1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM sock #if !defined(_TRACE_SOCK_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_SOCK_H #include <net/sock.h> #include <net/ipv6.h> #include <linux/tracepoint.h> #include <linux/ipv6.h> #include <linux/tcp.h> #define family_names \ EM(AF_INET) \ EMe(AF_INET6) /* The protocol traced by inet_sock_set_state */ #define inet_protocol_names \ EM(IPPROTO_TCP) \ EM(IPPROTO_DCCP) \ EM(IPPROTO_SCTP) \ EMe(IPPROTO_MPTCP) #define tcp_state_names \ EM(TCP_ESTABLISHED) \ EM(TCP_SYN_SENT) \ EM(TCP_SYN_RECV) \ EM(TCP_FIN_WAIT1) \ EM(TCP_FIN_WAIT2) \ EM(TCP_TIME_WAIT) \ EM(TCP_CLOSE) \ EM(TCP_CLOSE_WAIT) \ EM(TCP_LAST_ACK) \ EM(TCP_LISTEN) \ EM(TCP_CLOSING) \ EMe(TCP_NEW_SYN_RECV) #define skmem_kind_names \ EM(SK_MEM_SEND) \ EMe(SK_MEM_RECV) /* enums need to be exported to user space */ #undef EM #undef EMe #define EM(a) TRACE_DEFINE_ENUM(a); #define EMe(a) TRACE_DEFINE_ENUM(a); family_names inet_protocol_names tcp_state_names skmem_kind_names #undef EM #undef EMe #define EM(a) { a, #a }, #define EMe(a) { a, #a } #define show_family_name(val) \ __print_symbolic(val, family_names) #define show_inet_protocol_name(val) \ __print_symbolic(val, inet_protocol_names) #define show_tcp_state_name(val) \ __print_symbolic(val, tcp_state_names) #define show_skmem_kind_names(val) \ __print_symbolic(val, skmem_kind_names) TRACE_EVENT(sock_rcvqueue_full, TP_PROTO(struct sock *sk, struct sk_buff *skb), TP_ARGS(sk, skb), TP_STRUCT__entry( __field(int, rmem_alloc) __field(unsigned int, truesize) __field(int, sk_rcvbuf) ), TP_fast_assign( __entry->rmem_alloc = atomic_read(&sk->sk_rmem_alloc); __entry->truesize = skb->truesize; __entry->sk_rcvbuf = READ_ONCE(sk->sk_rcvbuf); ), TP_printk("rmem_alloc=%d truesize=%u sk_rcvbuf=%d", __entry->rmem_alloc, __entry->truesize, __entry->sk_rcvbuf) ); TRACE_EVENT(sock_exceed_buf_limit, TP_PROTO(struct sock *sk, struct proto *prot, long allocated, int kind), TP_ARGS(sk, prot, allocated, kind), TP_STRUCT__entry( __array(char, name, 32) __field(long *, sysctl_mem) __field(long, allocated) __field(int, sysctl_rmem) __field(int, rmem_alloc) __field(int, sysctl_wmem) __field(int, wmem_alloc) __field(int, wmem_queued) __field(int, kind) ), TP_fast_assign( strncpy(__entry->name, prot->name, 32); __entry->sysctl_mem = prot->sysctl_mem; __entry->allocated = allocated; __entry->sysctl_rmem = sk_get_rmem0(sk, prot); __entry->rmem_alloc = atomic_read(&sk->sk_rmem_alloc); __entry->sysctl_wmem = sk_get_wmem0(sk, prot); __entry->wmem_alloc = refcount_read(&sk->sk_wmem_alloc); __entry->wmem_queued = READ_ONCE(sk->sk_wmem_queued); __entry->kind = kind; ), TP_printk("proto:%s sysctl_mem=%ld,%ld,%ld allocated=%ld sysctl_rmem=%d rmem_alloc=%d sysctl_wmem=%d wmem_alloc=%d wmem_queued=%d kind=%s", __entry->name, __entry->sysctl_mem[0], __entry->sysctl_mem[1], __entry->sysctl_mem[2], __entry->allocated, __entry->sysctl_rmem, __entry->rmem_alloc, __entry->sysctl_wmem, __entry->wmem_alloc, __entry->wmem_queued, show_skmem_kind_names(__entry->kind) ) ); TRACE_EVENT(inet_sock_set_state, TP_PROTO(const struct sock *sk, const int oldstate, const int newstate), TP_ARGS(sk, oldstate, newstate), TP_STRUCT__entry( __field(const void *, skaddr) __field(int, oldstate) __field(int, newstate) __field(__u16, sport) __field(__u16, dport) __field(__u16, family) __field(__u16, protocol) __array(__u8, saddr, 4) __array(__u8, daddr, 4) __array(__u8, saddr_v6, 16) __array(__u8, daddr_v6, 16) ), TP_fast_assign( struct inet_sock *inet = inet_sk(sk); struct in6_addr *pin6; __be32 *p32; __entry->skaddr = sk; __entry->oldstate = oldstate; __entry->newstate = newstate; __entry->family = sk->sk_family; __entry->protocol = sk->sk_protocol; __entry->sport = ntohs(inet->inet_sport); __entry->dport = ntohs(inet->inet_dport); p32 = (__be32 *) __entry->saddr; *p32 = inet->inet_saddr; p32 = (__be32 *) __entry->daddr; *p32 = inet->inet_daddr; #if IS_ENABLED(CONFIG_IPV6) if (sk->sk_family == AF_INET6) { pin6 = (struct in6_addr *)__entry->saddr_v6; *pin6 = sk->sk_v6_rcv_saddr; pin6 = (struct in6_addr *)__entry->daddr_v6; *pin6 = sk->sk_v6_daddr; } else #endif { pin6 = (struct in6_addr *)__entry->saddr_v6; ipv6_addr_set_v4mapped(inet->inet_saddr, pin6); pin6 = (struct in6_addr *)__entry->daddr_v6; ipv6_addr_set_v4mapped(inet->inet_daddr, pin6); } ), TP_printk("family=%s protocol=%s sport=%hu dport=%hu saddr=%pI4 daddr=%pI4 saddrv6=%pI6c daddrv6=%pI6c oldstate=%s newstate=%s", show_family_name(__entry->family), show_inet_protocol_name(__entry->protocol), __entry->sport, __entry->dport, __entry->saddr, __entry->daddr, __entry->saddr_v6, __entry->daddr_v6, show_tcp_state_name(__entry->oldstate), show_tcp_state_name(__entry->newstate)) ); #endif /* _TRACE_SOCK_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_SMP_H #define _ASM_X86_SMP_H #ifndef __ASSEMBLY__ #include <linux/cpumask.h> #include <asm/percpu.h> #include <asm/thread_info.h> #include <asm/cpumask.h> extern int smp_num_siblings; extern unsigned int num_processors; DECLARE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map); DECLARE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map); DECLARE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map); /* cpus sharing the last level cache: */ DECLARE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map); DECLARE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id); DECLARE_PER_CPU_READ_MOSTLY(int, cpu_number); static inline struct cpumask *cpu_llc_shared_mask(int cpu) { return per_cpu(cpu_llc_shared_map, cpu); } DECLARE_EARLY_PER_CPU_READ_MOSTLY(u16, x86_cpu_to_apicid); DECLARE_EARLY_PER_CPU_READ_MOSTLY(u32, x86_cpu_to_acpiid); DECLARE_EARLY_PER_CPU_READ_MOSTLY(u16, x86_bios_cpu_apicid); #if defined(CONFIG_X86_LOCAL_APIC) && defined(CONFIG_X86_32) DECLARE_EARLY_PER_CPU_READ_MOSTLY(int, x86_cpu_to_logical_apicid); #endif struct task_struct; struct smp_ops { void (*smp_prepare_boot_cpu)(void); void (*smp_prepare_cpus)(unsigned max_cpus); void (*smp_cpus_done)(unsigned max_cpus); void (*stop_other_cpus)(int wait); void (*crash_stop_other_cpus)(void); void (*smp_send_reschedule)(int cpu); int (*cpu_up)(unsigned cpu, struct task_struct *tidle); int (*cpu_disable)(void); void (*cpu_die)(unsigned int cpu); void (*play_dead)(void); void (*send_call_func_ipi)(const struct cpumask *mask); void (*send_call_func_single_ipi)(int cpu); }; /* Globals due to paravirt */ extern void set_cpu_sibling_map(int cpu); #ifdef CONFIG_SMP extern struct smp_ops smp_ops; static inline void smp_send_stop(void) { smp_ops.stop_other_cpus(0); } static inline void stop_other_cpus(void) { smp_ops.stop_other_cpus(1); } static inline void smp_prepare_boot_cpu(void) { smp_ops.smp_prepare_boot_cpu(); } static inline void smp_prepare_cpus(unsigned int max_cpus) { smp_ops.smp_prepare_cpus(max_cpus); } static inline void smp_cpus_done(unsigned int max_cpus) { smp_ops.smp_cpus_done(max_cpus); } static inline int __cpu_up(unsigned int cpu, struct task_struct *tidle) { return smp_ops.cpu_up(cpu, tidle); } static inline int __cpu_disable(void) { return smp_ops.cpu_disable(); } static inline void __cpu_die(unsigned int cpu) { smp_ops.cpu_die(cpu); } static inline void play_dead(void) { smp_ops.play_dead(); } static inline void smp_send_reschedule(int cpu) { smp_ops.smp_send_reschedule(cpu); } static inline void arch_send_call_function_single_ipi(int cpu) { smp_ops.send_call_func_single_ipi(cpu); } static inline void arch_send_call_function_ipi_mask(const struct cpumask *mask) { smp_ops.send_call_func_ipi(mask); } void cpu_disable_common(void); void native_smp_prepare_boot_cpu(void); void native_smp_prepare_cpus(unsigned int max_cpus); void calculate_max_logical_packages(void); void native_smp_cpus_done(unsigned int max_cpus); int common_cpu_up(unsigned int cpunum, struct task_struct *tidle); int native_cpu_up(unsigned int cpunum, struct task_struct *tidle); int native_cpu_disable(void); int common_cpu_die(unsigned int cpu); void native_cpu_die(unsigned int cpu); void hlt_play_dead(void); void native_play_dead(void); void play_dead_common(void); void wbinvd_on_cpu(int cpu); int wbinvd_on_all_cpus(void); void cond_wakeup_cpu0(void); void native_smp_send_reschedule(int cpu); void native_send_call_func_ipi(const struct cpumask *mask); void native_send_call_func_single_ipi(int cpu); void x86_idle_thread_init(unsigned int cpu, struct task_struct *idle); void smp_store_boot_cpu_info(void); void smp_store_cpu_info(int id); asmlinkage __visible void smp_reboot_interrupt(void); __visible void smp_reschedule_interrupt(struct pt_regs *regs); __visible void smp_call_function_interrupt(struct pt_regs *regs); __visible void smp_call_function_single_interrupt(struct pt_regs *r); #define cpu_physical_id(cpu) per_cpu(x86_cpu_to_apicid, cpu) #define cpu_acpi_id(cpu) per_cpu(x86_cpu_to_acpiid, cpu) /* * This function is needed by all SMP systems. It must _always_ be valid * from the initial startup. We map APIC_BASE very early in page_setup(), * so this is correct in the x86 case. */ #define raw_smp_processor_id() this_cpu_read(cpu_number) #define __smp_processor_id() __this_cpu_read(cpu_number) #ifdef CONFIG_X86_32 extern int safe_smp_processor_id(void); #else # define safe_smp_processor_id() smp_processor_id() #endif #else /* !CONFIG_SMP */ #define wbinvd_on_cpu(cpu) wbinvd() static inline int wbinvd_on_all_cpus(void) { wbinvd(); return 0; } #endif /* CONFIG_SMP */ extern unsigned disabled_cpus; #ifdef CONFIG_X86_LOCAL_APIC extern int hard_smp_processor_id(void); #else /* CONFIG_X86_LOCAL_APIC */ #define hard_smp_processor_id() 0 #endif /* CONFIG_X86_LOCAL_APIC */ #ifdef CONFIG_DEBUG_NMI_SELFTEST extern void nmi_selftest(void); #else #define nmi_selftest() do { } while (0) #endif #endif /* __ASSEMBLY__ */ #endif /* _ASM_X86_SMP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_JUMP_LABEL_H #define _LINUX_JUMP_LABEL_H /* * Jump label support * * Copyright (C) 2009-2012 Jason Baron <jbaron@redhat.com> * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra * * DEPRECATED API: * * The use of 'struct static_key' directly, is now DEPRECATED. In addition * static_key_{true,false}() is also DEPRECATED. IE DO NOT use the following: * * struct static_key false = STATIC_KEY_INIT_FALSE; * struct static_key true = STATIC_KEY_INIT_TRUE; * static_key_true() * static_key_false() * * The updated API replacements are: * * DEFINE_STATIC_KEY_TRUE(key); * DEFINE_STATIC_KEY_FALSE(key); * DEFINE_STATIC_KEY_ARRAY_TRUE(keys, count); * DEFINE_STATIC_KEY_ARRAY_FALSE(keys, count); * static_branch_likely() * static_branch_unlikely() * * Jump labels provide an interface to generate dynamic branches using * self-modifying code. Assuming toolchain and architecture support, if we * define a "key" that is initially false via "DEFINE_STATIC_KEY_FALSE(key)", * an "if (static_branch_unlikely(&key))" statement is an unconditional branch * (which defaults to false - and the true block is placed out of line). * Similarly, we can define an initially true key via * "DEFINE_STATIC_KEY_TRUE(key)", and use it in the same * "if (static_branch_unlikely(&key))", in which case we will generate an * unconditional branch to the out-of-line true branch. Keys that are * initially true or false can be using in both static_branch_unlikely() * and static_branch_likely() statements. * * At runtime we can change the branch target by setting the key * to true via a call to static_branch_enable(), or false using * static_branch_disable(). If the direction of the branch is switched by * these calls then we run-time modify the branch target via a * no-op -> jump or jump -> no-op conversion. For example, for an * initially false key that is used in an "if (static_branch_unlikely(&key))" * statement, setting the key to true requires us to patch in a jump * to the out-of-line of true branch. * * In addition to static_branch_{enable,disable}, we can also reference count * the key or branch direction via static_branch_{inc,dec}. Thus, * static_branch_inc() can be thought of as a 'make more true' and * static_branch_dec() as a 'make more false'. * * Since this relies on modifying code, the branch modifying functions * must be considered absolute slow paths (machine wide synchronization etc.). * OTOH, since the affected branches are unconditional, their runtime overhead * will be absolutely minimal, esp. in the default (off) case where the total * effect is a single NOP of appropriate size. The on case will patch in a jump * to the out-of-line block. * * When the control is directly exposed to userspace, it is prudent to delay the * decrement to avoid high frequency code modifications which can (and do) * cause significant performance degradation. Struct static_key_deferred and * static_key_slow_dec_deferred() provide for this. * * Lacking toolchain and or architecture support, static keys fall back to a * simple conditional branch. * * Additional babbling in: Documentation/staging/static-keys.rst */ #ifndef __ASSEMBLY__ #include <linux/types.h> #include <linux/compiler.h> extern bool static_key_initialized; #define STATIC_KEY_CHECK_USE(key) WARN(!static_key_initialized, \ "%s(): static key '%pS' used before call to jump_label_init()", \ __func__, (key)) #ifdef CONFIG_JUMP_LABEL struct static_key { atomic_t enabled; /* * Note: * To make anonymous unions work with old compilers, the static * initialization of them requires brackets. This creates a dependency * on the order of the struct with the initializers. If any fields * are added, STATIC_KEY_INIT_TRUE and STATIC_KEY_INIT_FALSE may need * to be modified. * * bit 0 => 1 if key is initially true * 0 if initially false * bit 1 => 1 if points to struct static_key_mod * 0 if points to struct jump_entry */ union { unsigned long type; struct jump_entry *entries; struct static_key_mod *next; }; }; #else struct static_key { atomic_t enabled; }; #endif /* CONFIG_JUMP_LABEL */ #endif /* __ASSEMBLY__ */ #ifdef CONFIG_JUMP_LABEL #include <asm/jump_label.h> #ifndef __ASSEMBLY__ #ifdef CONFIG_HAVE_ARCH_JUMP_LABEL_RELATIVE struct jump_entry { s32 code; s32 target; long key; // key may be far away from the core kernel under KASLR }; static inline unsigned long jump_entry_code(const struct jump_entry *entry) { return (unsigned long)&entry->code + entry->code; } static inline unsigned long jump_entry_target(const struct jump_entry *entry) { return (unsigned long)&entry->target + entry->target; } static inline struct static_key *jump_entry_key(const struct jump_entry *entry) { long offset = entry->key & ~3L; return (struct static_key *)((unsigned long)&entry->key + offset); } #else static inline unsigned long jump_entry_code(const struct jump_entry *entry) { return entry->code; } static inline unsigned long jump_entry_target(const struct jump_entry *entry) { return entry->target; } static inline struct static_key *jump_entry_key(const struct jump_entry *entry) { return (struct static_key *)((unsigned long)entry->key & ~3UL); } #endif static inline bool jump_entry_is_branch(const struct jump_entry *entry) { return (unsigned long)entry->key & 1UL; } static inline bool jump_entry_is_init(const struct jump_entry *entry) { return (unsigned long)entry->key & 2UL; } static inline void jump_entry_set_init(struct jump_entry *entry) { entry->key |= 2; } #endif #endif #ifndef __ASSEMBLY__ enum jump_label_type { JUMP_LABEL_NOP = 0, JUMP_LABEL_JMP, }; struct module; #ifdef CONFIG_JUMP_LABEL #define JUMP_TYPE_FALSE 0UL #define JUMP_TYPE_TRUE 1UL #define JUMP_TYPE_LINKED 2UL #define JUMP_TYPE_MASK 3UL static __always_inline bool static_key_false(struct static_key *key) { return arch_static_branch(key, false); } static __always_inline bool static_key_true(struct static_key *key) { return !arch_static_branch(key, true); } extern struct jump_entry __start___jump_table[]; extern struct jump_entry __stop___jump_table[]; extern void jump_label_init(void); extern void jump_label_lock(void); extern void jump_label_unlock(void); extern void arch_jump_label_transform(struct jump_entry *entry, enum jump_label_type type); extern void arch_jump_label_transform_static(struct jump_entry *entry, enum jump_label_type type); extern bool arch_jump_label_transform_queue(struct jump_entry *entry, enum jump_label_type type); extern void arch_jump_label_transform_apply(void); extern int jump_label_text_reserved(void *start, void *end); extern void static_key_slow_inc(struct static_key *key); extern void static_key_slow_dec(struct static_key *key); extern void static_key_slow_inc_cpuslocked(struct static_key *key); extern void static_key_slow_dec_cpuslocked(struct static_key *key); extern void jump_label_apply_nops(struct module *mod); extern int static_key_count(struct static_key *key); extern void static_key_enable(struct static_key *key); extern void static_key_disable(struct static_key *key); extern void static_key_enable_cpuslocked(struct static_key *key); extern void static_key_disable_cpuslocked(struct static_key *key); /* * We should be using ATOMIC_INIT() for initializing .enabled, but * the inclusion of atomic.h is problematic for inclusion of jump_label.h * in 'low-level' headers. Thus, we are initializing .enabled with a * raw value, but have added a BUILD_BUG_ON() to catch any issues in * jump_label_init() see: kernel/jump_label.c. */ #define STATIC_KEY_INIT_TRUE \ { .enabled = { 1 }, \ { .entries = (void *)JUMP_TYPE_TRUE } } #define STATIC_KEY_INIT_FALSE \ { .enabled = { 0 }, \ { .entries = (void *)JUMP_TYPE_FALSE } } #else /* !CONFIG_JUMP_LABEL */ #include <linux/atomic.h> #include <linux/bug.h> static inline int static_key_count(struct static_key *key) { return atomic_read(&key->enabled); } static __always_inline void jump_label_init(void) { static_key_initialized = true; } static __always_inline bool static_key_false(struct static_key *key) { if (unlikely(static_key_count(key) > 0)) return true; return false; } static __always_inline bool static_key_true(struct static_key *key) { if (likely(static_key_count(key) > 0)) return true; return false; } static inline void static_key_slow_inc(struct static_key *key) { STATIC_KEY_CHECK_USE(key); atomic_inc(&key->enabled); } static inline void static_key_slow_dec(struct static_key *key) { STATIC_KEY_CHECK_USE(key); atomic_dec(&key->enabled); } #define static_key_slow_inc_cpuslocked(key) static_key_slow_inc(key) #define static_key_slow_dec_cpuslocked(key) static_key_slow_dec(key) static inline int jump_label_text_reserved(void *start, void *end) { return 0; } static inline void jump_label_lock(void) {} static inline void jump_label_unlock(void) {} static inline int jump_label_apply_nops(struct module *mod) { return 0; } static inline void static_key_enable(struct static_key *key) { STATIC_KEY_CHECK_USE(key); if (atomic_read(&key->enabled) != 0) { WARN_ON_ONCE(atomic_read(&key->enabled) != 1); return; } atomic_set(&key->enabled, 1); } static inline void static_key_disable(struct static_key *key) { STATIC_KEY_CHECK_USE(key); if (atomic_read(&key->enabled) != 1) { WARN_ON_ONCE(atomic_read(&key->enabled) != 0); return; } atomic_set(&key->enabled, 0); } #define static_key_enable_cpuslocked(k) static_key_enable((k)) #define static_key_disable_cpuslocked(k) static_key_disable((k)) #define STATIC_KEY_INIT_TRUE { .enabled = ATOMIC_INIT(1) } #define STATIC_KEY_INIT_FALSE { .enabled = ATOMIC_INIT(0) } #endif /* CONFIG_JUMP_LABEL */ #define STATIC_KEY_INIT STATIC_KEY_INIT_FALSE #define jump_label_enabled static_key_enabled /* -------------------------------------------------------------------------- */ /* * Two type wrappers around static_key, such that we can use compile time * type differentiation to emit the right code. * * All the below code is macros in order to play type games. */ struct static_key_true { struct static_key key; }; struct static_key_false { struct static_key key; }; #define STATIC_KEY_TRUE_INIT (struct static_key_true) { .key = STATIC_KEY_INIT_TRUE, } #define STATIC_KEY_FALSE_INIT (struct static_key_false){ .key = STATIC_KEY_INIT_FALSE, } #define DEFINE_STATIC_KEY_TRUE(name) \ struct static_key_true name = STATIC_KEY_TRUE_INIT #define DEFINE_STATIC_KEY_TRUE_RO(name) \ struct static_key_true name __ro_after_init = STATIC_KEY_TRUE_INIT #define DECLARE_STATIC_KEY_TRUE(name) \ extern struct static_key_true name #define DEFINE_STATIC_KEY_FALSE(name) \ struct static_key_false name = STATIC_KEY_FALSE_INIT #define DEFINE_STATIC_KEY_FALSE_RO(name) \ struct static_key_false name __ro_after_init = STATIC_KEY_FALSE_INIT #define DECLARE_STATIC_KEY_FALSE(name) \ extern struct static_key_false name #define DEFINE_STATIC_KEY_ARRAY_TRUE(name, count) \ struct static_key_true name[count] = { \ [0 ... (count) - 1] = STATIC_KEY_TRUE_INIT, \ } #define DEFINE_STATIC_KEY_ARRAY_FALSE(name, count) \ struct static_key_false name[count] = { \ [0 ... (count) - 1] = STATIC_KEY_FALSE_INIT, \ } extern bool ____wrong_branch_error(void); #define static_key_enabled(x) \ ({ \ if (!__builtin_types_compatible_p(typeof(*x), struct static_key) && \ !__builtin_types_compatible_p(typeof(*x), struct static_key_true) &&\ !__builtin_types_compatible_p(typeof(*x), struct static_key_false)) \ ____wrong_branch_error(); \ static_key_count((struct static_key *)x) > 0; \ }) #ifdef CONFIG_JUMP_LABEL /* * Combine the right initial value (type) with the right branch order * to generate the desired result. * * * type\branch| likely (1) | unlikely (0) * -----------+-----------------------+------------------ * | | * true (1) | ... | ... * | NOP | JMP L * | <br-stmts> | 1: ... * | L: ... | * | | * | | L: <br-stmts> * | | jmp 1b * | | * -----------+-----------------------+------------------ * | | * false (0) | ... | ... * | JMP L | NOP * | <br-stmts> | 1: ... * | L: ... | * | | * | | L: <br-stmts> * | | jmp 1b * | | * -----------+-----------------------+------------------ * * The initial value is encoded in the LSB of static_key::entries, * type: 0 = false, 1 = true. * * The branch type is encoded in the LSB of jump_entry::key, * branch: 0 = unlikely, 1 = likely. * * This gives the following logic table: * * enabled type branch instuction * -----------------------------+----------- * 0 0 0 | NOP * 0 0 1 | JMP * 0 1 0 | NOP * 0 1 1 | JMP * * 1 0 0 | JMP * 1 0 1 | NOP * 1 1 0 | JMP * 1 1 1 | NOP * * Which gives the following functions: * * dynamic: instruction = enabled ^ branch * static: instruction = type ^ branch * * See jump_label_type() / jump_label_init_type(). */ #define static_branch_likely(x) \ ({ \ bool branch; \ if (__builtin_types_compatible_p(typeof(*x), struct static_key_true)) \ branch = !arch_static_branch(&(x)->key, true); \ else if (__builtin_types_compatible_p(typeof(*x), struct static_key_false)) \ branch = !arch_static_branch_jump(&(x)->key, true); \ else \ branch = ____wrong_branch_error(); \ likely(branch); \ }) #define static_branch_unlikely(x) \ ({ \ bool branch; \ if (__builtin_types_compatible_p(typeof(*x), struct static_key_true)) \ branch = arch_static_branch_jump(&(x)->key, false); \ else if (__builtin_types_compatible_p(typeof(*x), struct static_key_false)) \ branch = arch_static_branch(&(x)->key, false); \ else \ branch = ____wrong_branch_error(); \ unlikely(branch); \ }) #else /* !CONFIG_JUMP_LABEL */ #define static_branch_likely(x) likely(static_key_enabled(&(x)->key)) #define static_branch_unlikely(x) unlikely(static_key_enabled(&(x)->key)) #endif /* CONFIG_JUMP_LABEL */ /* * Advanced usage; refcount, branch is enabled when: count != 0 */ #define static_branch_inc(x) static_key_slow_inc(&(x)->key) #define static_branch_dec(x) static_key_slow_dec(&(x)->key) #define static_branch_inc_cpuslocked(x) static_key_slow_inc_cpuslocked(&(x)->key) #define static_branch_dec_cpuslocked(x) static_key_slow_dec_cpuslocked(&(x)->key) /* * Normal usage; boolean enable/disable. */ #define static_branch_enable(x) static_key_enable(&(x)->key) #define static_branch_disable(x) static_key_disable(&(x)->key) #define static_branch_enable_cpuslocked(x) static_key_enable_cpuslocked(&(x)->key) #define static_branch_disable_cpuslocked(x) static_key_disable_cpuslocked(&(x)->key) #endif /* __ASSEMBLY__ */ #endif /* _LINUX_JUMP_LABEL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * inet6 interface/address list definitions * Linux INET6 implementation * * Authors: * Pedro Roque <roque@di.fc.ul.pt> */ #ifndef _NET_IF_INET6_H #define _NET_IF_INET6_H #include <net/snmp.h> #include <linux/ipv6.h> #include <linux/refcount.h> /* inet6_dev.if_flags */ #define IF_RA_OTHERCONF 0x80 #define IF_RA_MANAGED 0x40 #define IF_RA_RCVD 0x20 #define IF_RS_SENT 0x10 #define IF_READY 0x80000000 /* prefix flags */ #define IF_PREFIX_ONLINK 0x01 #define IF_PREFIX_AUTOCONF 0x02 enum { INET6_IFADDR_STATE_PREDAD, INET6_IFADDR_STATE_DAD, INET6_IFADDR_STATE_POSTDAD, INET6_IFADDR_STATE_ERRDAD, INET6_IFADDR_STATE_DEAD, }; struct inet6_ifaddr { struct in6_addr addr; __u32 prefix_len; __u32 rt_priority; /* In seconds, relative to tstamp. Expiry is at tstamp + HZ * lft. */ __u32 valid_lft; __u32 prefered_lft; refcount_t refcnt; spinlock_t lock; int state; __u32 flags; __u8 dad_probes; __u8 stable_privacy_retry; __u16 scope; __u64 dad_nonce; unsigned long cstamp; /* created timestamp */ unsigned long tstamp; /* updated timestamp */ struct delayed_work dad_work; struct inet6_dev *idev; struct fib6_info *rt; struct hlist_node addr_lst; struct list_head if_list; struct list_head tmp_list; struct inet6_ifaddr *ifpub; int regen_count; bool tokenized; struct rcu_head rcu; struct in6_addr peer_addr; }; struct ip6_sf_socklist { unsigned int sl_max; unsigned int sl_count; struct in6_addr sl_addr[]; }; #define IP6_SFLSIZE(count) (sizeof(struct ip6_sf_socklist) + \ (count) * sizeof(struct in6_addr)) #define IP6_SFBLOCK 10 /* allocate this many at once */ struct ipv6_mc_socklist { struct in6_addr addr; int ifindex; unsigned int sfmode; /* MCAST_{INCLUDE,EXCLUDE} */ struct ipv6_mc_socklist __rcu *next; rwlock_t sflock; struct ip6_sf_socklist *sflist; struct rcu_head rcu; }; struct ip6_sf_list { struct ip6_sf_list *sf_next; struct in6_addr sf_addr; unsigned long sf_count[2]; /* include/exclude counts */ unsigned char sf_gsresp; /* include in g & s response? */ unsigned char sf_oldin; /* change state */ unsigned char sf_crcount; /* retrans. left to send */ }; #define MAF_TIMER_RUNNING 0x01 #define MAF_LAST_REPORTER 0x02 #define MAF_LOADED 0x04 #define MAF_NOREPORT 0x08 #define MAF_GSQUERY 0x10 struct ifmcaddr6 { struct in6_addr mca_addr; struct inet6_dev *idev; struct ifmcaddr6 *next; struct ip6_sf_list *mca_sources; struct ip6_sf_list *mca_tomb; unsigned int mca_sfmode; unsigned char mca_crcount; unsigned long mca_sfcount[2]; struct timer_list mca_timer; unsigned int mca_flags; int mca_users; refcount_t mca_refcnt; spinlock_t mca_lock; unsigned long mca_cstamp; unsigned long mca_tstamp; }; /* Anycast stuff */ struct ipv6_ac_socklist { struct in6_addr acl_addr; int acl_ifindex; struct ipv6_ac_socklist *acl_next; }; struct ifacaddr6 { struct in6_addr aca_addr; struct fib6_info *aca_rt; struct ifacaddr6 *aca_next; struct hlist_node aca_addr_lst; int aca_users; refcount_t aca_refcnt; unsigned long aca_cstamp; unsigned long aca_tstamp; struct rcu_head rcu; }; #define IFA_HOST IPV6_ADDR_LOOPBACK #define IFA_LINK IPV6_ADDR_LINKLOCAL #define IFA_SITE IPV6_ADDR_SITELOCAL struct ipv6_devstat { struct proc_dir_entry *proc_dir_entry; DEFINE_SNMP_STAT(struct ipstats_mib, ipv6); DEFINE_SNMP_STAT_ATOMIC(struct icmpv6_mib_device, icmpv6dev); DEFINE_SNMP_STAT_ATOMIC(struct icmpv6msg_mib_device, icmpv6msgdev); }; struct inet6_dev { struct net_device *dev; struct list_head addr_list; struct ifmcaddr6 *mc_list; struct ifmcaddr6 *mc_tomb; spinlock_t mc_lock; unsigned char mc_qrv; /* Query Robustness Variable */ unsigned char mc_gq_running; unsigned char mc_ifc_count; unsigned char mc_dad_count; unsigned long mc_v1_seen; /* Max time we stay in MLDv1 mode */ unsigned long mc_qi; /* Query Interval */ unsigned long mc_qri; /* Query Response Interval */ unsigned long mc_maxdelay; struct timer_list mc_gq_timer; /* general query timer */ struct timer_list mc_ifc_timer; /* interface change timer */ struct timer_list mc_dad_timer; /* dad complete mc timer */ struct ifacaddr6 *ac_list; rwlock_t lock; refcount_t refcnt; __u32 if_flags; int dead; u32 desync_factor; struct list_head tempaddr_list; struct in6_addr token; struct neigh_parms *nd_parms; struct ipv6_devconf cnf; struct ipv6_devstat stats; struct timer_list rs_timer; __s32 rs_interval; /* in jiffies */ __u8 rs_probes; unsigned long tstamp; /* ipv6InterfaceTable update timestamp */ struct rcu_head rcu; }; static inline void ipv6_eth_mc_map(const struct in6_addr *addr, char *buf) { /* * +-------+-------+-------+-------+-------+-------+ * | 33 | 33 | DST13 | DST14 | DST15 | DST16 | * +-------+-------+-------+-------+-------+-------+ */ buf[0]= 0x33; buf[1]= 0x33; memcpy(buf + 2, &addr->s6_addr32[3], sizeof(__u32)); } static inline void ipv6_arcnet_mc_map(const struct in6_addr *addr, char *buf) { buf[0] = 0x00; } static inline void ipv6_ib_mc_map(const struct in6_addr *addr, const unsigned char *broadcast, char *buf) { unsigned char scope = broadcast[5] & 0xF; buf[0] = 0; /* Reserved */ buf[1] = 0xff; /* Multicast QPN */ buf[2] = 0xff; buf[3] = 0xff; buf[4] = 0xff; buf[5] = 0x10 | scope; /* scope from broadcast address */ buf[6] = 0x60; /* IPv6 signature */ buf[7] = 0x1b; buf[8] = broadcast[8]; /* P_Key */ buf[9] = broadcast[9]; memcpy(buf + 10, addr->s6_addr + 6, 10); } static inline int ipv6_ipgre_mc_map(const struct in6_addr *addr, const unsigned char *broadcast, char *buf) { if ((broadcast[0] | broadcast[1] | broadcast[2] | broadcast[3]) != 0) { memcpy(buf, broadcast, 4); } else { /* v4mapped? */ if ((addr->s6_addr32[0] | addr->s6_addr32[1] | (addr->s6_addr32[2] ^ htonl(0x0000ffff))) != 0) return -EINVAL; memcpy(buf, &addr->s6_addr32[3], 4); } return 0; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 /* SPDX-License-Identifier: GPL-2.0 */ /* * Filesystem access notification for Linux * * Copyright (C) 2008 Red Hat, Inc., Eric Paris <eparis@redhat.com> */ #ifndef __LINUX_FSNOTIFY_BACKEND_H #define __LINUX_FSNOTIFY_BACKEND_H #ifdef __KERNEL__ #include <linux/idr.h> /* inotify uses this */ #include <linux/fs.h> /* struct inode */ #include <linux/list.h> #include <linux/path.h> /* struct path */ #include <linux/spinlock.h> #include <linux/types.h> #include <linux/atomic.h> #include <linux/user_namespace.h> #include <linux/refcount.h> /* * IN_* from inotfy.h lines up EXACTLY with FS_*, this is so we can easily * convert between them. dnotify only needs conversion at watch creation * so no perf loss there. fanotify isn't defined yet, so it can use the * wholes if it needs more events. */ #define FS_ACCESS 0x00000001 /* File was accessed */ #define FS_MODIFY 0x00000002 /* File was modified */ #define FS_ATTRIB 0x00000004 /* Metadata changed */ #define FS_CLOSE_WRITE 0x00000008 /* Writtable file was closed */ #define FS_CLOSE_NOWRITE 0x00000010 /* Unwrittable file closed */ #define FS_OPEN 0x00000020 /* File was opened */ #define FS_MOVED_FROM 0x00000040 /* File was moved from X */ #define FS_MOVED_TO 0x00000080 /* File was moved to Y */ #define FS_CREATE 0x00000100 /* Subfile was created */ #define FS_DELETE 0x00000200 /* Subfile was deleted */ #define FS_DELETE_SELF 0x00000400 /* Self was deleted */ #define FS_MOVE_SELF 0x00000800 /* Self was moved */ #define FS_OPEN_EXEC 0x00001000 /* File was opened for exec */ #define FS_UNMOUNT 0x00002000 /* inode on umount fs */ #define FS_Q_OVERFLOW 0x00004000 /* Event queued overflowed */ #define FS_IN_IGNORED 0x00008000 /* last inotify event here */ #define FS_OPEN_PERM 0x00010000 /* open event in an permission hook */ #define FS_ACCESS_PERM 0x00020000 /* access event in a permissions hook */ #define FS_OPEN_EXEC_PERM 0x00040000 /* open/exec event in a permission hook */ #define FS_EXCL_UNLINK 0x04000000 /* do not send events if object is unlinked */ /* * Set on inode mark that cares about things that happen to its children. * Always set for dnotify and inotify. * Set on inode/sb/mount marks that care about parent/name info. */ #define FS_EVENT_ON_CHILD 0x08000000 #define FS_DN_RENAME 0x10000000 /* file renamed */ #define FS_DN_MULTISHOT 0x20000000 /* dnotify multishot */ #define FS_ISDIR 0x40000000 /* event occurred against dir */ #define FS_IN_ONESHOT 0x80000000 /* only send event once */ #define FS_MOVE (FS_MOVED_FROM | FS_MOVED_TO) /* * Directory entry modification events - reported only to directory * where entry is modified and not to a watching parent. * The watching parent may get an FS_ATTRIB|FS_EVENT_ON_CHILD event * when a directory entry inside a child subdir changes. */ #define ALL_FSNOTIFY_DIRENT_EVENTS (FS_CREATE | FS_DELETE | FS_MOVE) #define ALL_FSNOTIFY_PERM_EVENTS (FS_OPEN_PERM | FS_ACCESS_PERM | \ FS_OPEN_EXEC_PERM) /* * This is a list of all events that may get sent to a parent that is watching * with flag FS_EVENT_ON_CHILD based on fs event on a child of that directory. */ #define FS_EVENTS_POSS_ON_CHILD (ALL_FSNOTIFY_PERM_EVENTS | \ FS_ACCESS | FS_MODIFY | FS_ATTRIB | \ FS_CLOSE_WRITE | FS_CLOSE_NOWRITE | \ FS_OPEN | FS_OPEN_EXEC) /* * This is a list of all events that may get sent with the parent inode as the * @to_tell argument of fsnotify(). * It may include events that can be sent to an inode/sb/mount mark, but cannot * be sent to a parent watching children. */ #define FS_EVENTS_POSS_TO_PARENT (FS_EVENTS_POSS_ON_CHILD) /* Events that can be reported to backends */ #define ALL_FSNOTIFY_EVENTS (ALL_FSNOTIFY_DIRENT_EVENTS | \ FS_EVENTS_POSS_ON_CHILD | \ FS_DELETE_SELF | FS_MOVE_SELF | FS_DN_RENAME | \ FS_UNMOUNT | FS_Q_OVERFLOW | FS_IN_IGNORED) /* Extra flags that may be reported with event or control handling of events */ #define ALL_FSNOTIFY_FLAGS (FS_EXCL_UNLINK | FS_ISDIR | FS_IN_ONESHOT | \ FS_DN_MULTISHOT | FS_EVENT_ON_CHILD) #define ALL_FSNOTIFY_BITS (ALL_FSNOTIFY_EVENTS | ALL_FSNOTIFY_FLAGS) struct fsnotify_group; struct fsnotify_event; struct fsnotify_mark; struct fsnotify_event_private_data; struct fsnotify_fname; struct fsnotify_iter_info; struct mem_cgroup; /* * Each group much define these ops. The fsnotify infrastructure will call * these operations for each relevant group. * * handle_event - main call for a group to handle an fs event * @group: group to notify * @mask: event type and flags * @data: object that event happened on * @data_type: type of object for fanotify_data_XXX() accessors * @dir: optional directory associated with event - * if @file_name is not NULL, this is the directory that * @file_name is relative to * @file_name: optional file name associated with event * @cookie: inotify rename cookie * @iter_info: array of marks from this group that are interested in the event * * handle_inode_event - simple variant of handle_event() for groups that only * have inode marks and don't have ignore mask * @mark: mark to notify * @mask: event type and flags * @inode: inode that event happened on * @dir: optional directory associated with event - * if @file_name is not NULL, this is the directory that * @file_name is relative to. * @file_name: optional file name associated with event * @cookie: inotify rename cookie * * free_group_priv - called when a group refcnt hits 0 to clean up the private union * freeing_mark - called when a mark is being destroyed for some reason. The group * MUST be holding a reference on each mark and that reference must be * dropped in this function. inotify uses this function to send * userspace messages that marks have been removed. */ struct fsnotify_ops { int (*handle_event)(struct fsnotify_group *group, u32 mask, const void *data, int data_type, struct inode *dir, const struct qstr *file_name, u32 cookie, struct fsnotify_iter_info *iter_info); int (*handle_inode_event)(struct fsnotify_mark *mark, u32 mask, struct inode *inode, struct inode *dir, const struct qstr *file_name, u32 cookie); void (*free_group_priv)(struct fsnotify_group *group); void (*freeing_mark)(struct fsnotify_mark *mark, struct fsnotify_group *group); void (*free_event)(struct fsnotify_event *event); /* called on final put+free to free memory */ void (*free_mark)(struct fsnotify_mark *mark); }; /* * all of the information about the original object we want to now send to * a group. If you want to carry more info from the accessing task to the * listener this structure is where you need to be adding fields. */ struct fsnotify_event { struct list_head list; unsigned long objectid; /* identifier for queue merges */ }; /* * A group is a "thing" that wants to receive notification about filesystem * events. The mask holds the subset of event types this group cares about. * refcnt on a group is up to the implementor and at any moment if it goes 0 * everything will be cleaned up. */ struct fsnotify_group { const struct fsnotify_ops *ops; /* how this group handles things */ /* * How the refcnt is used is up to each group. When the refcnt hits 0 * fsnotify will clean up all of the resources associated with this group. * As an example, the dnotify group will always have a refcnt=1 and that * will never change. Inotify, on the other hand, has a group per * inotify_init() and the refcnt will hit 0 only when that fd has been * closed. */ refcount_t refcnt; /* things with interest in this group */ /* needed to send notification to userspace */ spinlock_t notification_lock; /* protect the notification_list */ struct list_head notification_list; /* list of event_holder this group needs to send to userspace */ wait_queue_head_t notification_waitq; /* read() on the notification file blocks on this waitq */ unsigned int q_len; /* events on the queue */ unsigned int max_events; /* maximum events allowed on the list */ /* * Valid fsnotify group priorities. Events are send in order from highest * priority to lowest priority. We default to the lowest priority. */ #define FS_PRIO_0 0 /* normal notifiers, no permissions */ #define FS_PRIO_1 1 /* fanotify content based access control */ #define FS_PRIO_2 2 /* fanotify pre-content access */ unsigned int priority; bool shutdown; /* group is being shut down, don't queue more events */ /* stores all fastpath marks assoc with this group so they can be cleaned on unregister */ struct mutex mark_mutex; /* protect marks_list */ atomic_t num_marks; /* 1 for each mark and 1 for not being * past the point of no return when freeing * a group */ atomic_t user_waits; /* Number of tasks waiting for user * response */ struct list_head marks_list; /* all inode marks for this group */ struct fasync_struct *fsn_fa; /* async notification */ struct fsnotify_event *overflow_event; /* Event we queue when the * notification list is too * full */ struct mem_cgroup *memcg; /* memcg to charge allocations */ /* groups can define private fields here or use the void *private */ union { void *private; #ifdef CONFIG_INOTIFY_USER struct inotify_group_private_data { spinlock_t idr_lock; struct idr idr; struct ucounts *ucounts; } inotify_data; #endif #ifdef CONFIG_FANOTIFY struct fanotify_group_private_data { /* allows a group to block waiting for a userspace response */ struct list_head access_list; wait_queue_head_t access_waitq; int flags; /* flags from fanotify_init() */ int f_flags; /* event_f_flags from fanotify_init() */ unsigned int max_marks; struct user_struct *user; } fanotify_data; #endif /* CONFIG_FANOTIFY */ }; }; /* When calling fsnotify tell it if the data is a path or inode */ enum fsnotify_data_type { FSNOTIFY_EVENT_NONE, FSNOTIFY_EVENT_PATH, FSNOTIFY_EVENT_INODE, }; static inline struct inode *fsnotify_data_inode(const void *data, int data_type) { switch (data_type) { case FSNOTIFY_EVENT_INODE: return (struct inode *)data; case FSNOTIFY_EVENT_PATH: return d_inode(((const struct path *)data)->dentry); default: return NULL; } } static inline const struct path *fsnotify_data_path(const void *data, int data_type) { switch (data_type) { case FSNOTIFY_EVENT_PATH: return data; default: return NULL; } } enum fsnotify_obj_type { FSNOTIFY_OBJ_TYPE_INODE, FSNOTIFY_OBJ_TYPE_PARENT, FSNOTIFY_OBJ_TYPE_VFSMOUNT, FSNOTIFY_OBJ_TYPE_SB, FSNOTIFY_OBJ_TYPE_COUNT, FSNOTIFY_OBJ_TYPE_DETACHED = FSNOTIFY_OBJ_TYPE_COUNT }; #define FSNOTIFY_OBJ_TYPE_INODE_FL (1U << FSNOTIFY_OBJ_TYPE_INODE) #define FSNOTIFY_OBJ_TYPE_PARENT_FL (1U << FSNOTIFY_OBJ_TYPE_PARENT) #define FSNOTIFY_OBJ_TYPE_VFSMOUNT_FL (1U << FSNOTIFY_OBJ_TYPE_VFSMOUNT) #define FSNOTIFY_OBJ_TYPE_SB_FL (1U << FSNOTIFY_OBJ_TYPE_SB) #define FSNOTIFY_OBJ_ALL_TYPES_MASK ((1U << FSNOTIFY_OBJ_TYPE_COUNT) - 1) static inline bool fsnotify_valid_obj_type(unsigned int type) { return (type < FSNOTIFY_OBJ_TYPE_COUNT); } struct fsnotify_iter_info { struct fsnotify_mark *marks[FSNOTIFY_OBJ_TYPE_COUNT]; unsigned int report_mask; int srcu_idx; }; static inline bool fsnotify_iter_should_report_type( struct fsnotify_iter_info *iter_info, int type) { return (iter_info->report_mask & (1U << type)); } static inline void fsnotify_iter_set_report_type( struct fsnotify_iter_info *iter_info, int type) { iter_info->report_mask |= (1U << type); } static inline void fsnotify_iter_set_report_type_mark( struct fsnotify_iter_info *iter_info, int type, struct fsnotify_mark *mark) { iter_info->marks[type] = mark; iter_info->report_mask |= (1U << type); } #define FSNOTIFY_ITER_FUNCS(name, NAME) \ static inline struct fsnotify_mark *fsnotify_iter_##name##_mark( \ struct fsnotify_iter_info *iter_info) \ { \ return (iter_info->report_mask & FSNOTIFY_OBJ_TYPE_##NAME##_FL) ? \ iter_info->marks[FSNOTIFY_OBJ_TYPE_##NAME] : NULL; \ } FSNOTIFY_ITER_FUNCS(inode, INODE) FSNOTIFY_ITER_FUNCS(parent, PARENT) FSNOTIFY_ITER_FUNCS(vfsmount, VFSMOUNT) FSNOTIFY_ITER_FUNCS(sb, SB) #define fsnotify_foreach_obj_type(type) \ for (type = 0; type < FSNOTIFY_OBJ_TYPE_COUNT; type++) /* * fsnotify_connp_t is what we embed in objects which connector can be attached * to. fsnotify_connp_t * is how we refer from connector back to object. */ struct fsnotify_mark_connector; typedef struct fsnotify_mark_connector __rcu *fsnotify_connp_t; /* * Inode/vfsmount/sb point to this structure which tracks all marks attached to * the inode/vfsmount/sb. The reference to inode/vfsmount/sb is held by this * structure. We destroy this structure when there are no more marks attached * to it. The structure is protected by fsnotify_mark_srcu. */ struct fsnotify_mark_connector { spinlock_t lock; unsigned short type; /* Type of object [lock] */ #define FSNOTIFY_CONN_FLAG_HAS_FSID 0x01 unsigned short flags; /* flags [lock] */ __kernel_fsid_t fsid; /* fsid of filesystem containing object */ union { /* Object pointer [lock] */ fsnotify_connp_t *obj; /* Used listing heads to free after srcu period expires */ struct fsnotify_mark_connector *destroy_next; }; struct hlist_head list; }; /* * A mark is simply an object attached to an in core inode which allows an * fsnotify listener to indicate they are either no longer interested in events * of a type matching mask or only interested in those events. * * These are flushed when an inode is evicted from core and may be flushed * when the inode is modified (as seen by fsnotify_access). Some fsnotify * users (such as dnotify) will flush these when the open fd is closed and not * at inode eviction or modification. * * Text in brackets is showing the lock(s) protecting modifications of a * particular entry. obj_lock means either inode->i_lock or * mnt->mnt_root->d_lock depending on the mark type. */ struct fsnotify_mark { /* Mask this mark is for [mark->lock, group->mark_mutex] */ __u32 mask; /* We hold one for presence in g_list. Also one ref for each 'thing' * in kernel that found and may be using this mark. */ refcount_t refcnt; /* Group this mark is for. Set on mark creation, stable until last ref * is dropped */ struct fsnotify_group *group; /* List of marks by group->marks_list. Also reused for queueing * mark into destroy_list when it's waiting for the end of SRCU period * before it can be freed. [group->mark_mutex] */ struct list_head g_list; /* Protects inode / mnt pointers, flags, masks */ spinlock_t lock; /* List of marks for inode / vfsmount [connector->lock, mark ref] */ struct hlist_node obj_list; /* Head of list of marks for an object [mark ref] */ struct fsnotify_mark_connector *connector; /* Events types to ignore [mark->lock, group->mark_mutex] */ __u32 ignored_mask; #define FSNOTIFY_MARK_FLAG_IGNORED_SURV_MODIFY 0x01 #define FSNOTIFY_MARK_FLAG_ALIVE 0x02 #define FSNOTIFY_MARK_FLAG_ATTACHED 0x04 unsigned int flags; /* flags [mark->lock] */ }; #ifdef CONFIG_FSNOTIFY /* called from the vfs helpers */ /* main fsnotify call to send events */ extern int fsnotify(__u32 mask, const void *data, int data_type, struct inode *dir, const struct qstr *name, struct inode *inode, u32 cookie); extern int __fsnotify_parent(struct dentry *dentry, __u32 mask, const void *data, int data_type); extern void __fsnotify_inode_delete(struct inode *inode); extern void __fsnotify_vfsmount_delete(struct vfsmount *mnt); extern void fsnotify_sb_delete(struct super_block *sb); extern u32 fsnotify_get_cookie(void); static inline __u32 fsnotify_parent_needed_mask(__u32 mask) { /* FS_EVENT_ON_CHILD is set on marks that want parent/name info */ if (!(mask & FS_EVENT_ON_CHILD)) return 0; /* * This object might be watched by a mark that cares about parent/name * info, does it care about the specific set of events that can be * reported with parent/name info? */ return mask & FS_EVENTS_POSS_TO_PARENT; } static inline int fsnotify_inode_watches_children(struct inode *inode) { /* FS_EVENT_ON_CHILD is set if the inode may care */ if (!