1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _BLOCK_BLK_PM_H_ #define _BLOCK_BLK_PM_H_ #include <linux/pm_runtime.h> #ifdef CONFIG_PM static inline int blk_pm_resume_queue(const bool pm, struct request_queue *q) { if (!q->dev || !blk_queue_pm_only(q)) return 1; /* Nothing to do */ if (pm && q->rpm_status != RPM_SUSPENDED) return 1; /* Request allowed */ pm_request_resume(q->dev); return 0; } static inline void blk_pm_mark_last_busy(struct request *rq) { if (rq->q->dev && !(rq->rq_flags & RQF_PM)) pm_runtime_mark_last_busy(rq->q->dev); } static inline void blk_pm_requeue_request(struct request *rq) { lockdep_assert_held(&rq->q->queue_lock); if (rq->q->dev && !(rq->rq_flags & RQF_PM)) rq->q->nr_pending--; } static inline void blk_pm_add_request(struct request_queue *q, struct request *rq) { lockdep_assert_held(&q->queue_lock); if (q->dev && !(rq->rq_flags & RQF_PM)) q->nr_pending++; } static inline void blk_pm_put_request(struct request *rq) { lockdep_assert_held(&rq->q->queue_lock); if (rq->q->dev && !(rq->rq_flags & RQF_PM)) --rq->q->nr_pending; } #else static inline int blk_pm_resume_queue(const bool pm, struct request_queue *q) { return 1; } static inline void blk_pm_mark_last_busy(struct request *rq) { } static inline void blk_pm_requeue_request(struct request *rq) { } static inline void blk_pm_add_request(struct request_queue *q, struct request *rq) { } static inline void blk_pm_put_request(struct request *rq) { } #endif #endif /* _BLOCK_BLK_PM_H_ */
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _X86_IRQFLAGS_H_ #define _X86_IRQFLAGS_H_ #include <asm/processor-flags.h> #ifndef __ASSEMBLY__ #include <asm/nospec-branch.h> /* Provide __cpuidle; we can't safely include <linux/cpu.h> */ #define __cpuidle __section(".cpuidle.text") /* * Interrupt control: */ /* Declaration required for gcc < 4.9 to prevent -Werror=missing-prototypes */ extern inline unsigned long native_save_fl(void); extern __always_inline unsigned long native_save_fl(void) { unsigned long flags; /* * "=rm" is safe here, because "pop" adjusts the stack before * it evaluates its effective address -- this is part of the * documented behavior of the "pop" instruction. */ asm volatile("# __raw_save_flags\n\t" "pushf ; pop %0" : "=rm" (flags) : /* no input */ : "memory"); return flags; } extern inline void native_restore_fl(unsigned long flags); extern inline void native_restore_fl(unsigned long flags) { asm volatile("push %0 ; popf" : /* no output */ :"g" (flags) :"memory", "cc"); } static __always_inline void native_irq_disable(void) { asm volatile("cli": : :"memory"); } static __always_inline void native_irq_enable(void) { asm volatile("sti": : :"memory"); } static inline __cpuidle void native_safe_halt(void) { mds_idle_clear_cpu_buffers(); asm volatile("sti; hlt": : :"memory"); } static inline __cpuidle void native_halt(void) { mds_idle_clear_cpu_buffers(); asm volatile("hlt": : :"memory"); } #endif #ifdef CONFIG_PARAVIRT_XXL #include <asm/paravirt.h> #else #ifndef __ASSEMBLY__ #include <linux/types.h> static __always_inline unsigned long arch_local_save_flags(void) { return native_save_fl(); } static __always_inline void arch_local_irq_restore(unsigned long flags) { native_restore_fl(flags); } static __always_inline void arch_local_irq_disable(void) { native_irq_disable(); } static __always_inline void arch_local_irq_enable(void) { native_irq_enable(); } /* * Used in the idle loop; sti takes one instruction cycle * to complete: */ static inline __cpuidle void arch_safe_halt(void) { native_safe_halt(); } /* * Used when interrupts are already enabled or to * shutdown the processor: */ static inline __cpuidle void halt(void) { native_halt(); } /* * For spinlocks, etc: */ static __always_inline unsigned long arch_local_irq_save(void) { unsigned long flags = arch_local_save_flags(); arch_local_irq_disable(); return flags; } #else #define ENABLE_INTERRUPTS(x) sti #define DISABLE_INTERRUPTS(x) cli #ifdef CONFIG_X86_64 #ifdef CONFIG_DEBUG_ENTRY #define SAVE_FLAGS(x) pushfq; popq %rax #endif #define INTERRUPT_RETURN jmp native_iret #define USERGS_SYSRET64 \ swapgs; \ sysretq; #define USERGS_SYSRET32 \ swapgs; \ sysretl #else #define INTERRUPT_RETURN iret #endif #endif /* __ASSEMBLY__ */ #endif /* CONFIG_PARAVIRT_XXL */ #ifndef __ASSEMBLY__ static __always_inline int arch_irqs_disabled_flags(unsigned long flags) { return !(flags & X86_EFLAGS_IF); } static __always_inline int arch_irqs_disabled(void) { unsigned long flags = arch_local_save_flags(); return arch_irqs_disabled_flags(flags); } #else #ifdef CONFIG_X86_64 #ifdef CONFIG_XEN_PV #define SWAPGS ALTERNATIVE "swapgs", "", X86_FEATURE_XENPV #else #define SWAPGS swapgs #endif #endif #endif /* !__ASSEMBLY__ */ #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_PATH_H #define _LINUX_PATH_H struct dentry; struct vfsmount; struct path { struct vfsmount *mnt; struct dentry *dentry; } __randomize_layout; extern void path_get(const struct path *); extern void path_put(const struct path *); static inline int path_equal(const struct path *path1, const struct path *path2) { return path1->mnt == path2->mnt && path1->dentry == path2->dentry; } static inline void path_put_init(struct path *path) { path_put(path); *path = (struct path) { }; } #endif /* _LINUX_PATH_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __INCLUDE_LINUX_OOM_H #define __INCLUDE_LINUX_OOM_H #include <linux/sched/signal.h> #include <linux/types.h> #include <linux/nodemask.h> #include <uapi/linux/oom.h> #include <linux/sched/coredump.h> /* MMF_* */ #include <linux/mm.h> /* VM_FAULT* */ struct zonelist; struct notifier_block; struct mem_cgroup; struct task_struct; enum oom_constraint { CONSTRAINT_NONE, CONSTRAINT_CPUSET, CONSTRAINT_MEMORY_POLICY, CONSTRAINT_MEMCG, }; /* * Details of the page allocation that triggered the oom killer that are used to * determine what should be killed. */ struct oom_control { /* Used to determine cpuset */ struct zonelist *zonelist; /* Used to determine mempolicy */ nodemask_t *nodemask; /* Memory cgroup in which oom is invoked, or NULL for global oom */ struct mem_cgroup *memcg; /* Used to determine cpuset and node locality requirement */ const gfp_t gfp_mask; /* * order == -1 means the oom kill is required by sysrq, otherwise only * for display purposes. */ const int order; /* Used by oom implementation, do not set */ unsigned long totalpages; struct task_struct *chosen; long chosen_points; /* Used to print the constraint info. */ enum oom_constraint constraint; }; extern struct mutex oom_lock; extern struct mutex oom_adj_mutex; static inline void set_current_oom_origin(void) { current->signal->oom_flag_origin = true; } static inline void clear_current_oom_origin(void) { current->signal->oom_flag_origin = false; } static inline bool oom_task_origin(const struct task_struct *p) { return p->signal->oom_flag_origin; } static inline bool tsk_is_oom_victim(struct task_struct * tsk) { return tsk->signal->oom_mm; } /* * Use this helper if tsk->mm != mm and the victim mm needs a special * handling. This is guaranteed to stay true after once set. */ static inline bool mm_is_oom_victim(struct mm_struct *mm) { return test_bit(MMF_OOM_VICTIM, &mm->flags); } /* * Checks whether a page fault on the given mm is still reliable. * This is no longer true if the oom reaper started to reap the * address space which is reflected by MMF_UNSTABLE flag set in * the mm. At that moment any !shared mapping would lose the content * and could cause a memory corruption (zero pages instead of the * original content). * * User should call this before establishing a page table entry for * a !shared mapping and under the proper page table lock. * * Return 0 when the PF is safe VM_FAULT_SIGBUS otherwise. */ static inline vm_fault_t check_stable_address_space(struct mm_struct *mm) { if (unlikely(test_bit(MMF_UNSTABLE, &mm->flags))) return VM_FAULT_SIGBUS; return 0; } bool __oom_reap_task_mm(struct mm_struct *mm); long oom_badness(struct task_struct *p, unsigned long totalpages); extern bool out_of_memory(struct oom_control *oc); extern void exit_oom_victim(void); extern int register_oom_notifier(struct notifier_block *nb); extern int unregister_oom_notifier(struct notifier_block *nb); extern bool oom_killer_disable(signed long timeout); extern void oom_killer_enable(void); extern struct task_struct *find_lock_task_mm(struct task_struct *p); /* sysctls */ extern int sysctl_oom_dump_tasks; extern int sysctl_oom_kill_allocating_task; extern int sysctl_panic_on_oom; #endif /* _INCLUDE_LINUX_OOM_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Definitions for the AF_INET socket handler. * * Version: @(#)sock.h 1.0.4 05/13/93 * * Authors: Ross Biro * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> * Corey Minyard <wf-rch!minyard@relay.EU.net> * Florian La Roche <flla@stud.uni-sb.de> * * Fixes: * Alan Cox : Volatiles in skbuff pointers. See * skbuff comments. May be overdone, * better to prove they can be removed * than the reverse. * Alan Cox : Added a zapped field for tcp to note * a socket is reset and must stay shut up * Alan Cox : New fields for options * Pauline Middelink : identd support * Alan Cox : Eliminate low level recv/recvfrom * David S. Miller : New socket lookup architecture. * Steve Whitehouse: Default routines for sock_ops * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made * protinfo be just a void pointer, as the * protocol specific parts were moved to * respective headers and ipv4/v6, etc now * use private slabcaches for its socks * Pedro Hortas : New flags field for socket options */ #ifndef _SOCK_H #define _SOCK_H #include <linux/hardirq.h> #include <linux/kernel.h> #include <linux/list.h> #include <linux/list_nulls.h> #include <linux/timer.h> #include <linux/cache.h> #include <linux/bitops.h> #include <linux/lockdep.h> #include <linux/netdevice.h> #include <linux/skbuff.h> /* struct sk_buff */ #include <linux/mm.h> #include <linux/security.h> #include <linux/slab.h> #include <linux/uaccess.h> #include <linux/page_counter.h> #include <linux/memcontrol.h> #include <linux/static_key.h> #include <linux/sched.h> #include <linux/wait.h> #include <linux/cgroup-defs.h> #include <linux/rbtree.h> #include <linux/filter.h> #include <linux/rculist_nulls.h> #include <linux/poll.h> #include <linux/sockptr.h> #include <linux/atomic.h> #include <linux/refcount.h> #include <net/dst.h> #include <net/checksum.h> #include <net/tcp_states.h> #include <linux/net_tstamp.h> #include <net/l3mdev.h> /* * This structure really needs to be cleaned up. * Most of it is for TCP, and not used by any of * the other protocols. */ /* Define this to get the SOCK_DBG debugging facility. */ #define SOCK_DEBUGGING #ifdef SOCK_DEBUGGING #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \ printk(KERN_DEBUG msg); } while (0) #else /* Validate arguments and do nothing */ static inline __printf(2, 3) void SOCK_DEBUG(const struct sock *sk, const char *msg, ...) { } #endif /* This is the per-socket lock. The spinlock provides a synchronization * between user contexts and software interrupt processing, whereas the * mini-semaphore synchronizes multiple users amongst themselves. */ typedef struct { spinlock_t slock; int owned; wait_queue_head_t wq; /* * We express the mutex-alike socket_lock semantics * to the lock validator by explicitly managing * the slock as a lock variant (in addition to * the slock itself): */ #ifdef CONFIG_DEBUG_LOCK_ALLOC struct lockdep_map dep_map; #endif } socket_lock_t; struct sock; struct proto; struct net; typedef __u32 __bitwise __portpair; typedef __u64 __bitwise __addrpair; /** * struct sock_common - minimal network layer representation of sockets * @skc_daddr: Foreign IPv4 addr * @skc_rcv_saddr: Bound local IPv4 addr * @skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr * @skc_hash: hash value used with various protocol lookup tables * @skc_u16hashes: two u16 hash values used by UDP lookup tables * @skc_dport: placeholder for inet_dport/tw_dport * @skc_num: placeholder for inet_num/tw_num * @skc_portpair: __u32 union of @skc_dport & @skc_num * @skc_family: network address family * @skc_state: Connection state * @skc_reuse: %SO_REUSEADDR setting * @skc_reuseport: %SO_REUSEPORT setting * @skc_ipv6only: socket is IPV6 only * @skc_net_refcnt: socket is using net ref counting * @skc_bound_dev_if: bound device index if != 0 * @skc_bind_node: bind hash linkage for various protocol lookup tables * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol * @skc_prot: protocol handlers inside a network family * @skc_net: reference to the network namespace of this socket * @skc_v6_daddr: IPV6 destination address * @skc_v6_rcv_saddr: IPV6 source address * @skc_cookie: socket's cookie value * @skc_node: main hash linkage for various protocol lookup tables * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol * @skc_tx_queue_mapping: tx queue number for this connection * @skc_rx_queue_mapping: rx queue number for this connection * @skc_flags: place holder for sk_flags * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings * @skc_listener: connection request listener socket (aka rsk_listener) * [union with @skc_flags] * @skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row * [union with @skc_flags] * @skc_incoming_cpu: record/match cpu processing incoming packets * @skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled) * [union with @skc_incoming_cpu] * @skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number * [union with @skc_incoming_cpu] * @skc_refcnt: reference count * * This is the minimal network layer representation of sockets, the header * for struct sock and struct inet_timewait_sock. */ struct sock_common { /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned * address on 64bit arches : cf INET_MATCH() */ union { __addrpair skc_addrpair; struct { __be32 skc_daddr; __be32 skc_rcv_saddr; }; }; union { unsigned int skc_hash; __u16 skc_u16hashes[2]; }; /* skc_dport && skc_num must be grouped as well */ union { __portpair skc_portpair; struct { __be16 skc_dport; __u16 skc_num; }; }; unsigned short skc_family; volatile unsigned char skc_state; unsigned char skc_reuse:4; unsigned char skc_reuseport:1; unsigned char skc_ipv6only:1; unsigned char skc_net_refcnt:1; int skc_bound_dev_if; union { struct hlist_node skc_bind_node; struct hlist_node skc_portaddr_node; }; struct proto *skc_prot; possible_net_t skc_net; #if IS_ENABLED(CONFIG_IPV6) struct in6_addr skc_v6_daddr; struct in6_addr skc_v6_rcv_saddr; #endif atomic64_t skc_cookie; /* following fields are padding to force * offset(struct sock, sk_refcnt) == 128 on 64bit arches * assuming IPV6 is enabled. We use this padding differently * for different kind of 'sockets' */ union { unsigned long skc_flags; struct sock *skc_listener; /* request_sock */ struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */ }; /* * fields between dontcopy_begin/dontcopy_end * are not copied in sock_copy() */ /* private: */ int skc_dontcopy_begin[0]; /* public: */ union { struct hlist_node skc_node; struct hlist_nulls_node skc_nulls_node; }; unsigned short skc_tx_queue_mapping; #ifdef CONFIG_XPS unsigned short skc_rx_queue_mapping; #endif union { int skc_incoming_cpu; u32 skc_rcv_wnd; u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */ }; refcount_t skc_refcnt; /* private: */ int skc_dontcopy_end[0]; union { u32 skc_rxhash; u32 skc_window_clamp; u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */ }; /* public: */ }; struct bpf_local_storage; /** * struct sock - network layer representation of sockets * @__sk_common: shared layout with inet_timewait_sock * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings * @sk_lock: synchronizer * @sk_kern_sock: True if sock is using kernel lock classes * @sk_rcvbuf: size of receive buffer in bytes * @sk_wq: sock wait queue and async head * @sk_rx_dst: receive input route used by early demux * @sk_dst_cache: destination cache * @sk_dst_pending_confirm: need to confirm neighbour * @sk_policy: flow policy * @sk_rx_skb_cache: cache copy of recently accessed RX skb * @sk_receive_queue: incoming packets * @sk_wmem_alloc: transmit queue bytes committed * @sk_tsq_flags: TCP Small Queues flags * @sk_write_queue: Packet sending queue * @sk_omem_alloc: "o" is "option" or "other" * @sk_wmem_queued: persistent queue size * @sk_forward_alloc: space allocated forward * @sk_napi_id: id of the last napi context to receive data for sk * @sk_ll_usec: usecs to busypoll when there is no data * @sk_allocation: allocation mode * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler) * @sk_pacing_status: Pacing status (requested, handled by sch_fq) * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE) * @sk_sndbuf: size of send buffer in bytes * @__sk_flags_offset: empty field used to determine location of bitfield * @sk_padding: unused element for alignment * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets * @sk_no_check_rx: allow zero checksum in RX packets * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK) * @sk_route_forced_caps: static, forced route capabilities * (set in tcp_init_sock()) * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4) * @sk_gso_max_size: Maximum GSO segment size to build * @sk_gso_max_segs: Maximum number of GSO segments * @sk_pacing_shift: scaling factor for TCP Small Queues * @sk_lingertime: %SO_LINGER l_linger setting * @sk_backlog: always used with the per-socket spinlock held * @sk_callback_lock: used with the callbacks in the end of this struct * @sk_error_queue: rarely used * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, * IPV6_ADDRFORM for instance) * @sk_err: last error * @sk_err_soft: errors that don't cause failure but are the cause of a * persistent failure not just 'timed out' * @sk_drops: raw/udp drops counter * @sk_ack_backlog: current listen backlog * @sk_max_ack_backlog: listen backlog set in listen() * @sk_uid: user id of owner * @sk_priority: %SO_PRIORITY setting * @sk_type: socket type (%SOCK_STREAM, etc) * @sk_protocol: which protocol this socket belongs in this network family * @sk_peer_pid: &struct pid for this socket's peer * @sk_peer_cred: %SO_PEERCRED setting * @sk_rcvlowat: %SO_RCVLOWAT setting * @sk_rcvtimeo: %SO_RCVTIMEO setting * @sk_sndtimeo: %SO_SNDTIMEO setting * @sk_txhash: computed flow hash for use on transmit * @sk_filter: socket filtering instructions * @sk_timer: sock cleanup timer * @sk_stamp: time stamp of last packet received * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only * @sk_tsflags: SO_TIMESTAMPING socket options * @sk_tskey: counter to disambiguate concurrent tstamp requests * @sk_zckey: counter to order MSG_ZEROCOPY notifications * @sk_socket: Identd and reporting IO signals * @sk_user_data: RPC layer private data * @sk_frag: cached page frag * @sk_peek_off: current peek_offset value * @sk_send_head: front of stuff to transmit * @tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head] * @sk_tx_skb_cache: cache copy of recently accessed TX skb * @sk_security: used by security modules * @sk_mark: generic packet mark * @sk_cgrp_data: cgroup data for this cgroup * @sk_memcg: this socket's memory cgroup association * @sk_write_pending: a write to stream socket waits to start * @sk_state_change: callback to indicate change in the state of the sock * @sk_data_ready: callback to indicate there is data to be processed * @sk_write_space: callback to indicate there is bf sending space available * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) * @sk_backlog_rcv: callback to process the backlog * @sk_validate_xmit_skb: ptr to an optional validate function * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 * @sk_reuseport_cb: reuseport group container * @sk_bpf_storage: ptr to cache and control for bpf_sk_storage * @sk_rcu: used during RCU grace period * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME) * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME * @sk_txtime_report_errors: set report errors mode for SO_TXTIME * @sk_txtime_unused: unused txtime flags */ struct sock { /* * Now struct inet_timewait_sock also uses sock_common, so please just * don't add nothing before this first member (__sk_common) --acme */ struct sock_common __sk_common; #define sk_node __sk_common.skc_node #define sk_nulls_node __sk_common.skc_nulls_node #define sk_refcnt __sk_common.skc_refcnt #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping #ifdef CONFIG_XPS #define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping #endif #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin #define sk_dontcopy_end __sk_common.skc_dontcopy_end #define sk_hash __sk_common.skc_hash #define sk_portpair __sk_common.skc_portpair #define sk_num __sk_common.skc_num #define sk_dport __sk_common.skc_dport #define sk_addrpair __sk_common.skc_addrpair #define sk_daddr __sk_common.skc_daddr #define sk_rcv_saddr __sk_common.skc_rcv_saddr #define sk_family __sk_common.skc_family #define sk_state __sk_common.skc_state #define sk_reuse __sk_common.skc_reuse #define sk_reuseport __sk_common.skc_reuseport #define sk_ipv6only __sk_common.skc_ipv6only #define sk_net_refcnt __sk_common.skc_net_refcnt #define sk_bound_dev_if __sk_common.skc_bound_dev_if #define sk_bind_node __sk_common.skc_bind_node #define sk_prot __sk_common.skc_prot #define sk_net __sk_common.skc_net #define sk_v6_daddr __sk_common.skc_v6_daddr #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr #define sk_cookie __sk_common.skc_cookie #define sk_incoming_cpu __sk_common.skc_incoming_cpu #define sk_flags __sk_common.skc_flags #define sk_rxhash __sk_common.skc_rxhash socket_lock_t sk_lock; atomic_t sk_drops; int sk_rcvlowat; struct sk_buff_head sk_error_queue; struct sk_buff *sk_rx_skb_cache; struct sk_buff_head sk_receive_queue; /* * The backlog queue is special, it is always used with * the per-socket spinlock held and requires low latency * access. Therefore we special case it's implementation. * Note : rmem_alloc is in this structure to fill a hole * on 64bit arches, not because its logically part of * backlog. */ struct { atomic_t rmem_alloc; int len; struct sk_buff *head; struct sk_buff *tail; } sk_backlog; #define sk_rmem_alloc sk_backlog.rmem_alloc int sk_forward_alloc; #ifdef CONFIG_NET_RX_BUSY_POLL unsigned int sk_ll_usec; /* ===== mostly read cache line ===== */ unsigned int sk_napi_id; #endif int sk_rcvbuf; struct sk_filter __rcu *sk_filter; union { struct socket_wq __rcu *sk_wq; /* private: */ struct socket_wq *sk_wq_raw; /* public: */ }; #ifdef CONFIG_XFRM struct xfrm_policy __rcu *sk_policy[2]; #endif struct dst_entry *sk_rx_dst; struct dst_entry __rcu *sk_dst_cache; atomic_t sk_omem_alloc; int sk_sndbuf; /* ===== cache line for TX ===== */ int sk_wmem_queued; refcount_t sk_wmem_alloc; unsigned long sk_tsq_flags; union { struct sk_buff *sk_send_head; struct rb_root tcp_rtx_queue; }; struct sk_buff *sk_tx_skb_cache; struct sk_buff_head sk_write_queue; __s32 sk_peek_off; int sk_write_pending; __u32 sk_dst_pending_confirm; u32 sk_pacing_status; /* see enum sk_pacing */ long sk_sndtimeo; struct timer_list sk_timer; __u32 sk_priority; __u32 sk_mark; unsigned long sk_pacing_rate; /* bytes per second */ unsigned long sk_max_pacing_rate; struct page_frag sk_frag; netdev_features_t sk_route_caps; netdev_features_t sk_route_nocaps; netdev_features_t sk_route_forced_caps; int sk_gso_type; unsigned int sk_gso_max_size; gfp_t sk_allocation; __u32 sk_txhash; /* * Because of non atomicity rules, all * changes are protected by socket lock. */ u8 sk_padding : 1, sk_kern_sock : 1, sk_no_check_tx : 1, sk_no_check_rx : 1, sk_userlocks : 4; u8 sk_pacing_shift; u16 sk_type; u16 sk_protocol; u16 sk_gso_max_segs; unsigned long sk_lingertime; struct proto *sk_prot_creator; rwlock_t sk_callback_lock; int sk_err, sk_err_soft; u32 sk_ack_backlog; u32 sk_max_ack_backlog; kuid_t sk_uid; spinlock_t sk_peer_lock; struct pid *sk_peer_pid; const struct cred *sk_peer_cred; long sk_rcvtimeo; ktime_t sk_stamp; #if BITS_PER_LONG==32 seqlock_t sk_stamp_seq; #endif u16 sk_tsflags; u8 sk_shutdown; u32 sk_tskey; atomic_t sk_zckey; u8 sk_clockid; u8 sk_txtime_deadline_mode : 1, sk_txtime_report_errors : 1, sk_txtime_unused : 6; struct socket *sk_socket; void *sk_user_data; #ifdef CONFIG_SECURITY void *sk_security; #endif struct sock_cgroup_data sk_cgrp_data; struct mem_cgroup *sk_memcg; void (*sk_state_change)(struct sock *sk); void (*sk_data_ready)(struct sock *sk); void (*sk_write_space)(struct sock *sk); void (*sk_error_report)(struct sock *sk); int (*sk_backlog_rcv)(struct sock *sk, struct sk_buff *skb); #ifdef CONFIG_SOCK_VALIDATE_XMIT struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk, struct net_device *dev, struct sk_buff *skb); #endif void (*sk_destruct)(struct sock *sk); struct sock_reuseport __rcu *sk_reuseport_cb; #ifdef CONFIG_BPF_SYSCALL struct bpf_local_storage __rcu *sk_bpf_storage; #endif struct rcu_head sk_rcu; }; enum sk_pacing { SK_PACING_NONE = 0, SK_PACING_NEEDED = 1, SK_PACING_FQ = 2, }; /* Pointer stored in sk_user_data might not be suitable for copying * when cloning the socket. For instance, it can point to a reference * counted object. sk_user_data bottom bit is set if pointer must not * be copied. */ #define SK_USER_DATA_NOCOPY 1UL #define SK_USER_DATA_BPF 2UL /* Managed by BPF */ #define SK_USER_DATA_PTRMASK ~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF) /** * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied * @sk: socket */ static inline bool sk_user_data_is_nocopy(const struct sock *sk) { return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY); } #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data))) #define rcu_dereference_sk_user_data(sk) \ ({ \ void *__tmp = rcu_dereference(__sk_user_data((sk))); \ (void *)((uintptr_t)__tmp & SK_USER_DATA_PTRMASK); \ }) #define rcu_assign_sk_user_data(sk, ptr) \ ({ \ uintptr_t __tmp = (uintptr_t)(ptr); \ WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK); \ rcu_assign_pointer(__sk_user_data((sk)), __tmp); \ }) #define rcu_assign_sk_user_data_nocopy(sk, ptr) \ ({ \ uintptr_t __tmp = (uintptr_t)(ptr); \ WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK); \ rcu_assign_pointer(__sk_user_data((sk)), \ __tmp | SK_USER_DATA_NOCOPY); \ }) /* * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK * or not whether his port will be reused by someone else. SK_FORCE_REUSE * on a socket means that the socket will reuse everybody else's port * without looking at the other's sk_reuse value. */ #define SK_NO_REUSE 0 #define SK_CAN_REUSE 1 #define SK_FORCE_REUSE 2 int sk_set_peek_off(struct sock *sk, int val); static inline int sk_peek_offset(struct sock *sk, int flags) { if (unlikely(flags & MSG_PEEK)) { return READ_ONCE(sk->sk_peek_off); } return 0; } static inline void sk_peek_offset_bwd(struct sock *sk, int val) { s32 off = READ_ONCE(sk->sk_peek_off); if (unlikely(off >= 0)) { off = max_t(s32, off - val, 0); WRITE_ONCE(sk->sk_peek_off, off); } } static inline void sk_peek_offset_fwd(struct sock *sk, int val) { sk_peek_offset_bwd(sk, -val); } /* * Hashed lists helper routines */ static inline struct sock *sk_entry(const struct hlist_node *node) { return hlist_entry(node, struct sock, sk_node); } static inline struct sock *__sk_head(const struct hlist_head *head) { return hlist_entry(head->first, struct sock, sk_node); } static inline struct sock *sk_head(const struct hlist_head *head) { return hlist_empty(head) ? NULL : __sk_head(head); } static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head) { return hlist_nulls_entry(head->first, struct sock, sk_nulls_node); } static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head) { return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head); } static inline struct sock *sk_next(const struct sock *sk) { return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node); } static inline struct sock *sk_nulls_next(const struct sock *sk) { return (!is_a_nulls(sk->sk_nulls_node.next)) ? hlist_nulls_entry(sk->sk_nulls_node.next, struct sock, sk_nulls_node) : NULL; } static inline bool sk_unhashed(const struct sock *sk) { return hlist_unhashed(&sk->sk_node); } static inline bool sk_hashed(const struct sock *sk) { return !sk_unhashed(sk); } static inline void sk_node_init(struct hlist_node *node) { node->pprev = NULL; } static inline void sk_nulls_node_init(struct hlist_nulls_node *node) { node->pprev = NULL; } static inline void __sk_del_node(struct sock *sk) { __hlist_del(&sk->sk_node); } /* NB: equivalent to hlist_del_init_rcu */ static inline bool __sk_del_node_init(struct sock *sk) { if (sk_hashed(sk)) { __sk_del_node(sk); sk_node_init(&sk->sk_node); return true; } return false; } /* Grab socket reference count. This operation is valid only when sk is ALREADY grabbed f.e. it is found in hash table or a list and the lookup is made under lock preventing hash table modifications. */ static __always_inline void sock_hold(struct sock *sk) { refcount_inc(&sk->sk_refcnt); } /* Ungrab socket in the context, which assumes that socket refcnt cannot hit zero, f.e. it is true in context of any socketcall. */ static __always_inline void __sock_put(struct sock *sk) { refcount_dec(&sk->sk_refcnt); } static inline bool sk_del_node_init(struct sock *sk) { bool rc = __sk_del_node_init(sk); if (rc) { /* paranoid for a while -acme */ WARN_ON(refcount_read(&sk->sk_refcnt) == 1); __sock_put(sk); } return rc; } #define sk_del_node_init_rcu(sk) sk_del_node_init(sk) static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk) { if (sk_hashed(sk)) { hlist_nulls_del_init_rcu(&sk->sk_nulls_node); return true; } return false; } static inline bool sk_nulls_del_node_init_rcu(struct sock *sk) { bool rc = __sk_nulls_del_node_init_rcu(sk); if (rc) { /* paranoid for a while -acme */ WARN_ON(refcount_read(&sk->sk_refcnt) == 1); __sock_put(sk); } return rc; } static inline void __sk_add_node(struct sock *sk, struct hlist_head *list) { hlist_add_head(&sk->sk_node, list); } static inline void sk_add_node(struct sock *sk, struct hlist_head *list) { sock_hold(sk); __sk_add_node(sk, list); } static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list) { sock_hold(sk); if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && sk->sk_family == AF_INET6) hlist_add_tail_rcu(&sk->sk_node, list); else hlist_add_head_rcu(&sk->sk_node, list); } static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list) { sock_hold(sk); hlist_add_tail_rcu(&sk->sk_node, list); } static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) { hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list); } static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list) { hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list); } static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) { sock_hold(sk); __sk_nulls_add_node_rcu(sk, list); } static inline void __sk_del_bind_node(struct sock *sk) { __hlist_del(&sk->sk_bind_node); } static inline void sk_add_bind_node(struct sock *sk, struct hlist_head *list) { hlist_add_head(&sk->sk_bind_node, list); } #define sk_for_each(__sk, list) \ hlist_for_each_entry(__sk, list, sk_node) #define sk_for_each_rcu(__sk, list) \ hlist_for_each_entry_rcu(__sk, list, sk_node) #define sk_nulls_for_each(__sk, node, list) \ hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node) #define sk_nulls_for_each_rcu(__sk, node, list) \ hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node) #define sk_for_each_from(__sk) \ hlist_for_each_entry_from(__sk, sk_node) #define sk_nulls_for_each_from(__sk, node) \ if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \ hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node) #define sk_for_each_safe(__sk, tmp, list) \ hlist_for_each_entry_safe(__sk, tmp, list, sk_node) #define sk_for_each_bound(__sk, list) \ hlist_for_each_entry(__sk, list, sk_bind_node) /** * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset * @tpos: the type * to use as a loop cursor. * @pos: the &struct hlist_node to use as a loop cursor. * @head: the head for your list. * @offset: offset of hlist_node within the struct. * */ #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \ for (pos = rcu_dereference(hlist_first_rcu(head)); \ pos != NULL && \ ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \ pos = rcu_dereference(hlist_next_rcu(pos))) static inline struct user_namespace *sk_user_ns(struct sock *sk) { /* Careful only use this in a context where these parameters * can not change and must all be valid, such as recvmsg from * userspace. */ return sk->sk_socket->file->f_cred->user_ns; } /* Sock flags */ enum sock_flags { SOCK_DEAD, SOCK_DONE, SOCK_URGINLINE, SOCK_KEEPOPEN, SOCK_LINGER, SOCK_DESTROY, SOCK_BROADCAST, SOCK_TIMESTAMP, SOCK_ZAPPED, SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ SOCK_DBG, /* %SO_DEBUG setting */ SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */ SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ SOCK_MEMALLOC, /* VM depends on this socket for swapping */ SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */ SOCK_FASYNC, /* fasync() active */ SOCK_RXQ_OVFL, SOCK_ZEROCOPY, /* buffers from userspace */ SOCK_WIFI_STATUS, /* push wifi status to userspace */ SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS. * Will use last 4 bytes of packet sent from * user-space instead. */ SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */ SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */ SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */ SOCK_TXTIME, SOCK_XDP, /* XDP is attached */ SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */ }; #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)) static inline void sock_copy_flags(struct sock *nsk, struct sock *osk) { nsk->sk_flags = osk->sk_flags; } static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) { __set_bit(flag, &sk->sk_flags); } static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) { __clear_bit(flag, &sk->sk_flags); } static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit, int valbool) { if (valbool) sock_set_flag(sk, bit); else sock_reset_flag(sk, bit); } static inline bool sock_flag(const struct sock *sk, enum sock_flags flag) { return test_bit(flag, &sk->sk_flags); } #ifdef CONFIG_NET DECLARE_STATIC_KEY_FALSE(memalloc_socks_key); static inline int sk_memalloc_socks(void) { return static_branch_unlikely(&memalloc_socks_key); } void __receive_sock(struct file *file); #else static inline int sk_memalloc_socks(void) { return 0; } static inline void __receive_sock(struct file *file) { } #endif static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask) { return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC); } static inline void sk_acceptq_removed(struct sock *sk) { WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1); } static inline void sk_acceptq_added(struct sock *sk) { WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1); } static inline bool sk_acceptq_is_full(const struct sock *sk) { return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog); } /* * Compute minimal free write space needed to queue new packets. */ static inline int sk_stream_min_wspace(const struct sock *sk) { return READ_ONCE(sk->sk_wmem_queued) >> 1; } static inline int sk_stream_wspace(const struct sock *sk) { return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued); } static inline void sk_wmem_queued_add(struct sock *sk, int val) { WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val); } void sk_stream_write_space(struct sock *sk); /* OOB backlog add */ static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb) { /* dont let skb dst not refcounted, we are going to leave rcu lock */ skb_dst_force(skb); if (!sk->sk_backlog.tail) WRITE_ONCE(sk->sk_backlog.head, skb); else sk->sk_backlog.tail->next = skb; WRITE_ONCE(sk->sk_backlog.tail, skb); skb->next = NULL; } /* * Take into account size of receive queue and backlog queue * Do not take into account this skb truesize, * to allow even a single big packet to come. */ static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit) { unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc); return qsize > limit; } /* The per-socket spinlock must be held here. */ static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb, unsigned int limit) { if (sk_rcvqueues_full(sk, limit)) return -ENOBUFS; /* * If the skb was allocated from pfmemalloc reserves, only * allow SOCK_MEMALLOC sockets to use it as this socket is * helping free memory */ if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) return -ENOMEM; __sk_add_backlog(sk, skb); sk->sk_backlog.len += skb->truesize; return 0; } int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb); static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) { if (sk_memalloc_socks() && skb_pfmemalloc(skb)) return __sk_backlog_rcv(sk, skb); return sk->sk_backlog_rcv(sk, skb); } static inline void sk_incoming_cpu_update(struct sock *sk) { int cpu = raw_smp_processor_id(); if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu)) WRITE_ONCE(sk->sk_incoming_cpu, cpu); } static inline void sock_rps_record_flow_hash(__u32 hash) { #ifdef CONFIG_RPS struct rps_sock_flow_table *sock_flow_table; rcu_read_lock(); sock_flow_table = rcu_dereference(rps_sock_flow_table); rps_record_sock_flow(sock_flow_table, hash); rcu_read_unlock(); #endif } static inline void sock_rps_record_flow(const struct sock *sk) { #ifdef CONFIG_RPS if (static_branch_unlikely(&rfs_needed)) { /* Reading sk->sk_rxhash might incur an expensive cache line * miss. * * TCP_ESTABLISHED does cover almost all states where RFS * might be useful, and is cheaper [1] than testing : * IPv4: inet_sk(sk)->inet_daddr * IPv6: ipv6_addr_any(&sk->sk_v6_daddr) * OR an additional socket flag * [1] : sk_state and sk_prot are in the same cache line. */ if (sk->sk_state == TCP_ESTABLISHED) sock_rps_record_flow_hash(sk->sk_rxhash); } #endif } static inline void sock_rps_save_rxhash(struct sock *sk, const struct sk_buff *skb) { #ifdef CONFIG_RPS if (unlikely(sk->sk_rxhash != skb->hash)) sk->sk_rxhash = skb->hash; #endif } static inline void sock_rps_reset_rxhash(struct sock *sk) { #ifdef CONFIG_RPS sk->sk_rxhash = 0; #endif } #define sk_wait_event(__sk, __timeo, __condition, __wait) \ ({ int __rc; \ release_sock(__sk); \ __rc = __condition; \ if (!__rc) { \ *(__timeo) = wait_woken(__wait, \ TASK_INTERRUPTIBLE, \ *(__timeo)); \ } \ sched_annotate_sleep(); \ lock_sock(__sk); \ __rc = __condition; \ __rc; \ }) int sk_stream_wait_connect(struct sock *sk, long *timeo_p); int sk_stream_wait_memory(struct sock *sk, long *timeo_p); void sk_stream_wait_close(struct sock *sk, long timeo_p); int sk_stream_error(struct sock *sk, int flags, int err); void sk_stream_kill_queues(struct sock *sk); void sk_set_memalloc(struct sock *sk); void sk_clear_memalloc(struct sock *sk); void __sk_flush_backlog(struct sock *sk); static inline bool sk_flush_backlog(struct sock *sk) { if (unlikely(READ_ONCE(sk->sk_backlog.tail))) { __sk_flush_backlog(sk); return true; } return false; } int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb); struct request_sock_ops; struct timewait_sock_ops; struct inet_hashinfo; struct raw_hashinfo; struct smc_hashinfo; struct module; /* * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes * un-modified. Special care is taken when initializing object to zero. */ static inline void sk_prot_clear_nulls(struct sock *sk, int size) { if (offsetof(struct sock, sk_node.next) != 0) memset(sk, 0, offsetof(struct sock, sk_node.next)); memset(&sk->sk_node.pprev, 0, size - offsetof(struct sock, sk_node.pprev)); } /* Networking protocol blocks we attach to sockets. * socket layer -> transport layer interface */ struct proto { void (*close)(struct sock *sk, long timeout); int (*pre_connect)(struct sock *sk, struct sockaddr *uaddr, int addr_len); int (*connect)(struct sock *sk, struct sockaddr *uaddr, int addr_len); int (*disconnect)(struct sock *sk, int flags); struct sock * (*accept)(struct sock *sk, int flags, int *err, bool kern); int (*ioctl)(struct sock *sk, int cmd, unsigned long arg); int (*init)(struct sock *sk); void (*destroy)(struct sock *sk); void (*shutdown)(struct sock *sk, int how); int (*setsockopt)(struct sock *sk, int level, int optname, sockptr_t optval, unsigned int optlen); int (*getsockopt)(struct sock *sk, int level, int optname, char __user *optval, int __user *option); void (*keepalive)(struct sock *sk, int valbool); #ifdef CONFIG_COMPAT int (*compat_ioctl)(struct sock *sk, unsigned int cmd, unsigned long arg); #endif int (*sendmsg)(struct sock *sk, struct msghdr *msg, size_t len); int (*recvmsg)(struct sock *sk, struct msghdr *msg, size_t len, int noblock, int flags, int *addr_len); int (*sendpage)(struct sock *sk, struct page *page, int offset, size_t size, int flags); int (*bind)(struct sock *sk, struct sockaddr *addr, int addr_len); int (*bind_add)(struct sock *sk, struct sockaddr *addr, int addr_len); int (*backlog_rcv) (struct sock *sk, struct sk_buff *skb); void (*release_cb)(struct sock *sk); /* Keeping track of sk's, looking them up, and port selection methods. */ int (*hash)(struct sock *sk); void (*unhash)(struct sock *sk); void (*rehash)(struct sock *sk); int (*get_port)(struct sock *sk, unsigned short snum); /* Keeping track of sockets in use */ #ifdef CONFIG_PROC_FS unsigned int inuse_idx; #endif bool (*stream_memory_free)(const struct sock *sk, int wake); bool (*stream_memory_read)(const struct sock *sk); /* Memory pressure */ void (*enter_memory_pressure)(struct sock *sk); void (*leave_memory_pressure)(struct sock *sk); atomic_long_t *memory_allocated; /* Current allocated memory. */ struct percpu_counter *sockets_allocated; /* Current number of sockets. */ /* * Pressure flag: try to collapse. * Technical note: it is used by multiple contexts non atomically. * All the __sk_mem_schedule() is of this nature: accounting * is strict, actions are advisory and have some latency. */ unsigned long *memory_pressure; long *sysctl_mem; int *sysctl_wmem; int *sysctl_rmem; u32 sysctl_wmem_offset; u32 sysctl_rmem_offset; int max_header; bool no_autobind; struct kmem_cache *slab; unsigned int obj_size; slab_flags_t slab_flags; unsigned int useroffset; /* Usercopy region offset */ unsigned int usersize; /* Usercopy region size */ unsigned int __percpu *orphan_count; struct request_sock_ops *rsk_prot; struct timewait_sock_ops *twsk_prot; union { struct inet_hashinfo *hashinfo; struct udp_table *udp_table; struct raw_hashinfo *raw_hash; struct smc_hashinfo *smc_hash; } h; struct module *owner; char name[32]; struct list_head node; #ifdef SOCK_REFCNT_DEBUG atomic_t socks; #endif int (*diag_destroy)(struct sock *sk, int err); } __randomize_layout; int proto_register(struct proto *prot, int alloc_slab); void proto_unregister(struct proto *prot); int sock_load_diag_module(int family, int protocol); #ifdef SOCK_REFCNT_DEBUG static inline void sk_refcnt_debug_inc(struct sock *sk) { atomic_inc(&sk->sk_prot->socks); } static inline void sk_refcnt_debug_dec(struct sock *sk) { atomic_dec(&sk->sk_prot->socks); printk(KERN_DEBUG "%s socket %p released, %d are still alive\n", sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks)); } static inline void sk_refcnt_debug_release(const struct sock *sk) { if (refcount_read(&sk->sk_refcnt) != 1) printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n", sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt)); } #else /* SOCK_REFCNT_DEBUG */ #define sk_refcnt_debug_inc(sk) do { } while (0) #define sk_refcnt_debug_dec(sk) do { } while (0) #define sk_refcnt_debug_release(sk) do { } while (0) #endif /* SOCK_REFCNT_DEBUG */ static inline bool __sk_stream_memory_free(const struct sock *sk, int wake) { if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf)) return false; return sk->sk_prot->stream_memory_free ? sk->sk_prot->stream_memory_free(sk, wake) : true; } static inline bool sk_stream_memory_free(const struct sock *sk) { return __sk_stream_memory_free(sk, 0); } static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake) { return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) && __sk_stream_memory_free(sk, wake); } static inline bool sk_stream_is_writeable(const struct sock *sk) { return __sk_stream_is_writeable(sk, 0); } static inline int sk_under_cgroup_hierarchy(struct sock *sk, struct cgroup *ancestor) { #ifdef CONFIG_SOCK_CGROUP_DATA return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data), ancestor); #else return -ENOTSUPP; #endif } static inline bool sk_has_memory_pressure(const struct sock *sk) { return sk->sk_prot->memory_pressure != NULL; } static inline bool sk_under_memory_pressure(const struct sock *sk) { if (!sk->sk_prot->memory_pressure) return false; if (mem_cgroup_sockets_enabled && sk->sk_memcg && mem_cgroup_under_socket_pressure(sk->sk_memcg)) return true; return !!*sk->sk_prot->memory_pressure; } static inline long sk_memory_allocated(const struct sock *sk) { return atomic_long_read(sk->sk_prot->memory_allocated); } static inline long sk_memory_allocated_add(struct sock *sk, int amt) { return atomic_long_add_return(amt, sk->sk_prot->memory_allocated); } static inline void sk_memory_allocated_sub(struct sock *sk, int amt) { atomic_long_sub(amt, sk->sk_prot->memory_allocated); } static inline void sk_sockets_allocated_dec(struct sock *sk) { percpu_counter_dec(sk->sk_prot->sockets_allocated); } static inline void sk_sockets_allocated_inc(struct sock *sk) { percpu_counter_inc(sk->sk_prot->sockets_allocated); } static inline u64 sk_sockets_allocated_read_positive(struct sock *sk) { return percpu_counter_read_positive(sk->sk_prot->sockets_allocated); } static inline int proto_sockets_allocated_sum_positive(struct proto *prot) { return percpu_counter_sum_positive(prot->sockets_allocated); } static inline long proto_memory_allocated(struct proto *prot) { return atomic_long_read(prot->memory_allocated); } static inline bool proto_memory_pressure(struct proto *prot) { if (!prot->memory_pressure) return false; return !!