const void *ptr, size_t bytes_req, size_t bytes_alloc, gfp_t gfp_flags, int node), TP_ARGS(call_site, ptr, bytes_req, bytes_alloc, gfp_flags, node), TP_STRUCT__entry( __field( unsigned long, call_site ) __field( const void *, ptr ) __field( size_t, bytes_req ) __field( size_t, bytes_alloc ) __field( gfp_t, gfp_flags ) __field( int, node ) ), TP_fast_assign( __entry->call_site = call_site; __entry->ptr = ptr; __entry->bytes_req = bytes_req; __entry->bytes_alloc = bytes_alloc; __entry->gfp_flags = gfp_flags; __entry->node = node; ), TP_printk("call_site=%pS ptr=%p bytes_req=%zu bytes_alloc=%zu gfp_flags=%s node=%d", (void *)__entry->call_site, __entry->ptr, __entry->bytes_req, __entry->bytes_alloc, show_gfp_flags(__entry->gfp_flags), __entry->node) ); DEFINE_EVENT(kmem_alloc_node, kmalloc_node, TP_PROTO(unsigned long call_site, const void *ptr, size_t bytes_req, size_t bytes_alloc, gfp_t gfp_flags, int node), TP_ARGS(call_site, ptr, bytes_req, bytes_alloc, gfp_flags, node) ); DEFINE_EVENT(kmem_alloc_node, kmem_cache_alloc_node, TP_PROTO(unsigned long call_site, const void *ptr, size_t bytes_req, size_t bytes_alloc, gfp_t gfp_flags, int node), TP_ARGS(call_site, ptr, bytes_req, bytes_alloc, gfp_flags, node) ); DECLARE_EVENT_CLASS(kmem_free, TP_PROTO(unsigned long call_site, const void *ptr), TP_ARGS(call_site, ptr), TP_STRUCT__entry( __field( unsigned long, call_site ) __field( const void *, ptr ) ), TP_fast_assign( __entry->call_site = call_site; __entry->ptr = ptr; ), TP_printk("call_site=%pS ptr=%p", (void *)__entry->call_site, __entry->ptr) ); DEFINE_EVENT(kmem_free, kfree, TP_PROTO(unsigned long call_site, const void *ptr), TP_ARGS(call_site, ptr) ); DEFINE_EVENT(kmem_free, kmem_cache_free, TP_PROTO(unsigned long call_site, const void *ptr), TP_ARGS(call_site, ptr) ); TRACE_EVENT(mm_page_free, TP_PROTO(struct page *page, unsigned int order), TP_ARGS(page, order), TP_STRUCT__entry( __field( unsigned long, pfn ) __field( unsigned int, order ) ), TP_fast_assign( __entry->pfn = page_to_pfn(page); __entry->order = order; ), TP_printk("page=%p pfn=%lu order=%d", pfn_to_page(__entry->pfn), __entry->pfn, __entry->order) ); TRACE_EVENT(mm_page_free_batched, TP_PROTO(struct page *page), TP_ARGS(page), TP_STRUCT__entry( __field( unsigned long, pfn ) ), TP_fast_assign( __entry->pfn = page_to_pfn(page); ), TP_printk("page=%p pfn=%lu order=0", pfn_to_page(__entry->pfn), __entry->pfn) ); TRACE_EVENT(mm_page_alloc, TP_PROTO(struct page *page, unsigned int order, gfp_t gfp_flags, int migratetype), TP_ARGS(page, order, gfp_flags, migratetype), TP_STRUCT__entry( __field( unsigned long, pfn ) __field( unsigned int, order ) __field( gfp_t, gfp_flags ) __field( int, migratetype ) ), TP_fast_assign( __entry->pfn = page ? page_to_pfn(page) : -1UL; __entry->order = order; __entry->gfp_flags = gfp_flags; __entry->migratetype = migratetype; ), TP_printk("page=%p pfn=%lu order=%d migratetype=%d gfp_flags=%s", __entry->pfn != -1UL ? pfn_to_page(__entry->pfn) : NULL, __entry->pfn != -1UL ? __entry->pfn : 0, __entry->order, __entry->migratetype, show_gfp_flags(__entry->gfp_flags)) ); DECLARE_EVENT_CLASS(mm_page, TP_PROTO(struct page *page, unsigned int order, int migratetype), TP_ARGS(page, order, migratetype), TP_STRUCT__entry( __field( unsigned long, pfn ) __field( unsigned int, order ) __field( int, migratetype ) ), TP_fast_assign( __entry->pfn = page ? page_to_pfn(page) : -1UL; __entry->order = order; __entry->migratetype = migratetype; ), TP_printk("page=%p pfn=%lu order=%u migratetype=%d percpu_refill=%d", __entry->pfn != -1UL ? pfn_to_page(__entry->pfn) : NULL, __entry->pfn != -1UL ? __entry->pfn : 0, __entry->order, __entry->migratetype, __entry->order == 0) ); DEFINE_EVENT(mm_page, mm_page_alloc_zone_locked, TP_PROTO(struct page *page, unsigned int order, int migratetype), TP_ARGS(page, order, migratetype) ); TRACE_EVENT(mm_page_pcpu_drain, TP_PROTO(struct page *page, unsigned int order, int migratetype), TP_ARGS(page, order, migratetype), TP_STRUCT__entry( __field( unsigned long, pfn ) __field( unsigned int, order ) __field( int, migratetype ) ), TP_fast_assign( __entry->pfn = page ? page_to_pfn(page) : -1UL; __entry->order = order; __entry->migratetype = migratetype; ), TP_printk("page=%p pfn=%lu order=%d migratetype=%d", pfn_to_page(__entry->pfn), __entry->pfn, __entry->order, __entry->migratetype) ); TRACE_EVENT(mm_page_alloc_extfrag, TP_PROTO(struct page *page, int alloc_order, int fallback_order, int alloc_migratetype, int fallback_migratetype), TP_ARGS(page, alloc_order, fallback_order, alloc_migratetype, fallback_migratetype), TP_STRUCT__entry( __field( unsigned long, pfn ) __field( int, alloc_order ) __field( int, fallback_order ) __field( int, alloc_migratetype ) __field( int, fallback_migratetype ) __field( int, change_ownership ) ), TP_fast_assign( __entry->pfn = page_to_pfn(page); __entry->alloc_order = alloc_order; __entry->fallback_order = fallback_order; __entry->alloc_migratetype = alloc_migratetype; __entry->fallback_migratetype = fallback_migratetype; __entry->change_ownership = (alloc_migratetype == get_pageblock_migratetype(page)); ), TP_printk("page=%p pfn=%lu alloc_order=%d fallback_order=%d pageblock_order=%d alloc_migratetype=%d fallback_migratetype=%d fragmenting=%d change_ownership=%d", pfn_to_page(__entry->pfn), __entry->pfn, __entry->alloc_order, __entry->fallback_order, pageblock_order, __entry->alloc_migratetype, __entry->fallback_migratetype, __entry->fallback_order < pageblock_order, __entry->change_ownership) ); /* * Required for uniquely and securely identifying mm in rss_stat tracepoint. */ #ifndef __PTR_TO_HASHVAL static unsigned int __maybe_unused mm_ptr_to_hash(const void *ptr) { int ret; unsigned long hashval; ret = ptr_to_hashval(ptr, &hashval); if (ret) return 0; /* The hashed value is only 32-bit */ return (unsigned int)hashval; } #define __PTR_TO_HASHVAL #endif TRACE_EVENT(rss_stat, TP_PROTO(struct mm_struct *mm, int member, long count), TP_ARGS(mm, member, count), TP_STRUCT__entry( __field(unsigned int, mm_id) __field(unsigned int, curr) __field(int, member) __field(long, size) ), TP_fast_assign( __entry->mm_id = mm_ptr_to_hash(mm); __entry->curr = !!(current->mm == mm); __entry->member = member; __entry->size = (count << PAGE_SHIFT); ), TP_printk("mm_id=%u curr=%d member=%d size=%ldB", __entry->mm_id, __entry->curr, __entry->member, __entry->size) ); #endif /* _TRACE_KMEM_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM cfg80211 #if !defined(__RDEV_OPS_TRACE) || defined(TRACE_HEADER_MULTI_READ) #define __RDEV_OPS_TRACE #include <linux/tracepoint.h> #include <linux/rtnetlink.h> #include <linux/etherdevice.h> #include <net/cfg80211.h> #include "core.h" #define MAC_ENTRY(entry_mac) __array(u8, entry_mac, ETH_ALEN) #define MAC_ASSIGN(entry_mac, given_mac) do { \ if (given_mac) \ memcpy(__entry->entry_mac, given_mac, ETH_ALEN); \ else \ eth_zero_addr(__entry->entry_mac); \ } while (0) #define MAC_PR_FMT "%pM" #define MAC_PR_ARG(entry_mac) (__entry->entry_mac) #define MAXNAME 32 #define WIPHY_ENTRY __array(char, wiphy_name, 32) #define WIPHY_ASSIGN strlcpy(__entry->wiphy_name, wiphy_name(wiphy), MAXNAME) #define WIPHY_PR_FMT "%s" #define WIPHY_PR_ARG __entry->wiphy_name #define WDEV_ENTRY __field(u32, id) #define WDEV_ASSIGN (__entry->id) = (!IS_ERR_OR_NULL(wdev) \ ? wdev->identifier : 0) #define WDEV_PR_FMT "wdev(%u)" #define WDEV_PR_ARG (__entry->id) #define NETDEV_ENTRY __array(char, name, IFNAMSIZ) \ __field(int, ifindex) #define NETDEV_ASSIGN \ do { \ memcpy(__entry->name, netdev->name, IFNAMSIZ); \ (__entry->ifindex) = (netdev->ifindex); \ } while (0) #define NETDEV_PR_FMT "netdev:%s(%d)" #define NETDEV_PR_ARG __entry->name, __entry->ifindex #define MESH_CFG_ENTRY __field(u16, dot11MeshRetryTimeout) \ __field(u16, dot11MeshConfirmTimeout) \ __field(u16, dot11MeshHoldingTimeout) \ __field(u16, dot11MeshMaxPeerLinks) \ __field(u8, dot11MeshMaxRetries) \ __field(u8, dot11MeshTTL) \ __field(u8, element_ttl) \ __field(bool, auto_open_plinks) \ __field(u32, dot11MeshNbrOffsetMaxNeighbor) \ __field(u8, dot11MeshHWMPmaxPREQretries) \ __field(u32, path_refresh_time) \ __field(u32, dot11MeshHWMPactivePathTimeout) \ __field(u16, min_discovery_timeout) \ __field(u16, dot11MeshHWMPpreqMinInterval) \ __field(u16, dot11MeshHWMPperrMinInterval) \ __field(u16, dot11MeshHWMPnetDiameterTraversalTime) \ __field(u8, dot11MeshHWMPRootMode) \ __field(u16, dot11MeshHWMPRannInterval) \ __field(bool, dot11MeshGateAnnouncementProtocol) \ __field(bool, dot11MeshForwarding) \ __field(s32, rssi_threshold) \ __field(u16, ht_opmode) \ __field(u32, dot11MeshHWMPactivePathToRootTimeout) \ __field(u16, dot11MeshHWMProotInterval) \ __field(u16, dot11MeshHWMPconfirmationInterval) \ __field(bool, dot11MeshNolearn) #define MESH_CFG_ASSIGN \ do { \ __entry->dot11MeshRetryTimeout = conf->dot11MeshRetryTimeout; \ __entry->dot11MeshConfirmTimeout = \ conf->dot11MeshConfirmTimeout; \ __entry->dot11MeshHoldingTimeout = \ conf->dot11MeshHoldingTimeout; \ __entry->dot11MeshMaxPeerLinks = conf->dot11MeshMaxPeerLinks; \ __entry->dot11MeshMaxRetries = conf->dot11MeshMaxRetries; \ __entry->dot11MeshTTL = conf->dot11MeshTTL; \ __entry->element_ttl = conf->element_ttl; \ __entry->auto_open_plinks = conf->auto_open_plinks; \ __entry->dot11MeshNbrOffsetMaxNeighbor = \ conf->dot11MeshNbrOffsetMaxNeighbor; \ __entry->dot11MeshHWMPmaxPREQretries = \ conf->dot11MeshHWMPmaxPREQretries; \ __entry->path_refresh_time = conf->path_refresh_time; \ __entry->dot11MeshHWMPactivePathTimeout = \ conf->dot11MeshHWMPactivePathTimeout; \ __entry->min_discovery_timeout = conf->min_discovery_timeout; \ __entry->dot11MeshHWMPpreqMinInterval = \ conf->dot11MeshHWMPpreqMinInterval; \ __entry->dot11MeshHWMPperrMinInterval = \ conf->dot11MeshHWMPperrMinInterval; \ __entry->dot11MeshHWMPnetDiameterTraversalTime = \ conf->dot11MeshHWMPnetDiameterTraversalTime; \ __entry->dot11MeshHWMPRootMode = conf->dot11MeshHWMPRootMode; \ __entry->dot11MeshHWMPRannInterval = \ conf->dot11MeshHWMPRannInterval; \ __entry->dot11MeshGateAnnouncementProtocol = \ conf->dot11MeshGateAnnouncementProtocol; \ __entry->dot11MeshForwarding = conf->dot11MeshForwarding; \ __entry->rssi_threshold = conf->rssi_threshold; \ __entry->ht_opmode = conf->ht_opmode; \ __entry->dot11MeshHWMPactivePathToRootTimeout = \ conf->dot11MeshHWMPactivePathToRootTimeout; \ __entry->dot11MeshHWMProotInterval = \ conf->dot11MeshHWMProotInterval; \ __entry->dot11MeshHWMPconfirmationInterval = \ conf->dot11MeshHWMPconfirmationInterval; \ __entry->dot11MeshNolearn = conf->dot11MeshNolearn; \ } while (0) #define CHAN_ENTRY __field(enum nl80211_band, band) \ __field(u32, center_freq) \ __field(u16, freq_offset) #define CHAN_ASSIGN(chan) \ do { \ if (chan) { \ __entry->band = chan->band; \ __entry->center_freq = chan->center_freq; \ __entry->freq_offset = chan->freq_offset; \ } else { \ __entry->band = 0; \ __entry->center_freq = 0; \ __entry->freq_offset = 0; \ } \ } while (0) #define CHAN_PR_FMT "band: %d, freq: %u.%03u" #define CHAN_PR_ARG __entry->band, __entry->center_freq, __entry->freq_offset #define CHAN_DEF_ENTRY __field(enum nl80211_band, band) \ __field(u32, control_freq) \ __field(u32, freq_offset) \ __field(u32, width) \ __field(u32, center_freq1) \ __field(u32, freq1_offset) \ __field(u32, center_freq2) #define CHAN_DEF_ASSIGN(chandef) \ do { \ if ((chandef) && (chandef)->chan) { \ __entry->band = (chandef)->chan->band; \ __entry->control_freq = \ (chandef)->chan->center_freq; \ __entry->freq_offset = \ (chandef)->chan->freq_offset; \ __entry->width = (chandef)->width; \ __entry->center_freq1 = (chandef)->center_freq1;\ __entry->freq1_offset = (chandef)->freq1_offset;\ __entry->center_freq2 = (chandef)->center_freq2;\ } else { \ __entry->band = 0; \ __entry->control_freq = 0; \ __entry->freq_offset = 0; \ __entry->width = 0; \ __entry->center_freq1 = 0; \ __entry->freq1_offset = 0; \ __entry->center_freq2 = 0; \ } \ } while (0) #define CHAN_DEF_PR_FMT \ "band: %d, control freq: %u.%03u, width: %d, cf1: %u.%03u, cf2: %u" #define CHAN_DEF_PR_ARG __entry->band, __entry->control_freq, \ __entry->freq_offset, __entry->width, \ __entry->center_freq1, __entry->freq1_offset, \ __entry->center_freq2 #define SINFO_ENTRY __field(int, generation) \ __field(u32, connected_time) \ __field(u32, inactive_time) \ __field(u32, rx_bytes) \ __field(u32, tx_bytes) \ __field(u32, rx_packets) \ __field(u32, tx_packets) \ __field(u32, tx_retries) \ __field(u32, tx_failed) \ __field(u32, rx_dropped_misc) \ __field(u32, beacon_loss_count) \ __field(u16, llid) \ __field(u16, plid) \ __field(u8, plink_state) #define SINFO_ASSIGN \ do { \ __entry->generation = sinfo->generation; \ __entry->connected_time = sinfo->connected_time; \ __entry->inactive_time = sinfo->inactive_time; \ __entry->rx_bytes = sinfo->rx_bytes; \ __entry->tx_bytes = sinfo->tx_bytes; \ __entry->rx_packets = sinfo->rx_packets; \ __entry->tx_packets = sinfo->tx_packets; \ __entry->tx_retries = sinfo->tx_retries; \ __entry->tx_failed = sinfo->tx_failed; \ __entry->rx_dropped_misc = sinfo->rx_dropped_misc; \ __entry->beacon_loss_count = sinfo->beacon_loss_count; \ __entry->llid = sinfo->llid; \ __entry->plid = sinfo->plid; \ __entry->plink_state = sinfo->plink_state; \ } while (0) #define BOOL_TO_STR(bo) (bo) ? "true" : "false" #define QOS_MAP_ENTRY __field(u8, num_des) \ __array(u8, dscp_exception, \ 2 * IEEE80211_QOS_MAP_MAX_EX) \ __array(u8, up, IEEE80211_QOS_MAP_LEN_MIN) #define QOS_MAP_ASSIGN(qos_map) \ do { \ if ((qos_map)) { \ __entry->num_des = (qos_map)->num_des; \ memcpy(__entry->dscp_exception, \ &(qos_map)->dscp_exception, \ 2 * IEEE80211_QOS_MAP_MAX_EX); \ memcpy(__entry->up, &(qos_map)->up, \ IEEE80211_QOS_MAP_LEN_MIN); \ } else { \ __entry->num_des = 0; \ memset(__entry->dscp_exception, 0, \ 2 * IEEE80211_QOS_MAP_MAX_EX); \ memset(__entry->up, 0, \ IEEE80211_QOS_MAP_LEN_MIN); \ } \ } while (0) /************************************************************* * rdev->ops traces * *************************************************************/ TRACE_EVENT(rdev_suspend, TP_PROTO(struct wiphy *wiphy, struct cfg80211_wowlan *wow), TP_ARGS(wiphy, wow), TP_STRUCT__entry( WIPHY_ENTRY __field(bool, any) __field(bool, disconnect) __field(bool, magic_pkt) __field(bool, gtk_rekey_failure) __field(bool, eap_identity_req) __field(bool, four_way_handshake) __field(bool, rfkill_release) __field(bool, valid_wow) ), TP_fast_assign( WIPHY_ASSIGN; if (wow) { __entry->any = wow->any; __entry->disconnect = wow->disconnect; __entry->magic_pkt = wow->magic_pkt; __entry->gtk_rekey_failure = wow->gtk_rekey_failure; __entry->eap_identity_req = wow->eap_identity_req; __entry->four_way_handshake = wow->four_way_handshake; __entry->rfkill_release = wow->rfkill_release; __entry->valid_wow = true; } else { __entry->valid_wow = false; } ), TP_printk(WIPHY_PR_FMT ", wow%s - any: %d, disconnect: %d, " "magic pkt: %d, gtk rekey failure: %d, eap identify req: %d, " "four way handshake: %d, rfkill release: %d.", WIPHY_PR_ARG, __entry->valid_wow ? "" : "(Not configured!)", __entry->any, __entry->disconnect, __entry->magic_pkt, __entry->gtk_rekey_failure, __entry->eap_identity_req, __entry->four_way_handshake, __entry->rfkill_release) ); TRACE_EVENT(rdev_return_int, TP_PROTO(struct wiphy *wiphy, int ret), TP_ARGS(wiphy, ret), TP_STRUCT__entry( WIPHY_ENTRY __field(int, ret) ), TP_fast_assign( WIPHY_ASSIGN; __entry->ret = ret; ), TP_printk(WIPHY_PR_FMT ", returned: %d", WIPHY_PR_ARG, __entry->ret) ); TRACE_EVENT(rdev_scan, TP_PROTO(struct wiphy *wiphy, struct cfg80211_scan_request *request), TP_ARGS(wiphy, request), TP_STRUCT__entry( WIPHY_ENTRY ), TP_fast_assign( WIPHY_ASSIGN; ), TP_printk(WIPHY_PR_FMT, WIPHY_PR_ARG) ); DECLARE_EVENT_CLASS(wiphy_only_evt, TP_PROTO(struct wiphy *wiphy), TP_ARGS(wiphy), TP_STRUCT__entry( WIPHY_ENTRY ), TP_fast_assign( WIPHY_ASSIGN; ), TP_printk(WIPHY_PR_FMT, WIPHY_PR_ARG) ); DEFINE_EVENT(wiphy_only_evt, rdev_resume, TP_PROTO(struct wiphy *wiphy), TP_ARGS(wiphy) ); DEFINE_EVENT(wiphy_only_evt, rdev_return_void, TP_PROTO(struct wiphy *wiphy), TP_ARGS(wiphy) ); DEFINE_EVENT(wiphy_only_evt, rdev_get_antenna, TP_PROTO(struct wiphy *wiphy), TP_ARGS(wiphy) ); DEFINE_EVENT(wiphy_only_evt, rdev_rfkill_poll, TP_PROTO(struct wiphy *wiphy), TP_ARGS(wiphy) ); DECLARE_EVENT_CLASS(wiphy_enabled_evt, TP_PROTO(struct wiphy *wiphy, bool enabled), TP_ARGS(wiphy, enabled), TP_STRUCT__entry( WIPHY_ENTRY __field(bool, enabled) ), TP_fast_assign( WIPHY_ASSIGN; __entry->enabled = enabled; ), TP_printk(WIPHY_PR_FMT ", %senabled ", WIPHY_PR_ARG, __entry->enabled ? "" : "not ") ); DEFINE_EVENT(wiphy_enabled_evt, rdev_set_wakeup, TP_PROTO(struct wiphy *wiphy, bool enabled), TP_ARGS(wiphy, enabled) ); TRACE_EVENT(rdev_add_virtual_intf, TP_PROTO(struct wiphy *wiphy, char *name, enum nl80211_iftype type), TP_ARGS(wiphy, name, type), TP_STRUCT__entry( WIPHY_ENTRY __string(vir_intf_name, name ? name : "<noname>") __field(enum nl80211_iftype, type) ), TP_fast_assign( WIPHY_ASSIGN; __assign_str(vir_intf_name, name ? name : "<noname>"); __entry->type = type; ), TP_printk(WIPHY_PR_FMT ", virtual intf name: %s, type: %d", WIPHY_PR_ARG, __get_str(vir_intf_name), __entry->type) ); DECLARE_EVENT_CLASS(wiphy_wdev_evt, TP_PROTO(struct wiphy *wiphy, struct wireless_dev *wdev), TP_ARGS(wiphy, wdev), TP_STRUCT__entry( WIPHY_ENTRY WDEV_ENTRY ), TP_fast_assign( WIPHY_ASSIGN; WDEV_ASSIGN; ), TP_printk(WIPHY_PR_FMT ", " WDEV_PR_FMT, WIPHY_PR_ARG, WDEV_PR_ARG) ); DECLARE_EVENT_CLASS(wiphy_wdev_cookie_evt, TP_PROTO(struct wiphy *wiphy, struct wireless_dev *wdev, u64 cookie), TP_ARGS(wiphy, wdev, cookie), TP_STRUCT__entry( WIPHY_ENTRY WDEV_ENTRY __field(u64, cookie) ), TP_fast_assign( WIPHY_ASSIGN; WDEV_ASSIGN; __entry->cookie = cookie; ), TP_printk(WIPHY_PR_FMT ", " WDEV_PR_FMT ", cookie: %lld", WIPHY_PR_ARG, WDEV_PR_ARG, (unsigned long long)__entry->cookie) ); DEFINE_EVENT(wiphy_wdev_evt, rdev_return_wdev, TP_PROTO(struct wiphy *wiphy, struct wireless_dev *wdev), TP_ARGS(wiphy, wdev) ); DEFINE_EVENT(wiphy_wdev_evt, rdev_del_virtual_intf, TP_PROTO(struct wiphy *wiphy, struct wireless_dev *wdev), TP_ARGS(wiphy, wdev) ); TRACE_EVENT(rdev_change_virtual_intf, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, enum nl80211_iftype type), TP_ARGS(wiphy, netdev, type), TP_STRUCT__entry( WIPHY_ENTRY NETDEV_ENTRY __field(enum nl80211_iftype, type) ), TP_fast_assign( WIPHY_ASSIGN; NETDEV_ASSIGN; __entry->type = type; ), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT ", type: %d", WIPHY_PR_ARG, NETDEV_PR_ARG, __entry->type) ); DECLARE_EVENT_CLASS(key_handle, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, u8 key_index, bool pairwise, const u8 *mac_addr), TP_ARGS(wiphy, netdev, key_index, pairwise, mac_addr), TP_STRUCT__entry( WIPHY_ENTRY NETDEV_ENTRY MAC_ENTRY(mac_addr) __field(u8, key_index) __field(bool, pairwise) ), TP_fast_assign( WIPHY_ASSIGN; NETDEV_ASSIGN; MAC_ASSIGN(mac_addr, mac_addr); __entry->key_index = key_index; __entry->pairwise = pairwise; ), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT ", key_index: %u, pairwise: %s, mac addr: " MAC_PR_FMT, WIPHY_PR_ARG, NETDEV_PR_ARG, __entry->key_index, BOOL_TO_STR(__entry->pairwise), MAC_PR_ARG(mac_addr)) ); DEFINE_EVENT(key_handle, rdev_get_key, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, u8 key_index, bool pairwise, const u8 *mac_addr), TP_ARGS(wiphy, netdev, key_index, pairwise, mac_addr) ); DEFINE_EVENT(key_handle, rdev_del_key, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, u8 key_index, bool pairwise, const u8 *mac_addr), TP_ARGS(wiphy, netdev, key_index, pairwise, mac_addr) ); TRACE_EVENT(rdev_add_key, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, u8 key_index, bool pairwise, const u8 *mac_addr, u8 mode), TP_ARGS(wiphy, netdev, key_index, pairwise, mac_addr, mode), TP_STRUCT__entry( WIPHY_ENTRY NETDEV_ENTRY MAC_ENTRY(mac_addr) __field(u8, key_index) __field(bool, pairwise) __field(u8, mode) ), TP_fast_assign( WIPHY_ASSIGN; NETDEV_ASSIGN; MAC_ASSIGN(mac_addr, mac_addr); __entry->key_index = key_index; __entry->pairwise = pairwise; __entry->mode = mode; ), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT ", key_index: %u, " "mode: %u, pairwise: %s, mac addr: " MAC_PR_FMT, WIPHY_PR_ARG, NETDEV_PR_ARG, __entry->key_index, __entry->mode, BOOL_TO_STR(__entry->pairwise), MAC_PR_ARG(mac_addr)) ); TRACE_EVENT(rdev_set_default_key, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, u8 key_index, bool unicast, bool multicast), TP_ARGS(wiphy, netdev, key_index, unicast, multicast), TP_STRUCT__entry( WIPHY_ENTRY NETDEV_ENTRY __field(u8, key_index) __field(bool, unicast) __field(bool, multicast) ), TP_fast_assign( WIPHY_ASSIGN; NETDEV_ASSIGN; __entry->key_index = key_index; __entry->unicast = unicast; __entry->multicast = multicast; ), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT ", key index: %u, unicast: %s, multicast: %s", WIPHY_PR_ARG, NETDEV_PR_ARG, __entry->key_index, BOOL_TO_STR(__entry->unicast), BOOL_TO_STR(__entry->multicast)) ); TRACE_EVENT(rdev_set_default_mgmt_key, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, u8 key_index), TP_ARGS(wiphy, netdev, key_index), TP_STRUCT__entry( WIPHY_ENTRY NETDEV_ENTRY __field(u8, key_index) ), TP_fast_assign( WIPHY_ASSIGN; NETDEV_ASSIGN; __entry->key_index = key_index; ), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT ", key index: %u", WIPHY_PR_ARG, NETDEV_PR_ARG, __entry->key_index) ); TRACE_EVENT(rdev_set_default_beacon_key, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, u8 key_index), TP_ARGS(wiphy, netdev, key_index), TP_STRUCT__entry( WIPHY_ENTRY NETDEV_ENTRY __field(u8, key_index) ), TP_fast_assign( WIPHY_ASSIGN; NETDEV_ASSIGN; __entry->key_index = key_index; ), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT ", key index: %u", WIPHY_PR_ARG, NETDEV_PR_ARG, __entry->key_index) ); TRACE_EVENT(rdev_start_ap, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, struct cfg80211_ap_settings *settings), TP_ARGS(wiphy, netdev, settings), TP_STRUCT__entry( WIPHY_ENTRY NETDEV_ENTRY CHAN_DEF_ENTRY __field(int, beacon_interval) __field(int, dtim_period) __array(char, ssid, IEEE80211_MAX_SSID_LEN + 1) __field(enum nl80211_hidden_ssid, hidden_ssid) __field(u32, wpa_ver) __field(bool, privacy) __field(enum nl80211_auth_type, auth_type) __field(int, inactivity_timeout) ), TP_fast_assign( WIPHY_ASSIGN; NETDEV_ASSIGN; CHAN_DEF_ASSIGN(&settings->chandef); __entry->beacon_interval = settings->beacon_interval; __entry->dtim_period = settings->dtim_period; __entry->hidden_ssid = settings->hidden_ssid; __entry->wpa_ver = settings->crypto.wpa_versions; __entry->privacy = settings->privacy; __entry->auth_type = settings->auth_type; __entry->inactivity_timeout = settings->inactivity_timeout; memset(__entry->ssid, 0, IEEE80211_MAX_SSID_LEN + 1); memcpy(__entry->ssid, settings->ssid, settings->ssid_len); ), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT ", AP settings - ssid: %s, " CHAN_DEF_PR_FMT ", beacon interval: %d, dtim period: %d, " "hidden ssid: %d, wpa versions: %u, privacy: %s, " "auth type: %d, inactivity timeout: %d", WIPHY_PR_ARG, NETDEV_PR_ARG, __entry->ssid, CHAN_DEF_PR_ARG, __entry->beacon_interval, __entry->dtim_period, __entry->hidden_ssid, __entry->wpa_ver, BOOL_TO_STR(__entry->privacy), __entry->auth_type, __entry->inactivity_timeout) ); TRACE_EVENT(rdev_change_beacon, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, struct cfg80211_beacon_data *info), TP_ARGS(wiphy, netdev, info), TP_STRUCT__entry( WIPHY_ENTRY NETDEV_ENTRY __dynamic_array(u8, head, info ? info->head_len : 0) __dynamic_array(u8, tail, info ? info->tail_len : 0) __dynamic_array(u8, beacon_ies, info ? info->beacon_ies_len : 0) __dynamic_array(u8, proberesp_ies, info ? info->proberesp_ies_len : 0) __dynamic_array(u8, assocresp_ies, info ? info->assocresp_ies_len : 0) __dynamic_array(u8, probe_resp, info ? info->probe_resp_len : 0) ), TP_fast_assign( WIPHY_ASSIGN; NETDEV_ASSIGN; if (info) { if (info->head) memcpy(__get_dynamic_array(head), info->head, info->head_len); if (info->tail) memcpy(__get_dynamic_array(tail), info->tail, info->tail_len); if (info->beacon_ies) memcpy(__get_dynamic_array(beacon_ies), info->beacon_ies, info->beacon_ies_len); if (info->proberesp_ies) memcpy(__get_dynamic_array(proberesp_ies), info->proberesp_ies, info->proberesp_ies_len); if (info->assocresp_ies) memcpy(__get_dynamic_array(assocresp_ies), info->assocresp_ies, info->assocresp_ies_len); if (info->probe_resp) memcpy(__get_dynamic_array(probe_resp), info->probe_resp, info->probe_resp_len); } ), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT, WIPHY_PR_ARG, NETDEV_PR_ARG) ); DECLARE_EVENT_CLASS(wiphy_netdev_evt, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev), TP_ARGS(wiphy, netdev), TP_STRUCT__entry( WIPHY_ENTRY NETDEV_ENTRY ), TP_fast_assign( WIPHY_ASSIGN; NETDEV_ASSIGN; ), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT, WIPHY_PR_ARG, NETDEV_PR_ARG) ); DEFINE_EVENT(wiphy_netdev_evt, rdev_stop_ap, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev), TP_ARGS(wiphy, netdev) ); DEFINE_EVENT(wiphy_netdev_evt, rdev_set_rekey_data, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev), TP_ARGS(wiphy, netdev) ); DEFINE_EVENT(wiphy_netdev_evt, rdev_get_mesh_config, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev), TP_ARGS(wiphy, netdev) ); DEFINE_EVENT(wiphy_netdev_evt, rdev_leave_mesh, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev), TP_ARGS(wiphy, netdev) ); DEFINE_EVENT(wiphy_netdev_evt, rdev_leave_ibss, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev), TP_ARGS(wiphy, netdev) ); DEFINE_EVENT(wiphy_netdev_evt, rdev_leave_ocb, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev), TP_ARGS(wiphy, netdev) ); DEFINE_EVENT(wiphy_netdev_evt, rdev_flush_pmksa, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev), TP_ARGS(wiphy, netdev) ); DEFINE_EVENT(wiphy_netdev_evt, rdev_end_cac, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev), TP_ARGS(wiphy, netdev) ); DECLARE_EVENT_CLASS(station_add_change, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, u8 *mac, struct station_parameters *params), TP_ARGS(wiphy, netdev, mac, params), TP_STRUCT__entry( WIPHY_ENTRY NETDEV_ENTRY MAC_ENTRY(sta_mac) __field(u32, sta_flags_mask) __field(u32, sta_flags_set) __field(u32, sta_modify_mask) __field(int, listen_interval) __field(u16, capability) __field(u16, aid) __field(u8, plink_action) __field(u8, plink_state) __field(u8, uapsd_queues) __field(u8, max_sp) __field(u8, opmode_notif) __field(bool, opmode_notif_used) __array(u8, ht_capa, (int)sizeof(struct ieee80211_ht_cap)) __array(u8, vht_capa, (int)sizeof(struct ieee80211_vht_cap)) __array(char, vlan, IFNAMSIZ) __dynamic_array(u8, supported_rates, params->supported_rates_len) __dynamic_array(u8, ext_capab, params->ext_capab_len) __dynamic_array(u8, supported_channels, params->supported_channels_len) __dynamic_array(u8, supported_oper_classes, params->supported_oper_classes_len) ), TP_fast_assign( WIPHY_ASSIGN; NETDEV_ASSIGN; MAC_ASSIGN(sta_mac, mac); __entry->sta_flags_mask = params->sta_flags_mask; __entry->sta_flags_set = params->sta_flags_set; __entry->sta_modify_mask = params->sta_modify_mask; __entry->listen_interval = params->listen_interval; __entry->aid = params->aid; __entry->plink_action = params->plink_action; __entry->plink_state = params->plink_state; __entry->uapsd_queues = params->uapsd_queues; memset(__entry->ht_capa, 0, sizeof(struct ieee80211_ht_cap)); if (params->ht_capa) memcpy(__entry->ht_capa, params->ht_capa, sizeof(struct ieee80211_ht_cap)); memset(__entry->vht_capa, 0, sizeof(struct ieee80211_vht_cap)); if (params->vht_capa) memcpy(__entry->vht_capa, params->vht_capa, sizeof(struct ieee80211_vht_cap)); memset(__entry->vlan, 0, sizeof(__entry->vlan)); if (params->vlan) memcpy(__entry->vlan, params->vlan->name, IFNAMSIZ); if (params->supported_rates && params->supported_rates_len) memcpy(__get_dynamic_array(supported_rates), params->supported_rates, params->supported_rates_len); if (params->ext_capab && params->ext_capab_len) memcpy(__get_dynamic_array(ext_capab), params->ext_capab, params->ext_capab_len); if (params->supported_channels && params->supported_channels_len) memcpy(__get_dynamic_array(supported_channels), params->supported_channels, params->supported_channels_len); if (params->supported_oper_classes && params->supported_oper_classes_len) memcpy(__get_dynamic_array(supported_oper_classes), params->supported_oper_classes, params->supported_oper_classes_len); __entry->max_sp = params->max_sp; __entry->capability = params->capability; __entry->opmode_notif = params->opmode_notif; __entry->opmode_notif_used = params->opmode_notif_used; ), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT ", station mac: " MAC_PR_FMT ", station flags mask: %u, station flags set: %u, " "station modify mask: %u, listen interval: %d, aid: %u, " "plink action: %u, plink state: %u, uapsd queues: %u, vlan:%s", WIPHY_PR_ARG, NETDEV_PR_ARG, MAC_PR_ARG(sta_mac), __entry->sta_flags_mask, __entry->sta_flags_set, __entry->sta_modify_mask, __entry->listen_interval, __entry->aid, __entry->plink_action, __entry->plink_state, __entry->uapsd_queues, __entry->vlan) ); DEFINE_EVENT(station_add_change, rdev_add_station, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, u8 *mac, struct station_parameters *params), TP_ARGS(wiphy, netdev, mac, params) ); DEFINE_EVENT(station_add_change, rdev_change_station, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, u8 *mac, struct station_parameters *params), TP_ARGS(wiphy, netdev, mac, params) ); DECLARE_EVENT_CLASS(wiphy_netdev_mac_evt, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, const u8 *mac), TP_ARGS(wiphy, netdev, mac), TP_STRUCT__entry( WIPHY_ENTRY NETDEV_ENTRY MAC_ENTRY(sta_mac) ), TP_fast_assign( WIPHY_ASSIGN; NETDEV_ASSIGN; MAC_ASSIGN(sta_mac, mac); ), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT ", mac: " MAC_PR_FMT, WIPHY_PR_ARG, NETDEV_PR_ARG, MAC_PR_ARG(sta_mac)) ); DECLARE_EVENT_CLASS(station_del, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, struct station_del_parameters *params), TP_ARGS(wiphy, netdev, params), TP_STRUCT__entry( WIPHY_ENTRY NETDEV_ENTRY MAC_ENTRY(sta_mac) __field(u8, subtype) __field(u16, reason_code) ), TP_fast_assign( WIPHY_ASSIGN; NETDEV_ASSIGN; MAC_ASSIGN(sta_mac, params->mac); __entry->subtype = params->subtype; __entry->reason_code = params->reason_code; ), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT ", station mac: " MAC_PR_FMT ", subtype: %u, reason_code: %u", WIPHY_PR_ARG, NETDEV_PR_ARG, MAC_PR_ARG(sta_mac), __entry->subtype, __entry->reason_code) ); DEFINE_EVENT(station_del, rdev_del_station, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, struct station_del_parameters *params), TP_ARGS(wiphy, netdev, params) ); DEFINE_EVENT(wiphy_netdev_mac_evt, rdev_get_station, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, const u8 *mac), TP_ARGS(wiphy, netdev, mac) ); DEFINE_EVENT(wiphy_netdev_mac_evt, rdev_del_mpath, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, const u8 *mac), TP_ARGS(wiphy, netdev, mac) ); DEFINE_EVENT(wiphy_netdev_mac_evt, rdev_set_wds_peer, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, const u8 *mac), TP_ARGS(wiphy, netdev, mac) ); TRACE_EVENT(rdev_dump_station, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, int _idx, u8 *mac), TP_ARGS(wiphy, netdev, _idx, mac), TP_STRUCT__entry( WIPHY_ENTRY NETDEV_ENTRY MAC_ENTRY(sta_mac) __field(int, idx) ), TP_fast_assign( WIPHY_ASSIGN; NETDEV_ASSIGN; MAC_ASSIGN(sta_mac, mac); __entry->idx = _idx; ), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT ", station mac: " MAC_PR_FMT ", idx: %d", WIPHY_PR_ARG, NETDEV_PR_ARG, MAC_PR_ARG(sta_mac), __entry->idx) ); TRACE_EVENT(rdev_return_int_station_info, TP_PROTO(struct wiphy *wiphy, int ret, struct station_info *sinfo), TP_ARGS(wiphy, ret, sinfo), TP_STRUCT__entry( WIPHY_ENTRY __field(int, ret) SINFO_ENTRY ), TP_fast_assign( WIPHY_ASSIGN; __entry->ret = ret; SINFO_ASSIGN; ), TP_printk(WIPHY_PR_FMT ", returned %d" , WIPHY_PR_ARG, __entry->ret) ); DECLARE_EVENT_CLASS(mpath_evt, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, u8 *dst, u8 *next_hop), TP_ARGS(wiphy, netdev, dst, next_hop), TP_STRUCT__entry( WIPHY_ENTRY NETDEV_ENTRY MAC_ENTRY(dst) MAC_ENTRY(next_hop) ), TP_fast_assign( WIPHY_ASSIGN; NETDEV_ASSIGN; MAC_ASSIGN(dst, dst); MAC_ASSIGN(next_hop, next_hop); ), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT ", destination: " MAC_PR_FMT ", next hop: " MAC_PR_FMT, WIPHY_PR_ARG, NETDEV_PR_ARG, MAC_PR_ARG(dst), MAC_PR_ARG(next_hop)) ); DEFINE_EVENT(mpath_evt, rdev_add_mpath, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, u8 *dst, u8 *next_hop), TP_ARGS(wiphy, netdev, dst, next_hop) ); DEFINE_EVENT(mpath_evt, rdev_change_mpath, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, u8 *dst, u8 *next_hop), TP_ARGS(wiphy, netdev, dst, next_hop) ); DEFINE_EVENT(mpath_evt, rdev_get_mpath, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, u8 *dst, u8 *next_hop), TP_ARGS(wiphy, netdev, dst, next_hop) ); TRACE_EVENT(rdev_dump_mpath, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, int _idx, u8 *dst, u8 *next_hop), TP_ARGS(wiphy, netdev, _idx, dst, next_hop), TP_STRUCT__entry( WIPHY_ENTRY NETDEV_ENTRY MAC_ENTRY(dst) MAC_ENTRY(next_hop) __field(int, idx) ), TP_fast_assign( WIPHY_ASSIGN; NETDEV_ASSIGN; MAC_ASSIGN(dst, dst); MAC_ASSIGN(next_hop, next_hop); __entry->idx = _idx; ), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT ", index: %d, destination: " MAC_PR_FMT ", next hop: " MAC_PR_FMT, WIPHY_PR_ARG, NETDEV_PR_ARG, __entry->idx, MAC_PR_ARG(dst), MAC_PR_ARG(next_hop)) ); TRACE_EVENT(rdev_get_mpp, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, u8 *dst, u8 *mpp), TP_ARGS(wiphy, netdev, dst, mpp), TP_STRUCT__entry( WIPHY_ENTRY NETDEV_ENTRY MAC_ENTRY(dst) MAC_ENTRY(mpp) ), TP_fast_assign( WIPHY_ASSIGN; NETDEV_ASSIGN; MAC_ASSIGN(dst, dst); MAC_ASSIGN(mpp, mpp); ), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT ", destination: " MAC_PR_FMT ", mpp: " MAC_PR_FMT, WIPHY_PR_ARG, NETDEV_PR_ARG, MAC_PR_ARG(dst), MAC_PR_ARG(mpp)) ); TRACE_EVENT(rdev_dump_mpp, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, int _idx, u8 *dst, u8 *mpp), TP_ARGS(wiphy, netdev, _idx, mpp, dst), TP_STRUCT__entry( WIPHY_ENTRY NETDEV_ENTRY MAC_ENTRY(dst) MAC_ENTRY(mpp) __field(int, idx) ), TP_fast_assign( WIPHY_ASSIGN; NETDEV_ASSIGN; MAC_ASSIGN(dst, dst); MAC_ASSIGN(mpp, mpp); __entry->idx = _idx; ), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT ", index: %d, destination: " MAC_PR_FMT ", mpp: " MAC_PR_FMT, WIPHY_PR_ARG, NETDEV_PR_ARG, __entry->idx, MAC_PR_ARG(dst), MAC_PR_ARG(mpp)) ); TRACE_EVENT(rdev_return_int_mpath_info, TP_PROTO(struct wiphy *wiphy, int ret, struct mpath_info *pinfo), TP_ARGS(wiphy, ret, pinfo), TP_STRUCT__entry( WIPHY_ENTRY __field(int, ret) __field(int, generation) __field(u32, filled) __field(u32, frame_qlen) __field(u32, sn) __field(u32, metric) __field(u32, exptime) __field(u32, discovery_timeout) __field(u8, discovery_retries) __field(u8, flags) ), TP_fast_assign( WIPHY_ASSIGN; __entry->ret = ret; __entry->generation = pinfo->generation; __entry->filled = pinfo->filled; __entry->frame_qlen = pinfo->frame_qlen; __entry->sn = pinfo->sn; __entry->metric = pinfo->metric; __entry->exptime = pinfo->exptime; __entry->discovery_timeout = pinfo->discovery_timeout; __entry->discovery_retries = pinfo->discovery_retries; __entry->flags = pinfo->flags; ), TP_printk(WIPHY_PR_FMT ", returned %d. mpath info - generation: %d, " "filled: %u, frame qlen: %u, sn: %u, metric: %u, exptime: %u," " discovery timeout: %u, discovery retries: %u, flags: %u", WIPHY_PR_ARG, __entry->ret, __entry->generation, __entry->filled, __entry->frame_qlen, __entry->sn, __entry->metric, __entry->exptime, __entry->discovery_timeout, __entry->discovery_retries, __entry->flags) ); TRACE_EVENT(rdev_return_int_mesh_config, TP_PROTO(struct wiphy *wiphy, int ret, struct mesh_config *conf), TP_ARGS(wiphy, ret, conf), TP_STRUCT__entry( WIPHY_ENTRY MESH_CFG_ENTRY __field(int, ret) ), TP_fast_assign( WIPHY_ASSIGN; MESH_CFG_ASSIGN; __entry->ret = ret; ), TP_printk(WIPHY_PR_FMT ", returned: %d", WIPHY_PR_ARG, __entry->ret) ); TRACE_EVENT(rdev_update_mesh_config, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, u32 