1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * NET Generic infrastructure for INET connection oriented protocols. * * Definitions for inet_connection_sock * * Authors: Many people, see the TCP sources * * From code originally in TCP */ #ifndef _INET_CONNECTION_SOCK_H #define _INET_CONNECTION_SOCK_H #include <linux/compiler.h> #include <linux/string.h> #include <linux/timer.h> #include <linux/poll.h> #include <linux/kernel.h> #include <linux/sockptr.h> #include <net/inet_sock.h> #include <net/request_sock.h> /* Cancel timers, when they are not required. */ #undef INET_CSK_CLEAR_TIMERS struct inet_bind_bucket; struct tcp_congestion_ops; /* * Pointers to address related TCP functions * (i.e. things that depend on the address family) */ struct inet_connection_sock_af_ops { int (*queue_xmit)(struct sock *sk, struct sk_buff *skb, struct flowi *fl); void (*send_check)(struct sock *sk, struct sk_buff *skb); int (*rebuild_header)(struct sock *sk); void (*sk_rx_dst_set)(struct sock *sk, const struct sk_buff *skb); int (*conn_request)(struct sock *sk, struct sk_buff *skb); struct sock *(*syn_recv_sock)(const struct sock *sk, struct sk_buff *skb, struct request_sock *req, struct dst_entry *dst, struct request_sock *req_unhash, bool *own_req); u16 net_header_len; u16 net_frag_header_len; u16 sockaddr_len; int (*setsockopt)(struct sock *sk, int level, int optname, sockptr_t optval, unsigned int optlen); int (*getsockopt)(struct sock *sk, int level, int optname, char __user *optval, int __user *optlen); void (*addr2sockaddr)(struct sock *sk, struct sockaddr *); void (*mtu_reduced)(struct sock *sk); }; /** inet_connection_sock - INET connection oriented sock * * @icsk_accept_queue: FIFO of established children * @icsk_bind_hash: Bind node * @icsk_timeout: Timeout * @icsk_retransmit_timer: Resend (no ack) * @icsk_rto: Retransmit timeout * @icsk_pmtu_cookie Last pmtu seen by socket * @icsk_ca_ops Pluggable congestion control hook * @icsk_af_ops Operations which are AF_INET{4,6} specific * @icsk_ulp_ops Pluggable ULP control hook * @icsk_ulp_data ULP private data * @icsk_clean_acked Clean acked data hook * @icsk_listen_portaddr_node hash to the portaddr listener hashtable * @icsk_ca_state: Congestion control state * @icsk_retransmits: Number of unrecovered [RTO] timeouts * @icsk_pending: Scheduled timer event * @icsk_backoff: Backoff * @icsk_syn_retries: Number of allowed SYN (or equivalent) retries * @icsk_probes_out: unanswered 0 window probes * @icsk_ext_hdr_len: Network protocol overhead (IP/IPv6 options) * @icsk_ack: Delayed ACK control data * @icsk_mtup; MTU probing control data * @icsk_probes_tstamp: Probe timestamp (cleared by non-zero window ack) * @icsk_user_timeout: TCP_USER_TIMEOUT value */ struct inet_connection_sock { /* inet_sock has to be the first member! */ struct inet_sock icsk_inet; struct request_sock_queue icsk_accept_queue; struct inet_bind_bucket *icsk_bind_hash; unsigned long icsk_timeout; struct timer_list icsk_retransmit_timer; struct timer_list icsk_delack_timer; __u32 icsk_rto; __u32 icsk_rto_min; __u32 icsk_delack_max; __u32 icsk_pmtu_cookie; const struct tcp_congestion_ops *icsk_ca_ops; const struct inet_connection_sock_af_ops *icsk_af_ops; const struct tcp_ulp_ops *icsk_ulp_ops; void __rcu *icsk_ulp_data; void (*icsk_clean_acked)(struct sock *sk, u32 acked_seq); struct hlist_node icsk_listen_portaddr_node; unsigned int (*icsk_sync_mss)(struct sock *sk, u32 pmtu); __u8 icsk_ca_state:5, icsk_ca_initialized:1, icsk_ca_setsockopt:1, icsk_ca_dst_locked:1; __u8 icsk_retransmits; __u8 icsk_pending; __u8 icsk_backoff; __u8 icsk_syn_retries; __u8 icsk_probes_out; __u16 icsk_ext_hdr_len; struct { __u8 pending; /* ACK is pending */ __u8 quick; /* Scheduled number of quick acks */ __u8 pingpong; /* The session is interactive */ __u8 retry; /* Number of attempts */ __u32 ato; /* Predicted tick of soft clock */ unsigned long timeout; /* Currently scheduled timeout */ __u32 lrcvtime; /* timestamp of last received data packet */ __u16 last_seg_size; /* Size of last incoming segment */ __u16 rcv_mss; /* MSS used for delayed ACK decisions */ } icsk_ack; struct { int enabled; /* Range of MTUs to search */ int search_high; int search_low; /* Information on the current probe. */ int probe_size; u32 probe_timestamp; } icsk_mtup; u32 icsk_probes_tstamp; u32 icsk_user_timeout; u64 icsk_ca_priv[104 / sizeof(u64)]; #define ICSK_CA_PRIV_SIZE (13 * sizeof(u64)) }; #define ICSK_TIME_RETRANS 1 /* Retransmit timer */ #define ICSK_TIME_DACK 2 /* Delayed ack timer */ #define ICSK_TIME_PROBE0 3 /* Zero window probe timer */ #define ICSK_TIME_EARLY_RETRANS 4 /* Early retransmit timer */ #define ICSK_TIME_LOSS_PROBE 5 /* Tail loss probe timer */ #define ICSK_TIME_REO_TIMEOUT 6 /* Reordering timer */ static inline struct inet_connection_sock *inet_csk(const struct sock *sk) { return (struct inet_connection_sock *)sk; } static inline void *inet_csk_ca(const struct sock *sk) { return (void *)inet_csk(sk)->icsk_ca_priv; } struct sock *inet_csk_clone_lock(const struct sock *sk, const struct request_sock *req, const gfp_t priority); enum inet_csk_ack_state_t { ICSK_ACK_SCHED = 1, ICSK_ACK_TIMER = 2, ICSK_ACK_PUSHED = 4, ICSK_ACK_PUSHED2 = 8, ICSK_ACK_NOW = 16 /* Send the next ACK immediately (once) */ }; void inet_csk_init_xmit_timers(struct sock *sk, void (*retransmit_handler)(struct timer_list *), void (*delack_handler)(struct timer_list *), void (*keepalive_handler)(struct timer_list *)); void inet_csk_clear_xmit_timers(struct sock *sk); static inline void inet_csk_schedule_ack(struct sock *sk) { inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_SCHED; } static inline int inet_csk_ack_scheduled(const struct sock *sk) { return inet_csk(sk)->icsk_ack.pending & ICSK_ACK_SCHED; } static inline void inet_csk_delack_init(struct sock *sk) { memset(&inet_csk(sk)->icsk_ack, 0, sizeof(inet_csk(sk)->icsk_ack)); } void inet_csk_delete_keepalive_timer(struct sock *sk); void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long timeout); static inline void inet_csk_clear_xmit_timer(struct sock *sk, const int what) { struct inet_connection_sock *icsk = inet_csk(sk); if (what == ICSK_TIME_RETRANS || what == ICSK_TIME_PROBE0) { icsk->icsk_pending = 0; #ifdef INET_CSK_CLEAR_TIMERS sk_stop_timer(sk, &icsk->icsk_retransmit_timer); #endif } else if (what == ICSK_TIME_DACK) { icsk->icsk_ack.pending = 0; icsk->icsk_ack.retry = 0; #ifdef INET_CSK_CLEAR_TIMERS sk_stop_timer(sk, &icsk->icsk_delack_timer); #endif } else { pr_debug("inet_csk BUG: unknown timer value\n"); } } /* * Reset the retransmission timer */ static inline void inet_csk_reset_xmit_timer(struct sock *sk, const int what, unsigned long when, const unsigned long max_when) { struct inet_connection_sock *icsk = inet_csk(sk); if (when > max_when) { pr_debug("reset_xmit_timer: sk=%p %d when=0x%lx, caller=%p\n", sk, what, when, (void *)_THIS_IP_); when = max_when; } if (what == ICSK_TIME_RETRANS || what == ICSK_TIME_PROBE0 || what == ICSK_TIME_EARLY_RETRANS || what == ICSK_TIME_LOSS_PROBE || what == ICSK_TIME_REO_TIMEOUT) { icsk->icsk_pending = what; icsk->icsk_timeout = jiffies + when; sk_reset_timer(sk, &icsk->icsk_retransmit_timer, icsk->icsk_timeout); } else if (what == ICSK_TIME_DACK) { icsk->icsk_ack.pending |= ICSK_ACK_TIMER; icsk->icsk_ack.timeout = jiffies + when; sk_reset_timer(sk, &icsk->icsk_delack_timer, icsk->icsk_ack.timeout); } else { pr_debug("inet_csk BUG: unknown timer value\n"); } } static inline unsigned long inet_csk_rto_backoff(const struct inet_connection_sock *icsk, unsigned long max_when) { u64 when = (u64)icsk->icsk_rto << icsk->icsk_backoff; return (unsigned long)min_t(u64, when, max_when); } struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern); int inet_csk_get_port(struct sock *sk, unsigned short snum); struct dst_entry *inet_csk_route_req(const struct sock *sk, struct flowi4 *fl4, const struct request_sock *req); struct dst_entry *inet_csk_route_child_sock(const struct sock *sk, struct sock *newsk, const struct request_sock *req); struct sock *inet_csk_reqsk_queue_add(struct sock *sk, struct request_sock *req, struct sock *child); void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req, unsigned long timeout); struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child, struct request_sock *req, bool own_req); static inline void inet_csk_reqsk_queue_added(struct sock *sk) { reqsk_queue_added(&inet_csk(sk)->icsk_accept_queue); } static inline int inet_csk_reqsk_queue_len(const struct sock *sk) { return reqsk_queue_len(&inet_csk(sk)->icsk_accept_queue); } static inline int inet_csk_reqsk_queue_is_full(const struct sock *sk) { return inet_csk_reqsk_queue_len(sk) >= sk->sk_max_ack_backlog; } bool inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req); void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req); static inline void inet_csk_prepare_for_destroy_sock(struct sock *sk) { /* The below has to be done to allow calling inet_csk_destroy_sock */ sock_set_flag(sk, SOCK_DEAD); this_cpu_inc(*sk->sk_prot->orphan_count); } void inet_csk_destroy_sock(struct sock *sk); void inet_csk_prepare_forced_close(struct sock *sk); /* * LISTEN is a special case for poll.. */ static inline __poll_t inet_csk_listen_poll(const struct sock *sk) { return !reqsk_queue_empty(&inet_csk(sk)->icsk_accept_queue) ? (EPOLLIN | EPOLLRDNORM) : 0; } int inet_csk_listen_start(struct sock *sk, int backlog); void inet_csk_listen_stop(struct sock *sk); void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr); /* update the fast reuse flag when adding a socket */ void inet_csk_update_fastreuse(struct inet_bind_bucket *tb, struct sock *sk); struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu); #define TCP_PINGPONG_THRESH 3 static inline void inet_csk_enter_pingpong_mode(struct sock *sk) { inet_csk(sk)->icsk_ack.pingpong = TCP_PINGPONG_THRESH; } static inline void inet_csk_exit_pingpong_mode(struct sock *sk) { inet_csk(sk)->icsk_ack.pingpong = 0; } static inline bool inet_csk_in_pingpong_mode(struct sock *sk) { return inet_csk(sk)->icsk_ack.pingpong >= TCP_PINGPONG_THRESH; } static inline void inet_csk_inc_pingpong_cnt(struct sock *sk) { struct inet_connection_sock *icsk = inet_csk(sk); if (icsk->icsk_ack.pingpong < U8_MAX) icsk->icsk_ack.pingpong++; } static inline bool inet_csk_has_ulp(struct sock *sk) { return inet_sk(sk)->is_icsk && !!inet_csk(sk)->icsk_ulp_ops; } #endif /* _INET_CONNECTION_SOCK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SCHED_TASK_STACK_H #define _LINUX_SCHED_TASK_STACK_H /* * task->stack (kernel stack) handling interfaces: */ #include <linux/sched.h> #include <linux/magic.h> #ifdef CONFIG_THREAD_INFO_IN_TASK /* * When accessing the stack of a non-current task that might exit, use * try_get_task_stack() instead. task_stack_page will return a pointer * that could get freed out from under you. */ static inline void *task_stack_page(const struct task_struct *task) { return task->stack; } #define setup_thread_stack(new,old) do { } while(0) static inline unsigned long *end_of_stack(const struct task_struct *task) { #ifdef CONFIG_STACK_GROWSUP return (unsigned long *)((unsigned long)task->stack + THREAD_SIZE) - 1; #else return task->stack; #endif } #elif !defined(__HAVE_THREAD_FUNCTIONS) #define task_stack_page(task) ((void *)(task)->stack) static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) { *task_thread_info(p) = *task_thread_info(org); task_thread_info(p)->task = p; } /* * Return the address of the last usable long on the stack. * * When the stack grows down, this is just above the thread * info struct. Going any lower will corrupt the threadinfo. * * When the stack grows up, this is the highest address. * Beyond that position, we corrupt data on the next page. */ static inline unsigned long *end_of_stack(struct task_struct *p) { #ifdef CONFIG_STACK_GROWSUP return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1; #else return (unsigned long *)(task_thread_info(p) + 1); #endif } #endif #ifdef CONFIG_THREAD_INFO_IN_TASK static inline void *try_get_task_stack(struct task_struct *tsk) { return refcount_inc_not_zero(&tsk->stack_refcount) ? task_stack_page(tsk) : NULL; } extern void put_task_stack(struct task_struct *tsk); #else static inline void *try_get_task_stack(struct task_struct *tsk) { return task_stack_page(tsk); } static inline void put_task_stack(struct task_struct *tsk) {} #endif #define task_stack_end_corrupted(task) \ (*(end_of_stack(task)) != STACK_END_MAGIC) static inline int object_is_on_stack(const void *obj) { void *stack = task_stack_page(current); return (obj >= stack) && (obj < (stack + THREAD_SIZE)); } extern void thread_stack_cache_init(void); #ifdef CONFIG_DEBUG_STACK_USAGE static inline unsigned long stack_not_used(struct task_struct *p) { unsigned long *n = end_of_stack(p); do { /* Skip over canary */ # ifdef CONFIG_STACK_GROWSUP n--; # else n++; # endif } while (!*n); # ifdef CONFIG_STACK_GROWSUP return (unsigned long)end_of_stack(p) - (unsigned long)n; # else return (unsigned long)n - (unsigned long)end_of_stack(p); # endif } #endif extern void set_task_stack_end_magic(struct task_struct *tsk); #ifndef __HAVE_ARCH_KSTACK_END static inline int kstack_end(void *addr) { /* Reliable end of stack detection: * Some APM bios versions misalign the stack */ return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); } #endif #endif /* _LINUX_SCHED_TASK_STACK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 #ifndef __NET_SCHED_CODEL_IMPL_H #define __NET_SCHED_CODEL_IMPL_H /* * Codel - The Controlled-Delay Active Queue Management algorithm * * Copyright (C) 2011-2012 Kathleen Nichols <nichols@pollere.com> * Copyright (C) 2011-2012 Van Jacobson <van@pollere.net> * Copyright (C) 2012 Michael D. Taht <dave.taht@bufferbloat.net> * Copyright (C) 2012,2015 Eric Dumazet <edumazet@google.com> * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The names of the authors may not be used to endorse or promote products * derived from this software without specific prior written permission. * * Alternatively, provided that this notice is retained in full, this * software may be distributed under the terms of the GNU General * Public License ("GPL") version 2, in which case the provisions of the * GPL apply INSTEAD OF those given above. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH * DAMAGE. * */ /* Controlling Queue Delay (CoDel) algorithm * ========================================= * Source : Kathleen Nichols and Van Jacobson * http://queue.acm.org/detail.cfm?id=2209336 * * Implemented on linux by Dave Taht and Eric Dumazet */ static void codel_params_init(struct codel_params *params) { params->interval = MS2TIME(100); params->target = MS2TIME(5); params->ce_threshold = CODEL_DISABLED_THRESHOLD; params->ecn = false; } static void codel_vars_init(struct codel_vars *vars) { memset(vars, 0, sizeof(*vars)); } static void codel_stats_init(struct codel_stats *stats) { stats->maxpacket = 0; } /* * http://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Iterative_methods_for_reciprocal_square_roots * new_invsqrt = (invsqrt / 2) * (3 - count * invsqrt^2) * * Here, invsqrt is a fixed point number (< 1.0), 32bit mantissa, aka Q0.32 */ static void codel_Newton_step(struct codel_vars *vars) { u32 invsqrt = ((u32)vars->rec_inv_sqrt) << REC_INV_SQRT_SHIFT; u32 invsqrt2 = ((u64)invsqrt * invsqrt) >> 32; u64 val = (3LL << 32) - ((u64)vars->count * invsqrt2); val >>= 2; /* avoid overflow in following multiply */ val = (val * invsqrt) >> (32 - 2 + 1); vars->rec_inv_sqrt = val >> REC_INV_SQRT_SHIFT; } /* * CoDel control_law is t + interval/sqrt(count) * We maintain in rec_inv_sqrt the reciprocal value of sqrt(count) to avoid * both sqrt() and divide operation. */ static codel_time_t codel_control_law(codel_time_t t, codel_time_t interval, u32 rec_inv_sqrt) { return t + reciprocal_scale(interval, rec_inv_sqrt << REC_INV_SQRT_SHIFT); } static bool codel_should_drop(const struct sk_buff *skb, void *ctx, struct codel_vars *vars, struct codel_params *params, struct codel_stats *stats, codel_skb_len_t skb_len_func, codel_skb_time_t skb_time_func, u32 *backlog, codel_time_t now) { bool ok_to_drop; u32 skb_len; if (!skb) { vars->first_above_time = 0; return false; } skb_len = skb_len_func(skb); vars->ldelay = now - skb_time_func(skb); if (unlikely(skb_len > stats->maxpacket)) stats->maxpacket = skb_len; if (codel_time_before(vars->ldelay, params->target) || *backlog <= params->mtu) { /* went below - stay below for at least interval */ vars->first_above_time = 0; return false; } ok_to_drop = false; if (vars->first_above_time == 0) { /* just went above from below. If we stay above * for at least interval we'll say it's ok to drop */ vars->first_above_time = now + params->interval; } else if (codel_time_after(now, vars->first_above_time)) { ok_to_drop = true; } return ok_to_drop; } static struct sk_buff *codel_dequeue(void *ctx, u32 *backlog, struct codel_params *params, struct codel_vars *vars, struct codel_stats *stats, codel_skb_len_t skb_len_func, codel_skb_time_t skb_time_func, codel_skb_drop_t drop_func, codel_skb_dequeue_t dequeue_func) { struct sk_buff *skb = dequeue_func(vars, ctx); codel_time_t now; bool drop; if (!skb) { vars->dropping = false; return skb; } now = codel_get_time(); drop = codel_should_drop(skb, ctx, vars, params, stats, skb_len_func, skb_time_func, backlog, now); if (vars->dropping) { if (!drop) { /* sojourn time below target - leave dropping state */ vars->dropping = false; } else if (codel_time_after_eq(now, vars->drop_next)) { /* It's time for the next drop. Drop the current * packet and dequeue the next. The dequeue might * take us out of dropping state. * If not, schedule the next drop. * A large backlog might result in drop rates so high * that the next drop should happen now, * hence the while loop. */ while (vars->dropping && codel_time_after_eq(now, vars->drop_next)) { vars->count++; /* dont care of possible wrap * since there is no more divide */ codel_Newton_step(vars); if (params->ecn && INET_ECN_set_ce(skb)) { stats->ecn_mark++; vars->drop_next = codel_control_law(vars->drop_next, params->interval, vars->rec_inv_sqrt); goto end; } stats->drop_len += skb_len_func(skb); drop_func(skb, ctx); stats->drop_count++; skb = dequeue_func(vars, ctx); if (!codel_should_drop(skb, ctx, vars, params, stats, skb_len_func, skb_time_func, backlog, now)) { /* leave dropping state */ vars->dropping = false; } else { /* and schedule the next drop */ vars->drop_next = codel_control_law(vars->drop_next, params->interval, vars->rec_inv_sqrt); } } } } else if (drop) { u32 delta; if (params->ecn && INET_ECN_set_ce(skb)) { stats->ecn_mark++; } else { stats->drop_len += skb_len_func(skb); drop_func(skb, ctx); stats->drop_count++; skb = dequeue_func(vars, ctx); drop = codel_should_drop(skb, ctx, vars, params, stats, skb_len_func, skb_time_func, backlog, now); } vars->dropping = true; /* if min went above target close to when we last went below it * assume that the drop rate that controlled the queue on the * last cycle is a good starting point to control it now. */ delta = vars->count - vars->lastcount; if (delta > 1 && codel_time_before(now - vars->drop_next, 16 * params->interval)) { vars->count = delta; /* we dont care if rec_inv_sqrt approximation * is not very precise : * Next Newton steps will correct it quadratically. */ codel_Newton_step(vars); } else { vars->count = 1; vars->rec_inv_sqrt = ~0U >> REC_INV_SQRT_SHIFT; } vars->lastcount = vars->count; vars->drop_next = codel_control_law(now, params->interval, vars->rec_inv_sqrt); } end: if (skb && codel_time_after(vars->ldelay, params->ce_threshold) && INET_ECN_set_ce(skb)) stats->ce_mark++; return skb; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 /* SPDX-License-Identifier: GPL-2.0 */ /* File: linux/posix_acl_xattr.h Extended attribute system call representation of Access Control Lists. Copyright (C) 2000 by Andreas Gruenbacher <a.gruenbacher@computer.org> Copyright (C) 2002 SGI - Silicon Graphics, Inc <linux-xfs@oss.sgi.com> */ #ifndef _POSIX_ACL_XATTR_H #define _POSIX_ACL_XATTR_H #include <uapi/linux/xattr.h> #include <uapi/linux/posix_acl_xattr.h> #include <linux/posix_acl.h> static inline size_t posix_acl_xattr_size(int count) { return (sizeof(struct posix_acl_xattr_header) + (count * sizeof(struct posix_acl_xattr_entry))); } static inline int posix_acl_xattr_count(size_t size) { if (size < sizeof(struct posix_acl_xattr_header)) return -1; size -= sizeof(struct posix_acl_xattr_header); if (size % sizeof(struct posix_acl_xattr_entry)) return -1; return size / sizeof(struct posix_acl_xattr_entry); } #ifdef CONFIG_FS_POSIX_ACL void posix_acl_fix_xattr_from_user(void *value, size_t size); void posix_acl_fix_xattr_to_user(void *value, size_t size); #else static inline void posix_acl_fix_xattr_from_user(void *value, size_t size) { } static inline void posix_acl_fix_xattr_to_user(void *value, size_t size) { } #endif struct posix_acl *posix_acl_from_xattr(struct user_namespace *user_ns, const void *value, size_t size); int posix_acl_to_xattr(struct user_namespace *user_ns, const struct posix_acl *acl, void *buffer, size_t size); extern const struct xattr_handler posix_acl_access_xattr_handler; extern const struct xattr_handler posix_acl_default_xattr_handler; #endif /* _POSIX_ACL_XATTR_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _X86_IRQFLAGS_H_ #define _X86_IRQFLAGS_H_ #include <asm/processor-flags.h> #ifndef __ASSEMBLY__ #include <asm/nospec-branch.h> /* Provide __cpuidle; we can't safely include <linux/cpu.h> */ #define __cpuidle __section(".cpuidle.text") /* * Interrupt control: */ /* Declaration required for gcc < 4.9 to prevent -Werror=missing-prototypes */ extern inline unsigned long native_save_fl(void); extern __always_inline unsigned long native_save_fl(void) { unsigned long flags; /* * "=rm" is safe here, because "pop" adjusts the stack before * it evaluates its effective address -- this is part of the * documented behavior of the "pop" instruction. */ asm volatile("# __raw_save_flags\n\t" "pushf ; pop %0" : "=rm" (flags) : /* no input */ : "memory"); return flags; } extern inline void native_restore_fl(unsigned long flags); extern inline void native_restore_fl(unsigned long flags) { asm volatile("push %0 ; popf" : /* no output */ :"g" (flags) :"memory", "cc"); } static __always_inline void native_irq_disable(void) { asm volatile("cli": : :"memory"); } static __always_inline void native_irq_enable(void) { asm volatile("sti": : :"memory"); } static inline __cpuidle void native_safe_halt(void) { mds_idle_clear_cpu_buffers(); asm volatile("sti; hlt": : :"memory"); } static inline __cpuidle void native_halt(void) { mds_idle_clear_cpu_buffers(); asm volatile("hlt": : :"memory"); } #endif #ifdef CONFIG_PARAVIRT_XXL #include <asm/paravirt.h> #else #ifndef __ASSEMBLY__ #include <linux/types.h> static __always_inline unsigned long arch_local_save_flags(void) { return native_save_fl(); } static __always_inline void arch_local_irq_restore(unsigned long flags) { native_restore_fl(flags); } static __always_inline void arch_local_irq_disable(void) { native_irq_disable(); } static __always_inline void arch_local_irq_enable(void) { native_irq_enable(); } /* * Used in the idle loop; sti takes one instruction cycle * to complete: */ static inline __cpuidle void arch_safe_halt(void) { native_safe_halt(); } /* * Used when interrupts are already enabled or to * shutdown the processor: */ static inline __cpuidle void halt(void) { native_halt(); } /* * For spinlocks, etc: */ static __always_inline unsigned long arch_local_irq_save(void) { unsigned long flags = arch_local_save_flags(); arch_local_irq_disable(); return flags; } #else #define ENABLE_INTERRUPTS(x) sti #define DISABLE_INTERRUPTS(x) cli #ifdef CONFIG_X86_64 #ifdef CONFIG_DEBUG_ENTRY #define SAVE_FLAGS(x) pushfq; popq %rax #endif #define INTERRUPT_RETURN jmp native_iret #define USERGS_SYSRET64 \ swapgs; \ sysretq; #define USERGS_SYSRET32 \ swapgs; \ sysretl #else #define INTERRUPT_RETURN iret #endif #endif /* __ASSEMBLY__ */ #endif /* CONFIG_PARAVIRT_XXL */ #ifndef __ASSEMBLY__ static __always_inline int arch_irqs_disabled_flags(unsigned long flags) { return !(flags & X86_EFLAGS_IF); } static __always_inline int arch_irqs_disabled(void) { unsigned long flags = arch_local_save_flags(); return arch_irqs_disabled_flags(flags); } #else #ifdef CONFIG_X86_64 #ifdef CONFIG_XEN_PV #define SWAPGS ALTERNATIVE "swapgs", "", X86_FEATURE_XENPV #else #define SWAPGS swapgs #endif #endif #endif /* !__ASSEMBLY__ */ #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_BITOPS_H #define _ASM_X86_BITOPS_H /* * Copyright 1992, Linus Torvalds. * * Note: inlines with more than a single statement should be marked * __always_inline to avoid problems with older gcc's inlining heuristics. */ #ifndef _LINUX_BITOPS_H #error only <linux/bitops.h> can be included directly #endif #include <linux/compiler.h> #include <asm/alternative.h> #include <asm/rmwcc.h> #include <asm/barrier.h> #if BITS_PER_LONG == 32 # define _BITOPS_LONG_SHIFT 5 #elif BITS_PER_LONG == 64 # define _BITOPS_LONG_SHIFT 6 #else # error "Unexpected BITS_PER_LONG" #endif #define BIT_64(n) (U64_C(1) << (n)) /* * These have to be done with inline assembly: that way the bit-setting * is guaranteed to be atomic. All bit operations return 0 if the bit * was cleared before the operation and != 0 if it was not. * * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1). */ #define RLONG_ADDR(x) "m" (*(volatile long *) (x)) #define WBYTE_ADDR(x) "+m" (*(volatile char *) (x)) #define ADDR RLONG_ADDR(addr) /* * We do the locked ops that don't return the old value as * a mask operation on a byte. */ #define CONST_MASK_ADDR(nr, addr) WBYTE_ADDR((void *)(addr) + ((nr)>>3)) #define CONST_MASK(nr) (1 << ((nr) & 7)) static __always_inline void arch_set_bit(long nr, volatile unsigned long *addr) { if (__builtin_constant_p(nr)) { asm volatile(LOCK_PREFIX "orb %b1,%0" : CONST_MASK_ADDR(nr, addr) : "iq" (CONST_MASK(nr)) : "memory"); } else { asm volatile(LOCK_PREFIX __ASM_SIZE(bts) " %1,%0" : : RLONG_ADDR(addr), "Ir" (nr) : "memory"); } } static __always_inline void arch___set_bit(long nr, volatile unsigned long *addr) { asm volatile(__ASM_SIZE(bts) " %1,%0" : : ADDR, "Ir" (nr) : "memory"); } static __always_inline void arch_clear_bit(long nr, volatile unsigned long *addr) { if (__builtin_constant_p(nr)) { asm volatile(LOCK_PREFIX "andb %b1,%0" : CONST_MASK_ADDR(nr, addr) : "iq" (~CONST_MASK(nr))); } else { asm volatile(LOCK_PREFIX __ASM_SIZE(btr) " %1,%0" : : RLONG_ADDR(addr), "Ir" (nr) : "memory"); } } static __always_inline void arch_clear_bit_unlock(long nr, volatile unsigned long *addr) { barrier(); arch_clear_bit(nr, addr); } static __always_inline void arch___clear_bit(long nr, volatile unsigned long *addr) { asm volatile(__ASM_SIZE(btr) " %1,%0" : : ADDR, "Ir" (nr) : "memory"); } static __always_inline bool arch_clear_bit_unlock_is_negative_byte(long nr, volatile unsigned long *addr) { bool negative; asm volatile(LOCK_PREFIX "andb %2,%1" CC_SET(s) : CC_OUT(s) (negative), WBYTE_ADDR(addr) : "ir" ((char) ~(1 << nr)) : "memory"); return negative; } #define arch_clear_bit_unlock_is_negative_byte \ arch_clear_bit_unlock_is_negative_byte static __always_inline void arch___clear_bit_unlock(long nr, volatile unsigned long *addr) { arch___clear_bit(nr, addr); } static __always_inline void arch___change_bit(long nr, volatile unsigned long *addr) { asm volatile(__ASM_SIZE(btc) " %1,%0" : : ADDR, "Ir" (nr) : "memory"); } static __always_inline void arch_change_bit(long nr, volatile unsigned long *addr) { if (__builtin_constant_p(nr)) { asm volatile(LOCK_PREFIX "xorb %b1,%0" : CONST_MASK_ADDR(nr, addr) : "iq" (CONST_MASK(nr))); } else { asm volatile(LOCK_PREFIX __ASM_SIZE(btc) " %1,%0" : : RLONG_ADDR(addr), "Ir" (nr) : "memory"); } } static __always_inline bool arch_test_and_set_bit(long nr, volatile unsigned long *addr) { return GEN_BINARY_RMWcc(LOCK_PREFIX __ASM_SIZE(bts), *addr, c, "Ir", nr); } static __always_inline bool arch_test_and_set_bit_lock(long nr, volatile unsigned long *addr) { return arch_test_and_set_bit(nr, addr); } static __always_inline bool arch___test_and_set_bit(long nr, volatile unsigned long *addr) { bool oldbit; asm(__ASM_SIZE(bts) " %2,%1" CC_SET(c) : CC_OUT(c) (oldbit) : ADDR, "Ir" (nr) : "memory"); return oldbit; } static __always_inline bool arch_test_and_clear_bit(long nr, volatile unsigned long *addr) { return GEN_BINARY_RMWcc(LOCK_PREFIX __ASM_SIZE(btr), *addr, c, "Ir", nr); } /* * Note: the operation is performed atomically with respect to * the local CPU, but not other CPUs. Portable code should not * rely on this behaviour. * KVM relies on this behaviour on x86 for modifying memory that is also * accessed from a hypervisor on the same CPU if running in a VM: don't change * this without also updating arch/x86/kernel/kvm.c */ static __always_inline bool arch___test_and_clear_bit(long nr, volatile unsigned long *addr) { bool oldbit; asm volatile(__ASM_SIZE(btr) " %2,%1" CC_SET(c) : CC_OUT(c) (oldbit) : ADDR, "Ir" (nr) : "memory"); return oldbit; } static __always_inline bool arch___test_and_change_bit(long nr, volatile unsigned long *addr) { bool oldbit; asm volatile(__ASM_SIZE(btc) " %2,%1" CC_SET(c) : CC_OUT(c) (oldbit) : ADDR, "Ir" (nr) : "memory"); return oldbit; } static __always_inline bool arch_test_and_change_bit(long nr, volatile unsigned long *addr) { return GEN_BINARY_RMWcc(LOCK_PREFIX __ASM_SIZE(btc), *addr, c, "Ir", nr); } static __always_inline bool constant_test_bit(long nr, const volatile unsigned long *addr) { return ((1UL << (nr & (BITS_PER_LONG-1))) & (addr[nr >> _BITOPS_LONG_SHIFT])) != 0; } static __always_inline bool variable_test_bit(long nr, volatile const unsigned long *addr) { bool oldbit; asm volatile(__ASM_SIZE(bt) " %2,%1" CC_SET(c) : CC_OUT(c) (oldbit) : "m" (*(unsigned long *)addr), "Ir" (nr) : "memory"); return oldbit; } #define arch_test_bit(nr, addr) \ (__builtin_constant_p((nr)) \ ? constant_test_bit((nr), (addr)) \ : variable_test_bit((nr), (addr))) /** * __ffs - find first set bit in word * @word: The word to search * * Undefined if no bit exists, so code should check against 0 first. */ static __always_inline unsigned long __ffs(unsigned long word) { asm("rep; bsf %1,%0" : "=r" (word) : "rm" (word)); return word; } /** * ffz - find first zero bit in word * @word: The word to search * * Undefined if no zero exists, so code should check against ~0UL first. */ static __always_inline unsigned long ffz(unsigned long word) { asm("rep; bsf %1,%0" : "=r" (word) : "r" (~word)); return word; } /* * __fls: find last set bit in word * @word: The word to search * * Undefined if no set bit exists, so code should check against 0 first. */ static __always_inline unsigned long __fls(unsigned long word) { asm("bsr %1,%0" : "=r" (word) : "rm" (word)); return word; } #undef ADDR #ifdef __KERNEL__ /** * ffs - find first set bit in word * @x: the word to search * * This is defined the same way as the libc and compiler builtin ffs * routines, therefore differs in spirit from the other bitops. * * ffs(value) returns 0 if value is 0 or the position of the first * set bit if value is nonzero. The first (least significant) bit * is at position 1. */ static __always_inline int ffs(int x) { int r; #ifdef CONFIG_X86_64 /* * AMD64 says BSFL won't clobber the dest reg if x==0; Intel64 says the * dest reg is undefined if x==0, but their CPU architect says its * value is written to set it to the same as before, except that the * top 32 bits will be cleared. * * We cannot do this on 32 bits because at the very least some * 486 CPUs did not behave this way. */ asm("bsfl %1,%0" : "=r" (r) : "rm" (x), "0" (-1)); #elif defined(CONFIG_X86_CMOV) asm("bsfl %1,%0\n\t" "cmovzl %2,%0" : "=&r" (r) : "rm" (x), "r" (-1)); #else asm("bsfl %1,%0\n\t" "jnz 1f\n\t" "movl $-1,%0\n" "1:" : "=r" (r) : "rm" (x)); #endif return r + 1; } /** * fls - find last set bit in word * @x: the word to search * * This is defined in a similar way as the libc and compiler builtin * ffs, but returns the position of the most significant set bit. * * fls(value) returns 0 if value is 0 or the position of the last * set bit if value is nonzero. The last (most significant) bit is * at position 32. */ static __always_inline int fls(unsigned int x) { int r; #ifdef CONFIG_X86_64 /* * AMD64 says BSRL won't clobber the dest reg if x==0; Intel64 says the * dest reg is undefined if x==0, but their CPU architect says its * value is written to set it to the same as before, except that the * top 32 bits will be cleared. * * We cannot do this on 32 bits because at the very least some * 486 CPUs did not behave this way. */ asm("bsrl %1,%0" : "=r" (r) : "rm" (x), "0" (-1)); #elif defined(CONFIG_X86_CMOV) asm("bsrl %1,%0\n\t" "cmovzl %2,%0" : "=&r" (r) : "rm" (x), "rm" (-1)); #else asm("bsrl %1,%0\n\t" "jnz 1f\n\t" "movl $-1,%0\n" "1:" : "=r" (r) : "rm" (x)); #endif return r + 1; } /** * fls64 - find last set bit in a 64-bit word * @x: the word to search * * This is defined in a similar way as the libc and compiler builtin * ffsll, but returns the position of the most significant set bit. * * fls64(value) returns 0 if value is 0 or the position of the last * set bit if value is nonzero. The last (most significant) bit is * at position 64. */ #ifdef CONFIG_X86_64 static __always_inline int fls64(__u64 x) { int bitpos = -1; /* * AMD64 says BSRQ won't clobber the dest reg if x==0; Intel64 says the * dest reg is undefined if x==0, but their CPU architect says its * value is written to set it to the same as before. */ asm("bsrq %1,%q0" : "+r" (bitpos) : "rm" (x)); return bitpos + 1; } #else #include <asm-generic/bitops/fls64.h> #endif #include <asm-generic/bitops/find.h> #include <asm-generic/bitops/sched.h> #include <asm/arch_hweight.h> #include <asm-generic/bitops/const_hweight.h> #include <asm-generic/bitops/instrumented-atomic.h> #include <asm-generic/bitops/instrumented-non-atomic.h> #include <asm-generic/bitops/instrumented-lock.h> #include <asm-generic/bitops/le.h> #include <asm-generic/bitops/ext2-atomic-setbit.h> #endif /* __KERNEL__ */ #endif /* _ASM_X86_BITOPS_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 /* SPDX-License-Identifier: GPL-2.0-only */ /* * fs/kernfs/kernfs-internal.h - kernfs internal header file * * Copyright (c) 2001-3 Patrick Mochel * Copyright (c) 2007 SUSE Linux Products GmbH * Copyright (c) 2007, 2013 Tejun Heo <teheo@suse.de> */ #ifndef __KERNFS_INTERNAL_H #define __KERNFS_INTERNAL_H #include <linux/lockdep.h> #include <linux/fs.h> #include <linux/mutex.h> #include <linux/xattr.h> #include <linux/kernfs.h> #include <linux/fs_context.h> struct kernfs_iattrs { kuid_t ia_uid; kgid_t ia_gid; struct timespec64 ia_atime; struct timespec64 ia_mtime; struct timespec64 ia_ctime; struct simple_xattrs xattrs; atomic_t nr_user_xattrs; atomic_t user_xattr_size; }; /* +1 to avoid triggering overflow warning when negating it */ #define KN_DEACTIVATED_BIAS (INT_MIN + 1) /* KERNFS_TYPE_MASK and types are defined in include/linux/kernfs.h */ /** * kernfs_root - find out the kernfs_root a kernfs_node belongs to * @kn: kernfs_node of interest * * Return the kernfs_root @kn belongs to. */ static inline struct kernfs_root *kernfs_root(struct kernfs_node *kn) { /* if parent exists, it's always a dir; otherwise, @sd is a dir */ if (kn->parent) kn = kn->parent; return kn->dir.root; } /* * mount.c */ struct kernfs_super_info { struct super_block *sb; /* * The root associated with this super_block. Each super_block is * identified by the root and ns it's associated with. */ struct kernfs_root *root; /* * Each sb is associated with one namespace tag, currently the * network namespace of the task which mounted this kernfs * instance. If multiple tags become necessary, make the following * an array and compare kernfs_node tag against every entry. */ const void *ns; /* anchored at kernfs_root->supers, protected by kernfs_mutex */ struct list_head node; }; #define kernfs_info(SB) ((struct kernfs_super_info *)(SB->s_fs_info)) static inline struct kernfs_node *kernfs_dentry_node(struct dentry *dentry) { if (d_really_is_negative(dentry)) return NULL; return d_inode(dentry)->i_private; } extern const struct super_operations kernfs_sops; extern struct kmem_cache *kernfs_node_cache, *kernfs_iattrs_cache; /* * inode.c */ extern const struct xattr_handler *kernfs_xattr_handlers[]; void kernfs_evict_inode(struct inode *inode); int kernfs_iop_permission(struct inode *inode, int mask); int kernfs_iop_setattr(struct dentry *dentry, struct iattr *iattr); int kernfs_iop_getattr(const struct path *path, struct kstat *stat, u32 request_mask, unsigned int query_flags); ssize_t kernfs_iop_listxattr(struct dentry *dentry, char *buf, size_t size); int __kernfs_setattr(struct kernfs_node *kn, const struct iattr *iattr); /* * dir.c */ extern struct mutex kernfs_mutex; extern const struct dentry_operations kernfs_dops; extern const struct file_operations kernfs_dir_fops; extern const struct inode_operations kernfs_dir_iops; struct kernfs_node *kernfs_get_active(struct kernfs_node *kn); void kernfs_put_active(struct kernfs_node *kn); int kernfs_add_one(struct kernfs_node *kn); struct kernfs_node *kernfs_new_node(struct kernfs_node *parent, const char *name, umode_t mode, kuid_t uid, kgid_t gid, unsigned flags); /* * file.c */ extern const struct file_operations kernfs_file_fops; void kernfs_drain_open_files(struct kernfs_node *kn); /* * symlink.c */ extern const struct inode_operations kernfs_symlink_iops; #endif /* __KERNFS_INTERNAL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 /* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (C) 1991, 1992 Linus Torvalds * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs */ #ifndef _ASM_X86_STACKTRACE_H #define _ASM_X86_STACKTRACE_H #include <linux/uaccess.h> #include <linux/ptrace.h> #include <asm/cpu_entry_area.h> #include <asm/switch_to.h> enum stack_type { STACK_TYPE_UNKNOWN, STACK_TYPE_TASK, STACK_TYPE_IRQ, STACK_TYPE_SOFTIRQ, STACK_TYPE_ENTRY, STACK_TYPE_EXCEPTION, STACK_TYPE_EXCEPTION_LAST = STACK_TYPE_EXCEPTION + N_EXCEPTION_STACKS-1, }; struct stack_info { enum stack_type type; unsigned long *begin, *end, *next_sp; }; bool in_task_stack(unsigned long *stack, struct task_struct *task, struct stack_info *info); bool in_entry_stack(unsigned long *stack, struct stack_info *info); int get_stack_info(unsigned long *stack, struct task_struct *task, struct stack_info *info, unsigned long *visit_mask); bool get_stack_info_noinstr(unsigned long *stack, struct task_struct *task, struct stack_info *info); const char *stack_type_name(enum stack_type type); static inline bool on_stack(struct stack_info *info, void *addr, size_t len) { void *begin = info->begin; void *end = info->end; return (info->type != STACK_TYPE_UNKNOWN && addr >= begin && addr < end && addr + len > begin && addr + len <= end); } #ifdef CONFIG_X86_32 #define STACKSLOTS_PER_LINE 8 #else #define STACKSLOTS_PER_LINE 4 #endif #ifdef CONFIG_FRAME_POINTER static inline unsigned long * get_frame_pointer(struct task_struct *task, struct pt_regs *regs) { if (regs) return (unsigned long *)regs->bp; if (task == current) return __builtin_frame_address(0); return &((struct inactive_task_frame *)task->thread.sp)->bp; } #else static inline unsigned long * get_frame_pointer(struct task_struct *task, struct pt_regs *regs) { return NULL; } #endif /* CONFIG_FRAME_POINTER */ static inline unsigned long * get_stack_pointer(struct task_struct *task, struct pt_regs *regs) { if (regs) return (unsigned long *)regs->sp; if (task == current) return __builtin_frame_address(0); return (unsigned long *)task->thread.sp; } void show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs, unsigned long *stack, const char *log_lvl); /* The form of the top of the frame on the stack */ struct stack_frame { struct stack_frame *next_frame; unsigned long return_address; }; struct stack_frame_ia32 { u32 next_frame; u32 return_address; }; void show_opcodes(struct pt_regs *regs, const char *loglvl); void show_ip(struct pt_regs *regs, const char *loglvl); #endif /* _ASM_X86_STACKTRACE_H */
1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __ASM_PREEMPT_H #define __ASM_PREEMPT_H #include <asm/rmwcc.h> #include <asm/percpu.h> #include <linux/thread_info.h> DECLARE_PER_CPU(int, __preempt_count); /* We use the MSB mostly because its available */ #define PREEMPT_NEED_RESCHED 0x80000000 /* * We use the PREEMPT_NEED_RESCHED bit as an inverted NEED_RESCHED such * that a decrement hitting 0 means we can and should reschedule. */ #define PREEMPT_ENABLED (0 + PREEMPT_NEED_RESCHED) /* * We mask the PREEMPT_NEED_RESCHED bit so as not to confuse all current users * that think a non-zero value indicates we cannot preempt. */ static __always_inline int preempt_count(void) { return raw_cpu_read_4(__preempt_count) & ~PREEMPT_NEED_RESCHED; } static __always_inline void preempt_count_set(int pc) { int old, new; do { old = raw_cpu_read_4(__preempt_count); new = (old & PREEMPT_NEED_RESCHED) | (pc & ~PREEMPT_NEED_RESCHED); } while (raw_cpu_cmpxchg_4(__preempt_count, old, new) != old); } /* * must be macros to avoid header recursion hell */ #define init_task_preempt_count(p) do { } while (0) #define init_idle_preempt_count(p, cpu) do { \ per_cpu(__preempt_count, (cpu)) = PREEMPT_DISABLED; \ } while (0) /* * We fold the NEED_RESCHED bit into the preempt count such that * preempt_enable() can decrement and test for needing to reschedule with a * single instruction. * * We invert the actual bit, so that when the decrement hits 0 we know we both * need to resched (the bit is cleared) and can resched (no preempt count). */ static __always_inline void set_preempt_need_resched(void) { raw_cpu_and_4(__preempt_count, ~PREEMPT_NEED_RESCHED); } static __always_inline void clear_preempt_need_resched(void) { raw_cpu_or_4(__preempt_count, PREEMPT_NEED_RESCHED); } static __always_inline bool test_preempt_need_resched(void) { return !(raw_cpu_read_4(__preempt_count) & PREEMPT_NEED_RESCHED); } /* * The various preempt_count add/sub methods */ static __always_inline void __preempt_count_add(int val) { raw_cpu_add_4(__preempt_count, val); } static __always_inline void __preempt_count_sub(int val) { raw_cpu_add_4(__preempt_count, -val); } /* * Because we keep PREEMPT_NEED_RESCHED set when we do _not_ need to reschedule * a decrement which hits zero means we have no preempt_count and should * reschedule. */ static __always_inline bool __preempt_count_dec_and_test(void) { return GEN_UNARY_RMWcc("decl", __preempt_count, e, __percpu_arg([var])); } /* * Returns true when we need to resched and can (barring IRQ state). */ static __always_inline bool should_resched(int preempt_offset) { return unlikely(raw_cpu_read_4(__preempt_count) == preempt_offset); } #ifdef CONFIG_PREEMPTION extern asmlinkage void preempt_schedule_thunk(void); # define __preempt_schedule() \ asm volatile ("call preempt_schedule_thunk" : ASM_CALL_CONSTRAINT) extern asmlinkage void preempt_schedule(void); extern asmlinkage void preempt_schedule_notrace_thunk(void); # define __preempt_schedule_notrace() \ asm volatile ("call preempt_schedule_notrace_thunk" : ASM_CALL_CONSTRAINT) extern asmlinkage void preempt_schedule_notrace(void); #endif #endif /* __ASM_PREEMPT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_NETFILTER_H #define __LINUX_NETFILTER_H #include <linux/init.h> #include <linux/skbuff.h> #include <linux/net.h> #include <linux/if.h> #include <linux/in.h> #include <linux/in6.h> #include <linux/wait.h> #include <linux/list.h> #include <linux/static_key.h> #include <linux/netfilter_defs.h> #include <linux/netdevice.h> #include <linux/sockptr.h> #include <net/net_namespace.h> static inline int NF_DROP_GETERR(int verdict) { return -(verdict >> NF_VERDICT_QBITS); } static inline int nf_inet_addr_cmp(const union nf_inet_addr *a1, const union nf_inet_addr *a2) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 const unsigned long *ul1 = (const unsigned long *)a1; const unsigned long *ul2 = (const unsigned long *)a2; return ((ul1[0] ^ ul2[0]) | (ul1[1] ^ ul2[1])) == 0UL; #else return a1->all[0] == a2->all[0] && a1->all[1] == a2->all[1] && a1->all[2] == a2->all[2] && a1->all[3] == a2->all[3]; #endif } static inline void nf_inet_addr_mask(const union nf_inet_addr *a1, union nf_inet_addr *result, const union nf_inet_addr *mask) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 const unsigned long *ua = (const unsigned long *)a1; unsigned long *ur = (unsigned long *)result; const unsigned long *um = (const unsigned long *)mask; ur[0] = ua[0] & um[0]; ur[1] = ua[1] & um[1]; #else result->all[0] = a1->all[0] & mask->all[0]; result->all[1] = a1->all[1] & mask->all[1]; result->all[2] = a1->all[2] & mask->all[2]; result->all[3] = a1->all[3] & mask->all[3]; #endif } int netfilter_init(void); struct sk_buff; struct nf_hook_ops; struct sock; struct nf_hook_state { unsigned int hook; u_int8_t pf; struct net_device *in; struct net_device *out; struct sock *sk; struct net *net; int (*okfn)(struct net *, struct sock *, struct sk_buff *); }; typedef unsigned int nf_hookfn(void *priv, struct sk_buff *skb, const struct nf_hook_state *state); struct nf_hook_ops { /* User fills in from here down. */ nf_hookfn *hook; struct net_device *dev; void *priv; u_int8_t pf; unsigned int hooknum; /* Hooks are ordered in ascending priority. */ int priority; }; struct nf_hook_entry { nf_hookfn *hook; void *priv; }; struct nf_hook_entries_rcu_head { struct rcu_head head; void *allocation; }; struct nf_hook_entries { u16 num_hook_entries; /* padding */ struct nf_hook_entry hooks[]; /* trailer: pointers to original orig_ops of each hook, * followed by rcu_head and scratch space used for freeing * the structure via call_rcu. * * This is not part of struct nf_hook_entry since its only * needed in slow path (hook register/unregister): * const struct nf_hook_ops *orig_ops[] * * For the same reason, we store this at end -- its * only needed when a hook is deleted, not during * packet path processing: * struct nf_hook_entries_rcu_head head */ }; #ifdef CONFIG_NETFILTER static inline struct nf_hook_ops **nf_hook_entries_get_hook_ops(const struct nf_hook_entries *e) { unsigned int n = e->num_hook_entries; const void *hook_end; hook_end = &e->hooks[n]; /* this is *past* ->hooks[]! */ return (struct nf_hook_ops **)hook_end; } static inline int nf_hook_entry_hookfn(const struct nf_hook_entry *entry, struct sk_buff *skb, struct nf_hook_state *state) { return entry->hook(entry->priv, skb, state); } static inline void nf_hook_state_init(struct nf_hook_state *p, unsigned int hook, u_int8_t pf, struct net_device *indev, struct net_device *outdev, struct sock *sk, struct net *net, int (*okfn)(struct net *, struct sock *, struct sk_buff *)) { p->hook = hook; p->pf = pf; p->in = indev; p->out = outdev; p->sk = sk; p->net = net; p->okfn = okfn; } struct nf_sockopt_ops { struct list_head list; u_int8_t pf; /* Non-inclusive ranges: use 0/0/NULL to never get called. */ int set_optmin; int set_optmax; int (*set)(struct sock *sk, int optval, sockptr_t arg, unsigned int len); int get_optmin; int get_optmax; int (*get)(struct sock *sk, int optval, void __user *user, int *len); /* Use the module struct to lock set/get code in place */ struct module *owner; }; /* Function to register/unregister hook points. */ int nf_register_net_hook(struct net *net, const struct nf_hook_ops *ops); void nf_unregister_net_hook(struct net *net, const struct nf_hook_ops *ops); int nf_register_net_hooks(struct net *net, const struct nf_hook_ops *reg, unsigned int n); void nf_unregister_net_hooks(struct net *net, const struct nf_hook_ops *reg, unsigned int n); /* Functions to register get/setsockopt ranges (non-inclusive). You need to check permissions yourself! */ int nf_register_sockopt(struct nf_sockopt_ops *reg); void nf_unregister_sockopt(struct nf_sockopt_ops *reg); #ifdef CONFIG_JUMP_LABEL extern struct static_key nf_hooks_needed[NFPROTO_NUMPROTO][NF_MAX_HOOKS]; #endif int nf_hook_slow(struct sk_buff *skb, struct nf_hook_state *state, const struct nf_hook_entries *e, unsigned int i); void nf_hook_slow_list(struct list_head *head, struct nf_hook_state *state, const struct nf_hook_entries *e); /** * nf_hook - call a netfilter hook * * Returns 1 if the hook has allowed the packet to pass. The function * okfn must be invoked by the caller in this case. Any other return * value indicates the packet has been consumed by the hook. */ static inline int nf_hook(u_int8_t pf, unsigned int hook, struct net *net, struct sock *sk, struct sk_buff *skb, struct net_device *indev, struct net_device *outdev, int (*okfn)(struct net *, struct sock *, struct sk_buff *)) { struct nf_hook_entries *hook_head = NULL; int ret = 1; #ifdef CONFIG_JUMP_LABEL if (__builtin_constant_p(pf) && __builtin_constant_p(hook) && !static_key_false(&nf_hooks_needed[pf][hook])) return 1; #endif rcu_read_lock(); switch (pf) { case NFPROTO_IPV4: hook_head = rcu_dereference(net->nf.hooks_ipv4[hook]); break; case NFPROTO_IPV6: hook_head = rcu_dereference(net->nf.hooks_ipv6[hook]); break; case NFPROTO_ARP: #ifdef CONFIG_NETFILTER_FAMILY_ARP if (WARN_ON_ONCE(hook >= ARRAY_SIZE(net->nf.hooks_arp))) break; hook_head = rcu_dereference(net->nf.hooks_arp[hook]); #endif break; case NFPROTO_BRIDGE: #ifdef CONFIG_NETFILTER_FAMILY_BRIDGE hook_head = rcu_dereference(net->nf.hooks_bridge[hook]); #endif break; #if IS_ENABLED(CONFIG_DECNET) case NFPROTO_DECNET: hook_head = rcu_dereference(net->nf.hooks_decnet[hook]); break; #endif default: WARN_ON_ONCE(1); break; } if (hook_head) { struct nf_hook_state state; nf_hook_state_init(&state, hook, pf, indev, outdev, sk, net, okfn); ret = nf_hook_slow(skb, &state, hook_head, 0); } rcu_read_unlock(); return ret; } /* Activate hook; either okfn or kfree_skb called, unless a hook returns NF_STOLEN (in which case, it's up to the hook to deal with the consequences). Returns -ERRNO if packet dropped. Zero means queued, stolen or accepted. */ /* RR: > I don't want nf_hook to return anything because people might forget > about async and trust the return value to mean "packet was ok". AK: Just document it clearly, then you can expect some sense from kernel coders :) */ static inline int NF_HOOK_COND(uint8_t pf, unsigned int hook, struct net *net, struct sock *sk, struct sk_buff *skb, struct net_device *in, struct net_device *out, int (*okfn)(struct net *, struct sock *, struct sk_buff *), bool cond) { int ret; if (!cond || ((ret = nf_hook(pf, hook, net, sk, skb, in, out, okfn)) == 1)) ret = okfn(net, sk, skb); return ret; } static inline int NF_HOOK(uint8_t pf, unsigned int hook, struct net *net, struct sock *sk, struct sk_buff *skb, struct net_device *in, struct net_device *out, int (*okfn)(struct net *, struct sock *, struct sk_buff *)) { int ret = nf_hook(pf, hook, net, sk, skb, in, out, okfn); if (ret == 1) ret = okfn(net, sk, skb); return ret; } static inline void NF_HOOK_LIST(uint8_t pf, unsigned int hook, struct net *net, struct sock *sk, struct list_head *head, struct net_device *in, struct net_device *out, int (*okfn)(struct net *, struct sock *, struct sk_buff *)) { struct nf_hook_entries *hook_head = NULL; #ifdef CONFIG_JUMP_LABEL if (__builtin_constant_p(pf) && __builtin_constant_p(hook) && !static_key_false(&nf_hooks_needed[pf][hook])) return; #endif rcu_read_lock(); switch (pf) { case NFPROTO_IPV4: hook_head = rcu_dereference(net->nf.hooks_ipv4[hook]); break; case NFPROTO_IPV6: hook_head = rcu_dereference(net->nf.hooks_ipv6[hook]); break; default: WARN_ON_ONCE(1); break; } if (hook_head) { struct nf_hook_state state; nf_hook_state_init(&state, hook, pf, in, out, sk, net, okfn); nf_hook_slow_list(head, &state, hook_head); } rcu_read_unlock(); } /* Call setsockopt() */ int nf_setsockopt(struct sock *sk, u_int8_t pf, int optval, sockptr_t opt, unsigned int len); int nf_getsockopt(struct sock *sk, u_int8_t pf, int optval, char __user *opt, int *len); struct flowi; struct nf_queue_entry; __sum16 nf_checksum(struct sk_buff *skb, unsigned int hook, unsigned int dataoff, u_int8_t protocol, unsigned short family); __sum16 nf_checksum_partial(struct sk_buff *skb, unsigned int hook, unsigned int dataoff, unsigned int len, u_int8_t protocol, unsigned short family); int nf_route(struct net *net, struct dst_entry **dst, struct flowi *fl, bool strict, unsigned short family); int nf_reroute(struct sk_buff *skb, struct nf_queue_entry *entry); #include <net/flow.h> struct nf_conn; enum nf_nat_manip_type; struct nlattr; enum ip_conntrack_dir; struct nf_nat_hook { int (*parse_nat_setup)(struct nf_conn *ct, enum nf_nat_manip_type manip, const struct nlattr *attr); void (*decode_session)(struct sk_buff *skb, struct flowi *fl); unsigned int (*manip_pkt)(struct sk_buff *skb, struct nf_conn *ct, enum nf_nat_manip_type mtype, enum ip_conntrack_dir dir); }; extern struct nf_nat_hook __rcu *nf_nat_hook; static inline void nf_nat_decode_session(struct sk_buff *skb, struct flowi *fl, u_int8_t family) { #if IS_ENABLED(CONFIG_NF_NAT) struct nf_nat_hook *nat_hook; rcu_read_lock(); nat_hook = rcu_dereference(nf_nat_hook); if (nat_hook && nat_hook->decode_session) nat_hook->decode_session(skb, fl); rcu_read_unlock(); #endif } #else /* !CONFIG_NETFILTER */ static inline int NF_HOOK_COND(uint8_t pf, unsigned int hook, struct net *net, struct sock *sk, struct sk_buff *skb, struct net_device *in, struct net_device *out, int (*okfn)(struct net *, struct sock *, struct sk_buff *), bool cond) { return okfn(net, sk, skb); } static inline int NF_HOOK(uint8_t pf, unsigned int hook, struct net *net, struct sock *sk, struct sk_buff *skb, struct net_device *in, struct net_device *out, int (*okfn)(struct net *, struct sock *, struct sk_buff *)) { return okfn(net, sk, skb); } static inline void NF_HOOK_LIST(uint8_t pf, unsigned int hook, struct net *net, struct sock *sk, struct list_head *head, struct net_device *in, struct net_device *out, int (*okfn)(struct net *, struct sock *, struct sk_buff *)) { /* nothing to do */ } static inline int nf_hook(u_int8_t pf, unsigned int hook, struct net *net, struct sock *sk, struct sk_buff *skb, struct net_device *indev, struct net_device *outdev, int (*okfn)(struct net *, struct sock *, struct sk_buff *)) { return 1; } struct flowi; static inline void nf_nat_decode_session(struct sk_buff *skb, struct flowi *fl, u_int8_t family) { } #endif /*CONFIG_NETFILTER*/ #if IS_ENABLED(CONFIG_NF_CONNTRACK) #include <linux/netfilter/nf_conntrack_zones_common.h> extern void (*ip_ct_attach)(struct sk_buff *, const struct sk_buff *) __rcu; void nf_ct_attach(struct sk_buff *, const struct sk_buff *); struct nf_conntrack_tuple; bool nf_ct_get_tuple_skb(struct nf_conntrack_tuple *dst_tuple, const struct sk_buff *skb); #else static inline void nf_ct_attach(struct sk_buff *new, struct sk_buff *skb) {} struct nf_conntrack_tuple; static inline bool nf_ct_get_tuple_skb(struct nf_conntrack_tuple *dst_tuple, const struct sk_buff *skb) { return false; } #endif struct nf_conn; enum ip_conntrack_info; struct nf_ct_hook { int (*update)(struct net *net, struct sk_buff *skb); void (*destroy)(struct nf_conntrack *); bool (*get_tuple_skb)(struct nf_conntrack_tuple *, const struct sk_buff *); }; extern struct nf_ct_hook __rcu *nf_ct_hook; struct nlattr; struct nfnl_ct_hook { struct nf_conn *(*get_ct)(const struct sk_buff *skb, enum ip_conntrack_info *ctinfo); size_t (*build_size)(const struct nf_conn *ct); int (*build)(struct sk_buff *skb, struct nf_conn *ct, enum ip_conntrack_info ctinfo, u_int16_t ct_attr, u_int16_t ct_info_attr); int (*parse)(const struct nlattr *attr, struct nf_conn *ct); int (*attach_expect)(const struct nlattr *attr, struct nf_conn *ct, u32 portid, u32 report); void (*seq_adjust)(struct sk_buff *skb, struct nf_conn *ct, enum ip_conntrack_info ctinfo, s32 off); }; extern struct nfnl_ct_hook __rcu *nfnl_ct_hook; /** * nf_skb_duplicated - TEE target has sent a packet * * When a xtables target sends a packet, the OUTPUT and POSTROUTING * hooks are traversed again, i.e. nft and xtables are invoked recursively. * * This is used by xtables TEE target to prevent the duplicated skb from * being duplicated again. */ DECLARE_PER_CPU(bool, nf_skb_duplicated); #endif /*__LINUX_NETFILTER_H*/