(inode->i_fsnotify_mask & FS_EVENT_ON_CHILD)) return 0; /* this inode might care about child events, does it care about the * specific set of events that can happen on a child? */ return inode->i_fsnotify_mask & FS_EVENTS_POSS_ON_CHILD; } /* * Update the dentry with a flag indicating the interest of its parent to receive * filesystem events when those events happens to this dentry->d_inode. */ static inline void fsnotify_update_flags(struct dentry *dentry) { assert_spin_locked(&dentry->d_lock); /* * Serialisation of setting PARENT_WATCHED on the dentries is provided * by d_lock. If inotify_inode_watched changes after we have taken * d_lock, the following __fsnotify_update_child_dentry_flags call will * find our entry, so it will spin until we complete here, and update * us with the new state. */ if (fsnotify_inode_watches_children(dentry->d_parent->d_inode)) dentry->d_flags |= DCACHE_FSNOTIFY_PARENT_WATCHED; else dentry->d_flags &= ~DCACHE_FSNOTIFY_PARENT_WATCHED; } /* called from fsnotify listeners, such as fanotify or dnotify */ /* create a new group */ extern struct fsnotify_group *fsnotify_alloc_group(const struct fsnotify_ops *ops); /* get reference to a group */ extern void fsnotify_get_group(struct fsnotify_group *group); /* drop reference on a group from fsnotify_alloc_group */ extern void fsnotify_put_group(struct fsnotify_group *group); /* group destruction begins, stop queuing new events */ extern void fsnotify_group_stop_queueing(struct fsnotify_group *group); /* destroy group */ extern void fsnotify_destroy_group(struct fsnotify_group *group); /* fasync handler function */ extern int fsnotify_fasync(int fd, struct file *file, int on); /* Free event from memory */ extern void fsnotify_destroy_event(struct fsnotify_group *group, struct fsnotify_event *event); /* attach the event to the group notification queue */ extern int fsnotify_add_event(struct fsnotify_group *group, struct fsnotify_event *event, int (*merge)(struct list_head *, struct fsnotify_event *)); /* Queue overflow event to a notification group */ static inline void fsnotify_queue_overflow(struct fsnotify_group *group) { fsnotify_add_event(group, group->overflow_event, NULL); } /* true if the group notification queue is empty */ extern bool fsnotify_notify_queue_is_empty(struct fsnotify_group *group); /* return, but do not dequeue the first event on the notification queue */ extern struct fsnotify_event *fsnotify_peek_first_event(struct fsnotify_group *group); /* return AND dequeue the first event on the notification queue */ extern struct fsnotify_event *fsnotify_remove_first_event(struct fsnotify_group *group); /* Remove event queued in the notification list */ extern void fsnotify_remove_queued_event(struct fsnotify_group *group, struct fsnotify_event *event); /* functions used to manipulate the marks attached to inodes */ /* Get mask of events for a list of marks */ extern __u32 fsnotify_conn_mask(struct fsnotify_mark_connector *conn); /* Calculate mask of events for a list of marks */ extern void fsnotify_recalc_mask(struct fsnotify_mark_connector *conn); extern void fsnotify_init_mark(struct fsnotify_mark *mark, struct fsnotify_group *group); /* Find mark belonging to given group in the list of marks */ extern struct fsnotify_mark *fsnotify_find_mark(fsnotify_connp_t *connp, struct fsnotify_group *group); /* Get cached fsid of filesystem containing object */ extern int fsnotify_get_conn_fsid(const struct fsnotify_mark_connector *conn, __kernel_fsid_t *fsid); /* attach the mark to the object */ extern int fsnotify_add_mark(struct fsnotify_mark *mark, fsnotify_connp_t *connp, unsigned int type, int allow_dups, __kernel_fsid_t *fsid); extern int fsnotify_add_mark_locked(struct fsnotify_mark *mark, fsnotify_connp_t *connp, unsigned int type, int allow_dups, __kernel_fsid_t *fsid); /* attach the mark to the inode */ static inline int fsnotify_add_inode_mark(struct fsnotify_mark *mark, struct inode *inode, int allow_dups) { return fsnotify_add_mark(mark, &inode->i_fsnotify_marks, FSNOTIFY_OBJ_TYPE_INODE, allow_dups, NULL); } static inline int fsnotify_add_inode_mark_locked(struct fsnotify_mark *mark, struct inode *inode, int allow_dups) { return fsnotify_add_mark_locked(mark, &inode->i_fsnotify_marks, FSNOTIFY_OBJ_TYPE_INODE, allow_dups, NULL); } /* given a group and a mark, flag mark to be freed when all references are dropped */ extern void fsnotify_destroy_mark(struct fsnotify_mark *mark, struct fsnotify_group *group); /* detach mark from inode / mount list, group list, drop inode reference */ extern void fsnotify_detach_mark(struct fsnotify_mark *mark); /* free mark */ extern void fsnotify_free_mark(struct fsnotify_mark *mark); /* Wait until all marks queued for destruction are destroyed */ extern void fsnotify_wait_marks_destroyed(void); /* run all the marks in a group, and clear all of the marks attached to given object type */ extern void fsnotify_clear_marks_by_group(struct fsnotify_group *group, unsigned int type); /* run all the marks in a group, and clear all of the vfsmount marks */ static inline void fsnotify_clear_vfsmount_marks_by_group(struct fsnotify_group *group) { fsnotify_clear_marks_by_group(group, FSNOTIFY_OBJ_TYPE_VFSMOUNT_FL); } /* run all the marks in a group, and clear all of the inode marks */ static inline void fsnotify_clear_inode_marks_by_group(struct fsnotify_group *group) { fsnotify_clear_marks_by_group(group, FSNOTIFY_OBJ_TYPE_INODE_FL); } /* run all the marks in a group, and clear all of the sn marks */ static inline void fsnotify_clear_sb_marks_by_group(struct fsnotify_group *group) { fsnotify_clear_marks_by_group(group, FSNOTIFY_OBJ_TYPE_SB_FL); } extern void fsnotify_get_mark(struct fsnotify_mark *mark); extern void fsnotify_put_mark(struct fsnotify_mark *mark); extern void fsnotify_finish_user_wait(struct fsnotify_iter_info *iter_info); extern bool fsnotify_prepare_user_wait(struct fsnotify_iter_info *iter_info); static inline void fsnotify_init_event(struct fsnotify_event *event, unsigned long objectid) { INIT_LIST_HEAD(&event->list); event->objectid = objectid; } #else static inline int fsnotify(__u32 mask, const void *data, int data_type, struct inode *dir, const struct qstr *name, struct inode *inode, u32 cookie) { return 0; } static inline int __fsnotify_parent(struct dentry *dentry, __u32 mask, const void *data, int data_type) { return 0; } static inline void __fsnotify_inode_delete(struct inode *inode) {} static inline void __fsnotify_vfsmount_delete(struct vfsmount *mnt) {} static inline void fsnotify_sb_delete(struct super_block *sb) {} static inline void fsnotify_update_flags(struct dentry *dentry) {} static inline u32 fsnotify_get_cookie(void) { return 0; } static inline void fsnotify_unmount_inodes(struct super_block *sb) {} #endif /* CONFIG_FSNOTIFY */ #endif /* __KERNEL __ */ #endif /* __LINUX_FSNOTIFY_BACKEND_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Scatterlist Cryptographic API. * * Copyright (c) 2002 James Morris <jmorris@intercode.com.au> * Copyright (c) 2002 David S. Miller (davem@redhat.com) * Copyright (c) 2005 Herbert Xu <herbert@gondor.apana.org.au> * * Portions derived from Cryptoapi, by Alexander Kjeldaas <astor@fast.no> * and Nettle, by Niels Möller. */ #ifndef _LINUX_CRYPTO_H #define _LINUX_CRYPTO_H #include <linux/atomic.h> #include <linux/kernel.h> #include <linux/list.h> #include <linux/bug.h> #include <linux/refcount.h> #include <linux/slab.h> #include <linux/completion.h> /* * Autoloaded crypto modules should only use a prefixed name to avoid allowing * arbitrary modules to be loaded. Loading from userspace may still need the * unprefixed names, so retains those aliases as well. * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3 * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro * expands twice on the same line. Instead, use a separate base name for the * alias. */ #define MODULE_ALIAS_CRYPTO(name) \ __MODULE_INFO(alias, alias_userspace, name); \ __MODULE_INFO(alias, alias_crypto, "crypto-" name) /* * Algorithm masks and types. */ #define CRYPTO_ALG_TYPE_MASK 0x0000000f #define CRYPTO_ALG_TYPE_CIPHER 0x00000001 #define CRYPTO_ALG_TYPE_COMPRESS 0x00000002 #define CRYPTO_ALG_TYPE_AEAD 0x00000003 #define CRYPTO_ALG_TYPE_SKCIPHER 0x00000005 #define CRYPTO_ALG_TYPE_KPP 0x00000008 #define CRYPTO_ALG_TYPE_ACOMPRESS 0x0000000a #define CRYPTO_ALG_TYPE_SCOMPRESS 0x0000000b #define CRYPTO_ALG_TYPE_RNG 0x0000000c #define CRYPTO_ALG_TYPE_AKCIPHER 0x0000000d #define CRYPTO_ALG_TYPE_HASH 0x0000000e #define CRYPTO_ALG_TYPE_SHASH 0x0000000e #define CRYPTO_ALG_TYPE_AHASH 0x0000000f #define CRYPTO_ALG_TYPE_HASH_MASK 0x0000000e #define CRYPTO_ALG_TYPE_AHASH_MASK 0x0000000e #define CRYPTO_ALG_TYPE_ACOMPRESS_MASK 0x0000000e #define CRYPTO_ALG_LARVAL 0x00000010 #define CRYPTO_ALG_DEAD 0x00000020 #define CRYPTO_ALG_DYING 0x00000040 #define CRYPTO_ALG_ASYNC 0x00000080 /* * Set if the algorithm (or an algorithm which it uses) requires another * algorithm of the same type to handle corner cases. */ #define CRYPTO_ALG_NEED_FALLBACK 0x00000100 /* * Set if the algorithm has passed automated run-time testing. Note that * if there is no run-time testing for a given algorithm it is considered * to have passed. */ #define CRYPTO_ALG_TESTED 0x00000400 /* * Set if the algorithm is an instance that is built from templates. */ #define CRYPTO_ALG_INSTANCE 0x00000800 /* Set this bit if the algorithm provided is hardware accelerated but * not available to userspace via instruction set or so. */ #define CRYPTO_ALG_KERN_DRIVER_ONLY 0x00001000 /* * Mark a cipher as a service implementation only usable by another * cipher and never by a normal user of the kernel crypto API */ #define CRYPTO_ALG_INTERNAL 0x00002000 /* * Set if the algorithm has a ->setkey() method but can be used without * calling it first, i.e. there is a default key. */ #define CRYPTO_ALG_OPTIONAL_KEY 0x00004000 /* * Don't trigger module loading */ #define CRYPTO_NOLOAD 0x00008000 /* * The algorithm may allocate memory during request processing, i.e. during * encryption, decryption, or hashing. Users can request an algorithm with this * flag unset if they can't handle memory allocation failures. * * This flag is currently only implemented for algorithms of type "skcipher", * "aead", "ahash", "shash", and "cipher". Algorithms of other types might not * have this flag set even if they allocate memory. * * In some edge cases, algorithms can allocate memory regardless of this flag. * To avoid these cases, users must obey the following usage constraints: * skcipher: * - The IV buffer and all scatterlist elements must be aligned to the * algorithm's alignmask. * - If the data were to be divided into chunks of size * crypto_skcipher_walksize() (with any remainder going at the end), no * chunk can cross a page boundary or a scatterlist element boundary. * aead: * - The IV buffer and all scatterlist elements must be aligned to the * algorithm's alignmask. * - The first scatterlist element must contain all the associated data, * and its pages must be !PageHighMem. * - If the plaintext/ciphertext were to be divided into chunks of size * crypto_aead_walksize() (with the remainder going at the end), no chunk * can cross a page boundary or a scatterlist element boundary. * ahash: * - The result buffer must be aligned to the algorithm's alignmask. * - crypto_ahash_finup() must not be used unless the algorithm implements * ->finup() natively. */ #define CRYPTO_ALG_ALLOCATES_MEMORY 0x00010000 /* * Transform masks and values (for crt_flags). */ #define CRYPTO_TFM_NEED_KEY 0x00000001 #define CRYPTO_TFM_REQ_MASK 0x000fff00 #define CRYPTO_TFM_REQ_FORBID_WEAK_KEYS 0x00000100 #define CRYPTO_TFM_REQ_MAY_SLEEP 0x00000200 #define CRYPTO_TFM_REQ_MAY_BACKLOG 0x00000400 /* * Miscellaneous stuff. */ #define CRYPTO_MAX_ALG_NAME 128 /* * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual * declaration) is used to ensure that the crypto_tfm context structure is * aligned correctly for the given architecture so that there are no alignment * faults for C data types. On architectures that support non-cache coherent * DMA, such as ARM or arm64, it also takes into account the minimal alignment * that is required to ensure that the context struct member does not share any * cachelines with the rest of the struct. This is needed to ensure that cache * maintenance for non-coherent DMA (cache invalidation in particular) does not * affect data that may be accessed by the CPU concurrently. */ #define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN #define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN))) struct scatterlist; struct crypto_async_request; struct crypto_tfm; struct crypto_type; typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err); /** * DOC: Block Cipher Context Data Structures * * These data structures define the operating context for each block cipher * type. */ struct crypto_async_request { struct list_head list; crypto_completion_t complete; void *data; struct crypto_tfm *tfm; u32 flags; }; /** * DOC: Block Cipher Algorithm Definitions * * These data structures define modular crypto algorithm implementations, * managed via crypto_register_alg() and crypto_unregister_alg(). */ /** * struct cipher_alg - single-block symmetric ciphers definition * @cia_min_keysize: Minimum key size supported by the transformation. This is * the smallest key length supported by this transformation * algorithm. This must be set to one of the pre-defined * values as this is not hardware specific. Possible values * for this field can be found via git grep "_MIN_KEY_SIZE" * include/crypto/ * @cia_max_keysize: Maximum key size supported by the transformation. This is * the largest key length supported by this transformation * algorithm. This must be set to one of the pre-defined values * as this is not hardware specific. Possible values for this * field can be found via git grep "_MAX_KEY_SIZE" * include/crypto/ * @cia_setkey: Set key for the transformation. This function is used to either * program a supplied key into the hardware or store the key in the * transformation context for programming it later. Note that this * function does modify the transformation context. This function * can be called multiple times during the existence of the * transformation object, so one must make sure the key is properly * reprogrammed into the hardware. This function is also * responsible for checking the key length for validity. * @cia_encrypt: Encrypt a single block. This function is used to encrypt a * single block of data, which must be @cra_blocksize big. This * always operates on a full @cra_blocksize and it is not possible * to encrypt a block of smaller size. The supplied buffers must * therefore also be at least of @cra_blocksize size. Both the * input and output buffers are always aligned to @cra_alignmask. * In case either of the input or output buffer supplied by user * of the crypto API is not aligned to @cra_alignmask, the crypto * API will re-align the buffers. The re-alignment means that a * new buffer will be allocated, the data will be copied into the * new buffer, then the processing will happen on the new buffer, * then the data will be copied back into the original buffer and * finally the new buffer will be freed. In case a software * fallback was put in place in the @cra_init call, this function * might need to use the fallback if the algorithm doesn't support * all of the key sizes. In case the key was stored in * transformation context, the key might need to be re-programmed * into the hardware in this function. This function shall not * modify the transformation context, as this function may be * called in parallel with the same transformation object. * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to * @cia_encrypt, and the conditions are exactly the same. * * All fields are mandatory and must be filled. */ struct cipher_alg { unsigned int cia_min_keysize; unsigned int cia_max_keysize; int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key, unsigned int keylen); void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); }; /** * struct compress_alg - compression/decompression algorithm * @coa_compress: Compress a buffer of specified length, storing the resulting * data in the specified buffer. Return the length of the * compressed data in dlen. * @coa_decompress: Decompress the source buffer, storing the uncompressed * data in the specified buffer. The length of the data is * returned in dlen. * * All fields are mandatory. */ struct compress_alg { int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src, unsigned int slen, u8 *dst, unsigned int *dlen); int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src, unsigned int slen, u8 *dst, unsigned int *dlen); }; #ifdef CONFIG_CRYPTO_STATS /* * struct crypto_istat_aead - statistics for AEAD algorithm * @encrypt_cnt: number of encrypt requests * @encrypt_tlen: total data size handled by encrypt requests * @decrypt_cnt: number of decrypt requests * @decrypt_tlen: total data size handled by decrypt requests * @err_cnt: number of error for AEAD requests */ struct crypto_istat_aead { atomic64_t encrypt_cnt; atomic64_t encrypt_tlen; atomic64_t decrypt_cnt; atomic64_t decrypt_tlen; atomic64_t err_cnt; }; /* * struct crypto_istat_akcipher - statistics for akcipher algorithm * @encrypt_cnt: number of encrypt requests * @encrypt_tlen: total data size handled by encrypt requests * @decrypt_cnt: number of decrypt requests * @decrypt_tlen: total data size handled by decrypt requests * @verify_cnt: number of verify operation * @sign_cnt: number of sign requests * @err_cnt: number of error for akcipher requests */ struct crypto_istat_akcipher { atomic64_t encrypt_cnt; atomic64_t encrypt_tlen; atomic64_t decrypt_cnt; atomic64_t decrypt_tlen; atomic64_t verify_cnt; atomic64_t sign_cnt; atomic64_t err_cnt; }; /* * struct crypto_istat_cipher - statistics for cipher algorithm * @encrypt_cnt: number of encrypt requests * @encrypt_tlen: total data size handled by encrypt requests * @decrypt_cnt: number of decrypt requests * @decrypt_tlen: total data size handled by decrypt requests * @err_cnt: number of error for cipher requests */ struct crypto_istat_cipher { atomic64_t encrypt_cnt; atomic64_t encrypt_tlen; atomic64_t decrypt_cnt; atomic64_t decrypt_tlen; atomic64_t err_cnt; }; /* * struct crypto_istat_compress - statistics for compress algorithm * @compress_cnt: number of compress requests * @compress_tlen: total data size handled by compress requests * @decompress_cnt: number of decompress requests * @decompress_tlen: total data size handled by decompress requests * @err_cnt: number of error for compress requests */ struct crypto_istat_compress { atomic64_t compress_cnt; atomic64_t compress_tlen; atomic64_t decompress_cnt; atomic64_t decompress_tlen; atomic64_t err_cnt; }; /* * struct crypto_istat_hash - statistics for has algorithm * @hash_cnt: number of hash requests * @hash_tlen: total data size hashed * @err_cnt: number of error for hash requests */ struct crypto_istat_hash { atomic64_t hash_cnt; atomic64_t hash_tlen; atomic64_t err_cnt; }; /* * struct crypto_istat_kpp - statistics for KPP algorithm * @setsecret_cnt: number of setsecrey operation * @generate_public_key_cnt: number of generate_public_key operation * @compute_shared_secret_cnt: number of compute_shared_secret operation * @err_cnt: number of error for KPP requests */ struct crypto_istat_kpp { atomic64_t setsecret_cnt; atomic64_t generate_public_key_cnt; atomic64_t compute_shared_secret_cnt; atomic64_t err_cnt; }; /* * struct crypto_istat_rng: statistics for RNG algorithm * @generate_cnt: number of RNG generate requests * @generate_tlen: total data size of generated data by the RNG * @seed_cnt: number of times the RNG was seeded * @err_cnt: number of error for RNG requests */ struct crypto_istat_rng { atomic64_t generate_cnt; atomic64_t generate_tlen; atomic64_t seed_cnt; atomic64_t err_cnt; }; #endif /* CONFIG_CRYPTO_STATS */ #define cra_cipher cra_u.cipher #define cra_compress cra_u.compress /** * struct crypto_alg - definition of a cryptograpic cipher algorithm * @cra_flags: Flags describing this transformation. See include/linux/crypto.h * CRYPTO_ALG_* flags for the flags which go in here. Those are * used for fine-tuning the description of the transformation * algorithm. * @cra_blocksize: Minimum block size of this transformation. The size in bytes * of the smallest possible unit which can be transformed with * this algorithm. The users must respect this value. * In case of HASH transformation, it is possible for a smaller * block than @cra_blocksize to be passed to the crypto API for * transformation, in case of any other transformation type, an * error will be returned upon any attempt to transform smaller * than @cra_blocksize chunks. * @cra_ctxsize: Size of the operational context of the transformation. This * value informs the kernel crypto API about the memory size * needed to be allocated for the transformation context. * @cra_alignmask: Alignment mask for the input and output data buffer. The data * buffer containing the input data for the algorithm must be * aligned to this alignment mask. The data buffer for the * output data must be aligned to this alignment mask. Note that * the Crypto API will do the re-alignment in software, but * only under special conditions and there is a performance hit. * The re-alignment happens at these occasions for different * @cra_u types: cipher -- For both input data and output data * buffer; ahash -- For output hash destination buf; shash -- * For output hash destination buf. * This is needed on hardware which is flawed by design and * cannot pick data from arbitrary addresses. * @cra_priority: Priority of this transformation implementation. In case * multiple transformations with same @cra_name are available to * the Crypto API, the kernel will use the one with highest * @cra_priority. * @cra_name: Generic name (usable by multiple implementations) of the * transformation algorithm. This is the name of the transformation * itself. This field is used by the kernel when looking up the * providers of particular transformation. * @cra_driver_name: Unique name of the transformation provider. This is the * name of the provider of the transformation. This can be any * arbitrary value, but in the usual case, this contains the * name of the chip or provider and the name of the * transformation algorithm. * @cra_type: Type of the cryptographic transformation. This is a pointer to * struct crypto_type, which implements callbacks common for all * transformation types. There are multiple options, such as * &crypto_skcipher_type, &crypto_ahash_type, &crypto_rng_type. * This field might be empty. In that case, there are no common * callbacks. This is the case for: cipher, compress, shash. * @cra_u: Callbacks implementing the transformation. This is a union of * multiple structures. Depending on the type of transformation selected * by @cra_type and @cra_flags above, the associated structure must be * filled with callbacks. This field might be empty. This is the case * for ahash, shash. * @cra_init: Initialize the cryptographic transformation object. This function * is used to initialize the cryptographic transformation object. * This function is called only once at the instantiation time, right * after the transformation context was allocated. In case the * cryptographic hardware has some special requirements which need to * be handled by software, this function shall check for the precise * requirement of the transformation and put any software fallbacks * in place. * @cra_exit: Deinitialize the cryptographic transformation object. This is a * counterpart to @cra_init, used to remove various changes set in * @cra_init. * @cra_u.cipher: Union member which contains a single-block symmetric cipher * definition. See @struct @cipher_alg. * @cra_u.compress: Union member which contains a (de)compression algorithm. * See @struct @compress_alg. * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE * @cra_list: internally used * @cra_users: internally used * @cra_refcnt: internally used * @cra_destroy: internally used * * @stats: union of all possible crypto_istat_xxx structures * @stats.aead: statistics for AEAD algorithm * @stats.akcipher: statistics for akcipher algorithm * @stats.cipher: statistics for cipher algorithm * @stats.compress: statistics for compress algorithm * @stats.hash: statistics for hash algorithm * @stats.rng: statistics for rng algorithm * @stats.kpp: statistics for KPP algorithm * * The struct crypto_alg describes a generic Crypto API algorithm and is common * for all of the transformations. Any variable not documented here shall not * be used by a cipher implementation as it is internal to the Crypto API. */ struct crypto_alg { struct list_head cra_list; struct list_head cra_users; u32 cra_flags; unsigned int cra_blocksize; unsigned int cra_ctxsize; unsigned int cra_alignmask; int cra_priority; refcount_t cra_refcnt; char cra_name[CRYPTO_MAX_ALG_NAME]; char cra_driver_name[CRYPTO_MAX_ALG_NAME]; const struct crypto_type *cra_type; union { struct cipher_alg cipher; struct compress_alg compress; } cra_u; int (*cra_init)(struct crypto_tfm *tfm); void (*cra_exit)(struct crypto_tfm *tfm); void (*cra_destroy)(struct crypto_alg *alg); struct module *cra_module; #ifdef CONFIG_CRYPTO_STATS union { struct crypto_istat_aead aead; struct crypto_istat_akcipher akcipher; struct crypto_istat_cipher cipher; struct crypto_istat_compress compress; struct crypto_istat_hash hash; struct crypto_istat_rng rng; struct crypto_istat_kpp kpp; } stats; #endif /* CONFIG_CRYPTO_STATS */ } CRYPTO_MINALIGN_ATTR; #ifdef CONFIG_CRYPTO_STATS void crypto_stats_init(struct crypto_alg *alg); void crypto_stats_get(struct crypto_alg *alg); void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret); void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret); void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg); void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg); void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg); void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg); void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg); void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg); void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg); void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg); void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret); void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret); void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret); void crypto_stats_rng_seed(struct crypto_alg *alg, int ret); void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret); void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg); void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg); #else static inline void crypto_stats_init(struct crypto_alg *alg) {} static inline void crypto_stats_get(struct crypto_alg *alg) {} static inline void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret) {} static inline void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret) {} static inline void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg) {} static inline void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg) {} static inline void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg) {} static inline void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg) {} static inline void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg) {} static inline void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg) {} static inline void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg) {} static inline void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg) {} static inline void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret) {} static inline void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret) {} static inline void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret) {} static inline void crypto_stats_rng_seed(struct crypto_alg *alg, int ret) {} static inline void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret) {} static inline void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg) {} static inline void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg) {} #endif /* * A helper struct for waiting for completion of async crypto ops */ struct crypto_wait { struct completion completion; int err; }; /* * Macro for declaring a crypto op async wait object on stack */ #define DECLARE_CRYPTO_WAIT(_wait) \ struct crypto_wait _wait = { \ COMPLETION_INITIALIZER_ONSTACK((_wait).completion), 0 } /* * Async ops completion helper functioons */ void crypto_req_done(struct crypto_async_request *req, int err); static inline int crypto_wait_req(int err, struct crypto_wait *wait) { switch (err) { case -EINPROGRESS: case -EBUSY: wait_for_completion(&wait->completion); reinit_completion(&wait->completion); err = wait->err; break; } return err; } static inline void crypto_init_wait(struct crypto_wait *wait) { init_completion(&wait->completion); } /* * Algorithm registration interface. */ int crypto_register_alg(struct crypto_alg *alg); void crypto_unregister_alg(struct crypto_alg *alg); int crypto_register_algs(struct crypto_alg *algs, int count); void crypto_unregister_algs(struct crypto_alg *algs, int count); /* * Algorithm query interface. */ int crypto_has_alg(const char *name, u32 type, u32 mask); /* * Transforms: user-instantiated objects which encapsulate algorithms * and core processing logic. Managed via crypto_alloc_*() and * crypto_free_*(), as well as the various helpers below. */ struct crypto_tfm { u32 crt_flags; int node; void (*exit)(struct crypto_tfm *tfm); struct crypto_alg *__crt_alg; void *__crt_ctx[] CRYPTO_MINALIGN_ATTR; }; struct crypto_cipher { struct crypto_tfm base; }; struct crypto_comp { struct crypto_tfm base; }; enum { CRYPTOA_UNSPEC, CRYPTOA_ALG, CRYPTOA_TYPE, CRYPTOA_U32, __CRYPTOA_MAX, }; #define CRYPTOA_MAX (__CRYPTOA_MAX - 1) /* Maximum number of (rtattr) parameters for each template. */ #define CRYPTO_MAX_ATTRS 32 struct crypto_attr_alg { char name[CRYPTO_MAX_ALG_NAME]; }; struct crypto_attr_type { u32 type; u32 mask; }; struct crypto_attr_u32 { u32 num; }; /* * Transform user interface. */ struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask); void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm); static inline void crypto_free_tfm(struct crypto_tfm *tfm) { return crypto_destroy_tfm(tfm, tfm); } int alg_test(const char *driver, const char *alg, u32 type, u32 mask); /* * Transform helpers which query the underlying algorithm. */ static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm) { return tfm->__crt_alg->cra_name; } static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm) { return tfm->__crt_alg->cra_driver_name; } static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm) { return tfm->__crt_alg->cra_priority; } static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm) { return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK; } static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm) { return tfm->__crt_alg->cra_blocksize; } static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm) { return tfm->__crt_alg->cra_alignmask; } static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm) { return tfm->crt_flags; } static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags) { tfm->crt_flags |= flags; } static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags) { tfm->crt_flags &= ~flags; } static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm) { return tfm->__crt_ctx; } static inline unsigned int crypto_tfm_ctx_alignment(void) { struct crypto_tfm *tfm; return __alignof__(tfm->__crt_ctx); } /** * DOC: Single Block Cipher API * * The single block cipher API is used with the ciphers of type * CRYPTO_ALG_TYPE_CIPHER (listed as type "cipher" in /proc/crypto). * * Using the single block cipher API calls, operations with the basic cipher * primitive can be implemented. These cipher primitives exclude any block * chaining operations including IV handling. * * The purpose of this single block cipher API is to support the implementation * of templates or other concepts that only need to perform the cipher operation * on one block at a time. Templates invoke the underlying cipher primitive * block-wise and process either the input or the output data of these cipher * operations. */ static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm) { return (struct crypto_cipher *)tfm; } /** * crypto_alloc_cipher() - allocate single block cipher handle * @alg_name: is the cra_name / name or cra_driver_name / driver name of the * single block cipher * @type: specifies the type of the cipher * @mask: specifies the mask for the cipher * * Allocate a cipher handle for a single block cipher. The returned struct * crypto_cipher is the cipher handle that is required for any subsequent API * invocation for that single block cipher. * * Return: allocated cipher handle in case of success; IS_ERR() is true in case * of an error, PTR_ERR() returns the error code. */ static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name, u32 type, u32 mask) { type &= ~CRYPTO_ALG_TYPE_MASK; type |= CRYPTO_ALG_TYPE_CIPHER; mask |= CRYPTO_ALG_TYPE_MASK; return __crypto_cipher_cast(crypto_alloc_base(alg_name, type, mask)); } static inline struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm) { return &tfm->base; } /** * crypto_free_cipher() - zeroize and free the single block cipher handle * @tfm: cipher handle to be freed */ static inline void crypto_free_cipher(struct crypto_cipher *tfm) { crypto_free_tfm(crypto_cipher_tfm(tfm)); } /** * crypto_has_cipher() - Search for the availability of a single block cipher * @alg_name: is the cra_name / name or cra_driver_name / driver name of the * single block cipher * @type: specifies the type of the cipher * @mask: specifies the mask for the cipher * * Return: true when the single block cipher is known to the kernel crypto API; * false otherwise */ static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask) { type &= ~CRYPTO_ALG_TYPE_MASK; type |= CRYPTO_ALG_TYPE_CIPHER; mask |= CRYPTO_ALG_TYPE_MASK; return crypto_has_alg(alg_name, type, mask); } /** * crypto_cipher_blocksize() - obtain block size for cipher * @tfm: cipher handle * * The block size for the single block cipher referenced with the cipher handle * tfm is returned. The caller may use that information to allocate appropriate * memory for the data returned by the encryption or decryption operation * * Return: block size of cipher */ static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm) { return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm)); } static inline unsigned int crypto_cipher_alignmask(struct crypto_cipher *tfm) { return crypto_tfm_alg_alignmask(crypto_cipher_tfm(tfm)); } static inline u32 crypto_cipher_get_flags(struct crypto_cipher *tfm) { return crypto_tfm_get_flags(crypto_cipher_tfm(tfm)); } static inline void crypto_cipher_set_flags(struct crypto_cipher *tfm, u32 flags) { crypto_tfm_set_flags(crypto_cipher_tfm(tfm), flags); } static inline void crypto_cipher_clear_flags(struct crypto_cipher *tfm, u32 flags) { crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags); } /** * crypto_cipher_setkey() - set key for cipher * @tfm: cipher handle * @key: buffer holding the key * @keylen: length of the key in bytes * * The caller provided key is set for the single block cipher referenced by the * cipher handle. * * Note, the key length determines the cipher type. Many block ciphers implement * different cipher modes depending on the key size, such as AES-128 vs AES-192 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 * is performed. * * Return: 0 if the setting of the key was successful; < 0 if an error occurred */ int crypto_cipher_setkey(struct crypto_cipher *tfm, const u8 *key, unsigned int keylen); /** * crypto_cipher_encrypt_one() - encrypt one block of plaintext * @tfm: cipher handle * @dst: points to the buffer that will be filled with the ciphertext * @src: buffer holding the plaintext to be encrypted * * Invoke the encryption operation of one block. The caller must ensure that * the plaintext and ciphertext buffers are at least one block in size. */ void crypto_cipher_encrypt_one(struct crypto_cipher *tfm, u8 *dst, const u8 *src); /** * crypto_cipher_decrypt_one() - decrypt one block of ciphertext * @tfm: cipher handle * @dst: points to the buffer that will be filled with the plaintext * @src: buffer holding the ciphertext to be decrypted * * Invoke the decryption operation of one block. The caller must ensure that * the plaintext and ciphertext buffers are at least one block in size. */ void crypto_cipher_decrypt_one(struct crypto_cipher *tfm, u8 *dst, const u8 *src); static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm) { return (struct crypto_comp *)tfm; } static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name, u32 type, u32 mask) { type &= ~CRYPTO_ALG_TYPE_MASK; type |= CRYPTO_ALG_TYPE_COMPRESS; mask |= CRYPTO_ALG_TYPE_MASK; return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask)); } static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm) { return &tfm->base; } static inline void crypto_free_comp(struct crypto_comp *tfm) { crypto_free_tfm(crypto_comp_tfm(tfm)); } static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask) { type &= ~CRYPTO_ALG_TYPE_MASK; type |= CRYPTO_ALG_TYPE_COMPRESS; mask |= CRYPTO_ALG_TYPE_MASK; return crypto_has_alg(alg_name, type, mask); } static inline const char *crypto_comp_name(struct crypto_comp *tfm) { return crypto_tfm_alg_name(crypto_comp_tfm(tfm)); } int crypto_comp_compress(struct crypto_comp *tfm, const u8 *src, unsigned int slen, u8 *dst, unsigned int *dlen); int crypto_comp_decompress(struct crypto_comp *tfm, const u8 *src, unsigned int slen, u8 *dst, unsigned int *dlen); #endif /* _LINUX_CRYPTO_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 /* SPDX-License-Identifier: GPL-2.0 */ /* * This header file contains public constants and structures used by * the SCSI initiator code. */ #ifndef _SCSI_SCSI_H #define _SCSI_SCSI_H #include <linux/types.h> #include <linux/scatterlist.h> #include <linux/kernel.h> #include <scsi/scsi_common.h> #include <scsi/scsi_proto.h> struct scsi_cmnd; enum scsi_timeouts { SCSI_DEFAULT_EH_TIMEOUT = 10 * HZ, }; /* * DIX-capable adapters effectively support infinite chaining for the * protection information scatterlist */ #define SCSI_MAX_PROT_SG_SEGMENTS 0xFFFF /* * Special value for scanning to specify scanning or rescanning of all * possible channels, (target) ids, or luns on a given shost. */ #define SCAN_WILD_CARD ~0 /** scsi_status_is_good - check the status return. * * @status: the status passed up from the driver (including host and * driver components) * * This returns true for known good conditions that may be treated as * command completed normally */ static inline int scsi_status_is_good(int status) { /* * FIXME: bit0 is listed as reserved in SCSI-2, but is * significant in SCSI-3. For now, we follow the SCSI-2 * behaviour and ignore reserved bits. */ status &= 0xfe; return ((status == SAM_STAT_GOOD) || (status == SAM_STAT_CONDITION_MET) || /* Next two "intermediate" statuses are obsolete in SAM-4 */ (status == SAM_STAT_INTERMEDIATE) || (status == SAM_STAT_INTERMEDIATE_CONDITION_MET) || /* FIXME: this is obsolete in SAM-3 */ (status == SAM_STAT_COMMAND_TERMINATED)); } /* * standard mode-select header prepended to all mode-select commands */ struct ccs_modesel_head { __u8 _r1; /* reserved */ __u8 medium; /* device-specific medium type */ __u8 _r2; /* reserved */ __u8 block_desc_length; /* block descriptor length */ __u8 density; /* device-specific density code */ __u8 number_blocks_hi; /* number of blocks in this block desc */ __u8 number_blocks_med; __u8 number_blocks_lo; __u8 _r3; __u8 block_length_hi; /* block length for blocks in this desc */ __u8 block_length_med; __u8 block_length_lo; }; /* * The Well Known LUNS (SAM-3) in our int representation of a LUN */ #define SCSI_W_LUN_BASE 0xc100 #define SCSI_W_LUN_REPORT_LUNS (SCSI_W_LUN_BASE + 1) #define SCSI_W_LUN_ACCESS_CONTROL (SCSI_W_LUN_BASE + 2) #define SCSI_W_LUN_TARGET_LOG_PAGE (SCSI_W_LUN_BASE + 3) static inline int scsi_is_wlun(u64 lun) { return (lun & 0xff00) == SCSI_W_LUN_BASE; } /* * MESSAGE CODES */ #define COMMAND_COMPLETE 0x00 #define EXTENDED_MESSAGE 0x01 #define EXTENDED_MODIFY_DATA_POINTER 0x00 #define EXTENDED_SDTR 0x01 #define EXTENDED_EXTENDED_IDENTIFY 0x02 /* SCSI-I only */ #define EXTENDED_WDTR 0x03 #define EXTENDED_PPR 0x04 #define EXTENDED_MODIFY_BIDI_DATA_PTR 0x05 #define SAVE_POINTERS 0x02 #define RESTORE_POINTERS 0x03 #define DISCONNECT 0x04 #define INITIATOR_ERROR 0x05 #define ABORT_TASK_SET 0x06 #define MESSAGE_REJECT 0x07 #define NOP 0x08 #define MSG_PARITY_ERROR 0x09 #define LINKED_CMD_COMPLETE 0x0a #define LINKED_FLG_CMD_COMPLETE 0x0b #define TARGET_RESET 0x0c #define ABORT_TASK 0x0d #define CLEAR_TASK_SET 0x0e #define INITIATE_RECOVERY 0x0f /* SCSI-II only */ #define RELEASE_RECOVERY 0x10 /* SCSI-II only */ #define CLEAR_ACA 0x16 #define LOGICAL_UNIT_RESET 0x17 #define SIMPLE_QUEUE_TAG 0x20 #define HEAD_OF_QUEUE_TAG 0x21 #define ORDERED_QUEUE_TAG 0x22 #define IGNORE_WIDE_RESIDUE 0x23 #define ACA 0x24 #define QAS_REQUEST 0x55 /* Old SCSI2 names, don't use in new code */ #define BUS_DEVICE_RESET TARGET_RESET #define ABORT ABORT_TASK_SET /* * Host byte codes */ #define DID_OK 0x00 /* NO error */ #define DID_NO_CONNECT 0x01 /* Couldn't connect before timeout period */ #define DID_BUS_BUSY 0x02 /* BUS stayed busy through time out period */ #define DID_TIME_OUT 0x03 /* TIMED OUT for other reason */ #define DID_BAD_TARGET 0x04 /* BAD target. */ #define DID_ABORT 0x05 /* Told to abort for some other reason */ #define DID_PARITY 0x06 /* Parity error */ #define DID_ERROR 0x07 /* Internal error */ #define DID_RESET 0x08 /* Reset by somebody. */ #define DID_BAD_INTR 0x09 /* Got an interrupt we weren't expecting. */ #define DID_PASSTHROUGH 0x0a /* Force command past mid-layer */ #define DID_SOFT_ERROR 0x0b /* The low level driver just wish a retry */ #define DID_IMM_RETRY 0x0c /* Retry without decrementing retry count */ #define DID_REQUEUE 0x0d /* Requeue command (no immediate retry) also * without decrementing the retry count */ #define DID_TRANSPORT_DISRUPTED 0x0e /* Transport error disrupted execution * and the driver blocked the port to * recover the link. Transport class will * retry or fail IO */ #define DID_TRANSPORT_FAILFAST 0x0f /* Transport class fastfailed the io */ #define DID_TARGET_FAILURE 0x10 /* Permanent target failure, do not retry on * other paths */ #define DID_NEXUS_FAILURE 0x11 /* Permanent nexus failure, retry on other * paths might yield different results */ #define DID_ALLOC_FAILURE 0x12 /* Space allocation on the device failed */ #define DID_MEDIUM_ERROR 0x13 /* Medium error */ #define DRIVER_OK 0x00 /* Driver status */ /* * These indicate the error that occurred, and what is available. */ #define DRIVER_BUSY 0x01 #define DRIVER_SOFT 0x02 #define DRIVER_MEDIA 0x03 #define DRIVER_ERROR 0x04 #define DRIVER_INVALID 0x05 #define DRIVER_TIMEOUT 0x06 #define DRIVER_HARD 0x07 #define DRIVER_SENSE 0x08 /* * Internal return values. */ #define NEEDS_RETRY 0x2001 #define SUCCESS 0x2002 #define FAILED 0x2003 #define QUEUED 0x2004 #define SOFT_ERROR 0x2005 #define ADD_TO_MLQUEUE 0x2006 #define TIMEOUT_ERROR 0x2007 #define SCSI_RETURN_NOT_HANDLED 0x2008 #define FAST_IO_FAIL 0x2009 /* * Midlevel queue return values. */ #define SCSI_MLQUEUE_HOST_BUSY 0x1055 #define SCSI_MLQUEUE_DEVICE_BUSY 0x1056 #define SCSI_MLQUEUE_EH_RETRY 0x1057 #define SCSI_MLQUEUE_TARGET_BUSY 0x1058 /* * Use these to separate status msg and our bytes * * These are set by: * * status byte = set from target device * msg_byte = return status from host adapter itself. * host_byte = set by low-level driver to indicate status. * driver_byte = set by mid-level. */ #define status_byte(result) (((result) >> 1) & 0x7f) #define msg_byte(result) (((result) >> 8) & 0xff) #define host_byte(result) (((result) >> 16) & 0xff) #define driver_byte(result) (((result) >> 24) & 0xff) #define sense_class(sense) (((sense) >> 4) & 0x7) #define sense_error(sense) ((sense) & 0xf) #define sense_valid(sense) ((sense) & 0x80) /* * default timeouts */ #define FORMAT_UNIT_TIMEOUT (2 * 60 * 60 * HZ) #define START_STOP_TIMEOUT (60 * HZ) #define MOVE_MEDIUM_TIMEOUT (5 * 60 * HZ) #define READ_ELEMENT_STATUS_TIMEOUT (5 * 60 * HZ) #define READ_DEFECT_DATA_TIMEOUT (60 * HZ ) #define IDENTIFY_BASE 0x80 #define IDENTIFY(can_disconnect, lun) (IDENTIFY_BASE |\ ((can_disconnect) ? 