mask, const struct mesh_config *conf), TP_ARGS(wiphy, netdev, mask, conf), TP_STRUCT__entry( WIPHY_ENTRY NETDEV_ENTRY MESH_CFG_ENTRY __field(u32, mask) ), TP_fast_assign( WIPHY_ASSIGN; NETDEV_ASSIGN; MESH_CFG_ASSIGN; __entry->mask = mask; ), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT ", mask: %u", WIPHY_PR_ARG, NETDEV_PR_ARG, __entry->mask) ); TRACE_EVENT(rdev_join_mesh, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, const struct mesh_config *conf, const struct mesh_setup *setup), TP_ARGS(wiphy, netdev, conf, setup), TP_STRUCT__entry( WIPHY_ENTRY NETDEV_ENTRY MESH_CFG_ENTRY ), TP_fast_assign( WIPHY_ASSIGN; NETDEV_ASSIGN; MESH_CFG_ASSIGN; ), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT, WIPHY_PR_ARG, NETDEV_PR_ARG) ); TRACE_EVENT(rdev_change_bss, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, struct bss_parameters *params), TP_ARGS(wiphy, netdev, params), TP_STRUCT__entry( WIPHY_ENTRY NETDEV_ENTRY __field(int, use_cts_prot) __field(int, use_short_preamble) __field(int, use_short_slot_time) __field(int, ap_isolate) __field(int, ht_opmode) ), TP_fast_assign( WIPHY_ASSIGN; NETDEV_ASSIGN; __entry->use_cts_prot = params->use_cts_prot; __entry->use_short_preamble = params->use_short_preamble; __entry->use_short_slot_time = params->use_short_slot_time; __entry->ap_isolate = params->ap_isolate; __entry->ht_opmode = params->ht_opmode; ), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT ", use cts prot: %d, " "use short preamble: %d, use short slot time: %d, " "ap isolate: %d, ht opmode: %d", WIPHY_PR_ARG, NETDEV_PR_ARG, __entry->use_cts_prot, __entry->use_short_preamble, __entry->use_short_slot_time, __entry->ap_isolate, __entry->ht_opmode) ); TRACE_EVENT(rdev_set_txq_params, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, struct ieee80211_txq_params *params), TP_ARGS(wiphy, netdev, params), TP_STRUCT__entry( WIPHY_ENTRY NETDEV_ENTRY __field(enum nl80211_ac, ac) __field(u16, txop) __field(u16, cwmin) __field(u16, cwmax) __field(u8, aifs) ), TP_fast_assign( WIPHY_ASSIGN; NETDEV_ASSIGN; __entry->ac = params->ac; __entry->txop = params->txop; __entry->cwmin = params->cwmin; __entry->cwmax = params->cwmax; __entry->aifs = params->aifs; ), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT ", ac: %d, txop: %u, cwmin: %u, cwmax: %u, aifs: %u", WIPHY_PR_ARG, NETDEV_PR_ARG, __entry->ac, __entry->txop, __entry->cwmin, __entry->cwmax, __entry->aifs) ); TRACE_EVENT(rdev_libertas_set_mesh_channel, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, struct ieee80211_channel *chan), TP_ARGS(wiphy, netdev, chan), TP_STRUCT__entry( WIPHY_ENTRY NETDEV_ENTRY CHAN_ENTRY ), TP_fast_assign( WIPHY_ASSIGN; NETDEV_ASSIGN; CHAN_ASSIGN(chan); ), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT ", " CHAN_PR_FMT, WIPHY_PR_ARG, NETDEV_PR_ARG, CHAN_PR_ARG) ); TRACE_EVENT(rdev_set_monitor_channel, TP_PROTO(struct wiphy *wiphy, struct cfg80211_chan_def *chandef), TP_ARGS(wiphy, chandef), TP_STRUCT__entry( WIPHY_ENTRY CHAN_DEF_ENTRY ), TP_fast_assign( WIPHY_ASSIGN; CHAN_DEF_ASSIGN(chandef); ), TP_printk(WIPHY_PR_FMT ", " CHAN_DEF_PR_FMT, WIPHY_PR_ARG, CHAN_DEF_PR_ARG) ); TRACE_EVENT(rdev_auth, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, struct cfg80211_auth_request *req), TP_ARGS(wiphy, netdev, req), TP_STRUCT__entry( WIPHY_ENTRY NETDEV_ENTRY MAC_ENTRY(bssid) __field(enum nl80211_auth_type, auth_type) ), TP_fast_assign( WIPHY_ASSIGN; NETDEV_ASSIGN; if (req->bss) MAC_ASSIGN(bssid, req->bss->bssid); else eth_zero_addr(__entry->bssid); __entry->auth_type = req->auth_type; ), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT ", auth type: %d, bssid: " MAC_PR_FMT, WIPHY_PR_ARG, NETDEV_PR_ARG, __entry->auth_type, MAC_PR_ARG(bssid)) ); TRACE_EVENT(rdev_assoc, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, struct cfg80211_assoc_request *req), TP_ARGS(wiphy, netdev, req), TP_STRUCT__entry( WIPHY_ENTRY NETDEV_ENTRY MAC_ENTRY(bssid) MAC_ENTRY(prev_bssid) __field(bool, use_mfp) __field(u32, flags) ), TP_fast_assign( WIPHY_ASSIGN; NETDEV_ASSIGN; if (req->bss) MAC_ASSIGN(bssid, req->bss->bssid); else eth_zero_addr(__entry->bssid); MAC_ASSIGN(prev_bssid, req->prev_bssid); __entry->use_mfp = req->use_mfp; __entry->flags = req->flags; ), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT ", bssid: " MAC_PR_FMT ", previous bssid: " MAC_PR_FMT ", use mfp: %s, flags: %u", WIPHY_PR_ARG, NETDEV_PR_ARG, MAC_PR_ARG(bssid), MAC_PR_ARG(prev_bssid), BOOL_TO_STR(__entry->use_mfp), __entry->flags) ); TRACE_EVENT(rdev_deauth, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, struct cfg80211_deauth_request *req), TP_ARGS(wiphy, netdev, req), TP_STRUCT__entry( WIPHY_ENTRY NETDEV_ENTRY MAC_ENTRY(bssid) __field(u16, reason_code) ), TP_fast_assign( WIPHY_ASSIGN; NETDEV_ASSIGN; MAC_ASSIGN(bssid, req->bssid); __entry->reason_code = req->reason_code; ), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT ", bssid: " MAC_PR_FMT ", reason: %u", WIPHY_PR_ARG, NETDEV_PR_ARG, MAC_PR_ARG(bssid), __entry->reason_code) ); TRACE_EVENT(rdev_disassoc, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, struct cfg80211_disassoc_request *req), TP_ARGS(wiphy, netdev, req), TP_STRUCT__entry( WIPHY_ENTRY NETDEV_ENTRY MAC_ENTRY(bssid) __field(u16, reason_code) __field(bool, local_state_change) ), TP_fast_assign( WIPHY_ASSIGN; NETDEV_ASSIGN; if (req->bss) MAC_ASSIGN(bssid, req->bss->bssid); else eth_zero_addr(__entry->bssid); __entry->reason_code = req->reason_code; __entry->local_state_change = req->local_state_change; ), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT ", bssid: " MAC_PR_FMT ", reason: %u, local state change: %s", WIPHY_PR_ARG, NETDEV_PR_ARG, MAC_PR_ARG(bssid), __entry->reason_code, BOOL_TO_STR(__entry->local_state_change)) ); TRACE_EVENT(rdev_mgmt_tx_cancel_wait, TP_PROTO(struct wiphy *wiphy, struct wireless_dev *wdev, u64 cookie), TP_ARGS(wiphy, wdev, cookie), TP_STRUCT__entry( WIPHY_ENTRY WDEV_ENTRY __field(u64, cookie) ), TP_fast_assign( WIPHY_ASSIGN; WDEV_ASSIGN; __entry->cookie = cookie; ), TP_printk(WIPHY_PR_FMT ", " WDEV_PR_FMT ", cookie: %llu ", WIPHY_PR_ARG, WDEV_PR_ARG, __entry->cookie) ); TRACE_EVENT(rdev_set_power_mgmt, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, bool enabled, int timeout), TP_ARGS(wiphy, netdev, enabled, timeout), TP_STRUCT__entry( WIPHY_ENTRY NETDEV_ENTRY __field(bool, enabled) __field(int, timeout) ), TP_fast_assign( WIPHY_ASSIGN; NETDEV_ASSIGN; __entry->enabled = enabled; __entry->timeout = timeout; ), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT ", %senabled, timeout: %d ", WIPHY_PR_ARG, NETDEV_PR_ARG, __entry->enabled ? "" : "not ", __entry->timeout) ); TRACE_EVENT(rdev_connect, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, struct cfg80211_connect_params *sme), TP_ARGS(wiphy, netdev, sme), TP_STRUCT__entry( WIPHY_ENTRY NETDEV_ENTRY MAC_ENTRY(bssid) __array(char, ssid, IEEE80211_MAX_SSID_LEN + 1) __field(enum nl80211_auth_type, auth_type) __field(bool, privacy) __field(u32, wpa_versions) __field(u32, flags) MAC_ENTRY(prev_bssid) ), TP_fast_assign( WIPHY_ASSIGN; NETDEV_ASSIGN; MAC_ASSIGN(bssid, sme->bssid); memset(__entry->ssid, 0, IEEE80211_MAX_SSID_LEN + 1); memcpy(__entry->ssid, sme->ssid, sme->ssid_len); __entry->auth_type = sme->auth_type; __entry->privacy = sme->privacy; __entry->wpa_versions = sme->crypto.wpa_versions; __entry->flags = sme->flags; MAC_ASSIGN(prev_bssid, sme->prev_bssid); ), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT ", bssid: " MAC_PR_FMT ", ssid: %s, auth type: %d, privacy: %s, wpa versions: %u, " "flags: %u, previous bssid: " MAC_PR_FMT, WIPHY_PR_ARG, NETDEV_PR_ARG, MAC_PR_ARG(bssid), __entry->ssid, __entry->auth_type, BOOL_TO_STR(__entry->privacy), __entry->wpa_versions, __entry->flags, MAC_PR_ARG(prev_bssid)) ); TRACE_EVENT(rdev_update_connect_params, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, struct cfg80211_connect_params *sme, u32 changed), TP_ARGS(wiphy, netdev, sme, changed), TP_STRUCT__entry( WIPHY_ENTRY NETDEV_ENTRY __field(u32, changed) ), TP_fast_assign( WIPHY_ASSIGN; NETDEV_ASSIGN; __entry->changed = changed; ), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT ", parameters changed: %u", WIPHY_PR_ARG, NETDEV_PR_ARG, __entry->changed) ); TRACE_EVENT(rdev_set_cqm_rssi_config, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, s32 rssi_thold, u32 rssi_hyst), TP_ARGS(wiphy, netdev, rssi_thold, rssi_hyst), TP_STRUCT__entry( WIPHY_ENTRY NETDEV_ENTRY __field(s32, rssi_thold) __field(u32, rssi_hyst) ), TP_fast_assign( WIPHY_ASSIGN; NETDEV_ASSIGN; __entry->rssi_thold = rssi_thold; __entry->rssi_hyst = rssi_hyst; ), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT ", rssi_thold: %d, rssi_hyst: %u ", WIPHY_PR_ARG, NETDEV_PR_ARG, __entry->rssi_thold, __entry->rssi_hyst) ); TRACE_EVENT(rdev_set_cqm_rssi_range_config, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, s32 low, s32 high), TP_ARGS(wiphy, netdev, low, high), TP_STRUCT__entry( WIPHY_ENTRY NETDEV_ENTRY __field(s32, rssi_low) __field(s32, rssi_high) ), TP_fast_assign( WIPHY_ASSIGN; NETDEV_ASSIGN; __entry->rssi_low = low; __entry->rssi_high = high; ), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT ", range: %d - %d ", WIPHY_PR_ARG, NETDEV_PR_ARG, __entry->rssi_low, __entry->rssi_high) ); TRACE_EVENT(rdev_set_cqm_txe_config, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, u32 rate, u32 pkts, u32 intvl), TP_ARGS(wiphy, netdev, rate, pkts, intvl), TP_STRUCT__entry( WIPHY_ENTRY NETDEV_ENTRY __field(u32, rate) __field(u32, pkts) __field(u32, intvl) ), TP_fast_assign( WIPHY_ASSIGN; NETDEV_ASSIGN; __entry->rate = rate; __entry->pkts = pkts; __entry->intvl = intvl; ), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT ", rate: %u, packets: %u, interval: %u", WIPHY_PR_ARG, NETDEV_PR_ARG, __entry->rate, __entry->pkts, __entry->intvl) ); TRACE_EVENT(rdev_disconnect, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, u16 reason_code), TP_ARGS(wiphy, netdev, reason_code), TP_STRUCT__entry( WIPHY_ENTRY NETDEV_ENTRY __field(u16, reason_code) ), TP_fast_assign( WIPHY_ASSIGN; NETDEV_ASSIGN; __entry->reason_code = reason_code; ), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT ", reason code: %u", WIPHY_PR_ARG, NETDEV_PR_ARG, __entry->reason_code) ); TRACE_EVENT(rdev_join_ibss, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, struct cfg80211_ibss_params *params), TP_ARGS(wiphy, netdev, params), TP_STRUCT__entry( WIPHY_ENTRY NETDEV_ENTRY MAC_ENTRY(bssid) __array(char, ssid, IEEE80211_MAX_SSID_LEN + 1) ), TP_fast_assign( WIPHY_ASSIGN; NETDEV_ASSIGN; MAC_ASSIGN(bssid, params->bssid); memset(__entry->ssid, 0, IEEE80211_MAX_SSID_LEN + 1); memcpy(__entry->ssid, params->ssid, params->ssid_len); ), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT ", bssid: " MAC_PR_FMT ", ssid: %s", WIPHY_PR_ARG, NETDEV_PR_ARG, MAC_PR_ARG(bssid), __entry->ssid) ); TRACE_EVENT(rdev_join_ocb, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, const struct ocb_setup *setup), TP_ARGS(wiphy, netdev, setup), TP_STRUCT__entry( WIPHY_ENTRY NETDEV_ENTRY ), TP_fast_assign( WIPHY_ASSIGN; NETDEV_ASSIGN; ), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT, WIPHY_PR_ARG, NETDEV_PR_ARG) ); TRACE_EVENT(rdev_set_wiphy_params, TP_PROTO(struct wiphy *wiphy, u32 changed), TP_ARGS(wiphy, changed), TP_STRUCT__entry( WIPHY_ENTRY __field(u32, changed) ), TP_fast_assign( WIPHY_ASSIGN; __entry->changed = changed; ), TP_printk(WIPHY_PR_FMT ", changed: %u", WIPHY_PR_ARG, __entry->changed) ); DEFINE_EVENT(wiphy_wdev_evt, rdev_get_tx_power, TP_PROTO(struct wiphy *wiphy, struct wireless_dev *wdev), TP_ARGS(wiphy, wdev) ); TRACE_EVENT(rdev_set_tx_power, TP_PROTO(struct wiphy *wiphy, struct wireless_dev *wdev, enum nl80211_tx_power_setting type, int mbm), TP_ARGS(wiphy, wdev, type, mbm), TP_STRUCT__entry( WIPHY_ENTRY WDEV_ENTRY __field(enum nl80211_tx_power_setting, type) __field(int, mbm) ), TP_fast_assign( WIPHY_ASSIGN; WDEV_ASSIGN; __entry->type = type; __entry->mbm = mbm; ), TP_printk(WIPHY_PR_FMT ", " WDEV_PR_FMT ", type: %u, mbm: %d", WIPHY_PR_ARG, WDEV_PR_ARG,__entry->type, __entry->mbm) ); TRACE_EVENT(rdev_return_int_int, TP_PROTO(struct wiphy *wiphy, int func_ret, int func_fill), TP_ARGS(wiphy, func_ret, func_fill), TP_STRUCT__entry( WIPHY_ENTRY __field(int, func_ret) __field(int, func_fill) ), TP_fast_assign( WIPHY_ASSIGN; __entry->func_ret = func_ret; __entry->func_fill = func_fill; ), TP_printk(WIPHY_PR_FMT ", function returns: %d, function filled: %d", WIPHY_PR_ARG, __entry->func_ret, __entry->func_fill) ); #ifdef CONFIG_NL80211_TESTMODE TRACE_EVENT(rdev_testmode_cmd, TP_PROTO(struct wiphy *wiphy, struct wireless_dev *wdev), TP_ARGS(wiphy, wdev), TP_STRUCT__entry( WIPHY_ENTRY WDEV_ENTRY ), TP_fast_assign( WIPHY_ASSIGN; WDEV_ASSIGN; ), TP_printk(WIPHY_PR_FMT WDEV_PR_FMT, WIPHY_PR_ARG, WDEV_PR_ARG) ); TRACE_EVENT(rdev_testmode_dump, TP_PROTO(struct wiphy *wiphy), TP_ARGS(wiphy), TP_STRUCT__entry( WIPHY_ENTRY ), TP_fast_assign( WIPHY_ASSIGN; ), TP_printk(WIPHY_PR_FMT, WIPHY_PR_ARG) ); #endif /* CONFIG_NL80211_TESTMODE */ TRACE_EVENT(rdev_set_bitrate_mask, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, const u8 *peer, const struct cfg80211_bitrate_mask *mask), TP_ARGS(wiphy, netdev, peer, mask), TP_STRUCT__entry( WIPHY_ENTRY NETDEV_ENTRY MAC_ENTRY(peer) ), TP_fast_assign( WIPHY_ASSIGN; NETDEV_ASSIGN; MAC_ASSIGN(peer, peer); ), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT ", peer: " MAC_PR_FMT, WIPHY_PR_ARG, NETDEV_PR_ARG, MAC_PR_ARG(peer)) ); TRACE_EVENT(rdev_update_mgmt_frame_registrations, TP_PROTO(struct wiphy *wiphy, struct wireless_dev *wdev, struct mgmt_frame_regs *upd), TP_ARGS(wiphy, wdev, upd), TP_STRUCT__entry( WIPHY_ENTRY WDEV_ENTRY __field(u16, global_stypes) __field(u16, interface_stypes) ), TP_fast_assign( WIPHY_ASSIGN; WDEV_ASSIGN; __entry->global_stypes = upd->global_stypes; __entry->interface_stypes = upd->interface_stypes; ), TP_printk(WIPHY_PR_FMT ", " WDEV_PR_FMT ", global: 0x%.2x, intf: 0x%.2x", WIPHY_PR_ARG, WDEV_PR_ARG, __entry->global_stypes, __entry->interface_stypes) ); TRACE_EVENT(rdev_return_int_tx_rx, TP_PROTO(struct wiphy *wiphy, int ret, u32 tx, u32 rx), TP_ARGS(wiphy, ret, tx, rx), TP_STRUCT__entry( WIPHY_ENTRY __field(int, ret) __field(u32, tx) __field(u32, rx) ), TP_fast_assign( WIPHY_ASSIGN; __entry->ret = ret; __entry->tx = tx; __entry->rx = rx; ), TP_printk(WIPHY_PR_FMT ", returned %d, tx: %u, rx: %u", WIPHY_PR_ARG, __entry->ret, __entry->tx, __entry->rx) ); TRACE_EVENT(rdev_return_void_tx_rx, TP_PROTO(struct wiphy *wiphy, u32 tx, u32 tx_max, u32 rx, u32 rx_max), TP_ARGS(wiphy, tx, tx_max, rx, rx_max), TP_STRUCT__entry( WIPHY_ENTRY __field(u32, tx) __field(u32, tx_max) __field(u32, rx) __field(u32, rx_max) ), TP_fast_assign( WIPHY_ASSIGN; __entry->tx = tx; __entry->tx_max = tx_max; __entry->rx = rx; __entry->rx_max = rx_max; ), TP_printk(WIPHY_PR_FMT ", tx: %u, tx_max: %u, rx: %u, rx_max: %u ", WIPHY_PR_ARG, __entry->tx, __entry->tx_max, __entry->rx, __entry->rx_max) ); DECLARE_EVENT_CLASS(tx_rx_evt, TP_PROTO(struct wiphy *wiphy, u32 tx, u32 rx), TP_ARGS(wiphy, rx, tx), TP_STRUCT__entry( WIPHY_ENTRY __field(u32, tx) __field(u32, rx) ), TP_fast_assign( WIPHY_ASSIGN; __entry->tx = tx; __entry->rx = rx; ), TP_printk(WIPHY_PR_FMT ", tx: %u, rx: %u ", WIPHY_PR_ARG, __entry->tx, __entry->rx) ); DEFINE_EVENT(tx_rx_evt, rdev_set_antenna, TP_PROTO(struct wiphy *wiphy, u32 tx, u32 rx), TP_ARGS(wiphy, rx, tx) ); DECLARE_EVENT_CLASS(wiphy_netdev_id_evt, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, u64 id), TP_ARGS(wiphy, netdev, id), TP_STRUCT__entry( WIPHY_ENTRY NETDEV_ENTRY __field(u64, id) ), TP_fast_assign( WIPHY_ASSIGN; NETDEV_ASSIGN; __entry->id = id; ), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT ", id: %llu", WIPHY_PR_ARG, NETDEV_PR_ARG, __entry->id) ); DEFINE_EVENT(wiphy_netdev_id_evt, rdev_sched_scan_start, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, u64 id), TP_ARGS(wiphy, netdev, id) ); DEFINE_EVENT(wiphy_netdev_id_evt, rdev_sched_scan_stop, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, u64 id), TP_ARGS(wiphy, netdev, id) ); TRACE_EVENT(rdev_tdls_mgmt, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, u8 *peer, u8 action_code, u8 dialog_token, u16 status_code, u32 peer_capability, bool initiator, const u8 *buf, size_t len), TP_ARGS(wiphy, netdev, peer, action_code, dialog_token, status_code, peer_capability, initiator, buf, len), TP_STRUCT__entry( WIPHY_ENTRY NETDEV_ENTRY MAC_ENTRY(peer) __field(u8, action_code) __field(u8, dialog_token) __field(u16, status_code) __field(u32, peer_capability) __field(bool, initiator) __dynamic_array(u8, buf, len) ), TP_fast_assign( WIPHY_ASSIGN; NETDEV_ASSIGN; MAC_ASSIGN(peer, peer); __entry->action_code = action_code; __entry->dialog_token = dialog_token; __entry->status_code = status_code; __entry->peer_capability = peer_capability; __entry->initiator = initiator; memcpy(__get_dynamic_array(buf), buf, len); ), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT ", " MAC_PR_FMT ", action_code: %u, " "dialog_token: %u, status_code: %u, peer_capability: %u " "initiator: %s buf: %#.2x ", WIPHY_PR_ARG, NETDEV_PR_ARG, MAC_PR_ARG(peer), __entry->action_code, __entry->dialog_token, __entry->status_code, __entry->peer_capability, BOOL_TO_STR(__entry->initiator), ((u8 *)__get_dynamic_array(buf))[0]) ); TRACE_EVENT(rdev_dump_survey, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, int _idx), TP_ARGS(wiphy, netdev, _idx), TP_STRUCT__entry( WIPHY_ENTRY NETDEV_ENTRY __field(int, idx) ), TP_fast_assign( WIPHY_ASSIGN; NETDEV_ASSIGN; __entry->idx = _idx; ), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT ", index: %d", WIPHY_PR_ARG, NETDEV_PR_ARG, __entry->idx) ); TRACE_EVENT(rdev_return_int_survey_info, TP_PROTO(struct wiphy *wiphy, int ret, struct survey_info *info), TP_ARGS(wiphy, ret, info), TP_STRUCT__entry( WIPHY_ENTRY CHAN_ENTRY __field(int, ret) __field(u64, time) __field(u64, time_busy) __field(u64, time_ext_busy) __field(u64, time_rx) __field(u64, time_tx) __field(u64, time_scan) __field(u32, filled) __field(s8, noise) ), TP_fast_assign( WIPHY_ASSIGN; CHAN_ASSIGN(info->channel); __entry->ret = ret; __entry->time = info->time; __entry->time_busy = info->time_busy; __entry->time_ext_busy = info->time_ext_busy; __entry->time_rx = info->time_rx; __entry->time_tx = info->time_tx; __entry->time_scan = info->time_scan; __entry->filled = info->filled; __entry->noise = info->noise; ), TP_printk(WIPHY_PR_FMT ", returned: %d, " CHAN_PR_FMT ", channel time: %llu, channel time busy: %llu, " "channel time extension busy: %llu, channel time rx: %llu, " "channel time tx: %llu, scan time: %llu, filled: %u, noise: %d", WIPHY_PR_ARG, __entry->ret, CHAN_PR_ARG, __entry->time, __entry->time_busy, __entry->time_ext_busy, __entry->time_rx, __entry->time_tx, __entry->time_scan, __entry->filled, __entry->noise) ); TRACE_EVENT(rdev_tdls_oper, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, u8 *peer, enum nl80211_tdls_operation oper), TP_ARGS(wiphy, netdev, peer, oper), TP_STRUCT__entry( WIPHY_ENTRY NETDEV_ENTRY MAC_ENTRY(peer) __field(enum nl80211_tdls_operation, oper) ), TP_fast_assign( WIPHY_ASSIGN; NETDEV_ASSIGN; MAC_ASSIGN(peer, peer); __entry->oper = oper; ), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT ", " MAC_PR_FMT ", oper: %d", WIPHY_PR_ARG, NETDEV_PR_ARG, MAC_PR_ARG(peer), __entry->oper) ); DECLARE_EVENT_CLASS(rdev_pmksa, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, struct cfg80211_pmksa *pmksa), TP_ARGS(wiphy, netdev, pmksa), TP_STRUCT__entry( WIPHY_ENTRY NETDEV_ENTRY MAC_ENTRY(bssid) ), TP_fast_assign( WIPHY_ASSIGN; NETDEV_ASSIGN; MAC_ASSIGN(bssid, pmksa->bssid); ), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT ", bssid: " MAC_PR_FMT, WIPHY_PR_ARG, NETDEV_PR_ARG, MAC_PR_ARG(bssid)) ); TRACE_EVENT(rdev_probe_client, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, const u8 *peer), TP_ARGS(wiphy, netdev, peer), TP_STRUCT__entry( WIPHY_ENTRY NETDEV_ENTRY MAC_ENTRY(peer) ), TP_fast_assign( WIPHY_ASSIGN; NETDEV_ASSIGN; MAC_ASSIGN(peer, peer); ), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT ", " MAC_PR_FMT, WIPHY_PR_ARG, NETDEV_PR_ARG, MAC_PR_ARG(peer)) ); DEFINE_EVENT(rdev_pmksa, rdev_set_pmksa, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, struct cfg80211_pmksa *pmksa), TP_ARGS(wiphy, netdev, pmksa) ); DEFINE_EVENT(rdev_pmksa, rdev_del_pmksa, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, struct cfg80211_pmksa *pmksa), TP_ARGS(wiphy, netdev, pmksa) ); TRACE_EVENT(rdev_remain_on_channel, TP_PROTO(struct wiphy *wiphy, struct wireless_dev *wdev, struct ieee80211_channel *chan, unsigned int duration), TP_ARGS(wiphy, wdev, chan, duration), TP_STRUCT__entry( WIPHY_ENTRY WDEV_ENTRY CHAN_ENTRY __field(unsigned int, duration) ), TP_fast_assign( WIPHY_ASSIGN; WDEV_ASSIGN; CHAN_ASSIGN(chan); __entry->duration = duration; ), TP_printk(WIPHY_PR_FMT ", " WDEV_PR_FMT ", " CHAN_PR_FMT ", duration: %u", WIPHY_PR_ARG, WDEV_PR_ARG, CHAN_PR_ARG, __entry->duration) ); TRACE_EVENT(rdev_return_int_cookie, TP_PROTO(struct wiphy *wiphy, int ret, u64 cookie), TP_ARGS(wiphy, ret, cookie), TP_STRUCT__entry( WIPHY_ENTRY __field(int, ret) __field(u64, cookie) ), TP_fast_assign( WIPHY_ASSIGN; __entry->ret = ret; __entry->cookie = cookie; ), TP_printk(WIPHY_PR_FMT ", returned %d, cookie: %llu", WIPHY_PR_ARG, __entry->ret, __entry->cookie) ); TRACE_EVENT(rdev_cancel_remain_on_channel, TP_PROTO(struct wiphy *wiphy, struct wireless_dev *wdev, u64 cookie), TP_ARGS(wiphy, wdev, cookie), TP_STRUCT__entry( WIPHY_ENTRY WDEV_ENTRY __field(u64, cookie) ), TP_fast_assign( WIPHY_ASSIGN; WDEV_ASSIGN; __entry->cookie = cookie; ), TP_printk(WIPHY_PR_FMT ", " WDEV_PR_FMT ", cookie: %llu", WIPHY_PR_ARG, WDEV_PR_ARG, __entry->cookie) ); TRACE_EVENT(rdev_mgmt_tx, TP_PROTO(struct wiphy *wiphy, struct wireless_dev *wdev, struct cfg80211_mgmt_tx_params *params), TP_ARGS(wiphy, wdev, params), TP_STRUCT__entry( WIPHY_ENTRY WDEV_ENTRY CHAN_ENTRY __field(bool, offchan) __field(unsigned int, wait) __field(bool, no_cck) __field(bool, dont_wait_for_ack) ), TP_fast_assign( WIPHY_ASSIGN; WDEV_ASSIGN; CHAN_ASSIGN(params->chan); __entry->offchan = params->offchan; __entry->wait = params->wait; __entry->no_cck = params->no_cck; __entry->dont_wait_for_ack = params->dont_wait_for_ack; ), TP_printk(WIPHY_PR_FMT ", " WDEV_PR_FMT ", " CHAN_PR_FMT ", offchan: %s," " wait: %u, no cck: %s, dont wait for ack: %s", WIPHY_PR_ARG, WDEV_PR_ARG, CHAN_PR_ARG, BOOL_TO_STR(__entry->offchan), __entry->wait, BOOL_TO_STR(__entry->no_cck), BOOL_TO_STR(__entry->dont_wait_for_ack)) ); TRACE_EVENT(rdev_tx_control_port, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, const u8 *buf, size_t len, const u8 *dest, __be16 proto, bool unencrypted), TP_ARGS(wiphy, netdev, buf, len, dest, proto, unencrypted), TP_STRUCT__entry( WIPHY_ENTRY NETDEV_ENTRY MAC_ENTRY(dest) __field(__be16, proto) __field(bool, unencrypted) ), TP_fast_assign( WIPHY_ASSIGN; NETDEV_ASSIGN; MAC_ASSIGN(dest, dest); __entry->proto = proto; __entry->unencrypted = unencrypted; ), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT ", " MAC_PR_FMT "," " proto: 0x%x, unencrypted: %s", WIPHY_PR_ARG, NETDEV_PR_ARG, MAC_PR_ARG(dest), be16_to_cpu(__entry->proto), BOOL_TO_STR(__entry->unencrypted)) ); TRACE_EVENT(rdev_set_noack_map, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, u16 noack_map), TP_ARGS(wiphy, netdev, noack_map), TP_STRUCT__entry( WIPHY_ENTRY NETDEV_ENTRY __field(u16, noack_map) ), TP_fast_assign( WIPHY_ASSIGN; NETDEV_ASSIGN; __entry->noack_map = noack_map; ), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT ", noack_map: %u", WIPHY_PR_ARG, NETDEV_PR_ARG, __entry->noack_map) ); DEFINE_EVENT(wiphy_wdev_evt, rdev_get_channel, TP_PROTO(struct wiphy *wiphy, struct wireless_dev *wdev), TP_ARGS(wiphy, wdev) ); TRACE_EVENT(rdev_return_chandef, TP_PROTO(struct wiphy *wiphy, int ret, struct cfg80211_chan_def *chandef), TP_ARGS(wiphy, ret, chandef), TP_STRUCT__entry( WIPHY_ENTRY __field(int, ret) CHAN_DEF_ENTRY ), TP_fast_assign( WIPHY_ASSIGN; if (ret == 0) CHAN_DEF_ASSIGN(chandef); else CHAN_DEF_ASSIGN((struct cfg80211_chan_def *)NULL); __entry->ret = ret; ), TP_printk(WIPHY_PR_FMT ", " CHAN_DEF_PR_FMT ", ret: %d", WIPHY_PR_ARG, CHAN_DEF_PR_ARG, __entry->ret) ); DEFINE_EVENT(wiphy_wdev_evt, rdev_start_p2p_device, TP_PROTO(struct wiphy *wiphy, struct wireless_dev *wdev), TP_ARGS(wiphy, wdev) ); DEFINE_EVENT(wiphy_wdev_evt, rdev_stop_p2p_device, TP_PROTO(struct wiphy *wiphy, struct wireless_dev *wdev), TP_ARGS(wiphy, wdev) ); TRACE_EVENT(rdev_start_nan, TP_PROTO(struct wiphy *wiphy, struct wireless_dev *wdev, struct cfg80211_nan_conf *conf), TP_ARGS(wiphy, wdev, conf), TP_STRUCT__entry( WIPHY_ENTRY WDEV_ENTRY __field(u8, master_pref) __field(u8, bands) ), TP_fast_assign( WIPHY_ASSIGN; WDEV_ASSIGN; __entry->master_pref = conf->master_pref; __entry->bands = conf->bands; ), TP_printk(WIPHY_PR_FMT ", " WDEV_PR_FMT ", master preference: %u, bands: 0x%0x", WIPHY_PR_ARG, WDEV_PR_ARG, __entry->master_pref, __entry->bands) ); TRACE_EVENT(rdev_nan_change_conf, TP_PROTO(struct wiphy *wiphy, struct wireless_dev *wdev, struct cfg80211_nan_conf *conf, u32 changes), TP_ARGS(wiphy, wdev, conf, changes), TP_STRUCT__entry( WIPHY_ENTRY WDEV_ENTRY __field(u8, master_pref) __field(u8, bands) __field(u32, changes) ), TP_fast_assign( WIPHY_ASSIGN; WDEV_ASSIGN; __entry->master_pref = conf->master_pref; __entry->bands = conf->bands; __entry->changes = changes; ), TP_printk(WIPHY_PR_FMT ", " WDEV_PR_FMT ", master preference: %u, bands: 0x%0x, changes: %x", WIPHY_PR_ARG, WDEV_PR_ARG, __entry->master_pref, __entry->bands, __entry->changes) ); DEFINE_EVENT(wiphy_wdev_evt, rdev_stop_nan, TP_PROTO(struct wiphy *wiphy, struct wireless_dev *wdev), TP_ARGS(wiphy, wdev) ); TRACE_EVENT(rdev_add_nan_func, TP_PROTO(struct wiphy *wiphy, struct wireless_dev *wdev, const struct cfg80211_nan_func *func), TP_ARGS(wiphy, wdev, func), TP_STRUCT__entry( WIPHY_ENTRY WDEV_ENTRY __field(u8, func_type) __field(u64, cookie) ), TP_fast_assign( WIPHY_ASSIGN; WDEV_ASSIGN; __entry->func_type = func->type; __entry->cookie = func->cookie ), TP_printk(WIPHY_PR_FMT ", " WDEV_PR_FMT ", type=%u, cookie=%llu", WIPHY_PR_ARG, WDEV_PR_ARG, __entry->func_type, __entry->cookie) ); TRACE_EVENT(rdev_del_nan_func, TP_PROTO(struct wiphy *wiphy, struct wireless_dev *wdev, u64 cookie), TP_ARGS(wiphy, wdev, cookie), TP_STRUCT__entry( WIPHY_ENTRY WDEV_ENTRY __field(u64, cookie) ), TP_fast_assign( WIPHY_ASSIGN; WDEV_ASSIGN; __entry->cookie = cookie; ), TP_printk(WIPHY_PR_FMT ", " WDEV_PR_FMT ", cookie=%llu", WIPHY_PR_ARG, WDEV_PR_ARG, __entry->cookie) ); TRACE_EVENT(rdev_set_mac_acl, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, struct cfg80211_acl_data *params), TP_ARGS(wiphy, netdev, params), TP_STRUCT__entry( WIPHY_ENTRY NETDEV_ENTRY __field(u32, acl_policy) ), TP_fast_assign( WIPHY_ASSIGN; NETDEV_ASSIGN; __entry->acl_policy = params->acl_policy; ), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT ", acl policy: %d", WIPHY_PR_ARG, NETDEV_PR_ARG, __entry->acl_policy) ); TRACE_EVENT(rdev_update_ft_ies, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, struct cfg80211_update_ft_ies_params *ftie), TP_ARGS(wiphy, netdev, ftie), TP_STRUCT__entry( WIPHY_ENTRY NETDEV_ENTRY __field(u16, md) __dynamic_array(u8, ie, ftie->ie_len) ), TP_fast_assign( WIPHY_ASSIGN; NETDEV_ASSIGN; __entry->md = ftie->md; memcpy(__get_dynamic_array(ie), ftie->ie, ftie->ie_len); ), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT ", md: 0x%x", WIPHY_PR_ARG, NETDEV_PR_ARG, __entry->md) ); TRACE_EVENT(rdev_crit_proto_start, TP_PROTO(struct wiphy *wiphy, struct wireless_dev *wdev, enum nl80211_crit_proto_id protocol, u16 duration), TP_ARGS(wiphy, wdev, protocol, duration), TP_STRUCT__entry( WIPHY_ENTRY WDEV_ENTRY __field(u16, proto) __field(u16, duration) ), TP_fast_assign( WIPHY_ASSIGN; WDEV_ASSIGN; __entry->proto = protocol; __entry->duration = duration; ), TP_printk(WIPHY_PR_FMT ", " WDEV_PR_FMT ", proto=%x, duration=%u", WIPHY_PR_ARG, WDEV_PR_ARG, __entry->proto, __entry->duration) ); TRACE_EVENT(rdev_crit_proto_stop, TP_PROTO(struct wiphy *wiphy, struct wireless_dev *wdev), TP_ARGS(wiphy, wdev), TP_STRUCT__entry( WIPHY_ENTRY WDEV_ENTRY ), TP_fast_assign( WIPHY_ASSIGN; WDEV_ASSIGN; ), TP_printk(WIPHY_PR_FMT ", " WDEV_PR_FMT, WIPHY_PR_ARG, WDEV_PR_ARG) ); TRACE_EVENT(rdev_channel_switch, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, struct cfg80211_csa_settings *params), TP_ARGS(wiphy, netdev, params), TP_STRUCT__entry( WIPHY_ENTRY NETDEV_ENTRY CHAN_DEF_ENTRY __field(bool, radar_required) __field(bool, block_tx) __field(u8, count) __dynamic_array(u16, bcn_ofs, params->n_counter_offsets_beacon) __dynamic_array(u16, pres_ofs, params->n_counter_offsets_presp) ), TP_fast_assign( WIPHY_ASSIGN; NETDEV_ASSIGN; CHAN_DEF_ASSIGN(&params->chandef); __entry->radar_required = params->radar_required; __entry->block_tx = params->block_tx; __entry->count = params->count; memcpy(__get_dynamic_array(bcn_ofs), params->counter_offsets_beacon, params->n_counter_offsets_beacon * sizeof(u16)); /* probe response offsets are optional */ if (params->n_counter_offsets_presp) memcpy(__get_dynamic_array(pres_ofs), params->counter_offsets_presp, params->n_counter_offsets_presp * sizeof(u16)); ), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT ", " CHAN_DEF_PR_FMT ", block_tx: %d, count: %u, radar_required: %d", WIPHY_PR_ARG, NETDEV_PR_ARG, CHAN_DEF_PR_ARG, __entry->block_tx, __entry->count, __entry->radar_required) ); TRACE_EVENT(rdev_set_qos_map, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, struct cfg80211_qos_map *qos_map), TP_ARGS(wiphy, netdev, qos_map), TP_STRUCT__entry( WIPHY_ENTRY NETDEV_ENTRY QOS_MAP_ENTRY ), TP_fast_assign( WIPHY_ASSIGN; NETDEV_ASSIGN; QOS_MAP_ASSIGN(qos_map); ), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT ", num_des: %u", WIPHY_PR_ARG, NETDEV_PR_ARG, __entry->num_des) ); TRACE_EVENT(rdev_set_ap_chanwidth, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, struct cfg80211_chan_def *chandef), TP_ARGS(wiphy, netdev, chandef), TP_STRUCT__entry( WIPHY_ENTRY NETDEV_ENTRY CHAN_DEF_ENTRY ), TP_fast_assign( WIPHY_ASSIGN; NETDEV_ASSIGN; CHAN_DEF_ASSIGN(chandef); ), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT ", " CHAN_DEF_PR_FMT, WIPHY_PR_ARG, NETDEV_PR_ARG, CHAN_DEF_PR_ARG) ); TRACE_EVENT(rdev_add_tx_ts, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, u8 tsid, const u8 *peer, u8 user_prio, u16 admitted_time), TP_ARGS(wiphy, netdev, tsid, peer, user_prio, admitted_time), TP_STRUCT__entry( WIPHY_ENTRY NETDEV_ENTRY MAC_ENTRY(peer) __field(u8, tsid) __field(u8, user_prio) __field(u16, admitted_time) ), TP_fast_assign( WIPHY_ASSIGN; NETDEV_ASSIGN; MAC_ASSIGN(peer, peer); __entry->tsid = tsid; __entry->user_prio = user_prio; __entry->admitted_time = admitted_time; ), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT ", " MAC_PR_FMT ", TSID %d, UP %d, time %d", WIPHY_PR_ARG, NETDEV_PR_ARG, MAC_PR_ARG(peer), __entry->tsid, __entry->user_prio, __entry->admitted_time) ); TRACE_EVENT(rdev_del_tx_ts, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, u8 tsid, const u8 *peer), TP_ARGS(wiphy, netdev, tsid, peer), TP_STRUCT__entry( WIPHY_ENTRY NETDEV_ENTRY MAC_ENTRY(peer) __field(u8, tsid) ), TP_fast_assign( WIPHY_ASSIGN; NETDEV_ASSIGN; MAC_ASSIGN(peer, peer); __entry->tsid = tsid; ), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT ", " MAC_PR_FMT ", TSID %d", WIPHY_PR_ARG, NETDEV_PR_ARG, MAC_PR_ARG(peer), __entry->tsid) ); TRACE_EVENT(rdev_tdls_channel_switch, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, const u8 *addr, u8 oper_class, struct cfg80211_chan_def *chandef), TP_ARGS(wiphy, netdev, addr, oper_class, chandef), TP_STRUCT__entry( WIPHY_ENTRY NETDEV_ENTRY MAC_ENTRY(addr) __field(u8, oper_class) CHAN_DEF_ENTRY ), TP_fast_assign( WIPHY_ASSIGN; NETDEV_ASSIGN; MAC_ASSIGN(addr, addr); CHAN_DEF_ASSIGN(chandef); ), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT ", " MAC_PR_FMT " oper class %d, " CHAN_DEF_PR_FMT, WIPHY_PR_ARG, NETDEV_PR_ARG, MAC_PR_ARG(addr), __entry->oper_class, CHAN_DEF_PR_ARG) ); TRACE_EVENT(rdev_tdls_cancel_channel_switch, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, const u8 *addr), TP_ARGS(wiphy, netdev, addr), TP_STRUCT__entry( WIPHY_ENTRY NETDEV_ENTRY MAC_ENTRY(addr) ), TP_fast_assign( WIPHY_ASSIGN; NETDEV_ASSIGN; MAC_ASSIGN(addr, addr); ), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT ", " MAC_PR_FMT, WIPHY_PR_ARG, NETDEV_PR_ARG, MAC_PR_ARG(addr)) ); TRACE_EVENT(rdev_set_pmk, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, struct cfg80211_pmk_conf *pmk_conf), TP_ARGS(wiphy, netdev, pmk_conf), TP_STRUCT__entry( WIPHY_ENTRY NETDEV_ENTRY MAC_ENTRY(aa) __field(u8, pmk_len) __field(u8, pmk_r0_name_len) __dynamic_array(u8, pmk, pmk_conf->pmk_len) __dynamic_array(u8, pmk_r0_name, WLAN_PMK_NAME_LEN) ), TP_fast_assign( WIPHY_ASSIGN; NETDEV_ASSIGN; MAC_ASSIGN(aa, pmk_conf->aa); __entry->pmk_len = pmk_conf->pmk_len; __entry->pmk_r0_name_len = pmk_conf->pmk_r0_name ? WLAN_PMK_NAME_LEN : 0; memcpy(__get_dynamic_array(pmk), pmk_conf->pmk, pmk_conf->pmk_len); memcpy(__get_dynamic_array(pmk_r0_name), pmk_conf->pmk_r0_name, pmk_conf->pmk_r0_name ? WLAN_PMK_NAME_LEN : 0); ), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT ", " MAC_PR_FMT "pmk_len=%u, pmk: %s pmk_r0_name: %s", WIPHY_PR_ARG, NETDEV_PR_ARG, MAC_PR_ARG(aa), __entry->pmk_len, __print_array(__get_dynamic_array(pmk), __get_dynamic_array_len(pmk), 1), __entry->pmk_r0_name_len ? __print_array(__get_dynamic_array(pmk_r0_name), __get_dynamic_array_len(pmk_r0_name), 1) : "") ); TRACE_EVENT(rdev_del_pmk, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, const u8 *aa), TP_ARGS(wiphy, netdev, aa), TP_STRUCT__entry( WIPHY_ENTRY NETDEV_ENTRY MAC_ENTRY(aa) ), TP_fast_assign( WIPHY_ASSIGN; NETDEV_ASSIGN; MAC_ASSIGN(aa, aa); ), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT ", " MAC_PR_FMT, WIPHY_PR_ARG, NETDEV_PR_ARG, MAC_PR_ARG(aa)) ); TRACE_EVENT(rdev_external_auth, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, struct cfg80211_external_auth_params *params), TP_ARGS(wiphy, netdev, params), TP_STRUCT__entry(WIPHY_ENTRY NETDEV_ENTRY MAC_ENTRY(bssid) __array(u8, ssid, IEEE80211_MAX_SSID_LEN + 1) __field(u16, status) ), TP_fast_assign(WIPHY_ASSIGN; NETDEV_ASSIGN; MAC_ASSIGN(bssid, params->bssid); memset(__entry->ssid, 0, IEEE80211_MAX_SSID_LEN + 1); memcpy(__entry->ssid, params->ssid.ssid, params->ssid.ssid_len); __entry->status = params->status; ), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT ", bssid: " MAC_PR_FMT ", ssid: %s, status: %u", WIPHY_PR_ARG, NETDEV_PR_ARG, __entry->bssid, __entry->ssid, __entry->status) ); TRACE_EVENT(rdev_start_radar_detection, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, struct cfg80211_chan_def *chandef, u32 cac_time_ms), TP_ARGS(wiphy, netdev, chandef, cac_time_ms), TP_STRUCT__entry( WIPHY_ENTRY NETDEV_ENTRY CHAN_DEF_ENTRY __field(u32, cac_time_ms) ), TP_fast_assign( WIPHY_ASSIGN; NETDEV_ASSIGN; CHAN_DEF_ASSIGN(chandef); __entry->cac_time_ms = cac_time_ms; ), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT ", " CHAN_DEF_PR_FMT ", cac_time_ms=%u", WIPHY_PR_ARG, NETDEV_PR_ARG, CHAN_DEF_PR_ARG, __entry->cac_time_ms) ); TRACE_EVENT(rdev_set_mcast_rate, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, int *mcast_rate), TP_ARGS(wiphy, netdev, mcast_rate), TP_STRUCT__entry( WIPHY_ENTRY NETDEV_ENTRY __array(int, mcast_rate, NUM_NL80211_BANDS) ), TP_fast_assign( WIPHY_ASSIGN; NETDEV_ASSIGN; memcpy(__entry->mcast_rate, mcast_rate, sizeof(int) * NUM_NL80211_BANDS); ), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT ", " "mcast_rates [2.4GHz=0x%x, 5.2GHz=0x%x, 6GHz=0x%x, 60GHz=0x%x]", WIPHY_PR_ARG, NETDEV_PR_ARG, __entry->mcast_rate[NL80211_BAND_2GHZ], __entry->mcast_rate[NL80211_BAND_5GHZ], __entry->mcast_rate[NL80211_BAND_6GHZ], __entry->mcast_rate[NL80211_BAND_60GHZ]) ); TRACE_EVENT(rdev_set_coalesce, TP_PROTO(struct wiphy *wiphy, struct cfg80211_coalesce *coalesce), TP_ARGS(wiphy, coalesce), TP_STRUCT__entry( WIPHY_ENTRY __field(int, n_rules) ), TP_fast_assign( WIPHY_ASSIGN; __entry->n_rules = coalesce ? coalesce->n_rules : 0; ), TP_printk(WIPHY_PR_FMT ", n_rules=%d", WIPHY_PR_ARG, __entry->n_rules) ); DEFINE_EVENT(wiphy_wdev_evt, rdev_abort_scan, TP_PROTO(struct