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_LIST_NULLS_H #define _LINUX_LIST_NULLS_H #include <linux/poison.h> #include <linux/const.h> /* * Special version of lists, where end of list is not a NULL pointer, * but a 'nulls' marker, which can have many different values. * (up to 2^31 different values guaranteed on all platforms) * * In the standard hlist, termination of a list is the NULL pointer. * In this special 'nulls' variant, we use the fact that objects stored in * a list are aligned on a word (4 or 8 bytes alignment). * We therefore use the last significant bit of 'ptr' : * Set to 1 : This is a 'nulls' end-of-list marker (ptr >> 1) * Set to 0 : This is a pointer to some object (ptr) */ struct hlist_nulls_head { struct hlist_nulls_node *first; }; struct hlist_nulls_node { struct hlist_nulls_node *next, **pprev; }; #define NULLS_MARKER(value) (1UL | (((long)value) << 1)) #define INIT_HLIST_NULLS_HEAD(ptr, nulls) \ ((ptr)->first = (struct hlist_nulls_node *) NULLS_MARKER(nulls)) #define hlist_nulls_entry(ptr, type, member) container_of(ptr,type,member) #define hlist_nulls_entry_safe(ptr, type, member) \ ({ typeof(ptr) ____ptr = (ptr); \ !is_a_nulls(____ptr) ? hlist_nulls_entry(____ptr, type, member) : NULL; \ }) /** * ptr_is_a_nulls - Test if a ptr is a nulls * @ptr: ptr to be tested * */ static inline int is_a_nulls(const struct hlist_nulls_node *ptr) { return ((unsigned long)ptr & 1); } /** * get_nulls_value - Get the 'nulls' value of the end of chain * @ptr: end of chain * * Should be called only if is_a_nulls(ptr); */ static inline unsigned long get_nulls_value(const struct hlist_nulls_node *ptr) { return ((unsigned long)ptr) >> 1; } /** * hlist_nulls_unhashed - Has node been removed and reinitialized? * @h: Node to be checked * * Not that not all removal functions will leave a node in unhashed state. * For example, hlist_del_init_rcu() leaves the node in unhashed state, * but hlist_nulls_del() does not. */ static inline int hlist_nulls_unhashed(const struct hlist_nulls_node *h) { return !h->pprev; } /** * hlist_nulls_unhashed_lockless - Has node been removed and reinitialized? * @h: Node to be checked * * Not that not all removal functions will leave a node in unhashed state. * For example, hlist_del_init_rcu() leaves the node in unhashed state, * but hlist_nulls_del() does not. Unlike hlist_nulls_unhashed(), this * function may be used locklessly. */ static inline int hlist_nulls_unhashed_lockless(const struct hlist_nulls_node *h) { return !READ_ONCE(h->pprev); } static inline int hlist_nulls_empty(const struct hlist_nulls_head *h) { return is_a_nulls(READ_ONCE(h->first)); } static inline void hlist_nulls_add_head(struct hlist_nulls_node *n, struct hlist_nulls_head *h) { struct hlist_nulls_node *first = h->first; n->next = first; WRITE_ONCE(n->pprev, &h->first); h->first = n; if (!is_a_nulls(first)) WRITE_ONCE(first->pprev, &n->next); } static inline void __hlist_nulls_del(struct hlist_nulls_node *n) { struct hlist_nulls_node *next = n->next; struct hlist_nulls_node **pprev = n->pprev; WRITE_ONCE(*pprev, next); if (!is_a_nulls(next)) WRITE_ONCE(next->pprev, pprev); } static inline void hlist_nulls_del(struct hlist_nulls_node *n) { __hlist_nulls_del(n); WRITE_ONCE(n->pprev, LIST_POISON2); } /** * hlist_nulls_for_each_entry - iterate over list of given type * @tpos: the type * to use as a loop cursor. * @pos: the &struct hlist_node to use as a loop cursor. * @head: the head for your list. * @member: the name of the hlist_node within the struct. * */ #define hlist_nulls_for_each_entry(tpos, pos, head, member) \ for (pos = (head)->first; \ (!is_a_nulls(pos)) && \ ({ tpos = hlist_nulls_entry(pos, typeof(*tpos), member); 1;}); \ pos = pos->next) /** * hlist_nulls_for_each_entry_from - iterate over a hlist continuing from current point * @tpos: the type * to use as a loop cursor. * @pos: the &struct hlist_node to use as a loop cursor. * @member: the name of the hlist_node within the struct. * */ #define hlist_nulls_for_each_entry_from(tpos, pos, member) \ for (; (!is_a_nulls(pos)) && \ ({ tpos = hlist_nulls_entry(pos, typeof(*tpos), member); 1;}); \ pos = pos->next) #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Cryptographic scatter and gather helpers. * * Copyright (c) 2002 James Morris <jmorris@intercode.com.au> * Copyright (c) 2002 Adam J. Richter <adam@yggdrasil.com> * Copyright (c) 2004 Jean-Luc Cooke <jlcooke@certainkey.com> * Copyright (c) 2007 Herbert Xu <herbert@gondor.apana.org.au> */ #ifndef _CRYPTO_SCATTERWALK_H #define _CRYPTO_SCATTERWALK_H #include <crypto/algapi.h> #include <linux/highmem.h> #include <linux/kernel.h> #include <linux/scatterlist.h> static inline void scatterwalk_crypto_chain(struct scatterlist *head, struct scatterlist *sg, int num) { if (sg) sg_chain(head, num, sg); else sg_mark_end(head); } static inline unsigned int scatterwalk_pagelen(struct scatter_walk *walk) { unsigned int len = walk->sg->offset + walk->sg->length - walk->offset; unsigned int len_this_page = offset_in_page(~walk->offset) + 1; return len_this_page > len ? len : len_this_page; } static inline unsigned int scatterwalk_clamp(struct scatter_walk *walk, unsigned int nbytes) { unsigned int len_this_page = scatterwalk_pagelen(walk); return nbytes > len_this_page ? len_this_page : nbytes; } static inline void scatterwalk_advance(struct scatter_walk *walk, unsigned int nbytes) { walk->offset += nbytes; } static inline unsigned int scatterwalk_aligned(struct scatter_walk *walk, unsigned int alignmask) { return !(walk->offset & alignmask); } static inline struct page *scatterwalk_page(struct scatter_walk *walk) { return sg_page(walk->sg) + (walk->offset >> PAGE_SHIFT); } static inline void scatterwalk_unmap(void *vaddr) { kunmap_atomic(vaddr); } static inline void scatterwalk_start(struct scatter_walk *walk, struct scatterlist *sg) { walk->sg = sg; walk->offset = sg->offset; } static inline void *scatterwalk_map(struct scatter_walk *walk) { return kmap_atomic(scatterwalk_page(walk)) + offset_in_page(walk->offset); } static inline void scatterwalk_pagedone(struct scatter_walk *walk, int out, unsigned int more) { if (out) { struct page *page; page = sg_page(walk->sg) + ((walk->offset - 1) >> PAGE_SHIFT); /* Test ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE first as * PageSlab cannot be optimised away per se due to * use of volatile pointer. */ if (ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE && !PageSlab(page)) flush_dcache_page(page); } if (more && walk->offset >= walk->sg->offset + walk->sg->length) scatterwalk_start(walk, sg_next(walk->sg)); } static inline void scatterwalk_done(struct scatter_walk *walk, int out, int more) { if (!more || walk->offset >= walk->sg->offset + walk->sg->length || !(walk->offset & (PAGE_SIZE - 1))) scatterwalk_pagedone(walk, out, more); } void scatterwalk_copychunks(void *buf, struct scatter_walk *walk, size_t nbytes, int out); void *scatterwalk_map(struct scatter_walk *walk); void scatterwalk_map_and_copy(void *buf, struct scatterlist *sg, unsigned int start, unsigned int nbytes, int out); struct scatterlist *scatterwalk_ffwd(struct scatterlist dst[2], struct scatterlist *src, unsigned int len); #endif /* _CRYPTO_SCATTERWALK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 /* SPDX-License-Identifier: GPL-2.0 */ /* * Statically sized hash table implementation * (C) 2012 Sasha Levin <levinsasha928@gmail.com> */ #ifndef _LINUX_HASHTABLE_H #define _LINUX_HASHTABLE_H #include <linux/list.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/hash.h> #include <linux/rculist.h> #define DEFINE_HASHTABLE(name, bits) \ struct hlist_head name[1 << (bits)] = \ { [0 ... ((1 << (bits)) - 1)] = HLIST_HEAD_INIT } #define DEFINE_READ_MOSTLY_HASHTABLE(name, bits) \ struct hlist_head name[1 << (bits)] __read_mostly = \ { [0 ... ((1 << (bits)) - 1)] = HLIST_HEAD_INIT } #define DECLARE_HASHTABLE(name, bits) \ struct hlist_head name[1 << (bits)] #define HASH_SIZE(name) (ARRAY_SIZE(name)) #define HASH_BITS(name) ilog2(HASH_SIZE(name)) /* Use hash_32 when possible to allow for fast 32bit hashing in 64bit kernels. */ #define hash_min(val, bits) \ (sizeof(val) <= 4 ? hash_32(val, bits) : hash_long(val, bits)) static inline void __hash_init(struct hlist_head *ht, unsigned int sz) { unsigned int i; for (i = 0; i < sz; i++) INIT_HLIST_HEAD(&ht[i]); } /** * hash_init - initialize a hash table * @hashtable: hashtable to be initialized * * Calculates the size of the hashtable from the given parameter, otherwise * same as hash_init_size. * * This has to be a macro since HASH_BITS() will not work on pointers since * it calculates the size during preprocessing. */ #define hash_init(hashtable) __hash_init(hashtable, HASH_SIZE(hashtable)) /** * hash_add - add an object to a hashtable * @hashtable: hashtable to add to * @node: the &struct hlist_node of the object to be added * @key: the key of the object to be added */ #define hash_add(hashtable, node, key) \ hlist_add_head(node, &hashtable[hash_min(key, HASH_BITS(hashtable))]) /** * hash_add_rcu - add an object to a rcu enabled hashtable * @hashtable: hashtable to add to * @node: the &struct hlist_node of the object to be added * @key: the key of the object to be added */ #define hash_add_rcu(hashtable, node, key) \ hlist_add_head_rcu(node, &hashtable[hash_min(key, HASH_BITS(hashtable))]) /** * hash_hashed - check whether an object is in any hashtable * @node: the &struct hlist_node of the object to be checked */ static inline bool hash_hashed(struct hlist_node *node) { return !hlist_unhashed(node); } static inline bool __hash_empty(struct hlist_head *ht, unsigned int sz) { unsigned int i; for (i = 0; i < sz; i++) if (!hlist_empty(&ht[i])) return false; return true; } /** * hash_empty - check whether a hashtable is empty * @hashtable: hashtable to check * * This has to be a macro since HASH_BITS() will not work on pointers since * it calculates the size during preprocessing. */ #define hash_empty(hashtable) __hash_empty(hashtable, HASH_SIZE(hashtable)) /** * hash_del - remove an object from a hashtable * @node: &struct hlist_node of the object to remove */ static inline void hash_del(struct hlist_node *node) { hlist_del_init(node); } /** * hash_del_rcu - remove an object from a rcu enabled hashtable * @node: &struct hlist_node of the object to remove */ static inline void hash_del_rcu(struct hlist_node *node) { hlist_del_init_rcu(node); } /** * hash_for_each - iterate over a hashtable * @name: hashtable to iterate * @bkt: integer to use as bucket loop cursor * @obj: the type * to use as a loop cursor for each entry * @member: the name of the hlist_node within the struct */ #define hash_for_each(name, bkt, obj, member) \ for ((bkt) = 0, obj = NULL; obj == NULL && (bkt) < HASH_SIZE(name);\ (bkt)++)\ hlist_for_each_entry(obj, &name[bkt], member) /** * hash_for_each_rcu - iterate over a rcu enabled hashtable * @name: hashtable to iterate * @bkt: integer to use as bucket loop cursor * @obj: the type * to use as a loop cursor for each entry * @member: the name of the hlist_node within the struct */ #define hash_for_each_rcu(name, bkt, obj, member) \ for ((bkt) = 0, obj = NULL; obj == NULL && (bkt) < HASH_SIZE(name);\ (bkt)++)\ hlist_for_each_entry_rcu(obj, &name[bkt], member) /** * hash_for_each_safe - iterate over a hashtable safe against removal of * hash entry * @name: hashtable to iterate * @bkt: integer to use as bucket loop cursor * @tmp: a &struct hlist_node used for temporary storage * @obj: the type * to use as a loop cursor for each entry * @member: the name of the hlist_node within the struct */ #define hash_for_each_safe(name, bkt, tmp, obj, member) \ for ((bkt) = 0, obj = NULL; obj == NULL && (bkt) < HASH_SIZE(name);\ (bkt)++)\ hlist_for_each_entry_safe(obj, tmp, &name[bkt], member) /** * hash_for_each_possible - iterate over all possible objects hashing to the * same bucket * @name: hashtable to iterate * @obj: the type * to use as a loop cursor for each entry * @member: the name of the hlist_node within the struct * @key: the key of the objects to iterate over */ #define hash_for_each_possible(name, obj, member, key) \ hlist_for_each_entry(obj, &name[hash_min(key, HASH_BITS(name))], member) /** * hash_for_each_possible_rcu - iterate over all possible objects hashing to the * same bucket in an rcu enabled hashtable * @name: hashtable to iterate * @obj: the type * to use as a loop cursor for each entry * @member: the name of the hlist_node within the struct * @key: the key of the objects to iterate over */ #define hash_for_each_possible_rcu(name, obj, member, key, cond...) \ hlist_for_each_entry_rcu(obj, &name[hash_min(key, HASH_BITS(name))],\ member, ## cond) /** * hash_for_each_possible_rcu_notrace - iterate over all possible objects hashing * to the same bucket in an rcu enabled hashtable in a rcu enabled hashtable * @name: hashtable to iterate * @obj: the type * to use as a loop cursor for each entry * @member: the name of the hlist_node within the struct * @key: the key of the objects to iterate over * * This is the same as hash_for_each_possible_rcu() except that it does * not do any RCU debugging or tracing. */ #define hash_for_each_possible_rcu_notrace(name, obj, member, key) \ hlist_for_each_entry_rcu_notrace(obj, \ &name[hash_min(key, HASH_BITS(name))], member) /** * hash_for_each_possible_safe - iterate over all possible objects hashing to the * same bucket safe against removals * @name: hashtable to iterate * @obj: the type * to use as a loop cursor for each entry * @tmp: a &struct hlist_node used for temporary storage * @member: the name of the hlist_node within the struct * @key: the key of the objects to iterate over */ #define hash_for_each_possible_safe(name, obj, tmp, member, key) \ hlist_for_each_entry_safe(obj, tmp,\ &name[hash_min(key, HASH_BITS(name))], member) #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* include/asm-generic/tlb.h * * Generic TLB shootdown code * * Copyright 2001 Red Hat, Inc. * Based on code from mm/memory.c Copyright Linus Torvalds and others. * * Copyright 2011 Red Hat, Inc., Peter Zijlstra */ #ifndef _ASM_GENERIC__TLB_H #define _ASM_GENERIC__TLB_H #include <linux/mmu_notifier.h> #include <linux/swap.h> #include <linux/hugetlb_inline.h> #include <asm/tlbflush.h> #include <asm/cacheflush.h> /* * Blindly accessing user memory from NMI context can be dangerous * if we're in the middle of switching the current user task or switching * the loaded mm. */ #ifndef nmi_uaccess_okay # define nmi_uaccess_okay() true #endif #ifdef CONFIG_MMU /* * Generic MMU-gather implementation. * * The mmu_gather data structure is used by the mm code to implement the * correct and efficient ordering of freeing pages and TLB invalidations. * * This correct ordering is: * * 1) unhook page * 2) TLB invalidate page * 3) free page * * That is, we must never free a page before we have ensured there are no live * translations left to it. Otherwise it might be possible to observe (or * worse, change) the page content after it has been reused. * * The mmu_gather API consists of: * * - tlb_gather_mmu() / tlb_finish_mmu(); start and finish a mmu_gather * * Finish in particular will issue a (final) TLB invalidate and free * all (remaining) queued pages. * * - tlb_start_vma() / tlb_end_vma(); marks the start / end of a VMA * * Defaults to flushing at tlb_end_vma() to reset the range; helps when * there's large holes between the VMAs. * * - tlb_remove_table() * * tlb_remove_table() is the basic primitive to free page-table directories * (__p*_free_tlb()). In it's most primitive form it is an alias for * tlb_remove_page() below, for when page directories are pages and have no * additional constraints. * * See also MMU_GATHER_TABLE_FREE and MMU_GATHER_RCU_TABLE_FREE. * * - tlb_remove_page() / __tlb_remove_page() * - tlb_remove_page_size() / __tlb_remove_page_size() * * __tlb_remove_page_size() is the basic primitive that queues a page for * freeing. __tlb_remove_page() assumes PAGE_SIZE. Both will return a * boolean indicating if the queue is (now) full and a call to * tlb_flush_mmu() is required. * * tlb_remove_page() and tlb_remove_page_size() imply the call to * tlb_flush_mmu() when required and has no return value. * * - tlb_change_page_size() * * call before __tlb_remove_page*() to set the current page-size; implies a * possible tlb_flush_mmu() call. * * - tlb_flush_mmu() / tlb_flush_mmu_tlbonly() * * tlb_flush_mmu_tlbonly() - does the TLB invalidate (and resets * related state, like the range) * * tlb_flush_mmu() - in addition to the above TLB invalidate, also frees * whatever pages are still batched. * * - mmu_gather::fullmm * * A flag set by tlb_gather_mmu() to indicate we're going to free * the entire mm; this allows a number of optimizations. * * - We can ignore tlb_{start,end}_vma(); because we don't * care about ranges. Everything will be shot down. * * - (RISC) architectures that use ASIDs can cycle to a new ASID * and delay the invalidation until ASID space runs out. * * - mmu_gather::need_flush_all * * A flag that can be set by the arch code if it wants to force * flush the entire TLB irrespective of the range. For instance * x86-PAE needs this when changing top-level entries. * * And allows the architecture to provide and implement tlb_flush(): * * tlb_flush() may, in addition to the above mentioned mmu_gather fields, make * use of: * * - mmu_gather::start / mmu_gather::end * * which provides the range that needs to be flushed to cover the pages to * be freed. * * - mmu_gather::freed_tables * * set when we freed page table pages * * - tlb_get_unmap_shift() / tlb_get_unmap_size() * * returns the smallest TLB entry size unmapped in this range. * * If an architecture does not provide tlb_flush() a default implementation * based on flush_tlb_range() will be used, unless MMU_GATHER_NO_RANGE is * specified, in which case we'll default to flush_tlb_mm(). * * Additionally there are a few opt-in features: * * MMU_GATHER_PAGE_SIZE * * This ensures we call tlb_flush() every time tlb_change_page_size() actually * changes the size and provides mmu_gather::page_size to tlb_flush(). * * This might be useful if your architecture has size specific TLB * invalidation instructions. * * MMU_GATHER_TABLE_FREE * * This provides tlb_remove_table(), to be used instead of tlb_remove_page() * for page directores (__p*_free_tlb()). * * Useful if your architecture has non-page page directories. * * When used, an architecture is expected to provide __tlb_remove_table() * which does the actual freeing of these pages. * * MMU_GATHER_RCU_TABLE_FREE * * Like MMU_GATHER_TABLE_FREE, and adds semi-RCU semantics to the free (see * comment below). * * Useful if your architecture doesn't use IPIs for remote TLB invalidates * and therefore doesn't naturally serialize with software page-table walkers. * * MMU_GATHER_NO_RANGE * * Use this if your architecture lacks an efficient flush_tlb_range(). * * MMU_GATHER_NO_GATHER * * If the option is set the mmu_gather will not track individual pages for * delayed page free anymore. A platform that enables the option needs to * provide its own implementation of the __tlb_remove_page_size() function to * free pages. * * This is useful if your architecture already flushes TLB entries in the * various ptep_get_and_clear() functions. */ #ifdef CONFIG_MMU_GATHER_TABLE_FREE struct mmu_table_batch { #ifdef CONFIG_MMU_GATHER_RCU_TABLE_FREE struct rcu_head rcu; #endif unsigned int nr; void *tables[0]; }; #define MAX_TABLE_BATCH \ ((PAGE_SIZE - sizeof(struct mmu_table_batch)) / sizeof(void *)) extern void tlb_remove_table(struct mmu_gather *tlb, void *table); #else /* !CONFIG_MMU_GATHER_HAVE_TABLE_FREE */ /* * Without MMU_GATHER_TABLE_FREE the architecture is assumed to have page based * page directories and we can use the normal page batching to free them. */ #define tlb_remove_table(tlb, page) tlb_remove_page((tlb), (page)) #endif /* CONFIG_MMU_GATHER_TABLE_FREE */ #ifdef CONFIG_MMU_GATHER_RCU_TABLE_FREE /* * This allows an architecture that does not use the linux page-tables for * hardware to skip the TLBI when freeing page tables. */ #ifndef tlb_needs_table_invalidate #define tlb_needs_table_invalidate() (true) #endif #else #ifdef tlb_needs_table_invalidate #error tlb_needs_table_invalidate() requires MMU_GATHER_RCU_TABLE_FREE #endif #endif /* CONFIG_MMU_GATHER_RCU_TABLE_FREE */ #ifndef CONFIG_MMU_GATHER_NO_GATHER /* * If we can't allocate a page to make a big batch of page pointers * to work on, then just handle a few from the on-stack structure. */ #define MMU_GATHER_BUNDLE 8 struct mmu_gather_batch { struct mmu_gather_batch *next; unsigned int nr; unsigned int max; struct page *pages[0]; }; #define MAX_GATHER_BATCH \ ((PAGE_SIZE - sizeof(struct mmu_gather_batch)) / sizeof(void *)) /* * Limit the maximum number of mmu_gather batches to reduce a risk of soft * lockups for non-preemptible kernels on huge machines when a lot of memory * is zapped during unmapping. * 10K pages freed at once should be safe even without a preemption point. */ #define MAX_GATHER_BATCH_COUNT (10000UL/MAX_GATHER_BATCH) extern bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size); #endif /* * struct mmu_gather is an opaque type used by the mm code for passing around * any data needed by arch specific code for tlb_remove_page. */ struct mmu_gather { struct mm_struct *mm; #ifdef CONFIG_MMU_GATHER_TABLE_FREE struct mmu_table_batch *batch; #endif unsigned long start; unsigned long end; /* * we are in the middle of an operation to clear * a full mm and can make some optimizations */ unsigned int fullmm : 1; /* * we have performed an operation which * requires a complete flush of the tlb */ unsigned int need_flush_all : 1; /* * we have removed page directories */ unsigned int freed_tables : 1; /* * at which levels have we cleared entries? */ unsigned int cleared_ptes : 1; unsigned int cleared_pmds : 1; unsigned int cleared_puds : 1; unsigned int cleared_p4ds : 1; /* * tracks VM_EXEC | VM_HUGETLB in tlb_start_vma */ unsigned int vma_exec : 1; unsigned int vma_huge : 1; unsigned int batch_count; #ifndef CONFIG_MMU_GATHER_NO_GATHER struct mmu_gather_batch *active; struct mmu_gather_batch local; struct page *__pages[MMU_GATHER_BUNDLE]; #ifdef CONFIG_MMU_GATHER_PAGE_SIZE unsigned int page_size; #endif #endif }; void tlb_flush_mmu(struct mmu_gather *tlb); static inline void __tlb_adjust_range(struct mmu_gather *tlb, unsigned long address, unsigned int range_size) { tlb->start = min(tlb->start, address); tlb->end = max(tlb->end, address + range_size); } static inline void __tlb_reset_range(struct mmu_gather *tlb) { if (tlb->fullmm) { tlb->start = tlb->end = ~0; } else { tlb->start = TASK_SIZE; tlb->end = 0; } tlb->freed_tables = 0; tlb->cleared_ptes = 0; tlb->cleared_pmds = 0; tlb->cleared_puds = 0; tlb->cleared_p4ds = 0; /* * Do not reset mmu_gather::vma_* fields here, we do not * call into tlb_start_vma() again to set them if there is an * intermediate flush. */ } #ifdef CONFIG_MMU_GATHER_NO_RANGE #if defined(tlb_flush) || defined(tlb_start_vma) || defined(tlb_end_vma) #error MMU_GATHER_NO_RANGE relies on default tlb_flush(), tlb_start_vma() and tlb_end_vma() #endif /* * When an architecture does not have efficient means of range flushing TLBs * there is no point in doing intermediate flushes on tlb_end_vma() to keep the * range small. We equally don't have to worry about page granularity or other * things. * * All we need to do is issue a full flush for any !0 range. */ static inline void tlb_flush(struct mmu_gather *tlb) { if (tlb->end) flush_tlb_mm(tlb->mm); } static inline void tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma) { } #define tlb_end_vma tlb_end_vma static inline void tlb_end_vma(struct mmu_gather *tlb, struct vm_area_struct *vma) { } #else /* CONFIG_MMU_GATHER_NO_RANGE */ #ifndef tlb_flush #if defined(tlb_start_vma) || defined(tlb_end_vma) #error Default tlb_flush() relies on default tlb_start_vma() and tlb_end_vma() #endif /* * When an architecture does not provide its own tlb_flush() implementation * but does have a reasonably efficient flush_vma_range() implementation * use that. */ static inline void tlb_flush(struct mmu_gather *tlb) { if (tlb->fullmm || tlb->need_flush_all) { flush_tlb_mm(tlb->mm); } else if (tlb->end) { struct vm_area_struct vma = { .vm_mm = tlb->mm, .vm_flags = (tlb->vma_exec ? VM_EXEC : 0) | (tlb->vma_huge ? VM_HUGETLB : 0), }; flush_tlb_range(&vma, tlb->start, tlb->end); } } static inline void tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma) { /* * flush_tlb_range() implementations that look at VM_HUGETLB (tile, * mips-4k) flush only large pages. * * flush_tlb_range() implementations that flush I-TLB also flush D-TLB * (tile, xtensa, arm), so it's ok to just add VM_EXEC to an existing * range. * * We rely on tlb_end_vma() to issue a flush, such that when we reset * these values the batch is empty. */ tlb->vma_huge = is_vm_hugetlb_page(vma); tlb->vma_exec = !!(vma->vm_flags & VM_EXEC); } #else static inline void tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma) { } #endif #endif /* CONFIG_MMU_GATHER_NO_RANGE */ static inline void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb) { /* * Anything calling __tlb_adjust_range() also sets at least one of * these bits. */ if (!(tlb->freed_tables || tlb->cleared_ptes || tlb->cleared_pmds || tlb->cleared_puds || tlb->cleared_p4ds)) return; tlb_flush(tlb); mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end); __tlb_reset_range(tlb); } static inline void tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size) { if (__tlb_remove_page_size(tlb, page, page_size)) tlb_flush_mmu(tlb); } static inline bool __tlb_remove_page(struct mmu_gather *tlb, struct page *page) { return __tlb_remove_page_size(tlb, page, PAGE_SIZE); } /* tlb_remove_page * Similar to __tlb_remove_page but will call tlb_flush_mmu() itself when * required. */ static inline void tlb_remove_page(struct mmu_gather *tlb, struct page *page) { return tlb_remove_page_size(tlb, page, PAGE_SIZE); } static inline void tlb_change_page_size(struct mmu_gather *tlb, unsigned int page_size) { #ifdef CONFIG_MMU_GATHER_PAGE_SIZE if (tlb->page_size && tlb->page_size != page_size) { if (!tlb->fullmm && !tlb->need_flush_all) tlb_flush_mmu(tlb); } tlb->page_size = page_size; #endif } static inline unsigned long tlb_get_unmap_shift(struct mmu_gather *tlb) { if (tlb->cleared_ptes) return PAGE_SHIFT; if (tlb->cleared_pmds) return PMD_SHIFT; if (tlb->cleared_puds) return PUD_SHIFT; if (tlb->cleared_p4ds) return P4D_SHIFT; return PAGE_SHIFT; } static inline unsigned long tlb_get_unmap_size(struct mmu_gather *tlb) { return 1UL << tlb_get_unmap_shift(tlb); } /* * In the case of tlb vma handling, we can optimise these away in the * case where we're doing a full MM flush. When we're doing a munmap, * the vmas are adjusted to only cover the region to be torn down. */ #ifndef tlb_start_vma static inline void tlb_start_vma(struct mmu_gather *tlb, struct vm_area_struct *vma) { if (tlb->fullmm) return; tlb_update_vma_flags(tlb, vma); flush_cache_range(vma, vma->vm_start, vma->vm_end); } #endif #ifndef tlb_end_vma static inline void tlb_end_vma(struct mmu_gather *tlb, struct vm_area_struct *vma) { if (tlb->fullmm) return; /* * Do a TLB flush and reset the range at VMA boundaries; this avoids * the ranges growing with the unused space between consecutive VMAs, * but also the mmu_gather::vma_* flags from tlb_start_vma() rely on * this. */ tlb_flush_mmu_tlbonly(tlb); } #endif /* * tlb_flush_{pte|pmd|pud|p4d}_range() adjust the tlb->start and tlb->end, * and set corresponding cleared_*. */ static inline void tlb_flush_pte_range(struct mmu_gather *tlb, unsigned long address, unsigned long size) { __tlb_adjust_range(tlb, address, size); tlb->cleared_ptes = 1; } static inline void tlb_flush_pmd_range(struct mmu_gather *tlb, unsigned long address, unsigned long size) { __tlb_adjust_range(tlb, address, size); tlb->cleared_pmds = 1; } static inline void tlb_flush_pud_range(struct mmu_gather *tlb, unsigned long address, unsigned long size) { __tlb_adjust_range(tlb, address, size); tlb->cleared_puds = 1; } static inline void tlb_flush_p4d_range(struct mmu_gather *tlb, unsigned long address, unsigned long size) { __tlb_adjust_range(tlb, address, size); tlb->cleared_p4ds = 1; } #ifndef __tlb_remove_tlb_entry #define __tlb_remove_tlb_entry(tlb, ptep, address) do { } while (0) #endif /** * tlb_remove_tlb_entry - remember a pte unmapping for later tlb invalidation. * * Record the fact that pte's were really unmapped by updating the range, * so we can later optimise away the tlb invalidate. This helps when * userspace is unmapping already-unmapped pages, which happens quite a lot. */ #define tlb_remove_tlb_entry(tlb, ptep, address) \ do { \ tlb_flush_pte_range(tlb, address, PAGE_SIZE); \ __tlb_remove_tlb_entry(tlb, ptep, address); \ } while (0) #define tlb_remove_huge_tlb_entry(h, tlb, ptep, address) \ do { \ unsigned long _sz = huge_page_size(h); \ if (_sz == PMD_SIZE) \ tlb_flush_pmd_range(tlb, address, _sz); \ else if (_sz == PUD_SIZE) \ tlb_flush_pud_range(tlb, address, _sz); \ __tlb_remove_tlb_entry(tlb, ptep, address); \ } while (0) /** * tlb_remove_pmd_tlb_entry - remember a pmd mapping for later tlb invalidation * This is a nop so far, because only x86 needs it. */ #ifndef __tlb_remove_pmd_tlb_entry #define __tlb_remove_pmd_tlb_entry(tlb, pmdp, address) do {} while (0) #endif #define tlb_remove_pmd_tlb_entry(tlb, pmdp, address) \ do { \ tlb_flush_pmd_range(tlb, address, HPAGE_PMD_SIZE); \ __tlb_remove_pmd_tlb_entry(tlb, pmdp, address); \ } while (0) /** * tlb_remove_pud_tlb_entry - remember a pud mapping for later tlb * invalidation. This is a nop so far, because only x86 needs it. */ #ifndef __tlb_remove_pud_tlb_entry #define __tlb_remove_pud_tlb_entry(tlb, pudp, address) do {} while (0) #endif #define tlb_remove_pud_tlb_entry(tlb, pudp, address) \ do { \ tlb_flush_pud_range(tlb, address, HPAGE_PUD_SIZE); \ __tlb_remove_pud_tlb_entry(tlb, pudp, address); \ } while (0) /* * For things like page tables caches (ie caching addresses "inside" the * page tables, like x86 does), for legacy reasons, flushing an * individual page had better flush the page table caches behind it. This * is definitely how x86 works, for example. And if you have an * architected non-legacy page table cache (which I'm not aware of * anybody actually doing), you're going to have some architecturally * explicit flushing for that, likely *separate* from a regular TLB entry * flush, and thus you'd need more than just some range expansion.. * * So if we ever find an architecture * that would want something that odd, I think it is up to that * architecture to do its own odd thing, not cause pain for others * http://lkml.kernel.org/r/CA+55aFzBggoXtNXQeng5d_mRoDnaMBE5Y+URs+PHR67nUpMtaw@mail.gmail.com * * For now w.r.t page table cache, mark the range_size as PAGE_SIZE */ #ifndef pte_free_tlb #define pte_free_tlb(tlb, ptep, address) \ do { \ tlb_flush_pmd_range(tlb, address, PAGE_SIZE); \ tlb->freed_tables = 1; \ __pte_free_tlb(tlb, ptep, address); \ } while (0) #endif #ifndef pmd_free_tlb #define pmd_free_tlb(tlb, pmdp, address) \ do { \ tlb_flush_pud_range(tlb, address, PAGE_SIZE); \ tlb->freed_tables = 1; \ __pmd_free_tlb(tlb, pmdp, address); \ } while (0) #endif #ifndef pud_free_tlb #define pud_free_tlb(tlb, pudp, address) \ do { \ tlb_flush_p4d_range(tlb, address, PAGE_SIZE); \ tlb->freed_tables = 1; \ __pud_free_tlb(tlb, pudp, address); \ } while (0) #endif #ifndef p4d_free_tlb #define p4d_free_tlb(tlb, pudp, address) \ do { \ __tlb_adjust_range(tlb, address, PAGE_SIZE); \ tlb->freed_tables = 1; \ __p4d_free_tlb(tlb, pudp, address); \ } while (0) #endif #endif /* CONFIG_MMU */ #endif /* _ASM_GENERIC__TLB_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM workqueue #if !defined(_TRACE_WORKQUEUE_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_WORKQUEUE_H #include <linux/tracepoint.h> #include <linux/workqueue.h> struct pool_workqueue; /** * workqueue_queue_work - called when a work gets queued * @req_cpu: the requested cpu * @pwq: pointer to struct pool_workqueue * @work: pointer to struct work_struct * * This event occurs when a work is queued immediately or once a * delayed work is actually queued on a workqueue (ie: once the delay * has been reached). */ TRACE_EVENT(workqueue_queue_work, TP_PROTO(unsigned int req_cpu, struct pool_workqueue *pwq, struct work_struct *work), TP_ARGS(req_cpu, pwq, work), TP_STRUCT__entry( __field( void *, work ) __field( void *, function) __field( void *, workqueue) __field( unsigned int, req_cpu ) __field( unsigned int, cpu ) ), TP_fast_assign( __entry->work = work; __entry->function = work->func; __entry->workqueue = pwq->wq; __entry->req_cpu = req_cpu; __entry->cpu = pwq->pool->cpu; ), TP_printk("work struct=%p function=%ps workqueue=%p req_cpu=%u cpu=%u", __entry->work, __entry->function, __entry->workqueue, __entry->req_cpu, __entry->cpu) ); /** * workqueue_activate_work - called when a work gets activated * @work: pointer to struct work_struct * * This event occurs when a queued work is put on the active queue, * which happens immediately after queueing unless @max_active limit * is reached. */ TRACE_EVENT(workqueue_activate_work, TP_PROTO(struct work_struct *work), TP_ARGS(work), TP_STRUCT__entry( __field( void *, work ) ), TP_fast_assign( __entry->work = work; ), TP_printk("work struct %p", __entry->work) ); /** * workqueue_execute_start - called immediately before the workqueue callback * @work: pointer to struct work_struct * * Allows to track workqueue execution. */ TRACE_EVENT(workqueue_execute_start, TP_PROTO(struct work_struct *work), TP_ARGS(work), TP_STRUCT__entry( __field( void *, work ) __field( void *, function) ), TP_fast_assign( __entry->work = work; __entry->function = work->func; ), TP_printk("work struct %p: function %ps", __entry->work, __entry->function) ); /** * workqueue_execute_end - called immediately after the workqueue callback * @work: pointer to struct work_struct * @function: pointer to worker function * * Allows to track workqueue execution. */ TRACE_EVENT(workqueue_execute_end, TP_PROTO(struct work_struct *work, work_func_t function), TP_ARGS(work, function), TP_STRUCT__entry( __field( void *, work ) __field( void *, function) ), TP_fast_assign( __entry->work = work; __entry->function = function; ), TP_printk("work struct %p: function %ps", __entry->work, __entry->function) ); #endif /* _TRACE_WORKQUEUE_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * acpi_bus.h - ACPI Bus Driver ($Revision: 22 $) * * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com> * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> */ #ifndef __ACPI_BUS_H__ #define __ACPI_BUS_H__ #include <linux/device.h> #include <linux/property.h> /* TBD: Make dynamic */ #define ACPI_MAX_HANDLES 10 struct acpi_handle_list { u32 count; acpi_handle handles[ACPI_MAX_HANDLES]; }; /* acpi_utils.h */ acpi_status acpi_extract_package(union acpi_object *package, struct acpi_buffer *format, struct acpi_buffer *buffer); acpi_status acpi_evaluate_integer(acpi_handle handle, acpi_string pathname, struct acpi_object_list *arguments, unsigned long long *data); acpi_status acpi_evaluate_reference(acpi_handle handle, acpi_string pathname, struct acpi_object_list *arguments, struct acpi_handle_list *list); acpi_status acpi_evaluate_ost(acpi_handle handle, u32 source_event, u32 status_code, struct acpi_buffer *status_buf); acpi_status acpi_get_physical_device_location(acpi_handle handle, struct acpi_pld_info **pld); bool acpi_has_method(acpi_handle handle, char *name); acpi_status acpi_execute_simple_method(acpi_handle handle, char *method, u64 arg); acpi_status acpi_evaluate_ej0(acpi_handle handle); acpi_status acpi_evaluate_lck(acpi_handle handle, int lock); acpi_status acpi_evaluate_reg(acpi_handle handle, u8 space_id, u32 function); bool acpi_ata_match(acpi_handle handle); bool acpi_bay_match(acpi_handle handle); bool acpi_dock_match(acpi_handle handle); bool acpi_check_dsm(acpi_handle handle, const guid_t *guid, u64 rev, u64 funcs); union acpi_object *acpi_evaluate_dsm(acpi_handle handle, const guid_t *guid, u64 rev, u64 func, union acpi_object *argv4); static inline union acpi_object * acpi_evaluate_dsm_typed(acpi_handle handle, const guid_t *guid, u64 rev, u64 func, union acpi_object *argv4, acpi_object_type type) { union acpi_object *obj; obj = acpi_evaluate_dsm(handle, guid, rev, func, argv4); if (obj && obj->type != type) { ACPI_FREE(obj); obj = NULL; } return obj; } #define ACPI_INIT_DSM_ARGV4(cnt, eles) \ { \ .package.type = ACPI_TYPE_PACKAGE, \ .package.count = (cnt), \ .package.elements = (eles) \ } bool acpi_dev_found(const char *hid); bool acpi_dev_present(const char *hid, const char *uid, s64 hrv); #ifdef CONFIG_ACPI struct proc_dir_entry; #define ACPI_BUS_FILE_ROOT "acpi" extern struct proc_dir_entry *acpi_root_dir; enum acpi_bus_device_type { ACPI_BUS_TYPE_DEVICE = 0, ACPI_BUS_TYPE_POWER, ACPI_BUS_TYPE_PROCESSOR, ACPI_BUS_TYPE_THERMAL, ACPI_BUS_TYPE_POWER_BUTTON, ACPI_BUS_TYPE_SLEEP_BUTTON, ACPI_BUS_TYPE_ECDT_EC, ACPI_BUS_DEVICE_TYPE_COUNT }; struct acpi_driver; struct acpi_device; /* * ACPI Scan Handler * ----------------- */ struct acpi_hotplug_profile { struct kobject kobj; int (*scan_dependent)(struct acpi_device *adev); void (*notify_online)(struct acpi_device *adev); bool enabled:1; bool demand_offline:1; }; static inline struct acpi_hotplug_profile *to_acpi_hotplug_profile( struct kobject *kobj) { return container_of(kobj, struct acpi_hotplug_profile, kobj); } struct acpi_scan_handler { const struct acpi_device_id *ids; struct list_head list_node; bool (*match)(const char *idstr, const struct acpi_device_id **matchid); int (*attach)(struct acpi_device *dev, const struct acpi_device_id *id); void (*detach)(struct acpi_device *dev); void (*bind)(struct device *phys_dev); void (*unbind)(struct device *phys_dev); struct acpi_hotplug_profile hotplug; }; /* * ACPI Hotplug Context * -------------------- */ struct acpi_hotplug_context { struct acpi_device *self; int (*notify)(struct acpi_device *, u32); void (*uevent)(struct acpi_device *, u32); void (*fixup)(struct acpi_device *); }; /* * ACPI Driver * ----------- */ typedef int (*acpi_op_add) (struct acpi_device * device); typedef int (*acpi_op_remove) (struct acpi_device * device); typedef void (*acpi_op_notify) (struct acpi_device * device, u32 event); struct acpi_device_ops { acpi_op_add add; acpi_op_remove remove; acpi_op_notify notify; }; #define ACPI_DRIVER_ALL_NOTIFY_EVENTS 0x1 /* system AND device events */ struct acpi_driver { char name[80]; char class[80]; const struct acpi_device_id *ids; /* Supported Hardware IDs */ unsigned int flags; struct acpi_device_ops ops; struct device_driver drv; struct module *owner; }; /* * ACPI Device * ----------- */ /* Status (_STA) */ struct acpi_device_status { u32 present:1; u32 enabled:1; u32 show_in_ui:1; u32 functional:1; u32 battery_present:1; u32 reserved:27; }; /* Flags */ struct acpi_device_flags { u32 dynamic_status:1; u32 removable:1; u32 ejectable:1; u32 power_manageable:1; u32 match_driver:1; u32 initialized:1; u32 visited:1; u32 hotplug_notify:1; u32 is_dock_station:1; u32 of_compatible_ok:1; u32 coherent_dma:1; u32 cca_seen:1; u32 enumeration_by_parent:1; u32 reserved:19; }; /* File System */ struct acpi_device_dir { struct proc_dir_entry *entry; }; #define acpi_device_dir(d) ((d)->dir.entry) /* Plug and Play */ typedef char acpi_bus_id[8]; typedef u64 acpi_bus_address; typedef char acpi_device_name[40]; typedef char acpi_device_class[20]; struct acpi_hardware_id { struct list_head list; const char *id; }; struct acpi_pnp_type { u32 hardware_id:1; u32 bus_address:1; u32 platform_id:1; u32 reserved:29; }; struct acpi_device_pnp { acpi_bus_id bus_id; /* Object name */ int instance_no; /* Instance number of this object */ struct acpi_pnp_type type; /* ID type */ acpi_bus_address bus_address; /* _ADR */ char *unique_id; /* _UID */ struct list_head ids; /* _HID and _CIDs */ acpi_device_name device_name; /* Driver-determined */ acpi_device_class device_class; /* " */ union acpi_object *str_obj; /* unicode string for _STR method */ }; #define acpi_device_bid(d) ((d)->pnp.bus_id) #define acpi_device_adr(d) ((d)->pnp.bus_address) const char *acpi_device_hid(struct acpi_device *device); #define acpi_device_uid(d) ((d)->pnp.unique_id) #define acpi_device_name(d) ((d)->pnp.device_name) #define acpi_device_class(d) ((d)->pnp.device_class) /* Power Management */ struct acpi_device_power_flags { u32 explicit_get:1; /* _PSC present? */ u32 power_resources:1; /* Power resources */ u32 inrush_current:1; /* Serialize Dx->D0 */ u32 power_removed:1; /* Optimize Dx->D0 */ u32 ignore_parent:1; /* Power is independent of parent power state */ u32 dsw_present:1; /* _DSW present? */ u32 reserved:26; }; struct acpi_device_power_state { struct { u8 valid:1; u8 explicit_set:1; /* _PSx present? */ u8 reserved:6; } flags; int power; /* % Power (compared to D0) */ int latency; /* Dx->D0 time (microseconds) */ struct list_head resources; /* Power resources referenced */ }; struct acpi_device_power { int state; /* Current state */ struct acpi_device_power_flags flags; struct acpi_device_power_state states[ACPI_D_STATE_COUNT]; /* Power states (D0-D3Cold) */ }; /* Performance Management */ struct acpi_device_perf_flags { u8 reserved:8; }; struct acpi_device_perf_state { struct { u8 valid:1; u8 reserved:7; } flags; u8 power; /* % Power (compared to P0) */ u8 performance; /* % Performance ( " ) */ int latency; /* Px->P0 time (microseconds) */ }; struct acpi_device_perf { int state; struct acpi_device_perf_flags flags; int state_count; struct acpi_device_perf_state *states; }; /* Wakeup Management */ struct acpi_device_wakeup_flags { u8 valid:1; /* Can successfully enable wakeup? */ u8 notifier_present:1; /* Wake-up notify handler has been installed */ }; struct acpi_device_wakeup_context { void (*func)(struct acpi_device_wakeup_context *context); struct device *dev; }; struct acpi_device_wakeup { acpi_handle gpe_device; u64 gpe_number; u64 sleep_state; struct list_head resources; struct acpi_device_wakeup_flags flags; struct acpi_device_wakeup_context context; struct wakeup_source *ws; int prepare_count; int enable_count; }; struct acpi_device_physical_node { unsigned int node_id; struct list_head node; struct device *dev; bool put_online:1; }; struct acpi_device_properties { const guid_t *guid; const union acpi_object *properties; struct list_head list; }; /* ACPI Device Specific Data (_DSD) */ struct acpi_device_data { const union acpi_object *pointer; struct list_head properties; const union acpi_object *of_compatible; struct list_head subnodes; }; struct acpi_gpio_mapping; /* Device */ struct acpi_device { int device_type; acpi_handle handle; /* no handle for fixed hardware */ struct fwnode_handle fwnode; struct acpi_device *parent; struct list_head children; struct list_head node; struct list_head wakeup_list; struct list_head del_list; struct acpi_device_status status; struct acpi_device_flags flags; struct acpi_device_pnp pnp; struct acpi_device_power power; struct acpi_device_wakeup wakeup; struct acpi_device_perf performance; struct acpi_device_dir dir; struct acpi_device_data data; struct acpi_scan_handler *handler; struct acpi_hotplug_context *hp; struct acpi_driver *driver; const struct acpi_gpio_mapping *driver_gpios; void *driver_data; struct device dev; unsigned int physical_node_count; unsigned int dep_unmet; struct list_head physical_node_list; struct mutex physical_node_lock; void (*remove)(struct acpi_device *); }; /* Non-device subnode */ struct acpi_data_node { const char *name; acpi_handle handle; struct fwnode_handle fwnode; struct fwnode_handle *parent; struct acpi_device_data data; struct list_head sibling; struct kobject kobj; struct completion kobj_done; }; extern