0x40 : 0) |\ ((lun) & 0x07)) /* * struct scsi_device::scsi_level values. For SCSI devices other than those * prior to SCSI-2 (i.e. over 12 years old) this value is (resp[2] + 1) * where "resp" is a byte array of the response to an INQUIRY. The scsi_level * variable is visible to the user via sysfs. */ #define SCSI_UNKNOWN 0 #define SCSI_1 1 #define SCSI_1_CCS 2 #define SCSI_2 3 #define SCSI_3 4 /* SPC */ #define SCSI_SPC_2 5 #define SCSI_SPC_3 6 /* * INQ PERIPHERAL QUALIFIERS */ #define SCSI_INQ_PQ_CON 0x00 #define SCSI_INQ_PQ_NOT_CON 0x01 #define SCSI_INQ_PQ_NOT_CAP 0x03 /* * Here are some scsi specific ioctl commands which are sometimes useful. * * Note that include/linux/cdrom.h also defines IOCTL 0x5300 - 0x5395 */ /* Used to obtain PUN and LUN info. Conflicts with CDROMAUDIOBUFSIZ */ #define SCSI_IOCTL_GET_IDLUN 0x5382 /* 0x5383 and 0x5384 were used for SCSI_IOCTL_TAGGED_{ENABLE,DISABLE} */ /* Used to obtain the host number of a device. */ #define SCSI_IOCTL_PROBE_HOST 0x5385 /* Used to obtain the bus number for a device */ #define SCSI_IOCTL_GET_BUS_NUMBER 0x5386 /* Used to obtain the PCI location of a device */ #define SCSI_IOCTL_GET_PCI 0x5387 #endif /* _SCSI_SCSI_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_COMPAT_H #define _ASM_X86_COMPAT_H /* * Architecture specific compatibility types */ #include <linux/types.h> #include <linux/sched.h> #include <linux/sched/task_stack.h> #include <asm/processor.h> #include <asm/user32.h> #include <asm/unistd.h> #include <asm-generic/compat.h> #define COMPAT_USER_HZ 100 #define COMPAT_UTS_MACHINE "i686\0\0" typedef u16 __compat_uid_t; typedef u16 __compat_gid_t; typedef u32 __compat_uid32_t; typedef u32 __compat_gid32_t; typedef u16 compat_mode_t; typedef u16 compat_dev_t; typedef u16 compat_nlink_t; typedef u16 compat_ipc_pid_t; typedef u32 compat_caddr_t; typedef __kernel_fsid_t compat_fsid_t; struct compat_stat { compat_dev_t st_dev; u16 __pad1; compat_ino_t st_ino; compat_mode_t st_mode; compat_nlink_t st_nlink; __compat_uid_t st_uid; __compat_gid_t st_gid; compat_dev_t st_rdev; u16 __pad2; u32 st_size; u32 st_blksize; u32 st_blocks; u32 st_atime; u32 st_atime_nsec; u32 st_mtime; u32 st_mtime_nsec; u32 st_ctime; u32 st_ctime_nsec; u32 __unused4; u32 __unused5; }; struct compat_flock { short l_type; short l_whence; compat_off_t l_start; compat_off_t l_len; compat_pid_t l_pid; }; #define F_GETLK64 12 /* using 'struct flock64' */ #define F_SETLK64 13 #define F_SETLKW64 14 /* * IA32 uses 4 byte alignment for 64 bit quantities, * so we need to pack this structure. */ struct compat_flock64 { short l_type; short l_whence; compat_loff_t l_start; compat_loff_t l_len; compat_pid_t l_pid; } __attribute__((packed)); struct compat_statfs { int f_type; int f_bsize; int f_blocks; int f_bfree; int f_bavail; int f_files; int f_ffree; compat_fsid_t f_fsid; int f_namelen; /* SunOS ignores this field. */ int f_frsize; int f_flags; int f_spare[4]; }; #define COMPAT_RLIM_INFINITY 0xffffffff typedef u32 compat_old_sigset_t; /* at least 32 bits */ #define _COMPAT_NSIG 64 #define _COMPAT_NSIG_BPW 32 typedef u32 compat_sigset_word; #define COMPAT_OFF_T_MAX 0x7fffffff struct compat_ipc64_perm { compat_key_t key; __compat_uid32_t uid; __compat_gid32_t gid; __compat_uid32_t cuid; __compat_gid32_t cgid; unsigned short mode; unsigned short __pad1; unsigned short seq; unsigned short __pad2; compat_ulong_t unused1; compat_ulong_t unused2; }; struct compat_semid64_ds { struct compat_ipc64_perm sem_perm; compat_ulong_t sem_otime; compat_ulong_t sem_otime_high; compat_ulong_t sem_ctime; compat_ulong_t sem_ctime_high; compat_ulong_t sem_nsems; compat_ulong_t __unused3; compat_ulong_t __unused4; }; struct compat_msqid64_ds { struct compat_ipc64_perm msg_perm; compat_ulong_t msg_stime; compat_ulong_t msg_stime_high; compat_ulong_t msg_rtime; compat_ulong_t msg_rtime_high; compat_ulong_t msg_ctime; compat_ulong_t msg_ctime_high; compat_ulong_t msg_cbytes; compat_ulong_t msg_qnum; compat_ulong_t msg_qbytes; compat_pid_t msg_lspid; compat_pid_t msg_lrpid; compat_ulong_t __unused4; compat_ulong_t __unused5; }; struct compat_shmid64_ds { struct compat_ipc64_perm shm_perm; compat_size_t shm_segsz; compat_ulong_t shm_atime; compat_ulong_t shm_atime_high; compat_ulong_t shm_dtime; compat_ulong_t shm_dtime_high; compat_ulong_t shm_ctime; compat_ulong_t shm_ctime_high; compat_pid_t shm_cpid; compat_pid_t shm_lpid; compat_ulong_t shm_nattch; compat_ulong_t __unused4; compat_ulong_t __unused5; }; /* * The type of struct elf_prstatus.pr_reg in compatible core dumps. */ typedef struct user_regs_struct compat_elf_gregset_t; /* Full regset -- prstatus on x32, otherwise on ia32 */ #define PRSTATUS_SIZE(S, R) (R != sizeof(S.pr_reg) ? 144 : 296) #define SET_PR_FPVALID(S, V, R) \ do { *(int *) (((void *) &((S)->pr_reg)) + R) = (V); } \ while (0) #ifdef CONFIG_X86_X32_ABI #define COMPAT_USE_64BIT_TIME \ (!!(task_pt_regs(current)->orig_ax & __X32_SYSCALL_BIT)) #endif static inline void __user *arch_compat_alloc_user_space(long len) { compat_uptr_t sp; if (test_thread_flag(TIF_IA32)) { sp = task_pt_regs(current)->sp; } else { /* -128 for the x32 ABI redzone */ sp = task_pt_regs(current)->sp - 128; } return (void __user *)round_down(sp - len, 16); } static inline bool in_x32_syscall(void) { #ifdef CONFIG_X86_X32_ABI if (task_pt_regs(current)->orig_ax & __X32_SYSCALL_BIT) return true; #endif return false; } static inline bool in_32bit_syscall(void) { return in_ia32_syscall() || in_x32_syscall(); } #ifdef CONFIG_COMPAT static inline bool in_compat_syscall(void) { return in_32bit_syscall(); } #define in_compat_syscall in_compat_syscall /* override the generic impl */ #define compat_need_64bit_alignment_fixup in_ia32_syscall #endif struct compat_siginfo; #ifdef CONFIG_X86_X32_ABI int copy_siginfo_to_user32(struct compat_siginfo __user *to, const kernel_siginfo_t *from); #define copy_siginfo_to_user32 copy_siginfo_to_user32 #endif /* CONFIG_X86_X32_ABI */ #endif /* _ASM_X86_COMPAT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SCHED_SIGNAL_H #define _LINUX_SCHED_SIGNAL_H #include <linux/rculist.h> #include <linux/signal.h> #include <linux/sched.h> #include <linux/sched/jobctl.h> #include <linux/sched/task.h> #include <linux/cred.h> #include <linux/refcount.h> #include <linux/posix-timers.h> #include <linux/mm_types.h> #include <asm/ptrace.h> /* * Types defining task->signal and task->sighand and APIs using them: */ struct sighand_struct { spinlock_t siglock; refcount_t count; wait_queue_head_t signalfd_wqh; struct k_sigaction action[_NSIG]; }; /* * Per-process accounting stats: */ struct pacct_struct { int ac_flag; long ac_exitcode; unsigned long ac_mem; u64 ac_utime, ac_stime; unsigned long ac_minflt, ac_majflt; }; struct cpu_itimer { u64 expires; u64 incr; }; /* * This is the atomic variant of task_cputime, which can be used for * storing and updating task_cputime statistics without locking. */ struct task_cputime_atomic { atomic64_t utime; atomic64_t stime; atomic64_t sum_exec_runtime; }; #define INIT_CPUTIME_ATOMIC \ (struct task_cputime_atomic) { \ .utime = ATOMIC64_INIT(0), \ .stime = ATOMIC64_INIT(0), \ .sum_exec_runtime = ATOMIC64_INIT(0), \ } /** * struct thread_group_cputimer - thread group interval timer counts * @cputime_atomic: atomic thread group interval timers. * * This structure contains the version of task_cputime, above, that is * used for thread group CPU timer calculations. */ struct thread_group_cputimer { struct task_cputime_atomic cputime_atomic; }; struct multiprocess_signals { sigset_t signal; struct hlist_node node; }; /* * NOTE! "signal_struct" does not have its own * locking, because a shared signal_struct always * implies a shared sighand_struct, so locking * sighand_struct is always a proper superset of * the locking of signal_struct. */ struct signal_struct { refcount_t sigcnt; atomic_t live; int nr_threads; struct list_head thread_head; wait_queue_head_t wait_chldexit; /* for wait4() */ /* current thread group signal load-balancing target: */ struct task_struct *curr_target; /* shared signal handling: */ struct sigpending shared_pending; /* For collecting multiprocess signals during fork */ struct hlist_head multiprocess; /* thread group exit support */ int group_exit_code; /* overloaded: * - notify group_exit_task when ->count is equal to notify_count * - everyone except group_exit_task is stopped during signal delivery * of fatal signals, group_exit_task processes the signal. */ int notify_count; struct task_struct *group_exit_task; /* thread group stop support, overloads group_exit_code too */ int group_stop_count; unsigned int flags; /* see SIGNAL_* flags below */ /* * PR_SET_CHILD_SUBREAPER marks a process, like a service * manager, to re-parent orphan (double-forking) child processes * to this process instead of 'init'. The service manager is * able to receive SIGCHLD signals and is able to investigate * the process until it calls wait(). All children of this * process will inherit a flag if they should look for a * child_subreaper process at exit. */ unsigned int is_child_subreaper:1; unsigned int has_child_subreaper:1; #ifdef CONFIG_POSIX_TIMERS /* POSIX.1b Interval Timers */ int posix_timer_id; struct list_head posix_timers; /* ITIMER_REAL timer for the process */ struct hrtimer real_timer; ktime_t it_real_incr; /* * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these * values are defined to 0 and 1 respectively */ struct cpu_itimer it[2]; /* * Thread group totals for process CPU timers. * See thread_group_cputimer(), et al, for details. */ struct thread_group_cputimer cputimer; #endif /* Empty if CONFIG_POSIX_TIMERS=n */ struct posix_cputimers posix_cputimers; /* PID/PID hash table linkage. */ struct pid *pids[PIDTYPE_MAX]; #ifdef CONFIG_NO_HZ_FULL atomic_t tick_dep_mask; #endif struct pid *tty_old_pgrp; /* boolean value for session group leader */ int leader; struct tty_struct *tty; /* NULL if no tty */ #ifdef CONFIG_SCHED_AUTOGROUP struct autogroup *autogroup; #endif /* * Cumulative resource counters for dead threads in the group, * and for reaped dead child processes forked by this group. * Live threads maintain their own counters and add to these * in __exit_signal, except for the group leader. */ seqlock_t stats_lock; u64 utime, stime, cutime, cstime; u64 gtime; u64 cgtime; struct prev_cputime prev_cputime; unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; unsigned long inblock, oublock, cinblock, coublock; unsigned long maxrss, cmaxrss; struct task_io_accounting ioac; /* * Cumulative ns of schedule CPU time fo dead threads in the * group, not including a zombie group leader, (This only differs * from jiffies_to_ns(utime + stime) if sched_clock uses something * other than jiffies.) */ unsigned long long sum_sched_runtime; /* * We don't bother to synchronize most readers of this at all, * because there is no reader checking a limit that actually needs * to get both rlim_cur and rlim_max atomically, and either one * alone is a single word that can safely be read normally. * getrlimit/setrlimit use task_lock(current->group_leader) to * protect this instead of the siglock, because they really * have no need to disable irqs. */ struct rlimit rlim[RLIM_NLIMITS]; #ifdef CONFIG_BSD_PROCESS_ACCT struct pacct_struct pacct; /* per-process accounting information */ #endif #ifdef CONFIG_TASKSTATS struct taskstats *stats; #endif #ifdef CONFIG_AUDIT unsigned audit_tty; struct tty_audit_buf *tty_audit_buf; #endif /* * Thread is the potential origin of an oom condition; kill first on * oom */ bool oom_flag_origin; short oom_score_adj; /* OOM kill score adjustment */ short oom_score_adj_min; /* OOM kill score adjustment min value. * Only settable by CAP_SYS_RESOURCE. */ struct mm_struct *oom_mm; /* recorded mm when the thread group got * killed by the oom killer */ struct mutex cred_guard_mutex; /* guard against foreign influences on * credential calculations * (notably. ptrace) * Deprecated do not use in new code. * Use exec_update_lock instead. */ struct rw_semaphore exec_update_lock; /* Held while task_struct is * being updated during exec, * and may have inconsistent * permissions. */ } __randomize_layout; /* * Bits in flags field of signal_struct. */ #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */ /* * Pending notifications to parent. */ #define SIGNAL_CLD_STOPPED 0x00000010 #define SIGNAL_CLD_CONTINUED 0x00000020 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ #define SIGNAL_STOP_MASK (SIGNAL_CLD_MASK | SIGNAL_STOP_STOPPED | \ SIGNAL_STOP_CONTINUED) static inline void signal_set_stop_flags(struct signal_struct *sig, unsigned int flags) { WARN_ON(sig->flags & (SIGNAL_GROUP_EXIT|SIGNAL_GROUP_COREDUMP)); sig->flags = (sig->flags & ~SIGNAL_STOP_MASK) | flags; } /* If true, all threads except ->group_exit_task have pending SIGKILL */ static inline int signal_group_exit(const struct signal_struct *sig) { return (sig->flags & SIGNAL_GROUP_EXIT) || (sig->group_exit_task != NULL); } extern void flush_signals(struct task_struct *); extern void ignore_signals(struct task_struct *); extern void flush_signal_handlers(struct task_struct *, int force_default); extern int dequeue_signal(struct task_struct *task, sigset_t *mask, kernel_siginfo_t *info); static inline int kernel_dequeue_signal(void) { struct task_struct *task = current; kernel_siginfo_t __info; int ret; spin_lock_irq(&task->sighand->siglock); ret = dequeue_signal(task, &task->blocked, &__info); spin_unlock_irq(&task->sighand->siglock); return ret; } static inline void kernel_signal_stop(void) { spin_lock_irq(&current->sighand->siglock); if (current->jobctl & JOBCTL_STOP_DEQUEUED) set_special_state(TASK_STOPPED); spin_unlock_irq(&current->sighand->siglock); schedule(); } #ifdef __ARCH_SI_TRAPNO # define ___ARCH_SI_TRAPNO(_a1) , _a1 #else # define ___ARCH_SI_TRAPNO(_a1) #endif #ifdef __ia64__ # define ___ARCH_SI_IA64(_a1, _a2, _a3) , _a1, _a2, _a3 #else # define ___ARCH_SI_IA64(_a1, _a2, _a3) #endif int force_sig_fault_to_task(int sig, int code, void __user *addr ___ARCH_SI_TRAPNO(int trapno) ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) , struct task_struct *t); int force_sig_fault(int sig, int code, void __user *addr ___ARCH_SI_TRAPNO(int trapno) ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)); int send_sig_fault(int sig, int code, void __user *addr ___ARCH_SI_TRAPNO(int trapno) ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) , struct task_struct *t); int force_sig_mceerr(int code, void __user *, short); int send_sig_mceerr(int code, void __user *, short, struct task_struct *); int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper); int force_sig_pkuerr(void __user *addr, u32 pkey); int force_sig_ptrace_errno_trap(int errno, void __user *addr); extern int send_sig_info(int, struct kernel_siginfo *, struct task_struct *); extern void force_sigsegv(int sig); extern int force_sig_info(struct kernel_siginfo *); extern int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp); extern int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid); extern int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, struct pid *, const struct cred *); extern int kill_pgrp(struct pid *pid, int sig, int priv); extern int kill_pid(struct pid *pid, int sig, int priv); extern __must_check bool do_notify_parent(struct task_struct *, int); extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); extern void force_sig(int); extern int send_sig(int, struct task_struct *, int); extern int zap_other_threads(struct task_struct *p); extern struct sigqueue *sigqueue_alloc(void); extern void sigqueue_free(struct sigqueue *); extern int send_sigqueue(struct sigqueue *, struct pid *, enum pid_type); extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); static inline int restart_syscall(void) { set_tsk_thread_flag(current, TIF_SIGPENDING); return -ERESTARTNOINTR; } static inline int signal_pending(struct task_struct *p) { return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); } static inline int __fatal_signal_pending(struct task_struct *p) { return unlikely(sigismember(&p->pending.signal, SIGKILL)); } static inline int fatal_signal_pending(struct task_struct *p) { return signal_pending(p) && __fatal_signal_pending(p); } static inline int signal_pending_state(long state, struct task_struct *p) { if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) return 0; if (!signal_pending(p)) return 0; return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); } /* * This should only be used in fault handlers to decide whether we * should stop the current fault routine to handle the signals * instead, especially with the case where we've got interrupted with * a VM_FAULT_RETRY. */ static inline bool fault_signal_pending(vm_fault_t fault_flags, struct pt_regs *regs) { return unlikely((fault_flags & VM_FAULT_RETRY) && (fatal_signal_pending(current) || (user_mode(regs) && signal_pending(current)))); } /* * Reevaluate whether the task has signals pending delivery. * Wake the task if so. * This is required every time the blocked sigset_t changes. * callers must hold sighand->siglock. */ extern void recalc_sigpending_and_wake(struct task_struct *t); extern void recalc_sigpending(void); extern void calculate_sigpending(void); extern void signal_wake_up_state(struct task_struct *t, unsigned int state); static inline void signal_wake_up(struct task_struct *t, bool resume) { signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0); } static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume) { signal_wake_up_state(t, resume ? __TASK_TRACED : 0); } void task_join_group_stop(struct task_struct *task); #ifdef TIF_RESTORE_SIGMASK /* * Legacy restore_sigmask accessors. These are inefficient on * SMP architectures because they require atomic operations. */ /** * set_restore_sigmask() - make sure saved_sigmask processing gets done * * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code * will run before returning to user mode, to process the flag. For * all callers, TIF_SIGPENDING is already set or it's no harm to set * it. TIF_RESTORE_SIGMASK need not be in the set of bits that the * arch code will notice on return to user mode, in case those bits * are scarce. We set TIF_SIGPENDING here to ensure that the arch * signal code always gets run when TIF_RESTORE_SIGMASK is set. */ static inline void set_restore_sigmask(void) { set_thread_flag(TIF_RESTORE_SIGMASK); } static inline void clear_tsk_restore_sigmask(struct task_struct *task) { clear_tsk_thread_flag(task, TIF_RESTORE_SIGMASK); } static inline void clear_restore_sigmask(void) { clear_thread_flag(TIF_RESTORE_SIGMASK); } static inline bool test_tsk_restore_sigmask(struct task_struct *task) { return test_tsk_thread_flag(task, TIF_RESTORE_SIGMASK); } static inline bool test_restore_sigmask(void) { return test_thread_flag(TIF_RESTORE_SIGMASK); } static inline bool test_and_clear_restore_sigmask(void) { return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK); } #else /* TIF_RESTORE_SIGMASK */ /* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */ static inline void set_restore_sigmask(void) { current->restore_sigmask = true; } static inline void clear_tsk_restore_sigmask(struct task_struct *task) { task->restore_sigmask = false; } static inline void clear_restore_sigmask(void) { current->restore_sigmask = false; } static inline bool test_restore_sigmask(void) { return current->restore_sigmask; } static inline bool test_tsk_restore_sigmask(struct task_struct *task) { return task->restore_sigmask; } static inline bool test_and_clear_restore_sigmask(void) { if (!current->restore_sigmask) return false; current->restore_sigmask = false; return true; } #endif static inline void restore_saved_sigmask(void) { if (test_and_clear_restore_sigmask()) __set_current_blocked(&current->saved_sigmask); } extern int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize); static inline void restore_saved_sigmask_unless(bool interrupted) { if (interrupted) WARN_ON(!test_thread_flag(TIF_SIGPENDING)); else restore_saved_sigmask(); } static inline sigset_t *sigmask_to_save(void) { sigset_t *res = &current->blocked; if (unlikely(test_restore_sigmask())) res = &current->saved_sigmask; return res; } static inline int kill_cad_pid(int sig, int priv) { return kill_pid(cad_pid, sig, priv); } /* These can be the second arg to send_sig_info/send_group_sig_info. */ #define SEND_SIG_NOINFO ((struct kernel_siginfo *) 0) #define SEND_SIG_PRIV ((struct kernel_siginfo *) 1) static inline int __on_sig_stack(unsigned long sp) { #ifdef CONFIG_STACK_GROWSUP return sp >= current->sas_ss_sp && sp - current->sas_ss_sp < current->sas_ss_size; #else return sp > current->sas_ss_sp && sp - current->sas_ss_sp <= current->sas_ss_size; #endif } /* * True if we are on the alternate signal stack. */ static inline int on_sig_stack(unsigned long sp) { /* * If the signal stack is SS_AUTODISARM then, by construction, we * can't be on the signal stack unless user code deliberately set * SS_AUTODISARM when we were already on it. * * This improves reliability: if user state gets corrupted such that * the stack pointer points very close to the end of the signal stack, * then this check will enable the signal to be handled anyway. */ if (current->sas_ss_flags & SS_AUTODISARM) return 0; return __on_sig_stack(sp); } static inline int sas_ss_flags(unsigned long sp) { if (!current->sas_ss_size) return SS_DISABLE; return on_sig_stack(sp) ? SS_ONSTACK : 0; } static inline void sas_ss_reset(struct task_struct *p) { p->sas_ss_sp = 0; p->sas_ss_size = 0; p->sas_ss_flags = SS_DISABLE; } static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig) { if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp)) #ifdef CONFIG_STACK_GROWSUP return current->sas_ss_sp; #else return current->sas_ss_sp + current->sas_ss_size; #endif return sp; } extern void __cleanup_sighand(struct sighand_struct *); extern void flush_itimer_signals(void); #define tasklist_empty() \ list_empty(&init_task.tasks) #define next_task(p) \ list_entry_rcu((p)->tasks.next, struct task_struct, tasks) #define for_each_process(p) \ for (p = &init_task ; (p = next_task(p)) != &init_task ; ) extern bool current_is_single_threaded(void); /* * Careful: do_each_thread/while_each_thread is a double loop so * 'break' will not work as expected - use goto instead. */ #define do_each_thread(g, t) \ for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do #define while_each_thread(g, t) \ while ((t = next_thread(t)) != g) #define __for_each_thread(signal, t) \ list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node) #define for_each_thread(p, t) \ __for_each_thread((p)->signal, t) /* Careful: this is a double loop, 'break' won't work as expected. */ #define for_each_process_thread(p, t) \ for_each_process(p) for_each_thread(p, t) typedef int (*proc_visitor)(struct task_struct *p, void *data); void walk_process_tree(struct task_struct *top, proc_visitor, void *); static inline struct pid *task_pid_type(struct task_struct *task, enum pid_type type) { struct pid *pid; if (type == PIDTYPE_PID) pid = task_pid(task); else pid = task->signal->pids[type]; return pid; } static inline struct pid *task_tgid(struct task_struct *task) { return task->signal->pids[PIDTYPE_TGID]; } /* * Without tasklist or RCU lock it is not safe to dereference * the result of task_pgrp/task_session even if task == current, * we can race with another thread doing sys_setsid/sys_setpgid. */ static inline struct pid *task_pgrp(struct task_struct *task) { return task->signal->pids[PIDTYPE_PGID]; } static inline struct pid *task_session(struct task_struct *task) { return task->signal->pids[PIDTYPE_SID]; } static inline int get_nr_threads(struct task_struct *task) { return task->signal->nr_threads; } static inline bool thread_group_leader(struct task_struct *p) { return p->exit_signal >= 0; } static inline bool same_thread_group(struct task_struct *p1, struct task_struct *p2) { return p1->signal == p2->signal; } static inline struct task_struct *next_thread(const struct task_struct *p) { return list_entry_rcu(p->thread_group.next, struct task_struct, thread_group); } static inline int thread_group_empty(struct task_struct *p) { return list_empty(&p->thread_group); } #define delay_group_leader(p) \ (thread_group_leader(p) && !thread_group_empty(p)) extern bool thread_group_exited(struct pid *pid); extern struct sighand_struct *__lock_task_sighand(struct task_struct *task, unsigned long *flags); static inline struct sighand_struct *lock_task_sighand(struct task_struct *task, unsigned long *flags) { struct sighand_struct *ret; ret = __lock_task_sighand(task, flags); (void)__cond_lock(&task->sighand->siglock, ret); return ret; } static inline void unlock_task_sighand(struct task_struct *task, unsigned long *flags) { spin_unlock_irqrestore(&task->sighand->siglock, *flags); } static inline unsigned long task_rlimit(const struct task_struct *task, unsigned int limit) { return READ_ONCE(task->signal->rlim[limit].rlim_cur); } static inline unsigned long task_rlimit_max(const struct task_struct *task, unsigned int limit) { return READ_ONCE(task->signal->rlim[limit].rlim_max); } static inline unsigned long rlimit(unsigned int limit) { return task_rlimit(current, limit); } static inline unsigned long rlimit_max(unsigned int limit) { return task_rlimit_max(current, limit); } #endif /* _LINUX_SCHED_SIGNAL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM printk #if !defined(_TRACE_PRINTK_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_PRINTK_H #include <linux/tracepoint.h> TRACE_EVENT(console, TP_PROTO(const char *text, size_t len), TP_ARGS(text, len), TP_STRUCT__entry( __dynamic_array(char, msg, len + 1) ), TP_fast_assign( /* * Each trace entry is printed in a new line. * If the msg finishes with '\n', cut it off * to avoid blank lines in the trace. */ if ((len > 0) && (text[len-1] == '\n')) len -= 1; memcpy(__get_str(msg), text, len); __get_str(msg)[len] = 0; ), TP_printk("%s", __get_str(msg)) ); #endif /* _TRACE_PRINTK_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 // SPDX-License-Identifier: GPL-2.0-only /* * Implementation of the kernel access vector cache (AVC). * * Authors: Stephen Smalley, <sds@tycho.nsa.gov> * James Morris <jmorris@redhat.com> * * Update: KaiGai, Kohei <kaigai@ak.jp.nec.com> * Replaced the avc_lock spinlock by RCU. * * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com> */ #include <linux/types.h> #include <linux/stddef.h> #include <linux/kernel.h> #include <linux/slab.h> #include <linux/fs.h> #include <linux/dcache.h> #include <linux/init.h> #include <linux/skbuff.h> #include <linux/percpu.h> #include <linux/list.h> #include <net/sock.h> #include <linux/un.h> #include <net/af_unix.h> #include <linux/ip.h> #include <linux/audit.h> #include <linux/ipv6.h> #include <net/ipv6.h> #include "avc.h" #include "avc_ss.h" #include "classmap.h" #define CREATE_TRACE_POINTS #include <trace/events/avc.h> #define AVC_CACHE_SLOTS 512 #define AVC_DEF_CACHE_THRESHOLD 512 #define AVC_CACHE_RECLAIM 16 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS #define avc_cache_stats_incr(field) this_cpu_inc(avc_cache_stats.field) #else #define avc_cache_stats_incr(field) do {} while (0) #endif struct avc_entry { u32 ssid; u32 tsid; u16 tclass; struct av_decision avd; struct avc_xperms_node *xp_node; }; struct avc_node { struct avc_entry ae; struct hlist_node list; /* anchored in avc_cache->slots[i] */ struct rcu_head rhead; }; struct avc_xperms_decision_node { struct extended_perms_decision xpd; struct list_head xpd_list; /* list of extended_perms_decision */ }; struct avc_xperms_node { struct extended_perms xp; struct list_head xpd_head; /* list head of extended_perms_decision */ }; struct avc_cache { struct hlist_head slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */ spinlock_t slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */ atomic_t lru_hint; /* LRU hint for reclaim scan */ atomic_t active_nodes; u32 latest_notif; /* latest revocation notification */ }; struct avc_callback_node { int (*callback) (u32 event); u32 events; struct avc_callback_node *next; }; #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 }; #endif struct selinux_avc { unsigned int avc_cache_threshold; struct avc_cache avc_cache; }; static struct selinux_avc selinux_avc; void selinux_avc_init(struct selinux_avc **avc) { int i; selinux_avc.avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD; for (i = 0; i < AVC_CACHE_SLOTS; i++) { INIT_HLIST_HEAD(&selinux_avc.avc_cache.slots[i]); spin_lock_init(&selinux_avc.avc_cache.slots_lock[i]); } atomic_set(&selinux_avc.avc_cache.active_nodes, 0); atomic_set(&selinux_avc.avc_cache.lru_hint, 0); *avc = &selinux_avc; } unsigned int avc_get_cache_threshold(struct selinux_avc *avc) { return avc->avc_cache_threshold; } void avc_set_cache_threshold(struct selinux_avc *avc, unsigned int cache_threshold) { avc->avc_cache_threshold = cache_threshold; } static struct avc_callback_node *avc_callbacks; static struct kmem_cache *avc_node_cachep; static struct kmem_cache *avc_xperms_data_cachep; static struct kmem_cache *avc_xperms_decision_cachep; static struct kmem_cache *avc_xperms_cachep; static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass) { return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1); } /** * avc_init - Initialize the AVC. * * Initialize the access vector cache. */ void __init avc_init(void) { avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node), 0, SLAB_PANIC, NULL); avc_xperms_cachep = kmem_cache_create("avc_xperms_node", sizeof(struct avc_xperms_node), 0, SLAB_PANIC, NULL); avc_xperms_decision_cachep = kmem_cache_create( "avc_xperms_decision_node", sizeof(struct avc_xperms_decision_node), 0, SLAB_PANIC, NULL); avc_xperms_data_cachep = kmem_cache_create("avc_xperms_data", sizeof(struct extended_perms_data), 0, SLAB_PANIC, NULL); } int avc_get_hash_stats(struct selinux_avc *avc, char *page) { int i, chain_len, max_chain_len, slots_used; struct avc_node *node; struct hlist_head *head; rcu_read_lock(); slots_used = 0; max_chain_len = 0; for (i = 0; i < AVC_CACHE_SLOTS; i++) { head = &avc->avc_cache.slots[i]; if (!hlist_empty(head)) { slots_used++; chain_len = 0; hlist_for_each_entry_rcu(node, head, list) chain_len++; if (chain_len > max_chain_len) max_chain_len = chain_len; } } rcu_read_unlock(); return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n" "longest chain: %d\n", atomic_read(&avc->avc_cache.active_nodes), slots_used, AVC_CACHE_SLOTS, max_chain_len); } /* * using a linked list for extended_perms_decision lookup because the list is * always small. i.e. less than 5, typically 1 */ static struct extended_perms_decision *avc_xperms_decision_lookup(u8 driver, struct avc_xperms_node *xp_node) { struct avc_xperms_decision_node *xpd_node; list_for_each_entry(xpd_node, &xp_node->xpd_head, xpd_list) { if (xpd_node->xpd.driver == driver) return &xpd_node->xpd; } return NULL; } static inline unsigned int avc_xperms_has_perm(struct extended_perms_decision *xpd, u8 perm, u8 which) { unsigned int rc = 0; if ((which == XPERMS_ALLOWED) && (xpd->used & XPERMS_ALLOWED)) rc = security_xperm_test(xpd->allowed->p, perm); else if ((which == XPERMS_AUDITALLOW) && (xpd->used & XPERMS_AUDITALLOW)) rc = security_xperm_test(xpd->auditallow->p, perm); else if ((which == XPERMS_DONTAUDIT) && (xpd->used & XPERMS_DONTAUDIT)) rc = security_xperm_test(xpd->dontaudit->p, perm); return rc; } static void avc_xperms_allow_perm(struct avc_xperms_node *xp_node, u8 driver, u8 perm) { struct extended_perms_decision *xpd; security_xperm_set(xp_node->xp.drivers.p, driver); xpd = avc_xperms_decision_lookup(driver, xp_node); if (xpd && xpd->allowed) security_xperm_set(xpd->allowed->p, perm); } static void avc_xperms_decision_free(struct avc_xperms_decision_node *xpd_node) { struct extended_perms_decision *xpd; xpd = &xpd_node->xpd; if (xpd->allowed) kmem_cache_free(avc_xperms_data_cachep, xpd->allowed); if (xpd->auditallow) kmem_cache_free(avc_xperms_data_cachep, xpd->auditallow); if (xpd->dontaudit) kmem_cache_free(avc_xperms_data_cachep, xpd->dontaudit); kmem_cache_free(avc_xperms_decision_cachep, xpd_node); } static void avc_xperms_free(struct avc_xperms_node *xp_node) { struct avc_xperms_decision_node *xpd_node, *tmp; if (!xp_node) return; list_for_each_entry_safe(xpd_node, tmp, &xp_node->xpd_head, xpd_list) { list_del(&xpd_node->xpd_list); avc_xperms_decision_free(xpd_node); } kmem_cache_free(avc_xperms_cachep, xp_node); } static void avc_copy_xperms_decision(struct extended_perms_decision *dest, struct extended_perms_decision *src) { dest->driver = src->driver; dest->used = src->used; if (dest->used & XPERMS_ALLOWED) memcpy(dest->allowed->p, src->allowed->p, sizeof(src->allowed->p)); if (dest->used & XPERMS_AUDITALLOW) memcpy(dest->auditallow->p, src->auditallow->p, sizeof(src->auditallow->p)); if (dest->used & XPERMS_DONTAUDIT) memcpy(dest->dontaudit->p, src->dontaudit->p, sizeof(src->dontaudit->p)); } /* * similar to avc_copy_xperms_decision, but only copy decision * information relevant to this perm */ static inline void avc_quick_copy_xperms_decision(u8 perm, struct extended_perms_decision *dest, struct extended_perms_decision *src) { /* * compute index of the u32 of the 256 bits (8 u32s) that contain this * command permission */ u8 i = perm >> 5; dest->used = src->used; if (dest->used & XPERMS_ALLOWED) dest->allowed->p[i] = src->allowed->p[i]; if (dest->used & XPERMS_AUDITALLOW) dest->auditallow->p[i] = src->auditallow->p[i]; if (dest->used & XPERMS_DONTAUDIT) dest->dontaudit->p[i] = src->dontaudit->p[i]; } static struct avc_xperms_decision_node *avc_xperms_decision_alloc(u8 which) { struct avc_xperms_decision_node *xpd_node; struct extended_perms_decision *xpd; xpd_node = kmem_cache_zalloc(avc_xperms_decision_cachep, GFP_NOWAIT | __GFP_NOWARN); if (!xpd_node) return NULL; xpd = &xpd_node->xpd; if (which & XPERMS_ALLOWED) { xpd->allowed = kmem_cache_zalloc(avc_xperms_data_cachep, GFP_NOWAIT | __GFP_NOWARN); if (!xpd->allowed) goto error; } if (which & XPERMS_AUDITALLOW) { xpd->auditallow = kmem_cache_zalloc(avc_xperms_data_cachep, GFP_NOWAIT | __GFP_NOWARN); if (!xpd->auditallow) goto error; } if (which & XPERMS_DONTAUDIT) { xpd->dontaudit = kmem_cache_zalloc(avc_xperms_data_cachep, GFP_NOWAIT | __GFP_NOWARN); if (!xpd->dontaudit) goto error; } return xpd_node; error: avc_xperms_decision_free(xpd_node); return NULL; } static int avc_add_xperms_decision(struct avc_node *node, struct extended_perms_decision *src) { struct avc_xperms_decision_node *dest_xpd; node->ae.xp_node->xp.len++; dest_xpd = avc_xperms_decision_alloc(src->used); if (!dest_xpd) return -ENOMEM; avc_copy_xperms_decision(&dest_xpd->xpd, src); list_add(&dest_xpd->xpd_list, &node->ae.xp_node->xpd_head); return 0; } static struct avc_xperms_node *avc_xperms_alloc(void) { struct avc_xperms_node *xp_node; xp_node = kmem_cache_zalloc(avc_xperms_cachep, GFP_NOWAIT | __GFP_NOWARN); if (!xp_node) return xp_node; INIT_LIST_HEAD(&xp_node->xpd_head); return xp_node; } static int avc_xperms_populate(struct avc_node *node, struct avc_xperms_node *src) { struct avc_xperms_node *dest; struct avc_xperms_decision_node *dest_xpd; struct avc_xperms_decision_node *src_xpd; if (src->xp.len == 0) return 0; dest = avc_xperms_alloc(); if (!dest) return -ENOMEM; memcpy(dest->xp.drivers.p, src->xp.drivers.p, sizeof(dest->xp.drivers.p)); dest->xp.len = src->xp.len; /* for each source xpd allocate a destination xpd and copy */ list_for_each_entry(src_xpd, &src->xpd_head, xpd_list) { dest_xpd = avc_xperms_decision_alloc(src_xpd->xpd.used); if (!dest_xpd) goto error; avc_copy_xperms_decision(&dest_xpd->xpd, &src_xpd->xpd); list_add(&dest_xpd->xpd_list, &dest->xpd_head); } node->ae.xp_node = dest; return 0; error: avc_xperms_free(dest); return -ENOMEM; } static inline u32 avc_xperms_audit_required(u32 requested, struct av_decision *avd, struct extended_perms_decision *xpd, u8 perm, int result, u32 *deniedp) { u32 denied, audited; denied = requested & ~avd->allowed; if (unlikely(denied)) { audited = denied & avd->auditdeny; if (audited && xpd) { if (avc_xperms_has_perm(xpd, perm, XPERMS_DONTAUDIT)) audited &= ~requested; } } else if (result) { audited = denied = requested; } else { audited = requested & avd->auditallow; if (audited && xpd) { if (!avc_xperms_has_perm(xpd, perm, XPERMS_AUDITALLOW)) audited &= ~requested; } } *deniedp = denied; return audited; } static inline int avc_xperms_audit(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass, u32 requested, struct av_decision *avd, struct extended_perms_decision *xpd, u8 perm, int result, struct common_audit_data *ad) { u32 audited, denied; audited = avc_xperms_audit_required( requested, avd, xpd, perm, result, &denied); if (likely(!audited)) return 0; return slow_avc_audit(state, ssid, tsid, tclass, requested, audited, denied, result, ad); } static void avc_node_free(struct rcu_head *rhead) { struct avc_node *node = container_of(rhead, struct avc_node, rhead); avc_xperms_free(node->ae.xp_node); kmem_cache_free(avc_node_cachep, node); avc_cache_stats_incr(frees); } static void avc_node_delete(struct selinux_avc *avc, struct avc_node *node) { hlist_del_rcu(&node->list); call_rcu(&node->rhead, avc_node_free); atomic_dec(&avc->avc_cache.active_nodes); } static void avc_node_kill(struct selinux_avc *avc, struct avc_node *node) { avc_xperms_free(node->ae.xp_node); kmem_cache_free(avc_node_cachep, node); avc_cache_stats_incr(frees); atomic_dec(&avc->avc_cache.active_nodes); } static void avc_node_replace(struct selinux_avc *avc, struct avc_node *new, struct avc_node *old) { hlist_replace_rcu(&old->list, &new->list); call_rcu(&old->rhead, avc_node_free); atomic_dec(&avc->avc_cache.active_nodes); } static inline int avc_reclaim_node(struct selinux_avc *avc) { struct avc_node *node; int hvalue, try, ecx; unsigned long flags; struct hlist_head *head; spinlock_t *lock; for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) { hvalue = atomic_inc_return(&avc->avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1); head = &avc->avc_cache.slots[hvalue]; lock = &avc->avc_cache.slots_lock[hvalue]; if (!spin_trylock_irqsave(lock, flags)) continue; rcu_read_lock(); hlist_for_each_entry(node, head, list) { avc_node_delete(avc, node); avc_cache_stats_incr(reclaims); ecx++; if (ecx >= AVC_CACHE_RECLAIM) { rcu_read_unlock(); spin_unlock_irqrestore(lock, flags); goto out; } } rcu_read_unlock(); spin_unlock_irqrestore(lock, flags); } out: return ecx; } static struct avc_node *avc_alloc_node(struct selinux_avc *avc) { struct avc_node *node; node = kmem_cache_zalloc(avc_node_cachep, GFP_NOWAIT | __GFP_NOWARN); if (!node) goto out; INIT_HLIST_NODE(&node->list); avc_cache_stats_incr(allocations); if (atomic_inc_return(&avc->avc_cache.active_nodes) > avc->avc_cache_threshold) avc_reclaim_node(avc); out: return node; } static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd) { node->ae.ssid = ssid; node->ae.tsid = tsid; node->ae.tclass = tclass; memcpy(&node->ae.avd, avd, sizeof(node->ae.avd)); } static inline struct avc_node *avc_search_node(struct selinux_avc *avc, u32 ssid, u32 tsid, u16 tclass) { struct avc_node *node, *ret = NULL; int hvalue; struct hlist_head *head; hvalue = avc_hash(ssid, tsid, tclass); head = &avc->avc_cache.slots[hvalue]; hlist_for_each_entry_rcu(node, head, list) { if (ssid == node->ae.ssid && tclass == node->ae.tclass && tsid == node->ae.tsid) { ret = node; break; } } return ret; } /** * avc_lookup - Look up an AVC entry. * @ssid: source security identifier * @tsid: target security identifier * @tclass: target security class * * Look up an AVC entry that is valid for the * (@ssid, @tsid), interpreting the permissions * based on @tclass. If a valid AVC entry exists, * then this function returns the avc_node. * Otherwise, this function returns NULL. */ static struct avc_node *avc_lookup(struct selinux_avc *avc, u32 ssid, u32 tsid, u16 tclass) { struct avc_node *node; avc_cache_stats_incr(lookups); node = avc_search_node(avc, ssid, tsid, tclass); if (node) return node; avc_cache_stats_incr(misses); return NULL; } static int avc_latest_notif_update(struct selinux_avc *avc, int seqno, int is_insert) { int ret = 0; static DEFINE_SPINLOCK(notif_lock); unsigned long flag; spin_lock_irqsave(&notif_lock, flag); if (is_insert) { if (seqno < avc->avc_cache.latest_notif) { pr_warn("SELinux: avc: seqno %d < latest_notif %d\n", seqno, avc->avc_cache.latest_notif); ret = -EAGAIN; } } else { if (seqno > avc->avc_cache.latest_notif) avc->avc_cache.latest_notif = seqno; } spin_unlock_irqrestore(&notif_lock, flag); return ret; } /** * avc_insert - Insert an AVC entry. * @ssid: source security identifier * @tsid: target security identifier * @tclass: target security class * @avd: resulting av decision * @xp_node: resulting extended permissions * * Insert an AVC entry for the SID pair * (@ssid, @tsid) and class @tclass. * The access vectors and the sequence number are * normally provided by the security server in * response to a security_compute_av() call. If the * sequence number @avd->seqno is not less than the latest * revocation notification, then the function copies * the access vectors into a cache entry, returns * avc_node inserted. Otherwise, this function returns NULL. */ static struct avc_node *avc_insert(struct selinux_avc *avc, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd, struct avc_xperms_node *xp_node) { struct avc_node *pos, *node = NULL; int hvalue; unsigned long flag; spinlock_t *lock; struct hlist_head *head; if (avc_latest_notif_update(avc, avd->seqno, 1)) return NULL; node = avc_alloc_node(avc); if (!node) return NULL; avc_node_populate(node, ssid, tsid, tclass, avd); if (avc_xperms_populate(node, xp_node)) { avc_node_kill(avc, node); return NULL; } hvalue = avc_hash(ssid, tsid, tclass); head = &avc->avc_cache.slots[hvalue]; lock = &avc->avc_cache.slots_lock[hvalue]; spin_lock_irqsave(lock, flag); hlist_for_each_entry(pos, head, list) { if (pos->ae.ssid == ssid && pos->ae.tsid == tsid && pos->ae.tclass == tclass) { avc_node_replace(avc, node, pos); goto found; } } hlist_add_head_rcu(&node->list, head); found: spin_unlock_irqrestore(lock, flag); return node; } /** * avc_audit_pre_callback - SELinux specific information * will be called by generic audit code * @ab: the audit buffer * @a: audit_data */ static void avc_audit_pre_callback(struct audit_buffer *ab, void *a) { struct common_audit_data *ad = a; struct selinux_audit_data *sad = ad->selinux_audit_data; u32 av = sad->audited; const char **perms; int i, perm; audit_log_format(ab, "avc: %s ", sad->denied ? "denied" : "granted"); if (av == 0) { audit_log_format(ab, " null"); return; } perms = secclass_map[sad->tclass-1].perms; audit_log_format(ab, " {"); i = 0; perm = 1; while (i < (sizeof(av) * 8)) { if ((perm & av) && perms[i]) { audit_log_format(ab, " %s", perms[i]); av &= ~perm; } i++; perm <<= 1; } if (av) audit_log_format(ab, " 0x%x", av); audit_log_format(ab, " } for "); } /** * avc_audit_post_callback - SELinux specific information * will be called by generic audit code * @ab: the audit buffer * @a: audit_data */ static void avc_audit_post_callback(struct audit_buffer *ab, void *a) { struct common_audit_data *ad = a; struct selinux_audit_data *sad = ad->selinux_audit_data; char *scontext = NULL; char *tcontext = NULL; const char *tclass = NULL; u32 scontext_len; u32 tcontext_len; int rc; rc = security_sid_to_context(sad->state, sad->ssid, &scontext, &scontext_len); if (rc) audit_log_format(ab, " ssid=%d", sad->ssid); else audit_log_format(ab, " scontext=%s", scontext); rc = security_sid_to_context(sad->state, sad->tsid, &tcontext, &tcontext_len); if (rc) audit_log_format(ab, " tsid=%d", sad->tsid); else audit_log_format(ab, " tcontext=%s", tcontext); tclass = secclass_map[sad->tclass-1].name; audit_log_format(ab, " tclass=%s", tclass); if (sad->denied) audit_log_format(ab, " permissive=%u", sad->result ? 