wiphy *wiphy, struct wireless_dev *wdev), TP_ARGS(wiphy, wdev) ); TRACE_EVENT(rdev_set_multicast_to_unicast, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, const bool enabled), TP_ARGS(wiphy, netdev, enabled), TP_STRUCT__entry( WIPHY_ENTRY NETDEV_ENTRY __field(bool, enabled) ), TP_fast_assign( WIPHY_ASSIGN; NETDEV_ASSIGN; __entry->enabled = enabled; ), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT ", unicast: %s", WIPHY_PR_ARG, NETDEV_PR_ARG, BOOL_TO_STR(__entry->enabled)) ); DEFINE_EVENT(wiphy_wdev_evt, rdev_get_txq_stats, TP_PROTO(struct wiphy *wiphy, struct wireless_dev *wdev), TP_ARGS(wiphy, wdev) ); TRACE_EVENT(rdev_get_ftm_responder_stats, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, struct cfg80211_ftm_responder_stats *ftm_stats), TP_ARGS(wiphy, netdev, ftm_stats), TP_STRUCT__entry( WIPHY_ENTRY NETDEV_ENTRY __field(u64, timestamp) __field(u32, success_num) __field(u32, partial_num) __field(u32, failed_num) __field(u32, asap_num) __field(u32, non_asap_num) __field(u64, duration) __field(u32, unknown_triggers) __field(u32, reschedule) __field(u32, out_of_window) ), TP_fast_assign( WIPHY_ASSIGN; NETDEV_ASSIGN; __entry->success_num = ftm_stats->success_num; __entry->partial_num = ftm_stats->partial_num; __entry->failed_num = ftm_stats->failed_num; __entry->asap_num = ftm_stats->asap_num; __entry->non_asap_num = ftm_stats->non_asap_num; __entry->duration = ftm_stats->total_duration_ms; __entry->unknown_triggers = ftm_stats->unknown_triggers_num; __entry->reschedule = ftm_stats->reschedule_requests_num; __entry->out_of_window = ftm_stats->out_of_window_triggers_num; ), TP_printk(WIPHY_PR_FMT "Ftm responder stats: success %u, partial %u, " "failed %u, asap %u, non asap %u, total duration %llu, unknown " "triggers %u, rescheduled %u, out of window %u", WIPHY_PR_ARG, __entry->success_num, __entry->partial_num, __entry->failed_num, __entry->asap_num, __entry->non_asap_num, __entry->duration, __entry->unknown_triggers, __entry->reschedule, __entry->out_of_window) ); DEFINE_EVENT(wiphy_wdev_cookie_evt, rdev_start_pmsr, TP_PROTO(struct wiphy *wiphy, struct wireless_dev *wdev, u64 cookie), TP_ARGS(wiphy, wdev, cookie) ); DEFINE_EVENT(wiphy_wdev_cookie_evt, rdev_abort_pmsr, TP_PROTO(struct wiphy *wiphy, struct wireless_dev *wdev, u64 cookie), TP_ARGS(wiphy, wdev, cookie) ); /************************************************************* * cfg80211 exported functions traces * *************************************************************/ TRACE_EVENT(cfg80211_return_bool, TP_PROTO(bool ret), TP_ARGS(ret), TP_STRUCT__entry( __field(bool, ret) ), TP_fast_assign( __entry->ret = ret; ), TP_printk("returned %s", BOOL_TO_STR(__entry->ret)) ); DECLARE_EVENT_CLASS(cfg80211_netdev_mac_evt, TP_PROTO(struct net_device *netdev, const u8 *macaddr), TP_ARGS(netdev, macaddr), TP_STRUCT__entry( NETDEV_ENTRY MAC_ENTRY(macaddr) ), TP_fast_assign( NETDEV_ASSIGN; MAC_ASSIGN(macaddr, macaddr); ), TP_printk(NETDEV_PR_FMT ", mac: " MAC_PR_FMT, NETDEV_PR_ARG, MAC_PR_ARG(macaddr)) ); DEFINE_EVENT(cfg80211_netdev_mac_evt, cfg80211_notify_new_peer_candidate, TP_PROTO(struct net_device *netdev, const u8 *macaddr), TP_ARGS(netdev, macaddr) ); DECLARE_EVENT_CLASS(netdev_evt_only, TP_PROTO(struct net_device *netdev), TP_ARGS(netdev), TP_STRUCT__entry( NETDEV_ENTRY ), TP_fast_assign( NETDEV_ASSIGN; ), TP_printk(NETDEV_PR_FMT , NETDEV_PR_ARG) ); DEFINE_EVENT(netdev_evt_only, cfg80211_send_rx_auth, TP_PROTO(struct net_device *netdev), TP_ARGS(netdev) ); TRACE_EVENT(cfg80211_send_rx_assoc, TP_PROTO(struct net_device *netdev, struct cfg80211_bss *bss), TP_ARGS(netdev, bss), TP_STRUCT__entry( NETDEV_ENTRY MAC_ENTRY(bssid) CHAN_ENTRY ), TP_fast_assign( NETDEV_ASSIGN; MAC_ASSIGN(bssid, bss->bssid); CHAN_ASSIGN(bss->channel); ), TP_printk(NETDEV_PR_FMT ", " MAC_PR_FMT ", " CHAN_PR_FMT, NETDEV_PR_ARG, MAC_PR_ARG(bssid), CHAN_PR_ARG) ); DECLARE_EVENT_CLASS(netdev_frame_event, TP_PROTO(struct net_device *netdev, const u8 *buf, int len), TP_ARGS(netdev, buf, len), TP_STRUCT__entry( NETDEV_ENTRY __dynamic_array(u8, frame, len) ), TP_fast_assign( NETDEV_ASSIGN; memcpy(__get_dynamic_array(frame), buf, len); ), TP_printk(NETDEV_PR_FMT ", ftype:0x%.2x", NETDEV_PR_ARG, le16_to_cpup((__le16 *)__get_dynamic_array(frame))) ); DEFINE_EVENT(netdev_frame_event, cfg80211_rx_unprot_mlme_mgmt, TP_PROTO(struct net_device *netdev, const u8 *buf, int len), TP_ARGS(netdev, buf, len) ); DEFINE_EVENT(netdev_frame_event, cfg80211_rx_mlme_mgmt, TP_PROTO(struct net_device *netdev, const u8 *buf, int len), TP_ARGS(netdev, buf, len) ); TRACE_EVENT(cfg80211_tx_mlme_mgmt, TP_PROTO(struct net_device *netdev, const u8 *buf, int len), TP_ARGS(netdev, buf, len), TP_STRUCT__entry( NETDEV_ENTRY __dynamic_array(u8, frame, len) ), TP_fast_assign( NETDEV_ASSIGN; memcpy(__get_dynamic_array(frame), buf, len); ), TP_printk(NETDEV_PR_FMT ", ftype:0x%.2x", NETDEV_PR_ARG, le16_to_cpup((__le16 *)__get_dynamic_array(frame))) ); DECLARE_EVENT_CLASS(netdev_mac_evt, TP_PROTO(struct net_device *netdev, const u8 *mac), TP_ARGS(netdev, mac), TP_STRUCT__entry( NETDEV_ENTRY MAC_ENTRY(mac) ), TP_fast_assign( NETDEV_ASSIGN; MAC_ASSIGN(mac, mac) ), TP_printk(NETDEV_PR_FMT ", mac: " MAC_PR_FMT, NETDEV_PR_ARG, MAC_PR_ARG(mac)) ); DEFINE_EVENT(netdev_mac_evt, cfg80211_send_auth_timeout, TP_PROTO(struct net_device *netdev, const u8 *mac), TP_ARGS(netdev, mac) ); DEFINE_EVENT(netdev_mac_evt, cfg80211_send_assoc_timeout, TP_PROTO(struct net_device *netdev, const u8 *mac), TP_ARGS(netdev, mac) ); TRACE_EVENT(cfg80211_michael_mic_failure, TP_PROTO(struct net_device *netdev, const u8 *addr, enum nl80211_key_type key_type, int key_id, const u8 *tsc), TP_ARGS(netdev, addr, key_type, key_id, tsc), TP_STRUCT__entry( NETDEV_ENTRY MAC_ENTRY(addr) __field(enum nl80211_key_type, key_type) __field(int, key_id) __array(u8, tsc, 6) ), TP_fast_assign( NETDEV_ASSIGN; MAC_ASSIGN(addr, addr); __entry->key_type = key_type; __entry->key_id = key_id; if (tsc) memcpy(__entry->tsc, tsc, 6); ), TP_printk(NETDEV_PR_FMT ", " MAC_PR_FMT ", key type: %d, key id: %d, tsc: %pm", NETDEV_PR_ARG, MAC_PR_ARG(addr), __entry->key_type, __entry->key_id, __entry->tsc) ); TRACE_EVENT(cfg80211_ready_on_channel, TP_PROTO(struct wireless_dev *wdev, u64 cookie, struct ieee80211_channel *chan, unsigned int duration), TP_ARGS(wdev, cookie, chan, duration), TP_STRUCT__entry( WDEV_ENTRY __field(u64, cookie) CHAN_ENTRY __field(unsigned int, duration) ), TP_fast_assign( WDEV_ASSIGN; __entry->cookie = cookie; CHAN_ASSIGN(chan); __entry->duration = duration; ), TP_printk(WDEV_PR_FMT ", cookie: %llu, " CHAN_PR_FMT ", duration: %u", WDEV_PR_ARG, __entry->cookie, CHAN_PR_ARG, __entry->duration) ); TRACE_EVENT(cfg80211_ready_on_channel_expired, TP_PROTO(struct wireless_dev *wdev, u64 cookie, struct ieee80211_channel *chan), TP_ARGS(wdev, cookie, chan), TP_STRUCT__entry( WDEV_ENTRY __field(u64, cookie) CHAN_ENTRY ), TP_fast_assign( WDEV_ASSIGN; __entry->cookie = cookie; CHAN_ASSIGN(chan); ), TP_printk(WDEV_PR_FMT ", cookie: %llu, " CHAN_PR_FMT, WDEV_PR_ARG, __entry->cookie, CHAN_PR_ARG) ); TRACE_EVENT(cfg80211_tx_mgmt_expired, TP_PROTO(struct wireless_dev *wdev, u64 cookie, struct ieee80211_channel *chan), TP_ARGS(wdev, cookie, chan), TP_STRUCT__entry( WDEV_ENTRY __field(u64, cookie) CHAN_ENTRY ), TP_fast_assign( WDEV_ASSIGN; __entry->cookie = cookie; CHAN_ASSIGN(chan); ), TP_printk(WDEV_PR_FMT ", cookie: %llu, " CHAN_PR_FMT, WDEV_PR_ARG, __entry->cookie, CHAN_PR_ARG) ); TRACE_EVENT(cfg80211_new_sta, TP_PROTO(struct net_device *netdev, const u8 *mac_addr, struct station_info *sinfo), TP_ARGS(netdev, mac_addr, sinfo), TP_STRUCT__entry( NETDEV_ENTRY MAC_ENTRY(mac_addr) SINFO_ENTRY ), TP_fast_assign( NETDEV_ASSIGN; MAC_ASSIGN(mac_addr, mac_addr); SINFO_ASSIGN; ), TP_printk(NETDEV_PR_FMT ", " MAC_PR_FMT, NETDEV_PR_ARG, MAC_PR_ARG(mac_addr)) ); DEFINE_EVENT(cfg80211_netdev_mac_evt, cfg80211_del_sta, TP_PROTO(struct net_device *netdev, const u8 *macaddr), TP_ARGS(netdev, macaddr) ); TRACE_EVENT(cfg80211_rx_mgmt, TP_PROTO(struct wireless_dev *wdev, int freq, int sig_dbm), TP_ARGS(wdev, freq, sig_dbm), TP_STRUCT__entry( WDEV_ENTRY __field(int, freq) __field(int, sig_dbm) ), TP_fast_assign( WDEV_ASSIGN; __entry->freq = freq; __entry->sig_dbm = sig_dbm; ), TP_printk(WDEV_PR_FMT ", freq: "KHZ_F", sig dbm: %d", WDEV_PR_ARG, PR_KHZ(__entry->freq), __entry->sig_dbm) ); TRACE_EVENT(cfg80211_mgmt_tx_status, TP_PROTO(struct wireless_dev *wdev, u64 cookie, bool ack), TP_ARGS(wdev, cookie, ack), TP_STRUCT__entry( WDEV_ENTRY __field(u64, cookie) __field(bool, ack) ), TP_fast_assign( WDEV_ASSIGN; __entry->cookie = cookie; __entry->ack = ack; ), TP_printk(WDEV_PR_FMT", cookie: %llu, ack: %s", WDEV_PR_ARG, __entry->cookie, BOOL_TO_STR(__entry->ack)) ); TRACE_EVENT(cfg80211_control_port_tx_status, TP_PROTO(struct wireless_dev *wdev, u64 cookie, bool ack), TP_ARGS(wdev, cookie, ack), TP_STRUCT__entry( WDEV_ENTRY __field(u64, cookie) __field(bool, ack) ), TP_fast_assign( WDEV_ASSIGN; __entry->cookie = cookie; __entry->ack = ack; ), TP_printk(WDEV_PR_FMT", cookie: %llu, ack: %s", WDEV_PR_ARG, __entry->cookie, BOOL_TO_STR(__entry->ack)) ); TRACE_EVENT(cfg80211_rx_control_port, TP_PROTO(struct net_device *netdev, struct sk_buff *skb, bool unencrypted), TP_ARGS(netdev, skb, unencrypted), TP_STRUCT__entry( NETDEV_ENTRY __field(int, len) MAC_ENTRY(from) __field(u16, proto) __field(bool, unencrypted) ), TP_fast_assign( NETDEV_ASSIGN; __entry->len = skb->len; MAC_ASSIGN(from, eth_hdr(skb)->h_source); __entry->proto = be16_to_cpu(skb->protocol); __entry->unencrypted = unencrypted; ), TP_printk(NETDEV_PR_FMT ", len=%d, " MAC_PR_FMT ", proto: 0x%x, unencrypted: %s", NETDEV_PR_ARG, __entry->len, MAC_PR_ARG(from), __entry->proto, BOOL_TO_STR(__entry->unencrypted)) ); TRACE_EVENT(cfg80211_cqm_rssi_notify, TP_PROTO(struct net_device *netdev, enum nl80211_cqm_rssi_threshold_event rssi_event, s32 rssi_level), TP_ARGS(netdev, rssi_event, rssi_level), TP_STRUCT__entry( NETDEV_ENTRY __field(enum nl80211_cqm_rssi_threshold_event, rssi_event) __field(s32, rssi_level) ), TP_fast_assign( NETDEV_ASSIGN; __entry->rssi_event = rssi_event; __entry->rssi_level = rssi_level; ), TP_printk(NETDEV_PR_FMT ", rssi event: %d, level: %d", NETDEV_PR_ARG, __entry->rssi_event, __entry->rssi_level) ); TRACE_EVENT(cfg80211_reg_can_beacon, TP_PROTO(struct wiphy *wiphy, struct cfg80211_chan_def *chandef, enum nl80211_iftype iftype, bool check_no_ir), TP_ARGS(wiphy, chandef, iftype, check_no_ir), TP_STRUCT__entry( WIPHY_ENTRY CHAN_DEF_ENTRY __field(enum nl80211_iftype, iftype) __field(bool, check_no_ir) ), TP_fast_assign( WIPHY_ASSIGN; CHAN_DEF_ASSIGN(chandef); __entry->iftype = iftype; __entry->check_no_ir = check_no_ir; ), TP_printk(WIPHY_PR_FMT ", " CHAN_DEF_PR_FMT ", iftype=%d check_no_ir=%s", WIPHY_PR_ARG, CHAN_DEF_PR_ARG, __entry->iftype, BOOL_TO_STR(__entry->check_no_ir)) ); TRACE_EVENT(cfg80211_chandef_dfs_required, TP_PROTO(struct wiphy *wiphy, struct cfg80211_chan_def *chandef), TP_ARGS(wiphy, chandef), TP_STRUCT__entry( WIPHY_ENTRY CHAN_DEF_ENTRY ), TP_fast_assign( WIPHY_ASSIGN; CHAN_DEF_ASSIGN(chandef); ), TP_printk(WIPHY_PR_FMT ", " CHAN_DEF_PR_FMT, WIPHY_PR_ARG, CHAN_DEF_PR_ARG) ); TRACE_EVENT(cfg80211_ch_switch_notify, TP_PROTO(struct net_device *netdev, struct cfg80211_chan_def *chandef), TP_ARGS(netdev, chandef), TP_STRUCT__entry( NETDEV_ENTRY CHAN_DEF_ENTRY ), TP_fast_assign( NETDEV_ASSIGN; CHAN_DEF_ASSIGN(chandef); ), TP_printk(NETDEV_PR_FMT ", " CHAN_DEF_PR_FMT, NETDEV_PR_ARG, CHAN_DEF_PR_ARG) ); TRACE_EVENT(cfg80211_ch_switch_started_notify, TP_PROTO(struct net_device *netdev, struct cfg80211_chan_def *chandef), TP_ARGS(netdev, chandef), TP_STRUCT__entry( NETDEV_ENTRY CHAN_DEF_ENTRY ), TP_fast_assign( NETDEV_ASSIGN; CHAN_DEF_ASSIGN(chandef); ), TP_printk(NETDEV_PR_FMT ", " CHAN_DEF_PR_FMT, NETDEV_PR_ARG, CHAN_DEF_PR_ARG) ); TRACE_EVENT(cfg80211_radar_event, TP_PROTO(struct wiphy *wiphy, struct cfg80211_chan_def *chandef), TP_ARGS(wiphy, chandef), TP_STRUCT__entry( WIPHY_ENTRY CHAN_DEF_ENTRY ), TP_fast_assign( WIPHY_ASSIGN; CHAN_DEF_ASSIGN(chandef); ), TP_printk(WIPHY_PR_FMT ", " CHAN_DEF_PR_FMT, WIPHY_PR_ARG, CHAN_DEF_PR_ARG) ); TRACE_EVENT(cfg80211_cac_event, TP_PROTO(struct net_device *netdev, enum nl80211_radar_event evt), TP_ARGS(netdev, evt), TP_STRUCT__entry( NETDEV_ENTRY __field(enum nl80211_radar_event, evt) ), TP_fast_assign( NETDEV_ASSIGN; __entry->evt = evt; ), TP_printk(NETDEV_PR_FMT ", event: %d", NETDEV_PR_ARG, __entry->evt) ); DECLARE_EVENT_CLASS(cfg80211_rx_evt, TP_PROTO(struct net_device *netdev, const u8 *addr), TP_ARGS(netdev, addr), TP_STRUCT__entry( NETDEV_ENTRY MAC_ENTRY(addr) ), TP_fast_assign( NETDEV_ASSIGN; MAC_ASSIGN(addr, addr); ), TP_printk(NETDEV_PR_FMT ", " MAC_PR_FMT, NETDEV_PR_ARG, MAC_PR_ARG(addr)) ); DEFINE_EVENT(cfg80211_rx_evt, cfg80211_rx_spurious_frame, TP_PROTO(struct net_device *netdev, const u8 *addr), TP_ARGS(netdev, addr) ); DEFINE_EVENT(cfg80211_rx_evt, cfg80211_rx_unexpected_4addr_frame, TP_PROTO(struct net_device *netdev, const u8 *addr), TP_ARGS(netdev, addr) ); TRACE_EVENT(cfg80211_ibss_joined, TP_PROTO(struct net_device *netdev, const u8 *bssid, struct ieee80211_channel *channel), TP_ARGS(netdev, bssid, channel), TP_STRUCT__entry( NETDEV_ENTRY MAC_ENTRY(bssid) CHAN_ENTRY ), TP_fast_assign( NETDEV_ASSIGN; MAC_ASSIGN(bssid, bssid); CHAN_ASSIGN(channel); ), TP_printk(NETDEV_PR_FMT ", bssid: " MAC_PR_FMT ", " CHAN_PR_FMT, NETDEV_PR_ARG, MAC_PR_ARG(bssid), CHAN_PR_ARG) ); TRACE_EVENT(cfg80211_probe_status, TP_PROTO(struct net_device *netdev, const u8 *addr, u64 cookie, bool acked), TP_ARGS(netdev, addr, cookie, acked), TP_STRUCT__entry( NETDEV_ENTRY MAC_ENTRY(addr) __field(u64, cookie) __field(bool, acked) ), TP_fast_assign( NETDEV_ASSIGN; MAC_ASSIGN(addr, addr); __entry->cookie = cookie; __entry->acked = acked; ), TP_printk(NETDEV_PR_FMT " addr:" MAC_PR_FMT ", cookie: %llu, acked: %s", NETDEV_PR_ARG, MAC_PR_ARG(addr), __entry->cookie, BOOL_TO_STR(__entry->acked)) ); TRACE_EVENT(cfg80211_cqm_pktloss_notify, TP_PROTO(struct net_device *netdev, const u8 *peer, u32 num_packets), TP_ARGS(netdev, peer, num_packets), TP_STRUCT__entry( NETDEV_ENTRY MAC_ENTRY(peer) __field(u32, num_packets) ), TP_fast_assign( NETDEV_ASSIGN; MAC_ASSIGN(peer, peer); __entry->num_packets = num_packets; ), TP_printk(NETDEV_PR_FMT ", peer: " MAC_PR_FMT ", num of lost packets: %u", NETDEV_PR_ARG, MAC_PR_ARG(peer), __entry->num_packets) ); DEFINE_EVENT(cfg80211_netdev_mac_evt, cfg80211_gtk_rekey_notify, TP_PROTO(struct net_device *netdev, const u8 *macaddr), TP_ARGS(netdev, macaddr) ); TRACE_EVENT(cfg80211_pmksa_candidate_notify, TP_PROTO(struct net_device *netdev, int index, const u8 *bssid, bool preauth), TP_ARGS(netdev, index, bssid, preauth), TP_STRUCT__entry( NETDEV_ENTRY __field(int, index) MAC_ENTRY(bssid) __field(bool, preauth) ), TP_fast_assign( NETDEV_ASSIGN; __entry->index = index; MAC_ASSIGN(bssid, bssid); __entry->preauth = preauth; ), TP_printk(NETDEV_PR_FMT ", index:%d, bssid: " MAC_PR_FMT ", pre auth: %s", NETDEV_PR_ARG, __entry->index, MAC_PR_ARG(bssid), BOOL_TO_STR(__entry->preauth)) ); TRACE_EVENT(cfg80211_report_obss_beacon, TP_PROTO(struct wiphy *wiphy, const u8 *frame, size_t len, int freq, int sig_dbm), TP_ARGS(wiphy, frame, len, freq, sig_dbm), TP_STRUCT__entry( WIPHY_ENTRY __field(int, freq) __field(int, sig_dbm) ), TP_fast_assign( WIPHY_ASSIGN; __entry->freq = freq; __entry->sig_dbm = sig_dbm; ), TP_printk(WIPHY_PR_FMT ", freq: "KHZ_F", sig_dbm: %d", WIPHY_PR_ARG, PR_KHZ(__entry->freq), __entry->sig_dbm) ); TRACE_EVENT(cfg80211_tdls_oper_request, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, const u8 *peer, enum nl80211_tdls_operation oper, u16 reason_code), TP_ARGS(wiphy, netdev, peer, oper, reason_code), TP_STRUCT__entry( WIPHY_ENTRY NETDEV_ENTRY MAC_ENTRY(peer) __field(enum nl80211_tdls_operation, oper) __field(u16, reason_code) ), TP_fast_assign( WIPHY_ASSIGN; NETDEV_ASSIGN; MAC_ASSIGN(peer, peer); __entry->oper = oper; __entry->reason_code = reason_code; ), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT ", peer: " MAC_PR_FMT ", oper: %d, reason_code %u", WIPHY_PR_ARG, NETDEV_PR_ARG, MAC_PR_ARG(peer), __entry->oper, __entry->reason_code) ); TRACE_EVENT(cfg80211_scan_done, TP_PROTO(struct cfg80211_scan_request *request, struct cfg80211_scan_info *info), TP_ARGS(request, info), TP_STRUCT__entry( __field(u32, n_channels) __dynamic_array(u8, ie, request ? request->ie_len : 0) __array(u32, rates, NUM_NL80211_BANDS) __field(u32, wdev_id) MAC_ENTRY(wiphy_mac) __field(bool, no_cck) __field(bool, aborted) __field(u64, scan_start_tsf) MAC_ENTRY(tsf_bssid) ), TP_fast_assign( if (request) { memcpy(__get_dynamic_array(ie), request->ie, request->ie_len); memcpy(__entry->rates, request->rates, NUM_NL80211_BANDS); __entry->wdev_id = request->wdev ? request->wdev->identifier : 0; if (request->wiphy) MAC_ASSIGN(wiphy_mac, request->wiphy->perm_addr); __entry->no_cck = request->no_cck; } if (info) { __entry->aborted = info->aborted; __entry->scan_start_tsf = info->scan_start_tsf; MAC_ASSIGN(tsf_bssid, info->tsf_bssid); } ), TP_printk("aborted: %s, scan start (TSF): %llu, tsf_bssid: " MAC_PR_FMT, BOOL_TO_STR(__entry->aborted), (unsigned long long)__entry->scan_start_tsf, MAC_PR_ARG(tsf_bssid)) ); DECLARE_EVENT_CLASS(wiphy_id_evt, TP_PROTO(struct wiphy *wiphy, u64 id), TP_ARGS(wiphy, id), TP_STRUCT__entry( WIPHY_ENTRY __field(u64, id) ), TP_fast_assign( WIPHY_ASSIGN; __entry->id = id; ), TP_printk(WIPHY_PR_FMT ", id: %llu", WIPHY_PR_ARG, __entry->id) ); DEFINE_EVENT(wiphy_id_evt, cfg80211_sched_scan_stopped, TP_PROTO(struct wiphy *wiphy, u64 id), TP_ARGS(wiphy, id) ); DEFINE_EVENT(wiphy_id_evt, cfg80211_sched_scan_results, TP_PROTO(struct wiphy *wiphy, u64 id), TP_ARGS(wiphy, id) ); TRACE_EVENT(cfg80211_get_bss, TP_PROTO(struct wiphy *wiphy, struct ieee80211_channel *channel, const u8 *bssid, const u8 *ssid, size_t ssid_len, enum ieee80211_bss_type bss_type, enum ieee80211_privacy privacy), TP_ARGS(wiphy, channel, bssid, ssid, ssid_len, bss_type, privacy), TP_STRUCT__entry( WIPHY_ENTRY CHAN_ENTRY MAC_ENTRY(bssid) __dynamic_array(u8, ssid, ssid_len) __field(enum ieee80211_bss_type, bss_type) __field(enum ieee80211_privacy, privacy) ), TP_fast_assign( WIPHY_ASSIGN; CHAN_ASSIGN(channel); MAC_ASSIGN(bssid, bssid); memcpy(__get_dynamic_array(ssid), ssid, ssid_len); __entry->bss_type = bss_type; __entry->privacy = privacy; ), TP_printk(WIPHY_PR_FMT ", " CHAN_PR_FMT ", " MAC_PR_FMT ", buf: %#.2x, bss_type: %d, privacy: %d", WIPHY_PR_ARG, CHAN_PR_ARG, MAC_PR_ARG(bssid), ((u8 *)__get_dynamic_array(ssid))[0], __entry->bss_type, __entry->privacy) ); TRACE_EVENT(cfg80211_inform_bss_frame, TP_PROTO(struct wiphy *wiphy, struct cfg80211_inform_bss *data, struct ieee80211_mgmt *mgmt, size_t len), TP_ARGS(wiphy, data, mgmt, len), TP_STRUCT__entry( WIPHY_ENTRY CHAN_ENTRY __field(enum nl80211_bss_scan_width, scan_width) __dynamic_array(u8, mgmt, len) __field(s32, signal) __field(u64, ts_boottime) __field(u64, parent_tsf) MAC_ENTRY(parent_bssid) ), TP_fast_assign( WIPHY_ASSIGN; CHAN_ASSIGN(data->chan); __entry->scan_width = data->scan_width; if (mgmt) memcpy(__get_dynamic_array(mgmt), mgmt, len); __entry->signal = data->signal; __entry->ts_boottime = data->boottime_ns; __entry->parent_tsf = data->parent_tsf; MAC_ASSIGN(parent_bssid, data->parent_bssid); ), TP_printk(WIPHY_PR_FMT ", " CHAN_PR_FMT "(scan_width: %d) signal: %d, tsb:%llu, detect_tsf:%llu, tsf_bssid: " MAC_PR_FMT, WIPHY_PR_ARG, CHAN_PR_ARG, __entry->scan_width, __entry->signal, (unsigned long long)__entry->ts_boottime, (unsigned long long)__entry->parent_tsf, MAC_PR_ARG(parent_bssid)) ); DECLARE_EVENT_CLASS(cfg80211_bss_evt, TP_PROTO(struct cfg80211_bss *pub), TP_ARGS(pub), TP_STRUCT__entry( MAC_ENTRY(bssid) CHAN_ENTRY ), TP_fast_assign( MAC_ASSIGN(bssid, pub->bssid); CHAN_ASSIGN(pub->channel); ), TP_printk(MAC_PR_FMT ", " CHAN_PR_FMT, MAC_PR_ARG(bssid), CHAN_PR_ARG) ); DEFINE_EVENT(cfg80211_bss_evt, cfg80211_return_bss, TP_PROTO(struct cfg80211_bss *pub), TP_ARGS(pub) ); TRACE_EVENT(cfg80211_return_uint, TP_PROTO(unsigned int ret), TP_ARGS(ret), TP_STRUCT__entry( __field(unsigned int, ret) ), TP_fast_assign( __entry->ret = ret; ), TP_printk("ret: %d", __entry->ret) ); TRACE_EVENT(cfg80211_return_u32, TP_PROTO(u32 ret), TP_ARGS(ret), TP_STRUCT__entry( __field(u32, ret) ), TP_fast_assign( __entry->ret = ret; ), TP_printk("ret: %u", __entry->ret) ); TRACE_EVENT(cfg80211_report_wowlan_wakeup, TP_PROTO(struct wiphy *wiphy, struct wireless_dev *wdev, struct cfg80211_wowlan_wakeup *wakeup), TP_ARGS(wiphy, wdev, wakeup), TP_STRUCT__entry( WIPHY_ENTRY WDEV_ENTRY __field(bool, non_wireless) __field(bool, disconnect) __field(bool, magic_pkt) __field(bool, gtk_rekey_failure) __field(bool, eap_identity_req) __field(bool, four_way_handshake) __field(bool, rfkill_release) __field(s32, pattern_idx) __field(u32, packet_len) __dynamic_array(u8, packet, wakeup ? wakeup->packet_present_len : 0) ), TP_fast_assign( WIPHY_ASSIGN; WDEV_ASSIGN; __entry->non_wireless = !wakeup; __entry->disconnect = wakeup ? wakeup->disconnect : false; __entry->magic_pkt = wakeup ? wakeup->magic_pkt : false; __entry->gtk_rekey_failure = wakeup ? wakeup->gtk_rekey_failure : false; __entry->eap_identity_req = wakeup ? wakeup->eap_identity_req : false; __entry->four_way_handshake = wakeup ? wakeup->four_way_handshake : false; __entry->rfkill_release = wakeup ? wakeup->rfkill_release : false; __entry->pattern_idx = wakeup ? wakeup->pattern_idx : false; __entry->packet_len = wakeup ? wakeup->packet_len : false; if (wakeup && wakeup->packet && wakeup->packet_present_len) memcpy(__get_dynamic_array(packet), wakeup->packet, wakeup->packet_present_len); ), TP_printk(WIPHY_PR_FMT ", " WDEV_PR_FMT, WIPHY_PR_ARG, WDEV_PR_ARG) ); TRACE_EVENT(cfg80211_ft_event, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, struct cfg80211_ft_event_params *ft_event), TP_ARGS(wiphy, netdev, ft_event), TP_STRUCT__entry( WIPHY_ENTRY NETDEV_ENTRY __dynamic_array(u8, ies, ft_event->ies_len) MAC_ENTRY(target_ap) __dynamic_array(u8, ric_ies, ft_event->ric_ies_len) ), TP_fast_assign( WIPHY_ASSIGN; NETDEV_ASSIGN; if (ft_event->ies) memcpy(__get_dynamic_array(ies), ft_event->ies, ft_event->ies_len); MAC_ASSIGN(target_ap, ft_event->target_ap); if (ft_event->ric_ies) memcpy(__get_dynamic_array(ric_ies), ft_event->ric_ies, ft_event->ric_ies_len); ), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT ", target_ap: " MAC_PR_FMT, WIPHY_PR_ARG, NETDEV_PR_ARG, MAC_PR_ARG(target_ap)) ); TRACE_EVENT(cfg80211_stop_iface, TP_PROTO(struct wiphy *wiphy, struct wireless_dev *wdev), TP_ARGS(wiphy, wdev), TP_STRUCT__entry( WIPHY_ENTRY WDEV_ENTRY ), TP_fast_assign( WIPHY_ASSIGN; WDEV_ASSIGN; ), TP_printk(WIPHY_PR_FMT ", " WDEV_PR_FMT, WIPHY_PR_ARG, WDEV_PR_ARG) ); TRACE_EVENT(cfg80211_pmsr_report, TP_PROTO(struct wiphy *wiphy, struct wireless_dev *wdev, u64 cookie, const u8 *addr), TP_ARGS(wiphy, wdev, cookie, addr), TP_STRUCT__entry( WIPHY_ENTRY WDEV_ENTRY __field(u64, cookie) MAC_ENTRY(addr) ), TP_fast_assign( WIPHY_ASSIGN; WDEV_ASSIGN; __entry->cookie = cookie; MAC_ASSIGN(addr, addr); ), TP_printk(WIPHY_PR_FMT ", " WDEV_PR_FMT ", cookie:%lld, " MAC_PR_FMT, WIPHY_PR_ARG, WDEV_PR_ARG, (unsigned long long)__entry->cookie, MAC_PR_ARG(addr)) ); TRACE_EVENT(cfg80211_pmsr_complete, TP_PROTO(struct wiphy *wiphy, struct wireless_dev *wdev, u64 cookie), TP_ARGS(wiphy, wdev, cookie), TP_STRUCT__entry( WIPHY_ENTRY WDEV_ENTRY __field(u64, cookie) ), TP_fast_assign( WIPHY_ASSIGN; WDEV_ASSIGN; __entry->cookie = cookie; ), TP_printk(WIPHY_PR_FMT ", " WDEV_PR_FMT ", cookie:%lld", WIPHY_PR_ARG, WDEV_PR_ARG, (unsigned long long)__entry->cookie) ); TRACE_EVENT(rdev_update_owe_info, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, struct cfg80211_update_owe_info *owe_info), TP_ARGS(wiphy, netdev, owe_info), TP_STRUCT__entry(WIPHY_ENTRY NETDEV_ENTRY MAC_ENTRY(peer) __field(u16, status) __dynamic_array(u8, ie, owe_info->ie_len)), TP_fast_assign(WIPHY_ASSIGN; NETDEV_ASSIGN; MAC_ASSIGN(peer, owe_info->peer); __entry->status = owe_info->status; memcpy(__get_dynamic_array(ie), owe_info->ie, owe_info->ie_len);), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT ", peer: " MAC_PR_FMT " status %d", WIPHY_PR_ARG, NETDEV_PR_ARG, MAC_PR_ARG(peer), __entry->status) ); TRACE_EVENT(cfg80211_update_owe_info_event, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, struct cfg80211_update_owe_info *owe_info), TP_ARGS(wiphy, netdev, owe_info), TP_STRUCT__entry(WIPHY_ENTRY NETDEV_ENTRY MAC_ENTRY(peer) __dynamic_array(u8, ie, owe_info->ie_len)), TP_fast_assign(WIPHY_ASSIGN; NETDEV_ASSIGN; MAC_ASSIGN(peer, owe_info->peer); memcpy(__get_dynamic_array(ie), owe_info->ie, owe_info->ie_len);), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT ", peer: " MAC_PR_FMT, WIPHY_PR_ARG, NETDEV_PR_ARG, MAC_PR_ARG(peer)) ); TRACE_EVENT(rdev_probe_mesh_link, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, const u8 *dest, const u8 *buf, size_t len), TP_ARGS(wiphy, netdev, dest, buf, len), TP_STRUCT__entry( WIPHY_ENTRY NETDEV_ENTRY MAC_ENTRY(dest) ), TP_fast_assign( WIPHY_ASSIGN; NETDEV_ASSIGN; MAC_ASSIGN(dest, dest); ), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT ", " MAC_PR_FMT, WIPHY_PR_ARG, NETDEV_PR_ARG, MAC_PR_ARG(dest)) ); TRACE_EVENT(rdev_set_tid_config, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, struct cfg80211_tid_config *tid_conf), TP_ARGS(wiphy, netdev, tid_conf), TP_STRUCT__entry( WIPHY_ENTRY NETDEV_ENTRY MAC_ENTRY(peer) ), TP_fast_assign( WIPHY_ASSIGN; NETDEV_ASSIGN; MAC_ASSIGN(peer, tid_conf->peer); ), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT ", peer: " MAC_PR_FMT, WIPHY_PR_ARG, NETDEV_PR_ARG, MAC_PR_ARG(peer)) ); TRACE_EVENT(rdev_reset_tid_config, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, const u8 *peer, u8 tids), TP_ARGS(wiphy, netdev, peer, tids), TP_STRUCT__entry( WIPHY_ENTRY NETDEV_ENTRY MAC_ENTRY(peer) __field(u8, tids) ), TP_fast_assign( WIPHY_ASSIGN; NETDEV_ASSIGN; MAC_ASSIGN(peer, peer); __entry->tids = tids; ), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT ", peer: " MAC_PR_FMT ", tids: 0x%x", WIPHY_PR_ARG, NETDEV_PR_ARG, MAC_PR_ARG(peer), __entry->tids) ); #endif /* !__RDEV_OPS_TRACE || TRACE_HEADER_MULTI_READ */ #undef TRACE_INCLUDE_PATH #define TRACE_INCLUDE_PATH . #undef TRACE_INCLUDE_FILE #define TRACE_INCLUDE_FILE trace #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_BIT_SPINLOCK_H #define __LINUX_BIT_SPINLOCK_H #include <linux/kernel.h> #include <linux/preempt.h> #include <linux/atomic.h> #include <linux/bug.h> /* * bit-based spin_lock() * * Don't use this unless you really need to: spin_lock() and spin_unlock() * are significantly faster. */ static inline void bit_spin_lock(int bitnum, unsigned long *addr) { /* * Assuming the lock is uncontended, this never enters * the body of the outer loop. If it is contended, then * within the inner loop a non-atomic test is used to * busywait with less bus contention for a good time to * attempt to acquire the lock bit. */ preempt_disable(); #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) while (unlikely(test_and_set_bit_lock(bitnum, addr))) { preempt_enable(); do { cpu_relax(); } while (test_bit(bitnum, addr)); preempt_disable(); } #endif __acquire(bitlock); } /* * Return true if it was acquired */ static inline int bit_spin_trylock(int bitnum, unsigned long *addr) { preempt_disable(); #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) if (unlikely(test_and_set_bit_lock(bitnum, addr))) { preempt_enable(); return 0; } #endif __acquire(bitlock); return 1; } /* * bit-based spin_unlock() */ static inline void bit_spin_unlock(int bitnum, unsigned long *addr) { #ifdef CONFIG_DEBUG_SPINLOCK BUG_ON(!test_bit(bitnum, addr)); #endif #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) clear_bit_unlock(bitnum, addr); #endif preempt_enable(); __release(bitlock); } /* * bit-based spin_unlock() * non-atomic version, which can be used eg. if the bit lock itself is * protecting the rest of the flags in the word. */ static inline void __bit_spin_unlock(int bitnum, unsigned long *addr) { #ifdef CONFIG_DEBUG_SPINLOCK BUG_ON(!test_bit(bitnum, addr)); #endif #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) __clear_bit_unlock(bitnum, addr); #endif preempt_enable(); __release(bitlock); } /* * Return true if the lock is held. */ static inline int bit_spin_is_locked(int bitnum, unsigned long *addr) { #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) return test_bit(bitnum, addr); #elif defined CONFIG_PREEMPT_COUNT return preempt_count(); #else return 1; #endif } #endif /* __LINUX_BIT_SPINLOCK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SWAP_H #define _LINUX_SWAP_H #include <linux/spinlock.h> #include <linux/linkage.h> #include <linux/mmzone.h> #include <linux/list.h> #include <linux/memcontrol.h> #include <linux/sched.h> #include <linux/node.h> #include <linux/fs.h> #include <linux/atomic.h> #include <linux/page-flags.h> #include <asm/page.h> struct notifier_block; struct bio; struct pagevec; #define SWAP_FLAG_PREFER 0x8000 /* set if swap priority specified */ #define SWAP_FLAG_PRIO_MASK 0x7fff #define SWAP_FLAG_PRIO_SHIFT 0 #define SWAP_FLAG_DISCARD 0x10000 /* enable discard for swap */ #define SWAP_FLAG_DISCARD_ONCE 0x20000 /* discard swap area at swapon-time */ #define SWAP_FLAG_DISCARD_PAGES 0x40000 /* discard page-clusters after use */ #define SWAP_FLAGS_VALID (SWAP_FLAG_PRIO_MASK | SWAP_FLAG_PREFER | \ SWAP_FLAG_DISCARD | SWAP_FLAG_DISCARD_ONCE | \ SWAP_FLAG_DISCARD_PAGES) #define SWAP_BATCH 64 static inline int current_is_kswapd(void) { return current->flags & PF_KSWAPD; } /* * MAX_SWAPFILES defines the maximum number of swaptypes: things which can * be swapped to. The swap type and the offset into that swap type are * encoded into pte's and into pgoff_t's in the swapcache. Using five bits * for the type means that the maximum number of swapcache pages is 27 bits * on 32-bit-pgoff_t architectures. And that assumes that the architecture packs * the type/offset into the pte as 5/27 as well. */ #define MAX_SWAPFILES_SHIFT 5 /* * Use some of the swap files numbers for other purposes. This * is a convenient way to hook into the VM to trigger special * actions on faults. */ /* * Unaddressable device memory support. See include/linux/hmm.h and * Documentation/vm/hmm.rst. Short description is we need struct pages for * device memory that is unaddressable (inaccessible) by CPU, so that we can * migrate part of a process memory to device memory. * * When a page is migrated from CPU to device, we set the CPU page table entry * to a special SWP_DEVICE_* entry. */ #ifdef CONFIG_DEVICE_PRIVATE #define SWP_DEVICE_NUM 2 #define SWP_DEVICE_WRITE (MAX_SWAPFILES+SWP_HWPOISON_NUM+SWP_MIGRATION_NUM) #define SWP_DEVICE_READ (MAX_SWAPFILES+SWP_HWPOISON_NUM+SWP_MIGRATION_NUM+1) #else #define SWP_DEVICE_NUM 0 #endif /* * NUMA node memory migration support */ #ifdef CONFIG_MIGRATION #define SWP_MIGRATION_NUM 2 #define SWP_MIGRATION_READ (MAX_SWAPFILES + SWP_HWPOISON_NUM) #define SWP_MIGRATION_WRITE (MAX_SWAPFILES + SWP_HWPOISON_NUM + 1) #else #define SWP_MIGRATION_NUM 0 #endif /* * Handling of hardware poisoned pages with memory corruption. */ #ifdef CONFIG_MEMORY_FAILURE #define SWP_HWPOISON_NUM 1 #define SWP_HWPOISON MAX_SWAPFILES #else #define SWP_HWPOISON_NUM 0 #endif #define MAX_SWAPFILES \ ((1 << MAX_SWAPFILES_SHIFT) - SWP_DEVICE_NUM - \ SWP_MIGRATION_NUM - SWP_HWPOISON_NUM) /* * Magic header for a swap area. The first part of the union is * what the swap magic looks like for the old (limited to 128MB) * swap area format, the second part of the union adds - in the * old reserved area - some extra information. Note that the first * kilobyte is reserved for boot loader or disk label stuff... * * Having the magic at the end of the PAGE_SIZE makes detecting swap * areas somewhat tricky on machines that support multiple page sizes. * For 2.5 we'll probably want to move the magic to just beyond the * bootbits... */ union swap_header { struct { char reserved[PAGE_SIZE - 10]; char magic[10]; /* SWAP-SPACE or SWAPSPACE2 */ } magic; struct { char bootbits[1024]; /* Space for disklabel etc. */ __u32 version; __u32 last_page; __u32 nr_badpages; unsigned char sws_uuid[16]; unsigned char sws_volume[16]; __u32 padding[117]; __u32 badpages[1]; } info; }; /* * current->reclaim_state points to one of these when a task is running * memory reclaim */ struct reclaim_state { unsigned long reclaimed_slab; }; #ifdef __KERNEL__ struct address_space; struct sysinfo; struct writeback_control; struct zone; /* * A swap extent maps a range of a swapfile's PAGE_SIZE pages onto a range of * disk blocks. A list of swap extents maps the entire swapfile. (Where the * term `swapfile' refers to either a blockdevice or an IS_REG file. Apart * from setup, they're handled identically. * * We always assume that blocks are of size PAGE_SIZE. */ struct swap_extent { struct rb_node rb_node; pgoff_t start_page; pgoff_t nr_pages; sector_t start_block; }; /* * Max bad pages in the new format.. */ #define MAX_SWAP_BADPAGES \ ((offsetof(union swap_header, magic.magic) - \ offsetof(union swap_header, info.badpages)) / sizeof(int)) enum { SWP_USED = (1 << 0), /* is slot in swap_info[] used? */ SWP_WRITEOK = (1 << 1), /* ok to write to this swap? */ SWP_DISCARDABLE = (1 << 2), /* blkdev support discard */ SWP_DISCARDING = (1 << 3), /* now discarding a free cluster */ SWP_SOLIDSTATE = (1 << 4), /* blkdev seeks are cheap */ SWP_CONTINUED = (1 << 5), /* swap_map has count continuation */ SWP_BLKDEV = (1 << 6), /* its a block device */ SWP_ACTIVATED = (1 << 7), /* set after swap_activate success */ SWP_FS_OPS = (1 << 8), /* swapfile operations go through fs */ SWP_AREA_DISCARD = (1 << 9), /* single-time swap area discards */ SWP_PAGE_DISCARD = (1 << 10), /* freed swap page-cluster discards */ SWP_STABLE_WRITES = (1 << 11), /* no overwrite PG_writeback pages */ SWP_SYNCHRONOUS_IO = (1 << 12), /* synchronous IO is efficient */ SWP_VALID = (1 << 13), /* swap is valid to be operated on? */ /* add others here before... */ SWP_SCANNING = (1 << 14), /* refcount in scan_swap_map */ }; #define SWAP_CLUSTER_MAX 32UL #define COMPACT_CLUSTER_MAX SWAP_CLUSTER_MAX /* Bit flag in swap_map */ #define SWAP_HAS_CACHE 0x40 /* Flag page is cached, in first swap_map */ #define COUNT_CONTINUED 0x80 /* Flag swap_map continuation for full count */ /* Special value in first swap_map */ #define SWAP_MAP_MAX 0x3e /* Max count */ #define SWAP_MAP_BAD 0x3f /* Note page is bad */ #define SWAP_MAP_SHMEM 0xbf /* Owned by shmem/tmpfs */ /* Special value in each swap_map continuation */ #define SWAP_CONT_MAX 0x7f /* Max count */ /* * We use this to track usage of a cluster. A cluster is a block of swap disk * space with SWAPFILE_CLUSTER pages long and naturally aligns in disk. All * free clusters are organized into a list. We fetch an entry from the list to * get a free cluster. * * The data field stores next cluster if the cluster is free or cluster usage * counter otherwise. The flags field determines if a cluster is free. This is * protected by swap_info_struct.lock. */ struct swap_cluster_info { spinlock_t lock; /* * Protect swap_cluster_info fields * and swap_info_struct->swap_map * elements correspond to the swap * cluster */ unsigned int data:24; unsigned int flags:8; }; #define CLUSTER_FLAG_FREE 1 /* This cluster is free */ #define CLUSTER_FLAG_NEXT_NULL 2 /* This cluster has no next cluster */ #define CLUSTER_FLAG_HUGE 4 /* This cluster is backing a transparent huge page */ /* * We assign a cluster to each CPU, so each CPU can allocate swap entry from * its own cluster and swapout sequentially. The purpose is to optimize swapout * throughput. */ struct percpu_cluster { struct swap_cluster_info index; /* Current cluster index */ unsigned int next; /* Likely next allocation offset */ }; struct swap_cluster_list { struct swap_cluster_info head; struct swap_cluster_info tail; }; /* * The in-memory structure used to track swap areas. */ struct swap_info_struct { unsigned long flags; /* SWP_USED etc: see above */ signed short prio; /* swap priority of this type */ struct plist_node list; /* entry in swap_active_head */ signed char type; /* strange name for an index */ unsigned int max; /* extent