const struct fwnode_operations acpi_device_fwnode_ops; extern const struct fwnode_operations acpi_data_fwnode_ops; extern const struct fwnode_operations acpi_static_fwnode_ops; bool is_acpi_device_node(const struct fwnode_handle *fwnode); bool is_acpi_data_node(const struct fwnode_handle *fwnode); static inline bool is_acpi_node(const struct fwnode_handle *fwnode) { return (is_acpi_device_node(fwnode) || is_acpi_data_node(fwnode)); } #define to_acpi_device_node(__fwnode) \ ({ \ typeof(__fwnode) __to_acpi_device_node_fwnode = __fwnode; \ \ is_acpi_device_node(__to_acpi_device_node_fwnode) ? \ container_of(__to_acpi_device_node_fwnode, \ struct acpi_device, fwnode) : \ NULL; \ }) #define to_acpi_data_node(__fwnode) \ ({ \ typeof(__fwnode) __to_acpi_data_node_fwnode = __fwnode; \ \ is_acpi_data_node(__to_acpi_data_node_fwnode) ? \ container_of(__to_acpi_data_node_fwnode, \ struct acpi_data_node, fwnode) : \ NULL; \ }) static inline bool is_acpi_static_node(const struct fwnode_handle *fwnode) { return !IS_ERR_OR_NULL(fwnode) && fwnode->ops == &acpi_static_fwnode_ops; } static inline bool acpi_data_node_match(const struct fwnode_handle *fwnode, const char *name) { return is_acpi_data_node(fwnode) ? (!strcmp(to_acpi_data_node(fwnode)->name, name)) : false; } static inline struct fwnode_handle *acpi_fwnode_handle(struct acpi_device *adev) { return &adev->fwnode; } static inline void *acpi_driver_data(struct acpi_device *d) { return d->driver_data; } #define to_acpi_device(d) container_of(d, struct acpi_device, dev) #define to_acpi_driver(d) container_of(d, struct acpi_driver, drv) static inline void acpi_set_device_status(struct acpi_device *adev, u32 sta) { *((u32 *)&adev->status) = sta; } static inline void acpi_set_hp_context(struct acpi_device *adev, struct acpi_hotplug_context *hp) { hp->self = adev; adev->hp = hp; } void acpi_initialize_hp_context(struct acpi_device *adev, struct acpi_hotplug_context *hp, int (*notify)(struct acpi_device *, u32), void (*uevent)(struct acpi_device *, u32)); /* acpi_device.dev.bus == &acpi_bus_type */ extern struct bus_type acpi_bus_type; /* * Events * ------ */ struct acpi_bus_event { struct list_head node; acpi_device_class device_class; acpi_bus_id bus_id; u32 type; u32 data; }; extern struct kobject *acpi_kobj; extern int acpi_bus_generate_netlink_event(const char*, const char*, u8, int); void acpi_bus_private_data_handler(acpi_handle, void *); int acpi_bus_get_private_data(acpi_handle, void **); int acpi_bus_attach_private_data(acpi_handle, void *); void acpi_bus_detach_private_data(acpi_handle); extern int acpi_notifier_call_chain(struct acpi_device *, u32, u32); extern int register_acpi_notifier(struct notifier_block *); extern int unregister_acpi_notifier(struct notifier_block *); /* * External Functions */ int acpi_bus_get_device(acpi_handle handle, struct acpi_device **device); struct acpi_device *acpi_bus_get_acpi_device(acpi_handle handle); void acpi_bus_put_acpi_device(struct acpi_device *adev); acpi_status acpi_bus_get_status_handle(acpi_handle handle, unsigned long long *sta); int acpi_bus_get_status(struct acpi_device *device); int acpi_bus_set_power(acpi_handle handle, int state); const char *acpi_power_state_string(int state); int acpi_device_set_power(struct acpi_device *device, int state); int acpi_bus_init_power(struct acpi_device *device); int acpi_device_fix_up_power(struct acpi_device *device); int acpi_bus_update_power(acpi_handle handle, int *state_p); int acpi_device_update_power(struct acpi_device *device, int *state_p); bool acpi_bus_power_manageable(acpi_handle handle); int acpi_device_power_add_dependent(struct acpi_device *adev, struct device *dev); void acpi_device_power_remove_dependent(struct acpi_device *adev, struct device *dev); #ifdef CONFIG_PM bool acpi_bus_can_wakeup(acpi_handle handle); #else static inline bool acpi_bus_can_wakeup(acpi_handle handle) { return false; } #endif void acpi_scan_lock_acquire(void); void acpi_scan_lock_release(void); void acpi_lock_hp_context(void); void acpi_unlock_hp_context(void); int acpi_scan_add_handler(struct acpi_scan_handler *handler); int acpi_bus_register_driver(struct acpi_driver *driver); void acpi_bus_unregister_driver(struct acpi_driver *driver); int acpi_bus_scan(acpi_handle handle); void acpi_bus_trim(struct acpi_device *start); acpi_status acpi_bus_get_ejd(acpi_handle handle, acpi_handle * ejd); int acpi_match_device_ids(struct acpi_device *device, const struct acpi_device_id *ids); void acpi_set_modalias(struct acpi_device *adev, const char *default_id, char *modalias, size_t len); int acpi_create_dir(struct acpi_device *); void acpi_remove_dir(struct acpi_device *); static inline bool acpi_device_enumerated(struct acpi_device *adev) { return adev && adev->flags.initialized && adev->flags.visited; } /** * module_acpi_driver(acpi_driver) - Helper macro for registering an ACPI driver * @__acpi_driver: acpi_driver struct * * Helper macro for ACPI drivers which do not do anything special in module * init/exit. This eliminates a lot of boilerplate. Each module may only * use this macro once, and calling it replaces module_init() and module_exit() */ #define module_acpi_driver(__acpi_driver) \ module_driver(__acpi_driver, acpi_bus_register_driver, \ acpi_bus_unregister_driver) /* * Bind physical devices with ACPI devices */ struct acpi_bus_type { struct list_head list; const char *name; bool (*match)(struct device *dev); struct acpi_device * (*find_companion)(struct device *); void (*setup)(struct device *); void (*cleanup)(struct device *); }; int register_acpi_bus_type(struct acpi_bus_type *); int unregister_acpi_bus_type(struct acpi_bus_type *); int acpi_bind_one(struct device *dev, struct acpi_device *adev); int acpi_unbind_one(struct device *dev); struct acpi_pci_root { struct acpi_device * device; struct pci_bus *bus; u16 segment; struct resource secondary; /* downstream bus range */ u32 osc_support_set; /* _OSC state of support bits */ u32 osc_control_set; /* _OSC state of control bits */ phys_addr_t mcfg_addr; }; /* helper */ bool acpi_dma_supported(struct acpi_device *adev); enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev); int acpi_dma_get_range(struct device *dev, u64 *dma_addr, u64 *offset, u64 *size); int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr, const u32 *input_id); static inline int acpi_dma_configure(struct device *dev, enum dev_dma_attr attr) { return acpi_dma_configure_id(dev, attr, NULL); } struct acpi_device *acpi_find_child_device(struct acpi_device *parent, u64 address, bool check_children); int acpi_is_root_bridge(acpi_handle); struct acpi_pci_root *acpi_pci_find_root(acpi_handle handle); int acpi_enable_wakeup_device_power(struct acpi_device *dev, int state); int acpi_disable_wakeup_device_power(struct acpi_device *dev); #ifdef CONFIG_X86 bool acpi_device_always_present(struct acpi_device *adev); #else static inline bool acpi_device_always_present(struct acpi_device *adev) { return false; } #endif #ifdef CONFIG_PM void acpi_pm_wakeup_event(struct device *dev); acpi_status acpi_add_pm_notifier(struct acpi_device *adev, struct device *dev, void (*func)(struct acpi_device_wakeup_context *context)); acpi_status acpi_remove_pm_notifier(struct acpi_device *adev); bool acpi_pm_device_can_wakeup(struct device *dev); int acpi_pm_device_sleep_state(struct device *, int *, int); int acpi_pm_set_device_wakeup(struct device *dev, bool enable); #else static inline void acpi_pm_wakeup_event(struct device *dev) { } static inline acpi_status acpi_add_pm_notifier(struct acpi_device *adev, struct device *dev, void (*func)(struct acpi_device_wakeup_context *context)) { return AE_SUPPORT; } static inline acpi_status acpi_remove_pm_notifier(struct acpi_device *adev) { return AE_SUPPORT; } static inline bool acpi_pm_device_can_wakeup(struct device *dev) { return false; } static inline int acpi_pm_device_sleep_state(struct device *d, int *p, int m) { if (p) *p = ACPI_STATE_D0; return (m >= ACPI_STATE_D0 && m <= ACPI_STATE_D3_COLD) ? m : ACPI_STATE_D0; } static inline int acpi_pm_set_device_wakeup(struct device *dev, bool enable) { return -ENODEV; } #endif #ifdef CONFIG_ACPI_SYSTEM_POWER_STATES_SUPPORT bool acpi_sleep_state_supported(u8 sleep_state); #else static inline bool acpi_sleep_state_supported(u8 sleep_state) { return false; } #endif #ifdef CONFIG_ACPI_SLEEP u32 acpi_target_system_state(void); #else static inline u32 acpi_target_system_state(void) { return ACPI_STATE_S0; } #endif static inline bool acpi_device_power_manageable(struct acpi_device *adev) { return adev->flags.power_manageable; } static inline bool acpi_device_can_wakeup(struct acpi_device *adev) { return adev->wakeup.flags.valid; } static inline bool acpi_device_can_poweroff(struct acpi_device *adev) { return adev->power.states[ACPI_STATE_D3_COLD].flags.valid || ((acpi_gbl_FADT.header.revision < 6) && adev->power.states[ACPI_STATE_D3_HOT].flags.explicit_set); } bool acpi_dev_hid_uid_match(struct acpi_device *adev, const char *hid2, const char *uid2); struct acpi_device * acpi_dev_get_first_match_dev(const char *hid, const char *uid, s64 hrv); static inline void acpi_dev_put(struct acpi_device *adev) { if (adev) put_device(&adev->dev); } #else /* CONFIG_ACPI */ static inline int register_acpi_bus_type(void *bus) { return 0; } static inline int unregister_acpi_bus_type(void *bus) { return 0; } #endif /* CONFIG_ACPI */ #endif /*__ACPI_BUS_H__*/
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __VDSO_HELPERS_H #define __VDSO_HELPERS_H #ifndef __ASSEMBLY__ #include <vdso/datapage.h> static __always_inline u32 vdso_read_begin(const struct vdso_data *vd) { u32 seq; while (unlikely((seq = READ_ONCE(vd->seq)) & 1)) cpu_relax(); smp_rmb(); return seq; } static __always_inline u32 vdso_read_retry(const struct vdso_data *vd, u32 start) { u32 seq; smp_rmb(); seq = READ_ONCE(vd->seq); return seq != start; } static __always_inline void vdso_write_begin(struct vdso_data *vd) { /* * WRITE_ONCE it is required otherwise the compiler can validly tear * updates to vd[x].seq and it is possible that the value seen by the * reader it is inconsistent. */ WRITE_ONCE(vd[CS_HRES_COARSE].seq, vd[CS_HRES_COARSE].seq + 1); WRITE_ONCE(vd[CS_RAW].seq, vd[CS_RAW].seq + 1); smp_wmb(); } static __always_inline void vdso_write_end(struct vdso_data *vd) { smp_wmb(); /* * WRITE_ONCE it is required otherwise the compiler can validly tear * updates to vd[x].seq and it is possible that the value seen by the * reader it is inconsistent. */ WRITE_ONCE(vd[CS_HRES_COARSE].seq, vd[CS_HRES_COARSE].seq + 1); WRITE_ONCE(vd[CS_RAW].seq, vd[CS_RAW].seq + 1); } #endif /* !__ASSEMBLY__ */ #endif /* __VDSO_HELPERS_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_MMU_CONTEXT_H #define _ASM_X86_MMU_CONTEXT_H #include <asm/desc.h> #include <linux/atomic.h> #include <linux/mm_types.h> #include <linux/pkeys.h> #include <trace/events/tlb.h> #include <asm/tlbflush.h> #include <asm/paravirt.h> #include <asm/debugreg.h> extern atomic64_t last_mm_ctx_id; #ifndef CONFIG_PARAVIRT_XXL static inline void paravirt_activate_mm(struct mm_struct *prev, struct mm_struct *next) { } #endif /* !CONFIG_PARAVIRT_XXL */ #ifdef CONFIG_PERF_EVENTS DECLARE_STATIC_KEY_FALSE(rdpmc_never_available_key); DECLARE_STATIC_KEY_FALSE(rdpmc_always_available_key); void cr4_update_pce(void *ignored); #endif #ifdef CONFIG_MODIFY_LDT_SYSCALL /* * ldt_structs can be allocated, used, and freed, but they are never * modified while live. */ struct ldt_struct { /* * Xen requires page-aligned LDTs with special permissions. This is * needed to prevent us from installing evil descriptors such as * call gates. On native, we could merge the ldt_struct and LDT * allocations, but it's not worth trying to optimize. */ struct desc_struct *entries; unsigned int nr_entries; /* * If PTI is in use, then the entries array is not mapped while we're * in user mode. The whole array will be aliased at the addressed * given by ldt_slot_va(slot). We use two slots so that we can allocate * and map, and enable a new LDT without invalidating the mapping * of an older, still-in-use LDT. * * slot will be -1 if this LDT doesn't have an alias mapping. */ int slot; }; /* * Used for LDT copy/destruction. */ static inline void init_new_context_ldt(struct mm_struct *mm) { mm->context.ldt = NULL; init_rwsem(&mm->context.ldt_usr_sem); } int ldt_dup_context(struct mm_struct *oldmm, struct mm_struct *mm); void destroy_context_ldt(struct mm_struct *mm); void ldt_arch_exit_mmap(struct mm_struct *mm); #else /* CONFIG_MODIFY_LDT_SYSCALL */ static inline void init_new_context_ldt(struct mm_struct *mm) { } static inline int ldt_dup_context(struct mm_struct *oldmm, struct mm_struct *mm) { return 0; } static inline void destroy_context_ldt(struct mm_struct *mm) { } static inline void ldt_arch_exit_mmap(struct mm_struct *mm) { } #endif #ifdef CONFIG_MODIFY_LDT_SYSCALL extern void load_mm_ldt(struct mm_struct *mm); extern void switch_ldt(struct mm_struct *prev, struct mm_struct *next); #else static inline void load_mm_ldt(struct mm_struct *mm) { clear_LDT(); } static inline void switch_ldt(struct mm_struct *prev, struct mm_struct *next) { DEBUG_LOCKS_WARN_ON(preemptible()); } #endif extern void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk); /* * Init a new mm. Used on mm copies, like at fork() * and on mm's that are brand-new, like at execve(). */ static inline int init_new_context(struct task_struct *tsk, struct mm_struct *mm) { mutex_init(&mm->context.lock); mm->context.ctx_id = atomic64_inc_return(&last_mm_ctx_id); atomic64_set(&mm->context.tlb_gen, 0); #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS if (cpu_feature_enabled(X86_FEATURE_OSPKE)) { /* pkey 0 is the default and allocated implicitly */ mm->context.pkey_allocation_map = 0x1; /* -1 means unallocated or invalid */ mm->context.execute_only_pkey = -1; } #endif init_new_context_ldt(mm); return 0; } static inline void destroy_context(struct mm_struct *mm) { destroy_context_ldt(mm); } extern void switch_mm(struct mm_struct *prev, struct mm_struct *next, struct task_struct *tsk); extern void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next, struct task_struct *tsk); #define switch_mm_irqs_off switch_mm_irqs_off #define activate_mm(prev, next) \ do { \ paravirt_activate_mm((prev), (next)); \ switch_mm((prev), (next), NULL); \ } while (0); #ifdef CONFIG_X86_32 #define deactivate_mm(tsk, mm) \ do { \ lazy_load_gs(0); \ } while (0) #else #define deactivate_mm(tsk, mm) \ do { \ load_gs_index(0); \ loadsegment(fs, 0); \ } while (0) #endif static inline void arch_dup_pkeys(struct mm_struct *oldmm, struct mm_struct *mm) { #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) return; /* Duplicate the oldmm pkey state in mm: */ mm->context.pkey_allocation_map = oldmm->context.pkey_allocation_map; mm->context.execute_only_pkey = oldmm->context.execute_only_pkey; #endif } static inline int arch_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm) { arch_dup_pkeys(oldmm, mm); paravirt_arch_dup_mmap(oldmm, mm); return ldt_dup_context(oldmm, mm); } static inline void arch_exit_mmap(struct mm_struct *mm) { paravirt_arch_exit_mmap(mm); ldt_arch_exit_mmap(mm); } #ifdef CONFIG_X86_64 static inline bool is_64bit_mm(struct mm_struct *mm) { return !IS_ENABLED(CONFIG_IA32_EMULATION) || !(mm->context.ia32_compat == TIF_IA32); } #else static inline bool is_64bit_mm(struct mm_struct *mm) { return false; } #endif static inline void arch_unmap(struct mm_struct *mm, unsigned long start, unsigned long end) { } /* * We only want to enforce protection keys on the current process * because we effectively have no access to PKRU for other * processes or any way to tell *which * PKRU in a threaded * process we could use. * * So do not enforce things if the VMA is not from the current * mm, or if we are in a kernel thread. */ static inline bool arch_vma_access_permitted(struct vm_area_struct *vma, bool write, bool execute, bool foreign) { /* pkeys never affect instruction fetches */ if (execute) return true; /* allow access if the VMA is not one from this process */ if (foreign || vma_is_foreign(vma)) return true; return __pkru_allows_pkey(vma_pkey(vma), write); } unsigned long __get_current_cr3_fast(void); #endif /* _ASM_X86_MMU_CONTEXT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Hash algorithms. * * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au> */ #ifndef _CRYPTO_INTERNAL_HASH_H #define _CRYPTO_INTERNAL_HASH_H #include <crypto/algapi.h> #include <crypto/hash.h> struct ahash_request; struct scatterlist; struct crypto_hash_walk { char *data; unsigned int offset; unsigned int alignmask; struct page *pg; unsigned int entrylen; unsigned int total; struct scatterlist *sg; unsigned int flags; }; struct ahash_instance { void (*free)(struct ahash_instance *inst); union { struct { char head[offsetof(struct ahash_alg, halg.base)]; struct crypto_instance base; } s; struct ahash_alg alg; }; }; struct shash_instance { void (*free)(struct shash_instance *inst); union { struct { char head[offsetof(struct shash_alg, base)]; struct crypto_instance base; } s; struct shash_alg alg; }; }; struct crypto_ahash_spawn { struct crypto_spawn base; }; struct crypto_shash_spawn { struct crypto_spawn base; }; int crypto_hash_walk_done(struct crypto_hash_walk *walk, int err); int crypto_hash_walk_first(struct ahash_request *req, struct crypto_hash_walk *walk); static inline int crypto_hash_walk_last(struct crypto_hash_walk *walk) { return !(walk->entrylen | walk->total); } int crypto_register_ahash(struct ahash_alg *alg); void crypto_unregister_ahash(struct ahash_alg *alg); int crypto_register_ahashes(struct ahash_alg *algs, int count); void crypto_unregister_ahashes(struct ahash_alg *algs, int count); int ahash_register_instance(struct crypto_template *tmpl, struct ahash_instance *inst); bool crypto_shash_alg_has_setkey(struct shash_alg *alg); static inline bool crypto_shash_alg_needs_key(struct shash_alg *alg) { return crypto_shash_alg_has_setkey(alg) && !(alg->base.cra_flags & CRYPTO_ALG_OPTIONAL_KEY); } bool crypto_hash_alg_has_setkey(struct hash_alg_common *halg); int crypto_grab_ahash(struct crypto_ahash_spawn *spawn, struct crypto_instance *inst, const char *name, u32 type, u32 mask); static inline void crypto_drop_ahash(struct crypto_ahash_spawn *spawn) { crypto_drop_spawn(&spawn->base); } static inline struct hash_alg_common *crypto_spawn_ahash_alg( struct crypto_ahash_spawn *spawn) { return __crypto_hash_alg_common(spawn->base.alg); } int crypto_register_shash(struct shash_alg *alg); void crypto_unregister_shash(struct shash_alg *alg); int crypto_register_shashes(struct shash_alg *algs, int count); void crypto_unregister_shashes(struct shash_alg *algs, int count); int shash_register_instance(struct crypto_template *tmpl, struct shash_instance *inst); void shash_free_singlespawn_instance(struct shash_instance *inst); int crypto_grab_shash(struct crypto_shash_spawn *spawn, struct crypto_instance *inst, const char *name, u32 type, u32 mask); static inline void crypto_drop_shash(struct crypto_shash_spawn *spawn) { crypto_drop_spawn(&spawn->base); } static inline struct shash_alg *crypto_spawn_shash_alg( struct crypto_shash_spawn *spawn) { return __crypto_shash_alg(spawn->base.alg); } int shash_ahash_update(struct ahash_request *req, struct shash_desc *desc); int shash_ahash_finup(struct ahash_request *req, struct shash_desc *desc); int shash_ahash_digest(struct ahash_request *req, struct shash_desc *desc); int crypto_init_shash_ops_async(struct crypto_tfm *tfm); static inline void *crypto_ahash_ctx(struct crypto_ahash *tfm) { return crypto_tfm_ctx(crypto_ahash_tfm(tfm)); } static inline struct ahash_alg *__crypto_ahash_alg(struct crypto_alg *alg) { return container_of(__crypto_hash_alg_common(alg), struct ahash_alg, halg); } static inline void crypto_ahash_set_reqsize(struct crypto_ahash *tfm, unsigned int reqsize) { tfm->reqsize = reqsize; } static inline struct crypto_instance *ahash_crypto_instance( struct ahash_instance *inst) { return &inst->s.base; } static inline struct ahash_instance *ahash_instance( struct crypto_instance *inst) { return container_of(inst, struct ahash_instance, s.base); } static inline struct ahash_instance *ahash_alg_instance( struct crypto_ahash *ahash) { return ahash_instance(crypto_tfm_alg_instance(&ahash->base)); } static inline void *ahash_instance_ctx(struct ahash_instance *inst) { return crypto_instance_ctx(ahash_crypto_instance(inst)); } static inline void ahash_request_complete(struct ahash_request *req, int err) { req->base.complete(&req->base, err); } static inline u32 ahash_request_flags(struct ahash_request *req) { return req->base.flags; } static inline struct crypto_ahash *crypto_spawn_ahash( struct crypto_ahash_spawn *spawn) { return crypto_spawn_tfm2(&spawn->base); } static inline int ahash_enqueue_request(struct crypto_queue *queue, struct ahash_request *request) { return crypto_enqueue_request(queue, &request->base); } static inline struct ahash_request *ahash_dequeue_request( struct crypto_queue *queue) { return ahash_request_cast(crypto_dequeue_request(queue)); } static inline void *crypto_shash_ctx(struct crypto_shash *tfm) { return crypto_tfm_ctx(&tfm->base); } static inline struct crypto_instance *shash_crypto_instance( struct shash_instance *inst) { return &inst->s.base; } static inline struct shash_instance *shash_instance( struct crypto_instance *inst) { return container_of(inst, struct shash_instance, s.base); } static inline struct shash_instance *shash_alg_instance( struct crypto_shash *shash) { return shash_instance(crypto_tfm_alg_instance(&shash->base)); } static inline void *shash_instance_ctx(struct shash_instance *inst) { return crypto_instance_ctx(shash_crypto_instance(inst)); } static inline struct crypto_shash *crypto_spawn_shash( struct crypto_shash_spawn *spawn) { return crypto_spawn_tfm2(&spawn->base); } static inline void *crypto_shash_ctx_aligned(struct crypto_shash *tfm) { return crypto_tfm_ctx_aligned(&tfm->base); } static inline struct crypto_shash *__crypto_shash_cast(struct crypto_tfm *tfm) { return container_of(tfm, struct crypto_shash, base); } #endif /* _CRYPTO_INTERNAL_HASH_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 /* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright 2002-2005, Devicescape Software, Inc. * Copyright 2013-2014 Intel Mobile Communications GmbH * Copyright(c) 2015-2017 Intel Deutschland GmbH * Copyright(c) 2020-2021 Intel Corporation */ #ifndef STA_INFO_H #define STA_INFO_H #include <linux/list.h> #include <linux/types.h> #include <linux/if_ether.h> #include <linux/workqueue.h> #include <linux/average.h> #include <linux/bitfield.h> #include <linux/etherdevice.h> #include <linux/rhashtable.h> #include <linux/u64_stats_sync.h> #include "key.h" /** * enum ieee80211_sta_info_flags - Stations flags * * These flags are used with &struct sta_info's @flags member, but * only indirectly with set_sta_flag() and friends. * * @WLAN_STA_AUTH: Station is authenticated. * @WLAN_STA_ASSOC: Station is associated. * @WLAN_STA_PS_STA: Station is in power-save mode * @WLAN_STA_AUTHORIZED: Station is authorized to send/receive traffic. * This bit is always checked so needs to be enabled for all stations * when virtual port control is not in use. * @WLAN_STA_SHORT_PREAMBLE: Station is capable of receiving short-preamble * frames. * @WLAN_STA_WDS: Station is one of our WDS peers. * @WLAN_STA_CLEAR_PS_FILT: Clear PS filter in hardware (using the * IEEE80211_TX_CTL_CLEAR_PS_FILT control flag) when the next * frame to this station is transmitted. * @WLAN_STA_MFP: Management frame protection is used with this STA. * @WLAN_STA_BLOCK_BA: Used to deny ADDBA requests (both TX and RX) * during suspend/resume and station removal. * @WLAN_STA_PS_DRIVER: driver requires keeping this station in * power-save mode logically to flush frames that might still * be in the queues * @WLAN_STA_PSPOLL: Station sent PS-poll while driver was keeping * station in power-save mode, reply when the driver unblocks. * @WLAN_STA_TDLS_PEER: Station is a TDLS peer. * @WLAN_STA_TDLS_PEER_AUTH: This TDLS peer is authorized to send direct * packets. This means the link is enabled. * @WLAN_STA_TDLS_INITIATOR: We are the initiator of the TDLS link with this * station. * @WLAN_STA_TDLS_CHAN_SWITCH: This TDLS peer supports TDLS channel-switching * @WLAN_STA_TDLS_OFF_CHANNEL: The local STA is currently off-channel with this * TDLS peer * @WLAN_STA_TDLS_WIDER_BW: This TDLS peer supports working on a wider bw on * the BSS base channel. * @WLAN_STA_UAPSD: Station requested unscheduled SP while driver was * keeping station in power-save mode, reply when the driver * unblocks the station. * @WLAN_STA_SP: Station is in a service period, so don't try to * reply to other uAPSD trigger frames or PS-Poll. * @WLAN_STA_4ADDR_EVENT: 4-addr event was already sent for this frame. * @WLAN_STA_INSERTED: This station is inserted into the hash table. * @WLAN_STA_RATE_CONTROL: rate control was initialized for this station. * @WLAN_STA_TOFFSET_KNOWN: toffset calculated for this station is valid. * @WLAN_STA_MPSP_OWNER: local STA is owner of a mesh Peer Service Period. * @WLAN_STA_MPSP_RECIPIENT: local STA is recipient of a MPSP. * @WLAN_STA_PS_DELIVER: station woke up, but we're still blocking TX * until pending frames are delivered * @WLAN_STA_USES_ENCRYPTION: This station was configured for encryption, * so drop all packets without a key later. * * @NUM_WLAN_STA_FLAGS: number of defined flags */ enum ieee80211_sta_info_flags { WLAN_STA_AUTH, WLAN_STA_ASSOC, WLAN_STA_PS_STA, WLAN_STA_AUTHORIZED, WLAN_STA_SHORT_PREAMBLE, WLAN_STA_WDS, WLAN_STA_CLEAR_PS_FILT, WLAN_STA_MFP, WLAN_STA_BLOCK_BA, WLAN_STA_PS_DRIVER, WLAN_STA_PSPOLL, WLAN_STA_TDLS_PEER, WLAN_STA_TDLS_PEER_AUTH, WLAN_STA_TDLS_INITIATOR, WLAN_STA_TDLS_CHAN_SWITCH, WLAN_STA_TDLS_OFF_CHANNEL, WLAN_STA_TDLS_WIDER_BW, WLAN_STA_UAPSD, WLAN_STA_SP, WLAN_STA_4ADDR_EVENT, WLAN_STA_INSERTED, WLAN_STA_RATE_CONTROL, WLAN_STA_TOFFSET_KNOWN, WLAN_STA_MPSP_OWNER, WLAN_STA_MPSP_RECIPIENT, WLAN_STA_PS_DELIVER, WLAN_STA_USES_ENCRYPTION, NUM_WLAN_STA_FLAGS, }; #define ADDBA_RESP_INTERVAL HZ #define HT_AGG_MAX_RETRIES 15 #define HT_AGG_BURST_RETRIES 3 #define HT_AGG_RETRIES_PERIOD (15 * HZ) #define HT_AGG_STATE_DRV_READY 0 #define HT_AGG_STATE_RESPONSE_RECEIVED 1 #define HT_AGG_STATE_OPERATIONAL 2 #define HT_AGG_STATE_STOPPING 3 #define HT_AGG_STATE_WANT_START 4 #define HT_AGG_STATE_WANT_STOP 5 #define HT_AGG_STATE_START_CB 6 #define HT_AGG_STATE_STOP_CB 7 #define HT_AGG_STATE_SENT_ADDBA 8 DECLARE_EWMA(avg_signal, 10, 8) enum ieee80211_agg_stop_reason { AGG_STOP_DECLINED, AGG_STOP_LOCAL_REQUEST, AGG_STOP_PEER_REQUEST, AGG_STOP_DESTROY_STA, }; /* Debugfs flags to enable/disable use of RX/TX airtime in scheduler */ #define AIRTIME_USE_TX BIT(0) #define AIRTIME_USE_RX BIT(1) struct airtime_info { u64 rx_airtime; u64 tx_airtime; s64 deficit; atomic_t aql_tx_pending; /* Estimated airtime for frames pending */ u32 aql_limit_low; u32 aql_limit_high; }; void ieee80211_sta_update_pending_airtime(struct ieee80211_local *local, struct sta_info *sta, u8 ac, u16 tx_airtime, bool tx_completed); struct sta_info; /** * struct tid_ampdu_tx - TID aggregation information (Tx). * * @rcu_head: rcu head for freeing structure * @session_timer: check if we keep Tx-ing on the TID (by timeout value) * @addba_resp_timer: timer for peer's response to addba request * @pending: pending frames queue -- use sta's spinlock to protect * @sta: station we are attached to * @dialog_token: dialog token for aggregation session * @timeout: session timeout value to be filled in ADDBA requests * @tid: TID number * @state: session state (see above) * @last_tx: jiffies of last tx activity * @stop_initiator: initiator of a session stop * @tx_stop: TX DelBA frame when stopping * @buf_size: reorder buffer size at receiver * @failed_bar_ssn: ssn of the last failed BAR tx attempt * @bar_pending: BAR needs to be re-sent * @amsdu: support A-MSDU withing A-MDPU * * This structure's lifetime is managed by RCU, assignments to * the array holding it must hold the aggregation mutex. * * The TX path can access it under RCU lock-free if, and * only if, the state has the flag %HT_AGG_STATE_OPERATIONAL * set. Otherwise, the TX path must also acquire the spinlock * and re-check the state, see comments in the tx code * touching it. */ struct tid_ampdu_tx { struct rcu_head rcu_head; struct timer_list session_timer; struct timer_list addba_resp_timer; struct sk_buff_head pending; struct sta_info *sta; unsigned long state; unsigned long last_tx; u16 timeout; u8 dialog_token; u8 stop_initiator; bool tx_stop; u16 buf_size; u16 ssn; u16 failed_bar_ssn; bool bar_pending; bool amsdu; u8 tid; }; /** * struct tid_ampdu_rx - TID aggregation information (Rx). * * @reorder_buf: buffer to reorder incoming aggregated MPDUs. An MPDU may be an * A-MSDU with individually reported subframes. * @reorder_buf_filtered: bitmap indicating where there are filtered frames in * the reorder buffer that should be ignored when releasing frames * @reorder_time: jiffies when skb was added * @session_timer: check if peer keeps Tx-ing on the TID (by timeout value) * @reorder_timer: releases expired frames from the reorder buffer. * @sta: station we are attached to * @last_rx: jiffies of last rx activity * @head_seq_num: head sequence number in reordering buffer. * @stored_mpdu_num: number of MPDUs in reordering buffer * @ssn: Starting Sequence Number expected to be aggregated. * @buf_size: buffer size for incoming A-MPDUs * @timeout: reset timer value (in TUs). * @tid: TID number * @rcu_head: RCU head used for freeing this struct * @reorder_lock: serializes access to reorder buffer, see below. * @auto_seq: used for offloaded BA sessions to automatically pick head_seq_and * and ssn. * @removed: this session is removed (but might have been found due to RCU) * @started: this session has started (head ssn or higher was received) * * This structure's lifetime is managed by RCU, assignments to * the array holding it must hold the aggregation mutex. * * The @reorder_lock is used to protect the members of this * struct, except for @timeout, @buf_size and @dialog_token, * which are constant across the lifetime of the struct (the * dialog token being used only for debugging). */ struct tid_ampdu_rx { struct rcu_head rcu_head; spinlock_t reorder_lock; u64 reorder_buf_filtered; struct sk_buff_head *reorder_buf; unsigned long *reorder_time; struct sta_info *sta; struct timer_list session_timer; struct timer_list reorder_timer; unsigned long last_rx; u16 head_seq_num; u16 stored_mpdu_num; u16 ssn; u16 buf_size; u16 timeout; u8 tid; u8 auto_seq:1, removed:1, started:1; }; /** * struct sta_ampdu_mlme - STA aggregation information. * * @mtx: mutex to protect all TX data (except non-NULL assignments * to tid_tx[idx], which are protected by the sta spinlock) * tid_start_tx is also protected by sta->lock. * @tid_rx: aggregation info for Rx per TID -- RCU protected * @tid_rx_token: dialog tokens for valid aggregation sessions * @tid_rx_timer_expired: bitmap indicating on which TIDs the * RX timer expired until the work for it runs * @tid_rx_stop_requested: bitmap indicating which BA sessions per TID the * driver requested to close until the work for it runs * @tid_rx_manage_offl: bitmap indicating which BA sessions were requested * to be treated as started/stopped due to offloading * @agg_session_valid: bitmap indicating which TID has a rx BA session open on * @unexpected_agg: bitmap indicating which TID already sent a delBA due to * unexpected aggregation related frames outside a session * @work: work struct for starting/stopping aggregation * @tid_tx: aggregation info for Tx per TID * @tid_start_tx: sessions where start was requested * @last_addba_req_time: timestamp of the last addBA request. * @addba_req_num: number of times addBA request has been sent. * @dialog_token_allocator: dialog token enumerator for each new session; */ struct sta_ampdu_mlme { struct mutex mtx; /* rx */ struct tid_ampdu_rx __rcu *tid_rx[IEEE80211_NUM_TIDS]; u8 tid_rx_token[IEEE80211_NUM_TIDS]; unsigned long tid_rx_timer_expired[BITS_TO_LONGS(IEEE80211_NUM_TIDS)]; unsigned long tid_rx_stop_requested[BITS_TO_LONGS(IEEE80211_NUM_TIDS)]; unsigned long tid_rx_manage_offl[BITS_TO_LONGS(2 * IEEE80211_NUM_TIDS)]; unsigned long agg_session_valid[BITS_TO_LONGS(IEEE80211_NUM_TIDS)]; unsigned long unexpected_agg[BITS_TO_LONGS(IEEE80211_NUM_TIDS)]; /* tx */ struct work_struct work; struct tid_ampdu_tx __rcu *tid_tx[IEEE80211_NUM_TIDS]; struct tid_ampdu_tx *tid_start_tx[IEEE80211_NUM_TIDS]; unsigned long last_addba_req_time[IEEE80211_NUM_TIDS]; u8 addba_req_num[IEEE80211_NUM_TIDS]; u8 dialog_token_allocator; }; /* Value to indicate no TID reservation */ #define IEEE80211_TID_UNRESERVED 0xff #define IEEE80211_FAST_XMIT_MAX_IV 18 /** * struct ieee80211_fast_tx - TX fastpath information * @key: key to use for hw crypto * @hdr: the 802.11 header to put with the frame * @hdr_len: actual 802.11 header length * @sa_offs: offset of the SA * @da_offs: offset of the DA * @pn_offs: offset where to put PN for crypto (or 0 if not needed) * @band: band this will be transmitted on, for tx_info * @rcu_head: RCU head to free this struct * * This struct is small enough so that the common case (maximum crypto * header length of 8 like for CCMP/GCMP) fits into a single 64-byte * cache line. */ struct ieee80211_fast_tx { struct ieee80211_key *key; u8 hdr_len; u8 sa_offs, da_offs, pn_offs; u8 band; u8 hdr[30 + 2 + IEEE80211_FAST_XMIT_MAX_IV + sizeof(rfc1042_header)] __aligned(2); struct rcu_head rcu_head; }; /** * struct ieee80211_fast_rx - RX fastpath information * @dev: netdevice for reporting the SKB * @vif_type: (P2P-less) interface type of the original sdata (sdata->vif.type) * @vif_addr: interface address * @rfc1042_hdr: copy of the RFC 1042 SNAP header (to have in cache) * @control_port_protocol: control port protocol copied from sdata * @expected_ds_bits: from/to DS bits expected * @icv_len: length of the MIC if present * @key: bool indicating encryption is expected (key is set) * @internal_forward: forward froms internally on AP/VLAN type interfaces * @uses_rss: copy of USES_RSS hw flag * @da_offs: offset of the DA in the header (for header conversion) * @sa_offs: offset of the SA in the header (for header conversion) * @rcu_head: RCU head for freeing this structure */ struct ieee80211_fast_rx { struct net_device *dev; enum nl80211_iftype vif_type; u8 vif_addr[ETH_ALEN] __aligned(2); u8 rfc1042_hdr[6] __aligned(2); __be16 control_port_protocol; __le16 expected_ds_bits; u8 icv_len; u8 key:1, internal_forward:1, uses_rss:1; u8 da_offs, sa_offs; struct rcu_head rcu_head; }; /* we use only values in the range 0-100, so pick a large precision */ DECLARE_EWMA(mesh_fail_avg, 20, 8) DECLARE_EWMA(mesh_tx_rate_avg, 8, 16) /** * struct mesh_sta - mesh STA information * @plink_lock: serialize access to plink fields * @llid: Local link ID * @plid: Peer link ID * @aid: local aid supplied by peer * @reason: Cancel reason on PLINK_HOLDING state * @plink_retries: Retries in establishment * @plink_state: peer link state * @plink_timeout: timeout of peer link * @plink_timer: peer link watch timer * @plink_sta: peer link watch timer's sta_info * @t_offset: timing offset relative to this host * @t_offset_setpoint: reference timing offset of this sta to be used when * calculating clockdrift * @local_pm: local link-specific power save mode * @peer_pm: peer-specific power save mode towards local STA * @nonpeer_pm: STA power save mode towards non-peer neighbors * @processed_beacon: set to true after peer rates and capabilities are * processed * @connected_to_gate: true if mesh STA has a path to a mesh gate * @connected_to_as: true if mesh STA has a path to a authentication server * @fail_avg: moving percentage of failed MSDUs * @tx_rate_avg: moving average of tx bitrate */ struct mesh_sta { struct timer_list plink_timer; struct sta_info *plink_sta; s64 t_offset; s64 t_offset_setpoint; spinlock_t plink_lock; u16 llid; u16 plid; u16 aid; u16 reason; u8 plink_retries; bool processed_beacon; bool connected_to_gate; bool connected_to_as; enum nl80211_plink_state plink_state; u32 plink_timeout; /* mesh power save */ enum nl80211_mesh_power_mode local_pm; enum nl80211_mesh_power_mode peer_pm; enum nl80211_mesh_power_mode nonpeer_pm; /* moving percentage of failed MSDUs */ struct ewma_mesh_fail_avg fail_avg; /* moving average of tx bitrate */ struct ewma_mesh_tx_rate_avg tx_rate_avg; }; DECLARE_EWMA(signal, 10, 8) struct ieee80211_sta_rx_stats { unsigned long packets; unsigned long last_rx; unsigned long num_duplicates; unsigned long fragments; unsigned long dropped; int last_signal; u8 chains; s8 chain_signal_last[IEEE80211_MAX_CHAINS]; u32 last_rate; struct u64_stats_sync syncp; u64 bytes; u64 msdu[IEEE80211_NUM_TIDS + 1]; }; /* * IEEE 802.11-2016 (10.6 "Defragmentation") recommends support for "concurrent * reception of at least one MSDU per access category per associated STA" * on APs, or "at least one MSDU per access category" on other interface types. * * This limit can be increased by changing this define, at the cost of slower * frame reassembly and increased memory use while fragments are pending. */ #define IEEE80211_FRAGMENT_MAX 4 struct ieee80211_fragment_entry { struct sk_buff_head skb_list; unsigned long first_frag_time; u16 seq; u16 extra_len; u16 last_frag; u8 rx_queue; u8 check_sequential_pn:1, /* needed for CCMP/GCMP */ is_protected:1; u8 last_pn[6]; /* PN of the last fragment if CCMP was used */ unsigned int key_color; }; struct ieee80211_fragment_cache { struct ieee80211_fragment_entry entries[IEEE80211_FRAGMENT_MAX]; unsigned int next; }; /* * The bandwidth threshold below which the per-station CoDel parameters will be * scaled to be more lenient (to prevent starvation of slow stations). This * value will be scaled by the number of active stations when it is being * applied. */ #define STA_SLOW_THRESHOLD 6000 /* 6 Mbps */ /** * struct sta_info - STA information * * This structure collects information about a station that * mac80211 is communicating with. * * @list: global linked list entry * @free_list: list entry for keeping track of stations to free * @hash_node: hash node for rhashtable * @addr: station's MAC address - duplicated from public part to * let the hash table work with just a single cacheline * @local: pointer to the global information * @sdata: virtual interface this station belongs to * @ptk: peer keys negotiated with this station, if any * @ptk_idx: last installed peer key index * @gtk: group keys negotiated with this station, if any * @rate_ctrl: rate control algorithm reference * @rate_ctrl_lock: spinlock used to protect rate control data * (data inside the algorithm, so serializes calls there) * @rate_ctrl_priv: rate control private per-STA pointer * @lock: used for locking all fields that require locking, see comments * in the header file. * @drv_deliver_wk: used for delivering frames after driver PS unblocking * @listen_interval: listen interval of this station, when we're acting as AP * @_flags: STA flags, see &enum ieee80211_sta_info_flags, do not use directly * @ps_lock: used for powersave (when mac80211 is the AP) related locking * @ps_tx_buf: buffers (per AC) of frames to transmit to this station * when it leaves power saving state or polls * @tx_filtered: buffers (per AC) of frames we already tried to * transmit but were filtered by hardware due to STA having * entered power saving state, these are also delivered to * the station when it leaves powersave or polls for frames * @driver_buffered_tids: bitmap of TIDs the driver has data buffered on * @txq_buffered_tids: bitmap of TIDs that mac80211 has txq data buffered on * @assoc_at: clock boottime (in ns) of last association * @last_connected: time (in seconds) when a station got connected * @last_seq_ctrl: last received seq/frag number from this STA (per TID * plus one for non-QoS frames) * @tid_seq: per-TID sequence numbers for sending to this STA * @airtime: per-AC struct airtime_info describing airtime statistics for this * station * @airtime_weight: station weight for airtime fairness calculation purposes * @ampdu_mlme: A-MPDU state machine state * @mesh: mesh STA information * @debugfs_dir: debug filesystem directory dentry * @dead: set to true when sta is unlinked * @removed: set to true when sta is being removed from sta_list * @uploaded: set to true when sta is uploaded to the driver * @sta: station information we share with the driver * @sta_state: duplicates information about station state (for debug) * @rcu_head: RCU head used for freeing this station struct * @cur_max_bandwidth: maximum bandwidth to use for TX to the station, * taken from HT/VHT capabilities or VHT operating mode notification * @known_smps_mode: the smps_mode the client thinks we are in. Relevant for * AP only. * @cipher_scheme: optional cipher scheme for this station * @cparams: CoDel parameters for this station. * @reserved_tid: reserved TID (if any, otherwise IEEE80211_TID_UNRESERVED) * @fast_tx: TX fastpath information * @fast_rx: RX fastpath information * @tdls_chandef: a TDLS peer can have a wider chandef that is compatible to * the BSS one. * @tx_stats: TX statistics * @tx_stats.packets: # of packets transmitted * @tx_stats.bytes: # of bytes in all packets transmitted * @tx_stats.last_rate: last TX rate * @tx_stats.msdu: # of transmitted MSDUs per TID * @rx_stats: RX statistics * @rx_stats_avg: averaged RX statistics * @rx_stats_avg.signal: averaged signal * @rx_stats_avg.chain_signal: averaged per-chain signal * @pcpu_rx_stats: per-CPU RX statistics, assigned only if the driver needs * this (by advertising the USES_RSS hw flag) * @status_stats: TX status statistics * @status_stats.filtered: # of filtered frames * @status_stats.retry_failed: # of frames that failed after retry * @status_stats.retry_count: # of retries attempted * @status_stats.lost_packets: # of lost packets * @status_stats.last_pkt_time: timestamp of last ACKed packet * @status_stats.msdu_retries: # of MSDU retries * @status_stats.msdu_failed: # of failed MSDUs * @status_stats.last_ack: last ack timestamp (jiffies) * @status_stats.last_ack_signal: last ACK signal * @status_stats.ack_signal_filled: last ACK signal validity * @status_stats.avg_ack_signal: average ACK signal * @frags: fragment cache */ struct sta_info { /* General information, mostly static */ struct list_head list, free_list; struct rcu_head rcu_head; struct rhlist_head hash_node; u8 addr[ETH_ALEN]; struct ieee80211_local *local; struct ieee80211_sub_if_data *sdata; struct ieee80211_key __rcu *gtk[NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS + NUM_DEFAULT_BEACON_KEYS]; struct ieee80211_key __rcu *ptk[NUM_DEFAULT_KEYS]; u8 ptk_idx; struct rate_control_ref *rate_ctrl; void *rate_ctrl_priv; spinlock_t rate_ctrl_lock; spinlock_t lock; struct ieee80211_fast_tx __rcu *fast_tx; struct ieee80211_fast_rx __rcu *fast_rx; struct ieee80211_sta_rx_stats __percpu *pcpu_rx_stats; #ifdef CONFIG_MAC80211_MESH struct mesh_sta *mesh; #endif struct work_struct drv_deliver_wk; u16 listen_interval; bool dead; bool removed; bool uploaded; enum ieee80211_sta_state sta_state; /* use the accessors defined below */ unsigned long _flags; /* STA powersave lock and frame queues */ spinlock_t ps_lock; struct sk_buff_head ps_tx_buf[IEEE80211_NUM_ACS]; struct sk_buff_head tx_filtered[IEEE80211_NUM_ACS]; unsigned long driver_buffered_tids; unsigned long txq_buffered_tids; u64 assoc_at; long last_connected; /* Updated from RX path only, no locking requirements */ struct ieee80211_sta_rx_stats rx_stats; struct { struct ewma_signal signal; struct ewma_signal chain_signal[IEEE80211_MAX_CHAINS]; } rx_stats_avg; /* Plus 1 for non-QoS frames */ __le16 last_seq_ctrl[IEEE80211_NUM_TIDS + 1]; /* Updated from TX status path only, no locking requirements */ struct { unsigned long filtered; unsigned long retry_failed, retry_count; unsigned int lost_packets; unsigned long last_pkt_time; u64 msdu_retries[IEEE80211_NUM_TIDS + 1]; u64 msdu_failed[IEEE80211_NUM_TIDS + 1]; unsigned long last_ack; s8 last_ack_signal; bool ack_signal_filled; struct ewma_avg_signal avg_ack_signal; } status_stats; /* Updated from TX path only, no locking requirements */ struct { u64 packets[IEEE80211_NUM_ACS]; u64 bytes[IEEE80211_NUM_ACS]; struct ieee80211_tx_rate last_rate; struct rate_info last_rate_info; u64 msdu[IEEE80211_NUM_TIDS + 1]; } tx_stats; u16 tid_seq[IEEE80211_QOS_CTL_TID_MASK + 1]; struct airtime_info airtime[IEEE80211_NUM_ACS]; u16 airtime_weight; /* * Aggregation information, locked with lock. */ struct sta_ampdu_mlme ampdu_mlme; #ifdef CONFIG_MAC80211_DEBUGFS struct dentry *debugfs_dir; #endif enum ieee80211_sta_rx_bandwidth cur_max_bandwidth; enum ieee80211_smps_mode known_smps_mode; const struct ieee80211_cipher_scheme *cipher_scheme; struct codel_params cparams; u8 reserved_tid; struct cfg80211_chan_def tdls_chandef; struct ieee80211_fragment_cache frags; /* keep last! */ struct ieee80211_sta sta; }; static inline enum nl80211_plink_state sta_plink_state(struct sta_info *sta) { #ifdef CONFIG_MAC80211_MESH return sta->mesh->plink_state; #endif return NL80211_PLINK_LISTEN; } static inline void set_sta_flag(struct sta_info *sta, enum ieee80211_sta_info_flags flag) { WARN_ON(flag == WLAN_STA_AUTH || flag == WLAN_STA_ASSOC || flag == WLAN_STA_AUTHORIZED); set_bit(flag, &sta->_flags); } static inline void clear_sta_flag(struct sta_info *sta, enum ieee80211_sta_info_flags flag) { WARN_ON(flag == WLAN_STA_AUTH || flag == WLAN_STA_ASSOC || flag == WLAN_STA_AUTHORIZED); clear_bit(flag, &sta->_flags); } static inline int test_sta_flag(struct sta_info *sta, enum ieee80211_sta_info_flags flag) { return test_bit(flag, &sta->_flags); } static inline int test_and_clear_sta_flag(struct sta_info *sta, enum ieee80211_sta_info_flags flag) { WARN_ON(flag == WLAN_STA_AUTH || flag == WLAN_STA_ASSOC || flag == WLAN_STA_AUTHORIZED); return test_and_clear_bit(flag, &sta->_flags); } static inline int test_and_set_sta_flag(struct sta_info *sta, enum ieee80211_sta_info_flags flag) { WARN_ON(flag == WLAN_STA_AUTH || flag == WLAN_STA_ASSOC || flag == WLAN_STA_AUTHORIZED); return test_and_set_bit(flag, &sta->_flags); } int sta_info_move_state(struct sta_info *sta, enum ieee80211_sta_state new_state); static inline void sta_info_pre_move_state(struct sta_info *sta, enum ieee80211_sta_state new_state) { int ret; WARN_ON_ONCE(test_sta_flag(sta, WLAN_STA_INSERTED)); ret = sta_info_move_state(sta, new_state); WARN_ON_ONCE(ret); } void ieee80211_assign_tid_tx(struct sta_info *sta, int tid, struct tid_ampdu_tx *tid_tx); static inline struct tid_ampdu_tx * rcu_dereference_protected_tid_tx(struct sta_info *sta, int tid) { return rcu_dereference_protected(sta->ampdu_mlme.tid_tx[tid], lockdep_is_held(&sta->lock) || lockdep_is_held(&sta->ampdu_mlme.mtx)); } /* Maximum number of frames to buffer per power saving station per AC */ #define STA_MAX_TX_BUFFER 64 /* Minimum buffered frame expiry time. If STA uses listen interval that is * smaller than this value, the minimum value here is used instead. */ #define STA_TX_BUFFER_EXPIRE (10 * HZ) /* How often station data is cleaned up (e.g., expiration of buffered frames) */ #define STA_INFO_CLEANUP_INTERVAL (10 * HZ) struct rhlist_head *sta_info_hash_lookup(struct ieee80211_local *local, const u8 *addr); /* * Get a STA info, must be under RCU read lock. */ struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata, const u8 *addr); struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata, const u8 *addr); /* user must hold sta_mtx or be in RCU critical section */ struct sta_info *sta_info_get_by_addrs(struct ieee80211_local *local, const u8 *sta_addr, const u8 *vif_addr); #define for_each_sta_info(local, _addr, _sta, _tmp) \ rhl_for_each_entry_rcu(_sta, _tmp, \ sta_info_hash_lookup(local, _addr), hash_node) /* * Get STA info by index, BROKEN! */ struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata, int idx); /* * Create a new STA info, caller owns returned structure * until sta_info_insert(). */ struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata, const u8 *addr, gfp_t gfp); void sta_info_free(struct ieee80211_local *local, struct sta_info *sta); /* * Insert STA info into hash table/list, returns zero or a * -EEXIST if (if the same MAC address is already present). * * Calling the non-rcu version makes the caller relinquish, * the _rcu version calls read_lock_rcu() and must be called * without it held. */ int sta_info_insert(struct sta_info *sta); int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU); int __must_check __sta_info_destroy(struct sta_info *sta); int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr); int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata, const u8 *addr); void sta_info_recalc_tim(struct sta_info *sta); int sta_info_init(struct ieee80211_local *local); void sta_info_stop(struct ieee80211_local *local); /** * __sta_info_flush - flush matching STA entries from the STA table * * Returns the number of removed STA entries. * * @sdata: sdata to remove all stations from * @vlans: if the given interface is an AP interface, also flush VLANs */ int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans); /** * sta_info_flush - flush matching STA entries from the STA table * * Returns the number of removed STA entries. * * @sdata: sdata to remove all stations from */ static inline int sta_info_flush(struct ieee80211_sub_if_data *sdata) { return __sta_info_flush(sdata, false); } void sta_set_rate_info_tx(struct sta_info *sta, const struct ieee80211_tx_rate *rate, struct rate_info *rinfo); void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo, bool tidstats); u32 sta_get_expected_throughput(struct sta_info *sta); void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata, unsigned long exp_time); u8 sta_info_tx_streams(struct sta_info *sta); void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta); void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta); void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta); unsigned long ieee80211_sta_last_active(struct sta_info *sta); enum sta_stats_type { STA_STATS_RATE_TYPE_INVALID = 0, STA_STATS_RATE_TYPE_LEGACY, STA_STATS_RATE_TYPE_HT, STA_STATS_RATE_TYPE_VHT, STA_STATS_RATE_TYPE_HE, STA_STATS_RATE_TYPE_S1G, }; #define STA_STATS_FIELD_HT_MCS GENMASK( 7, 0) #define STA_STATS_FIELD_LEGACY_IDX GENMASK( 3, 0) #define STA_STATS_FIELD_LEGACY_BAND GENMASK( 7, 4) #define STA_STATS_FIELD_VHT_MCS GENMASK( 3, 0) #define STA_STATS_FIELD_VHT_NSS GENMASK( 7, 4) #define STA_STATS_FIELD_HE_MCS GENMASK( 3, 0) #define STA_STATS_FIELD_HE_NSS GENMASK( 7, 4) #define STA_STATS_FIELD_BW GENMASK(11, 8) #define STA_STATS_FIELD_SGI GENMASK(12, 12) #define STA_STATS_FIELD_TYPE GENMASK(15, 13) #define STA_STATS_FIELD_HE_RU GENMASK(18, 16) #define STA_STATS_FIELD_HE_GI GENMASK(20, 19) #define STA_STATS_FIELD_HE_DCM GENMASK(21, 21) #define STA_STATS_FIELD(_n, _v) FIELD_PREP(STA_STATS_FIELD_ ## _n, _v) #define STA_STATS_GET(_n, _v) FIELD_GET(STA_STATS_FIELD_ ## _n, _v) #define STA_STATS_RATE_INVALID 0 static inline u32 sta_stats_encode_rate(struct ieee80211_rx_status *s) { u32 r; r = STA_STATS_FIELD(BW, s->bw); if (s->enc_flags & RX_ENC_FLAG_SHORT_GI) r |= STA_STATS_FIELD(SGI, 1); switch (s->encoding) { case RX_ENC_VHT: r |= STA_STATS_FIELD(TYPE, STA_STATS_RATE_TYPE_VHT); r |= STA_STATS_FIELD(VHT_NSS, s->nss); r |= STA_STATS_FIELD(VHT_MCS, s->rate_idx); break; case RX_ENC_HT: r |= STA_STATS_FIELD(TYPE, STA_STATS_RATE_TYPE_HT); r |= STA_STATS_FIELD(HT_MCS, s->rate_idx); break; case RX_ENC_LEGACY: r |= STA_STATS_FIELD(TYPE, STA_STATS_RATE_TYPE_LEGACY); r |= STA_STATS_FIELD(LEGACY_BAND, s->band); r |= STA_STATS_FIELD(LEGACY_IDX, s->rate_idx); break; case RX_ENC_HE: r |= STA_STATS_FIELD(TYPE, STA_STATS_RATE_TYPE_HE); r |= STA_STATS_FIELD(HE_NSS, s->nss); r |= STA_STATS_FIELD(HE_MCS, s->rate_idx); r |= STA_STATS_FIELD(HE_GI, s->he_gi); r |= STA_STATS_FIELD(HE_RU, s->he_ru); r |= STA_STATS_FIELD(HE_DCM, s->he_dcm); break; default: WARN_ON(1); return STA_STATS_RATE_INVALID; } return r; } #endif /* STA_INFO_H */