*prot->memory_pressure; } #ifdef CONFIG_PROC_FS /* Called with local bh disabled */ void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc); int sock_prot_inuse_get(struct net *net, struct proto *proto); int sock_inuse_get(struct net *net); #else static inline void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc) { } #endif /* With per-bucket locks this operation is not-atomic, so that * this version is not worse. */ static inline int __sk_prot_rehash(struct sock *sk) { sk->sk_prot->unhash(sk); return sk->sk_prot->hash(sk); } /* About 10 seconds */ #define SOCK_DESTROY_TIME (10*HZ) /* Sockets 0-1023 can't be bound to unless you are superuser */ #define PROT_SOCK 1024 #define SHUTDOWN_MASK 3 #define RCV_SHUTDOWN 1 #define SEND_SHUTDOWN 2 #define SOCK_SNDBUF_LOCK 1 #define SOCK_RCVBUF_LOCK 2 #define SOCK_BINDADDR_LOCK 4 #define SOCK_BINDPORT_LOCK 8 struct socket_alloc { struct socket socket; struct inode vfs_inode; }; static inline struct socket *SOCKET_I(struct inode *inode) { return &container_of(inode, struct socket_alloc, vfs_inode)->socket; } static inline struct inode *SOCK_INODE(struct socket *socket) { return &container_of(socket, struct socket_alloc, socket)->vfs_inode; } /* * Functions for memory accounting */ int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind); int __sk_mem_schedule(struct sock *sk, int size, int kind); void __sk_mem_reduce_allocated(struct sock *sk, int amount); void __sk_mem_reclaim(struct sock *sk, int amount); /* We used to have PAGE_SIZE here, but systems with 64KB pages * do not necessarily have 16x time more memory than 4KB ones. */ #define SK_MEM_QUANTUM 4096 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM) #define SK_MEM_SEND 0 #define SK_MEM_RECV 1 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */ static inline long sk_prot_mem_limits(const struct sock *sk, int index) { long val = sk->sk_prot->sysctl_mem[index]; #if PAGE_SIZE > SK_MEM_QUANTUM val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT; #elif PAGE_SIZE < SK_MEM_QUANTUM val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT; #endif return val; } static inline int sk_mem_pages(int amt) { return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT; } static inline bool sk_has_account(struct sock *sk) { /* return true if protocol supports memory accounting */ return !!sk->sk_prot->memory_allocated; } static inline bool sk_wmem_schedule(struct sock *sk, int size) { if (!sk_has_account(sk)) return true; return size <= sk->sk_forward_alloc || __sk_mem_schedule(sk, size, SK_MEM_SEND); } static inline bool sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size) { if (!sk_has_account(sk)) return true; return size <= sk->sk_forward_alloc || __sk_mem_schedule(sk, size, SK_MEM_RECV) || skb_pfmemalloc(skb); } static inline void sk_mem_reclaim(struct sock *sk) { if (!sk_has_account(sk)) return; if (sk->sk_forward_alloc >= SK_MEM_QUANTUM) __sk_mem_reclaim(sk, sk->sk_forward_alloc); } static inline void sk_mem_reclaim_partial(struct sock *sk) { if (!sk_has_account(sk)) return; if (sk->sk_forward_alloc > SK_MEM_QUANTUM) __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1); } static inline void sk_mem_charge(struct sock *sk, int size) { if (!sk_has_account(sk)) return; sk->sk_forward_alloc -= size; } static inline void sk_mem_uncharge(struct sock *sk, int size) { if (!sk_has_account(sk)) return; sk->sk_forward_alloc += size; /* Avoid a possible overflow. * TCP send queues can make this happen, if sk_mem_reclaim() * is not called and more than 2 GBytes are released at once. * * If we reach 2 MBytes, reclaim 1 MBytes right now, there is * no need to hold that much forward allocation anyway. */ if (unlikely(sk->sk_forward_alloc >= 1 << 21)) __sk_mem_reclaim(sk, 1 << 20); } DECLARE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key); static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb) { sk_wmem_queued_add(sk, -skb->truesize); sk_mem_uncharge(sk, skb->truesize); if (static_branch_unlikely(&tcp_tx_skb_cache_key) && !sk->sk_tx_skb_cache && !skb_cloned(skb)) { skb_ext_reset(skb); skb_zcopy_clear(skb, true); sk->sk_tx_skb_cache = skb; return; } __kfree_skb(skb); } static inline void sock_release_ownership(struct sock *sk) { if (sk->sk_lock.owned) { sk->sk_lock.owned = 0; /* The sk_lock has mutex_unlock() semantics: */ mutex_release(&sk->sk_lock.dep_map, _RET_IP_); } } /* * Macro so as to not evaluate some arguments when * lockdep is not enabled. * * Mark both the sk_lock and the sk_lock.slock as a * per-address-family lock class. */ #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \ do { \ sk->sk_lock.owned = 0; \ init_waitqueue_head(&sk->sk_lock.wq); \ spin_lock_init(&(sk)->sk_lock.slock); \ debug_check_no_locks_freed((void *)&(sk)->sk_lock, \ sizeof((sk)->sk_lock)); \ lockdep_set_class_and_name(&(sk)->sk_lock.slock, \ (skey), (sname)); \ lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \ } while (0) #ifdef CONFIG_LOCKDEP static inline bool lockdep_sock_is_held(const struct sock *sk) { return lockdep_is_held(&sk->sk_lock) || lockdep_is_held(&sk->sk_lock.slock); } #endif void lock_sock_nested(struct sock *sk, int subclass); static inline void lock_sock(struct sock *sk) { lock_sock_nested(sk, 0); } void __release_sock(struct sock *sk); void release_sock(struct sock *sk); /* BH context may only use the following locking interface. */ #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) #define bh_lock_sock_nested(__sk) \ spin_lock_nested(&((__sk)->sk_lock.slock), \ SINGLE_DEPTH_NESTING) #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) bool lock_sock_fast(struct sock *sk); /** * unlock_sock_fast - complement of lock_sock_fast * @sk: socket * @slow: slow mode * * fast unlock socket for user context. * If slow mode is on, we call regular release_sock() */ static inline void unlock_sock_fast(struct sock *sk, bool slow) { if (slow) release_sock(sk); else spin_unlock_bh(&sk->sk_lock.slock); } /* Used by processes to "lock" a socket state, so that * interrupts and bottom half handlers won't change it * from under us. It essentially blocks any incoming * packets, so that we won't get any new data or any * packets that change the state of the socket. * * While locked, BH processing will add new packets to * the backlog queue. This queue is processed by the * owner of the socket lock right before it is released. * * Since ~2.3.5 it is also exclusive sleep lock serializing * accesses from user process context. */ static inline void sock_owned_by_me(const struct sock *sk) { #ifdef CONFIG_LOCKDEP WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks); #endif } static inline bool sock_owned_by_user(const struct sock *sk) { sock_owned_by_me(sk); return sk->sk_lock.owned; } static inline bool sock_owned_by_user_nocheck(const struct sock *sk) { return sk->sk_lock.owned; } /* no reclassification while locks are held */ static inline bool sock_allow_reclassification(const struct sock *csk) { struct sock *sk = (struct sock *)csk; return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock); } struct sock *sk_alloc(struct net *net, int family, gfp_t priority, struct proto *prot, int kern); void sk_free(struct sock *sk); void sk_destruct(struct sock *sk); struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority); void sk_free_unlock_clone(struct sock *sk); struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, gfp_t priority); void __sock_wfree(struct sk_buff *skb); void sock_wfree(struct sk_buff *skb); struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, gfp_t priority); void skb_orphan_partial(struct sk_buff *skb); void sock_rfree(struct sk_buff *skb); void sock_efree(struct sk_buff *skb); #ifdef CONFIG_INET void sock_edemux(struct sk_buff *skb); void sock_pfree(struct sk_buff *skb); #else #define sock_edemux sock_efree #endif int sock_setsockopt(struct socket *sock, int level, int op, sockptr_t optval, unsigned int optlen); int sock_getsockopt(struct socket *sock, int level, int op, char __user *optval, int __user *optlen); int sock_gettstamp(struct socket *sock, void __user *userstamp, bool timeval, bool time32); struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, int noblock, int *errcode); struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, unsigned long data_len, int noblock, int *errcode, int max_page_order); void *sock_kmalloc(struct sock *sk, int size, gfp_t priority); void sock_kfree_s(struct sock *sk, void *mem, int size); void sock_kzfree_s(struct sock *sk, void *mem, int size); void sk_send_sigurg(struct sock *sk); struct sockcm_cookie { u64 transmit_time; u32 mark; u16 tsflags; }; static inline void sockcm_init(struct sockcm_cookie *sockc, const struct sock *sk) { *sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags }; } int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg, struct sockcm_cookie *sockc); int sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct sockcm_cookie *sockc); /* * Functions to fill in entries in struct proto_ops when a protocol * does not implement a particular function. */ int sock_no_bind(struct socket *, struct sockaddr *, int); int sock_no_connect(struct socket *, struct sockaddr *, int, int); int sock_no_socketpair(struct socket *, struct socket *); int sock_no_accept(struct socket *, struct socket *, int, bool); int sock_no_getname(struct socket *, struct sockaddr *, int); int sock_no_ioctl(struct socket *, unsigned int, unsigned long); int sock_no_listen(struct socket *, int); int sock_no_shutdown(struct socket *, int); int sock_no_sendmsg(struct socket *, struct msghdr *, size_t); int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len); int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int); int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma); ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags); ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page, int offset, size_t size, int flags); /* * Functions to fill in entries in struct proto_ops when a protocol * uses the inet style. */ int sock_common_getsockopt(struct socket *sock, int level, int optname, char __user *optval, int __user *optlen); int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, int flags); int sock_common_setsockopt(struct socket *sock, int level, int optname, sockptr_t optval, unsigned int optlen); void sk_common_release(struct sock *sk); /* * Default socket callbacks and setup code */ /* Initialise core socket variables */ void sock_init_data(struct socket *sock, struct sock *sk); /* * Socket reference counting postulates. * * * Each user of socket SHOULD hold a reference count. * * Each access point to socket (an hash table bucket, reference from a list, * running timer, skb in flight MUST hold a reference count. * * When reference count hits 0, it means it will never increase back. * * When reference count hits 0, it means that no references from * outside exist to this socket and current process on current CPU * is last user and may/should destroy this socket. * * sk_free is called from any context: process, BH, IRQ. When * it is called, socket has no references from outside -> sk_free * may release descendant resources allocated by the socket, but * to the time when it is called, socket is NOT referenced by any * hash tables, lists etc. * * Packets, delivered from outside (from network or from another process) * and enqueued on receive/error queues SHOULD NOT grab reference count, * when they sit in queue. Otherwise, packets will leak to hole, when * socket is looked up by one cpu and unhasing is made by another CPU. * It is true for udp/raw, netlink (leak to receive and error queues), tcp * (leak to backlog). Packet socket does all the processing inside * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets * use separate SMP lock, so that they are prone too. */ /* Ungrab socket and destroy it, if it was the last reference. */ static inline void sock_put(struct sock *sk) { if (refcount_dec_and_test(&sk->sk_refcnt)) sk_free(sk); } /* Generic version of sock_put(), dealing with all sockets * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...) */ void sock_gen_put(struct sock *sk); int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested, unsigned int trim_cap, bool refcounted); static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested) { return __sk_receive_skb(sk, skb, nested, 1, true); } static inline void sk_tx_queue_set(struct sock *sk, int tx_queue) { /* sk_tx_queue_mapping accept only upto a 16-bit value */ if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX)) return; sk->sk_tx_queue_mapping = tx_queue; } #define NO_QUEUE_MAPPING USHRT_MAX static inline void sk_tx_queue_clear(struct sock *sk) { sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING; } static inline int sk_tx_queue_get(const struct sock *sk) { if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING) return sk->sk_tx_queue_mapping; return -1; } static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb) { #ifdef CONFIG_XPS if (skb_rx_queue_recorded(skb)) { u16 rx_queue = skb_get_rx_queue(skb); if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING)) return; sk->sk_rx_queue_mapping = rx_queue; } #endif } static inline void sk_rx_queue_clear(struct sock *sk) { #ifdef CONFIG_XPS sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING; #endif } #ifdef CONFIG_XPS static inline int sk_rx_queue_get(const struct sock *sk) { if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING) return sk->sk_rx_queue_mapping; return -1; } #endif static inline void sk_set_socket(struct sock *sk, struct socket *sock) { sk->sk_socket = sock; } static inline wait_queue_head_t *sk_sleep(struct sock *sk) { BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0); return &rcu_dereference_raw(sk->sk_wq)->wait; } /* Detach socket from process context. * Announce socket dead, detach it from wait queue and inode. * Note that parent inode held reference count on this struct sock, * we do not release it in this function, because protocol * probably wants some additional cleanups or even continuing * to work with this socket (TCP). */ static inline void sock_orphan(struct sock *sk) { write_lock_bh(&sk->sk_callback_lock); sock_set_flag(sk, SOCK_DEAD); sk_set_socket(sk, NULL); sk->sk_wq = NULL; write_unlock_bh(&sk->sk_callback_lock); } static inline void sock_graft(struct sock *sk, struct socket *parent) { WARN_ON(parent->sk); write_lock_bh(&sk->sk_callback_lock); rcu_assign_pointer(sk->sk_wq, &parent->wq); parent->sk = sk; sk_set_socket(sk, parent); sk->sk_uid = SOCK_INODE(parent)->i_uid; security_sock_graft(sk, parent); write_unlock_bh(&sk->sk_callback_lock); } kuid_t sock_i_uid(struct sock *sk); unsigned long sock_i_ino(struct sock *sk); static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk) { return sk ? sk->sk_uid : make_kuid(net->user_ns, 0); } static inline u32 net_tx_rndhash(void) { u32 v = prandom_u32(); return v ?: 1; } static inline void sk_set_txhash(struct sock *sk) { /* This pairs with READ_ONCE() in skb_set_hash_from_sk() */ WRITE_ONCE(sk->sk_txhash, net_tx_rndhash()); } static inline bool sk_rethink_txhash(struct sock *sk) { if (sk->sk_txhash) { sk_set_txhash(sk); return true; } return false; } static inline struct dst_entry * __sk_dst_get(struct sock *sk) { return rcu_dereference_check(sk->sk_dst_cache, lockdep_sock_is_held(sk)); } static inline struct dst_entry * sk_dst_get(struct sock *sk) { struct dst_entry *dst; rcu_read_lock(); dst = rcu_dereference(sk->sk_dst_cache); if (dst && !atomic_inc_not_zero(&dst->__refcnt)) dst = NULL; rcu_read_unlock(); return dst; } static inline void __dst_negative_advice(struct sock *sk) { struct dst_entry *ndst, *dst = __sk_dst_get(sk); if (dst && dst->ops->negative_advice) { ndst = dst->ops->negative_advice(dst); if (ndst != dst) { rcu_assign_pointer(sk->sk_dst_cache, ndst); sk_tx_queue_clear(sk); sk->sk_dst_pending_confirm = 0; } } } static inline void dst_negative_advice(struct sock *sk) { sk_rethink_txhash(sk); __dst_negative_advice(sk); } static inline void __sk_dst_set(struct sock *sk, struct dst_entry *dst) { struct dst_entry *old_dst; sk_tx_queue_clear(sk); sk->sk_dst_pending_confirm = 0; old_dst = rcu_dereference_protected(sk->sk_dst_cache, lockdep_sock_is_held(sk)); rcu_assign_pointer(sk->sk_dst_cache, dst); dst_release(old_dst); } static inline void sk_dst_set(struct sock *sk, struct dst_entry *dst) { struct dst_entry *old_dst; sk_tx_queue_clear(sk); sk->sk_dst_pending_confirm = 0; old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst); dst_release(old_dst); } static inline void __sk_dst_reset(struct sock *sk) { __sk_dst_set(sk, NULL); } static inline void sk_dst_reset(struct sock *sk) { sk_dst_set(sk, NULL); } struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); static inline void sk_dst_confirm(struct sock *sk) { if (!READ_ONCE(sk->sk_dst_pending_confirm)) WRITE_ONCE(sk->sk_dst_pending_confirm, 1); } static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n) { if (skb_get_dst_pending_confirm(skb)) { struct sock *sk = skb->sk; unsigned long now = jiffies; /* avoid dirtying neighbour */ if (READ_ONCE(n->confirmed) != now) WRITE_ONCE(n->confirmed, now); if (sk && READ_ONCE(sk->sk_dst_pending_confirm)) WRITE_ONCE(sk->sk_dst_pending_confirm, 0); } } bool sk_mc_loop(struct sock *sk); static inline bool sk_can_gso(const struct sock *sk) { return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type); } void sk_setup_caps(struct sock *sk, struct dst_entry *dst); static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags) { sk->sk_route_nocaps |= flags; sk->sk_route_caps &= ~flags; } static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb, struct iov_iter *from, char *to, int copy, int offset) { if (skb->ip_summed == CHECKSUM_NONE) { __wsum csum = 0; if (!csum_and_copy_from_iter_full(to, copy, &csum, from)) return -EFAULT; skb->csum = csum_block_add(skb->csum, csum, offset); } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { if (!copy_from_iter_full_nocache(to, copy, from)) return -EFAULT; } else if (!copy_from_iter_full(to, copy, from)) return -EFAULT; return 0; } static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb, struct iov_iter *from, int copy) { int err, offset = skb->len; err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy), copy, offset); if (err) __skb_trim(skb, offset); return err; } static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from, struct sk_buff *skb, struct page *page, int off, int copy) { int err; err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off, copy, skb->len); if (err) return err; skb->len += copy; skb->data_len += copy; skb->truesize += copy; sk_wmem_queued_add(sk, copy); sk_mem_charge(sk, copy); return 0; } /** * sk_wmem_alloc_get - returns write allocations * @sk: socket * * Return: sk_wmem_alloc minus initial offset of one */ static inline int sk_wmem_alloc_get(const struct sock *sk) { return refcount_read(&sk->sk_wmem_alloc) - 1; } /** * sk_rmem_alloc_get - returns read allocations * @sk: socket * * Return: sk_rmem_alloc */ static inline int sk_rmem_alloc_get(const struct sock *sk) { return atomic_read(&sk->sk_rmem_alloc); } /** * sk_has_allocations - check if allocations are outstanding * @sk: socket * * Return: true if socket has write or read allocations */ static inline bool sk_has_allocations(const struct sock *sk) { return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk); } /** * skwq_has_sleeper - check if there are any waiting processes * @wq: struct socket_wq * * Return: true if socket_wq has waiting processes * * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory * barrier call. They were added due to the race found within the tcp code. * * Consider following tcp code paths:: * * CPU1 CPU2 * sys_select receive packet * ... ... * __add_wait_queue update tp->rcv_nxt * ... ... * tp->rcv_nxt check sock_def_readable * ... { * schedule rcu_read_lock(); * wq = rcu_dereference(sk->sk_wq); * if (wq && waitqueue_active(&wq->wait)) * wake_up_interruptible(&wq->wait) * ... * } * * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1 * could then endup calling schedule and sleep forever if there are no more * data on the socket. * */ static inline bool skwq_has_sleeper(struct socket_wq *wq) { return wq && wq_has_sleeper(&wq->wait); } /** * sock_poll_wait - place memory barrier behind the poll_wait call. * @filp: file * @sock: socket to wait on * @p: poll_table * * See the comments in the wq_has_sleeper function. */ static inline void sock_poll_wait(struct file *filp, struct socket *sock, poll_table *p) { if (!poll_does_not_wait(p)) { poll_wait(filp, &sock->wq.wait, p); /* We need to be sure we are in sync with the * socket flags modification. * * This memory barrier is paired in the wq_has_sleeper. */ smp_mb(); } } static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk) { /* This pairs with WRITE_ONCE() in sk_set_txhash() */ u32 txhash = READ_ONCE(sk->sk_txhash); if (txhash) { skb->l4_hash = 1; skb->hash = txhash; } } void skb_set_owner_w(struct sk_buff *skb, struct sock *sk); /* * Queue a received datagram if it will fit. Stream and sequenced * protocols can't normally use this as they need to fit buffers in * and play with them. * * Inlined as it's very short and called for pretty much every * packet ever received. */ static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) { skb_orphan(skb); skb->sk = sk; skb->destructor = sock_rfree; atomic_add(skb->truesize, &sk->sk_rmem_alloc); sk_mem_charge(sk, skb->truesize); } static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk) { if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) { skb_orphan(skb); skb->destructor = sock_efree; skb->sk = sk; return true; } return false; } void sk_reset_timer(struct sock *sk, struct timer_list *timer, unsigned long expires); void sk_stop_timer(struct sock *sk, struct timer_list *timer); void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer); int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue, struct sk_buff *skb, unsigned int flags, void (*destructor)(struct sock *sk, struct sk_buff *skb)); int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb); struct sk_buff *sock_dequeue_err_skb(struct sock *sk); /* * Recover an error report and clear atomically */ static inline int sock_error(struct sock *sk) { int err; /* Avoid an atomic operation for the common case. * This is racy since another cpu/thread can change sk_err under us. */ if (likely(data_race(!sk->sk_err))) return 0; err = xchg(&sk->sk_err, 0); return -err; } static inline unsigned long sock_wspace(struct sock *sk) { int amt = 0; if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc); if (amt < 0) amt = 0; } return amt; } /* Note: * We use sk->sk_wq_raw, from contexts knowing this * pointer is not NULL and cannot disappear/change. */ static inline void sk_set_bit(int nr, struct sock *sk) { if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && !sock_flag(sk, SOCK_FASYNC)) return; set_bit(nr, &sk->sk_wq_raw->flags); } static inline void sk_clear_bit(int nr, struct sock *sk) { if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && !sock_flag(sk, SOCK_FASYNC)) return; clear_bit(nr, &sk->sk_wq_raw->flags); } static inline void sk_wake_async(const struct sock *sk, int how, int band) { if (sock_flag(sk, SOCK_FASYNC)) { rcu_read_lock(); sock_wake_async(rcu_dereference(sk->sk_wq), how, band); rcu_read_unlock(); } } /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak. * Note: for send buffers, TCP works better if we can build two skbs at * minimum. */ #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff))) #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2) #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE static inline void sk_stream_moderate_sndbuf(struct sock *sk) { u32 val; if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) return; val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1); WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF)); } struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, bool force_schedule); /** * sk_page_frag - return an appropriate page_frag * @sk: socket * * Use the per task page_frag instead of the per socket one for * optimization when we know that we're in process context and own * everything that's associated with %current. * * Both direct reclaim and page faults can nest inside other * socket operations and end up recursing into sk_page_frag() * while it's already in use: explicitly avoid task page_frag * usage if the caller is potentially doing any of them. * This assumes that page fault handlers use the GFP_NOFS flags. * * Return: a per task page_frag if context allows that, * otherwise a per socket one. */ static inline struct page_frag *sk_page_frag(struct sock *sk) { if ((sk->sk_allocation & (__GFP_DIRECT_RECLAIM | __GFP_MEMALLOC | __GFP_FS)) == (__GFP_DIRECT_RECLAIM | __GFP_FS)) return &current->task_frag; return &sk->sk_frag; } bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag); /* * Default write policy as shown to user space via poll/select/SIGIO */ static inline bool sock_writeable(const struct sock *sk) { return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1); } static inline gfp_t gfp_any(void) { return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; } static inline long sock_rcvtimeo(const struct sock *sk, bool noblock) { return noblock ? 0 : sk->sk_rcvtimeo; } static inline long sock_sndtimeo(const struct sock *sk, bool noblock) { return noblock ? 0 : sk->sk_sndtimeo; } static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) { int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len); return v ?: 1; } /* Alas, with timeout socket operations are not restartable. * Compare this to poll(). */ static inline int sock_intr_errno(long timeo) { return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; } struct sock_skb_cb { u32 dropcount; }; /* Store sock_skb_cb at the end of skb->cb[] so protocol families * using skb->cb[] would keep using it directly and utilize its * alignement guarantee. */ #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \ sizeof(struct sock_skb_cb))) #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \ SOCK_SKB_CB_OFFSET)) #define sock_skb_cb_check_size(size) \ BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET) static inline void sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb) { SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ? atomic_read(&sk->sk_drops) : 0; } static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb) { int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs); atomic_add(segs, &sk->sk_drops); } static inline ktime_t sock_read_timestamp(struct sock *sk) { #if BITS_PER_LONG==32 unsigned int seq; ktime_t kt; do { seq = read_seqbegin(&sk->sk_stamp_seq); kt = sk->sk_stamp; } while (read_seqretry(&sk->sk_stamp_seq, seq)); return kt; #else return READ_ONCE(sk->sk_stamp); #endif } static inline void sock_write_timestamp(struct sock *sk, ktime_t kt) { #if BITS_PER_LONG==32 write_seqlock(&sk->sk_stamp_seq); sk->sk_stamp = kt; write_sequnlock(&sk->sk_stamp_seq); #else WRITE_ONCE(sk->sk_stamp, kt); #endif } void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb); void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, struct sk_buff *skb); static inline void sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) { ktime_t kt = skb->tstamp; struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb); /* * generate control messages if * - receive time stamping in software requested * - software time stamp available and wanted * - hardware time stamps available and wanted */ if (sock_flag(sk, SOCK_RCVTSTAMP) || (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) || (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) || (hwtstamps->hwtstamp && (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE))) __sock_recv_timestamp(msg, sk, skb); else sock_write_timestamp(sk, kt); if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid) __sock_recv_wifi_status(msg, sk, skb); } void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, struct sk_buff *skb); #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC) static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) { #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \ (1UL << SOCK_RCVTSTAMP)) #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \ SOF_TIMESTAMPING_RAW_HARDWARE) if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY) __sock_recv_ts_and_drops(msg, sk, skb); else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP))) sock_write_timestamp(sk, skb->tstamp); else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP)) sock_write_timestamp(sk, 0); } void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags); /** * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped * @sk: socket sending this packet * @tsflags: timestamping flags to use * @tx_flags: completed with instructions for time stamping * @tskey: filled in with next sk_tskey (not for TCP, which uses seqno) * * Note: callers should take care of initial ``*tx_flags`` value (usually 0) */ static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags, __u8 *tx_flags, __u32 *tskey) { if (unlikely(tsflags)) { __sock_tx_timestamp(tsflags, tx_flags); if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey && tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) *tskey = sk->sk_tskey++; } if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS))) *tx_flags |= SKBTX_WIFI_STATUS; } static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags, __u8 *tx_flags) { _sock_tx_timestamp(sk, tsflags, tx_flags, NULL); } static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags) { _sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags, &skb_shinfo(skb)->tskey); } DECLARE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key); /** * sk_eat_skb - Release a skb if it is no longer needed * @sk: socket to eat this skb from * @skb: socket buffer to eat * * This routine must be called with interrupts disabled or with the socket * locked so that the sk_buff queue operation is ok. */ static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb) { __skb_unlink(skb, &sk->sk_receive_queue); if (static_branch_unlikely(&tcp_rx_skb_cache_key) && !sk->sk_rx_skb_cache) { sk->sk_rx_skb_cache = skb; skb_orphan(skb); return; } __kfree_skb(skb); } static inline struct net *sock_net(const struct sock *sk) { return read_pnet(&sk->sk_net); } static inline void sock_net_set(struct sock *sk, struct net *net) { write_pnet(&sk->sk_net, net); } static inline bool skb_sk_is_prefetched(struct sk_buff *skb) { #ifdef CONFIG_INET return skb->destructor == sock_pfree; #else return false; #endif /* CONFIG_INET */ } /* This helper checks if a socket is a full socket, * ie _not_ a timewait or request socket. */ static inline bool sk_fullsock(const struct sock *sk) { return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV); } static inline bool sk_is_refcounted(struct sock *sk) { /* Only full sockets have sk->sk_flags. */ return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE); } /** * skb_steal_sock - steal a socket from an sk_buff * @skb: sk_buff to steal the socket from * @refcounted: is set to true if the socket is reference-counted */ static inline struct sock * skb_steal_sock(struct sk_buff *skb, bool *refcounted) { if (skb->sk) { struct sock *sk = skb->sk; *refcounted = true; if (skb_sk_is_prefetched(skb)) *refcounted = sk_is_refcounted(sk); skb->destructor = NULL; skb->sk = NULL; return sk; } *refcounted = false; return NULL; } /* Checks if this SKB belongs to an HW offloaded socket * and whether any SW fallbacks are required based on dev. * Check decrypted mark in case skb_orphan() cleared socket. */ static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb, struct net_device *dev) { #ifdef CONFIG_SOCK_VALIDATE_XMIT struct sock *sk = skb->sk; if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) { skb = sk->sk_validate_xmit_skb(sk, dev, skb); #ifdef CONFIG_TLS_DEVICE } else if (unlikely(skb->decrypted)) { pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n"); kfree_skb(skb); skb = NULL; #endif } #endif return skb; } /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV * SYNACK messages can be attached to either ones (depending on SYNCOOKIE) */ static inline bool sk_listener(const struct sock *sk) { return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV); } void sock_enable_timestamp(struct sock *sk, enum sock_flags flag); int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level, int type); bool sk_ns_capable(const struct sock *sk, struct user_namespace *user_ns, int cap); bool sk_capable(const struct sock *sk, int cap); bool sk_net_capable(const struct sock *sk, int cap); void sk_get_meminfo(const struct sock *sk, u32 *meminfo); /* Take into consideration the size of the struct sk_buff overhead in the * determination of these values, since that is non-constant across * platforms. This makes socket queueing behavior and performance * not depend upon such differences. */ #define _SK_MEM_PACKETS 256 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256) #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) extern __u32 sysctl_wmem_max; extern __u32 sysctl_rmem_max; extern int sysctl_tstamp_allow_data; extern int sysctl_optmem_max; extern __u32 sysctl_wmem_default; extern __u32 sysctl_rmem_default; DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key); static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto) { /* Does this proto have per netns sysctl_wmem ? */ if (proto->sysctl_wmem_offset) return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset); return *proto->sysctl_wmem; } static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto) { /* Does this proto have per netns sysctl_rmem ? */ if (proto->sysctl_rmem_offset) return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset); return *proto->sysctl_rmem; } /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10) * Some wifi drivers need to tweak it to get more chunks. * They can use this helper from their ndo_start_xmit() */ static inline void sk_pacing_shift_update(struct sock *sk, int val) { if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val) return; WRITE_ONCE(sk->sk_pacing_shift, val); } /* if a socket is bound to a device, check that the given device * index is either the same or that the socket is bound to an L3 * master device and the given device index is also enslaved to * that L3 master */ static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif) { int mdif; if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif) return true; mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif); if (mdif && mdif == sk->sk_bound_dev_if) return true; return false; } void sock_def_readable(struct sock *sk); int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk); void sock_enable_timestamps(struct sock *sk); void sock_no_linger(struct sock *sk); void sock_set_keepalive(struct sock *sk); void sock_set_priority(struct sock *sk, u32 priority); void sock_set_rcvbuf(struct sock *sk, int val); void sock_set_mark(struct sock *sk, u32 val); void sock_set_reuseaddr(struct sock *sk); void sock_set_reuseport(struct sock *sk); void sock_set_sndtimeo(struct sock *sk, s64 secs); int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len); #endif /* _SOCK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __IPC_NAMESPACE_H__ #define __IPC_NAMESPACE_H__ #include <linux/err.h> #include <linux/idr.h> #include <linux/rwsem.h> #include <linux/notifier.h> #include <linux/nsproxy.h> #include <linux/ns_common.h> #include <linux/refcount.h> #include <linux/rhashtable-types.h> struct user_namespace; struct ipc_ids { int in_use; unsigned short seq; struct rw_semaphore rwsem; struct idr ipcs_idr; int max_idx; int last_idx; /* For wrap around detection */ #ifdef CONFIG_CHECKPOINT_RESTORE int next_id; #endif struct rhashtable key_ht; }; struct ipc_namespace { refcount_t count; struct ipc_ids ids[3]; int sem_ctls[4]; int used_sems; unsigned int msg_ctlmax; unsigned int msg_ctlmnb; unsigned int msg_ctlmni; atomic_t msg_bytes; atomic_t msg_hdrs; size_t shm_ctlmax; size_t shm_ctlall; unsigned long shm_tot; int shm_ctlmni; /* * Defines whether IPC_RMID is forced for _all_ shm segments regardless * of shmctl() */ int shm_rmid_forced; struct notifier_block ipcns_nb; /* The kern_mount of the mqueuefs sb. We take a ref on it */ struct vfsmount *mq_mnt; /* # queues in this ns, protected by mq_lock */ unsigned int mq_queues_count; /* next fields are set through sysctl */ unsigned int mq_queues_max; /* initialized to DFLT_QUEUESMAX */ unsigned int mq_msg_max; /* initialized to DFLT_MSGMAX */ unsigned int mq_msgsize_max; /* initialized to DFLT_MSGSIZEMAX */ unsigned int mq_msg_default; unsigned int mq_msgsize_default; /* user_ns which owns the ipc ns */ struct user_namespace *user_ns; struct ucounts *ucounts; struct llist_node mnt_llist; struct ns_common ns; } __randomize_layout; extern struct ipc_namespace init_ipc_ns; extern spinlock_t mq_lock; #ifdef CONFIG_SYSVIPC extern void shm_destroy_orphaned(struct ipc_namespace *ns); #else /* CONFIG_SYSVIPC */ static inline void shm_destroy_orphaned(struct ipc_namespace *ns) {} #endif /* CONFIG_SYSVIPC */ #ifdef CONFIG_POSIX_MQUEUE extern int mq_init_ns(struct ipc_namespace *ns); /* * POSIX Message Queue default values: * * MIN_*: Lowest value an admin can set the maximum unprivileged limit to * DFLT_*MAX: Default values for the maximum unprivileged limits * DFLT_{MSG,MSGSIZE}: Default values used when the user doesn't supply * an attribute to the open call and the queue must be created * HARD_*: Highest value the maximums can be set to. These are enforced * on CAP_SYS_RESOURCE apps as well making them inviolate (so make them * suitably high) * * POSIX Requirements: * Per app minimum openable message queues - 8. This does not map well * to the fact that we limit the number of queues on a per namespace * basis instead of a per app basis. So, make the default high enough * that no given app should have a hard time opening 8 queues. * Minimum maximum for HARD_MSGMAX - 32767. I bumped this to 65536. * Minimum maximum for HARD_MSGSIZEMAX - POSIX is silent on this. However, * we have run into a situation where running applications in the wild * require this to be at least 5MB, and preferably 10MB, so I set the * value to 16MB in hopes that this user is the worst of the bunch and * the new maximum will handle anyone else. I may have to revisit this * in the future. */ #define DFLT_QUEUESMAX 256 #define MIN_MSGMAX 1 #define DFLT_MSG 10U #define DFLT_MSGMAX 10 #define HARD_MSGMAX 65536 #define MIN_MSGSIZEMAX 128 #define DFLT_MSGSIZE 8192U #define DFLT_MSGSIZEMAX 8192 #define HARD_MSGSIZEMAX (16*1024*1024) #else static inline int mq_init_ns(struct ipc_namespace *ns) { return 0; } #endif #if defined(CONFIG_IPC_NS) extern struct ipc_namespace *copy_ipcs(unsigned long flags, struct user_namespace *user_ns, struct ipc_namespace *ns); static inline struct ipc_namespace *get_ipc_ns(struct ipc_namespace *ns) { if (ns) refcount_inc(&ns->count); return ns; } static inline struct ipc_namespace *get_ipc_ns_not_zero(struct ipc_namespace *ns) { if (ns) { if (refcount_inc_not_zero(&ns->count)) return ns; } return NULL; } extern void put_ipc_ns(struct ipc_namespace *ns); #else static inline struct ipc_namespace *copy_ipcs(unsigned long flags, struct user_namespace *user_ns, struct ipc_namespace *ns) { if (flags & CLONE_NEWIPC) return ERR_PTR(-EINVAL); return ns; } static inline struct ipc_namespace *get_ipc_ns(struct ipc_namespace *ns) { return ns; } static inline struct ipc_namespace *get_ipc_ns_not_zero(struct ipc_namespace *ns) { return ns; } static inline void put_ipc_ns(struct ipc_namespace *ns) { } #endif #ifdef CONFIG_POSIX_MQUEUE_SYSCTL struct ctl_table_header; extern struct ctl_table_header *mq_register_sysctl_table(void); #else /* CONFIG_POSIX_MQUEUE_SYSCTL */ static inline struct ctl_table_header *mq_register_sysctl_table(void) { return NULL; } #endif /* CONFIG_POSIX_MQUEUE_SYSCTL */ #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_KERNEL_STAT_H #define _LINUX_KERNEL_STAT_H #include <linux/smp.h> #include <linux/threads.h> #include <linux/percpu.h> #include <linux/cpumask.h> #include <linux/interrupt.h> #include <linux/sched.h> #include <linux/vtime.h> #include <asm/irq.h> /* * 'kernel_stat.h' contains the definitions needed for doing * some kernel statistics (CPU usage, context switches ...), * used by rstatd/perfmeter */ enum cpu_usage_stat { CPUTIME_USER, CPUTIME_NICE, CPUTIME_SYSTEM, CPUTIME_SOFTIRQ, CPUTIME_IRQ, CPUTIME_IDLE, CPUTIME_IOWAIT, CPUTIME_STEAL, CPUTIME_GUEST, CPUTIME_GUEST_NICE, NR_STATS, }; struct kernel_cpustat { u64 cpustat[NR_STATS]; }; struct kernel_stat { unsigned long irqs_sum; unsigned int softirqs[NR_SOFTIRQS]; }; DECLARE_PER_CPU(struct kernel_stat, kstat); DECLARE_PER_CPU(struct kernel_cpustat, kernel_cpustat); /* Must have preemption disabled for this to be meaningful. */ #define kstat_this_cpu this_cpu_ptr(&kstat) #define kcpustat_this_cpu this_cpu_ptr(&kernel_cpustat) #define kstat_cpu(cpu) per_cpu(kstat, cpu) #define kcpustat_cpu(cpu) per_cpu(kernel_cpustat, cpu) extern unsigned long long nr_context_switches(void); extern unsigned int kstat_irqs_cpu(unsigned int irq, int cpu); extern void kstat_incr_irq_this_cpu(unsigned int irq); static inline void kstat_incr_softirqs_this_cpu(unsigned int irq) { __this_cpu_inc(kstat.softirqs[irq]); } static inline unsigned int kstat_softirqs_cpu(unsigned int irq, int cpu) { return kstat_cpu(cpu).softirqs[irq]; } /* * Number of interrupts per specific IRQ source, since bootup */ extern unsigned int kstat_irqs(unsigned int irq); extern unsigned int kstat_irqs_usr(unsigned int irq); /* * Number of interrupts per cpu, since bootup */ static inline unsigned int kstat_cpu_irqs_sum(unsigned int cpu) { return kstat_cpu(cpu).irqs_sum; } #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN extern u64 kcpustat_field(struct kernel_cpustat *kcpustat, enum cpu_usage_stat usage, int cpu); extern void kcpustat_cpu_fetch(struct kernel_cpustat *dst, int cpu); #else static inline u64 kcpustat_field(struct kernel_cpustat *kcpustat, enum cpu_usage_stat usage, int cpu) { return kcpustat->cpustat[usage]; } static inline void kcpustat_cpu_fetch(struct kernel_cpustat *dst, int cpu) { *dst = kcpustat_cpu(cpu); } #endif extern void account_user_time(struct task_struct *, u64); extern void account_guest_time(struct task_struct *, u64); extern void account_system_time(struct task_struct *, int, u64); extern void account_system_index_time(struct task_struct *, u64, enum cpu_usage_stat); extern void account_steal_time(u64); extern void account_idle_time(u64); extern u64 get_idle_time(struct kernel_cpustat *kcs, int cpu); #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE static inline void account_process_tick(struct task_struct *tsk, int user) { vtime_flush(tsk); } #else extern void account_process_tick(struct task_struct *, int user); #endif extern void account_idle_ticks(unsigned long ticks); #endif /* _LINUX_KERNEL_STAT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * include/linux/eventpoll.h ( Efficient event polling implementation ) * Copyright (C) 2001,...,2006 Davide Libenzi * * Davide Libenzi <davidel@xmailserver.org> */ #ifndef _LINUX_EVENTPOLL_H #define _LINUX_EVENTPOLL_H #include <uapi/linux/eventpoll.h> #include <uapi/linux/kcmp.h> /* Forward declarations to avoid compiler errors */ struct file; #ifdef CONFIG_EPOLL #ifdef CONFIG_KCMP struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd, unsigned long toff); #endif /* Used to initialize the epoll bits inside the "struct file" */ static inline void eventpoll_init_file(struct file *file) { INIT_LIST_HEAD(&file->f_ep_links); INIT_LIST_HEAD(&file->f_tfile_llink); } /* Used to release the epoll bits inside the "struct file" */ void eventpoll_release_file(struct file *file); /* * This is called from inside fs/file_table.c:__fput() to unlink files * from the eventpoll interface. We need to have this facility to cleanup * correctly files that are closed without being removed from the eventpoll * interface. */ static inline void eventpoll_release(struct file *file) { /* * Fast check to avoid the get/release of the semaphore. Since * we're doing this outside the semaphore lock, it might return * false negatives, but we don't care. It'll help in 99.99% of cases * to avoid the semaphore lock. False positives simply cannot happen * because the file in on the way to be removed and nobody ( but * eventpoll ) has still a reference to this file. */ if (likely(list_empty(&file->f_ep_links))) return; /* * The file is being closed while it is still linked to an epoll * descriptor. We need to handle this by correctly unlinking it * from its containers. */ eventpoll_release_file(file); } int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds, bool nonblock); /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */ static inline int ep_op_has_event(int op) { return op != EPOLL_CTL_DEL; } #else static inline void eventpoll_init_file(struct file *file) {} static inline void eventpoll_release(struct file *file) {} #endif #endif /* #ifndef _LINUX_EVENTPOLL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 /* SPDX-License-Identifier: GPL-2.0 */ /* * workqueue.h --- work queue handling for Linux. */ #ifndef _LINUX_WORKQUEUE_H #define _LINUX_WORKQUEUE_H #include <linux/timer.h> #include <linux/linkage.h> #include <linux/bitops.h> #include <linux/lockdep.h> #include <linux/threads.h> #include <linux/atomic.h> #include <linux/cpumask.h> #include <linux/rcupdate.h> struct workqueue_struct; struct work_struct; typedef void (*work_func_t)(struct work_struct *work); void delayed_work_timer_fn(struct timer_list *t); /* * The first word is the work queue pointer and the flags rolled into * one */ #define work_data_bits(work) ((unsigned long *)(&(work)->data)) enum { WORK_STRUCT_PENDING_BIT = 0, /* work item is pending execution */ WORK_STRUCT_DELAYED_BIT = 1, /* work item is delayed */ WORK_STRUCT_PWQ_BIT = 2, /* data points to pwq */ WORK_STRUCT_LINKED_BIT = 3, /* next work is linked to this one */ #ifdef CONFIG_DEBUG_OBJECTS_WORK WORK_STRUCT_STATIC_BIT = 4, /* static initializer (debugobjects) */ WORK_STRUCT_COLOR_SHIFT = 5, /* color for workqueue flushing */ #else WORK_STRUCT_COLOR_SHIFT = 4, /* color for workqueue flushing */ #endif WORK_STRUCT_COLOR_BITS = 4, WORK_STRUCT_PENDING = 1 << WORK_STRUCT_PENDING_BIT, WORK_STRUCT_DELAYED = 1 << WORK_STRUCT_DELAYED_BIT, WORK_STRUCT_PWQ = 1 << WORK_STRUCT_PWQ_BIT, WORK_STRUCT_LINKED = 1 << WORK_STRUCT_LINKED_BIT, #ifdef CONFIG_DEBUG_OBJECTS_WORK WORK_STRUCT_STATIC = 1 << WORK_STRUCT_STATIC_BIT, #else WORK_STRUCT_STATIC = 0, #endif /* * The last color is no color used for works which don't * participate in workqueue flushing. */ WORK_NR_COLORS = (1 << WORK_STRUCT_COLOR_BITS) - 1, WORK_NO_COLOR = WORK_NR_COLORS, /* not bound to any CPU, prefer the local CPU */ WORK_CPU_UNBOUND = NR_CPUS, /* * Reserve 8 bits off of pwq pointer w/ debugobjects turned off. * This makes pwqs aligned to 256 bytes and allows 15 workqueue * flush colors. */ WORK_STRUCT_FLAG_BITS = WORK_STRUCT_COLOR_SHIFT + WORK_STRUCT_COLOR_BITS, /* data contains off-queue information when !WORK_STRUCT_PWQ */ WORK_OFFQ_FLAG_BASE = WORK_STRUCT_COLOR_SHIFT, __WORK_OFFQ_CANCELING = WORK_OFFQ_FLAG_BASE, WORK_OFFQ_CANCELING = (1 << __WORK_OFFQ_CANCELING), /* * When a work item is off queue, its high bits point to the last * pool it was on. Cap at 31 bits and use the highest number to * indicate that no pool is associated. */ WORK_OFFQ_FLAG_BITS = 