of the swap_map */ unsigned char *swap_map; /* vmalloc'ed array of usage counts */ struct swap_cluster_info *cluster_info; /* cluster info. Only for SSD */ struct swap_cluster_list free_clusters; /* free clusters list */ unsigned int lowest_bit; /* index of first free in swap_map */ unsigned int highest_bit; /* index of last free in swap_map */ unsigned int pages; /* total of usable pages of swap */ unsigned int inuse_pages; /* number of those currently in use */ unsigned int cluster_next; /* likely index for next allocation */ unsigned int cluster_nr; /* countdown to next cluster search */ unsigned int __percpu *cluster_next_cpu; /*percpu index for next allocation */ struct percpu_cluster __percpu *percpu_cluster; /* per cpu's swap location */ struct rb_root swap_extent_root;/* root of the swap extent rbtree */ struct block_device *bdev; /* swap device or bdev of swap file */ struct file *swap_file; /* seldom referenced */ unsigned int old_block_size; /* seldom referenced */ #ifdef CONFIG_FRONTSWAP unsigned long *frontswap_map; /* frontswap in-use, one bit per page */ atomic_t frontswap_pages; /* frontswap pages in-use counter */ #endif spinlock_t lock; /* * protect map scan related fields like * swap_map, lowest_bit, highest_bit, * inuse_pages, cluster_next, * cluster_nr, lowest_alloc, * highest_alloc, free/discard cluster * list. other fields are only changed * at swapon/swapoff, so are protected * by swap_lock. changing flags need * hold this lock and swap_lock. If * both locks need hold, hold swap_lock * first. */ spinlock_t cont_lock; /* * protect swap count continuation page * list. */ struct work_struct discard_work; /* discard worker */ struct swap_cluster_list discard_clusters; /* discard clusters list */ struct plist_node avail_lists[]; /* * entries in swap_avail_heads, one * entry per node. * Must be last as the number of the * array is nr_node_ids, which is not * a fixed value so have to allocate * dynamically. * And it has to be an array so that * plist_for_each_* can work. */ }; #ifdef CONFIG_64BIT #define SWAP_RA_ORDER_CEILING 5 #else /* Avoid stack overflow, because we need to save part of page table */ #define SWAP_RA_ORDER_CEILING 3 #define SWAP_RA_PTE_CACHE_SIZE (1 << SWAP_RA_ORDER_CEILING) #endif struct vma_swap_readahead { unsigned short win; unsigned short offset; unsigned short nr_pte; #ifdef CONFIG_64BIT pte_t *ptes; #else pte_t ptes[SWAP_RA_PTE_CACHE_SIZE]; #endif }; /* linux/mm/workingset.c */ void workingset_age_nonresident(struct lruvec *lruvec, unsigned long nr_pages); void *workingset_eviction(struct page *page, struct mem_cgroup *target_memcg); void workingset_refault(struct page *page, void *shadow); void workingset_activation(struct page *page); /* Only track the nodes of mappings with shadow entries */ void workingset_update_node(struct xa_node *node); #define mapping_set_update(xas, mapping) do { \ if (!dax_mapping(mapping) && !shmem_mapping(mapping)) \ xas_set_update(xas, workingset_update_node); \ } while (0) /* linux/mm/page_alloc.c */ extern unsigned long totalreserve_pages; extern unsigned long nr_free_buffer_pages(void); /* Definition of global_zone_page_state not available yet */ #define nr_free_pages() global_zone_page_state(NR_FREE_PAGES) /* linux/mm/swap.c */ extern void lru_note_cost(struct lruvec *lruvec, bool file, unsigned int nr_pages); extern void lru_note_cost_page(struct page *); extern void lru_cache_add(struct page *); extern void lru_add_page_tail(struct page *page, struct page *page_tail, struct lruvec *lruvec, struct list_head *head); extern void mark_page_accessed(struct page *); extern void lru_add_drain(void); extern void lru_add_drain_cpu(int cpu); extern void lru_add_drain_cpu_zone(struct zone *zone); extern void lru_add_drain_all(void); extern void rotate_reclaimable_page(struct page *page); extern void deactivate_file_page(struct page *page); extern void deactivate_page(struct page *page); extern void mark_page_lazyfree(struct page *page); extern void swap_setup(void); extern void lru_cache_add_inactive_or_unevictable(struct page *page, struct vm_area_struct *vma); /* linux/mm/vmscan.c */ extern unsigned long zone_reclaimable_pages(struct zone *zone); extern unsigned long try_to_free_pages(struct zonelist *zonelist, int order, gfp_t gfp_mask, nodemask_t *mask); extern int __isolate_lru_page(struct page *page, isolate_mode_t mode); extern unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, unsigned long nr_pages, gfp_t gfp_mask, bool may_swap); extern unsigned long mem_cgroup_shrink_node(struct mem_cgroup *mem, gfp_t gfp_mask, bool noswap, pg_data_t *pgdat, unsigned long *nr_scanned); extern unsigned long shrink_all_memory(unsigned long nr_pages); extern int vm_swappiness; extern int remove_mapping(struct address_space *mapping, struct page *page); extern unsigned long reclaim_pages(struct list_head *page_list); #ifdef CONFIG_NUMA extern int node_reclaim_mode; extern int sysctl_min_unmapped_ratio; extern int sysctl_min_slab_ratio; #else #define node_reclaim_mode 0 #endif extern void check_move_unevictable_pages(struct pagevec *pvec); extern int kswapd_run(int nid); extern void kswapd_stop(int nid); #ifdef CONFIG_SWAP #include <linux/blk_types.h> /* for bio_end_io_t */ /* linux/mm/page_io.c */ extern int swap_readpage(struct page *page, bool do_poll); extern int swap_writepage(struct page *page, struct writeback_control *wbc); extern void end_swap_bio_write(struct bio *bio); extern int __swap_writepage(struct page *page, struct writeback_control *wbc, bio_end_io_t end_write_func); extern int swap_set_page_dirty(struct page *page); int add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, unsigned long nr_pages, sector_t start_block); int generic_swapfile_activate(struct swap_info_struct *, struct file *, sector_t *); /* linux/mm/swap_state.c */ /* One swap address space for each 64M swap space */ #define SWAP_ADDRESS_SPACE_SHIFT 14 #define SWAP_ADDRESS_SPACE_PAGES (1 << SWAP_ADDRESS_SPACE_SHIFT) extern struct address_space *swapper_spaces[]; #define swap_address_space(entry) \ (&swapper_spaces[swp_type(entry)][swp_offset(entry) \ >> SWAP_ADDRESS_SPACE_SHIFT]) extern unsigned long total_swapcache_pages(void); extern void show_swap_cache_info(void); extern int add_to_swap(struct page *page); extern void *get_shadow_from_swap_cache(swp_entry_t entry); extern int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp, void **shadowp); extern void __delete_from_swap_cache(struct page *page, swp_entry_t entry, void *shadow); extern void delete_from_swap_cache(struct page *); extern void clear_shadow_from_swap_cache(int type, unsigned long begin, unsigned long end); extern void free_page_and_swap_cache(struct page *); extern void free_pages_and_swap_cache(struct page **, int); extern struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma, unsigned long addr); struct page *find_get_incore_page(struct address_space *mapping, pgoff_t index); extern struct page *read_swap_cache_async(swp_entry_t, gfp_t, struct vm_area_struct *vma, unsigned long addr, bool do_poll); extern struct page *__read_swap_cache_async(swp_entry_t, gfp_t, struct vm_area_struct *vma, unsigned long addr, bool *new_page_allocated); extern struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t flag, struct vm_fault *vmf); extern struct page *swapin_readahead(swp_entry_t entry, gfp_t flag, struct vm_fault *vmf); /* linux/mm/swapfile.c */ extern atomic_long_t nr_swap_pages; extern long total_swap_pages; extern atomic_t nr_rotate_swap; extern bool has_usable_swap(void); /* Swap 50% full? Release swapcache more aggressively.. */ static inline bool vm_swap_full(void) { return atomic_long_read(&nr_swap_pages) * 2 < total_swap_pages; } static inline long get_nr_swap_pages(void) { return atomic_long_read(&nr_swap_pages); } extern void si_swapinfo(struct sysinfo *); extern swp_entry_t get_swap_page(struct page *page); extern void put_swap_page(struct page *page, swp_entry_t entry); extern swp_entry_t get_swap_page_of_type(int); extern int get_swap_pages(int n, swp_entry_t swp_entries[], int entry_size); extern int add_swap_count_continuation(swp_entry_t, gfp_t); extern void swap_shmem_alloc(swp_entry_t); extern int swap_duplicate(swp_entry_t); extern int swapcache_prepare(swp_entry_t); extern void swap_free(swp_entry_t); extern void swapcache_free_entries(swp_entry_t *entries, int n); extern int free_swap_and_cache(swp_entry_t); int swap_type_of(dev_t device, sector_t offset); int find_first_swap(dev_t *device); extern unsigned int count_swap_pages(int, int); extern sector_t map_swap_page(struct page *, struct block_device **); extern sector_t swapdev_block(int, pgoff_t); extern int page_swapcount(struct page *); extern int __swap_count(swp_entry_t entry); extern int __swp_swapcount(swp_entry_t entry); extern int swp_swapcount(swp_entry_t entry); extern struct swap_info_struct *page_swap_info(struct page *); extern struct swap_info_struct *swp_swap_info(swp_entry_t entry); extern bool reuse_swap_page(struct page *, int *); extern int try_to_free_swap(struct page *); struct backing_dev_info; extern int init_swap_address_space(unsigned int type, unsigned long nr_pages); extern void exit_swap_address_space(unsigned int type); extern struct swap_info_struct *get_swap_device(swp_entry_t entry); sector_t swap_page_sector(struct page *page); static inline void put_swap_device(struct swap_info_struct *si) { rcu_read_unlock(); } #else /* CONFIG_SWAP */ static inline int swap_readpage(struct page *page, bool do_poll) { return 0; } static inline struct swap_info_struct *swp_swap_info(swp_entry_t entry) { return NULL; } #define swap_address_space(entry) (NULL) #define get_nr_swap_pages() 0L #define total_swap_pages 0L #define total_swapcache_pages() 0UL #define vm_swap_full() 0 #define si_swapinfo(val) \ do { (val)->freeswap = (val)->totalswap = 0; } while (0) /* only sparc can not include linux/pagemap.h in this file * so leave put_page and release_pages undeclared... */ #define free_page_and_swap_cache(page) \ put_page(page) #define free_pages_and_swap_cache(pages, nr) \ release_pages((pages), (nr)); static inline void show_swap_cache_info(void) { } #define free_swap_and_cache(e) ({(is_migration_entry(e) || is_device_private_entry(e));}) #define swapcache_prepare(e) ({(is_migration_entry(e) || is_device_private_entry(e));}) static inline int add_swap_count_continuation(swp_entry_t swp, gfp_t gfp_mask) { return 0; } static inline void swap_shmem_alloc(swp_entry_t swp) { } static inline int swap_duplicate(swp_entry_t swp) { return 0; } static inline void swap_free(swp_entry_t swp) { } static inline void put_swap_page(struct page *page, swp_entry_t swp) { } static inline struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask, struct vm_fault *vmf) { return NULL; } static inline struct page *swapin_readahead(swp_entry_t swp, gfp_t gfp_mask, struct vm_fault *vmf) { return NULL; } static inline int swap_writepage(struct page *p, struct writeback_control *wbc) { return 0; } static inline struct page *lookup_swap_cache(swp_entry_t swp, struct vm_area_struct *vma, unsigned long addr) { return NULL; } static inline struct page *find_get_incore_page(struct address_space *mapping, pgoff_t index) { return find_get_page(mapping, index); } static inline int add_to_swap(struct page *page) { return 0; } static inline void *get_shadow_from_swap_cache(swp_entry_t entry) { return NULL; } static inline int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask, void **shadowp) { return -1; } static inline void __delete_from_swap_cache(struct page *page, swp_entry_t entry, void *shadow) { } static inline void delete_from_swap_cache(struct page *page) { } static inline void clear_shadow_from_swap_cache(int type, unsigned long begin, unsigned long end) { } static inline int page_swapcount(struct page *page) { return 0; } static inline int __swap_count(swp_entry_t entry) { return 0; } static inline int __swp_swapcount(swp_entry_t entry) { return 0; } static inline int swp_swapcount(swp_entry_t entry) { return 0; } #define reuse_swap_page(page, total_map_swapcount) \ (page_trans_huge_mapcount(page, total_map_swapcount) == 1) static inline int try_to_free_swap(struct page *page) { return 0; } static inline swp_entry_t get_swap_page(struct page *page) { swp_entry_t entry; entry.val = 0; return entry; } #endif /* CONFIG_SWAP */ #ifdef CONFIG_THP_SWAP extern int split_swap_cluster(swp_entry_t entry); #else static inline int split_swap_cluster(swp_entry_t entry) { return 0; } #endif #ifdef CONFIG_MEMCG static inline int mem_cgroup_swappiness(struct mem_cgroup *memcg) { /* Cgroup2 doesn't have per-cgroup swappiness */ if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) return vm_swappiness; /* root ? */ if (mem_cgroup_disabled() || mem_cgroup_is_root(memcg)) return vm_swappiness; return memcg->swappiness; } #else static inline int mem_cgroup_swappiness(struct mem_cgroup *mem) { return vm_swappiness; } #endif #if defined(CONFIG_SWAP) && defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP) extern void cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask); #else static inline void cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask) { } #endif #ifdef CONFIG_MEMCG_SWAP extern void mem_cgroup_swapout(struct page *page, swp_entry_t entry); extern int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry); extern void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages); extern long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg); extern bool mem_cgroup_swap_full(struct page *page); #else static inline void mem_cgroup_swapout(struct page *page, swp_entry_t entry) { } static inline int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry) { return 0; } static inline void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) { } static inline long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) { return get_nr_swap_pages(); } static inline bool mem_cgroup_swap_full(struct page *page) { return vm_swap_full(); } #endif #endif /* __KERNEL__*/ #endif /* _LINUX_SWAP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 /* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (C) 2001 Jens Axboe <axboe@suse.de> */ #ifndef __LINUX_BIO_H #define __LINUX_BIO_H #include <linux/highmem.h> #include <linux/mempool.h> #include <linux/ioprio.h> /* struct bio, bio_vec and BIO_* flags are defined in blk_types.h */ #include <linux/blk_types.h> #define BIO_DEBUG #ifdef BIO_DEBUG #define BIO_BUG_ON BUG_ON #else #define BIO_BUG_ON #endif #define BIO_MAX_PAGES 256 #define bio_prio(bio) (bio)->bi_ioprio #define bio_set_prio(bio, prio) ((bio)->bi_ioprio = prio) #define bio_iter_iovec(bio, iter) \ bvec_iter_bvec((bio)->bi_io_vec, (iter)) #define bio_iter_page(bio, iter) \ bvec_iter_page((bio)->bi_io_vec, (iter)) #define bio_iter_len(bio, iter) \ bvec_iter_len((bio)->bi_io_vec, (iter)) #define bio_iter_offset(bio, iter) \ bvec_iter_offset((bio)->bi_io_vec, (iter)) #define bio_page(bio) bio_iter_page((bio), (bio)->bi_iter) #define bio_offset(bio) bio_iter_offset((bio), (bio)->bi_iter) #define bio_iovec(bio) bio_iter_iovec((bio), (bio)->bi_iter) #define bvec_iter_sectors(iter) ((iter).bi_size >> 9) #define bvec_iter_end_sector(iter) ((iter).bi_sector + bvec_iter_sectors((iter))) #define bio_sectors(bio) bvec_iter_sectors((bio)->bi_iter) #define bio_end_sector(bio) bvec_iter_end_sector((bio)->bi_iter) /* * Return the data direction, READ or WRITE. */ #define bio_data_dir(bio) \ (op_is_write(bio_op(bio)) ? WRITE : READ) /* * Check whether this bio carries any data or not. A NULL bio is allowed. */ static inline bool bio_has_data(struct bio *bio) { if (bio && bio->bi_iter.bi_size && bio_op(bio) != REQ_OP_DISCARD && bio_op(bio) != REQ_OP_SECURE_ERASE && bio_op(bio) != REQ_OP_WRITE_ZEROES) return true; return false; } static inline bool bio_no_advance_iter(const struct bio *bio) { return bio_op(bio) == REQ_OP_DISCARD || bio_op(bio) == REQ_OP_SECURE_ERASE || bio_op(bio) == REQ_OP_WRITE_SAME || bio_op(bio) == REQ_OP_WRITE_ZEROES; } static inline bool bio_mergeable(struct bio *bio) { if (bio->bi_opf & REQ_NOMERGE_FLAGS) return false; return true; } static inline unsigned int bio_cur_bytes(struct bio *bio) { if (bio_has_data(bio)) return bio_iovec(bio).bv_len; else /* dataless requests such as discard */ return bio->bi_iter.bi_size; } static inline void *bio_data(struct bio *bio) { if (bio_has_data(bio)) return page_address(bio_page(bio)) + bio_offset(bio); return NULL; } /** * bio_full - check if the bio is full * @bio: bio to check * @len: length of one segment to be added * * Return true if @bio is full and one segment with @len bytes can't be * added to the bio, otherwise return false */ static inline bool bio_full(struct bio *bio, unsigned len) { if (bio->bi_vcnt >= bio->bi_max_vecs) return true; if (bio->bi_iter.bi_size > UINT_MAX - len) return true; return false; } static inline bool bio_next_segment(const struct bio *bio, struct bvec_iter_all *iter) { if (iter->idx >= bio->bi_vcnt) return false; bvec_advance(&bio->bi_io_vec[iter->idx], iter); return true; } /* * drivers should _never_ use the all version - the bio may have been split * before it got to the driver and the driver won't own all of it */ #define bio_for_each_segment_all(bvl, bio, iter) \ for (bvl = bvec_init_iter_all(&iter); bio_next_segment((bio), &iter); ) static inline void bio_advance_iter(const struct bio *bio, struct bvec_iter *iter, unsigned int bytes) { iter->bi_sector += bytes >> 9; if (bio_no_advance_iter(bio)) iter->bi_size -= bytes; else bvec_iter_advance(bio->bi_io_vec, iter, bytes); /* TODO: It is reasonable to complete bio with error here. */ } #define __bio_for_each_segment(bvl, bio, iter, start) \ for (iter = (start); \ (iter).bi_size && \ ((bvl = bio_iter_iovec((bio), (iter))), 1); \ bio_advance_iter((bio), &(iter), (bvl).bv_len)) #define bio_for_each_segment(bvl, bio, iter) \ __bio_for_each_segment(bvl, bio, iter, (bio)->bi_iter) #define __bio_for_each_bvec(bvl, bio, iter, start) \ for (iter = (start); \ (iter).bi_size && \ ((bvl = mp_bvec_iter_bvec((bio)->bi_io_vec, (iter))), 1); \ bio_advance_iter((bio), &(iter), (bvl).bv_len)) /* iterate over multi-page bvec */ #define bio_for_each_bvec(bvl, bio, iter) \ __bio_for_each_bvec(bvl, bio, iter, (bio)->bi_iter) /* * Iterate over all multi-page bvecs. Drivers shouldn't use this version for the * same reasons as bio_for_each_segment_all(). */ #define bio_for_each_bvec_all(bvl, bio, i) \ for (i = 0, bvl = bio_first_bvec_all(bio); \ i < (bio)->bi_vcnt; i++, bvl++) \ #define bio_iter_last(bvec, iter) ((iter).bi_size == (bvec).bv_len) static inline unsigned bio_segments(struct bio *bio) { unsigned segs = 0; struct bio_vec bv; struct bvec_iter iter; /* * We special case discard/write same/write zeroes, because they * interpret bi_size differently: */ switch (bio_op(bio)) { case REQ_OP_DISCARD: case REQ_OP_SECURE_ERASE: case REQ_OP_WRITE_ZEROES: return 0; case REQ_OP_WRITE_SAME: return 1; default: break; } bio_for_each_segment(bv, bio, iter) segs++; return segs; } /* * get a reference to a bio, so it won't disappear. the intended use is * something like: * * bio_get(bio); * submit_bio(rw, bio); * if (bio->bi_flags ...) * do_something * bio_put(bio); * * without the bio_get(), it could potentially complete I/O before submit_bio * returns. and then bio would be freed memory when if (bio->bi_flags ...) * runs */ static inline void bio_get(struct bio *bio) { bio->bi_flags |= (1 << BIO_REFFED); smp_mb__before_atomic(); atomic_inc(&bio->__bi_cnt); } static inline void bio_cnt_set(struct bio *bio, unsigned int count) { if (count != 1) { bio->bi_flags |= (1 << BIO_REFFED); smp_mb(); } atomic_set(&bio->__bi_cnt, count); } static inline bool bio_flagged(struct bio *bio, unsigned int bit) { return (bio->bi_flags & (1U << bit)) != 0; } static inline void bio_set_flag(struct bio *bio, unsigned int bit) { bio->bi_flags |= (1U << bit); } static inline void bio_clear_flag(struct bio *bio, unsigned int bit) { bio->bi_flags &= ~(1U << bit); } static inline void bio_get_first_bvec(struct bio *bio, struct bio_vec *bv) { *bv = mp_bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); } static inline void bio_get_last_bvec(struct bio *bio, struct bio_vec *bv) { struct bvec_iter iter = bio->bi_iter; int idx; bio_get_first_bvec(bio, bv); if (bv->bv_len == bio->bi_iter.bi_size) return; /* this bio only has a single bvec */ bio_advance_iter(bio, &iter, iter.bi_size); if (!iter.bi_bvec_done) idx = iter.bi_idx - 1; else /* in the middle of bvec */ idx = iter.bi_idx; *bv = bio->bi_io_vec[idx]; /* * iter.bi_bvec_done records actual length of the last bvec * if this bio ends in the middle of one io vector */ if (iter.bi_bvec_done) bv->bv_len = iter.bi_bvec_done; } static inline struct bio_vec *bio_first_bvec_all(struct bio *bio) { WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)); return bio->bi_io_vec; } static inline struct page *bio_first_page_all(struct bio *bio) { return bio_first_bvec_all(bio)->bv_page; } static inline struct bio_vec *bio_last_bvec_all(struct bio *bio) { WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)); return &bio->bi_io_vec[bio->bi_vcnt - 1]; } enum bip_flags { BIP_BLOCK_INTEGRITY = 1 << 0, /* block layer owns integrity data */ BIP_MAPPED_INTEGRITY = 1 << 1, /* ref tag has been remapped */ BIP_CTRL_NOCHECK = 1 << 2, /* disable HBA integrity checking */ BIP_DISK_NOCHECK = 1 << 3, /* disable disk integrity checking */ BIP_IP_CHECKSUM = 1 << 4, /* IP checksum */ }; /* * bio integrity payload */ struct bio_integrity_payload { struct bio *bip_bio; /* parent bio */ struct bvec_iter bip_iter; unsigned short bip_slab; /* slab the bip came from */ unsigned short bip_vcnt; /* # of integrity bio_vecs */ unsigned short bip_max_vcnt; /* integrity bio_vec slots */ unsigned short bip_flags; /* control flags */ struct bvec_iter bio_iter; /* for rewinding parent bio */ struct work_struct bip_work; /* I/O completion */ struct bio_vec *bip_vec; struct bio_vec bip_inline_vecs[];/* embedded bvec array */ }; #if defined(CONFIG_BLK_DEV_INTEGRITY) static inline struct bio_integrity_payload *bio_integrity(struct bio *bio) { if (bio->bi_opf & REQ_INTEGRITY) return bio->bi_integrity; return NULL; } static inline bool bio_integrity_flagged(struct bio *bio, enum bip_flags flag) { struct bio_integrity_payload *bip = bio_integrity(bio); if (bip) return bip->bip_flags & flag; return false; } static inline sector_t bip_get_seed(struct bio_integrity_payload *bip) { return bip->bip_iter.bi_sector; } static inline void bip_set_seed(struct bio_integrity_payload *bip, sector_t seed) { bip->bip_iter.bi_sector = seed; } #endif /* CONFIG_BLK_DEV_INTEGRITY */ extern void bio_trim(struct bio *bio, int offset, int size); extern struct bio *bio_split(struct bio *bio, int sectors, gfp_t gfp, struct bio_set *bs); /** * bio_next_split - get next @sectors from a bio, splitting if necessary * @bio: bio to split * @sectors: number of sectors to split from the front of @bio * @gfp: gfp mask * @bs: bio set to allocate from * * Returns a bio representing the next @sectors of @bio - if the bio is smaller * than @sectors, returns the original bio unchanged. */ static inline struct bio *bio_next_split(struct bio *bio, int sectors, gfp_t gfp, struct bio_set *bs) { if (sectors >= bio_sectors(bio)) return bio; return bio_split(bio, sectors, gfp, bs); } enum { BIOSET_NEED_BVECS = BIT(0), BIOSET_NEED_RESCUER = BIT(1), }; extern int bioset_init(struct bio_set *, unsigned int, unsigned int, int flags); extern void bioset_exit(struct bio_set *); extern int biovec_init_pool(mempool_t *pool, int pool_entries); extern int bioset_init_from_src(struct bio_set *bs, struct bio_set *src); extern struct bio *bio_alloc_bioset(gfp_t, unsigned int, struct bio_set *); extern void bio_put(struct bio *); extern void __bio_clone_fast(struct bio *, struct bio *); extern struct bio *bio_clone_fast(struct bio *, gfp_t, struct bio_set *); extern struct bio_set fs_bio_set; static inline struct bio *bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs) { return bio_alloc_bioset(gfp_mask, nr_iovecs, &fs_bio_set); } static inline struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned int nr_iovecs) { return bio_alloc_bioset(gfp_mask, nr_iovecs, NULL); } extern blk_qc_t submit_bio(struct bio *); extern void bio_endio(struct bio *); static inline void bio_io_error(struct bio *bio) { bio->bi_status = BLK_STS_IOERR; bio_endio(bio); } static inline void bio_wouldblock_error(struct bio *bio) { bio_set_flag(bio, BIO_QUIET); bio->bi_status = BLK_STS_AGAIN; bio_endio(bio); } struct request_queue; extern int submit_bio_wait(struct bio *bio); extern void bio_advance(struct bio *, unsigned); extern void bio_init(struct bio *bio, struct bio_vec *table, unsigned short max_vecs); extern void bio_uninit(struct bio *); extern void bio_reset(struct bio *); void bio_chain(struct bio *, struct bio *); extern int bio_add_page(struct bio *, struct page *, unsigned int,unsigned int); extern int bio_add_pc_page(struct request_queue *, struct bio *, struct page *, unsigned int, unsigned int); bool __bio_try_merge_page(struct bio *bio, struct page *page, unsigned int len, unsigned int off, bool *same_page); void __bio_add_page(struct bio *bio, struct page *page, unsigned int len, unsigned int off); int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter); void bio_release_pages(struct bio *bio, bool mark_dirty); extern void bio_set_pages_dirty(struct bio *bio); extern void bio_check_pages_dirty(struct bio *bio); extern void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter, struct bio *src, struct bvec_iter *src_iter); extern void bio_copy_data(struct bio *dst, struct bio *src); extern void bio_list_copy_data(struct bio *dst, struct bio *src); extern void bio_free_pages(struct bio *bio); void zero_fill_bio_iter(struct bio *bio, struct bvec_iter iter); void bio_truncate(struct bio *bio, unsigned new_size); void guard_bio_eod(struct bio *bio); static inline void zero_fill_bio(struct bio *bio) { zero_fill_bio_iter(bio, bio->bi_iter); } extern struct bio_vec *bvec_alloc(gfp_t, int, unsigned long *, mempool_t *); extern void bvec_free(mempool_t *, struct bio_vec *, unsigned int); extern unsigned int bvec_nr_vecs(unsigned short idx); extern const char *bio_devname(struct bio *bio, char *buffer); #define bio_set_dev(bio, bdev) \ do { \ if ((bio)->bi_disk != (bdev)->bd_disk) \ bio_clear_flag(bio, BIO_THROTTLED);\ (bio)->bi_disk = (bdev)->bd_disk; \ (bio)->bi_partno = (bdev)->bd_partno; \ bio_associate_blkg(bio); \ } while (0) #define bio_copy_dev(dst, src) \ do { \ (dst)->bi_disk = (src)->bi_disk; \ (dst)->bi_partno = (src)->bi_partno; \ bio_clone_blkg_association(dst, src); \ } while (0) #define bio_dev(bio) \ disk_devt((bio)->bi_disk) #ifdef CONFIG_BLK_CGROUP void bio_associate_blkg(struct bio *bio); void bio_associate_blkg_from_css(struct bio *bio, struct cgroup_subsys_state *css); void bio_clone_blkg_association(struct bio *dst, struct bio *src); #else /* CONFIG_BLK_CGROUP */ static inline void bio_associate_blkg(struct bio *bio) { } static inline void bio_associate_blkg_from_css(struct bio *bio, struct cgroup_subsys_state *css) { } static inline void bio_clone_blkg_association(struct bio *dst, struct bio *src) { } #endif /* CONFIG_BLK_CGROUP */ #ifdef CONFIG_HIGHMEM /* * remember never ever reenable interrupts between a bvec_kmap_irq and * bvec_kunmap_irq! */ static inline char *bvec_kmap_irq(struct bio_vec *bvec, unsigned long *flags) { unsigned long addr; /* * might not be a highmem page, but the preempt/irq count * balancing is a lot nicer this way */ local_irq_save(*flags); addr = (unsigned long) kmap_atomic(bvec->bv_page); BUG_ON(addr & ~PAGE_MASK); return (char *) addr + bvec->bv_offset; } static inline void bvec_kunmap_irq(char *buffer, unsigned long *flags) { unsigned long ptr = (unsigned long) buffer & PAGE_MASK; kunmap_atomic((void *) ptr); local_irq_restore(*flags); } #else static inline char *bvec_kmap_irq(struct bio_vec *bvec, unsigned long *flags) { return page_address(bvec->bv_page) + bvec->bv_offset; } static inline void bvec_kunmap_irq(char *buffer, unsigned long *flags) { *flags = 0; } #endif /* * BIO list management for use by remapping drivers (e.g. DM or MD) and loop. * * A bio_list anchors a singly-linked list of bios chained through the bi_next * member of the bio. The bio_list also caches the last list member to allow * fast access to the tail. */ struct bio_list { struct bio *head; struct bio *tail; }; static inline int bio_list_empty(const struct bio_list *bl) { return bl->head == NULL; } static inline void bio_list_init(struct bio_list *bl) { bl->head = bl->tail = NULL; } #define BIO_EMPTY_LIST { NULL, NULL } #define bio_list_for_each(bio, bl) \ for (bio = (bl)->head; bio; bio = bio->bi_next) static inline unsigned bio_list_size(const struct bio_list *bl) { unsigned sz = 0; struct bio *bio; bio_list_for_each(bio, bl) sz++; return sz; } static inline void bio_list_add(struct bio_list *bl, struct bio *bio) { bio->bi_next = NULL; if (bl->tail) bl->tail->bi_next = bio; else bl->head = bio; bl->tail = bio; } static inline void bio_list_add_head(struct bio_list *bl, struct bio *bio) { bio->bi_next = bl->head; bl->head = bio; if (!bl->tail) bl->tail = bio; } static inline void bio_list_merge(struct bio_list *bl, struct bio_list *bl2) { if (!bl2->head) return; if (bl->tail) bl->tail->bi_next = bl2->head; else bl->head = bl2->head; bl->tail = bl2->tail; } static inline void bio_list_merge_head(struct bio_list *bl, struct bio_list *bl2) { if (!bl2->head) return; if (bl->head) bl2->tail->bi_next = bl->head; else bl->tail = bl2->tail; bl->head = bl2->head; } static inline struct bio *bio_list_peek(struct bio_list *bl) { return bl->head; } static inline struct bio *bio_list_pop(struct bio_list *bl) { struct bio *bio = bl->head; if (bio) { bl->head = bl->head->bi_next; if (!bl->head) bl->tail = NULL; bio->bi_next = NULL; } return bio; } static inline struct bio *bio_list_get(struct bio_list *bl) { struct bio *bio = bl->head; bl->head = bl->tail = NULL; return bio; } /* * Increment chain count for the bio. Make sure the CHAIN flag update * is visible before the raised count. */ static inline void bio_inc_remaining(struct bio *bio) { bio_set_flag(bio, BIO_CHAIN); smp_mb__before_atomic(); atomic_inc(&bio->__bi_remaining); } /* * bio_set is used to allow other portions of the IO system to * allocate their own private memory pools for bio and iovec structures. * These memory pools in turn all allocate from the bio_slab * and the bvec_slabs[]. */ #define BIO_POOL_SIZE 2 struct bio_set { struct kmem_cache *bio_slab; unsigned int front_pad; mempool_t bio_pool; mempool_t bvec_pool; #if defined(CONFIG_BLK_DEV_INTEGRITY) mempool_t bio_integrity_pool; mempool_t bvec_integrity_pool; #endif /* * Deadlock avoidance for stacking block drivers: see comments in * bio_alloc_bioset() for details */ spinlock_t rescue_lock; struct bio_list rescue_list; struct work_struct rescue_work; struct workqueue_struct *rescue_workqueue; }; struct biovec_slab { int nr_vecs; char *name; struct kmem_cache *slab; }; static inline bool bioset_initialized(struct bio_set *bs) { return bs->bio_slab != NULL; } /* * a small number of entries is fine, not going to be performance critical. * basically we just need to survive */ #define BIO_SPLIT_ENTRIES 2 #if defined(CONFIG_BLK_DEV_INTEGRITY) #define bip_for_each_vec(bvl, bip, iter) \ for_each_bvec(bvl, (bip)->bip_vec, iter, (bip)->bip_iter) #define bio_for_each_integrity_vec(_bvl, _bio, _iter) \ for_each_bio(_bio) \ bip_for_each_vec(_bvl, _bio->bi_integrity, _iter) extern struct bio_integrity_payload *bio_integrity_alloc(struct bio *, gfp_t, unsigned int); extern int bio_integrity_add_page(struct bio *, struct page *, unsigned int, unsigned int); extern bool bio_integrity_prep(struct bio *); extern void bio_integrity_advance(struct bio *, unsigned int); extern void bio_integrity_trim(struct bio *); extern int bio_integrity_clone(struct bio *, struct bio *, gfp_t); extern int bioset_integrity_create(struct bio_set *, int); extern void bioset_integrity_free(struct bio_set *); extern void bio_integrity_init(void); #else /* CONFIG_BLK_DEV_INTEGRITY */ static inline void *bio_integrity(struct bio *bio) { return NULL; } static inline int bioset_integrity_create(struct bio_set *bs, int pool_size) { return 0; } static inline void bioset_integrity_free (struct bio_set *bs) { return; } static inline bool bio_integrity_prep(struct bio *bio) { return true; } static inline int bio_integrity_clone(struct bio *bio, struct bio *bio_src, gfp_t gfp_mask) { return 0; } static inline void bio_integrity_advance(struct bio *bio, unsigned int bytes_done) { return; } static inline void bio_integrity_trim(struct bio *bio) { return; } static inline void bio_integrity_init(void) { return; } static inline bool bio_integrity_flagged(struct bio *bio, enum bip_flags flag) { return false; } static inline void *bio_integrity_alloc(struct bio * bio, gfp_t gfp, unsigned int nr) { return ERR_PTR(-EINVAL); } static inline int bio_integrity_add_page(struct bio *bio, struct page *page, unsigned int len, unsigned int offset) { return 0; } #endif /* CONFIG_BLK_DEV_INTEGRITY */ /* * Mark a bio as polled. Note that for async polled IO, the caller must * expect -EWOULDBLOCK if we cannot allocate a request (or other resources). * We cannot block waiting for requests on polled IO, as those completions * must be found by the caller. This is different than IRQ driven IO, where * it's safe to wait for IO to complete. */ static inline void bio_set_polled(struct bio *bio, struct kiocb *kiocb) { bio->bi_opf |= REQ_HIPRI; if (!is_sync_kiocb(kiocb)) bio->bi_opf |= REQ_NOWAIT; } #endif /* __LINUX_BIO_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 /* SPDX-License-Identifier: GPL-2.0 */ /* * Definitions for the UDP-Lite (RFC 3828) code. */ #ifndef _UDPLITE_H #define _UDPLITE_H #include <net/ip6_checksum.h> /* UDP-Lite socket options */ #define UDPLITE_SEND_CSCOV 10 /* sender partial coverage (as sent) */ #define UDPLITE_RECV_CSCOV 11 /* receiver partial coverage (threshold ) */ extern struct proto udplite_prot; extern struct udp_table udplite_table; /* * Checksum computation is all in software, hence simpler getfrag. */ static __inline__ int udplite_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb) { struct msghdr *msg = from; return copy_from_iter_full(to, len, &msg->msg_iter) ? 