1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 /* * memfd_create system call and file sealing support * * Code was originally included in shmem.c, and broken out to facilitate * use by hugetlbfs as well as tmpfs. * * This file is released under the GPL. */ #include <linux/fs.h> #include <linux/vfs.h> #include <linux/pagemap.h> #include <linux/file.h> #include <linux/mm.h> #include <linux/sched/signal.h> #include <linux/khugepaged.h> #include <linux/syscalls.h> #include <linux/hugetlb.h> #include <linux/shmem_fs.h> #include <linux/memfd.h> #include <uapi/linux/memfd.h> /* * We need a tag: a new tag would expand every xa_node by 8 bytes, * so reuse a tag which we firmly believe is never set or cleared on tmpfs * or hugetlbfs because they are memory only filesystems. */ #define MEMFD_TAG_PINNED PAGECACHE_TAG_TOWRITE #define LAST_SCAN 4 /* about 150ms max */ static void memfd_tag_pins(struct xa_state *xas) { struct page *page; unsigned int tagged = 0; lru_add_drain(); xas_lock_irq(xas); xas_for_each(xas, page, ULONG_MAX) { if (xa_is_value(page)) continue; page = find_subpage(page, xas->xa_index); if (page_count(page) - page_mapcount(page) > 1) xas_set_mark(xas, MEMFD_TAG_PINNED); if (++tagged % XA_CHECK_SCHED) continue; xas_pause(xas); xas_unlock_irq(xas); cond_resched(); xas_lock_irq(xas); } xas_unlock_irq(xas); } /* * Setting SEAL_WRITE requires us to verify there's no pending writer. However, * via get_user_pages(), drivers might have some pending I/O without any active * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages * and see whether it has an elevated ref-count. If so, we tag them and wait for * them to be dropped. * The caller must guarantee that no new user will acquire writable references * to those pages to avoid races. */ static int memfd_wait_for_pins(struct address_space *mapping) { XA_STATE(xas, &mapping->i_pages, 0); struct page *page; int error, scan; memfd_tag_pins(&xas); error = 0; for (scan = 0; scan <= LAST_SCAN; scan++) { unsigned int tagged = 0; if (!xas_marked(&xas, MEMFD_TAG_PINNED)) break; if (!scan) lru_add_drain_all(); else if (schedule_timeout_killable((HZ << scan) / 200)) scan = LAST_SCAN; xas_set(&xas, 0); xas_lock_irq(&xas); xas_for_each_marked(&xas, page, ULONG_MAX, MEMFD_TAG_PINNED) { bool clear = true; if (xa_is_value(page)) continue; page = find_subpage(page, xas.xa_index); if (page_count(page) - page_mapcount(page) != 1) { /* * On the last scan, we clean up all those tags * we inserted; but make a note that we still * found pages pinned. */ if (scan == LAST_SCAN) error = -EBUSY; else clear = false; } if (clear) xas_clear_mark(&xas, MEMFD_TAG_PINNED); if (++tagged % XA_CHECK_SCHED) continue; xas_pause(&xas); xas_unlock_irq(&xas); cond_resched(); xas_lock_irq(&xas); } xas_unlock_irq(&xas); } return error; } static unsigned int *memfd_file_seals_ptr(struct file *file) { if (shmem_file(file)) return &SHMEM_I(file_inode(file))->seals; #ifdef CONFIG_HUGETLBFS if (is_file_hugepages(file)) return &HUGETLBFS_I(file_inode(file))->seals; #endif return NULL; } #define F_ALL_SEALS (F_SEAL_SEAL | \ F_SEAL_SHRINK | \ F_SEAL_GROW | \ F_SEAL_WRITE | \ F_SEAL_FUTURE_WRITE) static int memfd_add_seals(struct file *file, unsigned int seals) { struct inode *inode = file_inode(file); unsigned int *file_seals; int error; /* * SEALING * Sealing allows multiple parties to share a tmpfs or hugetlbfs file * but restrict access to a specific subset of file operations. Seals * can only be added, but never removed. This way, mutually untrusted * parties can share common memory regions with a well-defined policy. * A malicious peer can thus never perform unwanted operations on a * shared object. * * Seals are only supported on special tmpfs or hugetlbfs files and * always affect the whole underlying inode. Once a seal is set, it * may prevent some kinds of access to the file. Currently, the * following seals are defined: * SEAL_SEAL: Prevent further seals from being set on this file * SEAL_SHRINK: Prevent the file from shrinking * SEAL_GROW: Prevent the file from growing * SEAL_WRITE: Prevent write access to the file * * As we don't require any trust relationship between two parties, we * must prevent seals from being removed. Therefore, sealing a file * only adds a given set of seals to the file, it never touches * existing seals. Furthermore, the "setting seals"-operation can be * sealed itself, which basically prevents any further seal from being * added. * * Semantics of sealing are only defined on volatile files. Only * anonymous tmpfs and hugetlbfs files support sealing. More * importantly, seals are never written to disk. Therefore, there's * no plan to support it on other file types. */ if (!(file->f_mode & FMODE_WRITE)) return -EPERM; if (seals & ~(unsigned int)F_ALL_SEALS) return -EINVAL; inode_lock(inode); file_seals = memfd_file_seals_ptr(file); if (!file_seals) { error = -EINVAL; goto unlock; } if (*file_seals & F_SEAL_SEAL) { error = -EPERM; goto unlock; } if ((seals & F_SEAL_WRITE) && !(*file_seals & F_SEAL_WRITE)) { error = mapping_deny_writable(file->f_mapping); if (error) goto unlock; error = memfd_wait_for_pins(file->f_mapping); if (error) { mapping_allow_writable(file->f_mapping); goto unlock; } } *file_seals |= seals; error = 0; unlock: inode_unlock(inode); return error; } static int memfd_get_seals(struct file *file) { unsigned int *seals = memfd_file_seals_ptr(file); return seals ? *seals : -EINVAL; } long memfd_fcntl(struct file *file, unsigned int cmd, unsigned long arg) { long error; switch (cmd) { case F_ADD_SEALS: /* disallow upper 32bit */ if (arg > UINT_MAX) return -EINVAL; error = memfd_add_seals(file, arg); break; case F_GET_SEALS: error = memfd_get_seals(file); break; default: error = -EINVAL; break; } return error; } #define MFD_NAME_PREFIX "memfd:" #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1) #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN) #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING | MFD_HUGETLB) SYSCALL_DEFINE2(memfd_create, const char __user *, uname, unsigned int, flags) { unsigned int *file_seals; struct file *file; int fd, error; char *name; long len; if (!(flags & MFD_HUGETLB)) { if (flags & ~(unsigned int)MFD_ALL_FLAGS) return -EINVAL; } else { /* Allow huge page size encoding in flags. */ if (flags & ~(unsigned int)(MFD_ALL_FLAGS | (MFD_HUGE_MASK << MFD_HUGE_SHIFT))) return -EINVAL; } /* length includes terminating zero */ len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1); if (len <= 0) return -EFAULT; if (len > MFD_NAME_MAX_LEN + 1) return -EINVAL; name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_KERNEL); if (!name) return -ENOMEM; strcpy(name, MFD_NAME_PREFIX); if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) { error = -EFAULT; goto err_name; } /* terminating-zero may have changed after strnlen_user() returned */ if (name[len + MFD_NAME_PREFIX_LEN - 1]) { error = -EFAULT; goto err_name; } fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0); if (fd < 0) { error = fd; goto err_name; } if (flags & MFD_HUGETLB) { struct user_struct *user = NULL; file = hugetlb_file_setup(name, 0, VM_NORESERVE, &user, HUGETLB_ANONHUGE_INODE, (flags >> MFD_HUGE_SHIFT) & MFD_HUGE_MASK); } else file = shmem_file_setup(name, 0, VM_NORESERVE); if (IS_ERR(file)) { error = PTR_ERR(file); goto err_fd; } file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE; file->f_flags |= O_LARGEFILE; if (flags & MFD_ALLOW_SEALING) { file_seals = memfd_file_seals_ptr(file); *file_seals &= ~F_SEAL_SEAL; } fd_install(fd, file); kfree(name); return fd; err_fd: put_unused_fd(fd); err_name: kfree(name); return error; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_UACCESS_64_H #define _ASM_X86_UACCESS_64_H /* * User space memory access functions */ #include <linux/compiler.h> #include <linux/lockdep.h> #include <linux/kasan-checks.h> #include <asm/alternative.h> #include <asm/cpufeatures.h> #include <asm/page.h> /* * Copy To/From Userspace */ /* Handles exceptions in both to and from, but doesn't do access_ok */ __must_check unsigned long copy_user_enhanced_fast_string(void *to, const void *from, unsigned len); __must_check unsigned long copy_user_generic_string(void *to, const void *from, unsigned len); __must_check unsigned long copy_user_generic_unrolled(void *to, const void *from, unsigned len); static __always_inline __must_check unsigned long copy_user_generic(void *to, const void *from, unsigned len) { unsigned ret; /* * If CPU has ERMS feature, use copy_user_enhanced_fast_string. * Otherwise, if CPU has rep_good feature, use copy_user_generic_string. * Otherwise, use copy_user_generic_unrolled. */ alternative_call_2(copy_user_generic_unrolled, copy_user_generic_string, X86_FEATURE_REP_GOOD, copy_user_enhanced_fast_string, X86_FEATURE_ERMS, ASM_OUTPUT2("=a" (ret), "=D" (to), "=S" (from), "=d" (len)), "1" (to), "2" (from), "3" (len) : "memory", "rcx", "r8", "r9", "r10", "r11"); return ret; } static __always_inline __must_check unsigned long raw_copy_from_user(void *dst, const void __user *src, unsigned long size) { return copy_user_generic(dst, (__force void *)src, size); } static __always_inline __must_check unsigned long raw_copy_to_user(void __user *dst, const void *src, unsigned long size) { return copy_user_generic((__force void *)dst, src, size); } static __always_inline __must_check unsigned long raw_copy_in_user(void __user *dst, const void __user *src, unsigned long size) { return copy_user_generic((__force void *)dst, (__force void *)src, size); } extern long __copy_user_nocache(void *dst, const void __user *src, unsigned size, int zerorest); extern long __copy_user_flushcache(void *dst, const void __user *src, unsigned size); extern void memcpy_page_flushcache(char *to, struct page *page, size_t offset, size_t len); static inline int __copy_from_user_inatomic_nocache(void *dst, const void __user *src, unsigned size) { kasan_check_write(dst, size); return __copy_user_nocache(dst, src, size, 0); } static inline int __copy_from_user_flushcache(void *dst, const void __user *src, unsigned size) { kasan_check_write(dst, size); return __copy_user_flushcache(dst, src, size); } #endif /* _ASM_X86_UACCESS_64_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_BLKDEV_H #define _LINUX_BLKDEV_H #include <linux/sched.h> #include <linux/sched/clock.h> #include <linux/major.h> #include <linux/genhd.h> #include <linux/list.h> #include <linux/llist.h> #include <linux/minmax.h> #include <linux/timer.h> #include <linux/workqueue.h> #include <linux/pagemap.h> #include <linux/backing-dev-defs.h> #include <linux/wait.h> #include <linux/mempool.h> #include <linux/pfn.h> #include <linux/bio.h> #include <linux/stringify.h> #include <linux/gfp.h> #include <linux/bsg.h> #include <linux/smp.h> #include <linux/rcupdate.h> #include <linux/percpu-refcount.h> #include <linux/scatterlist.h> #include <linux/blkzoned.h> #include <linux/pm.h> struct module; struct scsi_ioctl_command; struct request_queue; struct elevator_queue; struct blk_trace; struct request; struct sg_io_hdr; struct bsg_job; struct blkcg_gq; struct blk_flush_queue; struct pr_ops; struct rq_qos; struct blk_queue_stats; struct blk_stat_callback; struct blk_keyslot_manager; #define BLKDEV_MIN_RQ 4 #define BLKDEV_MAX_RQ 128 /* Default maximum */ /* Must be consistent with blk_mq_poll_stats_bkt() */ #define BLK_MQ_POLL_STATS_BKTS 16 /* Doing classic polling */ #define BLK_MQ_POLL_CLASSIC -1 /* * Maximum number of blkcg policies allowed to be registered concurrently. * Defined here to simplify include dependency. */ #define BLKCG_MAX_POLS 5 static inline int blk_validate_block_size(unsigned int bsize) { if (bsize < 512 || bsize > PAGE_SIZE || !is_power_of_2(bsize)) return -EINVAL; return 0; } typedef void (rq_end_io_fn)(struct request *, blk_status_t); /* * request flags */ typedef __u32 __bitwise req_flags_t; /* elevator knows about this request */ #define RQF_SORTED ((__force req_flags_t)(1 << 0)) /* drive already may have started this one */ #define RQF_STARTED ((__force req_flags_t)(1 << 1)) /* may not be passed by ioscheduler */ #define RQF_SOFTBARRIER ((__force req_flags_t)(1 << 3)) /* request for flush sequence */ #define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4)) /* merge of different types, fail separately */ #define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5)) /* track inflight for MQ */ #define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6)) /* don't call prep for this one */ #define RQF_DONTPREP ((__force req_flags_t)(1 << 7)) /* vaguely specified driver internal error. Ignored by the block layer */ #define RQF_FAILED ((__force req_flags_t)(1 << 10)) /* don't warn about errors */ #define RQF_QUIET ((__force req_flags_t)(1 << 11)) /* elevator private data attached */ #define RQF_ELVPRIV ((__force req_flags_t)(1 << 12)) /* account into disk and partition IO statistics */ #define RQF_IO_STAT ((__force req_flags_t)(1 << 13)) /* request came from our alloc pool */ #define RQF_ALLOCED ((__force req_flags_t)(1 << 14)) /* runtime pm request */ #define RQF_PM ((__force req_flags_t)(1 << 15)) /* on IO scheduler merge hash */ #define RQF_HASHED ((__force req_flags_t)(1 << 16)) /* track IO completion time */ #define RQF_STATS ((__force req_flags_t)(1 << 17)) /* Look at ->special_vec for the actual data payload instead of the bio chain. */ #define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18)) /* The per-zone write lock is held for this request */ #define RQF_ZONE_WRITE_LOCKED ((__force req_flags_t)(1 << 19)) /* already slept for hybrid poll */ #define RQF_MQ_POLL_SLEPT ((__force req_flags_t)(1 << 20)) /* ->timeout has been called, don't expire again */ #define RQF_TIMED_OUT ((__force req_flags_t)(1 << 21)) /* flags that prevent us from merging requests: */ #define RQF_NOMERGE_FLAGS \ (RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD) /* * Request state for blk-mq. */ enum mq_rq_state { MQ_RQ_IDLE = 0, MQ_RQ_IN_FLIGHT = 1, MQ_RQ_COMPLETE = 2, }; /* * Try to put the fields that are referenced together in the same cacheline. * * If you modify this structure, make sure to update blk_rq_init() and * especially blk_mq_rq_ctx_init() to take care of the added fields. */ struct request { struct request_queue *q; struct blk_mq_ctx *mq_ctx; struct blk_mq_hw_ctx *mq_hctx; unsigned int cmd_flags; /* op and common flags */ req_flags_t rq_flags; int tag; int internal_tag; /* the following two fields are internal, NEVER access directly */ unsigned int __data_len; /* total data len */ sector_t __sector; /* sector cursor */ struct bio *bio; struct bio *biotail; struct list_head queuelist; /* * The hash is used inside the scheduler, and killed once the * request reaches the dispatch list. The ipi_list is only used * to queue the request for softirq completion, which is long * after the request has been unhashed (and even removed from * the dispatch list). */ union { struct hlist_node hash; /* merge hash */ struct list_head ipi_list; }; /* * The rb_node is only used inside the io scheduler, requests * are pruned when moved to the dispatch queue. So let the * completion_data share space with the rb_node. */ union { struct rb_node rb_node; /* sort/lookup */ struct bio_vec special_vec; void *completion_data; int error_count; /* for legacy drivers, don't use */ }; /* * Three pointers are available for the IO schedulers, if they need * more they have to dynamically allocate it. Flush requests are * never put on the IO scheduler. So let the flush fields share * space with the elevator data. */ union { struct { struct io_cq *icq; void *priv[2]; } elv; struct { unsigned int seq; struct list_head list; rq_end_io_fn *saved_end_io; } flush; }; struct gendisk *rq_disk; struct hd_struct *part; #ifdef CONFIG_BLK_RQ_ALLOC_TIME /* Time that the first bio started allocating this request. */ u64 alloc_time_ns; #endif /* Time that this request was allocated for this IO. */ u64 start_time_ns; /* Time that I/O was submitted to the device. */ u64 io_start_time_ns; #ifdef CONFIG_BLK_WBT unsigned short wbt_flags; #endif /* * rq sectors used for blk stats. It has the same value * with blk_rq_sectors(rq), except that it never be zeroed * by completion. */ unsigned short stats_sectors; /* * Number of scatter-gather DMA addr+len pairs after * physical address coalescing is performed. */ unsigned short nr_phys_segments; #if defined(CONFIG_BLK_DEV_INTEGRITY) unsigned short nr_integrity_segments; #endif #ifdef CONFIG_BLK_INLINE_ENCRYPTION struct bio_crypt_ctx *crypt_ctx; struct blk_ksm_keyslot *crypt_keyslot; #endif unsigned short write_hint; unsigned short ioprio; enum mq_rq_state state; refcount_t ref; unsigned int timeout; unsigned long deadline; union { struct __call_single_data csd; u64 fifo_time; }; /* * completion callback. */ rq_end_io_fn *end_io; void *end_io_data; }; static inline bool blk_op_is_scsi(unsigned int op) { return op == REQ_OP_SCSI_IN || op == REQ_OP_SCSI_OUT; } static inline bool blk_op_is_private(unsigned int op) { return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT; } static inline bool blk_rq_is_scsi(struct request *rq) { return blk_op_is_scsi(req_op(rq)); } static inline bool blk_rq_is_private(struct request *rq) { return blk_op_is_private(req_op(rq)); } static inline bool blk_rq_is_passthrough(struct request *rq) { return blk_rq_is_scsi(rq) || blk_rq_is_private(rq); } static inline bool bio_is_passthrough(struct bio *bio) { unsigned op = bio_op(bio); return blk_op_is_scsi(op) || blk_op_is_private(op); } static inline unsigned short req_get_ioprio(struct request *req) { return req->ioprio; } #include <linux/elevator.h> struct blk_queue_ctx; struct bio_vec; enum blk_eh_timer_return { BLK_EH_DONE, /* drivers has completed the command */ BLK_EH_RESET_TIMER, /* reset timer and try again */ }; enum blk_queue_state { Queue_down, Queue_up, }; #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */ #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */ #define BLK_SCSI_MAX_CMDS (256) #define BLK_SCSI_CMD_PER_LONG (BLK_SCSI_MAX_CMDS / (sizeof(long) * 8)) /* * Zoned block device models (zoned limit). * * Note: This needs to be ordered from the least to the most severe * restrictions for the inheritance in blk_stack_limits() to work. */ enum blk_zoned_model { BLK_ZONED_NONE = 0, /* Regular block device */ BLK_ZONED_HA, /* Host-aware zoned block device */ BLK_ZONED_HM, /* Host-managed zoned block device */ }; struct queue_limits { unsigned long bounce_pfn; unsigned long seg_boundary_mask; unsigned long virt_boundary_mask; unsigned int max_hw_sectors; unsigned int max_dev_sectors; unsigned int chunk_sectors; unsigned int max_sectors; unsigned int max_segment_size; unsigned int physical_block_size; unsigned int logical_block_size; unsigned int alignment_offset; unsigned int io_min; unsigned int io_opt; unsigned int max_discard_sectors; unsigned int max_hw_discard_sectors; unsigned int max_write_same_sectors; unsigned int max_write_zeroes_sectors; unsigned int max_zone_append_sectors; unsigned int discard_granularity; unsigned int discard_alignment; unsigned short max_segments; unsigned short max_integrity_segments; unsigned short max_discard_segments; unsigned char misaligned; unsigned char discard_misaligned; unsigned char raid_partial_stripes_expensive; enum blk_zoned_model zoned; }; typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx, void *data); void blk_queue_set_zoned(struct gendisk *disk, enum blk_zoned_model model); #ifdef CONFIG_BLK_DEV_ZONED #define BLK_ALL_ZONES ((unsigned int)-1) int blkdev_report_zones(struct block_device *bdev, sector_t sector, unsigned int nr_zones, report_zones_cb cb, void *data); unsigned int blkdev_nr_zones(struct gendisk *disk); extern int blkdev_zone_mgmt(struct block_device *bdev, enum req_opf op, sector_t sectors, sector_t nr_sectors, gfp_t gfp_mask); int blk_revalidate_disk_zones(struct gendisk *disk, void (*update_driver_data)(struct gendisk *disk)); extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg); extern int blkdev_zone_mgmt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg); #else /* CONFIG_BLK_DEV_ZONED */ static inline unsigned int blkdev_nr_zones(struct gendisk *disk) { return 0; } static inline int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg) { return -ENOTTY; } static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg) { return -ENOTTY; } #endif /* CONFIG_BLK_DEV_ZONED */ struct request_queue { struct request *last_merge; struct elevator_queue *elevator; struct percpu_ref q_usage_counter; struct blk_queue_stats *stats; struct rq_qos *rq_qos; const struct blk_mq_ops *mq_ops; /* sw queues */ struct blk_mq_ctx __percpu *queue_ctx; unsigned int queue_depth; /* hw dispatch queues */ struct blk_mq_hw_ctx **queue_hw_ctx; unsigned int nr_hw_queues; struct backing_dev_info *backing_dev_info; /* * The queue owner gets to use this for whatever they like. * ll_rw_blk doesn't touch it. */ void *queuedata; /* * various queue flags, see QUEUE_* below */ unsigned long queue_flags; /* * Number of contexts that have called blk_set_pm_only(). If this * counter is above zero then only RQF_PM requests are processed. */ atomic_t pm_only; /* * ida allocated id for this queue. Used to index queues from * ioctx. */ int id; /* * queue needs bounce pages for pages above this limit */ gfp_t bounce_gfp; spinlock_t queue_lock; /* * queue kobject */ struct kobject kobj; /* * mq queue kobject */ struct kobject *mq_kobj; #ifdef CONFIG_BLK_DEV_INTEGRITY struct blk_integrity integrity; #endif /* CONFIG_BLK_DEV_INTEGRITY */ #ifdef CONFIG_PM struct device *dev; enum rpm_status rpm_status; unsigned int nr_pending; #endif /* * queue settings */ unsigned long nr_requests; /* Max # of requests */ unsigned int dma_pad_mask; unsigned int dma_alignment; #ifdef CONFIG_BLK_INLINE_ENCRYPTION /* Inline crypto capabilities */ struct blk_keyslot_manager *ksm; #endif unsigned int rq_timeout; int poll_nsec; struct blk_stat_callback *poll_cb; struct blk_rq_stat poll_stat[BLK_MQ_POLL_STATS_BKTS]; struct timer_list timeout; struct work_struct timeout_work; atomic_t nr_active_requests_shared_sbitmap; struct list_head icq_list; #ifdef CONFIG_BLK_CGROUP DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS); struct blkcg_gq *root_blkg; struct list_head blkg_list; #endif struct queue_limits limits; unsigned int required_elevator_features; #ifdef CONFIG_BLK_DEV_ZONED /* * Zoned block device information for request dispatch control. * nr_zones is the total number of zones of the device. This is always * 0 for regular block devices. conv_zones_bitmap is a bitmap of nr_zones * bits which indicates if a zone is conventional (bit set) or * sequential (bit clear). seq_zones_wlock is a bitmap of nr_zones * bits which indicates if a zone is write locked, that is, if a write * request targeting the zone was dispatched. All three fields are * initialized by the low level device driver (e.g. scsi/sd.c). * Stacking drivers (device mappers) may or may not initialize * these fields. * * Reads of this information must be protected with blk_queue_enter() / * blk_queue_exit(). Modifying this information is only allowed while * no requests are being processed. See also blk_mq_freeze_queue() and * blk_mq_unfreeze_queue(). */ unsigned int nr_zones; unsigned long *conv_zones_bitmap; unsigned long *seq_zones_wlock; unsigned int max_open_zones; unsigned int max_active_zones; #endif /* CONFIG_BLK_DEV_ZONED */ /* * sg stuff */ unsigned int sg_timeout; unsigned int sg_reserved_size; int node; struct mutex debugfs_mutex; #ifdef CONFIG_BLK_DEV_IO_TRACE struct blk_trace __rcu *blk_trace; #endif /* * for flush operations */ struct blk_flush_queue *fq; struct list_head requeue_list; spinlock_t requeue_lock; struct delayed_work requeue_work; struct mutex sysfs_lock; struct mutex sysfs_dir_lock; /* * for reusing dead hctx instance in case of updating * nr_hw_queues */ struct list_head unused_hctx_list; spinlock_t unused_hctx_lock; int mq_freeze_depth; #if defined(CONFIG_BLK_DEV_BSG) struct bsg_class_device bsg_dev; #endif #ifdef CONFIG_BLK_DEV_THROTTLING /* Throttle data */ struct throtl_data *td; #endif struct rcu_head rcu_head; wait_queue_head_t mq_freeze_wq; /* * Protect concurrent access to q_usage_counter by * percpu_ref_kill() and percpu_ref_reinit(). */ struct mutex mq_freeze_lock; struct blk_mq_tag_set *tag_set; struct list_head tag_set_list; struct bio_set bio_split; struct dentry *debugfs_dir; #ifdef CONFIG_BLK_DEBUG_FS struct dentry *sched_debugfs_dir; struct dentry *rqos_debugfs_dir; #endif bool mq_sysfs_init_done; size_t cmd_size; #define BLK_MAX_WRITE_HINTS 5 u64 write_hints[BLK_MAX_WRITE_HINTS]; }; /* Keep blk_queue_flag_name[] in sync with the definitions below */ #define QUEUE_FLAG_STOPPED 0 /* queue is stopped */ #define QUEUE_FLAG_DYING 1 /* queue being torn down */ #define QUEUE_FLAG_NOMERGES 3 /* disable merge attempts */ #define QUEUE_FLAG_SAME_COMP 4 /* complete on same CPU-group */ #define QUEUE_FLAG_FAIL_IO 5 /* fake timeout */ #define QUEUE_FLAG_NONROT 6 /* non-rotational device (SSD) */ #define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */ #define QUEUE_FLAG_IO_STAT 7 /* do disk/partitions IO accounting */ #define QUEUE_FLAG_DISCARD 8 /* supports DISCARD */ #define QUEUE_FLAG_NOXMERGES 9 /* No extended merges */ #define QUEUE_FLAG_ADD_RANDOM 10 /* Contributes to random pool */ #define QUEUE_FLAG_SECERASE 11 /* supports secure erase */ #define QUEUE_FLAG_SAME_FORCE 12 /* force complete on same CPU */ #define QUEUE_FLAG_DEAD 13 /* queue tear-down finished */ #define QUEUE_FLAG_INIT_DONE 14 /* queue is initialized */ #define QUEUE_FLAG_STABLE_WRITES 15 /* don't modify blks until WB is done */ #define QUEUE_FLAG_POLL 16 /* IO polling enabled if set */ #define QUEUE_FLAG_WC 17 /* Write back caching */ #define QUEUE_FLAG_FUA 18 /* device supports FUA writes */ #define QUEUE_FLAG_DAX 19 /* device supports DAX */ #define QUEUE_FLAG_STATS 20 /* track IO start and completion times */ #define QUEUE_FLAG_POLL_STATS 21 /* collecting stats for hybrid polling */ #define QUEUE_FLAG_REGISTERED 22 /* queue has been registered to a disk */ #define QUEUE_FLAG_SCSI_PASSTHROUGH 23 /* queue supports SCSI commands */ #define QUEUE_FLAG_QUIESCED 24 /* queue has been quiesced */ #define QUEUE_FLAG_PCI_P2PDMA 25 /* device supports PCI p2p requests */ #define QUEUE_FLAG_ZONE_RESETALL 26 /* supports Zone Reset All */ #define QUEUE_FLAG_RQ_ALLOC_TIME 27 /* record rq->alloc_time_ns */ #define QUEUE_FLAG_HCTX_ACTIVE 28 /* at least one blk-mq hctx is active */ #define QUEUE_FLAG_NOWAIT 29 /* device supports NOWAIT */ #define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \ (1 << QUEUE_FLAG_SAME_COMP) | \ (1 << QUEUE_FLAG_NOWAIT)) void blk_queue_flag_set(unsigned int flag, struct request_queue *q); void blk_queue_flag_clear(unsigned int flag, struct request_queue *q); bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q); #define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags) #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags) #define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags) #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags) #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags) #define blk_queue_noxmerges(q) \ test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags) #define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags) #define blk_queue_stable_writes(q) \ test_bit(QUEUE_FLAG_STABLE_WRITES, &(q)->queue_flags) #define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags) #define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags) #define blk_queue_discard(q) test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags) #define blk_queue_zone_resetall(q) \ test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags) #define blk_queue_secure_erase(q) \ (test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags)) #define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags) #define blk_queue_scsi_passthrough(q) \ test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags) #define blk_queue_pci_p2pdma(q) \ test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags) #ifdef CONFIG_BLK_RQ_ALLOC_TIME #define blk_queue_rq_alloc_time(q) \ test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags) #else #define blk_queue_rq_alloc_time(q) false #endif #define blk_noretry_request(rq) \ ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \ REQ_FAILFAST_DRIVER)) #define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags) #define blk_queue_pm_only(q) atomic_read(&(q)->pm_only) #define blk_queue_fua(q) test_bit(QUEUE_FLAG_FUA, &(q)->queue_flags) #define blk_queue_registered(q) test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags) #define blk_queue_nowait(q) test_bit(QUEUE_FLAG_NOWAIT, &(q)->queue_flags) extern void blk_set_pm_only(struct request_queue *q); extern void blk_clear_pm_only(struct request_queue *q); static inline bool blk_account_rq(struct request *rq) { return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq); } #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist) #define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ) #define rq_dma_dir(rq) \ (op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE) #define dma_map_bvec(dev, bv, dir, attrs) \ dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \ (dir), (attrs)) static inline bool queue_is_mq(struct request_queue *q) { return q->mq_ops; } #ifdef CONFIG_PM static inline enum rpm_status queue_rpm_status(struct request_queue *q) { return q->rpm_status; } #else static inline enum rpm_status queue_rpm_status(struct request_queue *q) { return RPM_ACTIVE; } #endif static inline enum blk_zoned_model blk_queue_zoned_model(struct request_queue *q) { if (IS_ENABLED(CONFIG_BLK_DEV_ZONED)) return q->limits.zoned; return BLK_ZONED_NONE; } static inline bool blk_queue_is_zoned(struct request_queue *q) { switch (blk_queue_zoned_model(q)) { case BLK_ZONED_HA: case BLK_ZONED_HM: return true; default: return false; } } static inline sector_t blk_queue_zone_sectors(struct request_queue *q) { return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0; } #ifdef CONFIG_BLK_DEV_ZONED static inline unsigned int blk_queue_nr_zones(struct request_queue *q) { return blk_queue_is_zoned(q) ? q->nr_zones : 0; } static inline unsigned int blk_queue_zone_no(struct request_queue *q, sector_t sector) { if (!blk_queue_is_zoned(q)) return 0; return sector >> ilog2(q->limits.chunk_sectors); } static inline bool blk_queue_zone_is_seq(struct request_queue *q, sector_t sector) { if (!blk_queue_is_zoned(q)) return false; if (!q->conv_zones_bitmap) return true; return !test_bit(blk_queue_zone_no(q, sector), q->conv_zones_bitmap); } static inline void blk_queue_max_open_zones(struct request_queue *q, unsigned int max_open_zones) { q->max_open_zones = max_open_zones; } static inline unsigned int queue_max_open_zones(const struct request_queue *q) { return q->max_open_zones; } static inline void blk_queue_max_active_zones(struct request_queue *q, unsigned int max_active_zones) { q->max_active_zones = max_active_zones; } static inline unsigned int queue_max_active_zones(const struct request_queue *q) { return q->max_active_zones; } #else /* CONFIG_BLK_DEV_ZONED */ static inline unsigned int blk_queue_nr_zones(struct request_queue *q) { return 0; } static inline bool blk_queue_zone_is_seq(struct request_queue *q, sector_t sector) { return false; } static inline unsigned int blk_queue_zone_no(struct request_queue *q, sector_t sector) { return 0; } static inline unsigned int queue_max_open_zones(const struct request_queue *q) { return 0; } static inline unsigned int queue_max_active_zones(const struct request_queue *q) { return 0; } #endif /* CONFIG_BLK_DEV_ZONED */ static inline bool rq_is_sync(struct request *rq) { return op_is_sync(rq->cmd_flags); } static inline bool rq_mergeable(struct request *rq) { if (blk_rq_is_passthrough(rq)) return false; if (req_op(rq) == REQ_OP_FLUSH) return false; if (req_op(rq) == REQ_OP_WRITE_ZEROES) return false; if (req_op(rq) == REQ_OP_ZONE_APPEND) return false; if (rq->cmd_flags & REQ_NOMERGE_FLAGS) return false; if (rq->rq_flags & RQF_NOMERGE_FLAGS) return false; return true; } static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b) { if (bio_page(a) == bio_page(b) && bio_offset(a) == bio_offset(b)) return true; return false; } static inline unsigned int blk_queue_depth(struct request_queue *q) { if (q->queue_depth) return q->queue_depth; return q->nr_requests; } extern unsigned long blk_max_low_pfn, blk_max_pfn; /* * standard bounce addresses: * * BLK_BOUNCE_HIGH : bounce all highmem pages * BLK_BOUNCE_ANY : don't bounce anything * BLK_BOUNCE_ISA : bounce pages above ISA DMA boundary */ #if BITS_PER_LONG == 32 #define BLK_BOUNCE_HIGH ((u64)blk_max_low_pfn << PAGE_SHIFT) #else #define BLK_BOUNCE_HIGH -1ULL #endif #define BLK_BOUNCE_ANY (-1ULL) #define BLK_BOUNCE_ISA (DMA_BIT_MASK(24)) /* * default timeout for SG_IO if none specified */ #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ) #define BLK_MIN_SG_TIMEOUT (7 * HZ) struct rq_map_data { struct page **pages; int page_order; int nr_entries; unsigned long offset; int null_mapped; int from_user; }; struct req_iterator { struct bvec_iter iter; struct bio *bio; }; /* This should not be used directly - use rq_for_each_segment */ #define for_each_bio(_bio) \ for (; _bio; _bio = _bio->bi_next) #define __rq_for_each_bio(_bio, rq) \ if ((rq->bio)) \ for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next) #define rq_for_each_segment(bvl, _rq, _iter) \ __rq_for_each_bio(_iter.bio, _rq) \ bio_for_each_segment(bvl, _iter.bio, _iter.iter) #define rq_for_each_bvec(bvl, _rq, _iter) \ __rq_for_each_bio(_iter.bio, _rq) \ bio_for_each_bvec(bvl, _iter.bio, _iter.iter) #define rq_iter_last(bvec, _iter) \ (_iter.bio->bi_next == NULL && \ bio_iter_last(bvec, _iter.iter)) #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE # error "You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform" #endif #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE extern void rq_flush_dcache_pages(struct request *rq); #else static inline void rq_flush_dcache_pages(struct request *rq) { } #endif extern int blk_register_queue(struct gendisk *disk); extern void blk_unregister_queue(struct gendisk *disk); blk_qc_t submit_bio_noacct(struct bio *bio); extern void blk_rq_init(struct request_queue *q, struct request *rq); extern void blk_put_request(struct request *); extern struct request *blk_get_request(struct request_queue *, unsigned int op, blk_mq_req_flags_t flags); extern int blk_lld_busy(struct request_queue *q); extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src, struct bio_set *bs, gfp_t gfp_mask, int (*bio_ctr)(struct bio *, struct bio *, void *), void *data); extern void blk_rq_unprep_clone(struct request *rq); extern blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq); extern int blk_rq_append_bio(struct request *rq, struct bio **bio); extern void blk_queue_split(struct bio **); extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int); extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t, unsigned int, void __user *); extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t, unsigned int, void __user *); extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t, struct scsi_ioctl_command __user *); extern int get_sg_io_hdr(struct sg_io_hdr *hdr, const void __user *argp); extern int put_sg_io_hdr(const struct sg_io_hdr *hdr, void __user *argp); extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags); extern void blk_queue_exit(struct request_queue *q); extern void blk_sync_queue(struct request_queue *q); extern int blk_rq_map_user(struct request_queue *, struct request *, struct rq_map_data *, void __user *, unsigned long, gfp_t); extern int blk_rq_unmap_user(struct bio *); extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t); extern int blk_rq_map_user_iov(struct request_queue *, struct request *, struct rq_map_data *, const struct iov_iter *, gfp_t); extern void blk_execute_rq(struct request_queue *, struct gendisk *, struct request *, int); extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *, struct request *, int, rq_end_io_fn *); /* Helper to convert REQ_OP_XXX to its string format XXX */ extern const char *blk_op_str(unsigned int op); int blk_status_to_errno(blk_status_t status); blk_status_t errno_to_blk_status(int errno); int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin); static inline struct request_queue *bdev_get_queue(struct block_device *bdev) { return bdev->bd_disk->queue; /* this is never NULL */ } /* * The basic unit of block I/O is a sector. It is used in a number of contexts * in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9 * bytes. Variables of type sector_t represent an offset or size that is a * multiple of 512 bytes. Hence these two constants. */ #ifndef SECTOR_SHIFT #define SECTOR_SHIFT 9 #endif #ifndef SECTOR_SIZE #define SECTOR_SIZE (1 << SECTOR_SHIFT) #endif /* * blk_rq_pos() : the current sector * blk_rq_bytes() : bytes left in the entire request * blk_rq_cur_bytes() : bytes left in the current segment * blk_rq_err_bytes() : bytes left till the next error boundary * blk_rq_sectors() : sectors left in the entire request * blk_rq_cur_sectors() : sectors left in the current segment * blk_rq_stats_sectors() : sectors of the entire request used for stats */ static inline sector_t blk_rq_pos(const struct request *rq) { return rq->__sector; } static inline unsigned int blk_rq_bytes(const struct request *rq) { return rq->__data_len; } static inline int blk_rq_cur_bytes(const struct request *rq) { return rq->bio ? bio_cur_bytes(rq->bio) : 0; } extern unsigned int blk_rq_err_bytes(const struct request *rq); static inline unsigned int blk_rq_sectors(const struct request *rq) { return blk_rq_bytes(rq) >> SECTOR_SHIFT; } static inline unsigned int blk_rq_cur_sectors(const struct request *rq) { return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT; } static inline unsigned int blk_rq_stats_sectors(const struct request *rq) { return rq->stats_sectors; } #ifdef CONFIG_BLK_DEV_ZONED /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */ const char *blk_zone_cond_str(enum blk_zone_cond zone_cond); static inline unsigned int blk_rq_zone_no(struct request *rq) { return blk_queue_zone_no(rq->q, blk_rq_pos(rq)); } static inline unsigned int blk_rq_zone_is_seq(struct request *rq) { return blk_queue_zone_is_seq(rq->q, blk_rq_pos(rq)); } #endif /* CONFIG_BLK_DEV_ZONED */ /* * Some commands like WRITE SAME have a payload or data transfer size which * is different from the size of the request. Any driver that supports such * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to * calculate the data transfer size. */ static inline unsigned int blk_rq_payload_bytes(struct request *rq) { if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) return rq->special_vec.bv_len; return blk_rq_bytes(rq); } /* * Return the first full biovec in the request. The caller needs to check that * there are any bvecs before calling this helper. */ static inline struct bio_vec req_bvec(struct request *rq) { if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) return rq->special_vec; return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter); } static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q, int op) { if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE)) return min(q->limits.max_discard_sectors, UINT_MAX >> SECTOR_SHIFT); if (unlikely(op == REQ_OP_WRITE_SAME)) return q->limits.max_write_same_sectors; if (unlikely(op == REQ_OP_WRITE_ZEROES)) return q->limits.max_write_zeroes_sectors; return q->limits.max_sectors; } /* * Return maximum size of a request at given offset. Only valid for * file system requests. */ static inline unsigned int blk_max_size_offset(struct request_queue *q, sector_t offset, unsigned int chunk_sectors) { if (!chunk_sectors) { if (q->limits.chunk_sectors) chunk_sectors = q->limits.chunk_sectors; else return q->limits.max_sectors; } if (likely(is_power_of_2(chunk_sectors))) chunk_sectors -= offset & (chunk_sectors - 1); else chunk_sectors -= sector_div(offset, chunk_sectors); return min(q->limits.max_sectors, chunk_sectors); } static inline unsigned int blk_rq_get_max_sectors(struct request *rq, sector_t offset) { struct request_queue *q = rq->q; if (blk_rq_is_passthrough(rq)) return q->limits.max_hw_sectors; if (!q->limits.chunk_sectors || req_op(rq) == REQ_OP_DISCARD || req_op(rq) == REQ_OP_SECURE_ERASE) return blk_queue_get_max_sectors(q, req_op(rq)); return min(blk_max_size_offset(q, offset, 0), blk_queue_get_max_sectors(q, req_op(rq))); } static inline unsigned int blk_rq_count_bios(struct request *rq) { unsigned int nr_bios = 0; struct bio *bio; __rq_for_each_bio(bio, rq) nr_bios++; return nr_bios; } void blk_steal_bios(struct bio_list *list, struct request *rq); /* * Request completion related functions. * * blk_update_request() completes given number of bytes and updates * the request without completing it. */ extern bool blk_update_request(struct request *rq, blk_status_t error, unsigned int nr_bytes); extern void blk_abort_request(struct request *); /* * Access functions for manipulating queue properties */ extern void blk_cleanup_queue(struct request_queue *); extern void blk_queue_bounce_limit(struct request_queue *, u64); extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int); extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int); extern void blk_queue_max_segments(struct request_queue *, unsigned short); extern void blk_queue_max_discard_segments(struct request_queue *, unsigned short); extern void blk_queue_max_segment_size(struct request_queue *, unsigned int); extern void blk_queue_max_discard_sectors(struct request_queue *q, unsigned int max_discard_sectors); extern void blk_queue_max_write_same_sectors(struct request_queue *q, unsigned int max_write_same_sectors); extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q, unsigned int max_write_same_sectors); extern void blk_queue_logical_block_size(struct request_queue *, unsigned int); extern void blk_queue_max_zone_append_sectors(struct request_queue *q, unsigned int max_zone_append_sectors); extern void blk_queue_physical_block_size(struct request_queue *, unsigned int); extern void blk_queue_alignment_offset(struct request_queue *q, unsigned int alignment); void blk_queue_update_readahead(struct request_queue *q); extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min); extern void blk_queue_io_min(struct request_queue *q, unsigned int min); extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt); extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt); extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth); extern void blk_set_default_limits(struct queue_limits *lim); extern void blk_set_stacking_limits(struct queue_limits *lim); extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, sector_t offset); extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, sector_t offset); extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int); extern void blk_queue_segment_boundary(struct request_queue *, unsigned long); extern void blk_queue_virt_boundary(struct request_queue *, unsigned long); extern void blk_queue_dma_alignment(struct request_queue *, int); extern void blk_queue_update_dma_alignment(struct request_queue *, int); extern void blk_queue_rq_timeout(struct request_queue *, unsigned int); extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua); extern void blk_queue_required_elevator_features(struct request_queue *q, unsigned int features); extern bool blk_queue_can_use_dma_map_merging(struct request_queue *q, struct device *dev); /* * Number of physical segments as sent to the device. * * Normally this is the number of discontiguous data segments sent by the * submitter. But for data-less command like discard we might have no * actual data segments submitted, but the driver might have to add it's * own special payload. In that case we still return 1 here so that this * special payload will be mapped. */ static inline unsigned short blk_rq_nr_phys_segments(struct request *rq) { if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) return 1; return rq->nr_phys_segments; } /* * Number of discard segments (or ranges) the driver needs to fill in. * Each discard bio merged into a request is counted as one segment. */ static inline unsigned short blk_rq_nr_discard_segments(struct request *rq) { return max_t(unsigned short, rq->nr_phys_segments, 1); } int __blk_rq_map_sg(struct request_queue *q, struct request *rq, struct scatterlist *sglist, struct scatterlist **last_sg); static inline int blk_rq_map_sg(struct request_queue *q, struct request *rq, struct scatterlist *sglist) { struct scatterlist *last_sg = NULL; return __blk_rq_map_sg(q, rq, sglist, &last_sg); } extern void blk_dump_rq_flags(struct request *, char *); bool __must_check blk_get_queue(struct request_queue *); struct request_queue *blk_alloc_queue(int node_id); extern void blk_put_queue(struct request_queue *); extern void blk_set_queue_dying(struct request_queue *); #ifdef CONFIG_BLOCK /* * blk_plug permits building a queue of related requests by holding the I/O * fragments for a short period. This allows merging of sequential requests * into single larger request. As the requests are moved from a per-task list to * the device's request_queue in a batch, this results in improved scalability * as the lock contention for request_queue lock is reduced. * * It is ok not to disable preemption when adding the request to the plug list * or when attempting a merge, because blk_schedule_flush_list() will only flush * the plug list when the task sleeps by itself. For details, please see * schedule() where blk_schedule_flush_plug() is called. */ struct blk_plug { struct list_head mq_list; /* blk-mq requests */ struct list_head cb_list; /* md requires an unplug callback */ unsigned short rq_count; bool multiple_queues; bool nowait; }; struct blk_plug_cb; typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool); struct blk_plug_cb { struct list_head list; blk_plug_cb_fn callback; void *data; }; extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data, int size); extern void blk_start_plug(struct blk_plug *); extern void blk_finish_plug(struct blk_plug *); extern void blk_flush_plug_list(struct blk_plug *, bool); static inline void blk_flush_plug(struct task_struct *tsk) { struct blk_plug *plug = tsk->plug; if (plug) blk_flush_plug_list(plug, false); } static inline void blk_schedule_flush_plug(struct task_struct *tsk) { struct blk_plug *plug = tsk->plug; if (plug) blk_flush_plug_list(plug, true); } static inline bool blk_needs_flush_plug(struct task_struct *tsk) { struct blk_plug *plug = tsk->plug; return plug && (!list_empty(&plug->mq_list) || !list_empty(&plug->cb_list)); } int blkdev_issue_flush(struct block_device *, gfp_t); long nr_blockdev_pages(void); #else /* CONFIG_BLOCK */ struct blk_plug { }; static inline void blk_start_plug(struct blk_plug *plug) { } static inline void blk_finish_plug(struct blk_plug *plug) { } static inline void blk_flush_plug(struct task_struct *task) { } static inline void blk_schedule_flush_plug(struct task_struct *task) { } static inline bool blk_needs_flush_plug(struct task_struct *tsk) { return false; } static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask) { return 0; } static inline long nr_blockdev_pages(void) { return 0; } #endif /* CONFIG_BLOCK */ extern void blk_io_schedule(void); extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector, sector_t nr_sects, gfp_t gfp_mask, struct page *page); #define BLKDEV_DISCARD_SECURE (1 << 0) /* issue a secure erase */ extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector, sector_t nr_sects, gfp_t gfp_mask, unsigned long flags); extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector, sector_t nr_sects, gfp_t gfp_mask, int flags, struct bio **biop); #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */ #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */ extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, sector_t nr_sects, gfp_t gfp_mask, struct bio **biop, unsigned flags); extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, sector_t nr_sects, gfp_t gfp_mask, unsigned flags); static inline int sb_issue_discard(struct super_block *sb, sector_t block, sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags) { return blkdev_issue_discard(sb->s_bdev, block << (sb->s_blocksize_bits - SECTOR_SHIFT), nr_blocks << (sb->s_blocksize_bits - SECTOR_SHIFT), gfp_mask, flags); } static inline int sb_issue_zeroout(struct super_block *sb, sector_t block, sector_t nr_blocks, gfp_t gfp_mask) { return blkdev_issue_zeroout(sb->s_bdev, block << (sb->s_blocksize_bits - SECTOR_SHIFT), nr_blocks << (sb->s_blocksize_bits - SECTOR_SHIFT), gfp_mask, 0); } extern int blk_verify_command(unsigned char *cmd, fmode_t mode); static inline bool bdev_is_partition(struct block_device *bdev) { return bdev->bd_partno; } enum blk_default_limits { BLK_MAX_SEGMENTS = 128, BLK_SAFE_MAX_SECTORS = 255, BLK_DEF_MAX_SECTORS = 2560, BLK_MAX_SEGMENT_SIZE = 65536, BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL, }; static inline unsigned long queue_segment_boundary(const struct request_queue *q) { return q->limits.seg_boundary_mask; } static inline unsigned long queue_virt_boundary(const struct request_queue *q) { return q->limits.virt_boundary_mask; } static inline unsigned int queue_max_sectors(const struct request_queue *q) { return q->limits.max_sectors; } static inline unsigned int queue_max_hw_sectors(const struct request_queue *q) { return q->limits.max_hw_sectors; } static inline unsigned short queue_max_segments(const struct request_queue *q) { return q->limits.max_segments; } static inline unsigned short queue_max_discard_segments(const struct request_queue *q) { return q->limits.max_discard_segments; } static inline unsigned int queue_max_segment_size(const struct request_queue *q) { return q->limits.max_segment_size; } static inline unsigned int queue_max_zone_append_sectors(const struct request_queue *q) { const struct queue_limits *l = &q->limits; return min(l->max_zone_append_sectors, l->max_sectors); } static inline unsigned queue_logical_block_size(const struct request_queue *q) { int retval = 512; if (q && q->limits.logical_block_size) retval = q->limits.logical_block_size; return retval; } static inline unsigned int bdev_logical_block_size(struct block_device *bdev) { return queue_logical_block_size(bdev_get_queue(bdev)); } static inline unsigned int queue_physical_block_size(const struct request_queue *q) { return q->limits.physical_block_size; } static inline unsigned int bdev_physical_block_size(struct block_device *bdev) { return queue_physical_block_size(bdev_get_queue(bdev)); } static inline unsigned int queue_io_min(const struct request_queue *q) { return q->limits.io_min; } static inline int bdev_io_min(struct block_device *bdev) { return queue_io_min(bdev_get_queue(bdev)); } static inline unsigned int queue_io_opt(const struct request_queue *q) { return q->limits.io_opt; } static inline int bdev_io_opt(struct block_device *bdev) { return queue_io_opt(bdev_get_queue(bdev)); } static inline int queue_alignment_offset(const struct request_queue *q) { if (q->limits.misaligned) return -1; return q->limits.alignment_offset; } static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector) { unsigned int granularity = max(lim->physical_block_size, lim->io_min); unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT) << SECTOR_SHIFT; return (granularity + lim->alignment_offset - alignment) % granularity; } static inline int bdev_alignment_offset(struct block_device *bdev) { struct request_queue *q = bdev_get_queue(bdev); if (q->limits.misaligned) return -1; if (bdev_is_partition(bdev)) return queue_limit_alignment_offset(&q->limits, bdev->bd_part->start_sect); return q->limits.alignment_offset; } static inline int queue_discard_alignment(const struct request_queue *q) { if (q->limits.discard_misaligned) return -1; return q->limits.discard_alignment; } static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector) { unsigned int alignment, granularity, offset; if (!lim->max_discard_sectors) return 0; /* Why are these in bytes, not sectors? */ alignment = lim->discard_alignment >> SECTOR_SHIFT; granularity = lim->discard_granularity >> SECTOR_SHIFT; if (!granularity) return 0; /* Offset of the partition start in 'granularity' sectors */ offset = sector_div(sector, granularity); /* And why do we do this modulus *again* in blkdev_issue_discard()? */ offset = (granularity + alignment - offset) % granularity; /* Turn it back into bytes, gaah */ return offset << SECTOR_SHIFT; } /* * Two cases of handling DISCARD merge: * If max_discard_segments > 1, the driver takes every bio * as a range and send them to controller together. The ranges * needn't to be contiguous. * Otherwise, the bios/requests will be handled as same as * others which should be contiguous. */ static inline bool blk_discard_mergable(struct request *req) { if (req_op(req) == REQ_OP_DISCARD && queue_max_discard_segments(req->q) > 1) return true; return false; } static inline int bdev_discard_alignment(struct block_device *bdev) { struct request_queue *q = bdev_get_queue(bdev); if (bdev_is_partition(bdev)) return queue_limit_discard_alignment(&q->limits, bdev->bd_part->start_sect); return q->limits.discard_alignment; } static inline unsigned int bdev_write_same(struct block_device *bdev) { struct request_queue *q = bdev_get_queue(bdev); if (q) return q->limits.max_write_same_sectors; return 0; } static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev) { struct request_queue *q = bdev_get_queue(bdev); if (q) return q->limits.max_write_zeroes_sectors; return 0; } static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev) { struct request_queue *q = bdev_get_queue(bdev); if (q) return blk_queue_zoned_model(q); return BLK_ZONED_NONE; } static inline bool bdev_is_zoned(struct block_device *bdev) { struct request_queue *q = bdev_get_queue(bdev); if (q) return blk_queue_is_zoned(q); return false; } static inline sector_t bdev_zone_sectors(struct block_device *bdev) { struct request_queue *q = bdev_get_queue(bdev); if (q) return blk_queue_zone_sectors(q); return 0; } static inline unsigned int bdev_max_open_zones(struct block_device *bdev) { struct request_queue *q = bdev_get_queue(bdev); if (q) return queue_max_open_zones(q); return 0; } static inline unsigned int bdev_max_active_zones(struct block_device *bdev) { struct request_queue *q = bdev_get_queue(bdev); if (q) return queue_max_active_zones(q); return 0; } static inline int queue_dma_alignment(const struct request_queue *q) { return q ? q->dma_alignment : 511; } static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr, unsigned int len) { unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask; return !