0 : 1); trace_selinux_audited(sad, scontext, tcontext, tclass); kfree(tcontext); kfree(scontext); /* in case of invalid context report also the actual context string */ rc = security_sid_to_context_inval(sad->state, sad->ssid, &scontext, &scontext_len); if (!rc && scontext) { if (scontext_len && scontext[scontext_len - 1] == '\0') scontext_len--; audit_log_format(ab, " srawcon="); audit_log_n_untrustedstring(ab, scontext, scontext_len); kfree(scontext); } rc = security_sid_to_context_inval(sad->state, sad->tsid, &scontext, &scontext_len); if (!rc && scontext) { if (scontext_len && scontext[scontext_len - 1] == '\0') scontext_len--; audit_log_format(ab, " trawcon="); audit_log_n_untrustedstring(ab, scontext, scontext_len); kfree(scontext); } } /* This is the slow part of avc audit with big stack footprint */ noinline int slow_avc_audit(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass, u32 requested, u32 audited, u32 denied, int result, struct common_audit_data *a) { struct common_audit_data stack_data; struct selinux_audit_data sad; if (WARN_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map))) return -EINVAL; if (!a) { a = &stack_data; a->type = LSM_AUDIT_DATA_NONE; } sad.tclass = tclass; sad.requested = requested; sad.ssid = ssid; sad.tsid = tsid; sad.audited = audited; sad.denied = denied; sad.result = result; sad.state = state; a->selinux_audit_data = &sad; common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback); return 0; } /** * avc_add_callback - Register a callback for security events. * @callback: callback function * @events: security events * * Register a callback function for events in the set @events. * Returns %0 on success or -%ENOMEM if insufficient memory * exists to add the callback. */ int __init avc_add_callback(int (*callback)(u32 event), u32 events) { struct avc_callback_node *c; int rc = 0; c = kmalloc(sizeof(*c), GFP_KERNEL); if (!c) { rc = -ENOMEM; goto out; } c->callback = callback; c->events = events; c->next = avc_callbacks; avc_callbacks = c; out: return rc; } /** * avc_update_node Update an AVC entry * @event : Updating event * @perms : Permission mask bits * @ssid,@tsid,@tclass : identifier of an AVC entry * @seqno : sequence number when decision was made * @xpd: extended_perms_decision to be added to the node * @flags: the AVC_* flags, e.g. AVC_NONBLOCKING, AVC_EXTENDED_PERMS, or 0. * * if a valid AVC entry doesn't exist,this function returns -ENOENT. * if kmalloc() called internal returns NULL, this function returns -ENOMEM. * otherwise, this function updates the AVC entry. The original AVC-entry object * will release later by RCU. */ static int avc_update_node(struct selinux_avc *avc, u32 event, u32 perms, u8 driver, u8 xperm, u32 ssid, u32 tsid, u16 tclass, u32 seqno, struct extended_perms_decision *xpd, u32 flags) { int hvalue, rc = 0; unsigned long flag; struct avc_node *pos, *node, *orig = NULL; struct hlist_head *head; spinlock_t *lock; /* * If we are in a non-blocking code path, e.g. VFS RCU walk, * then we must not add permissions to a cache entry * because we will not audit the denial. Otherwise, * during the subsequent blocking retry (e.g. VFS ref walk), we * will find the permissions already granted in the cache entry * and won't audit anything at all, leading to silent denials in * permissive mode that only appear when in enforcing mode. * * See the corresponding handling of MAY_NOT_BLOCK in avc_audit() * and selinux_inode_permission(). */ if (flags & AVC_NONBLOCKING) return 0; node = avc_alloc_node(avc); if (!node) { rc = -ENOMEM; goto out; } /* Lock the target slot */ hvalue = avc_hash(ssid, tsid, tclass); head = &avc->avc_cache.slots[hvalue]; lock = &avc->avc_cache.slots_lock[hvalue]; spin_lock_irqsave(lock, flag); hlist_for_each_entry(pos, head, list) { if (ssid == pos->ae.ssid && tsid == pos->ae.tsid && tclass == pos->ae.tclass && seqno == pos->ae.avd.seqno){ orig = pos; break; } } if (!orig) { rc = -ENOENT; avc_node_kill(avc, node); goto out_unlock; } /* * Copy and replace original node. */ avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd); if (orig->ae.xp_node) { rc = avc_xperms_populate(node, orig->ae.xp_node); if (rc) { avc_node_kill(avc, node); goto out_unlock; } } switch (event) { case AVC_CALLBACK_GRANT: node->ae.avd.allowed |= perms; if (node->ae.xp_node && (flags & AVC_EXTENDED_PERMS)) avc_xperms_allow_perm(node->ae.xp_node, driver, xperm); break; case AVC_CALLBACK_TRY_REVOKE: case AVC_CALLBACK_REVOKE: node->ae.avd.allowed &= ~perms; break; case AVC_CALLBACK_AUDITALLOW_ENABLE: node->ae.avd.auditallow |= perms; break; case AVC_CALLBACK_AUDITALLOW_DISABLE: node->ae.avd.auditallow &= ~perms; break; case AVC_CALLBACK_AUDITDENY_ENABLE: node->ae.avd.auditdeny |= perms; break; case AVC_CALLBACK_AUDITDENY_DISABLE: node->ae.avd.auditdeny &= ~perms; break; case AVC_CALLBACK_ADD_XPERMS: avc_add_xperms_decision(node, xpd); break; } avc_node_replace(avc, node, orig); out_unlock: spin_unlock_irqrestore(lock, flag); out: return rc; } /** * avc_flush - Flush the cache */ static void avc_flush(struct selinux_avc *avc) { struct hlist_head *head; struct avc_node *node; spinlock_t *lock; unsigned long flag; int i; for (i = 0; i < AVC_CACHE_SLOTS; i++) { head = &avc->avc_cache.slots[i]; lock = &avc->avc_cache.slots_lock[i]; spin_lock_irqsave(lock, flag); /* * With preemptable RCU, the outer spinlock does not * prevent RCU grace periods from ending. */ rcu_read_lock(); hlist_for_each_entry(node, head, list) avc_node_delete(avc, node); rcu_read_unlock(); spin_unlock_irqrestore(lock, flag); } } /** * avc_ss_reset - Flush the cache and revalidate migrated permissions. * @seqno: policy sequence number */ int avc_ss_reset(struct selinux_avc *avc, u32 seqno) { struct avc_callback_node *c; int rc = 0, tmprc; avc_flush(avc); for (c = avc_callbacks; c; c = c->next) { if (c->events & AVC_CALLBACK_RESET) { tmprc = c->callback(AVC_CALLBACK_RESET); /* save the first error encountered for the return value and continue processing the callbacks */ if (!rc) rc = tmprc; } } avc_latest_notif_update(avc, seqno, 0); return rc; } /* * Slow-path helper function for avc_has_perm_noaudit, * when the avc_node lookup fails. We get called with * the RCU read lock held, and need to return with it * still held, but drop if for the security compute. * * Don't inline this, since it's the slow-path and just * results in a bigger stack frame. */ static noinline struct avc_node *avc_compute_av(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd, struct avc_xperms_node *xp_node) { rcu_read_unlock(); INIT_LIST_HEAD(&xp_node->xpd_head); security_compute_av(state, ssid, tsid, tclass, avd, &xp_node->xp); rcu_read_lock(); return avc_insert(state->avc, ssid, tsid, tclass, avd, xp_node); } static noinline int avc_denied(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass, u32 requested, u8 driver, u8 xperm, unsigned int flags, struct av_decision *avd) { if (flags & AVC_STRICT) return -EACCES; if (enforcing_enabled(state) && !(avd->flags & AVD_FLAGS_PERMISSIVE)) return -EACCES; avc_update_node(state->avc, AVC_CALLBACK_GRANT, requested, driver, xperm, ssid, tsid, tclass, avd->seqno, NULL, flags); return 0; } /* * The avc extended permissions logic adds an additional 256 bits of * permissions to an avc node when extended permissions for that node are * specified in the avtab. If the additional 256 permissions is not adequate, * as-is the case with ioctls, then multiple may be chained together and the * driver field is used to specify which set contains the permission. */ int avc_has_extended_perms(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass, u32 requested, u8 driver, u8 xperm, struct common_audit_data *ad) { struct avc_node *node; struct av_decision avd; u32 denied; struct extended_perms_decision local_xpd; struct extended_perms_decision *xpd = NULL; struct extended_perms_data allowed; struct extended_perms_data auditallow; struct extended_perms_data dontaudit; struct avc_xperms_node local_xp_node; struct avc_xperms_node *xp_node; int rc = 0, rc2; xp_node = &local_xp_node; if (WARN_ON(!requested)) return -EACCES; rcu_read_lock(); node = avc_lookup(state->avc, ssid, tsid, tclass); if (unlikely(!node)) { node = avc_compute_av(state, ssid, tsid, tclass, &avd, xp_node); } else { memcpy(&avd, &node->ae.avd, sizeof(avd)); xp_node = node->ae.xp_node; } /* if extended permissions are not defined, only consider av_decision */ if (!xp_node || !xp_node->xp.len) goto decision; local_xpd.allowed = &allowed; local_xpd.auditallow = &auditallow; local_xpd.dontaudit = &dontaudit; xpd = avc_xperms_decision_lookup(driver, xp_node); if (unlikely(!xpd)) { /* * Compute the extended_perms_decision only if the driver * is flagged */ if (!security_xperm_test(xp_node->xp.drivers.p, driver)) { avd.allowed &= ~requested; goto decision; } rcu_read_unlock(); security_compute_xperms_decision(state, ssid, tsid, tclass, driver, &local_xpd); rcu_read_lock(); avc_update_node(state->avc, AVC_CALLBACK_ADD_XPERMS, requested, driver, xperm, ssid, tsid, tclass, avd.seqno, &local_xpd, 0); } else { avc_quick_copy_xperms_decision(xperm, &local_xpd, xpd); } xpd = &local_xpd; if (!avc_xperms_has_perm(xpd, xperm, XPERMS_ALLOWED)) avd.allowed &= ~requested; decision: denied = requested & ~(avd.allowed); if (unlikely(denied)) rc = avc_denied(state, ssid, tsid, tclass, requested, driver, xperm, AVC_EXTENDED_PERMS, &avd); rcu_read_unlock(); rc2 = avc_xperms_audit(state, ssid, tsid, tclass, requested, &avd, xpd, xperm, rc, ad); if (rc2) return rc2; return rc; } /** * avc_has_perm_noaudit - Check permissions but perform no auditing. * @ssid: source security identifier * @tsid: target security identifier * @tclass: target security class * @requested: requested permissions, interpreted based on @tclass * @flags: AVC_STRICT, AVC_NONBLOCKING, or 0 * @avd: access vector decisions * * Check the AVC to determine whether the @requested permissions are granted * for the SID pair (@ssid, @tsid), interpreting the permissions * based on @tclass, and call the security server on a cache miss to obtain * a new decision and add it to the cache. Return a copy of the decisions * in @avd. Return %0 if all @requested permissions are granted, * -%EACCES if any permissions are denied, or another -errno upon * other errors. This function is typically called by avc_has_perm(), * but may also be called directly to separate permission checking from * auditing, e.g. in cases where a lock must be held for the check but * should be released for the auditing. */ inline int avc_has_perm_noaudit(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass, u32 requested, unsigned int flags, struct av_decision *avd) { struct avc_node *node; struct avc_xperms_node xp_node; int rc = 0; u32 denied; if (WARN_ON(!requested)) return -EACCES; rcu_read_lock(); node = avc_lookup(state->avc, ssid, tsid, tclass); if (unlikely(!node)) node = avc_compute_av(state, ssid, tsid, tclass, avd, &xp_node); else memcpy(avd, &node->ae.avd, sizeof(*avd)); denied = requested & ~(avd->allowed); if (unlikely(denied)) rc = avc_denied(state, ssid, tsid, tclass, requested, 0, 0, flags, avd); rcu_read_unlock(); return rc; } /** * avc_has_perm - Check permissions and perform any appropriate auditing. * @ssid: source security identifier * @tsid: target security identifier * @tclass: target security class * @requested: requested permissions, interpreted based on @tclass * @auditdata: auxiliary audit data * * Check the AVC to determine whether the @requested permissions are granted * for the SID pair (@ssid, @tsid), interpreting the permissions * based on @tclass, and call the security server on a cache miss to obtain * a new decision and add it to the cache. Audit the granting or denial of * permissions in accordance with the policy. Return %0 if all @requested * permissions are granted, -%EACCES if any permissions are denied, or * another -errno upon other errors. */ int avc_has_perm(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass, u32 requested, struct common_audit_data *auditdata) { struct av_decision avd; int rc, rc2; rc = avc_has_perm_noaudit(state, ssid, tsid, tclass, requested, 0, &avd); rc2 = avc_audit(state, ssid, tsid, tclass, requested, &avd, rc, auditdata, 0); if (rc2) return rc2; return rc; } int avc_has_perm_flags(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass, u32 requested, struct common_audit_data *auditdata, int flags) { struct av_decision avd; int rc, rc2; rc = avc_has_perm_noaudit(state, ssid, tsid, tclass, requested, (flags & MAY_NOT_BLOCK) ? AVC_NONBLOCKING : 0, &avd); rc2 = avc_audit(state, ssid, tsid, tclass, requested, &avd, rc, auditdata, flags); if (rc2) return rc2; return rc; } u32 avc_policy_seqno(struct selinux_state *state) { return state->avc->avc_cache.latest_notif; } void avc_disable(void) { /* * If you are looking at this because you have realized that we are * not destroying the avc_node_cachep it might be easy to fix, but * I don't know the memory barrier semantics well enough to know. It's * possible that some other task dereferenced security_ops when * it still pointed to selinux operations. If that is the case it's * possible that it is about to use the avc and is about to need the * avc_node_cachep. I know I could wrap the security.c security_ops call * in an rcu_lock, but seriously, it's not worth it. Instead I just flush * the cache and get that memory back. */ if (avc_node_cachep) { avc_flush(selinux_state.avc); /* kmem_cache_destroy(avc_node_cachep); */ } }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _NET_IP6_ROUTE_H #define _NET_IP6_ROUTE_H struct route_info { __u8 type; __u8 length; __u8 prefix_len; #if defined(__BIG_ENDIAN_BITFIELD) __u8 reserved_h:3, route_pref:2, reserved_l:3; #elif defined(__LITTLE_ENDIAN_BITFIELD) __u8 reserved_l:3, route_pref:2, reserved_h:3; #endif __be32 lifetime; __u8 prefix[]; /* 0,8 or 16 */ }; #include <net/addrconf.h> #include <net/flow.h> #include <net/ip6_fib.h> #include <net/sock.h> #include <net/lwtunnel.h> #include <linux/ip.h> #include <linux/ipv6.h> #include <linux/route.h> #include <net/nexthop.h> #define RT6_LOOKUP_F_IFACE 0x00000001 #define RT6_LOOKUP_F_REACHABLE 0x00000002 #define RT6_LOOKUP_F_HAS_SADDR 0x00000004 #define RT6_LOOKUP_F_SRCPREF_TMP 0x00000008 #define RT6_LOOKUP_F_SRCPREF_PUBLIC 0x00000010 #define RT6_LOOKUP_F_SRCPREF_COA 0x00000020 #define RT6_LOOKUP_F_IGNORE_LINKSTATE 0x00000040 #define RT6_LOOKUP_F_DST_NOREF 0x00000080 /* We do not (yet ?) support IPv6 jumbograms (RFC 2675) * Unlike IPv4, hdr->seg_len doesn't include the IPv6 header */ #define IP6_MAX_MTU (0xFFFF + sizeof(struct ipv6hdr)) /* * rt6_srcprefs2flags() and rt6_flags2srcprefs() translate * between IPV6_ADDR_PREFERENCES socket option values * IPV6_PREFER_SRC_TMP = 0x1 * IPV6_PREFER_SRC_PUBLIC = 0x2 * IPV6_PREFER_SRC_COA = 0x4 * and above RT6_LOOKUP_F_SRCPREF_xxx flags. */ static inline int rt6_srcprefs2flags(unsigned int srcprefs) { /* No need to bitmask because srcprefs have only 3 bits. */ return srcprefs << 3; } static inline unsigned int rt6_flags2srcprefs(int flags) { return (flags >> 3) & 7; } static inline bool rt6_need_strict(const struct in6_addr *daddr) { return ipv6_addr_type(daddr) & (IPV6_ADDR_MULTICAST | IPV6_ADDR_LINKLOCAL | IPV6_ADDR_LOOPBACK); } /* fib entries using a nexthop object can not be coalesced into * a multipath route */ static inline bool rt6_qualify_for_ecmp(const struct fib6_info *f6i) { /* the RTF_ADDRCONF flag filters out RA's */ return !(f6i->fib6_flags & RTF_ADDRCONF) && !f6i->nh && f6i->fib6_nh->fib_nh_gw_family; } void ip6_route_input(struct sk_buff *skb); struct dst_entry *ip6_route_input_lookup(struct net *net, struct net_device *dev, struct flowi6 *fl6, const struct sk_buff *skb, int flags); struct dst_entry *ip6_route_output_flags_noref(struct net *net, const struct sock *sk, struct flowi6 *fl6, int flags); struct dst_entry *ip6_route_output_flags(struct net *net, const struct sock *sk, struct flowi6 *fl6, int flags); static inline struct dst_entry *ip6_route_output(struct net *net, const struct sock *sk, struct flowi6 *fl6) { return ip6_route_output_flags(net, sk, fl6, 0); } /* Only conditionally release dst if flags indicates * !RT6_LOOKUP_F_DST_NOREF or dst is in uncached_list. */ static inline void ip6_rt_put_flags(struct rt6_info *rt, int flags) { if (!(flags & RT6_LOOKUP_F_DST_NOREF) || !list_empty(&rt->rt6i_uncached)) ip6_rt_put(rt); } struct dst_entry *ip6_route_lookup(struct net *net, struct flowi6 *fl6, const struct sk_buff *skb, int flags); struct rt6_info *ip6_pol_route(struct net *net, struct fib6_table *table, int ifindex, struct flowi6 *fl6, const struct sk_buff *skb, int flags); void ip6_route_init_special_entries(void); int ip6_route_init(void); void ip6_route_cleanup(void); int ipv6_route_ioctl(struct net *net, unsigned int cmd, struct in6_rtmsg *rtmsg); int ip6_route_add(struct fib6_config *cfg, gfp_t gfp_flags, struct netlink_ext_ack *extack); int ip6_ins_rt(struct net *net, struct fib6_info *f6i); int ip6_del_rt(struct net *net, struct fib6_info *f6i, bool skip_notify); void rt6_flush_exceptions(struct fib6_info *f6i); void rt6_age_exceptions(struct fib6_info *f6i, struct fib6_gc_args *gc_args, unsigned long now); static inline int ip6_route_get_saddr(struct net *net, struct fib6_info *f6i, const struct in6_addr *daddr, unsigned int prefs, struct in6_addr *saddr) { int err = 0; if (f6i && f6i->fib6_prefsrc.plen) { *saddr = f6i->fib6_prefsrc.addr; } else { struct net_device *dev = f6i ? fib6_info_nh_dev(f6i) : NULL; err = ipv6_dev_get_saddr(net, dev, daddr, prefs, saddr); } return err; } struct rt6_info *rt6_lookup(struct net *net, const struct in6_addr *daddr, const struct in6_addr *saddr, int oif, const struct sk_buff *skb, int flags); u32 rt6_multipath_hash(const struct net *net, const struct flowi6 *fl6, const struct sk_buff *skb, struct flow_keys *hkeys); struct dst_entry *icmp6_dst_alloc(struct net_device *dev, struct flowi6 *fl6); void fib6_force_start_gc(struct net *net); struct fib6_info *addrconf_f6i_alloc(struct net *net, struct inet6_dev *idev, const struct in6_addr *addr, bool anycast, gfp_t gfp_flags); struct rt6_info *ip6_dst_alloc(struct net *net, struct net_device *dev, int flags); /* * support functions for ND * */ struct fib6_info *rt6_get_dflt_router(struct net *net, const struct in6_addr *addr, struct net_device *dev); struct fib6_info *rt6_add_dflt_router(struct net *net, const struct in6_addr *gwaddr, struct net_device *dev, unsigned int pref); void rt6_purge_dflt_routers(struct net *net); int rt6_route_rcv(struct net_device *dev, u8 *opt, int len, const struct in6_addr *gwaddr); void ip6_update_pmtu(struct sk_buff *skb, struct net *net, __be32 mtu, int oif, u32 mark, kuid_t uid); void ip6_sk_update_pmtu(struct sk_buff *skb, struct sock *sk, __be32 mtu); void ip6_redirect(struct sk_buff *skb, struct net *net, int oif, u32 mark, kuid_t uid); void ip6_redirect_no_header(struct sk_buff *skb, struct net *net, int oif); void ip6_sk_redirect(struct sk_buff *skb, struct sock *sk); struct netlink_callback; struct rt6_rtnl_dump_arg { struct sk_buff *skb; struct netlink_callback *cb; struct net *net; struct fib_dump_filter filter; }; int rt6_dump_route(struct fib6_info *f6i, void *p_arg, unsigned int skip); void rt6_mtu_change(struct net_device *dev, unsigned int mtu); void rt6_remove_prefsrc(struct inet6_ifaddr *ifp); void rt6_clean_tohost(struct net *net, struct in6_addr *gateway); void rt6_sync_up(struct net_device *dev, unsigned char nh_flags); void rt6_disable_ip(struct net_device *dev, unsigned long event); void rt6_sync_down_dev(struct net_device *dev, unsigned long event); void rt6_multipath_rebalance(struct fib6_info *f6i); void rt6_uncached_list_add(struct rt6_info *rt); void rt6_uncached_list_del(struct rt6_info *rt); static inline const struct rt6_info *skb_rt6_info(const struct sk_buff *skb) { const struct dst_entry *dst = skb_dst(skb); const struct rt6_info *rt6 = NULL; if (dst) rt6 = container_of(dst, struct rt6_info, dst); return rt6; } /* * Store a destination cache entry in a socket */ static inline void ip6_dst_store(struct sock *sk, struct dst_entry *dst, const struct in6_addr *daddr, const struct in6_addr *saddr) { struct ipv6_pinfo *np = inet6_sk(sk); np->dst_cookie = rt6_get_cookie((struct rt6_info *)dst); sk_setup_caps(sk, dst); np->daddr_cache = daddr; #ifdef CONFIG_IPV6_SUBTREES np->saddr_cache = saddr; #endif } void ip6_sk_dst_store_flow(struct sock *sk, struct dst_entry *dst, const struct flowi6 *fl6); static inline bool ipv6_unicast_destination(const struct sk_buff *skb) { struct rt6_info *rt = (struct rt6_info *) skb_dst(skb); return rt->rt6i_flags & RTF_LOCAL; } static inline bool ipv6_anycast_destination(const struct dst_entry *dst, const struct in6_addr *daddr) { struct rt6_info *rt = (struct rt6_info *)dst; return rt->rt6i_flags & RTF_ANYCAST || (rt->rt6i_dst.plen < 127 && !(rt->rt6i_flags & (RTF_GATEWAY | RTF_NONEXTHOP)) && ipv6_addr_equal(&rt->rt6i_dst.addr, daddr)); } int ip6_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, int (*output)(struct net *, struct sock *, struct sk_buff *)); static inline unsigned int ip6_skb_dst_mtu(struct sk_buff *skb) { unsigned int mtu; struct ipv6_pinfo *np = skb->sk && !dev_recursion_level() ? inet6_sk(skb->sk) : NULL; if (np && np->pmtudisc >= IPV6_PMTUDISC_PROBE) { mtu = READ_ONCE(skb_dst(skb)->dev->mtu); mtu -= lwtunnel_headroom(skb_dst(skb)->lwtstate, mtu); } else mtu = dst_mtu(skb_dst(skb)); return mtu; } static inline bool ip6_sk_accept_pmtu(const struct sock *sk) { return inet6_sk(sk)->pmtudisc != IPV6_PMTUDISC_INTERFACE && inet6_sk(sk)->pmtudisc != IPV6_PMTUDISC_OMIT; } static inline bool ip6_sk_ignore_df(const struct sock *sk) { return inet6_sk(sk)->pmtudisc < IPV6_PMTUDISC_DO || inet6_sk(sk)->pmtudisc == IPV6_PMTUDISC_OMIT; } static inline const struct in6_addr *rt6_nexthop(const struct rt6_info *rt, const struct in6_addr *daddr) { if (rt->rt6i_flags & RTF_GATEWAY) return &rt->rt6i_gateway; else if (unlikely(rt->rt6i_flags & RTF_CACHE)) return &rt->rt6i_dst.addr; else return daddr; } static inline bool rt6_duplicate_nexthop(struct fib6_info *a, struct fib6_info *b) { struct fib6_nh *nha, *nhb; if (a->nh || b->nh) return nexthop_cmp(a->nh, b->nh); nha = a->fib6_nh; nhb = b->fib6_nh; return nha->fib_nh_dev == nhb->fib_nh_dev && ipv6_addr_equal(&nha->fib_nh_gw6, &nhb->fib_nh_gw6) && !lwtunnel_cmp_encap(nha->fib_nh_lws, nhb->fib_nh_lws); } static inline unsigned int ip6_dst_mtu_forward(const struct dst_entry *dst) { struct inet6_dev *idev; unsigned int mtu; if (dst_metric_locked(dst, RTAX_MTU)) { mtu = dst_metric_raw(dst, RTAX_MTU); if (mtu) goto out; } mtu = IPV6_MIN_MTU; rcu_read_lock(); idev = __in6_dev_get(dst->dev); if (idev) mtu = idev->cnf.mtu6; rcu_read_unlock(); out: return mtu - lwtunnel_headroom(dst->lwtstate, mtu); } u32 ip6_mtu_from_fib6(const struct fib6_result *res, const struct in6_addr *daddr, const struct in6_addr *saddr); struct neighbour *ip6_neigh_lookup(const struct in6_addr *gw, struct net_device *dev, struct sk_buff *skb, const void *daddr); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _SOCK_REUSEPORT_H #define _SOCK_REUSEPORT_H #include <linux/filter.h> #include <linux/skbuff.h> #include <linux/types.h> #include <linux/spinlock.h> #include <net/sock.h> extern spinlock_t reuseport_lock; struct sock_reuseport { struct rcu_head rcu; u16 max_socks; /* length of socks */ u16 num_socks; /* elements in socks */ /* The last synq overflow event timestamp of this * reuse->socks[] group. */ unsigned int synq_overflow_ts; /* ID stays the same even after the size of socks[] grows. */ unsigned int reuseport_id; unsigned int bind_inany:1; unsigned int has_conns:1; struct bpf_prog __rcu *prog; /* optional BPF sock selector */ struct sock *socks[]; /* array of sock pointers */ }; extern int reuseport_alloc(struct sock *sk, bool bind_inany); extern int reuseport_add_sock(struct sock *sk, struct sock *sk2, bool bind_inany); extern void reuseport_detach_sock(struct sock *sk); extern struct sock *reuseport_select_sock(struct sock *sk, u32 hash, struct sk_buff *skb, int hdr_len); extern int reuseport_attach_prog(struct sock *sk, struct bpf_prog *prog); extern int reuseport_detach_prog(struct sock *sk); static inline bool reuseport_has_conns(struct sock *sk, bool set) { struct sock_reuseport *reuse; bool ret = false; rcu_read_lock(); reuse = rcu_dereference(sk->sk_reuseport_cb); if (reuse) { if (set) reuse->has_conns = 1; ret = reuse->has_conns; } rcu_read_unlock(); return ret; } #endif /* _SOCK_REUSEPORT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * SR-IPv6 implementation * * Author: * David Lebrun <david.lebrun@uclouvain.be> */ #ifndef _NET_SEG6_H #define _NET_SEG6_H #include <linux/net.h> #include <linux/ipv6.h> #include <linux/seg6.h> #include <linux/rhashtable-types.h> static inline void update_csum_diff4(struct sk_buff *skb, __be32 from, __be32 to) { __be32 diff[] = { ~from, to }; skb->csum = ~csum_partial((char *)diff, sizeof(diff), ~skb->csum); } static inline void update_csum_diff16(struct sk_buff *skb, __be32 *from, __be32 *to) { __be32 diff[] = { ~from[0], ~from[1], ~from[2], ~from[3], to[0], to[1], to[2], to[3], }; skb->csum = ~csum_partial((char *)diff, sizeof(diff), ~skb->csum); } struct seg6_pernet_data { struct mutex lock; struct in6_addr __rcu *tun_src; #ifdef CONFIG_IPV6_SEG6_HMAC struct rhashtable hmac_infos; #endif }; static inline struct seg6_pernet_data *seg6_pernet(struct net *net) { #if IS_ENABLED(CONFIG_IPV6) return net->ipv6.seg6_data; #else return NULL; #endif } extern int seg6_init(void); extern void seg6_exit(void); extern int seg6_iptunnel_init(void); extern void seg6_iptunnel_exit(void); extern int seg6_local_init(void); extern void seg6_local_exit(void); extern bool seg6_validate_srh(struct ipv6_sr_hdr *srh, int len, bool reduced); extern int seg6_do_srh_encap(struct sk_buff *skb, struct ipv6_sr_hdr *osrh, int proto); extern int seg6_do_srh_inline(struct sk_buff *skb, struct ipv6_sr_hdr *osrh); extern int seg6_lookup_nexthop(struct sk_buff *skb, struct in6_addr *nhaddr, u32 tbl_id); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __FIRMWARE_LOADER_H #define __FIRMWARE_LOADER_H #include <linux/bitops.h> #include <linux/firmware.h> #include <linux/types.h> #include <linux/kref.h> #include <linux/list.h> #include <linux/completion.h> #include <generated/utsrelease.h> /** * enum fw_opt - options to control firmware loading behaviour * * @FW_OPT_UEVENT: Enables the fallback mechanism to send a kobject uevent * when the firmware is not found. Userspace is in charge to load the * firmware using the sysfs loading facility. * @FW_OPT_NOWAIT: Used to describe the firmware request is asynchronous. * @FW_OPT_USERHELPER: Enable the fallback mechanism, in case the direct * filesystem lookup fails at finding the firmware. For details refer to * firmware_fallback_sysfs(). * @FW_OPT_NO_WARN: Quiet, avoid printing warning messages. * @FW_OPT_NOCACHE: Disables firmware caching. Firmware caching is used to * cache the firmware upon suspend, so that upon resume races against the * firmware file lookup on storage is avoided. Used for calls where the * file may be too big, or where the driver takes charge of its own * firmware caching mechanism. * @FW_OPT_NOFALLBACK_SYSFS: Disable the sysfs fallback mechanism. Takes * precedence over &FW_OPT_UEVENT and &FW_OPT_USERHELPER. * @FW_OPT_FALLBACK_PLATFORM: Enable fallback to device fw copy embedded in * the platform's main firmware. If both this fallback and the sysfs * fallback are enabled, then this fallback will be tried first. * @FW_OPT_PARTIAL: Allow partial read of firmware instead of needing to read * entire file. */ enum fw_opt { FW_OPT_UEVENT = BIT(0), FW_OPT_NOWAIT = BIT(1), FW_OPT_USERHELPER = BIT(2), FW_OPT_NO_WARN = BIT(3), FW_OPT_NOCACHE = BIT(4), FW_OPT_NOFALLBACK_SYSFS = BIT(5), FW_OPT_FALLBACK_PLATFORM = BIT(6), FW_OPT_PARTIAL = BIT(7), }; enum fw_status { FW_STATUS_UNKNOWN, FW_STATUS_LOADING, FW_STATUS_DONE, FW_STATUS_ABORTED, }; /* * Concurrent request_firmware() for the same firmware need to be * serialized. struct fw_state is simple state machine which hold the * state of the firmware loading. */ struct fw_state { struct completion completion; enum fw_status status; }; struct fw_priv { struct kref ref; struct list_head list; struct firmware_cache *fwc; struct fw_state fw_st; void *data; size_t size; size_t allocated_size; size_t offset; u32 opt_flags; #ifdef CONFIG_FW_LOADER_PAGED_BUF bool is_paged_buf; struct page **pages; int nr_pages; int page_array_size; #endif #ifdef CONFIG_FW_LOADER_USER_HELPER bool need_uevent; struct list_head pending_list; #endif const char *fw_name; }; extern struct mutex fw_lock; static inline bool __fw_state_check(struct fw_priv *fw_priv, enum fw_status status) { struct fw_state *fw_st = &fw_priv->fw_st; return fw_st->status == status; } static inline int __fw_state_wait_common(struct fw_priv *fw_priv, long timeout) { struct fw_state *fw_st = &fw_priv->fw_st; long ret; ret = wait_for_completion_killable_timeout(&fw_st->completion, timeout); if (ret != 0 && fw_st->status == FW_STATUS_ABORTED) return -ENOENT; if (!ret) return -ETIMEDOUT; return ret < 0 ? ret : 0; } static inline void __fw_state_set(struct fw_priv *fw_priv, enum fw_status status) { struct fw_state *fw_st = &fw_priv->fw_st; WRITE_ONCE(fw_st->status, status); if (status == FW_STATUS_DONE || status == FW_STATUS_ABORTED) { #ifdef CONFIG_FW_LOADER_USER_HELPER /* * Doing this here ensures that the fw_priv is deleted from * the pending list in all abort/done paths. */ list_del_init(&fw_priv->pending_list); #endif complete_all(&fw_st->completion); } } static inline void fw_state_aborted(struct fw_priv *fw_priv) { __fw_state_set(fw_priv, FW_STATUS_ABORTED); } static inline bool fw_state_is_aborted(struct fw_priv *fw_priv) { return __fw_state_check(fw_priv, FW_STATUS_ABORTED); } static inline void fw_state_start(struct fw_priv *fw_priv) { __fw_state_set(fw_priv, FW_STATUS_LOADING); } static inline void fw_state_done(struct fw_priv *fw_priv) { __fw_state_set(fw_priv, FW_STATUS_DONE); } int assign_fw(struct firmware *fw, struct device *device); #ifdef CONFIG_FW_LOADER_PAGED_BUF void fw_free_paged_buf(struct fw_priv *fw_priv); int fw_grow_paged_buf(struct fw_priv *fw_priv, int pages_needed); int fw_map_paged_buf(struct fw_priv *fw_priv); bool fw_is_paged_buf(struct fw_priv *fw_priv); #else static inline void fw_free_paged_buf(struct fw_priv *fw_priv) {} static inline int fw_grow_paged_buf(struct fw_priv *fw_priv, int pages_needed) { return -ENXIO; } static inline int fw_map_paged_buf(struct fw_priv *fw_priv) { return -ENXIO; } static inline bool fw_is_paged_buf(struct fw_priv *fw_priv) { return false; } #endif #endif /* __FIRMWARE_LOADER_H */
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 /* SPDX-License-Identifier: GPL-2.0 */ /* * Prevent the compiler from merging or refetching reads or writes. The * compiler is also forbidden from reordering successive instances of * READ_ONCE and WRITE_ONCE, but only when the compiler is aware of some * particular ordering. One way to make the compiler aware of ordering is to * put the two invocations of READ_ONCE or WRITE_ONCE in different C * statements. * * These two macros will also work on aggregate data types like structs or * unions. * * Their two major use cases are: (1) Mediating communication between * process-level code and irq/NMI handlers, all running on the same CPU, * and (2) Ensuring that the compiler does not fold, spindle, or otherwise * mutilate accesses that either do not require ordering or that interact * with an explicit memory barrier or atomic instruction that provides the * required ordering. */ #ifndef __ASM_GENERIC_RWONCE_H #define __ASM_GENERIC_RWONCE_H #ifndef __ASSEMBLY__ #include <linux/compiler_types.h> #include <linux/kasan-checks.h> #include <linux/kcsan-checks.h> /* * Yes, this permits 64-bit accesses on 32-bit architectures. These will * actually be atomic in some cases (namely Armv7 + LPAE), but for others we * rely on the access being split into 2x32-bit accesses for a 32-bit quantity * (e.g. a virtual address) and a strong prevailing wind. */ #define compiletime_assert_rwonce_type(t) \ compiletime_assert(__native_word(t) || sizeof(t) == sizeof(long long), \ "Unsupported access size for {READ,WRITE}_ONCE().") /* * Use __READ_ONCE() instead of READ_ONCE() if you do not require any * atomicity. Note that this may result in tears! */ #ifndef __READ_ONCE #define __READ_ONCE(x) (*(const volatile __unqual_scalar_typeof(x) *)&(x)) #endif #define READ_ONCE(x) \ ({ \ compiletime_assert_rwonce_type(x); \ __READ_ONCE(x); \ }) #define __WRITE_ONCE(x, val) \ do { \ *(volatile typeof(x) *)&(x) = (val); \ } while (0) #define WRITE_ONCE(x, val) \ do { \ compiletime_assert_rwonce_type(x); \ __WRITE_ONCE(x, val); \ } while (0) static __no_sanitize_or_inline unsigned long __read_once_word_nocheck(const void *addr) { return __READ_ONCE(*(unsigned long *)addr); } /* * Use READ_ONCE_NOCHECK() instead of READ_ONCE() if you need to load a * word from memory atomically but without telling KASAN/KCSAN. This is * usually used by unwinding code when walking the stack of a running process. */ #define READ_ONCE_NOCHECK(x) \ ({ \ compiletime_assert(sizeof(x) == sizeof(unsigned long), \ "Unsupported access size for READ_ONCE_NOCHECK()."); \ (typeof(x))__read_once_word_nocheck(&(x)); \ }) static __no_kasan_or_inline unsigned long read_word_at_a_time(const void *addr) { kasan_check_read(addr, 1); return *(unsigned long *)addr; } #endif /* __ASSEMBLY__ */ #endif /* __ASM_GENERIC_RWONCE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_NET_SCM_H #define __LINUX_NET_SCM_H #include <linux/limits.h> #include <linux/net.h> #include <linux/cred.h> #include <linux/security.h> #include <linux/pid.h> #include <linux/nsproxy.h> #include <linux/sched/signal.h> /* Well, we should have at least one descriptor open * to accept passed FDs 8) */ #define SCM_MAX_FD 253 struct scm_creds { u32 pid; kuid_t uid; kgid_t gid; }; struct scm_fp_list { short count; short max; struct user_struct *user; struct file *fp[SCM_MAX_FD]; }; struct scm_cookie { struct pid *pid; /* Skb credentials */ struct scm_fp_list *fp; /* Passed files */ struct scm_creds creds; /* Skb credentials */ #ifdef CONFIG_SECURITY_NETWORK u32 secid; /* Passed security ID */ #endif }; void scm_detach_fds(struct msghdr *msg, struct scm_cookie *scm); void scm_detach_fds_compat(struct msghdr *msg, struct scm_cookie *scm); int __scm_send(struct socket *sock, struct msghdr *msg, struct scm_cookie *scm); void __scm_destroy(struct scm_cookie *scm); struct scm_fp_list *scm_fp_dup(struct scm_fp_list *fpl); #ifdef CONFIG_SECURITY_NETWORK static __inline__ void unix_get_peersec_dgram(struct socket *sock, struct scm_cookie *scm) { security_socket_getpeersec_dgram(sock, NULL, &scm->secid); } #else static __inline__ void unix_get_peersec_dgram(struct socket *sock, struct scm_cookie *scm) { } #endif /* CONFIG_SECURITY_NETWORK */ static __inline__ void scm_set_cred(struct scm_cookie *scm, struct pid *pid, kuid_t uid, kgid_t gid) { scm->pid = get_pid(pid); scm->creds.pid = pid_vnr(pid); scm->creds.uid = uid; scm->creds.gid = gid; } static __inline__ void scm_destroy_cred(struct scm_cookie *scm) { put_pid(scm->pid); scm->pid = NULL; } static __inline__ void scm_destroy(struct scm_cookie *scm) { scm_destroy_cred(scm); if (scm->fp) __scm_destroy(scm); } static __inline__ int scm_send(struct socket *sock, struct msghdr *msg, struct scm_cookie *scm, bool forcecreds) { memset(scm, 0, sizeof(*scm)); scm->creds.uid = INVALID_UID; scm->creds.gid = INVALID_GID; if (forcecreds) scm_set_cred(scm, task_tgid(current), current_uid(), current_gid()); unix_get_peersec_dgram(sock, scm); if (msg->msg_controllen <= 0) return 0; return __scm_send(sock, msg, scm); } #ifdef CONFIG_SECURITY_NETWORK static inline void scm_passec(struct socket *sock, struct msghdr *msg, struct scm_cookie *scm) { char *secdata; u32 seclen; int err; if (test_bit(SOCK_PASSSEC, &sock->flags)) { err = security_secid_to_secctx(scm->secid, &secdata, &seclen); if (!err) { put_cmsg(msg, SOL_SOCKET, SCM_SECURITY, seclen, secdata); security_release_secctx(secdata, seclen); } } } #else static inline void scm_passec(struct socket *sock, struct msghdr *msg, struct scm_cookie *scm) { } #endif /* CONFIG_SECURITY_NETWORK */ static __inline__ void scm_recv(struct socket *sock, struct msghdr *msg, struct scm_cookie *scm, int flags) { if (!msg->msg_control) { if (test_bit(SOCK_PASSCRED, &sock->flags) || scm->fp) msg->msg_flags |= MSG_CTRUNC; scm_destroy(scm); return; } if (test_bit(SOCK_PASSCRED, &sock->flags)) { struct user_namespace *current_ns = current_user_ns(); struct ucred ucreds = { .pid = scm->creds.pid, .uid = from_kuid_munged(current_ns, scm->creds.uid), .gid = from_kgid_munged(current_ns, scm->creds.gid), }; put_cmsg(msg, SOL_SOCKET, SCM_CREDENTIALS, sizeof(ucreds), &ucreds); } scm_destroy_cred(scm); scm_passec(sock, msg, scm); if (!scm->fp) return; scm_detach_fds(msg, scm); } #endif /* __LINUX_NET_SCM_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SCHED_COREDUMP_H #define _LINUX_SCHED_COREDUMP_H #include <linux/mm_types.h> #define SUID_DUMP_DISABLE 0 /* No setuid dumping */ #define SUID_DUMP_USER 1 /* Dump as user of process */ #define SUID_DUMP_ROOT 2 /* Dump as root */ /* mm flags */ /* for SUID_DUMP_* above */ #define MMF_DUMPABLE_BITS 2 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) extern void set_dumpable(struct mm_struct *mm, int value); /* * This returns the actual value of the suid_dumpable flag. For things * that are using this for checking for privilege transitions, it must * test against SUID_DUMP_USER rather than treating it as a boolean * value. */ static inline int __get_dumpable(unsigned long mm_flags) { return mm_flags & MMF_DUMPABLE_MASK; } static inline int get_dumpable(struct mm_struct *mm) { return __get_dumpable(mm->flags); } /* coredump filter bits */ #define MMF_DUMP_ANON_PRIVATE 2 #define MMF_DUMP_ANON_SHARED 3 #define MMF_DUMP_MAPPED_PRIVATE 4 #define MMF_DUMP_MAPPED_SHARED 5 #define MMF_DUMP_ELF_HEADERS 6 #define MMF_DUMP_HUGETLB_PRIVATE 7 #define MMF_DUMP_HUGETLB_SHARED 8 #define MMF_DUMP_DAX_PRIVATE 9 #define MMF_DUMP_DAX_SHARED 10 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS #define MMF_DUMP_FILTER_BITS 9 #define MMF_DUMP_FILTER_MASK \ (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) #define MMF_DUMP_FILTER_DEFAULT \ ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) #else # define MMF_DUMP_MASK_DEFAULT_ELF 0 #endif /* leave room for more dump flags */ #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */ /* * This one-shot flag is dropped due to necessity of changing exe once again * on NFS restore */ //#define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */ #define MMF_HAS_UPROBES 19 /* has uprobes */ #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */ #define MMF_OOM_SKIP 21 /* mm is of no interest for the OOM killer */ #define MMF_UNSTABLE 22 /* mm is unstable for copy_from_user */ #define MMF_HUGE_ZERO_PAGE 23 /* mm has ever used the global huge zero page */ #define MMF_DISABLE_THP 24 /* disable THP for all VMAs */ #define MMF_OOM_VICTIM 25 /* mm is the oom victim */ #define MMF_OOM_REAP_QUEUED 26 /* mm was queued for oom_reaper */ #define MMF_MULTIPROCESS 27 /* mm is shared between processes */ #define MMF_DISABLE_THP_MASK (1 << MMF_DISABLE_THP) #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK |\ MMF_DISABLE_THP_MASK) #endif /* _LINUX_SCHED_COREDUMP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 /* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright 2002-2005, Instant802 Networks, Inc. * Copyright 2005, Devicescape Software, Inc. * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> * Copyright 2013-2015 Intel Mobile Communications GmbH * Copyright (C) 2018-2020 Intel Corporation */ #ifndef IEEE80211_I_H #define IEEE80211_I_H #include <linux/kernel.h> #include <linux/device.h> #include <linux/if_ether.h> #include <linux/interrupt.h> #include <linux/list.h> #include <linux/netdevice.h> #include <linux/skbuff.h> #include <linux/workqueue.h> #include <linux/types.h> #include <linux/spinlock.h> #include <linux/etherdevice.h> #include <linux/leds.h> #include <linux/idr.h> #include <linux/rhashtable.h> #include <net/ieee80211_radiotap.h> #include <net/cfg80211.h> #include <net/mac80211.h> #include <net/fq.h> #include "key.h" #include "sta_info.h" #include "debug.h" extern const struct cfg80211_ops mac80211_config_ops; struct ieee80211_local; /* Maximum number of broadcast/multicast frames to buffer when some of the * associated stations are using power saving. */ #define AP_MAX_BC_BUFFER 128 /* Maximum number of frames buffered to all STAs, including multicast frames. * Note: increasing this limit increases the potential memory requirement. Each * frame can be up to about 2 kB long. */ #define TOTAL_MAX_TX_BUFFER 512 /* Required encryption head and tailroom */ #define IEEE80211_ENCRYPT_HEADROOM 8 #define IEEE80211_ENCRYPT_TAILROOM 18 /* power level hasn't been configured (or set to automatic) */ #define IEEE80211_UNSET_POWER_LEVEL INT_MIN /* * Some APs experience problems when working with U-APSD. Decreasing the * probability of that happening by using legacy mode for all ACs but VO isn't * enough. * * Cisco 4410N originally forced us to enable VO by default only because it * treated non-VO ACs as legacy. * * However some APs (notably Netgear R7000) silently reclassify packets to * different ACs. Since u-APSD ACs require trigger frames for frame retrieval * clients would never see some frames (e.g. ARP responses) or would fetch them * accidentally after a long time. * * It makes little sense to enable u-APSD queues by default because it needs * userspace applications to be aware of it to actually take advantage of the * possible additional powersavings. Implicitly depending on driver autotrigger * frame support doesn't make much sense. */ #define IEEE80211_DEFAULT_UAPSD_QUEUES 0 #define IEEE80211_DEFAULT_MAX_SP_LEN \ IEEE80211_WMM_IE_STA_QOSINFO_SP_ALL extern const u8 ieee80211_ac_to_qos_mask[IEEE80211_NUM_ACS]; #define IEEE80211_DEAUTH_FRAME_LEN (24 /* hdr */ + 2 /* reason */) #define IEEE80211_MAX_NAN_INSTANCE_ID 255 struct ieee80211_bss { u32 device_ts_beacon, device_ts_presp; bool wmm_used; bool uapsd_supported; #define IEEE80211_MAX_SUPP_RATES 32 u8 supp_rates[IEEE80211_MAX_SUPP_RATES]; size_t supp_rates_len; struct ieee80211_rate *beacon_rate; u32 vht_cap_info; /* * During association, we save an ERP value from a probe response so * that we can feed ERP info to the driver when handling the * association completes. these fields probably won't be up-to-date * otherwise, you probably don't want to use them. */ bool has_erp_value; u8 erp_value; /* Keep track of the corruption of the last beacon/probe response. */ u8 corrupt_data; /* Keep track of what bits of information we have valid info for. */ u8 valid_data; }; /** * enum ieee80211_corrupt_data_flags - BSS data corruption flags * @IEEE80211_BSS_CORRUPT_BEACON: last beacon frame received was corrupted * @IEEE80211_BSS_CORRUPT_PROBE_RESP: last probe response received was corrupted * * These are bss flags that are attached to a bss in the * @corrupt_data field of &struct ieee80211_bss. */ enum ieee80211_bss_corrupt_data_flags { IEEE80211_BSS_CORRUPT_BEACON = BIT(0), IEEE80211_BSS_CORRUPT_PROBE_RESP = BIT(1) }; /** * enum ieee80211_valid_data_flags - BSS valid data flags * @IEEE80211_BSS_VALID_WMM: WMM/UAPSD data was gathered from non-corrupt IE * @IEEE80211_BSS_VALID_RATES: Supported rates were gathered from non-corrupt IE * @IEEE80211_BSS_VALID_ERP: ERP flag was gathered from non-corrupt IE * * These are bss flags that are attached to a bss in the * @valid_data field of &struct ieee80211_bss. They show which parts * of the data structure were received as a result of an un-corrupted * beacon/probe response. */ enum ieee80211_bss_valid_data_flags { IEEE80211_BSS_VALID_WMM = BIT(1), IEEE80211_BSS_VALID_RATES = BIT(2), IEEE80211_BSS_VALID_ERP = BIT(3) }; typedef unsigned __bitwise ieee80211_tx_result; #define TX_CONTINUE ((__force ieee80211_tx_result) 0u) #define TX_DROP ((__force ieee80211_tx_result) 1u) #define TX_QUEUED ((__force ieee80211_tx_result) 2u) #define IEEE80211_TX_UNICAST BIT(1) #define IEEE80211_TX_PS_BUFFERED BIT(2) struct ieee80211_tx_data { struct sk_buff *skb; struct sk_buff_head skbs; struct ieee80211_local *local; struct ieee80211_sub_if_data *sdata; struct sta_info *sta; struct ieee80211_key *key; struct ieee80211_tx_rate rate; unsigned int flags; }; typedef unsigned __bitwise ieee80211_rx_result; #define RX_CONTINUE ((__force ieee80211_rx_result) 0u) #define RX_DROP_UNUSABLE ((__force ieee80211_rx_result) 1u) #define RX_DROP_MONITOR ((__force ieee80211_rx_result) 2u) #define RX_QUEUED ((__force ieee80211_rx_result) 3u) /** * enum ieee80211_packet_rx_flags - packet RX flags * @IEEE80211_RX_AMSDU: a-MSDU packet * @IEEE80211_RX_MALFORMED_ACTION_FRM: action frame is malformed * @IEEE80211_RX_DEFERRED_RELEASE: frame was subjected to receive reordering * * These are per-frame flags that are attached to a frame in the * @rx_flags field of &struct ieee80211_rx_status. */ enum ieee80211_packet_rx_flags { IEEE80211_RX_AMSDU = BIT(3), IEEE80211_RX_MALFORMED_ACTION_FRM = BIT(4), IEEE80211_RX_DEFERRED_RELEASE = BIT(5), }; /** * enum ieee80211_rx_flags - RX data flags * * @IEEE80211_RX_CMNTR: received on cooked monitor already * @IEEE80211_RX_BEACON_REPORTED: This frame was already reported * to cfg80211_report_obss_beacon(). * * These flags are used across handling multiple interfaces * for a single frame. */ enum ieee80211_rx_flags { IEEE80211_RX_CMNTR = BIT(0), IEEE80211_RX_BEACON_REPORTED = BIT(1), }; struct ieee80211_rx_data { struct list_head *list; struct sk_buff *skb; struct ieee80211_local *local; struct ieee80211_sub_if_data *sdata; struct sta_info *sta; struct ieee80211_key *key; unsigned int flags; /* * Index into sequence numbers array, 0..16 * since the last (16) is used for non-QoS, * will be 16 on non-QoS frames. */ int seqno_idx; /* * Index into the security IV/PN arrays, 0..16 * since the last (16) is used for CCMP-encrypted * management frames, will be set to 16 on mgmt * frames and 0 on non-QoS frames. */ int security_idx; union { struct { u32 iv32; u16 iv16; } tkip; struct { u8 pn[IEEE80211_CCMP_PN_LEN]; } ccm_gcm; }; }; struct ieee80211_csa_settings { const u16 *counter_offsets_beacon; const u16 *counter_offsets_presp; int n_counter_offsets_beacon; int n_counter_offsets_presp; u8 count; }; struct beacon_data { u8 *head, *tail; int head_len, tail_len; struct ieee80211_meshconf_ie *meshconf; u16 cntdwn_counter_offsets[IEEE80211_MAX_CNTDWN_COUNTERS_NUM]; u8 cntdwn_current_counter; struct rcu_head rcu_head; }; struct probe_resp { struct rcu_head rcu_head; int len; u16 cntdwn_counter_offsets[IEEE80211_MAX_CNTDWN_COUNTERS_NUM]; u8 data[]; }; struct fils_discovery_data { struct rcu_head rcu_head; int len; u8 data[]; }; struct unsol_bcast_probe_resp_data { struct rcu_head rcu_head; int len; u8 data[]; }; struct ps_data { /* yes, this looks ugly, but guarantees that we can later use * bitmap_empty :) * NB: don't touch this bitmap, use sta_info_{set,clear}_tim_bit */ u8 tim[sizeof(unsigned long) * BITS_TO_LONGS(IEEE80211_MAX_AID + 1)] __aligned(__alignof__(unsigned long)); struct sk_buff_head bc_buf; atomic_t num_sta_ps; /* number of stations in PS mode */ int dtim_count; bool dtim_bc_mc; }; struct ieee80211_if_ap { struct beacon_data __rcu *beacon; struct probe_resp __rcu *probe_resp; struct fils_discovery_data __rcu *fils_discovery; struct unsol_bcast_probe_resp_data __rcu *unsol_bcast_probe_resp; /* to be used after channel switch. */ struct cfg80211_beacon_data *next_beacon; struct list_head vlans; /* write-protected with RTNL and local->mtx */ struct ps_data ps; atomic_t num_mcast_sta; /* number of stations receiving multicast */ bool multicast_to_unicast; }; struct ieee80211_if_wds { struct sta_info *sta; u8 remote_addr[ETH_ALEN]; }; struct ieee80211_if_vlan { struct list_head list; /* write-protected with RTNL and local->mtx */ /* used for all tx if the VLAN is configured to 4-addr mode */ struct sta_info __rcu *sta; atomic_t num_mcast_sta; /* number of stations receiving multicast */ }; struct mesh_stats { __u32 fwded_mcast; /* Mesh forwarded multicast frames */ __u32 fwded_unicast; /* Mesh forwarded unicast frames */ __u32 fwded_frames; /* Mesh total forwarded frames */ __u32 dropped_frames_ttl; /* Not transmitted since mesh_ttl == 0*/ __u32 dropped_frames_no_route; /* Not transmitted, no route found */ __u32 dropped_frames_congestion;/* Not forwarded due to congestion */ }; #define PREQ_Q_F_START 0x1 #define PREQ_Q_F_REFRESH 0x2 struct mesh_preq_queue { struct list_head list; u8 dst[ETH_ALEN]; u8 flags; }; struct ieee80211_roc_work { struct list_head list; struct ieee80211_sub_if_data *sdata; struct ieee80211_channel *chan; bool started, abort, hw_begun, notified; bool on_channel; unsigned long start_time; u32 duration, req_duration; struct sk_buff *frame; u64 cookie, mgmt_tx_cookie; enum ieee80211_roc_type type; }; /* flags used in struct ieee80211_if_managed.flags */ enum ieee80211_sta_flags { IEEE80211_STA_CONNECTION_POLL = BIT(1), IEEE80211_STA_CONTROL_PORT = BIT(2), IEEE80211_STA_DISABLE_HT = BIT(4), IEEE80211_STA_MFP_ENABLED = BIT(6), IEEE80211_STA_UAPSD_ENABLED = BIT(7), IEEE80211_STA_NULLFUNC_ACKED = BIT(8), IEEE80211_STA_RESET_SIGNAL_AVE = BIT(9), IEEE80211_STA_DISABLE_40MHZ = BIT(10), IEEE80211_STA_DISABLE_VHT = BIT(11), IEEE80211_STA_DISABLE_80P80MHZ = BIT(12), IEEE80211_STA_DISABLE_160MHZ = BIT(13), IEEE80211_STA_DISABLE_WMM = BIT(14), IEEE80211_STA_ENABLE_RRM = BIT(15), IEEE80211_STA_DISABLE_HE = BIT(16), }; struct ieee80211_mgd_auth_data { struct cfg80211_bss *bss; unsigned long timeout; int tries; u16 algorithm, expected_transaction; u8 key[WLAN_KEY_LEN_WEP104]; u8 key_len, key_idx; bool done; bool peer_confirmed; bool timeout_started; u16 sae_trans, sae_status; size_t data_len; u8 data[]; }; struct ieee80211_mgd_assoc_data { struct cfg80211_bss *bss; const u8 *supp_rates; unsigned long timeout; int tries; u16 capability; u8 prev_bssid[ETH_ALEN]; u8 ssid[IEEE80211_MAX_SSID_LEN]; u8 ssid_len; u8 supp_rates_len; bool wmm, uapsd; bool need_beacon; bool synced; bool timeout_started; u8 ap_ht_param; struct ieee80211_vht_cap ap_vht_cap; u8 fils_nonces[2 * FILS_NONCE_LEN]; u8 fils_kek[FILS_MAX_KEK_LEN]; size_t fils_kek_len; size_t ie_len; u8 ie[]; }; struct ieee80211_sta_tx_tspec { /* timestamp of the first packet in the time slice */ unsigned long time_slice_start; u32 admitted_time; /* in usecs, unlike over the air */ u8 tsid; s8 up; /* signed to be able to invalidate with -1 during teardown */ /* consumed TX time in microseconds in the time slice */ u32 consumed_tx_time; enum { TX_TSPEC_ACTION_NONE = 0, TX_TSPEC_ACTION_DOWNGRADE, TX_TSPEC_ACTION_STOP_DOWNGRADE, } action; bool downgraded; }; DECLARE_EWMA(beacon_signal, 4, 4) struct ieee80211_if_managed { struct timer_list timer; struct timer_list conn_mon_timer; struct timer_list bcn_mon_timer; struct timer_list chswitch_timer; struct work_struct monitor_work; struct work_struct chswitch_work; struct work_struct beacon_connection_loss_work; struct work_struct csa_connection_drop_work; unsigned long beacon_timeout; unsigned long probe_timeout; int probe_send_count; bool nullfunc_failed; bool connection_loss; struct cfg80211_bss *associated; struct ieee80211_mgd_auth_data *auth_data; struct ieee80211_mgd_assoc_data *assoc_data; u8 bssid[ETH_ALEN] __aligned(2); bool powersave; /* powersave requested for this iface */ bool broken_ap; /* AP is broken -- turn off powersave */ bool have_beacon; u8 dtim_period; enum ieee80211_smps_mode req_smps, /* requested smps mode */ driver_smps_mode; /* smps mode request */ struct work_struct request_smps_work; unsigned int flags; bool csa_waiting_bcn; bool csa_ignored_same_chan; bool beacon_crc_valid; u32 beacon_crc; bool status_acked; bool status_received; __le16 status_fc; enum { IEEE80211_MFP_DISABLED, IEEE80211_MFP_OPTIONAL, IEEE80211_MFP_REQUIRED } mfp; /* management frame protection */ /* * Bitmask of enabled u-apsd queues, * IEEE80211_WMM_IE_STA_QOSINFO_AC_BE & co. Needs a new association * to take effect. */ unsigned int uapsd_queues; /* * Maximum number of buffered frames AP can deliver during a * service period, IEEE80211_WMM_IE_STA_QOSINFO_SP_ALL or similar. * Needs a new association to take effect. */ unsigned int uapsd_max_sp_len; int wmm_last_param_set; int mu_edca_last_param_set; u8 use_4addr; s16 p2p_noa_index; struct ewma_beacon_signal ave_beacon_signal; /* * Number of Beacon frames used in ave_beacon_signal. This can be used * to avoid generating less reliable cqm events that would be based * only on couple of received frames. */ unsigned int count_beacon_signal; /* Number of times beacon loss was invoked. */ unsigned int beacon_loss_count; /* * Last Beacon frame signal strength average (ave_beacon_signal / 16) * that triggered a cqm event. 