1, WORK_OFFQ_POOL_SHIFT = WORK_OFFQ_FLAG_BASE + WORK_OFFQ_FLAG_BITS, WORK_OFFQ_LEFT = BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT, WORK_OFFQ_POOL_BITS = WORK_OFFQ_LEFT <= 31 ? WORK_OFFQ_LEFT : 31, WORK_OFFQ_POOL_NONE = (1LU << WORK_OFFQ_POOL_BITS) - 1, /* convenience constants */ WORK_STRUCT_FLAG_MASK = (1UL << WORK_STRUCT_FLAG_BITS) - 1, WORK_STRUCT_WQ_DATA_MASK = ~WORK_STRUCT_FLAG_MASK, WORK_STRUCT_NO_POOL = (unsigned long)WORK_OFFQ_POOL_NONE << WORK_OFFQ_POOL_SHIFT, /* bit mask for work_busy() return values */ WORK_BUSY_PENDING = 1 << 0, WORK_BUSY_RUNNING = 1 << 1, /* maximum string length for set_worker_desc() */ WORKER_DESC_LEN = 24, }; struct work_struct { atomic_long_t data; struct list_head entry; work_func_t func; #ifdef CONFIG_LOCKDEP struct lockdep_map lockdep_map; #endif }; #define WORK_DATA_INIT() ATOMIC_LONG_INIT((unsigned long)WORK_STRUCT_NO_POOL) #define WORK_DATA_STATIC_INIT() \ ATOMIC_LONG_INIT((unsigned long)(WORK_STRUCT_NO_POOL | WORK_STRUCT_STATIC)) struct delayed_work { struct work_struct work; struct timer_list timer; /* target workqueue and CPU ->timer uses to queue ->work */ struct workqueue_struct *wq; int cpu; }; struct rcu_work { struct work_struct work; struct rcu_head rcu; /* target workqueue ->rcu uses to queue ->work */ struct workqueue_struct *wq; }; /** * struct workqueue_attrs - A struct for workqueue attributes. * * This can be used to change attributes of an unbound workqueue. */ struct workqueue_attrs { /** * @nice: nice level */ int nice; /** * @cpumask: allowed CPUs */ cpumask_var_t cpumask; /** * @no_numa: disable NUMA affinity * * Unlike other fields, ``no_numa`` isn't a property of a worker_pool. It * only modifies how :c:func:`apply_workqueue_attrs` select pools and thus * doesn't participate in pool hash calculations or equality comparisons. */ bool no_numa; }; static inline struct delayed_work *to_delayed_work(struct work_struct *work) { return container_of(work, struct delayed_work, work); } static inline struct rcu_work *to_rcu_work(struct work_struct *work) { return container_of(work, struct rcu_work, work); } struct execute_work { struct work_struct work; }; #ifdef CONFIG_LOCKDEP /* * NB: because we have to copy the lockdep_map, setting _key * here is required, otherwise it could get initialised to the * copy of the lockdep_map! */ #define __WORK_INIT_LOCKDEP_MAP(n, k) \ .lockdep_map = STATIC_LOCKDEP_MAP_INIT(n, k), #else #define __WORK_INIT_LOCKDEP_MAP(n, k) #endif #define __WORK_INITIALIZER(n, f) { \ .data = WORK_DATA_STATIC_INIT(), \ .entry = { &(n).entry, &(n).entry }, \ .func = (f), \ __WORK_INIT_LOCKDEP_MAP(#n, &(n)) \ } #define __DELAYED_WORK_INITIALIZER(n, f, tflags) { \ .work = __WORK_INITIALIZER((n).work, (f)), \ .timer = __TIMER_INITIALIZER(delayed_work_timer_fn,\ (tflags) | TIMER_IRQSAFE), \ } #define DECLARE_WORK(n, f) \ struct work_struct n = __WORK_INITIALIZER(n, f) #define DECLARE_DELAYED_WORK(n, f) \ struct delayed_work n = __DELAYED_WORK_INITIALIZER(n, f, 0) #define DECLARE_DEFERRABLE_WORK(n, f) \ struct delayed_work n = __DELAYED_WORK_INITIALIZER(n, f, TIMER_DEFERRABLE) #ifdef CONFIG_DEBUG_OBJECTS_WORK extern void __init_work(struct work_struct *work, int onstack); extern void destroy_work_on_stack(struct work_struct *work); extern void destroy_delayed_work_on_stack(struct delayed_work *work); static inline unsigned int work_static(struct work_struct *work) { return *work_data_bits(work) & WORK_STRUCT_STATIC; } #else static inline void __init_work(struct work_struct *work, int onstack) { } static inline void destroy_work_on_stack(struct work_struct *work) { } static inline void destroy_delayed_work_on_stack(struct delayed_work *work) { } static inline unsigned int work_static(struct work_struct *work) { return 0; } #endif /* * initialize all of a work item in one go * * NOTE! No point in using "atomic_long_set()": using a direct * assignment of the work data initializer allows the compiler * to generate better code. */ #ifdef CONFIG_LOCKDEP #define __INIT_WORK(_work, _func, _onstack) \ do { \ static struct lock_class_key __key; \ \ __init_work((_work), _onstack); \ (_work)->data = (atomic_long_t) WORK_DATA_INIT(); \ lockdep_init_map(&(_work)->lockdep_map, "(work_completion)"#_work, &__key, 0); \ INIT_LIST_HEAD(&(_work)->entry); \ (_work)->func = (_func); \ } while (0) #else #define __INIT_WORK(_work, _func, _onstack) \ do { \ __init_work((_work), _onstack); \ (_work)->data = (atomic_long_t) WORK_DATA_INIT(); \ INIT_LIST_HEAD(&(_work)->entry); \ (_work)->func = (_func); \ } while (0) #endif #define INIT_WORK(_work, _func) \ __INIT_WORK((_work), (_func), 0) #define INIT_WORK_ONSTACK(_work, _func) \ __INIT_WORK((_work), (_func), 1) #define __INIT_DELAYED_WORK(_work, _func, _tflags) \ do { \ INIT_WORK(&(_work)->work, (_func)); \ __init_timer(&(_work)->timer, \ delayed_work_timer_fn, \ (_tflags) | TIMER_IRQSAFE); \ } while (0) #define __INIT_DELAYED_WORK_ONSTACK(_work, _func, _tflags) \ do { \ INIT_WORK_ONSTACK(&(_work)->work, (_func)); \ __init_timer_on_stack(&(_work)->timer, \ delayed_work_timer_fn, \ (_tflags) | TIMER_IRQSAFE); \ } while (0) #define INIT_DELAYED_WORK(_work, _func) \ __INIT_DELAYED_WORK(_work, _func, 0) #define INIT_DELAYED_WORK_ONSTACK(_work, _func) \ __INIT_DELAYED_WORK_ONSTACK(_work, _func, 0) #define INIT_DEFERRABLE_WORK(_work, _func) \ __INIT_DELAYED_WORK(_work, _func, TIMER_DEFERRABLE) #define INIT_DEFERRABLE_WORK_ONSTACK(_work, _func) \ __INIT_DELAYED_WORK_ONSTACK(_work, _func, TIMER_DEFERRABLE) #define INIT_RCU_WORK(_work, _func) \ INIT_WORK(&(_work)->work, (_func)) #define INIT_RCU_WORK_ONSTACK(_work, _func) \ INIT_WORK_ONSTACK(&(_work)->work, (_func)) /** * work_pending - Find out whether a work item is currently pending * @work: The work item in question */ #define work_pending(work) \ test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) /** * delayed_work_pending - Find out whether a delayable work item is currently * pending * @w: The work item in question */ #define delayed_work_pending(w) \ work_pending(&(w)->work) /* * Workqueue flags and constants. For details, please refer to * Documentation/core-api/workqueue.rst. */ enum { WQ_UNBOUND = 1 << 1, /* not bound to any cpu */ WQ_FREEZABLE = 1 << 2, /* freeze during suspend */ WQ_MEM_RECLAIM = 1 << 3, /* may be used for memory reclaim */ WQ_HIGHPRI = 1 << 4, /* high priority */ WQ_CPU_INTENSIVE = 1 << 5, /* cpu intensive workqueue */ WQ_SYSFS = 1 << 6, /* visible in sysfs, see wq_sysfs_register() */ /* * Per-cpu workqueues are generally preferred because they tend to * show better performance thanks to cache locality. Per-cpu * workqueues exclude the scheduler from choosing the CPU to * execute the worker threads, which has an unfortunate side effect * of increasing power consumption. * * The scheduler considers a CPU idle if it doesn't have any task * to execute and tries to keep idle cores idle to conserve power; * however, for example, a per-cpu work item scheduled from an * interrupt handler on an idle CPU will force the scheduler to * excute the work item on that CPU breaking the idleness, which in * turn may lead to more scheduling choices which are sub-optimal * in terms of power consumption. * * Workqueues marked with WQ_POWER_EFFICIENT are per-cpu by default * but become unbound if workqueue.power_efficient kernel param is * specified. Per-cpu workqueues which are identified to * contribute significantly to power-consumption are identified and * marked with this flag and enabling the power_efficient mode * leads to noticeable power saving at the cost of small * performance disadvantage. * * http://thread.gmane.org/gmane.linux.kernel/1480396 */ WQ_POWER_EFFICIENT = 1 << 7, __WQ_DRAINING = 1 << 16, /* internal: workqueue is draining */ __WQ_ORDERED = 1 << 17, /* internal: workqueue is ordered */ __WQ_LEGACY = 1 << 18, /* internal: create*_workqueue() */ __WQ_ORDERED_EXPLICIT = 1 << 19, /* internal: alloc_ordered_workqueue() */ WQ_MAX_ACTIVE = 512, /* I like 512, better ideas? */ WQ_MAX_UNBOUND_PER_CPU = 4, /* 4 * #cpus for unbound wq */ WQ_DFL_ACTIVE = WQ_MAX_ACTIVE / 2, }; /* unbound wq's aren't per-cpu, scale max_active according to #cpus */ #define WQ_UNBOUND_MAX_ACTIVE \ max_t(int, WQ_MAX_ACTIVE, num_possible_cpus() * WQ_MAX_UNBOUND_PER_CPU) /* * System-wide workqueues which are always present. * * system_wq is the one used by schedule[_delayed]_work[_on](). * Multi-CPU multi-threaded. There are users which expect relatively * short queue flush time. Don't queue works which can run for too * long. * * system_highpri_wq is similar to system_wq but for work items which * require WQ_HIGHPRI. * * system_long_wq is similar to system_wq but may host long running * works. Queue flushing might take relatively long. * * system_unbound_wq is unbound workqueue. Workers are not bound to * any specific CPU, not concurrency managed, and all queued works are * executed immediately as long as max_active limit is not reached and * resources are available. * * system_freezable_wq is equivalent to system_wq except that it's * freezable. * * *_power_efficient_wq are inclined towards saving power and converted * into WQ_UNBOUND variants if 'wq_power_efficient' is enabled; otherwise, * they are same as their non-power-efficient counterparts - e.g. * system_power_efficient_wq is identical to system_wq if * 'wq_power_efficient' is disabled. See WQ_POWER_EFFICIENT for more info. */ extern struct workqueue_struct *system_wq; extern struct workqueue_struct *system_highpri_wq; extern struct workqueue_struct *system_long_wq; extern struct workqueue_struct *system_unbound_wq; extern struct workqueue_struct *system_freezable_wq; extern struct workqueue_struct *system_power_efficient_wq; extern struct workqueue_struct *system_freezable_power_efficient_wq; /** * alloc_workqueue - allocate a workqueue * @fmt: printf format for the name of the workqueue * @flags: WQ_* flags * @max_active: max in-flight work items, 0 for default * remaining args: args for @fmt * * Allocate a workqueue with the specified parameters. For detailed * information on WQ_* flags, please refer to * Documentation/core-api/workqueue.rst. * * RETURNS: * Pointer to the allocated workqueue on success, %NULL on failure. */ struct workqueue_struct *alloc_workqueue(const char *fmt, unsigned int flags, int max_active, ...); /** * alloc_ordered_workqueue - allocate an ordered workqueue * @fmt: printf format for the name of the workqueue * @flags: WQ_* flags (only WQ_FREEZABLE and WQ_MEM_RECLAIM are meaningful) * @args...: args for @fmt * * Allocate an ordered workqueue. An ordered workqueue executes at * most one work item at any given time in the queued order. They are * implemented as unbound workqueues with @max_active of one. * * RETURNS: * Pointer to the allocated workqueue on success, %NULL on failure. */ #define alloc_ordered_workqueue(fmt, flags, args...) \ alloc_workqueue(fmt, WQ_UNBOUND | __WQ_ORDERED | \ __WQ_ORDERED_EXPLICIT | (flags), 1, ##args) #define create_workqueue(name) \ alloc_workqueue("%s", __WQ_LEGACY | WQ_MEM_RECLAIM, 1, (name)) #define create_freezable_workqueue(name) \ alloc_workqueue("%s", __WQ_LEGACY | WQ_FREEZABLE | WQ_UNBOUND | \ WQ_MEM_RECLAIM, 1, (name)) #define create_singlethread_workqueue(name) \ alloc_ordered_workqueue("%s", __WQ_LEGACY | WQ_MEM_RECLAIM, name) extern void destroy_workqueue(struct workqueue_struct *wq); struct workqueue_attrs *alloc_workqueue_attrs(void); void free_workqueue_attrs(struct workqueue_attrs *attrs); int apply_workqueue_attrs(struct workqueue_struct *wq, const struct workqueue_attrs *attrs); int workqueue_set_unbound_cpumask(cpumask_var_t cpumask); extern bool queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work); extern bool queue_work_node(int node, struct workqueue_struct *wq, struct work_struct *work); extern bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, struct delayed_work *work, unsigned long delay); extern bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, struct delayed_work *dwork, unsigned long delay); extern bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork); extern void flush_workqueue(struct workqueue_struct *wq); extern void drain_workqueue(struct workqueue_struct *wq); extern int schedule_on_each_cpu(work_func_t func); int execute_in_process_context(work_func_t fn, struct execute_work *); extern bool flush_work(struct work_struct *work); extern bool cancel_work_sync(struct work_struct *work); extern bool flush_delayed_work(struct delayed_work *dwork); extern bool cancel_delayed_work(struct delayed_work *dwork); extern bool cancel_delayed_work_sync(struct delayed_work *dwork); extern bool flush_rcu_work(struct rcu_work *rwork); extern void workqueue_set_max_active(struct workqueue_struct *wq, int max_active); extern struct work_struct *current_work(void); extern bool current_is_workqueue_rescuer(void); extern bool workqueue_congested(int cpu, struct workqueue_struct *wq); extern unsigned int work_busy(struct work_struct *work); extern __printf(1, 2) void set_worker_desc(const char *fmt, ...); extern void print_worker_info(const char *log_lvl, struct task_struct *task); extern void show_workqueue_state(void); extern void wq_worker_comm(char *buf, size_t size, struct task_struct *task); /** * queue_work - queue work on a workqueue * @wq: workqueue to use * @work: work to queue * * Returns %false if @work was already on a queue, %true otherwise. * * We queue the work to the CPU on which it was submitted, but if the CPU dies * it can be processed by another CPU. * * Memory-ordering properties: If it returns %true, guarantees that all stores * preceding the call to queue_work() in the program order will be visible from * the CPU which will execute @work by the time such work executes, e.g., * * { x is initially 0 } * * CPU0 CPU1 * * WRITE_ONCE(x, 1); [ @work is being executed ] * r0 = queue_work(wq, work); r1 = READ_ONCE(x); * * Forbids: r0 == true && r1 == 0 */ static inline bool queue_work(struct workqueue_struct *wq, struct work_struct *work) { return queue_work_on(WORK_CPU_UNBOUND, wq, work); } /** * queue_delayed_work - queue work on a workqueue after delay * @wq: workqueue to use * @dwork: delayable work to queue * @delay: number of jiffies to wait before queueing * * Equivalent to queue_delayed_work_on() but tries to use the local CPU. */ static inline bool queue_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork, unsigned long delay) { return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay); } /** * mod_delayed_work - modify delay of or queue a delayed work * @wq: workqueue to use * @dwork: work to queue * @delay: number of jiffies to wait before queueing * * mod_delayed_work_on() on local CPU. */ static inline bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork, unsigned long delay) { return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay); } /** * schedule_work_on - put work task on a specific cpu * @cpu: cpu to put the work task on * @work: job to be done * * This puts a job on a specific cpu */ static inline bool schedule_work_on(int cpu, struct work_struct *work) { return queue_work_on(cpu, system_wq, work); } /** * schedule_work - put work task in global workqueue * @work: job to be done * * Returns %false if @work was already on the kernel-global workqueue and * %true otherwise. * * This puts a job in the kernel-global workqueue if it was not already * queued and leaves it in the same position on the kernel-global * workqueue otherwise. * * Shares the same memory-ordering properties of queue_work(), cf. the * DocBook header of queue_work(). */ static inline bool schedule_work(struct work_struct *work) { return queue_work(system_wq, work); } /** * flush_scheduled_work - ensure that any scheduled work has run to completion. * * Forces execution of the kernel-global workqueue and blocks until its * completion. * * Think twice before calling this function! It's very easy to get into * trouble if you don't take great care. Either of the following situations * will lead to deadlock: * * One of the work items currently on the workqueue needs to acquire * a lock held by your code or its caller. * * Your code is running in the context of a work routine. * * They will be detected by lockdep when they occur, but the first might not * occur very often. It depends on what work items are on the workqueue and * what locks they need, which you have no control over. * * In most situations flushing the entire workqueue is overkill; you merely * need to know that a particular work item isn't queued and isn't running. * In such cases you should use cancel_delayed_work_sync() or * cancel_work_sync() instead. */ static inline void flush_scheduled_work(void) { flush_workqueue(system_wq); } /** * schedule_delayed_work_on - queue work in global workqueue on CPU after delay * @cpu: cpu to use * @dwork: job to be done * @delay: number of jiffies to wait * * After waiting for a given time this puts a job in the kernel-global * workqueue on the specified CPU. */ static inline bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay) { return queue_delayed_work_on(cpu, system_wq, dwork, delay); } /** * schedule_delayed_work - put work task in global workqueue after delay * @dwork: job to be done * @delay: number of jiffies to wait or 0 for immediate execution * * After waiting for a given time this puts a job in the kernel-global * workqueue. */ static inline bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay) { return queue_delayed_work(system_wq, dwork, delay); } #ifndef CONFIG_SMP static inline long work_on_cpu(int cpu, long (*fn)(void *), void *arg) { return fn(arg); } static inline long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg) { return fn(arg); } #else long work_on_cpu(int cpu, long (*fn)(void *), void *arg); long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg); #endif /* CONFIG_SMP */ #ifdef CONFIG_FREEZER extern void freeze_workqueues_begin(void); extern bool freeze_workqueues_busy(void); extern void thaw_workqueues(void); #endif /* CONFIG_FREEZER */ #ifdef CONFIG_SYSFS int workqueue_sysfs_register(struct workqueue_struct *wq); #else /* CONFIG_SYSFS */ static inline int workqueue_sysfs_register(struct workqueue_struct *wq) { return 0; } #endif /* CONFIG_SYSFS */ #ifdef CONFIG_WQ_WATCHDOG void wq_watchdog_touch(int cpu); #else /* CONFIG_WQ_WATCHDOG */ static inline void wq_watchdog_touch(int cpu) { } #endif /* CONFIG_WQ_WATCHDOG */ #ifdef CONFIG_SMP int workqueue_prepare_cpu(unsigned int cpu); int workqueue_online_cpu(unsigned int cpu); int workqueue_offline_cpu(unsigned int cpu); #endif void __init workqueue_init_early(void); void __init workqueue_init(void); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 /* SPDX-License-Identifier: GPL-2.0-only */ /* * net busy poll support * Copyright(c) 2013 Intel Corporation. * * Author: Eliezer Tamir * * Contact Information: * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> */ #ifndef _LINUX_NET_BUSY_POLL_H #define _LINUX_NET_BUSY_POLL_H #include <linux/netdevice.h> #include <linux/sched/clock.h> #include <linux/sched/signal.h> #include <net/ip.h> /* 0 - Reserved to indicate value not set * 1..NR_CPUS - Reserved for sender_cpu * NR_CPUS+1..~0 - Region available for NAPI IDs */ #define MIN_NAPI_ID ((unsigned int)(NR_CPUS + 1)) #ifdef CONFIG_NET_RX_BUSY_POLL struct napi_struct; extern unsigned int sysctl_net_busy_read __read_mostly; extern unsigned int sysctl_net_busy_poll __read_mostly; static inline bool net_busy_loop_on(void) { return sysctl_net_busy_poll; } static inline bool sk_can_busy_loop(const struct sock *sk) { return READ_ONCE(sk->sk_ll_usec) && !signal_pending(current); } bool sk_busy_loop_end(void *p, unsigned long start_time); void napi_busy_loop(unsigned int napi_id, bool (*loop_end)(void *, unsigned long), void *loop_end_arg); #else /* CONFIG_NET_RX_BUSY_POLL */ static inline unsigned long net_busy_loop_on(void) { return 0; } static inline bool sk_can_busy_loop(struct sock *sk) { return false; } #endif /* CONFIG_NET_RX_BUSY_POLL */ static inline unsigned long busy_loop_current_time(void) { #ifdef CONFIG_NET_RX_BUSY_POLL return (unsigned long)(local_clock() >> 10); #else return 0; #endif } /* in poll/select we use the global sysctl_net_ll_poll value */ static inline bool busy_loop_timeout(unsigned long start_time) { #ifdef CONFIG_NET_RX_BUSY_POLL unsigned long bp_usec = READ_ONCE(sysctl_net_busy_poll); if (bp_usec) { unsigned long end_time = start_time + bp_usec; unsigned long now = busy_loop_current_time(); return time_after(now, end_time); } #endif return true; } static inline bool sk_busy_loop_timeout(struct sock *sk, unsigned long start_time) { #ifdef CONFIG_NET_RX_BUSY_POLL unsigned long bp_usec = READ_ONCE(sk->sk_ll_usec); if (bp_usec) { unsigned long end_time = start_time + bp_usec; unsigned long now = busy_loop_current_time(); return time_after(now, end_time); } #endif return true; } static inline void sk_busy_loop(struct sock *sk, int nonblock) { #ifdef CONFIG_NET_RX_BUSY_POLL unsigned int napi_id = READ_ONCE(sk->sk_napi_id); if (napi_id >= MIN_NAPI_ID) napi_busy_loop(napi_id, nonblock ? NULL : sk_busy_loop_end, sk); #endif } /* used in the NIC receive handler to mark the skb */ static inline void skb_mark_napi_id(struct sk_buff *skb, struct napi_struct *napi) { #ifdef CONFIG_NET_RX_BUSY_POLL /* If the skb was already marked with a valid NAPI ID, avoid overwriting * it. */ if (skb->napi_id < MIN_NAPI_ID) skb->napi_id = napi->napi_id; #endif } /* used in the protocol hanlder to propagate the napi_id to the socket */ static inline void sk_mark_napi_id(struct sock *sk, const struct sk_buff *skb) { #ifdef CONFIG_NET_RX_BUSY_POLL WRITE_ONCE(sk->sk_napi_id, skb->napi_id); #endif sk_rx_queue_set(sk, skb); } /* variant used for unconnected sockets */ static inline void sk_mark_napi_id_once(struct sock *sk, const struct sk_buff *skb) { #ifdef CONFIG_NET_RX_BUSY_POLL if (!READ_ONCE(sk->sk_napi_id)) WRITE_ONCE(sk->sk_napi_id, skb->napi_id); #endif } #endif /* _LINUX_NET_BUSY_POLL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SCHED_CPUTIME_H #define _LINUX_SCHED_CPUTIME_H #include <linux/sched/signal.h> /* * cputime accounting APIs: */ #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE #include <asm/cputime.h> #ifndef cputime_to_nsecs # define cputime_to_nsecs(__ct) \ (cputime_to_usecs(__ct) * NSEC_PER_USEC) #endif #endif /* CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */ #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN extern void task_cputime(struct task_struct *t, u64 *utime, u64 *stime); extern u64 task_gtime(struct task_struct *t); #else static inline void task_cputime(struct task_struct *t, u64 *utime, u64 *stime) { *utime = t->utime; *stime = t->stime; } static inline u64 task_gtime(struct task_struct *t) { return t->gtime; } #endif #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME static inline void task_cputime_scaled(struct task_struct *t, u64 *utimescaled, u64 *stimescaled) { *utimescaled = t->utimescaled; *stimescaled = t->stimescaled; } #else static inline void task_cputime_scaled(struct task_struct *t, u64 *utimescaled, u64 *stimescaled) { task_cputime(t, utimescaled, stimescaled); } #endif extern void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st); extern void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st); extern void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev, u64 *ut, u64 *st); /* * Thread group CPU time accounting. */ void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); void thread_group_sample_cputime(struct task_struct *tsk, u64 *samples); /* * The following are functions that support scheduler-internal time accounting. * These functions are generally called at the timer tick. None of this depends * on CONFIG_SCHEDSTATS. */ /** * get_running_cputimer - return &tsk->signal->cputimer if cputimers are active * * @tsk: Pointer to target task. */ #ifdef CONFIG_POSIX_TIMERS static inline struct thread_group_cputimer *get_running_cputimer(struct task_struct *tsk) { struct thread_group_cputimer *cputimer = &tsk->signal->cputimer; /* * Check whether posix CPU timers are active. If not the thread * group accounting is not active either. Lockless check. */ if (!READ_ONCE(tsk->signal->posix_cputimers.timers_active)) return NULL; /* * After we flush the task's sum_exec_runtime to sig->sum_sched_runtime * in __exit_signal(), we won't account to the signal struct further * cputime consumed by that task, even though the task can still be * ticking after __exit_signal(). * * In order to keep a consistent behaviour between thread group cputime * and thread group cputimer accounting, lets also ignore the cputime * elapsing after __exit_signal() in any thread group timer running. * * This makes sure that POSIX CPU clocks and timers are synchronized, so * that a POSIX CPU timer won't expire while the corresponding POSIX CPU * clock delta is behind the expiring timer value. */ if (unlikely(!tsk->sighand)) return NULL; return cputimer; } #else static inline struct thread_group_cputimer *get_running_cputimer(struct task_struct *tsk) { return NULL; } #endif /** * account_group_user_time - Maintain utime for a thread group. * * @tsk: Pointer to task structure. * @cputime: Time value by which to increment the utime field of the * thread_group_cputime structure. * * If thread group time is being maintained, get the structure for the * running CPU and update the utime field there. */ static inline void account_group_user_time(struct task_struct *tsk, u64 cputime) { struct thread_group_cputimer *cputimer = get_running_cputimer(tsk); if (!cputimer) return; atomic64_add(cputime, &cputimer->cputime_atomic.utime); } /** * account_group_system_time - Maintain stime for a thread group. * * @tsk: Pointer to task structure. * @cputime: Time value by which to increment the stime field of the * thread_group_cputime structure. * * If thread group time is being maintained, get the structure for the * running CPU and update the stime field there. */ static inline void account_group_system_time(struct task_struct *tsk, u64 cputime) { struct thread_group_cputimer *cputimer = get_running_cputimer(tsk); if (!cputimer) return; atomic64_add(cputime, &cputimer->cputime_atomic.stime); } /** * account_group_exec_runtime - Maintain exec runtime for a thread group. * * @tsk: Pointer to task structure. * @ns: Time value by which to increment the sum_exec_runtime field * of the thread_group_cputime structure. * * If thread group time is being maintained, get the structure for the * running CPU and update the sum_exec_runtime field there. */ static inline void account_group_exec_runtime(struct task_struct *tsk, unsigned long long ns) { struct thread_group_cputimer *cputimer = get_running_cputimer(tsk); if (!cputimer) return; atomic64_add(ns, &cputimer->cputime_atomic.sum_exec_runtime); } static inline void prev_cputime_init(struct prev_cputime *prev) { #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE prev->utime = prev->stime = 0; raw_spin_lock_init(&prev->lock); #endif } extern unsigned long long task_sched_runtime(struct task_struct *task); #endif /* _LINUX_SCHED_CPUTIME_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM power #if !defined(_TRACE_POWER_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_POWER_H #include <linux/cpufreq.h> #include <linux/ktime.h> #include <linux/pm_qos.h> #include <linux/tracepoint.h> #include <linux/trace_events.h> #define TPS(x) tracepoint_string(x) DECLARE_EVENT_CLASS(cpu, TP_PROTO(unsigned int state, unsigned int cpu_id), TP_ARGS(state, cpu_id), TP_STRUCT__entry( __field( u32, state ) __field( u32, cpu_id ) ), TP_fast_assign( __entry->state = state; __entry->cpu_id = cpu_id; ), TP_printk("state=%lu cpu_id=%lu", (unsigned long)__entry->state, (unsigned long)__entry->cpu_id) ); DEFINE_EVENT(cpu, cpu_idle, TP_PROTO(unsigned int state, unsigned int cpu_id), TP_ARGS(state, cpu_id) ); TRACE_EVENT(powernv_throttle, TP_PROTO(int chip_id, const char *reason, int pmax), TP_ARGS(chip_id, reason, pmax), TP_STRUCT__entry( __field(int, chip_id) __string(reason, reason) __field(int, pmax) ), TP_fast_assign( __entry->chip_id = chip_id; __assign_str(reason, reason); __entry->pmax = pmax; ), TP_printk("Chip %d Pmax %d %s", __entry->chip_id, __entry->pmax, __get_str(reason)) ); TRACE_EVENT(pstate_sample, TP_PROTO(u32 core_busy, u32 scaled_busy, u32 from, u32 to, u64 mperf, u64 aperf, u64 tsc, u32 freq, u32 io_boost ), TP_ARGS(core_busy, scaled_busy, from, to, mperf, aperf, tsc, freq, io_boost ), TP_STRUCT__entry( __field(u32, core_busy) __field(u32, scaled_busy) __field(u32, from) __field(u32, to) __field(u64, mperf) __field(u64, aperf) __field(u64, tsc) __field(u32, freq) __field(u32, io_boost) ), TP_fast_assign( __entry->core_busy = core_busy; __entry->scaled_busy = scaled_busy; __entry->from = from; __entry->to = to; __entry->mperf = mperf; __entry->aperf = aperf; __entry->tsc = tsc; __entry->freq = freq; __entry->io_boost = io_boost; ), TP_printk("core_busy=%lu scaled=%lu from=%lu to=%lu mperf=%llu aperf=%llu tsc=%llu freq=%lu io_boost=%lu", (unsigned long)__entry->core_busy, (unsigned long)__entry->scaled_busy, (unsigned long)__entry->from, (unsigned long)__entry->to, (unsigned long long)__entry->mperf, (unsigned long long)__entry->aperf, (unsigned long long)__entry->tsc, (unsigned long)__entry->freq, (unsigned long)__entry->io_boost ) ); /* This file can get included multiple times, TRACE_HEADER_MULTI_READ at top */ #ifndef _PWR_EVENT_AVOID_DOUBLE_DEFINING #define _PWR_EVENT_AVOID_DOUBLE_DEFINING #define PWR_EVENT_EXIT -1 #endif #define pm_verb_symbolic(event) \ __print_symbolic(event, \ { PM_EVENT_SUSPEND, "suspend" }, \ { PM_EVENT_RESUME, "resume" }, \ { PM_EVENT_FREEZE, "freeze" }, \ { PM_EVENT_QUIESCE, "quiesce" }, \ { PM_EVENT_HIBERNATE, "hibernate" }, \ { PM_EVENT_THAW, "thaw" }, \ { PM_EVENT_RESTORE, "restore" }, \ { PM_EVENT_RECOVER, "recover" }) DEFINE_EVENT(cpu, cpu_frequency, TP_PROTO(unsigned int frequency, unsigned int cpu_id), TP_ARGS(frequency, cpu_id) ); TRACE_EVENT(cpu_frequency_limits, TP_PROTO(struct cpufreq_policy *policy), TP_ARGS(policy), TP_STRUCT__entry( __field(u32, min_freq) __field(u32, max_freq) __field(u32, cpu_id) ), TP_fast_assign( __entry->min_freq = policy->min; __entry->max_freq = policy->max; __entry->cpu_id = policy->cpu; ), TP_printk("min=%lu max=%lu cpu_id=%lu", (unsigned long)__entry->min_freq, (unsigned long)__entry->max_freq, (unsigned long)__entry->cpu_id) ); TRACE_EVENT(device_pm_callback_start, TP_PROTO(struct device *dev, const char *pm_ops, int event), TP_ARGS(dev, pm_ops, event), TP_STRUCT__entry( __string(device, dev_name(dev)) __string(driver, dev_driver_string(dev)) __string(parent, dev->parent ? dev_name(dev->parent) : "none") __string(pm_ops, pm_ops ? pm_ops : "none ") __field(int, event) ), TP_fast_assign( __assign_str(device, dev_name(dev)); __assign_str(driver, dev_driver_string(dev)); __assign_str(parent, dev->parent ? dev_name(dev->parent) : "none"); __assign_str(pm_ops, pm_ops ? pm_ops : "none "); __entry->event = event; ), TP_printk("%s %s, parent: %s, %s[%s]", __get_str(driver), __get_str(device), __get_str(parent), __get_str(pm_ops), pm_verb_symbolic(__entry->event)) ); TRACE_EVENT(device_pm_callback_end, TP_PROTO(struct device *dev, int error), TP_ARGS(dev, error), TP_STRUCT__entry( __string(device, dev_name(dev)) __string(driver, dev_driver_string(dev)) __field(int, error) ), TP_fast_assign( __assign_str(device, dev_name(dev)); __assign_str(driver, dev_driver_string(dev)); __entry->error = error; ), TP_printk("%s %s, err=%d", __get_str(driver), __get_str(device), __entry->error) ); TRACE_EVENT(suspend_resume, TP_PROTO(const char *action, int val, bool start), TP_ARGS(action, val, start), TP_STRUCT__entry( __field(const char *, action) __field(int, val) __field(bool, start) ), TP_fast_assign( __entry->action = action; __entry->val = val; __entry->start = start; ), TP_printk("%s[%u] %s", __entry->action, (unsigned int)__entry->val, (__entry->start)?"begin":"end") ); DECLARE_EVENT_CLASS(wakeup_source, TP_PROTO(const char *name, unsigned int state), TP_ARGS(name, state), TP_STRUCT__entry( __string( name, name ) __field( u64, state ) ), TP_fast_assign( __assign_str(name, name); __entry->state = state; ), TP_printk("%s state=0x%lx", __get_str(name), (unsigned long)__entry->state) ); DEFINE_EVENT(wakeup_source, wakeup_source_activate, TP_PROTO(const char *name, unsigned int state), TP_ARGS(name, state) ); DEFINE_EVENT(wakeup_source, wakeup_source_deactivate, TP_PROTO(const char *name, unsigned int state), TP_ARGS(name, state) ); /* * The clock events are used for clock enable/disable and for * clock rate change */ DECLARE_EVENT_CLASS(clock, TP_PROTO(const char *name, unsigned int state, unsigned int cpu_id), TP_ARGS(name, state, cpu_id), TP_STRUCT__entry( __string( name, name ) __field( u64, state ) __field( u64, cpu_id ) ), TP_fast_assign( __assign_str(name, name); __entry->state = state; __entry->cpu_id = cpu_id; ), TP_printk("%s state=%lu cpu_id=%lu", __get_str(name), (unsigned long)__entry->state, (unsigned long)__entry->cpu_id) ); DEFINE_EVENT(clock, clock_enable, TP_PROTO(const char *name, unsigned int state, unsigned int cpu_id), TP_ARGS(name, state, cpu_id) ); DEFINE_EVENT(clock, clock_disable, TP_PROTO(const char *name, unsigned int state, unsigned int cpu_id), TP_ARGS(name, state, cpu_id) ); DEFINE_EVENT(clock, clock_set_rate, TP_PROTO(const char *name, unsigned int state, unsigned int cpu_id), TP_ARGS(name, state, cpu_id) ); /* * The power domain events are used for power domains transitions */ DECLARE_EVENT_CLASS(power_domain, TP_PROTO(const char *name, unsigned int state, unsigned int cpu_id), TP_ARGS(name, state, cpu_id), TP_STRUCT__entry( __string( name, name ) __field( u64, state ) __field( u64, cpu_id ) ), TP_fast_assign( __assign_str(name, name); __entry->state = state; __entry->cpu_id = cpu_id; ), TP_printk("%s state=%lu cpu_id=%lu", __get_str(name), (unsigned long)__entry->state, (unsigned long)__entry->cpu_id) ); DEFINE_EVENT(power_domain, power_domain_target, TP_PROTO(const char *name, unsigned int state, unsigned int cpu_id), TP_ARGS(name, state, cpu_id) ); /* * CPU latency QoS events used for global CPU latency QoS list updates */ DECLARE_EVENT_CLASS(cpu_latency_qos_request, TP_PROTO(s32 value), TP_ARGS(value), TP_STRUCT__entry( __field( s32, value ) ), TP_fast_assign( __entry->value = value; ), TP_printk("CPU_DMA_LATENCY value=%d", __entry->value) ); DEFINE_EVENT(cpu_latency_qos_request, pm_qos_add_request, TP_PROTO(s32 value), TP_ARGS(value) ); DEFINE_EVENT(cpu_latency_qos_request, pm_qos_update_request, TP_PROTO(s32 value), TP_ARGS(value) ); DEFINE_EVENT(cpu_latency_qos_request, pm_qos_remove_request, TP_PROTO(s32 value), TP_ARGS(value) ); /* * General PM QoS events used for updates of PM QoS request lists */ DECLARE_EVENT_CLASS(pm_qos_update, TP_PROTO(enum pm_qos_req_action action, int prev_value, int curr_value), TP_ARGS(action, prev_value, curr_value), TP_STRUCT__entry( __field( enum pm_qos_req_action, action ) __field( int, prev_value ) __field( int, curr_value ) ), TP_fast_assign( __entry->action = action; __entry->prev_value = prev_value; __entry->curr_value = curr_value; ), TP_printk("action=%s prev_value=%d curr_value=%d", __print_symbolic(__entry->action, { PM_QOS_ADD_REQ, "ADD_REQ" }, { PM_QOS_UPDATE_REQ, "UPDATE_REQ" }, { PM_QOS_REMOVE_REQ, "REMOVE_REQ" }), __entry->prev_value, __entry->curr_value) ); DEFINE_EVENT(pm_qos_update, pm_qos_update_target, TP_PROTO(enum pm_qos_req_action action, int prev_value, int curr_value), TP_ARGS(action, prev_value, curr_value) ); DEFINE_EVENT_PRINT(pm_qos_update, pm_qos_update_flags, TP_PROTO(enum pm_qos_req_action action, int prev_value, int curr_value), TP_ARGS(action, prev_value, curr_value), TP_printk("action=%s prev_value=0x%x curr_value=0x%x", __print_symbolic(__entry->action, { PM_QOS_ADD_REQ, "ADD_REQ" }, { PM_QOS_UPDATE_REQ, "UPDATE_REQ" }, { PM_QOS_REMOVE_REQ, "REMOVE_REQ" }), __entry->prev_value, __entry->curr_value) ); DECLARE_EVENT_CLASS(dev_pm_qos_request, TP_PROTO(const char *name, enum dev_pm_qos_req_type type, s32 new_value), TP_ARGS(name, type, new_value), TP_STRUCT__entry( __string( name, name ) __field( enum dev_pm_qos_req_type, type ) __field( s32, new_value ) ), TP_fast_assign( __assign_str(name, name); __entry->type = type; __entry->new_value = new_value; ), TP_printk("device=%s type=%s new_value=%d", __get_str(name), __print_symbolic(__entry->type, { DEV_PM_QOS_RESUME_LATENCY, "DEV_PM_QOS_RESUME_LATENCY" }, { DEV_PM_QOS_FLAGS, "DEV_PM_QOS_FLAGS" }), __entry->new_value) ); DEFINE_EVENT(dev_pm_qos_request, dev_pm_qos_add_request, TP_PROTO(const char *name, enum dev_pm_qos_req_type type, s32 new_value), TP_ARGS(name, type, new_value) ); DEFINE_EVENT(dev_pm_qos_request, dev_pm_qos_update_request, TP_PROTO(const char *name, enum dev_pm_qos_req_type type, s32 new_value), TP_ARGS(name, type, new_value) ); DEFINE_EVENT(dev_pm_qos_request, dev_pm_qos_remove_request, TP_PROTO(const char *name, enum dev_pm_qos_req_type type, s32 new_value), TP_ARGS(name, type, new_value) ); #endif /* _TRACE_POWER_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 /* SPDX-License-Identifier: GPL-2.0-only */ /* * Fast and scalable bitmaps. * * Copyright (C) 2016 Facebook * Copyright (C) 2013-2014 Jens Axboe */ #ifndef __LINUX_SCALE_BITMAP_H #define __LINUX_SCALE_BITMAP_H #include <linux/kernel.h> #include <linux/slab.h> struct seq_file; /** * struct sbitmap_word - Word in a &struct sbitmap. */ struct sbitmap_word { /** * @depth: Number of bits being used in @word/@cleared */ unsigned long depth; /** * @word: word holding free bits */ unsigned long word ____cacheline_aligned_in_smp; /** * @cleared: word holding cleared bits */ unsigned long cleared ____cacheline_aligned_in_smp; /** * @swap_lock: Held while swapping word <-> cleared */ spinlock_t swap_lock; } ____cacheline_aligned_in_smp; /** * struct sbitmap - Scalable bitmap. * * A &struct sbitmap is spread over multiple cachelines to avoid ping-pong. This * trades off higher memory usage for better scalability. */ struct sbitmap { /** * @depth: Number of bits used in the whole bitmap. */ unsigned int depth; /** * @shift: log2(number of bits used per word) */ unsigned int shift; /** * @map_nr: Number of words (cachelines) being used for the bitmap. */ unsigned int map_nr; /** * @map: Allocated bitmap. */ struct sbitmap_word *map; }; #define SBQ_WAIT_QUEUES 8 #define SBQ_WAKE_BATCH 8 /** * struct sbq_wait_state - Wait queue in a &struct sbitmap_queue. */ struct sbq_wait_state { /** * @wait_cnt: Number of frees remaining before we wake up. */ atomic_t wait_cnt; /** * @wait: Wait queue. */ wait_queue_head_t wait; } ____cacheline_aligned_in_smp; /** * struct sbitmap_queue - Scalable bitmap with the added ability to wait on free * bits. * * A &struct sbitmap_queue uses multiple wait queues and rolling wakeups to * avoid contention on the wait queue spinlock. This ensures that we don't hit a * scalability wall when we run out of free bits and have to start putting tasks * to sleep. */ struct sbitmap_queue { /** * @sb: Scalable bitmap. */ struct sbitmap sb; /* * @alloc_hint: Cache of last successfully allocated or freed bit. * * This is per-cpu, which allows multiple users to stick to different * cachelines until the map is exhausted. */ unsigned int __percpu *alloc_hint; /** * @wake_batch: Number of bits which must be freed before we wake up any * waiters. */ unsigned int wake_batch; /** * @wake_index: Next wait queue in @ws to wake up. */ atomic_t wake_index; /** * @ws: Wait queues. */ struct sbq_wait_state *ws; /* * @ws_active: count of currently active ws waitqueues */ atomic_t ws_active; /** * @round_robin: Allocate bits in strict round-robin order. */ bool round_robin; /** * @min_shallow_depth: The minimum shallow depth which may be passed to * sbitmap_queue_get_shallow() or __sbitmap_queue_get_shallow(). */ unsigned int min_shallow_depth; }; /** * sbitmap_init_node() - Initialize a &struct sbitmap on a specific memory node. * @sb: Bitmap to initialize. * @depth: Number of bits to allocate. * @shift: Use 2^@shift bits per word in the bitmap; if a negative number if * given, a good default is chosen. * @flags: Allocation flags. * @node: Memory node to allocate on. * * Return: Zero on success or negative errno on failure. */ int sbitmap_init_node(struct sbitmap *sb, unsigned int depth, int shift, gfp_t flags, int node); /** * sbitmap_free() - Free memory used by a &struct sbitmap. * @sb: Bitmap to free. */ static inline void sbitmap_free(struct sbitmap *sb) { kfree(sb->map); sb->map = NULL; } /** * sbitmap_resize() - Resize a &struct sbitmap. * @sb: Bitmap to resize. * @depth: New number of bits to resize to. * * Doesn't reallocate anything. It's up to the caller to ensure that the new * depth doesn't exceed the depth that the sb was initialized with. */ void sbitmap_resize(struct sbitmap *sb, unsigned int depth); /** * sbitmap_get() - Try to allocate a free bit from a &struct sbitmap. * @sb: Bitmap to allocate from. * @alloc_hint: Hint for where to start searching for a free bit. * @round_robin: If true, be stricter about allocation order; always allocate * starting from the last allocated bit. This is less efficient * than the default behavior (false). * * This operation provides acquire barrier semantics if it succeeds. * * Return: Non-negative allocated bit number if successful, -1 otherwise. */ int sbitmap_get(struct sbitmap *sb, unsigned int alloc_hint, bool round_robin); /** * sbitmap_get_shallow() - Try to allocate a free bit from a &struct sbitmap, * limiting the depth used from each word. * @sb: Bitmap to allocate from. * @alloc_hint: Hint for where to start searching for a free bit. * @shallow_depth: The maximum number of bits to allocate from a single word. * * This rather specific operation allows for having multiple users with * different allocation limits. E.g., there can be a high-priority class that * uses sbitmap_get() and a low-priority class that uses sbitmap_get_shallow() * with a @shallow_depth of (1 << (@sb->shift - 1)). Then, the low-priority * class can only allocate half of the total bits in the bitmap, preventing it * from starving out the high-priority class. * * Return: Non-negative allocated bit number if successful, -1 otherwise. */ int sbitmap_get_shallow(struct sbitmap *sb, unsigned int alloc_hint, unsigned long shallow_depth); /** * sbitmap_any_bit_set() - Check for a set bit in a &struct sbitmap. * @sb: Bitmap to check. * * Return: true if any bit in the bitmap is set, false otherwise. */ bool sbitmap_any_bit_set(const struct sbitmap *sb); #define SB_NR_TO_INDEX(sb, bitnr) ((bitnr) >> (sb)->shift) #define SB_NR_TO_BIT(sb, bitnr) ((bitnr) & ((1U << (sb)->shift) - 1U)) typedef bool (*sb_for_each_fn)(struct sbitmap *, unsigned int, void *); /** * __sbitmap_for_each_set() - Iterate over each set bit in a &struct sbitmap. * @start: Where to start the iteration. * @sb: Bitmap to iterate over. * @fn: Callback. Should return true to continue or false to break early. * @data: Pointer to pass to callback. * * This is inline even though it's non-trivial so that the function calls to the * callback will hopefully get optimized away. */ static inline void __sbitmap_for_each_set(struct sbitmap *sb, unsigned int start, sb_for_each_fn fn, void *data) { unsigned int index; unsigned int nr; unsigned int scanned = 0; if (start >= sb->depth) start = 0; index = SB_NR_TO_INDEX(sb, start); nr = SB_NR_TO_BIT(sb, start); while (scanned < sb->depth) { unsigned long word; unsigned int depth = min_t(unsigned int, sb->map[index].depth - nr, sb->depth - scanned); scanned += depth; word = sb->map[index].word & ~sb->map[index].cleared; if (!word) goto next; /* * On the first iteration of the outer loop, we need to add the * bit offset back to the size of the word for find_next_bit(). * On all other iterations, nr is zero, so this is a noop. */ depth += nr; while (1) { nr = find_next_bit(&word, depth, nr); if (nr >= depth) break; if (!fn(sb, (index << sb->shift) + nr, data)) return; nr++; } next: nr = 0; if (++index >= sb->map_nr) index = 0; } } /** * sbitmap_for_each_set() - Iterate over each set bit in a &struct sbitmap. * @sb: Bitmap to iterate over. * @fn: Callback. Should return true to continue or false to break early. * @data: Pointer to pass to callback. */ static inline void sbitmap_for_each_set(struct sbitmap *sb, sb_for_each_fn fn, void *data) { __sbitmap_for_each_set(sb, 0, fn, data); } static inline unsigned long *__sbitmap_word(struct sbitmap *sb, unsigned int bitnr) { return &sb->map[SB_NR_TO_INDEX(sb, bitnr)].word; } /* Helpers equivalent to the operations in asm/bitops.h and linux/bitmap.h */ static inline void sbitmap_set_bit(struct sbitmap *sb, unsigned int bitnr) { set_bit(SB_NR_TO_BIT(sb, bitnr), __sbitmap_word(sb, bitnr)); } static inline void sbitmap_clear_bit(struct sbitmap *sb, unsigned int bitnr) { clear_bit(SB_NR_TO_BIT(sb, bitnr), __sbitmap_word(sb, bitnr)); } /* * This one is special, since it doesn't actually clear the bit, rather it * sets the corresponding bit in the ->cleared mask instead. Paired with * the caller doing sbitmap_deferred_clear() if a given index is full, which * will clear the previously freed entries in the corresponding ->word. */ static inline void sbitmap_deferred_clear_bit(struct sbitmap *sb, unsigned int bitnr) { unsigned long *addr = &sb->map[SB_NR_TO_INDEX(sb, bitnr)].cleared; set_bit(SB_NR_TO_BIT(sb, bitnr), addr); } static inline void sbitmap_clear_bit_unlock(struct sbitmap *sb, unsigned int bitnr) { clear_bit_unlock(SB_NR_TO_BIT(sb, bitnr), __sbitmap_word(sb, bitnr)); } static inline int sbitmap_test_bit(struct sbitmap *sb, unsigned int bitnr) { return test_bit(SB_NR_TO_BIT(sb, bitnr), __sbitmap_word(sb, bitnr)); } /** * sbitmap_show() - Dump &struct sbitmap information to a &struct seq_file. * @sb: Bitmap to show. * @m: struct seq_file to write to. * * This is intended for debugging. The format may change at any time. */ void sbitmap_show(struct sbitmap *sb, struct seq_file *m); /** * sbitmap_bitmap_show() - Write a hex dump of a &struct sbitmap to a &struct * seq_file. * @sb: Bitmap to show. * @m: struct seq_file to write to. * * This is intended for debugging. The output isn't guaranteed to be internally * consistent. */ void sbitmap_bitmap_show(struct sbitmap *sb, struct seq_file *m); /** * sbitmap_queue_init_node() - Initialize a &struct sbitmap_queue on a specific * memory node. * @sbq: Bitmap queue to initialize. * @depth: See sbitmap_init_node(). * @shift: See sbitmap_init_node(). * @round_robin: See sbitmap_get(). * @flags: Allocation flags. * @node: Memory node to allocate on. * * Return: Zero on success or negative errno on failure. */ int sbitmap_queue_init_node(struct sbitmap_queue *sbq, unsigned int depth, int shift, bool round_robin, gfp_t