(addr & alignment) && !(len & alignment); } /* assumes size > 256 */ static inline unsigned int blksize_bits(unsigned int size) { unsigned int bits = 8; do { bits++; size >>= 1; } while (size > 256); return bits; } static inline unsigned int block_size(struct block_device *bdev) { return 1 << bdev->bd_inode->i_blkbits; } int kblockd_schedule_work(struct work_struct *work); int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay); #define MODULE_ALIAS_BLOCKDEV(major,minor) \ MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor)) #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \ MODULE_ALIAS("block-major-" __stringify(major) "-*") #if defined(CONFIG_BLK_DEV_INTEGRITY) enum blk_integrity_flags { BLK_INTEGRITY_VERIFY = 1 << 0, BLK_INTEGRITY_GENERATE = 1 << 1, BLK_INTEGRITY_DEVICE_CAPABLE = 1 << 2, BLK_INTEGRITY_IP_CHECKSUM = 1 << 3, }; struct blk_integrity_iter { void *prot_buf; void *data_buf; sector_t seed; unsigned int data_size; unsigned short interval; const char *disk_name; }; typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *); typedef void (integrity_prepare_fn) (struct request *); typedef void (integrity_complete_fn) (struct request *, unsigned int); struct blk_integrity_profile { integrity_processing_fn *generate_fn; integrity_processing_fn *verify_fn; integrity_prepare_fn *prepare_fn; integrity_complete_fn *complete_fn; const char *name; }; extern void blk_integrity_register(struct gendisk *, struct blk_integrity *); extern void blk_integrity_unregister(struct gendisk *); extern int blk_integrity_compare(struct gendisk *, struct gendisk *); extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *, struct scatterlist *); extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *); static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) { struct blk_integrity *bi = &disk->queue->integrity; if (!bi->profile) return NULL; return bi; } static inline struct blk_integrity *bdev_get_integrity(struct block_device *bdev) { return blk_get_integrity(bdev->bd_disk); } static inline bool blk_integrity_queue_supports_integrity(struct request_queue *q) { return q->integrity.profile; } static inline bool blk_integrity_rq(struct request *rq) { return rq->cmd_flags & REQ_INTEGRITY; } static inline void blk_queue_max_integrity_segments(struct request_queue *q, unsigned int segs) { q->limits.max_integrity_segments = segs; } static inline unsigned short queue_max_integrity_segments(const struct request_queue *q) { return q->limits.max_integrity_segments; } /** * bio_integrity_intervals - Return number of integrity intervals for a bio * @bi: blk_integrity profile for device * @sectors: Size of the bio in 512-byte sectors * * Description: The block layer calculates everything in 512 byte * sectors but integrity metadata is done in terms of the data integrity * interval size of the storage device. Convert the block layer sectors * to the appropriate number of integrity intervals. */ static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi, unsigned int sectors) { return sectors >> (bi->interval_exp - 9); } static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi, unsigned int sectors) { return bio_integrity_intervals(bi, sectors) * bi->tuple_size; } /* * Return the first bvec that contains integrity data. Only drivers that are * limited to a single integrity segment should use this helper. */ static inline struct bio_vec *rq_integrity_vec(struct request *rq) { if (WARN_ON_ONCE(queue_max_integrity_segments(rq->q) > 1)) return NULL; return rq->bio->bi_integrity->bip_vec; } #else /* CONFIG_BLK_DEV_INTEGRITY */ struct bio; struct block_device; struct gendisk; struct blk_integrity; static inline int blk_integrity_rq(struct request *rq) { return 0; } static inline int blk_rq_count_integrity_sg(struct request_queue *q, struct bio *b) { return 0; } static inline int blk_rq_map_integrity_sg(struct request_queue *q, struct bio *b, struct scatterlist *s) { return 0; } static inline struct blk_integrity *bdev_get_integrity(struct block_device *b) { return NULL; } static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) { return NULL; } static inline bool blk_integrity_queue_supports_integrity(struct request_queue *q) { return false; } static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b) { return 0; } static inline void blk_integrity_register(struct gendisk *d, struct blk_integrity *b) { } static inline void blk_integrity_unregister(struct gendisk *d) { } static inline void blk_queue_max_integrity_segments(struct request_queue *q, unsigned int segs) { } static inline unsigned short queue_max_integrity_segments(const struct request_queue *q) { return 0; } static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi, unsigned int sectors) { return 0; } static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi, unsigned int sectors) { return 0; } static inline struct bio_vec *rq_integrity_vec(struct request *rq) { return NULL; } #endif /* CONFIG_BLK_DEV_INTEGRITY */ #ifdef CONFIG_BLK_INLINE_ENCRYPTION bool blk_ksm_register(struct blk_keyslot_manager *ksm, struct request_queue *q); void blk_ksm_unregister(struct request_queue *q); #else /* CONFIG_BLK_INLINE_ENCRYPTION */ static inline bool blk_ksm_register(struct blk_keyslot_manager *ksm, struct request_queue *q) { return true; } static inline void blk_ksm_unregister(struct request_queue *q) { } #endif /* CONFIG_BLK_INLINE_ENCRYPTION */ struct block_device_operations { blk_qc_t (*submit_bio) (struct bio *bio); int (*open) (struct block_device *, fmode_t); void (*release) (struct gendisk *, fmode_t); int (*rw_page)(struct block_device *, sector_t, struct page *, unsigned int); int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); unsigned int (*check_events) (struct gendisk *disk, unsigned int clearing); void (*unlock_native_capacity) (struct gendisk *); int (*revalidate_disk) (struct gendisk *); int (*getgeo)(struct block_device *, struct hd_geometry *); /* this callback is with swap_lock and sometimes page table lock held */ void (*swap_slot_free_notify) (struct block_device *, unsigned long); int (*report_zones)(struct gendisk *, sector_t sector, unsigned int nr_zones, report_zones_cb cb, void *data); char *(*devnode)(struct gendisk *disk, umode_t *mode); struct module *owner; const struct pr_ops *pr_ops; }; #ifdef CONFIG_COMPAT extern int blkdev_compat_ptr_ioctl(struct block_device *, fmode_t, unsigned int, unsigned long); #else #define blkdev_compat_ptr_ioctl NULL #endif extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int, unsigned long); extern int bdev_read_page(struct block_device *, sector_t, struct page *); extern int bdev_write_page(struct block_device *, sector_t, struct page *, struct writeback_control *); #ifdef CONFIG_BLK_DEV_ZONED bool blk_req_needs_zone_write_lock(struct request *rq); bool blk_req_zone_write_trylock(struct request *rq); void __blk_req_zone_write_lock(struct request *rq); void __blk_req_zone_write_unlock(struct request *rq); static inline void blk_req_zone_write_lock(struct request *rq) { if (blk_req_needs_zone_write_lock(rq)) __blk_req_zone_write_lock(rq); } static inline void blk_req_zone_write_unlock(struct request *rq) { if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED) __blk_req_zone_write_unlock(rq); } static inline bool blk_req_zone_is_write_locked(struct request *rq) { return rq->q->seq_zones_wlock && test_bit(blk_rq_zone_no(rq), rq->q->seq_zones_wlock); } static inline bool blk_req_can_dispatch_to_zone(struct request *rq) { if (!blk_req_needs_zone_write_lock(rq)) return true; return !blk_req_zone_is_write_locked(rq); } #else static inline bool blk_req_needs_zone_write_lock(struct request *rq) { return false; } static inline void blk_req_zone_write_lock(struct request *rq) { } static inline void blk_req_zone_write_unlock(struct request *rq) { } static inline bool blk_req_zone_is_write_locked(struct request *rq) { return false; } static inline bool blk_req_can_dispatch_to_zone(struct request *rq) { return true; } #endif /* CONFIG_BLK_DEV_ZONED */ static inline void blk_wake_io_task(struct task_struct *waiter) { /* * If we're polling, the task itself is doing the completions. For * that case, we don't need to signal a wakeup, it's enough to just * mark us as RUNNING. */ if (waiter == current) __set_current_state(TASK_RUNNING); else wake_up_process(waiter); } unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors, unsigned int op); void disk_end_io_acct(struct gendisk *disk, unsigned int op, unsigned long start_time); unsigned long part_start_io_acct(struct gendisk *disk, struct hd_struct **part, struct bio *bio); void part_end_io_acct(struct hd_struct *part, struct bio *bio, unsigned long start_time); /** * bio_start_io_acct - start I/O accounting for bio based drivers * @bio: bio to start account for * * Returns the start time that should be passed back to bio_end_io_acct(). */ static inline unsigned long bio_start_io_acct(struct bio *bio) { return disk_start_io_acct(bio->bi_disk, bio_sectors(bio), bio_op(bio)); } /** * bio_end_io_acct - end I/O accounting for bio based drivers * @bio: bio to end account for * @start: start time returned by bio_start_io_acct() */ static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time) { return disk_end_io_acct(bio->bi_disk, bio_op(bio), start_time); } int bdev_read_only(struct block_device *bdev); int set_blocksize(struct block_device *bdev, int size); const char *bdevname(struct block_device *bdev, char *buffer); struct block_device *lookup_bdev(const char *); void blkdev_show(struct seq_file *seqf, off_t offset); #define BDEVNAME_SIZE 32 /* Largest string for a blockdev identifier */ #define BDEVT_SIZE 10 /* Largest string for MAJ:MIN for blkdev */ #ifdef CONFIG_BLOCK #define BLKDEV_MAJOR_MAX 512 #else #define BLKDEV_MAJOR_MAX 0 #endif struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, void *holder); struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder); int bd_prepare_to_claim(struct block_device *bdev, struct block_device *whole, void *holder); void bd_abort_claiming(struct block_device *bdev, struct block_device *whole, void *holder); void blkdev_put(struct block_device *bdev, fmode_t mode); struct block_device *I_BDEV(struct inode *inode); struct block_device *bdget_part(struct hd_struct *part); struct block_device *bdgrab(struct block_device *bdev); void bdput(struct block_device *); #ifdef CONFIG_BLOCK void invalidate_bdev(struct block_device *bdev); int truncate_bdev_range(struct block_device *bdev, fmode_t mode, loff_t lstart, loff_t lend); int sync_blockdev(struct block_device *bdev); #else static inline void invalidate_bdev(struct block_device *bdev) { } static inline int truncate_bdev_range(struct block_device *bdev, fmode_t mode, loff_t lstart, loff_t lend) { return 0; } static inline int sync_blockdev(struct block_device *bdev) { return 0; } #endif int fsync_bdev(struct block_device *bdev); struct super_block *freeze_bdev(struct block_device *bdev); int thaw_bdev(struct block_device *bdev, struct super_block *sb); #endif /* _LINUX_BLKDEV_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 /* SPDX-License-Identifier: GPL-2.0 */ /* * Security server interface. * * Author : Stephen Smalley, <sds@tycho.nsa.gov> * */ #ifndef _SELINUX_SECURITY_H_ #define _SELINUX_SECURITY_H_ #include <linux/compiler.h> #include <linux/dcache.h> #include <linux/magic.h> #include <linux/types.h> #include <linux/rcupdate.h> #include <linux/refcount.h> #include <linux/workqueue.h> #include "flask.h" #include "policycap.h" #define SECSID_NULL 0x00000000 /* unspecified SID */ #define SECSID_WILD 0xffffffff /* wildcard SID */ #define SECCLASS_NULL 0x0000 /* no class */ /* Identify specific policy version changes */ #define POLICYDB_VERSION_BASE 15 #define POLICYDB_VERSION_BOOL 16 #define POLICYDB_VERSION_IPV6 17 #define POLICYDB_VERSION_NLCLASS 18 #define POLICYDB_VERSION_VALIDATETRANS 19 #define POLICYDB_VERSION_MLS 19 #define POLICYDB_VERSION_AVTAB 20 #define POLICYDB_VERSION_RANGETRANS 21 #define POLICYDB_VERSION_POLCAP 22 #define POLICYDB_VERSION_PERMISSIVE 23 #define POLICYDB_VERSION_BOUNDARY 24 #define POLICYDB_VERSION_FILENAME_TRANS 25 #define POLICYDB_VERSION_ROLETRANS 26 #define POLICYDB_VERSION_NEW_OBJECT_DEFAULTS 27 #define POLICYDB_VERSION_DEFAULT_TYPE 28 #define POLICYDB_VERSION_CONSTRAINT_NAMES 29 #define POLICYDB_VERSION_XPERMS_IOCTL 30 #define POLICYDB_VERSION_INFINIBAND 31 #define POLICYDB_VERSION_GLBLUB 32 #define POLICYDB_VERSION_COMP_FTRANS 33 /* compressed filename transitions */ /* Range of policy versions we understand*/ #define POLICYDB_VERSION_MIN POLICYDB_VERSION_BASE #define POLICYDB_VERSION_MAX POLICYDB_VERSION_COMP_FTRANS /* Mask for just the mount related flags */ #define SE_MNTMASK 0x0f /* Super block security struct flags for mount options */ /* BE CAREFUL, these need to be the low order bits for selinux_get_mnt_opts */ #define CONTEXT_MNT 0x01 #define FSCONTEXT_MNT 0x02 #define ROOTCONTEXT_MNT 0x04 #define DEFCONTEXT_MNT 0x08 #define SBLABEL_MNT 0x10 /* Non-mount related flags */ #define SE_SBINITIALIZED 0x0100 #define SE_SBPROC 0x0200 #define SE_SBGENFS 0x0400 #define SE_SBGENFS_XATTR 0x0800 #define CONTEXT_STR "context" #define FSCONTEXT_STR "fscontext" #define ROOTCONTEXT_STR "rootcontext" #define DEFCONTEXT_STR "defcontext" #define SECLABEL_STR "seclabel" struct netlbl_lsm_secattr; extern int selinux_enabled_boot; /* * type_datum properties * available at the kernel policy version >= POLICYDB_VERSION_BOUNDARY */ #define TYPEDATUM_PROPERTY_PRIMARY 0x0001 #define TYPEDATUM_PROPERTY_ATTRIBUTE 0x0002 /* limitation of boundary depth */ #define POLICYDB_BOUNDS_MAXDEPTH 4 struct selinux_avc; struct selinux_policy; struct selinux_state { #ifdef CONFIG_SECURITY_SELINUX_DISABLE bool disabled; #endif #ifdef CONFIG_SECURITY_SELINUX_DEVELOP bool enforcing; #endif bool checkreqprot; bool initialized; bool policycap[__POLICYDB_CAPABILITY_MAX]; struct page *status_page; struct mutex status_lock; struct selinux_avc *avc; struct selinux_policy __rcu *policy; struct mutex policy_mutex; } __randomize_layout; void selinux_avc_init(struct selinux_avc **avc); extern struct selinux_state selinux_state; static inline bool selinux_initialized(const struct selinux_state *state) { /* do a synchronized load to avoid race conditions */ return smp_load_acquire(&state->initialized); } static inline void selinux_mark_initialized(struct selinux_state *state) { /* do a synchronized write to avoid race conditions */ smp_store_release(&state->initialized, true); } #ifdef CONFIG_SECURITY_SELINUX_DEVELOP static inline bool enforcing_enabled(struct selinux_state *state) { return READ_ONCE(state->enforcing); } static inline void enforcing_set(struct selinux_state *state, bool value) { WRITE_ONCE(state->enforcing, value); } #else static inline bool enforcing_enabled(struct selinux_state *state) { return true; } static inline void enforcing_set(struct selinux_state *state, bool value) { } #endif static inline bool checkreqprot_get(const struct selinux_state *state) { return READ_ONCE(state->checkreqprot); } static inline void checkreqprot_set(struct selinux_state *state, bool value) { WRITE_ONCE(state->checkreqprot, value); } #ifdef CONFIG_SECURITY_SELINUX_DISABLE static inline bool selinux_disabled(struct selinux_state *state) { return READ_ONCE(state->disabled); } static inline void selinux_mark_disabled(struct selinux_state *state) { WRITE_ONCE(state->disabled, true); } #else static inline bool selinux_disabled(struct selinux_state *state) { return false; } #endif static inline bool selinux_policycap_netpeer(void) { struct selinux_state *state = &selinux_state; return READ_ONCE(state->policycap[POLICYDB_CAPABILITY_NETPEER]); } static inline bool selinux_policycap_openperm(void) { struct selinux_state *state = &selinux_state; return READ_ONCE(state->policycap[POLICYDB_CAPABILITY_OPENPERM]); } static inline bool selinux_policycap_extsockclass(void) { struct selinux_state *state = &selinux_state; return READ_ONCE(state->policycap[POLICYDB_CAPABILITY_EXTSOCKCLASS]); } static inline bool selinux_policycap_alwaysnetwork(void) { struct selinux_state *state = &selinux_state; return READ_ONCE(state->policycap[POLICYDB_CAPABILITY_ALWAYSNETWORK]); } static inline bool selinux_policycap_cgroupseclabel(void) { struct selinux_state *state = &selinux_state; return READ_ONCE(state->policycap[POLICYDB_CAPABILITY_CGROUPSECLABEL]); } static inline bool selinux_policycap_nnp_nosuid_transition(void) { struct selinux_state *state = &selinux_state; return READ_ONCE(state->policycap[POLICYDB_CAPABILITY_NNP_NOSUID_TRANSITION]); } static inline bool selinux_policycap_genfs_seclabel_symlinks(void) { struct selinux_state *state = &selinux_state; return READ_ONCE(state->policycap[POLICYDB_CAPABILITY_GENFS_SECLABEL_SYMLINKS]); } struct selinux_policy_convert_data; struct selinux_load_state { struct selinux_policy *policy; struct selinux_policy_convert_data *convert_data; }; int security_mls_enabled(struct selinux_state *state); int security_load_policy(struct selinux_state *state, void *data, size_t len, struct selinux_load_state *load_state); void selinux_policy_commit(struct selinux_state *state, struct selinux_load_state *load_state); void selinux_policy_cancel(struct selinux_state *state, struct selinux_load_state *load_state); int security_read_policy(struct selinux_state *state, void **data, size_t *len); int security_policycap_supported(struct selinux_state *state, unsigned int req_cap); #define SEL_VEC_MAX 32 struct av_decision { u32 allowed; u32 auditallow; u32 auditdeny; u32 seqno; u32 flags; }; #define XPERMS_ALLOWED 1 #define XPERMS_AUDITALLOW 2 #define XPERMS_DONTAUDIT 4 #define security_xperm_set(perms, x) (perms[x >> 5] |= 1 << (x & 0x1f)) #define security_xperm_test(perms, x) (1 & (perms[x >> 5] >> (x & 0x1f))) struct extended_perms_data { u32 p[8]; }; struct extended_perms_decision { u8 used; u8 driver; struct extended_perms_data *allowed; struct extended_perms_data *auditallow; struct extended_perms_data *dontaudit; }; struct extended_perms { u16 len; /* length associated decision chain */ struct extended_perms_data drivers; /* flag drivers that are used */ }; /* definitions of av_decision.flags */ #define AVD_FLAGS_PERMISSIVE 0x0001 void security_compute_av(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd, struct extended_perms *xperms); void security_compute_xperms_decision(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass, u8 driver, struct extended_perms_decision *xpermd); void security_compute_av_user(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd); int security_transition_sid(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass, const struct qstr *qstr, u32 *out_sid); int security_transition_sid_user(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass, const char *objname, u32 *out_sid); int security_member_sid(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass, u32 *out_sid); int security_change_sid(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass, u32 *out_sid); int security_sid_to_context(struct selinux_state *state, u32 sid, char **scontext, u32 *scontext_len); int security_sid_to_context_force(struct selinux_state *state, u32 sid, char **scontext, u32 *scontext_len); int security_sid_to_context_inval(struct selinux_state *state, u32 sid, char **scontext, u32 *scontext_len); int security_context_to_sid(struct selinux_state *state, const char *scontext, u32 scontext_len, u32 *out_sid, gfp_t gfp); int security_context_str_to_sid(struct selinux_state *state, const char *scontext, u32 *out_sid, gfp_t gfp); int security_context_to_sid_default(struct selinux_state *state, const char *scontext, u32 scontext_len, u32 *out_sid, u32 def_sid, gfp_t gfp_flags); int security_context_to_sid_force(struct selinux_state *state, const char *scontext, u32 scontext_len, u32 *sid); int security_get_user_sids(struct selinux_state *state, u32 callsid, char *username, u32 **sids, u32 *nel); int security_port_sid(struct selinux_state *state, u8 protocol, u16 port, u32 *out_sid); int security_ib_pkey_sid(struct selinux_state *state, u64 subnet_prefix, u16 pkey_num, u32 *out_sid); int security_ib_endport_sid(struct selinux_state *state, const char *dev_name, u8 port_num, u32 *out_sid); int security_netif_sid(struct selinux_state *state, char *name, u32 *if_sid); int security_node_sid(struct selinux_state *state, u16 domain, void *addr, u32 addrlen, u32 *out_sid); int security_validate_transition(struct selinux_state *state, u32 oldsid, u32 newsid, u32 tasksid, u16 tclass); int security_validate_transition_user(struct selinux_state *state, u32 oldsid, u32 newsid, u32 tasksid, u16 tclass); int security_bounded_transition(struct selinux_state *state, u32 oldsid, u32 newsid); int security_sid_mls_copy(struct selinux_state *state, u32 sid, u32 mls_sid, u32 *new_sid); int security_net_peersid_resolve(struct selinux_state *state, u32 nlbl_sid, u32 nlbl_type, u32 xfrm_sid, u32 *peer_sid); int security_get_classes(struct selinux_policy *policy, char ***classes, int *nclasses); int security_get_permissions(struct selinux_policy *policy, char *class, char ***perms, int *nperms); int security_get_reject_unknown(struct selinux_state *state); int security_get_allow_unknown(struct selinux_state *state); #define SECURITY_FS_USE_XATTR 1 /* use xattr */ #define SECURITY_FS_USE_TRANS 2 /* use transition SIDs, e.g. devpts/tmpfs */ #define SECURITY_FS_USE_TASK 3 /* use task SIDs, e.g. pipefs/sockfs */ #define SECURITY_FS_USE_GENFS 4 /* use the genfs support */ #define SECURITY_FS_USE_NONE 5 /* no labeling support */ #define SECURITY_FS_USE_MNTPOINT 6 /* use mountpoint labeling */ #define SECURITY_FS_USE_NATIVE 7 /* use native label support */ #define SECURITY_FS_USE_MAX 7 /* Highest SECURITY_FS_USE_XXX */ int security_fs_use(struct selinux_state *state, struct super_block *sb); int security_genfs_sid(struct selinux_state *state, const char *fstype, char *name, u16 sclass, u32 *sid); int selinux_policy_genfs_sid(struct selinux_policy *policy, const char *fstype, char *name, u16 sclass, u32 *sid); #ifdef CONFIG_NETLABEL int security_netlbl_secattr_to_sid(struct selinux_state *state, struct netlbl_lsm_secattr *secattr, u32 *sid); int security_netlbl_sid_to_secattr(struct selinux_state *state, u32 sid, struct netlbl_lsm_secattr *secattr); #else static inline int security_netlbl_secattr_to_sid(struct selinux_state *state, struct netlbl_lsm_secattr *secattr, u32 *sid) { return -EIDRM; } static inline int security_netlbl_sid_to_secattr(struct selinux_state *state, u32 sid, struct netlbl_lsm_secattr *secattr) { return -ENOENT; } #endif /* CONFIG_NETLABEL */ const char *security_get_initial_sid_context(u32 sid); /* * status notifier using mmap interface */ extern struct page *selinux_kernel_status_page(struct selinux_state *state); #define SELINUX_KERNEL_STATUS_VERSION 1 struct selinux_kernel_status { u32 version; /* version number of thie structure */ u32 sequence; /* sequence number of seqlock logic */ u32 enforcing; /* current setting of enforcing mode */ u32 policyload; /* times of policy reloaded */ u32 deny_unknown; /* current setting of deny_unknown */ /* * The version > 0 supports above members. */ } __packed; extern void selinux_status_update_setenforce(struct selinux_state *state, int enforcing); extern void selinux_status_update_policyload(struct selinux_state *state, int seqno); extern void selinux_complete_init(void); extern int selinux_disable(struct selinux_state *state); extern void exit_sel_fs(void); extern struct path selinux_null; extern struct vfsmount *selinuxfs_mount; extern void selnl_notify_setenforce(int val); extern void selnl_notify_policyload(u32 seqno); extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm); extern void avtab_cache_init(void); extern void ebitmap_cache_init(void); extern void hashtab_cache_init(void); extern int security_sidtab_hash_stats(struct selinux_state *state, char *page); #endif /* _SELINUX_SECURITY_H_ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __NET_GENERIC_NETLINK_H #define __NET_GENERIC_NETLINK_H #include <linux/genetlink.h> #include <net/netlink.h> #include <net/net_namespace.h> #define GENLMSG_DEFAULT_SIZE (NLMSG_DEFAULT_SIZE - GENL_HDRLEN) /** * struct genl_multicast_group - generic netlink multicast group * @name: name of the multicast group, names are per-family */ struct genl_multicast_group { char name[GENL_NAMSIZ]; }; struct genl_ops; struct genl_info; /** * struct genl_family - generic netlink family * @id: protocol family identifier (private) * @hdrsize: length of user specific header in bytes * @name: name of family * @version: protocol version * @maxattr: maximum number of attributes supported * @policy: netlink policy * @netnsok: set to true if the family can handle network * namespaces and should be presented in all of them * @parallel_ops: operations can be called in parallel and aren't * synchronized by the core genetlink code * @pre_doit: called before an operation's doit callback, it may * do additional, common, filtering and return an error * @post_doit: called after an operation's doit callback, it may * undo operations done by pre_doit, for example release locks * @mcgrps: multicast groups used by this family * @n_mcgrps: number of multicast groups * @mcgrp_offset: starting number of multicast group IDs in this family * (private) * @ops: the operations supported by this family * @n_ops: number of operations supported by this family * @small_ops: the small-struct operations supported by this family * @n_small_ops: number of small-struct operations supported by this family */ struct genl_family { int id; /* private */ unsigned int hdrsize; char name[GENL_NAMSIZ]; unsigned int version; unsigned int maxattr; unsigned int mcgrp_offset; /* private */ u8 netnsok:1; u8 parallel_ops:1; u8 n_ops; u8 n_small_ops; u8 n_mcgrps; const struct nla_policy *policy; int (*pre_doit)(const struct genl_ops *ops, struct sk_buff *skb, struct genl_info *info); void (*post_doit)(const struct genl_ops *ops, struct sk_buff *skb, struct genl_info *info); const struct genl_ops * ops; const struct genl_small_ops *small_ops; const struct genl_multicast_group *mcgrps; struct module *module; }; /** * struct genl_info - receiving information * @snd_seq: sending sequence number * @snd_portid: netlink portid of sender * @nlhdr: netlink message header * @genlhdr: generic netlink message header * @userhdr: user specific header * @attrs: netlink attributes * @_net: network namespace * @user_ptr: user pointers * @extack: extended ACK report struct */ struct genl_info { u32 snd_seq; u32 snd_portid; struct nlmsghdr * nlhdr; struct genlmsghdr * genlhdr; void * userhdr; struct nlattr ** attrs; possible_net_t _net; void * user_ptr[2]; struct netlink_ext_ack *extack; }; static inline struct net *genl_info_net(struct genl_info *info) { return read_pnet(&info->_net); } static inline void genl_info_net_set(struct genl_info *info, struct net *net) { write_pnet(&info->_net, net); } #define GENL_SET_ERR_MSG(info, msg) NL_SET_ERR_MSG((info)->extack, msg) enum genl_validate_flags { GENL_DONT_VALIDATE_STRICT = BIT(0), GENL_DONT_VALIDATE_DUMP = BIT(1), GENL_DONT_VALIDATE_DUMP_STRICT = BIT(2), }; /** * struct genl_small_ops - generic netlink operations (small version) * @cmd: command identifier * @internal_flags: flags used by the family * @flags: flags * @validate: validation flags from enum genl_validate_flags * @doit: standard command callback * @dumpit: callback for dumpers * * This is a cut-down version of struct genl_ops for users who don't need * most of the ancillary infra and want to save space. */ struct genl_small_ops { int (*doit)(struct sk_buff *skb, struct genl_info *info); int (*dumpit)(struct sk_buff *skb, struct netlink_callback *cb); u8 cmd; u8 internal_flags; u8 flags; u8 validate; }; /** * struct genl_ops - generic netlink operations * @cmd: command identifier * @internal_flags: flags used by the family * @flags: flags * @maxattr: maximum number of attributes supported * @policy: netlink policy (takes precedence over family policy) * @validate: validation flags from enum genl_validate_flags * @doit: standard command callback * @start: start callback for dumps * @dumpit: callback for dumpers * @done: completion callback for dumps */ struct genl_ops { int (*doit)(struct sk_buff *skb, struct genl_info *info); int (*start)(struct netlink_callback *cb); int (*dumpit)(struct sk_buff *skb, struct netlink_callback *cb); int (*done)(struct netlink_callback *cb); const struct nla_policy *policy; unsigned int maxattr; u8 cmd; u8 internal_flags; u8 flags; u8 validate; }; /** * struct genl_info - info that is available during dumpit op call * @family: generic netlink family - for internal genl code usage * @ops: generic netlink ops - for internal genl code usage * @attrs: netlink attributes */ struct genl_dumpit_info { const struct genl_family *family; struct genl_ops op; struct nlattr **attrs; }; static inline const struct genl_dumpit_info * genl_dumpit_info(struct netlink_callback *cb) { return cb->data; } int genl_register_family(struct genl_family *family); int genl_unregister_family(const struct genl_family *family); void genl_notify(const struct genl_family *family, struct sk_buff *skb, struct genl_info *info, u32 group, gfp_t flags); void *genlmsg_put(struct sk_buff *skb, u32 portid, u32 seq, const struct genl_family *family, int flags, u8 cmd); /** * genlmsg_nlhdr - Obtain netlink header from user specified header * @user_hdr: user header as returned from genlmsg_put() * * Returns pointer to netlink header. */ static inline struct nlmsghdr *genlmsg_nlhdr(void *user_hdr) { return (struct nlmsghdr *)((char *)user_hdr - GENL_HDRLEN - NLMSG_HDRLEN); } /** * genlmsg_parse_deprecated - parse attributes of a genetlink message * @nlh: netlink message header * @family: genetlink message family * @tb: destination array with maxtype+1 elements * @maxtype: maximum attribute type to be expected * @policy: validation policy * @extack: extended ACK report struct */ static inline int genlmsg_parse_deprecated(const struct nlmsghdr *nlh, const struct genl_family *family, struct nlattr *tb[], int maxtype, const struct nla_policy *policy, struct netlink_ext_ack *extack) { return __nlmsg_parse(nlh, family->hdrsize + GENL_HDRLEN, tb, maxtype, policy, NL_VALIDATE_LIBERAL, extack); } /** * genlmsg_parse - parse attributes of a genetlink message * @nlh: netlink message header * @family: genetlink message family * @tb: destination array with maxtype+1 elements * @maxtype: maximum attribute type to be expected * @policy: validation policy * @extack: extended ACK report struct */ static inline int genlmsg_parse(const struct nlmsghdr *nlh, const struct genl_family *family, struct nlattr *tb[], int maxtype, const struct nla_policy *policy, struct netlink_ext_ack *extack) { return __nlmsg_parse(nlh, family->hdrsize + GENL_HDRLEN, tb, maxtype, policy, NL_VALIDATE_STRICT, extack); } /** * genl_dump_check_consistent - check if sequence is consistent and advertise if not * @cb: netlink callback structure that stores the sequence number * @user_hdr: user header as returned from genlmsg_put() * * Cf. nl_dump_check_consistent(), this just provides a wrapper to make it * simpler to use with generic netlink. */ static inline void genl_dump_check_consistent(struct netlink_callback *cb, void *user_hdr) { nl_dump_check_consistent(cb, genlmsg_nlhdr(user_hdr)); } /** * genlmsg_put_reply - Add generic netlink header to a reply message * @skb: socket buffer holding the message * @info: receiver info * @family: generic netlink family * @flags: netlink message flags * @cmd: generic netlink command * * Returns pointer to user specific header */ static inline void *genlmsg_put_reply(struct sk_buff *skb, struct genl_info *info, const struct genl_family *family, int flags, u8 cmd) { return genlmsg_put(skb, info->snd_portid, info->snd_seq, family, flags, cmd); } /** * genlmsg_end - Finalize a generic netlink message * @skb: socket buffer the message is stored in * @hdr: user specific header */ static inline void genlmsg_end(struct sk_buff *skb, void *hdr) { nlmsg_end(skb, hdr - GENL_HDRLEN - NLMSG_HDRLEN); } /** * genlmsg_cancel - Cancel construction of a generic netlink message * @skb: socket buffer the message is stored in * @hdr: generic netlink message header */ static inline void genlmsg_cancel(struct sk_buff *skb, void *hdr) { if (hdr) nlmsg_cancel(skb, hdr - GENL_HDRLEN - NLMSG_HDRLEN); } /** * genlmsg_multicast_netns - multicast a netlink message to a specific netns * @family: the generic netlink family * @net: the net namespace * @skb: netlink message as socket buffer * @portid: own netlink portid to avoid sending to yourself * @group: offset of multicast group in groups array * @flags: allocation flags */ static inline int genlmsg_multicast_netns(const struct genl_family *family, struct net *net, struct sk_buff *skb, u32 portid, unsigned int group, gfp_t flags) { if (WARN_ON_ONCE(group >= family->n_mcgrps)) return -EINVAL; group = family->mcgrp_offset + group; return nlmsg_multicast(net->genl_sock, skb, portid, group, flags); } /** * genlmsg_multicast - multicast a netlink message to the default netns * @family: the generic netlink family * @skb: netlink message as socket buffer * @portid: own netlink portid to avoid sending to yourself * @group: offset of multicast group in groups array * @flags: allocation flags */ static inline int genlmsg_multicast(const struct genl_family *family, struct sk_buff *skb, u32 portid, unsigned int group, gfp_t flags) { return genlmsg_multicast_netns(family, &init_net, skb, portid, group, flags); } /** * genlmsg_multicast_allns - multicast a netlink message to all net namespaces * @family: the generic netlink family * @skb: netlink message as socket buffer * @portid: own netlink portid to avoid sending to yourself * @group: offset of multicast group in groups array * @flags: allocation flags * * This function must hold the RTNL or rcu_read_lock(). */ int genlmsg_multicast_allns(const struct genl_family *family, struct sk_buff *skb, u32 portid, unsigned int group, gfp_t flags); /** * genlmsg_unicast - unicast a netlink message * @skb: netlink message as socket buffer * @portid: netlink portid of the destination socket */ static inline int genlmsg_unicast(struct net *net, struct sk_buff *skb, u32 portid) { return nlmsg_unicast(net->genl_sock, skb, portid); } /** * genlmsg_reply - reply to a request * @skb: netlink message to be sent back * @info: receiver information */ static inline int genlmsg_reply(struct sk_buff *skb, struct genl_info *info) { return genlmsg_unicast(genl_info_net(info), skb, info->snd_portid); } /** * gennlmsg_data - head of message payload * @gnlh: genetlink message header */ static inline void *genlmsg_data(const struct genlmsghdr *gnlh) { return ((unsigned char *) gnlh + GENL_HDRLEN); } /** * genlmsg_len - length of message payload * @gnlh: genetlink message header */ static inline int genlmsg_len(const struct genlmsghdr *gnlh) { struct nlmsghdr *nlh = (struct nlmsghdr *)((unsigned char *)gnlh - NLMSG_HDRLEN); return (nlh->nlmsg_len - GENL_HDRLEN - NLMSG_HDRLEN); } /** * genlmsg_msg_size - length of genetlink message not including padding * @payload: length of message payload */ static inline int genlmsg_msg_size(int payload) { return GENL_HDRLEN + payload; } /** * genlmsg_total_size - length of genetlink message including padding * @payload: length of message payload */ static inline int genlmsg_total_size(int payload) { return NLMSG_ALIGN(genlmsg_msg_size(payload)); } /** * genlmsg_new - Allocate a new generic netlink message * @payload: size of the message payload * @flags: the type of memory to allocate. */ static inline struct sk_buff *genlmsg_new(size_t payload, gfp_t flags) { return nlmsg_new(genlmsg_total_size(payload), flags); } /** * genl_set_err - report error to genetlink broadcast listeners * @family: the generic netlink family * @net: the network namespace to report the error to * @portid: the PORTID of a process that we want to skip (if any) * @group: the broadcast group that will notice the error * (this is the offset of the multicast group in the groups array) * @code: error code, must be negative (as usual in kernelspace) * * This function returns the number of broadcast listeners that have set the * NETLINK_RECV_NO_ENOBUFS socket option. */ static inline int genl_set_err(const struct genl_family *family, struct net *net, u32 portid, u32 group, int code) { if (WARN_ON_ONCE(group >= family->n_mcgrps)) return -EINVAL; group = family->mcgrp_offset + group; return netlink_set_err(net->genl_sock, portid, group, code); } static inline int genl_has_listeners(const struct genl_family *family, struct net *net, unsigned int group) { if (WARN_ON_ONCE(group >= family->n_mcgrps)) return -EINVAL; group = family->mcgrp_offset + group; return netlink_has_listeners(net->genl_sock, group); } #endif /* __NET_GENERIC_NETLINK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 /* SPDX-License-Identifier: GPL-2.0-only */ /* * async.h: Asynchronous function calls for boot performance * * (C) Copyright 2009 Intel Corporation * Author: Arjan van de Ven <arjan@linux.intel.com> */ #ifndef __ASYNC_H__ #define __ASYNC_H__ #include <linux/types.h> #include <linux/list.h> #include <linux/numa.h> #include <linux/device.h> typedef u64 async_cookie_t; typedef void (*async_func_t) (void *data, async_cookie_t cookie); struct async_domain { struct list_head pending; unsigned registered:1; }; /* * domain participates in global async_synchronize_full */ #define ASYNC_DOMAIN(_name) \ struct async_domain _name = { .pending = LIST_HEAD_INIT(_name.pending), \ .registered = 1 } /* * domain is free to go out of scope as soon as all pending work is * complete, this domain does not participate in async_synchronize_full */ #define ASYNC_DOMAIN_EXCLUSIVE(_name) \ struct async_domain _name = { .pending = LIST_HEAD_INIT(_name.pending), \ .registered = 0 } async_cookie_t async_schedule_node(async_func_t func, void *data, int node); async_cookie_t async_schedule_node_domain(async_func_t func, void *data, int node, struct async_domain *domain); /** * async_schedule - schedule a function for asynchronous execution * @func: function to execute asynchronously * @data: data pointer to pass to the function * * Returns an async_cookie_t that may be used for checkpointing later. * Note: This function may be called from atomic or non-atomic contexts. */ static inline async_cookie_t async_schedule(async_func_t func, void *data) { return async_schedule_node(func, data, NUMA_NO_NODE); } /** * async_schedule_domain - schedule a function for asynchronous execution within a certain domain * @func: function to execute asynchronously * @data: data pointer to pass to the function * @domain: the domain * * Returns an async_cookie_t that may be used for checkpointing later. * @domain may be used in the async_synchronize_*_domain() functions to * wait within a certain synchronization domain rather than globally. * Note: This function may be called from atomic or non-atomic contexts. */ static inline async_cookie_t async_schedule_domain(async_func_t func, void *data, struct async_domain *domain) { return async_schedule_node_domain(func, data, NUMA_NO_NODE, domain); } /** * async_schedule_dev - A device specific version of async_schedule * @func: function to execute asynchronously * @dev: device argument to be passed to function * * Returns an async_cookie_t that may be used for checkpointing later. * @dev is used as both the argument for the function and to provide NUMA * context for where to run the function. By doing this we can try to * provide for the best possible outcome by operating on the device on the * CPUs closest to the device. * Note: This function may be called from atomic or non-atomic contexts. */ static inline async_cookie_t async_schedule_dev(async_func_t func, struct device *dev) { return async_schedule_node(func, dev, dev_to_node(dev)); } /** * async_schedule_dev_domain - A device specific version of async_schedule_domain * @func: function to execute asynchronously * @dev: device argument to be passed to function * @domain: the domain * * Returns an async_cookie_t that may be used for checkpointing later. * @dev is used as both the argument for the function and to provide NUMA * context for where to run the function. By doing this we can try to * provide for the best possible outcome by operating on the device on the * CPUs closest to the device. * @domain may be used in the async_synchronize_*_domain() functions to * wait within a certain synchronization domain rather than globally. * Note: This function may be called from atomic or non-atomic contexts. */ static inline async_cookie_t async_schedule_dev_domain(async_func_t func, struct device *dev, struct async_domain *domain) { return async_schedule_node_domain(func, dev, dev_to_node(dev), domain); } void async_unregister_domain(struct async_domain *domain); extern void async_synchronize_full(void); extern void async_synchronize_full_domain(struct async_domain *domain); extern void async_synchronize_cookie(async_cookie_t cookie); extern void async_synchronize_cookie_domain(async_cookie_t cookie, struct async_domain *domain); extern bool current_is_async(void); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* Credentials management - see Documentation/security/credentials.rst * * Copyright (C) 2008 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) */ #ifndef _LINUX_CRED_H #define _LINUX_CRED_H #include <linux/capability.h> #include <linux/init.h> #include <linux/key.h> #include <linux/atomic.h> #include <linux/uidgid.h> #include <linux/sched.h> #include <linux/sched/user.h> struct cred; struct inode; /* * COW Supplementary groups list */ struct group_info { atomic_t usage; int ngroups; kgid_t gid[0]; } __randomize_layout; /** * get_group_info - Get a reference to a group info structure * @group_info: The group info to reference * * This gets a reference to a set of supplementary groups. * * If the caller is accessing a task's credentials, they must hold the RCU read * lock when reading. */ static inline struct group_info *get_group_info(struct group_info *gi) { atomic_inc(&gi->usage); return gi; } /** * put_group_info - Release a reference to a group info structure * @group_info: The group info to release */ #define put_group_info(group_info) \ do { \ if (atomic_dec_and_test(&(group_info)->usage)) \ groups_free(group_info); \ } while (0) extern struct group_info init_groups; #ifdef CONFIG_MULTIUSER extern struct group_info *groups_alloc(int); extern void groups_free(struct group_info *); extern int in_group_p(kgid_t); extern int in_egroup_p(kgid_t); extern int groups_search(const struct group_info *, kgid_t); extern int set_current_groups(struct group_info *); extern void set_groups(struct cred *, struct group_info *); extern bool may_setgroups(void); extern void groups_sort(struct group_info *); #else static inline void groups_free(struct group_info *group_info) { } static inline int in_group_p(kgid_t grp) { return 1; } static inline int in_egroup_p(kgid_t