0 indicates that no event has been * generated for the current association. */ int last_cqm_event_signal; /* * State variables for keeping track of RSSI of the AP currently * connected to and informing driver when RSSI has gone * below/above a certain threshold. */ int rssi_min_thold, rssi_max_thold; int last_ave_beacon_signal; struct ieee80211_ht_cap ht_capa; /* configured ht-cap over-rides */ struct ieee80211_ht_cap ht_capa_mask; /* Valid parts of ht_capa */ struct ieee80211_vht_cap vht_capa; /* configured VHT overrides */ struct ieee80211_vht_cap vht_capa_mask; /* Valid parts of vht_capa */ struct ieee80211_s1g_cap s1g_capa; /* configured S1G overrides */ struct ieee80211_s1g_cap s1g_capa_mask; /* valid s1g_capa bits */ /* TDLS support */ u8 tdls_peer[ETH_ALEN] __aligned(2); struct delayed_work tdls_peer_del_work; struct sk_buff *orig_teardown_skb; /* The original teardown skb */ struct sk_buff *teardown_skb; /* A copy to send through the AP */ spinlock_t teardown_lock; /* To lock changing teardown_skb */ bool tdls_chan_switch_prohibited; bool tdls_wider_bw_prohibited; /* WMM-AC TSPEC support */ struct ieee80211_sta_tx_tspec tx_tspec[IEEE80211_NUM_ACS]; /* Use a separate work struct so that we can do something here * while the sdata->work is flushing the queues, for example. * otherwise, in scenarios where we hardly get any traffic out * on the BE queue, but there's a lot of VO traffic, we might * get stuck in a downgraded situation and flush takes forever. */ struct delayed_work tx_tspec_wk; /* Information elements from the last transmitted (Re)Association * Request frame. */ u8 *assoc_req_ies; size_t assoc_req_ies_len; }; struct ieee80211_if_ibss { struct timer_list timer; struct work_struct csa_connection_drop_work; unsigned long last_scan_completed; u32 basic_rates; bool fixed_bssid; bool fixed_channel; bool privacy; bool control_port; bool userspace_handles_dfs; u8 bssid[ETH_ALEN] __aligned(2); u8 ssid[IEEE80211_MAX_SSID_LEN]; u8 ssid_len, ie_len; u8 *ie; struct cfg80211_chan_def chandef; unsigned long ibss_join_req; /* probe response/beacon for IBSS */ struct beacon_data __rcu *presp; struct ieee80211_ht_cap ht_capa; /* configured ht-cap over-rides */ struct ieee80211_ht_cap ht_capa_mask; /* Valid parts of ht_capa */ spinlock_t incomplete_lock; struct list_head incomplete_stations; enum { IEEE80211_IBSS_MLME_SEARCH, IEEE80211_IBSS_MLME_JOINED, } state; }; /** * struct ieee80211_if_ocb - OCB mode state * * @housekeeping_timer: timer for periodic invocation of a housekeeping task * @wrkq_flags: OCB deferred task action * @incomplete_lock: delayed STA insertion lock * @incomplete_stations: list of STAs waiting for delayed insertion * @joined: indication if the interface is connected to an OCB network */ struct ieee80211_if_ocb { struct timer_list housekeeping_timer; unsigned long wrkq_flags; spinlock_t incomplete_lock; struct list_head incomplete_stations; bool joined; }; /** * struct ieee80211_mesh_sync_ops - Extensible synchronization framework interface * * these declarations define the interface, which enables * vendor-specific mesh synchronization * */ struct ieee802_11_elems; struct ieee80211_mesh_sync_ops { void (*rx_bcn_presp)(struct ieee80211_sub_if_data *sdata, u16 stype, struct ieee80211_mgmt *mgmt, struct ieee802_11_elems *elems, struct ieee80211_rx_status *rx_status); /* should be called with beacon_data under RCU read lock */ void (*adjust_tsf)(struct ieee80211_sub_if_data *sdata, struct beacon_data *beacon); /* add other framework functions here */ }; struct mesh_csa_settings { struct rcu_head rcu_head; struct cfg80211_csa_settings settings; }; struct ieee80211_if_mesh { struct timer_list housekeeping_timer; struct timer_list mesh_path_timer; struct timer_list mesh_path_root_timer; unsigned long wrkq_flags; unsigned long mbss_changed; bool userspace_handles_dfs; u8 mesh_id[IEEE80211_MAX_MESH_ID_LEN]; size_t mesh_id_len; /* Active Path Selection Protocol Identifier */ u8 mesh_pp_id; /* Active Path Selection Metric Identifier */ u8 mesh_pm_id; /* Congestion Control Mode Identifier */ u8 mesh_cc_id; /* Synchronization Protocol Identifier */ u8 mesh_sp_id; /* Authentication Protocol Identifier */ u8 mesh_auth_id; /* Local mesh Sequence Number */ u32 sn; /* Last used PREQ ID */ u32 preq_id; atomic_t mpaths; /* Timestamp of last SN update */ unsigned long last_sn_update; /* Time when it's ok to send next PERR */ unsigned long next_perr; /* Timestamp of last PREQ sent */ unsigned long last_preq; struct mesh_rmc *rmc; spinlock_t mesh_preq_queue_lock; struct mesh_preq_queue preq_queue; int preq_queue_len; struct mesh_stats mshstats; struct mesh_config mshcfg; atomic_t estab_plinks; u32 mesh_seqnum; bool accepting_plinks; int num_gates; struct beacon_data __rcu *beacon; const u8 *ie; u8 ie_len; enum { IEEE80211_MESH_SEC_NONE = 0x0, IEEE80211_MESH_SEC_AUTHED = 0x1, IEEE80211_MESH_SEC_SECURED = 0x2, } security; bool user_mpm; /* Extensible Synchronization Framework */ const struct ieee80211_mesh_sync_ops *sync_ops; s64 sync_offset_clockdrift_max; spinlock_t sync_offset_lock; /* mesh power save */ enum nl80211_mesh_power_mode nonpeer_pm; int ps_peers_light_sleep; int ps_peers_deep_sleep; struct ps_data ps; /* Channel Switching Support */ struct mesh_csa_settings __rcu *csa; enum { IEEE80211_MESH_CSA_ROLE_NONE, IEEE80211_MESH_CSA_ROLE_INIT, IEEE80211_MESH_CSA_ROLE_REPEATER, } csa_role; u8 chsw_ttl; u16 pre_value; /* offset from skb->data while building IE */ int meshconf_offset; struct mesh_table *mesh_paths; struct mesh_table *mpp_paths; /* Store paths for MPP&MAP */ int mesh_paths_generation; int mpp_paths_generation; }; #ifdef CONFIG_MAC80211_MESH #define IEEE80211_IFSTA_MESH_CTR_INC(msh, name) \ do { (msh)->mshstats.name++; } while (0) #else #define IEEE80211_IFSTA_MESH_CTR_INC(msh, name) \ do { } while (0) #endif /** * enum ieee80211_sub_if_data_flags - virtual interface flags * * @IEEE80211_SDATA_ALLMULTI: interface wants all multicast packets * @IEEE80211_SDATA_OPERATING_GMODE: operating in G-only mode * @IEEE80211_SDATA_DONT_BRIDGE_PACKETS: bridge packets between * associated stations and deliver multicast frames both * back to wireless media and to the local net stack. * @IEEE80211_SDATA_DISCONNECT_RESUME: Disconnect after resume. * @IEEE80211_SDATA_IN_DRIVER: indicates interface was added to driver */ enum ieee80211_sub_if_data_flags { IEEE80211_SDATA_ALLMULTI = BIT(0), IEEE80211_SDATA_OPERATING_GMODE = BIT(2), IEEE80211_SDATA_DONT_BRIDGE_PACKETS = BIT(3), IEEE80211_SDATA_DISCONNECT_RESUME = BIT(4), IEEE80211_SDATA_IN_DRIVER = BIT(5), }; /** * enum ieee80211_sdata_state_bits - virtual interface state bits * @SDATA_STATE_RUNNING: virtual interface is up & running; this * mirrors netif_running() but is separate for interface type * change handling while the interface is up * @SDATA_STATE_OFFCHANNEL: This interface is currently in offchannel * mode, so queues are stopped * @SDATA_STATE_OFFCHANNEL_BEACON_STOPPED: Beaconing was stopped due * to offchannel, reset when offchannel returns */ enum ieee80211_sdata_state_bits { SDATA_STATE_RUNNING, SDATA_STATE_OFFCHANNEL, SDATA_STATE_OFFCHANNEL_BEACON_STOPPED, }; /** * enum ieee80211_chanctx_mode - channel context configuration mode * * @IEEE80211_CHANCTX_SHARED: channel context may be used by * multiple interfaces * @IEEE80211_CHANCTX_EXCLUSIVE: channel context can be used * only by a single interface. This can be used for example for * non-fixed channel IBSS. */ enum ieee80211_chanctx_mode { IEEE80211_CHANCTX_SHARED, IEEE80211_CHANCTX_EXCLUSIVE }; /** * enum ieee80211_chanctx_replace_state - channel context replacement state * * This is used for channel context in-place reservations that require channel * context switch/swap. * * @IEEE80211_CHANCTX_REPLACE_NONE: no replacement is taking place * @IEEE80211_CHANCTX_WILL_BE_REPLACED: this channel context will be replaced * by a (not yet registered) channel context pointed by %replace_ctx. * @IEEE80211_CHANCTX_REPLACES_OTHER: this (not yet registered) channel context * replaces an existing channel context pointed to by %replace_ctx. */ enum ieee80211_chanctx_replace_state { IEEE80211_CHANCTX_REPLACE_NONE, IEEE80211_CHANCTX_WILL_BE_REPLACED, IEEE80211_CHANCTX_REPLACES_OTHER, }; struct ieee80211_chanctx { struct list_head list; struct rcu_head rcu_head; struct list_head assigned_vifs; struct list_head reserved_vifs; enum ieee80211_chanctx_replace_state replace_state; struct ieee80211_chanctx *replace_ctx; enum ieee80211_chanctx_mode mode; bool driver_present; struct ieee80211_chanctx_conf conf; }; struct mac80211_qos_map { struct cfg80211_qos_map qos_map; struct rcu_head rcu_head; }; enum txq_info_flags { IEEE80211_TXQ_STOP, IEEE80211_TXQ_AMPDU, IEEE80211_TXQ_NO_AMSDU, IEEE80211_TXQ_STOP_NETIF_TX, }; /** * struct txq_info - per tid queue * * @tin: contains packets split into multiple flows * @def_flow: used as a fallback flow when a packet destined to @tin hashes to * a fq_flow which is already owned by a different tin * @def_cvars: codel vars for @def_flow * @frags: used to keep fragments created after dequeue * @schedule_order: used with ieee80211_local->active_txqs * @schedule_round: counter to prevent infinite loops on TXQ scheduling */ struct txq_info { struct fq_tin tin; struct fq_flow def_flow; struct codel_vars def_cvars; struct codel_stats cstats; struct sk_buff_head frags; struct list_head schedule_order; u16 schedule_round; unsigned long flags; /* keep last! */ struct ieee80211_txq txq; }; struct ieee80211_if_mntr { u32 flags; u8 mu_follow_addr[ETH_ALEN] __aligned(2); struct list_head list; }; /** * struct ieee80211_if_nan - NAN state * * @conf: current NAN configuration * @func_ids: a bitmap of available instance_id's */ struct ieee80211_if_nan { struct cfg80211_nan_conf conf; /* protects function_inst_ids */ spinlock_t func_lock; struct idr function_inst_ids; }; struct ieee80211_sub_if_data { struct list_head list; struct wireless_dev wdev; /* keys */ struct list_head key_list; /* count for keys needing tailroom space allocation */ int crypto_tx_tailroom_needed_cnt; int crypto_tx_tailroom_pending_dec; struct delayed_work dec_tailroom_needed_wk; struct net_device *dev; struct ieee80211_local *local; unsigned int flags; unsigned long state; char name[IFNAMSIZ]; struct ieee80211_fragment_cache frags; /* TID bitmap for NoAck policy */ u16 noack_map; /* bit field of ACM bits (BIT(802.1D tag)) */ u8 wmm_acm; struct ieee80211_key __rcu *keys[NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS + NUM_DEFAULT_BEACON_KEYS]; struct ieee80211_key __rcu *default_unicast_key; struct ieee80211_key __rcu *default_multicast_key; struct ieee80211_key __rcu *default_mgmt_key; struct ieee80211_key __rcu *default_beacon_key; u16 sequence_number; __be16 control_port_protocol; bool control_port_no_encrypt; bool control_port_no_preauth; bool control_port_over_nl80211; int encrypt_headroom; atomic_t num_tx_queued; struct ieee80211_tx_queue_params tx_conf[IEEE80211_NUM_ACS]; struct mac80211_qos_map __rcu *qos_map; struct work_struct csa_finalize_work; bool csa_block_tx; /* write-protected by sdata_lock and local->mtx */ struct cfg80211_chan_def csa_chandef; struct list_head assigned_chanctx_list; /* protected by chanctx_mtx */ struct list_head reserved_chanctx_list; /* protected by chanctx_mtx */ /* context reservation -- protected with chanctx_mtx */ struct ieee80211_chanctx *reserved_chanctx; struct cfg80211_chan_def reserved_chandef; bool reserved_radar_required; bool reserved_ready; /* used to reconfigure hardware SM PS */ struct work_struct recalc_smps; struct work_struct work; struct sk_buff_head skb_queue; u8 needed_rx_chains; enum ieee80211_smps_mode smps_mode; int user_power_level; /* in dBm */ int ap_power_level; /* in dBm */ bool radar_required; struct delayed_work dfs_cac_timer_work; /* * AP this belongs to: self in AP mode and * corresponding AP in VLAN mode, NULL for * all others (might be needed later in IBSS) */ struct ieee80211_if_ap *bss; /* bitmap of allowed (non-MCS) rate indexes for rate control */ u32 rc_rateidx_mask[NUM_NL80211_BANDS]; bool rc_has_mcs_mask[NUM_NL80211_BANDS]; u8 rc_rateidx_mcs_mask[NUM_NL80211_BANDS][IEEE80211_HT_MCS_MASK_LEN]; bool rc_has_vht_mcs_mask[NUM_NL80211_BANDS]; u16 rc_rateidx_vht_mcs_mask[NUM_NL80211_BANDS][NL80211_VHT_NSS_MAX]; /* Beacon frame (non-MCS) rate (as a bitmap) */ u32 beacon_rateidx_mask[NUM_NL80211_BANDS]; bool beacon_rate_set; union { struct ieee80211_if_ap ap; struct ieee80211_if_wds wds; struct ieee80211_if_vlan vlan; struct ieee80211_if_managed mgd; struct ieee80211_if_ibss ibss; struct ieee80211_if_mesh mesh; struct ieee80211_if_ocb ocb; struct ieee80211_if_mntr mntr; struct ieee80211_if_nan nan; } u; #ifdef CONFIG_MAC80211_DEBUGFS struct { struct dentry *subdir_stations; struct dentry *default_unicast_key; struct dentry *default_multicast_key; struct dentry *default_mgmt_key; struct dentry *default_beacon_key; } debugfs; #endif /* must be last, dynamically sized area in this! */ struct ieee80211_vif vif; }; static inline struct ieee80211_sub_if_data *vif_to_sdata(struct ieee80211_vif *p) { return container_of(p, struct ieee80211_sub_if_data, vif); } static inline void sdata_lock(struct ieee80211_sub_if_data *sdata) __acquires(&sdata->wdev.mtx) { mutex_lock(&sdata->wdev.mtx); __acquire(&sdata->wdev.mtx); } static inline void sdata_unlock(struct ieee80211_sub_if_data *sdata) __releases(&sdata->wdev.mtx) { mutex_unlock(&sdata->wdev.mtx); __release(&sdata->wdev.mtx); } #define sdata_dereference(p, sdata) \ rcu_dereference_protected(p, lockdep_is_held(&sdata->wdev.mtx)) static inline void sdata_assert_lock(struct ieee80211_sub_if_data *sdata) { lockdep_assert_held(&sdata->wdev.mtx); } static inline int ieee80211_chandef_get_shift(struct cfg80211_chan_def *chandef) { switch (chandef->width) { case NL80211_CHAN_WIDTH_5: return 2; case NL80211_CHAN_WIDTH_10: return 1; default: return 0; } } static inline int ieee80211_vif_get_shift(struct ieee80211_vif *vif) { struct ieee80211_chanctx_conf *chanctx_conf; int shift = 0; rcu_read_lock(); chanctx_conf = rcu_dereference(vif->chanctx_conf); if (chanctx_conf) shift = ieee80211_chandef_get_shift(&chanctx_conf->def); rcu_read_unlock(); return shift; } enum { IEEE80211_RX_MSG = 1, IEEE80211_TX_STATUS_MSG = 2, }; enum queue_stop_reason { IEEE80211_QUEUE_STOP_REASON_DRIVER, IEEE80211_QUEUE_STOP_REASON_PS, IEEE80211_QUEUE_STOP_REASON_CSA, IEEE80211_QUEUE_STOP_REASON_AGGREGATION, IEEE80211_QUEUE_STOP_REASON_SUSPEND, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, IEEE80211_QUEUE_STOP_REASON_OFFCHANNEL, IEEE80211_QUEUE_STOP_REASON_FLUSH, IEEE80211_QUEUE_STOP_REASON_TDLS_TEARDOWN, IEEE80211_QUEUE_STOP_REASON_RESERVE_TID, IEEE80211_QUEUE_STOP_REASON_IFTYPE_CHANGE, IEEE80211_QUEUE_STOP_REASONS, }; #ifdef CONFIG_MAC80211_LEDS struct tpt_led_trigger { char name[32]; const struct ieee80211_tpt_blink *blink_table; unsigned int blink_table_len; struct timer_list timer; struct ieee80211_local *local; unsigned long prev_traffic; unsigned long tx_bytes, rx_bytes; unsigned int active, want; bool running; }; #endif /** * mac80211 scan flags - currently active scan mode * * @SCAN_SW_SCANNING: We're currently in the process of scanning but may as * well be on the operating channel * @SCAN_HW_SCANNING: The hardware is scanning for us, we have no way to * determine if we are on the operating channel or not * @SCAN_ONCHANNEL_SCANNING: Do a software scan on only the current operating * channel. This should not interrupt normal traffic. * @SCAN_COMPLETED: Set for our scan work function when the driver reported * that the scan completed. * @SCAN_ABORTED: Set for our scan work function when the driver reported * a scan complete for an aborted scan. * @SCAN_HW_CANCELLED: Set for our scan work function when the scan is being * cancelled. */ enum { SCAN_SW_SCANNING, SCAN_HW_SCANNING, SCAN_ONCHANNEL_SCANNING, SCAN_COMPLETED, SCAN_ABORTED, SCAN_HW_CANCELLED, }; /** * enum mac80211_scan_state - scan state machine states * * @SCAN_DECISION: Main entry point to the scan state machine, this state * determines if we should keep on scanning or switch back to the * operating channel * @SCAN_SET_CHANNEL: Set the next channel to be scanned * @SCAN_SEND_PROBE: Send probe requests and wait for probe responses * @SCAN_SUSPEND: Suspend the scan and go back to operating channel to * send out data * @SCAN_RESUME: Resume the scan and scan the next channel * @SCAN_ABORT: Abort the scan and go back to operating channel */ enum mac80211_scan_state { SCAN_DECISION, SCAN_SET_CHANNEL, SCAN_SEND_PROBE, SCAN_SUSPEND, SCAN_RESUME, SCAN_ABORT, }; struct ieee80211_local { /* embed the driver visible part. * don't cast (use the static inlines below), but we keep * it first anyway so they become a no-op */ struct ieee80211_hw hw; struct fq fq; struct codel_vars *cvars; struct codel_params cparams; /* protects active_txqs and txqi->schedule_order */ spinlock_t active_txq_lock[IEEE80211_NUM_ACS]; struct list_head active_txqs[IEEE80211_NUM_ACS]; u16 schedule_round[IEEE80211_NUM_ACS]; u16 airtime_flags; u32 aql_txq_limit_low[IEEE80211_NUM_ACS]; u32 aql_txq_limit_high[IEEE80211_NUM_ACS]; u32 aql_threshold; atomic_t aql_total_pending_airtime; const struct ieee80211_ops *ops; /* * private workqueue to mac80211. mac80211 makes this accessible * via ieee80211_queue_work() */ struct workqueue_struct *workqueue; unsigned long queue_stop_reasons[IEEE80211_MAX_QUEUES]; int q_stop_reasons[IEEE80211_MAX_QUEUES][IEEE80211_QUEUE_STOP_REASONS]; /* also used to protect ampdu_ac_queue and amdpu_ac_stop_refcnt */ spinlock_t queue_stop_reason_lock; int open_count; int monitors, cooked_mntrs; /* number of interfaces with corresponding FIF_ flags */ int fif_fcsfail, fif_plcpfail, fif_control, fif_other_bss, fif_pspoll, fif_probe_req; bool probe_req_reg; bool rx_mcast_action_reg; unsigned int filter_flags; /* FIF_* */ bool wiphy_ciphers_allocated; bool use_chanctx; /* protects the aggregated multicast list and filter calls */ spinlock_t filter_lock; /* used for uploading changed mc list */ struct work_struct reconfig_filter; /* aggregated multicast list */ struct netdev_hw_addr_list mc_list; bool tim_in_locked_section; /* see ieee80211_beacon_get() */ /* * suspended is true if we finished all the suspend _and_ we have * not yet come up from resume. This is to be used by mac80211 * to ensure driver sanity during suspend and mac80211's own * sanity. It can eventually be used for WoW as well. */ bool suspended; /* * Resuming is true while suspended, but when we're reprogramming the * hardware -- at that time it's allowed to use ieee80211_queue_work() * again even though some other parts of the stack are still suspended * and we still drop received frames to avoid waking the stack. */ bool resuming; /* * quiescing is true during the suspend process _only_ to * ease timer cancelling etc. */ bool quiescing; /* device is started */ bool started; /* device is during a HW reconfig */ bool in_reconfig; /* wowlan is enabled -- don't reconfig on resume */ bool wowlan; struct work_struct radar_detected_work; /* number of RX chains the hardware has */ u8 rx_chains; /* bitmap of which sbands were copied */ u8 sband_allocated; int tx_headroom; /* required headroom for hardware/radiotap */ /* Tasklet and skb queue to process calls from IRQ mode. All frames * added to skb_queue will be processed, but frames in * skb_queue_unreliable may be dropped if the total length of these * queues increases over the limit. */ #define IEEE80211_IRQSAFE_QUEUE_LIMIT 128 struct tasklet_struct tasklet; struct sk_buff_head skb_queue; struct sk_buff_head skb_queue_unreliable; spinlock_t rx_path_lock; /* Station data */ /* * The mutex only protects the list, hash table and * counter, reads are done with RCU. */ struct mutex sta_mtx; spinlock_t tim_lock; unsigned long num_sta; struct list_head sta_list; struct rhltable sta_hash; struct timer_list sta_cleanup; int sta_generation; struct sk_buff_head pending[IEEE80211_MAX_QUEUES]; struct tasklet_struct tx_pending_tasklet; struct tasklet_struct wake_txqs_tasklet; atomic_t agg_queue_stop[IEEE80211_MAX_QUEUES]; /* number of interfaces with allmulti RX */ atomic_t iff_allmultis; struct rate_control_ref *rate_ctrl; struct arc4_ctx wep_tx_ctx; struct arc4_ctx wep_rx_ctx; u32 wep_iv; /* see iface.c */ struct list_head interfaces; struct list_head mon_list; /* only that are IFF_UP && !cooked */ struct mutex iflist_mtx; /* * Key mutex, protects sdata's key_list and sta_info's * key pointers and ptk_idx (write access, they're RCU.) */ struct mutex key_mtx; /* mutex for scan and work locking */ struct mutex mtx; /* Scanning and BSS list */ unsigned long scanning; struct cfg80211_ssid scan_ssid; struct cfg80211_scan_request *int_scan_req; struct cfg80211_scan_request __rcu *scan_req; struct ieee80211_scan_request *hw_scan_req; struct cfg80211_chan_def scan_chandef; enum nl80211_band hw_scan_band; int scan_channel_idx; int scan_ies_len; int hw_scan_ies_bufsize; struct cfg80211_scan_info scan_info; struct work_struct sched_scan_stopped_work; struct ieee80211_sub_if_data __rcu *sched_scan_sdata; struct cfg80211_sched_scan_request __rcu *sched_scan_req; u8 scan_addr[ETH_ALEN]; unsigned long leave_oper_channel_time; enum mac80211_scan_state next_scan_state; struct delayed_work scan_work; struct ieee80211_sub_if_data __rcu *scan_sdata; /* For backward compatibility only -- do not use */ struct cfg80211_chan_def _oper_chandef; /* Temporary remain-on-channel for off-channel operations */ struct ieee80211_channel *tmp_channel; /* channel contexts */ struct list_head chanctx_list; struct mutex chanctx_mtx; #ifdef CONFIG_MAC80211_LEDS struct led_trigger tx_led, rx_led, assoc_led, radio_led; struct led_trigger tpt_led; atomic_t tx_led_active, rx_led_active, assoc_led_active; atomic_t radio_led_active, tpt_led_active; struct tpt_led_trigger *tpt_led_trigger; #endif #ifdef CONFIG_MAC80211_DEBUG_COUNTERS /* SNMP counters */ /* dot11CountersTable */ u32 dot11TransmittedFragmentCount; u32 dot11MulticastTransmittedFrameCount; u32 dot11FailedCount; u32 dot11RetryCount; u32 dot11MultipleRetryCount; u32 dot11FrameDuplicateCount; u32 dot11ReceivedFragmentCount; u32 dot11MulticastReceivedFrameCount; u32 dot11TransmittedFrameCount; /* TX/RX handler statistics */ unsigned int tx_handlers_drop; unsigned int tx_handlers_queued; unsigned int tx_handlers_drop_wep; unsigned int tx_handlers_drop_not_assoc; unsigned int tx_handlers_drop_unauth_port; unsigned int rx_handlers_drop; unsigned int rx_handlers_queued; unsigned int rx_handlers_drop_nullfunc; unsigned int rx_handlers_drop_defrag; unsigned int tx_expand_skb_head; unsigned int tx_expand_skb_head_cloned; unsigned int rx_expand_skb_head_defrag; unsigned int rx_handlers_fragments; unsigned int tx_status_drop; #define I802_DEBUG_INC(c) (c)++ #else /* CONFIG_MAC80211_DEBUG_COUNTERS */ #define I802_DEBUG_INC(c) do { } while (0) #endif /* CONFIG_MAC80211_DEBUG_COUNTERS */ int total_ps_buffered; /* total number of all buffered unicast and * multicast packets for power saving stations */ bool pspolling; /* * PS can only be enabled when we have exactly one managed * interface (and monitors) in PS, this then points there. */ struct ieee80211_sub_if_data *ps_sdata; struct work_struct dynamic_ps_enable_work; struct work_struct dynamic_ps_disable_work; struct timer_list dynamic_ps_timer; struct notifier_block ifa_notifier; struct notifier_block ifa6_notifier; /* * The dynamic ps timeout configured from user space via WEXT - * this will override whatever chosen by mac80211 internally. */ int dynamic_ps_forced_timeout; int user_power_level; /* in dBm, for all interfaces */ enum ieee80211_smps_mode smps_mode; struct work_struct restart_work; #ifdef CONFIG_MAC80211_DEBUGFS struct local_debugfsdentries { struct dentry *rcdir; struct dentry *keys; } debugfs; bool force_tx_status; #endif /* * Remain-on-channel support */ struct delayed_work roc_work; struct list_head roc_list; struct work_struct hw_roc_start, hw_roc_done; unsigned long hw_roc_start_time; u64 roc_cookie_counter; struct idr ack_status_frames; spinlock_t ack_status_lock; struct ieee80211_sub_if_data __rcu *p2p_sdata; /* virtual monitor interface */ struct ieee80211_sub_if_data __rcu *monitor_sdata; struct cfg80211_chan_def monitor_chandef; /* extended capabilities provided by mac80211 */ u8 ext_capa[8]; /* TDLS channel switch */ struct work_struct tdls_chsw_work; struct sk_buff_head skb_queue_tdls_chsw; }; static inline struct ieee80211_sub_if_data * IEEE80211_DEV_TO_SUB_IF(struct net_device *dev) { return netdev_priv(dev); } static inline struct ieee80211_sub_if_data * IEEE80211_WDEV_TO_SUB_IF(struct wireless_dev *wdev) { return container_of(wdev, struct ieee80211_sub_if_data, wdev); } static inline struct ieee80211_supported_band * ieee80211_get_sband(struct ieee80211_sub_if_data *sdata) { struct ieee80211_local *local = sdata->local; struct ieee80211_chanctx_conf *chanctx_conf; enum nl80211_band band; rcu_read_lock(); chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); if (!chanctx_conf) { rcu_read_unlock(); return NULL; } band = chanctx_conf->def.chan->band; rcu_read_unlock(); return local->hw.wiphy->bands[band]; } /* this struct holds the value parsing from channel switch IE */ struct ieee80211_csa_ie { struct cfg80211_chan_def chandef; u8 mode; u8 count; u8 ttl; u16 pre_value; u16 reason_code; u32 max_switch_time; }; /* Parsed Information Elements */ struct ieee802_11_elems { const u8 *ie_start; size_t total_len; /* pointers to IEs */ const struct ieee80211_tdls_lnkie *lnk_id; const struct ieee80211_ch_switch_timing *ch_sw_timing; const u8 *ext_capab; const u8 *ssid; const u8 *supp_rates; const u8 *ds_params; const struct ieee80211_tim_ie *tim; const u8 *challenge; const u8 *rsn; const u8 *rsnx; const u8 *erp_info; const u8 *ext_supp_rates; const u8 *wmm_info; const u8 *wmm_param; const struct ieee80211_ht_cap *ht_cap_elem; const struct ieee80211_ht_operation *ht_operation; const struct ieee80211_vht_cap *vht_cap_elem; const struct ieee80211_vht_operation *vht_operation; const struct ieee80211_meshconf_ie *mesh_config; const u8 *he_cap; const struct ieee80211_he_operation *he_operation; const struct ieee80211_he_spr *he_spr; const struct ieee80211_mu_edca_param_set *mu_edca_param_set; const struct ieee80211_he_6ghz_capa *he_6ghz_capa; const u8 *uora_element; const u8 *mesh_id; const u8 *peering; const __le16 *awake_window; const u8 *preq; const u8 *prep; const u8 *perr; const struct ieee80211_rann_ie *rann; const struct ieee80211_channel_sw_ie *ch_switch_ie; const struct ieee80211_ext_chansw_ie *ext_chansw_ie; const struct ieee80211_wide_bw_chansw_ie *wide_bw_chansw_ie; const u8 *max_channel_switch_time; const u8 *country_elem; const u8 *pwr_constr_elem; const u8 *cisco_dtpc_elem; const struct ieee80211_timeout_interval_ie *timeout_int; const u8 *opmode_notif; const struct ieee80211_sec_chan_offs_ie *sec_chan_offs; struct ieee80211_mesh_chansw_params_ie *mesh_chansw_params_ie; const struct ieee80211_bss_max_idle_period_ie *max_idle_period_ie; const struct ieee80211_multiple_bssid_configuration *mbssid_config_ie; const struct ieee80211_bssid_index *bssid_index; u8 max_bssid_indicator; u8 dtim_count; u8 dtim_period; const struct ieee80211_addba_ext_ie *addba_ext_ie; const struct ieee80211_s1g_cap *s1g_capab; const struct ieee80211_s1g_oper_ie *s1g_oper; const struct ieee80211_s1g_bcn_compat_ie *s1g_bcn_compat; const struct ieee80211_aid_response_ie *aid_resp; /* length of them, respectively */ u8 ext_capab_len; u8 ssid_len; u8 supp_rates_len; u8 tim_len; u8 challenge_len; u8 rsn_len; u8 rsnx_len; u8 ext_supp_rates_len; u8 wmm_info_len; u8 wmm_param_len; u8 he_cap_len; u8 mesh_id_len; u8 peering_len; u8 preq_len; u8 prep_len; u8 perr_len; u8 country_elem_len; u8 bssid_index_len; /* whether a parse error occurred while retrieving these elements */ bool parse_error; }; static inline struct ieee80211_local *hw_to_local( struct ieee80211_hw *hw) { return container_of(hw, struct ieee80211_local, hw); } static inline struct txq_info *to_txq_info(struct ieee80211_txq *txq) { return container_of(txq, struct txq_info, txq); } static inline bool txq_has_queue(struct ieee80211_txq *txq) { struct txq_info *txqi = to_txq_info(txq); return !(skb_queue_empty(&txqi->frags) && !txqi->tin.backlog_packets); } static inline int ieee80211_bssid_match(const u8 *raddr, const u8 *addr) { return ether_addr_equal(raddr, addr) || is_broadcast_ether_addr(raddr); } static inline bool ieee80211_have_rx_timestamp(struct ieee80211_rx_status *status) { WARN_ON_ONCE(status->flag & RX_FLAG_MACTIME_START && status->flag & RX_FLAG_MACTIME_END); if (status->flag & (RX_FLAG_MACTIME_START | RX_FLAG_MACTIME_END)) return true; /* can't handle non-legacy preamble yet */ if (status->flag & RX_FLAG_MACTIME_PLCP_START && status->encoding == RX_ENC_LEGACY) return true; return false; } void ieee80211_vif_inc_num_mcast(struct ieee80211_sub_if_data *sdata); void ieee80211_vif_dec_num_mcast(struct ieee80211_sub_if_data *sdata); /* This function returns the number of multicast stations connected to this * interface. It returns -1 if that number is not tracked, that is for netdevs * not in AP or AP_VLAN mode or when using 4addr. */ static inline int ieee80211_vif_get_num_mcast_if(struct ieee80211_sub_if_data *sdata) { if (sdata->vif.type == NL80211_IFTYPE_AP) return atomic_read(&sdata->u.ap.num_mcast_sta); if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) return atomic_read(&sdata->u.vlan.num_mcast_sta); return -1; } u64 ieee80211_calculate_rx_timestamp(struct ieee80211_local *local, struct ieee80211_rx_status *status, unsigned int mpdu_len, unsigned int mpdu_offset); int ieee80211_hw_config(struct ieee80211_local *local, u32 changed); void ieee80211_tx_set_protected(struct ieee80211_tx_data *tx); void ieee80211_bss_info_change_notify(struct ieee80211_sub_if_data *sdata, u32 changed); void ieee80211_configure_filter(struct ieee80211_local *local); u32 ieee80211_reset_erp_info(struct ieee80211_sub_if_data *sdata); u64 ieee80211_mgmt_tx_cookie(struct ieee80211_local *local); int ieee80211_attach_ack_skb(struct ieee80211_local *local, struct sk_buff *skb, u64 *cookie, gfp_t gfp); void ieee80211_check_fast_rx(struct sta_info *sta); void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata); void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata); void ieee80211_clear_fast_rx(struct sta_info *sta); /* STA code */ void ieee80211_sta_setup_sdata(struct ieee80211_sub_if_data *sdata); int ieee80211_mgd_auth(struct ieee80211_sub_if_data *sdata, struct cfg80211_auth_request *req); int ieee80211_mgd_assoc(struct ieee80211_sub_if_data *sdata, struct cfg80211_assoc_request *req); int ieee80211_mgd_deauth(struct ieee80211_sub_if_data *sdata, struct cfg80211_deauth_request *req); int ieee80211_mgd_disassoc(struct ieee80211_sub_if_data *sdata, struct cfg80211_disassoc_request *req); void ieee80211_send_pspoll(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata); void ieee80211_recalc_ps(struct ieee80211_local *local); void ieee80211_recalc_ps_vif(struct ieee80211_sub_if_data *sdata); int ieee80211_set_arp_filter(struct ieee80211_sub_if_data *sdata); void ieee80211_sta_work(struct ieee80211_sub_if_data *sdata); void ieee80211_sta_rx_queued_mgmt(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb); void ieee80211_sta_rx_queued_ext(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb); void ieee80211_sta_reset_beacon_monitor(struct ieee80211_sub_if_data *sdata); void ieee80211_sta_reset_conn_monitor(struct ieee80211_sub_if_data *sdata); void ieee80211_mgd_stop(struct ieee80211_sub_if_data *sdata); void ieee80211_mgd_conn_tx_status(struct ieee80211_sub_if_data *sdata, __le16 fc, bool acked); void ieee80211_mgd_quiesce(struct ieee80211_sub_if_data *sdata); void ieee80211_sta_restart(struct ieee80211_sub_if_data *sdata); void ieee80211_sta_handle_tspec_ac_params(struct ieee80211_sub_if_data *sdata); /* IBSS code */ void ieee80211_ibss_notify_scan_completed(struct ieee80211_local *local); void ieee80211_ibss_setup_sdata(struct ieee80211_sub_if_data *sdata); void ieee80211_ibss_rx_no_sta(struct ieee80211_sub_if_data *sdata, const u8 *bssid, const u8 *addr, u32 supp_rates); int ieee80211_ibss_join(struct ieee80211_sub_if_data *sdata, struct cfg80211_ibss_params *params); int ieee80211_ibss_leave(struct ieee80211_sub_if_data *sdata); void ieee80211_ibss_work(struct ieee80211_sub_if_data *sdata); void ieee80211_ibss_rx_queued_mgmt(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb); int ieee80211_ibss_csa_beacon(struct ieee80211_sub_if_data *sdata, struct cfg80211_csa_settings *csa_settings); int ieee80211_ibss_finish_csa(struct ieee80211_sub_if_data *sdata); void ieee80211_ibss_stop(struct ieee80211_sub_if_data *sdata); /* OCB code */ void ieee80211_ocb_work(struct ieee80211_sub_if_data *sdata); void ieee80211_ocb_rx_no_sta(struct ieee80211_sub_if_data *sdata, const u8 *bssid, const u8 *addr, u32 supp_rates); void ieee80211_ocb_setup_sdata(struct ieee80211_sub_if_data *sdata); int ieee80211_ocb_join(struct ieee80211_sub_if_data *sdata, struct ocb_setup *setup); int ieee80211_ocb_leave(struct ieee80211_sub_if_data *sdata); /* mesh code */ void ieee80211_mesh_work(struct ieee80211_sub_if_data *sdata); void ieee80211_mesh_rx_queued_mgmt(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb); int ieee80211_mesh_csa_beacon(struct ieee80211_sub_if_data *sdata, struct cfg80211_csa_settings *csa_settings); int ieee80211_mesh_finish_csa(struct ieee80211_sub_if_data *sdata); /* scan/BSS handling */ void ieee80211_scan_work(struct work_struct *work); int ieee80211_request_ibss_scan(struct ieee80211_sub_if_data *sdata, const u8 *ssid, u8 ssid_len, struct ieee80211_channel **channels, unsigned int n_channels, enum nl80211_bss_scan_width scan_width); int ieee80211_request_scan(struct ieee80211_sub_if_data *sdata, struct cfg80211_scan_request *req); void ieee80211_scan_cancel(struct ieee80211_local *local); void ieee80211_run_deferred_scan(struct ieee80211_local *local); void ieee80211_scan_rx(struct ieee80211_local *local, struct sk_buff *skb); void ieee80211_mlme_notify_scan_completed(struct ieee80211_local *local); struct ieee80211_bss * ieee80211_bss_info_update(struct ieee80211_local *local, struct ieee80211_rx_status *rx_status, struct ieee80211_mgmt *mgmt, size_t len, struct ieee80211_channel *channel); void ieee80211_rx_bss_put(struct ieee80211_local *local, struct ieee80211_bss *bss); /* scheduled scan handling */ int __ieee80211_request_sched_scan_start(struct ieee80211_sub_if_data *sdata, struct cfg80211_sched_scan_request *req); int ieee80211_request_sched_scan_start(struct ieee80211_sub_if_data *sdata, struct cfg80211_sched_scan_request *req); int ieee80211_request_sched_scan_stop(struct ieee80211_local *local); void ieee80211_sched_scan_end(struct ieee80211_local *local); void ieee80211_sched_scan_stopped_work(struct work_struct *work); /* off-channel/mgmt-tx */ void ieee80211_offchannel_stop_vifs(struct ieee80211_local *local); void ieee80211_offchannel_return(struct ieee80211_local *local); void ieee80211_roc_setup(struct ieee80211_local *local); void ieee80211_start_next_roc(struct ieee80211_local *local); void ieee80211_roc_purge(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata); int ieee80211_remain_on_channel(struct wiphy *wiphy, struct wireless_dev *wdev, struct ieee80211_channel *chan, unsigned int duration, u64 *cookie); int ieee80211_cancel_remain_on_channel(struct wiphy *wiphy, struct wireless_dev *wdev, u64 cookie); int ieee80211_mgmt_tx(struct wiphy *wiphy, struct wireless_dev *wdev, struct cfg80211_mgmt_tx_params *params, u64 *cookie); int ieee80211_mgmt_tx_cancel_wait(struct wiphy *wiphy, struct wireless_dev *wdev, u64 cookie); /* channel switch handling */ void ieee80211_csa_finalize_work(struct work_struct *work); int ieee80211_channel_switch(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_csa_settings *params); /* interface handling */ #define MAC80211_SUPPORTED_FEATURES_TX (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | \ NETIF_F_HW_CSUM | NETIF_F_SG | \ NETIF_F_HIGHDMA | NETIF_F_GSO_SOFTWARE) #define MAC80211_SUPPORTED_FEATURES_RX (NETIF_F_RXCSUM) #define MAC80211_SUPPORTED_FEATURES (MAC80211_SUPPORTED_FEATURES_TX | \ MAC80211_SUPPORTED_FEATURES_RX) int ieee80211_iface_init(void); void ieee80211_iface_exit(void); int ieee80211_if_add(struct ieee80211_local *local, const char *name, unsigned char name_assign_type, struct wireless_dev **new_wdev, enum nl80211_iftype type, struct vif_params *params); int ieee80211_if_change_type(struct ieee80211_sub_if_data *sdata, enum nl80211_iftype type); void ieee80211_if_remove(struct ieee80211_sub_if_data *sdata); void ieee80211_remove_interfaces(struct ieee80211_local *local); u32 ieee80211_idle_off(struct ieee80211_local *local); void ieee80211_recalc_idle(struct ieee80211_local *local); void ieee80211_adjust_monitor_flags(struct ieee80211_sub_if_data *sdata, const int offset); int ieee80211_do_open(struct wireless_dev *wdev, bool coming_up); void ieee80211_sdata_stop(struct ieee80211_sub_if_data *sdata); int ieee80211_add_virtual_monitor(struct ieee80211_local *local); void ieee80211_del_virtual_monitor(struct ieee80211_local *local); bool __ieee80211_recalc_txpower(struct ieee80211_sub_if_data *sdata); void ieee80211_recalc_txpower(struct ieee80211_sub_if_data *sdata, bool update_bss); void ieee80211_recalc_offload(struct ieee80211_local *local); static inline bool ieee80211_sdata_running(struct ieee80211_sub_if_data *sdata) { return test_bit(SDATA_STATE_RUNNING, &sdata->state); } /* tx handling */ void ieee80211_clear_tx_pending(struct ieee80211_local *local); void ieee80211_tx_pending(unsigned long data); netdev_tx_t ieee80211_monitor_start_xmit(struct sk_buff *skb, struct net_device *dev); netdev_tx_t ieee80211_subif_start_xmit(struct sk_buff *skb, struct net_device *dev); netdev_tx_t ieee80211_subif_start_xmit_8023(struct sk_buff *skb, struct net_device *dev); void __ieee80211_subif_start_xmit(struct sk_buff *skb, struct net_device *dev, u32 info_flags, u32 ctrl_flags, u64 *cookie); void ieee80211_purge_tx_queue(struct ieee80211_hw *hw, struct sk_buff_head *skbs); struct sk_buff * ieee80211_build_data_template(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, u32 info_flags); void ieee80211_tx_monitor(struct ieee80211_local *local, struct sk_buff *skb, struct ieee80211_supported_band *sband, int retry_count, int shift, bool send_to_cooked, struct ieee80211_tx_status *status); void ieee80211_check_fast_xmit(struct sta_info *sta); void ieee80211_check_fast_xmit_all(struct ieee80211_local *local); void ieee80211_check_fast_xmit_iface(struct ieee80211_sub_if_data *sdata); void ieee80211_clear_fast_xmit(struct sta_info *sta); int ieee80211_tx_control_port(struct wiphy *wiphy, struct net_device *dev, const u8 *buf, size_t len, const u8 *dest, __be16 proto, bool unencrypted, u64 *cookie); int ieee80211_probe_mesh_link(struct wiphy *wiphy, struct net_device *dev, const u8 *buf, size_t len); /* HT */ void ieee80211_apply_htcap_overrides(struct ieee80211_sub_if_data *sdata, struct ieee80211_sta_ht_cap *ht_cap); bool ieee80211_ht_cap_ie_to_sta_ht_cap(struct ieee80211_sub_if_data *sdata, struct ieee80211_supported_band *sband, const struct ieee80211_ht_cap *ht_cap_ie, struct sta_info *sta); void ieee80211_send_delba(struct ieee80211_sub_if_data *sdata, const u8 *da, u16 tid, u16 initiator, u16 reason_code); int ieee80211_send_smps_action(struct ieee80211_sub_if_data *sdata, enum ieee80211_smps_mode smps, const u8 *da, const u8 *bssid); void ieee80211_request_smps_ap_work(struct work_struct *work); void ieee80211_request_smps_mgd_work(struct work_struct *work); bool ieee80211_smps_is_restrictive(enum ieee80211_smps_mode smps_mode_old, enum ieee80211_smps_mode smps_mode_new); void ___ieee80211_stop_rx_ba_session(struct sta_info *sta, u16 tid, u16 initiator, u16 reason, bool stop); void __ieee80211_stop_rx_ba_session(struct sta_info *sta, u16 tid, u16 initiator, u16 reason, bool stop); void ___ieee80211_start_rx_ba_session(struct sta_info *sta, u8 dialog_token, u16 timeout, u16 start_seq_num, u16 ba_policy, u16 tid, u16 buf_size, bool tx, bool auto_seq, const struct ieee80211_addba_ext_ie *addbaext); void ieee80211_sta_tear_down_BA_sessions(struct sta_info *sta, enum ieee80211_agg_stop_reason reason); void ieee80211_process_delba(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, struct ieee80211_mgmt *mgmt, size_t len); void ieee80211_process_addba_resp(struct ieee80211_local *local, struct sta_info *sta, struct ieee80211_mgmt *mgmt, size_t len); void ieee80211_process_addba_request(struct ieee80211_local *local, struct sta_info *sta, struct ieee80211_mgmt *mgmt, size_t len); int __ieee80211_stop_tx_ba_session(struct sta_info *sta, u16 tid, enum ieee80211_agg_stop_reason reason); int ___ieee80211_stop_tx_ba_session(struct sta_info *sta, u16 tid, enum ieee80211_agg_stop_reason reason); void ieee80211_start_tx_ba_cb(struct sta_info *sta, int tid, struct tid_ampdu_tx *tid_tx); void ieee80211_stop_tx_ba_cb(struct sta_info *sta, int tid, struct tid_ampdu_tx *tid_tx); void ieee80211_ba_session_work(struct work_struct *work); void ieee80211_tx_ba_session_handle_start(struct sta_info *sta, int tid); void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid); u8 ieee80211_mcs_to_chains(const struct ieee80211_mcs_info *mcs); enum nl80211_smps_mode ieee80211_smps_mode_to_smps_mode(enum ieee80211_smps_mode smps); /* VHT */ void ieee80211_vht_cap_ie_to_sta_vht_cap(struct ieee80211_sub_if_data *sdata, struct ieee80211_supported_band *sband, const struct ieee80211_vht_cap *vht_cap_ie, struct sta_info *sta); enum ieee80211_sta_rx_bandwidth ieee80211_sta_cap_rx_bw(struct sta_info *sta); enum ieee80211_sta_rx_bandwidth ieee80211_sta_cur_vht_bw(struct sta_info *sta); void ieee80211_sta_set_rx_nss(struct sta_info *sta); enum ieee80211_sta_rx_bandwidth ieee80211_chan_width_to_rx_bw(enum nl80211_chan_width width); enum nl80211_chan_width ieee80211_sta_cap_chan_bw(struct sta_info *sta); void ieee80211_sta_set_rx_nss(struct sta_info *sta); void