0 : -EFAULT; } /* Designate sk as UDP-Lite socket */ static inline int udplite_sk_init(struct sock *sk) { udp_init_sock(sk); udp_sk(sk)->pcflag = UDPLITE_BIT; return 0; } /* * Checksumming routines */ static inline int udplite_checksum_init(struct sk_buff *skb, struct udphdr *uh) { u16 cscov; /* In UDPv4 a zero checksum means that the transmitter generated no * checksum. UDP-Lite (like IPv6) mandates checksums, hence packets * with a zero checksum field are illegal. */ if (uh->check == 0) { net_dbg_ratelimited("UDPLite: zeroed checksum field\n"); return 1; } cscov = ntohs(uh->len); if (cscov == 0) /* Indicates that full coverage is required. */ ; else if (cscov < 8 || cscov > skb->len) { /* * Coverage length violates RFC 3828: log and discard silently. */ net_dbg_ratelimited("UDPLite: bad csum coverage %d/%d\n", cscov, skb->len); return 1; } else if (cscov < skb->len) { UDP_SKB_CB(skb)->partial_cov = 1; UDP_SKB_CB(skb)->cscov = cscov; if (skb->ip_summed == CHECKSUM_COMPLETE) skb->ip_summed = CHECKSUM_NONE; skb->csum_valid = 0; } return 0; } /* Slow-path computation of checksum. Socket is locked. */ static inline __wsum udplite_csum_outgoing(struct sock *sk, struct sk_buff *skb) { const struct udp_sock *up = udp_sk(skb->sk); int cscov = up->len; __wsum csum = 0; if (up->pcflag & UDPLITE_SEND_CC) { /* * Sender has set `partial coverage' option on UDP-Lite socket. * The special case "up->pcslen == 0" signifies full coverage. */ if (up->pcslen < up->len) { if (0 < up->pcslen) cscov = up->pcslen; udp_hdr(skb)->len = htons(up->pcslen); } /* * NOTE: Causes for the error case `up->pcslen > up->len': * (i) Application error (will not be penalized). * (ii) Payload too big for send buffer: data is split * into several packets, each with its own header. * In this case (e.g. last segment), coverage may * exceed packet length. * Since packets with coverage length > packet length are * illegal, we fall back to the defaults here. */ } skb->ip_summed = CHECKSUM_NONE; /* no HW support for checksumming */ skb_queue_walk(&sk->sk_write_queue, skb) { const int off = skb_transport_offset(skb); const int len = skb->len - off; csum = skb_checksum(skb, off, (cscov > len)? len : cscov, csum); if ((cscov -= len) <= 0) break; } return csum; } /* Fast-path computation of checksum. Socket may not be locked. */ static inline __wsum udplite_csum(struct sk_buff *skb) { const struct udp_sock *up = udp_sk(skb->sk); const int off = skb_transport_offset(skb); int len = skb->len - off; if ((up->pcflag & UDPLITE_SEND_CC) && up->pcslen < len) { if (0 < up->pcslen) len = up->pcslen; udp_hdr(skb)->len = htons(up->pcslen); } skb->ip_summed = CHECKSUM_NONE; /* no HW support for checksumming */ return skb_checksum(skb, off, len, 0); } void udplite4_register(void); int udplite_get_port(struct sock *sk, unsigned short snum, int (*scmp)(const struct sock *, const struct sock *)); #endif /* _UDPLITE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Hash algorithms. * * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au> */ #ifndef _CRYPTO_INTERNAL_HASH_H #define _CRYPTO_INTERNAL_HASH_H #include <crypto/algapi.h> #include <crypto/hash.h> struct ahash_request; struct scatterlist; struct crypto_hash_walk { char *data; unsigned int offset; unsigned int alignmask; struct page *pg; unsigned int entrylen; unsigned int total; struct scatterlist *sg; unsigned int flags; }; struct ahash_instance { void (*free)(struct ahash_instance *inst); union { struct { char head[offsetof(struct ahash_alg, halg.base)]; struct crypto_instance base; } s; struct ahash_alg alg; }; }; struct shash_instance { void (*free)(struct shash_instance *inst); union { struct { char head[offsetof(struct shash_alg, base)]; struct crypto_instance base; } s; struct shash_alg alg; }; }; struct crypto_ahash_spawn { struct crypto_spawn base; }; struct crypto_shash_spawn { struct crypto_spawn base; }; int crypto_hash_walk_done(struct crypto_hash_walk *walk, int err); int crypto_hash_walk_first(struct ahash_request *req, struct crypto_hash_walk *walk); static inline int crypto_hash_walk_last(struct crypto_hash_walk *walk) { return !(walk->entrylen | walk->total); } int crypto_register_ahash(struct ahash_alg *alg); void crypto_unregister_ahash(struct ahash_alg *alg); int crypto_register_ahashes(struct ahash_alg *algs, int count); void crypto_unregister_ahashes(struct ahash_alg *algs, int count); int ahash_register_instance(struct crypto_template *tmpl, struct ahash_instance *inst); bool crypto_shash_alg_has_setkey(struct shash_alg *alg); static inline bool crypto_shash_alg_needs_key(struct shash_alg *alg) { return crypto_shash_alg_has_setkey(alg) && !(alg->base.cra_flags & CRYPTO_ALG_OPTIONAL_KEY); } bool crypto_hash_alg_has_setkey(struct hash_alg_common *halg); int crypto_grab_ahash(struct crypto_ahash_spawn *spawn, struct crypto_instance *inst, const char *name, u32 type, u32 mask); static inline void crypto_drop_ahash(struct crypto_ahash_spawn *spawn) { crypto_drop_spawn(&spawn->base); } static inline struct hash_alg_common *crypto_spawn_ahash_alg( struct crypto_ahash_spawn *spawn) { return __crypto_hash_alg_common(spawn->base.alg); } int crypto_register_shash(struct shash_alg *alg); void crypto_unregister_shash(struct shash_alg *alg); int crypto_register_shashes(struct shash_alg *algs, int count); void crypto_unregister_shashes(struct shash_alg *algs, int count); int shash_register_instance(struct crypto_template *tmpl, struct shash_instance *inst); void shash_free_singlespawn_instance(struct shash_instance *inst); int crypto_grab_shash(struct crypto_shash_spawn *spawn, struct crypto_instance *inst, const char *name, u32 type, u32 mask); static inline void crypto_drop_shash(struct crypto_shash_spawn *spawn) { crypto_drop_spawn(&spawn->base); } static inline struct shash_alg *crypto_spawn_shash_alg( struct crypto_shash_spawn *spawn) { return __crypto_shash_alg(spawn->base.alg); } int shash_ahash_update(struct ahash_request *req, struct shash_desc *desc); int shash_ahash_finup(struct ahash_request *req, struct shash_desc *desc); int shash_ahash_digest(struct ahash_request *req, struct shash_desc *desc); int crypto_init_shash_ops_async(struct crypto_tfm *tfm); static inline void *crypto_ahash_ctx(struct crypto_ahash *tfm) { return crypto_tfm_ctx(crypto_ahash_tfm(tfm)); } static inline struct ahash_alg *__crypto_ahash_alg(struct crypto_alg *alg) { return container_of(__crypto_hash_alg_common(alg), struct ahash_alg, halg); } static inline void crypto_ahash_set_reqsize(struct crypto_ahash *tfm, unsigned int reqsize) { tfm->reqsize = reqsize; } static inline struct crypto_instance *ahash_crypto_instance( struct ahash_instance *inst) { return &inst->s.base; } static inline struct ahash_instance *ahash_instance( struct crypto_instance *inst) { return container_of(inst, struct ahash_instance, s.base); } static inline struct ahash_instance *ahash_alg_instance( struct crypto_ahash *ahash) { return ahash_instance(crypto_tfm_alg_instance(&ahash->base)); } static inline void *ahash_instance_ctx(struct ahash_instance *inst) { return crypto_instance_ctx(ahash_crypto_instance(inst)); } static inline void ahash_request_complete(struct ahash_request *req, int err) { req->base.complete(&req->base, err); } static inline u32 ahash_request_flags(struct ahash_request *req) { return req->base.flags; } static inline struct crypto_ahash *crypto_spawn_ahash( struct crypto_ahash_spawn *spawn) { return crypto_spawn_tfm2(&spawn->base); } static inline int ahash_enqueue_request(struct crypto_queue *queue, struct ahash_request *request) { return crypto_enqueue_request(queue, &request->base); } static inline struct ahash_request *ahash_dequeue_request( struct crypto_queue *queue) { return ahash_request_cast(crypto_dequeue_request(queue)); } static inline void *crypto_shash_ctx(struct crypto_shash *tfm) { return crypto_tfm_ctx(&tfm->base); } static inline struct crypto_instance *shash_crypto_instance( struct shash_instance *inst) { return &inst->s.base; } static inline struct shash_instance *shash_instance( struct crypto_instance *inst) { return container_of(inst, struct shash_instance, s.base); } static inline struct shash_instance *shash_alg_instance( struct crypto_shash *shash) { return shash_instance(crypto_tfm_alg_instance(&shash->base)); } static inline void *shash_instance_ctx(struct shash_instance *inst) { return crypto_instance_ctx(shash_crypto_instance(inst)); } static inline struct crypto_shash *crypto_spawn_shash( struct crypto_shash_spawn *spawn) { return crypto_spawn_tfm2(&spawn->base); } static inline void *crypto_shash_ctx_aligned(struct crypto_shash *tfm) { return crypto_tfm_ctx_aligned(&tfm->base); } static inline struct crypto_shash *__crypto_shash_cast(struct crypto_tfm *tfm) { return container_of(tfm, struct crypto_shash, base); } #endif /* _CRYPTO_INTERNAL_HASH_H */
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 // SPDX-License-Identifier: GPL-2.0 // Generated by scripts/atomic/gen-atomic-fallback.sh // DO NOT MODIFY THIS FILE DIRECTLY #ifndef _LINUX_ATOMIC_FALLBACK_H #define _LINUX_ATOMIC_FALLBACK_H #include <linux/compiler.h> #ifndef arch_xchg_relaxed #define arch_xchg_relaxed arch_xchg #define arch_xchg_acquire arch_xchg #define arch_xchg_release arch_xchg #else /* arch_xchg_relaxed */ #ifndef arch_xchg_acquire #define arch_xchg_acquire(...) \ __atomic_op_acquire(arch_xchg, __VA_ARGS__) #endif #ifndef arch_xchg_release #define arch_xchg_release(...) \ __atomic_op_release(arch_xchg, __VA_ARGS__) #endif #ifndef arch_xchg #define arch_xchg(...) \ __atomic_op_fence(arch_xchg, __VA_ARGS__) #endif #endif /* arch_xchg_relaxed */ #ifndef arch_cmpxchg_relaxed #define arch_cmpxchg_relaxed arch_cmpxchg #define arch_cmpxchg_acquire arch_cmpxchg #define arch_cmpxchg_release arch_cmpxchg #else /* arch_cmpxchg_relaxed */ #ifndef arch_cmpxchg_acquire #define arch_cmpxchg_acquire(...) \ __atomic_op_acquire(arch_cmpxchg, __VA_ARGS__) #endif #ifndef arch_cmpxchg_release #define arch_cmpxchg_release(...) \ __atomic_op_release(arch_cmpxchg, __VA_ARGS__) #endif #ifndef arch_cmpxchg #define arch_cmpxchg(...) \ __atomic_op_fence(arch_cmpxchg, __VA_ARGS__) #endif #endif /* arch_cmpxchg_relaxed */ #ifndef arch_cmpxchg64_relaxed #define arch_cmpxchg64_relaxed arch_cmpxchg64 #define arch_cmpxchg64_acquire arch_cmpxchg64 #define arch_cmpxchg64_release arch_cmpxchg64 #else /* arch_cmpxchg64_relaxed */ #ifndef arch_cmpxchg64_acquire #define arch_cmpxchg64_acquire(...) \ __atomic_op_acquire(arch_cmpxchg64, __VA_ARGS__) #endif #ifndef arch_cmpxchg64_release #define arch_cmpxchg64_release(...) \ __atomic_op_release(arch_cmpxchg64, __VA_ARGS__) #endif #ifndef arch_cmpxchg64 #define arch_cmpxchg64(...) \ __atomic_op_fence(arch_cmpxchg64, __VA_ARGS__) #endif #endif /* arch_cmpxchg64_relaxed */ #ifndef arch_atomic_read_acquire static __always_inline int arch_atomic_read_acquire(const atomic_t *v) { return smp_load_acquire(&(v)->counter); } #define arch_atomic_read_acquire arch_atomic_read_acquire #endif #ifndef arch_atomic_set_release static __always_inline void arch_atomic_set_release(atomic_t *v, int i) { smp_store_release(&(v)->counter, i); } #define arch_atomic_set_release arch_atomic_set_release #endif #ifndef arch_atomic_add_return_relaxed #define arch_atomic_add_return_acquire arch_atomic_add_return #define arch_atomic_add_return_release arch_atomic_add_return #define arch_atomic_add_return_relaxed arch_atomic_add_return #else /* arch_atomic_add_return_relaxed */ #ifndef arch_atomic_add_return_acquire static __always_inline int arch_atomic_add_return_acquire(int i, atomic_t *v) { int ret = arch_atomic_add_return_relaxed(i, v); __atomic_acquire_fence(); return ret; } #define arch_atomic_add_return_acquire arch_atomic_add_return_acquire #endif #ifndef arch_atomic_add_return_release static __always_inline int arch_atomic_add_return_release(int i, atomic_t *v) { __atomic_release_fence(); return arch_atomic_add_return_relaxed(i, v); } #define arch_atomic_add_return_release arch_atomic_add_return_release #endif #ifndef arch_atomic_add_return static __always_inline int arch_atomic_add_return(int i, atomic_t *v) { int ret; __atomic_pre_full_fence(); ret = arch_atomic_add_return_relaxed(i, v); __atomic_post_full_fence(); return ret; } #define arch_atomic_add_return arch_atomic_add_return #endif #endif /* arch_atomic_add_return_relaxed */ #ifndef arch_atomic_fetch_add_relaxed #define arch_atomic_fetch_add_acquire arch_atomic_fetch_add #define arch_atomic_fetch_add_release arch_atomic_fetch_add #define arch_atomic_fetch_add_relaxed arch_atomic_fetch_add #else /* arch_atomic_fetch_add_relaxed */ #ifndef arch_atomic_fetch_add_acquire static __always_inline int arch_atomic_fetch_add_acquire(int i, atomic_t *v) { int ret = arch_atomic_fetch_add_relaxed(i, v); __atomic_acquire_fence(); return ret; } #define arch_atomic_fetch_add_acquire arch_atomic_fetch_add_acquire #endif #ifndef arch_atomic_fetch_add_release static __always_inline int arch_atomic_fetch_add_release(int i, atomic_t *v) { __atomic_release_fence(); return arch_atomic_fetch_add_relaxed(i, v); } #define arch_atomic_fetch_add_release arch_atomic_fetch_add_release #endif #ifndef arch_atomic_fetch_add static __always_inline int arch_atomic_fetch_add(int i, atomic_t *v) { int ret; __atomic_pre_full_fence(); ret = arch_atomic_fetch_add_relaxed(i, v); __atomic_post_full_fence(); return ret; } #define arch_atomic_fetch_add arch_atomic_fetch_add #endif #endif /* arch_atomic_fetch_add_relaxed */ #ifndef arch_atomic_sub_return_relaxed #define arch_atomic_sub_return_acquire arch_atomic_sub_return #define arch_atomic_sub_return_release arch_atomic_sub_return #define arch_atomic_sub_return_relaxed arch_atomic_sub_return #else /* arch_atomic_sub_return_relaxed */ #ifndef arch_atomic_sub_return_acquire static __always_inline int arch_atomic_sub_return_acquire(int i, atomic_t *v) { int ret = arch_atomic_sub_return_relaxed(i, v); __atomic_acquire_fence(); return ret; } #define arch_atomic_sub_return_acquire arch_atomic_sub_return_acquire #endif #ifndef arch_atomic_sub_return_release static __always_inline int arch_atomic_sub_return_release(int i, atomic_t *v) { __atomic_release_fence(); return arch_atomic_sub_return_relaxed(i, v); } #define arch_atomic_sub_return_release arch_atomic_sub_return_release #endif #ifndef arch_atomic_sub_return static __always_inline int arch_atomic_sub_return(int i, atomic_t *v) { int ret; __atomic_pre_full_fence(); ret = arch_atomic_sub_return_relaxed(i, v); __atomic_post_full_fence(); return ret; } #define arch_atomic_sub_return arch_atomic_sub_return #endif #endif /* arch_atomic_sub_return_relaxed */ #ifndef arch_atomic_fetch_sub_relaxed #define arch_atomic_fetch_sub_acquire arch_atomic_fetch_sub #define arch_atomic_fetch_sub_release arch_atomic_fetch_sub #define arch_atomic_fetch_sub_relaxed arch_atomic_fetch_sub #else /* arch_atomic_fetch_sub_relaxed */ #ifndef arch_atomic_fetch_sub_acquire static __always_inline int arch_atomic_fetch_sub_acquire(int i, atomic_t *v) { int ret = arch_atomic_fetch_sub_relaxed(i, v); __atomic_acquire_fence(); return ret; } #define arch_atomic_fetch_sub_acquire arch_atomic_fetch_sub_acquire #endif #ifndef arch_atomic_fetch_sub_release static __always_inline int arch_atomic_fetch_sub_release(int i, atomic_t *v) { __atomic_release_fence(); return arch_atomic_fetch_sub_relaxed(i, v); } #define arch_atomic_fetch_sub_release arch_atomic_fetch_sub_release #endif #ifndef arch_atomic_fetch_sub static __always_inline int arch_atomic_fetch_sub(int i, atomic_t *v) { int ret; __atomic_pre_full_fence(); ret = arch_atomic_fetch_sub_relaxed(i, v); __atomic_post_full_fence(); return ret; } #define arch_atomic_fetch_sub arch_atomic_fetch_sub #endif #endif /* arch_atomic_fetch_sub_relaxed */ #ifndef arch_atomic_inc static __always_inline void arch_atomic_inc(atomic_t *v) { arch_atomic_add(1, v); } #define arch_atomic_inc arch_atomic_inc #endif #ifndef arch_atomic_inc_return_relaxed #ifdef arch_atomic_inc_return #define arch_atomic_inc_return_acquire arch_atomic_inc_return #define arch_atomic_inc_return_release arch_atomic_inc_return #define arch_atomic_inc_return_relaxed arch_atomic_inc_return #endif /* arch_atomic_inc_return */ #ifndef arch_atomic_inc_return static __always_inline int arch_atomic_inc_return(atomic_t *v) { return arch_atomic_add_return(1, v); } #define arch_atomic_inc_return arch_atomic_inc_return #endif #ifndef arch_atomic_inc_return_acquire static __always_inline int arch_atomic_inc_return_acquire(atomic_t *v) { return arch_atomic_add_return_acquire(1, v); } #define arch_atomic_inc_return_acquire arch_atomic_inc_return_acquire #endif #ifndef arch_atomic_inc_return_release static __always_inline int arch_atomic_inc_return_release(atomic_t *v) { return arch_atomic_add_return_release(1, v); } #define arch_atomic_inc_return_release arch_atomic_inc_return_release #endif #ifndef arch_atomic_inc_return_relaxed static __always_inline int arch_atomic_inc_return_relaxed(atomic_t *v) { return arch_atomic_add_return_relaxed(1, v); } #define arch_atomic_inc_return_relaxed arch_atomic_inc_return_relaxed #endif #else /* arch_atomic_inc_return_relaxed */ #ifndef arch_atomic_inc_return_acquire static __always_inline int arch_atomic_inc_return_acquire(atomic_t *v) { int ret = arch_atomic_inc_return_relaxed(v); __atomic_acquire_fence(); return ret; } #define arch_atomic_inc_return_acquire arch_atomic_inc_return_acquire #endif #ifndef arch_atomic_inc_return_release static __always_inline int arch_atomic_inc_return_release(atomic_t *v) { __atomic_release_fence(); return arch_atomic_inc_return_relaxed(v); } #define arch_atomic_inc_return_release arch_atomic_inc_return_release #endif #ifndef arch_atomic_inc_return static __always_inline int arch_atomic_inc_return(atomic_t *v) { int ret; __atomic_pre_full_fence(); ret = arch_atomic_inc_return_relaxed(v); __atomic_post_full_fence(); return ret; } #define arch_atomic_inc_return arch_atomic_inc_return #endif #endif /* arch_atomic_inc_return_relaxed */ #ifndef arch_atomic_fetch_inc_relaxed #ifdef arch_atomic_fetch_inc #define arch_atomic_fetch_inc_acquire arch_atomic_fetch_inc #define arch_atomic_fetch_inc_release arch_atomic_fetch_inc #define arch_atomic_fetch_inc_relaxed arch_atomic_fetch_inc #endif /* arch_atomic_fetch_inc */ #ifndef arch_atomic_fetch_inc static __always_inline int arch_atomic_fetch_inc(atomic_t *v) { return arch_atomic_fetch_add(1, v); } #define arch_atomic_fetch_inc arch_atomic_fetch_inc #endif #ifndef arch_atomic_fetch_inc_acquire static __always_inline int arch_atomic_fetch_inc_acquire(atomic_t *v) { return arch_atomic_fetch_add_acquire(1, v); } #define arch_atomic_fetch_inc_acquire arch_atomic_fetch_inc_acquire #endif #ifndef arch_atomic_fetch_inc_release static __always_inline int arch_atomic_fetch_inc_release(atomic_t *v) { return arch_atomic_fetch_add_release(1, v); } #define arch_atomic_fetch_inc_release arch_atomic_fetch_inc_release #endif #ifndef arch_atomic_fetch_inc_relaxed static __always_inline int arch_atomic_fetch_inc_relaxed(atomic_t *v) { return arch_atomic_fetch_add_relaxed(1, v); } #define arch_atomic_fetch_inc_relaxed arch_atomic_fetch_inc_relaxed #endif #else /* arch_atomic_fetch_inc_relaxed */ #ifndef arch_atomic_fetch_inc_acquire static __always_inline int arch_atomic_fetch_inc_acquire(atomic_t *v) { int ret = arch_atomic_fetch_inc_relaxed(v); __atomic_acquire_fence(); return ret; } #define arch_atomic_fetch_inc_acquire arch_atomic_fetch_inc_acquire #endif #ifndef arch_atomic_fetch_inc_release static __always_inline int arch_atomic_fetch_inc_release(atomic_t *v) { __atomic_release_fence(); return arch_atomic_fetch_inc_relaxed(v); } #define arch_atomic_fetch_inc_release arch_atomic_fetch_inc_release #endif #ifndef arch_atomic_fetch_inc static __always_inline int arch_atomic_fetch_inc(atomic_t *v) { int ret; __atomic_pre_full_fence(); ret = arch_atomic_fetch_inc_relaxed(v); __atomic_post_full_fence(); return ret; } #define arch_atomic_fetch_inc arch_atomic_fetch_inc #endif #endif /* arch_atomic_fetch_inc_relaxed */ #ifndef arch_atomic_dec static __always_inline void arch_atomic_dec(atomic_t *v) { arch_atomic_sub(1, v); } #define arch_atomic_dec arch_atomic_dec #endif #ifndef arch_atomic_dec_return_relaxed #ifdef arch_atomic_dec_return #define arch_atomic_dec_return_acquire arch_atomic_dec_return #define arch_atomic_dec_return_release arch_atomic_dec_return #define arch_atomic_dec_return_relaxed arch_atomic_dec_return #endif /* arch_atomic_dec_return */ #ifndef arch_atomic_dec_return static __always_inline int arch_atomic_dec_return(atomic_t *v) { return arch_atomic_sub_return(1, v); } #define arch_atomic_dec_return arch_atomic_dec_return #endif #ifndef arch_atomic_dec_return_acquire static __always_inline int arch_atomic_dec_return_acquire(atomic_t *v) { return arch_atomic_sub_return_acquire(1, v); } #define arch_atomic_dec_return_acquire arch_atomic_dec_return_acquire #endif #ifndef arch_atomic_dec_return_release static __always_inline int arch_atomic_dec_return_release(atomic_t *v) { return arch_atomic_sub_return_release(1, v); } #define arch_atomic_dec_return_release arch_atomic_dec_return_release #endif #ifndef arch_atomic_dec_return_relaxed static __always_inline int arch_atomic_dec_return_relaxed(atomic_t *v) { return arch_atomic_sub_return_relaxed(1, v); } #define arch_atomic_dec_return_relaxed arch_atomic_dec_return_relaxed #endif #else /* arch_atomic_dec_return_relaxed */ #ifndef arch_atomic_dec_return_acquire static __always_inline int arch_atomic_dec_return_acquire(atomic_t *v) { int ret = arch_atomic_dec_return_relaxed(v); __atomic_acquire_fence(); return ret; } #define arch_atomic_dec_return_acquire arch_atomic_dec_return_acquire #endif #ifndef arch_atomic_dec_return_release static __always_inline int arch_atomic_dec_return_release(atomic_t *v) { __atomic_release_fence(); return arch_atomic_dec_return_relaxed(v); } #define arch_atomic_dec_return_release arch_atomic_dec_return_release #endif #ifndef arch_atomic_dec_return static __always_inline int arch_atomic_dec_return(atomic_t *v) { int ret; __atomic_pre_full_fence(); ret = arch_atomic_dec_return_relaxed(v); __atomic_post_full_fence(); return ret; } #define arch_atomic_dec_return arch_atomic_dec_return #endif #endif /* arch_atomic_dec_return_relaxed */ #ifndef arch_atomic_fetch_dec_relaxed #ifdef arch_atomic_fetch_dec #define arch_atomic_fetch_dec_acquire arch_atomic_fetch_dec #define arch_atomic_fetch_dec_release arch_atomic_fetch_dec #define arch_atomic_fetch_dec_relaxed arch_atomic_fetch_dec #endif /* arch_atomic_fetch_dec */ #ifndef arch_atomic_fetch_dec static __always_inline int arch_atomic_fetch_dec(atomic_t *v) { return arch_atomic_fetch_sub(1, v); } #define arch_atomic_fetch_dec arch_atomic_fetch_dec #endif #ifndef arch_atomic_fetch_dec_acquire static __always_inline int arch_atomic_fetch_dec_acquire(atomic_t *v) { return arch_atomic_fetch_sub_acquire(1, v); } #define arch_atomic_fetch_dec_acquire arch_atomic_fetch_dec_acquire #endif #ifndef arch_atomic_fetch_dec_release static __always_inline int arch_atomic_fetch_dec_release(atomic_t *v) { return arch_atomic_fetch_sub_release(1, v); } #define arch_atomic_fetch_dec_release arch_atomic_fetch_dec_release #endif #ifndef arch_atomic_fetch_dec_relaxed static __always_inline int arch_atomic_fetch_dec_relaxed(atomic_t *v) { return arch_atomic_fetch_sub_relaxed(1, v); } #define arch_atomic_fetch_dec_relaxed arch_atomic_fetch_dec_relaxed #endif #else /* arch_atomic_fetch_dec_relaxed */ #ifndef arch_atomic_fetch_dec_acquire static __always_inline int arch_atomic_fetch_dec_acquire(atomic_t *v) { int ret = arch_atomic_fetch_dec_relaxed(v); __atomic_acquire_fence(); return ret; } #define arch_atomic_fetch_dec_acquire arch_atomic_fetch_dec_acquire #endif #ifndef arch_atomic_fetch_dec_release static __always_inline int arch_atomic_fetch_dec_release(atomic_t *v) { __atomic_release_fence(); return arch_atomic_fetch_dec_relaxed(v); } #define arch_atomic_fetch_dec_release arch_atomic_fetch_dec_release #endif #ifndef arch_atomic_fetch_dec static __always_inline int arch_atomic_fetch_dec(atomic_t *v) { int ret; __atomic_pre_full_fence(); ret = arch_atomic_fetch_dec_relaxed(v); __atomic_post_full_fence(); return ret; } #define arch_atomic_fetch_dec arch_atomic_fetch_dec #endif #endif /* arch_atomic_fetch_dec_relaxed */ #ifndef arch_atomic_fetch_and_relaxed #define arch_atomic_fetch_and_acquire arch_atomic_fetch_and #define arch_atomic_fetch_and_release arch_atomic_fetch_and #define arch_atomic_fetch_and_relaxed arch_atomic_fetch_and #else /* arch_atomic_fetch_and_relaxed */ #ifndef arch_atomic_fetch_and_acquire static __always_inline int arch_atomic_fetch_and_acquire(int i, atomic_t *v) { int ret = arch_atomic_fetch_and_relaxed(i, v); __atomic_acquire_fence(); return ret; } #define arch_atomic_fetch_and_acquire arch_atomic_fetch_and_acquire #endif #ifndef arch_atomic_fetch_and_release static __always_inline int arch_atomic_fetch_and_release(int i, atomic_t *v) { __atomic_release_fence(); return arch_atomic_fetch_and_relaxed(i, v); } #define arch_atomic_fetch_and_release arch_atomic_fetch_and_release #endif #ifndef arch_atomic_fetch_and static __always_inline int arch_atomic_fetch_and(int i, atomic_t *v) { int ret; __atomic_pre_full_fence(); ret = arch_atomic_fetch_and_relaxed(i, v); __atomic_post_full_fence(); return ret; } #define arch_atomic_fetch_and arch_atomic_fetch_and #endif #endif /* arch_atomic_fetch_and_relaxed */ #ifndef arch_atomic_andnot static __always_inline void arch_atomic_andnot(int i, atomic_t *v) { arch_atomic_and(~i, v); } #define arch_atomic_andnot arch_atomic_andnot #endif #ifndef arch_atomic_fetch_andnot_relaxed #ifdef arch_atomic_fetch_andnot #define arch_atomic_fetch_andnot_acquire arch_atomic_fetch_andnot #define arch_atomic_fetch_andnot_release arch_atomic_fetch_andnot #define arch_atomic_fetch_andnot_relaxed arch_atomic_fetch_andnot #endif /* arch_atomic_fetch_andnot */ #ifndef arch_atomic_fetch_andnot static __always_inline int arch_atomic_fetch_andnot(int i, atomic_t *v) { return arch_atomic_fetch_and(~i, v); } #define arch_atomic_fetch_andnot arch_atomic_fetch_andnot #endif #ifndef arch_atomic_fetch_andnot_acquire static __always_inline int arch_atomic_fetch_andnot_acquire(int i, atomic_t *v) { return arch_atomic_fetch_and_acquire(~i, v); } #define arch_atomic_fetch_andnot_acquire arch_atomic_fetch_andnot_acquire #endif #ifndef arch_atomic_fetch_andnot_release static __always_inline int arch_atomic_fetch_andnot_release(int i, atomic_t *v) { return arch_atomic_fetch_and_release(~i, v); } #define arch_atomic_fetch_andnot_release arch_atomic_fetch_andnot_release #endif #ifndef arch_atomic_fetch_andnot_relaxed static __always_inline int arch_atomic_fetch_andnot_relaxed(int i, atomic_t *v) { return arch_atomic_fetch_and_relaxed(~i, v); } #define arch_atomic_fetch_andnot_relaxed arch_atomic_fetch_andnot_relaxed #endif #else /* arch_atomic_fetch_andnot_relaxed */ #ifndef arch_atomic_fetch_andnot_acquire static __always_inline int arch_atomic_fetch_andnot_acquire(int i, atomic_t *v) { int ret = arch_atomic_fetch_andnot_relaxed(i, v); __atomic_acquire_fence(); return ret; } #define arch_atomic_fetch_andnot_acquire arch_atomic_fetch_andnot_acquire #endif #ifndef arch_atomic_fetch_andnot_release static __always_inline int arch_atomic_fetch_andnot_release(int i, atomic_t *v) { __atomic_release_fence(); return arch_atomic_fetch_andnot_relaxed(i, v); } #define arch_atomic_fetch_andnot_release arch_atomic_fetch_andnot_release #endif #ifndef arch_atomic_fetch_andnot static __always_inline int arch_atomic_fetch_andnot(int i, atomic_t *v) { int ret; __atomic_pre_full_fence(); ret = arch_atomic_fetch_andnot_relaxed(i, v); __atomic_post_full_fence(); return ret; } #define arch_atomic_fetch_andnot arch_atomic_fetch_andnot #endif #endif /* arch_atomic_fetch_andnot_relaxed */ #ifndef arch_atomic_fetch_or_relaxed #define arch_atomic_fetch_or_acquire arch_atomic_fetch_or #define arch_atomic_fetch_or_release arch_atomic_fetch_or #define arch_atomic_fetch_or_relaxed arch_atomic_fetch_or #else /* arch_atomic_fetch_or_relaxed */ #ifndef arch_atomic_fetch_or_acquire static __always_inline int arch_atomic_fetch_or_acquire(int i, atomic_t *v) { int ret = arch_atomic_fetch_or_relaxed(i, v); __atomic_acquire_fence(); return ret; } #define arch_atomic_fetch_or_acquire arch_atomic_fetch_or_acquire #endif #ifndef arch_atomic_fetch_or_release static __always_inline int arch_atomic_fetch_or_release(int i, atomic_t *v) { __atomic_release_fence(); return arch_atomic_fetch_or_relaxed(i, v); } #define arch_atomic_fetch_or_release arch_atomic_fetch_or_release #endif #ifndef arch_atomic_fetch_or static __always_inline int arch_atomic_fetch_or(int i, atomic_t *v) { int ret; __atomic_pre_full_fence(); ret = arch_atomic_fetch_or_relaxed(i, v); __atomic_post_full_fence(); return ret; } #define arch_atomic_fetch_or arch_atomic_fetch_or #endif #endif /* arch_atomic_fetch_or_relaxed */ #ifndef arch_atomic_fetch_xor_relaxed #define arch_atomic_fetch_xor_acquire arch_atomic_fetch_xor #define arch_atomic_fetch_xor_release arch_atomic_fetch_xor #define arch_atomic_fetch_xor_relaxed arch_atomic_fetch_xor #else /* arch_atomic_fetch_xor_relaxed */ #ifndef arch_atomic_fetch_xor_acquire static __always_inline int arch_atomic_fetch_xor_acquire(int i, atomic_t *v) { int ret = arch_atomic_fetch_xor_relaxed(i, v); __atomic_acquire_fence(); return ret; } #define arch_atomic_fetch_xor_acquire arch_atomic_fetch_xor_acquire #endif #ifndef arch_atomic_fetch_xor_release static __always_inline int arch_atomic_fetch_xor_release(int i, atomic_t *v) { __atomic_release_fence(); return arch_atomic_fetch_xor_relaxed(i, v); } #define arch_atomic_fetch_xor_release arch_atomic_fetch_xor_release #endif #ifndef arch_atomic_fetch_xor static __always_inline int arch_atomic_fetch_xor(int i, atomic_t *v) { int ret; __atomic_pre_full_fence(); ret = arch_atomic_fetch_xor_relaxed(i, v); __atomic_post_full_fence(); return ret; } #define arch_atomic_fetch_xor arch_atomic_fetch_xor #endif #endif /* arch_atomic_fetch_xor_relaxed */ #ifndef arch_atomic_xchg_relaxed #define arch_atomic_xchg_acquire arch_atomic_xchg #define arch_atomic_xchg_release arch_atomic_xchg #define arch_atomic_xchg_relaxed arch_atomic_xchg #else /* arch_atomic_xchg_relaxed */ #ifndef arch_atomic_xchg_acquire static __always_inline int arch_atomic_xchg_acquire(atomic_t *v, int i) { int ret = arch_atomic_xchg_relaxed(v, i); __atomic_acquire_fence(); return ret; } #define arch_atomic_xchg_acquire arch_atomic_xchg_acquire #endif #ifndef arch_atomic_xchg_release static __always_inline int arch_atomic_xchg_release(atomic_t *v, int i) { __atomic_release_fence(); return arch_atomic_xchg_relaxed(v, i); } #define arch_atomic_xchg_release arch_atomic_xchg_release #endif #ifndef arch_atomic_xchg static __always_inline int arch_atomic_xchg(atomic_t *v, int i) { int ret; __atomic_pre_full_fence(); ret = arch_atomic_xchg_relaxed(v, i); __atomic_post_full_fence(); return ret; } #define arch_atomic_xchg arch_atomic_xchg #endif #endif /* arch_atomic_xchg_relaxed */ #ifndef arch_atomic_cmpxchg_relaxed #define arch_atomic_cmpxchg_acquire arch_atomic_cmpxchg #define arch_atomic_cmpxchg_release arch_atomic_cmpxchg #define arch_atomic_cmpxchg_relaxed arch_atomic_cmpxchg #else /* arch_atomic_cmpxchg_relaxed */ #ifndef arch_atomic_cmpxchg_acquire static __always_inline int arch_atomic_cmpxchg_acquire(atomic_t *v, int old, int new) { int ret = arch_atomic_cmpxchg_relaxed(v, old, new); __atomic_acquire_fence(); return ret; } #define arch_atomic_cmpxchg_acquire arch_atomic_cmpxchg_acquire #endif #ifndef arch_atomic_cmpxchg_release static __always_inline int arch_atomic_cmpxchg_release(atomic_t *v, int old, int new) { __atomic_release_fence(); return arch_atomic_cmpxchg_relaxed(v, old, new); } #define arch_atomic_cmpxchg_release arch_atomic_cmpxchg_release #endif #ifndef arch_atomic_cmpxchg static __always_inline int arch_atomic_cmpxchg(atomic_t *v, int old, int new) { int ret; __atomic_pre_full_fence(); ret = arch_atomic_cmpxchg_relaxed(v, old, new); __atomic_post_full_fence(); return ret; } #define arch_atomic_cmpxchg arch_atomic_cmpxchg #endif #endif /* arch_atomic_cmpxchg_relaxed */ #ifndef arch_atomic_try_cmpxchg_relaxed #ifdef arch_atomic_try_cmpxchg #define arch_atomic_try_cmpxchg_acquire arch_atomic_try_cmpxchg #define arch_atomic_try_cmpxchg_release arch_atomic_try_cmpxchg #define arch_atomic_try_cmpxchg_relaxed arch_atomic_try_cmpxchg #endif /* arch_atomic_try_cmpxchg */ #ifndef arch_atomic_try_cmpxchg static __always_inline bool arch_atomic_try_cmpxchg(atomic_t *v, int *old, int new) { int r, o = *old; r = arch_atomic_cmpxchg(v, o, new); if (unlikely(r != o)) *old = r; return likely(r == o); } #define arch_atomic_try_cmpxchg arch_atomic_try_cmpxchg #endif #ifndef arch_atomic_try_cmpxchg_acquire static __always_inline bool arch_atomic_try_cmpxchg_acquire(atomic_t *v, int *old, int new) { int r, o = *old; r = arch_atomic_cmpxchg_acquire(v, o, new); if (unlikely(r != o)) *old = r; return likely(r == o); } #define arch_atomic_try_cmpxchg_acquire arch_atomic_try_cmpxchg_acquire #endif #ifndef arch_atomic_try_cmpxchg_release static __always_inline bool arch_atomic_try_cmpxchg_release(atomic_t *v, int *old, int new) { int r, o = *old; r = arch_atomic_cmpxchg_release(v, o, new); if (unlikely(r != o)) *old = r; return likely(r == o); } #define arch_atomic_try_cmpxchg_release arch_atomic_try_cmpxchg_release #endif #ifndef arch_atomic_try_cmpxchg_relaxed static __always_inline bool arch_atomic_try_cmpxchg_relaxed(atomic_t *v, int *old, int new) { int r, o = *old; r = arch_atomic_cmpxchg_relaxed(v, o, new); if (unlikely(r != o)) *old = r; return likely(r == o); } #define arch_atomic_try_cmpxchg_relaxed arch_atomic_try_cmpxchg_relaxed #endif #else /* arch_atomic_try_cmpxchg_relaxed */ #ifndef arch_atomic_try_cmpxchg_acquire static __always_inline bool arch_atomic_try_cmpxchg_acquire(atomic_t *v, int *old, int new) { bool ret = arch_atomic_try_cmpxchg_relaxed(v, old, new); __atomic_acquire_fence(); return ret; } #define arch_atomic_try_cmpxchg_acquire arch_atomic_try_cmpxchg_acquire #endif #ifndef arch_atomic_try_cmpxchg_release static __always_inline bool arch_atomic_try_cmpxchg_release(atomic_t *v, int *old, int new) { __atomic_release_fence(); return arch_atomic_try_cmpxchg_relaxed(v, old, new); } #define arch_atomic_try_cmpxchg_release arch_atomic_try_cmpxchg_release #endif #ifndef arch_atomic_try_cmpxchg static __always_inline bool arch_atomic_try_cmpxchg(atomic_t *v, int *old, int new) { bool ret; __atomic_pre_full_fence(); ret = arch_atomic_try_cmpxchg_relaxed(v, old, new); __atomic_post_full_fence(); return ret; } #define arch_atomic_try_cmpxchg arch_atomic_try_cmpxchg #endif #endif /* arch_atomic_try_cmpxchg_relaxed */ #ifndef arch_atomic_sub_and_test /** * arch_atomic_sub_and_test - subtract value from variable and test result * @i: integer value to subtract * @v: pointer of type atomic_t * * Atomically subtracts @i from @v and returns * true if the result is zero, or false for all * other cases. */ static __always_inline bool arch_atomic_sub_and_test(int i, atomic_t *v) { return arch_atomic_sub_return(i, v) == 0; } #define arch_atomic_sub_and_test arch_atomic_sub_and_test #endif #ifndef arch_atomic_dec_and_test /** * arch_atomic_dec_and_test - decrement and test * @v: pointer of type atomic_t * * Atomically decrements @v by 1 and * returns true if the result is 0, or false for all other * cases. */ static __always_inline bool arch_atomic_dec_and_test(atomic_t *v) { return arch_atomic_dec_return(v) == 0; } #define arch_atomic_dec_and_test arch_atomic_dec_and_test #endif #ifndef arch_atomic_inc_and_test /** * arch_atomic_inc_and_test - increment and test * @v: pointer of type atomic_t * * Atomically increments @v by 1 * and returns true if the result is zero, or false for all * other cases. */ static __always_inline bool arch_atomic_inc_and_test(atomic_t *v) { return arch_atomic_inc_return(v) == 0; } #define arch_atomic_inc_and_test arch_atomic_inc_and_test #endif #ifndef arch_atomic_add_negative /** * arch_atomic_add_negative - add and test if negative * @i: integer value to add * @v: pointer of type atomic_t * * Atomically adds @i to @v and returns true * if the result is negative, or false when * result is greater than or equal to zero. */ static __always_inline bool arch_atomic_add_negative(int i, atomic_t *v) { return arch_atomic_add_return(i, v) < 0; } #define arch_atomic_add_negative arch_atomic_add_negative #endif #ifndef arch_atomic_fetch_add_unless /** * arch_atomic_fetch_add_unless - add unless the number is already a given value * @v: pointer of type atomic_t * @a: the amount to add to v... * @u: ...unless v is equal to u. * * Atomically adds @a to @v, so long as @v was not already @u. * Returns original value of @v */ static __always_inline int arch_atomic_fetch_add_unless(atomic_t *v, int a, int u) { int c = arch_atomic_read(v); do { if (unlikely(c == u)) break; } while (!arch_atomic_try_cmpxchg(v, &c, c + a)); return c; } #define arch_atomic_fetch_add_unless arch_atomic_fetch_add_unless #endif #ifndef arch_atomic_add_unless /** * arch_atomic_add_unless - add unless the number is already a given value * @v: pointer of type atomic_t * @a: the amount to add to v... * @u: ...unless v is equal to u. * * Atomically adds @a to @v, if @v was not already @u. * Returns true if the addition was done. */ static __always_inline bool arch_atomic_add_unless(atomic_t *v, int a, int u) { return arch_atomic_fetch_add_unless(v, a, u) != u; } #define arch_atomic_add_unless arch_atomic_add_unless #endif #ifndef arch_atomic_inc_not_zero /** * arch_atomic_inc_not_zero - increment unless the number is zero * @v: pointer of type atomic_t * * Atomically increments @v by 1, if @v is non-zero. * Returns true if the increment was done. */ static __always_inline bool arch_atomic_inc_not_zero(atomic_t *v) { return arch_atomic_add_unless(v, 1, 0); } #define arch_atomic_inc_not_zero arch_atomic_inc_not_zero #endif #ifndef arch_atomic_inc_unless_negative static __always_inline bool arch_atomic_inc_unless_negative(atomic_t *v) { int c = arch_atomic_read(v); do { if (unlikely(c < 0)) return false; } while (!arch_atomic_try_cmpxchg(v, &c, c + 1)); return true; } #define arch_atomic_inc_unless_negative arch_atomic_inc_unless_negative #endif #ifndef arch_atomic_dec_unless_positive static __always_inline bool arch_atomic_dec_unless_positive(atomic_t *v) { int c = arch_atomic_read(v); do { if (unlikely(c > 0)) return false; } while (!arch_atomic_try_cmpxchg(v, &c, c - 1)); return true; } #define arch_atomic_dec_unless_positive arch_atomic_dec_unless_positive #endif #ifndef arch_atomic_dec_if_positive static __always_inline int arch_atomic_dec_if_positive(atomic_t *v) { int dec, c = arch_atomic_read(v); do { dec = c - 1; if (unlikely(dec < 0)) break; } while (!arch_atomic_try_cmpxchg(v, &c, dec)); return dec; } #define arch_atomic_dec_if_positive arch_atomic_dec_if_positive #endif #ifdef CONFIG_GENERIC_ATOMIC64 #include <asm-generic/atomic64.h> #endif #ifndef arch_atomic64_read_acquire static __always_inline s64 arch_atomic64_read_acquire(const atomic64_t *v) { return smp_load_acquire(&(v)->counter); } #define arch_atomic64_read_acquire arch_atomic64_read_acquire #endif #ifndef arch_atomic64_set_release static __always_inline void arch_atomic64_set_release(atomic64_t *v, s64 i) { smp_store_release(&(v)->counter, i); } #define arch_atomic64_set_release arch_atomic64_set_release #endif #ifndef arch_atomic64_add_return_relaxed #define arch_atomic64_add_return_acquire arch_atomic64_add_return #define arch_atomic64_add_return_release arch_atomic64_add_return #define arch_atomic64_add_return_relaxed arch_atomic64_add_return #else /* arch_atomic64_add_return_relaxed */ #ifndef arch_atomic64_add_return_acquire static __always_inline s64 arch_atomic64_add_return_acquire(s64 i, atomic64_t *v) { s64 ret = arch_atomic64_add_return_relaxed(i, v); __atomic_acquire_fence(); return ret; } #define arch_atomic64_add_return_acquire arch_atomic64_add_return_acquire #endif #ifndef arch_atomic64_add_return_release static __always_inline s64 arch_atomic64_add_return_release(s64 i, atomic64_t *v) { __atomic_release_fence(); return arch_atomic64_add_return_relaxed(i, v); } #define arch_atomic64_add_return_release arch_atomic64_add_return_release #endif #ifndef arch_atomic64_add_return static __always_inline s64 arch_atomic64_add_return(s64 i, atomic64_t *v) { s64 ret; __atomic_pre_full_fence(); ret = arch_atomic64_add_return_relaxed(i, v); __atomic_post_full_fence(); return ret; } #define arch_atomic64_add_return arch_atomic64_add_return #endif #endif /* arch_atomic64_add_return_relaxed */ #ifndef arch_atomic64_fetch_add_relaxed #define arch_atomic64_fetch_add_acquire arch_atomic64_fetch_add #define arch_atomic64_fetch_add_release arch_atomic64_fetch_add #define arch_atomic64_fetch_add_relaxed arch_atomic64_fetch_add #else /* arch_atomic64_fetch_add_relaxed */ #ifndef arch_atomic64_fetch_add_acquire static __always_inline s64 arch_atomic64_fetch_add_acquire(s64 i, atomic64_t *v) { s64 ret = arch_atomic64_fetch_add_relaxed(i, v); __atomic_acquire_fence(); return ret; } #define arch_atomic64_fetch_add_acquire arch_atomic64_fetch_add_acquire #endif #ifndef arch_atomic64_fetch_add_release static __always_inline s64 arch_atomic64_fetch_add_release(s64 i, atomic64_t *v) { __atomic_release_fence(); return arch_atomic64_fetch_add_relaxed(i, v); } #define arch_atomic64_fetch_add_release arch_atomic64_fetch_add_release #endif #ifndef arch_atomic64_fetch_add static __always_inline s64 arch_atomic64_fetch_add(s64 i, atomic64_t *v) { s64 ret; __atomic_pre_full_fence(); ret = arch_atomic64_fetch_add_relaxed(i, v); __atomic_post_full_fence(); return ret; } #define arch_atomic64_fetch_add arch_atomic64_fetch_add #endif #endif /* arch_atomic64_fetch_add_relaxed */ #ifndef arch_atomic64_sub_return_relaxed #define arch_atomic64_sub_return_acquire arch_atomic64_sub_return #define arch_atomic64_sub_return_release arch_atomic64_sub_return #define arch_atomic64_sub_return_relaxed arch_atomic64_sub_return #else /* arch_atomic64_sub_return_relaxed */ #ifndef arch_atomic64_sub_return_acquire static __always_inline s64 arch_atomic64_sub_return_acquire(s64 i, atomic64_t *v) { s64 ret = arch_atomic64_sub_return_relaxed(i, v); __atomic_acquire_fence(); return ret; } #define arch_atomic64_sub_return_acquire arch_atomic64_sub_return_acquire #endif #ifndef arch_atomic64_sub_return_release static __always_inline s64 arch_atomic64_sub_return_release(s64 i, atomic64_t *v) { __atomic_release_fence(); return arch_atomic64_sub_return_relaxed(i, v); } #define arch_atomic64_sub_return_release arch_atomic64_sub_return_release #endif #ifndef arch_atomic64_sub_return static __always_inline s64 arch_atomic64_sub_return(s64 i, atomic64_t *v) { s64 ret; __atomic_pre_full_fence(); ret = arch_atomic64_sub_return_relaxed(i, v); __atomic_post_full_fence(); return ret; } #define arch_atomic64_sub_return arch_atomic64_sub_return #endif #endif /* arch_atomic64_sub_return_relaxed */ #ifndef arch_atomic64_fetch_sub_relaxed #define arch_atomic64_fetch_sub_acquire arch_atomic64_fetch_sub #define arch_atomic64_fetch_sub_release arch_atomic64_fetch_sub #define arch_atomic64_fetch_sub_relaxed arch_atomic64_fetch_sub #else /* arch_atomic64_fetch_sub_relaxed */ #ifndef arch_atomic64_fetch_sub_acquire static __always_inline s64 arch_atomic64_fetch_sub_acquire(s64 i, atomic64_t *v) { s64 ret = arch_atomic64_fetch_sub_relaxed(i, v); __atomic_acquire_fence(); return ret; } #define arch_atomic64_fetch_sub_acquire arch_atomic64_fetch_sub_acquire #endif #ifndef arch_atomic64_fetch_sub_release static __always_inline s64 arch_atomic64_fetch_sub_release(s64 i, atomic64_t *v) { __atomic_release_fence(); return arch_atomic64_fetch_sub_relaxed(i, v); } #define arch_atomic64_fetch_sub_release arch_atomic64_fetch_sub_release #endif #ifndef arch_atomic64_fetch_sub static __always_inline s64 arch_atomic64_fetch_sub(s64 i, atomic64_t *v) { s64 ret; __atomic_pre_full_fence(); ret = arch_atomic64_fetch_sub_relaxed(i, v); __atomic_post_full_fence(); return ret; } #define arch_atomic64_fetch_sub arch_atomic64_fetch_sub #endif #endif /* arch_atomic64_fetch_sub_relaxed */ #ifndef arch_atomic64_inc static __always_inline void arch_atomic64_inc(atomic64_t *v) { arch_atomic64_add(1, v); } #define arch_atomic64_inc arch_atomic64_inc #endif #ifndef arch_atomic64_inc_return_relaxed #ifdef arch_atomic64_inc_return #define arch_atomic64_inc_return_acquire arch_atomic64_inc_return #define arch_atomic64_inc_return_release arch_atomic64_inc_return #define arch_atomic64_inc_return_relaxed arch_atomic64_inc_return #endif /* arch_atomic64_inc_return */ #ifndef arch_atomic64_inc_return static __always_inline s64 arch_atomic64_inc_return(atomic64_t *v) { return arch_atomic64_add_return(1, v); } #define arch_atomic64_inc_return arch_atomic64_inc_return #endif #ifndef arch_atomic64_inc_return_acquire static __always_inline s64 arch_atomic64_inc_return_acquire(atomic64_t *v) { return arch_atomic64_add_return_acquire(1, v); } #define arch_atomic64_inc_return_acquire arch_atomic64_inc_return_acquire #endif #ifndef arch_atomic64_inc_return_release static __always_inline s64 arch_atomic64_inc_return_release(atomic64_t *v) { return arch_atomic64_add_return_release(1, v); } #define arch_atomic64_inc_return_release arch_atomic64_inc_return_release #endif #ifndef arch_atomic64_inc_return_relaxed static __always_inline s64 arch_atomic64_inc_return_relaxed(atomic64_t *v) { return arch_atomic64_add_return_relaxed(1, v); } #define arch_atomic64_inc_return_relaxed arch_atomic64_inc_return_relaxed #endif #else /* arch_atomic64_inc_return_relaxed */ #ifndef arch_atomic64_inc_return_acquire static __always_inline s64 arch_atomic64_inc_return_acquire(atomic64_t *v) { s64 ret = arch_atomic64_inc_return_relaxed(v); __atomic_acquire_fence(); return ret; } #define arch_atomic64_inc_return_acquire arch_atomic64_inc_return_acquire #endif #ifndef arch_atomic64_inc_return_release static __always_inline s64 arch_atomic64_inc_return_release(atomic64_t *v) { __atomic_release_fence(); return arch_atomic64_inc_return_relaxed(v); } #define arch_atomic64_inc_return_release arch_atomic64_inc_return_release #endif #ifndef arch_atomic64_inc_return static __always_inline s64 arch_atomic64_inc_return(atomic64_t *v) { s64 ret; __atomic_pre_full_fence(); ret = arch_atomic64_inc_return_relaxed(v); __atomic_post_full_fence(); return ret; } #define arch_atomic64_inc_return arch_atomic64_inc_return #endif #endif /* arch_atomic64_inc_return_relaxed */ #ifndef arch_atomic64_fetch_inc_relaxed #ifdef arch_atomic64_fetch_inc #define arch_atomic64_fetch_inc_acquire arch_atomic64_fetch_inc #define arch_atomic64_fetch_inc_release arch_atomic64_fetch_inc #define arch_atomic64_fetch_inc_relaxed arch_atomic64_fetch_inc #endif /* arch_atomic64_fetch_inc */ #ifndef arch_atomic64_fetch_inc static __always_inline s64 arch_atomic64_fetch_inc(atomic64_t *v) { return arch_atomic64_fetch_add(1, v); } #define arch_atomic64_fetch_inc arch_atomic64_fetch_inc #endif #ifndef arch_atomic64_fetch_inc_acquire static __always_inline s64 arch_atomic64_fetch_inc_acquire(atomic64_t *v) { return arch_atomic64_fetch_add_acquire(1, v); } #define arch_atomic64_fetch_inc_acquire arch_atomic64_fetch_inc_acquire #endif #ifndef arch_atomic64_fetch_inc_release static __always_inline s64 arch_atomic64_fetch_inc_release(atomic64_t *v) { return arch_atomic64_fetch_add_release(1, v); } #define arch_atomic64_fetch_inc_release arch_atomic64_fetch_inc_release #endif #ifndef arch_atomic64_fetch_inc_relaxed static __always_inline s64 arch_atomic64_fetch_inc_relaxed(atomic64_t *v) { return arch_atomic64_fetch_add_relaxed(1, v); } #define arch_atomic64_fetch_inc_relaxed arch_atomic64_fetch_inc_relaxed #endif #else /* arch_atomic64_fetch_inc_relaxed */ #ifndef arch_atomic64_fetch_inc_acquire static __always_inline s64 arch_atomic64_fetch_inc_acquire(atomic64_t *v) { s64 ret = arch_atomic64_fetch_inc_relaxed(v); __atomic_acquire_fence(); return ret; } #define arch_atomic64_fetch_inc_acquire arch_atomic64_fetch_inc_acquire #endif #ifndef arch_atomic64_fetch_inc_release static __always_inline s64 arch_atomic64_fetch_inc_release(atomic64_t *v) { __atomic_release_fence(); return arch_atomic64_fetch_inc_relaxed(v); } #define arch_atomic64_fetch_inc_release arch_atomic64_fetch_inc_release #endif #ifndef arch_atomic64_fetch_inc static __always_inline s64 arch_atomic64_fetch_inc(atomic64_t *v) { s64 ret; __atomic_pre_full_fence(); ret = arch_atomic64_fetch_inc_relaxed(v); __atomic_post_full_fence(); return ret; } #define arch_atomic64_fetch_inc arch_atomic64_fetch_inc #endif #endif /* arch_atomic64_fetch_inc_relaxed */ #ifndef arch_atomic64_dec static __always_inline void arch_atomic64_dec(atomic64_t *v) { arch_atomic64_sub(1, v); } #define arch_atomic64_dec arch_atomic64_dec #endif #ifndef arch_atomic64_dec_return_relaxed #ifdef arch_atomic64_dec_return #define arch_atomic64_dec_return_acquire arch_atomic64_dec_return #define arch_atomic64_dec_return_release arch_atomic64_dec_return #define arch_atomic64_dec_return_relaxed arch_atomic64_dec_return #endif /* arch_atomic64_dec_return */ #ifndef arch_atomic64_dec_return static __always_inline s64 arch_atomic64_dec_return(atomic64_t *v) { return arch_atomic64_sub_return(1, v); } #define arch_atomic64_dec_return arch_atomic64_dec_return #endif #ifndef arch_atomic64_dec_return_acquire static __always_inline s64 arch_atomic64_dec_return_acquire(atomic64_t *v) { return arch_atomic64_sub_return_acquire(1, v); } #define arch_atomic64_dec_return_acquire arch_atomic64_dec_return_acquire #endif #ifndef arch_atomic64_dec_return_release static __always_inline s64 arch_atomic64_dec_return_release(atomic64_t *v) { return arch_atomic64_sub_return_release(1, v); } #define arch_atomic64_dec_return_release arch_atomic64_dec_return_release #endif #ifndef arch_atomic64_dec_return_relaxed static __always_inline s64 arch_atomic64_dec_return_relaxed(atomic64_t *v) { return arch_atomic64_sub_return_relaxed(1, v); } #define arch_atomic64_dec_return_relaxed arch_atomic64_dec_return_relaxed #endif #else /* arch_atomic64_dec_return_relaxed */ #ifndef arch_atomic64_dec_return_acquire static __always_inline s64 arch_atomic64_dec_return_acquire(atomic64_t *v) { s64 ret = arch_atomic64_dec_return_relaxed(v); __atomic_acquire_fence(); return ret; } #define arch_atomic64_dec_return_acquire arch_atomic64_dec_return_acquire #endif #ifndef arch_atomic64_dec_return_release static __always_inline s64 arch_atomic64_dec_return_release(atomic64_t *v) { __atomic_release_fence(); return arch_atomic64_dec_return_relaxed(v); } #define arch_atomic64_dec_return_release arch_atomic64_dec_return_release #endif #ifndef arch_atomic64_dec_return static __always_inline s64 arch_atomic64_dec_return(atomic64_t *v) { s64 ret; __atomic_pre_full_fence(); ret = arch_atomic64_dec_return_relaxed(v); __atomic_post_full_fence(); return ret; } #define arch_atomic64_dec_return arch_atomic64_dec_return #endif #endif /* arch_atomic64_dec_return_relaxed */ #ifndef arch_atomic64_fetch_dec_relaxed #ifdef arch_atomic64_fetch_dec #define arch_atomic64_fetch_dec_acquire arch_atomic64_fetch_dec #define arch_atomic64_fetch_dec_release arch_atomic64_fetch_dec #define arch_atomic64_fetch_dec_relaxed arch_atomic64_fetch_dec #endif /* arch_atomic64_fetch_dec */ #ifndef arch_atomic64_fetch_dec static __always_inline s64 arch_atomic64_fetch_dec(atomic64_t *v) { return arch_atomic64_fetch_sub(1, v); } #define arch_atomic64_fetch_dec arch_atomic64_fetch_dec #endif #ifndef arch_atomic64_fetch_dec_acquire static __always_inline s64 arch_atomic64_fetch_dec_acquire(atomic64_t *v) { return arch_atomic64_fetch_sub_acquire(1, v); } #define arch_atomic64_fetch_dec_acquire arch_atomic64_fetch_dec_acquire #endif #ifndef arch_atomic64_fetch_dec_release static __always_inline s64 arch_atomic64_fetch_dec_release(atomic64_t *v) { return arch_atomic64_fetch_sub_release(1, v); } #define arch_atomic64_fetch_dec_release arch_atomic64_fetch_dec_release #endif #ifndef arch_atomic64_fetch_dec_relaxed static __always_inline s64 arch_atomic64_fetch_dec_relaxed(atomic64_t *v) { return arch_atomic64_fetch_sub_relaxed(1, v); } #define arch_atomic64_fetch_dec_relaxed arch_atomic64_fetch_dec_relaxed #endif #else /* arch_atomic64_fetch_dec_relaxed */ #ifndef arch_atomic64_fetch_dec_acquire static __always_inline s64 arch_atomic64_fetch_dec_acquire(atomic64_t *v) { s64 ret = arch_atomic64_fetch_dec_relaxed(v); __atomic_acquire_fence(); return ret; } #define arch_atomic64_fetch_dec_acquire arch_atomic64_fetch_dec_acquire #endif #ifndef arch_atomic64_fetch_dec_release static __always_inline s64 arch_atomic64_fetch_dec_release(atomic64_t *v) { __atomic_release_fence(); return arch_atomic64_fetch_dec_relaxed(v); } #define arch_atomic64_fetch_dec_release arch_atomic64_fetch_dec_release #endif #ifndef arch_atomic64_fetch_dec static __always_inline s64 arch_atomic64_fetch_dec(atomic64_t *v) { s64 ret; __atomic_pre_full_fence(); ret = arch_atomic64_fetch_dec_relaxed(v); __atomic_post_full_fence(); return ret; } #define arch_atomic64_fetch_dec arch_atomic64_fetch_dec #endif #endif /* arch_atomic64_fetch_dec_relaxed */ #ifndef arch_atomic64_fetch_and_relaxed #define arch_atomic64_fetch_and_acquire arch_atomic64_fetch_and #define arch_atomic64_fetch_and_release arch_atomic64_fetch_and #define arch_atomic64_fetch_and_relaxed arch_atomic64_fetch_and #else /* arch_atomic64_fetch_and_relaxed */ #ifndef arch_atomic64_fetch_and_acquire static __always_inline s64 arch_atomic64_fetch_and_acquire(s64 i, atomic64_t *v) { s64 ret = arch_atomic64_fetch_and_relaxed(i, v); __atomic_acquire_fence(); return ret; } #define arch_atomic64_fetch_and_acquire arch_atomic64_fetch_and_acquire #endif #ifndef arch_atomic64_fetch_and_release static __always_inline s64 arch_atomic64_fetch_and_release(s64 i, atomic64_t *v) { __atomic_release_fence(); return arch_atomic64_fetch_and_relaxed(i, v); } #define arch_atomic64_fetch_and_release arch_atomic64_fetch_and_release #endif #ifndef arch_atomic64_fetch_and static __always_inline s64 arch_atomic64_fetch_and(s64 i, atomic64_t *v) { s64 ret; __atomic_pre_full_fence(); ret = arch_atomic64_fetch_and_relaxed(i, v); __atomic_post_full_fence(); return ret; } #define arch_atomic64_fetch_and arch_atomic64_fetch_and #endif #endif /* arch_atomic64_fetch_and_relaxed */ #ifndef arch_atomic64_andnot static __always_inline void arch_atomic64_andnot(s64 i, atomic64_t *v) { arch_atomic64_and(~i, v); } #define arch_atomic64_andnot arch_atomic64_andnot #endif #ifndef arch_atomic64_fetch_andnot_relaxed #ifdef arch_atomic64_fetch_andnot #define arch_atomic64_fetch_andnot_acquire arch_atomic64_fetch_andnot #define arch_atomic64_fetch_andnot_release arch_atomic64_fetch_andnot #define arch_atomic64_fetch_andnot_relaxed arch_atomic64_fetch_andnot #endif /* arch_atomic64_fetch_andnot */ #ifndef arch_atomic64_fetch_andnot static __always_inline s64 arch_atomic64_fetch_andnot(s64 i, atomic64_t *v) { return arch_atomic64_fetch_and(~i, v); } #define arch_atomic64_fetch_andnot arch_atomic64_fetch_andnot #endif #ifndef arch_atomic64_fetch_andnot_acquire static __always_inline s64 arch_atomic64_fetch_andnot_acquire(s64 i, atomic64_t *v) { return arch_atomic64_fetch_and_acquire(~i, v); } #define arch_atomic64_fetch_andnot_acquire arch_atomic64_fetch_andnot_acquire #endif #ifndef arch_atomic64_fetch_andnot_release static __always_inline s64 arch_atomic64_fetch_andnot_release(s64 i, atomic64_t *v) { return arch_atomic64_fetch_and_release(~i, v); } #define arch_atomic64_fetch_andnot_release arch_atomic64_fetch_andnot_release #endif #ifndef arch_atomic64_fetch_andnot_relaxed static __always_inline s64 arch_atomic64_fetch_andnot_relaxed(s64 i, atomic64_t *v) { return arch_atomic64_fetch_and_relaxed(~i, v); } #define arch_atomic64_fetch_andnot_relaxed arch_atomic64_fetch_andnot_relaxed #endif #else /* arch_atomic64_fetch_andnot_relaxed */ #ifndef arch_atomic64_fetch_andnot_acquire static __always_inline s64 arch_atomic64_fetch_andnot_acquire(s64 i, atomic64_t *v) { s64 ret = arch_atomic64_fetch_andnot_relaxed(i, v); __atomic_acquire_fence(); return ret; } #define arch_atomic64_fetch_andnot_acquire arch_atomic64_fetch_andnot_acquire #endif #ifndef arch_atomic64_fetch_andnot_release static __always_inline s64 arch_atomic64_fetch_andnot_release(s64 i, atomic64_t *v) { __atomic_release_fence(); return arch_atomic64_fetch_andnot_relaxed(i, v); } #define arch_atomic64_fetch_andnot_release arch_atomic64_fetch_andnot_release #endif #ifndef arch_atomic64_fetch_andnot static __always_inline s64 arch_atomic64_fetch_andnot(s64 i, atomic64_t *v) { s64 ret; __atomic_pre_full_fence(); ret = arch_atomic64_fetch_andnot_relaxed(i, v); __atomic_post_full_fence(); return ret; } #define arch_atomic64_fetch_andnot arch_atomic64_fetch_andnot #endif #endif /* arch_atomic64_fetch_andnot_relaxed */ #ifndef arch_atomic64_fetch_or_relaxed #define arch_atomic64_fetch_or_acquire arch_atomic64_fetch_or #define arch_atomic64_fetch_or_release arch_atomic64_fetch_or #define arch_atomic64_fetch_or_relaxed arch_atomic64_fetch_or #else /* arch_atomic64_fetch_or_relaxed */ #ifndef arch_atomic64_fetch_or_acquire static __always_inline s64 arch_atomic64_fetch_or_acquire(s64 i, atomic64_t *v) { s64 ret = arch_atomic64_fetch_or_relaxed(i, v); __atomic_acquire_fence(); return ret; } #define arch_atomic64_fetch_or_acquire arch_atomic64_fetch_or_acquire #endif #ifndef arch_atomic64_fetch_or_release static __always_inline s64 arch_atomic64_fetch_or_release(s64 i, atomic64_t *v) { __atomic_release_fence(); return arch_atomic64_fetch_or_relaxed(i, v); } #define arch_atomic64_fetch_or_release arch_atomic64_fetch_or_release #endif #ifndef arch_atomic64_fetch_or static __always_inline s64 arch_atomic64_fetch_or(s64 i, atomic64_t *v) { s64 ret; __atomic_pre_full_fence(); ret = arch_atomic64_fetch_or_relaxed(i, v); __atomic_post_full_fence(); return ret; } #define arch_atomic64_fetch_or arch_atomic64_fetch_or #endif #endif /* arch_atomic64_fetch_or_relaxed */ #ifndef arch_atomic64_fetch_xor_relaxed #define arch_atomic64_fetch_xor_acquire arch_atomic64_fetch_xor #define arch_atomic64_fetch_xor_release arch_atomic64_fetch_xor #define arch_atomic64_fetch_xor_relaxed arch_atomic64_fetch_xor #else /* arch_atomic64_fetch_xor_relaxed */ #ifndef arch_atomic64_fetch_xor_acquire static __always_inline s64 arch_atomic64_fetch_xor_acquire(s64 i, atomic64_t *v) { s64 ret = arch_atomic64_fetch_xor_relaxed(i, v); __atomic_acquire_fence(); return ret; } #define arch_atomic64_fetch_xor_acquire arch_atomic64_fetch_xor_acquire #endif #ifndef arch_atomic64_fetch_xor_release static __always_inline s64 arch_atomic64_fetch_xor_release(s64 i, atomic64_t *v) { __atomic_release_fence(); return arch_atomic64_fetch_xor_relaxed(i, v); } #define arch_atomic64_fetch_xor_release arch_atomic64_fetch_xor_release #endif #ifndef arch_atomic64_fetch_xor static __always_inline s64 arch_atomic64_fetch_xor(s64 i, atomic64_t *v) { s64 ret; __atomic_pre_full_fence(); ret = arch_atomic64_fetch_xor_relaxed(i, v); __atomic_post_full_fence(); return ret; } #define arch_atomic64_fetch_xor arch_atomic64_fetch_xor #endif #endif /* arch_atomic64_fetch_xor_relaxed */ #ifndef arch_atomic64_xchg_relaxed #define arch_atomic64_xchg_acquire arch_atomic64_xchg #define arch_atomic64_xchg_release arch_atomic64_xchg #define arch_atomic64_xchg_relaxed arch_atomic64_xchg #else /* arch_atomic64_xchg_relaxed */ #ifndef arch_atomic64_xchg_acquire static __always_inline s64 arch_atomic64_xchg_acquire(atomic64_t *v, s64 i) { s64 ret = arch_atomic64_xchg_relaxed(v, i); __atomic_acquire_fence(); return ret; } #define arch_atomic64_xchg_acquire arch_atomic64_xchg_acquire #endif #ifndef arch_atomic64_xchg_release static __always_inline s64 arch_atomic64_xchg_release(atomic64_t *v, s64 i) { __atomic_release_fence(); return arch_atomic64_xchg_relaxed(v, i); } #define arch_atomic64_xchg_release arch_atomic64_xchg_release #endif #ifndef arch_atomic64_xchg static __always_inline s64 arch_atomic64_xchg(atomic64_t *v, s64 i) { s64 ret; __atomic_pre_full_fence(); ret = arch_atomic64_xchg_relaxed(v, i); __atomic_post_full_fence(); return ret; } #define arch_atomic64_xchg arch_atomic64_xchg #endif #endif /* arch_atomic64_xchg_relaxed */ #ifndef arch_atomic64_cmpxchg_relaxed #define arch_atomic64_cmpxchg_acquire arch_atomic64_cmpxchg #define arch_atomic64_cmpxchg_release arch_atomic64_cmpxchg #define arch_atomic64_cmpxchg_relaxed arch_atomic64_cmpxchg #else /* arch_atomic64_cmpxchg_relaxed */ #ifndef arch_atomic64_cmpxchg_acquire static __always_inline s64 arch_atomic64_cmpxchg_acquire(atomic64_t *v, s64 old, s64 new) { s64 ret = arch_atomic64_cmpxchg_relaxed(v, old, new); __atomic_acquire_fence(); return ret; } #define arch_atomic64_cmpxchg_acquire arch_atomic64_cmpxchg_acquire #endif #ifndef arch_atomic64_cmpxchg_release static __always_inline s64 arch_atomic64_cmpxchg_release(atomic64_t *v, s64 old, s64 new) { __atomic_release_fence(); return arch_atomic64_cmpxchg_relaxed(v, old, new); } #define arch_atomic64_cmpxchg_release arch_atomic64_cmpxchg_release #endif #ifndef arch_atomic64_cmpxchg static __always_inline s64 arch_atomic64_cmpxchg(atomic64_t *v, s64 old, s64 new) { s64 ret; __atomic_pre_full_fence(); ret = arch_atomic64_cmpxchg_relaxed(v, old, new); __atomic_post_full_fence(); return ret; } #define arch_atomic64_cmpxchg arch_atomic64_cmpxchg #endif #endif /* arch_atomic64_cmpxchg_relaxed */ #ifndef arch_atomic64_try_cmpxchg_relaxed #ifdef arch_atomic64_try_cmpxchg #define arch_atomic64_try_cmpxchg_acquire arch_atomic64_try_cmpxchg #define arch_atomic64_try_cmpxchg_release arch_atomic64_try_cmpxchg #define arch_atomic64_try_cmpxchg_relaxed arch_atomic64_try_cmpxchg #endif /* arch_atomic64_try_cmpxchg */ #ifndef arch_atomic64_try_cmpxchg static __always_inline bool arch_atomic64_try_cmpxchg(atomic64_t *v, s64 *old, s64 new) { s64 r, o = *old; r = arch_atomic64_cmpxchg(v, o, new); if (unlikely(r != o)) *old = r; return likely(r == o); } #define arch_atomic64_try_cmpxchg arch_atomic64_try_cmpxchg #endif #ifndef arch_atomic64_try_cmpxchg_acquire static __always_inline bool arch_atomic64_try_cmpxchg_acquire(atomic64_t *v, s64 *old, s64 new) { s64 r, o = *old; r = arch_atomic64_cmpxchg_acquire(v, o, new); if (unlikely(r != o)) *old = r; return likely(r == o); } #define arch_atomic64_try_cmpxchg_acquire arch_atomic64_try_cmpxchg_acquire #endif #ifndef arch_atomic64_try_cmpxchg_release static __always_inline bool arch_atomic64_try_cmpxchg_release(atomic64_t *v, s64 *old, s64 new) { s64 r, o = *old; r = arch_atomic64_cmpxchg_release(v, o, new); if (unlikely(r != o)) *old = r; return likely(r == o); } #define arch_atomic64_try_cmpxchg_release arch_atomic64_try_cmpxchg_release #endif #ifndef arch_atomic64_try_cmpxchg_relaxed static __always_inline bool arch_atomic64_try_cmpxchg_relaxed(atomic64_t *v, s64 *old, s64 new) { s64 r, o = *old; r = arch_atomic64_cmpxchg_relaxed(v, o, new); if (unlikely(r != o)) *old = r; return likely(r == o); } #define arch_atomic64_try_cmpxchg_relaxed arch_atomic64_try_cmpxchg_relaxed #endif #else /* arch_atomic64_try_cmpxchg_relaxed */ #ifndef arch_atomic64_try_cmpxchg_acquire static __always_inline bool arch_atomic64_try_cmpxchg_acquire(atomic64_t *v, s64 *old, s64 new) { bool ret = arch_atomic64_try_cmpxchg_relaxed(v, old, new); __atomic_acquire_fence(); return ret; } #define arch_atomic64_try_cmpxchg_acquire arch_atomic64_try_cmpxchg_acquire #endif #ifndef arch_atomic64_try_cmpxchg_release static __always_inline bool arch_atomic64_try_cmpxchg_release(atomic64_t *v, s64 *old, s64 new) { __atomic_release_fence(); return arch_atomic64_try_cmpxchg_relaxed(v, old, new); } #define arch_atomic64_try_cmpxchg_release arch_atomic64_try_cmpxchg_release #endif #ifndef arch_atomic64_try_cmpxchg static __always_inline bool arch_atomic64_try_cmpxchg(atomic64_t *v, s64 *old, s64 new) { bool ret; __atomic_pre_full_fence(); ret = arch_atomic64_try_cmpxchg_relaxed(v, old, new); __atomic_post_full_fence(); return ret; } #define arch_atomic64_try_cmpxchg arch_atomic64_try_cmpxchg #endif #endif /* arch_atomic64_try_cmpxchg_relaxed */ #ifndef arch_atomic64_sub_and_test /** * arch_atomic64_sub_and_test - subtract value from variable and test result * @i: integer value to subtract * @v: pointer of type atomic64_t * * Atomically subtracts @i from @v and returns * true if the result is zero, or false for all * other cases. */ static __always_inline bool arch_atomic64_sub_and_test(s64 i, atomic64_t *v) { return arch_atomic64_sub_return(i, v) == 0; } #define arch_atomic64_sub_and_test arch_atomic64_sub_and_test #endif #ifndef arch_atomic64_dec_and_test /** * arch_atomic64_dec_and_test - decrement and test * @v: pointer of type atomic64_t * * Atomically decrements @v by 1 and * returns true if the result is 0, or false for all other * cases. */ static __always_inline bool arch_atomic64_dec_and_test(atomic64_t *v) { return arch_atomic64_dec_return(v) == 0; } #define arch_atomic64_dec_and_test arch_atomic64_dec_and_test #endif #ifndef arch_atomic64_inc_and_test /** * arch_atomic64_inc_and_test - increment and test * @v: pointer of type atomic64_t * * Atomically increments @v by 1 * and returns true if the result is zero, or false for all * other cases. */ static __always_inline bool arch_atomic64_inc_and_test(atomic64_t *v) { return arch_atomic64_inc_return(v) == 0; } #define arch_atomic64_inc_and_test arch_atomic64_inc_and_test #endif #ifndef arch_atomic64_add_negative /** * arch_atomic64_add_negative - add and test if negative * @i: integer value to add * @v: pointer of type atomic64_t * * Atomically adds @i to @v and returns true * if the result is negative, or false when * result is greater than or equal to zero. */ static __always_inline bool arch_atomic64_add_negative(s64 i, atomic64_t *v) { return arch_atomic64_add_return(i, v) < 0; } #define arch_atomic64_add_negative arch_atomic64_add_negative #endif #ifndef arch_atomic64_fetch_add_unless /** * arch_atomic64_fetch_add_unless - add unless the number is already a given value * @v: pointer of type atomic64_t * @a: the amount to add to v... * @u: ...unless v is equal to u. * * Atomically adds @a to @v, so long as @v was not already @u. * Returns original value of @v */ static __always_inline s64 arch_atomic64_fetch_add_unless(atomic64_t *v, s64 a, s64 u) { s64 c = arch_atomic64_read(v); do { if (unlikely(c == u)) break; } while (!arch_atomic64_try_cmpxchg(v, &c, c + a)); return c; } #define arch_atomic64_fetch_add_unless arch_atomic64_fetch_add_unless #endif #ifndef arch_atomic64_add_unless /** * arch_atomic64_add_unless - add unless the number is already a given value * @v: pointer of type atomic64_t * @a: the amount to add to v... * @u: ...unless v is equal to u. * * Atomically adds @a to @v, if @v was not already @u. * Returns true if the addition was done. */ static __always_inline bool arch_atomic64_add_unless(atomic64_t *v, s64 a, s64 u) { return arch_atomic64_fetch_add_unless(v, a, u) != u; } #define arch_atomic64_add_unless arch_atomic64_add_unless #endif #ifndef arch_atomic64_inc_not_zero /** * arch_atomic64_inc_not_zero - increment unless the number is zero * @v: pointer of type atomic64_t * * Atomically increments @v by 1, if @v is non-zero. * Returns true if the increment was done. */ static __always_inline bool arch_atomic64_inc_not_zero(atomic64_t *v) { return arch_atomic64_add_unless(v, 1, 0); } #define arch_atomic64_inc_not_zero arch_atomic64_inc_not_zero #endif #ifndef arch_atomic64_inc_unless_negative static __always_inline bool arch_atomic64_inc_unless_negative(atomic64_t *v) { s64 c = arch_atomic64_read(v); do { if (unlikely(c < 0)) return false; } while (!arch_atomic64_try_cmpxchg(v, &c, c + 1)); return true; } #define arch_atomic64_inc_unless_negative arch_atomic64_inc_unless_negative #endif #ifndef arch_atomic64_dec_unless_positive static __always_inline bool arch_atomic64_dec_unless_positive(atomic64_t *v) { s64 c = arch_atomic64_read(v); do { if (unlikely(c > 0)) return false; } while (!arch_atomic64_try_cmpxchg(v, &c, c - 1)); return true; } #define arch_atomic64_dec_unless_positive arch_atomic64_dec_unless_positive #endif #ifndef arch_atomic64_dec_if_positive static __always_inline s64 arch_atomic64_dec_if_positive(atomic64_t *v) { s64 dec, c = arch_atomic64_read(v); do { dec = c - 1; if (unlikely(dec < 0)) break; } while (!arch_atomic64_try_cmpxchg(v, &c, dec)); return dec; } #define arch_atomic64_dec_if_positive arch_atomic64_dec_if_positive #endif #endif /* _LINUX_ATOMIC_FALLBACK_H */ // 90cd26cfd69d2250303d654955a0cc12620fb91b
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _X_TABLES_H #define _X_TABLES_H #include <linux/netdevice.h> #include <linux/static_key.h> #include <linux/netfilter.h> #include <uapi/linux/netfilter/x_tables.h> /* Test a struct->invflags and a boolean for inequality */ #define NF_INVF(ptr, flag, boolean) \ ((boolean) ^ !!