flags, int node); /** * sbitmap_queue_free() - Free memory used by a &struct sbitmap_queue. * * @sbq: Bitmap queue to free. */ static inline void sbitmap_queue_free(struct sbitmap_queue *sbq) { kfree(sbq->ws); free_percpu(sbq->alloc_hint); sbitmap_free(&sbq->sb); } /** * sbitmap_queue_resize() - Resize a &struct sbitmap_queue. * @sbq: Bitmap queue to resize. * @depth: New number of bits to resize to. * * Like sbitmap_resize(), this doesn't reallocate anything. It has to do * some extra work on the &struct sbitmap_queue, so it's not safe to just * resize the underlying &struct sbitmap. */ void sbitmap_queue_resize(struct sbitmap_queue *sbq, unsigned int depth); /** * __sbitmap_queue_get() - Try to allocate a free bit from a &struct * sbitmap_queue with preemption already disabled. * @sbq: Bitmap queue to allocate from. * * Return: Non-negative allocated bit number if successful, -1 otherwise. */ int __sbitmap_queue_get(struct sbitmap_queue *sbq); /** * __sbitmap_queue_get_shallow() - Try to allocate a free bit from a &struct * sbitmap_queue, limiting the depth used from each word, with preemption * already disabled. * @sbq: Bitmap queue to allocate from. * @shallow_depth: The maximum number of bits to allocate from a single word. * See sbitmap_get_shallow(). * * If you call this, make sure to call sbitmap_queue_min_shallow_depth() after * initializing @sbq. * * Return: Non-negative allocated bit number if successful, -1 otherwise. */ int __sbitmap_queue_get_shallow(struct sbitmap_queue *sbq, unsigned int shallow_depth); /** * sbitmap_queue_get() - Try to allocate a free bit from a &struct * sbitmap_queue. * @sbq: Bitmap queue to allocate from. * @cpu: Output parameter; will contain the CPU we ran on (e.g., to be passed to * sbitmap_queue_clear()). * * Return: Non-negative allocated bit number if successful, -1 otherwise. */ static inline int sbitmap_queue_get(struct sbitmap_queue *sbq, unsigned int *cpu) { int nr; *cpu = get_cpu(); nr = __sbitmap_queue_get(sbq); put_cpu(); return nr; } /** * sbitmap_queue_get_shallow() - Try to allocate a free bit from a &struct * sbitmap_queue, limiting the depth used from each word. * @sbq: Bitmap queue to allocate from. * @cpu: Output parameter; will contain the CPU we ran on (e.g., to be passed to * sbitmap_queue_clear()). * @shallow_depth: The maximum number of bits to allocate from a single word. * See sbitmap_get_shallow(). * * If you call this, make sure to call sbitmap_queue_min_shallow_depth() after * initializing @sbq. * * Return: Non-negative allocated bit number if successful, -1 otherwise. */ static inline int sbitmap_queue_get_shallow(struct sbitmap_queue *sbq, unsigned int *cpu, unsigned int shallow_depth) { int nr; *cpu = get_cpu(); nr = __sbitmap_queue_get_shallow(sbq, shallow_depth); put_cpu(); return nr; } /** * sbitmap_queue_min_shallow_depth() - Inform a &struct sbitmap_queue of the * minimum shallow depth that will be used. * @sbq: Bitmap queue in question. * @min_shallow_depth: The minimum shallow depth that will be passed to * sbitmap_queue_get_shallow() or __sbitmap_queue_get_shallow(). * * sbitmap_queue_clear() batches wakeups as an optimization. The batch size * depends on the depth of the bitmap. Since the shallow allocation functions * effectively operate with a different depth, the shallow depth must be taken * into account when calculating the batch size. This function must be called * with the minimum shallow depth that will be used. Failure to do so can result * in missed wakeups. */ void sbitmap_queue_min_shallow_depth(struct sbitmap_queue *sbq, unsigned int min_shallow_depth); /** * sbitmap_queue_clear() - Free an allocated bit and wake up waiters on a * &struct sbitmap_queue. * @sbq: Bitmap to free from. * @nr: Bit number to free. * @cpu: CPU the bit was allocated on. */ void sbitmap_queue_clear(struct sbitmap_queue *sbq, unsigned int nr, unsigned int cpu); static inline int sbq_index_inc(int index) { return (index + 1) & (SBQ_WAIT_QUEUES - 1); } static inline void sbq_index_atomic_inc(atomic_t *index) { int old = atomic_read(index); int new = sbq_index_inc(old); atomic_cmpxchg(index, old, new); } /** * sbq_wait_ptr() - Get the next wait queue to use for a &struct * sbitmap_queue. * @sbq: Bitmap queue to wait on. * @wait_index: A counter per "user" of @sbq. */ static inline struct sbq_wait_state *sbq_wait_ptr(struct sbitmap_queue *sbq, atomic_t *wait_index) { struct sbq_wait_state *ws; ws = &sbq->ws[atomic_read(wait_index)]; sbq_index_atomic_inc(wait_index); return ws; } /** * sbitmap_queue_wake_all() - Wake up everything waiting on a &struct * sbitmap_queue. * @sbq: Bitmap queue to wake up. */ void sbitmap_queue_wake_all(struct sbitmap_queue *sbq); /** * sbitmap_queue_wake_up() - Wake up some of waiters in one waitqueue * on a &struct sbitmap_queue. * @sbq: Bitmap queue to wake up. */ void sbitmap_queue_wake_up(struct sbitmap_queue *sbq); /** * sbitmap_queue_show() - Dump &struct sbitmap_queue information to a &struct * seq_file. * @sbq: Bitmap queue to show. * @m: struct seq_file to write to. * * This is intended for debugging. The format may change at any time. */ void sbitmap_queue_show(struct sbitmap_queue *sbq, struct seq_file *m); struct sbq_wait { struct sbitmap_queue *sbq; /* if set, sbq_wait is accounted */ struct wait_queue_entry wait; }; #define DEFINE_SBQ_WAIT(name) \ struct sbq_wait name = { \ .sbq = NULL, \ .wait = { \ .private = current, \ .func = autoremove_wake_function, \ .entry = LIST_HEAD_INIT((name).wait.entry), \ } \ } /* * Wrapper around prepare_to_wait_exclusive(), which maintains some extra * internal state. */ void sbitmap_prepare_to_wait(struct sbitmap_queue *sbq, struct sbq_wait_state *ws, struct sbq_wait *sbq_wait, int state); /* * Must be paired with sbitmap_prepare_to_wait(). */ void sbitmap_finish_wait(struct sbitmap_queue *sbq, struct sbq_wait_state *ws, struct sbq_wait *sbq_wait); /* * Wrapper around add_wait_queue(), which maintains some extra internal state */ void sbitmap_add_wait_queue(struct sbitmap_queue *sbq, struct sbq_wait_state *ws, struct sbq_wait *sbq_wait); /* * Must be paired with sbitmap_add_wait_queue() */ void sbitmap_del_wait_queue(struct sbq_wait *sbq_wait); #endif /* __LINUX_SCALE_BITMAP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 /* SPDX-License-Identifier: GPL-2.0-only */ /* * Supervisor Mode Access Prevention support * * Copyright (C) 2012 Intel Corporation * Author: H. Peter Anvin <hpa@linux.intel.com> */ #ifndef _ASM_X86_SMAP_H #define _ASM_X86_SMAP_H #include <asm/nops.h> #include <asm/cpufeatures.h> /* "Raw" instruction opcodes */ #define __ASM_CLAC ".byte 0x0f,0x01,0xca" #define __ASM_STAC ".byte 0x0f,0x01,0xcb" #ifdef __ASSEMBLY__ #include <asm/alternative-asm.h> #ifdef CONFIG_X86_SMAP #define ASM_CLAC \ ALTERNATIVE "", __ASM_CLAC, X86_FEATURE_SMAP #define ASM_STAC \ ALTERNATIVE "", __ASM_STAC, X86_FEATURE_SMAP #else /* CONFIG_X86_SMAP */ #define ASM_CLAC #define ASM_STAC #endif /* CONFIG_X86_SMAP */ #else /* __ASSEMBLY__ */ #include <asm/alternative.h> #ifdef CONFIG_X86_SMAP static __always_inline void clac(void) { /* Note: a barrier is implicit in alternative() */ alternative("", __ASM_CLAC, X86_FEATURE_SMAP); } static __always_inline void stac(void) { /* Note: a barrier is implicit in alternative() */ alternative("", __ASM_STAC, X86_FEATURE_SMAP); } static __always_inline unsigned long smap_save(void) { unsigned long flags; asm volatile ("# smap_save\n\t" ALTERNATIVE("jmp 1f", "", X86_FEATURE_SMAP) "pushf; pop %0; " __ASM_CLAC "\n\t" "1:" : "=rm" (flags) : : "memory", "cc"); return flags; } static __always_inline void smap_restore(unsigned long flags) { asm volatile ("# smap_restore\n\t" ALTERNATIVE("jmp 1f", "", X86_FEATURE_SMAP) "push %0; popf\n\t" "1:" : : "g" (flags) : "memory", "cc"); } /* These macros can be used in asm() statements */ #define ASM_CLAC \ ALTERNATIVE("", __ASM_CLAC, X86_FEATURE_SMAP) #define ASM_STAC \ ALTERNATIVE("", __ASM_STAC, X86_FEATURE_SMAP) #else /* CONFIG_X86_SMAP */ static inline void clac(void) { } static inline void stac(void) { } static inline unsigned long smap_save(void) { return 0; } static inline void smap_restore(unsigned long flags) { } #define ASM_CLAC #define ASM_STAC #endif /* CONFIG_X86_SMAP */ #endif /* __ASSEMBLY__ */ #endif /* _ASM_X86_SMAP_H */
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 // SPDX-License-Identifier: GPL-2.0-only /* * A generic implementation of binary search for the Linux kernel * * Copyright (C) 2008-2009 Ksplice, Inc. * Author: Tim Abbott <tabbott@ksplice.com> */ #include <linux/export.h> #include <linux/bsearch.h> #include <linux/kprobes.h> /* * bsearch - binary search an array of elements * @key: pointer to item being searched for * @base: pointer to first element to search * @num: number of elements * @size: size of each element * @cmp: pointer to comparison function * * This function does a binary search on the given array. The * contents of the array should already be in ascending sorted order * under the provided comparison function. * * Note that the key need not have the same type as the elements in * the array, e.g. key could be a string and the comparison function * could compare the string with the struct's name field. However, if * the key and elements in the array are of the same type, you can use * the same comparison function for both sort() and bsearch(). */ void *bsearch(const void *key, const void *base, size_t num, size_t size, cmp_func_t cmp) { return __inline_bsearch(key, base, num, size, cmp); } EXPORT_SYMBOL(bsearch); NOKPROBE_SYMBOL(bsearch);
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 /* SPDX-License-Identifier: GPL-2.0 */ /* * fs-verity: read-only file-based authenticity protection * * This header declares the interface between the fs/verity/ support layer and * filesystems that support fs-verity. * * Copyright 2019 Google LLC */ #ifndef _LINUX_FSVERITY_H #define _LINUX_FSVERITY_H #include <linux/fs.h> #include <uapi/linux/fsverity.h> /* Verity operations for filesystems */ struct fsverity_operations { /** * Begin enabling verity on the given file. * * @filp: a readonly file descriptor for the file * * The filesystem must do any needed filesystem-specific preparations * for enabling verity, e.g. evicting inline data. It also must return * -EBUSY if verity is already being enabled on the given file. * * i_rwsem is held for write. * * Return: 0 on success, -errno on failure */ int (*begin_enable_verity)(struct file *filp); /** * End enabling verity on the given file. * * @filp: a readonly file descriptor for the file * @desc: the verity descriptor to write, or NULL on failure * @desc_size: size of verity descriptor, or 0 on failure * @merkle_tree_size: total bytes the Merkle tree took up * * If desc == NULL, then enabling verity failed and the filesystem only * must do any necessary cleanups. Else, it must also store the given * verity descriptor to a fs-specific location associated with the inode * and do any fs-specific actions needed to mark the inode as a verity * inode, e.g. setting a bit in the on-disk inode. The filesystem is * also responsible for setting the S_VERITY flag in the VFS inode. * * i_rwsem is held for write, but it may have been dropped between * ->begin_enable_verity() and ->end_enable_verity(). * * Return: 0 on success, -errno on failure */ int (*end_enable_verity)(struct file *filp, const void *desc, size_t desc_size, u64 merkle_tree_size); /** * Get the verity descriptor of the given inode. * * @inode: an inode with the S_VERITY flag set * @buf: buffer in which to place the verity descriptor * @bufsize: size of @buf, or 0 to retrieve the size only * * If bufsize == 0, then the size of the verity descriptor is returned. * Otherwise the verity descriptor is written to 'buf' and its actual * size is returned; -ERANGE is returned if it's too large. This may be * called by multiple processes concurrently on the same inode. * * Return: the size on success, -errno on failure */ int (*get_verity_descriptor)(struct inode *inode, void *buf, size_t bufsize); /** * Read a Merkle tree page of the given inode. * * @inode: the inode * @index: 0-based index of the page within the Merkle tree * @num_ra_pages: The number of Merkle tree pages that should be * prefetched starting at @index if the page at @index * isn't already cached. Implementations may ignore this * argument; it's only a performance optimization. * * This can be called at any time on an open verity file, as well as * between ->begin_enable_verity() and ->end_enable_verity(). It may be * called by multiple processes concurrently, even with the same page. * * Note that this must retrieve a *page*, not necessarily a *block*. * * Return: the page on success, ERR_PTR() on failure */ struct page *(*read_merkle_tree_page)(struct inode *inode, pgoff_t index, unsigned long num_ra_pages); /** * Write a Merkle tree block to the given inode. * * @inode: the inode for which the Merkle tree is being built * @buf: block to write * @index: 0-based index of the block within the Merkle tree * @log_blocksize: log base 2 of the Merkle tree block size * * This is only called between ->begin_enable_verity() and * ->end_enable_verity(). * * Return: 0 on success, -errno on failure */ int (*write_merkle_tree_block)(struct inode *inode, const void *buf, u64 index, int log_blocksize); }; #ifdef CONFIG_FS_VERITY static inline struct fsverity_info *fsverity_get_info(const struct inode *inode) { /* * Pairs with the cmpxchg_release() in fsverity_set_info(). * I.e., another task may publish ->i_verity_info concurrently, * executing a RELEASE barrier. We need to use smp_load_acquire() here * to safely ACQUIRE the memory the other task published. */ return smp_load_acquire(&inode->i_verity_info); } /* enable.c */ int fsverity_ioctl_enable(struct file *filp, const void __user *arg); /* measure.c */ int fsverity_ioctl_measure(struct file *filp, void __user *arg); /* open.c */ int fsverity_file_open(struct inode *inode, struct file *filp); int fsverity_prepare_setattr(struct dentry *dentry, struct iattr *attr); void fsverity_cleanup_inode(struct inode *inode); /* verify.c */ bool fsverity_verify_page(struct page *page); void fsverity_verify_bio(struct bio *bio); void fsverity_enqueue_verify_work(struct work_struct *work); #else /* !CONFIG_FS_VERITY */ static inline struct fsverity_info *fsverity_get_info(const struct inode *inode) { return NULL; } /* enable.c */ static inline int fsverity_ioctl_enable(struct file *filp, const void __user *arg) { return -EOPNOTSUPP; } /* measure.c */ static inline int fsverity_ioctl_measure(struct file *filp, void __user *arg) { return -EOPNOTSUPP; } /* open.c */ static inline int fsverity_file_open(struct inode *inode, struct file *filp) { return IS_VERITY(inode) ? -EOPNOTSUPP : 0; } static inline int fsverity_prepare_setattr(struct dentry *dentry, struct iattr *attr) { return IS_VERITY(d_inode(dentry)) ? -EOPNOTSUPP : 0; } static inline void fsverity_cleanup_inode(struct inode *inode) { } /* verify.c */ static inline bool fsverity_verify_page(struct page *page) { WARN_ON(1); return false; } static inline void fsverity_verify_bio(struct bio *bio) { WARN_ON(1); } static inline void fsverity_enqueue_verify_work(struct work_struct *work) { WARN_ON(1); } #endif /* !CONFIG_FS_VERITY */ /** * fsverity_active() - do reads from the inode need to go through fs-verity? * @inode: inode to check * * This checks whether ->i_verity_info has been set. * * Filesystems call this from ->readpages() to check whether the pages need to * be verified or not. Don't use IS_VERITY() for this purpose; it's subject to * a race condition where the file is being read concurrently with * FS_IOC_ENABLE_VERITY completing. (S_VERITY is set before ->i_verity_info.) * * Return: true if reads need to go through fs-verity, otherwise false */ static inline bool fsverity_active(const struct inode *inode) { return fsverity_get_info(inode) != NULL; } #endif /* _LINUX_FSVERITY_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 /* SPDX-License-Identifier: GPL-2.0 */ /* * This file provides wrappers with sanitizer instrumentation for atomic bit * operations. * * To use this functionality, an arch's bitops.h file needs to define each of * the below bit operations with an arch_ prefix (e.g. arch_set_bit(), * arch___set_bit(), etc.). */ #ifndef _ASM_GENERIC_BITOPS_INSTRUMENTED_ATOMIC_H #define _ASM_GENERIC_BITOPS_INSTRUMENTED_ATOMIC_H #include <linux/instrumented.h> /** * set_bit - Atomically set a bit in memory * @nr: the bit to set * @addr: the address to start counting from * * This is a relaxed atomic operation (no implied memory barriers). * * Note that @nr may be almost arbitrarily large; this function is not * restricted to acting on a single-word quantity. */ static inline void set_bit(long nr, volatile unsigned long *addr) { instrument_atomic_write(addr + BIT_WORD(nr), sizeof(long)); arch_set_bit(nr, addr); } /** * clear_bit - Clears a bit in memory * @nr: Bit to clear * @addr: Address to start counting from * * This is a relaxed atomic operation (no implied memory barriers). */ static inline void clear_bit(long nr, volatile unsigned long *addr) { instrument_atomic_write(addr + BIT_WORD(nr), sizeof(long)); arch_clear_bit(nr, addr); } /** * change_bit - Toggle a bit in memory * @nr: Bit to change * @addr: Address to start counting from * * This is a relaxed atomic operation (no implied memory barriers). * * Note that @nr may be almost arbitrarily large; this function is not * restricted to acting on a single-word quantity. */ static inline void change_bit(long nr, volatile unsigned long *addr) { instrument_atomic_write(addr + BIT_WORD(nr), sizeof(long)); arch_change_bit(nr, addr); } /** * test_and_set_bit - Set a bit and return its old value * @nr: Bit to set * @addr: Address to count from * * This is an atomic fully-ordered operation (implied full memory barrier). */ static inline bool test_and_set_bit(long nr, volatile unsigned long *addr) { instrument_atomic_read_write(addr + BIT_WORD(nr), sizeof(long)); return arch_test_and_set_bit(nr, addr); } /** * test_and_clear_bit - Clear a bit and return its old value * @nr: Bit to clear * @addr: Address to count from * * This is an atomic fully-ordered operation (implied full memory barrier). */ static inline bool test_and_clear_bit(long nr, volatile unsigned long *addr) { instrument_atomic_read_write(addr + BIT_WORD(nr), sizeof(long)); return arch_test_and_clear_bit(nr, addr); } /** * test_and_change_bit - Change a bit and return its old value * @nr: Bit to change * @addr: Address to count from * * This is an atomic fully-ordered operation (implied full memory barrier). */ static inline bool test_and_change_bit(long nr, volatile unsigned long *addr) { instrument_atomic_read_write(addr + BIT_WORD(nr), sizeof(long)); return arch_test_and_change_bit(nr, addr); } #endif /* _ASM_GENERIC_BITOPS_INSTRUMENTED_NON_ATOMIC_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 /* SPDX-License-Identifier: GPL-2.0 */ /* * Filesystem access notification for Linux * * Copyright (C) 2008 Red Hat, Inc., Eric Paris <eparis@redhat.com> */ #ifndef __LINUX_FSNOTIFY_BACKEND_H #define __LINUX_FSNOTIFY_BACKEND_H #ifdef __KERNEL__ #include <linux/idr.h> /* inotify uses this */ #include <linux/fs.h> /* struct inode */ #include <linux/list.h> #include <linux/path.h> /* struct path */ #include <linux/spinlock.h> #include <linux/types.h> #include <linux/atomic.h> #include <linux/user_namespace.h> #include <linux/refcount.h> /* * IN_* from inotfy.h lines up EXACTLY with FS_*, this is so we can easily * convert between them. dnotify only needs conversion at watch creation * so no perf loss there. fanotify isn't defined yet, so it can use the * wholes if it needs more events. */ #define FS_ACCESS 0x00000001 /* File was accessed */ #define FS_MODIFY 0x00000002 /* File was modified */ #define FS_ATTRIB 0x00000004 /* Metadata changed */ #define FS_CLOSE_WRITE 0x00000008 /* Writtable file was closed */ #define FS_CLOSE_NOWRITE 0x00000010 /* Unwrittable file closed */ #define FS_OPEN 0x00000020 /* File was opened */ #define FS_MOVED_FROM 0x00000040 /* File was moved from X */ #define FS_MOVED_TO 0x00000080 /* File was moved to Y */ #define FS_CREATE 0x00000100 /* Subfile was created */ #define FS_DELETE 0x00000200 /* Subfile was deleted */ #define FS_DELETE_SELF 0x00000400 /* Self was deleted */ #define FS_MOVE_SELF 0x00000800 /* Self was moved */ #define FS_OPEN_EXEC 0x00001000 /* File was opened for exec */ #define FS_UNMOUNT 0x00002000 /* inode on umount fs */ #define FS_Q_OVERFLOW 0x00004000 /* Event queued overflowed */ #define FS_IN_IGNORED 0x00008000 /* last inotify event here */ #define FS_OPEN_PERM 0x00010000 /* open event in an permission hook */ #define FS_ACCESS_PERM 0x00020000 /* access event in a permissions hook */ #define FS_OPEN_EXEC_PERM 0x00040000 /* open/exec event in a permission hook */ #define FS_EXCL_UNLINK 0x04000000 /* do not send events if object is unlinked */ /* * Set on inode mark that cares about things that happen to its children. * Always set for dnotify and inotify. * Set on inode/sb/mount marks that care about parent/name info. */ #define FS_EVENT_ON_CHILD 0x08000000 #define FS_DN_RENAME 0x10000000 /* file renamed */ #define FS_DN_MULTISHOT 0x20000000 /* dnotify multishot */ #define FS_ISDIR 0x40000000 /* event occurred against dir */ #define FS_IN_ONESHOT 0x80000000 /* only send event once */ #define FS_MOVE (FS_MOVED_FROM | FS_MOVED_TO) /* * Directory entry modification events - reported only to directory * where entry is modified and not to a watching parent. * The watching parent may get an FS_ATTRIB|FS_EVENT_ON_CHILD event * when a directory entry inside a child subdir changes. */ #define ALL_FSNOTIFY_DIRENT_EVENTS (FS_CREATE | FS_DELETE | FS_MOVE) #define ALL_FSNOTIFY_PERM_EVENTS (FS_OPEN_PERM | FS_ACCESS_PERM | \ FS_OPEN_EXEC_PERM) /* * This is a list of all events that may get sent to a parent that is watching * with flag FS_EVENT_ON_CHILD based on fs event on a child of that directory. */ #define FS_EVENTS_POSS_ON_CHILD (ALL_FSNOTIFY_PERM_EVENTS | \ FS_ACCESS | FS_MODIFY | FS_ATTRIB | \ FS_CLOSE_WRITE | FS_CLOSE_NOWRITE | \ FS_OPEN | FS_OPEN_EXEC) /* * This is a list of all events that may get sent with the parent inode as the * @to_tell argument of fsnotify(). * It may include events that can be sent to an inode/sb/mount mark, but cannot * be sent to a parent watching children. */ #define FS_EVENTS_POSS_TO_PARENT (FS_EVENTS_POSS_ON_CHILD) /* Events that can be reported to backends */ #define ALL_FSNOTIFY_EVENTS (ALL_FSNOTIFY_DIRENT_EVENTS | \ FS_EVENTS_POSS_ON_CHILD | \ FS_DELETE_SELF | FS_MOVE_SELF | FS_DN_RENAME | \ FS_UNMOUNT | FS_Q_OVERFLOW | FS_IN_IGNORED) /* Extra flags that may be reported with event or control handling of events */ #define ALL_FSNOTIFY_FLAGS (FS_EXCL_UNLINK | FS_ISDIR | FS_IN_ONESHOT | \ FS_DN_MULTISHOT | FS_EVENT_ON_CHILD) #define ALL_FSNOTIFY_BITS (ALL_FSNOTIFY_EVENTS | ALL_FSNOTIFY_FLAGS) struct fsnotify_group; struct fsnotify_event; struct fsnotify_mark; struct fsnotify_event_private_data; struct fsnotify_fname; struct fsnotify_iter_info; struct mem_cgroup; /* * Each group much define these ops. The fsnotify infrastructure will call * these operations for each relevant group. * * handle_event - main call for a group to handle an fs event * @group: group to notify * @mask: event type and flags * @data: object that event happened on * @data_type: type of object for fanotify_data_XXX() accessors * @dir: optional directory associated with event - * if @file_name is not NULL, this is the directory that * @file_name is relative to * @file_name: optional file name associated with event * @cookie: inotify rename cookie * @iter_info: array of marks from this group that are interested in the event * * handle_inode_event - simple variant of handle_event() for groups that only * have inode marks and don't have ignore mask * @mark: mark to notify * @mask: event type and flags * @inode: inode that event happened on * @dir: optional directory associated with event - * if @file_name is not NULL, this is the directory that * @file_name is relative to. * @file_name: optional file name associated with event * @cookie: inotify rename cookie * * free_group_priv - called when a group refcnt hits 0 to clean up the private union * freeing_mark - called when a mark is being destroyed for some reason. The group * MUST be holding a reference on each mark and that reference must be * dropped in this function. inotify uses this function to send * userspace messages that marks have been removed. */ struct fsnotify_ops { int (*handle_event)(struct fsnotify_group *group, u32 mask, const void *data, int data_type, struct inode *dir, const struct qstr *file_name, u32 cookie, struct fsnotify_iter_info *iter_info); int (*handle_inode_event)(struct fsnotify_mark *mark, u32 mask, struct inode *inode, struct inode *dir, const struct qstr *file_name, u32 cookie); void (*free_group_priv)(struct fsnotify_group *group); void (*freeing_mark)(struct fsnotify_mark *mark, struct fsnotify_group *group); void (*free_event)(struct fsnotify_event *event); /* called on final put+free to free memory */ void (*free_mark)(struct fsnotify_mark *mark); }; /* * all of the information about the original object we want to now send to * a group. If you want to carry more info from the accessing task to the * listener this structure is where you need to be adding fields. */ struct fsnotify_event { struct list_head list; unsigned long objectid; /* identifier for queue merges */ }; /* * A group is a "thing" that wants to receive notification about filesystem * events. The mask holds the subset of event types this group cares about. * refcnt on a group is up to the implementor and at any moment if it goes 0 * everything will be cleaned up. */ struct fsnotify_group { const struct fsnotify_ops *ops; /* how this group handles things */ /* * How the refcnt is used is up to each group. When the refcnt hits 0 * fsnotify will clean up all of the resources associated with this group. * As an example, the dnotify group will always have a refcnt=1 and that * will never change. Inotify, on the other hand, has a group per * inotify_init() and the refcnt will hit 0 only when that fd has been * closed. */ refcount_t refcnt; /* things with interest in this group */ /* needed to send notification to userspace */ spinlock_t notification_lock; /* protect the notification_list */ struct list_head notification_list; /* list of event_holder this group needs to send to userspace */ wait_queue_head_t notification_waitq; /* read() on the notification file blocks on this waitq */ unsigned int q_len; /* events on the queue */ unsigned int max_events; /* maximum events allowed on the list */ /* * Valid fsnotify group priorities. Events are send in order from highest * priority to lowest priority. We default to the lowest priority. */ #define FS_PRIO_0 0 /* normal notifiers, no permissions */ #define FS_PRIO_1 1 /* fanotify content based access control */ #define FS_PRIO_2 2 /* fanotify pre-content access */ unsigned int priority; bool shutdown; /* group is being shut down, don't queue more events */ /* stores all fastpath marks assoc with this group so they can be cleaned on unregister */ struct mutex mark_mutex; /* protect marks_list */ atomic_t num_marks; /* 1 for each mark and 1 for not being * past the point of no return when freeing * a group */ atomic_t user_waits; /* Number of tasks waiting for user * response */ struct list_head marks_list; /* all inode marks for this group */ struct fasync_struct *fsn_fa; /* async notification */ struct fsnotify_event *overflow_event; /* Event we queue when the * notification list is too * full */ struct mem_cgroup *memcg; /* memcg to charge allocations */ /* groups can define private fields here or use the void *private */ union { void *private; #ifdef CONFIG_INOTIFY_USER struct inotify_group_private_data { spinlock_t idr_lock; struct idr idr; struct ucounts *ucounts; } inotify_data; #endif #ifdef CONFIG_FANOTIFY struct fanotify_group_private_data { /* allows a group to block waiting for a userspace response */ struct list_head access_list; wait_queue_head_t access_waitq; int flags; /* flags from fanotify_init() */ int f_flags; /* event_f_flags from fanotify_init() */ unsigned int max_marks; struct user_struct *user; } fanotify_data; #endif /* CONFIG_FANOTIFY */ }; }; /* When calling fsnotify tell it if the data is a path or inode */ enum fsnotify_data_type { FSNOTIFY_EVENT_NONE, FSNOTIFY_EVENT_PATH, FSNOTIFY_EVENT_INODE, }; static inline struct inode *fsnotify_data_inode(const void *data, int data_type) { switch (data_type) { case FSNOTIFY_EVENT_INODE: return (struct inode *)data; case FSNOTIFY_EVENT_PATH: return d_inode(((const struct path *)data)->dentry); default: return NULL; } } static inline const struct path *fsnotify_data_path(const void *data, int data_type) { switch (data_type) { case FSNOTIFY_EVENT_PATH: return data; default: return NULL; } } enum fsnotify_obj_type { FSNOTIFY_OBJ_TYPE_INODE, FSNOTIFY_OBJ_TYPE_PARENT, FSNOTIFY_OBJ_TYPE_VFSMOUNT, FSNOTIFY_OBJ_TYPE_SB, FSNOTIFY_OBJ_TYPE_COUNT, FSNOTIFY_OBJ_TYPE_DETACHED = FSNOTIFY_OBJ_TYPE_COUNT }; #define FSNOTIFY_OBJ_TYPE_INODE_FL (1U << FSNOTIFY_OBJ_TYPE_INODE) #define FSNOTIFY_OBJ_TYPE_PARENT_FL (1U << FSNOTIFY_OBJ_TYPE_PARENT) #define FSNOTIFY_OBJ_TYPE_VFSMOUNT_FL (1U << FSNOTIFY_OBJ_TYPE_VFSMOUNT) #define FSNOTIFY_OBJ_TYPE_SB_FL (1U << FSNOTIFY_OBJ_TYPE_SB) #define FSNOTIFY_OBJ_ALL_TYPES_MASK ((1U << FSNOTIFY_OBJ_TYPE_COUNT) - 1) static inline bool fsnotify_valid_obj_type(unsigned int type) { return (type < FSNOTIFY_OBJ_TYPE_COUNT); } struct fsnotify_iter_info { struct fsnotify_mark *marks[FSNOTIFY_OBJ_TYPE_COUNT]; unsigned int report_mask; int srcu_idx; }; static inline bool fsnotify_iter_should_report_type( struct fsnotify_iter_info *iter_info, int type) { return (iter_info->report_mask & (1U << type)); } static inline void fsnotify_iter_set_report_type( struct fsnotify_iter_info *iter_info, int type) { iter_info->report_mask |= (1U << type); } static inline void fsnotify_iter_set_report_type_mark( struct fsnotify_iter_info *iter_info, int type, struct fsnotify_mark *mark) { iter_info->marks[type] = mark; iter_info->report_mask |= (1U << type); } #define FSNOTIFY_ITER_FUNCS(name, NAME) \ static inline struct fsnotify_mark *fsnotify_iter_##name##_mark( \ struct fsnotify_iter_info *iter_info) \ { \ return (iter_info->report_mask & FSNOTIFY_OBJ_TYPE_##NAME##_FL) ? \ iter_info->marks[FSNOTIFY_OBJ_TYPE_##NAME] : NULL; \ } FSNOTIFY_ITER_FUNCS(inode, INODE) FSNOTIFY_ITER_FUNCS(parent, PARENT) FSNOTIFY_ITER_FUNCS(vfsmount, VFSMOUNT) FSNOTIFY_ITER_FUNCS(sb, SB) #define fsnotify_foreach_obj_type(type) \ for (type = 0; type < FSNOTIFY_OBJ_TYPE_COUNT; type++) /* * fsnotify_connp_t is what we embed in objects which connector can be attached * to. fsnotify_connp_t * is how we refer from connector back to object. */ struct fsnotify_mark_connector; typedef struct fsnotify_mark_connector __rcu *fsnotify_connp_t; /* * Inode/vfsmount/sb point to this structure which tracks all marks attached to * the inode/vfsmount/sb. The reference to inode/vfsmount/sb is held by this * structure. We destroy this structure when there are no more marks attached * to it. The structure is protected by fsnotify_mark_srcu. */ struct fsnotify_mark_connector { spinlock_t lock; unsigned short type; /* Type of object [lock] */ #define FSNOTIFY_CONN_FLAG_HAS_FSID 0x01 unsigned short flags; /* flags [lock] */ __kernel_fsid_t fsid; /* fsid of filesystem containing object */ union { /* Object pointer [lock] */ fsnotify_connp_t *obj; /* Used listing heads to free after srcu period expires */ struct fsnotify_mark_connector *destroy_next; }; struct hlist_head list; }; /* * A mark is simply an object attached to an in core inode which allows an * fsnotify listener to indicate they are either no longer interested in events * of a type matching mask or only interested in those events. * * These are flushed when an inode is evicted from core and may be flushed * when the inode is modified (as seen by fsnotify_access). Some fsnotify * users (such as dnotify) will flush these when the open fd is closed and not * at inode eviction or modification. * * Text in brackets is showing the lock(s) protecting modifications of a * particular entry. obj_lock means either inode->i_lock or * mnt->mnt_root->d_lock depending on the mark type. */ struct fsnotify_mark { /* Mask this mark is for [mark->lock, group->mark_mutex] */ __u32 mask; /* We hold one for presence in g_list. Also one ref for each 'thing' * in kernel that found and may be using this mark. */ refcount_t refcnt; /* Group this mark is for. Set on mark creation, stable until last ref * is dropped */ struct fsnotify_group *group; /* List of marks by group->marks_list. Also reused for queueing * mark into destroy_list when it's waiting for the end of SRCU period * before it can be freed. [group->mark_mutex] */ struct list_head g_list; /* Protects inode / mnt pointers, flags, masks */ spinlock_t lock; /* List of marks for inode / vfsmount [connector->lock, mark ref] */ struct hlist_node obj_list; /* Head of list of marks for an object [mark ref] */ struct fsnotify_mark_connector *connector; /* Events types to ignore [mark->lock, group->mark_mutex] */ __u32 ignored_mask; #define FSNOTIFY_MARK_FLAG_IGNORED_SURV_MODIFY 0x01 #define FSNOTIFY_MARK_FLAG_ALIVE 0x02 #define FSNOTIFY_MARK_FLAG_ATTACHED 0x04 unsigned int flags; /* flags [mark->lock] */ }; #ifdef CONFIG_FSNOTIFY /* called from the vfs helpers */ /* main fsnotify call to send events */ extern int fsnotify(__u32 mask, const void *data, int data_type, struct inode *dir, const struct qstr *name, struct inode *inode, u32 cookie); extern int __fsnotify_parent(struct dentry *dentry, __u32 mask, const void *data, int data_type); extern void __fsnotify_inode_delete(struct inode *inode); extern void __fsnotify_vfsmount_delete(struct vfsmount *mnt); extern void fsnotify_sb_delete(struct super_block *sb); extern u32 fsnotify_get_cookie(void); static inline __u32 fsnotify_parent_needed_mask(__u32 mask) { /* FS_EVENT_ON_CHILD is set on marks that want parent/name info */ if (!(mask & FS_EVENT_ON_CHILD)) return 0; /* * This object might be watched by a mark that cares about parent/name * info, does it care about the specific set of events that can be * reported with parent/name info? */ return mask & FS_EVENTS_POSS_TO_PARENT; } static inline int fsnotify_inode_watches_children(struct inode *inode) { /* FS_EVENT_ON_CHILD is set if the inode may care */ if (!(inode->i_fsnotify_mask & FS_EVENT_ON_CHILD)) return 0; /* this inode might care about child events, does it care about the * specific set of events that can happen on a child? */ return inode->i_fsnotify_mask & FS_EVENTS_POSS_ON_CHILD; } /* * Update the dentry with a flag indicating the interest of its parent to receive * filesystem events when those events happens to this dentry->d_inode. */ static inline void fsnotify_update_flags(struct dentry *dentry) { assert_spin_locked(&dentry->d_lock); /* * Serialisation of setting PARENT_WATCHED on the dentries is provided * by d_lock. If inotify_inode_watched changes after we have taken * d_lock, the following __fsnotify_update_child_dentry_flags call will * find our entry, so it will spin until we complete here, and update * us with the new state. */ if (fsnotify_inode_watches_children(dentry->d_parent->d_inode)) dentry->d_flags |= DCACHE_FSNOTIFY_PARENT_WATCHED; else dentry->d_flags &= ~DCACHE_FSNOTIFY_PARENT_WATCHED; } /* called from fsnotify listeners, such as fanotify or dnotify */ /* create a new group */ extern struct fsnotify_group *fsnotify_alloc_group(const struct fsnotify_ops *ops); /* get reference to a group */ extern void fsnotify_get_group(struct fsnotify_group *group); /* drop reference on a group from fsnotify_alloc_group */ extern void fsnotify_put_group(struct fsnotify_group *group); /* group destruction begins, stop queuing new events */ extern void fsnotify_group_stop_queueing(struct fsnotify_group *group); /* destroy group */ extern void fsnotify_destroy_group(struct fsnotify_group *group); /* fasync handler function */ extern int fsnotify_fasync(int fd, struct file *file, int on); /* Free event from memory */ extern void fsnotify_destroy_event(struct fsnotify_group *group, struct fsnotify_event *event); /* attach the event to the group notification queue */ extern int fsnotify_add_event(struct fsnotify_group *group, struct fsnotify_event *event, int (*merge)(struct list_head *, struct fsnotify_event *)); /* Queue overflow event to a notification group */ static inline void fsnotify_queue_overflow(struct fsnotify_group *group) { fsnotify_add_event(group, group->overflow_event, NULL); } /* true if the group notification queue is empty */ extern bool fsnotify_notify_queue_is_empty(struct fsnotify_group *group); /* return, but do not dequeue the first event on the notification queue */ extern struct fsnotify_event *fsnotify_peek_first_event(struct fsnotify_group *group); /* return AND dequeue the first event on the notification queue */ extern struct fsnotify_event *fsnotify_remove_first_event(struct fsnotify_group *group); /* Remove event queued in the notification list */ extern void fsnotify_remove_queued_event(struct fsnotify_group *group, struct fsnotify_event *event); /* functions used to manipulate the marks attached to inodes */ /* Get mask of events for a list of marks */ extern __u32 fsnotify_conn_mask(struct fsnotify_mark_connector *conn); /* Calculate mask of events for a list of marks */ extern void fsnotify_recalc_mask(struct fsnotify_mark_connector *conn); extern void fsnotify_init_mark(struct fsnotify_mark *mark, struct fsnotify_group *group); /* Find mark belonging to given group in the list of marks */ extern struct fsnotify_mark *fsnotify_find_mark(fsnotify_connp_t *connp, struct fsnotify_group *group); /* Get cached fsid of filesystem containing object */ extern int fsnotify_get_conn_fsid(const struct fsnotify_mark_connector *conn, __kernel_fsid_t *fsid); /* attach the mark to the object */ extern int fsnotify_add_mark(struct fsnotify_mark *mark, fsnotify_connp_t *connp, unsigned int type, int allow_dups, __kernel_fsid_t *fsid); extern int fsnotify_add_mark_locked(struct fsnotify_mark *mark, fsnotify_connp_t *connp, unsigned int type, int allow_dups, __kernel_fsid_t *fsid); /* attach the mark to the inode */ static inline int fsnotify_add_inode_mark(struct fsnotify_mark *mark, struct inode *inode, int allow_dups) { return fsnotify_add_mark(mark, &inode->i_fsnotify_marks, FSNOTIFY_OBJ_TYPE_INODE, allow_dups, NULL); } static inline int fsnotify_add_inode_mark_locked(struct fsnotify_mark *mark, struct inode *inode, int allow_dups) { return fsnotify_add_mark_locked(mark, &inode->i_fsnotify_marks, FSNOTIFY_OBJ_TYPE_INODE, allow_dups, NULL); } /* given a group and a mark, flag mark to be freed when all references are dropped */ extern void fsnotify_destroy_mark(struct fsnotify_mark *mark, struct fsnotify_group *group); /* detach mark from inode / mount list, group list, drop inode reference */ extern void fsnotify_detach_mark(struct fsnotify_mark *mark); /* free mark */ extern void fsnotify_free_mark(struct fsnotify_mark *mark); /* Wait until all marks queued for destruction are destroyed */ extern void fsnotify_wait_marks_destroyed(void); /* run all the marks in a group, and clear all of the marks attached to given object type */ extern void fsnotify_clear_marks_by_group(struct fsnotify_group *group, unsigned int type); /* run all the marks in a group, and clear all of the vfsmount marks */ static inline void fsnotify_clear_vfsmount_marks_by_group(struct fsnotify_group *group) { fsnotify_clear_marks_by_group(group, FSNOTIFY_OBJ_TYPE_VFSMOUNT_FL); } /* run all the marks in a group, and clear all of the inode marks */ static inline void fsnotify_clear_inode_marks_by_group(struct fsnotify_group *group) { fsnotify_clear_marks_by_group(group, FSNOTIFY_OBJ_TYPE_INODE_FL); } /* run all the marks in a group, and clear all of the sn marks */ static inline void fsnotify_clear_sb_marks_by_group(struct fsnotify_group *group) { fsnotify_clear_marks_by_group(group, FSNOTIFY_OBJ_TYPE_SB_FL); } extern void fsnotify_get_mark(struct fsnotify_mark *mark); extern void fsnotify_put_mark(struct fsnotify_mark *mark); extern void fsnotify_finish_user_wait(struct fsnotify_iter_info *iter_info); extern bool fsnotify_prepare_user_wait(struct fsnotify_iter_info *iter_info); static inline void fsnotify_init_event(struct fsnotify_event *event, unsigned long objectid) { INIT_LIST_HEAD(&event->list); event->objectid = objectid; } #else static inline int fsnotify(__u32 mask, const void *data, int data_type, struct inode *dir, const struct qstr *name, struct inode *inode, u32 cookie) { return 0; } static inline int __fsnotify_parent(struct dentry *dentry, __u32 mask, const void *data, int data_type) { return 0; } static inline void __fsnotify_inode_delete(struct inode *inode) {} static inline void __fsnotify_vfsmount_delete(struct vfsmount *mnt) {} static inline void fsnotify_sb_delete(struct super_block *sb) {} static inline void fsnotify_update_flags(struct dentry *dentry) {} static inline u32 fsnotify_get_cookie(void) { return 0; } static inline void fsnotify_unmount_inodes(struct super_block *sb) {} #endif /* CONFIG_FSNOTIFY */ #endif /* __KERNEL __ */ #endif /* __LINUX_FSNOTIFY_BACKEND_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Copyright 1997-1998 Transmeta Corporation - All Rights Reserved * Copyright 2005-2006 Ian Kent <raven@themaw.net> */ /* Internal header file for autofs */ #include <linux/auto_fs.h> #include <linux/auto_dev-ioctl.h> #include <linux/kernel.h> #include <linux/slab.h> #include <linux/time.h> #include <linux/string.h> #include <linux/wait.h> #include <linux/sched.h> #include <linux/sched/signal.h> #include <linux/mount.h> #include <linux/namei.h> #include <linux/uaccess.h> #include <linux/mutex.h> #include <linux/spinlock.h> #include <linux/list.h> #include <linux/completion.h> #include <linux/file.h> #include <linux/magic.h> /* This is the range of ioctl() numbers we claim as ours */ #define AUTOFS_IOC_FIRST AUTOFS_IOC_READY #define AUTOFS_IOC_COUNT 32 #define AUTOFS_DEV_IOCTL_IOC_FIRST (AUTOFS_DEV_IOCTL_VERSION) #define AUTOFS_DEV_IOCTL_IOC_COUNT \ (AUTOFS_DEV_IOCTL_ISMOUNTPOINT_CMD - AUTOFS_DEV_IOCTL_VERSION_CMD) #ifdef pr_fmt #undef pr_fmt #endif #define pr_fmt(fmt) KBUILD_MODNAME ":pid:%d:%s: " fmt, current->pid, __func__ extern struct file_system_type autofs_fs_type; /* * Unified info structure. This is pointed to by both the dentry and * inode structures. Each file in the filesystem has an instance of this * structure. It holds a reference to the dentry, so dentries are never * flushed while the file exists. All name lookups are dealt with at the * dentry level, although the filesystem can interfere in the validation * process. Readdir is implemented by traversing the dentry lists. */ struct autofs_info { struct dentry *dentry; struct inode *inode; int flags; struct completion expire_complete; struct list_head active; struct list_head expiring; struct autofs_sb_info *sbi; unsigned long last_used; int count; kuid_t uid; kgid_t gid; struct rcu_head rcu; }; #define AUTOFS_INF_EXPIRING (1<<0) /* dentry in the process of expiring */ #define AUTOFS_INF_WANT_EXPIRE (1<<1) /* the dentry is being considered * for expiry, so RCU_walk is * not permitted. If it progresses to * actual expiry attempt, the flag is * not cleared when EXPIRING is set - * in that case it gets cleared only * when it comes to clearing EXPIRING. */ #define AUTOFS_INF_PENDING (1<<2) /* dentry pending mount */ struct autofs_wait_queue { wait_queue_head_t queue; struct autofs_wait_queue *next; autofs_wqt_t wait_queue_token; /* We use the following to see what we are waiting for */ struct qstr name; u32 dev; u64 ino; kuid_t uid; kgid_t gid; pid_t pid; pid_t tgid; /* This is for status reporting upon return */ int status; unsigned int wait_ctr; }; #define AUTOFS_SBI_MAGIC 0x6d4a556d #define AUTOFS_SBI_CATATONIC 0x0001 #define AUTOFS_SBI_STRICTEXPIRE 0x0002 #define AUTOFS_SBI_IGNORE 0x0004 struct autofs_sb_info { u32 magic; int pipefd; struct file *pipe; struct pid *oz_pgrp; int version; int sub_version; int min_proto; int max_proto; unsigned int flags; unsigned long exp_timeout; unsigned int type; struct super_block *sb; struct mutex wq_mutex; struct mutex pipe_mutex; spinlock_t fs_lock; struct autofs_wait_queue *queues; /* Wait queue pointer */ spinlock_t lookup_lock; struct list_head active_list; struct list_head expiring_list; struct rcu_head rcu; }; static inline struct autofs_sb_info *autofs_sbi(struct super_block *sb) { return (struct autofs_sb_info *)(sb->s_fs_info); } static inline struct autofs_info *autofs_dentry_ino(struct dentry *dentry) { return (struct autofs_info *)(dentry->d_fsdata); } /* autofs_oz_mode(): do we see the man behind the curtain? (The * processes which do manipulations for us in user space sees the raw * filesystem without "magic".) */ static inline int autofs_oz_mode(struct autofs_sb_info *sbi) { return ((sbi->flags & AUTOFS_SBI_CATATONIC) || task_pgrp(current) == sbi->oz_pgrp); } struct inode *autofs_get_inode(struct super_block *, umode_t); void autofs_free_ino(struct autofs_info *); /* Expiration */ int is_autofs_dentry(struct dentry *); int autofs_expire_wait(const struct path *path, int rcu_walk); int autofs_expire_run(struct super_block *, struct vfsmount *, struct autofs_sb_info *, struct autofs_packet_expire __user *); int autofs_do_expire_multi(struct super_block *sb, struct vfsmount *mnt, struct autofs_sb_info *sbi, unsigned int how); int autofs_expire_multi(struct super_block *, struct vfsmount *, struct autofs_sb_info *, int __user *); /* Device node initialization */ int autofs_dev_ioctl_init(void); void autofs_dev_ioctl_exit(void); /* Operations structures */ extern const struct inode_operations autofs_symlink_inode_operations; extern const struct inode_operations autofs_dir_inode_operations; extern const struct file_operations autofs_dir_operations; extern const struct file_operations autofs_root_operations; extern const struct dentry_operations autofs_dentry_operations; /* VFS automount flags management functions */ static inline void __managed_dentry_set_managed(struct dentry *dentry) { dentry->d_flags |= (DCACHE_NEED_AUTOMOUNT|DCACHE_MANAGE_TRANSIT); } static inline void managed_dentry_set_managed(struct dentry *dentry) { spin_lock(&dentry->d_lock); __managed_dentry_set_managed(dentry); spin_unlock(&dentry->d_lock); } static inline void __managed_dentry_clear_managed(struct dentry *dentry) { dentry->d_flags &= ~(DCACHE_NEED_AUTOMOUNT|DCACHE_MANAGE_TRANSIT); } static inline void managed_dentry_clear_managed(struct dentry *dentry) { spin_lock(&dentry->d_lock); __managed_dentry_clear_managed(dentry); spin_unlock(&dentry->d_lock); } /* Initializing function */ int autofs_fill_super(struct super_block *, void *, int); struct autofs_info *autofs_new_ino(struct autofs_sb_info *); void autofs_clean_ino(struct autofs_info *); static inline int autofs_prepare_pipe(struct file *pipe) { if (!(pipe->f_mode & FMODE_CAN_WRITE)) return -EINVAL; if (!S_ISFIFO(file_inode(pipe)->i_mode)) return -EINVAL; /* We want a packet pipe */ pipe->f_flags |= O_DIRECT; /* We don't expect -EAGAIN */ pipe->f_flags &= ~O_NONBLOCK; return 0; } /* Queue management functions */ int autofs_wait(struct autofs_sb_info *, const struct path *, enum autofs_notify); int autofs_wait_release(struct autofs_sb_info *, autofs_wqt_t, int); void autofs_catatonic_mode(struct autofs_sb_info *); static inline u32 autofs_get_dev(struct autofs_sb_info *sbi) { return new_encode_dev(sbi->sb->s_dev); } static inline u64 autofs_get_ino(struct autofs_sb_info *sbi) { return d_inode(sbi->sb->s_root)->i_ino; } static inline void __autofs_add_expiring(struct dentry *dentry) { struct autofs_sb_info *sbi = autofs_sbi(dentry->d_sb); struct autofs_info *ino = autofs_dentry_ino(dentry); if (ino) { if (list_empty(&ino->expiring)) list_add(&ino->expiring, &sbi->expiring_list); } } static inline void autofs_add_expiring(struct dentry *dentry) { struct autofs_sb_info *sbi = autofs_sbi(dentry->d_sb); struct autofs_info *ino = autofs_dentry_ino(dentry); if (ino) { spin_lock(&sbi->lookup_lock); if (list_empty(&ino->expiring)) list_add(&ino->expiring, &sbi->expiring_list); spin_unlock(&sbi->lookup_lock); } } static inline void autofs_del_expiring(struct dentry *dentry) { struct autofs_sb_info *sbi = autofs_sbi(dentry->d_sb); struct autofs_info *ino = autofs_dentry_ino(dentry); if (ino) { spin_lock(&sbi->lookup_lock); if (!list_empty(&ino->expiring)) list_del_init(&ino->expiring); spin_unlock(&sbi->lookup_lock); } } void autofs_kill_sb(struct super_block *);