ieee80211_process_mu_groups(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgmt *mgmt); u32 __ieee80211_vht_handle_opmode(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, u8 opmode, enum nl80211_band band); void ieee80211_vht_handle_opmode(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, u8 opmode, enum nl80211_band band); void ieee80211_apply_vhtcap_overrides(struct ieee80211_sub_if_data *sdata, struct ieee80211_sta_vht_cap *vht_cap); void ieee80211_get_vht_mask_from_cap(__le16 vht_cap, u16 vht_mask[NL80211_VHT_NSS_MAX]); enum nl80211_chan_width ieee80211_sta_rx_bw_to_chan_width(struct sta_info *sta); /* HE */ void ieee80211_he_cap_ie_to_sta_he_cap(struct ieee80211_sub_if_data *sdata, struct ieee80211_supported_band *sband, const u8 *he_cap_ie, u8 he_cap_len, const struct ieee80211_he_6ghz_capa *he_6ghz_capa, struct sta_info *sta); void ieee80211_he_spr_ie_to_bss_conf(struct ieee80211_vif *vif, const struct ieee80211_he_spr *he_spr_ie_elem); void ieee80211_he_op_ie_to_bss_conf(struct ieee80211_vif *vif, const struct ieee80211_he_operation *he_op_ie_elem); /* S1G */ void ieee80211_s1g_sta_rate_init(struct sta_info *sta); /* Spectrum management */ void ieee80211_process_measurement_req(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgmt *mgmt, size_t len); /** * ieee80211_parse_ch_switch_ie - parses channel switch IEs * @sdata: the sdata of the interface which has received the frame * @elems: parsed 802.11 elements received with the frame * @current_band: indicates the current band * @vht_cap_info: VHT capabilities of the transmitter * @sta_flags: contains information about own capabilities and restrictions * to decide which channel switch announcements can be accepted. Only the * following subset of &enum ieee80211_sta_flags are evaluated: * %IEEE80211_STA_DISABLE_HT, %IEEE80211_STA_DISABLE_VHT, * %IEEE80211_STA_DISABLE_40MHZ, %IEEE80211_STA_DISABLE_80P80MHZ, * %IEEE80211_STA_DISABLE_160MHZ. * @bssid: the currently connected bssid (for reporting) * @csa_ie: parsed 802.11 csa elements on count, mode, chandef and mesh ttl. All of them will be filled with if success only. * Return: 0 on success, <0 on error and >0 if there is nothing to parse. */ int ieee80211_parse_ch_switch_ie(struct ieee80211_sub_if_data *sdata, struct ieee802_11_elems *elems, enum nl80211_band current_band, u32 vht_cap_info, u32 sta_flags, u8 *bssid, struct ieee80211_csa_ie *csa_ie); /* Suspend/resume and hw reconfiguration */ int ieee80211_reconfig(struct ieee80211_local *local); void ieee80211_stop_device(struct ieee80211_local *local); int __ieee80211_suspend(struct ieee80211_hw *hw, struct cfg80211_wowlan *wowlan); static inline int __ieee80211_resume(struct ieee80211_hw *hw) { struct ieee80211_local *local = hw_to_local(hw); WARN(test_bit(SCAN_HW_SCANNING, &local->scanning) && !test_bit(SCAN_COMPLETED, &local->scanning), "%s: resume with hardware scan still in progress\n", wiphy_name(hw->wiphy)); return ieee80211_reconfig(hw_to_local(hw)); } /* utility functions/constants */ extern const void *const mac80211_wiphy_privid; /* for wiphy privid */ int ieee80211_frame_duration(enum nl80211_band band, size_t len, int rate, int erp, int short_preamble, int shift); void ieee80211_regulatory_limit_wmm_params(struct ieee80211_sub_if_data *sdata, struct ieee80211_tx_queue_params *qparam, int ac); void ieee80211_set_wmm_default(struct ieee80211_sub_if_data *sdata, bool bss_notify, bool enable_qos); void ieee80211_xmit(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, struct sk_buff *skb); void __ieee80211_tx_skb_tid_band(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, int tid, enum nl80211_band band); /* sta_out needs to be checked for ERR_PTR() before using */ int ieee80211_lookup_ra_sta(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, struct sta_info **sta_out); static inline void ieee80211_tx_skb_tid_band(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, int tid, enum nl80211_band band) { rcu_read_lock(); __ieee80211_tx_skb_tid_band(sdata, skb, tid, band); rcu_read_unlock(); } static inline void ieee80211_tx_skb_tid(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, int tid) { struct ieee80211_chanctx_conf *chanctx_conf; rcu_read_lock(); chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); if (WARN_ON(!chanctx_conf)) { rcu_read_unlock(); kfree_skb(skb); return; } __ieee80211_tx_skb_tid_band(sdata, skb, tid, chanctx_conf->def.chan->band); rcu_read_unlock(); } static inline void ieee80211_tx_skb(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb) { /* Send all internal mgmt frames on VO. Accordingly set TID to 7. */ ieee80211_tx_skb_tid(sdata, skb, 7); } u32 ieee802_11_parse_elems_crc(const u8 *start, size_t len, bool action, struct ieee802_11_elems *elems, u64 filter, u32 crc, u8 *transmitter_bssid, u8 *bss_bssid); static inline void ieee802_11_parse_elems(const u8 *start, size_t len, bool action, struct ieee802_11_elems *elems, u8 *transmitter_bssid, u8 *bss_bssid) { ieee802_11_parse_elems_crc(start, len, action, elems, 0, 0, transmitter_bssid, bss_bssid); } extern const int ieee802_1d_to_ac[8]; static inline int ieee80211_ac_from_tid(int tid) { return ieee802_1d_to_ac[tid & 7]; } void ieee80211_dynamic_ps_enable_work(struct work_struct *work); void ieee80211_dynamic_ps_disable_work(struct work_struct *work); void ieee80211_dynamic_ps_timer(struct timer_list *t); void ieee80211_send_nullfunc(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, bool powersave); void ieee80211_send_4addr_nullfunc(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata); void ieee80211_sta_tx_notify(struct ieee80211_sub_if_data *sdata, struct ieee80211_hdr *hdr, bool ack, u16 tx_time); void ieee80211_wake_queues_by_reason(struct ieee80211_hw *hw, unsigned long queues, enum queue_stop_reason reason, bool refcounted); void ieee80211_stop_vif_queues(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, enum queue_stop_reason reason); void ieee80211_wake_vif_queues(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, enum queue_stop_reason reason); void ieee80211_stop_queues_by_reason(struct ieee80211_hw *hw, unsigned long queues, enum queue_stop_reason reason, bool refcounted); void ieee80211_wake_queue_by_reason(struct ieee80211_hw *hw, int queue, enum queue_stop_reason reason, bool refcounted); void ieee80211_stop_queue_by_reason(struct ieee80211_hw *hw, int queue, enum queue_stop_reason reason, bool refcounted); void ieee80211_propagate_queue_wake(struct ieee80211_local *local, int queue); void ieee80211_add_pending_skb(struct ieee80211_local *local, struct sk_buff *skb); void ieee80211_add_pending_skbs(struct ieee80211_local *local, struct sk_buff_head *skbs); void ieee80211_flush_queues(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, bool drop); void __ieee80211_flush_queues(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, unsigned int queues, bool drop); static inline bool ieee80211_can_run_worker(struct ieee80211_local *local) { /* * It's unsafe to try to do any work during reconfigure flow. * When the flow ends the work will be requeued. */ if (local->in_reconfig) return false; /* * If quiescing is set, we are racing with __ieee80211_suspend. * __ieee80211_suspend flushes the workers after setting quiescing, * and we check quiescing / suspended before enqueing new workers. * We should abort the worker to avoid the races below. */ if (local->quiescing) return false; /* * We might already be suspended if the following scenario occurs: * __ieee80211_suspend Control path * * if (local->quiescing) * return; * local->quiescing = true; * flush_workqueue(); * queue_work(...); * local->suspended = true; * local->quiescing = false; * worker starts running... */ if (local->suspended) return false; return true; } int ieee80211_txq_setup_flows(struct ieee80211_local *local); void ieee80211_txq_set_params(struct ieee80211_local *local); void ieee80211_txq_teardown_flows(struct ieee80211_local *local); void ieee80211_txq_init(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, struct txq_info *txq, int tid); void ieee80211_txq_purge(struct ieee80211_local *local, struct txq_info *txqi); void ieee80211_txq_remove_vlan(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata); void ieee80211_fill_txq_stats(struct cfg80211_txq_stats *txqstats, struct txq_info *txqi); void ieee80211_wake_txqs(unsigned long data); void ieee80211_send_auth(struct ieee80211_sub_if_data *sdata, u16 transaction, u16 auth_alg, u16 status, const u8 *extra, size_t extra_len, const u8 *bssid, const u8 *da, const u8 *key, u8 key_len, u8 key_idx, u32 tx_flags); void ieee80211_send_deauth_disassoc(struct ieee80211_sub_if_data *sdata, const u8 *da, const u8 *bssid, u16 stype, u16 reason, bool send_frame, u8 *frame_buf); enum { IEEE80211_PROBE_FLAG_DIRECTED = BIT(0), IEEE80211_PROBE_FLAG_MIN_CONTENT = BIT(1), IEEE80211_PROBE_FLAG_RANDOM_SN = BIT(2), }; int ieee80211_build_preq_ies(struct ieee80211_sub_if_data *sdata, u8 *buffer, size_t buffer_len, struct ieee80211_scan_ies *ie_desc, const u8 *ie, size_t ie_len, u8 bands_used, u32 *rate_masks, struct cfg80211_chan_def *chandef, u32 flags); struct sk_buff *ieee80211_build_probe_req(struct ieee80211_sub_if_data *sdata, const u8 *src, const u8 *dst, u32 ratemask, struct ieee80211_channel *chan, const u8 *ssid, size_t ssid_len, const u8 *ie, size_t ie_len, u32 flags); u32 ieee80211_sta_get_rates(struct ieee80211_sub_if_data *sdata, struct ieee802_11_elems *elems, enum nl80211_band band, u32 *basic_rates); int __ieee80211_request_smps_mgd(struct ieee80211_sub_if_data *sdata, enum ieee80211_smps_mode smps_mode); void ieee80211_recalc_smps(struct ieee80211_sub_if_data *sdata); void ieee80211_recalc_min_chandef(struct ieee80211_sub_if_data *sdata); size_t ieee80211_ie_split_vendor(const u8 *ies, size_t ielen, size_t offset); u8 *ieee80211_ie_build_ht_cap(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, u16 cap); u8 *ieee80211_ie_build_ht_oper(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, const struct cfg80211_chan_def *chandef, u16 prot_mode, bool rifs_mode); void ieee80211_ie_build_wide_bw_cs(u8 *pos, const struct cfg80211_chan_def *chandef); u8 *ieee80211_ie_build_vht_cap(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, u32 cap); u8 *ieee80211_ie_build_vht_oper(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, const struct cfg80211_chan_def *chandef); u8 ieee80211_ie_len_he_cap(struct ieee80211_sub_if_data *sdata, u8 iftype); u8 *ieee80211_ie_build_he_cap(u8 *pos, const struct ieee80211_sta_he_cap *he_cap, u8 *end); void ieee80211_ie_build_he_6ghz_cap(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb); u8 *ieee80211_ie_build_he_oper(u8 *pos, struct cfg80211_chan_def *chandef); int ieee80211_parse_bitrates(struct cfg80211_chan_def *chandef, const struct ieee80211_supported_band *sband, const u8 *srates, int srates_len, u32 *rates); int ieee80211_add_srates_ie(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, bool need_basic, enum nl80211_band band); int ieee80211_add_ext_srates_ie(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, bool need_basic, enum nl80211_band band); u8 *ieee80211_add_wmm_info_ie(u8 *buf, u8 qosinfo); void ieee80211_add_s1g_capab_ie(struct ieee80211_sub_if_data *sdata, struct ieee80211_sta_s1g_cap *caps, struct sk_buff *skb); void ieee80211_add_aid_request_ie(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb); /* channel management */ bool ieee80211_chandef_ht_oper(const struct ieee80211_ht_operation *ht_oper, struct cfg80211_chan_def *chandef); bool ieee80211_chandef_vht_oper(struct ieee80211_hw *hw, u32 vht_cap_info, const struct ieee80211_vht_operation *oper, const struct ieee80211_ht_operation *htop, struct cfg80211_chan_def *chandef); bool ieee80211_chandef_he_6ghz_oper(struct ieee80211_sub_if_data *sdata, const struct ieee80211_he_operation *he_oper, struct cfg80211_chan_def *chandef); bool ieee80211_chandef_s1g_oper(const struct ieee80211_s1g_oper_ie *oper, struct cfg80211_chan_def *chandef); u32 ieee80211_chandef_downgrade(struct cfg80211_chan_def *c); int __must_check ieee80211_vif_use_channel(struct ieee80211_sub_if_data *sdata, const struct cfg80211_chan_def *chandef, enum ieee80211_chanctx_mode mode); int __must_check ieee80211_vif_reserve_chanctx(struct ieee80211_sub_if_data *sdata, const struct cfg80211_chan_def *chandef, enum ieee80211_chanctx_mode mode, bool radar_required); int __must_check ieee80211_vif_use_reserved_context(struct ieee80211_sub_if_data *sdata); int ieee80211_vif_unreserve_chanctx(struct ieee80211_sub_if_data *sdata); int __must_check ieee80211_vif_change_bandwidth(struct ieee80211_sub_if_data *sdata, const struct cfg80211_chan_def *chandef, u32 *changed); void ieee80211_vif_release_channel(struct ieee80211_sub_if_data *sdata); void ieee80211_vif_vlan_copy_chanctx(struct ieee80211_sub_if_data *sdata); void ieee80211_vif_copy_chanctx_to_vlans(struct ieee80211_sub_if_data *sdata, bool clear); int ieee80211_chanctx_refcount(struct ieee80211_local *local, struct ieee80211_chanctx *ctx); void ieee80211_recalc_smps_chanctx(struct ieee80211_local *local, struct ieee80211_chanctx *chanctx); void ieee80211_recalc_chanctx_min_def(struct ieee80211_local *local, struct ieee80211_chanctx *ctx); bool ieee80211_is_radar_required(struct ieee80211_local *local); void ieee80211_dfs_cac_timer(unsigned long data); void ieee80211_dfs_cac_timer_work(struct work_struct *work); void ieee80211_dfs_cac_cancel(struct ieee80211_local *local); void ieee80211_dfs_radar_detected_work(struct work_struct *work); int ieee80211_send_action_csa(struct ieee80211_sub_if_data *sdata, struct cfg80211_csa_settings *csa_settings); bool ieee80211_cs_valid(const struct ieee80211_cipher_scheme *cs); bool ieee80211_cs_list_valid(const struct ieee80211_cipher_scheme *cs, int n); const struct ieee80211_cipher_scheme * ieee80211_cs_get(struct ieee80211_local *local, u32 cipher, enum nl80211_iftype iftype); int ieee80211_cs_headroom(struct ieee80211_local *local, struct cfg80211_crypto_settings *crypto, enum nl80211_iftype iftype); void ieee80211_recalc_dtim(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata); int ieee80211_check_combinations(struct ieee80211_sub_if_data *sdata, const struct cfg80211_chan_def *chandef, enum ieee80211_chanctx_mode chanmode, u8 radar_detect); int ieee80211_max_num_channels(struct ieee80211_local *local); enum nl80211_chan_width ieee80211_get_sta_bw(struct ieee80211_sta *sta); void ieee80211_recalc_chanctx_chantype(struct ieee80211_local *local, struct ieee80211_chanctx *ctx); /* TDLS */ int ieee80211_tdls_mgmt(struct wiphy *wiphy, struct net_device *dev, const u8 *peer, u8 action_code, u8 dialog_token, u16 status_code, u32 peer_capability, bool initiator, const u8 *extra_ies, size_t extra_ies_len); int ieee80211_tdls_oper(struct wiphy *wiphy, struct net_device *dev, const u8 *peer, enum nl80211_tdls_operation oper); void ieee80211_tdls_peer_del_work(struct work_struct *wk); int ieee80211_tdls_channel_switch(struct wiphy *wiphy, struct net_device *dev, const u8 *addr, u8 oper_class, struct cfg80211_chan_def *chandef); void ieee80211_tdls_cancel_channel_switch(struct wiphy *wiphy, struct net_device *dev, const u8 *addr); void ieee80211_teardown_tdls_peers(struct ieee80211_sub_if_data *sdata); void ieee80211_tdls_chsw_work(struct work_struct *wk); void ieee80211_tdls_handle_disconnect(struct ieee80211_sub_if_data *sdata, const u8 *peer, u16 reason); const char *ieee80211_get_reason_code_string(u16 reason_code); u16 ieee80211_encode_usf(int val); u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len, enum nl80211_iftype type); extern const struct ethtool_ops ieee80211_ethtool_ops; u32 ieee80211_calc_expected_tx_airtime(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *pubsta, int len, bool ampdu); #ifdef CONFIG_MAC80211_NOINLINE #define debug_noinline noinline #else #define debug_noinline #endif void ieee80211_init_frag_cache(struct ieee80211_fragment_cache *cache); void ieee80211_destroy_frag_cache(struct ieee80211_fragment_cache *cache); #endif /* IEEE80211_I_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * ALSA sequencer Memory Manager * Copyright (c) 1998 by Frank van de Pol <fvdpol@coil.demon.nl> */ #ifndef __SND_SEQ_MEMORYMGR_H #define __SND_SEQ_MEMORYMGR_H #include <sound/seq_kernel.h> #include <linux/poll.h> struct snd_info_buffer; /* container for sequencer event (internal use) */ struct snd_seq_event_cell { struct snd_seq_event event; struct snd_seq_pool *pool; /* used pool */ struct snd_seq_event_cell *next; /* next cell */ }; /* design note: the pool is a contiguous block of memory, if we dynamicly want to add additional cells to the pool be better store this in another pool as we need to know the base address of the pool when releasing memory. */ struct snd_seq_pool { struct snd_seq_event_cell *ptr; /* pointer to first event chunk */ struct snd_seq_event_cell *free; /* pointer to the head of the free list */ int total_elements; /* pool size actually allocated */ atomic_t counter; /* cells free */ int size; /* pool size to be allocated */ int room; /* watermark for sleep/wakeup */ int closing; /* statistics */ int max_used; int event_alloc_nopool; int event_alloc_failures; int event_alloc_success; /* Write locking */ wait_queue_head_t output_sleep; /* Pool lock */ spinlock_t lock; }; void snd_seq_cell_free(struct snd_seq_event_cell *cell); int snd_seq_event_dup(struct snd_seq_pool *pool, struct snd_seq_event *event, struct snd_seq_event_cell **cellp, int nonblock, struct file *file, struct mutex *mutexp); /* return number of unused (free) cells */ static inline int snd_seq_unused_cells(struct snd_seq_pool *pool) { return pool ? pool->total_elements - atomic_read(&pool->counter) : 0; } /* return total number of allocated cells */ static inline int snd_seq_total_cells(struct snd_seq_pool *pool) { return pool ? pool->total_elements : 0; } /* init pool - allocate events */ int snd_seq_pool_init(struct snd_seq_pool *pool); /* done pool - free events */ void snd_seq_pool_mark_closing(struct snd_seq_pool *pool); int snd_seq_pool_done(struct snd_seq_pool *pool); /* create pool */ struct snd_seq_pool *snd_seq_pool_new(int poolsize); /* remove pool */ int snd_seq_pool_delete(struct snd_seq_pool **pool); /* polling */ int snd_seq_pool_poll_wait(struct snd_seq_pool *pool, struct file *file, poll_table *wait); void snd_seq_info_pool(struct snd_info_buffer *buffer, struct snd_seq_pool *pool, char *space); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_PART_STAT_H #define _LINUX_PART_STAT_H #include <linux/genhd.h> struct disk_stats { u64 nsecs[NR_STAT_GROUPS]; unsigned long sectors[NR_STAT_GROUPS]; unsigned long ios[NR_STAT_GROUPS]; unsigned long merges[NR_STAT_GROUPS]; unsigned long io_ticks; local_t in_flight[2]; }; /* * Macros to operate on percpu disk statistics: * * {disk|part|all}_stat_{add|sub|inc|dec}() modify the stat counters and should * be called between disk_stat_lock() and disk_stat_unlock(). * * part_stat_read() can be called at any time. */ #define part_stat_lock() preempt_disable() #define part_stat_unlock() preempt_enable() #define part_stat_get_cpu(part, field, cpu) \ (per_cpu_ptr((part)->dkstats, (cpu))->field) #define part_stat_get(part, field) \ part_stat_get_cpu(part, field, smp_processor_id()) #define part_stat_read(part, field) \ ({ \ typeof((part)->dkstats->field) res = 0; \ unsigned int _cpu; \ for_each_possible_cpu(_cpu) \ res += per_cpu_ptr((part)->dkstats, _cpu)->field; \ res; \ }) static inline void part_stat_set_all(struct hd_struct *part, int value) { int i; for_each_possible_cpu(i) memset(per_cpu_ptr(part->dkstats, i), value, sizeof(struct disk_stats)); } #define part_stat_read_accum(part, field) \ (part_stat_read(part, field[STAT_READ]) + \ part_stat_read(part, field[STAT_WRITE]) + \ part_stat_read(part, field[STAT_DISCARD])) #define __part_stat_add(part, field, addnd) \ __this_cpu_add((part)->dkstats->field, addnd) #define part_stat_add(part, field, addnd) do { \ __part_stat_add((part), field, addnd); \ if ((part)->partno) \ __part_stat_add(&part_to_disk((part))->part0, \ field, addnd); \ } while (0) #define part_stat_dec(gendiskp, field) \ part_stat_add(gendiskp, field, -1) #define part_stat_inc(gendiskp, field) \ part_stat_add(gendiskp, field, 1) #define part_stat_sub(gendiskp, field, subnd) \ part_stat_add(gendiskp, field, -subnd) #define part_stat_local_dec(gendiskp, field) \ local_dec(&(part_stat_get(gendiskp, field))) #define part_stat_local_inc(gendiskp, field) \ local_inc(&(part_stat_get(gendiskp, field))) #define part_stat_local_read(gendiskp, field) \ local_read(&(part_stat_get(gendiskp, field))) #define part_stat_local_read_cpu(gendiskp, field, cpu) \ local_read(&(part_stat_get_cpu(gendiskp, field, cpu))) #endif /* _LINUX_PART_STAT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _FIB_LOOKUP_H #define _FIB_LOOKUP_H #include <linux/types.h> #include <linux/list.h> #include <net/ip_fib.h> #include <net/nexthop.h> struct fib_alias { struct hlist_node fa_list; struct fib_info *fa_info; u8 fa_tos; u8 fa_type; u8 fa_state; u8 fa_slen; u32 tb_id; s16 fa_default; u8 offload:1, trap:1, unused:6; struct rcu_head rcu; }; #define FA_S_ACCESSED 0x01 /* Dont write on fa_state unless needed, to keep it shared on all cpus */ static inline void fib_alias_accessed(struct fib_alias *fa) { if (!(fa->fa_state & FA_S_ACCESSED)) fa->fa_state |= FA_S_ACCESSED; } /* Exported by fib_semantics.c */ void fib_release_info(struct fib_info *); struct fib_info *fib_create_info(struct fib_config *cfg, struct netlink_ext_ack *extack); int fib_nh_match(struct net *net, struct fib_config *cfg, struct fib_info *fi, struct netlink_ext_ack *extack); bool fib_metrics_match(struct fib_config *cfg, struct fib_info *fi); int fib_dump_info(struct sk_buff *skb, u32 pid, u32 seq, int event, struct fib_rt_info *fri, unsigned int flags); void rtmsg_fib(int event, __be32 key, struct fib_alias *fa, int dst_len, u32 tb_id, const struct nl_info *info, unsigned int nlm_flags); static inline void fib_result_assign(struct fib_result *res, struct fib_info *fi) { /* we used to play games with refcounts, but we now use RCU */ res->fi = fi; res->nhc = fib_info_nhc(fi, 0); } struct fib_prop { int error; u8 scope; }; extern const struct fib_prop fib_props[RTN_MAX + 1]; #endif /* _FIB_LOOKUP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM udp #if !defined(_TRACE_UDP_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_UDP_H #include <linux/udp.h> #include <linux/tracepoint.h> TRACE_EVENT(udp_fail_queue_rcv_skb, TP_PROTO(int rc, struct sock *sk), TP_ARGS(rc, sk), TP_STRUCT__entry( __field(int, rc) __field(__u16, lport) ), TP_fast_assign( __entry->rc = rc; __entry->lport = inet_sk(sk)->inet_num; ), TP_printk("rc=%d port=%hu", __entry->rc, __entry->lport) ); #endif /* _TRACE_UDP_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Definitions for the RAW-IP module. * * Version: @(#)raw.h 1.0.2 05/07/93 * * Author: Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> */ #ifndef _RAW_H #define _RAW_H #include <net/inet_sock.h> #include <net/protocol.h> #include <linux/icmp.h> extern struct proto raw_prot; extern struct raw_hashinfo raw_v4_hashinfo; struct sock *__raw_v4_lookup(struct net *net, struct sock *sk, unsigned short num, __be32 raddr, __be32 laddr, int dif, int sdif); int raw_abort(struct sock *sk, int err); void raw_icmp_error(struct sk_buff *, int, u32); int raw_local_deliver(struct sk_buff *, int); int raw_rcv(struct sock *, struct sk_buff *); #define RAW_HTABLE_SIZE MAX_INET_PROTOS struct raw_hashinfo { rwlock_t lock; struct hlist_head ht[RAW_HTABLE_SIZE]; }; #ifdef CONFIG_PROC_FS int raw_proc_init(void); void raw_proc_exit(void); struct raw_iter_state { struct seq_net_private p; int bucket; }; static inline struct raw_iter_state *raw_seq_private(struct seq_file *seq) { return seq->private; } void *raw_seq_start(struct seq_file *seq, loff_t *pos); void *raw_seq_next(struct seq_file *seq, void *v, loff_t *pos); void raw_seq_stop(struct seq_file *seq, void *v); #endif int raw_hash_sk(struct sock *sk); void raw_unhash_sk(struct sock *sk); void raw_init(void); struct raw_sock { /* inet_sock has to be the first member */ struct inet_sock inet; struct icmp_filter filter; u32 ipmr_table; }; static inline struct raw_sock *raw_sk(const struct sock *sk) { return (struct raw_sock *)sk; } static inline bool raw_sk_bound_dev_eq(struct net *net, int bound_dev_if, int dif, int sdif) { #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) return inet_bound_dev_eq(!!net->ipv4.sysctl_raw_l3mdev_accept, bound_dev_if, dif, sdif); #else return inet_bound_dev_eq(true, bound_dev_if, dif, sdif); #endif } #endif /* _RAW_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_NODEMASK_H #define __LINUX_NODEMASK_H /* * Nodemasks provide a bitmap suitable for representing the * set of Node's in a system, one bit position per Node number. * * See detailed comments in the file linux/bitmap.h describing the * data type on which these nodemasks are based. * * For details of nodemask_parse_user(), see bitmap_parse_user() in * lib/bitmap.c. For details of nodelist_parse(), see bitmap_parselist(), * also in bitmap.c. For details of node_remap(), see bitmap_bitremap in * lib/bitmap.c. For details of nodes_remap(), see bitmap_remap in * lib/bitmap.c. For details of nodes_onto(), see bitmap_onto in * lib/bitmap.c. For details of nodes_fold(), see bitmap_fold in * lib/bitmap.c. * * The available nodemask operations are: * * void node_set(node, mask) turn on bit 'node' in mask * void node_clear(node, mask) turn off bit 'node' in mask * void nodes_setall(mask) set all bits * void nodes_clear(mask) clear all bits * int node_isset(node, mask) true iff bit 'node' set in mask * int node_test_and_set(node, mask) test and set bit 'node' in mask * * void nodes_and(dst, src1, src2) dst = src1 & src2 [intersection] * void nodes_or(dst, src1, src2) dst = src1 | src2 [union] * void nodes_xor(dst, src1, src2) dst = src1 ^ src2 * void nodes_andnot(dst, src1, src2) dst = src1 & ~src2 * void nodes_complement(dst, src) dst = ~src * * int nodes_equal(mask1, mask2) Does mask1 == mask2? * int nodes_intersects(mask1, mask2) Do mask1 and mask2 intersect? * int nodes_subset(mask1, mask2) Is mask1 a subset of mask2? * int nodes_empty(mask) Is mask empty (no bits sets)? * int nodes_full(mask) Is mask full (all bits sets)? * int nodes_weight(mask) Hamming weight - number of set bits * * void nodes_shift_right(dst, src, n) Shift right * void nodes_shift_left(dst, src, n) Shift left * * int first_node(mask) Number lowest set bit, or MAX_NUMNODES * int next_node(node, mask) Next node past 'node', or MAX_NUMNODES * int next_node_in(node, mask) Next node past 'node', or wrap to first, * or MAX_NUMNODES * int first_unset_node(mask) First node not set in mask, or * MAX_NUMNODES * * nodemask_t nodemask_of_node(node) Return nodemask with bit 'node' set * NODE_MASK_ALL Initializer - all bits set * NODE_MASK_NONE Initializer - no bits set * unsigned long *nodes_addr(mask) Array of unsigned long's in mask * * int nodemask_parse_user(ubuf, ulen, mask) Parse ascii string as nodemask * int nodelist_parse(buf, map) Parse ascii string as nodelist * int node_remap(oldbit, old, new) newbit = map(old, new)(oldbit) * void nodes_remap(dst, src, old, new) *dst = map(old, new)(src) * void nodes_onto(dst, orig, relmap) *dst = orig relative to relmap * void nodes_fold(dst, orig, sz) dst bits = orig bits mod sz * * for_each_node_mask(node, mask) for-loop node over mask * * int num_online_nodes() Number of online Nodes * int num_possible_nodes() Number of all possible Nodes * * int node_random(mask) Random node with set bit in mask * * int node_online(node) Is some node online? * int node_possible(node) Is some node possible? * * node_set_online(node) set bit 'node' in node_online_map * node_set_offline(node) clear bit 'node' in node_online_map * * for_each_node(node) for-loop node over node_possible_map * for_each_online_node(node) for-loop node over node_online_map * * Subtlety: * 1) The 'type-checked' form of node_isset() causes gcc (3.3.2, anyway) * to generate slightly worse code. So use a simple one-line #define * for node_isset(), instead of wrapping an inline inside a macro, the * way we do the other calls. * * NODEMASK_SCRATCH * When doing above logical AND, OR, XOR, Remap operations the callers tend to * need temporary nodemask_t's on the stack. But if NODES_SHIFT is large, * nodemask_t's consume too much stack space. NODEMASK_SCRATCH is a helper * for such situations. See below and CPUMASK_ALLOC also. */ #include <linux/threads.h> #include <linux/bitmap.h> #include <linux/minmax.h> #include <linux/numa.h> typedef struct { DECLARE_BITMAP(bits, MAX_NUMNODES); } nodemask_t; extern nodemask_t _unused_nodemask_arg_; /** * nodemask_pr_args - printf args to output a nodemask * @maskp: nodemask to be printed * * Can be used to provide arguments for '%*pb[l]' when printing a nodemask. */ #define nodemask_pr_args(maskp) __nodemask_pr_numnodes(maskp), \ __nodemask_pr_bits(maskp) static inline unsigned int __nodemask_pr_numnodes(const nodemask_t *m) { return m ? MAX_NUMNODES : 0; } static inline const unsigned long *__nodemask_pr_bits(const nodemask_t *m) { return m ? m->bits : NULL; } /* * The inline keyword gives the compiler room to decide to inline, or * not inline a function as it sees best. However, as these functions * are called in both __init and non-__init functions, if they are not * inlined we will end up with a section mis-match error (of the type of * freeable items not being freed). So we must use __always_inline here * to fix the problem. If other functions in the future also end up in * this situation they will also need to be annotated as __always_inline */ #define node_set(node, dst) __node_set((node), &(dst)) static __always_inline void __node_set(int node, volatile nodemask_t *dstp) { set_bit(node, dstp->bits); } #define node_clear(node, dst) __node_clear((node), &(dst)) static inline void __node_clear(int node, volatile nodemask_t *dstp) { clear_bit(node, dstp->bits); } #define nodes_setall(dst) __nodes_setall(&(dst), MAX_NUMNODES) static inline void __nodes_setall(nodemask_t *dstp, unsigned int nbits) { bitmap_fill(dstp->bits, nbits); } #define nodes_clear(dst) __nodes_clear(&(dst), MAX_NUMNODES) static inline void __nodes_clear(nodemask_t *dstp, unsigned int nbits) { bitmap_zero(dstp->bits, nbits); } /* No static inline type checking - see Subtlety (1) above. */ #define node_isset(node, nodemask) test_bit((node), (nodemask).bits) #define node_test_and_set(node, nodemask) \ __node_test_and_set((node), &(nodemask)) static inline int __node_test_and_set(int node, nodemask_t *addr) { return test_and_set_bit(node, addr->bits); } #define nodes_and(dst, src1, src2) \ __nodes_and(&(dst), &(src1), &(src2), MAX_NUMNODES) static inline void __nodes_and(nodemask_t *dstp, const nodemask_t *src1p, const nodemask_t *src2p, unsigned int nbits) { bitmap_and(dstp->bits, src1p->bits, src2p->bits, nbits); } #define nodes_or(dst, src1, src2) \ __nodes_or(&(dst), &(src1), &(src2), MAX_NUMNODES) static inline void __nodes_or(nodemask_t *dstp, const nodemask_t *src1p, const nodemask_t *src2p, unsigned int nbits) { bitmap_or(dstp->bits, src1p->bits, src2p->bits, nbits); } #define nodes_xor(dst, src1, src2) \ __nodes_xor(&(dst), &(src1), &(src2), MAX_NUMNODES) static inline void __nodes_xor(nodemask_t *dstp, const nodemask_t *src1p, const nodemask_t *src2p, unsigned int nbits) { bitmap_xor(dstp->bits, src1p->bits, src2p->bits, nbits); } #define nodes_andnot(dst, src1, src2) \ __nodes_andnot(&(dst), &(src1), &(src2), MAX_NUMNODES) static inline void __nodes_andnot(nodemask_t *dstp, const nodemask_t *src1p, const nodemask_t *src2p, unsigned int nbits) { bitmap_andnot(dstp->bits, src1p->bits, src2p->bits, nbits); } #define nodes_complement(dst, src) \ __nodes_complement(&(dst), &(src), MAX_NUMNODES) static inline void __nodes_complement(nodemask_t *dstp, const nodemask_t *srcp, unsigned int nbits) { bitmap_complement(dstp->bits, srcp->bits, nbits); } #define nodes_equal(src1, src2) \ __nodes_equal(&(src1), &(src2), MAX_NUMNODES) static inline int __nodes_equal(const nodemask_t *src1p, const nodemask_t *src2p, unsigned int nbits) { return bitmap_equal(src1p->bits, src2p->bits, nbits); } #define nodes_intersects(src1, src2) \ __nodes_intersects(&(src1), &(src2), MAX_NUMNODES) static inline int __nodes_intersects(const nodemask_t *src1p, const nodemask_t *src2p, unsigned int nbits) { return bitmap_intersects(src1p->bits, src2p->bits, nbits); } #define nodes_subset(src1, src2) \ __nodes_subset(&(src1), &(src2), MAX_NUMNODES) static inline int __nodes_subset(const nodemask_t *src1p, const nodemask_t *src2p, unsigned int nbits) { return bitmap_subset(src1p->bits, src2p->bits, nbits); } #define nodes_empty(src) __nodes_empty(&(src), MAX_NUMNODES) static inline int __nodes_empty(const nodemask_t *srcp, unsigned int nbits) { return bitmap_empty(srcp->bits, nbits); } #define nodes_full(nodemask) __nodes_full(&(nodemask), MAX_NUMNODES) static inline int __nodes_full(const nodemask_t *srcp, unsigned int nbits) { return bitmap_full(srcp->bits, nbits); } #define nodes_weight(nodemask) __nodes_weight(&(nodemask), MAX_NUMNODES) static inline int __nodes_weight(const nodemask_t *srcp, unsigned int nbits) { return bitmap_weight(srcp->bits, nbits); } #define nodes_shift_right(dst, src, n) \ __nodes_shift_right(&(dst), &(src), (n), MAX_NUMNODES) static inline void __nodes_shift_right(nodemask_t *dstp, const nodemask_t *srcp, int n, int nbits) { bitmap_shift_right(dstp->bits, srcp->bits, n, nbits); } #define nodes_shift_left(dst, src, n) \ __nodes_shift_left(&(dst), &(src), (n), MAX_NUMNODES) static inline void __nodes_shift_left(nodemask_t *dstp, const nodemask_t *srcp, int n, int nbits) { bitmap_shift_left(dstp->bits, srcp->bits, n, nbits); } /* FIXME: better would be to fix all architectures to never return > MAX_NUMNODES, then the silly min_ts could be dropped. */ #define first_node(src) __first_node(&(src)) static inline int __first_node(const nodemask_t *srcp) { return min_t(int, MAX_NUMNODES, find_first_bit(srcp->bits, MAX_NUMNODES)); } #define next_node(n, src) __next_node((n), &(src)) static inline int __next_node(int n, const nodemask_t *srcp) { return min_t(int,MAX_NUMNODES,find_next_bit(srcp->bits, MAX_NUMNODES, n+1)); } /* * Find the next present node in src, starting after node n, wrapping around to * the first node in src if needed. Returns MAX_NUMNODES if src is empty. */ #define next_node_in(n, src) __next_node_in((n), &(src)) int __next_node_in(int node, const nodemask_t *srcp); static inline void init_nodemask_of_node(nodemask_t *mask, int node) { nodes_clear(*mask); node_set(node, *mask); } #define nodemask_of_node(node) \ ({ \ typeof(_unused_nodemask_arg_) m; \ if (sizeof(m) == sizeof(unsigned long)) { \ m.bits[0] = 1UL << (node); \ } else { \ init_nodemask_of_node(&m, (node)); \ } \ m; \ }) #define first_unset_node(mask) __first_unset_node(&(mask)) static inline int __first_unset_node(const nodemask_t *maskp) { return min_t(int,MAX_NUMNODES, find_first_zero_bit(maskp->bits, MAX_NUMNODES)); } #define NODE_MASK_LAST_WORD BITMAP_LAST_WORD_MASK(MAX_NUMNODES) #if MAX_NUMNODES <= BITS_PER_LONG #define NODE_MASK_ALL \ ((nodemask_t) { { \ [BITS_TO_LONGS(MAX_NUMNODES)-1] = NODE_MASK_LAST_WORD \ } }) #else #define NODE_MASK_ALL \ ((nodemask_t) { { \ [0 ... BITS_TO_LONGS(MAX_NUMNODES)-2] = ~0UL, \ [BITS_TO_LONGS(MAX_NUMNODES)-1] = NODE_MASK_LAST_WORD \ } }) #endif #define NODE_MASK_NONE \ ((nodemask_t) { { \ [0 ... BITS_TO_LONGS(MAX_NUMNODES)-1] = 0UL \ } }) #define nodes_addr(src) ((src).bits) #define nodemask_parse_user(ubuf, ulen, dst) \ __nodemask_parse_user((ubuf), (ulen), &(dst), MAX_NUMNODES) static inline int __nodemask_parse_user(const char __user *buf, int len, nodemask_t *dstp, int nbits) { return bitmap_parse_user(buf, len, dstp->bits, nbits); } #define nodelist_parse(buf, dst) __nodelist_parse((buf), &(dst), MAX_NUMNODES) static inline int __nodelist_parse(const char *buf, nodemask_t *dstp, int nbits) { return bitmap_parselist(buf, dstp->bits, nbits); } #define node_remap(oldbit, old, new) \ __node_remap((oldbit), &(old), &(new), MAX_NUMNODES) static inline int __node_remap(int oldbit, const nodemask_t *oldp, const nodemask_t *newp, int nbits) { return bitmap_bitremap(oldbit, oldp->bits, newp->bits, nbits); } #define nodes_remap(dst, src, old, new) \ __nodes_remap(&(dst), &(src), &(old), &(new), MAX_NUMNODES) static inline void __nodes_remap(nodemask_t *dstp, const nodemask_t *srcp, const nodemask_t *oldp, const nodemask_t *newp, int nbits) { bitmap_remap(dstp->bits, srcp->bits, oldp->bits, newp->bits, nbits); } #define nodes_onto(dst, orig, relmap) \ __nodes_onto(&(dst), &(orig), &(relmap), MAX_NUMNODES) static inline void __nodes_onto(nodemask_t *dstp, const nodemask_t *origp, const nodemask_t *relmapp, int nbits) { bitmap_onto(dstp->bits, origp->bits, relmapp->bits, nbits); } #define nodes_fold(dst, orig, sz) \ __nodes_fold(&(dst), &(orig), sz, MAX_NUMNODES) static inline void __nodes_fold(nodemask_t *dstp, const nodemask_t *origp, int sz, int nbits) { bitmap_fold(dstp->bits, origp->bits, sz, nbits); } #if MAX_NUMNODES > 1 #define for_each_node_mask(node, mask) \ for ((node) = first_node(mask); \ (node) < MAX_NUMNODES; \ (node) = next_node((node), (mask))) #else /* MAX_NUMNODES == 1 */ #define for_each_node_mask(node, mask) \ if (!nodes_empty(mask)) \ for ((node) = 0; (node) < 1; (node)++) #endif /* MAX_NUMNODES */ /* * Bitmasks that are kept for all the nodes. */ enum node_states { N_POSSIBLE, /* The node could become online at some point */ N_ONLINE, /* The node is online */ N_NORMAL_MEMORY, /* The node has regular memory */ #ifdef CONFIG_HIGHMEM N_HIGH_MEMORY, /* The node has regular or high memory */ #else N_HIGH_MEMORY = N_NORMAL_MEMORY, #endif N_MEMORY, /* The node has memory(regular, high, movable) */ N_CPU, /* The node has one or more cpus */ N_GENERIC_INITIATOR, /* The node has one or more Generic Initiators */ NR_NODE_STATES }; /* * The following particular system nodemasks and operations * on them manage all possible and online nodes. */ extern nodemask_t node_states[NR_NODE_STATES]; #if MAX_NUMNODES > 1 static inline int node_state(int node, enum node_states state) { return node_isset(node, node_states[state]); } static inline void node_set_state(int node, enum node_states state) { __node_set(node, &node_states[state]); } static inline void node_clear_state(int node, enum node_states state) { __node_clear(node, &node_states[state]); } static inline int num_node_state(enum node_states state) { return nodes_weight(node_states[state]); } #define for_each_node_state(__node, __state) \ for_each_node_mask((__node), node_states[__state]) #define first_online_node first_node(node_states[N_ONLINE]) #define first_memory_node first_node(node_states[N_MEMORY]) static inline int next_online_node(int nid) { return next_node(nid, node_states[N_ONLINE]); } static inline int next_memory_node(int nid) { return next_node(nid, node_states[N_MEMORY]); } extern unsigned int nr_node_ids; extern unsigned int nr_online_nodes; static inline void node_set_online(int nid) { node_set_state(nid, N_ONLINE); nr_online_nodes = num_node_state(N_ONLINE); } static inline void node_set_offline(int nid) { node_clear_state(nid, N_ONLINE); nr_online_nodes = num_node_state(N_ONLINE); } #else static inline int node_state(int node, enum node_states state) { return node == 0; } static inline void node_set_state(int node, enum node_states state) { } static inline void node_clear_state(int node, enum node_states state) { } static inline int num_node_state(enum node_states state) { return 1; } #define for_each_node_state(node, __state) \ for ( (node) = 0; (node) == 0; (node) = 1) #define first_online_node 0 #define first_memory_node 0 #define next_online_node(nid) (MAX_NUMNODES) #define nr_node_ids 1U #define nr_online_nodes 1U #define node_set_online(node) node_set_state((node), N_ONLINE) #define node_set_offline(node) node_clear_state((node), N_ONLINE) #endif #if defined(CONFIG_NUMA) && (MAX_NUMNODES > 1) extern int node_random(const nodemask_t *maskp); #else static inline int node_random(const nodemask_t *mask) { return 0; } #endif #define node_online_map node_states[N_ONLINE] #define node_possible_map node_states[N_POSSIBLE] #define num_online_nodes() num_node_state(N_ONLINE) #define num_possible_nodes() num_node_state(N_POSSIBLE) #define node_online(node) node_state((node), N_ONLINE) #define node_possible(node) node_state((node), N_POSSIBLE) #define for_each_node(node) for_each_node_state(node, N_POSSIBLE) #define for_each_online_node(node) for_each_node_state(node, N_ONLINE) /* * For nodemask scrach area. * NODEMASK_ALLOC(type, name) allocates an object with a specified type and * name. */ #if NODES_SHIFT > 8 /* nodemask_t > 32 bytes */ #define NODEMASK_ALLOC(type, name, gfp_flags) \ type *name = kmalloc(sizeof(*name), gfp_flags) #define NODEMASK_FREE(m) kfree(m) #else #define NODEMASK_ALLOC(type, name, gfp_flags) type _##name, *name = &_##name #define NODEMASK_FREE(m) do {} while (0) #endif /* A example struture for using NODEMASK_ALLOC, used in mempolicy. */ struct nodemask_scratch { nodemask_t mask1; nodemask_t mask2; }; #define NODEMASK_SCRATCH(x) \ NODEMASK_ALLOC(struct nodemask_scratch, x, \ GFP_KERNEL | __GFP_NORETRY) #define NODEMASK_SCRATCH_FREE(x) NODEMASK_FREE(x) #endif /* __LINUX_NODEMASK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 #ifndef _LINUX_UNALIGNED_PACKED_STRUCT_H #define _LINUX_UNALIGNED_PACKED_STRUCT_H #include <linux/kernel.h> struct __una_u16 { u16 x; } __packed; struct __una_u32 { u32 x; } __packed; struct __una_u64 { u64 x; } __packed; static inline u16 __get_unaligned_cpu16(const void *p) { const struct __una_u16 *ptr = (const struct __una_u16 *)p; return ptr->x; } static inline u32 __get_unaligned_cpu32(const void *p) { const struct __una_u32 *ptr = (const struct __una_u32 *)p; return ptr->x; } static inline u64 __get_unaligned_cpu64(const void *p) { const struct __una_u64 *ptr = (const struct __una_u64 *)p; return ptr->x; } static inline void __put_unaligned_cpu16(u16 val, void *p) { struct __una_u16 *ptr = (struct __una_u16 *)p; ptr->x = val; } static inline void __put_unaligned_cpu32(u32 val, void *p) { struct __una_u32 *ptr = (struct __una_u32 *)p; ptr->x = val; } static inline void __put_unaligned_cpu64(u64 val, void *p) { struct __una_u64 *ptr = (struct __una_u64 *)p; ptr->x = val; } #endif /* _LINUX_UNALIGNED_PACKED_STRUCT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_KASAN_H #define _LINUX_KASAN_H #include <linux/types.h> struct kmem_cache; struct page; struct vm_struct; struct task_struct; #ifdef CONFIG_KASAN #include <linux/pgtable.h> #include <asm/kasan.h> /* kasan_data struct is used in KUnit tests for KASAN expected failures */ struct kunit_kasan_expectation { bool report_expected; bool report_found; }; extern unsigned char kasan_early_shadow_page[PAGE_SIZE]; extern pte_t kasan_early_shadow_pte[PTRS_PER_PTE]; extern pmd_t kasan_early_shadow_pmd[PTRS_PER_PMD]; extern pud_t kasan_early_shadow_pud[PTRS_PER_PUD]; extern p4d_t kasan_early_shadow_p4d[MAX_PTRS_PER_P4D]; int kasan_populate_early_shadow(const void *shadow_start, const void *shadow_end); static inline void *kasan_mem_to_shadow(const void *addr) { return (void *)((unsigned long)addr >> KASAN_SHADOW_SCALE_SHIFT) + KASAN_SHADOW_OFFSET; } /* Enable reporting bugs after kasan_disable_current() */ extern void kasan_enable_current(void); /* Disable reporting bugs for current task */ extern void kasan_disable_current(void); void kasan_unpoison_shadow(const void *address, size_t size); void kasan_unpoison_task_stack(struct task_struct *task); void kasan_alloc_pages(struct page *page, unsigned int order); void kasan_free_pages(struct page *page, unsigned int order); void kasan_cache_create(struct kmem_cache *cache, unsigned int *size, slab_flags_t *flags); void kasan_poison_slab(struct page *page); void kasan_unpoison_object_data(struct kmem_cache *cache, void *object); void kasan_poison_object_data(struct kmem_cache *cache, void *object); void * __must_check kasan_init_slab_obj(struct kmem_cache *cache, const void *object); void * __must_check kasan_kmalloc_large(const void *ptr, size_t size, gfp_t flags); void kasan_kfree_large(void *ptr, unsigned long ip); void kasan_poison_kfree(void *ptr, unsigned long ip); void * __must_check kasan_kmalloc(struct kmem_cache *s, const void *object, size_t size, gfp_t flags); void * __must_check kasan_krealloc(const void *object, size_t new_size, gfp_t flags); void * __must_check kasan_slab_alloc(struct kmem_cache *s, void *object, gfp_t flags); bool kasan_slab_free(struct kmem_cache *s, void *object, unsigned long ip); struct kasan_cache { int alloc_meta_offset; int free_meta_offset; }; /* * These functions provide a special case to support backing module * allocations with real shadow memory. With KASAN vmalloc, the special * case is unnecessary, as the work is handled in the generic case. */ #ifndef CONFIG_KASAN_VMALLOC int kasan_module_alloc(void *addr, size_t size); void kasan_free_shadow(const struct vm_struct *vm); #else static inline int kasan_module_alloc(void *addr, size_t size) { return 0; } static inline void kasan_free_shadow(const struct vm_struct *vm) {} #endif int kasan_add_zero_shadow(void *start, unsigned long size); void kasan_remove_zero_shadow(void *start, unsigned long size); size_t __ksize(const void *); static inline void kasan_unpoison_slab(const void *ptr) { kasan_unpoison_shadow(ptr, __ksize(ptr)); } size_t kasan_metadata_size(struct kmem_cache *cache); bool kasan_save_enable_multi_shot(void); void kasan_restore_multi_shot(bool enabled); #else /* CONFIG_KASAN */ static inline void kasan_unpoison_shadow(const void *address, size_t size) {} static inline void kasan_unpoison_task_stack(struct