grp) { return 1; } static inline int groups_search(const struct group_info *group_info, kgid_t grp) { return 1; } #endif /* * The security context of a task * * The parts of the context break down into two categories: * * (1) The objective context of a task. These parts are used when some other * task is attempting to affect this one. * * (2) The subjective context. These details are used when the task is acting * upon another object, be that a file, a task, a key or whatever. * * Note that some members of this structure belong to both categories - the * LSM security pointer for instance. * * A task has two security pointers. task->real_cred points to the objective * context that defines that task's actual details. The objective part of this * context is used whenever that task is acted upon. * * task->cred points to the subjective context that defines the details of how * that task is going to act upon another object. This may be overridden * temporarily to point to another security context, but normally points to the * same context as task->real_cred. */ struct cred { atomic_t usage; #ifdef CONFIG_DEBUG_CREDENTIALS atomic_t subscribers; /* number of processes subscribed */ void *put_addr; unsigned magic; #define CRED_MAGIC 0x43736564 #define CRED_MAGIC_DEAD 0x44656144 #endif kuid_t uid; /* real UID of the task */ kgid_t gid; /* real GID of the task */ kuid_t suid; /* saved UID of the task */ kgid_t sgid; /* saved GID of the task */ kuid_t euid; /* effective UID of the task */ kgid_t egid; /* effective GID of the task */ kuid_t fsuid; /* UID for VFS ops */ kgid_t fsgid; /* GID for VFS ops */ unsigned securebits; /* SUID-less security management */ kernel_cap_t cap_inheritable; /* caps our children can inherit */ kernel_cap_t cap_permitted; /* caps we're permitted */ kernel_cap_t cap_effective; /* caps we can actually use */ kernel_cap_t cap_bset; /* capability bounding set */ kernel_cap_t cap_ambient; /* Ambient capability set */ #ifdef CONFIG_KEYS unsigned char jit_keyring; /* default keyring to attach requested * keys to */ struct key *session_keyring; /* keyring inherited over fork */ struct key *process_keyring; /* keyring private to this process */ struct key *thread_keyring; /* keyring private to this thread */ struct key *request_key_auth; /* assumed request_key authority */ #endif #ifdef CONFIG_SECURITY void *security; /* subjective LSM security */ #endif struct user_struct *user; /* real user ID subscription */ struct user_namespace *user_ns; /* user_ns the caps and keyrings are relative to. */ struct group_info *group_info; /* supplementary groups for euid/fsgid */ /* RCU deletion */ union { int non_rcu; /* Can we skip RCU deletion? */ struct rcu_head rcu; /* RCU deletion hook */ }; } __randomize_layout; extern void __put_cred(struct cred *); extern void exit_creds(struct task_struct *); extern int copy_creds(struct task_struct *, unsigned long); extern const struct cred *get_task_cred(struct task_struct *); extern struct cred *cred_alloc_blank(void); extern struct cred *prepare_creds(void); extern struct cred *prepare_exec_creds(void); extern int commit_creds(struct cred *); extern void abort_creds(struct cred *); extern const struct cred *override_creds(const struct cred *); extern void revert_creds(const struct cred *); extern struct cred *prepare_kernel_cred(struct task_struct *); extern int change_create_files_as(struct cred *, struct inode *); extern int set_security_override(struct cred *, u32); extern int set_security_override_from_ctx(struct cred *, const char *); extern int set_create_files_as(struct cred *, struct inode *); extern int cred_fscmp(const struct cred *, const struct cred *); extern void __init cred_init(void); /* * check for validity of credentials */ #ifdef CONFIG_DEBUG_CREDENTIALS extern void __invalid_creds(const struct cred *, const char *, unsigned); extern void __validate_process_creds(struct task_struct *, const char *, unsigned); extern bool creds_are_invalid(const struct cred *cred); static inline void __validate_creds(const struct cred *cred, const char *file, unsigned line) { if (unlikely(creds_are_invalid(cred))) __invalid_creds(cred, file, line); } #define validate_creds(cred) \ do { \ __validate_creds((cred), __FILE__, __LINE__); \ } while(0) #define validate_process_creds() \ do { \ __validate_process_creds(current, __FILE__, __LINE__); \ } while(0) extern void validate_creds_for_do_exit(struct task_struct *); #else static inline void validate_creds(const struct cred *cred) { } static inline void validate_creds_for_do_exit(struct task_struct *tsk) { } static inline void validate_process_creds(void) { } #endif static inline bool cap_ambient_invariant_ok(const struct cred *cred) { return cap_issubset(cred->cap_ambient, cap_intersect(cred->cap_permitted, cred->cap_inheritable)); } /** * get_new_cred - Get a reference on a new set of credentials * @cred: The new credentials to reference * * Get a reference on the specified set of new credentials. The caller must * release the reference. */ static inline struct cred *get_new_cred(struct cred *cred) { atomic_inc(&cred->usage); return cred; } /** * get_cred - Get a reference on a set of credentials * @cred: The credentials to reference * * Get a reference on the specified set of credentials. The caller must * release the reference. If %NULL is passed, it is returned with no action. * * This is used to deal with a committed set of credentials. Although the * pointer is const, this will temporarily discard the const and increment the * usage count. The purpose of this is to attempt to catch at compile time the * accidental alteration of a set of credentials that should be considered * immutable. */ static inline const struct cred *get_cred(const struct cred *cred) { struct cred *nonconst_cred = (struct cred *) cred; if (!cred) return cred; validate_creds(cred); nonconst_cred->non_rcu = 0; return get_new_cred(nonconst_cred); } static inline const struct cred *get_cred_rcu(const struct cred *cred) { struct cred *nonconst_cred = (struct cred *) cred; if (!cred) return NULL; if (!atomic_inc_not_zero(&nonconst_cred->usage)) return NULL; validate_creds(cred); nonconst_cred->non_rcu = 0; return cred; } /** * put_cred - Release a reference to a set of credentials * @cred: The credentials to release * * Release a reference to a set of credentials, deleting them when the last ref * is released. If %NULL is passed, nothing is done. * * This takes a const pointer to a set of credentials because the credentials * on task_struct are attached by const pointers to prevent accidental * alteration of otherwise immutable credential sets. */ static inline void put_cred(const struct cred *_cred) { struct cred *cred = (struct cred *) _cred; if (cred) { validate_creds(cred); if (atomic_dec_and_test(&(cred)->usage)) __put_cred(cred); } } /** * current_cred - Access the current task's subjective credentials * * Access the subjective credentials of the current task. RCU-safe, * since nobody else can modify it. */ #define current_cred() \ rcu_dereference_protected(current->cred, 1) /** * current_real_cred - Access the current task's objective credentials * * Access the objective credentials of the current task. RCU-safe, * since nobody else can modify it. */ #define current_real_cred() \ rcu_dereference_protected(current->real_cred, 1) /** * __task_cred - Access a task's objective credentials * @task: The task to query * * Access the objective credentials of a task. The caller must hold the RCU * readlock. * * The result of this function should not be passed directly to get_cred(); * rather get_task_cred() should be used instead. */ #define __task_cred(task) \ rcu_dereference((task)->real_cred) /** * get_current_cred - Get the current task's subjective credentials * * Get the subjective credentials of the current task, pinning them so that * they can't go away. Accessing the current task's credentials directly is * not permitted. */ #define get_current_cred() \ (get_cred(current_cred())) /** * get_current_user - Get the current task's user_struct * * Get the user record of the current task, pinning it so that it can't go * away. */ #define get_current_user() \ ({ \ struct user_struct *__u; \ const struct cred *__cred; \ __cred = current_cred(); \ __u = get_uid(__cred->user); \ __u; \ }) /** * get_current_groups - Get the current task's supplementary group list * * Get the supplementary group list of the current task, pinning it so that it * can't go away. */ #define get_current_groups() \ ({ \ struct group_info *__groups; \ const struct cred *__cred; \ __cred = current_cred(); \ __groups = get_group_info(__cred->group_info); \ __groups; \ }) #define task_cred_xxx(task, xxx) \ ({ \ __typeof__(((struct cred *)NULL)->xxx) ___val; \ rcu_read_lock(); \ ___val = __task_cred((task))->xxx; \ rcu_read_unlock(); \ ___val; \ }) #define task_uid(task) (task_cred_xxx((task), uid)) #define task_euid(task) (task_cred_xxx((task), euid)) #define current_cred_xxx(xxx) \ ({ \ current_cred()->xxx; \ }) #define current_uid() (current_cred_xxx(uid)) #define current_gid() (current_cred_xxx(gid)) #define current_euid() (current_cred_xxx(euid)) #define current_egid() (current_cred_xxx(egid)) #define current_suid() (current_cred_xxx(suid)) #define current_sgid() (current_cred_xxx(sgid)) #define current_fsuid() (current_cred_xxx(fsuid)) #define current_fsgid() (current_cred_xxx(fsgid)) #define current_cap() (current_cred_xxx(cap_effective)) #define current_user() (current_cred_xxx(user)) extern struct user_namespace init_user_ns; #ifdef CONFIG_USER_NS #define current_user_ns() (current_cred_xxx(user_ns)) #else static inline struct user_namespace *current_user_ns(void) { return &init_user_ns; } #endif #define current_uid_gid(_uid, _gid) \ do { \ const struct cred *__cred; \ __cred = current_cred(); \ *(_uid) = __cred->uid; \ *(_gid) = __cred->gid; \ } while(0) #define current_euid_egid(_euid, _egid) \ do { \ const struct cred *__cred; \ __cred = current_cred(); \ *(_euid) = __cred->euid; \ *(_egid) = __cred->egid; \ } while(0) #define current_fsuid_fsgid(_fsuid, _fsgid) \ do { \ const struct cred *__cred; \ __cred = current_cred(); \ *(_fsuid) = __cred->fsuid; \ *(_fsgid) = __cred->fsgid; \ } while(0) #endif /* _LINUX_CRED_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 /* BlueZ - Bluetooth protocol stack for Linux Copyright (C) 2000-2001 Qualcomm Incorporated Copyright (C) 2009-2010 Gustavo F. Padovan <gustavo@padovan.org> Copyright (C) 2010 Google Inc. Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2 as published by the Free Software Foundation; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS SOFTWARE IS DISCLAIMED. */ #ifndef __L2CAP_H #define __L2CAP_H #include <asm/unaligned.h> #include <linux/atomic.h> /* L2CAP defaults */ #define L2CAP_DEFAULT_MTU 672 #define L2CAP_DEFAULT_MIN_MTU 48 #define L2CAP_DEFAULT_FLUSH_TO 0xFFFF #define L2CAP_EFS_DEFAULT_FLUSH_TO 0xFFFFFFFF #define L2CAP_DEFAULT_TX_WINDOW 63 #define L2CAP_DEFAULT_EXT_WINDOW 0x3FFF #define L2CAP_DEFAULT_MAX_TX 3 #define L2CAP_DEFAULT_RETRANS_TO 2000 /* 2 seconds */ #define L2CAP_DEFAULT_MONITOR_TO 12000 /* 12 seconds */ #define L2CAP_DEFAULT_MAX_PDU_SIZE 1492 /* Sized for AMP packet */ #define L2CAP_DEFAULT_ACK_TO 200 #define L2CAP_DEFAULT_MAX_SDU_SIZE 0xFFFF #define L2CAP_DEFAULT_SDU_ITIME 0xFFFFFFFF #define L2CAP_DEFAULT_ACC_LAT 0xFFFFFFFF #define L2CAP_BREDR_MAX_PAYLOAD 1019 /* 3-DH5 packet */ #define L2CAP_LE_MIN_MTU 23 #define L2CAP_ECRED_CONN_SCID_MAX 5 #define L2CAP_DISC_TIMEOUT msecs_to_jiffies(100) #define L2CAP_DISC_REJ_TIMEOUT msecs_to_jiffies(5000) #define L2CAP_ENC_TIMEOUT msecs_to_jiffies(5000) #define L2CAP_CONN_TIMEOUT msecs_to_jiffies(40000) #define L2CAP_INFO_TIMEOUT msecs_to_jiffies(4000) #define L2CAP_MOVE_TIMEOUT msecs_to_jiffies(4000) #define L2CAP_MOVE_ERTX_TIMEOUT msecs_to_jiffies(60000) #define L2CAP_WAIT_ACK_POLL_PERIOD msecs_to_jiffies(200) #define L2CAP_WAIT_ACK_TIMEOUT msecs_to_jiffies(10000) #define L2CAP_A2MP_DEFAULT_MTU 670 /* L2CAP socket address */ struct sockaddr_l2 { sa_family_t l2_family; __le16 l2_psm; bdaddr_t l2_bdaddr; __le16 l2_cid; __u8 l2_bdaddr_type; }; /* L2CAP socket options */ #define L2CAP_OPTIONS 0x01 struct l2cap_options { __u16 omtu; __u16 imtu; __u16 flush_to; __u8 mode; __u8 fcs; __u8 max_tx; __u16 txwin_size; }; #define L2CAP_CONNINFO 0x02 struct l2cap_conninfo { __u16 hci_handle; __u8 dev_class[3]; }; #define L2CAP_LM 0x03 #define L2CAP_LM_MASTER 0x0001 #define L2CAP_LM_AUTH 0x0002 #define L2CAP_LM_ENCRYPT 0x0004 #define L2CAP_LM_TRUSTED 0x0008 #define L2CAP_LM_RELIABLE 0x0010 #define L2CAP_LM_SECURE 0x0020 #define L2CAP_LM_FIPS 0x0040 /* L2CAP command codes */ #define L2CAP_COMMAND_REJ 0x01 #define L2CAP_CONN_REQ 0x02 #define L2CAP_CONN_RSP 0x03 #define L2CAP_CONF_REQ 0x04 #define L2CAP_CONF_RSP 0x05 #define L2CAP_DISCONN_REQ 0x06 #define L2CAP_DISCONN_RSP 0x07 #define L2CAP_ECHO_REQ 0x08 #define L2CAP_ECHO_RSP 0x09 #define L2CAP_INFO_REQ 0x0a #define L2CAP_INFO_RSP 0x0b #define L2CAP_CREATE_CHAN_REQ 0x0c #define L2CAP_CREATE_CHAN_RSP 0x0d #define L2CAP_MOVE_CHAN_REQ 0x0e #define L2CAP_MOVE_CHAN_RSP 0x0f #define L2CAP_MOVE_CHAN_CFM 0x10 #define L2CAP_MOVE_CHAN_CFM_RSP 0x11 #define L2CAP_CONN_PARAM_UPDATE_REQ 0x12 #define L2CAP_CONN_PARAM_UPDATE_RSP 0x13 #define L2CAP_LE_CONN_REQ 0x14 #define L2CAP_LE_CONN_RSP 0x15 #define L2CAP_LE_CREDITS 0x16 #define L2CAP_ECRED_CONN_REQ 0x17 #define L2CAP_ECRED_CONN_RSP 0x18 #define L2CAP_ECRED_RECONF_REQ 0x19 #define L2CAP_ECRED_RECONF_RSP 0x1a /* L2CAP extended feature mask */ #define L2CAP_FEAT_FLOWCTL 0x00000001 #define L2CAP_FEAT_RETRANS 0x00000002 #define L2CAP_FEAT_BIDIR_QOS 0x00000004 #define L2CAP_FEAT_ERTM 0x00000008 #define L2CAP_FEAT_STREAMING 0x00000010 #define L2CAP_FEAT_FCS 0x00000020 #define L2CAP_FEAT_EXT_FLOW 0x00000040 #define L2CAP_FEAT_FIXED_CHAN 0x00000080 #define L2CAP_FEAT_EXT_WINDOW 0x00000100 #define L2CAP_FEAT_UCD 0x00000200 /* L2CAP checksum option */ #define L2CAP_FCS_NONE 0x00 #define L2CAP_FCS_CRC16 0x01 /* L2CAP fixed channels */ #define L2CAP_FC_SIG_BREDR 0x02 #define L2CAP_FC_CONNLESS 0x04 #define L2CAP_FC_A2MP 0x08 #define L2CAP_FC_ATT 0x10 #define L2CAP_FC_SIG_LE 0x20 #define L2CAP_FC_SMP_LE 0x40 #define L2CAP_FC_SMP_BREDR 0x80 /* L2CAP Control Field bit masks */ #define L2CAP_CTRL_SAR 0xC000 #define L2CAP_CTRL_REQSEQ 0x3F00 #define L2CAP_CTRL_TXSEQ 0x007E #define L2CAP_CTRL_SUPERVISE 0x000C #define L2CAP_CTRL_RETRANS 0x0080 #define L2CAP_CTRL_FINAL 0x0080 #define L2CAP_CTRL_POLL 0x0010 #define L2CAP_CTRL_FRAME_TYPE 0x0001 /* I- or S-Frame */ #define L2CAP_CTRL_TXSEQ_SHIFT 1 #define L2CAP_CTRL_SUPER_SHIFT 2 #define L2CAP_CTRL_POLL_SHIFT 4 #define L2CAP_CTRL_FINAL_SHIFT 7 #define L2CAP_CTRL_REQSEQ_SHIFT 8 #define L2CAP_CTRL_SAR_SHIFT 14 /* L2CAP Extended Control Field bit mask */ #define L2CAP_EXT_CTRL_TXSEQ 0xFFFC0000 #define L2CAP_EXT_CTRL_SAR 0x00030000 #define L2CAP_EXT_CTRL_SUPERVISE 0x00030000 #define L2CAP_EXT_CTRL_REQSEQ 0x0000FFFC #define L2CAP_EXT_CTRL_POLL 0x00040000 #define L2CAP_EXT_CTRL_FINAL 0x00000002 #define L2CAP_EXT_CTRL_FRAME_TYPE 0x00000001 /* I- or S-Frame */ #define L2CAP_EXT_CTRL_FINAL_SHIFT 1 #define L2CAP_EXT_CTRL_REQSEQ_SHIFT 2 #define L2CAP_EXT_CTRL_SAR_SHIFT 16 #define L2CAP_EXT_CTRL_SUPER_SHIFT 16 #define L2CAP_EXT_CTRL_POLL_SHIFT 18 #define L2CAP_EXT_CTRL_TXSEQ_SHIFT 18 /* L2CAP Supervisory Function */ #define L2CAP_SUPER_RR 0x00 #define L2CAP_SUPER_REJ 0x01 #define L2CAP_SUPER_RNR 0x02 #define L2CAP_SUPER_SREJ 0x03 /* L2CAP Segmentation and Reassembly */ #define L2CAP_SAR_UNSEGMENTED 0x00 #define L2CAP_SAR_START 0x01 #define L2CAP_SAR_END 0x02 #define L2CAP_SAR_CONTINUE 0x03 /* L2CAP Command rej. reasons */ #define L2CAP_REJ_NOT_UNDERSTOOD 0x0000 #define L2CAP_REJ_MTU_EXCEEDED 0x0001 #define L2CAP_REJ_INVALID_CID 0x0002 /* L2CAP structures */ struct l2cap_hdr { __le16 len; __le16 cid; } __packed; #define L2CAP_HDR_SIZE 4 #define L2CAP_ENH_HDR_SIZE 6 #define L2CAP_EXT_HDR_SIZE 8 #define L2CAP_FCS_SIZE 2 #define L2CAP_SDULEN_SIZE 2 #define L2CAP_PSMLEN_SIZE 2 #define L2CAP_ENH_CTRL_SIZE 2 #define L2CAP_EXT_CTRL_SIZE 4 struct l2cap_cmd_hdr { __u8 code; __u8 ident; __le16 len; } __packed; #define L2CAP_CMD_HDR_SIZE 4 struct l2cap_cmd_rej_unk { __le16 reason; } __packed; struct l2cap_cmd_rej_mtu { __le16 reason; __le16 max_mtu; } __packed; struct l2cap_cmd_rej_cid { __le16 reason; __le16 scid; __le16 dcid; } __packed; struct l2cap_conn_req { __le16 psm; __le16 scid; } __packed; struct l2cap_conn_rsp { __le16 dcid; __le16 scid; __le16 result; __le16 status; } __packed; /* protocol/service multiplexer (PSM) */ #define L2CAP_PSM_SDP 0x0001 #define L2CAP_PSM_RFCOMM 0x0003 #define L2CAP_PSM_3DSP 0x0021 #define L2CAP_PSM_IPSP 0x0023 /* 6LoWPAN */ #define L2CAP_PSM_DYN_START 0x1001 #define L2CAP_PSM_DYN_END 0xffff #define L2CAP_PSM_AUTO_END 0x10ff #define L2CAP_PSM_LE_DYN_START 0x0080 #define L2CAP_PSM_LE_DYN_END 0x00ff /* channel identifier */ #define L2CAP_CID_SIGNALING 0x0001 #define L2CAP_CID_CONN_LESS 0x0002 #define L2CAP_CID_A2MP 0x0003 #define L2CAP_CID_ATT 0x0004 #define L2CAP_CID_LE_SIGNALING 0x0005 #define L2CAP_CID_SMP 0x0006 #define L2CAP_CID_SMP_BREDR 0x0007 #define L2CAP_CID_DYN_START 0x0040 #define L2CAP_CID_DYN_END 0xffff #define L2CAP_CID_LE_DYN_END 0x007f /* connect/create channel results */ #define L2CAP_CR_SUCCESS 0x0000 #define L2CAP_CR_PEND 0x0001 #define L2CAP_CR_BAD_PSM 0x0002 #define L2CAP_CR_SEC_BLOCK 0x0003 #define L2CAP_CR_NO_MEM 0x0004 #define L2CAP_CR_BAD_AMP 0x0005 #define L2CAP_CR_INVALID_SCID 0x0006 #define L2CAP_CR_SCID_IN_USE 0x0007 /* credit based connect results */ #define L2CAP_CR_LE_SUCCESS 0x0000 #define L2CAP_CR_LE_BAD_PSM 0x0002 #define L2CAP_CR_LE_NO_MEM 0x0004 #define L2CAP_CR_LE_AUTHENTICATION 0x0005 #define L2CAP_CR_LE_AUTHORIZATION 0x0006 #define L2CAP_CR_LE_BAD_KEY_SIZE 0x0007 #define L2CAP_CR_LE_ENCRYPTION 0x0008 #define L2CAP_CR_LE_INVALID_SCID 0x0009 #define L2CAP_CR_LE_SCID_IN_USE 0X000A #define L2CAP_CR_LE_UNACCEPT_PARAMS 0X000B #define L2CAP_CR_LE_INVALID_PARAMS 0X000C /* connect/create channel status */ #define L2CAP_CS_NO_INFO 0x0000 #define L2CAP_CS_AUTHEN_PEND 0x0001 #define L2CAP_CS_AUTHOR_PEND 0x0002 struct l2cap_conf_req { __le16 dcid; __le16 flags; __u8 data[]; } __packed; struct l2cap_conf_rsp { __le16 scid; __le16 flags; __le16 result; __u8 data[]; } __packed; #define L2CAP_CONF_SUCCESS 0x0000 #define L2CAP_CONF_UNACCEPT 0x0001 #define L2CAP_CONF_REJECT 0x0002 #define L2CAP_CONF_UNKNOWN 0x0003 #define L2CAP_CONF_PENDING 0x0004 #define L2CAP_CONF_EFS_REJECT 0x0005 /* configuration req/rsp continuation flag */ #define L2CAP_CONF_FLAG_CONTINUATION 0x0001 struct l2cap_conf_opt { __u8 type; __u8 len; __u8 val[]; } __packed; #define L2CAP_CONF_OPT_SIZE 2 #define L2CAP_CONF_HINT 0x80 #define L2CAP_CONF_MASK 0x7f #define L2CAP_CONF_MTU 0x01 #define L2CAP_CONF_FLUSH_TO 0x02 #define L2CAP_CONF_QOS 0x03 #define L2CAP_CONF_RFC 0x04 #define L2CAP_CONF_FCS 0x05 #define L2CAP_CONF_EFS 0x06 #define L2CAP_CONF_EWS 0x07 #define L2CAP_CONF_MAX_SIZE 22 struct l2cap_conf_rfc { __u8 mode; __u8 txwin_size; __u8 max_transmit; __le16 retrans_timeout; __le16 monitor_timeout; __le16 max_pdu_size; } __packed; #define L2CAP_MODE_BASIC 0x00 #define L2CAP_MODE_RETRANS 0x01 #define L2CAP_MODE_FLOWCTL 0x02 #define L2CAP_MODE_ERTM 0x03 #define L2CAP_MODE_STREAMING 0x04 /* Unlike the above this one doesn't actually map to anything that would * ever be sent over the air. Therefore, use a value that's unlikely to * ever be used in the BR/EDR configuration phase. */ #define L2CAP_MODE_LE_FLOWCTL 0x80 #define L2CAP_MODE_EXT_FLOWCTL 0x81 struct l2cap_conf_efs { __u8 id; __u8 stype; __le16 msdu; __le32 sdu_itime; __le32 acc_lat; __le32 flush_to; } __packed; #define L2CAP_SERV_NOTRAFIC 0x00 #define L2CAP_SERV_BESTEFFORT 0x01 #define L2CAP_SERV_GUARANTEED 0x02 #define L2CAP_BESTEFFORT_ID 0x01 struct l2cap_disconn_req { __le16 dcid; __le16 scid; } __packed; struct l2cap_disconn_rsp { __le16 dcid; __le16 scid; } __packed; struct l2cap_info_req { __le16 type; } __packed; struct l2cap_info_rsp { __le16 type; __le16 result; __u8 data[]; } __packed; struct l2cap_create_chan_req { __le16 psm; __le16 scid; __u8 amp_id; } __packed; struct l2cap_create_chan_rsp { __le16 dcid; __le16 scid; __le16 result; __le16 status; } __packed; struct l2cap_move_chan_req { __le16 icid; __u8 dest_amp_id; } __packed; struct l2cap_move_chan_rsp { __le16 icid; __le16 result; } __packed; #define L2CAP_MR_SUCCESS 0x0000 #define L2CAP_MR_PEND 0x0001 #define L2CAP_MR_BAD_ID 0x0002 #define L2CAP_MR_SAME_ID 0x0003 #define L2CAP_MR_NOT_SUPP 0x0004 #define L2CAP_MR_COLLISION 0x0005 #define L2CAP_MR_NOT_ALLOWED 0x0006 struct l2cap_move_chan_cfm { __le16 icid; __le16 result; } __packed; #define L2CAP_MC_CONFIRMED 0x0000 #define L2CAP_MC_UNCONFIRMED 0x0001 struct l2cap_move_chan_cfm_rsp { __le16 icid; } __packed; /* info type */ #define L2CAP_IT_CL_MTU 0x0001 #define L2CAP_IT_FEAT_MASK 0x0002 #define L2CAP_IT_FIXED_CHAN 0x0003 /* info result */ #define L2CAP_IR_SUCCESS 0x0000 #define L2CAP_IR_NOTSUPP 0x0001 struct l2cap_conn_param_update_req { __le16 min; __le16 max; __le16 latency; __le16 to_multiplier; } __packed; struct l2cap_conn_param_update_rsp { __le16 result; } __packed; /* Connection Parameters result */ #define L2CAP_CONN_PARAM_ACCEPTED 0x0000 #define L2CAP_CONN_PARAM_REJECTED 0x0001 struct l2cap_le_conn_req { __le16 psm; __le16 scid; __le16 mtu; __le16 mps; __le16 credits; } __packed; struct l2cap_le_conn_rsp { __le16 dcid; __le16 mtu; __le16 mps; __le16 credits; __le16 result; } __packed; struct l2cap_le_credits { __le16 cid; __le16 credits; } __packed; #define L2CAP_ECRED_MIN_MTU 64 #define L2CAP_ECRED_MIN_MPS 64 struct l2cap_ecred_conn_req { __le16 psm; __le16 mtu; __le16 mps; __le16 credits; __le16 scid[]; } __packed; struct l2cap_ecred_conn_rsp { __le16 mtu; __le16 mps; __le16 credits; __le16 result; __le16 dcid[]; }; struct l2cap_ecred_reconf_req { __le16 mtu; __le16 mps; __le16 scid[]; } __packed; #define L2CAP_RECONF_SUCCESS 0x0000 #define L2CAP_RECONF_INVALID_MTU 0x0001 #define L2CAP_RECONF_INVALID_MPS 0x0002 struct l2cap_ecred_reconf_rsp { __le16 result; } __packed; /* ----- L2CAP channels and connections ----- */ struct l2cap_seq_list { __u16 head; __u16 tail; __u16 mask; __u16 *list; }; #define L2CAP_SEQ_LIST_CLEAR 0xFFFF #define L2CAP_SEQ_LIST_TAIL 0x8000 struct l2cap_chan { struct l2cap_conn *conn; struct hci_conn *hs_hcon; struct hci_chan *hs_hchan; struct kref kref; atomic_t nesting; __u8 state; bdaddr_t dst; __u8 dst_type; bdaddr_t src; __u8 src_type; __le16 psm; __le16 sport; __u16 dcid; __u16 scid; __u16 imtu; __u16 omtu; __u16 flush_to; __u8 mode; __u8 chan_type; __u8 chan_policy; __u8 sec_level; __u8 ident; __u8 conf_req[64]; __u8 conf_len; __u8 num_conf_req; __u8 num_conf_rsp; __u8 fcs; __u16 tx_win; __u16 tx_win_max; __u16 ack_win; __u8 max_tx; __u16 retrans_timeout; __u16 monitor_timeout; __u16 mps; __u16 tx_credits; __u16 rx_credits; __u8 tx_state; __u8 rx_state; unsigned long conf_state; unsigned long conn_state; unsigned long flags; __u8 remote_amp_id; __u8 local_amp_id; __u8 move_id; __u8 move_state; __u8 move_role; __u16 next_tx_seq; __u16 expected_ack_seq; __u16 expected_tx_seq; __u16 buffer_seq; __u16 srej_save_reqseq; __u16 last_acked_seq; __u16 frames_sent; __u16 unacked_frames; __u8 retry_count; __u16 sdu_len; struct sk_buff *sdu; struct sk_buff *sdu_last_frag; __u16 remote_tx_win; __u8 remote_max_tx; __u16 remote_mps; __u8 local_id; __u8 local_stype; __u16 local_msdu; __u32 local_sdu_itime; __u32 local_acc_lat; __u32 local_flush_to; __u8 remote_id; __u8 remote_stype; __u16 remote_msdu; __u32 remote_sdu_itime; __u32 remote_acc_lat; __u32 remote_flush_to; struct delayed_work chan_timer; struct delayed_work retrans_timer; struct delayed_work monitor_timer; struct delayed_work ack_timer; struct sk_buff *tx_send_head; struct sk_buff_head tx_q; struct sk_buff_head srej_q; struct l2cap_seq_list srej_list; struct l2cap_seq_list retrans_list; struct list_head list; struct list_head global_l; void *data; const struct l2cap_ops *ops; struct mutex lock; }; struct l2cap_ops { char *name; struct l2cap_chan *(*new_connection) (struct l2cap_chan *chan); int (*recv) (struct l2cap_chan * chan, struct sk_buff *skb); void (*teardown) (struct l2cap_chan *chan, int err); void (*close) (struct l2cap_chan *chan); void (*state_change) (struct l2cap_chan *chan, int state, int err); void (*ready) (struct l2cap_chan *chan); void (*defer) (struct l2cap_chan *chan); void (*resume) (struct l2cap_chan *chan); void (*suspend) (struct l2cap_chan *chan); void (*set_shutdown) (struct l2cap_chan *chan); long (*get_sndtimeo) (struct l2cap_chan *chan); struct pid *(*get_peer_pid) (struct l2cap_chan *chan); struct sk_buff *(*alloc_skb) (struct l2cap_chan *chan, unsigned long hdr_len, unsigned long len, int nb); int (*filter) (struct l2cap_chan * chan, struct sk_buff *skb); }; struct l2cap_conn { struct hci_conn *hcon; struct hci_chan *hchan; unsigned int mtu; __u32 feat_mask; __u8 remote_fixed_chan; __u8 local_fixed_chan; __u8 info_state; __u8 info_ident; struct delayed_work info_timer; struct sk_buff *rx_skb; __u32 rx_len; __u8 tx_ident; struct mutex ident_lock; struct sk_buff_head pending_rx; struct work_struct pending_rx_work; struct work_struct id_addr_update_work; __u8 disc_reason; struct l2cap_chan *smp; struct list_head chan_l; struct mutex chan_lock; struct kref ref; struct list_head users; }; struct l2cap_user { struct list_head list; int (*probe) (struct l2cap_conn *conn, struct l2cap_user *user); void (*remove) (struct l2cap_conn *conn, struct l2cap_user *user); }; #define L2CAP_INFO_CL_MTU_REQ_SENT 0x01 #define L2CAP_INFO_FEAT_MASK_REQ_SENT 0x04 #define L2CAP_INFO_FEAT_MASK_REQ_DONE 0x08 #define L2CAP_CHAN_RAW 1 #define L2CAP_CHAN_CONN_LESS 2 #define L2CAP_CHAN_CONN_ORIENTED 3 #define L2CAP_CHAN_FIXED 4 /* ----- L2CAP socket info ----- */ #define l2cap_pi(sk) ((struct l2cap_pinfo *) sk) struct l2cap_pinfo { struct bt_sock bt; struct l2cap_chan *chan; struct sk_buff *rx_busy_skb; }; enum { CONF_REQ_SENT, CONF_INPUT_DONE, CONF_OUTPUT_DONE, CONF_MTU_DONE, CONF_MODE_DONE, CONF_CONNECT_PEND, CONF_RECV_NO_FCS, CONF_STATE2_DEVICE, CONF_EWS_RECV, CONF_LOC_CONF_PEND, CONF_REM_CONF_PEND, CONF_NOT_COMPLETE, }; #define L2CAP_CONF_MAX_CONF_REQ 2 #define L2CAP_CONF_MAX_CONF_RSP 2 enum { CONN_SREJ_SENT, CONN_WAIT_F, CONN_SREJ_ACT, CONN_SEND_PBIT, CONN_REMOTE_BUSY, CONN_LOCAL_BUSY, CONN_REJ_ACT, CONN_SEND_FBIT, CONN_RNR_SENT, }; /* Definitions for flags in l2cap_chan */ enum { FLAG_ROLE_SWITCH, FLAG_FORCE_ACTIVE, FLAG_FORCE_RELIABLE, FLAG_FLUSHABLE, FLAG_EXT_CTRL, FLAG_EFS_ENABLE, FLAG_DEFER_SETUP, FLAG_LE_CONN_REQ_SENT, FLAG_ECRED_CONN_REQ_SENT, FLAG_PENDING_SECURITY, FLAG_HOLD_HCI_CONN, }; /* Lock nesting levels for L2CAP channels. We need these because lockdep * otherwise considers all channels equal and will e.g. complain about a * connection oriented channel triggering SMP procedures or a listening * channel creating and locking a child channel. */ enum { L2CAP_NESTING_SMP, L2CAP_NESTING_NORMAL, L2CAP_NESTING_PARENT, }; enum { L2CAP_TX_STATE_XMIT, L2CAP_TX_STATE_WAIT_F, }; enum { L2CAP_RX_STATE_RECV, L2CAP_RX_STATE_SREJ_SENT, L2CAP_RX_STATE_MOVE, L2CAP_RX_STATE_WAIT_P, L2CAP_RX_STATE_WAIT_F, }; enum { L2CAP_TXSEQ_EXPECTED, L2CAP_TXSEQ_EXPECTED_SREJ, L2CAP_TXSEQ_UNEXPECTED, L2CAP_TXSEQ_UNEXPECTED_SREJ, L2CAP_TXSEQ_DUPLICATE, L2CAP_TXSEQ_DUPLICATE_SREJ, L2CAP_TXSEQ_INVALID, L2CAP_TXSEQ_INVALID_IGNORE, }; enum { L2CAP_EV_DATA_REQUEST, L2CAP_EV_LOCAL_BUSY_DETECTED, L2CAP_EV_LOCAL_BUSY_CLEAR, L2CAP_EV_RECV_REQSEQ_AND_FBIT, L2CAP_EV_RECV_FBIT, L2CAP_EV_RETRANS_TO, L2CAP_EV_MONITOR_TO, L2CAP_EV_EXPLICIT_POLL, L2CAP_EV_RECV_IFRAME, L2CAP_EV_RECV_RR, L2CAP_EV_RECV_REJ, L2CAP_EV_RECV_RNR, L2CAP_EV_RECV_SREJ, L2CAP_EV_RECV_FRAME, }; enum { L2CAP_MOVE_ROLE_NONE, L2CAP_MOVE_ROLE_INITIATOR, L2CAP_MOVE_ROLE_RESPONDER, }; enum { L2CAP_MOVE_STABLE, L2CAP_MOVE_WAIT_REQ, L2CAP_MOVE_WAIT_RSP, L2CAP_MOVE_WAIT_RSP_SUCCESS, L2CAP_MOVE_WAIT_CONFIRM, L2CAP_MOVE_WAIT_CONFIRM_RSP, L2CAP_MOVE_WAIT_LOGICAL_COMP, L2CAP_MOVE_WAIT_LOGICAL_CFM, L2CAP_MOVE_WAIT_LOCAL_BUSY, L2CAP_MOVE_WAIT_PREPARE, }; void l2cap_chan_hold(struct l2cap_chan *c); void l2cap_chan_put(struct l2cap_chan *c); static inline void l2cap_chan_lock(struct l2cap_chan *chan) { mutex_lock_nested(&chan->lock, atomic_read(&chan->nesting)); } static inline void l2cap_chan_unlock(struct l2cap_chan *chan) { mutex_unlock(&chan->lock); } static inline void l2cap_set_timer(struct l2cap_chan *chan, struct delayed_work *work, long timeout) { BT_DBG("chan %p state %s timeout %ld", chan, state_to_string(chan->state), timeout); /* If delayed work cancelled do not hold(chan) since it is already done with previous set_timer */ if (!cancel_delayed_work(work)) l2cap_chan_hold(chan); schedule_delayed_work(work, timeout); } static inline bool l2cap_clear_timer(struct l2cap_chan *chan, struct delayed_work *work) { bool ret; /* put(chan) if delayed work cancelled otherwise it is done in delayed work function */ ret = cancel_delayed_work(work); if (ret) l2cap_chan_put(chan); return ret; } #define __set_chan_timer(c, t) l2cap_set_timer(c, &c->chan_timer, (t)) #define __clear_chan_timer(c) l2cap_clear_timer(c, &c->chan_timer) #define __clear_retrans_timer(c) l2cap_clear_timer(c, &c->retrans_timer) #define __clear_monitor_timer(c) l2cap_clear_timer(c, &c->monitor_timer) #define __set_ack_timer(c) l2cap_set_timer(c, &chan->ack_timer, \ msecs_to_jiffies(L2CAP_DEFAULT_ACK_TO)); #define __clear_ack_timer(c) l2cap_clear_timer(c, &c->ack_timer) static inline int __seq_offset(struct l2cap_chan *chan, __u16 seq1, __u16 seq2) { if (seq1 >= seq2) return seq1 - seq2; else return chan->tx_win_max + 1 - seq2 + seq1; } static inline __u16 __next_seq(struct l2cap_chan *chan, __u16 seq) { return (seq + 1) % (chan->tx_win_max + 1); } static inline struct l2cap_chan *l2cap_chan_no_new_connection(struct l2cap_chan *chan) { return NULL; } static inline int l2cap_chan_no_recv(struct l2cap_chan *chan, struct sk_buff *skb) { return -ENOSYS; } static inline struct sk_buff *l2cap_chan_no_alloc_skb(struct l2cap_chan *chan, unsigned long hdr_len, unsigned long len, int nb) { return ERR_PTR(-ENOSYS); } static inline void l2cap_chan_no_teardown(struct l2cap_chan *chan, int err) { } static inline void l2cap_chan_no_close(struct l2cap_chan *chan) { } static inline void l2cap_chan_no_ready(struct l2cap_chan *chan) { } static inline void l2cap_chan_no_state_change(struct l2cap_chan *chan, int state, int err) { } static inline void l2cap_chan_no_defer(struct l2cap_chan *chan) { } static inline void l2cap_chan_no_suspend(struct l2cap_chan *chan) { } static inline void l2cap_chan_no_resume(struct l2cap_chan *chan) { } static inline void l2cap_chan_no_set_shutdown(struct l2cap_chan *chan) { } static inline long l2cap_chan_no_get_sndtimeo(struct l2cap_chan *chan) { return 0; } extern bool disable_ertm; extern bool enable_ecred; int l2cap_init_sockets(void); void l2cap_cleanup_sockets(void); bool l2cap_is_socket(struct socket *sock); void __l2cap_le_connect_rsp_defer(struct l2cap_chan *chan); void __l2cap_ecred_conn_rsp_defer(struct l2cap_chan *chan); void __l2cap_connect_rsp_defer(struct l2cap_chan *chan); int l2cap_add_psm(struct l2cap_chan *chan, bdaddr_t *src, __le16 psm); int l2cap_add_scid(struct l2cap_chan *chan, __u16 scid); struct l2cap_chan *l2cap_chan_create(void); void l2cap_chan_close(struct l2cap_chan *chan, int reason); int l2cap_chan_connect(struct l2cap_chan *chan, __le16 psm, u16 cid, bdaddr_t *dst, u8 dst_type); int l2cap_chan_reconfigure(struct l2cap_chan *chan, __u16 mtu); int l2cap_chan_send(struct l2cap_chan *chan, struct msghdr *msg, size_t len); void l2cap_chan_busy(struct l2cap_chan *chan, int busy); int l2cap_chan_check_security(struct l2cap_chan *chan, bool initiator); void l2cap_chan_set_defaults(struct l2cap_chan *chan); int l2cap_ertm_init(struct l2cap_chan *chan); void l2cap_chan_add(struct l2cap_conn *conn, struct l2cap_chan *chan); void __l2cap_chan_add(struct l2cap_conn *conn, struct l2cap_chan *chan); typedef void (*l2cap_chan_func_t)(struct l2cap_chan *chan, void *data); void l2cap_chan_list(struct l2cap_conn *conn, l2cap_chan_func_t func, void *data); void l2cap_chan_del(struct l2cap_chan *chan, int err); void l2cap_send_conn_req(struct l2cap_chan *chan); void l2cap_move_start(struct l2cap_chan *chan); void l2cap_logical_cfm(struct l2cap_chan *chan, struct hci_chan *hchan, u8 status); void __l2cap_physical_cfm(struct l2cap_chan *chan, int result); struct l2cap_conn *l2cap_conn_get(struct l2cap_conn *conn); void l2cap_conn_put(struct l2cap_conn *conn); int l2cap_register_user(struct l2cap_conn *conn, struct l2cap_user *user); void l2cap_unregister_user(struct l2cap_conn *conn, struct l2cap_user *user); #endif /* __L2CAP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 /* SPDX-License-Identifier: GPL-2.0 */ /* * Internals of the DMA direct mapping implementation. Only for use by the * DMA mapping code and IOMMU drivers. */ #ifndef _LINUX_DMA_DIRECT_H #define _LINUX_DMA_DIRECT_H 1 #include <linux/dma-mapping.h> #include <linux/dma-map-ops.h> #include <linux/memblock.h> /* for min_low_pfn */ #include <linux/mem_encrypt.h> #include <linux/swiotlb.h> extern unsigned int zone_dma_bits; /* * Record the mapping of CPU physical to DMA addresses for a given region. */ struct bus_dma_region { phys_addr_t cpu_start; dma_addr_t dma_start; u64 size; u64 offset; }; static inline dma_addr_t translate_phys_to_dma(struct device *dev, phys_addr_t paddr) { const struct bus_dma_region *m; for (m = dev->dma_range_map; m->size; m++) if (paddr >= m->cpu_start && paddr - m->cpu_start < m->size) return (dma_addr_t)paddr - m->offset; /* make sure dma_capable fails when no translation is available */ return DMA_MAPPING_ERROR; } static inline phys_addr_t translate_dma_to_phys(struct device *dev, dma_addr_t dma_addr) { const struct bus_dma_region *m; for (m = dev->dma_range_map; m->size; m++) if (dma_addr >= m->dma_start && dma_addr - m->dma_start < m->size) return (phys_addr_t)dma_addr + m->offset; return (phys_addr_t)-1; } #ifdef CONFIG_ARCH_HAS_PHYS_TO_DMA #include <asm/dma-direct.h> #ifndef phys_to_dma_unencrypted #define phys_to_dma_unencrypted phys_to_dma #endif #else static inline dma_addr_t phys_to_dma_unencrypted(struct device *dev, phys_addr_t paddr) { if (dev->dma_range_map) return translate_phys_to_dma(dev, paddr); return paddr; } /* * If memory encryption is supported, phys_to_dma will set the memory encryption * bit in the DMA address, and dma_to_phys will clear it. * phys_to_dma_unencrypted is for use on special unencrypted memory like swiotlb * buffers. */ static inline dma_addr_t phys_to_dma(struct device *dev, phys_addr_t paddr) { return __sme_set(phys_to_dma_unencrypted(dev, paddr)); } static inline phys_addr_t dma_to_phys(struct device *dev, dma_addr_t dma_addr) { phys_addr_t paddr; if (dev->dma_range_map) paddr = translate_dma_to_phys(dev, dma_addr); else paddr = dma_addr; return __sme_clr(paddr); } #endif /* !CONFIG_ARCH_HAS_PHYS_TO_DMA */ #ifdef CONFIG_ARCH_HAS_FORCE_DMA_UNENCRYPTED bool force_dma_unencrypted(struct device *dev); #else static inline bool force_dma_unencrypted(struct device *dev) { return false; } #endif /* CONFIG_ARCH_HAS_FORCE_DMA_UNENCRYPTED */ static inline bool dma_capable(struct device *dev, dma_addr_t addr, size_t size, bool is_ram) { dma_addr_t end = addr + size - 1; if (addr == DMA_MAPPING_ERROR) return false; if (is_ram && !IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT) && min(addr, end) < phys_to_dma(dev, PFN_PHYS(min_low_pfn))) return false; return end <= min_not_zero(*dev->dma_mask, dev->bus_dma_limit); } u64 dma_direct_get_required_mask(struct device *dev); void *dma_direct_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs); void dma_direct_free(struct device *dev, size_t size, void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs); struct page *dma_direct_alloc_pages(struct device *dev, size_t size, dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp); void dma_direct_free_pages(struct device *dev, size_t size, struct page *page, dma_addr_t dma_addr, enum dma_data_direction dir); int dma_direct_supported(struct device *dev, u64 mask); dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr, size_t size, enum dma_data_direction dir, unsigned long attrs); #endif /* _LINUX_DMA_DIRECT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 /* SPDX-License-Identifier: GPL-2.0 */ /* * Because linux/module.h has tracepoints in the header, and ftrace.h * used to include this file, define_trace.h includes linux/module.h * But we do not want the module.h to override the TRACE_SYSTEM macro * variable that define_trace.h is processing, so we only set it * when module events are being processed, which would happen when * CREATE_TRACE_POINTS is defined. */ #ifdef CREATE_TRACE_POINTS #undef TRACE_SYSTEM #define TRACE_SYSTEM module #endif #if !defined(_TRACE_MODULE_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_MODULE_H #include <linux/tracepoint.h> #ifdef CONFIG_MODULES struct module; #define show_module_flags(flags) __print_flags(flags, "", \ { (1UL << TAINT_PROPRIETARY_MODULE), "P" }, \ { (1UL << TAINT_OOT_MODULE), "O" }, \ { (1UL << TAINT_FORCED_MODULE), "F" }, \ { (1UL << TAINT_CRAP), "C" }, \ { (1UL << TAINT_UNSIGNED_MODULE), "E" }) TRACE_EVENT(module_load, TP_PROTO(struct module *mod), TP_ARGS(mod), TP_STRUCT__entry( __field( unsigned int, taints ) __string( name, mod->name ) ), TP_fast_assign( __entry->taints = mod->taints; __assign_str(name, mod->name); ), TP_printk("%s %s", __get_str(name), show_module_flags(__entry->taints)) ); TRACE_EVENT(module_free, TP_PROTO(struct module *mod), TP_ARGS(mod), TP_STRUCT__entry( __string( name, mod->name ) ), TP_fast_assign( __assign_str(name, mod->name); ), TP_printk("%s", __get_str(name)) ); #ifdef CONFIG_MODULE_UNLOAD /* trace_module_get/put are only used if CONFIG_MODULE_UNLOAD is defined */ DECLARE_EVENT_CLASS(module_refcnt, TP_PROTO(struct module *mod, unsigned long ip), TP_ARGS(mod, ip), TP_STRUCT__entry( __field( unsigned long, ip ) __field( int, refcnt ) __string( name, mod->name ) ), TP_fast_assign( __entry->ip = ip; __entry->refcnt = atomic_read(&mod->refcnt); __assign_str(name, mod->name); ), TP_printk("%s call_site=%ps refcnt=%d", __get_str(name), (void *)__entry->ip, __entry->refcnt) ); DEFINE_EVENT(module_refcnt, module_get, TP_PROTO(struct module *mod, unsigned long ip), TP_ARGS(mod, ip) ); DEFINE_EVENT(module_refcnt, module_put, TP_PROTO(struct module *mod, unsigned long ip), TP_ARGS(mod, ip) ); #endif /* CONFIG_MODULE_UNLOAD */ TRACE_EVENT(module_request, TP_PROTO(char *name, bool wait, unsigned long ip), TP_ARGS(name, wait, ip), TP_STRUCT__entry( __field( unsigned long, ip ) __field( bool, wait ) __string( name, name ) ), TP_fast_assign( __entry->ip = ip; __entry->wait = wait; __assign_str(name, name); ), TP_printk("%s wait=%d call_site=%ps", __get_str(name), (int)__entry->wait, (void *)__entry->ip) ); #endif /* CONFIG_MODULES */ #endif /* _TRACE_MODULE_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 // SPDX-License-Identifier: GPL-2.0 /* * hrtimers - High-resolution kernel timers * * Copyright(C) 2005, Thomas Gleixner <tglx@linutronix.de> * Copyright(C) 2005, Red Hat, Inc., Ingo Molnar * * data type definitions, declarations, prototypes * * Started by: Thomas Gleixner and Ingo Molnar */ #ifndef _LINUX_HRTIMER_H #define _LINUX_HRTIMER_H #include <linux/hrtimer_defs.h> #include <linux/rbtree.h> #include <linux/init.h> #include <linux/list.h> #include <linux/percpu.h> #include <linux/seqlock.h> #include <linux/timer.h> #include <linux/timerqueue.h> struct hrtimer_clock_base; struct hrtimer_cpu_base; /* * Mode arguments of xxx_hrtimer functions: * * HRTIMER_MODE_ABS - Time value is absolute * HRTIMER_MODE_REL - Time value is relative to now * HRTIMER_MODE_PINNED - Timer is bound to CPU (is only considered * when starting the timer) * HRTIMER_MODE_SOFT - Timer callback function will be executed in * soft irq context * HRTIMER_MODE_HARD - Timer callback function will be executed in * hard irq context even on PREEMPT_RT. */ enum hrtimer_mode { HRTIMER_MODE_ABS = 0x00, HRTIMER_MODE_REL = 0x01, HRTIMER_MODE_PINNED = 0x02, HRTIMER_MODE_SOFT = 0x04, HRTIMER_MODE_HARD = 0x08, HRTIMER_MODE_ABS_PINNED = HRTIMER_MODE_ABS | HRTIMER_MODE_PINNED, HRTIMER_MODE_REL_PINNED = HRTIMER_MODE_REL | HRTIMER_MODE_PINNED, HRTIMER_MODE_ABS_SOFT = HRTIMER_MODE_ABS | HRTIMER_MODE_SOFT, HRTIMER_MODE_REL_SOFT = HRTIMER_MODE_REL | HRTIMER_MODE_SOFT, HRTIMER_MODE_ABS_PINNED_SOFT = HRTIMER_MODE_ABS_PINNED | HRTIMER_MODE_SOFT, HRTIMER_MODE_REL_PINNED_SOFT = HRTIMER_MODE_REL_PINNED | HRTIMER_MODE_SOFT, HRTIMER_MODE_ABS_HARD = HRTIMER_MODE_ABS | HRTIMER_MODE_HARD, HRTIMER_MODE_REL_HARD = HRTIMER_MODE_REL | HRTIMER_MODE_HARD, HRTIMER_MODE_ABS_PINNED_HARD = HRTIMER_MODE_ABS_PINNED | HRTIMER_MODE_HARD, HRTIMER_MODE_REL_PINNED_HARD = HRTIMER_MODE_REL_PINNED | HRTIMER_MODE_HARD, }; /* * Return values for the callback function */ enum hrtimer_restart { HRTIMER_NORESTART, /* Timer is not restarted */ HRTIMER_RESTART, /* Timer must be restarted */ }; /* * Values to track state of the timer * * Possible states: * * 0x00 inactive * 0x01 enqueued into rbtree * * The callback state is not part of the timer->state because clearing it would * mean touching the timer after the callback, this makes it impossible to free * the timer from the callback function. * * Therefore we track the callback state in: * * timer->base->cpu_base->running == timer * * On SMP it is possible to have a "callback function running and enqueued" * status. It happens for example when a posix timer expired and the callback * queued a signal. Between dropping the lock which protects the posix timer * and reacquiring the base lock of the hrtimer, another CPU can deliver the * signal and rearm the timer. * * All state transitions are protected by cpu_base->lock. */ #define HRTIMER_STATE_INACTIVE 0x00 #define HRTIMER_STATE_ENQUEUED 0x01 /** * struct hrtimer - the basic hrtimer structure * @node: timerqueue node, which also manages node.expires, * the absolute expiry time in the hrtimers internal * representation. The time is related to the clock on * which the timer is based. Is setup by adding * slack to the _softexpires value. For non range timers * identical to _softexpires. * @_softexpires: the absolute earliest expiry time of the hrtimer. * The time which was given as expiry time when the timer * was armed. * @function: timer expiry callback function * @base: pointer to the timer base (per cpu and per clock) * @state: state information (See bit values above) * @is_rel: Set if the timer was armed relative * @is_soft: Set if hrtimer will be expired in soft interrupt context. * @is_hard: Set if hrtimer will be expired in hard interrupt context * even on RT. * * The hrtimer structure must be initialized by hrtimer_init() */ struct hrtimer { struct timerqueue_node node; ktime_t _softexpires; enum hrtimer_restart (*function)(struct hrtimer *); struct hrtimer_clock_base *base; u8 state; u8 is_rel; u8 is_soft; u8 is_hard; }; /** * struct hrtimer_sleeper - simple sleeper structure * @timer: embedded timer structure * @task: task to wake up * * task is set to NULL, when the timer expires. */ struct hrtimer_sleeper { struct hrtimer timer; struct task_struct *task; }; #ifdef CONFIG_64BIT # define __hrtimer_clock_base_align ____cacheline_aligned #else # define __hrtimer_clock_base_align #endif /** * struct hrtimer_clock_base - the timer base for a specific clock * @cpu_base: per cpu clock base * @index: clock type index for per_cpu support when moving a * timer to a base on another cpu. * @clockid: clock id for per_cpu support * @seq: seqcount around __run_hrtimer * @running: pointer to the currently running hrtimer * @active: red black tree root node for the active timers * @get_time: function to retrieve the current time of the clock * @offset: offset of this clock to the monotonic base */ struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base; unsigned int index; clockid_t clockid; seqcount_raw_spinlock_t seq; struct hrtimer *running; struct timerqueue_head active; ktime_t (*get_time)(void); ktime_t offset; } __hrtimer_clock_base_align; enum hrtimer_base_type { HRTIMER_BASE_MONOTONIC, HRTIMER_BASE_REALTIME, HRTIMER_BASE_BOOTTIME, HRTIMER_BASE_TAI, HRTIMER_BASE_MONOTONIC_SOFT, HRTIMER_BASE_REALTIME_SOFT, HRTIMER_BASE_BOOTTIME_SOFT, HRTIMER_BASE_TAI_SOFT, HRTIMER_MAX_CLOCK_BASES, }; /** * struct hrtimer_cpu_base - the per cpu clock bases * @lock: lock protecting the base and associated clock bases * and timers * @cpu: cpu number * @active_bases: Bitfield to mark bases with active timers * @clock_was_set_seq: Sequence counter of clock was set events * @hres_active: State of high resolution mode * @in_hrtirq: hrtimer_interrupt() is currently executing * @hang_detected: The last hrtimer interrupt detected a hang * @softirq_activated: displays, if the softirq is raised - update of softirq * related settings is not required then. * @nr_events: Total number of hrtimer interrupt events * @nr_retries: Total number of hrtimer interrupt retries * @nr_hangs: Total number of hrtimer interrupt hangs * @max_hang_time: Maximum time spent in hrtimer_interrupt * @softirq_expiry_lock: Lock which is taken while softirq based hrtimer are * expired * @timer_waiters: A hrtimer_cancel() invocation waits for the timer * callback to finish. * @expires_next: absolute time of the next event, is required for remote * hrtimer enqueue; it is the total first expiry time (hard * and soft hrtimer are taken into account) * @next_timer: Pointer to the first expiring timer * @softirq_expires_next: Time to check, if soft queues needs also to be expired * @softirq_next_timer: Pointer to the first expiring softirq based timer * @clock_base: array of clock bases for this cpu * * Note: next_timer is just an optimization for __remove_hrtimer(). * Do not dereference the pointer because it is not reliable on * cross cpu removals. */ struct hrtimer_cpu_base { raw_spinlock_t lock; unsigned int cpu; unsigned int active_bases; unsigned int clock_was_set_seq; unsigned int hres_active : 1, in_hrtirq : 1, hang_detected : 1, softirq_activated : 1; #ifdef CONFIG_HIGH_RES_TIMERS unsigned int nr_events; unsigned short nr_retries; unsigned short nr_hangs; unsigned int max_hang_time; #endif #ifdef CONFIG_PREEMPT_RT spinlock_t softirq_expiry_lock; atomic_t timer_waiters; #endif ktime_t expires_next; struct hrtimer *next_timer; ktime_t softirq_expires_next; struct hrtimer *softirq_next_timer; struct hrtimer_clock_base clock_base[HRTIMER_MAX_CLOCK_BASES]; } ____cacheline_aligned; static inline void hrtimer_set_expires(struct hrtimer *timer, ktime_t time) { timer->node.expires = time; timer->_softexpires = time; } static inline void hrtimer_set_expires_range(struct hrtimer *timer, ktime_t time, ktime_t delta) { timer->_softexpires = time; timer->node.expires = ktime_add_safe(time, delta); } static inline void hrtimer_set_expires_range_ns(struct hrtimer *timer, ktime_t time, u64 delta) { timer->_softexpires = time; timer->node.expires = ktime_add_safe(time, ns_to_ktime(delta)); } static inline void hrtimer_set_expires_tv64(struct hrtimer *timer, s64 tv64) { timer->node.expires = tv64; timer->_softexpires = tv64; } static inline void hrtimer_add_expires(struct hrtimer *timer, ktime_t time) { timer->node.expires = ktime_add_safe(timer->node.expires, time); timer->_softexpires = ktime_add_safe(timer->_softexpires, time); } static inline void hrtimer_add_expires_ns(struct hrtimer *timer, u64 ns) { timer->node.expires = ktime_add_ns(timer->node.expires, ns); timer->_softexpires = ktime_add_ns(timer->_softexpires, ns); } static inline ktime_t hrtimer_get_expires(const struct hrtimer *timer) { return timer->node.expires; } static inline ktime_t hrtimer_get_softexpires(const struct hrtimer *timer) { return timer->_softexpires; } static inline s64 hrtimer_get_expires_tv64(const struct hrtimer *timer) { return timer->node.expires; } static inline s64 hrtimer_get_softexpires_tv64(const struct hrtimer *timer) { return timer->_softexpires; } static inline s64 hrtimer_get_expires_ns(const struct hrtimer *timer) { return ktime_to_ns(timer->node.expires); } static inline ktime_t hrtimer_expires_remaining(const struct hrtimer *timer) { return ktime_sub(timer->node.expires, timer->base->get_time()); } static inline ktime_t hrtimer_cb_get_time(struct hrtimer *timer) { return timer->base->get_time(); } static inline int hrtimer_is_hres_active(struct hrtimer *timer) { return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ? timer->base->cpu_base->hres_active : 0; } #ifdef CONFIG_HIGH_RES_TIMERS struct clock_event_device; extern void hrtimer_interrupt(struct clock_event_device *dev); extern unsigned int hrtimer_resolution; #else #define hrtimer_resolution (unsigned int)LOW_RES_NSEC #endif static inline ktime_t __hrtimer_expires_remaining_adjusted(const struct hrtimer *timer, ktime_t now) { ktime_t rem = ktime_sub(timer->node.expires, now); /* * Adjust relative timers for the extra we added in * hrtimer_start_range_ns() to prevent short timeouts. */ if (IS_ENABLED(CONFIG_TIME_LOW_RES) && timer->is_rel) rem -= hrtimer_resolution; return rem; } static inline ktime_t hrtimer_expires_remaining_adjusted(const struct hrtimer *timer) { return __hrtimer_expires_remaining_adjusted(timer, timer->base->get_time()); } #ifdef CONFIG_TIMERFD extern void timerfd_clock_was_set(void); #else static inline void timerfd_clock_was_set(void) { } #endif extern void hrtimers_resume(void); DECLARE_PER_CPU(struct tick_device, tick_cpu_device); #ifdef CONFIG_PREEMPT_RT void hrtimer_cancel_wait_running(const struct hrtimer *timer); #else static inline void hrtimer_cancel_wait_running(struct hrtimer *timer) { cpu_relax(); } #endif /* Exported timer functions: */ /* Initialize timers: */ extern void hrtimer_init(struct hrtimer *timer, clockid_t which_clock, enum hrtimer_mode mode); extern void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, clockid_t clock_id, enum hrtimer_mode mode); #ifdef CONFIG_DEBUG_OBJECTS_TIMERS extern void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t which_clock, enum hrtimer_mode mode); extern void hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper *sl, clockid_t clock_id, enum hrtimer_mode mode); extern void destroy_hrtimer_on_stack(struct hrtimer *timer); #else static inline void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t which_clock, enum hrtimer_mode mode) { hrtimer_init(timer, which_clock, mode); } static inline void hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper *sl, clockid_t clock_id, enum hrtimer_mode mode) { hrtimer_init_sleeper(sl, clock_id, mode); } static inline void destroy_hrtimer_on_stack(struct hrtimer *timer) { } #endif /* Basic timer operations: */ extern void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, u64 range_ns, const enum hrtimer_mode mode); /** * hrtimer_start - (re)start an hrtimer * @timer: the timer to be added * @tim: expiry time * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or * relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED); * softirq based mode is considered for debug purpose only! */ static inline void hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode) { hrtimer_start_range_ns(timer, tim, 0, mode); } extern int hrtimer_cancel(struct hrtimer *timer); extern int hrtimer_try_to_cancel(struct hrtimer *timer); static inline void hrtimer_start_expires(struct hrtimer *timer, enum hrtimer_mode mode) { u64 delta; ktime_t soft, hard; soft = hrtimer_get_softexpires(timer); hard = hrtimer_get_expires(timer); delta = ktime_to_ns(ktime_sub(hard, soft)); hrtimer_start_range_ns(timer, soft, delta, mode); } void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl, enum hrtimer_mode mode); static inline void hrtimer_restart(struct hrtimer *timer) { hrtimer_start_expires(timer, HRTIMER_MODE_ABS); } /* Query timers: */ extern ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust); static inline ktime_t hrtimer_get_remaining(const struct hrtimer *timer) { return __hrtimer_get_remaining(timer, false); } extern u64 hrtimer_get_next_event(void); extern u64 hrtimer_next_event_without(const struct hrtimer *exclude); extern bool hrtimer_active(const struct hrtimer *timer); /** * hrtimer_is_queued = check, whether the timer is on one of the queues * @timer: Timer to check * * Returns: True if the timer is queued, false otherwise * * The function can be used lockless, but it gives only a current snapshot. */ static inline bool hrtimer_is_queued(struct hrtimer *timer) { /* The READ_ONCE pairs with the update functions of timer->state */ return !!