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_LIST_NULLS_H #define _LINUX_LIST_NULLS_H #include <linux/poison.h> #include <linux/const.h> /* * Special version of lists, where end of list is not a NULL pointer, * but a 'nulls' marker, which can have many different values. * (up to 2^31 different values guaranteed on all platforms) * * In the standard hlist, termination of a list is the NULL pointer. * In this special 'nulls' variant, we use the fact that objects stored in * a list are aligned on a word (4 or 8 bytes alignment). * We therefore use the last significant bit of 'ptr' : * Set to 1 : This is a 'nulls' end-of-list marker (ptr >> 1) * Set to 0 : This is a pointer to some object (ptr) */ struct hlist_nulls_head { struct hlist_nulls_node *first; }; struct hlist_nulls_node { struct hlist_nulls_node *next, **pprev; }; #define NULLS_MARKER(value) (1UL | (((long)value) << 1)) #define INIT_HLIST_NULLS_HEAD(ptr, nulls) \ ((ptr)->first = (struct hlist_nulls_node *) NULLS_MARKER(nulls)) #define hlist_nulls_entry(ptr, type, member) container_of(ptr,type,member) #define hlist_nulls_entry_safe(ptr, type, member) \ ({ typeof(ptr) ____ptr = (ptr); \ !is_a_nulls(____ptr) ? hlist_nulls_entry(____ptr, type, member) : NULL; \ }) /** * ptr_is_a_nulls - Test if a ptr is a nulls * @ptr: ptr to be tested * */ static inline int is_a_nulls(const struct hlist_nulls_node *ptr) { return ((unsigned long)ptr & 1); } /** * get_nulls_value - Get the 'nulls' value of the end of chain * @ptr: end of chain * * Should be called only if is_a_nulls(ptr); */ static inline unsigned long get_nulls_value(const struct hlist_nulls_node *ptr) { return ((unsigned long)ptr) >> 1; } /** * hlist_nulls_unhashed - Has node been removed and reinitialized? * @h: Node to be checked * * Not that not all removal functions will leave a node in unhashed state. * For example, hlist_del_init_rcu() leaves the node in unhashed state, * but hlist_nulls_del() does not. */ static inline int hlist_nulls_unhashed(const struct hlist_nulls_node *h) { return !h->pprev; } /** * hlist_nulls_unhashed_lockless - Has node been removed and reinitialized? * @h: Node to be checked * * Not that not all removal functions will leave a node in unhashed state. * For example, hlist_del_init_rcu() leaves the node in unhashed state, * but hlist_nulls_del() does not. Unlike hlist_nulls_unhashed(), this * function may be used locklessly. */ static inline int hlist_nulls_unhashed_lockless(const struct hlist_nulls_node *h) { return !READ_ONCE(h->pprev); } static inline int hlist_nulls_empty(const struct hlist_nulls_head *h) { return is_a_nulls(READ_ONCE(h->first)); } static inline void hlist_nulls_add_head(struct hlist_nulls_node *n, struct hlist_nulls_head *h) { struct hlist_nulls_node *first = h->first; n->next = first; WRITE_ONCE(n->pprev, &h->first); h->first = n; if (!is_a_nulls(first)) WRITE_ONCE(first->pprev, &n->next); } static inline void __hlist_nulls_del(struct hlist_nulls_node *n) { struct hlist_nulls_node *next = n->next; struct hlist_nulls_node **pprev = n->pprev; WRITE_ONCE(*pprev, next); if (!is_a_nulls(next)) WRITE_ONCE(next->pprev, pprev); } static inline void hlist_nulls_del(struct hlist_nulls_node *n) { __hlist_nulls_del(n); WRITE_ONCE(n->pprev, LIST_POISON2); } /** * hlist_nulls_for_each_entry - iterate over list of given type * @tpos: the type * to use as a loop cursor. * @pos: the &struct hlist_node to use as a loop cursor. * @head: the head for your list. * @member: the name of the hlist_node within the struct. * */ #define hlist_nulls_for_each_entry(tpos, pos, head, member) \ for (pos = (head)->first; \ (!is_a_nulls(pos)) && \ ({ tpos = hlist_nulls_entry(pos, typeof(*tpos), member); 1;}); \ pos = pos->next) /** * hlist_nulls_for_each_entry_from - iterate over a hlist continuing from current point * @tpos: the type * to use as a loop cursor. * @pos: the &struct hlist_node to use as a loop cursor. * @member: the name of the hlist_node within the struct. * */ #define hlist_nulls_for_each_entry_from(tpos, pos, member) \ for (; (!is_a_nulls(pos)) && \ ({ tpos = hlist_nulls_entry(pos, typeof(*tpos), member); 1;}); \ pos = pos->next) #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM kmem #if !defined(_TRACE_KMEM_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_KMEM_H #include <linux/types.h> #include <linux/tracepoint.h> #include <trace/events/mmflags.h> DECLARE_EVENT_CLASS(kmem_alloc, TP_PROTO(unsigned long call_site, const void *ptr, size_t bytes_req, size_t bytes_alloc, gfp_t gfp_flags), TP_ARGS(call_site, ptr, bytes_req, bytes_alloc, gfp_flags), TP_STRUCT__entry( __field( unsigned long, call_site ) __field( const void *, ptr ) __field( size_t, bytes_req ) __field( size_t, bytes_alloc ) __field( gfp_t, gfp_flags ) ), TP_fast_assign( __entry->call_site = call_site; __entry->ptr = ptr; __entry->bytes_req = bytes_req; __entry->bytes_alloc = bytes_alloc; __entry->gfp_flags = gfp_flags; ), TP_printk("call_site=%pS ptr=%p bytes_req=%zu bytes_alloc=%zu gfp_flags=%s", (void *)__entry->call_site, __entry->ptr, __entry->bytes_req, __entry->bytes_alloc, show_gfp_flags(__entry->gfp_flags)) ); DEFINE_EVENT(kmem_alloc, kmalloc, TP_PROTO(unsigned long call_site, const void *ptr, size_t bytes_req, size_t bytes_alloc, gfp_t gfp_flags), TP_ARGS(call_site, ptr, bytes_req, bytes_alloc, gfp_flags) ); DEFINE_EVENT(kmem_alloc, kmem_cache_alloc, TP_PROTO(unsigned long call_site, const void *ptr, size_t bytes_req, size_t bytes_alloc, gfp_t gfp_flags), TP_ARGS(call_site, ptr, bytes_req, bytes_alloc, gfp_flags) ); DECLARE_EVENT_CLASS(kmem_alloc_node, TP_PROTO(unsigned long call_site, const void *ptr, size_t bytes_req, size_t bytes_alloc, gfp_t gfp_flags, int node), TP_ARGS(call_site, ptr, bytes_req, bytes_alloc, gfp_flags, node), TP_STRUCT__entry( __field( unsigned long, call_site ) __field( const void *, ptr ) __field( size_t, bytes_req ) __field( size_t, bytes_alloc ) __field( gfp_t, gfp_flags ) __field( int, node ) ), TP_fast_assign( __entry->call_site = call_site; __entry->ptr = ptr; __entry->bytes_req = bytes_req; __entry->bytes_alloc = bytes_alloc; __entry->gfp_flags = gfp_flags; __entry->node = node; ), TP_printk("call_site=%pS ptr=%p bytes_req=%zu bytes_alloc=%zu gfp_flags=%s node=%d", (void *)__entry->call_site, __entry->ptr, __entry->bytes_req, __entry->bytes_alloc, show_gfp_flags(__entry->gfp_flags), __entry->node) ); DEFINE_EVENT(kmem_alloc_node, kmalloc_node, TP_PROTO(unsigned long call_site, const void *ptr, size_t bytes_req, size_t bytes_alloc, gfp_t gfp_flags, int node), TP_ARGS(call_site, ptr, bytes_req, bytes_alloc, gfp_flags, node) ); DEFINE_EVENT(kmem_alloc_node, kmem_cache_alloc_node, TP_PROTO(unsigned long call_site, const void *ptr, size_t bytes_req, size_t bytes_alloc, gfp_t gfp_flags, int node), TP_ARGS(call_site, ptr, bytes_req, bytes_alloc, gfp_flags, node) ); DECLARE_EVENT_CLASS(kmem_free, TP_PROTO(unsigned long call_site, const void *ptr), TP_ARGS(call_site, ptr), TP_STRUCT__entry( __field( unsigned long, call_site ) __field( const void *, ptr ) ), TP_fast_assign( __entry->call_site = call_site; __entry->ptr = ptr; ), TP_printk("call_site=%pS ptr=%p", (void *)__entry->call_site, __entry->ptr) ); DEFINE_EVENT(kmem_free, kfree, TP_PROTO(unsigned long call_site, const void *ptr), TP_ARGS(call_site, ptr) ); DEFINE_EVENT(kmem_free, kmem_cache_free, TP_PROTO(unsigned long call_site, const void *ptr), TP_ARGS(call_site, ptr) ); TRACE_EVENT(mm_page_free, TP_PROTO(struct page *page, unsigned int order), TP_ARGS(page, order), TP_STRUCT__entry( __field( unsigned long, pfn ) __field( unsigned int, order ) ), TP_fast_assign( __entry->pfn = page_to_pfn(page); __entry->order = order; ), TP_printk("page=%p pfn=%lu order=%d", pfn_to_page(__entry->pfn), __entry->pfn, __entry->order) ); TRACE_EVENT(mm_page_free_batched, TP_PROTO(struct page *page), TP_ARGS(page), TP_STRUCT__entry( __field( unsigned long, pfn ) ), TP_fast_assign( __entry->pfn = page_to_pfn(page); ), TP_printk("page=%p pfn=%lu order=0", pfn_to_page(__entry->pfn), __entry->pfn) ); TRACE_EVENT(mm_page_alloc, TP_PROTO(struct page *page, unsigned int order, gfp_t gfp_flags, int migratetype), TP_ARGS(page, order, gfp_flags, migratetype), TP_STRUCT__entry( __field( unsigned long, pfn ) __field( unsigned int, order ) __field( gfp_t, gfp_flags ) __field( int, migratetype ) ), TP_fast_assign( __entry->pfn = page ? page_to_pfn(page) : -1UL; __entry->order = order; __entry->gfp_flags = gfp_flags; __entry->migratetype = migratetype; ), TP_printk("page=%p pfn=%lu order=%d migratetype=%d gfp_flags=%s", __entry->pfn != -1UL ? pfn_to_page(__entry->pfn) : NULL, __entry->pfn != -1UL ? __entry->pfn : 0, __entry->order, __entry->migratetype, show_gfp_flags(__entry->gfp_flags)) ); DECLARE_EVENT_CLASS(mm_page, TP_PROTO(struct page *page, unsigned int order, int migratetype), TP_ARGS(page, order, migratetype), TP_STRUCT__entry( __field( unsigned long, pfn ) __field( unsigned int, order ) __field( int, migratetype ) ), TP_fast_assign( __entry->pfn = page ? page_to_pfn(page) : -1UL; __entry->order = order; __entry->migratetype = migratetype; ), TP_printk("page=%p pfn=%lu order=%u migratetype=%d percpu_refill=%d", __entry->pfn != -1UL ? pfn_to_page(__entry->pfn) : NULL, __entry->pfn != -1UL ? __entry->pfn : 0, __entry->order, __entry->migratetype, __entry->order == 0) ); DEFINE_EVENT(mm_page, mm_page_alloc_zone_locked, TP_PROTO(struct page *page, unsigned int order, int migratetype), TP_ARGS(page, order, migratetype) ); TRACE_EVENT(mm_page_pcpu_drain, TP_PROTO(struct page *page, unsigned int order, int migratetype), TP_ARGS(page, order, migratetype), TP_STRUCT__entry( __field( unsigned long, pfn ) __field( unsigned int, order ) __field( int, migratetype ) ), TP_fast_assign( __entry->pfn = page ? page_to_pfn(page) : -1UL; __entry->order = order; __entry->migratetype = migratetype; ), TP_printk("page=%p pfn=%lu order=%d migratetype=%d", pfn_to_page(__entry->pfn), __entry->pfn, __entry->order, __entry->migratetype) ); TRACE_EVENT(mm_page_alloc_extfrag, TP_PROTO(struct page *page, int alloc_order, int fallback_order, int alloc_migratetype, int fallback_migratetype), TP_ARGS(page, alloc_order, fallback_order, alloc_migratetype, fallback_migratetype), TP_STRUCT__entry( __field( unsigned long, pfn ) __field( int, alloc_order ) __field( int, fallback_order ) __field( int, alloc_migratetype ) __field( int, fallback_migratetype ) __field( int, change_ownership ) ), TP_fast_assign( __entry->pfn = page_to_pfn(page); __entry->alloc_order = alloc_order; __entry->fallback_order = fallback_order; __entry->alloc_migratetype = alloc_migratetype; __entry->fallback_migratetype = fallback_migratetype; __entry->change_ownership = (alloc_migratetype == get_pageblock_migratetype(page)); ), TP_printk("page=%p pfn=%lu alloc_order=%d fallback_order=%d pageblock_order=%d alloc_migratetype=%d fallback_migratetype=%d fragmenting=%d change_ownership=%d", pfn_to_page(__entry->pfn), __entry->pfn, __entry->alloc_order, __entry->fallback_order, pageblock_order, __entry->alloc_migratetype, __entry->fallback_migratetype, __entry->fallback_order < pageblock_order, __entry->change_ownership) ); /* * Required for uniquely and securely identifying mm in rss_stat tracepoint. */ #ifndef __PTR_TO_HASHVAL static unsigned int __maybe_unused mm_ptr_to_hash(const void *ptr) { int ret; unsigned long hashval; ret = ptr_to_hashval(ptr, &hashval); if (ret) return 0; /* The hashed value is only 32-bit */ return (unsigned int)hashval; } #define __PTR_TO_HASHVAL #endif TRACE_EVENT(rss_stat, TP_PROTO(struct mm_struct *mm, int member, long count), TP_ARGS(mm, member, count), TP_STRUCT__entry( __field(unsigned int, mm_id) __field(unsigned int, curr) __field(int, member) __field(long, size) ), TP_fast_assign( __entry->mm_id = mm_ptr_to_hash(mm); __entry->curr = !!(current->mm == mm); __entry->member = member; __entry->size = (count << PAGE_SHIFT); ), TP_printk("mm_id=%u curr=%d member=%d size=%ldB", __entry->mm_id, __entry->curr, __entry->member, __entry->size) ); #endif /* _TRACE_KMEM_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __IEEE802154_CORE_H #define __IEEE802154_CORE_H #include <net/cfg802154.h> struct cfg802154_registered_device { const struct cfg802154_ops *ops; struct list_head list; /* wpan_phy index, internal only */ int wpan_phy_idx; /* also protected by devlist_mtx */ int opencount; wait_queue_head_t dev_wait; /* protected by RTNL only */ int num_running_ifaces; /* associated wpan interfaces, protected by rtnl or RCU */ struct list_head wpan_dev_list; int devlist_generation, wpan_dev_id; /* must be last because of the way we do wpan_phy_priv(), * and it should at least be aligned to NETDEV_ALIGN */ struct wpan_phy wpan_phy __aligned(NETDEV_ALIGN); }; static inline struct cfg802154_registered_device * wpan_phy_to_rdev(struct wpan_phy *wpan_phy) { BUG_ON(!wpan_phy); return container_of(wpan_phy, struct cfg802154_registered_device, wpan_phy); } extern struct list_head cfg802154_rdev_list; extern int cfg802154_rdev_list_generation; int cfg802154_switch_netns(struct cfg802154_registered_device *rdev, struct net *net); /* free object */ void cfg802154_dev_free(struct cfg802154_registered_device *rdev); struct cfg802154_registered_device * cfg802154_rdev_by_wpan_phy_idx(int wpan_phy_idx); struct wpan_phy *wpan_phy_idx_to_wpan_phy(int wpan_phy_idx); #endif /* __IEEE802154_CORE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _SCSI_SCSI_REQUEST_H #define _SCSI_SCSI_REQUEST_H #include <linux/blk-mq.h> #define BLK_MAX_CDB 16 struct scsi_request { unsigned char __cmd[BLK_MAX_CDB]; unsigned char *cmd; unsigned short cmd_len; int result; unsigned int sense_len; unsigned int resid_len; /* residual count */ int retries; void *sense; }; static inline struct scsi_request *scsi_req(struct request *rq) { return blk_mq_rq_to_pdu(rq); } static inline void scsi_req_free_cmd(struct scsi_request *req) { if (req->cmd != req->__cmd) kfree(req->cmd); } void scsi_req_init(struct scsi_request *req); #endif /* _SCSI_SCSI_REQUEST_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __NET_LWTUNNEL_H #define __NET_LWTUNNEL_H 1 #include <linux/lwtunnel.h> #include <linux/netdevice.h> #include <linux/skbuff.h> #include <linux/types.h> #include <net/route.h> #define LWTUNNEL_HASH_BITS 7 #define LWTUNNEL_HASH_SIZE (1 << LWTUNNEL_HASH_BITS) /* lw tunnel state flags */ #define LWTUNNEL_STATE_OUTPUT_REDIRECT BIT(0) #define LWTUNNEL_STATE_INPUT_REDIRECT BIT(1) #define LWTUNNEL_STATE_XMIT_REDIRECT BIT(2) enum { LWTUNNEL_XMIT_DONE, LWTUNNEL_XMIT_CONTINUE, }; struct lwtunnel_state { __u16 type; __u16 flags; __u16 headroom; atomic_t refcnt; int (*orig_output)(struct net *net, struct sock *sk, struct sk_buff *skb); int (*orig_input)(struct sk_buff *); struct rcu_head rcu; __u8 data[]; }; struct lwtunnel_encap_ops { int (*build_state)(struct net *net, struct nlattr *encap, unsigned int family, const void *cfg, struct lwtunnel_state **ts, struct netlink_ext_ack *extack); void (*destroy_state)(struct lwtunnel_state *lws); int (*output)(struct net *net, struct sock *sk, struct sk_buff *skb); int (*input)(struct sk_buff *skb); int (*fill_encap)(struct sk_buff *skb, struct lwtunnel_state *lwtstate); int (*get_encap_size)(struct lwtunnel_state *lwtstate); int (*cmp_encap)(struct lwtunnel_state *a, struct lwtunnel_state *b); int (*xmit)(struct sk_buff *skb); struct module *owner; }; #ifdef CONFIG_LWTUNNEL void lwtstate_free(struct lwtunnel_state *lws); static inline struct lwtunnel_state * lwtstate_get(struct lwtunnel_state *lws) { if (lws) atomic_inc(&lws->refcnt); return lws; } static inline void lwtstate_put(struct lwtunnel_state *lws) { if (!lws) return; if (atomic_dec_and_test(&lws->refcnt)) lwtstate_free(lws); } static inline bool lwtunnel_output_redirect(struct lwtunnel_state *lwtstate) { if (lwtstate && (lwtstate->flags & LWTUNNEL_STATE_OUTPUT_REDIRECT)) return true; return false; } static inline bool lwtunnel_input_redirect(struct lwtunnel_state *lwtstate) { if (lwtstate && (lwtstate->flags & LWTUNNEL_STATE_INPUT_REDIRECT)) return true; return false; } static inline bool lwtunnel_xmit_redirect(struct lwtunnel_state *lwtstate) { if (lwtstate && (lwtstate->flags & LWTUNNEL_STATE_XMIT_REDIRECT)) return true; return false; } static inline unsigned int lwtunnel_headroom(struct lwtunnel_state *lwtstate, unsigned int mtu) { if ((lwtunnel_xmit_redirect(lwtstate) || lwtunnel_output_redirect(lwtstate)) && lwtstate->headroom < mtu) return lwtstate->headroom; return 0; } int lwtunnel_encap_add_ops(const struct lwtunnel_encap_ops *op, unsigned int num); int lwtunnel_encap_del_ops(const struct lwtunnel_encap_ops *op, unsigned int num); int lwtunnel_valid_encap_type(u16 encap_type, struct netlink_ext_ack *extack); int lwtunnel_valid_encap_type_attr(struct nlattr *attr, int len, struct netlink_ext_ack *extack); int lwtunnel_build_state(struct net *net, u16 encap_type, struct nlattr *encap, unsigned int family, const void *cfg, struct lwtunnel_state **lws, struct netlink_ext_ack *extack); int lwtunnel_fill_encap(struct sk_buff *skb, struct lwtunnel_state *lwtstate, int encap_attr, int encap_type_attr); int lwtunnel_get_encap_size(struct lwtunnel_state *lwtstate); struct lwtunnel_state *lwtunnel_state_alloc(int hdr_len); int lwtunnel_cmp_encap(struct lwtunnel_state *a, struct lwtunnel_state *b); int lwtunnel_output(struct net *net, struct sock *sk, struct sk_buff *skb); int lwtunnel_input(struct sk_buff *skb); int lwtunnel_xmit(struct sk_buff *skb); int bpf_lwt_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len, bool ingress); static inline void lwtunnel_set_redirect(struct dst_entry *dst) { if (lwtunnel_output_redirect(dst->lwtstate)) { dst->lwtstate->orig_output = dst->output; dst->output = lwtunnel_output; } if (lwtunnel_input_redirect(dst->lwtstate)) { dst->lwtstate->orig_input = dst->input; dst->input = lwtunnel_input; } } #else static inline void lwtstate_free(struct lwtunnel_state *lws) { } static inline struct lwtunnel_state * lwtstate_get(struct lwtunnel_state *lws) { return lws; } static inline void lwtstate_put(struct lwtunnel_state *lws) { } static inline bool lwtunnel_output_redirect(struct lwtunnel_state *lwtstate) { return false; } static inline bool lwtunnel_input_redirect(struct lwtunnel_state *lwtstate) { return false; } static inline bool lwtunnel_xmit_redirect(struct lwtunnel_state *lwtstate) { return false; } static inline void lwtunnel_set_redirect(struct dst_entry *dst) { } static inline unsigned int lwtunnel_headroom(struct lwtunnel_state *lwtstate, unsigned int mtu) { return 0; } static inline int lwtunnel_encap_add_ops(const struct lwtunnel_encap_ops *op, unsigned int num) { return -EOPNOTSUPP; } static inline int lwtunnel_encap_del_ops(const struct lwtunnel_encap_ops *op, unsigned int num) { return -EOPNOTSUPP; } static inline int lwtunnel_valid_encap_type(u16 encap_type, struct netlink_ext_ack *extack) { NL_SET_ERR_MSG(extack, "CONFIG_LWTUNNEL is not enabled in this kernel"); return -EOPNOTSUPP; } static inline int lwtunnel_valid_encap_type_attr(struct nlattr *attr, int len, struct netlink_ext_ack *extack) { /* return 0 since we are not walking attr looking for * RTA_ENCAP_TYPE attribute on nexthops. */ return 0; } static inline int lwtunnel_build_state(struct net *net, u16 encap_type, struct nlattr *encap, unsigned int family, const void *cfg, struct lwtunnel_state **lws, struct netlink_ext_ack *extack) { return -EOPNOTSUPP; } static inline int lwtunnel_fill_encap(struct sk_buff *skb, struct lwtunnel_state *lwtstate, int encap_attr, int encap_type_attr) { return 0; } static inline int lwtunnel_get_encap_size(struct lwtunnel_state *lwtstate) { return 0; } static inline struct lwtunnel_state *lwtunnel_state_alloc(int hdr_len) { return NULL; } static inline int lwtunnel_cmp_encap(struct lwtunnel_state *a, struct lwtunnel_state *b) { return 0; } static inline int lwtunnel_output(struct net *net, struct sock *sk, struct sk_buff *skb) { return -EOPNOTSUPP; } static inline int lwtunnel_input(struct sk_buff *skb) { return -EOPNOTSUPP; } static inline int lwtunnel_xmit(struct sk_buff *skb) { return -EOPNOTSUPP; } #endif /* CONFIG_LWTUNNEL */ #define MODULE_ALIAS_RTNL_LWT(encap_type) MODULE_ALIAS("rtnl-lwt-" __stringify(encap_type)) #endif /* __NET_LWTUNNEL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_BLKDEV_H #define _LINUX_BLKDEV_H #include <linux/sched.h> #include <linux/sched/clock.h> #include <linux/major.h> #include <linux/genhd.h> #include <linux/list.h> #include <linux/llist.h> #include <linux/minmax.h> #include <linux/timer.h> #include <linux/workqueue.h> #include <linux/pagemap.h> #include <linux/backing-dev-defs.h> #include <linux/wait.h> #include <linux/mempool.h> #include <linux/pfn.h> #include <linux/bio.h> #include <linux/stringify.h> #include <linux/gfp.h> #include <linux/bsg.h> #include <linux/smp.h> #include <linux/rcupdate.h> #include <linux/percpu-refcount.h> #include <linux/scatterlist.h> #include <linux/blkzoned.h> #include <linux/pm.h> struct module; struct scsi_ioctl_command; struct request_queue; struct elevator_queue; struct blk_trace; struct request; struct sg_io_hdr; struct bsg_job; struct blkcg_gq; struct blk_flush_queue; struct pr_ops; struct rq_qos; struct blk_queue_stats; struct blk_stat_callback; struct blk_keyslot_manager; #define BLKDEV_MIN_RQ 4 #define BLKDEV_MAX_RQ 128 /* Default maximum */ /* Must be consistent with blk_mq_poll_stats_bkt() */ #define BLK_MQ_POLL_STATS_BKTS 16 /* Doing classic polling */ #define BLK_MQ_POLL_CLASSIC -1 /* * Maximum number of blkcg policies allowed to be registered concurrently. * Defined here to simplify include dependency. */ #define BLKCG_MAX_POLS 5 static inline int blk_validate_block_size(unsigned int bsize) { if (bsize < 512 || bsize > PAGE_SIZE || !is_power_of_2(bsize)) return -EINVAL; return 0; } typedef void (rq_end_io_fn)(struct request *, blk_status_t); /* * request flags */ typedef __u32 __bitwise req_flags_t; /* elevator knows about this request */ #define RQF_SORTED ((__force req_flags_t)(1 << 0)) /* drive already may have started this one */ #define RQF_STARTED ((__force req_flags_t)(1 << 1)) /* may not be passed by ioscheduler */ #define RQF_SOFTBARRIER ((__force req_flags_t)(1 << 3)) /* request for flush sequence */ #define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4)) /* merge of different types, fail separately */ #define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5)) /* track inflight for MQ */ #define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6)) /* don't call prep for this one */ #define RQF_DONTPREP ((__force req_flags_t)(1 << 7)) /* vaguely specified driver internal error. Ignored by the block layer */ #define RQF_FAILED ((__force req_flags_t)(1 << 10)) /* don't warn about errors */ #define RQF_QUIET ((__force req_flags_t)(1 << 11)) /* elevator private data attached */ #define RQF_ELVPRIV ((__force req_flags_t)(1 << 12)) /* account into disk and partition IO statistics */ #define RQF_IO_STAT ((__force req_flags_t)(1 << 13)) /* request came from our alloc pool */ #define RQF_ALLOCED ((__force req_flags_t)(1 << 14)) /* runtime pm request */ #define RQF_PM ((__force req_flags_t)(1 << 15)) /* on IO scheduler merge hash */ #define RQF_HASHED ((__force req_flags_t)(1 << 16)) /* track IO completion time */ #define RQF_STATS ((__force req_flags_t)(1 << 17)) /* Look at ->special_vec for the actual data payload instead of the bio chain. */ #define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18)) /* The per-zone write lock is held for this request */ #define RQF_ZONE_WRITE_LOCKED ((__force req_flags_t)(1 << 19)) /* already slept for hybrid poll */ #define RQF_MQ_POLL_SLEPT ((__force req_flags_t)(1 << 20)) /* ->timeout has been called, don't expire again */ #define RQF_TIMED_OUT ((__force req_flags_t)(1 << 21)) /* flags that prevent us from merging requests: */ #define RQF_NOMERGE_FLAGS \ (RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD) /* * Request state for blk-mq. */ enum mq_rq_state { MQ_RQ_IDLE = 0, MQ_RQ_IN_FLIGHT = 1, MQ_RQ_COMPLETE = 2, }; /* * Try to put the fields that are referenced together in the same cacheline. * * If you modify this structure, make sure to update blk_rq_init() and * especially blk_mq_rq_ctx_init() to take care of the added fields. */ struct request { struct request_queue *q; struct blk_mq_ctx *mq_ctx; struct blk_mq_hw_ctx *mq_hctx; unsigned int cmd_flags; /* op and common flags */ req_flags_t rq_flags; int tag; int internal_tag; /* the following two fields are internal, NEVER access directly */ unsigned int __data_len; /* total data len */ sector_t __sector; /* sector cursor */ struct bio *bio; struct bio *biotail; struct list_head queuelist; /* * The hash is used inside the scheduler, and killed once the * request reaches the dispatch list. The ipi_list is only used * to queue the request for softirq completion, which is long * after the request has been unhashed (and even removed from * the dispatch list). */ union { struct hlist_node hash; /* merge hash */ struct list_head ipi_list; }; /* * The rb_node is only used inside the io scheduler, requests * are pruned when moved to the dispatch queue. So let the * completion_data share space with the rb_node. */ union { struct rb_node rb_node; /* sort/lookup */ struct bio_vec special_vec; void *completion_data; int error_count; /* for legacy drivers, don't use */ }; /* * Three pointers are available for the IO schedulers, if they need * more they have to dynamically allocate it. Flush requests are * never put on the IO scheduler. So let the flush fields share * space with the elevator data. */ union { struct { struct io_cq *icq; void *priv[2]; } elv; struct { unsigned int seq; struct list_head list; rq_end_io_fn *saved_end_io; } flush; }; struct gendisk *rq_disk; struct hd_struct *part; #ifdef CONFIG_BLK_RQ_ALLOC_TIME /* Time that the first bio started allocating this request. */ u64 alloc_time_ns; #endif /* Time that this request was allocated for this IO. */ u64 start_time_ns; /* Time that I/O was submitted to the device. */ u64 io_start_time_ns; #ifdef CONFIG_BLK_WBT unsigned short wbt_flags; #endif /* * rq sectors used for blk stats. It has the same value * with blk_rq_sectors(rq), except that it never be zeroed * by completion. */ unsigned short stats_sectors; /* * Number of scatter-gather DMA addr+len pairs after * physical address coalescing is performed. */ unsigned short nr_phys_segments; #if defined(CONFIG_BLK_DEV_INTEGRITY) unsigned short nr_integrity_segments; #endif #ifdef CONFIG_BLK_INLINE_ENCRYPTION struct bio_crypt_ctx *crypt_ctx; struct blk_ksm_keyslot *crypt_keyslot; #endif unsigned short write_hint; unsigned short ioprio; enum mq_rq_state state; refcount_t ref; unsigned int timeout; unsigned long deadline; union { struct __call_single_data csd; u64 fifo_time; }; /* * completion callback. */ rq_end_io_fn *end_io; void *end_io_data; }; static inline bool blk_op_is_scsi(unsigned int op) { return op == REQ_OP_SCSI_IN || op == REQ_OP_SCSI_OUT; } static inline bool blk_op_is_private(unsigned int op) { return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT; } static inline bool blk_rq_is_scsi(struct request *rq) { return blk_op_is_scsi(req_op(rq)); } static inline bool blk_rq_is_private(struct request *rq) { return blk_op_is_private(req_op(rq)); } static inline bool blk_rq_is_passthrough(struct request *rq) { return blk_rq_is_scsi(rq) || blk_rq_is_private(rq); } static inline bool bio_is_passthrough(struct bio *bio) { unsigned op = bio_op(bio); return blk_op_is_scsi(op) || blk_op_is_private(op); } static inline unsigned short req_get_ioprio(struct request *req) { return req->ioprio; } #include <linux/elevator.h> struct blk_queue_ctx; struct bio_vec; enum blk_eh_timer_return { BLK_EH_DONE, /* drivers has completed the command */ BLK_EH_RESET_TIMER, /* reset timer and try again */ }; enum blk_queue_state { Queue_down, Queue_up, }; #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */ #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */ #define BLK_SCSI_MAX_CMDS (256) #define BLK_SCSI_CMD_PER_LONG (BLK_SCSI_MAX_CMDS / (sizeof(long) * 8)) /* * Zoned block device models (zoned limit). * * Note: This needs to be ordered from the least to the most severe * restrictions for the inheritance in blk_stack_limits() to work. */ enum blk_zoned_model { BLK_ZONED_NONE = 0, /* Regular block device */ BLK_ZONED_HA, /* Host-aware zoned block device */ BLK_ZONED_HM, /* Host-managed zoned block device */ }; struct queue_limits { unsigned long bounce_pfn; unsigned long seg_boundary_mask; unsigned long virt_boundary_mask; unsigned int max_hw_sectors; unsigned int max_dev_sectors; unsigned int chunk_sectors; unsigned int max_sectors; unsigned int max_segment_size; unsigned int physical_block_size; unsigned int logical_block_size; unsigned int alignment_offset; unsigned int io_min; unsigned int io_opt; unsigned int max_discard_sectors; unsigned int max_hw_discard_sectors; unsigned int max_write_same_sectors; unsigned int max_write_zeroes_sectors; unsigned int max_zone_append_sectors; unsigned int discard_granularity; unsigned int discard_alignment; unsigned short max_segments; unsigned short max_integrity_segments; unsigned short max_discard_segments; unsigned char misaligned; unsigned char discard_misaligned; unsigned char raid_partial_stripes_expensive; enum blk_zoned_model zoned; }; typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx, void *data); void blk_queue_set_zoned(struct gendisk *disk, enum blk_zoned_model model); #ifdef CONFIG_BLK_DEV_ZONED #define BLK_ALL_ZONES ((unsigned int)-1) int blkdev_report_zones(struct block_device *bdev, sector_t sector, unsigned int nr_zones, report_zones_cb cb, void *data); unsigned int blkdev_nr_zones(struct gendisk *disk); extern int blkdev_zone_mgmt(struct block_device *bdev, enum req_opf op, sector_t sectors, sector_t nr_sectors, gfp_t gfp_mask); int blk_revalidate_disk_zones(struct gendisk *disk, void (*update_driver_data)(struct gendisk *disk)); extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg); extern int blkdev_zone_mgmt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg); #else /* CONFIG_BLK_DEV_ZONED */ static inline unsigned int blkdev_nr_zones(struct gendisk *disk) { return 0; } static inline int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg) { return -ENOTTY; } static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg) { return -ENOTTY; } #endif /* CONFIG_BLK_DEV_ZONED */ struct request_queue { struct request *last_merge; struct elevator_queue *elevator; struct percpu_ref q_usage_counter; struct blk_queue_stats *stats; struct rq_qos *rq_qos; const struct blk_mq_ops *mq_ops; /* sw queues */ struct blk_mq_ctx __percpu *queue_ctx; unsigned int queue_depth; /* hw dispatch queues */ struct blk_mq_hw_ctx **queue_hw_ctx; unsigned int nr_hw_queues; struct backing_dev_info *backing_dev_info; /* * The queue owner gets to use this for whatever they like. * ll_rw_blk doesn't touch it. */ void *queuedata; /* * various queue flags, see QUEUE_* below */ unsigned long queue_flags; /* * Number of contexts that have called blk_set_pm_only(). If this * counter is above zero then only RQF_PM requests are processed. */ atomic_t pm_only; /* * ida allocated id for this queue. Used to index queues from * ioctx. */ int id; /* * queue needs bounce pages for pages above this limit */ gfp_t bounce_gfp; spinlock_t queue_lock; /* * queue kobject */ struct kobject kobj; /* * mq queue kobject */ struct kobject *mq_kobj; #ifdef CONFIG_BLK_DEV_INTEGRITY struct blk_integrity integrity; #endif /* CONFIG_BLK_DEV_INTEGRITY */ #ifdef CONFIG_PM struct device *dev; enum rpm_status rpm_status; unsigned int nr_pending; #endif /* * queue settings */ unsigned long nr_requests; /* Max # of requests */ unsigned int dma_pad_mask; unsigned int dma_alignment; #ifdef CONFIG_BLK_INLINE_ENCRYPTION /* Inline crypto capabilities */ struct blk_keyslot_manager *ksm; #endif unsigned int rq_timeout; int poll_nsec; struct blk_stat_callback *poll_cb; struct blk_rq_stat poll_stat[BLK_MQ_POLL_STATS_BKTS]; struct timer_list timeout; struct work_struct timeout_work; atomic_t nr_active_requests_shared_sbitmap; struct list_head icq_list; #ifdef CONFIG_BLK_CGROUP DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS); struct blkcg_gq *root_blkg; struct list_head blkg_list; #endif struct queue_limits limits; unsigned int required_elevator_features; #ifdef CONFIG_BLK_DEV_ZONED /* * Zoned block device information for request dispatch control. * nr_zones is the total number of zones of the device. This is always * 0 for regular block devices. conv_zones_bitmap is a bitmap of nr_zones * bits which indicates if a zone is conventional (bit set) or * sequential (bit clear). seq_zones_wlock is a bitmap of nr_zones * bits which indicates if a zone is write locked, that is, if a write * request targeting the zone was dispatched. All three fields are * initialized by the low level device driver (e.g. scsi/sd.c). * Stacking drivers (device mappers) may or may not initialize * these fields. * * Reads of this information must be protected with blk_queue_enter() / * blk_queue_exit(). Modifying this information is only allowed while * no requests are being processed. See also blk_mq_freeze_queue() and * blk_mq_unfreeze_queue(). */ unsigned int nr_zones; unsigned long *conv_zones_bitmap; unsigned long *seq_zones_wlock; unsigned int max_open_zones; unsigned int max_active_zones; #endif /* CONFIG_BLK_DEV_ZONED */ /* * sg stuff */ unsigned int sg_timeout; unsigned int sg_reserved_size; int node; struct mutex debugfs_mutex; #ifdef CONFIG_BLK_DEV_IO_TRACE struct blk_trace __rcu *blk_trace; #endif /* * for flush operations */ struct blk_flush_queue *fq; struct list_head requeue_list; spinlock_t requeue_lock; struct delayed_work requeue_work; struct mutex sysfs_lock; struct mutex sysfs_dir_lock; /* * for reusing dead hctx instance in case of updating * nr_hw_queues */ struct list_head unused_hctx_list; spinlock_t unused_hctx_lock; int mq_freeze_depth; #if defined(CONFIG_BLK_DEV_BSG) struct bsg_class_device bsg_dev; #endif #ifdef CONFIG_BLK_DEV_THROTTLING /* Throttle data */ struct throtl_data *td; #endif struct rcu_head rcu_head; wait_queue_head_t mq_freeze_wq; /* * Protect concurrent access to q_usage_counter by * percpu_ref_kill() and percpu_ref_reinit(). */ struct mutex mq_freeze_lock; struct blk_mq_tag_set *tag_set; struct list_head tag_set_list; struct bio_set bio_split; struct dentry *debugfs_dir; #ifdef CONFIG_BLK_DEBUG_FS struct dentry *sched_debugfs_dir; struct dentry *rqos_debugfs_dir; #endif bool mq_sysfs_init_done; size_t cmd_size; #define BLK_MAX_WRITE_HINTS 5 u64 write_hints[BLK_MAX_WRITE_HINTS]; }; /* Keep blk_queue_flag_name[] in sync with the definitions below */ #define QUEUE_FLAG_STOPPED 0 /* queue is stopped */ #define QUEUE_FLAG_DYING 1 /* queue being torn down */ #define QUEUE_FLAG_NOMERGES 3 /* disable merge attempts */ #define QUEUE_FLAG_SAME_COMP 4 /* complete on same CPU-group */ #define QUEUE_FLAG_FAIL_IO 5 /* fake timeout */ #define QUEUE_FLAG_NONROT 6 /* non-rotational device (SSD) */ #define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */ #define QUEUE_FLAG_IO_STAT 7 /* do disk/partitions IO accounting */ #define QUEUE_FLAG_DISCARD 8 /* supports DISCARD */ #define QUEUE_FLAG_NOXMERGES 9 /* No extended merges */ #define QUEUE_FLAG_ADD_RANDOM 10 /* Contributes to random pool */ #define QUEUE_FLAG_SECERASE 11 /* supports secure erase */ #define QUEUE_FLAG_SAME_FORCE 12 /* force complete on same CPU */ #define QUEUE_FLAG_DEAD 13 /* queue tear-down finished */ #define QUEUE_FLAG_INIT_DONE 14 /* queue is initialized */ #define QUEUE_FLAG_STABLE_WRITES 15 /* don't modify blks until WB is done */ #define QUEUE_FLAG_POLL 16 /* IO polling enabled if set */ #define QUEUE_FLAG_WC 17 /* Write back caching */ #define QUEUE_FLAG_FUA 18 /* device supports FUA writes */ #define QUEUE_FLAG_DAX 19 /* device supports DAX */ #define QUEUE_FLAG_STATS 20 /* track IO start and completion times */ #define QUEUE_FLAG_POLL_STATS 21 /* collecting stats for hybrid polling */ #define QUEUE_FLAG_REGISTERED 22 /* queue has been registered to a disk */ #define QUEUE_FLAG_SCSI_PASSTHROUGH 23 /* queue supports SCSI commands */ #define QUEUE_FLAG_QUIESCED 24 /* queue has been quiesced */ #define QUEUE_FLAG_PCI_P2PDMA 25 /* device supports PCI p2p requests */ #define QUEUE_FLAG_ZONE_RESETALL 26 /* supports Zone Reset All */ #define QUEUE_FLAG_RQ_ALLOC_TIME 27 /* record rq->alloc_time_ns */ #define QUEUE_FLAG_HCTX_ACTIVE 28 /* at least one blk-mq hctx is active */ #define QUEUE_FLAG_NOWAIT 29 /* device supports NOWAIT */ #define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \ (1 << QUEUE_FLAG_SAME_COMP) | \ (1 << QUEUE_FLAG_NOWAIT)) void blk_queue_flag_set(unsigned int flag, struct request_queue *q); void blk_queue_flag_clear(unsigned int flag, struct request_queue *q); bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q); #define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags) #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags) #define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags) #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags) #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags) #define blk_queue_noxmerges(q) \ test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags) #define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags) #define blk_queue_stable_writes(q) \ test_bit(QUEUE_FLAG_STABLE_WRITES, &(q)->queue_flags) #define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags) #define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags) #define blk_queue_discard(q) test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags) #define blk_queue_zone_resetall(q) \ test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags) #define blk_queue_secure_erase(q) \ (test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags)) #define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags) #define blk_queue_scsi_passthrough(q) \ test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags) #define blk_queue_pci_p2pdma(q) \ test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags) #ifdef CONFIG_BLK_RQ_ALLOC_TIME #define blk_queue_rq_alloc_time(q) \ test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags) #else #define blk_queue_rq_alloc_time(q) false #endif #define blk_noretry_request(rq) \ ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \ REQ_FAILFAST_DRIVER)) #define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags) #define blk_queue_pm_only(q) atomic_read(&(q)->pm_only) #define blk_queue_fua(q) test_bit(QUEUE_FLAG_FUA, &(q)->queue_flags) #define blk_queue_registered(q) test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags) #define blk_queue_nowait(q) test_bit(QUEUE_FLAG_NOWAIT, &(q)->queue_flags) extern void blk_set_pm_only(struct request_queue *q); extern void blk_clear_pm_only(struct request_queue *q); static inline bool blk_account_rq(struct request *rq) { return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq); } #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist) #define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ) #define rq_dma_dir(rq) \ (op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE) #define dma_map_bvec(dev, bv, dir, attrs) \ dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \ (dir), (attrs)) static inline bool queue_is_mq(struct request_queue *q) { return q->mq_ops; } #ifdef CONFIG_PM static inline enum rpm_status queue_rpm_status(struct request_queue *q) { return q->rpm_status; } #else static inline enum rpm_status queue_rpm_status(struct request_queue *q) { return RPM_ACTIVE; } #endif static inline enum blk_zoned_model blk_queue_zoned_model(struct request_queue *q) { if (IS_ENABLED(CONFIG_BLK_DEV_ZONED)) return q->limits.zoned; return BLK_ZONED_NONE; } static inline bool blk_queue_is_zoned(struct request_queue *q) { switch (blk_queue_zoned_model(q)) { case BLK_ZONED_HA: case BLK_ZONED_HM: return true; default: return false; } } static inline sector_t blk_queue_zone_sectors(struct request_queue *q) { return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0; } #ifdef CONFIG_BLK_DEV_ZONED static inline unsigned int blk_queue_nr_zones(struct request_queue *q) { return blk_queue_is_zoned(q) ? q->nr_zones : 0; } static inline unsigned int blk_queue_zone_no(struct request_queue *q, sector_t sector) { if (!blk_queue_is_zoned(q)) return 0; return sector >> ilog2(q->limits.chunk_sectors); } static inline bool blk_queue_zone_is_seq(struct request_queue *q, sector_t sector) { if (!blk_queue_is_zoned(q)) return false; if (!q->conv_zones_bitmap) return true; return !test_bit(blk_queue_zone_no(q, sector), q->conv_zones_bitmap); } static inline void blk_queue_max_open_zones(struct request_queue *q, unsigned int max_open_zones) { q->max_open_zones = max_open_zones; } static inline unsigned int queue_max_open_zones(const struct request_queue *q) { return q->max_open_zones; } static inline void blk_queue_max_active_zones(struct request_queue *q, unsigned int max_active_zones) { q->max_active_zones = max_active_zones; } static inline unsigned int queue_max_active_zones(const struct request_queue *q) { return q->max_active_zones; } #else /* CONFIG_BLK_DEV_ZONED */ static inline unsigned int blk_queue_nr_zones(struct request_queue *q) { return 0; } static inline bool blk_queue_zone_is_seq(struct request_queue *q, sector_t sector) { return false; } static inline unsigned int blk_queue_zone_no(struct request_queue *q, sector_t sector) { return 0; } static inline unsigned int queue_max_open_zones(const struct request_queue *q) { return 0; } static inline unsigned int queue_max_active_zones(const struct request_queue *q) { return 0; } #endif /* CONFIG_BLK_DEV_ZONED */ static inline bool rq_is_sync(struct request *rq) { return op_is_sync(rq->cmd_flags); } static inline bool rq_mergeable(struct request *rq) { if (blk_rq_is_passthrough(rq)) return false; if (req_op(rq) == REQ_OP_FLUSH) return false; if (req_op(rq) == REQ_OP_WRITE_ZEROES) return false; if (req_op(rq) == REQ_OP_ZONE_APPEND) return false; if (rq->cmd_flags & REQ_NOMERGE_FLAGS) return false; if (rq->rq_flags & RQF_NOMERGE_FLAGS) return false; return true; } static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b) { if (bio_page(a) == bio_page(b) && bio_offset(a) == bio_offset(b)) return true; return false; } static inline unsigned int blk_queue_depth(struct request_queue *q) { if (q->queue_depth) return q->queue_depth; return q->nr_requests; } extern unsigned long blk_max_low_pfn, blk_max_pfn; /* * standard bounce addresses: * * BLK_BOUNCE_HIGH : bounce all highmem pages * BLK_BOUNCE_ANY : don't bounce anything * BLK_BOUNCE_ISA : bounce pages above ISA DMA boundary */ #if BITS_PER_LONG == 32 #define BLK_BOUNCE_HIGH ((u64)blk_max_low_pfn << PAGE_SHIFT) #else #define BLK_BOUNCE_HIGH -1ULL #endif #define BLK_BOUNCE_ANY (-1ULL) #define BLK_BOUNCE_ISA (DMA_BIT_MASK(24)) /* * default timeout for SG_IO if none specified */ #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ) #define BLK_MIN_SG_TIMEOUT (7 * HZ) struct rq_map_data { struct page **pages; int page_order; int nr_entries; unsigned long offset; int null_mapped; int from_user; }; struct req_iterator { struct bvec_iter iter; struct bio *bio; }; /* This should not be used directly - use rq_for_each_segment */ #define for_each_bio(_bio) \ for (; _bio; _bio = _bio->bi_next) #define __rq_for_each_bio(_bio, rq) \ if ((rq->bio)) \ for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next) #define rq_for_each_segment(bvl, _rq, _iter) \ __rq_for_each_bio(_iter.bio, _rq) \ bio_for_each_segment(bvl, _iter.bio, _iter.iter) #define rq_for_each_bvec(bvl, _rq, _iter) \ __rq_for_each_bio(_iter.bio, _rq) \ bio_for_each_bvec(bvl, _iter.bio, _iter.iter) #define rq_iter_last(bvec, _iter) \ (_iter.bio->bi_next == NULL && \ bio_iter_last(bvec, _iter.iter)) #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE # error "You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform" #endif #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE extern void rq_flush_dcache_pages(struct request *rq); #else static inline void rq_flush_dcache_pages(struct request *rq) { } #endif extern int blk_register_queue(struct gendisk *disk); extern void blk_unregister_queue(struct gendisk *disk); blk_qc_t submit_bio_noacct(struct bio *bio); extern void blk_rq_init(struct request_queue *q, struct request *rq); extern void blk_put_request(struct request *); extern struct request *blk_get_request(struct request_queue *, unsigned int op, blk_mq_req_flags_t flags); extern int blk_lld_busy(struct request_queue *q); extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src, struct bio_set *bs, gfp_t gfp_mask, int (*bio_ctr)(struct bio *, struct bio *, void *), void *data); extern void