task_struct *task) {} static inline void kasan_enable_current(void) {} static inline void kasan_disable_current(void) {} static inline void kasan_alloc_pages(struct page *page, unsigned int order) {} static inline void kasan_free_pages(struct page *page, unsigned int order) {} static inline void kasan_cache_create(struct kmem_cache *cache, unsigned int *size, slab_flags_t *flags) {} static inline void kasan_poison_slab(struct page *page) {} static inline void kasan_unpoison_object_data(struct kmem_cache *cache, void *object) {} static inline void kasan_poison_object_data(struct kmem_cache *cache, void *object) {} static inline void *kasan_init_slab_obj(struct kmem_cache *cache, const void *object) { return (void *)object; } static inline void *kasan_kmalloc_large(void *ptr, size_t size, gfp_t flags) { return ptr; } static inline void kasan_kfree_large(void *ptr, unsigned long ip) {} static inline void kasan_poison_kfree(void *ptr, unsigned long ip) {} static inline void *kasan_kmalloc(struct kmem_cache *s, const void *object, size_t size, gfp_t flags) { return (void *)object; } static inline void *kasan_krealloc(const void *object, size_t new_size, gfp_t flags) { return (void *)object; } static inline void *kasan_slab_alloc(struct kmem_cache *s, void *object, gfp_t flags) { return object; } static inline bool kasan_slab_free(struct kmem_cache *s, void *object, unsigned long ip) { return false; } static inline int kasan_module_alloc(void *addr, size_t size) { return 0; } static inline void kasan_free_shadow(const struct vm_struct *vm) {} static inline int kasan_add_zero_shadow(void *start, unsigned long size) { return 0; } static inline void kasan_remove_zero_shadow(void *start, unsigned long size) {} static inline void kasan_unpoison_slab(const void *ptr) { } static inline size_t kasan_metadata_size(struct kmem_cache *cache) { return 0; } #endif /* CONFIG_KASAN */ #ifdef CONFIG_KASAN_GENERIC #define KASAN_SHADOW_INIT 0 void kasan_cache_shrink(struct kmem_cache *cache); void kasan_cache_shutdown(struct kmem_cache *cache); void kasan_record_aux_stack(void *ptr); #else /* CONFIG_KASAN_GENERIC */ static inline void kasan_cache_shrink(struct kmem_cache *cache) {} static inline void kasan_cache_shutdown(struct kmem_cache *cache) {} static inline void kasan_record_aux_stack(void *ptr) {} #endif /* CONFIG_KASAN_GENERIC */ #ifdef CONFIG_KASAN_SW_TAGS #define KASAN_SHADOW_INIT 0xFF void kasan_init_tags(void); void *kasan_reset_tag(const void *addr); bool kasan_report(unsigned long addr, size_t size, bool is_write, unsigned long ip); #else /* CONFIG_KASAN_SW_TAGS */ static inline void kasan_init_tags(void) { } static inline void *kasan_reset_tag(const void *addr) { return (void *)addr; } #endif /* CONFIG_KASAN_SW_TAGS */ #ifdef CONFIG_KASAN_VMALLOC int kasan_populate_vmalloc(unsigned long addr, unsigned long size); void kasan_poison_vmalloc(const void *start, unsigned long size); void kasan_unpoison_vmalloc(const void *start, unsigned long size); void kasan_release_vmalloc(unsigned long start, unsigned long end, unsigned long free_region_start, unsigned long free_region_end); #else static inline int kasan_populate_vmalloc(unsigned long start, unsigned long size) { return 0; } static inline void kasan_poison_vmalloc(const void *start, unsigned long size) { } static inline void kasan_unpoison_vmalloc(const void *start, unsigned long size) { } static inline void kasan_release_vmalloc(unsigned long start, unsigned long end, unsigned long free_region_start, unsigned long free_region_end) {} #endif #ifdef CONFIG_KASAN_INLINE void kasan_non_canonical_hook(unsigned long addr); #else /* CONFIG_KASAN_INLINE */ static inline void kasan_non_canonical_hook(unsigned long addr) { } #endif /* CONFIG_KASAN_INLINE */ #endif /* LINUX_KASAN_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 /* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright (c) 2020 Christoph Hellwig. * * Support for "universal" pointers that can point to either kernel or userspace * memory. */ #ifndef _LINUX_SOCKPTR_H #define _LINUX_SOCKPTR_H #include <linux/slab.h> #include <linux/uaccess.h> typedef struct { union { void *kernel; void __user *user; }; bool is_kernel : 1; } sockptr_t; static inline bool sockptr_is_kernel(sockptr_t sockptr) { return sockptr.is_kernel; } static inline sockptr_t KERNEL_SOCKPTR(void *p) { return (sockptr_t) { .kernel = p, .is_kernel = true }; } static inline sockptr_t USER_SOCKPTR(void __user *p) { return (sockptr_t) { .user = p }; } static inline bool sockptr_is_null(sockptr_t sockptr) { if (sockptr_is_kernel(sockptr)) return !sockptr.kernel; return !sockptr.user; } static inline int copy_from_sockptr_offset(void *dst, sockptr_t src, size_t offset, size_t size) { if (!sockptr_is_kernel(src)) return copy_from_user(dst, src.user + offset, size); memcpy(dst, src.kernel + offset, size); return 0; } static inline int copy_from_sockptr(void *dst, sockptr_t src, size_t size) { return copy_from_sockptr_offset(dst, src, 0, size); } static inline int copy_to_sockptr_offset(sockptr_t dst, size_t offset, const void *src, size_t size) { if (!sockptr_is_kernel(dst)) return copy_to_user(dst.user + offset, src, size); memcpy(dst.kernel + offset, src, size); return 0; } static inline void *memdup_sockptr(sockptr_t src, size_t len) { void *p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN); if (!p) return ERR_PTR(-ENOMEM); if (copy_from_sockptr(p, src, len)) { kfree(p); return ERR_PTR(-EFAULT); } return p; } static inline void *memdup_sockptr_nul(sockptr_t src, size_t len) { char *p = kmalloc_track_caller(len + 1, GFP_KERNEL); if (!p) return ERR_PTR(-ENOMEM); if (copy_from_sockptr(p, src, len)) { kfree(p); return ERR_PTR(-EFAULT); } p[len] = '\0'; return p; } static inline long strncpy_from_sockptr(char *dst, sockptr_t src, size_t count) { if (sockptr_is_kernel(src)) { size_t len = min(strnlen(src.kernel, count - 1) + 1, count); memcpy(dst, src.kernel, len); return len; } return strncpy_from_user(dst, src.user, count); } #endif /* _LINUX_SOCKPTR_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 /* * Performance events: * * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de> * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra * * Data type definitions, declarations, prototypes. * * Started by: Thomas Gleixner and Ingo Molnar * * For licencing details see kernel-base/COPYING */ #ifndef _LINUX_PERF_EVENT_H #define _LINUX_PERF_EVENT_H #include <uapi/linux/perf_event.h> #include <uapi/linux/bpf_perf_event.h> /* * Kernel-internal data types and definitions: */ #ifdef CONFIG_PERF_EVENTS # include <asm/perf_event.h> # include <asm/local64.h> #endif struct perf_guest_info_callbacks { int (*is_in_guest)(void); int (*is_user_mode)(void); unsigned long (*get_guest_ip)(void); void (*handle_intel_pt_intr)(void); }; #ifdef CONFIG_HAVE_HW_BREAKPOINT #include <asm/hw_breakpoint.h> #endif #include <linux/list.h> #include <linux/mutex.h> #include <linux/rculist.h> #include <linux/rcupdate.h> #include <linux/spinlock.h> #include <linux/hrtimer.h> #include <linux/fs.h> #include <linux/pid_namespace.h> #include <linux/workqueue.h> #include <linux/ftrace.h> #include <linux/cpu.h> #include <linux/irq_work.h> #include <linux/static_key.h> #include <linux/jump_label_ratelimit.h> #include <linux/atomic.h> #include <linux/sysfs.h> #include <linux/perf_regs.h> #include <linux/cgroup.h> #include <linux/refcount.h> #include <linux/security.h> #include <asm/local.h> struct perf_callchain_entry { __u64 nr; __u64 ip[]; /* /proc/sys/kernel/perf_event_max_stack */ }; struct perf_callchain_entry_ctx { struct perf_callchain_entry *entry; u32 max_stack; u32 nr; short contexts; bool contexts_maxed; }; typedef unsigned long (*perf_copy_f)(void *dst, const void *src, unsigned long off, unsigned long len); struct perf_raw_frag { union { struct perf_raw_frag *next; unsigned long pad; }; perf_copy_f copy; void *data; u32 size; } __packed; struct perf_raw_record { struct perf_raw_frag frag; u32 size; }; /* * branch stack layout: * nr: number of taken branches stored in entries[] * hw_idx: The low level index of raw branch records * for the most recent branch. * -1ULL means invalid/unknown. * * Note that nr can vary from sample to sample * branches (to, from) are stored from most recent * to least recent, i.e., entries[0] contains the most * recent branch. * The entries[] is an abstraction of raw branch records, * which may not be stored in age order in HW, e.g. Intel LBR. * The hw_idx is to expose the low level index of raw * branch record for the most recent branch aka entries[0]. * The hw_idx index is between -1 (unknown) and max depth, * which can be retrieved in /sys/devices/cpu/caps/branches. * For the architectures whose raw branch records are * already stored in age order, the hw_idx should be 0. */ struct perf_branch_stack { __u64 nr; __u64 hw_idx; struct perf_branch_entry entries[]; }; struct task_struct; /* * extra PMU register associated with an event */ struct hw_perf_event_extra { u64 config; /* register value */ unsigned int reg; /* register address or index */ int alloc; /* extra register already allocated */ int idx; /* index in shared_regs->regs[] */ }; /** * struct hw_perf_event - performance event hardware details: */ struct hw_perf_event { #ifdef CONFIG_PERF_EVENTS union { struct { /* hardware */ u64 config; u64 last_tag; unsigned long config_base; unsigned long event_base; int event_base_rdpmc; int idx; int last_cpu; int flags; struct hw_perf_event_extra extra_reg; struct hw_perf_event_extra branch_reg; }; struct { /* software */ struct hrtimer hrtimer; }; struct { /* tracepoint */ /* for tp_event->class */ struct list_head tp_list; }; struct { /* amd_power */ u64 pwr_acc; u64 ptsc; }; #ifdef CONFIG_HAVE_HW_BREAKPOINT struct { /* breakpoint */ /* * Crufty hack to avoid the chicken and egg * problem hw_breakpoint has with context * creation and event initalization. */ struct arch_hw_breakpoint info; struct list_head bp_list; }; #endif struct { /* amd_iommu */ u8 iommu_bank; u8 iommu_cntr; u16 padding; u64 conf; u64 conf1; }; }; /* * If the event is a per task event, this will point to the task in * question. See the comment in perf_event_alloc(). */ struct task_struct *target; /* * PMU would store hardware filter configuration * here. */ void *addr_filters; /* Last sync'ed generation of filters */ unsigned long addr_filters_gen; /* * hw_perf_event::state flags; used to track the PERF_EF_* state. */ #define PERF_HES_STOPPED 0x01 /* the counter is stopped */ #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ #define PERF_HES_ARCH 0x04 int state; /* * The last observed hardware counter value, updated with a * local64_cmpxchg() such that pmu::read() can be called nested. */ local64_t prev_count; /* * The period to start the next sample with. */ u64 sample_period; union { struct { /* Sampling */ /* * The period we started this sample with. */ u64 last_period; /* * However much is left of the current period; * note that this is a full 64bit value and * allows for generation of periods longer * than hardware might allow. */ local64_t period_left; }; struct { /* Topdown events counting for context switch */ u64 saved_metric; u64 saved_slots; }; }; /* * State for throttling the event, see __perf_event_overflow() and * perf_adjust_freq_unthr_context(). */ u64 interrupts_seq; u64 interrupts; /* * State for freq target events, see __perf_event_overflow() and * perf_adjust_freq_unthr_context(). */ u64 freq_time_stamp; u64 freq_count_stamp; #endif }; struct perf_event; /* * Common implementation detail of pmu::{start,commit,cancel}_txn */ #define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */ #define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */ /** * pmu::capabilities flags */ #define PERF_PMU_CAP_NO_INTERRUPT 0x01 #define PERF_PMU_CAP_NO_NMI 0x02 #define PERF_PMU_CAP_AUX_NO_SG 0x04 #define PERF_PMU_CAP_EXTENDED_REGS 0x08 #define PERF_PMU_CAP_EXCLUSIVE 0x10 #define PERF_PMU_CAP_ITRACE 0x20 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x40 #define PERF_PMU_CAP_NO_EXCLUDE 0x80 #define PERF_PMU_CAP_AUX_OUTPUT 0x100 struct perf_output_handle; /** * struct pmu - generic performance monitoring unit */ struct pmu { struct list_head entry; struct module *module; struct device *dev; const struct attribute_group **attr_groups; const struct attribute_group **attr_update; const char *name; int type; /* * various common per-pmu feature flags */ int capabilities; int __percpu *pmu_disable_count; struct perf_cpu_context __percpu *pmu_cpu_context; atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */ int task_ctx_nr; int hrtimer_interval_ms; /* number of address filters this PMU can do */ unsigned int nr_addr_filters; /* * Fully disable/enable this PMU, can be used to protect from the PMI * as well as for lazy/batch writing of the MSRs. */ void (*pmu_enable) (struct pmu *pmu); /* optional */ void (*pmu_disable) (struct pmu *pmu); /* optional */ /* * Try and initialize the event for this PMU. * * Returns: * -ENOENT -- @event is not for this PMU * * -ENODEV -- @event is for this PMU but PMU not present * -EBUSY -- @event is for this PMU but PMU temporarily unavailable * -EINVAL -- @event is for this PMU but @event is not valid * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported * -EACCES -- @event is for this PMU, @event is valid, but no privileges * * 0 -- @event is for this PMU and valid * * Other error return values are allowed. */ int (*event_init) (struct perf_event *event); /* * Notification that the event was mapped or unmapped. Called * in the context of the mapping task. */ void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ /* * Flags for ->add()/->del()/ ->start()/->stop(). There are * matching hw_perf_event::state flags. */ #define PERF_EF_START 0x01 /* start the counter when adding */ #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ /* * Adds/Removes a counter to/from the PMU, can be done inside a * transaction, see the ->*_txn() methods. * * The add/del callbacks will reserve all hardware resources required * to service the event, this includes any counter constraint * scheduling etc. * * Called with IRQs disabled and the PMU disabled on the CPU the event * is on. * * ->add() called without PERF_EF_START should result in the same state * as ->add() followed by ->stop(). * * ->del() must always PERF_EF_UPDATE stop an event. If it calls * ->stop() that must deal with already being stopped without * PERF_EF_UPDATE. */ int (*add) (struct perf_event *event, int flags); void (*del) (struct perf_event *event, int flags); /* * Starts/Stops a counter present on the PMU. * * The PMI handler should stop the counter when perf_event_overflow() * returns !0. ->start() will be used to continue. * * Also used to change the sample period. * * Called with IRQs disabled and the PMU disabled on the CPU the event * is on -- will be called from NMI context with the PMU generates * NMIs. * * ->stop() with PERF_EF_UPDATE will read the counter and update * period/count values like ->read() would. * * ->start() with PERF_EF_RELOAD will reprogram the counter * value, must be preceded by a ->stop() with PERF_EF_UPDATE. */ void (*start) (struct perf_event *event, int flags); void (*stop) (struct perf_event *event, int flags); /* * Updates the counter value of the event. * * For sampling capable PMUs this will also update the software period * hw_perf_event::period_left field. */ void (*read) (struct perf_event *event); /* * Group events scheduling is treated as a transaction, add * group events as a whole and perform one schedulability test. * If the test fails, roll back the whole group * * Start the transaction, after this ->add() doesn't need to * do schedulability tests. * * Optional. */ void (*start_txn) (struct pmu *pmu, unsigned int txn_flags); /* * If ->start_txn() disabled the ->add() schedulability test * then ->commit_txn() is required to perform one. On success * the transaction is closed. On error the transaction is kept * open until ->cancel_txn() is called. * * Optional. */ int (*commit_txn) (struct pmu *pmu); /* * Will cancel the transaction, assumes ->del() is called * for each successful ->add() during the transaction. * * Optional. */ void (*cancel_txn) (struct pmu *pmu); /* * Will return the value for perf_event_mmap_page::index for this event, * if no implementation is provided it will default to: event->hw.idx + 1. */ int (*event_idx) (struct perf_event *event); /*optional */ /* * context-switches callback */ void (*sched_task) (struct perf_event_context *ctx, bool sched_in); /* * Kmem cache of PMU specific data */ struct kmem_cache *task_ctx_cache; /* * PMU specific parts of task perf event context (i.e. ctx->task_ctx_data) * can be synchronized using this function. See Intel LBR callstack support * implementation and Perf core context switch handling callbacks for usage * examples. */ void (*swap_task_ctx) (struct perf_event_context *prev, struct perf_event_context *next); /* optional */ /* * Set up pmu-private data structures for an AUX area */ void *(*setup_aux) (struct perf_event *event, void **pages, int nr_pages, bool overwrite); /* optional */ /* * Free pmu-private AUX data structures */ void (*free_aux) (void *aux); /* optional */ /* * Take a snapshot of the AUX buffer without touching the event * state, so that preempting ->start()/->stop() callbacks does * not interfere with their logic. Called in PMI context. * * Returns the size of AUX data copied to the output handle. * * Optional. */ long (*snapshot_aux) (struct perf_event *event, struct perf_output_handle *handle, unsigned long size); /* * Validate address range filters: make sure the HW supports the * requested configuration and number of filters; return 0 if the * supplied filters are valid, -errno otherwise. * * Runs in the context of the ioctl()ing process and is not serialized * with the rest of the PMU callbacks. */ int (*addr_filters_validate) (struct list_head *filters); /* optional */ /* * Synchronize address range filter configuration: * translate hw-agnostic filters into hardware configuration in * event::hw::addr_filters. * * Runs as a part of filter sync sequence that is done in ->start() * callback by calling perf_event_addr_filters_sync(). * * May (and should) traverse event::addr_filters::list, for which its * caller provides necessary serialization. */ void (*addr_filters_sync) (struct perf_event *event); /* optional */ /* * Check if event can be used for aux_output purposes for * events of this PMU. * * Runs from perf_event_open(). Should return 0 for "no match" * or non-zero for "match". */ int (*aux_output_match) (struct perf_event *event); /* optional */ /* * Filter events for PMU-specific reasons. */ int (*filter_match) (struct perf_event *event); /* optional */ /* * Check period value for PERF_EVENT_IOC_PERIOD ioctl. */ int (*check_period) (struct perf_event *event, u64 value); /* optional */ }; enum perf_addr_filter_action_t { PERF_ADDR_FILTER_ACTION_STOP = 0, PERF_ADDR_FILTER_ACTION_START, PERF_ADDR_FILTER_ACTION_FILTER, }; /** * struct perf_addr_filter - address range filter definition * @entry: event's filter list linkage * @path: object file's path for file-based filters * @offset: filter range offset * @size: filter range size (size==0 means single address trigger) * @action: filter/start/stop * * This is a hardware-agnostic filter configuration as specified by the user. */ struct perf_addr_filter { struct list_head entry; struct path path; unsigned long offset; unsigned long size; enum perf_addr_filter_action_t action; }; /** * struct perf_addr_filters_head - container for address range filters * @list: list of filters for this event * @lock: spinlock that serializes accesses to the @list and event's * (and its children's) filter generations. * @nr_file_filters: number of file-based filters * * A child event will use parent's @list (and therefore @lock), so they are * bundled together; see perf_event_addr_filters(). */ struct perf_addr_filters_head { struct list_head list; raw_spinlock_t lock; unsigned int nr_file_filters; }; struct perf_addr_filter_range { unsigned long start; unsigned long size; }; /** * enum perf_event_state - the states of an event: */ enum perf_event_state { PERF_EVENT_STATE_DEAD = -4, PERF_EVENT_STATE_EXIT = -3, PERF_EVENT_STATE_ERROR = -2, PERF_EVENT_STATE_OFF = -1, PERF_EVENT_STATE_INACTIVE = 0, PERF_EVENT_STATE_ACTIVE = 1, }; struct file; struct perf_sample_data; typedef void (*perf_overflow_handler_t)(struct perf_event *, struct perf_sample_data *, struct pt_regs *regs); /* * Event capabilities. For event_caps and groups caps. * * PERF_EV_CAP_SOFTWARE: Is a software event. * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read * from any CPU in the package where it is active. * PERF_EV_CAP_SIBLING: An event with this flag must be a group sibling and * cannot be a group leader. If an event with this flag is detached from the * group it is scheduled out and moved into an unrecoverable ERROR state. */ #define PERF_EV_CAP_SOFTWARE BIT(0) #define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1) #define PERF_EV_CAP_SIBLING BIT(2) #define SWEVENT_HLIST_BITS 8 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) struct swevent_hlist { struct hlist_head heads[SWEVENT_HLIST_SIZE]; struct rcu_head rcu_head; }; #define PERF_ATTACH_CONTEXT 0x01 #define PERF_ATTACH_GROUP 0x02 #define PERF_ATTACH_TASK 0x04 #define PERF_ATTACH_TASK_DATA 0x08 #define PERF_ATTACH_ITRACE 0x10 #define PERF_ATTACH_SCHED_CB 0x20 struct perf_cgroup; struct perf_buffer; struct pmu_event_list { raw_spinlock_t lock; struct list_head list; }; #define for_each_sibling_event(sibling, event) \ if ((event)->group_leader == (event)) \ list_for_each_entry((sibling), &(event)->sibling_list, sibling_list) /** * struct perf_event - performance event kernel representation: */ struct perf_event { #ifdef CONFIG_PERF_EVENTS /* * entry onto perf_event_context::event_list; * modifications require ctx->lock * RCU safe iterations. */ struct list_head event_entry; /* * Locked for modification by both ctx->mutex and ctx->lock; holding * either sufficies for read. */ struct list_head sibling_list; struct list_head active_list; /* * Node on the pinned or flexible tree located at the event context; */ struct rb_node group_node; u64 group_index; /* * We need storage to track the entries in perf_pmu_migrate_context; we * cannot use the event_entry because of RCU and we want to keep the * group in tact which avoids us using the other two entries. */ struct list_head migrate_entry; struct hlist_node hlist_entry; struct list_head active_entry; int nr_siblings; /* Not serialized. Only written during event initialization. */ int event_caps; /* The cumulative AND of all event_caps for events in this group. */ int group_caps; struct perf_event *group_leader; struct pmu *pmu; void *pmu_private; enum perf_event_state state; unsigned int attach_state; local64_t count; atomic64_t child_count; /* * These are the total time in nanoseconds that the event * has been enabled (i.e. eligible to run, and the task has * been scheduled in, if this is a per-task event) * and running (scheduled onto the CPU), respectively. */ u64 total_time_enabled; u64 total_time_running; u64 tstamp; /* * timestamp shadows the actual context timing but it can * be safely used in NMI interrupt context. It reflects the * context time as it was when the event was last scheduled in, * or when ctx_sched_in failed to schedule the event because we * run out of PMC. * * ctx_time already accounts for ctx->timestamp. Therefore to * compute ctx_time for a sample, simply add perf_clock(). */ u64 shadow_ctx_time; struct perf_event_attr attr; u16 header_size; u16 id_header_size; u16 read_size; struct hw_perf_event hw; struct perf_event_context *ctx; atomic_long_t refcount; /* * These accumulate total time (in nanoseconds) that children * events have been enabled and running, respectively. */ atomic64_t child_total_time_enabled; atomic64_t child_total_time_running; /* * Protect attach/detach and child_list: */ struct mutex child_mutex; struct list_head child_list; struct perf_event *parent; int oncpu; int cpu; struct list_head owner_entry; struct task_struct *owner; /* mmap bits */ struct mutex mmap_mutex; atomic_t mmap_count; struct perf_buffer *rb; struct list_head rb_entry; unsigned long rcu_batches; int rcu_pending; /* poll related */ wait_queue_head_t waitq; struct fasync_struct *fasync; /* delayed work for NMIs and such */ int pending_wakeup; int pending_kill; int pending_disable; struct irq_work pending; atomic_t event_limit; /* address range filters */ struct perf_addr_filters_head addr_filters; /* vma address array for file-based filders */ struct perf_addr_filter_range *addr_filter_ranges; unsigned long addr_filters_gen; /* for aux_output events */ struct perf_event *aux_event; void (*destroy)(struct perf_event *); struct rcu_head rcu_head; struct pid_namespace *ns; u64 id; u64 (*clock)(void); perf_overflow_handler_t overflow_handler; void *overflow_handler_context; #ifdef CONFIG_BPF_SYSCALL perf_overflow_handler_t orig_overflow_handler; struct bpf_prog *prog; #endif #ifdef CONFIG_EVENT_TRACING struct trace_event_call *tp_event; struct event_filter *filter; #ifdef CONFIG_FUNCTION_TRACER struct ftrace_ops ftrace_ops; #endif #endif #ifdef CONFIG_CGROUP_PERF struct perf_cgroup *cgrp; /* cgroup event is attach to */ #endif #ifdef CONFIG_SECURITY void *security; #endif struct list_head sb_list; #endif /* CONFIG_PERF_EVENTS */ }; struct perf_event_groups { struct rb_root tree; u64 index; }; /** * struct perf_event_context - event context structure * * Used as a container for task events and CPU events as well: */ struct perf_event_context { struct pmu *pmu; /* * Protect the states of the events in the list, * nr_active, and the list: */ raw_spinlock_t lock; /* * Protect the list of events. Locking either mutex or lock * is sufficient to ensure the list doesn't change; to change * the list you need to lock both the mutex and the spinlock. */ struct mutex mutex; struct list_head active_ctx_list; struct perf_event_groups pinned_groups; struct perf_event_groups flexible_groups; struct list_head event_list; struct list_head pinned_active; struct list_head flexible_active; int nr_events; int nr_active; int is_active; int nr_stat; int nr_freq; int rotate_disable; /* * Set when nr_events != nr_active, except tolerant to events not * necessary to be active due to scheduling constraints, such as cgroups. */ int rotate_necessary; refcount_t refcount; struct task_struct *task; /* * Context clock, runs when context enabled. */ u64 time; u64 timestamp; /* * These fields let us detect when two contexts have both * been cloned (inherited) from a common ancestor. */ struct perf_event_context *parent_ctx; u64 parent_gen; u64 generation; int pin_count; #ifdef CONFIG_CGROUP_PERF int nr_cgroups; /* cgroup evts */ #endif void *task_ctx_data; /* pmu specific data */ struct rcu_head rcu_head; }; /* * Number of contexts where an event can trigger: * task, softirq, hardirq, nmi. */ #define PERF_NR_CONTEXTS 4 /** * struct perf_event_cpu_context - per cpu event context structure */ struct perf_cpu_context { struct perf_event_context ctx; struct perf_event_context *task_ctx; int active_oncpu; int exclusive; raw_spinlock_t hrtimer_lock; struct hrtimer hrtimer; ktime_t hrtimer_interval; unsigned int hrtimer_active; #ifdef CONFIG_CGROUP_PERF struct perf_cgroup *cgrp; struct list_head cgrp_cpuctx_entry; #endif struct list_head sched_cb_entry; int sched_cb_usage; int online; /* * Per-CPU storage for iterators used in visit_groups_merge. The default * storage is of size 2 to hold the CPU and any CPU event iterators. */ int heap_size; struct perf_event **heap; struct perf_event *heap_default[2]; }; struct perf_output_handle { struct perf_event *event; struct perf_buffer *rb; unsigned long wakeup; unsigned long size; u64 aux_flags; union { void *addr; unsigned long head; }; int page; }; struct bpf_perf_event_data_kern { bpf_user_pt_regs_t *regs; struct perf_sample_data *data; struct perf_event *event; }; #ifdef CONFIG_CGROUP_PERF /* * perf_cgroup_info keeps track of time_enabled for a cgroup. * This is a per-cpu dynamically allocated data structure. */ struct perf_cgroup_info { u64 time; u64 timestamp; }; struct perf_cgroup { struct cgroup_subsys_state css; struct perf_cgroup_info __percpu *info; }; /* * Must ensure cgroup is pinned (css_get) before calling * this function. In other words, we cannot call this function * if there is no cgroup event for the current CPU context. */ static inline struct perf_cgroup * perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx) { return container_of(task_css_check(task, perf_event_cgrp_id, ctx ? lockdep_is_held(&ctx->lock) : true), struct perf_cgroup, css); } #endif /* CONFIG_CGROUP_PERF */ #ifdef CONFIG_PERF_EVENTS extern void *perf_aux_output_begin(struct perf_output_handle *handle, struct perf_event *event); extern void perf_aux_output_end(struct perf_output_handle *handle, unsigned long size); extern int perf_aux_output_skip(struct perf_output_handle *handle, unsigned long size); extern void *perf_get_aux(struct perf_output_handle *handle); extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags); extern void perf_event_itrace_started(struct perf_event *event); extern int perf_pmu_register(struct pmu *pmu, const char *name, int type); extern void perf_pmu_unregister(struct pmu *pmu); extern int perf_num_counters(void); extern const char *perf_pmu_name(void); extern void __perf_event_task_sched_in(struct task_struct *prev, struct task_struct *task); extern void __perf_event_task_sched_out(struct task_struct *prev, struct task_struct *next); extern int perf_event_init_task(struct task_struct *child); extern void perf_event_exit_task(struct task_struct *child); extern void perf_event_free_task(struct task_struct *task); extern void perf_event_delayed_put(struct task_struct *task); extern struct file *perf_event_get(unsigned int fd); extern const struct perf_event *perf_get_event(struct file *file); extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event); extern void perf_event_print_debug(void); extern void perf_pmu_disable(struct pmu *pmu); extern void perf_pmu_enable(struct pmu *pmu); extern void perf_sched_cb_dec(struct pmu *pmu); extern void perf_sched_cb_inc(struct pmu *pmu); extern int perf_event_task_disable(void); extern int perf_event_task_enable(void); extern void perf_pmu_resched(struct pmu *pmu); extern int perf_event_refresh(struct perf_event *event, int refresh); extern void perf_event_update_userpage(struct perf_event *event); extern int perf_event_release_kernel(struct perf_event *event); extern struct perf_event * perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, struct task_struct *task, perf_overflow_handler_t callback, void *context); extern void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu); int perf_event_read_local(struct perf_event *event, u64 *value, u64 *enabled, u64 *running); extern u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running); struct perf_sample_data { /* * Fields set by perf_sample_data_init(), group so as to * minimize the cachelines touched. */ u64 addr; struct perf_raw_record *raw; struct perf_branch_stack *br_stack; u64 period; u64 weight; u64 txn; union perf_mem_data_src data_src; /* * The other fields, optionally {set,used} by * perf_{prepare,output}_sample(). */ u64 type; u64 ip; struct { u32 pid; u32 tid; } tid_entry; u64 time; u64 id; u64 stream_id; struct { u32 cpu; u32 reserved; } cpu_entry; struct perf_callchain_entry *callchain; u64 aux_size; struct perf_regs regs_user; struct perf_regs regs_intr; u64 stack_user_size; u64 phys_addr; u64 cgroup; } ____cacheline_aligned; /* default value for data source */ #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\ PERF_MEM_S(LVL, NA) |\ PERF_MEM_S(SNOOP, NA) |\ PERF_MEM_S(LOCK, NA) |\ PERF_MEM_S(TLB, NA)) static inline void perf_sample_data_init(struct perf_sample_data *data, u64 addr, u64 period) { /* remaining struct members initialized in perf_prepare_sample() */ data->addr = addr; data->raw = NULL; data->br_stack = NULL; data->period = period; data->weight = 0; data->data_src.val = PERF_MEM_NA; data->txn = 0; } extern void perf_output_sample(struct perf_output_handle *handle, struct perf_event_header *header, struct perf_sample_data *data, struct perf_event *event); extern void perf_prepare_sample(struct perf_event_header *header, struct perf_sample_data *data, struct perf_event *event, struct pt_regs *regs); extern int perf_event_overflow(struct perf_event *event, struct perf_sample_data *data, struct pt_regs *regs); extern void perf_event_output_forward(struct perf_event *event, struct perf_sample_data *data, struct pt_regs *regs); extern void perf_event_output_backward(struct perf_event *event, struct perf_sample_data *data, struct pt_regs *regs); extern int perf_event_output(struct perf_event *event, struct perf_sample_data *data, struct pt_regs *regs); static inline bool is_default_overflow_handler(struct perf_event *event) { if (likely(event->overflow_handler == perf_event_output_forward)) return true; if (unlikely(event->overflow_handler == perf_event_output_backward)) return true; return false; } extern void perf_event_header__init_id(struct perf_event_header *header, struct perf_sample_data *data, struct perf_event *event); extern void perf_event__output_id_sample(struct perf_event *event, struct perf_output_handle *handle, struct perf_sample_data *sample); extern void perf_log_lost_samples(struct perf_event *event, u64 lost); static inline bool event_has_any_exclude_flag(struct perf_event *event) { struct perf_event_attr *attr = &event->attr; return attr->exclude_idle || attr->exclude_user || attr->exclude_kernel || attr->exclude_hv || attr->exclude_guest || attr->exclude_host; } static inline bool is_sampling_event(struct perf_event *event) { return event->attr.sample_period != 0; } /* * Return 1 for a software event, 0 for a hardware event */ static inline int is_software_event(struct perf_event *event) { return event->event_caps & PERF_EV_CAP_SOFTWARE; } /* * Return 1 for event in sw context, 0 for event in hw context */ static inline int in_software_context(struct perf_event *event) { return event->ctx->pmu->task_ctx_nr == perf_sw_context; } static inline int is_exclusive_pmu(struct pmu *pmu) { return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE; } extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64); extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); #ifndef perf_arch_fetch_caller_regs static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } #endif /* * When generating a perf sample in-line, instead of from an interrupt / * exception, we lack a pt_regs. This is typically used from software events * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints. * * We typically don't need a full set, but (for x86) do require: * - ip for PERF_SAMPLE_IP * - cs for user_mode() tests * - sp for PERF_SAMPLE_CALLCHAIN * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs()) * * NOTE: assumes @regs is otherwise already 0 filled; this is important for * things like PERF_SAMPLE_REGS_INTR. */ static inline void perf_fetch_caller_regs(struct pt_regs *regs) { perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); } static __always_inline void perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { if (static_key_false(&perf_swevent_enabled[event_id])) __perf_sw_event(event_id, nr, regs, addr); } DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]); /* * 'Special' version for the scheduler, it hard assumes no recursion, * which is guaranteed by us not actually scheduling inside other swevents * because those disable preemption. */ static __always_inline void perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { if (static_key_false(&perf_swevent_enabled[event_id])) { struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); perf_fetch_caller_regs(regs); ___perf_sw_event(event_id, nr, regs, addr); } } extern struct static_key_false perf_sched_events; static __always_inline bool perf_sw_migrate_enabled(void) { if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS])) return true; return false; } static inline void perf_event_task_migrate(struct task_struct *task) { if (perf_sw_migrate_enabled()) task->sched_migrated = 1; } static inline void perf_event_task_sched_in(struct task_struct *prev, struct task_struct *task) { if (static_branch_unlikely(&perf_sched_events)) __perf_event_task_sched_in(prev, task); if (perf_sw_migrate_enabled() && task->sched_migrated) { struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); perf_fetch_caller_regs(regs); ___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0); task->sched_migrated = 0; } } static inline void perf_event_task_sched_out(struct task_struct *prev, struct task_struct *next) { perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0); if (static_branch_unlikely(&perf_sched_events)) __perf_event_task_sched_out(prev, next); } extern void perf_event_mmap(struct vm_area_struct *vma); extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, const char *sym); extern void perf_event_bpf_event(struct bpf_prog *prog, enum perf_bpf_event_type type, u16 flags); extern struct perf_guest_info_callbacks *perf_guest_cbs; extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); extern void perf_event_exec(void); extern void perf_event_comm(struct task_struct *tsk, bool exec); extern void perf_event_namespaces(struct task_struct *tsk); extern void perf_event_fork(struct task_struct *tsk); extern void perf_event_text_poke(const void *addr, const void *old_bytes, size_t old_len, const void *new_bytes, size_t new_len); /* Callchains */ DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); extern struct perf_callchain_entry * get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user, u32 max_stack, bool crosstask, bool add_mark); extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs); extern int get_callchain_buffers(int max_stack); extern void put_callchain_buffers(void); extern struct perf_callchain_entry *get_callchain_entry(int *rctx); extern void put_callchain_entry(int rctx); extern int sysctl_perf_event_max_stack; extern int sysctl_perf_event_max_contexts_per_stack; static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip) { if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) { struct perf_callchain_entry *entry = ctx->entry; entry->ip[entry->nr++] = ip; ++ctx->contexts; return 0; } else { ctx->contexts_maxed = true; return -1; /* no more room, stop walking the stack */ } } static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip) { if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) { struct perf_callchain_entry *entry = ctx->entry; entry->ip[entry->nr++] = ip; ++ctx->nr; return 0; } else { return -1; /* no more room, stop walking the stack */ } } extern int sysctl_perf_event_paranoid; extern int sysctl_perf_event_mlock; extern int sysctl_perf_event_sample_rate; extern int sysctl_perf_cpu_time_max_percent; extern void perf_sample_event_took(u64 sample_len_ns); int perf_proc_update_handler(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos); int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos); int perf_event_max_stack_handler(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos); /* Access to perf_event_open(2) syscall. */ #define PERF_SECURITY_OPEN 0 /* Finer grained perf_event_open(2) access control. */ #define PERF_SECURITY_CPU 1 #define PERF_SECURITY_KERNEL 2 #define PERF_SECURITY_TRACEPOINT 3 static inline int perf_is_paranoid(void) { return sysctl_perf_event_paranoid > -1; } static inline int perf_allow_kernel(struct perf_event_attr *attr) { if (sysctl_perf_event_paranoid > 1 && !perfmon_capable()) return -EACCES; return security_perf_event_open(attr, PERF_SECURITY_KERNEL); } static inline int perf_allow_cpu(struct perf_event_attr *attr) { if (sysctl_perf_event_paranoid > 0 && !perfmon_capable()) return -EACCES; return security_perf_event_open(attr, PERF_SECURITY_CPU); } static inline int perf_allow_tracepoint(struct perf_event_attr *attr) { if (sysctl_perf_event_paranoid > -1 && !perfmon_capable()) return -EPERM; return security_perf_event_open(attr, PERF_SECURITY_TRACEPOINT); } extern void perf_event_init(void); extern void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, struct pt_regs *regs, struct hlist_head *head, int rctx, struct task_struct *task); extern void perf_bp_event(struct perf_event *event, void *data); #ifndef perf_misc_flags # define perf_misc_flags(regs) \ (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) # define perf_instruction_pointer(regs) instruction_pointer(regs) #endif #ifndef perf_arch_bpf_user_pt_regs # define perf_arch_bpf_user_pt_regs(regs) regs #endif static inline bool has_branch_stack(struct perf_event *event) { return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK; } static inline bool needs_branch_stack(struct perf_event *event) { return event->attr.branch_sample_type != 0; } static inline bool has_aux(struct perf_event *event) { return event->pmu->setup_aux; } static inline bool is_write_backward(struct perf_event *event) { return !!event->attr.write_backward; } static inline bool has_addr_filter(struct perf_event *event) { return event->pmu->nr_addr_filters; } /* * An inherited event uses parent's filters */ static inline struct perf_addr_filters_head * perf_event_addr_filters(struct perf_event *event) { struct perf_addr_filters_head *ifh = &event->addr_filters; if (event->parent) ifh = &event->parent->addr_filters; return ifh; } extern void perf_event_addr_filters_sync(struct perf_event *event); extern int perf_output_begin(struct perf_output_handle *handle, struct perf_sample_data *data, struct perf_event *event, unsigned int size); extern int perf_output_begin_forward(struct perf_output_handle *handle, struct perf_sample_data *data, struct perf_event *event, unsigned int size); extern int perf_output_begin_backward(struct perf_output_handle *handle, struct perf_sample_data *data, struct perf_event *event, unsigned int size); extern void perf_output_end(struct perf_output_handle *handle); extern unsigned int perf_output_copy(struct perf_output_handle *handle, const void *buf, unsigned int len); extern unsigned int perf_output_skip(struct perf_output_handle *handle, unsigned int len); extern long perf_output_copy_aux(struct perf_output_handle *aux_handle, struct perf_output_handle *handle, unsigned long from, unsigned long to); extern int perf_swevent_get_recursion_context(void); extern void perf_swevent_put_recursion_context(int rctx); extern u64 perf_swevent_set_period(struct perf_event *event); extern void perf_event_enable(struct perf_event *event); extern void perf_event_disable(struct perf_event *event); extern void perf_event_disable_local(struct perf_event *event); extern void perf_event_disable_inatomic(struct perf_event *event); extern void perf_event_task_tick(void); extern int perf_event_account_interrupt(struct perf_event *event); extern int perf_event_period(struct perf_event *event, u64 value); extern u64 perf_event_pause(struct perf_event *event, bool reset); #else /* !CONFIG_PERF_EVENTS: */ static inline void * perf_aux_output_begin(struct perf_output_handle *handle, struct perf_event *event) { return NULL; } static inline void perf_aux_output_end(struct perf_output_handle *handle, unsigned long size) { } static inline int perf_aux_output_skip(struct perf_output_handle *handle, unsigned long size) { return -EINVAL; } static inline void * perf_get_aux(struct perf_output_handle *handle) { return NULL; } static inline void perf_event_task_migrate(struct task_struct *task) { } static inline void perf_event_task_sched_in(struct task_struct *prev, struct task_struct *task) { } static inline void perf_event_task_sched_out(struct task_struct *prev, struct task_struct *next) { } static inline int perf_event_init_task(struct task_struct *child) { return 0; } static inline void perf_event_exit_task(struct task_struct *child) { } static inline void perf_event_free_task(struct task_struct *task) { } static inline void perf_event_delayed_put(struct task_struct *task) { } static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); } static inline const struct perf_event *perf_get_event(struct file *file) { return ERR_PTR(-EINVAL); } static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event) { return ERR_PTR(-EINVAL); } static inline int perf_event_read_local(struct perf_event *event, u64 *value, u64 *enabled, u64 *running) { return -EINVAL; } static inline void perf_event_print_debug(void) { } static inline int perf_event_task_disable(void) { return -EINVAL; } static inline int perf_event_task_enable(void) { return -EINVAL; } static inline int perf_event_refresh(struct perf_event *event, int refresh) { return -EINVAL; } static inline void perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } static inline void perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { } static inline void perf_bp_event(struct perf_event *event, void *data) { } static inline int perf_register_guest_info_callbacks (struct perf_guest_info_callbacks *callbacks) { return 0; } static inline int perf_unregister_guest_info_callbacks (struct perf_guest_info_callbacks *callbacks) { return 0; } static inline void perf_event_mmap(struct vm_area_struct *vma) { } typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data); static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, const char *sym) { } static inline void perf_event_bpf_event(struct bpf_prog *prog, enum perf_bpf_event_type type, u16 flags) { } static inline void perf_event_exec(void) { } static inline void perf_event_comm(struct task_struct *tsk, bool exec) { } static inline void perf_event_namespaces(struct task_struct *tsk) { } static inline void perf_event_fork(struct task_struct *tsk) { } static inline void perf_event_text_poke(const void *addr, const void *old_bytes, size_t old_len, const void *new_bytes, size_t new_len) { } static inline void perf_event_init(void) { } static inline int perf_swevent_get_recursion_context(void) { return -1; } static inline void perf_swevent_put_recursion_context(int rctx) { } static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; } static inline void perf_event_enable(struct perf_event *event) { } static inline void perf_event_disable(struct perf_event *event) { } static inline int __perf_event_disable(void *info) { return -1; } static inline void perf_event_task_tick(void) { } static inline int perf_event_release_kernel(struct perf_event *event) { return 0; } static inline int perf_event_period(struct perf_event *event, u64 value) { return -EINVAL; } static inline u64 perf_event_pause(struct perf_event *event, bool reset) { return 0; } #endif #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL) extern void perf_restore_debug_store(void); #else static inline void perf_restore_debug_store(void) { } #endif static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag) { return frag->pad < sizeof(u64); } #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) struct perf_pmu_events_attr { struct device_attribute attr; u64 id; const char *event_str; }; struct perf_pmu_events_ht_attr { struct device_attribute attr; u64 id; const char *event_str_ht; const char *event_str_noht; }; ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, char *page); #define PMU_EVENT_ATTR(_name, _var, _id, _show) \ static struct perf_pmu_events_attr _var = { \ .attr = __ATTR(_name, 0444, _show, NULL), \ .id = _id, \ }; #define PMU_EVENT_ATTR_STRING(_name, _var, _str) \ static struct perf_pmu_events_attr _var = { \ .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \ .id = 0, \ .event_str = _str, \ }; #define PMU_FORMAT_ATTR(_name, _format) \ static ssize_t \ _name##_show(struct device *dev, \ struct device_attribute *attr, \ char *page) \ { \ BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ return sprintf(page, _format "\n"); \ } \ \ static struct device_attribute format_attr_##_name = __ATTR_RO(_name) /* Performance counter hotplug functions */ #ifdef CONFIG_PERF_EVENTS int perf_event_init_cpu(unsigned int cpu); int perf_event_exit_cpu(unsigned int cpu); #else #define perf_event_init_cpu NULL #define perf_event_exit_cpu NULL #endif extern void __weak arch_perf_update_userpage(struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now); #endif /* _LINUX_PERF_EVENT_H */