(READ_ONCE(timer->state) & HRTIMER_STATE_ENQUEUED); } /* * Helper function to check, whether the timer is running the callback * function */ static inline int hrtimer_callback_running(struct hrtimer *timer) { return timer->base->running == timer; } /* Forward a hrtimer so it expires after now: */ extern u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval); /** * hrtimer_forward_now - forward the timer expiry so it expires after now * @timer: hrtimer to forward * @interval: the interval to forward * * Forward the timer expiry so it will expire after the current time * of the hrtimer clock base. Returns the number of overruns. * * Can be safely called from the callback function of @timer. If * called from other contexts @timer must neither be enqueued nor * running the callback and the caller needs to take care of * serialization. * * Note: This only updates the timer expiry value and does not requeue * the timer. */ static inline u64 hrtimer_forward_now(struct hrtimer *timer, ktime_t interval) { return hrtimer_forward(timer, timer->base->get_time(), interval); } /* Precise sleep: */ extern int nanosleep_copyout(struct restart_block *, struct timespec64 *); extern long hrtimer_nanosleep(ktime_t rqtp, const enum hrtimer_mode mode, const clockid_t clockid); extern int schedule_hrtimeout_range(ktime_t *expires, u64 delta, const enum hrtimer_mode mode); extern int schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta, const enum hrtimer_mode mode, clockid_t clock_id); extern int schedule_hrtimeout(ktime_t *expires, const enum hrtimer_mode mode); /* Soft interrupt function to run the hrtimer queues: */ extern void hrtimer_run_queues(void); /* Bootup initialization: */ extern void __init hrtimers_init(void); /* Show pending timers: */ extern void sysrq_timer_list_show(void); int hrtimers_prepare_cpu(unsigned int cpu); #ifdef CONFIG_HOTPLUG_CPU int hrtimers_dead_cpu(unsigned int cpu); #else #define hrtimers_dead_cpu NULL #endif #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 /* SPDX-License-Identifier: GPL-2.0 */ /* * Block data types and constants. Directly include this file only to * break include dependency loop. */ #ifndef __LINUX_BLK_TYPES_H #define __LINUX_BLK_TYPES_H #include <linux/types.h> #include <linux/bvec.h> #include <linux/ktime.h> struct bio_set; struct bio; struct bio_integrity_payload; struct page; struct io_context; struct cgroup_subsys_state; typedef void (bio_end_io_t) (struct bio *); struct bio_crypt_ctx; struct block_device { dev_t bd_dev; int bd_openers; struct inode * bd_inode; /* will die */ struct super_block * bd_super; struct mutex bd_mutex; /* open/close mutex */ void * bd_claiming; void * bd_holder; int bd_holders; bool bd_write_holder; #ifdef CONFIG_SYSFS struct list_head bd_holder_disks; #endif struct block_device * bd_contains; u8 bd_partno; struct hd_struct * bd_part; /* number of times partitions within this device have been opened. */ unsigned bd_part_count; spinlock_t bd_size_lock; /* for bd_inode->i_size updates */ struct gendisk * bd_disk; struct backing_dev_info *bd_bdi; /* The counter of freeze processes */ int bd_fsfreeze_count; /* Mutex for freeze */ struct mutex bd_fsfreeze_mutex; } __randomize_layout; /* * Block error status values. See block/blk-core:blk_errors for the details. * Alpha cannot write a byte atomically, so we need to use 32-bit value. */ #if defined(CONFIG_ALPHA) && !defined(__alpha_bwx__) typedef u32 __bitwise blk_status_t; #else typedef u8 __bitwise blk_status_t; #endif #define BLK_STS_OK 0 #define BLK_STS_NOTSUPP ((__force blk_status_t)1) #define BLK_STS_TIMEOUT ((__force blk_status_t)2) #define BLK_STS_NOSPC ((__force blk_status_t)3) #define BLK_STS_TRANSPORT ((__force blk_status_t)4) #define BLK_STS_TARGET ((__force blk_status_t)5) #define BLK_STS_NEXUS ((__force blk_status_t)6) #define BLK_STS_MEDIUM ((__force blk_status_t)7) #define BLK_STS_PROTECTION ((__force blk_status_t)8) #define BLK_STS_RESOURCE ((__force blk_status_t)9) #define BLK_STS_IOERR ((__force blk_status_t)10) /* hack for device mapper, don't use elsewhere: */ #define BLK_STS_DM_REQUEUE ((__force blk_status_t)11) #define BLK_STS_AGAIN ((__force blk_status_t)12) /* * BLK_STS_DEV_RESOURCE is returned from the driver to the block layer if * device related resources are unavailable, but the driver can guarantee * that the queue will be rerun in the future once resources become * available again. This is typically the case for device specific * resources that are consumed for IO. If the driver fails allocating these * resources, we know that inflight (or pending) IO will free these * resource upon completion. * * This is different from BLK_STS_RESOURCE in that it explicitly references * a device specific resource. For resources of wider scope, allocation * failure can happen without having pending IO. This means that we can't * rely on request completions freeing these resources, as IO may not be in * flight. Examples of that are kernel memory allocations, DMA mappings, or * any other system wide resources. */ #define BLK_STS_DEV_RESOURCE ((__force blk_status_t)13) /* * BLK_STS_ZONE_RESOURCE is returned from the driver to the block layer if zone * related resources are unavailable, but the driver can guarantee the queue * will be rerun in the future once the resources become available again. * * This is different from BLK_STS_DEV_RESOURCE in that it explicitly references * a zone specific resource and IO to a different zone on the same device could * still be served. Examples of that are zones that are write-locked, but a read * to the same zone could be served. */ #define BLK_STS_ZONE_RESOURCE ((__force blk_status_t)14) /* * BLK_STS_ZONE_OPEN_RESOURCE is returned from the driver in the completion * path if the device returns a status indicating that too many zone resources * are currently open. The same command should be successful if resubmitted * after the number of open zones decreases below the device's limits, which is * reported in the request_queue's max_open_zones. */ #define BLK_STS_ZONE_OPEN_RESOURCE ((__force blk_status_t)15) /* * BLK_STS_ZONE_ACTIVE_RESOURCE is returned from the driver in the completion * path if the device returns a status indicating that too many zone resources * are currently active. The same command should be successful if resubmitted * after the number of active zones decreases below the device's limits, which * is reported in the request_queue's max_active_zones. */ #define BLK_STS_ZONE_ACTIVE_RESOURCE ((__force blk_status_t)16) /** * blk_path_error - returns true if error may be path related * @error: status the request was completed with * * Description: * This classifies block error status into non-retryable errors and ones * that may be successful if retried on a failover path. * * Return: * %false - retrying failover path will not help * %true - may succeed if retried */ static inline bool blk_path_error(blk_status_t error) { switch (error) { case BLK_STS_NOTSUPP: case BLK_STS_NOSPC: case BLK_STS_TARGET: case BLK_STS_NEXUS: case BLK_STS_MEDIUM: case BLK_STS_PROTECTION: return false; } /* Anything else could be a path failure, so should be retried */ return true; } /* * From most significant bit: * 1 bit: reserved for other usage, see below * 12 bits: original size of bio * 51 bits: issue time of bio */ #define BIO_ISSUE_RES_BITS 1 #define BIO_ISSUE_SIZE_BITS 12 #define BIO_ISSUE_RES_SHIFT (64 - BIO_ISSUE_RES_BITS) #define BIO_ISSUE_SIZE_SHIFT (BIO_ISSUE_RES_SHIFT - BIO_ISSUE_SIZE_BITS) #define BIO_ISSUE_TIME_MASK ((1ULL << BIO_ISSUE_SIZE_SHIFT) - 1) #define BIO_ISSUE_SIZE_MASK \ (((1ULL << BIO_ISSUE_SIZE_BITS) - 1) << BIO_ISSUE_SIZE_SHIFT) #define BIO_ISSUE_RES_MASK (~((1ULL << BIO_ISSUE_RES_SHIFT) - 1)) /* Reserved bit for blk-throtl */ #define BIO_ISSUE_THROTL_SKIP_LATENCY (1ULL << 63) struct bio_issue { u64 value; }; static inline u64 __bio_issue_time(u64 time) { return time & BIO_ISSUE_TIME_MASK; } static inline u64 bio_issue_time(struct bio_issue *issue) { return __bio_issue_time(issue->value); } static inline sector_t bio_issue_size(struct bio_issue *issue) { return ((issue->value & BIO_ISSUE_SIZE_MASK) >> BIO_ISSUE_SIZE_SHIFT); } static inline void bio_issue_init(struct bio_issue *issue, sector_t size) { size &= (1ULL << BIO_ISSUE_SIZE_BITS) - 1; issue->value = ((issue->value & BIO_ISSUE_RES_MASK) | (ktime_get_ns() & BIO_ISSUE_TIME_MASK) | ((u64)size << BIO_ISSUE_SIZE_SHIFT)); } /* * main unit of I/O for the block layer and lower layers (ie drivers and * stacking drivers) */ struct bio { struct bio *bi_next; /* request queue link */ struct gendisk *bi_disk; unsigned int bi_opf; /* bottom bits req flags, * top bits REQ_OP. Use * accessors. */ unsigned short bi_flags; /* status, etc and bvec pool number */ unsigned short bi_ioprio; unsigned short bi_write_hint; blk_status_t bi_status; u8 bi_partno; atomic_t __bi_remaining; struct bvec_iter bi_iter; bio_end_io_t *bi_end_io; void *bi_private; #ifdef CONFIG_BLK_CGROUP /* * Represents the association of the css and request_queue for the bio. * If a bio goes direct to device, it will not have a blkg as it will * not have a request_queue associated with it. The reference is put * on release of the bio. */ struct blkcg_gq *bi_blkg; struct bio_issue bi_issue; #ifdef CONFIG_BLK_CGROUP_IOCOST u64 bi_iocost_cost; #endif #endif #ifdef CONFIG_BLK_INLINE_ENCRYPTION struct bio_crypt_ctx *bi_crypt_context; #endif union { #if defined(CONFIG_BLK_DEV_INTEGRITY) struct bio_integrity_payload *bi_integrity; /* data integrity */ #endif }; unsigned short bi_vcnt; /* how many bio_vec's */ /* * Everything starting with bi_max_vecs will be preserved by bio_reset() */ unsigned short bi_max_vecs; /* max bvl_vecs we can hold */ atomic_t __bi_cnt; /* pin count */ struct bio_vec *bi_io_vec; /* the actual vec list */ struct bio_set *bi_pool; /* * We can inline a number of vecs at the end of the bio, to avoid * double allocations for a small number of bio_vecs. This member * MUST obviously be kept at the very end of the bio. */ struct bio_vec bi_inline_vecs[]; }; #define BIO_RESET_BYTES offsetof(struct bio, bi_max_vecs) /* * bio flags */ enum { BIO_NO_PAGE_REF, /* don't put release vec pages */ BIO_CLONED, /* doesn't own data */ BIO_BOUNCED, /* bio is a bounce bio */ BIO_WORKINGSET, /* contains userspace workingset pages */ BIO_QUIET, /* Make BIO Quiet */ BIO_CHAIN, /* chained bio, ->bi_remaining in effect */ BIO_REFFED, /* bio has elevated ->bi_cnt */ BIO_THROTTLED, /* This bio has already been subjected to * throttling rules. Don't do it again. */ BIO_TRACE_COMPLETION, /* bio_endio() should trace the final completion * of this bio. */ BIO_CGROUP_ACCT, /* has been accounted to a cgroup */ BIO_TRACKED, /* set if bio goes through the rq_qos path */ BIO_FLAG_LAST }; /* See BVEC_POOL_OFFSET below before adding new flags */ /* * We support 6 different bvec pools, the last one is magic in that it * is backed by a mempool. */ #define BVEC_POOL_NR 6 #define BVEC_POOL_MAX (BVEC_POOL_NR - 1) /* * Top 3 bits of bio flags indicate the pool the bvecs came from. We add * 1 to the actual index so that 0 indicates that there are no bvecs to be * freed. */ #define BVEC_POOL_BITS (3) #define BVEC_POOL_OFFSET (16 - BVEC_POOL_BITS) #define BVEC_POOL_IDX(bio) ((bio)->bi_flags >> BVEC_POOL_OFFSET) #if (1<< BVEC_POOL_BITS) < (BVEC_POOL_NR+1) # error "BVEC_POOL_BITS is too small" #endif /* * Flags starting here get preserved by bio_reset() - this includes * only BVEC_POOL_IDX() */ #define BIO_RESET_BITS BVEC_POOL_OFFSET typedef __u32 __bitwise blk_mq_req_flags_t; /* * Operations and flags common to the bio and request structures. * We use 8 bits for encoding the operation, and the remaining 24 for flags. * * The least significant bit of the operation number indicates the data * transfer direction: * * - if the least significant bit is set transfers are TO the device * - if the least significant bit is not set transfers are FROM the device * * If a operation does not transfer data the least significant bit has no * meaning. */ #define REQ_OP_BITS 8 #define REQ_OP_MASK ((1 << REQ_OP_BITS) - 1) #define REQ_FLAG_BITS 24 enum req_opf { /* read sectors from the device */ REQ_OP_READ = 0, /* write sectors to the device */ REQ_OP_WRITE = 1, /* flush the volatile write cache */ REQ_OP_FLUSH = 2, /* discard sectors */ REQ_OP_DISCARD = 3, /* securely erase sectors */ REQ_OP_SECURE_ERASE = 5, /* write the same sector many times */ REQ_OP_WRITE_SAME = 7, /* write the zero filled sector many times */ REQ_OP_WRITE_ZEROES = 9, /* Open a zone */ REQ_OP_ZONE_OPEN = 10, /* Close a zone */ REQ_OP_ZONE_CLOSE = 11, /* Transition a zone to full */ REQ_OP_ZONE_FINISH = 12, /* write data at the current zone write pointer */ REQ_OP_ZONE_APPEND = 13, /* reset a zone write pointer */ REQ_OP_ZONE_RESET = 15, /* reset all the zone present on the device */ REQ_OP_ZONE_RESET_ALL = 17, /* SCSI passthrough using struct scsi_request */ REQ_OP_SCSI_IN = 32, REQ_OP_SCSI_OUT = 33, /* Driver private requests */ REQ_OP_DRV_IN = 34, REQ_OP_DRV_OUT = 35, REQ_OP_LAST, }; enum req_flag_bits { __REQ_FAILFAST_DEV = /* no driver retries of device errors */ REQ_OP_BITS, __REQ_FAILFAST_TRANSPORT, /* no driver retries of transport errors */ __REQ_FAILFAST_DRIVER, /* no driver retries of driver errors */ __REQ_SYNC, /* request is sync (sync write or read) */ __REQ_META, /* metadata io request */ __REQ_PRIO, /* boost priority in cfq */ __REQ_NOMERGE, /* don't touch this for merging */ __REQ_IDLE, /* anticipate more IO after this one */ __REQ_INTEGRITY, /* I/O includes block integrity payload */ __REQ_FUA, /* forced unit access */ __REQ_PREFLUSH, /* request for cache flush */ __REQ_RAHEAD, /* read ahead, can fail anytime */ __REQ_BACKGROUND, /* background IO */ __REQ_NOWAIT, /* Don't wait if request will block */ /* * When a shared kthread needs to issue a bio for a cgroup, doing * so synchronously can lead to priority inversions as the kthread * can be trapped waiting for that cgroup. CGROUP_PUNT flag makes * submit_bio() punt the actual issuing to a dedicated per-blkcg * work item to avoid such priority inversions. */ __REQ_CGROUP_PUNT, /* command specific flags for REQ_OP_WRITE_ZEROES: */ __REQ_NOUNMAP, /* do not free blocks when zeroing */ __REQ_HIPRI, /* for driver use */ __REQ_DRV, __REQ_SWAP, /* swapping request. */ __REQ_NR_BITS, /* stops here */ }; #define REQ_FAILFAST_DEV (1ULL << __REQ_FAILFAST_DEV) #define REQ_FAILFAST_TRANSPORT (1ULL << __REQ_FAILFAST_TRANSPORT) #define REQ_FAILFAST_DRIVER (1ULL << __REQ_FAILFAST_DRIVER) #define REQ_SYNC (1ULL << __REQ_SYNC) #define REQ_META (1ULL << __REQ_META) #define REQ_PRIO (1ULL << __REQ_PRIO) #define REQ_NOMERGE (1ULL << __REQ_NOMERGE) #define REQ_IDLE (1ULL << __REQ_IDLE) #define REQ_INTEGRITY (1ULL << __REQ_INTEGRITY) #define REQ_FUA (1ULL << __REQ_FUA) #define REQ_PREFLUSH (1ULL << __REQ_PREFLUSH) #define REQ_RAHEAD (1ULL << __REQ_RAHEAD) #define REQ_BACKGROUND (1ULL << __REQ_BACKGROUND) #define REQ_NOWAIT (1ULL << __REQ_NOWAIT) #define REQ_CGROUP_PUNT (1ULL << __REQ_CGROUP_PUNT) #define REQ_NOUNMAP (1ULL << __REQ_NOUNMAP) #define REQ_HIPRI (1ULL << __REQ_HIPRI) #define REQ_DRV (1ULL << __REQ_DRV) #define REQ_SWAP (1ULL << __REQ_SWAP) #define REQ_FAILFAST_MASK \ (REQ_FAILFAST_DEV | REQ_FAILFAST_TRANSPORT | REQ_FAILFAST_DRIVER) #define REQ_NOMERGE_FLAGS \ (REQ_NOMERGE | REQ_PREFLUSH | REQ_FUA) enum stat_group { STAT_READ, STAT_WRITE, STAT_DISCARD, STAT_FLUSH, NR_STAT_GROUPS }; #define bio_op(bio) \ ((bio)->bi_opf & REQ_OP_MASK) #define req_op(req) \ ((req)->cmd_flags & REQ_OP_MASK) /* obsolete, don't use in new code */ static inline void bio_set_op_attrs(struct bio *bio, unsigned op, unsigned op_flags) { bio->bi_opf = op | op_flags; } static inline bool op_is_write(unsigned int op) { return (op & 1); } /* * Check if the bio or request is one that needs special treatment in the * flush state machine. */ static inline bool op_is_flush(unsigned int op) { return op & (REQ_FUA | REQ_PREFLUSH); } /* * Reads are always treated as synchronous, as are requests with the FUA or * PREFLUSH flag. Other operations may be marked as synchronous using the * REQ_SYNC flag. */ static inline bool op_is_sync(unsigned int op) { return (op & REQ_OP_MASK) == REQ_OP_READ || (op & (REQ_SYNC | REQ_FUA | REQ_PREFLUSH)); } static inline bool op_is_discard(unsigned int op) { return (op & REQ_OP_MASK) == REQ_OP_DISCARD; } /* * Check if a bio or request operation is a zone management operation, with * the exception of REQ_OP_ZONE_RESET_ALL which is treated as a special case * due to its different handling in the block layer and device response in * case of command failure. */ static inline bool op_is_zone_mgmt(enum req_opf op) { switch (op & REQ_OP_MASK) { case REQ_OP_ZONE_RESET: case REQ_OP_ZONE_OPEN: case REQ_OP_ZONE_CLOSE: case REQ_OP_ZONE_FINISH: return true; default: return false; } } static inline int op_stat_group(unsigned int op) { if (op_is_discard(op)) return STAT_DISCARD; return op_is_write(op); } typedef unsigned int blk_qc_t; #define BLK_QC_T_NONE -1U #define BLK_QC_T_SHIFT 16 #define BLK_QC_T_INTERNAL (1U << 31) static inline bool blk_qc_t_valid(blk_qc_t cookie) { return cookie != BLK_QC_T_NONE; } static inline unsigned int blk_qc_t_to_queue_num(blk_qc_t cookie) { return (cookie & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT; } static inline unsigned int blk_qc_t_to_tag(blk_qc_t cookie) { return cookie & ((1u << BLK_QC_T_SHIFT) - 1); } static inline bool blk_qc_t_is_internal(blk_qc_t cookie) { return (cookie & BLK_QC_T_INTERNAL) != 0; } struct blk_rq_stat { u64 mean; u64 min; u64 max; u32 nr_samples; u64 batch; }; #endif /* __LINUX_BLK_TYPES_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. NET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Definitions for the Ethernet handlers. * * Version: @(#)eth.h 1.0.4 05/13/93 * * Authors: Ross Biro * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> * * Relocated to include/linux where it belongs by Alan Cox * <gw4pts@gw4pts.ampr.org> */ #ifndef _LINUX_ETHERDEVICE_H #define _LINUX_ETHERDEVICE_H #include <linux/if_ether.h> #include <linux/netdevice.h> #include <linux/random.h> #include <linux/crc32.h> #include <asm/unaligned.h> #include <asm/bitsperlong.h> #ifdef __KERNEL__ struct device; int eth_platform_get_mac_address(struct device *dev, u8 *mac_addr); unsigned char *arch_get_platform_mac_address(void); int nvmem_get_mac_address(struct device *dev, void *addrbuf); u32 eth_get_headlen(const struct net_device *dev, void *data, unsigned int len); __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev); extern const struct header_ops eth_header_ops; int eth_header(struct sk_buff *skb, struct net_device *dev, unsigned short type, const void *daddr, const void *saddr, unsigned len); int eth_header_parse(const struct sk_buff *skb, unsigned char *haddr); int eth_header_cache(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); void eth_header_cache_update(struct hh_cache *hh, const struct net_device *dev, const unsigned char *haddr); __be16 eth_header_parse_protocol(const struct sk_buff *skb); int eth_prepare_mac_addr_change(struct net_device *dev, void *p); void eth_commit_mac_addr_change(struct net_device *dev, void *p); int eth_mac_addr(struct net_device *dev, void *p); int eth_validate_addr(struct net_device *dev); struct net_device *alloc_etherdev_mqs(int sizeof_priv, unsigned int txqs, unsigned int rxqs); #define alloc_etherdev(sizeof_priv) alloc_etherdev_mq(sizeof_priv, 1) #define alloc_etherdev_mq(sizeof_priv, count) alloc_etherdev_mqs(sizeof_priv, count, count) struct net_device *devm_alloc_etherdev_mqs(struct device *dev, int sizeof_priv, unsigned int txqs, unsigned int rxqs); #define devm_alloc_etherdev(dev, sizeof_priv) devm_alloc_etherdev_mqs(dev, sizeof_priv, 1, 1) struct sk_buff *eth_gro_receive(struct list_head *head, struct sk_buff *skb); int eth_gro_complete(struct sk_buff *skb, int nhoff); /* Reserved Ethernet Addresses per IEEE 802.1Q */ static const u8 eth_reserved_addr_base[ETH_ALEN] __aligned(2) = { 0x01, 0x80, 0xc2, 0x00, 0x00, 0x00 }; #define eth_stp_addr eth_reserved_addr_base /** * is_link_local_ether_addr - Determine if given Ethernet address is link-local * @addr: Pointer to a six-byte array containing the Ethernet address * * Return true if address is link local reserved addr (01:80:c2:00:00:0X) per * IEEE 802.1Q 8.6.3 Frame filtering. * * Please note: addr must be aligned to u16. */ static inline bool is_link_local_ether_addr(const u8 *addr) { __be16 *a = (__be16 *)addr; static const __be16 *b = (const __be16 *)eth_reserved_addr_base; static const __be16 m = cpu_to_be16(0xfff0); #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) return (((*(const u32 *)addr) ^ (*(const u32 *)b)) | (__force int)((a[2] ^ b[2]) & m)) == 0; #else return ((a[0] ^ b[0]) | (a[1] ^ b[1]) | ((a[2] ^ b[2]) & m)) == 0; #endif } /** * is_zero_ether_addr - Determine if give Ethernet address is all zeros. * @addr: Pointer to a six-byte array containing the Ethernet address * * Return true if the address is all zeroes. * * Please note: addr must be aligned to u16. */ static inline bool is_zero_ether_addr(const u8 *addr) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) return ((*(const u32 *)addr) | (*(const u16 *)(addr + 4))) == 0; #else return (*(const u16 *)(addr + 0) | *(const u16 *)(addr + 2) | *(const u16 *)(addr + 4)) == 0; #endif } /** * is_multicast_ether_addr - Determine if the Ethernet address is a multicast. * @addr: Pointer to a six-byte array containing the Ethernet address * * Return true if the address is a multicast address. * By definition the broadcast address is also a multicast address. */ static inline bool is_multicast_ether_addr(const u8 *addr) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) u32 a = *(const u32 *)addr; #else u16 a = *(const u16 *)addr; #endif #ifdef __BIG_ENDIAN return 0x01 & (a >> ((sizeof(a) * 8) - 8)); #else return 0x01 & a; #endif } static inline bool is_multicast_ether_addr_64bits(const u8 addr[6+2]) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 #ifdef __BIG_ENDIAN return 0x01 & ((*(const u64 *)addr) >> 56); #else return 0x01 & (*(const u64 *)addr); #endif #else return is_multicast_ether_addr(addr); #endif } /** * is_local_ether_addr - Determine if the Ethernet address is locally-assigned one (IEEE 802). * @addr: Pointer to a six-byte array containing the Ethernet address * * Return true if the address is a local address. */ static inline bool is_local_ether_addr(const u8 *addr) { return 0x02 & addr[0]; } /** * is_broadcast_ether_addr - Determine if the Ethernet address is broadcast * @addr: Pointer to a six-byte array containing the Ethernet address * * Return true if the address is the broadcast address. * * Please note: addr must be aligned to u16. */ static inline bool is_broadcast_ether_addr(const u8 *addr) { return (*(const u16 *)(addr + 0) & *(const u16 *)(addr + 2) & *(const u16 *)(addr + 4)) == 0xffff; } /** * is_unicast_ether_addr - Determine if the Ethernet address is unicast * @addr: Pointer to a six-byte array containing the Ethernet address * * Return true if the address is a unicast address. */ static inline bool is_unicast_ether_addr(const u8 *addr) { return !is_multicast_ether_addr(addr); } /** * is_valid_ether_addr - Determine if the given Ethernet address is valid * @addr: Pointer to a six-byte array containing the Ethernet address * * Check that the Ethernet address (MAC) is not 00:00:00:00:00:00, is not * a multicast address, and is not FF:FF:FF:FF:FF:FF. * * Return true if the address is valid. * * Please note: addr must be aligned to u16. */ static inline bool is_valid_ether_addr(const u8 *addr) { /* FF:FF:FF:FF:FF:FF is a multicast address so we don't need to * explicitly check for it here. */ return !is_multicast_ether_addr(addr) && !is_zero_ether_addr(addr); } /** * eth_proto_is_802_3 - Determine if a given Ethertype/length is a protocol * @proto: Ethertype/length value to be tested * * Check that the value from the Ethertype/length field is a valid Ethertype. * * Return true if the valid is an 802.3 supported Ethertype. */ static inline bool eth_proto_is_802_3(__be16 proto) { #ifndef __BIG_ENDIAN /* if CPU is little endian mask off bits representing LSB */ proto &= htons(0xFF00); #endif /* cast both to u16 and compare since LSB can be ignored */ return (__force u16)proto >= (__force u16)htons(ETH_P_802_3_MIN); } /** * eth_random_addr - Generate software assigned random Ethernet address * @addr: Pointer to a six-byte array containing the Ethernet address * * Generate a random Ethernet address (MAC) that is not multicast * and has the local assigned bit set. */ static inline void eth_random_addr(u8 *addr) { get_random_bytes(addr, ETH_ALEN); addr[0] &= 0xfe; /* clear multicast bit */ addr[0] |= 0x02; /* set local assignment bit (IEEE802) */ } #define random_ether_addr(addr) eth_random_addr(addr) /** * eth_broadcast_addr - Assign broadcast address * @addr: Pointer to a six-byte array containing the Ethernet address * * Assign the broadcast address to the given address array. */ static inline void eth_broadcast_addr(u8 *addr) { memset(addr, 0xff, ETH_ALEN); } /** * eth_zero_addr - Assign zero address * @addr: Pointer to a six-byte array containing the Ethernet address * * Assign the zero address to the given address array. */ static inline void eth_zero_addr(u8 *addr) { memset(addr, 0x00, ETH_ALEN); } /** * eth_hw_addr_random - Generate software assigned random Ethernet and * set device flag * @dev: pointer to net_device structure * * Generate a random Ethernet address (MAC) to be used by a net device * and set addr_assign_type so the state can be read by sysfs and be * used by userspace. */ static inline void eth_hw_addr_random(struct net_device *dev) { dev->addr_assign_type = NET_ADDR_RANDOM; eth_random_addr(dev->dev_addr); } /** * eth_hw_addr_crc - Calculate CRC from netdev_hw_addr * @ha: pointer to hardware address * * Calculate CRC from a hardware address as basis for filter hashes. */ static inline u32 eth_hw_addr_crc(struct netdev_hw_addr *ha) { return ether_crc(ETH_ALEN, ha->addr); } /** * ether_addr_copy - Copy an Ethernet address * @dst: Pointer to a six-byte array Ethernet address destination * @src: Pointer to a six-byte array Ethernet address source * * Please note: dst & src must both be aligned to u16. */ static inline void ether_addr_copy(u8 *dst, const u8 *src) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) *(u32 *)dst = *(const u32 *)src; *(u16 *)(dst + 4) = *(const u16 *)(src + 4); #else u16 *a = (u16 *)dst; const u16 *b = (const u16 *)src; a[0] = b[0]; a[1] = b[1]; a[2] = b[2]; #endif } /** * eth_hw_addr_inherit - Copy dev_addr from another net_device * @dst: pointer to net_device to copy dev_addr to * @src: pointer to net_device to copy dev_addr from * * Copy the Ethernet address from one net_device to another along with * the address attributes (addr_assign_type). */ static inline void eth_hw_addr_inherit(struct net_device *dst, struct net_device *src) { dst->addr_assign_type = src->addr_assign_type; ether_addr_copy(dst->dev_addr, src->dev_addr); } /** * ether_addr_equal - Compare two Ethernet addresses * @addr1: Pointer to a six-byte array containing the Ethernet address * @addr2: Pointer other six-byte array containing the Ethernet address * * Compare two Ethernet addresses, returns true if equal * * Please note: addr1 & addr2 must both be aligned to u16. */ static inline bool ether_addr_equal(const u8 *addr1, const u8 *addr2) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) u32 fold = ((*(const u32 *)addr1) ^ (*(const u32 *)addr2)) | ((*(const u16 *)(addr1 + 4)) ^ (*(const u16 *)(addr2 + 4))); return fold == 0; #else const u16 *a = (const u16 *)addr1; const u16 *b = (const u16 *)addr2; return ((a[0] ^ b[0]) | (a[1] ^ b[1]) | (a[2] ^ b[2])) == 0; #endif } /** * ether_addr_equal_64bits - Compare two Ethernet addresses * @addr1: Pointer to an array of 8 bytes * @addr2: Pointer to an other array of 8 bytes * * Compare two Ethernet addresses, returns true if equal, false otherwise. * * The function doesn't need any conditional branches and possibly uses * word memory accesses on CPU allowing cheap unaligned memory reads. * arrays = { byte1, byte2, byte3, byte4, byte5, byte6, pad1, pad2 } * * Please note that alignment of addr1 & addr2 are only guaranteed to be 16 bits. */ static inline bool ether_addr_equal_64bits(const u8 addr1[6+2], const u8 addr2[6+2]) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 u64 fold = (*(const u64 *)addr1) ^ (*(const u64 *)addr2); #ifdef __BIG_ENDIAN return (fold >> 16) == 0; #else return (fold << 16) == 0; #endif #else return ether_addr_equal(addr1, addr2); #endif } /** * ether_addr_equal_unaligned - Compare two not u16 aligned Ethernet addresses * @addr1: Pointer to a six-byte array containing the Ethernet address * @addr2: Pointer other six-byte array containing the Ethernet address * * Compare two Ethernet addresses, returns true if equal * * Please note: Use only when any Ethernet address may not be u16 aligned. */ static inline bool ether_addr_equal_unaligned(const u8 *addr1, const u8 *addr2) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) return ether_addr_equal(addr1, addr2); #else return memcmp(addr1, addr2, ETH_ALEN) == 0; #endif } /** * ether_addr_equal_masked - Compare two Ethernet addresses with a mask * @addr1: Pointer to a six-byte array containing the 1st Ethernet address * @addr2: Pointer to a six-byte array containing the 2nd Ethernet address * @mask: Pointer to a six-byte array containing the Ethernet address bitmask * * Compare two Ethernet addresses with a mask, returns true if for every bit * set in the bitmask the equivalent bits in the ethernet addresses are equal. * Using a mask with all bits set is a slower ether_addr_equal. */ static inline bool ether_addr_equal_masked(const u8 *addr1, const u8 *addr2, const u8 *mask) { int i; for (i = 0; i < ETH_ALEN; i++) { if ((addr1[i] ^ addr2[i]) & mask[i]) return false; } return true; } /** * ether_addr_to_u64 - Convert an Ethernet address into a u64 value. * @addr: Pointer to a six-byte array containing the Ethernet address * * Return a u64 value of the address */ static inline u64 ether_addr_to_u64(const u8 *addr) { u64 u = 0; int i; for (i = 0; i < ETH_ALEN; i++) u = u << 8 | addr[i]; return u; } /** * u64_to_ether_addr - Convert a u64 to an Ethernet address. * @u: u64 to convert to an Ethernet MAC address * @addr: Pointer to a six-byte array to contain the Ethernet address */ static inline void u64_to_ether_addr(u64 u, u8 *addr) { int i; for (i = ETH_ALEN - 1; i >= 0; i--) { addr[i] = u & 0xff; u = u >> 8; } } /** * eth_addr_dec - Decrement the given MAC address * * @addr: Pointer to a six-byte array containing Ethernet address to decrement */ static inline void eth_addr_dec(u8 *addr) { u64 u = ether_addr_to_u64(addr); u--; u64_to_ether_addr(u, addr); } /** * eth_addr_inc() - Increment the given MAC address. * @addr: Pointer to a six-byte array containing Ethernet address to increment. */ static inline void eth_addr_inc(u8 *addr) { u64 u = ether_addr_to_u64(addr); u++; u64_to_ether_addr(u, addr); } /** * is_etherdev_addr - Tell if given Ethernet address belongs to the device. * @dev: Pointer to a device structure * @addr: Pointer to a six-byte array containing the Ethernet address * * Compare passed address with all addresses of the device. Return true if the * address if one of the device addresses. * * Note that this function calls ether_addr_equal_64bits() so take care of * the right padding. */ static inline bool is_etherdev_addr(const struct net_device *dev, const u8 addr[6 + 2]) { struct netdev_hw_addr *ha; bool res = false; rcu_read_lock(); for_each_dev_addr(dev, ha) { res = ether_addr_equal_64bits(addr, ha->addr); if (res) break; } rcu_read_unlock(); return res; } #endif /* __KERNEL__ */ /** * compare_ether_header - Compare two Ethernet headers * @a: Pointer to Ethernet header * @b: Pointer to Ethernet header * * Compare two Ethernet headers, returns 0 if equal. * This assumes that the network header (i.e., IP header) is 4-byte * aligned OR the platform can handle unaligned access. This is the * case for all packets coming into netif_receive_skb or similar * entry points. */ static inline unsigned long compare_ether_header(const void *a, const void *b) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 unsigned long fold; /* * We want to compare 14 bytes: * [a0 ... a13] ^ [b0 ... b13] * Use two long XOR, ORed together, with an overlap of two bytes. * [a0 a1 a2 a3 a4 a5 a6 a7 ] ^ [b0 b1 b2 b3 b4 b5 b6 b7 ] | * [a6 a7 a8 a9 a10 a11 a12 a13] ^ [b6 b7 b8 b9 b10 b11 b12 b13] * This means the [a6 a7] ^ [b6 b7] part is done two times. */ fold = *(unsigned long *)a ^ *(unsigned long *)b; fold |= *(unsigned long *)(a + 6) ^ *(unsigned long *)(b + 6); return fold; #else u32 *a32 = (u32 *)((u8 *)a + 2); u32 *b32 = (u32 *)((u8 *)b + 2); return (*(u16 *)a ^ *(u16 *)b) | (a32[0] ^ b32[0]) | (a32[1] ^ b32[1]) | (a32[2] ^ b32[2]); #endif } /** * eth_skb_pad - Pad buffer to mininum number of octets for Ethernet frame * @skb: Buffer to pad * * An Ethernet frame should have a minimum size of 60 bytes. This function * takes short frames and pads them with zeros up to the 60 byte limit. */ static inline int eth_skb_pad(struct sk_buff *skb) { return skb_put_padto(skb, ETH_ZLEN); } #endif /* _LINUX_ETHERDEVICE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 /* SPDX-License-Identifier: GPL-2.0 */ /* File: linux/posix_acl.h (C) 2002 Andreas Gruenbacher, <a.gruenbacher@computer.org> */ #ifndef __LINUX_POSIX_ACL_H #define __LINUX_POSIX_ACL_H #include <linux/bug.h> #include <linux/slab.h> #include <linux/rcupdate.h> #include <linux/refcount.h> #include <uapi/linux/posix_acl.h> struct posix_acl_entry { short e_tag; unsigned short e_perm; union { kuid_t e_uid; kgid_t e_gid; }; }; struct posix_acl { refcount_t a_refcount; struct rcu_head a_rcu; unsigned int a_count; struct posix_acl_entry a_entries[]; }; #define FOREACH_ACL_ENTRY(pa, acl, pe) \ for(pa=(acl)->a_entries, pe=pa+(acl)->a_count; pa<pe; pa++) /* * Duplicate an ACL handle. */ static inline struct posix_acl * posix_acl_dup(struct posix_acl *acl) { if (acl) refcount_inc(&acl->a_refcount); return acl; } /* * Free an ACL handle. */ static inline void posix_acl_release(struct posix_acl *acl) { if (acl && refcount_dec_and_test(&acl->a_refcount)) kfree_rcu(acl, a_rcu); } /* posix_acl.c */ extern void posix_acl_init(struct posix_acl *, int); extern struct posix_acl *posix_acl_alloc(int, gfp_t); extern int posix_acl_valid(struct user_namespace *, const struct posix_acl *); extern int posix_acl_permission(struct inode *, const struct posix_acl *, int); extern struct posix_acl *posix_acl_from_mode(umode_t, gfp_t); extern int posix_acl_equiv_mode(const struct posix_acl *, umode_t *); extern int __posix_acl_create(struct posix_acl **, gfp_t, umode_t *); extern int __posix_acl_chmod(struct posix_acl **, gfp_t, umode_t); extern struct posix_acl *get_posix_acl(struct inode *, int); extern int set_posix_acl(struct inode *, int, struct posix_acl *); #ifdef CONFIG_FS_POSIX_ACL extern int posix_acl_chmod(struct inode *, umode_t); extern int posix_acl_create(struct inode *, umode_t *, struct posix_acl **, struct posix_acl **); extern int posix_acl_update_mode(struct inode *, umode_t *, struct posix_acl **); extern int simple_set_acl(struct inode *, struct posix_acl *, int); extern int simple_acl_create(struct inode *, struct inode *); struct posix_acl *get_cached_acl(struct inode *inode, int type); struct posix_acl *get_cached_acl_rcu(struct inode *inode, int type); void set_cached_acl(struct inode *inode, int type, struct posix_acl *acl); void forget_cached_acl(struct inode *inode, int type); void forget_all_cached_acls(struct inode *inode); static inline void cache_no_acl(struct inode *inode) { inode->i_acl = NULL; inode->i_default_acl = NULL; } #else static inline int posix_acl_chmod(struct inode *inode, umode_t mode) { return 0; } #define simple_set_acl NULL static inline int simple_acl_create(struct inode *dir, struct inode *inode) { return 0; } static inline void cache_no_acl(struct inode *inode) { } static inline int posix_acl_create(struct inode *inode, umode_t *mode, struct posix_acl **default_acl, struct posix_acl **acl) { *default_acl = *acl = NULL; return 0; } static inline void forget_all_cached_acls(struct inode *inode) { } #endif /* CONFIG_FS_POSIX_ACL */ struct posix_acl *get_acl(struct inode *inode, int type); #endif /* __LINUX_POSIX_ACL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 /* SPDX-License-Identifier: GPL-2.0 */ /* thread_info.h: low-level thread information * * Copyright (C) 2002 David Howells (dhowells@redhat.com) * - Incorporating suggestions made by Linus Torvalds and Dave Miller */ #ifndef _ASM_X86_THREAD_INFO_H #define _ASM_X86_THREAD_INFO_H #include <linux/compiler.h> #include <asm/page.h> #include <asm/percpu.h> #include <asm/types.h> /* * TOP_OF_KERNEL_STACK_PADDING is a number of unused bytes that we * reserve at the top of the kernel stack. We do it because of a nasty * 32-bit corner case. On x86_32, the hardware stack frame is * variable-length. Except for vm86 mode, struct pt_regs assumes a * maximum-length frame. If we enter from CPL 0, the top 8 bytes of * pt_regs don't actually exist. Ordinarily this doesn't matter, but it * does in at least one case: * * If we take an NMI early enough in SYSENTER, then we can end up with * pt_regs that extends above sp0. On the way out, in the espfix code, * we can read the saved SS value, but that value will be above sp0. * Without this offset, that can result in a page fault. (We are * careful that, in this case, the value we read doesn't matter.) * * In vm86 mode, the hardware frame is much longer still, so add 16 * bytes to make room for the real-mode segments. * * x86_64 has a fixed-length stack frame. */ #ifdef CONFIG_X86_32 # ifdef CONFIG_VM86 # define TOP_OF_KERNEL_STACK_PADDING 16 # else # define TOP_OF_KERNEL_STACK_PADDING 8 # endif #else # define TOP_OF_KERNEL_STACK_PADDING 0 #endif /* * low level task data that entry.S needs immediate access to * - this struct should fit entirely inside of one cache line * - this struct shares the supervisor stack pages */ #ifndef __ASSEMBLY__ struct task_struct; #include <asm/cpufeature.h> #include <linux/atomic.h> struct thread_info { unsigned long flags; /* low level flags */ u32 status; /* thread synchronous flags */ }; #define INIT_THREAD_INFO(tsk) \ { \ .flags = 0, \ } #else /* !__ASSEMBLY__ */ #include <asm/asm-offsets.h> #endif /* * thread information flags * - these are process state flags that various assembly files * may need to access */ #define TIF_SYSCALL_TRACE 0 /* syscall trace active */ #define TIF_NOTIFY_RESUME 1 /* callback before returning to user */ #define TIF_SIGPENDING 2 /* signal pending */ #define TIF_NEED_RESCHED 3 /* rescheduling necessary */ #define TIF_SINGLESTEP 4 /* reenable singlestep on user return*/ #define TIF_SSBD 5 /* Speculative store bypass disable */ #define TIF_SYSCALL_EMU 6 /* syscall emulation active */ #define TIF_SYSCALL_AUDIT 7 /* syscall auditing active */ #define TIF_SECCOMP 8 /* secure computing */ #define TIF_SPEC_IB 9 /* Indirect branch speculation mitigation */ #define TIF_SPEC_FORCE_UPDATE 10 /* Force speculation MSR update in context switch */ #define TIF_USER_RETURN_NOTIFY 11 /* notify kernel of userspace return */ #define TIF_UPROBE 12 /* breakpointed or singlestepping */ #define TIF_PATCH_PENDING 13 /* pending live patching update */ #define TIF_NEED_FPU_LOAD 14 /* load FPU on return to userspace */ #define TIF_NOCPUID 15 /* CPUID is not accessible in userland */ #define TIF_NOTSC 16 /* TSC is not accessible in userland */ #define TIF_IA32 17 /* IA32 compatibility process */ #define TIF_SLD 18 /* Restore split lock detection on context switch */ #define TIF_MEMDIE 20 /* is terminating due to OOM killer */ #define TIF_POLLING_NRFLAG 21 /* idle is polling for TIF_NEED_RESCHED */ #define TIF_IO_BITMAP 22 /* uses I/O bitmap */ #define TIF_FORCED_TF 24 /* true if TF in eflags artificially */ #define TIF_BLOCKSTEP 25 /* set when we want DEBUGCTLMSR_BTF */ #define TIF_LAZY_MMU_UPDATES 27 /* task is updating the mmu lazily */ #define TIF_SYSCALL_TRACEPOINT 28 /* syscall tracepoint instrumentation */ #define TIF_ADDR32 29 /* 32-bit address space on 64 bits */ #define TIF_X32 30 /* 32-bit native x86-64 binary */ #define _TIF_SYSCALL_TRACE (1 << TIF_SYSCALL_TRACE) #define _TIF_NOTIFY_RESUME (1 << TIF_NOTIFY_RESUME) #define _TIF_SIGPENDING (1 << TIF_SIGPENDING) #define _TIF_NEED_RESCHED (1 << TIF_NEED_RESCHED) #define _TIF_SINGLESTEP (1 << TIF_SINGLESTEP) #define _TIF_SSBD (1 << TIF_SSBD) #define _TIF_SYSCALL_EMU (1 << TIF_SYSCALL_EMU) #define _TIF_SYSCALL_AUDIT (1 << TIF_SYSCALL_AUDIT) #define _TIF_SECCOMP (1 << TIF_SECCOMP) #define _TIF_SPEC_IB (1 << TIF_SPEC_IB) #define _TIF_SPEC_FORCE_UPDATE (1 << TIF_SPEC_FORCE_UPDATE) #define _TIF_USER_RETURN_NOTIFY (1 << TIF_USER_RETURN_NOTIFY) #define _TIF_UPROBE (1 << TIF_UPROBE) #define _TIF_PATCH_PENDING (1 << TIF_PATCH_PENDING) #define _TIF_NEED_FPU_LOAD (1 << TIF_NEED_FPU_LOAD) #define _TIF_NOCPUID (1 << TIF_NOCPUID) #define _TIF_NOTSC (1 << TIF_NOTSC) #define _TIF_IA32 (1 << TIF_IA32) #define _TIF_SLD (1 << TIF_SLD) #define _TIF_POLLING_NRFLAG (1 << TIF_POLLING_NRFLAG) #define _TIF_IO_BITMAP (1 << TIF_IO_BITMAP) #define _TIF_FORCED_TF (1 << TIF_FORCED_TF) #define _TIF_BLOCKSTEP (1 << TIF_BLOCKSTEP) #define _TIF_LAZY_MMU_UPDATES (1 << TIF_LAZY_MMU_UPDATES) #define _TIF_SYSCALL_TRACEPOINT (1 << TIF_SYSCALL_TRACEPOINT) #define _TIF_ADDR32 (1 << TIF_ADDR32) #define _TIF_X32 (1 << TIF_X32) /* flags to check in __switch_to() */ #define _TIF_WORK_CTXSW_BASE \ (_TIF_NOCPUID | _TIF_NOTSC | _TIF_BLOCKSTEP | \ _TIF_SSBD | _TIF_SPEC_FORCE_UPDATE | _TIF_SLD) /* * Avoid calls to __switch_to_xtra() on UP as STIBP is not evaluated. */ #ifdef CONFIG_SMP # define _TIF_WORK_CTXSW (_TIF_WORK_CTXSW_BASE | _TIF_SPEC_IB) #else # define _TIF_WORK_CTXSW (_TIF_WORK_CTXSW_BASE) #endif #ifdef CONFIG_X86_IOPL_IOPERM # define _TIF_WORK_CTXSW_PREV (_TIF_WORK_CTXSW| _TIF_USER_RETURN_NOTIFY | \ _TIF_IO_BITMAP) #else # define _TIF_WORK_CTXSW_PREV (_TIF_WORK_CTXSW| _TIF_USER_RETURN_NOTIFY) #endif #define _TIF_WORK_CTXSW_NEXT (_TIF_WORK_CTXSW) #define STACK_WARN (THREAD_SIZE/8) /* * macros/functions for gaining access to the thread information structure * * preempt_count needs to be 1 initially, until the scheduler is functional. */ #ifndef __ASSEMBLY__ /* * Walks up the stack frames to make sure that the specified object is * entirely contained by a single stack frame. * * Returns: * GOOD_FRAME if within a frame * BAD_STACK if placed across a frame boundary (or outside stack) * NOT_STACK unable to determine (no frame pointers, etc) */ static inline int arch_within_stack_frames(const void * const stack, const void * const stackend, const void *obj, unsigned long len) { #if defined(CONFIG_FRAME_POINTER) const void *frame = NULL; const void *oldframe; oldframe = __builtin_frame_address(1); if (oldframe) frame = __builtin_frame_address(2); /* * low ----------------------------------------------> high * [saved bp][saved ip][args][local vars][saved bp][saved ip] * ^----------------^ * allow copies only within here */ while (stack <= frame && frame < stackend) { /* * If obj + len extends past the last frame, this * check won't pass and the next frame will be 0, * causing us to bail out and correctly report * the copy as invalid. */ if (obj + len <= frame) return obj >= oldframe + 2 * sizeof(void *) ? GOOD_FRAME : BAD_STACK; oldframe = frame; frame = *(const void * const *)frame; } return BAD_STACK; #else return NOT_STACK; #endif } #else /* !__ASSEMBLY__ */ #ifdef CONFIG_X86_64 # define cpu_current_top_of_stack (cpu_tss_rw + TSS_sp1) #endif #endif /* * Thread-synchronous status. * * This is different from the flags in that nobody else * ever touches our thread-synchronous status, so we don't * have to worry about atomic accesses. */ #define TS_COMPAT 0x0002 /* 32bit syscall active (64BIT)*/ #ifndef __ASSEMBLY__ #ifdef CONFIG_COMPAT #define TS_I386_REGS_POKED 0x0004 /* regs poked by 32-bit ptracer */ #define TS_COMPAT_RESTART 0x0008 #define arch_set_restart_data arch_set_restart_data static inline void arch_set_restart_data(struct restart_block *restart) { struct thread_info *ti = current_thread_info(); if (ti->status & TS_COMPAT) ti->status |= TS_COMPAT_RESTART; else ti->status &= ~TS_COMPAT_RESTART; } #endif #ifdef CONFIG_X86_32 #define in_ia32_syscall() true #else #define in_ia32_syscall() (IS_ENABLED(CONFIG_IA32_EMULATION) && \ current_thread_info()->status & TS_COMPAT) #endif extern void arch_task_cache_init(void); extern int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src); extern void arch_release_task_struct(struct task_struct *tsk); extern void arch_setup_new_exec(void); #define arch_setup_new_exec arch_setup_new_exec #endif /* !__ASSEMBLY__ */ #endif /* _ASM_X86_THREAD_INFO_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_COMPAT_H #define _ASM_X86_COMPAT_H /* * Architecture specific compatibility types */ #include <linux/types.h> #include <linux/sched.h> #include <linux/sched/task_stack.h> #include <asm/processor.h> #include <asm/user32.h> #include <asm/unistd.h> #include <asm-generic/compat.h> #define COMPAT_USER_HZ 100 #define COMPAT_UTS_MACHINE "i686\0\0" typedef u16 __compat_uid_t; typedef u16 __compat_gid_t; typedef u32 __compat_uid32_t; typedef u32 __compat_gid32_t; typedef u16 compat_mode_t; typedef u16 compat_dev_t; typedef u16 compat_nlink_t; typedef u16 compat_ipc_pid_t; typedef u32 compat_caddr_t; typedef __kernel_fsid_t compat_fsid_t; struct compat_stat { compat_dev_t st_dev; u16 __pad1; compat_ino_t st_ino; compat_mode_t st_mode; compat_nlink_t st_nlink; __compat_uid_t st_uid; __compat_gid_t st_gid; compat_dev_t st_rdev; u16 __pad2; u32 st_size; u32 st_blksize; u32 st_blocks; u32 st_atime; u32 st_atime_nsec; u32 st_mtime; u32 st_mtime_nsec; u32 st_ctime; u32 st_ctime_nsec; u32 __unused4; u32 __unused5; }; struct compat_flock { short l_type; short l_whence; compat_off_t l_start; compat_off_t l_len; compat_pid_t l_pid; }; #define F_GETLK64 12 /* using 'struct flock64' */ #define F_SETLK64 13 #define F_SETLKW64 14 /* * IA32 uses 4 byte alignment for 64 bit quantities, * so we need to pack this structure. */ struct compat_flock64 { short l_type; short l_whence; compat_loff_t l_start; compat_loff_t l_len; compat_pid_t l_pid; } __attribute__((packed)); struct compat_statfs { int f_type; int f_bsize; int f_blocks; int f_bfree; int f_bavail; int f_files; int f_ffree; compat_fsid_t f_fsid; int f_namelen; /* SunOS ignores this field. */ int f_frsize; int f_flags; int f_spare[4]; }; #define COMPAT_RLIM_INFINITY 0xffffffff typedef u32 compat_old_sigset_t; /* at least 32 bits */ #define _COMPAT_NSIG 64 #define _COMPAT_NSIG_BPW 32 typedef u32 compat_sigset_word; #define COMPAT_OFF_T_MAX 0x7fffffff struct compat_ipc64_perm { compat_key_t key; __compat_uid32_t uid; __compat_gid32_t gid; __compat_uid32_t cuid; __compat_gid32_t cgid; unsigned short mode; unsigned short __pad1; unsigned short seq; unsigned short __pad2; compat_ulong_t unused1; compat_ulong_t unused2; }; struct compat_semid64_ds { struct compat_ipc64_perm sem_perm; compat_ulong_t sem_otime; compat_ulong_t sem_otime_high; compat_ulong_t sem_ctime; compat_ulong_t sem_ctime_high; compat_ulong_t sem_nsems; compat_ulong_t __unused3; compat_ulong_t __unused4; }; struct compat_msqid64_ds { struct compat_ipc64_perm msg_perm; compat_ulong_t msg_stime; compat_ulong_t msg_stime_high; compat_ulong_t msg_rtime; compat_ulong_t msg_rtime_high; compat_ulong_t msg_ctime; compat_ulong_t msg_ctime_high; compat_ulong_t msg_cbytes; compat_ulong_t msg_qnum; compat_ulong_t msg_qbytes; compat_pid_t msg_lspid; compat_pid_t msg_lrpid; compat_ulong_t __unused4; compat_ulong_t __unused5; }; struct compat_shmid64_ds { struct compat_ipc64_perm shm_perm; compat_size_t shm_segsz; compat_ulong_t shm_atime; compat_ulong_t shm_atime_high; compat_ulong_t shm_dtime; compat_ulong_t shm_dtime_high; compat_ulong_t shm_ctime; compat_ulong_t shm_ctime_high; compat_pid_t shm_cpid; compat_pid_t shm_lpid; compat_ulong_t shm_nattch; compat_ulong_t __unused4; compat_ulong_t __unused5; }; /* * The type of struct elf_prstatus.pr_reg in compatible core dumps. */ typedef struct user_regs_struct compat_elf_gregset_t; /* Full regset -- prstatus on x32, otherwise on ia32 */ #define PRSTATUS_SIZE(S, R) (R != sizeof(S.pr_reg) ? 