blk_rq_unprep_clone(struct request *rq); extern blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq); extern int blk_rq_append_bio(struct request *rq, struct bio **bio); extern void blk_queue_split(struct bio **); extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int); extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t, unsigned int, void __user *); extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t, unsigned int, void __user *); extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t, struct scsi_ioctl_command __user *); extern int get_sg_io_hdr(struct sg_io_hdr *hdr, const void __user *argp); extern int put_sg_io_hdr(const struct sg_io_hdr *hdr, void __user *argp); extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags); extern void blk_queue_exit(struct request_queue *q); extern void blk_sync_queue(struct request_queue *q); extern int blk_rq_map_user(struct request_queue *, struct request *, struct rq_map_data *, void __user *, unsigned long, gfp_t); extern int blk_rq_unmap_user(struct bio *); extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t); extern int blk_rq_map_user_iov(struct request_queue *, struct request *, struct rq_map_data *, const struct iov_iter *, gfp_t); extern void blk_execute_rq(struct request_queue *, struct gendisk *, struct request *, int); extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *, struct request *, int, rq_end_io_fn *); /* Helper to convert REQ_OP_XXX to its string format XXX */ extern const char *blk_op_str(unsigned int op); int blk_status_to_errno(blk_status_t status); blk_status_t errno_to_blk_status(int errno); int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin); static inline struct request_queue *bdev_get_queue(struct block_device *bdev) { return bdev->bd_disk->queue; /* this is never NULL */ } /* * The basic unit of block I/O is a sector. It is used in a number of contexts * in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9 * bytes. Variables of type sector_t represent an offset or size that is a * multiple of 512 bytes. Hence these two constants. */ #ifndef SECTOR_SHIFT #define SECTOR_SHIFT 9 #endif #ifndef SECTOR_SIZE #define SECTOR_SIZE (1 << SECTOR_SHIFT) #endif /* * blk_rq_pos() : the current sector * blk_rq_bytes() : bytes left in the entire request * blk_rq_cur_bytes() : bytes left in the current segment * blk_rq_err_bytes() : bytes left till the next error boundary * blk_rq_sectors() : sectors left in the entire request * blk_rq_cur_sectors() : sectors left in the current segment * blk_rq_stats_sectors() : sectors of the entire request used for stats */ static inline sector_t blk_rq_pos(const struct request *rq) { return rq->__sector; } static inline unsigned int blk_rq_bytes(const struct request *rq) { return rq->__data_len; } static inline int blk_rq_cur_bytes(const struct request *rq) { return rq->bio ? bio_cur_bytes(rq->bio) : 0; } extern unsigned int blk_rq_err_bytes(const struct request *rq); static inline unsigned int blk_rq_sectors(const struct request *rq) { return blk_rq_bytes(rq) >> SECTOR_SHIFT; } static inline unsigned int blk_rq_cur_sectors(const struct request *rq) { return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT; } static inline unsigned int blk_rq_stats_sectors(const struct request *rq) { return rq->stats_sectors; } #ifdef CONFIG_BLK_DEV_ZONED /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */ const char *blk_zone_cond_str(enum blk_zone_cond zone_cond); static inline unsigned int blk_rq_zone_no(struct request *rq) { return blk_queue_zone_no(rq->q, blk_rq_pos(rq)); } static inline unsigned int blk_rq_zone_is_seq(struct request *rq) { return blk_queue_zone_is_seq(rq->q, blk_rq_pos(rq)); } #endif /* CONFIG_BLK_DEV_ZONED */ /* * Some commands like WRITE SAME have a payload or data transfer size which * is different from the size of the request. Any driver that supports such * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to * calculate the data transfer size. */ static inline unsigned int blk_rq_payload_bytes(struct request *rq) { if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) return rq->special_vec.bv_len; return blk_rq_bytes(rq); } /* * Return the first full biovec in the request. The caller needs to check that * there are any bvecs before calling this helper. */ static inline struct bio_vec req_bvec(struct request *rq) { if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) return rq->special_vec; return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter); } static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q, int op) { if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE)) return min(q->limits.max_discard_sectors, UINT_MAX >> SECTOR_SHIFT); if (unlikely(op == REQ_OP_WRITE_SAME)) return q->limits.max_write_same_sectors; if (unlikely(op == REQ_OP_WRITE_ZEROES)) return q->limits.max_write_zeroes_sectors; return q->limits.max_sectors; } /* * Return maximum size of a request at given offset. Only valid for * file system requests. */ static inline unsigned int blk_max_size_offset(struct request_queue *q, sector_t offset, unsigned int chunk_sectors) { if (!chunk_sectors) { if (q->limits.chunk_sectors) chunk_sectors = q->limits.chunk_sectors; else return q->limits.max_sectors; } if (likely(is_power_of_2(chunk_sectors))) chunk_sectors -= offset & (chunk_sectors - 1); else chunk_sectors -= sector_div(offset, chunk_sectors); return min(q->limits.max_sectors, chunk_sectors); } static inline unsigned int blk_rq_get_max_sectors(struct request *rq, sector_t offset) { struct request_queue *q = rq->q; if (blk_rq_is_passthrough(rq)) return q->limits.max_hw_sectors; if (!q->limits.chunk_sectors || req_op(rq) == REQ_OP_DISCARD || req_op(rq) == REQ_OP_SECURE_ERASE) return blk_queue_get_max_sectors(q, req_op(rq)); return min(blk_max_size_offset(q, offset, 0), blk_queue_get_max_sectors(q, req_op(rq))); } static inline unsigned int blk_rq_count_bios(struct request *rq) { unsigned int nr_bios = 0; struct bio *bio; __rq_for_each_bio(bio, rq) nr_bios++; return nr_bios; } void blk_steal_bios(struct bio_list *list, struct request *rq); /* * Request completion related functions. * * blk_update_request() completes given number of bytes and updates * the request without completing it. */ extern bool blk_update_request(struct request *rq, blk_status_t error, unsigned int nr_bytes); extern void blk_abort_request(struct request *); /* * Access functions for manipulating queue properties */ extern void blk_cleanup_queue(struct request_queue *); extern void blk_queue_bounce_limit(struct request_queue *, u64); extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int); extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int); extern void blk_queue_max_segments(struct request_queue *, unsigned short); extern void blk_queue_max_discard_segments(struct request_queue *, unsigned short); extern void blk_queue_max_segment_size(struct request_queue *, unsigned int); extern void blk_queue_max_discard_sectors(struct request_queue *q, unsigned int max_discard_sectors); extern void blk_queue_max_write_same_sectors(struct request_queue *q, unsigned int max_write_same_sectors); extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q, unsigned int max_write_same_sectors); extern void blk_queue_logical_block_size(struct request_queue *, unsigned int); extern void blk_queue_max_zone_append_sectors(struct request_queue *q, unsigned int max_zone_append_sectors); extern void blk_queue_physical_block_size(struct request_queue *, unsigned int); extern void blk_queue_alignment_offset(struct request_queue *q, unsigned int alignment); void blk_queue_update_readahead(struct request_queue *q); extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min); extern void blk_queue_io_min(struct request_queue *q, unsigned int min); extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt); extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt); extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth); extern void blk_set_default_limits(struct queue_limits *lim); extern void blk_set_stacking_limits(struct queue_limits *lim); extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, sector_t offset); extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, sector_t offset); extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int); extern void blk_queue_segment_boundary(struct request_queue *, unsigned long); extern void blk_queue_virt_boundary(struct request_queue *, unsigned long); extern void blk_queue_dma_alignment(struct request_queue *, int); extern void blk_queue_update_dma_alignment(struct request_queue *, int); extern void blk_queue_rq_timeout(struct request_queue *, unsigned int); extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua); extern void blk_queue_required_elevator_features(struct request_queue *q, unsigned int features); extern bool blk_queue_can_use_dma_map_merging(struct request_queue *q, struct device *dev); /* * Number of physical segments as sent to the device. * * Normally this is the number of discontiguous data segments sent by the * submitter. But for data-less command like discard we might have no * actual data segments submitted, but the driver might have to add it's * own special payload. In that case we still return 1 here so that this * special payload will be mapped. */ static inline unsigned short blk_rq_nr_phys_segments(struct request *rq) { if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) return 1; return rq->nr_phys_segments; } /* * Number of discard segments (or ranges) the driver needs to fill in. * Each discard bio merged into a request is counted as one segment. */ static inline unsigned short blk_rq_nr_discard_segments(struct request *rq) { return max_t(unsigned short, rq->nr_phys_segments, 1); } int __blk_rq_map_sg(struct request_queue *q, struct request *rq, struct scatterlist *sglist, struct scatterlist **last_sg); static inline int blk_rq_map_sg(struct request_queue *q, struct request *rq, struct scatterlist *sglist) { struct scatterlist *last_sg = NULL; return __blk_rq_map_sg(q, rq, sglist, &last_sg); } extern void blk_dump_rq_flags(struct request *, char *); bool __must_check blk_get_queue(struct request_queue *); struct request_queue *blk_alloc_queue(int node_id); extern void blk_put_queue(struct request_queue *); extern void blk_set_queue_dying(struct request_queue *); #ifdef CONFIG_BLOCK /* * blk_plug permits building a queue of related requests by holding the I/O * fragments for a short period. This allows merging of sequential requests * into single larger request. As the requests are moved from a per-task list to * the device's request_queue in a batch, this results in improved scalability * as the lock contention for request_queue lock is reduced. * * It is ok not to disable preemption when adding the request to the plug list * or when attempting a merge, because blk_schedule_flush_list() will only flush * the plug list when the task sleeps by itself. For details, please see * schedule() where blk_schedule_flush_plug() is called. */ struct blk_plug { struct list_head mq_list; /* blk-mq requests */ struct list_head cb_list; /* md requires an unplug callback */ unsigned short rq_count; bool multiple_queues; bool nowait; }; struct blk_plug_cb; typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool); struct blk_plug_cb { struct list_head list; blk_plug_cb_fn callback; void *data; }; extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data, int size); extern void blk_start_plug(struct blk_plug *); extern void blk_finish_plug(struct blk_plug *); extern void blk_flush_plug_list(struct blk_plug *, bool); static inline void blk_flush_plug(struct task_struct *tsk) { struct blk_plug *plug = tsk->plug; if (plug) blk_flush_plug_list(plug, false); } static inline void blk_schedule_flush_plug(struct task_struct *tsk) { struct blk_plug *plug = tsk->plug; if (plug) blk_flush_plug_list(plug, true); } static inline bool blk_needs_flush_plug(struct task_struct *tsk) { struct blk_plug *plug = tsk->plug; return plug && (!list_empty(&plug->mq_list) || !list_empty(&plug->cb_list)); } int blkdev_issue_flush(struct block_device *, gfp_t); long nr_blockdev_pages(void); #else /* CONFIG_BLOCK */ struct blk_plug { }; static inline void blk_start_plug(struct blk_plug *plug) { } static inline void blk_finish_plug(struct blk_plug *plug) { } static inline void blk_flush_plug(struct task_struct *task) { } static inline void blk_schedule_flush_plug(struct task_struct *task) { } static inline bool blk_needs_flush_plug(struct task_struct *tsk) { return false; } static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask) { return 0; } static inline long nr_blockdev_pages(void) { return 0; } #endif /* CONFIG_BLOCK */ extern void blk_io_schedule(void); extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector, sector_t nr_sects, gfp_t gfp_mask, struct page *page); #define BLKDEV_DISCARD_SECURE (1 << 0) /* issue a secure erase */ extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector, sector_t nr_sects, gfp_t gfp_mask, unsigned long flags); extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector, sector_t nr_sects, gfp_t gfp_mask, int flags, struct bio **biop); #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */ #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */ extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, sector_t nr_sects, gfp_t gfp_mask, struct bio **biop, unsigned flags); extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, sector_t nr_sects, gfp_t gfp_mask, unsigned flags); static inline int sb_issue_discard(struct super_block *sb, sector_t block, sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags) { return blkdev_issue_discard(sb->s_bdev, block << (sb->s_blocksize_bits - SECTOR_SHIFT), nr_blocks << (sb->s_blocksize_bits - SECTOR_SHIFT), gfp_mask, flags); } static inline int sb_issue_zeroout(struct super_block *sb, sector_t block, sector_t nr_blocks, gfp_t gfp_mask) { return blkdev_issue_zeroout(sb->s_bdev, block << (sb->s_blocksize_bits - SECTOR_SHIFT), nr_blocks << (sb->s_blocksize_bits - SECTOR_SHIFT), gfp_mask, 0); } extern int blk_verify_command(unsigned char *cmd, fmode_t mode); static inline bool bdev_is_partition(struct block_device *bdev) { return bdev->bd_partno; } enum blk_default_limits { BLK_MAX_SEGMENTS = 128, BLK_SAFE_MAX_SECTORS = 255, BLK_DEF_MAX_SECTORS = 2560, BLK_MAX_SEGMENT_SIZE = 65536, BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL, }; static inline unsigned long queue_segment_boundary(const struct request_queue *q) { return q->limits.seg_boundary_mask; } static inline unsigned long queue_virt_boundary(const struct request_queue *q) { return q->limits.virt_boundary_mask; } static inline unsigned int queue_max_sectors(const struct request_queue *q) { return q->limits.max_sectors; } static inline unsigned int queue_max_hw_sectors(const struct request_queue *q) { return q->limits.max_hw_sectors; } static inline unsigned short queue_max_segments(const struct request_queue *q) { return q->limits.max_segments; } static inline unsigned short queue_max_discard_segments(const struct request_queue *q) { return q->limits.max_discard_segments; } static inline unsigned int queue_max_segment_size(const struct request_queue *q) { return q->limits.max_segment_size; } static inline unsigned int queue_max_zone_append_sectors(const struct request_queue *q) { const struct queue_limits *l = &q->limits; return min(l->max_zone_append_sectors, l->max_sectors); } static inline unsigned queue_logical_block_size(const struct request_queue *q) { int retval = 512; if (q && q->limits.logical_block_size) retval = q->limits.logical_block_size; return retval; } static inline unsigned int bdev_logical_block_size(struct block_device *bdev) { return queue_logical_block_size(bdev_get_queue(bdev)); } static inline unsigned int queue_physical_block_size(const struct request_queue *q) { return q->limits.physical_block_size; } static inline unsigned int bdev_physical_block_size(struct block_device *bdev) { return queue_physical_block_size(bdev_get_queue(bdev)); } static inline unsigned int queue_io_min(const struct request_queue *q) { return q->limits.io_min; } static inline int bdev_io_min(struct block_device *bdev) { return queue_io_min(bdev_get_queue(bdev)); } static inline unsigned int queue_io_opt(const struct request_queue *q) { return q->limits.io_opt; } static inline int bdev_io_opt(struct block_device *bdev) { return queue_io_opt(bdev_get_queue(bdev)); } static inline int queue_alignment_offset(const struct request_queue *q) { if (q->limits.misaligned) return -1; return q->limits.alignment_offset; } static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector) { unsigned int granularity = max(lim->physical_block_size, lim->io_min); unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT) << SECTOR_SHIFT; return (granularity + lim->alignment_offset - alignment) % granularity; } static inline int bdev_alignment_offset(struct block_device *bdev) { struct request_queue *q = bdev_get_queue(bdev); if (q->limits.misaligned) return -1; if (bdev_is_partition(bdev)) return queue_limit_alignment_offset(&q->limits, bdev->bd_part->start_sect); return q->limits.alignment_offset; } static inline int queue_discard_alignment(const struct request_queue *q) { if (q->limits.discard_misaligned) return -1; return q->limits.discard_alignment; } static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector) { unsigned int alignment, granularity, offset; if (!lim->max_discard_sectors) return 0; /* Why are these in bytes, not sectors? */ alignment = lim->discard_alignment >> SECTOR_SHIFT; granularity = lim->discard_granularity >> SECTOR_SHIFT; if (!granularity) return 0; /* Offset of the partition start in 'granularity' sectors */ offset = sector_div(sector, granularity); /* And why do we do this modulus *again* in blkdev_issue_discard()? */ offset = (granularity + alignment - offset) % granularity; /* Turn it back into bytes, gaah */ return offset << SECTOR_SHIFT; } /* * Two cases of handling DISCARD merge: * If max_discard_segments > 1, the driver takes every bio * as a range and send them to controller together. The ranges * needn't to be contiguous. * Otherwise, the bios/requests will be handled as same as * others which should be contiguous. */ static inline bool blk_discard_mergable(struct request *req) { if (req_op(req) == REQ_OP_DISCARD && queue_max_discard_segments(req->q) > 1) return true; return false; } static inline int bdev_discard_alignment(struct block_device *bdev) { struct request_queue *q = bdev_get_queue(bdev); if (bdev_is_partition(bdev)) return queue_limit_discard_alignment(&q->limits, bdev->bd_part->start_sect); return q->limits.discard_alignment; } static inline unsigned int bdev_write_same(struct block_device *bdev) { struct request_queue *q = bdev_get_queue(bdev); if (q) return q->limits.max_write_same_sectors; return 0; } static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev) { struct request_queue *q = bdev_get_queue(bdev); if (q) return q->limits.max_write_zeroes_sectors; return 0; } static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev) { struct request_queue *q = bdev_get_queue(bdev); if (q) return blk_queue_zoned_model(q); return BLK_ZONED_NONE; } static inline bool bdev_is_zoned(struct block_device *bdev) { struct request_queue *q = bdev_get_queue(bdev); if (q) return blk_queue_is_zoned(q); return false; } static inline sector_t bdev_zone_sectors(struct block_device *bdev) { struct request_queue *q = bdev_get_queue(bdev); if (q) return blk_queue_zone_sectors(q); return 0; } static inline unsigned int bdev_max_open_zones(struct block_device *bdev) { struct request_queue *q = bdev_get_queue(bdev); if (q) return queue_max_open_zones(q); return 0; } static inline unsigned int bdev_max_active_zones(struct block_device *bdev) { struct request_queue *q = bdev_get_queue(bdev); if (q) return queue_max_active_zones(q); return 0; } static inline int queue_dma_alignment(const struct request_queue *q) { return q ? q->dma_alignment : 511; } static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr, unsigned int len) { unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask; return !(addr & alignment) && !(len & alignment); } /* assumes size > 256 */ static inline unsigned int blksize_bits(unsigned int size) { unsigned int bits = 8; do { bits++; size >>= 1; } while (size > 256); return bits; } static inline unsigned int block_size(struct block_device *bdev) { return 1 << bdev->bd_inode->i_blkbits; } int kblockd_schedule_work(struct work_struct *work); int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay); #define MODULE_ALIAS_BLOCKDEV(major,minor) \ MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor)) #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \ MODULE_ALIAS("block-major-" __stringify(major) "-*") #if defined(CONFIG_BLK_DEV_INTEGRITY) enum blk_integrity_flags { BLK_INTEGRITY_VERIFY = 1 << 0, BLK_INTEGRITY_GENERATE = 1 << 1, BLK_INTEGRITY_DEVICE_CAPABLE = 1 << 2, BLK_INTEGRITY_IP_CHECKSUM = 1 << 3, }; struct blk_integrity_iter { void *prot_buf; void *data_buf; sector_t seed; unsigned int data_size; unsigned short interval; const char *disk_name; }; typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *); typedef void (integrity_prepare_fn) (struct request *); typedef void (integrity_complete_fn) (struct request *, unsigned int); struct blk_integrity_profile { integrity_processing_fn *generate_fn; integrity_processing_fn *verify_fn; integrity_prepare_fn *prepare_fn; integrity_complete_fn *complete_fn; const char *name; }; extern void blk_integrity_register(struct gendisk *, struct blk_integrity *); extern void blk_integrity_unregister(struct gendisk *); extern int blk_integrity_compare(struct gendisk *, struct gendisk *); extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *, struct scatterlist *); extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *); static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) { struct blk_integrity *bi = &disk->queue->integrity; if (!bi->profile) return NULL; return bi; } static inline struct blk_integrity *bdev_get_integrity(struct block_device *bdev) { return blk_get_integrity(bdev->bd_disk); } static inline bool blk_integrity_queue_supports_integrity(struct request_queue *q) { return q->integrity.profile; } static inline bool blk_integrity_rq(struct request *rq) { return rq->cmd_flags & REQ_INTEGRITY; } static inline void blk_queue_max_integrity_segments(struct request_queue *q, unsigned int segs) { q->limits.max_integrity_segments = segs; } static inline unsigned short queue_max_integrity_segments(const struct request_queue *q) { return q->limits.max_integrity_segments; } /** * bio_integrity_intervals - Return number of integrity intervals for a bio * @bi: blk_integrity profile for device * @sectors: Size of the bio in 512-byte sectors * * Description: The block layer calculates everything in 512 byte * sectors but integrity metadata is done in terms of the data integrity * interval size of the storage device. Convert the block layer sectors * to the appropriate number of integrity intervals. */ static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi, unsigned int sectors) { return sectors >> (bi->interval_exp - 9); } static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi, unsigned int sectors) { return bio_integrity_intervals(bi, sectors) * bi->tuple_size; } /* * Return the first bvec that contains integrity data. Only drivers that are * limited to a single integrity segment should use this helper. */ static inline struct bio_vec *rq_integrity_vec(struct request *rq) { if (WARN_ON_ONCE(queue_max_integrity_segments(rq->q) > 1)) return NULL; return rq->bio->bi_integrity->bip_vec; } #else /* CONFIG_BLK_DEV_INTEGRITY */ struct bio; struct block_device; struct gendisk; struct blk_integrity; static inline int blk_integrity_rq(struct request *rq) { return 0; } static inline int blk_rq_count_integrity_sg(struct request_queue *q, struct bio *b) { return 0; } static inline int blk_rq_map_integrity_sg(struct request_queue *q, struct bio *b, struct scatterlist *s) { return 0; } static inline struct blk_integrity *bdev_get_integrity(struct block_device *b) { return NULL; } static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) { return NULL; } static inline bool blk_integrity_queue_supports_integrity(struct request_queue *q) { return false; } static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b) { return 0; } static inline void blk_integrity_register(struct gendisk *d, struct blk_integrity *b) { } static inline void blk_integrity_unregister(struct gendisk *d) { } static inline void blk_queue_max_integrity_segments(struct request_queue *q, unsigned int segs) { } static inline unsigned short queue_max_integrity_segments(const struct request_queue *q) { return 0; } static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi, unsigned int sectors) { return 0; } static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi, unsigned int sectors) { return 0; } static inline struct bio_vec *rq_integrity_vec(struct request *rq) { return NULL; } #endif /* CONFIG_BLK_DEV_INTEGRITY */ #ifdef CONFIG_BLK_INLINE_ENCRYPTION bool blk_ksm_register(struct blk_keyslot_manager *ksm, struct request_queue *q); void blk_ksm_unregister(struct request_queue *q); #else /* CONFIG_BLK_INLINE_ENCRYPTION */ static inline bool blk_ksm_register(struct blk_keyslot_manager *ksm, struct request_queue *q) { return true; } static inline void blk_ksm_unregister(struct request_queue *q) { } #endif /* CONFIG_BLK_INLINE_ENCRYPTION */ struct block_device_operations { blk_qc_t (*submit_bio) (struct bio *bio); int (*open) (struct block_device *, fmode_t); void (*release) (struct gendisk *, fmode_t); int (*rw_page)(struct block_device *, sector_t, struct page *, unsigned int); int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); unsigned int (*check_events) (struct gendisk *disk, unsigned int clearing); void (*unlock_native_capacity) (struct gendisk *); int (*revalidate_disk) (struct gendisk *); int (*getgeo)(struct block_device *, struct hd_geometry *); /* this callback is with swap_lock and sometimes page table lock held */ void (*swap_slot_free_notify) (struct block_device *, unsigned long); int (*report_zones)(struct gendisk *, sector_t sector, unsigned int nr_zones, report_zones_cb cb, void *data); char *(*devnode)(struct gendisk *disk, umode_t *mode); struct module *owner; const struct pr_ops *pr_ops; }; #ifdef CONFIG_COMPAT extern int blkdev_compat_ptr_ioctl(struct block_device *, fmode_t, unsigned int, unsigned long); #else #define blkdev_compat_ptr_ioctl NULL #endif extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int, unsigned long); extern int bdev_read_page(struct block_device *, sector_t, struct page *); extern int bdev_write_page(struct block_device *, sector_t, struct page *, struct writeback_control *); #ifdef CONFIG_BLK_DEV_ZONED bool blk_req_needs_zone_write_lock(struct request *rq); bool blk_req_zone_write_trylock(struct request *rq); void __blk_req_zone_write_lock(struct request *rq); void __blk_req_zone_write_unlock(struct request *rq); static inline void blk_req_zone_write_lock(struct request *rq) { if (blk_req_needs_zone_write_lock(rq)) __blk_req_zone_write_lock(rq); } static inline void blk_req_zone_write_unlock(struct request *rq) { if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED) __blk_req_zone_write_unlock(rq); } static inline bool blk_req_zone_is_write_locked(struct request *rq) { return rq->q->seq_zones_wlock && test_bit(blk_rq_zone_no(rq), rq->q->seq_zones_wlock); } static inline bool blk_req_can_dispatch_to_zone(struct request *rq) { if (!blk_req_needs_zone_write_lock(rq)) return true; return !blk_req_zone_is_write_locked(rq); } #else static inline bool blk_req_needs_zone_write_lock(struct request *rq) { return false; } static inline void blk_req_zone_write_lock(struct request *rq) { } static inline void blk_req_zone_write_unlock(struct request *rq) { } static inline bool blk_req_zone_is_write_locked(struct request *rq) { return false; } static inline bool blk_req_can_dispatch_to_zone(struct request *rq) { return true; } #endif /* CONFIG_BLK_DEV_ZONED */ static inline void blk_wake_io_task(struct task_struct *waiter) { /* * If we're polling, the task itself is doing the completions. For * that case, we don't need to signal a wakeup, it's enough to just * mark us as RUNNING. */ if (waiter == current) __set_current_state(TASK_RUNNING); else wake_up_process(waiter); } unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors, unsigned int op); void disk_end_io_acct(struct gendisk *disk, unsigned int op, unsigned long start_time); unsigned long part_start_io_acct(struct gendisk *disk, struct hd_struct **part, struct bio *bio); void part_end_io_acct(struct hd_struct *part, struct bio *bio, unsigned long start_time); /** * bio_start_io_acct - start I/O accounting for bio based drivers * @bio: bio to start account for * * Returns the start time that should be passed back to bio_end_io_acct(). */ static inline unsigned long bio_start_io_acct(struct bio *bio) { return disk_start_io_acct(bio->bi_disk, bio_sectors(bio), bio_op(bio)); } /** * bio_end_io_acct - end I/O accounting for bio based drivers * @bio: bio to end account for * @start: start time returned by bio_start_io_acct() */ static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time) { return disk_end_io_acct(bio->bi_disk, bio_op(bio), start_time); } int bdev_read_only(struct block_device *bdev); int set_blocksize(struct block_device *bdev, int size); const char *bdevname(struct block_device *bdev, char *buffer); struct block_device *lookup_bdev(const char *); void blkdev_show(struct seq_file *seqf, off_t offset); #define BDEVNAME_SIZE 32 /* Largest string for a blockdev identifier */ #define BDEVT_SIZE 10 /* Largest string for MAJ:MIN for blkdev */ #ifdef CONFIG_BLOCK #define BLKDEV_MAJOR_MAX 512 #else #define BLKDEV_MAJOR_MAX 0 #endif struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, void *holder); struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder); int bd_prepare_to_claim(struct block_device *bdev, struct block_device *whole, void *holder); void bd_abort_claiming(struct block_device *bdev, struct block_device *whole, void *holder); void blkdev_put(struct block_device *bdev, fmode_t mode); struct block_device *I_BDEV(struct inode *inode); struct block_device *bdget_part(struct hd_struct *part); struct block_device *bdgrab(struct block_device *bdev); void bdput(struct block_device *); #ifdef CONFIG_BLOCK void invalidate_bdev(struct block_device *bdev); int truncate_bdev_range(struct block_device *bdev, fmode_t mode, loff_t lstart, loff_t lend); int sync_blockdev(struct block_device *bdev); #else static inline void invalidate_bdev(struct block_device *bdev) { } static inline int truncate_bdev_range(struct block_device *bdev, fmode_t mode, loff_t lstart, loff_t lend) { return 0; } static inline int sync_blockdev(struct block_device *bdev) { return 0; } #endif int fsync_bdev(struct block_device *bdev); struct super_block *freeze_bdev(struct block_device *bdev); int thaw_bdev(struct block_device *bdev, struct super_block *sb); #endif /* _LINUX_BLKDEV_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* -*- mode: c; c-basic-offset:8; -*- * vim: noexpandtab sw=8 ts=8 sts=0: * * configfs_internal.h - Internal stuff for configfs * * Based on sysfs: * sysfs is Copyright (C) 2001, 2002, 2003 Patrick Mochel * * configfs Copyright (C) 2005 Oracle. All rights reserved. */ #ifdef pr_fmt #undef pr_fmt #endif #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/slab.h> #include <linux/list.h> #include <linux/spinlock.h> struct configfs_fragment { atomic_t frag_count; struct rw_semaphore frag_sem; bool frag_dead; }; void put_fragment(struct configfs_fragment *); struct configfs_fragment *get_fragment(struct configfs_fragment *); struct configfs_dirent { atomic_t s_count; int s_dependent_count; struct list_head s_sibling; struct list_head s_children; int s_links; void * s_element; int s_type; umode_t s_mode; struct dentry * s_dentry; struct iattr * s_iattr; #ifdef CONFIG_LOCKDEP int s_depth; #endif struct configfs_fragment *s_frag; }; #define CONFIGFS_ROOT 0x0001 #define CONFIGFS_DIR 0x0002 #define CONFIGFS_ITEM_ATTR 0x0004 #define CONFIGFS_ITEM_BIN_ATTR 0x0008 #define CONFIGFS_ITEM_LINK 0x0020 #define CONFIGFS_USET_DIR 0x0040 #define CONFIGFS_USET_DEFAULT 0x0080 #define CONFIGFS_USET_DROPPING 0x0100 #define CONFIGFS_USET_IN_MKDIR 0x0200 #define CONFIGFS_USET_CREATING 0x0400 #define CONFIGFS_NOT_PINNED (CONFIGFS_ITEM_ATTR | CONFIGFS_ITEM_BIN_ATTR) extern struct mutex configfs_symlink_mutex; extern spinlock_t configfs_dirent_lock; extern struct kmem_cache *configfs_dir_cachep; extern int configfs_is_root(struct config_item *item); extern struct inode * configfs_new_inode(umode_t mode, struct configfs_dirent *, struct super_block *); extern struct inode *configfs_create(struct dentry *, umode_t mode); extern int configfs_create_file(struct config_item *, const struct configfs_attribute *); extern int configfs_create_bin_file(struct config_item *, const struct configfs_bin_attribute *); extern int configfs_make_dirent(struct configfs_dirent *, struct dentry *, void *, umode_t, int, struct configfs_fragment *); extern int configfs_dirent_is_ready(struct configfs_dirent *); extern void configfs_hash_and_remove(struct dentry * dir, const char * name); extern const unsigned char * configfs_get_name(struct configfs_dirent *sd); extern void configfs_drop_dentry(struct configfs_dirent *sd, struct dentry *parent); extern int configfs_setattr(struct dentry *dentry, struct iattr *iattr); extern struct dentry *configfs_pin_fs(void); extern void configfs_release_fs(void); extern const struct file_operations configfs_dir_operations; extern const struct file_operations configfs_file_operations; extern const struct file_operations configfs_bin_file_operations; extern const struct inode_operations configfs_dir_inode_operations; extern const struct inode_operations configfs_root_inode_operations; extern const struct inode_operations configfs_symlink_inode_operations; extern const struct dentry_operations configfs_dentry_ops; extern int configfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname); extern int configfs_unlink(struct inode *dir, struct dentry *dentry); int configfs_create_link(struct configfs_dirent *target, struct dentry *parent, struct dentry *dentry, char *body); static inline struct config_item * to_item(struct dentry * dentry) { struct configfs_dirent * sd = dentry->d_fsdata; return ((struct config_item *) sd->s_element); } static inline struct configfs_attribute * to_attr(struct dentry * dentry) { struct configfs_dirent * sd = dentry->d_fsdata; return ((struct configfs_attribute *) sd->s_element); } static inline struct configfs_bin_attribute *to_bin_attr(struct dentry *dentry) { struct configfs_attribute *attr = to_attr(dentry); return container_of(attr, struct configfs_bin_attribute, cb_attr); } static inline struct config_item *configfs_get_config_item(struct dentry *dentry) { struct config_item * item = NULL; spin_lock(&dentry->d_lock); if (!d_unhashed(dentry)) { struct configfs_dirent * sd = dentry->d_fsdata; item = config_item_get(sd->s_element); } spin_unlock(&dentry->d_lock); return item; } static inline void release_configfs_dirent(struct configfs_dirent * sd) { if (!(sd->s_type & CONFIGFS_ROOT)) { kfree(sd->s_iattr); put_fragment(sd->s_frag); kmem_cache_free(configfs_dir_cachep, sd); } } static inline struct configfs_dirent * configfs_get(struct configfs_dirent * sd) { if (sd) { WARN_ON(!atomic_read(&sd->s_count)); atomic_inc(&sd->s_count); } return sd; } static inline void configfs_put(struct configfs_dirent * sd) { WARN_ON(!atomic_read(&sd->s_count)); if (atomic_dec_and_test(&sd->s_count)) release_configfs_dirent(sd); }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 /* This file is automatically generated. Do not edit. */ #ifndef _SELINUX_FLASK_H_ #define _SELINUX_FLASK_H_ #define SECCLASS_SECURITY 1 #define SECCLASS_PROCESS 2 #define SECCLASS_PROCESS2 3 #define SECCLASS_SYSTEM 4 #define SECCLASS_CAPABILITY 5 #define SECCLASS_FILESYSTEM 6 #define SECCLASS_FILE 7 #define SECCLASS_DIR 8 #define SECCLASS_FD 9 #define SECCLASS_LNK_FILE 10 #define SECCLASS_CHR_FILE 11 #define SECCLASS_BLK_FILE 12 #define SECCLASS_SOCK_FILE 13 #define SECCLASS_FIFO_FILE 14 #define SECCLASS_SOCKET 15 #define SECCLASS_TCP_SOCKET 16 #define SECCLASS_UDP_SOCKET 17 #define SECCLASS_RAWIP_SOCKET 18 #define SECCLASS_NODE 19 #define SECCLASS_NETIF 20 #define SECCLASS_NETLINK_SOCKET 21 #define SECCLASS_PACKET_SOCKET 22 #define SECCLASS_KEY_SOCKET 23 #define SECCLASS_UNIX_STREAM_SOCKET 24 #define SECCLASS_UNIX_DGRAM_SOCKET 25 #define SECCLASS_SEM 26 #define SECCLASS_MSG 27 #define SECCLASS_MSGQ 28 #define SECCLASS_SHM 29 #define SECCLASS_IPC 30 #define SECCLASS_NETLINK_ROUTE_SOCKET 31 #define SECCLASS_NETLINK_TCPDIAG_SOCKET 32 #define SECCLASS_NETLINK_NFLOG_SOCKET 33 #define SECCLASS_NETLINK_XFRM_SOCKET 34 #define SECCLASS_NETLINK_SELINUX_SOCKET 35 #define SECCLASS_NETLINK_ISCSI_SOCKET 36 #define SECCLASS_NETLINK_AUDIT_SOCKET 37 #define SECCLASS_NETLINK_FIB_LOOKUP_SOCKET 38 #define SECCLASS_NETLINK_CONNECTOR_SOCKET 39 #define SECCLASS_NETLINK_NETFILTER_SOCKET 40 #define SECCLASS_NETLINK_DNRT_SOCKET 41 #define SECCLASS_ASSOCIATION 42 #define SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET 43 #define SECCLASS_NETLINK_GENERIC_SOCKET 44 #define SECCLASS_NETLINK_SCSITRANSPORT_SOCKET 45 #define SECCLASS_NETLINK_RDMA_SOCKET 46 #define SECCLASS_NETLINK_CRYPTO_SOCKET 47 #define SECCLASS_APPLETALK_SOCKET 48 #define SECCLASS_PACKET 49 #define SECCLASS_KEY 50 #define SECCLASS_DCCP_SOCKET 51 #define SECCLASS_MEMPROTECT 52 #define SECCLASS_PEER 53 #define SECCLASS_CAPABILITY2 54 #define SECCLASS_KERNEL_SERVICE 55 #define SECCLASS_TUN_SOCKET 56 #define SECCLASS_BINDER 57 #define SECCLASS_CAP_USERNS 58 #define SECCLASS_CAP2_USERNS 59 #define SECCLASS_SCTP_SOCKET 60 #define SECCLASS_ICMP_SOCKET 61 #define SECCLASS_AX25_SOCKET 62 #define SECCLASS_IPX_SOCKET 63 #define SECCLASS_NETROM_SOCKET 64 #define SECCLASS_ATMPVC_SOCKET 65 #define SECCLASS_X25_SOCKET 66 #define SECCLASS_ROSE_SOCKET 67 #define SECCLASS_DECNET_SOCKET 68 #define SECCLASS_ATMSVC_SOCKET 69 #define SECCLASS_RDS_SOCKET 70 #define SECCLASS_IRDA_SOCKET 71 #define SECCLASS_PPPOX_SOCKET 72 #define SECCLASS_LLC_SOCKET 73 #define SECCLASS_CAN_SOCKET 74 #define SECCLASS_TIPC_SOCKET 75 #define SECCLASS_BLUETOOTH_SOCKET 76 #define SECCLASS_IUCV_SOCKET 77 #define SECCLASS_RXRPC_SOCKET 78 #define SECCLASS_ISDN_SOCKET 79 #define SECCLASS_PHONET_SOCKET 80 #define SECCLASS_IEEE802154_SOCKET 81 #define SECCLASS_CAIF_SOCKET 82 #define SECCLASS_ALG_SOCKET 83 #define SECCLASS_NFC_SOCKET 84 #define SECCLASS_VSOCK_SOCKET 85 #define SECCLASS_KCM_SOCKET 86 #define SECCLASS_QIPCRTR_SOCKET 87 #define SECCLASS_SMC_SOCKET 88 #define SECCLASS_INFINIBAND_PKEY 89 #define SECCLASS_INFINIBAND_ENDPORT 90 #define SECCLASS_BPF 91 #define SECCLASS_XDP_SOCKET 92 #define SECCLASS_PERF_EVENT 93 #define SECCLASS_LOCKDOWN 94 #define SECINITSID_KERNEL 1 #define SECINITSID_SECURITY 2 #define SECINITSID_UNLABELED 3 #define SECINITSID_FILE 5 #define SECINITSID_ANY_SOCKET 8 #define SECINITSID_PORT 9 #define SECINITSID_NETIF 10 #define SECINITSID_NETMSG 11 #define SECINITSID_NODE 12 #define SECINITSID_DEVNULL 27 #define SECINITSID_NUM 27 static inline bool security_is_socket_class(u16 kern_tclass) { bool sock = false; switch (kern_tclass) { case SECCLASS_SOCKET: case SECCLASS_TCP_SOCKET: case SECCLASS_UDP_SOCKET: case SECCLASS_RAWIP_SOCKET: case SECCLASS_NETLINK_SOCKET: case SECCLASS_PACKET_SOCKET: case SECCLASS_KEY_SOCKET: case SECCLASS_UNIX_STREAM_SOCKET: case SECCLASS_UNIX_DGRAM_SOCKET: case SECCLASS_NETLINK_ROUTE_SOCKET: case SECCLASS_NETLINK_TCPDIAG_SOCKET: case SECCLASS_NETLINK_NFLOG_SOCKET: case SECCLASS_NETLINK_XFRM_SOCKET: case SECCLASS_NETLINK_SELINUX_SOCKET: case SECCLASS_NETLINK_ISCSI_SOCKET: case SECCLASS_NETLINK_AUDIT_SOCKET: case SECCLASS_NETLINK_FIB_LOOKUP_SOCKET: case SECCLASS_NETLINK_CONNECTOR_SOCKET: case SECCLASS_NETLINK_NETFILTER_SOCKET: case SECCLASS_NETLINK_DNRT_SOCKET: case SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET: case SECCLASS_NETLINK_GENERIC_SOCKET: case SECCLASS_NETLINK_SCSITRANSPORT_SOCKET: case SECCLASS_NETLINK_RDMA_SOCKET: case SECCLASS_NETLINK_CRYPTO_SOCKET: case SECCLASS_APPLETALK_SOCKET: case SECCLASS_DCCP_SOCKET: case SECCLASS_TUN_SOCKET: case SECCLASS_SCTP_SOCKET: case SECCLASS_ICMP_SOCKET: case SECCLASS_AX25_SOCKET: case SECCLASS_IPX_SOCKET: case SECCLASS_NETROM_SOCKET: case SECCLASS_ATMPVC_SOCKET: case SECCLASS_X25_SOCKET: case SECCLASS_ROSE_SOCKET: case SECCLASS_DECNET_SOCKET: case SECCLASS_ATMSVC_SOCKET: case SECCLASS_RDS_SOCKET: case SECCLASS_IRDA_SOCKET: case SECCLASS_PPPOX_SOCKET: case SECCLASS_LLC_SOCKET: case SECCLASS_CAN_SOCKET: case SECCLASS_TIPC_SOCKET: case SECCLASS_BLUETOOTH_SOCKET: case SECCLASS_IUCV_SOCKET: case SECCLASS_RXRPC_SOCKET: case SECCLASS_ISDN_SOCKET: case SECCLASS_PHONET_SOCKET: case SECCLASS_IEEE802154_SOCKET: case SECCLASS_CAIF_SOCKET: case SECCLASS_ALG_SOCKET: case SECCLASS_NFC_SOCKET: case SECCLASS_VSOCK_SOCKET: case SECCLASS_KCM_SOCKET: case SECCLASS_QIPCRTR_SOCKET: case SECCLASS_SMC_SOCKET: case SECCLASS_XDP_SOCKET: sock = true; break; default: break; } return sock; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_GENERIC_TERMIOS_H #define _ASM_GENERIC_TERMIOS_H #include <linux/uaccess.h> #include <uapi/asm-generic/termios.h> /* intr=^C quit=^\ erase=del kill=^U eof=^D vtime=\0 vmin=\1 sxtc=\0 start=^Q stop=^S susp=^Z eol=\0 reprint=^R discard=^U werase=^W lnext=^V eol2=\0 */ #define INIT_C_CC "\003\034\177\025\004\0\1\0\021\023\032\0\022\017\027\026\0" /* * Translate a "termio" structure into a "termios". Ugh. */ static inline int user_termio_to_kernel_termios(struct ktermios *termios, const struct termio __user *termio) { unsigned short tmp; if (get_user(tmp, &termio->c_iflag) < 0) goto fault; termios->c_iflag = (0xffff0000 & termios->c_iflag) | tmp; if (get_user(tmp, &termio->c_oflag) < 0) goto fault; termios->c_oflag = (0xffff0000 & termios->c_oflag) | tmp; if (get_user(tmp, &termio->c_cflag) < 0) goto fault; termios->c_cflag = (0xffff0000 & termios->c_cflag) | tmp; if (get_user(tmp, &termio->c_lflag) < 0) goto fault; termios->c_lflag = (0xffff0000 & termios->c_lflag) | tmp; if (get_user(termios->c_line, &termio->c_line) < 0) goto fault; if (copy_from_user(termios->c_cc, termio->c_cc, NCC) != 0) goto fault; return 0; fault: return -EFAULT; } /* * Translate a "termios" structure into a "termio". Ugh. */ static inline int kernel_termios_to_user_termio(struct termio __user *termio, struct ktermios *termios) { if (put_user(termios->c_iflag, &termio->c_iflag) < 0 || put_user(termios->c_oflag, &termio->c_oflag) < 0 || put_user(termios->c_cflag, &termio->c_cflag) < 0 || put_user(termios->c_lflag, &termio->c_lflag) < 0 || put_user(termios->c_line, &termio->c_line) < 0 || copy_to_user(termio->c_cc, termios->c_cc, NCC) != 0) return -EFAULT; return 0; } #ifdef TCGETS2 static inline int user_termios_to_kernel_termios(struct ktermios *k, struct termios2 __user *u) { return copy_from_user(k, u, sizeof(struct termios2)); } static inline int kernel_termios_to_user_termios(struct termios2 __user *u, struct ktermios *k) { return copy_to_user(u, k, sizeof(struct termios2)); } static inline int user_termios_to_kernel_termios_1(struct ktermios *k, struct termios __user *u) { return copy_from_user(k, u, sizeof(struct termios)); } static inline int kernel_termios_to_user_termios_1(struct termios __user *u, struct ktermios *k) { return copy_to_user(u, k, sizeof(struct termios)); } #else /* TCGETS2 */ static inline int user_termios_to_kernel_termios(struct ktermios *k, struct termios __user *u) { return copy_from_user(k, u, sizeof(struct termios)); } static inline int kernel_termios_to_user_termios(struct termios __user *u, struct ktermios *k) { return copy_to_user(u, k, sizeof(struct termios)); } #endif /* TCGETS2 */ #endif /* _ASM_GENERIC_TERMIOS_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_STRING_HELPERS_H_ #define _LINUX_STRING_HELPERS_H_ #include <linux/ctype.h> #include <linux/types.h> struct file; struct task_struct; /* Descriptions of the types of units to * print in */ enum string_size_units { STRING_UNITS_10, /* use powers of 10^3 (standard SI) */ STRING_UNITS_2, /* use binary powers of 2^10 */ }; void string_get_size(u64 size, u64 blk_size, enum string_size_units units, char *buf, int len); #define UNESCAPE_SPACE 0x01 #define UNESCAPE_OCTAL 0x02 #define UNESCAPE_HEX 0x04 #define UNESCAPE_SPECIAL 0x08 #define UNESCAPE_ANY \ (UNESCAPE_SPACE | UNESCAPE_OCTAL | UNESCAPE_HEX | UNESCAPE_SPECIAL) int string_unescape(char *src, char *dst, size_t size, unsigned int flags); static inline int string_unescape_inplace(char *buf, unsigned int flags) { return string_unescape(buf, buf, 0, flags); } static inline int string_unescape_any(char *src, char *dst, size_t size) { return string_unescape(src, dst, size, UNESCAPE_ANY); } static inline int string_unescape_any_inplace(char *buf) { return string_unescape_any(buf, buf, 0); } #define ESCAPE_SPACE 0x01 #define ESCAPE_SPECIAL 0x02 #define ESCAPE_NULL 0x04 #define ESCAPE_OCTAL 0x08 #define ESCAPE_ANY \ (ESCAPE_SPACE | ESCAPE_OCTAL | ESCAPE_SPECIAL | ESCAPE_NULL) #define ESCAPE_NP 0x10 #define ESCAPE_ANY_NP (ESCAPE_ANY | ESCAPE_NP) #define ESCAPE_HEX 0x20 int string_escape_mem(const char *src, size_t isz, char *dst, size_t osz, unsigned int flags, const char *only); int string_escape_mem_ascii(const char *src, size_t isz, char *dst, size_t osz); static inline int string_escape_mem_any_np(const char *src, size_t isz, char *dst, size_t osz, const char *only) { return string_escape_mem(src, isz, dst, osz, ESCAPE_ANY_NP, only); } static inline int string_escape_str(const char *src, char *dst, size_t sz, unsigned int flags, const char *only) { return string_escape_mem(src, strlen(src), dst, sz, flags, only); } static inline int string_escape_str_any_np(const char *src, char *dst, size_t sz, const char *only) { return string_escape_str(src, dst, sz, ESCAPE_ANY_NP, only); } static inline void string_upper(char *dst, const char *src) { do { *dst++ = toupper(*src); } while (*src++); } static inline void string_lower(char *dst, const char *src) { do { *dst++ = tolower(*src); } while (*src++); } char *kstrdup_quotable(const char *src, gfp_t gfp); char *kstrdup_quotable_cmdline(struct task_struct *task, gfp_t gfp); char *kstrdup_quotable_file(struct file *file, gfp_t gfp); void kfree_strarray(char **array, size_t n); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_JIFFIES_H #define _LINUX_JIFFIES_H #include <linux/cache.h> #include <linux/limits.h> #include <linux/math64.h> #include <linux/minmax.h> #include <linux/types.h> #include <linux/time.h> #include <linux/timex.h> #include <vdso/jiffies.h> #include <asm/param.h> /* for HZ */ #include <generated/timeconst.h> /* * The following defines establish the engineering parameters of the PLL * model. The HZ variable establishes the timer interrupt frequency, 100 Hz * for the SunOS kernel, 256 Hz for the Ultrix kernel and 1024 Hz for the * OSF/1 kernel. The SHIFT_HZ define expresses the same value as the * nearest power of two in order to avoid hardware multiply operations. */ #if HZ >= 12 && HZ < 24 # define SHIFT_HZ 4 #elif HZ >= 24 && HZ < 48 # define SHIFT_HZ 5 #elif HZ >= 48 && HZ < 96 # define SHIFT_HZ 6 #elif HZ >= 96 && HZ < 192 # define SHIFT_HZ 7 #elif HZ >= 192 && HZ < 384 # define SHIFT_HZ 8 #elif HZ >= 384 && HZ < 768 # define SHIFT_HZ 9 #elif HZ >= 768 && HZ < 1536 # define SHIFT_HZ 10 #elif HZ >= 1536 && HZ < 3072 # define SHIFT_HZ 11 #elif HZ >= 3072 && HZ < 6144 # define SHIFT_HZ 12 #elif HZ >= 6144 && HZ < 12288 # define SHIFT_HZ 13 #else # error Invalid value of HZ. #endif /* Suppose we want to divide two numbers NOM and DEN: NOM/DEN, then we can * improve accuracy by shifting LSH bits, hence calculating: * (NOM << LSH) / DEN * This however means trouble for large NOM, because (NOM << LSH) may no * longer fit in 32 bits. The following way of calculating this gives us * some slack, under the following conditions: * - (NOM / DEN) fits in (32 - LSH) bits. * - (NOM % DEN) fits in (32 - LSH) bits. */ #define SH_DIV(NOM,DEN,LSH) ( (((NOM) / (DEN)) << (LSH)) \ + ((((NOM) % (DEN)) << (LSH)) + (DEN) / 2) / (DEN)) /* LATCH is used in the interval timer and ftape setup. */ #define LATCH ((CLOCK_TICK_RATE + HZ/2) / HZ) /* For divider */ extern int register_refined_jiffies(long clock_tick_rate); /* TICK_USEC is the time between ticks in usec assuming SHIFTED_HZ */ #define TICK_USEC ((USEC_PER_SEC + HZ/2) / HZ) /* USER_TICK_USEC is the time between ticks in usec assuming fake USER_HZ */ #define USER_TICK_USEC ((1000000UL + USER_HZ/2) / USER_HZ) #ifndef __jiffy_arch_data #define __jiffy_arch_data #endif /* * The 64-bit value is not atomic - you MUST NOT read it * without sampling the sequence number in jiffies_lock. * get_jiffies_64() will do this for you as appropriate. */ extern u64 __cacheline_aligned_in_smp jiffies_64; extern unsigned long volatile __cacheline_aligned_in_smp __jiffy_arch_data jiffies; #if (BITS_PER_LONG < 64) u64 get_jiffies_64(void); #else static inline u64 get_jiffies_64(void) { return (u64)jiffies; } #endif /* * These inlines deal with timer wrapping correctly. You are * strongly encouraged to use them * 1. Because people otherwise forget * 2. Because if the timer wrap changes in future you won't have to * alter your driver code. * * time_after(a,b) returns true if the time a is after time b. * * Do this with "<0" and ">=0" to only test the sign of the result. A * good compiler would generate better code (and a really good compiler * wouldn't care). Gcc is currently neither. */ #define time_after(a,b) \ (typecheck(unsigned long, a) && \ typecheck(unsigned long, b) && \ ((long)((b) - (a)) < 0)) #define time_before(a,b) time_after(b,a) #define time_after_eq(a,b) \ (typecheck(unsigned long, a) && \ typecheck(unsigned long, b) && \ ((long)((a) - (b)) >= 0)) #define time_before_eq(a,b) time_after_eq(b,a) /* * Calculate whether a is in the range of [b, c]. */ #define time_in_range(a,b,c) \ (time_after_eq(a,b) && \ time_before_eq(a,c)) /* * Calculate whether a is in the range of [b, c). */ #define time_in_range_open(a,b,c) \ (time_after_eq(a,b) && \ time_before(a,c)) /* Same as above, but does so with platform independent 64bit types. * These must be used when utilizing jiffies_64 (i.e. return value of * get_jiffies_64() */ #define time_after64(a,b) \ (typecheck(__u64, a) && \ typecheck(__u64, b) && \ ((__s64)((b) - (a)) < 0)) #define time_before64(a,b) time_after64(b,a) #define time_after_eq64(a,b) \ (typecheck(__u64, a) && \ typecheck(__u64, b) && \ ((__s64)((a) - (b)) >= 0)) #define time_before_eq64(a,b) time_after_eq64(b,a) #define time_in_range64(a, b, c) \ (time_after_eq64(a, b) && \ time_before_eq64(a, c)) /* * These four macros compare jiffies and 'a' for convenience. */ /* time_is_before_jiffies(a) return true if a is before jiffies */ #define time_is_before_jiffies(a) time_after(jiffies, a) #define time_is_before_jiffies64(a) time_after64(get_jiffies_64(), a) /* time_is_after_jiffies(a) return true if a is after jiffies */ #define time_is_after_jiffies(a) time_before(jiffies, a) #define time_is_after_jiffies64(a) time_before64(get_jiffies_64(), a) /* time_is_before_eq_jiffies(a) return true if a is before or equal to jiffies*/ #define time_is_before_eq_jiffies(a) time_after_eq(jiffies, a) #define time_is_before_eq_jiffies64(a) time_after_eq64(get_jiffies_64(), a) /* time_is_after_eq_jiffies(a) return true if a is after or equal to jiffies*/ #define time_is_after_eq_jiffies(a) time_before_eq(jiffies, a) #define time_is_after_eq_jiffies64(a) time_before_eq64(get_jiffies_64(), a) /* * Have the 32 bit jiffies value wrap 5 minutes after boot * so jiffies wrap bugs show up earlier. */ #define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-300*HZ)) /* * Change timeval to jiffies, trying to avoid the * most obvious overflows.. * * And some not so obvious. * * Note that we don't want to return LONG_MAX, because * for various timeout reasons we often end up having * to wait "jiffies+1" in order to guarantee that we wait * at _least_ "jiffies" - so "jiffies+1" had better still * be positive. */ #define MAX_JIFFY_OFFSET ((LONG_MAX >> 1)-1) extern unsigned long preset_lpj; /* * We want to do realistic conversions of time so we need to use the same * values the update wall clock code uses as the jiffies size. This value * is: TICK_NSEC (which is defined in timex.h). This * is a constant and is in nanoseconds. We will use scaled math * with a set of scales defined here as SEC_JIFFIE_SC, USEC_JIFFIE_SC and * NSEC_JIFFIE_SC. Note that these defines contain nothing but * constants and so are computed at compile time. SHIFT_HZ (computed in * timex.h) adjusts the scaling for different HZ values. * Scaled math??? What is that? * * Scaled math is a way to do integer math on values that would, * otherwise, either overflow, underflow, or cause undesired div * instructions to appear in the execution path. In short, we "scale" * up the operands so they take more bits (more precision, less * underflow), do the desired operation and then "scale" the result back * by the same amount. If we do the scaling by shifting we avoid the * costly mpy and the dastardly div instructions. * Suppose, for example, we want to convert from seconds to jiffies * where jiffies is defined in nanoseconds as NSEC_PER_JIFFIE. The * simple math is: jiff = (sec * NSEC_PER_SEC) / NSEC_PER_JIFFIE; We * observe that (NSEC_PER_SEC / NSEC_PER_JIFFIE) is a constant which we * might calculate at compile time, however, the result will only have * about 3-4 bits of precision (less for smaller values of HZ). * * So, we scale as follows: * jiff = (sec) * (NSEC_PER_SEC / NSEC_PER_JIFFIE); * jiff = ((sec) * ((NSEC_PER_SEC * SCALE)/ NSEC_PER_JIFFIE)) / SCALE; * Then we make SCALE a power of two so: * jiff = ((sec) * ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) >> SCALE; * Now we define: * #define SEC_CONV = ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) * jiff = (sec * SEC_CONV) >> SCALE; * * Often the math we use will expand beyond 32-bits so we tell C how to * do this and pass the 64-bit result of the mpy through the ">> SCALE" * which should take the result back to 32-bits. We want this expansion * to capture as much precision as possible. At the same time we don't * want to overflow so we pick the SCALE to avoid this. In this file, * that means using a different scale for each range of HZ values (as * defined in timex.h). * * For those who want to know, gcc will give a 64-bit result from a "*" * operator if the result is a long long AND at least one of the * operands is cast to long long (usually just prior to the "*" so as * not to confuse it into thinking it really has a 64-bit operand, * which, buy the way, it can do, but it takes more code and at least 2 * mpys). * We also need to be aware that one second in nanoseconds is only a * couple of bits away from overflowing a 32-bit word, so we MUST use * 64-bits to get the full range time in nanoseconds. */ /* * Here are the scales we will use. One for seconds, nanoseconds and * microseconds. * * Within the limits of cpp we do a rough cut at the SEC_JIFFIE_SC and * check if the sign bit is set. If not, we bump the shift count by 1. * (Gets an extra bit of precision where we can use it.) * We know it is set for HZ = 1024 and HZ = 100 not for 1000. * Haven't tested others. * Limits of cpp (for #if expressions) only long (no long long), but * then we only need the most signicant bit. */ #define SEC_JIFFIE_SC (31 - SHIFT_HZ) #if !((((NSEC_PER_SEC << 2) / TICK_NSEC) << (SEC_JIFFIE_SC - 2)) & 0x80000000) #undef SEC_JIFFIE_SC #define SEC_JIFFIE_SC (32 - SHIFT_HZ) #endif #define NSEC_JIFFIE_SC (SEC_JIFFIE_SC + 29) #define SEC_CONVERSION ((unsigned long)((((u64)NSEC_PER_SEC << SEC_JIFFIE_SC) +\ TICK_NSEC -1) / (u64)TICK_NSEC)) #define NSEC_CONVERSION ((unsigned long)((((u64)1 << NSEC_JIFFIE_SC) +\ TICK_NSEC -1) / (u64)TICK_NSEC)) /* * The maximum jiffie value is (MAX_INT >> 1). Here we translate that * into seconds. The 64-bit case will overflow if we are not careful, * so use the messy SH_DIV macro to do it. Still all constants. */ #if BITS_PER_LONG < 64 # define MAX_SEC_IN_JIFFIES \ (long)((u64)((u64)MAX_JIFFY_OFFSET * TICK_NSEC) / NSEC_PER_SEC) #else /* take care of overflow on 64 bits machines */ # define MAX_SEC_IN_JIFFIES \ (SH_DIV((MAX_JIFFY_OFFSET >> SEC_JIFFIE_SC) * TICK_NSEC, NSEC_PER_SEC, 1) - 1) #endif /* * Convert various time units to each other: */ extern unsigned int jiffies_to_msecs(const unsigned long j); extern unsigned int jiffies_to_usecs(const unsigned long j); static inline u64 jiffies_to_nsecs(const unsigned long j) { return (u64)jiffies_to_usecs(j) * NSEC_PER_USEC; } extern u64 jiffies64_to_nsecs(u64 j); extern u64 jiffies64_to_msecs(u64 j); extern unsigned long __msecs_to_jiffies(const unsigned int m); #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ) /* * HZ is equal to or smaller than 1000, and 1000 is a nice round * multiple of HZ, divide with the factor between them, but round * upwards: */ static inline unsigned long _msecs_to_jiffies(const unsigned int m) { return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ); } #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC) /* * HZ is larger than 1000, and HZ is a nice round multiple of 1000 - * simply multiply with the factor between them. * * But first make sure the multiplication result cannot overflow: */ static inline unsigned long _msecs_to_jiffies(const unsigned int m) { if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET)) return MAX_JIFFY_OFFSET; return m * (HZ / MSEC_PER_SEC); } #else /* * Generic case - multiply, round and divide. But first check that if * we are doing a net multiplication, that we wouldn't overflow: */ static inline unsigned long _msecs_to_jiffies(const unsigned int m) { if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET)) return MAX_JIFFY_OFFSET; return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32) >> MSEC_TO_HZ_SHR32; } #endif /** * msecs_to_jiffies: - convert milliseconds to jiffies * @m: time in milliseconds * * conversion is done as follows: * * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET) * * - 'too large' values [that would result in larger than * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too. * * - all other values are converted to jiffies by either multiplying * the input value by a factor or dividing it with a factor and * handling any 32-bit overflows. * for the details see __msecs_to_jiffies() * * msecs_to_jiffies() checks for the passed in value being a constant * via __builtin_constant_p() allowing gcc to eliminate most of the * code, __msecs_to_jiffies() is called if the value passed does not * allow constant folding and the actual conversion must be done at * runtime. * the HZ range specific helpers _msecs_to_jiffies() are called both * directly here and from __msecs_to_jiffies() in the case where * constant folding is not possible. */ static __always_inline unsigned long msecs_to_jiffies(const unsigned int m) { if (__builtin_constant_p(m)) { if ((int)m < 0) return MAX_JIFFY_OFFSET; return _msecs_to_jiffies(m); } else { return __msecs_to_jiffies(m); } } extern unsigned long __usecs_to_jiffies(const unsigned int u); #if !(USEC_PER_SEC % HZ) static inline unsigned long _usecs_to_jiffies(const unsigned int u) { return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ); } #else static inline unsigned long _usecs_to_jiffies(const unsigned int u) { return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32) >> USEC_TO_HZ_SHR32; } #endif /** * usecs_to_jiffies: - convert microseconds to jiffies * @u: time in microseconds * * conversion is done as follows: * * - 'too large' values [that would result in larger than * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too. * * - all other values are converted to jiffies by either multiplying * the input value by a factor or dividing it with a factor and * handling any 32-bit overflows as for msecs_to_jiffies. * * usecs_to_jiffies() checks for the passed in value being a constant * via __builtin_constant_p() allowing gcc to eliminate most of the * code, __usecs_to_jiffies() is called if the value passed does not * allow constant folding and the actual conversion must be done at * runtime. * the HZ range specific helpers _usecs_to_jiffies() are called both * directly here and from __msecs_to_jiffies() in the case where * constant folding is not possible. */ static __always_inline unsigned long usecs_to_jiffies(const unsigned int u) { if (__builtin_constant_p(u)) { if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET)) return MAX_JIFFY_OFFSET; return _usecs_to_jiffies(u); } else { return __usecs_to_jiffies(u); } } extern unsigned long timespec64_to_jiffies(const struct timespec64 *value); extern void jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value); extern clock_t jiffies_to_clock_t(unsigned long x); static inline clock_t jiffies_delta_to_clock_t(long delta) { return jiffies_to_clock_t(max(0L, delta)); } static inline unsigned int jiffies_delta_to_msecs(long delta) { return jiffies_to_msecs(max(0L, delta)); } extern unsigned long clock_t_to_jiffies(unsigned long x); extern u64 jiffies_64_to_clock_t(u64 x); extern u64 nsec_to_clock_t(u64 x); extern u64 nsecs_to_jiffies64(u64 n); extern unsigned long nsecs_to_jiffies(u64 n); #define TIMESTAMP_SIZE 30 #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SCHED_RT_H #define _LINUX_SCHED_RT_H #include <linux/sched.h> struct task_struct; static inline int rt_prio(int prio) { if (unlikely(prio < MAX_RT_PRIO)) return 1; return 0; } static inline int rt_task(struct task_struct *p) { return rt_prio(p->prio); } static inline bool task_is_realtime(struct task_struct *tsk) { int policy = tsk->policy; if (policy == SCHED_FIFO || policy == SCHED_RR) return true; if (policy == SCHED_DEADLINE) return true; return false; } #ifdef CONFIG_RT_MUTEXES /* * Must hold either p->pi_lock or task_rq(p)->lock. */ static inline struct task_struct *rt_mutex_get_top_task(struct task_struct *p) { return p->pi_top_task; } extern void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task); extern void rt_mutex_adjust_pi(struct task_struct *p); static inline bool tsk_is_pi_blocked(struct task_struct *tsk) { return tsk->pi_blocked_on != NULL; } #else static inline struct task_struct *rt_mutex_get_top_task(struct task_struct *task) { return NULL; } # define rt_mutex_adjust_pi(p) do { } while (0) static inline bool tsk_is_pi_blocked(struct task_struct *tsk) { return false; } #endif extern void normalize_rt_tasks(void); /* * default timeslice is 100 msecs (used only for SCHED_RR tasks). * Timeslices get refilled after they expire. */ #define RR_TIMESLICE (100 * HZ / 1000) #endif /* _LINUX_SCHED_RT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM rpm #if !defined(_TRACE_RUNTIME_POWER_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_RUNTIME_POWER_H #include <linux/ktime.h> #include <linux/tracepoint.h> struct device; /* * The rpm_internal events are used for tracing some important * runtime pm internal functions. */ DECLARE_EVENT_CLASS(rpm_internal, TP_PROTO(struct device *dev, int flags), TP_ARGS(dev, flags), TP_STRUCT__entry( __string( name, dev_name(dev) ) __field( int, flags ) __field( int , usage_count ) __field( int , disable_depth ) __field( int , runtime_auto ) __field( int , request_pending ) __field( int , irq_safe ) __field( int , child_count ) ), TP_fast_assign( __assign_str(name, dev_name(dev)); __entry->flags = flags; __entry->usage_count = atomic_read( &dev->power.usage_count); __entry->disable_depth = dev->power.disable_depth; __entry->runtime_auto = dev->power.runtime_auto; __entry->request_pending = dev->power.request_pending; __entry->irq_safe = dev->power.irq_safe; __entry->child_count = atomic_read( &dev->power.child_count); ), TP_printk("%s flags-%x cnt-%-2d dep-%-2d auto-%-1d p-%-1d" " irq-%-1d child-%d", __get_str(name), __entry->flags, __entry->usage_count, __entry->disable_depth, __entry->runtime_auto, __entry->request_pending, __entry->irq_safe, __entry->child_count ) ); DEFINE_EVENT(rpm_internal, rpm_suspend, TP_PROTO(struct device *dev, int flags), TP_ARGS(dev, flags) ); DEFINE_EVENT(rpm_internal, rpm_resume, TP_PROTO(struct device *dev, int flags), TP_ARGS(dev, flags) ); DEFINE_EVENT(rpm_internal, rpm_idle, TP_PROTO(struct device *dev, int flags), TP_ARGS(dev, flags) ); DEFINE_EVENT(rpm_internal, rpm_usage, TP_PROTO(struct device *dev, int flags), TP_ARGS(dev, flags) ); TRACE_EVENT(rpm_return_int, TP_PROTO(struct device *dev, unsigned long ip, int ret), TP_ARGS(dev, ip, ret), TP_STRUCT__entry( __string( name, dev_name(dev)) __field( unsigned long, ip ) __field( int, ret ) ), TP_fast_assign( __assign_str(name, dev_name(dev)); __entry->ip = ip; __entry->ret = ret; ), TP_printk("%pS:%s ret=%d", (void *)__entry->ip, __get_str(name), __entry->ret) ); #endif /* _TRACE_RUNTIME_POWER_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 /* SPDX-License-Identifier: GPL-2.0 */ /* * memory buffer pool support */ #ifndef _LINUX_MEMPOOL_H #define _LINUX_MEMPOOL_H #include <linux/wait.h> #include <linux/compiler.h> struct kmem_cache; typedef void * (mempool_alloc_t)(gfp_t gfp_mask, void *pool_data); typedef void (mempool_free_t)(void *element, void *pool_data); typedef struct mempool_s { spinlock_t lock; int min_nr; /* nr of elements at *elements */ int curr_nr; /* Current nr of elements at *elements */ void **elements; void *pool_data; mempool_alloc_t *alloc; mempool_free_t *free; wait_queue_head_t wait; } mempool_t; static inline bool mempool_initialized(mempool_t *pool) { return pool->elements != NULL; } void mempool_exit(mempool_t *pool); int mempool_init_node(mempool_t *pool, int min_nr, mempool_alloc_t *alloc_fn, mempool_free_t *free_fn, void *pool_data, gfp_t gfp_mask, int node_id); int mempool_init(mempool_t *pool, int min_nr, mempool_alloc_t *alloc_fn, mempool_free_t *free_fn, void *pool_data); extern mempool_t *mempool_create(int min_nr, mempool_alloc_t *alloc_fn, mempool_free_t *free_fn, void *pool_data); extern mempool_t *mempool_create_node(int min_nr, mempool_alloc_t *alloc_fn, mempool_free_t *free_fn, void *pool_data, gfp_t gfp_mask, int nid); extern int mempool_resize(mempool_t *pool, int new_min_nr); extern void mempool_destroy(mempool_t *pool); extern void *mempool_alloc(mempool_t *pool, gfp_t gfp_mask) __malloc; extern void mempool_free(void *element, mempool_t *pool); /* * A mempool_alloc_t and mempool_free_t that get the memory from * a slab cache that is passed in through pool_data. * Note: the slab cache may not have a ctor function. */ void *mempool_alloc_slab(gfp_t gfp_mask, void *pool_data); void mempool_free_slab(void *element, void *pool_data); static inline int mempool_init_slab_pool(mempool_t *pool, int min_nr, struct kmem_cache *kc) { return mempool_init(pool, min_nr, mempool_alloc_slab, mempool_free_slab, (void *) kc); } static inline mempool_t * mempool_create_slab_pool(int min_nr, struct kmem_cache *kc) { return mempool_create(min_nr, mempool_alloc_slab, mempool_free_slab, (void *) kc); } /* * a mempool_alloc_t and a mempool_free_t to kmalloc and kfree the * amount of memory specified by pool_data */ void *mempool_kmalloc(gfp_t gfp_mask, void *pool_data); void mempool_kfree(void *element, void *pool_data); static inline int mempool_init_kmalloc_pool(mempool_t *pool, int min_nr, size_t size) { return mempool_init(pool, min_nr, mempool_kmalloc, mempool_kfree, (void *) size); } static inline mempool_t *mempool_create_kmalloc_pool(int min_nr, size_t size) { return mempool_create(min_nr, mempool_kmalloc, mempool_kfree, (void *) size); } /* * A mempool_alloc_t and mempool_free_t for a simple page allocator that * allocates pages of the order specified by pool_data */ void *mempool_alloc_pages(gfp_t gfp_mask, void *pool_data); void mempool_free_pages(void *element, void *pool_data); static inline int mempool_init_page_pool(mempool_t *pool, int min_nr, int order) { return mempool_init(pool, min_nr, mempool_alloc_pages, mempool_free_pages, (void *)(long)order); } static inline mempool_t *mempool_create_page_pool(int min_nr, int order) { return mempool_create(min_nr, mempool_alloc_pages, mempool_free_pages, (void *)(long)order); } #endif /* _LINUX_MEMPOOL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _SCSI_SCSI_DEVICE_H #define _SCSI_SCSI_DEVICE_H #include <linux/list.h> #include <linux/spinlock.h> #include <linux/workqueue.h> #include <linux/blkdev.h> #include <scsi/scsi.h> #include <linux/atomic.h> struct device; struct request_queue; struct scsi_cmnd; struct scsi_lun; struct scsi_sense_hdr; typedef __u64 __bitwise blist_flags_t; #define SCSI_SENSE_BUFFERSIZE 96 struct scsi_mode_data { __u32 length; __u16 block_descriptor_length; __u8 medium_type; __u8 device_specific; __u8 header_length; __u8 longlba:1; }; /* * sdev state: If you alter this, you also need to alter scsi_sysfs.c * (for the ascii descriptions) and the state model enforcer: * scsi_lib:scsi_device_set_state(). */ enum scsi_device_state { SDEV_CREATED = 1, /* device created but not added to sysfs * Only internal commands allowed (for inq) */ SDEV_RUNNING, /* device properly configured * All commands allowed */ SDEV_CANCEL, /* beginning to delete device * Only error handler commands allowed */ SDEV_DEL, /* device deleted * no commands allowed */ SDEV_QUIESCE, /* Device quiescent. No block commands * will be accepted, only specials (which * originate in the mid-layer) */ SDEV_OFFLINE, /* Device offlined (by error handling or * user request */ SDEV_TRANSPORT_OFFLINE, /* Offlined by transport class error handler */ SDEV_BLOCK, /* Device blocked by scsi lld. No * scsi commands from user or midlayer * should be issued to the scsi * lld. */ SDEV_CREATED_BLOCK, /* same as above but for created devices */ }; enum scsi_scan_mode { SCSI_SCAN_INITIAL = 0, SCSI_SCAN_RESCAN, SCSI_SCAN_MANUAL, }; enum scsi_device_event { SDEV_EVT_MEDIA_CHANGE = 1, /* media has changed */ SDEV_EVT_INQUIRY_CHANGE_REPORTED, /* 3F 03 UA reported */ SDEV_EVT_CAPACITY_CHANGE_REPORTED, /* 2A 09 UA reported */ SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED, /* 38 07 UA reported */ SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED, /* 2A 01 UA reported */ SDEV_EVT_LUN_CHANGE_REPORTED, /* 3F 0E UA reported */ SDEV_EVT_ALUA_STATE_CHANGE_REPORTED, /* 2A 06 UA reported */ SDEV_EVT_POWER_ON_RESET_OCCURRED, /* 29 00 UA reported */ SDEV_EVT_FIRST = SDEV_EVT_MEDIA_CHANGE, SDEV_EVT_LAST = SDEV_EVT_POWER_ON_RESET_OCCURRED, SDEV_EVT_MAXBITS = SDEV_EVT_LAST + 1 }; struct scsi_event { enum scsi_device_event evt_type; struct list_head node; /* put union of data structures, for non-simple event types, * here */ }; /** * struct scsi_vpd - SCSI Vital Product Data * @rcu: For kfree_rcu(). * @len: Length in bytes of @data. * @data: VPD data as defined in various T10 SCSI standard documents. */ struct scsi_vpd { struct rcu_head rcu; int len; unsigned char data[]; }; struct scsi_device { struct Scsi_Host *host; struct request_queue *request_queue; /* the next two are protected by the host->host_lock */ struct list_head siblings; /* list of all devices on this host */ struct list_head same_target_siblings; /* just the devices sharing same target id */ atomic_t device_busy; /* commands actually active on LLDD */ atomic_t device_blocked; /* Device returned QUEUE_FULL. */ atomic_t restarts; spinlock_t list_lock; struct list_head starved_entry; unsigned short queue_depth; /* How deep of a queue we want */ unsigned short max_queue_depth; /* max queue depth */ unsigned short last_queue_full_depth; /* These two are used by */ unsigned short last_queue_full_count; /* scsi_track_queue_full() */ unsigned long last_queue_full_time; /* last queue full time */ unsigned long queue_ramp_up_period; /* ramp up period in jiffies */ #define SCSI_DEFAULT_RAMP_UP_PERIOD (120 * HZ) unsigned long last_queue_ramp_up; /* last queue ramp up time */ unsigned int id, channel; u64 lun; unsigned int manufacturer; /* Manufacturer of device, for using * vendor-specific cmd's */ unsigned sector_size; /* size in bytes */ void *hostdata; /* available to low-level driver */ unsigned char type; char scsi_level; char inq_periph_qual; /* PQ from INQUIRY data */ struct mutex inquiry_mutex; unsigned char inquiry_len; /* valid bytes in 'inquiry' */ unsigned char * inquiry; /* INQUIRY response data */ const char * vendor; /* [back_compat] point into 'inquiry' ... */ const char * model; /* ... after scan; point to static string */ const char * rev; /* ... "nullnullnullnull" before scan */ #define SCSI_VPD_PG_LEN 255 struct scsi_vpd __rcu *vpd_pg0; struct scsi_vpd __rcu *vpd_pg83; struct scsi_vpd __rcu *vpd_pg80; struct scsi_vpd __rcu *vpd_pg89; unsigned char current_tag; /* current tag */ struct scsi_target *sdev_target; /* used only for single_lun */ blist_flags_t sdev_bflags; /* black/white flags as also found in * scsi_devinfo.[hc]. For now used only to * pass settings from slave_alloc to scsi * core. */ unsigned int eh_timeout; /* Error handling timeout */ unsigned removable:1; unsigned changed:1; /* Data invalid due to media change */ unsigned busy:1; /* Used to prevent races */ unsigned lockable:1; /* Able to prevent media removal */ unsigned locked:1; /* Media removal disabled */ unsigned borken:1; /* Tell the Seagate driver to be * painfully slow on this device */ unsigned disconnect:1; /* can disconnect */ unsigned soft_reset:1; /* Uses soft reset option */ unsigned sdtr:1; /* Device supports SDTR messages */ unsigned wdtr:1; /* Device supports WDTR messages */ unsigned ppr:1; /* Device supports PPR messages */ unsigned tagged_supported:1; /* Supports SCSI-II tagged queuing */ unsigned simple_tags:1; /* simple queue tag messages are enabled */ unsigned was_reset:1; /* There was a bus reset on the bus for * this device */ unsigned expecting_cc_ua:1; /* Expecting a CHECK_CONDITION/UNIT_ATTN * because we did a bus reset. */ unsigned use_10_for_rw:1; /* first try 10-byte read / write */ unsigned use_10_for_ms:1; /* first try 10-byte mode sense/select */ unsigned set_dbd_for_ms:1; /* Set "DBD" field in mode sense */ unsigned no_report_opcodes:1; /* no REPORT SUPPORTED OPERATION CODES */ unsigned no_write_same:1; /* no WRITE SAME command */ unsigned use_16_for_rw:1; /* Use read/write(16) over read/write(10) */ unsigned skip_ms_page_8:1; /* do not use MODE SENSE page 0x08 */ unsigned skip_ms_page_3f:1; /* do not use MODE SENSE page 0x3f */ unsigned skip_vpd_pages:1; /* do not read VPD pages */ unsigned try_vpd_pages:1; /* attempt to read VPD pages */ unsigned use_192_bytes_for_3f:1; /* ask for 192 bytes from page 0x3f */ unsigned no_start_on_add:1; /* do not issue start on add */ unsigned allow_restart:1; /* issue START_UNIT in error handler */ unsigned manage_start_stop:1; /* Let HLD (sd) manage start/stop */ unsigned start_stop_pwr_cond:1; /* Set power cond. in START_STOP_UNIT */ unsigned no_uld_attach:1; /* disable connecting to upper level drivers */ unsigned select_no_atn:1; unsigned fix_capacity:1; /* READ_CAPACITY is too high by 1 */ unsigned guess_capacity:1; /* READ_CAPACITY might be too high by 1 */ unsigned retry_hwerror:1; /* Retry HARDWARE_ERROR */ unsigned last_sector_bug:1; /* do not use multisector accesses on SD_LAST_BUGGY_SECTORS */ unsigned no_read_disc_info:1; /* Avoid READ_DISC_INFO cmds */ unsigned no_read_capacity_16:1; /* Avoid READ_CAPACITY_16 cmds */ unsigned try_rc_10_first:1; /* Try READ_CAPACACITY_10 first */ unsigned security_supported:1; /* Supports Security Protocols */ unsigned is_visible:1; /* is the device visible in sysfs */ unsigned wce_default_on:1; /* Cache is ON by default */ unsigned no_dif:1; /* T10 PI (DIF) should be disabled */ unsigned broken_fua:1; /* Don't set FUA bit */ unsigned lun_in_cdb:1; /* Store LUN bits in CDB[1] */ unsigned unmap_limit_for_ws:1; /* Use the UNMAP limit for WRITE SAME */ unsigned rpm_autosuspend:1; /* Enable runtime autosuspend at device * creation time */ bool offline_already; /* Device offline message logged */ atomic_t disk_events_disable_depth; /* disable depth for disk events */ DECLARE_BITMAP(supported_events, SDEV_EVT_MAXBITS); /* supported events */ DECLARE_BITMAP(pending_events, SDEV_EVT_MAXBITS); /* pending events */ struct list_head event_list; /* asserted events */ struct work_struct event_work; unsigned int max_device_blocked; /* what device_blocked counts down from */ #define SCSI_DEFAULT_DEVICE_BLOCKED 3 atomic_t iorequest_cnt; atomic_t iodone_cnt; atomic_t ioerr_cnt; struct device sdev_gendev, sdev_dev; struct execute_work ew; /* used to get process context on put */ struct work_struct requeue_work; struct scsi_device_handler *handler; void *handler_data; size_t dma_drain_len; void *dma_drain_buf; unsigned char access_state; struct mutex state_mutex; enum scsi_device_state sdev_state; struct task_struct *quiesced_by; unsigned long sdev_data[]; } __attribute__((aligned(sizeof(unsigned long)))); #define to_scsi_device(d) \ container_of(d, struct scsi_device, sdev_gendev) #define class_to_sdev(d) \ container_of(d, struct scsi_device, sdev_dev) #define transport_class_to_sdev(class_dev) \ to_scsi_device(class_dev->parent) #define sdev_dbg(sdev, fmt, a...) \ dev_dbg(&(sdev)->sdev_gendev, fmt, ##a) /* * like scmd_printk, but the device name is passed in * as a string pointer */ __printf(4, 5) void sdev_prefix_printk(const char *, const struct scsi_device *, const char *, const char *, ...); #define sdev_printk(l, sdev, fmt, a...) \ sdev_prefix_printk(l, sdev, NULL, fmt, ##a) __printf(3, 4) void scmd_printk(const char *, const struct scsi_cmnd *, const char *, ...); #define scmd_dbg(scmd, fmt, a...) \ do { \ if ((scmd)->request->rq_disk) \ sdev_dbg((scmd)->device, "[%s] " fmt, \ (scmd)->request->rq_disk->disk_name, ##a);\ else \ sdev_dbg((scmd)->device, fmt, ##a); \ } while (0) enum scsi_target_state { STARGET_CREATED = 1, STARGET_RUNNING, STARGET_REMOVE, STARGET_CREATED_REMOVE, STARGET_DEL, }; /* * scsi_target: representation of a scsi target, for now, this is only * used for single_lun devices. If no one has active IO to the target, * starget_sdev_user is NULL, else it points to the active sdev. */ struct scsi_target { struct scsi_device *starget_sdev_user; struct list_head siblings; struct list_head devices; struct device dev; struct kref reap_ref; /* last put renders target invisible */ unsigned int channel; unsigned int id; /* target id ... replace * scsi_device.id eventually */ unsigned int create:1; /* signal that it needs to be added */ unsigned int single_lun:1; /* Indicates we should only * allow I/O to one of the luns * for the device at a time. */ unsigned int pdt_1f_for_no_lun:1; /* PDT = 0x1f * means no lun present. */ unsigned int no_report_luns:1; /* Don't use * REPORT LUNS for scanning. */ unsigned int expecting_lun_change:1; /* A device has reported * a 3F/0E UA, other devices on * the same target will also. */ /* commands actually active on LLD. */ atomic_t target_busy; atomic_t target_blocked; /* * LLDs should set this in the slave_alloc host template callout. * If set to zero then there is not limit. */ unsigned int can_queue; unsigned int max_target_blocked; #define SCSI_DEFAULT_TARGET_BLOCKED 3 char scsi_level; enum scsi_target_state state; void *hostdata; /* available to low-level driver */ unsigned long starget_data[]; /* for the transport */ /* starget_data must be the last element!!!! */ } __attribute__((aligned(sizeof(unsigned long)))); #define to_scsi_target(d) container_of(d, struct scsi_target, dev) static inline struct scsi_target *scsi_target(struct scsi_device *sdev) { return to_scsi_target(sdev->sdev_gendev.parent); } #define transport_class_to_starget(class_dev) \ to_scsi_target(class_dev->parent) #define starget_printk(prefix, starget, fmt, a...) \ dev_printk(prefix, &(starget)->dev, fmt, ##a) extern struct scsi_device *__scsi_add_device(struct Scsi_Host *, uint, uint, u64, void *hostdata); extern int scsi_add_device(struct Scsi_Host *host, uint channel, uint target, u64 lun); extern int scsi_register_device_handler(struct scsi_device_handler *scsi_dh); extern void scsi_remove_device(struct scsi_device *); extern int scsi_unregister_device_handler(struct scsi_device_handler *scsi_dh); void scsi_attach_vpd(struct scsi_device *sdev); extern struct scsi_device *scsi_device_from_queue(struct request_queue *q); extern int __must_check scsi_device_get(struct scsi_device *); extern void scsi_device_put(struct scsi_device *); extern struct scsi_device *scsi_device_lookup(struct Scsi_Host *, uint, uint, u64); extern struct scsi_device *__scsi_device_lookup(struct Scsi_Host *, uint, uint, u64); extern struct scsi_device *scsi_device_lookup_by_target(struct scsi_target *, u64); extern struct scsi_device *__scsi_device_lookup_by_target(struct scsi_target *, u64); extern void starget_for_each_device(struct scsi_target *, void *, void (*fn)(struct scsi_device *, void *)); extern void __starget_for_each_device(struct scsi_target *, void *, void (*fn)(struct scsi_device *, void *)); /* only exposed to implement shost_for_each_device */ extern struct scsi_device *__scsi_iterate_devices(struct Scsi_Host *, struct scsi_device *); /** * shost_for_each_device - iterate over all devices of a host * @sdev: the &struct scsi_device to use as a cursor * @shost: the &struct scsi_host to iterate over * * Iterator that returns each device attached to @shost. This loop * takes a reference on each device and releases it at the end. If * you break out of the loop, you must call scsi_device_put(sdev). */ #define shost_for_each_device(sdev, shost) \ for ((sdev) = __scsi_iterate_devices((shost), NULL); \ (sdev); \ (sdev) = __scsi_iterate_devices((shost), (sdev))) /** * __shost_for_each_device - iterate over all devices of a host (UNLOCKED) * @sdev: the &struct scsi_device to use as a cursor * @shost: the &struct scsi_host to iterate over * * Iterator that returns each device attached to @shost. It does _not_ * take a reference on the scsi_device, so the whole loop must be * protected by shost->host_lock. * * Note: The only reason to use this is because you need to access the * device list in interrupt context. Otherwise you really want to use * shost_for_each_device instead. */ #define __shost_for_each_device(sdev, shost) \ list_for_each_entry((sdev), &((shost)->__devices), siblings) extern int scsi_change_queue_depth(struct scsi_device *, int); extern int scsi_track_queue_full(struct scsi_device *, int); extern int scsi_set_medium_removal(struct scsi_device *, char); extern int scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, unsigned char *buffer, int len, int timeout, int retries, struct scsi_mode_data *data, struct scsi_sense_hdr *); extern int scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, unsigned char *buffer, int len, int timeout, int retries, struct scsi_mode_data *data, struct scsi_sense_hdr *); extern int scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, struct scsi_sense_hdr *sshdr); extern int scsi_get_vpd_page(struct scsi_device *, u8 page, unsigned char *buf, int buf_len); extern int scsi_report_opcode(struct scsi_device *sdev, unsigned char *buffer, unsigned int len, unsigned char opcode); extern int scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state); extern struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, gfp_t gfpflags); extern void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt); extern void sdev_evt_send_simple(struct scsi_device *sdev, enum scsi_device_event evt_type, gfp_t gfpflags); extern int scsi_device_quiesce(struct scsi_device *sdev); extern void scsi_device_resume(struct scsi_device *sdev); extern void scsi_target_quiesce(struct scsi_target *); extern void scsi_target_resume(struct scsi_target *); extern void scsi_scan_target(struct device *parent, unsigned int channel, unsigned int id, u64 lun, enum scsi_scan_mode rescan); extern void scsi_target_reap(struct scsi_target *); extern void scsi_target_block(struct device *); extern void scsi_target_unblock(struct device *, enum scsi_device_state); extern void scsi_remove_target(struct device *); extern const char *scsi_device_state_name(enum scsi_device_state); extern int scsi_is_sdev_device(const struct device *); extern int scsi_is_target_device(const struct device *); extern void scsi_sanitize_inquiry_string(unsigned char *s, int len); extern int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, int data_direction, void *buffer, unsigned bufflen, unsigned char *sense, struct scsi_sense_hdr *sshdr, int timeout, int retries, u64 flags, req_flags_t rq_flags, int *resid); /* Make sure any sense buffer is the correct size. */ #define scsi_execute(sdev, cmd, data_direction, buffer, bufflen, sense, \ sshdr, timeout, retries, flags, rq_flags, resid) \ ({ \ BUILD_BUG_ON((sense) != NULL && \ sizeof(sense) != SCSI_SENSE_BUFFERSIZE); \ __scsi_execute(sdev, cmd, data_direction, buffer, bufflen, \ sense, sshdr, timeout, retries, flags, rq_flags, \ resid); \ }) static inline int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd, int data_direction, void *buffer, unsigned bufflen, struct scsi_sense_hdr *sshdr, int timeout, int retries, int *resid) { return scsi_execute(sdev, cmd, data_direction, buffer, bufflen, NULL, sshdr, timeout, retries, 0, 0, resid); } extern void sdev_disable_disk_events(struct scsi_device *sdev); extern void sdev_enable_disk_events(struct scsi_device *sdev); extern int scsi_vpd_lun_id(struct scsi_device *, char *, size_t); extern int scsi_vpd_tpg_id(struct scsi_device *, int *); #ifdef CONFIG_PM extern int scsi_autopm_get_device(struct scsi_device *); extern void scsi_autopm_put_device(struct scsi_device *); #else static inline int scsi_autopm_get_device(struct scsi_device *d) { return 0; } static inline void scsi_autopm_put_device(struct scsi_device *d) {} #endif /* CONFIG_PM */ static inline int __must_check scsi_device_reprobe(struct scsi_device *sdev) { return device_reprobe(&sdev->sdev_gendev); } static inline unsigned int sdev_channel(struct scsi_device *sdev) { return sdev->channel; } static inline unsigned int sdev_id(struct scsi_device *sdev) { return sdev->id; } #define scmd_id(scmd) sdev_id((scmd)->device) #define scmd_channel(scmd) sdev_channel((scmd)->device) /* * checks for positions of the SCSI state machine */ static inline int scsi_device_online(struct scsi_device *sdev) { return (sdev->sdev_state != SDEV_OFFLINE && sdev->sdev_state != SDEV_TRANSPORT_OFFLINE && sdev->sdev_state != SDEV_DEL); } static inline int scsi_device_blocked(struct scsi_device *sdev) { return sdev->sdev_state == SDEV_BLOCK || sdev->sdev_state == SDEV_CREATED_BLOCK; } static inline int scsi_device_created(struct scsi_device *sdev) { return sdev->sdev_state == SDEV_CREATED || sdev->sdev_state == SDEV_CREATED_BLOCK; } int scsi_internal_device_block_nowait(struct scsi_device *sdev); int scsi_internal_device_unblock_nowait(struct scsi_device *sdev, enum scsi_device_state new_state); /* accessor functions for the SCSI parameters */ static inline int scsi_device_sync(struct scsi_device *sdev) { return sdev->sdtr; } static inline int scsi_device_wide(struct scsi_device *sdev) { return sdev->wdtr; } static inline int scsi_device_dt(struct scsi_device *sdev) { return sdev->ppr; } static inline int scsi_device_dt_only(struct scsi_device *sdev) { if (sdev->inquiry_len < 57) return 0; return (sdev->inquiry[56] & 0x0c) == 0x04; } static inline int scsi_device_ius(struct scsi_device *sdev) { if (sdev->inquiry_len < 57) return 0; return sdev->inquiry[56] & 0x01; } static inline int scsi_device_qas(struct scsi_device *sdev) { if (sdev->inquiry_len < 57) return 0; return sdev->inquiry[56] & 0x02; } static inline int scsi_device_enclosure(struct scsi_device *sdev) { return sdev->inquiry ? (sdev->inquiry[6] & (1<<6)) : 1; } static inline int scsi_device_protection(struct scsi_device *sdev) { if (sdev->no_dif) return 0; return sdev->scsi_level > SCSI_2 && sdev->inquiry[5] & (1<<0); } static inline int scsi_device_tpgs(struct scsi_device *sdev) { return sdev->inquiry ? (sdev->inquiry[5] >> 4) & 0x3 : 0; } /** * scsi_device_supports_vpd - test if a device supports VPD pages * @sdev: the &struct scsi_device to test * * If the 'try_vpd_pages' flag is set it takes precedence. * Otherwise we will assume VPD pages are supported if the * SCSI level is at least SPC-3 and 'skip_vpd_pages' is not set. */ static inline int scsi_device_supports_vpd(struct scsi_device *sdev) { /* Attempt VPD inquiry if the device blacklist explicitly calls * for it. */ if (sdev->try_vpd_pages) return 1; /* * Although VPD inquiries can go to SCSI-2 type devices, * some USB ones crash on receiving them, and the pages * we currently ask for are mandatory for SPC-2 and beyond */ if (sdev->scsi_level >= SCSI_SPC_2 && !sdev->skip_vpd_pages) return 1; return 0; } #define MODULE_ALIAS_SCSI_DEVICE(type) \ MODULE_ALIAS("scsi:t-" __stringify(type) "*") #define SCSI_DEVICE_MODALIAS_FMT "scsi:t-0x%02x" #endif /* _SCSI_SCSI_DEVICE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 /* SPDX-License-Identifier: GPL-2.0 */ /* * Task I/O accounting operations */ #ifndef __TASK_IO_ACCOUNTING_OPS_INCLUDED #define __TASK_IO_ACCOUNTING_OPS_INCLUDED #include <linux/sched.h> #ifdef CONFIG_TASK_IO_ACCOUNTING static inline void task_io_account_read(size_t bytes) { current->ioac.read_bytes += bytes; } /* * We approximate number of blocks, because we account bytes only. * A 'block' is 512 bytes */ static inline unsigned long task_io_get_inblock(const struct task_struct *p) { return p->ioac.read_bytes >> 9; } static inline void task_io_account_write(size_t bytes) { current->ioac.write_bytes += bytes; } /* * We approximate number of blocks, because we account bytes only. * A 'block' is 512 bytes */ static inline unsigned long task_io_get_oublock(const struct task_struct *p) { return p->ioac.write_bytes >> 9; } static inline void task_io_account_cancelled_write(size_t bytes) { current->ioac.cancelled_write_bytes += bytes; } static inline void task_io_accounting_init(struct task_io_accounting *ioac) { memset(ioac, 0, sizeof(*ioac)); } static inline void task_blk_io_accounting_add(struct task_io_accounting *dst, struct task_io_accounting *src) { dst->read_bytes += src->read_bytes; dst->write_bytes += src->write_bytes; dst->cancelled_write_bytes += src->cancelled_write_bytes; } #else static inline void task_io_account_read(size_t bytes) { } static inline unsigned long task_io_get_inblock(const struct task_struct *p) { return 0; } static inline void task_io_account_write(size_t bytes) { } static inline unsigned long task_io_get_oublock(const struct task_struct *p) { return 0; } static inline void task_io_account_cancelled_write(size_t bytes) { } static inline void task_io_accounting_init(struct task_io_accounting *ioac) { } static inline void task_blk_io_accounting_add(struct task_io_accounting *dst, struct task_io_accounting *src) { } #endif /* CONFIG_TASK_IO_ACCOUNTING */ #ifdef CONFIG_TASK_XACCT static inline void task_chr_io_accounting_add(struct task_io_accounting *dst, struct task_io_accounting *src) { dst->rchar += src->rchar; dst->wchar += src->wchar; dst->syscr += src->syscr; dst->syscw += src->syscw; } #else static inline void task_chr_io_accounting_add(struct task_io_accounting *dst, struct task_io_accounting *src) { } #endif /* CONFIG_TASK_XACCT */ static inline void task_io_accounting_add(struct task_io_accounting *dst, struct task_io_accounting *src) { task_chr_io_accounting_add(dst, src); task_blk_io_accounting_add(dst, src); } #endif /* __TASK_IO_ACCOUNTING_OPS_INCLUDED */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_MM_H #define _LINUX_MM_H #include <linux/errno.h> #ifdef __KERNEL__ #include <linux/mmdebug.h> #include <linux/gfp.h> #include <linux/bug.h> #include <linux/list.h> #include <linux/mmzone.h> #include <linux/rbtree.h> #include <linux/atomic.h> #include <linux/debug_locks.h> #include <linux/mm_types.h> #include <linux/mmap_lock.h> #include <linux/range.h> #include <linux/pfn.h> #include <linux/percpu-refcount.h> #include <linux/bit_spinlock.h> #include <linux/shrinker.h> #include <linux/resource.h> #include <linux/page_ext.h> #include <linux/err.h> #include <linux/page-flags.h> #include <linux/page_ref.h> #include <linux/memremap.h> #include <linux/overflow.h> #include <linux/sizes.h> #include <linux/sched.h> #include <linux/pgtable.h> struct mempolicy; struct anon_vma; struct anon_vma_chain; struct file_ra_state; struct user_struct; struct writeback_control; struct bdi_writeback; struct pt_regs; extern int sysctl_page_lock_unfairness; void init_mm_internals(void); #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ extern unsigned long max_mapnr; static inline void set_max_mapnr(unsigned long limit) { max_mapnr = limit; } #else static inline void set_max_mapnr(unsigned long limit) { } #endif extern atomic_long_t _totalram_pages; static inline unsigned long totalram_pages(void) { return (unsigned long)atomic_long_read(&_totalram_pages); } static inline void totalram_pages_inc(void) { atomic_long_inc(&_totalram_pages); } static inline void totalram_pages_dec(void) { atomic_long_dec(&_totalram_pages); } static inline void totalram_pages_add(long count) { atomic_long_add(count, &_totalram_pages); } extern void * high_memory; extern int page_cluster; #ifdef CONFIG_SYSCTL extern int