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 /* SPDX-License-Identifier: GPL-2.0 */ /* thread_info.h: common low-level thread information accessors * * Copyright (C) 2002 David Howells (dhowells@redhat.com) * - Incorporating suggestions made by Linus Torvalds */ #ifndef _LINUX_THREAD_INFO_H #define _LINUX_THREAD_INFO_H #include <linux/types.h> #include <linux/bug.h> #include <linux/restart_block.h> #include <linux/errno.h> #ifdef CONFIG_THREAD_INFO_IN_TASK /* * For CONFIG_THREAD_INFO_IN_TASK kernels we need <asm/current.h> for the * definition of current, but for !CONFIG_THREAD_INFO_IN_TASK kernels, * including <asm/current.h> can cause a circular dependency on some platforms. */ #include <asm/current.h> #define current_thread_info() ((struct thread_info *)current) #endif #include <linux/bitops.h> /* * For per-arch arch_within_stack_frames() implementations, defined in * asm/thread_info.h. */ enum { BAD_STACK = -1, NOT_STACK = 0, GOOD_FRAME, GOOD_STACK, }; #include <asm/thread_info.h> #ifdef __KERNEL__ #ifndef arch_set_restart_data #define arch_set_restart_data(restart) do { } while (0) #endif static inline long set_restart_fn(struct restart_block *restart, long (*fn)(struct restart_block *)) { restart->fn = fn; arch_set_restart_data(restart); return -ERESTART_RESTARTBLOCK; } #ifndef THREAD_ALIGN #define THREAD_ALIGN THREAD_SIZE #endif #define THREADINFO_GFP (GFP_KERNEL_ACCOUNT | __GFP_ZERO) /* * flag set/clear/test wrappers * - pass TIF_xxxx constants to these functions */ static inline void set_ti_thread_flag(struct thread_info *ti, int flag) { set_bit(flag, (unsigned long *)&ti->flags); } static inline void clear_ti_thread_flag(struct thread_info *ti, int flag) { clear_bit(flag, (unsigned long *)&ti->flags); } static inline void update_ti_thread_flag(struct thread_info *ti, int flag, bool value) { if (value) set_ti_thread_flag(ti, flag); else clear_ti_thread_flag(ti, flag); } static inline int test_and_set_ti_thread_flag(struct thread_info *ti, int flag) { return test_and_set_bit(flag, (unsigned long *)&ti->flags); } static inline int test_and_clear_ti_thread_flag(struct thread_info *ti, int flag) { return test_and_clear_bit(flag, (unsigned long *)&ti->flags); } static inline int test_ti_thread_flag(struct thread_info *ti, int flag) { return test_bit(flag, (unsigned long *)&ti->flags); } #define set_thread_flag(flag) \ set_ti_thread_flag(current_thread_info(), flag) #define clear_thread_flag(flag) \ clear_ti_thread_flag(current_thread_info(), flag) #define update_thread_flag(flag, value) \ update_ti_thread_flag(current_thread_info(), flag, value) #define test_and_set_thread_flag(flag) \ test_and_set_ti_thread_flag(current_thread_info(), flag) #define test_and_clear_thread_flag(flag) \ test_and_clear_ti_thread_flag(current_thread_info(), flag) #define test_thread_flag(flag) \ test_ti_thread_flag(current_thread_info(), flag) #define tif_need_resched() test_thread_flag(TIF_NEED_RESCHED) #ifndef CONFIG_HAVE_ARCH_WITHIN_STACK_FRAMES static inline int arch_within_stack_frames(const void * const stack, const void * const stackend, const void *obj, unsigned long len) { return 0; } #endif #ifdef CONFIG_HARDENED_USERCOPY extern void __check_object_size(const void *ptr, unsigned long n, bool to_user); static __always_inline void check_object_size(const void *ptr, unsigned long n, bool to_user) { if (!__builtin_constant_p(n)) __check_object_size(ptr, n, to_user); } #else static inline void check_object_size(const void *ptr, unsigned long n, bool to_user) { } #endif /* CONFIG_HARDENED_USERCOPY */ extern void __compiletime_error("copy source size is too small") __bad_copy_from(void); extern void __compiletime_error("copy destination size is too small") __bad_copy_to(void); static inline void copy_overflow(int size, unsigned long count) { WARN(1, "Buffer overflow detected (%d < %lu)!\n", size, count); } static __always_inline __must_check bool check_copy_size(const void *addr, size_t bytes, bool is_source) { int sz = __compiletime_object_size(addr); if (unlikely(sz >= 0 && sz < bytes)) { if (!__builtin_constant_p(bytes)) copy_overflow(sz, bytes); else if (is_source) __bad_copy_from(); else __bad_copy_to(); return false; } if (WARN_ON_ONCE(bytes > INT_MAX)) return false; check_object_size(addr, bytes, is_source); return true; } #ifndef arch_setup_new_exec static inline void arch_setup_new_exec(void) { } #endif #endif /* __KERNEL__ */ #endif /* _LINUX_THREAD_INFO_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 /* SPDX-License-Identifier: GPL-2.0 */ /* * include/linux/backing-dev.h * * low-level device information and state which is propagated up through * to high-level code. */ #ifndef _LINUX_BACKING_DEV_H #define _LINUX_BACKING_DEV_H #include <linux/kernel.h> #include <linux/fs.h> #include <linux/sched.h> #include <linux/blkdev.h> #include <linux/device.h> #include <linux/writeback.h> #include <linux/blk-cgroup.h> #include <linux/backing-dev-defs.h> #include <linux/slab.h> static inline struct backing_dev_info *bdi_get(struct backing_dev_info *bdi) { kref_get(&bdi->refcnt); return bdi; } struct backing_dev_info *bdi_get_by_id(u64 id); void bdi_put(struct backing_dev_info *bdi); __printf(2, 3) int bdi_register(struct backing_dev_info *bdi, const char *fmt, ...); __printf(2, 0) int bdi_register_va(struct backing_dev_info *bdi, const char *fmt, va_list args); void bdi_set_owner(struct backing_dev_info *bdi, struct device *owner); void bdi_unregister(struct backing_dev_info *bdi); struct backing_dev_info *bdi_alloc(int node_id); void wb_start_background_writeback(struct bdi_writeback *wb); void wb_workfn(struct work_struct *work); void wb_wakeup_delayed(struct bdi_writeback *wb); void wb_wait_for_completion(struct wb_completion *done); extern spinlock_t bdi_lock; extern struct list_head bdi_list; extern struct workqueue_struct *bdi_wq; extern struct workqueue_struct *bdi_async_bio_wq; static inline bool wb_has_dirty_io(struct bdi_writeback *wb) { return test_bit(WB_has_dirty_io, &wb->state); } static inline bool bdi_has_dirty_io(struct backing_dev_info *bdi) { /* * @bdi->tot_write_bandwidth is guaranteed to be > 0 if there are * any dirty wbs. See wb_update_write_bandwidth(). */ return atomic_long_read(&bdi->tot_write_bandwidth); } static inline void __add_wb_stat(struct bdi_writeback *wb, enum wb_stat_item item, s64 amount) { percpu_counter_add_batch(&wb->stat[item], amount, WB_STAT_BATCH); } static inline void inc_wb_stat(struct bdi_writeback *wb, enum wb_stat_item item) { __add_wb_stat(wb, item, 1); } static inline void dec_wb_stat(struct bdi_writeback *wb, enum wb_stat_item item) { __add_wb_stat(wb, item, -1); } static inline s64 wb_stat(struct bdi_writeback *wb, enum wb_stat_item item) { return percpu_counter_read_positive(&wb->stat[item]); } static inline s64 wb_stat_sum(struct bdi_writeback *wb, enum wb_stat_item item) { return percpu_counter_sum_positive(&wb->stat[item]); } extern void wb_writeout_inc(struct bdi_writeback *wb); /* * maximal error of a stat counter. */ static inline unsigned long wb_stat_error(void) { #ifdef CONFIG_SMP return nr_cpu_ids * WB_STAT_BATCH; #else return 1; #endif } int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio); int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio); /* * Flags in backing_dev_info::capability * * BDI_CAP_WRITEBACK: Supports dirty page writeback, and dirty pages * should contribute to accounting * BDI_CAP_WRITEBACK_ACCT: Automatically account writeback pages * BDI_CAP_STRICTLIMIT: Keep number of dirty pages below bdi threshold */ #define BDI_CAP_WRITEBACK (1 << 0) #define BDI_CAP_WRITEBACK_ACCT (1 << 1) #define BDI_CAP_STRICTLIMIT (1 << 2) extern struct backing_dev_info noop_backing_dev_info; /** * writeback_in_progress - determine whether there is writeback in progress * @wb: bdi_writeback of interest * * Determine whether there is writeback waiting to be handled against a * bdi_writeback. */ static inline bool writeback_in_progress(struct bdi_writeback *wb) { return test_bit(WB_writeback_running, &wb->state); } static inline struct backing_dev_info *inode_to_bdi(struct inode *inode) { struct super_block *sb; if (!inode) return &noop_backing_dev_info; sb = inode->i_sb; #ifdef CONFIG_BLOCK if (sb_is_blkdev_sb(sb)) return I_BDEV(inode)->bd_bdi; #endif return sb->s_bdi; } static inline int wb_congested(struct bdi_writeback *wb, int cong_bits) { return wb->congested & cong_bits; } long congestion_wait(int sync, long timeout); long wait_iff_congested(int sync, long timeout); static inline bool mapping_can_writeback(struct address_space *mapping) { return inode_to_bdi(mapping->host)->capabilities & BDI_CAP_WRITEBACK; } static inline int bdi_sched_wait(void *word) { schedule(); return 0; } #ifdef CONFIG_CGROUP_WRITEBACK struct bdi_writeback *wb_get_lookup(struct backing_dev_info *bdi, struct cgroup_subsys_state *memcg_css); struct bdi_writeback *wb_get_create(struct backing_dev_info *bdi, struct cgroup_subsys_state *memcg_css, gfp_t gfp); void wb_memcg_offline(struct mem_cgroup *memcg); void wb_blkcg_offline(struct blkcg *blkcg); int inode_congested(struct inode *inode, int cong_bits); /** * inode_cgwb_enabled - test whether cgroup writeback is enabled on an inode * @inode: inode of interest * * Cgroup writeback requires support from the filesystem. Also, both memcg and * iocg have to be on the default hierarchy. Test whether all conditions are * met. * * Note that the test result may change dynamically on the same inode * depending on how memcg and iocg are configured. */ static inline bool inode_cgwb_enabled(struct inode *inode) { struct backing_dev_info *bdi = inode_to_bdi(inode); return cgroup_subsys_on_dfl(memory_cgrp_subsys) && cgroup_subsys_on_dfl(io_cgrp_subsys) && (bdi->capabilities & BDI_CAP_WRITEBACK) && (inode->i_sb->s_iflags & SB_I_CGROUPWB); } /** * wb_find_current - find wb for %current on a bdi * @bdi: bdi of interest * * Find the wb of @bdi which matches both the memcg and blkcg of %current. * Must be called under rcu_read_lock() which protects the returend wb. * NULL if not found. */ static inline struct bdi_writeback *wb_find_current(struct backing_dev_info *bdi) { struct cgroup_subsys_state *memcg_css; struct bdi_writeback *wb; memcg_css = task_css(current, memory_cgrp_id); if (!memcg_css->parent) return &bdi->wb; wb = radix_tree_lookup(&bdi->cgwb_tree, memcg_css->id); /* * %current's blkcg equals the effective blkcg of its memcg. No * need to use the relatively expensive cgroup_get_e_css(). */ if (likely(wb && wb->blkcg_css == task_css(current, io_cgrp_id))) return wb; return NULL; } /** * wb_get_create_current - get or create wb for %current on a bdi * @bdi: bdi of interest * @gfp: allocation mask * * Equivalent to wb_get_create() on %current's memcg. This function is * called from a relatively hot path and optimizes the common cases using * wb_find_current(). */ static inline struct bdi_writeback * wb_get_create_current(struct backing_dev_info *bdi, gfp_t gfp) { struct bdi_writeback *wb; rcu_read_lock(); wb = wb_find_current(bdi); if (wb && unlikely(!wb_tryget(wb))) wb = NULL; rcu_read_unlock(); if (unlikely(!wb)) { struct cgroup_subsys_state *memcg_css; memcg_css = task_get_css(current, memory_cgrp_id); wb = wb_get_create(bdi, memcg_css, gfp); css_put(memcg_css); } return wb; } /** * inode_to_wb_is_valid - test whether an inode has a wb associated * @inode: inode of interest * * Returns %true if @inode has a wb associated. May be called without any * locking. */ static inline bool inode_to_wb_is_valid(struct inode *inode) { return inode->i_wb; } /** * inode_to_wb - determine the wb of an inode * @inode: inode of interest * * Returns the wb @inode is currently associated with. The caller must be * holding either @inode->i_lock, the i_pages lock, or the * associated wb's list_lock. */ static inline struct bdi_writeback *inode_to_wb(const struct inode *inode) { #ifdef CONFIG_LOCKDEP WARN_ON_ONCE(debug_locks && (!lockdep_is_held(&inode->i_lock) && !lockdep_is_held(&inode->i_mapping->i_pages.xa_lock) && !lockdep_is_held(&inode->i_wb->list_lock))); #endif return inode->i_wb; } /** * unlocked_inode_to_wb_begin - begin unlocked inode wb access transaction * @inode: target inode * @cookie: output param, to be passed to the end function * * The caller wants to access the wb associated with @inode but isn't * holding inode->i_lock, the i_pages lock or wb->list_lock. This * function determines the wb associated with @inode and ensures that the * association doesn't change until the transaction is finished with * unlocked_inode_to_wb_end(). * * The caller must call unlocked_inode_to_wb_end() with *@cookie afterwards and * can't sleep during the transaction. IRQs may or may not be disabled on * return. */ static inline struct bdi_writeback * unlocked_inode_to_wb_begin(struct inode *inode, struct wb_lock_cookie *cookie) { rcu_read_lock(); /* * Paired with store_release in inode_switch_wbs_work_fn() and * ensures that we see the new wb if we see cleared I_WB_SWITCH. */ cookie->locked = smp_load_acquire(&inode->i_state) & I_WB_SWITCH; if (unlikely(cookie->locked)) xa_lock_irqsave(&inode->i_mapping->i_pages, cookie->flags); /* * Protected by either !I_WB_SWITCH + rcu_read_lock() or the i_pages * lock. inode_to_wb() will bark. Deref directly. */ return inode->i_wb; } /** * unlocked_inode_to_wb_end - end inode wb access transaction * @inode: target inode * @cookie: @cookie from unlocked_inode_to_wb_begin() */ static inline void unlocked_inode_to_wb_end(struct inode *inode, struct wb_lock_cookie *cookie) { if (unlikely(cookie->locked)) xa_unlock_irqrestore(&inode->i_mapping->i_pages, cookie->flags); rcu_read_unlock(); } #else /* CONFIG_CGROUP_WRITEBACK */ static inline bool inode_cgwb_enabled(struct inode *inode) { return false; } static inline struct bdi_writeback *wb_find_current(struct backing_dev_info *bdi) { return &bdi->wb; } static inline struct bdi_writeback * wb_get_create_current(struct backing_dev_info *bdi, gfp_t gfp) { return &bdi->wb; } static inline bool inode_to_wb_is_valid(struct inode *inode) { return true; } static inline struct bdi_writeback *inode_to_wb(struct inode *inode) { return &inode_to_bdi(inode)->wb; } static inline struct bdi_writeback * unlocked_inode_to_wb_begin(struct inode *inode, struct wb_lock_cookie *cookie) { return inode_to_wb(inode); } static inline void unlocked_inode_to_wb_end(struct inode *inode, struct wb_lock_cookie *cookie) { } static inline void wb_memcg_offline(struct mem_cgroup *memcg) { } static inline void wb_blkcg_offline(struct blkcg *blkcg) { } static inline int inode_congested(struct inode *inode, int cong_bits) { return wb_congested(&inode_to_bdi(inode)->wb, cong_bits); } #endif /* CONFIG_CGROUP_WRITEBACK */ static inline int inode_read_congested(struct inode *inode) { return inode_congested(inode, 1 << WB_sync_congested); } static inline int inode_write_congested(struct inode *inode) { return inode_congested(inode, 1 << WB_async_congested); } static inline int inode_rw_congested(struct inode *inode) { return inode_congested(inode, (1 << WB_sync_congested) | (1 << WB_async_congested)); } static inline int bdi_congested(struct backing_dev_info *bdi, int cong_bits) { return wb_congested(&bdi->wb, cong_bits); } static inline int bdi_read_congested(struct backing_dev_info *bdi) { return bdi_congested(bdi, 1 << WB_sync_congested); } static inline int bdi_write_congested(struct backing_dev_info *bdi) { return bdi_congested(bdi, 1 << WB_async_congested); } static inline int bdi_rw_congested(struct backing_dev_info *bdi) { return bdi_congested(bdi, (1 << WB_sync_congested) | (1 << WB_async_congested)); } const char *bdi_dev_name(struct backing_dev_info *bdi); #endif /* _LINUX_BACKING_DEV_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _X_TABLES_H #define _X_TABLES_H #include <linux/netdevice.h> #include <linux/static_key.h> #include <linux/netfilter.h> #include <uapi/linux/netfilter/x_tables.h> /* Test a struct->invflags and a boolean for inequality */ #define NF_INVF(ptr, flag, boolean) \ ((boolean) ^ !!((ptr)->invflags & (flag))) /** * struct xt_action_param - parameters for matches/targets * * @match: the match extension * @target: the target extension * @matchinfo: per-match data * @targetinfo: per-target data * @state: pointer to hook state this packet came from * @fragoff: packet is a fragment, this is the data offset * @thoff: position of transport header relative to skb->data * * Fields written to by extensions: * * @hotdrop: drop packet if we had inspection problems */ struct xt_action_param { union { const struct xt_match *match; const struct xt_target *target; }; union { const void *matchinfo, *targinfo; }; const struct nf_hook_state *state; int fragoff; unsigned int thoff; bool hotdrop; }; static inline struct net *xt_net(const struct xt_action_param *par) { return par->state->net; } static inline struct net_device *xt_in(const struct xt_action_param *par) { return par->state->in; } static inline const char *xt_inname(const struct xt_action_param *par) { return par->state->in->name; } static inline struct net_device *xt_out(const struct xt_action_param *par) { return par->state->out; } static inline const char *xt_outname(const struct xt_action_param *par) { return par->state->out->name; } static inline unsigned int xt_hooknum(const struct xt_action_param *par) { return par->state->hook; } static inline u_int8_t xt_family(const struct xt_action_param *par) { return par->state->pf; } /** * struct xt_mtchk_param - parameters for match extensions' * checkentry functions * * @net: network namespace through which the check was invoked * @table: table the rule is tried to be inserted into * @entryinfo: the family-specific rule data * (struct ipt_ip, ip6t_ip, arpt_arp or (note) ebt_entry) * @match: struct xt_match through which this function was invoked * @matchinfo: per-match data * @hook_mask: via which hooks the new rule is reachable * Other fields as above. */ struct xt_mtchk_param { struct net *net; const char *table; const void *entryinfo; const struct xt_match *match; void *matchinfo; unsigned int hook_mask; u_int8_t family; bool nft_compat; }; /** * struct xt_mdtor_param - match destructor parameters * Fields as above. */ struct xt_mtdtor_param { struct net *net; const struct xt_match *match; void *matchinfo; u_int8_t family; }; /** * struct xt_tgchk_param - parameters for target extensions' * checkentry functions * * @entryinfo: the family-specific rule data * (struct ipt_entry, ip6t_entry, arpt_entry, ebt_entry) * * Other fields see above. */ struct xt_tgchk_param { struct net *net; const char *table; const void *entryinfo; const struct xt_target *target; void *targinfo; unsigned int hook_mask; u_int8_t family; bool nft_compat; }; /* Target destructor parameters */ struct xt_tgdtor_param { struct net *net; const struct xt_target *target; void *targinfo; u_int8_t family; }; struct xt_match { struct list_head list; const char name[XT_EXTENSION_MAXNAMELEN]; u_int8_t revision; /* Return true or false: return FALSE and set *hotdrop = 1 to force immediate packet drop. */ /* Arguments changed since 2.6.9, as this must now handle non-linear skb, using skb_header_pointer and skb_ip_make_writable. */ bool (*match)(const struct sk_buff *skb, struct xt_action_param *); /* Called when user tries to insert an entry of this type. */ int (*checkentry)(const struct xt_mtchk_param *); /* Called when entry of this type deleted. */ void (*destroy)(const struct xt_mtdtor_param *); #ifdef CONFIG_COMPAT /* Called when userspace align differs from kernel space one */ void (*compat_from_user)(void *dst, const void *src); int (*compat_to_user)(void __user *dst, const void *src); #endif /* Set this to THIS_MODULE if you are a module, otherwise NULL */ struct module *me; const char *table; unsigned int matchsize; unsigned int usersize; #ifdef CONFIG_COMPAT unsigned int compatsize; #endif unsigned int hooks; unsigned short proto; unsigned short family; }; /* Registration hooks for targets. */ struct xt_target { struct list_head list; const char name[XT_EXTENSION_MAXNAMELEN]; u_int8_t revision; /* Returns verdict. Argument order changed since 2.6.9, as this must now handle non-linear skbs, using skb_copy_bits and skb_ip_make_writable. */ unsigned int (*target)(struct sk_buff *skb, const struct xt_action_param *); /* Called when user tries to insert an entry of this type: hook_mask is a bitmask of hooks from which it can be called. */ /* Should return 0 on success or an error code otherwise (-Exxxx). */ int (*checkentry)(const struct xt_tgchk_param *); /* Called when entry of this type deleted. */ void (*destroy)(const struct xt_tgdtor_param *); #ifdef CONFIG_COMPAT /* Called when userspace align differs from kernel space one */ void (*compat_from_user)(void *dst, const void *src); int (*compat_to_user)(void __user *dst, const void *src); #endif /* Set this to THIS_MODULE if you are a module, otherwise NULL */ struct module *me; const char *table; unsigned int targetsize; unsigned int usersize; #ifdef CONFIG_COMPAT unsigned int compatsize; #endif unsigned int hooks; unsigned short proto; unsigned short family; }; /* Furniture shopping... */ struct xt_table { struct list_head list; /* What hooks you will enter on */ unsigned int valid_hooks; /* Man behind the curtain... */ struct xt_table_info *private; /* Set this to THIS_MODULE if you are a module, otherwise NULL */ struct module *me; u_int8_t af; /* address/protocol family */ int priority; /* hook order */ /* called when table is needed in the given netns */ int (*table_init)(struct net *net); /* A unique name... */ const char name[XT_TABLE_MAXNAMELEN]; }; #include <linux/netfilter_ipv4.h> /* The table itself */ struct xt_table_info { /* Size per table */ unsigned int size; /* Number of entries: FIXME. --RR */ unsigned int number; /* Initial number of entries. Needed for module usage count */ unsigned int initial_entries; /* Entry points and underflows */ unsigned int hook_entry[NF_INET_NUMHOOKS]; unsigned int underflow[NF_INET_NUMHOOKS]; /* * Number of user chains. Since tables cannot have loops, at most * @stacksize jumps (number of user chains) can possibly be made. */ unsigned int stacksize; void ***jumpstack; unsigned char entries[] __aligned(8); }; int xt_register_target(struct xt_target *target); void xt_unregister_target(struct xt_target *target); int xt_register_targets(struct xt_target *target, unsigned int n); void xt_unregister_targets(struct xt_target *target, unsigned int n); int xt_register_match(struct xt_match *target); void xt_unregister_match(struct xt_match *target); int xt_register_matches(struct xt_match *match, unsigned int n); void xt_unregister_matches(struct xt_match *match, unsigned int n); int xt_check_entry_offsets(const void *base, const char *elems, unsigned int target_offset, unsigned int next_offset); int xt_check_table_hooks(const struct xt_table_info *info, unsigned int valid_hooks); unsigned int *xt_alloc_entry_offsets(unsigned int size); bool xt_find_jump_offset(const unsigned int *offsets, unsigned int target, unsigned int size); int xt_check_proc_name(const char *name, unsigned int size); int xt_check_match(struct xt_mtchk_param *, unsigned int size, u16 proto, bool inv_proto); int xt_check_target(struct xt_tgchk_param *, unsigned int size, u16 proto, bool inv_proto); int xt_match_to_user(const struct xt_entry_match *m, struct xt_entry_match __user *u); int xt_target_to_user(const struct xt_entry_target *t, struct xt_entry_target __user *u); int xt_data_to_user(void __user *dst, const void *src, int usersize, int size, int aligned_size); void *xt_copy_counters(sockptr_t arg, unsigned int len, struct xt_counters_info *info); struct xt_counters *xt_counters_alloc(unsigned int counters); struct xt_table *xt_register_table(struct net *net, const struct xt_table *table, struct xt_table_info *bootstrap, struct xt_table_info *newinfo); void *xt_unregister_table(struct xt_table *table); struct xt_table_info *xt_replace_table(struct xt_table *table, unsigned int num_counters, struct xt_table_info *newinfo, int *error); struct xt_match *xt_find_match(u8 af, const char *name, u8 revision); struct xt_match *xt_request_find_match(u8 af, const char *name, u8 revision); struct xt_target *xt_request_find_target(u8 af, const char *name, u8 revision); int xt_find_revision(u8 af, const char *name, u8 revision, int target, int *err); struct xt_table *xt_find_table_lock(struct net *net, u_int8_t af, const char *name); struct xt_table *xt_request_find_table_lock(struct net *net, u_int8_t af, const char *name); void xt_table_unlock(struct xt_table *t); int xt_proto_init(struct net *net, u_int8_t af); void xt_proto_fini(struct net *net, u_int8_t af); struct xt_table_info *xt_alloc_table_info(unsigned int size); void xt_free_table_info(struct xt_table_info *info); /** * xt_recseq - recursive seqcount for netfilter use * * Packet processing changes the seqcount only if no recursion happened * get_counters() can use read_seqcount_begin()/read_seqcount_retry(), * because we use the normal seqcount convention : * Low order bit set to 1 if a writer is active. */ DECLARE_PER_CPU(seqcount_t, xt_recseq); /* xt_tee_enabled - true if x_tables needs to handle reentrancy * * Enabled if current ip(6)tables ruleset has at least one -j TEE rule. */ extern struct static_key xt_tee_enabled; /** * xt_write_recseq_begin - start of a write section * * Begin packet processing : all readers must wait the end * 1) Must be called with preemption disabled * 2) softirqs must be disabled too (or we should use this_cpu_add()) * Returns : * 1 if no recursion on this cpu * 0 if recursion detected */ static inline unsigned int xt_write_recseq_begin(void) { unsigned int addend; /* * Low order bit of sequence is set if we already * called xt_write_recseq_begin(). */ addend = (__this_cpu_read(xt_recseq.sequence) + 1) & 1; /* * This is kind of a write_seqcount_begin(), but addend is 0 or 1 * We dont check addend value to avoid a test and conditional jump, * since addend is most likely 1 */ __this_cpu_add(xt_recseq.sequence, addend); smp_mb(); return addend; } /** * xt_write_recseq_end - end of a write section * @addend: return value from previous xt_write_recseq_begin() * * End packet processing : all readers can proceed * 1) Must be called with preemption disabled * 2) softirqs must be disabled too (or we should use this_cpu_add()) */ static inline void xt_write_recseq_end(unsigned int addend) { /* this is kind of a write_seqcount_end(), but addend is 0 or 1 */ smp_wmb(); __this_cpu_add(xt_recseq.sequence, addend); } /* * This helper is performance critical and must be inlined */ static inline unsigned long ifname_compare_aligned(const char *_a, const char *_b, const char *_mask) { const unsigned long *a = (const unsigned long *)_a; const unsigned long *b = (const unsigned long *)_b; const unsigned long *mask = (const unsigned long *)_mask; unsigned long ret; ret = (a[0] ^ b[0]) & mask[0]; if (IFNAMSIZ > sizeof(unsigned long)) ret |= (a[1] ^ b[1]) & mask[1]; if (IFNAMSIZ > 2 * sizeof(unsigned long)) ret |= (a[2] ^ b[2]) & mask[2]; if (IFNAMSIZ > 3 * sizeof(unsigned long)) ret |= (a[3] ^ b[3]) & mask[3]; BUILD_BUG_ON(IFNAMSIZ > 4 * sizeof(unsigned long)); return ret; } struct xt_percpu_counter_alloc_state { unsigned int off; const char __percpu *mem; }; bool xt_percpu_counter_alloc(struct xt_percpu_counter_alloc_state *state, struct xt_counters *counter); void xt_percpu_counter_free(struct xt_counters *cnt); static inline struct xt_counters * xt_get_this_cpu_counter(struct xt_counters *cnt) { if (nr_cpu_ids > 1) return this_cpu_ptr((void __percpu *) (unsigned long) cnt->pcnt); return cnt; } static inline struct xt_counters * xt_get_per_cpu_counter(struct xt_counters *cnt, unsigned int cpu) { if (nr_cpu_ids > 1) return per_cpu_ptr((void __percpu *) (unsigned long) cnt->pcnt, cpu); return cnt; } struct nf_hook_ops *xt_hook_ops_alloc(const struct xt_table *, nf_hookfn *); #ifdef CONFIG_COMPAT #include <net/compat.h> struct compat_xt_entry_match { union { struct { u_int16_t match_size; char name[XT_FUNCTION_MAXNAMELEN - 1]; u_int8_t revision; } user; struct { u_int16_t match_size; compat_uptr_t match; } kernel; u_int16_t match_size; } u; unsigned char data[]; }; struct compat_xt_entry_target { union { struct { u_int16_t target_size; char name[XT_FUNCTION_MAXNAMELEN - 1]; u_int8_t revision; } user; struct { u_int16_t target_size; compat_uptr_t target; } kernel; u_int16_t target_size; } u; unsigned char data[]; }; /* FIXME: this works only on 32 bit tasks * need to change whole approach in order to calculate align as function of * current task alignment */ struct compat_xt_counters { compat_u64 pcnt, bcnt; /* Packet and byte counters */ }; struct compat_xt_counters_info { char name[XT_TABLE_MAXNAMELEN]; compat_uint_t num_counters; struct compat_xt_counters counters[]; }; struct _compat_xt_align { __u8 u8; __u16 u16; __u32 u32; compat_u64 u64; }; #define COMPAT_XT_ALIGN(s) __ALIGN_KERNEL((s), __alignof__(struct _compat_xt_align)) void xt_compat_lock(u_int8_t af); void xt_compat_unlock(u_int8_t af); int xt_compat_add_offset(u_int8_t af, unsigned int offset, int delta); void xt_compat_flush_offsets(u_int8_t af); int xt_compat_init_offsets(u8 af, unsigned int number); int xt_compat_calc_jump(u_int8_t af, unsigned int offset); int xt_compat_match_offset(const struct xt_match *match); void xt_compat_match_from_user(struct xt_entry_match *m, void **dstptr, unsigned int *size); int xt_compat_match_to_user(const struct xt_entry_match *m, void __user **dstptr, unsigned int *size); int xt_compat_target_offset(const struct xt_target *target); void xt_compat_target_from_user(struct xt_entry_target *t, void **dstptr, unsigned int *size); int xt_compat_target_to_user(const struct xt_entry_target *t, void __user **dstptr, unsigned int *size); int xt_compat_check_entry_offsets(const void *base, const char *elems, unsigned int target_offset, unsigned int next_offset); #endif /* CONFIG_COMPAT */ #endif /* _X_TABLES_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* Definitions for key type implementations * * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) */ #ifndef _LINUX_KEY_TYPE_H #define _LINUX_KEY_TYPE_H #include <linux/key.h> #include <linux/errno.h> #ifdef CONFIG_KEYS struct kernel_pkey_query; struct kernel_pkey_params; /* * Pre-parsed payload, used by key add, update and instantiate. * * This struct will be cleared and data and datalen will be set with the data * and length parameters from the caller and quotalen will be set from * def_datalen from the key type. Then if the preparse() op is provided by the * key type, that will be called. Then the struct will be passed to the * instantiate() or the update() op. * * If the preparse() op is given, the free_preparse() op will be called to * clear the contents. */ struct key_preparsed_payload { char *description; /* Proposed key description (or NULL) */ union key_payload payload; /* Proposed payload */ const void *data; /* Raw data */ size_t datalen; /* Raw datalen */ size_t quotalen; /* Quota length for proposed payload */ time64_t expiry; /* Expiry time of key */ } __randomize_layout; typedef int (*request_key_actor_t)(struct key *auth_key, void *aux); /* * Preparsed matching criterion. */ struct key_match_data { /* Comparison function, defaults to exact description match, but can be * overridden by type->match_preparse(). Should return true if a match * is found and false if not. */ bool (*cmp)(const struct key *key, const struct key_match_data *match_data); const void *raw_data; /* Raw match data */ void *preparsed; /* For ->match_preparse() to stash stuff */ unsigned lookup_type; /* Type of lookup for this search. */ #define KEYRING_SEARCH_LOOKUP_DIRECT 0x0000 /* Direct lookup by description. */ #define KEYRING_SEARCH_LOOKUP_ITERATE 0x0001 /* Iterative search. */ }; /* * kernel managed key type definition */ struct key_type { /* name of the type */ const char *name; /* default payload length for quota precalculation (optional) * - this can be used instead of calling key_payload_reserve(), that * function only needs to be called if the real datalen is different */ size_t def_datalen; unsigned int flags; #define KEY_TYPE_NET_DOMAIN 0x00000001 /* Keys of this type have a net namespace domain */ /* vet a description */ int (*vet_description)(const char *description); /* Preparse the data blob from userspace that is to be the payload, * generating a proposed description and payload that will be handed to * the instantiate() and update() ops. */ int (*preparse)(struct key_preparsed_payload *prep); /* Free a preparse data structure. */ void (*free_preparse)(struct key_preparsed_payload *prep); /* instantiate a key of this type * - this method should call key_payload_reserve() to determine if the * user's quota will hold the payload */ int (*instantiate)(struct key *key, struct key_preparsed_payload *prep); /* update a key of this type (optional) * - this method should call key_payload_reserve() to recalculate the * quota consumption * - the key must be locked against read when modifying */ int (*update)(struct key *key, struct key_preparsed_payload *prep); /* Preparse the data supplied to ->match() (optional). The * data to be preparsed can be found in match_data->raw_data. * The lookup type can also be set by this function. */ int (*match_preparse)(struct key_match_data *match_data); /* Free preparsed match data (optional). This should be supplied it * ->match_preparse() is supplied. */ void (*match_free)(struct key_match_data *match_data); /* clear some of the data from a key on revokation (optional) * - the key's semaphore will be write-locked by the caller */ void (*revoke)(struct key *key); /* clear the data from a key (optional) */ void (*destroy)(struct key *key); /* describe a key */ void (*describe)(const struct key *key, struct seq_file *p); /* read a key's data (optional) * - permission checks will be done by the caller * - the key's semaphore will be readlocked by the caller * - should return the amount of data that could be read, no matter how * much is copied into the buffer * - shouldn't do the copy if the buffer is NULL */ long (*read)(const struct key *key, char *buffer, size_t buflen); /* handle request_key() for this type instead of invoking * /sbin/request-key (optional) * - key is the key to instantiate * - authkey is the authority to assume when instantiating this key * - op is the operation to be done, usually "create" * - the call must not return until the instantiation process has run * its course */ request_key_actor_t request_key; /* Look up a keyring access restriction (optional) * * - NULL is a valid return value (meaning the requested restriction * is known but will never block addition of a key) * - should return -EINVAL if the restriction is unknown */ struct key_restriction *(*lookup_restriction)(const char *params); /* Asymmetric key accessor functions. */ int (*asym_query)(const struct kernel_pkey_params *params, struct kernel_pkey_query *info); int (*asym_eds_op)(struct kernel_pkey_params *params, const void *in, void *out); int (*asym_verify_signature)(struct kernel_pkey_params *params, const void *in, const void *in2); /* internal fields */ struct list_head link; /* link in types list */ struct lock_class_key lock_class; /* key->sem lock class */ } __randomize_layout; extern struct key_type key_type_keyring; extern int register_key_type(struct key_type *ktype); extern void unregister_key_type(struct key_type *ktype); extern int key_payload_reserve(struct key *key, size_t datalen); extern int key_instantiate_and_link(struct key *key, const void *data, size_t datalen, struct key *keyring, struct key *authkey); extern int key_reject_and_link(struct key *key, unsigned timeout, unsigned error, struct key *keyring, struct key *authkey); extern void complete_request_key(struct key *authkey, int error); static inline int key_negate_and_link(struct key *key, unsigned timeout, struct key *keyring, struct key *authkey) { return key_reject_and_link(key, timeout, ENOKEY, keyring, authkey); } extern int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep); #endif /* CONFIG_KEYS */ #endif /* _LINUX_KEY_TYPE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Definitions for the 'struct sk_buff' memory handlers. * * Authors: * Alan Cox, <gw4pts@gw4pts.ampr.org> * Florian La Roche, <rzsfl@rz.uni-sb.de> */ #ifndef _LINUX_SKBUFF_H #define _LINUX_SKBUFF_H #include <linux/kernel.h> #include <linux/compiler.h> #include <linux/time.h> #include <linux/bug.h> #include <linux/bvec.h> #include <linux/cache.h> #include <linux/rbtree.h> #include <linux/socket.h> #include <linux/refcount.h> #include <linux/atomic.h> #include <asm/types.h> #include <linux/spinlock.h> #include <linux/net.h> #include <linux/textsearch.h> #include <net/checksum.h> #include <linux/rcupdate.h> #include <linux/hrtimer.h> #include <linux/dma-mapping.h> #include <linux/netdev_features.h> #include <linux/sched.h> #include <linux/sched/clock.h> #include <net/flow_dissector.h> #include <linux/splice.h> #include <linux/in6.h> #include <linux/if_packet.h> #include <net/flow.h> #if IS_ENABLED(CONFIG_NF_CONNTRACK) #include <linux/netfilter/nf_conntrack_common.h> #endif /* The interface for checksum offload between the stack and networking drivers * is as follows... * * A. IP checksum related features * * Drivers advertise checksum offload capabilities in the features of a device. * From the stack's point of view these are capabilities offered by the driver. * A driver typically only advertises features that it is capable of offloading * to its device. * * The checksum related features are: * * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one * IP (one's complement) checksum for any combination * of protocols or protocol layering. The checksum is * computed and set in a packet per the CHECKSUM_PARTIAL * interface (see below). * * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain * TCP or UDP packets over IPv4. These are specifically * unencapsulated packets of the form IPv4|TCP or * IPv4|UDP where the Protocol field in the IPv4 header * is TCP or UDP. The IPv4 header may contain IP options. * This feature cannot be set in features for a device * with NETIF_F_HW_CSUM also set. This feature is being * DEPRECATED (see below). * * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain * TCP or UDP packets over IPv6. These are specifically * unencapsulated packets of the form IPv6|TCP or * IPv6|UDP where the Next Header field in the IPv6 * header is either TCP or UDP. IPv6 extension headers * are not supported with this feature. This feature * cannot be set in features for a device with * NETIF_F_HW_CSUM also set. This feature is being * DEPRECATED (see below). * * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload. * This flag is only used to disable the RX checksum * feature for a device. The stack will accept receive * checksum indication in packets received on a device * regardless of whether NETIF_F_RXCSUM is set. * * B. Checksumming of received packets by device. Indication of checksum * verification is set in skb->ip_summed. Possible values are: * * CHECKSUM_NONE: * * Device did not checksum this packet e.g. due to lack of capabilities. * The packet contains full (though not verified) checksum in packet but * not in skb->csum. Thus, skb->csum is undefined in this case. * * CHECKSUM_UNNECESSARY: * * The hardware you're dealing with doesn't calculate the full checksum * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY * if their checksums are okay. skb->csum is still undefined in this case * though. A driver or device must never modify the checksum field in the * packet even if checksum is verified. * * CHECKSUM_UNNECESSARY is applicable to following protocols: * TCP: IPv6 and IPv4. * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a * zero UDP checksum for either IPv4 or IPv6, the networking stack * may perform further validation in this case. * GRE: only if the checksum is present in the header. * SCTP: indicates the CRC in SCTP header has been validated. * FCOE: indicates the CRC in FC frame has been validated. * * skb->csum_level indicates the number of consecutive checksums found in * the packet minus one that have been verified as CHECKSUM_UNNECESSARY. * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet * and a device is able to verify the checksums for UDP (possibly zero), * GRE (checksum flag is set) and TCP, skb->csum_level would be set to * two. If the device were only able to verify the UDP checksum and not * GRE, either because it doesn't support GRE checksum or because GRE * checksum is bad, skb->csum_level would be set to zero (TCP checksum is * not considered in this case). * * CHECKSUM_COMPLETE: * * This is the most generic way. The device supplied checksum of the _whole_ * packet as seen by netif_rx() and fills in skb->csum. This means the * hardware doesn't need to parse L3/L4 headers to implement this. * * Notes: * - Even if device supports only some protocols, but is able to produce * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols. * * CHECKSUM_PARTIAL: * * A checksum is set up to be offloaded to a device as described in the * output description for CHECKSUM_PARTIAL. This may occur on a packet * received directly from another Linux OS, e.g., a virtualized Linux kernel * on the same host, or it may be set in the input path in GRO or remote * checksum offload. For the purposes of checksum verification, the checksum * referred to by skb->csum_start + skb->csum_offset and any preceding * checksums in the packet are considered verified. Any checksums in the * packet that are after the checksum being offloaded are not considered to * be verified. * * C. Checksumming on transmit for non-GSO. The stack requests checksum offload * in the skb->ip_summed for a packet. Values are: * * CHECKSUM_PARTIAL: * * The driver is required to checksum the packet as seen by hard_start_xmit() * from skb->csum_start up to the end, and to record/write the checksum at * offset skb->csum_start + skb->csum_offset. A driver may verify that the * csum_start and csum_offset values are valid values given the length and * offset of the packet, but it should not attempt to validate that the * checksum refers to a legitimate transport layer checksum -- it is the * purview of the stack to validate that csum_start and csum_offset are set * correctly. * * When the stack requests checksum offload for a packet, the driver MUST * ensure that the checksum is set correctly. A driver can either offload the * checksum calculation to the device, or call skb_checksum_help (in the case * that the device does not support offload for a particular checksum). * * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate * checksum offload capability. * skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based * on network device checksumming capabilities: if a packet does not match * them, skb_checksum_help or skb_crc32c_help (depending on the value of * csum_not_inet, see item D.) is called to resolve the checksum. * * CHECKSUM_NONE: * * The skb was already checksummed by the protocol, or a checksum is not * required. * * CHECKSUM_UNNECESSARY: * * This has the same meaning as CHECKSUM_NONE for checksum offload on *