144 : 296) #define SET_PR_FPVALID(S, V, R) \ do { *(int *) (((void *) &((S)->pr_reg)) + R) = (V); } \ while (0) #ifdef CONFIG_X86_X32_ABI #define COMPAT_USE_64BIT_TIME \ (!!(task_pt_regs(current)->orig_ax & __X32_SYSCALL_BIT)) #endif static inline void __user *arch_compat_alloc_user_space(long len) { compat_uptr_t sp; if (test_thread_flag(TIF_IA32)) { sp = task_pt_regs(current)->sp; } else { /* -128 for the x32 ABI redzone */ sp = task_pt_regs(current)->sp - 128; } return (void __user *)round_down(sp - len, 16); } static inline bool in_x32_syscall(void) { #ifdef CONFIG_X86_X32_ABI if (task_pt_regs(current)->orig_ax & __X32_SYSCALL_BIT) return true; #endif return false; } static inline bool in_32bit_syscall(void) { return in_ia32_syscall() || in_x32_syscall(); } #ifdef CONFIG_COMPAT static inline bool in_compat_syscall(void) { return in_32bit_syscall(); } #define in_compat_syscall in_compat_syscall /* override the generic impl */ #define compat_need_64bit_alignment_fixup in_ia32_syscall #endif struct compat_siginfo; #ifdef CONFIG_X86_X32_ABI int copy_siginfo_to_user32(struct compat_siginfo __user *to, const kernel_siginfo_t *from); #define copy_siginfo_to_user32 copy_siginfo_to_user32 #endif /* CONFIG_X86_X32_ABI */ #endif /* _ASM_X86_COMPAT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM percpu #if !defined(_TRACE_PERCPU_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_PERCPU_H #include <linux/tracepoint.h> TRACE_EVENT(percpu_alloc_percpu, TP_PROTO(bool reserved, bool is_atomic, size_t size, size_t align, void *base_addr, int off, void __percpu *ptr), TP_ARGS(reserved, is_atomic, size, align, base_addr, off, ptr), TP_STRUCT__entry( __field( bool, reserved ) __field( bool, is_atomic ) __field( size_t, size ) __field( size_t, align ) __field( void *, base_addr ) __field( int, off ) __field( void __percpu *, ptr ) ), TP_fast_assign( __entry->reserved = reserved; __entry->is_atomic = is_atomic; __entry->size = size; __entry->align = align; __entry->base_addr = base_addr; __entry->off = off; __entry->ptr = ptr; ), TP_printk("reserved=%d is_atomic=%d size=%zu align=%zu base_addr=%p off=%d ptr=%p", __entry->reserved, __entry->is_atomic, __entry->size, __entry->align, __entry->base_addr, __entry->off, __entry->ptr) ); TRACE_EVENT(percpu_free_percpu, TP_PROTO(void *base_addr, int off, void __percpu *ptr), TP_ARGS(base_addr, off, ptr), TP_STRUCT__entry( __field( void *, base_addr ) __field( int, off ) __field( void __percpu *, ptr ) ), TP_fast_assign( __entry->base_addr = base_addr; __entry->off = off; __entry->ptr = ptr; ), TP_printk("base_addr=%p off=%d ptr=%p", __entry->base_addr, __entry->off, __entry->ptr) ); TRACE_EVENT(percpu_alloc_percpu_fail, TP_PROTO(bool reserved, bool is_atomic, size_t size, size_t align), TP_ARGS(reserved, is_atomic, size, align), TP_STRUCT__entry( __field( bool, reserved ) __field( bool, is_atomic ) __field( size_t, size ) __field( size_t, align ) ), TP_fast_assign( __entry->reserved = reserved; __entry->is_atomic = is_atomic; __entry->size = size; __entry->align = align; ), TP_printk("reserved=%d is_atomic=%d size=%zu align=%zu", __entry->reserved, __entry->is_atomic, __entry->size, __entry->align) ); TRACE_EVENT(percpu_create_chunk, TP_PROTO(void *base_addr), TP_ARGS(base_addr), TP_STRUCT__entry( __field( void *, base_addr ) ), TP_fast_assign( __entry->base_addr = base_addr; ), TP_printk("base_addr=%p", __entry->base_addr) ); TRACE_EVENT(percpu_destroy_chunk, TP_PROTO(void *base_addr), TP_ARGS(base_addr), TP_STRUCT__entry( __field( void *, base_addr ) ), TP_fast_assign( __entry->base_addr = base_addr; ), TP_printk("base_addr=%p", __entry->base_addr) ); #endif /* _TRACE_PERCPU_H */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_ICMPV6_H #define _LINUX_ICMPV6_H #include <linux/skbuff.h> #include <linux/ipv6.h> #include <uapi/linux/icmpv6.h> static inline struct icmp6hdr *icmp6_hdr(const struct sk_buff *skb) { return (struct icmp6hdr *)skb_transport_header(skb); } #include <linux/netdevice.h> #if IS_ENABLED(CONFIG_IPV6) typedef void ip6_icmp_send_t(struct sk_buff *skb, u8 type, u8 code, __u32 info, const struct in6_addr *force_saddr, const struct inet6_skb_parm *parm); void icmp6_send(struct sk_buff *skb, u8 type, u8 code, __u32 info, const struct in6_addr *force_saddr, const struct inet6_skb_parm *parm); #if IS_BUILTIN(CONFIG_IPV6) static inline void __icmpv6_send(struct sk_buff *skb, u8 type, u8 code, __u32 info, const struct inet6_skb_parm *parm) { icmp6_send(skb, type, code, info, NULL, parm); } static inline int inet6_register_icmp_sender(ip6_icmp_send_t *fn) { BUILD_BUG_ON(fn != icmp6_send); return 0; } static inline int inet6_unregister_icmp_sender(ip6_icmp_send_t *fn) { BUILD_BUG_ON(fn != icmp6_send); return 0; } #else extern void __icmpv6_send(struct sk_buff *skb, u8 type, u8 code, __u32 info, const struct inet6_skb_parm *parm); extern int inet6_register_icmp_sender(ip6_icmp_send_t *fn); extern int inet6_unregister_icmp_sender(ip6_icmp_send_t *fn); #endif static inline void icmpv6_send(struct sk_buff *skb, u8 type, u8 code, __u32 info) { __icmpv6_send(skb, type, code, info, IP6CB(skb)); } int ip6_err_gen_icmpv6_unreach(struct sk_buff *skb, int nhs, int type, unsigned int data_len); #if IS_ENABLED(CONFIG_NF_NAT) void icmpv6_ndo_send(struct sk_buff *skb_in, u8 type, u8 code, __u32 info); #else static inline void icmpv6_ndo_send(struct sk_buff *skb_in, u8 type, u8 code, __u32 info) { struct inet6_skb_parm parm = { 0 }; __icmpv6_send(skb_in, type, code, info, &parm); } #endif #else static inline void icmpv6_send(struct sk_buff *skb, u8 type, u8 code, __u32 info) { } static inline void icmpv6_ndo_send(struct sk_buff *skb, u8 type, u8 code, __u32 info) { } #endif extern int icmpv6_init(void); extern int icmpv6_err_convert(u8 type, u8 code, int *err); extern void icmpv6_cleanup(void); extern void icmpv6_param_prob(struct sk_buff *skb, u8 code, int pos); struct flowi6; struct in6_addr; extern void icmpv6_flow_init(struct sock *sk, struct flowi6 *fl6, u8 type, const struct in6_addr *saddr, const struct in6_addr *daddr, int oif); static inline bool icmpv6_is_err(int type) { switch (type) { case ICMPV6_DEST_UNREACH: case ICMPV6_PKT_TOOBIG: case ICMPV6_TIME_EXCEED: case ICMPV6_PARAMPROB: return true; } return false; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_CPUMASK_H #define __LINUX_CPUMASK_H /* * Cpumasks provide a bitmap suitable for representing the * set of CPU's in a system, one bit position per CPU number. In general, * only nr_cpu_ids (<= NR_CPUS) bits are valid. */ #include <linux/kernel.h> #include <linux/threads.h> #include <linux/bitmap.h> #include <linux/atomic.h> #include <linux/bug.h> /* Don't assign or return these: may not be this big! */ typedef struct cpumask { DECLARE_BITMAP(bits, NR_CPUS); } cpumask_t; /** * cpumask_bits - get the bits in a cpumask * @maskp: the struct cpumask * * * You should only assume nr_cpu_ids bits of this mask are valid. This is * a macro so it's const-correct. */ #define cpumask_bits(maskp) ((maskp)->bits) /** * cpumask_pr_args - printf args to output a cpumask * @maskp: cpumask to be printed * * Can be used to provide arguments for '%*pb[l]' when printing a cpumask. */ #define cpumask_pr_args(maskp) nr_cpu_ids, cpumask_bits(maskp) #if NR_CPUS == 1 #define nr_cpu_ids 1U #else extern unsigned int nr_cpu_ids; #endif #ifdef CONFIG_CPUMASK_OFFSTACK /* Assuming NR_CPUS is huge, a runtime limit is more efficient. Also, * not all bits may be allocated. */ #define nr_cpumask_bits nr_cpu_ids #else #define nr_cpumask_bits ((unsigned int)NR_CPUS) #endif /* * The following particular system cpumasks and operations manage * possible, present, active and online cpus. * * cpu_possible_mask- has bit 'cpu' set iff cpu is populatable * cpu_present_mask - has bit 'cpu' set iff cpu is populated * cpu_online_mask - has bit 'cpu' set iff cpu available to scheduler * cpu_active_mask - has bit 'cpu' set iff cpu available to migration * * If !CONFIG_HOTPLUG_CPU, present == possible, and active == online. * * The cpu_possible_mask is fixed at boot time, as the set of CPU id's * that it is possible might ever be plugged in at anytime during the * life of that system boot. The cpu_present_mask is dynamic(*), * representing which CPUs are currently plugged in. And * cpu_online_mask is the dynamic subset of cpu_present_mask, * indicating those CPUs available for scheduling. * * If HOTPLUG is enabled, then cpu_possible_mask is forced to have * all NR_CPUS bits set, otherwise it is just the set of CPUs that * ACPI reports present at boot. * * If HOTPLUG is enabled, then cpu_present_mask varies dynamically, * depending on what ACPI reports as currently plugged in, otherwise * cpu_present_mask is just a copy of cpu_possible_mask. * * (*) Well, cpu_present_mask is dynamic in the hotplug case. If not * hotplug, it's a copy of cpu_possible_mask, hence fixed at boot. * * Subtleties: * 1) UP arch's (NR_CPUS == 1, CONFIG_SMP not defined) hardcode * assumption that their single CPU is online. The UP * cpu_{online,possible,present}_masks are placebos. Changing them * will have no useful affect on the following num_*_cpus() * and cpu_*() macros in the UP case. This ugliness is a UP * optimization - don't waste any instructions or memory references * asking if you're online or how many CPUs there are if there is * only one CPU. */ extern struct cpumask __cpu_possible_mask; extern struct cpumask __cpu_online_mask; extern struct cpumask __cpu_present_mask; extern struct cpumask __cpu_active_mask; #define cpu_possible_mask ((const struct cpumask *)&__cpu_possible_mask) #define cpu_online_mask ((const struct cpumask *)&__cpu_online_mask) #define cpu_present_mask ((const struct cpumask *)&__cpu_present_mask) #define cpu_active_mask ((const struct cpumask *)&__cpu_active_mask) extern atomic_t __num_online_cpus; #if NR_CPUS > 1 /** * num_online_cpus() - Read the number of online CPUs * * Despite the fact that __num_online_cpus is of type atomic_t, this * interface gives only a momentary snapshot and is not protected against * concurrent CPU hotplug operations unless invoked from a cpuhp_lock held * region. */ static inline unsigned int num_online_cpus(void) { return atomic_read(&__num_online_cpus); } #define num_possible_cpus() cpumask_weight(cpu_possible_mask) #define num_present_cpus() cpumask_weight(cpu_present_mask) #define num_active_cpus() cpumask_weight(cpu_active_mask) #define cpu_online(cpu) cpumask_test_cpu((cpu), cpu_online_mask) #define cpu_possible(cpu) cpumask_test_cpu((cpu), cpu_possible_mask) #define cpu_present(cpu) cpumask_test_cpu((cpu), cpu_present_mask) #define cpu_active(cpu) cpumask_test_cpu((cpu), cpu_active_mask) #else #define num_online_cpus() 1U #define num_possible_cpus() 1U #define num_present_cpus() 1U #define num_active_cpus() 1U #define cpu_online(cpu) ((cpu) == 0) #define cpu_possible(cpu) ((cpu) == 0) #define cpu_present(cpu) ((cpu) == 0) #define cpu_active(cpu) ((cpu) == 0) #endif extern cpumask_t cpus_booted_once_mask; static inline void cpu_max_bits_warn(unsigned int cpu, unsigned int bits) { #ifdef CONFIG_DEBUG_PER_CPU_MAPS WARN_ON_ONCE(cpu >= bits); #endif /* CONFIG_DEBUG_PER_CPU_MAPS */ } /* verify cpu argument to cpumask_* operators */ static inline unsigned int cpumask_check(unsigned int cpu) { cpu_max_bits_warn(cpu, nr_cpumask_bits); return cpu; } #if NR_CPUS == 1 /* Uniprocessor. Assume all masks are "1". */ static inline unsigned int cpumask_first(const struct cpumask *srcp) { return 0; } static inline unsigned int cpumask_last(const struct cpumask *srcp) { return 0; } /* Valid inputs for n are -1 and 0. */ static inline unsigned int cpumask_next(int n, const struct cpumask *srcp) { return n+1; } static inline unsigned int cpumask_next_zero(int n, const struct cpumask *srcp) { return n+1; } static inline unsigned int cpumask_next_and(int n, const struct cpumask *srcp, const struct cpumask *andp) { return n+1; } static inline unsigned int cpumask_next_wrap(int n, const struct cpumask *mask, int start, bool wrap) { /* cpu0 unless stop condition, wrap and at cpu0, then nr_cpumask_bits */ return (wrap && n == 0); } /* cpu must be a valid cpu, ie 0, so there's no other choice. */ static inline unsigned int cpumask_any_but(const struct cpumask *mask, unsigned int cpu) { return 1; } static inline unsigned int cpumask_local_spread(unsigned int i, int node) { return 0; } static inline int cpumask_any_and_distribute(const struct cpumask *src1p, const struct cpumask *src2p) { return cpumask_next_and(-1, src1p, src2p); } #define for_each_cpu(cpu, mask) \ for ((cpu) = 0; (cpu) < 1; (cpu)++, (void)mask) #define for_each_cpu_not(cpu, mask) \ for ((cpu) = 0; (cpu) < 1; (cpu)++, (void)mask) #define for_each_cpu_wrap(cpu, mask, start) \ for ((cpu) = 0; (cpu) < 1; (cpu)++, (void)mask, (void)(start)) #define for_each_cpu_and(cpu, mask1, mask2) \ for ((cpu) = 0; (cpu) < 1; (cpu)++, (void)mask1, (void)mask2) #else /** * cpumask_first - get the first cpu in a cpumask * @srcp: the cpumask pointer * * Returns >= nr_cpu_ids if no cpus set. */ static inline unsigned int cpumask_first(const struct cpumask *srcp) { return find_first_bit(cpumask_bits(srcp), nr_cpumask_bits); } /** * cpumask_last - get the last CPU in a cpumask * @srcp: - the cpumask pointer * * Returns >= nr_cpumask_bits if no CPUs set. */ static inline unsigned int cpumask_last(const struct cpumask *srcp) { return find_last_bit(cpumask_bits(srcp), nr_cpumask_bits); } unsigned int cpumask_next(int n, const struct cpumask *srcp); /** * cpumask_next_zero - get the next unset cpu in a cpumask * @n: the cpu prior to the place to search (ie. return will be > @n) * @srcp: the cpumask pointer * * Returns >= nr_cpu_ids if no further cpus unset. */ static inline unsigned int cpumask_next_zero(int n, const struct cpumask *srcp) { /* -1 is a legal arg here. */ if (n != -1) cpumask_check(n); return find_next_zero_bit(cpumask_bits(srcp), nr_cpumask_bits, n+1); } int cpumask_next_and(int n, const struct cpumask *, const struct cpumask *); int cpumask_any_but(const struct cpumask *mask, unsigned int cpu); unsigned int cpumask_local_spread(unsigned int i, int node); int cpumask_any_and_distribute(const struct cpumask *src1p, const struct cpumask *src2p); /** * for_each_cpu - iterate over every cpu in a mask * @cpu: the (optionally unsigned) integer iterator * @mask: the cpumask pointer * * After the loop, cpu is >= nr_cpu_ids. */ #define for_each_cpu(cpu, mask) \ for ((cpu) = -1; \ (cpu) = cpumask_next((cpu), (mask)), \ (cpu) < nr_cpu_ids;) /** * for_each_cpu_not - iterate over every cpu in a complemented mask * @cpu: the (optionally unsigned) integer iterator * @mask: the cpumask pointer * * After the loop, cpu is >= nr_cpu_ids. */ #define for_each_cpu_not(cpu, mask) \ for ((cpu) = -1; \ (cpu) = cpumask_next_zero((cpu), (mask)), \ (cpu) < nr_cpu_ids;) extern int cpumask_next_wrap(int n, const struct cpumask *mask, int start, bool wrap); /** * for_each_cpu_wrap - iterate over every cpu in a mask, starting at a specified location * @cpu: the (optionally unsigned) integer iterator * @mask: the cpumask poiter * @start: the start location * * The implementation does not assume any bit in @mask is set (including @start). * * After the loop, cpu is >= nr_cpu_ids. */ #define for_each_cpu_wrap(cpu, mask, start) \ for ((cpu) = cpumask_next_wrap((start)-1, (mask), (start), false); \ (cpu) < nr_cpumask_bits; \ (cpu) = cpumask_next_wrap((cpu), (mask), (start), true)) /** * for_each_cpu_and - iterate over every cpu in both masks * @cpu: the (optionally unsigned) integer iterator * @mask1: the first cpumask pointer * @mask2: the second cpumask pointer * * This saves a temporary CPU mask in many places. It is equivalent to: * struct cpumask tmp; * cpumask_and(&tmp, &mask1, &mask2); * for_each_cpu(cpu, &tmp) * ... * * After the loop, cpu is >= nr_cpu_ids. */ #define for_each_cpu_and(cpu, mask1, mask2) \ for ((cpu) = -1; \ (cpu) = cpumask_next_and((cpu), (mask1), (mask2)), \ (cpu) < nr_cpu_ids;) #endif /* SMP */ #define CPU_BITS_NONE \ { \ [0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \ } #define CPU_BITS_CPU0 \ { \ [0] = 1UL \ } /** * cpumask_set_cpu - set a cpu in a cpumask * @cpu: cpu number (< nr_cpu_ids) * @dstp: the cpumask pointer */ static inline void cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp) { set_bit(cpumask_check(cpu), cpumask_bits(dstp)); } static inline void __cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp) { __set_bit(cpumask_check(cpu), cpumask_bits(dstp)); } /** * cpumask_clear_cpu - clear a cpu in a cpumask * @cpu: cpu number (< nr_cpu_ids) * @dstp: the cpumask pointer */ static inline void cpumask_clear_cpu(int cpu, struct cpumask *dstp) { clear_bit(cpumask_check(cpu), cpumask_bits(dstp)); } static inline void __cpumask_clear_cpu(int cpu, struct cpumask *dstp) { __clear_bit(cpumask_check(cpu), cpumask_bits(dstp)); } /** * cpumask_test_cpu - test for a cpu in a cpumask * @cpu: cpu number (< nr_cpu_ids) * @cpumask: the cpumask pointer * * Returns 1 if @cpu is set in @cpumask, else returns 0 */ static inline int cpumask_test_cpu(int cpu, const struct cpumask *cpumask) { return test_bit(cpumask_check(cpu), cpumask_bits((cpumask))); } /** * cpumask_test_and_set_cpu - atomically test and set a cpu in a cpumask * @cpu: cpu number (< nr_cpu_ids) * @cpumask: the cpumask pointer * * Returns 1 if @cpu is set in old bitmap of @cpumask, else returns 0 * * test_and_set_bit wrapper for cpumasks. */ static inline int cpumask_test_and_set_cpu(int cpu, struct cpumask *cpumask) { return test_and_set_bit(cpumask_check(cpu), cpumask_bits(cpumask)); } /** * cpumask_test_and_clear_cpu - atomically test and clear a cpu in a cpumask * @cpu: cpu number (< nr_cpu_ids) * @cpumask: the cpumask pointer * * Returns 1 if @cpu is set in old bitmap of @cpumask, else returns 0 * * test_and_clear_bit wrapper for cpumasks. */ static inline int cpumask_test_and_clear_cpu(int cpu, struct cpumask *cpumask) { return test_and_clear_bit(cpumask_check(cpu), cpumask_bits(cpumask)); } /** * cpumask_setall - set all cpus (< nr_cpu_ids) in a cpumask * @dstp: the cpumask pointer */ static inline void cpumask_setall(struct cpumask *dstp) { bitmap_fill(cpumask_bits(dstp), nr_cpumask_bits); } /** * cpumask_clear - clear all cpus (< nr_cpu_ids) in a cpumask * @dstp: the cpumask pointer */ static inline void cpumask_clear(struct cpumask *dstp) { bitmap_zero(cpumask_bits(dstp), nr_cpumask_bits); } /** * cpumask_and - *dstp = *src1p & *src2p * @dstp: the cpumask result * @src1p: the first input * @src2p: the second input * * If *@dstp is empty, returns 0, else returns 1 */ static inline int cpumask_and(struct cpumask *dstp, const struct cpumask *src1p, const struct cpumask *src2p) { return bitmap_and(cpumask_bits(dstp), cpumask_bits(src1p), cpumask_bits(src2p), nr_cpumask_bits); } /** * cpumask_or - *dstp = *src1p | *src2p * @dstp: the cpumask result * @src1p: the first input * @src2p: the second input */ static inline void cpumask_or(struct cpumask *dstp, const struct cpumask *src1p, const struct cpumask *src2p) { bitmap_or(cpumask_bits(dstp), cpumask_bits(src1p), cpumask_bits(src2p), nr_cpumask_bits); } /** * cpumask_xor - *dstp = *src1p ^ *src2p * @dstp: the cpumask result * @src1p: the first input * @src2p: the second input */ static inline void cpumask_xor(struct cpumask *dstp, const struct cpumask *src1p, const struct cpumask *src2p) { bitmap_xor(cpumask_bits(dstp), cpumask_bits(src1p), cpumask_bits(src2p), nr_cpumask_bits); } /** * cpumask_andnot - *dstp = *src1p & ~*src2p * @dstp: the cpumask result * @src1p: the first input * @src2p: the second input * * If *@dstp is empty, returns 0, else returns 1 */ static inline int cpumask_andnot(struct cpumask *dstp, const struct cpumask *src1p, const struct cpumask *src2p) { return bitmap_andnot(cpumask_bits(dstp), cpumask_bits(src1p), cpumask_bits(src2p), nr_cpumask_bits); } /** * cpumask_complement - *dstp = ~*srcp * @dstp: the cpumask result * @srcp: the input to invert */ static inline void cpumask_complement(struct cpumask *dstp, const struct cpumask *srcp) { bitmap_complement(cpumask_bits(dstp), cpumask_bits(srcp), nr_cpumask_bits); } /** * cpumask_equal - *src1p == *src2p * @src1p: the first input * @src2p: the second input */ static inline bool cpumask_equal(const struct cpumask *src1p, const struct cpumask *src2p) { return bitmap_equal(cpumask_bits(src1p), cpumask_bits(src2p), nr_cpumask_bits); } /** * cpumask_or_equal - *src1p | *src2p == *src3p * @src1p: the first input * @src2p: the second input * @src3p: the third input */ static inline bool cpumask_or_equal(const struct cpumask *src1p, const struct cpumask *src2p, const struct cpumask *src3p) { return bitmap_or_equal(cpumask_bits(src1p), cpumask_bits(src2p), cpumask_bits(src3p), nr_cpumask_bits); } /** * cpumask_intersects - (*src1p & *src2p) != 0 * @src1p: the first input * @src2p: the second input */ static inline bool cpumask_intersects(const struct cpumask *src1p, const struct cpumask *src2p) { return bitmap_intersects(cpumask_bits(src1p), cpumask_bits(src2p), nr_cpumask_bits); } /** * cpumask_subset - (*src1p & ~*src2p) == 0 * @src1p: the first input * @src2p: the second input * * Returns 1 if *@src1p is a subset of *@src2p, else returns 0 */ static inline int cpumask_subset(const struct cpumask *src1p, const struct cpumask *src2p) { return bitmap_subset(cpumask_bits(src1p), cpumask_bits(src2p), nr_cpumask_bits); } /** * cpumask_empty - *srcp == 0 * @srcp: the cpumask to that all cpus < nr_cpu_ids are clear. */ static inline bool cpumask_empty(const struct cpumask *srcp) { return bitmap_empty(cpumask_bits(srcp), nr_cpumask_bits); } /** * cpumask_full - *srcp == 0xFFFFFFFF... * @srcp: the cpumask to that all cpus < nr_cpu_ids are set. */ static inline bool cpumask_full(const struct cpumask *srcp) { return bitmap_full(cpumask_bits(srcp), nr_cpumask_bits); } /** * cpumask_weight - Count of bits in *srcp * @srcp: the cpumask to count bits (< nr_cpu_ids) in. */ static inline unsigned int cpumask_weight(const struct cpumask *srcp) { return bitmap_weight(cpumask_bits(srcp), nr_cpumask_bits); } /** * cpumask_shift_right - *dstp = *srcp >> n * @dstp: the cpumask result * @srcp: the input to shift * @n: the number of bits to shift by */ static inline void cpumask_shift_right(struct cpumask *dstp, const struct cpumask *srcp, int n) { bitmap_shift_right(cpumask_bits(dstp), cpumask_bits(srcp), n, nr_cpumask_bits); } /** * cpumask_shift_left - *dstp = *srcp << n * @dstp: the cpumask result * @srcp: the input to shift * @n: the number of bits to shift by */ static inline void cpumask_shift_left(struct cpumask *dstp, const struct cpumask *srcp, int n) { bitmap_shift_left(cpumask_bits(dstp), cpumask_bits(srcp), n, nr_cpumask_bits); } /** * cpumask_copy - *dstp = *srcp * @dstp: the result * @srcp: the input cpumask */ static inline void cpumask_copy(struct cpumask *dstp, const struct cpumask *srcp) { bitmap_copy(cpumask_bits(dstp), cpumask_bits(srcp), nr_cpumask_bits); } /** * cpumask_any - pick a "random" cpu from *srcp * @srcp: the input cpumask * * Returns >= nr_cpu_ids if no cpus set. */ #define cpumask_any(srcp) cpumask_first(srcp) /** * cpumask_first_and - return the first cpu from *srcp1 & *srcp2 * @src1p: the first input * @src2p: the second input * * Returns >= nr_cpu_ids if no cpus set in both. See also cpumask_next_and(). */ #define cpumask_first_and(src1p, src2p) cpumask_next_and(-1, (src1p), (src2p)) /** * cpumask_any_and - pick a "random" cpu from *mask1 & *mask2 * @mask1: the first input cpumask * @mask2: the second input cpumask * * Returns >= nr_cpu_ids if no cpus set. */ #define cpumask_any_and(mask1, mask2) cpumask_first_and((mask1), (mask2)) /** * cpumask_of - the cpumask containing just a given cpu * @cpu: the cpu (<= nr_cpu_ids) */ #define cpumask_of(cpu) (get_cpu_mask(cpu)) /** * cpumask_parse_user - extract a cpumask from a user string * @buf: the buffer to extract from * @len: the length of the buffer * @dstp: the cpumask to set. * * Returns -errno, or 0 for success. */ static inline int cpumask_parse_user(const char __user *buf, int len, struct cpumask *dstp) { return bitmap_parse_user(buf, len, cpumask_bits(dstp), nr_cpumask_bits); } /** * cpumask_parselist_user - extract a cpumask from a user string * @buf: the buffer to extract from * @len: the length of the buffer * @dstp: the cpumask to set. * * Returns -errno, or 0 for success. */ static inline int cpumask_parselist_user(const char __user *buf, int len, struct cpumask *dstp) { return bitmap_parselist_user(buf, len, cpumask_bits(dstp), nr_cpumask_bits); } /** * cpumask_parse - extract a cpumask from a string * @buf: the buffer to extract from * @dstp: the cpumask to set. * * Returns -errno, or 0 for success. */ static inline int cpumask_parse(const char *buf, struct cpumask *dstp) { return bitmap_parse(buf, UINT_MAX, cpumask_bits(dstp), nr_cpumask_bits); } /** * cpulist_parse - extract a cpumask from a user string of ranges * @buf: the buffer to extract from * @dstp: the cpumask to set. * * Returns -errno, or 0 for success. */ static inline int cpulist_parse(const char *buf, struct cpumask *dstp) { return bitmap_parselist(buf, cpumask_bits(dstp), nr_cpumask_bits); } /** * cpumask_size - size to allocate for a 'struct cpumask' in bytes */ static inline unsigned int cpumask_size(void) { return BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long); } /* * cpumask_var_t: struct cpumask for stack usage. * * Oh, the wicked games we play! In order to make kernel coding a * little more difficult, we typedef cpumask_var_t to an array or a * pointer: doing &mask on an array is a noop, so it still works. * * ie. * cpumask_var_t tmpmask; * if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL)) * return -ENOMEM; * * ... use 'tmpmask' like a normal struct cpumask * ... * * free_cpumask_var(tmpmask); * * * However, one notable exception is there. alloc_cpumask_var() allocates * only nr_cpumask_bits bits (in the other hand, real cpumask_t always has * NR_CPUS bits). Therefore you don't have to dereference cpumask_var_t. * * cpumask_var_t tmpmask; * if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL)) * return -ENOMEM; * * var = *tmpmask; * * This code makes NR_CPUS length memcopy and brings to a memory corruption. * cpumask_copy() provide safe copy functionality. * * Note that there is another evil here: If you define a cpumask_var_t * as a percpu variable then the way to obtain the address of the cpumask * structure differently influences what this_cpu_* operation needs to be * used. Please use this_cpu_cpumask_var_t in those cases. The direct use * of this_cpu_ptr() or this_cpu_read() will lead to failures when the * other type of cpumask_var_t implementation is configured. * * Please also note that __cpumask_var_read_mostly can be used to declare * a cpumask_var_t variable itself (not its content) as read mostly. */ #ifdef CONFIG_CPUMASK_OFFSTACK typedef struct cpumask *cpumask_var_t; #define this_cpu_cpumask_var_ptr(x) this_cpu_read(x) #define __cpumask_var_read_mostly __read_mostly bool alloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node); bool alloc_cpumask_var(cpumask_var_t *mask, gfp_t flags); bool zalloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node); bool zalloc_cpumask_var(cpumask_var_t *mask, gfp_t flags); void alloc_bootmem_cpumask_var(cpumask_var_t *mask); void free_cpumask_var(cpumask_var_t mask); void free_bootmem_cpumask_var(cpumask_var_t mask); static inline bool cpumask_available(cpumask_var_t mask) { return mask != NULL; } #else typedef struct cpumask cpumask_var_t[1]; #define this_cpu_cpumask_var_ptr(x) this_cpu_ptr(x) #define __cpumask_var_read_mostly static inline bool alloc_cpumask_var(cpumask_var_t *mask, gfp_t flags) { return true; } static inline bool alloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node) { return true; } static inline bool zalloc_cpumask_var(cpumask_var_t *mask, gfp_t flags) { cpumask_clear(*mask); return true; } static inline bool zalloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node) { cpumask_clear(*mask); return true; } static inline void alloc_bootmem_cpumask_var(cpumask_var_t *mask) { } static inline void free_cpumask_var(cpumask_var_t mask) { } static inline void free_bootmem_cpumask_var(cpumask_var_t mask) { } static inline bool cpumask_available(cpumask_var_t mask) { return true; } #endif /* CONFIG_CPUMASK_OFFSTACK */ /* It's common to want to use cpu_all_mask in struct member initializers, * so it has to refer to an address rather than a pointer. */ extern const DECLARE_BITMAP(cpu_all_bits, NR_CPUS); #define cpu_all_mask to_cpumask(cpu_all_bits) /* First bits of cpu_bit_bitmap are in fact unset. */ #define cpu_none_mask to_cpumask(cpu_bit_bitmap[0]) #define for_each_possible_cpu(cpu) for_each_cpu((cpu), cpu_possible_mask) #define for_each_online_cpu(cpu) for_each_cpu((cpu), cpu_online_mask) #define for_each_present_cpu(cpu) for_each_cpu((cpu), cpu_present_mask) /* Wrappers for arch boot code to manipulate normally-constant masks */ void init_cpu_present(const struct cpumask *src); void init_cpu_possible(const struct cpumask *src); void init_cpu_online(const struct cpumask *src); static inline void reset_cpu_possible_mask(void) { bitmap_zero(cpumask_bits(&__cpu_possible_mask), NR_CPUS); } static inline void set_cpu_possible(unsigned int cpu, bool possible) { if (possible) cpumask_set_cpu(cpu, &__cpu_possible_mask); else cpumask_clear_cpu(cpu, &__cpu_possible_mask); } static inline void set_cpu_present(unsigned int cpu, bool present) { if (present) cpumask_set_cpu(cpu, &__cpu_present_mask); else cpumask_clear_cpu(cpu, &__cpu_present_mask); } void set_cpu_online(unsigned int cpu, bool online); static inline void set_cpu_active(unsigned int cpu, bool active) { if (active) cpumask_set_cpu(cpu, &__cpu_active_mask); else cpumask_clear_cpu(cpu, &__cpu_active_mask); } /** * to_cpumask - convert an NR_CPUS bitmap to a struct cpumask * * @bitmap: the bitmap * * There are a few places where cpumask_var_t isn't appropriate and * static cpumasks must be used (eg. very early boot), yet we don't * expose the definition of 'struct cpumask'. * * This does the conversion, and can be used as a constant initializer. */ #define to_cpumask(bitmap) \ ((struct cpumask *)(1 ? (bitmap) \ : (void *)sizeof(__check_is_bitmap(bitmap)))) static inline int __check_is_bitmap(const unsigned long *bitmap) { return 1; } /* * Special-case data structure for "single bit set only" constant CPU masks. * * We pre-generate all the 64 (or 32) possible bit positions, with enough * padding to the left and the right, and return the constant pointer * appropriately offset. */ extern const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)]; static inline const struct cpumask *get_cpu_mask(unsigned int cpu) { const unsigned long *p = cpu_bit_bitmap[1 + cpu % BITS_PER_LONG]; p -= cpu / BITS_PER_LONG; return to_cpumask(p); } #define cpu_is_offline(cpu) unlikely(!cpu_online(cpu)) #if NR_CPUS <= BITS_PER_LONG #define CPU_BITS_ALL \ { \ [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ } #else /* NR_CPUS > BITS_PER_LONG */ #define CPU_BITS_ALL \ { \ [0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \ [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ } #endif /* NR_CPUS > BITS_PER_LONG */ /** * cpumap_print_to_pagebuf - copies the cpumask into the buffer either * as comma-separated list of cpus or hex values of cpumask * @list: indicates whether the cpumap must be list * @mask: the cpumask to copy * @buf: the buffer to copy into * * Returns the length of the (null-terminated) @buf string, zero if * nothing is copied. */ static inline ssize_t cpumap_print_to_pagebuf(bool list, char *buf, const struct cpumask *mask) { return bitmap_print_to_pagebuf(list, buf, cpumask_bits(mask), nr_cpu_ids); } #if NR_CPUS <= BITS_PER_LONG #define CPU_MASK_ALL \ (cpumask_t) { { \ [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ } } #else #define CPU_MASK_ALL \ (cpumask_t) { { \ [0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \ [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ } } #endif /* NR_CPUS > BITS_PER_LONG */ #define CPU_MASK_NONE \ (cpumask_t) { { \ [0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \ } } #define CPU_MASK_CPU0 \ (cpumask_t) { { \ [0] = 1UL \ } } #endif /* __LINUX_CPUMASK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * linux/include/linux/jbd2.h * * Written by Stephen C. Tweedie <sct@redhat.com> * * Copyright 1998-2000 Red Hat, Inc --- All Rights Reserved * * Definitions for transaction data structures for the buffer cache * filesystem journaling support. */ #ifndef _LINUX_JBD2_H #define _LINUX_JBD2_H /* Allow this file to be included directly into e2fsprogs */ #ifndef __KERNEL__ #include "jfs_compat.h" #define JBD2_DEBUG #else #include <linux/types.h> #include <linux/buffer_head.h> #include <linux/journal-head.h> #include <linux/stddef.h> #include <linux/mutex.h> #include <linux/timer.h> #include <linux/slab.h> #include <linux/bit_spinlock.h> #include <linux/blkdev.h> #include <crypto/hash.h> #endif #define journal_oom_retry 1 /* * Define JBD2_PARANIOD_IOFAIL to cause a kernel BUG() if ext4 finds * certain classes of error which can occur due to failed IOs. Under * normal use we want ext4 to continue after such errors, because * hardware _can_ fail, but for debugging purposes when running tests on * known-good hardware we may want to trap these errors. */ #undef JBD2_PARANOID_IOFAIL /* * The default maximum commit age, in seconds. */ #define JBD2_DEFAULT_MAX_COMMIT_AGE 5 #ifdef CONFIG_JBD2_DEBUG /* * Define JBD2_EXPENSIVE_CHECKING to enable more expensive internal * consistency checks. By default we don't do this unless * CONFIG_JBD2_DEBUG is on. */ #define JBD2_EXPENSIVE_CHECKING extern ushort jbd2_journal_enable_debug; void __jbd2_debug(int level, const char *file, const char *func, unsigned int line, const char *fmt, ...); #define jbd_debug(n, fmt, a...) \ __jbd2_debug((n), __FILE__, __func__, __LINE__, (fmt), ##a) #else #define jbd_debug(n, fmt, a...) /**/ #endif extern void *jbd2_alloc(size_t size, gfp_t flags); extern void jbd2_free(void *ptr, size_t size); #define JBD2_MIN_JOURNAL_BLOCKS 1024 #define JBD2_MIN_FC_BLOCKS 256 #ifdef __KERNEL__ /** * typedef handle_t - The handle_t type represents a single atomic update being performed by some process. * * All filesystem modifications made by the process go * through this handle. Recursive operations (such as quota operations) * are gathered into a single update. * * The buffer credits field is used to account for journaled buffers * being modified by the running process. To ensure that there is * enough log space for all outstanding operations, we need to limit the * number of outstanding buffers possible at any time. When the * operation completes, any buffer credits not used are credited back to * the transaction, so that at all times we know how many buffers the * outstanding updates on a transaction might possibly touch. * * This is an opaque datatype. **/ typedef struct jbd2_journal_handle handle_t; /* Atomic operation type */ /** * typedef journal_t - The journal_t maintains all of the journaling state information for a single filesystem. * * journal_t is linked to from the fs superblock structure. * * We use the journal_t to keep track of all outstanding transaction * activity on the filesystem, and to manage the state of the log * writing process. * * This is an opaque datatype. **/ typedef struct journal_s journal_t; /* Journal control structure */ #endif /* * Internal structures used by the logging mechanism: */ #define JBD2_MAGIC_NUMBER 0xc03b3998U /* The first 4 bytes of /dev/random! */ /* * On-disk structures */ /* * Descriptor block types: */ #define JBD2_DESCRIPTOR_BLOCK 1 #define JBD2_COMMIT_BLOCK 2 #define JBD2_SUPERBLOCK_V1 3 #define JBD2_SUPERBLOCK_V2 4 #define JBD2_REVOKE_BLOCK 5 /* * Standard header for all descriptor blocks: */ typedef struct journal_header_s { __be32 h_magic; __be32 h_blocktype; __be32 h_sequence; } journal_header_t; /* * Checksum types. */ #define JBD2_CRC32_CHKSUM 1 #define JBD2_MD5_CHKSUM 2 #define JBD2_SHA1_CHKSUM 3 #define JBD2_CRC32C_CHKSUM 4 #define JBD2_CRC32_CHKSUM_SIZE 4 #define JBD2_CHECKSUM_BYTES (32 / sizeof(u32)) /* * Commit block header for storing transactional checksums: * * NOTE: If FEATURE_COMPAT_CHECKSUM (checksum v1) is set, the h_chksum* * fields are used to store a checksum of the descriptor and data blocks. * * If FEATURE_INCOMPAT_CSUM_V2 (checksum v2) is set, then the h_chksum * field is used to store crc32c(uuid+commit_block). Each journal metadata * block gets its own checksum, and data block checksums are stored in * journal_block_tag (in the descriptor). The other h_chksum* fields are * not used. * * If FEATURE_INCOMPAT_CSUM_V3 is set, the descriptor block uses * journal_block_tag3_t to store a full 32-bit checksum. Everything else * is the same as v2. * * Checksum v1, v2, and v3 are mutually exclusive features. */ struct commit_header { __be32 h_magic; __be32 h_blocktype; __be32 h_sequence; unsigned char h_chksum_type; unsigned char h_chksum_size; unsigned char h_padding[2]; __be32 h_chksum[JBD2_CHECKSUM_BYTES]; __be64 h_commit_sec; __be32 h_commit_nsec; }; /* * The block tag: used to describe a single buffer in the journal. * t_blocknr_high is only used if INCOMPAT_64BIT is set, so this * raw struct shouldn't be used for pointer math or sizeof() - use * journal_tag_bytes(journal) instead to compute this. */ typedef struct journal_block_tag3_s { __be32 t_blocknr; /* The on-disk block number */ __be32 t_flags; /* See below */ __be32 t_blocknr_high; /* most-significant high 32bits. */ __be32 t_checksum; /* crc32c(uuid+seq+block) */ } journal_block_tag3_t; typedef struct journal_block_tag_s { __be32 t_blocknr; /* The on-disk block number */ __be16 t_checksum; /* truncated crc32c(uuid+seq+block) */ __be16 t_flags; /* See below */ __be32 t_blocknr_high; /* most-significant high 32bits. */ } journal_block_tag_t; /* Tail of descriptor or revoke block, for checksumming */ struct jbd2_journal_block_tail { __be32 t_checksum; /* crc32c(uuid+descr_block) */ }; /* * The revoke descriptor: used on disk to describe a series of blocks to * be revoked from the log */ typedef struct jbd2_journal_revoke_header_s { journal_header_t r_header; __be32 r_count; /* Count of bytes used in the block */ } jbd2_journal_revoke_header_t; /* Definitions for the journal tag flags word: */ #define JBD2_FLAG_ESCAPE 1 /* on-disk block is escaped */ #define JBD2_FLAG_SAME_UUID 2 /* block has same uuid as previous */ #define JBD2_FLAG_DELETED 4 /* block deleted by this transaction */ #define JBD2_FLAG_LAST_TAG 8 /* last tag in this descriptor block */ /* * The journal superblock. All fields are in big-endian byte order. */ typedef struct journal_superblock_s { /* 0x0000 */ journal_header_t s_header; /* 0x000C */ /* Static information describing the journal */ __be32 s_blocksize; /* journal device blocksize */ __be32 s_maxlen; /* total blocks in journal file */ __be32 s_first; /* first block of log information */ /* 0x0018 */ /* Dynamic information describing the current state of the log */ __be32 s_sequence; /* first commit ID expected in log */ __be32 s_start; /* blocknr of start of log */ /* 0x0020 */ /* Error value, as set by jbd2_journal_abort(). */ __be32 s_errno; /* 0x0024 */ /* Remaining fields are only valid in a version-2 superblock */ __be32 s_feature_compat; /* compatible feature set */ __be32 s_feature_incompat; /* incompatible feature set */ __be32 s_feature_ro_compat; /* readonly-compatible feature set */ /* 0x0030 */ __u8 s_uuid[16]; /* 128-bit uuid for journal */ /* 0x0040 */ __be32 s_nr_users; /* Nr of filesystems sharing log */ __be32 s_dynsuper; /* Blocknr of dynamic superblock copy*/ /* 0x0048 */ __be32 s_max_transaction; /* Limit of journal blocks per trans.*/ __be32 s_max_trans_data; /* Limit of data blocks per trans. */ /* 0x0050 */ __u8 s_checksum_type; /* checksum type */ __u8 s_padding2[3]; /* 0x0054 */ __be32 s_num_fc_blks; /* Number of fast commit blocks */ /* 0x0058 */ __u32 s_padding[41]; __be32 s_checksum; /* crc32c(superblock) */ /* 0x0100 */ __u8 s_users[16*48]; /* ids of all fs'es sharing the log */ /* 0x0400 */ } journal_superblock_t; /* Use the jbd2_{has,set,clear}_feature_* helpers; these will be removed */ #define JBD2_HAS_COMPAT_FEATURE(j,mask) \ ((j)->j_format_version >= 2 && \ ((j)->j_superblock->s_feature_compat & cpu_to_be32((mask)))) #define JBD2_HAS_RO_COMPAT_FEATURE(j,mask) \ ((j)->j_format_version >= 2 && \ ((j)->j_superblock->s_feature_ro_compat & cpu_to_be32((mask)))) #define JBD2_HAS_INCOMPAT_FEATURE(j,mask) \ ((j)->j_format_version >= 2 && \ ((j)->j_superblock->s_feature_incompat & cpu_to_be32((mask)))) #define JBD2_FEATURE_COMPAT_CHECKSUM 0x00000001 #define JBD2_FEATURE_INCOMPAT_REVOKE 0x00000001 #define JBD2_FEATURE_INCOMPAT_64BIT 0x00000002 #define JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT 0x00000004 #define JBD2_FEATURE_INCOMPAT_CSUM_V2 0x00000008 #define JBD2_FEATURE_INCOMPAT_CSUM_V3 0x00000010 #define JBD2_FEATURE_INCOMPAT_FAST_COMMIT 0x00000020 /* See "journal feature predicate functions" below */ /* Features known to this kernel version: */ #define JBD2_KNOWN_COMPAT_FEATURES JBD2_FEATURE_COMPAT_CHECKSUM #define JBD2_KNOWN_ROCOMPAT_FEATURES 0 #define JBD2_KNOWN_INCOMPAT_FEATURES (JBD2_FEATURE_INCOMPAT_REVOKE | \ JBD2_FEATURE_INCOMPAT_64BIT | \ JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | \ JBD2_FEATURE_INCOMPAT_CSUM_V2 | \ JBD2_FEATURE_INCOMPAT_CSUM_V3 | \ JBD2_FEATURE_INCOMPAT_FAST_COMMIT) #ifdef __KERNEL__ #include <linux/fs.h> #include <linux/sched.h> enum jbd_state_bits { BH_JBD /* Has an attached ext3 journal_head */ = BH_PrivateStart, BH_JWrite, /* Being written to log (@@@ DEBUGGING) */ BH_Freed, /* Has been freed (truncated) */ BH_Revoked, /* Has been revoked from the log */ BH_RevokeValid, /* Revoked flag is valid */ BH_JBDDirty, /* Is dirty but journaled */ BH_JournalHead, /* Pins bh->b_private and jh->b_bh */ BH_Shadow, /* IO on shadow buffer is running */ BH_Verified, /* Metadata block has been verified ok */ BH_JBDPrivateStart, /* First bit available for private use by FS */ }; BUFFER_FNS(JBD, jbd) BUFFER_FNS(JWrite, jwrite) BUFFER_FNS(JBDDirty, jbddirty) TAS_BUFFER_FNS(JBDDirty, jbddirty) BUFFER_FNS(Revoked, revoked) TAS_BUFFER_FNS(Revoked, revoked) BUFFER_FNS(RevokeValid, revokevalid) TAS_BUFFER_FNS(RevokeValid, revokevalid) BUFFER_FNS(Freed, freed) BUFFER_FNS(Shadow, shadow) BUFFER_FNS(Verified, verified) static inline struct buffer_head *jh2bh(struct journal_head *jh) { return jh->b_bh; } static inline struct journal_head *bh2jh(struct buffer_head *bh) { return bh->b_private; } static inline void jbd_lock_bh_journal_head(struct buffer_head *bh) { bit_spin_lock(BH_JournalHead, &bh->b_state); } static inline void jbd_unlock_bh_journal_head(struct buffer_head *bh) { bit_spin_unlock(BH_JournalHead, &bh->b_state); } #define J_ASSERT(assert) BUG_ON(!(assert)) #define J_ASSERT_BH(bh, expr) J_ASSERT(expr) #define J_ASSERT_JH(jh, expr) J_ASSERT(expr) #if defined(JBD2_PARANOID_IOFAIL) #define J_EXPECT(expr, why...) J_ASSERT(expr) #define J_EXPECT_BH(bh, expr, why...) J_ASSERT_BH(bh, expr) #define J_EXPECT_JH(jh, expr, why...) J_ASSERT_JH(jh, expr) #else #define __journal_expect(expr, why...) \ ({ \ int val = (expr); \ if (!val) { \ printk(KERN_ERR \ "JBD2 unexpected failure: %s: %s;\n", \ __func__, #expr); \ printk(KERN_ERR why "\n"); \ } \ val; \ }) #define J_EXPECT(expr, why...) __journal_expect(expr, ## why) #define J_EXPECT_BH(bh, expr, why...) __journal_expect(expr, ## why) #define J_EXPECT_JH(jh, expr, why...) __journal_expect(expr, ## why) #endif /* Flags in jbd_inode->i_flags */ #define __JI_COMMIT_RUNNING 0 #define __JI_WRITE_DATA 1 #define __JI_WAIT_DATA 2 /* * Commit of the inode data in progress. We use this flag to protect us from * concurrent deletion of inode. We cannot use reference to inode for this * since we cannot afford doing last iput() on behalf of kjournald */ #define JI_COMMIT_RUNNING (1 << __JI_COMMIT_RUNNING) /* Write allocated dirty buffers in this inode before commit */ #define JI_WRITE_DATA (1 << __JI_WRITE_DATA) /* Wait for outstanding data writes for this inode before commit */ #define JI_WAIT_DATA (1 << __JI_WAIT_DATA) /** * struct jbd2_inode - The jbd_inode type is the structure linking inodes in * ordered mode present in a transaction so that we can sync them during commit. */ struct jbd2_inode { /** * @i_transaction: * * Which transaction does this inode belong to? Either the running * transaction or the committing one. [j_list_lock] */ transaction_t *i_transaction; /** * @i_next_transaction: * * Pointer to the running transaction modifying inode's data in case * there is already a committing transaction touching it. [j_list_lock] */ transaction_t *i_next_transaction; /** * @i_list: List of inodes in the i_transaction [j_list_lock] */ struct list_head i_list; /** * @i_vfs_inode: * * VFS inode this inode belongs to [constant for lifetime of structure] */ struct inode *i_vfs_inode; /** * @i_flags: Flags of inode [j_list_lock] */ unsigned long i_flags; /** * @i_dirty_start: * * Offset in bytes where the dirty range for this inode starts. * [j_list_lock] */ loff_t i_dirty_start; /** * @i_dirty_end: * * Inclusive offset in bytes where the dirty range for this inode * ends. [j_list_lock] */ loff_t i_dirty_end; }; struct jbd2_revoke_table_s; /** * struct jbd2_journal_handle - The jbd2_journal_handle type is the concrete * type associated with handle_t. * @h_transaction: Which compound transaction is this update a part of? * @h_journal: Which journal handle belongs to - used iff h_reserved set. * @h_rsv_handle: Handle reserved for finishing the logical operation. * @h_total_credits: Number of remaining buffers we are allowed to add to * journal. These are dirty buffers and revoke descriptor blocks. * @h_revoke_credits: Number of remaining revoke records available for handle * @h_ref: Reference count on this handle. * @h_err: Field for caller's use to track errors through large fs operations. * @h_sync: Flag for sync-on-close. * @h_jdata: Flag to force data journaling. * @h_reserved: Flag for handle for reserved credits. * @h_aborted: Flag indicating fatal error on handle. * @h_type: For handle statistics. * @h_line_no: For handle statistics. * @h_start_jiffies: Handle Start time. * @h_requested_credits: Holds @h_total_credits after handle is started. * @h_revoke_credits_requested: Holds @h_revoke_credits after handle is started. * @saved_alloc_context: Saved context while transaction is open. **/ /* Docbook can't yet cope with the bit fields, but will leave the documentation * in so it can be fixed later. */ struct jbd2_journal_handle { union { transaction_t *h_transaction; /* Which journal handle belongs to - used iff h_reserved set */ journal_t *h_journal; }; handle_t *h_rsv_handle; int h_total_credits; int h_revoke_credits; int h_revoke_credits_requested; int h_ref; int h_err; /* Flags [no locking] */ unsigned int h_sync: 1; unsigned int h_jdata: 1; unsigned int h_reserved: 1; unsigned int h_aborted: 1; unsigned int h_type: 8; unsigned int h_line_no: 16; unsigned long h_start_jiffies; unsigned int h_requested_credits; unsigned int saved_alloc_context; }; /* * Some stats for checkpoint phase */ struct transaction_chp_stats_s { unsigned long cs_chp_time; __u32 cs_forced_to_close; __u32 cs_written; __u32 cs_dropped; }; /* The transaction_t type is the guts of the journaling mechanism. It * tracks a compound transaction through its various states: * * RUNNING: accepting new updates * LOCKED: Updates still running but we don't accept new ones * RUNDOWN: Updates are tidying up but have finished requesting * new buffers to modify (state not used for now) * FLUSH: All updates complete, but we are still writing to disk * COMMIT: All data on disk, writing commit record * FINISHED: We still have to keep the transaction for checkpointing. * * The transaction keeps track of all of the buffers modified by a * running transaction, and all of the buffers committed but not yet * flushed to home for finished transactions. */ /* * Lock ranking: * * j_list_lock * ->jbd_lock_bh_journal_head() (This is "innermost") * * j_state_lock * ->b_state_lock * * b_state_lock * ->j_list_lock * * j_state_lock * ->t_handle_lock * * j_state_lock * ->j_list_lock (journal_unmap_buffer) * */ struct transaction_s { /* Pointer to the journal for this transaction. [no locking] */ journal_t *t_journal; /* Sequence number for this transaction [no locking] */ tid_t t_tid; /* * Transaction's current state * [no locking - only kjournald2 alters this] * [j_list_lock] guards transition of a transaction into T_FINISHED * state and subsequent call of __jbd2_journal_drop_transaction() * FIXME: needs barriers * KLUDGE: [use j_state_lock] */ enum { T_RUNNING, T_LOCKED, T_SWITCH, T_FLUSH, T_COMMIT, T_COMMIT_DFLUSH, T_COMMIT_JFLUSH, T_COMMIT_CALLBACK, T_FINISHED } t_state; /* * Where in the log does this transaction's commit start? [no locking] */ unsigned long t_log_start; /*