((ptr)->invflags & (flag))) /** * struct xt_action_param - parameters for matches/targets * * @match: the match extension * @target: the target extension * @matchinfo: per-match data * @targetinfo: per-target data * @state: pointer to hook state this packet came from * @fragoff: packet is a fragment, this is the data offset * @thoff: position of transport header relative to skb->data * * Fields written to by extensions: * * @hotdrop: drop packet if we had inspection problems */ struct xt_action_param { union { const struct xt_match *match; const struct xt_target *target; }; union { const void *matchinfo, *targinfo; }; const struct nf_hook_state *state; int fragoff; unsigned int thoff; bool hotdrop; }; static inline struct net *xt_net(const struct xt_action_param *par) { return par->state->net; } static inline struct net_device *xt_in(const struct xt_action_param *par) { return par->state->in; } static inline const char *xt_inname(const struct xt_action_param *par) { return par->state->in->name; } static inline struct net_device *xt_out(const struct xt_action_param *par) { return par->state->out; } static inline const char *xt_outname(const struct xt_action_param *par) { return par->state->out->name; } static inline unsigned int xt_hooknum(const struct xt_action_param *par) { return par->state->hook; } static inline u_int8_t xt_family(const struct xt_action_param *par) { return par->state->pf; } /** * struct xt_mtchk_param - parameters for match extensions' * checkentry functions * * @net: network namespace through which the check was invoked * @table: table the rule is tried to be inserted into * @entryinfo: the family-specific rule data * (struct ipt_ip, ip6t_ip, arpt_arp or (note) ebt_entry) * @match: struct xt_match through which this function was invoked * @matchinfo: per-match data * @hook_mask: via which hooks the new rule is reachable * Other fields as above. */ struct xt_mtchk_param { struct net *net; const char *table; const void *entryinfo; const struct xt_match *match; void *matchinfo; unsigned int hook_mask; u_int8_t family; bool nft_compat; }; /** * struct xt_mdtor_param - match destructor parameters * Fields as above. */ struct xt_mtdtor_param { struct net *net; const struct xt_match *match; void *matchinfo; u_int8_t family; }; /** * struct xt_tgchk_param - parameters for target extensions' * checkentry functions * * @entryinfo: the family-specific rule data * (struct ipt_entry, ip6t_entry, arpt_entry, ebt_entry) * * Other fields see above. */ struct xt_tgchk_param { struct net *net; const char *table; const void *entryinfo; const struct xt_target *target; void *targinfo; unsigned int hook_mask; u_int8_t family; bool nft_compat; }; /* Target destructor parameters */ struct xt_tgdtor_param { struct net *net; const struct xt_target *target; void *targinfo; u_int8_t family; }; struct xt_match { struct list_head list; const char name[XT_EXTENSION_MAXNAMELEN]; u_int8_t revision; /* Return true or false: return FALSE and set *hotdrop = 1 to force immediate packet drop. */ /* Arguments changed since 2.6.9, as this must now handle non-linear skb, using skb_header_pointer and skb_ip_make_writable. */ bool (*match)(const struct sk_buff *skb, struct xt_action_param *); /* Called when user tries to insert an entry of this type. */ int (*checkentry)(const struct xt_mtchk_param *); /* Called when entry of this type deleted. */ void (*destroy)(const struct xt_mtdtor_param *); #ifdef CONFIG_COMPAT /* Called when userspace align differs from kernel space one */ void (*compat_from_user)(void *dst, const void *src); int (*compat_to_user)(void __user *dst, const void *src); #endif /* Set this to THIS_MODULE if you are a module, otherwise NULL */ struct module *me; const char *table; unsigned int matchsize; unsigned int usersize; #ifdef CONFIG_COMPAT unsigned int compatsize; #endif unsigned int hooks; unsigned short proto; unsigned short family; }; /* Registration hooks for targets. */ struct xt_target { struct list_head list; const char name[XT_EXTENSION_MAXNAMELEN]; u_int8_t revision; /* Returns verdict. Argument order changed since 2.6.9, as this must now handle non-linear skbs, using skb_copy_bits and skb_ip_make_writable. */ unsigned int (*target)(struct sk_buff *skb, const struct xt_action_param *); /* Called when user tries to insert an entry of this type: hook_mask is a bitmask of hooks from which it can be called. */ /* Should return 0 on success or an error code otherwise (-Exxxx). */ int (*checkentry)(const struct xt_tgchk_param *); /* Called when entry of this type deleted. */ void (*destroy)(const struct xt_tgdtor_param *); #ifdef CONFIG_COMPAT /* Called when userspace align differs from kernel space one */ void (*compat_from_user)(void *dst, const void *src); int (*compat_to_user)(void __user *dst, const void *src); #endif /* Set this to THIS_MODULE if you are a module, otherwise NULL */ struct module *me; const char *table; unsigned int targetsize; unsigned int usersize; #ifdef CONFIG_COMPAT unsigned int compatsize; #endif unsigned int hooks; unsigned short proto; unsigned short family; }; /* Furniture shopping... */ struct xt_table { struct list_head list; /* What hooks you will enter on */ unsigned int valid_hooks; /* Man behind the curtain... */ struct xt_table_info *private; /* Set this to THIS_MODULE if you are a module, otherwise NULL */ struct module *me; u_int8_t af; /* address/protocol family */ int priority; /* hook order */ /* called when table is needed in the given netns */ int (*table_init)(struct net *net); /* A unique name... */ const char name[XT_TABLE_MAXNAMELEN]; }; #include <linux/netfilter_ipv4.h> /* The table itself */ struct xt_table_info { /* Size per table */ unsigned int size; /* Number of entries: FIXME. --RR */ unsigned int number; /* Initial number of entries. Needed for module usage count */ unsigned int initial_entries; /* Entry points and underflows */ unsigned int hook_entry[NF_INET_NUMHOOKS]; unsigned int underflow[NF_INET_NUMHOOKS]; /* * Number of user chains. Since tables cannot have loops, at most * @stacksize jumps (number of user chains) can possibly be made. */ unsigned int stacksize; void ***jumpstack; unsigned char entries[] __aligned(8); }; int xt_register_target(struct xt_target *target); void xt_unregister_target(struct xt_target *target); int xt_register_targets(struct xt_target *target, unsigned int n); void xt_unregister_targets(struct xt_target *target, unsigned int n); int xt_register_match(struct xt_match *target); void xt_unregister_match(struct xt_match *target); int xt_register_matches(struct xt_match *match, unsigned int n); void xt_unregister_matches(struct xt_match *match, unsigned int n); int xt_check_entry_offsets(const void *base, const char *elems, unsigned int target_offset, unsigned int next_offset); int xt_check_table_hooks(const struct xt_table_info *info, unsigned int valid_hooks); unsigned int *xt_alloc_entry_offsets(unsigned int size); bool xt_find_jump_offset(const unsigned int *offsets, unsigned int target, unsigned int size); int xt_check_proc_name(const char *name, unsigned int size); int xt_check_match(struct xt_mtchk_param *, unsigned int size, u16 proto, bool inv_proto); int xt_check_target(struct xt_tgchk_param *, unsigned int size, u16 proto, bool inv_proto); int xt_match_to_user(const struct xt_entry_match *m, struct xt_entry_match __user *u); int xt_target_to_user(const struct xt_entry_target *t, struct xt_entry_target __user *u); int xt_data_to_user(void __user *dst, const void *src, int usersize, int size, int aligned_size); void *xt_copy_counters(sockptr_t arg, unsigned int len, struct xt_counters_info *info); struct xt_counters *xt_counters_alloc(unsigned int counters); struct xt_table *xt_register_table(struct net *net, const struct xt_table *table, struct xt_table_info *bootstrap, struct xt_table_info *newinfo); void *xt_unregister_table(struct xt_table *table); struct xt_table_info *xt_replace_table(struct xt_table *table, unsigned int num_counters, struct xt_table_info *newinfo, int *error); struct xt_match *xt_find_match(u8 af, const char *name, u8 revision); struct xt_match *xt_request_find_match(u8 af, const char *name, u8 revision); struct xt_target *xt_request_find_target(u8 af, const char *name, u8 revision); int xt_find_revision(u8 af, const char *name, u8 revision, int target, int *err); struct xt_table *xt_find_table_lock(struct net *net, u_int8_t af, const char *name); struct xt_table *xt_request_find_table_lock(struct net *net, u_int8_t af, const char *name); void xt_table_unlock(struct xt_table *t); int xt_proto_init(struct net *net, u_int8_t af); void xt_proto_fini(struct net *net, u_int8_t af); struct xt_table_info *xt_alloc_table_info(unsigned int size); void xt_free_table_info(struct xt_table_info *info); /** * xt_recseq - recursive seqcount for netfilter use * * Packet processing changes the seqcount only if no recursion happened * get_counters() can use read_seqcount_begin()/read_seqcount_retry(), * because we use the normal seqcount convention : * Low order bit set to 1 if a writer is active. */ DECLARE_PER_CPU(seqcount_t, xt_recseq); /* xt_tee_enabled - true if x_tables needs to handle reentrancy * * Enabled if current ip(6)tables ruleset has at least one -j TEE rule. */ extern struct static_key xt_tee_enabled; /** * xt_write_recseq_begin - start of a write section * * Begin packet processing : all readers must wait the end * 1) Must be called with preemption disabled * 2) softirqs must be disabled too (or we should use this_cpu_add()) * Returns : * 1 if no recursion on this cpu * 0 if recursion detected */ static inline unsigned int xt_write_recseq_begin(void) { unsigned int addend; /* * Low order bit of sequence is set if we already * called xt_write_recseq_begin(). */ addend = (__this_cpu_read(xt_recseq.sequence) + 1) & 1; /* * This is kind of a write_seqcount_begin(), but addend is 0 or 1 * We dont check addend value to avoid a test and conditional jump, * since addend is most likely 1 */ __this_cpu_add(xt_recseq.sequence, addend); smp_mb(); return addend; } /** * xt_write_recseq_end - end of a write section * @addend: return value from previous xt_write_recseq_begin() * * End packet processing : all readers can proceed * 1) Must be called with preemption disabled * 2) softirqs must be disabled too (or we should use this_cpu_add()) */ static inline void xt_write_recseq_end(unsigned int addend) { /* this is kind of a write_seqcount_end(), but addend is 0 or 1 */ smp_wmb(); __this_cpu_add(xt_recseq.sequence, addend); } /* * This helper is performance critical and must be inlined */ static inline unsigned long ifname_compare_aligned(const char *_a, const char *_b, const char *_mask) { const unsigned long *a = (const unsigned long *)_a; const unsigned long *b = (const unsigned long *)_b; const unsigned long *mask = (const unsigned long *)_mask; unsigned long ret; ret = (a[0] ^ b[0]) & mask[0]; if (IFNAMSIZ > sizeof(unsigned long)) ret |= (a[1] ^ b[1]) & mask[1]; if (IFNAMSIZ > 2 * sizeof(unsigned long)) ret |= (a[2] ^ b[2]) & mask[2]; if (IFNAMSIZ > 3 * sizeof(unsigned long)) ret |= (a[3] ^ b[3]) & mask[3]; BUILD_BUG_ON(IFNAMSIZ > 4 * sizeof(unsigned long)); return ret; } struct xt_percpu_counter_alloc_state { unsigned int off; const char __percpu *mem; }; bool xt_percpu_counter_alloc(struct xt_percpu_counter_alloc_state *state, struct xt_counters *counter); void xt_percpu_counter_free(struct xt_counters *cnt); static inline struct xt_counters * xt_get_this_cpu_counter(struct xt_counters *cnt) { if (nr_cpu_ids > 1) return this_cpu_ptr((void __percpu *) (unsigned long) cnt->pcnt); return cnt; } static inline struct xt_counters * xt_get_per_cpu_counter(struct xt_counters *cnt, unsigned int cpu) { if (nr_cpu_ids > 1) return per_cpu_ptr((void __percpu *) (unsigned long) cnt->pcnt, cpu); return cnt; } struct nf_hook_ops *xt_hook_ops_alloc(const struct xt_table *, nf_hookfn *); #ifdef CONFIG_COMPAT #include <net/compat.h> struct compat_xt_entry_match { union { struct { u_int16_t match_size; char name[XT_FUNCTION_MAXNAMELEN - 1]; u_int8_t revision; } user; struct { u_int16_t match_size; compat_uptr_t match; } kernel; u_int16_t match_size; } u; unsigned char data[]; }; struct compat_xt_entry_target { union { struct { u_int16_t target_size; char name[XT_FUNCTION_MAXNAMELEN - 1]; u_int8_t revision; } user; struct { u_int16_t target_size; compat_uptr_t target; } kernel; u_int16_t target_size; } u; unsigned char data[]; }; /* FIXME: this works only on 32 bit tasks * need to change whole approach in order to calculate align as function of * current task alignment */ struct compat_xt_counters { compat_u64 pcnt, bcnt; /* Packet and byte counters */ }; struct compat_xt_counters_info { char name[XT_TABLE_MAXNAMELEN]; compat_uint_t num_counters; struct compat_xt_counters counters[]; }; struct _compat_xt_align { __u8 u8; __u16 u16; __u32 u32; compat_u64 u64; }; #define COMPAT_XT_ALIGN(s) __ALIGN_KERNEL((s), __alignof__(struct _compat_xt_align)) void xt_compat_lock(u_int8_t af); void xt_compat_unlock(u_int8_t af); int xt_compat_add_offset(u_int8_t af, unsigned int offset, int delta); void xt_compat_flush_offsets(u_int8_t af); int xt_compat_init_offsets(u8 af, unsigned int number); int xt_compat_calc_jump(u_int8_t af, unsigned int offset); int xt_compat_match_offset(const struct xt_match *match); void xt_compat_match_from_user(struct xt_entry_match *m, void **dstptr, unsigned int *size); int xt_compat_match_to_user(const struct xt_entry_match *m, void __user **dstptr, unsigned int *size); int xt_compat_target_offset(const struct xt_target *target); void xt_compat_target_from_user(struct xt_entry_target *t, void **dstptr, unsigned int *size); int xt_compat_target_to_user(const struct xt_entry_target *t, void __user **dstptr, unsigned int *size); int xt_compat_check_entry_offsets(const void *base, const char *elems, unsigned int target_offset, unsigned int next_offset); #endif /* CONFIG_COMPAT */ #endif /* _X_TABLES_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_BSEARCH_H #define _LINUX_BSEARCH_H #include <linux/types.h> static __always_inline void *__inline_bsearch(const void *key, const void *base, size_t num, size_t size, cmp_func_t cmp) { const char *pivot; int result; while (num > 0) { pivot = base + (num >> 1) * size; result = cmp(key, pivot); if (result == 0) return (void *)pivot; if (result > 0) { base = pivot + size; num--; } num >>= 1; } return NULL; } extern void *bsearch(const void *key, const void *base, size_t num, size_t size, cmp_func_t cmp); #endif /* _LINUX_BSEARCH_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef DRIVERS_PCI_H #define DRIVERS_PCI_H #include <linux/pci.h> /* Number of possible devfns: 0.0 to 1f.7 inclusive */ #define MAX_NR_DEVFNS 256 #define PCI_FIND_CAP_TTL 48 #define PCI_VSEC_ID_INTEL_TBT 0x1234 /* Thunderbolt */ extern const unsigned char pcie_link_speed[]; extern bool pci_early_dump; bool pcie_cap_has_lnkctl(const struct pci_dev *dev); bool pcie_cap_has_rtctl(const struct pci_dev *dev); /* Functions internal to the PCI core code */ int pci_create_sysfs_dev_files(struct pci_dev *pdev); void pci_remove_sysfs_dev_files(struct pci_dev *pdev); #if !defined(CONFIG_DMI) && !defined(CONFIG_ACPI) static inline void pci_create_firmware_label_files(struct pci_dev *pdev) { return; } static inline void pci_remove_firmware_label_files(struct pci_dev *pdev) { return; } #else void pci_create_firmware_label_files(struct pci_dev *pdev); void pci_remove_firmware_label_files(struct pci_dev *pdev); #endif void pci_cleanup_rom(struct pci_dev *dev); enum pci_mmap_api { PCI_MMAP_SYSFS, /* mmap on /sys/bus/pci/devices/<BDF>/resource<N> */ PCI_MMAP_PROCFS /* mmap on /proc/bus/pci/<BDF> */ }; int pci_mmap_fits(struct pci_dev *pdev, int resno, struct vm_area_struct *vmai, enum pci_mmap_api mmap_api); int pci_probe_reset_function(struct pci_dev *dev); int pci_bridge_secondary_bus_reset(struct pci_dev *dev); int pci_bus_error_reset(struct pci_dev *dev); #define PCI_PM_D2_DELAY 200 /* usec; see PCIe r4.0, sec 5.9.1 */ #define PCI_PM_D3HOT_WAIT 10 /* msec */ #define PCI_PM_D3COLD_WAIT 100 /* msec */ /** * struct pci_platform_pm_ops - Firmware PM callbacks * * @bridge_d3: Does the bridge allow entering into D3 * * @is_manageable: returns 'true' if given device is power manageable by the * platform firmware * * @set_state: invokes the platform firmware to set the device's power state * * @get_state: queries the platform firmware for a device's current power state * * @refresh_state: asks the platform to refresh the device's power state data * * @choose_state: returns PCI power state of given device preferred by the * platform; to be used during system-wide transitions from a * sleeping state to the working state and vice versa * * @set_wakeup: enables/disables wakeup capability for the device * * @need_resume: returns 'true' if the given device (which is currently * suspended) needs to be resumed to be configured for system * wakeup. * * If given platform is generally capable of power managing PCI devices, all of * these callbacks are mandatory. */ struct pci_platform_pm_ops { bool (*bridge_d3)(struct pci_dev *dev); bool (*is_manageable)(struct pci_dev *dev); int (*set_state)(struct pci_dev *dev, pci_power_t state); pci_power_t (*get_state)(struct pci_dev *dev); void (*refresh_state)(struct pci_dev *dev); pci_power_t (*choose_state)(struct pci_dev *dev); int (*set_wakeup)(struct pci_dev *dev, bool enable); bool (*need_resume)(struct pci_dev *dev); }; int pci_set_platform_pm(const struct pci_platform_pm_ops *ops); void pci_update_current_state(struct pci_dev *dev, pci_power_t state); void pci_refresh_power_state(struct pci_dev *dev); int pci_power_up(struct pci_dev *dev); void pci_disable_enabled_device(struct pci_dev *dev); int pci_finish_runtime_suspend(struct pci_dev *dev); void pcie_clear_device_status(struct pci_dev *dev); void pcie_clear_root_pme_status(struct pci_dev *dev); bool pci_check_pme_status(struct pci_dev *dev); void pci_pme_wakeup_bus(struct pci_bus *bus); int __pci_pme_wakeup(struct pci_dev *dev, void *ign); void pci_pme_restore(struct pci_dev *dev); bool pci_dev_need_resume(struct pci_dev *dev); void pci_dev_adjust_pme(struct pci_dev *dev); void pci_dev_complete_resume(struct pci_dev *pci_dev); void pci_config_pm_runtime_get(struct pci_dev *dev); void pci_config_pm_runtime_put(struct pci_dev *dev); void pci_pm_init(struct pci_dev *dev); void pci_ea_init(struct pci_dev *dev); void pci_allocate_cap_save_buffers(struct pci_dev *dev); void pci_free_cap_save_buffers(struct pci_dev *dev); bool pci_bridge_d3_possible(struct pci_dev *dev); void pci_bridge_d3_update(struct pci_dev *dev); void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev); static inline void pci_wakeup_event(struct pci_dev *dev) { /* Wait 100 ms before the system can be put into a sleep state. */ pm_wakeup_event(&dev->dev, 100); } static inline bool pci_has_subordinate(struct pci_dev *pci_dev) { return !!(pci_dev->subordinate); } static inline bool pci_power_manageable(struct pci_dev *pci_dev) { /* * Currently we allow normal PCI devices and PCI bridges transition * into D3 if their bridge_d3 is set. */ return !pci_has_subordinate(pci_dev) || pci_dev->bridge_d3; } static inline bool pcie_downstream_port(const struct pci_dev *dev) { int type = pci_pcie_type(dev); return type == PCI_EXP_TYPE_ROOT_PORT || type == PCI_EXP_TYPE_DOWNSTREAM || type == PCI_EXP_TYPE_PCIE_BRIDGE; } int pci_vpd_init(struct pci_dev *dev); void pci_vpd_release(struct pci_dev *dev); void pcie_vpd_create_sysfs_dev_files(struct pci_dev *dev); void pcie_vpd_remove_sysfs_dev_files(struct pci_dev *dev); /* PCI Virtual Channel */ int pci_save_vc_state(struct pci_dev *dev); void pci_restore_vc_state(struct pci_dev *dev); void pci_allocate_vc_save_buffers(struct pci_dev *dev); /* PCI /proc functions */ #ifdef CONFIG_PROC_FS int pci_proc_attach_device(struct pci_dev *dev); int pci_proc_detach_device(struct pci_dev *dev); int pci_proc_detach_bus(struct pci_bus *bus); #else static inline int pci_proc_attach_device(struct pci_dev *dev) { return 0; } static inline int pci_proc_detach_device(struct pci_dev *dev) { return 0; } static inline int pci_proc_detach_bus(struct pci_bus *bus) { return 0; } #endif /* Functions for PCI Hotplug drivers to use */ int pci_hp_add_bridge(struct pci_dev *dev); #ifdef HAVE_PCI_LEGACY void pci_create_legacy_files(struct pci_bus *bus); void pci_remove_legacy_files(struct pci_bus *bus); #else static inline void pci_create_legacy_files(struct pci_bus *bus) { return; } static inline void pci_remove_legacy_files(struct pci_bus *bus) { return; } #endif /* Lock for read/write access to pci device and bus lists */ extern struct rw_semaphore pci_bus_sem; extern struct mutex pci_slot_mutex; extern raw_spinlock_t pci_lock; extern unsigned int pci_pm_d3hot_delay; #ifdef CONFIG_PCI_MSI void pci_no_msi(void); #else static inline void pci_no_msi(void) { } #endif static inline void pci_msi_set_enable(struct pci_dev *dev, int enable) { u16 control; pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &control); control &= ~PCI_MSI_FLAGS_ENABLE; if (enable) control |= PCI_MSI_FLAGS_ENABLE; pci_write_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, control); } static inline void pci_msix_clear_and_set_ctrl(struct pci_dev *dev, u16 clear, u16 set) { u16 ctrl; pci_read_config_word(dev, dev->msix_cap + PCI_MSIX_FLAGS, &ctrl); ctrl &= ~clear; ctrl |= set; pci_write_config_word(dev, dev->msix_cap + PCI_MSIX_FLAGS, ctrl); } void pci_realloc_get_opt(char *); static inline int pci_no_d1d2(struct pci_dev *dev) { unsigned int parent_dstates = 0; if (dev->bus->self) parent_dstates = dev->bus->self->no_d1d2; return (dev->no_d1d2 || parent_dstates); } extern const struct attribute_group *pci_dev_groups[]; extern const struct attribute_group *pcibus_groups[]; extern const struct device_type pci_dev_type; extern const struct attribute_group *pci_bus_groups[]; extern unsigned long pci_hotplug_io_size; extern unsigned long pci_hotplug_mmio_size; extern unsigned long pci_hotplug_mmio_pref_size; extern unsigned long pci_hotplug_bus_size; /** * pci_match_one_device - Tell if a PCI device structure has a matching * PCI device id structure * @id: single PCI device id structure to match * @dev: the PCI device structure to match against * * Returns the matching pci_device_id structure or %NULL if there is no match. */ static inline const struct pci_device_id * pci_match_one_device(const struct pci_device_id *id, const struct pci_dev *dev) { if ((id->vendor == PCI_ANY_ID || id->vendor == dev->vendor) && (id->device == PCI_ANY_ID || id->device == dev->device) && (id->subvendor == PCI_ANY_ID || id->subvendor == dev->subsystem_vendor) && (id->subdevice == PCI_ANY_ID || id->subdevice == dev->subsystem_device) && !((id->class ^ dev->class) & id->class_mask)) return id; return NULL; } /* PCI slot sysfs helper code */ #define to_pci_slot(s) container_of(s, struct pci_slot, kobj) extern struct kset *pci_slots_kset; struct pci_slot_attribute { struct attribute attr; ssize_t (*show)(struct pci_slot *, char *); ssize_t (*store)(struct pci_slot *, const char *, size_t); }; #define to_pci_slot_attr(s) container_of(s, struct pci_slot_attribute, attr) enum pci_bar_type { pci_bar_unknown, /* Standard PCI BAR probe */ pci_bar_io, /* An I/O port BAR */ pci_bar_mem32, /* A 32-bit memory BAR */ pci_bar_mem64, /* A 64-bit memory BAR */ }; struct device *pci_get_host_bridge_device(struct pci_dev *dev); void pci_put_host_bridge_device(struct device *dev); int pci_configure_extended_tags(struct pci_dev *dev, void *ign); bool pci_bus_read_dev_vendor_id(struct pci_bus *bus, int devfn, u32 *pl, int crs_timeout); bool pci_bus_generic_read_dev_vendor_id(struct pci_bus *bus, int devfn, u32 *pl, int crs_timeout); int pci_idt_bus_quirk(struct pci_bus *bus, int devfn, u32 *pl, int crs_timeout); int pci_setup_device(struct pci_dev *dev); int __pci_read_base(struct pci_dev *dev, enum pci_bar_type type, struct resource *res, unsigned int reg); void pci_configure_ari(struct pci_dev *dev); void __pci_bus_size_bridges(struct pci_bus *bus, struct list_head *realloc_head); void __pci_bus_assign_resources(const struct pci_bus *bus, struct list_head *realloc_head, struct list_head *fail_head); bool pci_bus_clip_resource(struct pci_dev *dev, int idx); void pci_reassigndev_resource_alignment(struct pci_dev *dev); void pci_disable_bridge_window(struct pci_dev *dev); struct pci_bus *pci_bus_get(struct pci_bus *bus); void pci_bus_put(struct pci_bus *bus); /* PCIe link information from Link Capabilities 2 */ #define PCIE_LNKCAP2_SLS2SPEED(lnkcap2) \ ((lnkcap2) & PCI_EXP_LNKCAP2_SLS_32_0GB ? PCIE_SPEED_32_0GT : \ (lnkcap2) & PCI_EXP_LNKCAP2_SLS_16_0GB ? PCIE_SPEED_16_0GT : \ (lnkcap2) & PCI_EXP_LNKCAP2_SLS_8_0GB ? PCIE_SPEED_8_0GT : \ (lnkcap2) & PCI_EXP_LNKCAP2_SLS_5_0GB ? PCIE_SPEED_5_0GT : \ (lnkcap2) & PCI_EXP_LNKCAP2_SLS_2_5GB ? PCIE_SPEED_2_5GT : \ PCI_SPEED_UNKNOWN) /* PCIe speed to Mb/s reduced by encoding overhead */ #define PCIE_SPEED2MBS_ENC(speed) \ ((speed) == PCIE_SPEED_32_0GT ? 32000*128/130 : \ (speed) == PCIE_SPEED_16_0GT ? 16000*128/130 : \ (speed) == PCIE_SPEED_8_0GT ? 8000*128/130 : \ (speed) == PCIE_SPEED_5_0GT ? 5000*8/10 : \ (speed) == PCIE_SPEED_2_5GT ? 2500*8/10 : \ 0) const char *pci_speed_string(enum pci_bus_speed speed); enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev); enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev); u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed, enum pcie_link_width *width); void __pcie_print_link_status(struct pci_dev *dev, bool verbose); void pcie_report_downtraining(struct pci_dev *dev); void pcie_update_link_speed(struct pci_bus *bus, u16 link_status); /* Single Root I/O Virtualization */ struct pci_sriov { int pos; /* Capability position */ int nres; /* Number of resources */ u32 cap; /* SR-IOV Capabilities */ u16 ctrl; /* SR-IOV Control */ u16 total_VFs; /* Total VFs associated with the PF */ u16 initial_VFs; /* Initial VFs associated with the PF */ u16 num_VFs; /* Number of VFs available */ u16 offset; /* First VF Routing ID offset */ u16 stride; /* Following VF stride */ u16 vf_device; /* VF device ID */ u32 pgsz; /* Page size for BAR alignment */ u8 link; /* Function Dependency Link */ u8 max_VF_buses; /* Max buses consumed by VFs */ u16 driver_max_VFs; /* Max num VFs driver supports */ struct pci_dev *dev; /* Lowest numbered PF */ struct pci_dev *self; /* This PF */ u32 class; /* VF device */ u8 hdr_type; /* VF header type */ u16 subsystem_vendor; /* VF subsystem vendor */ u16 subsystem_device; /* VF subsystem device */ resource_size_t barsz[PCI_SRIOV_NUM_BARS]; /* VF BAR size */ bool drivers_autoprobe; /* Auto probing of VFs by driver */ }; /** * pci_dev_set_io_state - Set the new error state if possible. * * @dev - pci device to set new error_state * @new - the state we want dev to be in * * Must be called with device_lock held. * * Returns true if state has been changed to the requested state. */ static inline bool pci_dev_set_io_state(struct pci_dev *dev, pci_channel_state_t new) { bool changed = false; device_lock_assert(&dev->dev); switch (new) { case pci_channel_io_perm_failure: switch (dev->error_state) { case pci_channel_io_frozen: case pci_channel_io_normal: case pci_channel_io_perm_failure: changed = true; break; } break; case pci_channel_io_frozen: switch (dev->error_state) { case pci_channel_io_frozen: case pci_channel_io_normal: changed = true; break; } break; case pci_channel_io_normal: switch (dev->error_state) { case pci_channel_io_frozen: case pci_channel_io_normal: changed = true; break; } break; } if (changed) dev->error_state = new; return changed; } static inline int pci_dev_set_disconnected(struct pci_dev *dev, void *unused) { device_lock(&dev->dev); pci_dev_set_io_state(dev, pci_channel_io_perm_failure); device_unlock(&dev->dev); return 0; } static inline bool pci_dev_is_disconnected(const struct pci_dev *dev) { return dev->error_state == pci_channel_io_perm_failure; } /* pci_dev priv_flags */ #define PCI_DEV_ADDED 0 #define PCI_DPC_RECOVERED 1 #define PCI_DPC_RECOVERING 2 static inline void pci_dev_assign_added(struct pci_dev *dev, bool added) { assign_bit(PCI_DEV_ADDED, &dev->priv_flags, added); } static inline bool pci_dev_is_added(const struct pci_dev *dev) { return test_bit(PCI_DEV_ADDED, &dev->priv_flags); } #ifdef CONFIG_PCIEAER #include <linux/aer.h> #define AER_MAX_MULTI_ERR_DEVICES 5 /* Not likely to have more */ struct aer_err_info { struct pci_dev *dev[AER_MAX_MULTI_ERR_DEVICES]; int error_dev_num; unsigned int id:16; unsigned int severity:2; /* 0:NONFATAL | 1:FATAL | 2:COR */ unsigned int __pad1:5; unsigned int multi_error_valid:1; unsigned int first_error:5; unsigned int __pad2:2; unsigned int tlp_header_valid:1; unsigned int status; /* COR/UNCOR Error Status */ unsigned int mask; /* COR/UNCOR Error Mask */ struct aer_header_log_regs tlp; /* TLP Header */ }; int aer_get_device_error_info(struct pci_dev *dev, struct aer_err_info *info); void aer_print_error(struct pci_dev *dev, struct aer_err_info *info); #endif /* CONFIG_PCIEAER */ #ifdef CONFIG_PCIE_DPC void pci_save_dpc_state(struct pci_dev *dev); void pci_restore_dpc_state(struct pci_dev *dev); void pci_dpc_init(struct pci_dev *pdev); void dpc_process_error(struct pci_dev *pdev); pci_ers_result_t dpc_reset_link(struct pci_dev *pdev); bool pci_dpc_recovered(struct pci_dev *pdev); #else static inline void pci_save_dpc_state(struct pci_dev *dev) {} static inline void pci_restore_dpc_state(struct pci_dev *dev) {} static inline void pci_dpc_init(struct pci_dev *pdev) {} static inline bool pci_dpc_recovered(struct pci_dev *pdev) { return false; } #endif #ifdef CONFIG_PCI_ATS /* Address Translation Service */ void pci_ats_init(struct pci_dev *dev); void pci_restore_ats_state(struct pci_dev *dev); #else static inline void pci_ats_init(struct pci_dev *d) { } static inline void pci_restore_ats_state(struct pci_dev *dev) { } #endif /* CONFIG_PCI_ATS */ #ifdef CONFIG_PCI_PRI void pci_pri_init(struct pci_dev *dev); void pci_restore_pri_state(struct pci_dev *pdev); #else static inline void pci_pri_init(struct pci_dev *dev) { } static inline void pci_restore_pri_state(struct pci_dev *pdev) { } #endif #ifdef CONFIG_PCI_PASID void pci_pasid_init(struct pci_dev *dev); void pci_restore_pasid_state(struct pci_dev *pdev); #else static inline void pci_pasid_init(struct pci_dev *dev) { } static inline void pci_restore_pasid_state(struct pci_dev *pdev) { } #endif #ifdef CONFIG_PCI_IOV int pci_iov_init(struct pci_dev *dev); void pci_iov_release(struct pci_dev *dev); void pci_iov_remove(struct pci_dev *dev); void pci_iov_update_resource(struct pci_dev *dev, int resno); resource_size_t pci_sriov_resource_alignment(struct pci_dev *dev, int resno); void pci_restore_iov_state(struct pci_dev *dev); int pci_iov_bus_range(struct pci_bus *bus); extern const struct attribute_group sriov_dev_attr_group; #else static inline int pci_iov_init(struct pci_dev *dev) { return -ENODEV; } static inline void pci_iov_release(struct pci_dev *dev) { } static inline void pci_iov_remove(struct pci_dev *dev) { } static inline void pci_restore_iov_state(struct pci_dev *dev) { } static inline int pci_iov_bus_range(struct pci_bus *bus) { return 0; } #endif /* CONFIG_PCI_IOV */ unsigned long pci_cardbus_resource_alignment(struct resource *); static inline resource_size_t pci_resource_alignment(struct pci_dev *dev, struct resource *res) { #ifdef CONFIG_PCI_IOV int resno = res - dev->resource; if (resno >= PCI_IOV_RESOURCES && resno <= PCI_IOV_RESOURCE_END) return pci_sriov_resource_alignment(dev, resno); #endif if (dev->class >> 8 == PCI_CLASS_BRIDGE_CARDBUS) return pci_cardbus_resource_alignment(res); return resource_alignment(res); } void pci_acs_init(struct pci_dev *dev); #ifdef CONFIG_PCI_QUIRKS int pci_dev_specific_acs_enabled(struct pci_dev *dev, u16 acs_flags); int pci_dev_specific_enable_acs(struct pci_dev *dev); int pci_dev_specific_disable_acs_redir(struct pci_dev *dev); #else static inline int pci_dev_specific_acs_enabled(struct pci_dev *dev, u16 acs_flags) { return -ENOTTY; } static inline int pci_dev_specific_enable_acs(struct pci_dev *dev) { return -ENOTTY; } static inline int pci_dev_specific_disable_acs_redir(struct pci_dev *dev) { return -ENOTTY; } #endif /* PCI error reporting and recovery */ pci_ers_result_t pcie_do_recovery(struct pci_dev *dev, pci_channel_state_t state, pci_ers_result_t (*reset_link)(struct pci_dev *pdev)); bool pcie_wait_for_link(struct pci_dev *pdev, bool active); #ifdef CONFIG_PCIEASPM void pcie_aspm_init_link_state(struct pci_dev *pdev); void pcie_aspm_exit_link_state(struct pci_dev *pdev); void pcie_aspm_pm_state_change(struct pci_dev *pdev); void pcie_aspm_powersave_config_link(struct pci_dev *pdev); #else static inline void pcie_aspm_init_link_state(struct pci_dev *pdev) { } static inline void pcie_aspm_exit_link_state(struct pci_dev *pdev) { } static inline void pcie_aspm_pm_state_change(struct pci_dev *pdev) { } static inline void pcie_aspm_powersave_config_link(struct pci_dev *pdev) { } #endif #ifdef CONFIG_PCIE_ECRC void pcie_set_ecrc_checking(struct pci_dev *dev); void pcie_ecrc_get_policy(char *str); #else static inline void pcie_set_ecrc_checking(struct pci_dev *dev) { } static inline void pcie_ecrc_get_policy(char *str) { } #endif #ifdef CONFIG_PCIE_PTM void pci_ptm_init(struct pci_dev *dev); int pci_enable_ptm(struct pci_dev *dev, u8 *granularity); #else static inline void pci_ptm_init(struct pci_dev *dev) { } static inline int pci_enable_ptm(struct pci_dev *dev, u8 *granularity) { return -EINVAL; } #endif struct pci_dev_reset_methods { u16 vendor; u16 device; int (*reset)(struct pci_dev *dev, int probe); }; #ifdef CONFIG_PCI_QUIRKS int pci_dev_specific_reset(struct pci_dev *dev, int probe); #else static inline int pci_dev_specific_reset(struct pci_dev *dev, int probe) { return -ENOTTY; } #endif #if defined(CONFIG_PCI_QUIRKS) && defined(CONFIG_ARM64) int acpi_get_rc_resources(struct device *dev, const char *hid, u16 segment, struct resource *res); #else static inline int acpi_get_rc_resources(struct device *dev, const char *hid, u16 segment, struct resource *res) { return -ENODEV; } #endif u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar); int pci_rebar_get_current_size(struct pci_dev *pdev, int bar); int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size); static inline u64 pci_rebar_size_to_bytes(int size) { return 1ULL << (size + 20); } struct device_node; #ifdef CONFIG_OF int of_pci_parse_bus_range(struct device_node *node, struct resource *res); int of_get_pci_domain_nr(struct device_node *node); int of_pci_get_max_link_speed(struct device_node *node); void pci_set_of_node(struct pci_dev *dev); void pci_release_of_node(struct pci_dev *dev); void pci_set_bus_of_node(struct pci_bus *bus); void pci_release_bus_of_node(struct pci_bus *bus); int devm_of_pci_bridge_init(struct device *dev, struct pci_host_bridge *bridge); #else static inline int of_pci_parse_bus_range(struct device_node *node, struct resource *res) { return -EINVAL; } static inline int of_get_pci_domain_nr(struct device_node *node) { return -1; } static inline int of_pci_get_max_link_speed(struct device_node *node) { return -EINVAL; } static inline void pci_set_of_node(struct pci_dev *dev) { } static inline void pci_release_of_node(struct pci_dev *dev) { } static inline void pci_set_bus_of_node(struct pci_bus *bus) { } static inline void pci_release_bus_of_node(struct pci_bus *bus) { } static inline int devm_of_pci_bridge_init(struct device *dev, struct pci_host_bridge *bridge) { return 0; } #endif /* CONFIG_OF */ #ifdef CONFIG_PCIEAER void pci_no_aer(void); void pci_aer_init(struct pci_dev *dev); void pci_aer_exit(struct pci_dev *dev); extern const struct attribute_group aer_stats_attr_group; void pci_aer_clear_fatal_status(struct pci_dev *dev); int pci_aer_clear_status(struct pci_dev *dev); int pci_aer_raw_clear_status(struct pci_dev *dev); #else static inline void pci_no_aer(void) { } static inline void pci_aer_init(struct pci_dev *d) { } static inline void pci_aer_exit(struct pci_dev *d) { } static inline void pci_aer_clear_fatal_status(struct pci_dev *dev) { } static inline int pci_aer_clear_status(struct pci_dev *dev) { return -EINVAL; } static inline int pci_aer_raw_clear_status(struct pci_dev *dev) { return -EINVAL; } #endif #ifdef CONFIG_ACPI int pci_acpi_program_hp_params(struct pci_dev *dev); #else static inline int pci_acpi_program_hp_params(struct pci_dev *dev) { return -ENODEV; } #endif #ifdef CONFIG_PCIEASPM extern const struct attribute_group aspm_ctrl_attr_group; #endif #endif /* DRIVERS_PCI_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _INET_ECN_H_ #define _INET_ECN_H_ #include <linux/ip.h> #include <linux/skbuff.h> #include <linux/if_vlan.h> #include <net/inet_sock.h> #include <net/dsfield.h> enum { INET_ECN_NOT_ECT = 0, INET_ECN_ECT_1 = 1, INET_ECN_ECT_0 = 2, INET_ECN_CE = 3, INET_ECN_MASK = 3, }; extern int sysctl_tunnel_ecn_log; static inline int INET_ECN_is_ce(__u8 dsfield) { return (dsfield & INET_ECN_MASK) == INET_ECN_CE; } static inline int INET_ECN_is_not_ect(__u8 dsfield) { return (dsfield & INET_ECN_MASK) == INET_ECN_NOT_ECT; } static inline int INET_ECN_is_capable(__u8 dsfield) { return dsfield & INET_ECN_ECT_0; } /* * RFC 3168 9.1.1 * The full-functionality option for ECN encapsulation is to copy the * ECN codepoint of the inside header to the outside header on * encapsulation if the inside header is not-ECT or ECT, and to set the * ECN codepoint of the outside header to ECT(0) if the ECN codepoint of * the inside header is CE. */ static inline __u8 INET_ECN_encapsulate(__u8 outer, __u8 inner) { outer &= ~INET_ECN_MASK; outer |= !INET_ECN_is_ce(inner) ? (inner & INET_ECN_MASK) : INET_ECN_ECT_0; return outer; } static inline void INET_ECN_xmit(struct sock *sk) { inet_sk(sk)->tos |= INET_ECN_ECT_0; if (inet6_sk(sk) != NULL) inet6_sk(sk)->tclass |= INET_ECN_ECT_0; } static inline void INET_ECN_dontxmit(struct sock *sk) { inet_sk(sk)->tos &= ~INET_ECN_MASK; if (inet6_sk(sk) != NULL) inet6_sk(sk)->tclass &= ~INET_ECN_MASK; } #define IP6_ECN_flow_init(label) do { \ (label) &= ~htonl(INET_ECN_MASK << 20); \ } while (0) #define IP6_ECN_flow_xmit(sk, label) do { \ if (INET_ECN_is_capable(inet6_sk(sk)->tclass)) \ (label) |= htonl(INET_ECN_ECT_0 << 20); \ } while (0) static inline int IP_ECN_set_ce(struct iphdr *iph) { u32 check = (__force u32)iph->check; u32 ecn = (iph->tos + 1) & INET_ECN_MASK; /* * After the last operation we have (in binary): * INET_ECN_NOT_ECT => 01 * INET_ECN_ECT_1 => 10 * INET_ECN_ECT_0 => 11 * INET_ECN_CE => 00 */ if (!(ecn & 2)) return !ecn; /* * The following gives us: * INET_ECN_ECT_1 => check += htons(0xFFFD) * INET_ECN_ECT_0 => check += htons(0xFFFE) */ check += (__force u16)htons(0xFFFB) + (__force u16)htons(ecn); iph->check = (__force __sum16)(check + (check>=0xFFFF)); iph->tos |= INET_ECN_CE; return 1; } static inline int IP_ECN_set_ect1(struct iphdr *iph) { u32 check = (__force u32)iph->check; if ((iph->tos & INET_ECN_MASK) != INET_ECN_ECT_0) return 0; check += (__force u16)htons(0x1); iph->check = (__force __sum16)(check + (check>=0xFFFF)); iph->tos ^= INET_ECN_MASK; return 1; } static inline void IP_ECN_clear(struct iphdr *iph) { iph->tos &= ~INET_ECN_MASK; } static inline void ipv4_copy_dscp(unsigned int dscp, struct iphdr *inner) { dscp &= ~INET_ECN_MASK; ipv4_change_dsfield(inner, INET_ECN_MASK, dscp); } struct ipv6hdr; /* Note: * IP_ECN_set_ce() has to tweak IPV4 checksum when setting CE, * meaning both changes have no effect on skb->csum if/when CHECKSUM_COMPLETE * In IPv6 case, no checksum compensates the change in IPv6 header, * so we have to update skb->csum. */ static inline int IP6_ECN_set_ce(struct sk_buff *skb, struct ipv6hdr *iph) { __be32 from, to; if (INET_ECN_is_not_ect(ipv6_get_dsfield(iph))) return 0; from = *(__be32 *)iph; to = from | htonl(INET_ECN_CE << 20); *(__be32 *)iph = to; if (skb->ip_summed == CHECKSUM_COMPLETE) skb->csum = csum_add(csum_sub(skb->csum, (__force __wsum)from), (__force __wsum)to); return 1; } static inline int IP6_ECN_set_ect1(struct sk_buff *skb, struct ipv6hdr *iph) { __be32 from, to; if ((ipv6_get_dsfield(iph) & INET_ECN_MASK) != INET_ECN_ECT_0) return 0; from = *(__be32 *)iph; to = from ^ htonl(INET_ECN_MASK << 20); *(__be32 *)iph = to; if (skb->ip_summed == CHECKSUM_COMPLETE) skb->csum = csum_add(csum_sub(skb->csum, (__force __wsum)from), (__force __wsum)to); return 1; } static inline void ipv6_copy_dscp(unsigned int dscp, struct ipv6hdr *inner) { dscp &= ~INET_ECN_MASK; ipv6_change_dsfield(inner, INET_ECN_MASK, dscp); } static inline int INET_ECN_set_ce(struct sk_buff *skb) { switch (skb_protocol(skb, true)) { case cpu_to_be16(ETH_P_IP): if (skb_network_header(skb) + sizeof(struct iphdr) <= skb_tail_pointer(skb)) return IP_ECN_set_ce(ip_hdr(skb)); break; case cpu_to_be16(ETH_P_IPV6): if (skb_network_header(skb) + sizeof(struct ipv6hdr) <= skb_tail_pointer(skb)) return IP6_ECN_set_ce(skb, ipv6_hdr(skb)); break; } return 0; } static inline int INET_ECN_set_ect1(struct sk_buff *skb) { switch (skb_protocol(skb, true)) { case cpu_to_be16(ETH_P_IP): if (skb_network_header(skb) + sizeof(struct iphdr) <= skb_tail_pointer(skb)) return IP_ECN_set_ect1(ip_hdr(skb)); break; case cpu_to_be16(ETH_P_IPV6): if (skb_network_header(skb) + sizeof(struct ipv6hdr) <= skb_tail_pointer(skb)) return IP6_ECN_set_ect1(skb, ipv6_hdr(skb)); break; } return 0; } /* * RFC 6040 4.2 * To decapsulate the inner header at the tunnel egress, a compliant * tunnel egress MUST set the outgoing ECN field to the codepoint at the * intersection of the appropriate arriving inner header (row) and outer * header (column) in Figure 4 * * +---------+------------------------------------------------+ * |Arriving | Arriving Outer Header | * | Inner +---------+------------+------------+------------+ * | Header | Not-ECT | ECT(0) | ECT(1) | CE | * +---------+---------+------------+------------+------------+ * | Not-ECT | Not-ECT |Not-ECT(!!!)|Not-ECT(!!!)| <drop>(!!!)| * | ECT(0) | ECT(0) | ECT(0) | ECT(1) | CE | * | ECT(1) | ECT(1) | ECT(1) (!) | ECT(1) | CE | * | CE | CE | CE | CE(!!!)| CE | * +---------+---------+------------+------------+------------+ * * Figure 4: New IP in IP Decapsulation Behaviour * * returns 0 on success * 1 if something is broken and should be logged (!!! above) * 2 if packet should be dropped */ static inline int __INET_ECN_decapsulate(__u8 outer, __u8 inner, bool *set_ce) { if (INET_ECN_is_not_ect(inner)) { switch (outer & INET_ECN_MASK) { case INET_ECN_NOT_ECT: return 0; case INET_ECN_ECT_0: case INET_ECN_ECT_1: return 1; case INET_ECN_CE: return 2; } } *set_ce = INET_ECN_is_ce(outer); return 0; } static inline int INET_ECN_decapsulate(struct sk_buff *skb, __u8 outer, __u8 inner) { bool set_ce = false; int rc; rc = __INET_ECN_decapsulate(outer, inner, &set_ce); if (!rc) { if (set_ce) INET_ECN_set_ce(skb); else if ((outer & INET_ECN_MASK) == INET_ECN_ECT_1) INET_ECN_set_ect1(skb); } return rc; } static inline int IP_ECN_decapsulate(const struct iphdr *oiph, struct sk_buff *skb) { __u8 inner; switch (skb_protocol(skb, true)) { case htons(ETH_P_IP): inner = ip_hdr(skb)->tos; break; case htons(ETH_P_IPV6): inner = ipv6_get_dsfield(ipv6_hdr(skb)); break; default: return 0; } return INET_ECN_decapsulate(skb, oiph->tos, inner); } static inline int IP6_ECN_decapsulate(const struct ipv6hdr *oipv6h, struct sk_buff *skb) { __u8 inner; switch (skb_protocol(skb, true)) { case htons(ETH_P_IP): inner = ip_hdr(skb)->tos; break; case htons(ETH_P_IPV6): inner = ipv6_get_dsfield(ipv6_hdr(skb)); break; default: return 0; } return INET_ECN_decapsulate(skb, ipv6_get_dsfield(oipv6h), inner); } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 /* SPDX-License-Identifier: GPL-2.0-only */ /* * Access to user system call parameters and results * * Copyright (C) 2008-2009 Red Hat, Inc. All rights reserved. * * See asm-generic/syscall.h for descriptions of what we must do here. */ #ifndef _ASM_X86_SYSCALL_H #define _ASM_X86_SYSCALL_H #include <uapi/linux/audit.h> #include <linux/sched.h> #include <linux/err.h> #include <asm/thread_info.h> /* for TS_COMPAT */ #include <asm/unistd.h> typedef long (*sys_call_ptr_t)(const struct pt_regs *); extern const sys_call_ptr_t sys_call_table[]; #if defined(CONFIG_X86_32) #define ia32_sys_call_table sys_call_table #endif #if defined(CONFIG_IA32_EMULATION) extern const sys_call_ptr_t ia32_sys_call_table[]; #endif #ifdef CONFIG_X86_X32_ABI extern const sys_call_ptr_t x32_sys_call_table[]; #endif /* * Only the low 32 bits of orig_ax are meaningful, so we return int. * This importantly ignores the high bits on 64-bit, so comparisons * sign-extend the low 32 bits. */ static inline int syscall_get_nr(struct task_struct *task, struct pt_regs *regs) { return regs->orig_ax; } static inline void syscall_rollback(struct task_struct *task, struct pt_regs *regs) { regs->ax = regs->orig_ax; } static inline long syscall_get_error(struct task_struct *task, struct pt_regs *regs) { unsigned long error = regs->ax; #ifdef CONFIG_IA32_EMULATION /* * TS_COMPAT is set for 32-bit syscall entries and then * remains set until we return to user mode. */ if (task->thread_info.status & (TS_COMPAT|TS_I386_REGS_POKED)) /* * Sign-extend the value so (int)-EFOO becomes (long)-EFOO * and will match correctly in comparisons. */ error = (long) (int) error; #endif return IS_ERR_VALUE(error) ? error : 0; } static inline long syscall_get_return_value(struct task_struct *task, struct pt_regs *regs) { return regs->ax; } static inline void syscall_set_return_value(struct task_struct *task, struct pt_regs *regs, int error, long val) { regs->ax = (long) error ?: val; } #ifdef CONFIG_X86_32 static inline void syscall_get_arguments(struct task_struct *task, struct pt_regs *regs, unsigned long *args) { memcpy(args, &regs->bx, 6 * sizeof(args[0])); } static inline void syscall_set_arguments(struct task_struct *task, struct pt_regs *regs, unsigned int i, unsigned int n, const unsigned long *args) { BUG_ON(i + n > 6); memcpy(&regs->bx + i, args, n * sizeof(args[0])); } static inline int syscall_get_arch(struct task_struct *task) { return AUDIT_ARCH_I386; } #else /* CONFIG_X86_64 */ static inline void syscall_get_arguments(struct task_struct *task, struct pt_regs *regs, unsigned long *args) { # ifdef CONFIG_IA32_EMULATION if (task->thread_info.status & TS_COMPAT) { *args++ = regs->bx; *args++ = regs->cx; *args++ = regs->dx; *args++ = regs->si; *args++ = regs->di; *args = regs->bp; } else # endif { *args++ = regs->di; *args++ = regs->si; *args++ = regs->dx; *args++ = regs->r10; *args++ = regs->r8; *args = regs->r9; } } static inline void syscall_set_arguments(struct task_struct *task, struct pt_regs *regs, const unsigned long *args) { # ifdef CONFIG_IA32_EMULATION if (task->thread_info.status & TS_COMPAT) { regs->bx = *args++; regs->cx = *args++; regs->dx = *args++; regs->si = *args++; regs->di = *args++; regs->bp = *args; } else # endif { regs->di = *args++; regs->si = *args++; regs->dx = *args++; regs->r10 = *args++; regs->r8 = *args++; regs->r9 = *args; } } static inline int syscall_get_arch(struct task_struct *task) { /* x32 tasks should be considered AUDIT_ARCH_X86_64. */ return (IS_ENABLED(CONFIG_IA32_EMULATION) && task->thread_info.status & TS_COMPAT) ? AUDIT_ARCH_I386 : AUDIT_ARCH_X86_64; } void do_syscall_64(unsigned long nr, struct pt_regs *regs); void do_int80_syscall_32(struct pt_regs *regs); long do_fast_syscall_32(struct pt_regs *regs); #endif /* CONFIG_X86_32 */ #endif /* _ASM_X86_SYSCALL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 /* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright 2019 Google LLC */ #ifndef __LINUX_BLK_CRYPTO_H #define __LINUX_BLK_CRYPTO_H #include <linux/types.h> enum blk_crypto_mode_num { BLK_ENCRYPTION_MODE_INVALID, BLK_ENCRYPTION_MODE_AES_256_XTS, BLK_ENCRYPTION_MODE_AES_128_CBC_ESSIV, BLK_ENCRYPTION_MODE_ADIANTUM, BLK_ENCRYPTION_MODE_MAX, }; #define BLK_CRYPTO_MAX_KEY_SIZE 64 /** * struct blk_crypto_config - an inline encryption key's crypto configuration * @crypto_mode: encryption algorithm this key is for * @data_unit_size: the data unit size for all encryption/decryptions with this * key. This is the size in bytes of each individual plaintext and * ciphertext. This is always a power of 2. It might be e.g. the * filesystem block size or the disk sector size. * @dun_bytes: the maximum number of bytes of DUN used when using this key */ struct blk_crypto_config { enum blk_crypto_mode_num crypto_mode; unsigned int data_unit_size; unsigned int dun_bytes; }; /** * struct blk_crypto_key - an inline encryption key * @crypto_cfg: the crypto configuration (like crypto_mode, key size) for this * key * @data_unit_size_bits: log2 of data_unit_size * @size: size of this key in bytes (determined by @crypto_cfg.crypto_mode) * @raw: the raw bytes of this key. Only the first @size bytes are used. * * A blk_crypto_key is immutable once created, and many bios can reference it at * the same time. It must not be freed until all bios using it have completed * and it has been evicted from all devices on which it may have been used. */ struct blk_crypto_key { struct blk_crypto_config crypto_cfg; unsigned int data_unit_size_bits; unsigned int size; u8 raw[BLK_CRYPTO_MAX_KEY_SIZE]; }; #define BLK_CRYPTO_MAX_IV_SIZE 32 #define BLK_CRYPTO_DUN_ARRAY_SIZE (BLK_CRYPTO_MAX_IV_SIZE / sizeof(u64)) /** * struct bio_crypt_ctx - an inline encryption context * @bc_key: the key, algorithm, and data unit size to use * @bc_dun: the data unit number (starting IV) to use * * A bio_crypt_ctx specifies that the contents of the bio will be encrypted (for * write requests) or decrypted (for read requests) inline by the storage device * or controller, or by the crypto API fallback. */ struct bio_crypt_ctx { const struct blk_crypto_key *bc_key; u64 bc_dun[BLK_CRYPTO_DUN_ARRAY_SIZE]; }; #include <linux/blk_types.h> #include <linux/blkdev.h> struct request; struct request_queue; #ifdef CONFIG_BLK_INLINE_ENCRYPTION static inline bool bio_has_crypt_ctx(struct bio *bio) { return bio->bi_crypt_context; } void bio_crypt_set_ctx(struct bio *bio, const struct blk_crypto_key *key, const u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE], gfp_t gfp_mask); bool bio_crypt_dun_is_contiguous(const struct bio_crypt_ctx *bc, unsigned int bytes, const u64 next_dun[BLK_CRYPTO_DUN_ARRAY_SIZE]); int blk_crypto_init_key(struct blk_crypto_key *blk_key, const u8 *raw_key, enum blk_crypto_mode_num crypto_mode, unsigned int dun_bytes, unsigned int data_unit_size); int blk_crypto_start_using_key(const struct blk_crypto_key *key, struct request_queue *q); int blk_crypto_evict_key(struct request_queue *q, const struct blk_crypto_key *key); bool blk_crypto_config_supported(struct request_queue *q, const struct blk_crypto_config *cfg); #else /* CONFIG_BLK_INLINE_ENCRYPTION */ static inline bool bio_has_crypt_ctx(struct bio *bio) { return false; } #endif /* CONFIG_BLK_INLINE_ENCRYPTION */ int __bio_crypt_clone(struct bio *dst, struct bio *src, gfp_t gfp_mask); /** * bio_crypt_clone - clone bio encryption context * @dst: destination bio * @src: source bio * @gfp_mask: memory allocation flags * * If @src has an encryption context, clone it to @dst. * * Return: 0 on success, -ENOMEM if out of memory. -ENOMEM is only possible if * @gfp_mask doesn't include %__GFP_DIRECT_RECLAIM. */ static inline int bio_crypt_clone(struct bio *dst, struct bio *src, gfp_t gfp_mask) { if (bio_has_crypt_ctx(src)) return __bio_crypt_clone(dst, src, gfp_mask); return 0; } #endif /* __LINUX_BLK_CRYPTO_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 /* SPDX-License-Identifier: GPL-2.0 */ /** * lib/minmax.c: windowed min/max tracker by Kathleen Nichols. * */ #ifndef MINMAX_H #define MINMAX_H #include <linux/types.h> /* A single data point for our parameterized min-max tracker */ struct minmax_sample { u32 t; /* time measurement was taken */ u32 v; /* value measured */ }; /* State for the parameterized min-max tracker */ struct minmax { struct minmax_sample s[3]; }; static inline u32 minmax_get(const struct minmax *m) { return m->s[0].v; } static inline u32 minmax_reset(struct minmax *m, u32 t, u32 meas) { struct minmax_sample val = { .t = t, .v = meas }; m->s[2] = m->s[1] = m->s[0] = val; return m->s[0].v; } u32 minmax_running_max(struct minmax *m, u32 win, u32 t, u32 meas); u32 minmax_running_min(struct minmax *m, u32 win, u32 t, u32 meas); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 /* SPDX-License-Identifier: GPL-2.0 */ /* * The proc filesystem constants/structures */ #ifndef _LINUX_PROC_FS_H #define _LINUX_PROC_FS_H #include <linux/compiler.h> #include <linux/types.h> #include <linux/fs.h> struct proc_dir_entry; struct seq_file; struct seq_operations; enum { /* * All /proc entries using this ->proc_ops instance are never removed. * * If in doubt, ignore this flag. */ #ifdef MODULE PROC_ENTRY_PERMANENT = 0U, #else PROC_ENTRY_PERMANENT = 1U << 0, #endif }; struct proc_ops { unsigned int proc_flags; int (*proc_open)(struct inode *, struct file *); ssize_t (*proc_read)(struct file *, char __user *, size_t, loff_t *); ssize_t (*proc_read_iter)(struct kiocb *, struct iov_iter *); ssize_t (*proc_write)(struct file *, const char __user *, size_t, loff_t *); loff_t (*proc_lseek)(struct file *, loff_t, int); int (*proc_release)(struct inode *, struct file *); __poll_t (*proc_poll)(struct file *, struct poll_table_struct *); long (*proc_ioctl)(struct file *, unsigned int, unsigned long); #ifdef CONFIG_COMPAT long (*proc_compat_ioctl)(struct file *, unsigned int, unsigned long); #endif int (*proc_mmap)(struct file *, struct vm_area_struct *); unsigned long (*proc_get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); } __randomize_layout; /* definitions for hide_pid field */ enum proc_hidepid { HIDEPID_OFF = 0, HIDEPID_NO_ACCESS = 1, HIDEPID_INVISIBLE = 2, HIDEPID_NOT_PTRACEABLE = 4, /* Limit pids to only ptraceable pids */ }; /* definitions for proc mount option pidonly */ enum proc_pidonly { PROC_PIDONLY_OFF = 0, PROC_PIDONLY_ON = 1, }; struct proc_fs_info { struct pid_namespace *pid_ns; struct dentry *proc_self; /* For /proc/self */ struct dentry *proc_thread_self; /* For /proc/thread-self */ kgid_t pid_gid; enum proc_hidepid hide_pid; enum proc_pidonly pidonly; }; static inline struct proc_fs_info *proc_sb_info(struct super_block *sb) { return sb->s_fs_info; } #ifdef CONFIG_PROC_FS typedef int (*proc_write_t)(struct file *, char *, size_t); extern void proc_root_init(void); extern void proc_flush_pid(struct pid *); extern struct proc_dir_entry *proc_symlink(const char *, struct proc_dir_entry *, const char *); struct proc_dir_entry *_proc_mkdir(const char *, umode_t, struct proc_dir_entry *, void *, bool); extern struct proc_dir_entry *proc_mkdir(const char *, struct proc_dir_entry *); extern struct proc_dir_entry *proc_mkdir_data(const char *, umode_t, struct proc_dir_entry *, void *); extern struct proc_dir_entry *proc_mkdir_mode(const char *, umode_t, struct proc_dir_entry *); struct proc_dir_entry *proc_create_mount_point(const char *name); struct proc_dir_entry *proc_create_seq_private(const char *name, umode_t mode, struct proc_dir_entry *parent, const struct seq_operations *ops, unsigned int state_size, void *data); #define proc_create_seq_data(name, mode, parent, ops, data) \ proc_create_seq_private(name, mode, parent, ops, 0, data) #define proc_create_seq(name, mode, parent, ops) \ proc_create_seq_private(name, mode, parent, ops, 0, NULL) struct proc_dir_entry *proc_create_single_data(const char *name, umode_t mode, struct proc_dir_entry *parent, int (*show)(struct seq_file *, void *), void *data); #define proc_create_single(name, mode, parent, show) \ proc_create_single_data(name, mode, parent, show, NULL) extern struct proc_dir_entry *proc_create_data(const char *, umode_t, struct proc_dir_entry *, const struct proc_ops *, void *); struct proc_dir_entry *proc_create(const char *name, umode_t mode, struct proc_dir_entry *parent, const struct proc_ops *proc_ops); extern void proc_set_size(struct proc_dir_entry *, loff_t); extern void proc_set_user(struct proc_dir_entry *, kuid_t, kgid_t); extern void *PDE_DATA(const struct inode *); extern void *proc_get_parent_data(const struct inode *); extern void proc_remove(struct proc_dir_entry *); extern void remove_proc_entry(const char *, struct proc_dir_entry *); extern int remove_proc_subtree(const char *, struct proc_dir_entry *); struct proc_dir_entry *proc_create_net_data(const char *name, umode_t mode, struct proc_dir_entry *parent, const struct seq_operations *ops, unsigned int state_size, void *data); #define proc_create_net(name, mode, parent, ops, state_size) \ proc_create_net_data(name, mode, parent, ops, state_size, NULL) struct proc_dir_entry *proc_create_net_single(const char *name, umode_t mode, struct proc_dir_entry *parent, int (*show)(struct seq_file *, void *), void *data); struct proc_dir_entry *proc_create_net_data_write(const char *name, umode_t mode, struct proc_dir_entry *parent, const struct seq_operations *ops, proc_write_t write, unsigned int state_size, void *data); struct proc_dir_entry *proc_create_net_single_write(const char *name, umode_t mode, struct proc_dir_entry *parent, int (*show)(struct seq_file *, void *), proc_write_t write, void *data); extern struct pid *tgid_pidfd_to_pid(const struct file *file); struct bpf_iter_aux_info; extern int bpf_iter_init_seq_net(void *priv_data, struct bpf_iter_aux_info *aux); extern void bpf_iter_fini_seq_net(void *priv_data); #ifdef CONFIG_PROC_PID_ARCH_STATUS /* * The architecture which selects CONFIG_PROC_PID_ARCH_STATUS must * provide proc_pid_arch_status() definition. */ int proc_pid_arch_status(struct seq_file *m, struct pid_namespace *ns, struct pid *pid, struct task_struct *task); #endif /* CONFIG_PROC_PID_ARCH_STATUS */ #else /* CONFIG_PROC_FS */ static inline void proc_root_init(void) { } static inline void proc_flush_pid(struct pid *pid) { } static inline struct proc_dir_entry *proc_symlink(const char *name, struct proc_dir_entry *parent,const char *dest) { return NULL;} static inline struct proc_dir_entry *proc_mkdir(const char *name, struct proc_dir_entry *parent) {return NULL;} static inline struct proc_dir_entry *proc_create_mount_point(const char *name) { return NULL; } static inline struct proc_dir_entry *_proc_mkdir(const char *name, umode_t mode, struct proc_dir_entry *parent, void *data, bool force_lookup) { return NULL; } static inline struct proc_dir_entry *proc_mkdir_data(const char *name, umode_t mode, struct proc_dir_entry *parent, void *data) { return NULL; } static inline struct proc_dir_entry *proc_mkdir_mode(const char *name, umode_t mode, struct proc_dir_entry *parent) { return NULL; } #define proc_create_seq_private(name, mode, parent, ops, size, data) ({NULL;}) #define proc_create_seq_data(name, mode, parent, ops, data) ({NULL;}) #define proc_create_seq(name, mode, parent, ops) ({NULL;}) #define proc_create_single(name, mode, parent, show) ({NULL;}) #define proc_create_single_data(name, mode, parent, show, data) ({NULL;}) #define proc_create(name, mode, parent, proc_ops) ({NULL;}) #define proc_create_data(name, mode, parent, proc_ops, data) ({NULL;}) static inline void proc_set_size(struct proc_dir_entry *de, loff_t size) {} static inline void proc_set_user(struct proc_dir_entry *de, kuid_t uid, kgid_t gid) {} static inline void *PDE_DATA(const struct inode *inode) {BUG(); return NULL;} static inline void *proc_get_parent_data(const struct inode *inode) { BUG(); return NULL; } static inline void proc_remove(struct proc_dir_entry *de) {} #define remove_proc_entry(name, parent) do {} while (0) static inline int remove_proc_subtree(const char *name, struct proc_dir_entry *parent) { return 0; } #define proc_create_net_data(name, mode, parent, ops, state_size, data) ({NULL;}) #define proc_create_net(name, mode, parent, state_size, ops) ({NULL;}) #define proc_create_net_single(name, mode, parent, show, data) ({NULL;}) static inline struct pid *tgid_pidfd_to_pid(const struct file *file) { return ERR_PTR(-EBADF); } #endif /* CONFIG_PROC_FS */ struct net; static inline struct proc_dir_entry *proc_net_mkdir( struct net *net, const char *name, struct proc_dir_entry *parent) { return _proc_mkdir(name, 0, parent, net, true); } struct ns_common; int open_related_ns(struct ns_common *ns, struct ns_common *(*get_ns)(struct ns_common *ns)); /* get the associated pid namespace for a file in procfs */ static inline struct pid_namespace *proc_pid_ns(struct super_block *sb) { return proc_sb_info(sb)->pid_ns; } bool proc_ns_file(const struct file *file); #endif /* _LINUX_PROC_FS_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 /* SPDX-License-Identifier: GPL-2.0 */ /* * A hash table (hashtab) maintains associations between * key values and datum values. The type of the key values * and the type of the datum values is arbitrary. The * functions for hash computation and key comparison are * provided by the creator of the table. * * Author : Stephen Smalley, <sds@tycho.nsa.gov> */ #ifndef _SS_HASHTAB_H_ #define _SS_HASHTAB_H_ #include <linux/types.h> #include <linux/errno.h> #include <linux/sched.h> #define HASHTAB_MAX_NODES U32_MAX struct hashtab_key_params { u32 (*hash)(const void *key); /* hash function */ int (*cmp)(const void *key1, const void *key2); /* key comparison function */ }; struct hashtab_node { void *key; void *datum; struct hashtab_node *next; }; struct hashtab { struct hashtab_node **htable; /* hash table */ u32 size; /* number of slots in hash table */ u32 nel; /* number of elements in hash table */ }; struct hashtab_info { u32 slots_used; u32 max_chain_len; }; /* * Initializes a new hash table with the specified characteristics. * * Returns -ENOMEM if insufficient space is available or 0 otherwise. */ int hashtab_init(struct hashtab *h, u32 nel_hint); int __hashtab_insert(struct hashtab *h, struct hashtab_node **dst, void *key, void *datum); /* * Inserts the specified (key, datum) pair into the specified hash table. * * Returns -ENOMEM on memory allocation error, * -EEXIST if there is already an entry with the same key, * -EINVAL for general errors or 0 otherwise. */ static inline int hashtab_insert(struct hashtab *h, void *key, void *datum, struct hashtab_key_params key_params) { u32 hvalue; struct hashtab_node *prev, *cur; cond_resched(); if (!h->size || h->nel == HASHTAB_MAX_NODES) return -EINVAL; hvalue = key_params.hash(key) & (h->size - 1); prev = NULL; cur = h->htable[hvalue]; while (cur) { int cmp = key_params.cmp(key, cur->key); if (cmp == 0) return -EEXIST; if (cmp < 0) break; prev = cur; cur = cur->next; } return __hashtab_insert(h, prev ? &prev->next : &h->htable[hvalue], key, datum); } /* * Searches for the entry with the specified key in the hash table. * * Returns NULL if no entry has the specified key or * the datum of the entry otherwise. */ static inline void *hashtab_search(struct hashtab *h, const void *key, struct hashtab_key_params key_params) { u32 hvalue; struct hashtab_node *cur; if (!h->size) return NULL; hvalue = key_params.hash(key) & (h->size - 1); cur = h->htable[hvalue]; while (cur) { int cmp = key_params.cmp(key, cur->key); if (cmp == 0) return cur->datum; if (cmp < 0) break; cur = cur->next; } return NULL; } /* * Destroys the specified hash table. */ void hashtab_destroy(struct hashtab *h); /* * Applies the specified apply function to (key,datum,args) * for each entry in the specified hash table. * * The order in which the function is applied to the entries * is dependent upon the internal structure of the hash table. * * If apply returns a non-zero status, then hashtab_map will cease * iterating through the hash table and will propagate the error * return to its caller. */ int hashtab_map(struct hashtab *h, int (*apply)(void *k, void *d, void *args), void *args); int hashtab_duplicate(struct hashtab *new, struct hashtab *orig, int (*copy)(struct hashtab_node *new, struct hashtab_node *orig, void *args), int (*destroy)(void *k, void *d, void *args), void *args); /* Fill info with some hash table statistics */ void hashtab_stat(struct hashtab *h, struct hashtab_info *info); #endif /* _SS_HASHTAB_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 /* SPDX-License-Identifier: GPL-2.0 */ /* * Prevent the compiler from merging or refetching reads or writes. The * compiler is also forbidden from reordering successive instances of * READ_ONCE and WRITE_ONCE, but only when the compiler is aware of some * particular ordering. One way to make the compiler aware of ordering is to * put the two invocations of READ_ONCE or WRITE_ONCE in different C * statements. * * These two macros will also work on aggregate data types like structs or * unions. * * Their two major use cases are: (1) Mediating communication between * process-level code and irq/NMI handlers, all running on the same CPU, * and (2) Ensuring that the compiler does not fold, spindle, or otherwise * mutilate accesses that either do not require ordering or that interact * with an explicit memory barrier or atomic instruction that provides the * required ordering. */ #ifndef __ASM_GENERIC_RWONCE_H #define __ASM_GENERIC_RWONCE_H #ifndef __ASSEMBLY__ #include <linux/compiler_types.h> #include <linux/kasan-checks.h> #include <linux/kcsan-checks.h> /* * Yes, this permits 64-bit accesses on 32-bit architectures. These will * actually be atomic in some cases (namely Armv7 + LPAE), but for others we * rely on the access being split into 2x32-bit accesses for a 32-bit quantity * (e.g. a virtual address) and a strong prevailing wind. */ #define compiletime_assert_rwonce_type(t) \ compiletime_assert(__native_word(t) || sizeof(t) == sizeof(long long), \ "Unsupported access size for {READ,WRITE}_ONCE().") /* * Use __READ_ONCE() instead of READ_ONCE() if you do not require any * atomicity. Note that this may result in tears! */ #ifndef __READ_ONCE #define __READ_ONCE(x) (*(const volatile __unqual_scalar_typeof(x) *)&(x)) #endif #define READ_ONCE(x) \ ({ \ compiletime_assert_rwonce_type(x); \ __READ_ONCE(x); \ }) #define __WRITE_ONCE(x, val) \ do { \ *(volatile typeof(x) *)&(x) = (val); \ } while (0) #define WRITE_ONCE(x, val) \ do { \ compiletime_assert_rwonce_type(x); \ __WRITE_ONCE(x, val); \ } while (0) static __no_sanitize_or_inline unsigned long __read_once_word_nocheck(const void *addr) { return __READ_ONCE(*(unsigned long *)addr); } /* * Use READ_ONCE_NOCHECK() instead of READ_ONCE() if you need to load a * word from memory atomically but without telling KASAN/KCSAN. This is * usually used by unwinding code when walking the stack of a running process. */ #define READ_ONCE_NOCHECK(x) \ ({ \ compiletime_assert(sizeof(x) == sizeof(unsigned long), \ "Unsupported access size for READ_ONCE_NOCHECK()."); \ (typeof(x))__read_once_word_nocheck(&(x)); \ }) static __no_kasan_or_inline unsigned long read_word_at_a_time(const void *addr) { kasan_check_read(addr, 1); return *(unsigned long *)addr; } #endif /* __ASSEMBLY__ */ #endif /* __ASM_GENERIC_RWONCE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 #ifndef _LINUX_PSI_H #define _LINUX_PSI_H #include <linux/jump_label.h> #include <linux/psi_types.h> #include <linux/sched.h> #include <linux/poll.h> struct seq_file; struct css_set; #ifdef CONFIG_PSI extern struct static_key_false psi_disabled; extern struct psi_group psi_system; void psi_init(void); void psi_task_change(struct task_struct *task, int clear, int set); void psi_task_switch(struct task_struct *prev, struct task_struct *next, bool sleep); void psi_memstall_tick(struct task_struct *task, int cpu); void psi_memstall_enter(unsigned long *flags); void psi_memstall_leave(unsigned long *flags); int psi_show(struct seq_file *s, struct psi_group *group, enum psi_res res); #ifdef CONFIG_CGROUPS int psi_cgroup_alloc(struct cgroup *cgrp); void psi_cgroup_free(struct cgroup *cgrp); void cgroup_move_task(struct task_struct *p, struct css_set *to); struct psi_trigger *psi_trigger_create(struct psi_group *group, char *buf, size_t nbytes, enum psi_res res); void psi_trigger_replace(void **trigger_ptr, struct psi_trigger *t); __poll_t psi_trigger_poll(void **trigger_ptr, struct file *file, poll_table *wait); #endif #else /* CONFIG_PSI */ static inline void psi_init(void) {} static inline void psi_memstall_enter(unsigned long *flags) {} static inline void psi_memstall_leave(unsigned long *flags) {} #ifdef CONFIG_CGROUPS static inline int psi_cgroup_alloc(struct cgroup *cgrp) { return 0; } static inline void psi_cgroup_free(struct cgroup *cgrp) { } static inline void cgroup_move_task(struct task_struct *p, struct css_set *to) { rcu_assign_pointer(p->cgroups, to); } #endif #endif /* CONFIG_PSI */ #endif /* _LINUX_PSI_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _SOCK_REUSEPORT_H #define _SOCK_REUSEPORT_H #include <linux/filter.h> #include <linux/skbuff.h> #include <linux/types.h> #include <linux/spinlock.h> #include <net/sock.h> extern spinlock_t reuseport_lock; struct sock_reuseport { struct rcu_head rcu; u16 max_socks; /* length of socks */ u16 num_socks; /* elements in socks */ /* The last synq overflow event timestamp of this * reuse->socks[] group. */ unsigned int synq_overflow_ts; /* ID stays the same even after the size of socks[] grows. */ unsigned int reuseport_id; unsigned int bind_inany:1; unsigned int has_conns:1; struct bpf_prog __rcu *prog; /* optional BPF sock selector */ struct sock *socks[]; /* array of sock pointers */ }; extern int reuseport_alloc(struct sock *sk, bool bind_inany); extern int reuseport_add_sock(struct sock *sk, struct sock *sk2, bool bind_inany); extern void reuseport_detach_sock(struct sock *sk); extern struct sock *reuseport_select_sock(struct sock *sk, u32 hash, struct sk_buff *skb, int hdr_len); extern int reuseport_attach_prog(struct sock *sk, struct bpf_prog *prog); extern int reuseport_detach_prog(struct sock *sk); static inline bool reuseport_has_conns(struct sock *sk, bool set) { struct sock_reuseport *reuse; bool ret = false; rcu_read_lock(); reuse = rcu_dereference(sk->sk_reuseport_cb); if (reuse) { if (set) reuse->has_conns = 1; ret = reuse->has_conns; } rcu_read_unlock(); return ret; } #endif /* _SOCK_REUSEPORT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef IOCONTEXT_H #define IOCONTEXT_H #include <linux/radix-tree.h> #include <linux/rcupdate.h> #include <linux/workqueue.h> enum { ICQ_EXITED = 1 << 2, ICQ_DESTROYED = 1 << 3, }; /* * An io_cq (icq) is association between an io_context (ioc) and a * request_queue (q). This is used by elevators which need to track * information per ioc - q pair. * * Elevator can request use of icq by setting elevator_type->icq_size and * ->icq_align. Both size and align must be larger than that of struct * io_cq and elevator can use the tail area for private information. The * recommended way to do this is defining a struct which contains io_cq as * the first member followed by private members and using its size and * align. For example, * * struct snail_io_cq { * struct io_cq icq; * int poke_snail; * int feed_snail; * }; * * struct elevator_type snail_elv_type { * .ops = { ... }, * .icq_size = sizeof(struct snail_io_cq), * .icq_align = __alignof__(struct snail_io_cq), * ... * }; * * If icq_size is set, block core will manage icq's. All requests will * have its ->elv.icq field set before elevator_ops->elevator_set_req_fn() * is called and be holding a reference to the associated io_context. * * Whenever a new icq is created, elevator_ops->elevator_init_icq_fn() is * called and, on destruction, ->elevator_exit_icq_fn(). Both functions * are called with both the associated io_context and queue locks held. * * Elevator is allowed to lookup icq using ioc_lookup_icq() while holding * queue lock but the returned icq is valid only until the queue lock is * released. Elevators can not and should not try to create or destroy * icq's. * * As icq's are linked from both ioc and q, the locking rules are a bit * complex. * * - ioc lock nests inside q lock. * * - ioc->icq_list and icq->ioc_node are protected by ioc lock. * q->icq_list and icq->q_node by q lock. * * - ioc->icq_tree and ioc->icq_hint are protected by ioc lock, while icq * itself is protected by q lock. However, both the indexes and icq * itself are also RCU managed and lookup can be performed holding only * the q lock. * * - icq's are not reference counted. They are destroyed when either the * ioc or q goes away. Each request with icq set holds an extra * reference to ioc to ensure it stays until the request is completed. * * - Linking and unlinking icq's are performed while holding both ioc and q * locks. Due to the lock ordering, q exit is simple but ioc exit * requires reverse-order double lock dance. */ struct io_cq { struct request_queue *q; struct io_context *ioc; /* * q_node and ioc_node link io_cq through icq_list of q and ioc * respectively. Both fields are unused once ioc_exit_icq() is * called and shared with __rcu_icq_cache and __rcu_head which are * used for RCU free of io_cq. */ union { struct list_head q_node; struct kmem_cache *__rcu_icq_cache; }; union { struct hlist_node ioc_node; struct rcu_head __rcu_head; }; unsigned int flags; }; /* * I/O subsystem state of the associated processes. It is refcounted * and kmalloc'ed. These could be shared between processes. */ struct io_context { atomic_long_t refcount; atomic_t active_ref; atomic_t nr_tasks; /* all the fields below are protected by this lock */ spinlock_t lock; unsigned short ioprio; struct radix_tree_root icq_tree; struct io_cq __rcu *icq_hint; struct hlist_head icq_list; struct work_struct release_work; }; /** * get_io_context_active - get active reference on ioc * @ioc: ioc of interest * * Only iocs with active reference can issue new IOs. This function * acquires an active reference on @ioc. The caller must already have an * active reference on @ioc. */ static inline void get_io_context_active(struct io_context *ioc) { WARN_ON_ONCE(atomic_long_read(&ioc->refcount) <= 0); WARN_ON_ONCE(atomic_read(&ioc->active_ref) <= 0); atomic_long_inc(&ioc->refcount); atomic_inc(&ioc->active_ref); } static inline void ioc_task_link(struct io_context *ioc) { get_io_context_active(ioc); WARN_ON_ONCE(atomic_read(&ioc->nr_tasks) <= 0); atomic_inc(&ioc->nr_tasks); } struct task_struct; #ifdef CONFIG_BLOCK void put_io_context(struct io_context *ioc); void put_io_context_active(struct io_context *ioc); void exit_io_context(struct task_struct *task); struct io_context *get_task_io_context(struct task_struct *task, gfp_t gfp_flags, int node); #else struct io_context; static inline void put_io_context(struct io_context *ioc) { } static inline void exit_io_context(struct task_struct *task) { } #endif #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 1994 Linus Torvalds * * Pentium III FXSR, SSE support * General FPU state handling cleanups * Gareth Hughes <gareth@valinux.com>, May 2000 */ #include <asm/fpu/internal.h> #include <asm/fpu/regset.h> #include <asm/fpu/signal.h> #include <asm/fpu/types.h> #include <asm/traps.h> #include <asm/irq_regs.h> #include <linux/hardirq.h> #include <linux/pkeys.h> #define CREATE_TRACE_POINTS #include <asm/trace/fpu.h> /* * Represents the initial FPU state. It's mostly (but not completely) zeroes, * depending on the FPU hardware format: */ union fpregs_state init_fpstate __read_mostly; /* * Track whether the kernel is using the FPU state * currently. * * This flag is used: * * - by IRQ context code to potentially use the FPU * if it's unused. * * - to debug kernel_fpu_begin()/end() correctness */ static DEFINE_PER_CPU(bool, in_kernel_fpu); /* * Track which context is using the FPU on the CPU: */ DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx); static bool kernel_fpu_disabled(void) { return this_cpu_read(in_kernel_fpu); } static bool interrupted_kernel_fpu_idle(void) { return !kernel_fpu_disabled(); } /* * Were we in user mode (or vm86 mode) when we were * interrupted? * * Doing kernel_fpu_begin/end() is ok if we are running * in an interrupt context from user mode - we'll just * save the FPU state as required. */ static bool interrupted_user_mode(void) { struct pt_regs *regs = get_irq_regs(); return regs && user_mode(regs); } /* * Can we use the FPU in kernel mode with the * whole "kernel_fpu_begin/end()" sequence? * * It's always ok in process context (ie "not interrupt") * but it is sometimes ok even from an irq. */ bool irq_fpu_usable(void) { return !in_interrupt() || interrupted_user_mode() || interrupted_kernel_fpu_idle(); } EXPORT_SYMBOL(irq_fpu_usable); /* * These must be called with preempt disabled. Returns * 'true' if the FPU state is still intact and we can * keep registers active. * * The legacy FNSAVE instruction cleared all FPU state * unconditionally, so registers are essentially destroyed. * Modern FPU state can be kept in registers, if there are * no pending FP exceptions. */ int copy_fpregs_to_fpstate(struct fpu *fpu) { if (likely(use_xsave())) { copy_xregs_to_kernel(&fpu->state.xsave); /* * AVX512 state is tracked here because its use is * known to slow the max clock speed of the core. */ if (fpu->state.xsave.header.xfeatures & XFEATURE_MASK_AVX512) fpu->avx512_timestamp = jiffies; return 1; } if (likely(use_fxsr())) { copy_fxregs_to_kernel(fpu); return 1; } /* * Legacy FPU register saving, FNSAVE always clears FPU registers, * so we have to mark them inactive: */ asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->state.fsave)); return 0; } EXPORT_SYMBOL(copy_fpregs_to_fpstate); void kernel_fpu_begin_mask(unsigned int kfpu_mask) { preempt_disable(); WARN_ON_FPU(!irq_fpu_usable()); WARN_ON_FPU(this_cpu_read(in_kernel_fpu)); this_cpu_write(in_kernel_fpu, true); if (!(current->flags & PF_KTHREAD) && !test_thread_flag(TIF_NEED_FPU_LOAD)) { set_thread_flag(TIF_NEED_FPU_LOAD); /* * Ignore return value -- we don't care if reg state * is clobbered. */ copy_fpregs_to_fpstate(&current->thread.fpu); } __cpu_invalidate_fpregs_state(); /* Put sane initial