sysctl_legacy_va_layout; #else #define sysctl_legacy_va_layout 0 #endif #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS extern const int mmap_rnd_bits_min; extern const int mmap_rnd_bits_max; extern int mmap_rnd_bits __read_mostly; #endif #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS extern const int mmap_rnd_compat_bits_min; extern const int mmap_rnd_compat_bits_max; extern int mmap_rnd_compat_bits __read_mostly; #endif #include <asm/page.h> #include <asm/processor.h> /* * Architectures that support memory tagging (assigning tags to memory regions, * embedding these tags into addresses that point to these memory regions, and * checking that the memory and the pointer tags match on memory accesses) * redefine this macro to strip tags from pointers. * It's defined as noop for arcitectures that don't support memory tagging. */ #ifndef untagged_addr #define untagged_addr(addr) (addr) #endif #ifndef __pa_symbol #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) #endif #ifndef page_to_virt #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) #endif #ifndef lm_alias #define lm_alias(x) __va(__pa_symbol(x)) #endif /* * To prevent common memory management code establishing * a zero page mapping on a read fault. * This macro should be defined within <asm/pgtable.h>. * s390 does this to prevent multiplexing of hardware bits * related to the physical page in case of virtualization. */ #ifndef mm_forbids_zeropage #define mm_forbids_zeropage(X) (0) #endif /* * On some architectures it is expensive to call memset() for small sizes. * If an architecture decides to implement their own version of * mm_zero_struct_page they should wrap the defines below in a #ifndef and * define their own version of this macro in <asm/pgtable.h> */ #if BITS_PER_LONG == 64 /* This function must be updated when the size of struct page grows above 80 * or reduces below 56. The idea that compiler optimizes out switch() * statement, and only leaves move/store instructions. Also the compiler can * combine write statments if they are both assignments and can be reordered, * this can result in several of the writes here being dropped. */ #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) static inline void __mm_zero_struct_page(struct page *page) { unsigned long *_pp = (void *)page; /* Check that struct page is either 56, 64, 72, or 80 bytes */ BUILD_BUG_ON(sizeof(struct page) & 7); BUILD_BUG_ON(sizeof(struct page) < 56); BUILD_BUG_ON(sizeof(struct page) > 80); switch (sizeof(struct page)) { case 80: _pp[9] = 0; fallthrough; case 72: _pp[8] = 0; fallthrough; case 64: _pp[7] = 0; fallthrough; case 56: _pp[6] = 0; _pp[5] = 0; _pp[4] = 0; _pp[3] = 0; _pp[2] = 0; _pp[1] = 0; _pp[0] = 0; } } #else #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) #endif /* * Default maximum number of active map areas, this limits the number of vmas * per mm struct. Users can overwrite this number by sysctl but there is a * problem. * * When a program's coredump is generated as ELF format, a section is created * per a vma. In ELF, the number of sections is represented in unsigned short. * This means the number of sections should be smaller than 65535 at coredump. * Because the kernel adds some informative sections to a image of program at * generating coredump, we need some margin. The number of extra sections is * 1-3 now and depends on arch. We use "5" as safe margin, here. * * ELF extended numbering allows more than 65535 sections, so 16-bit bound is * not a hard limit any more. Although some userspace tools can be surprised by * that. */ #define MAPCOUNT_ELF_CORE_MARGIN (5) #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) extern int sysctl_max_map_count; extern unsigned long sysctl_user_reserve_kbytes; extern unsigned long sysctl_admin_reserve_kbytes; extern int sysctl_overcommit_memory; extern int sysctl_overcommit_ratio; extern unsigned long sysctl_overcommit_kbytes; int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *, loff_t *); int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *, loff_t *); int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *, loff_t *); #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) /* to align the pointer to the (next) page boundary */ #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) #define lru_to_page(head) (list_entry((head)->prev, struct page, lru)) /* * Linux kernel virtual memory manager primitives. * The idea being to have a "virtual" mm in the same way * we have a virtual fs - giving a cleaner interface to the * mm details, and allowing different kinds of memory mappings * (from shared memory to executable loading to arbitrary * mmap() functions). */ struct vm_area_struct *vm_area_alloc(struct mm_struct *); struct vm_area_struct *vm_area_dup(struct vm_area_struct *); void vm_area_free(struct vm_area_struct *); #ifndef CONFIG_MMU extern struct rb_root nommu_region_tree; extern struct rw_semaphore nommu_region_sem; extern unsigned int kobjsize(const void *objp); #endif /* * vm_flags in vm_area_struct, see mm_types.h. * When changing, update also include/trace/events/mmflags.h */ #define VM_NONE 0x00000000 #define VM_READ 0x00000001 /* currently active flags */ #define VM_WRITE 0x00000002 #define VM_EXEC 0x00000004 #define VM_SHARED 0x00000008 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ #define VM_MAYWRITE 0x00000020 #define VM_MAYEXEC 0x00000040 #define VM_MAYSHARE 0x00000080 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ #define VM_LOCKED 0x00002000 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ /* Used by sys_madvise() */ #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ #define VM_SYNC 0x00800000 /* Synchronous page faults */ #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ #ifdef CONFIG_MEM_SOFT_DIRTY # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ #else # define VM_SOFTDIRTY 0 #endif #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ #ifdef CONFIG_ARCH_HAS_PKEYS # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 #ifdef CONFIG_PPC # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 #else # define VM_PKEY_BIT4 0 #endif #endif /* CONFIG_ARCH_HAS_PKEYS */ #if defined(CONFIG_X86) # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ #elif defined(CONFIG_PPC) # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ #elif defined(CONFIG_PARISC) # define VM_GROWSUP VM_ARCH_1 #elif defined(CONFIG_IA64) # define VM_GROWSUP VM_ARCH_1 #elif defined(CONFIG_SPARC64) # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ # define VM_ARCH_CLEAR VM_SPARC_ADI #elif defined(CONFIG_ARM64) # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ # define VM_ARCH_CLEAR VM_ARM64_BTI #elif !defined(CONFIG_MMU) # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ #endif #if defined(CONFIG_ARM64_MTE) # define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */ # define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */ #else # define VM_MTE VM_NONE # define VM_MTE_ALLOWED VM_NONE #endif #ifndef VM_GROWSUP # define VM_GROWSUP VM_NONE #endif /* Bits set in the VMA until the stack is in its final location */ #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) /* Common data flag combinations */ #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ VM_MAYWRITE | VM_MAYEXEC) #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC #endif #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS #endif #ifdef CONFIG_STACK_GROWSUP #define VM_STACK VM_GROWSUP #else #define VM_STACK VM_GROWSDOWN #endif #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) /* VMA basic access permission flags */ #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) /* * Special vmas that are non-mergable, non-mlock()able. */ #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) /* This mask prevents VMA from being scanned with khugepaged */ #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) /* This mask defines which mm->def_flags a process can inherit its parent */ #define VM_INIT_DEF_MASK VM_NOHUGEPAGE /* This mask is used to clear all the VMA flags used by mlock */ #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) /* Arch-specific flags to clear when updating VM flags on protection change */ #ifndef VM_ARCH_CLEAR # define VM_ARCH_CLEAR VM_NONE #endif #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) /* * mapping from the currently active vm_flags protection bits (the * low four bits) to a page protection mask.. */ extern pgprot_t protection_map[16]; /** * Fault flag definitions. * * @FAULT_FLAG_WRITE: Fault was a write fault. * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE. * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked. * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying. * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region. * @FAULT_FLAG_TRIED: The fault has been tried once. * @FAULT_FLAG_USER: The fault originated in userspace. * @FAULT_FLAG_REMOTE: The fault is not for current task/mm. * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch. * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals. * * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify * whether we would allow page faults to retry by specifying these two * fault flags correctly. Currently there can be three legal combinations: * * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and * this is the first try * * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and * we've already tried at least once * * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry * * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never * be used. Note that page faults can be allowed to retry for multiple times, * in which case we'll have an initial fault with flags (a) then later on * continuous faults with flags (b). We should always try to detect pending * signals before a retry to make sure the continuous page faults can still be * interrupted if necessary. */ #define FAULT_FLAG_WRITE 0x01 #define FAULT_FLAG_MKWRITE 0x02 #define FAULT_FLAG_ALLOW_RETRY 0x04 #define FAULT_FLAG_RETRY_NOWAIT 0x08 #define FAULT_FLAG_KILLABLE 0x10 #define FAULT_FLAG_TRIED 0x20 #define FAULT_FLAG_USER 0x40 #define FAULT_FLAG_REMOTE 0x80 #define FAULT_FLAG_INSTRUCTION 0x100 #define FAULT_FLAG_INTERRUPTIBLE 0x200 /* * The default fault flags that should be used by most of the * arch-specific page fault handlers. */ #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ FAULT_FLAG_KILLABLE | \ FAULT_FLAG_INTERRUPTIBLE) /** * fault_flag_allow_retry_first - check ALLOW_RETRY the first time * * This is mostly used for places where we want to try to avoid taking * the mmap_lock for too long a time when waiting for another condition * to change, in which case we can try to be polite to release the * mmap_lock in the first round to avoid potential starvation of other * processes that would also want the mmap_lock. * * Return: true if the page fault allows retry and this is the first * attempt of the fault handling; false otherwise. */ static inline bool fault_flag_allow_retry_first(unsigned int flags) { return (flags & FAULT_FLAG_ALLOW_RETRY) && (!(flags & FAULT_FLAG_TRIED)); } #define FAULT_FLAG_TRACE \ { FAULT_FLAG_WRITE, "WRITE" }, \ { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ { FAULT_FLAG_TRIED, "TRIED" }, \ { FAULT_FLAG_USER, "USER" }, \ { FAULT_FLAG_REMOTE, "REMOTE" }, \ { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" } /* * vm_fault is filled by the pagefault handler and passed to the vma's * ->fault function. The vma's ->fault is responsible for returning a bitmask * of VM_FAULT_xxx flags that give details about how the fault was handled. * * MM layer fills up gfp_mask for page allocations but fault handler might * alter it if its implementation requires a different allocation context. * * pgoff should be used in favour of virtual_address, if possible. */ struct vm_fault { struct vm_area_struct *vma; /* Target VMA */ unsigned int flags; /* FAULT_FLAG_xxx flags */ gfp_t gfp_mask; /* gfp mask to be used for allocations */ pgoff_t pgoff; /* Logical page offset based on vma */ unsigned long address; /* Faulting virtual address */ pmd_t *pmd; /* Pointer to pmd entry matching * the 'address' */ pud_t *pud; /* Pointer to pud entry matching * the 'address' */ pte_t orig_pte; /* Value of PTE at the time of fault */ struct page *cow_page; /* Page handler may use for COW fault */ struct page *page; /* ->fault handlers should return a * page here, unless VM_FAULT_NOPAGE * is set (which is also implied by * VM_FAULT_ERROR). */ /* These three entries are valid only while holding ptl lock */ pte_t *pte; /* Pointer to pte entry matching * the 'address'. NULL if the page * table hasn't been allocated. */ spinlock_t *ptl; /* Page table lock. * Protects pte page table if 'pte' * is not NULL, otherwise pmd. */ pgtable_t prealloc_pte; /* Pre-allocated pte page table. * vm_ops->map_pages() calls * alloc_set_pte() from atomic context. * do_fault_around() pre-allocates * page table to avoid allocation from * atomic context. */ }; /* page entry size for vm->huge_fault() */ enum page_entry_size { PE_SIZE_PTE = 0, PE_SIZE_PMD, PE_SIZE_PUD, }; /* * These are the virtual MM functions - opening of an area, closing and * unmapping it (needed to keep files on disk up-to-date etc), pointer * to the functions called when a no-page or a wp-page exception occurs. */ struct vm_operations_struct { void (*open)(struct vm_area_struct * area); void (*close)(struct vm_area_struct * area); int (*split)(struct vm_area_struct * area, unsigned long addr); int (*mremap)(struct vm_area_struct * area); vm_fault_t (*fault)(struct vm_fault *vmf); vm_fault_t (*huge_fault)(struct vm_fault *vmf, enum page_entry_size pe_size); void (*map_pages)(struct vm_fault *vmf, pgoff_t start_pgoff, pgoff_t end_pgoff); unsigned long (*pagesize)(struct vm_area_struct * area); /* notification that a previously read-only page is about to become * writable, if an error is returned it will cause a SIGBUS */ vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); /* called by access_process_vm when get_user_pages() fails, typically * for use by special VMAs that can switch between memory and hardware */ int (*access)(struct vm_area_struct *vma, unsigned long addr, void *buf, int len, int write); /* Called by the /proc/PID/maps code to ask the vma whether it * has a special name. Returning non-NULL will also cause this * vma to be dumped unconditionally. */ const char *(*name)(struct vm_area_struct *vma); #ifdef CONFIG_NUMA /* * set_policy() op must add a reference to any non-NULL @new mempolicy * to hold the policy upon return. Caller should pass NULL @new to * remove a policy and fall back to surrounding context--i.e. do not * install a MPOL_DEFAULT policy, nor the task or system default * mempolicy. */ int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); /* * get_policy() op must add reference [mpol_get()] to any policy at * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure * in mm/mempolicy.c will do this automatically. * get_policy() must NOT add a ref if the policy at (vma,addr) is not * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. * If no [shared/vma] mempolicy exists at the addr, get_policy() op * must return NULL--i.e., do not "fallback" to task or system default * policy. */ struct mempolicy *(*get_policy)(struct vm_area_struct *vma, unsigned long addr); #endif /* * Called by vm_normal_page() for special PTEs to find the * page for @addr. This is useful if the default behavior * (using pte_page()) would not find the correct page. */ struct page *(*find_special_page)(struct vm_area_struct *vma, unsigned long addr); }; static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) { static const struct vm_operations_struct dummy_vm_ops = {}; memset(vma, 0, sizeof(*vma)); vma->vm_mm = mm; vma->vm_ops = &dummy_vm_ops; INIT_LIST_HEAD(&vma->anon_vma_chain); } static inline void vma_set_anonymous(struct vm_area_struct *vma) { vma->vm_ops = NULL; } static inline bool vma_is_anonymous(struct vm_area_struct *vma) { return !vma->vm_ops; } static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) { int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); if (!maybe_stack) return false; if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == VM_STACK_INCOMPLETE_SETUP) return true; return false; } static inline bool vma_is_foreign(struct vm_area_struct *vma) { if (!current->mm) return true; if (current->mm != vma->vm_mm) return true; return false; } static inline bool vma_is_accessible(struct vm_area_struct *vma) { return vma->vm_flags & VM_ACCESS_FLAGS; } #ifdef CONFIG_SHMEM /* * The vma_is_shmem is not inline because it is used only by slow * paths in userfault. */ bool vma_is_shmem(struct vm_area_struct *vma); #else static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } #endif int vma_is_stack_for_current(struct vm_area_struct *vma); /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } struct mmu_gather; struct inode; #include <linux/huge_mm.h> /* * Methods to modify the page usage count. * * What counts for a page usage: * - cache mapping (page->mapping) * - private data (page->private) * - page mapped in a task's page tables, each mapping * is counted separately * * Also, many kernel routines increase the page count before a critical * routine so they can be sure the page doesn't go away from under them. */ /* * Drop a ref, return true if the refcount fell to zero (the page has no users) */ static inline int put_page_testzero(struct page *page) { VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); return page_ref_dec_and_test(page); } /* * Try to grab a ref unless the page has a refcount of zero, return false if * that is the case. * This can be called when MMU is off so it must not access * any of the virtual mappings. */ static inline int get_page_unless_zero(struct page *page) { return page_ref_add_unless(page, 1, 0); } extern int page_is_ram(unsigned long pfn); enum { REGION_INTERSECTS, REGION_DISJOINT, REGION_MIXED, }; int region_intersects(resource_size_t offset, size_t size, unsigned long flags, unsigned long desc); /* Support for virtually mapped pages */ struct page *vmalloc_to_page(const void *addr); unsigned long vmalloc_to_pfn(const void *addr); /* * Determine if an address is within the vmalloc range * * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there * is no special casing required. */ #ifndef is_ioremap_addr #define is_ioremap_addr(x) is_vmalloc_addr(x) #endif #ifdef CONFIG_MMU extern bool is_vmalloc_addr(const void *x); extern int is_vmalloc_or_module_addr(const void *x); #else static inline bool is_vmalloc_addr(const void *x) { return false; } static inline int is_vmalloc_or_module_addr(const void *x) { return 0; } #endif extern void *kvmalloc_node(size_t size, gfp_t flags, int node); static inline void *kvmalloc(size_t size, gfp_t flags) { return kvmalloc_node(size, flags, NUMA_NO_NODE); } static inline void *kvzalloc_node(size_t size, gfp_t flags, int node) { return kvmalloc_node(size, flags | __GFP_ZERO, node); } static inline void *kvzalloc(size_t size, gfp_t flags) { return kvmalloc(size, flags | __GFP_ZERO); } static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags) { size_t bytes; if (unlikely(check_mul_overflow(n, size, &bytes))) return NULL; return kvmalloc(bytes, flags); } static inline void *kvcalloc(size_t n, size_t size, gfp_t flags) { return kvmalloc_array(n, size, flags | __GFP_ZERO); } extern void kvfree(const void *addr); extern void kvfree_sensitive(const void *addr, size_t len); static inline int head_compound_mapcount(struct page *head) { return atomic_read(compound_mapcount_ptr(head)) + 1; } /* * Mapcount of compound page as a whole, does not include mapped sub-pages. * * Must be called only for compound pages or any their tail sub-pages. */ static inline int compound_mapcount(struct page *page) { VM_BUG_ON_PAGE(!PageCompound(page), page); page = compound_head(page); return head_compound_mapcount(page); } /* * The atomic page->_mapcount, starts from -1: so that transitions * both from it and to it can be tracked, using atomic_inc_and_test * and atomic_add_negative(-1). */ static inline void page_mapcount_reset(struct page *page) { atomic_set(&(page)->_mapcount, -1); } int __page_mapcount(struct page *page); /* * Mapcount of 0-order page; when compound sub-page, includes * compound_mapcount(). * * Result is undefined for pages which cannot be mapped into userspace. * For example SLAB or special types of pages. See function page_has_type(). * They use this place in struct page differently. */ static inline int page_mapcount(struct page *page) { if (unlikely(PageCompound(page))) return __page_mapcount(page); return atomic_read(&page->_mapcount) + 1; } #ifdef CONFIG_TRANSPARENT_HUGEPAGE int total_mapcount(struct page *page); int page_trans_huge_mapcount(struct page *page, int *total_mapcount); #else static inline int total_mapcount(struct page *page) { return page_mapcount(page); } static inline int page_trans_huge_mapcount(struct page *page, int *total_mapcount) { int mapcount = page_mapcount(page); if (total_mapcount) *total_mapcount = mapcount; return mapcount; } #endif static inline struct page *virt_to_head_page(const void *x) { struct page *page = virt_to_page(x); return compound_head(page); } void __put_page(struct page *page); void put_pages_list(struct list_head *pages); void split_page(struct page *page, unsigned int order); /* * Compound pages have a destructor function. Provide a * prototype for that function and accessor functions. * These are _only_ valid on the head of a compound page. */ typedef void compound_page_dtor(struct page *); /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ enum compound_dtor_id { NULL_COMPOUND_DTOR, COMPOUND_PAGE_DTOR, #ifdef CONFIG_HUGETLB_PAGE HUGETLB_PAGE_DTOR, #endif #ifdef CONFIG_TRANSPARENT_HUGEPAGE TRANSHUGE_PAGE_DTOR, #endif NR_COMPOUND_DTORS, }; extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS]; static inline void set_compound_page_dtor(struct page *page, enum compound_dtor_id compound_dtor) { VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); page[1].compound_dtor = compound_dtor; } static inline void destroy_compound_page(struct page *page) { VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); compound_page_dtors[page[1].compound_dtor](page); } static inline unsigned int compound_order(struct page *page) { if (!PageHead(page)) return 0; return page[1].compound_order; } static inline bool hpage_pincount_available(struct page *page) { /* * Can the page->hpage_pinned_refcount field be used? That field is in * the 3rd page of the compound page, so the smallest (2-page) compound * pages cannot support it. */ page = compound_head(page); return PageCompound(page) && compound_order(page) > 1; } static inline int head_compound_pincount(struct page *head) { return atomic_read(compound_pincount_ptr(head)); } static inline int compound_pincount(struct page *page) { VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); page = compound_head(page); return head_compound_pincount(page); } static inline void set_compound_order(struct page *page, unsigned int order) { page[1].compound_order = order; page[1].compound_nr = 1U << order; } /* Returns the number of pages in this potentially compound page. */ static inline unsigned long compound_nr(struct page *page) { if (!PageHead(page)) return 1; return page[1].compound_nr; } /* Returns the number of bytes in this potentially compound page. */ static inline unsigned long page_size(struct page *page) { return PAGE_SIZE << compound_order(page); } /* Returns the number of bits needed for the number of bytes in a page */ static inline unsigned int page_shift(struct page *page) { return PAGE_SHIFT + compound_order(page); } void free_compound_page(struct page *page); #ifdef CONFIG_MMU /* * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when * servicing faults for write access. In the normal case, do always want * pte_mkwrite. But get_user_pages can cause write faults for mappings * that do not have writing enabled, when used by access_process_vm. */ static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) { if (likely(vma->vm_flags & VM_WRITE)) pte = pte_mkwrite(pte); return pte; } vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page); vm_fault_t finish_fault(struct vm_fault *vmf); vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); #endif /* * Multiple processes may "see" the same page. E.g. for untouched * mappings of /dev/null, all processes see the same page full of * zeroes, and text pages of executables and shared libraries have * only one copy in memory, at most, normally. * * For the non-reserved pages, page_count(page) denotes a reference count. * page_count() == 0 means the page is free. page->lru is then used for * freelist management in the buddy allocator. * page_count() > 0 means the page has been allocated. * * Pages are allocated by the slab allocator in order to provide memory * to kmalloc and kmem_cache_alloc. In this case, the management of the * page, and the fields in 'struct page' are the responsibility of mm/slab.c * unless a particular usage is carefully commented. (the responsibility of * freeing the kmalloc memory is the caller's, of course). * * A page may be used by anyone else who does a __get_free_page(). * In this case, page_count still tracks the references, and should only * be used through the normal accessor functions. The top bits of page->flags * and page->virtual store page management information, but all other fields * are unused and could be used privately, carefully. The management of this * page is the responsibility of the one who allocated it, and those who have * subsequently been given references to it. * * The other pages (we may call them "pagecache pages") are completely * managed by the Linux memory manager: I/O, buffers, swapping etc. * The following discussion applies only to them. * * A pagecache page contains an opaque `private' member, which belongs to the * page's address_space. Usually, this is the address of a circular list of * the page's disk buffers. PG_private must be set to tell the VM to call * into the filesystem to release these pages. * * A page may belong to an inode's memory mapping. In this case, page->mapping * is the pointer to the inode, and page->index is the file offset of the page, * in units of PAGE_SIZE. * * If pagecache pages are not associated with an inode, they are said to be * anonymous pages. These may become associated with the swapcache, and in that * case PG_swapcache is set, and page->private is an offset into the swapcache. * * In either case (swapcache or inode backed), the pagecache itself holds one * reference to the page. Setting PG_private should also increment the * refcount. The each user mapping also has a reference to the page. * * The pagecache pages are stored in a per-mapping radix tree, which is * rooted at mapping->i_pages, and indexed by offset. * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space * lists, we instead now tag pages as dirty/writeback in the radix tree. * * All pagecache pages may be subject to I/O: * - inode pages may need to be read from disk, * - inode pages which have been modified and are MAP_SHARED may need * to be written back to the inode on disk, * - anonymous pages (including MAP_PRIVATE file mappings) which have been * modified may need to be swapped out to swap space and (later) to be read * back into memory. */ /* * The zone field is never updated after free_area_init_core() * sets it, so none of the operations on it need to be atomic. */ /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) /* * Define the bit shifts to access each section. For non-existent * sections we define the shift as 0; that plus a 0 mask ensures * the compiler will optimise away reference to them. */ #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ #ifdef NODE_NOT_IN_PAGE_FLAGS #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ SECTIONS_PGOFF : ZONES_PGOFF) #else #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ NODES_PGOFF : ZONES_PGOFF) #endif #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) #define NODES_MASK ((1UL << NODES_WIDTH) - 1) #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) static inline enum zone_type page_zonenum(const struct page *page) { ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT); return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; } #ifdef CONFIG_ZONE_DEVICE static inline bool is_zone_device_page(const struct page *page) { return page_zonenum(page) == ZONE_DEVICE; } extern void memmap_init_zone_device(struct zone *, unsigned long, unsigned long, struct dev_pagemap *); #else static inline bool is_zone_device_page(const struct page *page) { return false; } #endif #ifdef CONFIG_DEV_PAGEMAP_OPS void free_devmap_managed_page(struct page *page); DECLARE_STATIC_KEY_FALSE(devmap_managed_key); static inline bool page_is_devmap_managed(struct page *page) { if (!static_branch_unlikely(&devmap_managed_key)) return false; if (!is_zone_device_page(page)) return false; switch (page->pgmap->type) { case MEMORY_DEVICE_PRIVATE: case MEMORY_DEVICE_FS_DAX: return true; default: break; } return false; } void put_devmap_managed_page(struct page *page); #else /* CONFIG_DEV_PAGEMAP_OPS */ static inline bool page_is_devmap_managed(struct page *page) { return false; } static inline void put_devmap_managed_page(struct page *page) { } #endif /* CONFIG_DEV_PAGEMAP_OPS */ static inline bool is_device_private_page(const struct page *page) { return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && IS_ENABLED(CONFIG_DEVICE_PRIVATE) && is_zone_device_page(page) && page->pgmap->type == MEMORY_DEVICE_PRIVATE; } static inline bool is_pci_p2pdma_page(const struct page *page) { return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && IS_ENABLED(CONFIG_PCI_P2PDMA) && is_zone_device_page(page) && page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA; } /* 127: arbitrary random number, small enough to assemble well */ #define page_ref_zero_or_close_to_overflow(page) \ ((unsigned int) page_ref_count(page) + 127u <= 127u) static inline void get_page(struct page *page) { page = compound_head(page); /* * Getting a normal page or the head of a compound page * requires to already have an elevated page->_refcount. */ VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page); page_ref_inc(page); } bool __must_check try_grab_page(struct page *page, unsigned int flags); static inline __must_check bool try_get_page(struct page *page) { page = compound_head(page); if (WARN_ON_ONCE(page_ref_count(page) <= 0)) return false; page_ref_inc(page); return true; } static inline void put_page(struct page *page) { page = compound_head(page); /* * For devmap managed pages we need to catch refcount transition from * 2 to 1, when refcount reach one it means the page is free and we * need to inform the device driver through callback. See * include/linux/memremap.h and HMM for details. */ if (page_is_devmap_managed(page)) { put_devmap_managed_page(page); return; } if (put_page_testzero(page)) __put_page(page); } /* * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload * the page's refcount so that two separate items are tracked: the original page * reference count, and also a new count of how many pin_user_pages() calls were * made against the page. ("gup-pinned" is another term for the latter). * * With this scheme, pin_user_pages() becomes special: such pages are marked as * distinct from normal pages. As such, the unpin_user_page() call (and its * variants) must be used in order to release gup-pinned pages. * * Choice of value: * * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference * counts with respect to pin_user_pages() and unpin_user_page() becomes * simpler, due to the fact that adding an even power of two to the page * refcount has the effect of using only the upper N bits, for the code that * counts up using the bias value. This means that the lower bits are left for * the exclusive use of the original code that increments and decrements by one * (or at least, by much smaller values than the bias value). * * Of course, once the lower bits overflow into the upper bits (and this is * OK, because subtraction recovers the original values), then visual inspection * no longer suffices to directly view the separate counts. However, for normal * applications that don't have huge page reference counts, this won't be an * issue. * * Locking: the lockless algorithm described in page_cache_get_speculative() * and page_cache_gup_pin_speculative() provides safe operation for * get_user_pages and page_mkclean and other calls that race to set up page * table entries. */ #define GUP_PIN_COUNTING_BIAS (1U << 10) void unpin_user_page(struct page *page); void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, bool make_dirty); void unpin_user_pages(struct page **pages, unsigned long npages); /** * page_maybe_dma_pinned() - report if a page is pinned for DMA. * * This function checks if a page has been pinned via a call to * pin_user_pages*(). * * For non-huge pages, the return value is partially fuzzy: false is not fuzzy, * because it means "definitely not pinned for DMA", but true means "probably * pinned for DMA, but possibly a false positive due to having at least * GUP_PIN_COUNTING_BIAS worth of normal page references". * * False positives are OK, because: a) it's unlikely for a page to get that many * refcounts, and b) all the callers of this routine are expected to be able to * deal gracefully with a false positive. * * For huge pages, the result will be exactly correct. That's because we have * more tracking data available: the 3rd struct page in the compound page is * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS * scheme). * * For more information, please see Documentation/core-api/pin_user_pages.rst. * * @page: pointer to page to be queried. * @Return: True, if it is likely that the page has been "dma-pinned". * False, if the page is definitely not dma-pinned. */ static inline bool page_maybe_dma_pinned(struct page *page) { if (hpage_pincount_available(page)) return compound_pincount(page) > 0; /* * page_ref_count() is signed. If that refcount overflows, then * page_ref_count() returns a negative value, and callers will avoid * further incrementing the refcount. * * Here, for that overflow case, use the signed bit to count a little * bit higher via unsigned math, and thus still get an accurate result. */ return ((unsigned int)page_ref_count(compound_head(page))) >= GUP_PIN_COUNTING_BIAS; } #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) #define SECTION_IN_PAGE_FLAGS #endif /* * The identification function is mainly used by the buddy allocator for * determining if two pages could be buddies. We are not really identifying * the zone since we could be using the section number id if we do not have * node id available in page flags. * We only guarantee that it will return the same value for two combinable * pages in a zone. */ static inline int page_zone_id(struct page *page) { return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; } #ifdef NODE_NOT_IN_PAGE_FLAGS extern int page_to_nid(const struct page *page); #else static inline int page_to_nid(const struct page *page) { struct page *p = (struct page *)page; return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; } #endif #ifdef CONFIG_NUMA_BALANCING static inline int cpu_pid_to_cpupid(int cpu, int pid) { return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); } static inline int cpupid_to_pid(int cpupid) { return cpupid & LAST__PID_MASK; } static inline int cpupid_to_cpu(int cpupid) { return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; } static inline int cpupid_to_nid(int cpupid) { return cpu_to_node(cpupid_to_cpu(cpupid)); } static inline bool cpupid_pid_unset(int cpupid) { return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); } static inline bool cpupid_cpu_unset(int cpupid) { return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); } static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) { return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); } #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS static inline int page_cpupid_xchg_last(struct page *page, int cpupid) { return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); } static inline int page_cpupid_last(struct page *page) { return page->_last_cpupid; } static inline void page_cpupid_reset_last(struct page *page) { page->_last_cpupid = -1 & LAST_CPUPID_MASK; } #else static inline int page_cpupid_last(struct page *page) { return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; } extern int page_cpupid_xchg_last(struct page *page, int cpupid); static inline void page_cpupid_reset_last(struct page *page) { page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; } #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ #else /* !CONFIG_NUMA_BALANCING */ static inline int page_cpupid_xchg_last(struct page *page, int cpupid) { return page_to_nid(page); /* XXX */ } static inline int page_cpupid_last(struct page *page) { return page_to_nid(page); /* XXX */ } static inline int cpupid_to_nid(int cpupid) { return -1; } static inline int cpupid_to_pid(int cpupid) { return -1; } static inline int cpupid_to_cpu(int cpupid) { return -1; } static inline int cpu_pid_to_cpupid(int nid, int pid) { return -1; } static inline bool cpupid_pid_unset(int cpupid) { return true; } static inline void page_cpupid_reset_last(struct page *page) { } static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) { return false; } #endif /* CONFIG_NUMA_BALANCING */ #ifdef CONFIG_KASAN_SW_TAGS /* * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid * setting tags for all pages to native kernel tag value 0xff, as the default * value 0x00 maps to 0xff. */ static inline u8 page_kasan_tag(const struct page *page) { u8 tag; tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; tag ^= 0xff; return tag; } static inline void page_kasan_tag_set(struct page *page, u8 tag) { tag ^= 0xff; page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; } static inline void page_kasan_tag_reset(struct page *page) { page_kasan_tag_set(page, 0xff); } #else static inline u8 page_kasan_tag(const struct page *page) { return 0xff; } static inline void page_kasan_tag_set(struct page *page, u8 tag) { } static inline void page_kasan_tag_reset(struct page *page) { } #endif static inline struct zone *page_zone(const struct page *page) { return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; } static inline pg_data_t *page_pgdat(const struct page *page) { return NODE_DATA(page_to_nid(page)); } #ifdef SECTION_IN_PAGE_FLAGS static inline void set_page_section(struct page *page, unsigned long section) { page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; } static inline unsigned long page_to_section(const struct page *page) { return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; } #endif static inline void set_page_zone(struct page *page, enum zone_type zone) { page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; } static inline void set_page_node(struct page *page, unsigned long node) { page->flags &= ~(NODES_MASK << NODES_PGSHIFT); page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; } static inline void set_page_links(struct page *page, enum zone_type zone, unsigned long node, unsigned long pfn) { set_page_zone(page, zone); set_page_node(page, node); #ifdef SECTION_IN_PAGE_FLAGS set_page_section(page, pfn_to_section_nr(pfn)); #endif } #ifdef CONFIG_MEMCG static inline struct mem_cgroup *page_memcg(struct page *page) { return page->mem_cgroup; } static inline struct mem_cgroup *page_memcg_rcu(struct page *page) { WARN_ON_ONCE(!rcu_read_lock_held()); return READ_ONCE(page->mem_cgroup); } #else static inline struct mem_cgroup *page_memcg(struct page *page) { return NULL; } static inline struct mem_cgroup *page_memcg_rcu(struct page *page) { WARN_ON_ONCE(!rcu_read_lock_held()); return NULL; } #endif /* * Some inline functions in vmstat.h depend on page_zone() */ #include <linux/vmstat.h> static __always_inline void *lowmem_page_address(const struct page *page) { return page_to_virt(page); } #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) #define HASHED_PAGE_VIRTUAL #endif #if defined(WANT_PAGE_VIRTUAL) static inline void *page_address(const struct page *page) { return page->virtual; } static inline void set_page_address(struct page *page, void *address) { page->virtual = address; } #define page_address_init() do { } while(0) #endif #if defined(HASHED_PAGE_VIRTUAL) void *page_address(const struct page *page); void set_page_address(struct page *page, void *virtual); void page_address_init(void); #endif #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) #define page_address(page) lowmem_page_address(page) #define set_page_address(page, address) do { } while(0) #define page_address_init() do { } while(0) #endif extern void *page_rmapping(struct page *page); extern struct anon_vma *page_anon_vma(struct page *page); extern struct address_space *page_mapping(struct page *page); extern struct address_space *__page_file_mapping(struct page *); static inline struct address_space *page_file_mapping(struct page *page) { if (unlikely(PageSwapCache(page))) return __page_file_mapping(page); return page->mapping; } extern pgoff_t __page_file_index(struct page *page); /* * Return the pagecache index of the passed page. Regular pagecache pages * use ->index whereas swapcache pages use swp_offset(->private) */ static inline pgoff_t page_index(struct page *page) { if (unlikely(PageSwapCache(page))) return __page_file_index(page); return page->index; } bool page_mapped(struct page *page); struct address_space *page_mapping(struct page *page); struct address_space *page_mapping_file(struct page *page); /* * Return true only if the page has been allocated with * ALLOC_NO_WATERMARKS and the low watermark was not * met implying that the system is under some pressure. */ static inline bool page_is_pfmemalloc(struct page *page) { /* * Page index cannot be this large so this must be * a pfmemalloc page. */ return page->index == -1UL; } /* * Only to be called by the page allocator on a freshly allocated * page. */ static inline void set_page_pfmemalloc(struct page *page) { page->index = -1UL; } static inline void clear_page_pfmemalloc(struct page *page) { page->index = 0; } /* * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. */ extern void pagefault_out_of_memory(void); #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) /* * Flags passed to show_mem() and show_free_areas() to suppress output in * various contexts. */ #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); #ifdef CONFIG_MMU extern bool can_do_mlock(void); #else static inline bool can_do_mlock(void) { return false; } #endif extern int user_shm_lock(size_t, struct user_struct *); extern void user_shm_unlock(size_t, struct user_struct *); /* * Parameter block passed down to zap_pte_range in exceptional cases. */ struct zap_details { struct address_space *check_mapping; /* Check page->mapping if set */ pgoff_t first_index; /* Lowest page->index to unmap */ pgoff_t last_index; /* Highest page->index to unmap */ struct page *single_page; /* Locked page to be unmapped */ }; struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte); struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, pmd_t pmd); void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, unsigned long size); void zap_page_range(struct vm_area_struct *vma, unsigned long address, unsigned long size); void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, unsigned long start, unsigned long end); struct mmu_notifier_range; void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, unsigned long end, unsigned long floor, unsigned long ceiling); int copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); int follow_invalidate_pte(struct mm_struct *mm, unsigned long address, struct mmu_notifier_range *range, pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp); int follow_pte(struct mm_struct *mm, unsigned long address, pte_t **ptepp, spinlock_t **ptlp); int follow_pfn(struct vm_area_struct *vma, unsigned long address, unsigned long *pfn); int follow_phys(struct vm_area_struct *vma, unsigned long address, unsigned int flags, unsigned long *prot, resource_size_t *phys); int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, void *buf, int len, int write); extern void truncate_pagecache(struct inode *inode, loff_t new); extern void truncate_setsize(struct inode *inode, loff_t newsize); void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); int truncate_inode_page(struct address_space *mapping, struct page *page); int generic_error_remove_page(struct address_space *mapping, struct page *page); int invalidate_inode_page(struct page *page); #ifdef CONFIG_MMU extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, unsigned int flags, struct pt_regs *regs); extern int fixup_user_fault(struct mm_struct *mm, unsigned long address, unsigned int fault_flags, bool *unlocked); void unmap_mapping_page(struct page *page); void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, pgoff_t nr, bool even_cows); void unmap_mapping_range(struct address_space *mapping, loff_t const holebegin, loff_t const holelen, int even_cows); #else static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, unsigned int flags, struct pt_regs *regs) { /* should never happen if there's no MMU */ BUG(); return VM_FAULT_SIGBUS; } static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, unsigned int fault_flags, bool *unlocked) { /* should never happen if there's no MMU */ BUG(); return -EFAULT; } static inline void unmap_mapping_page(struct page *page) { } static inline void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, pgoff_t nr, bool even_cows) { } static inline void unmap_mapping_range(struct address_space *mapping, loff_t const holebegin, loff_t const holelen, int even_cows) { } #endif static inline void unmap_shared_mapping_range(struct address_space *mapping, loff_t const holebegin, loff_t const holelen) { unmap_mapping_range(mapping, holebegin, holelen, 0); } extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, unsigned int gup_flags); extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf, int len, unsigned int gup_flags); extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, unsigned long addr, void *buf, int len, unsigned int gup_flags); long get_user_pages_remote(struct mm_struct *mm, unsigned long start, unsigned long nr_pages, unsigned int gup_flags, struct page **pages, struct vm_area_struct **vmas, int *locked); long pin_user_pages_remote(struct mm_struct *mm, unsigned long start, unsigned long nr_pages, unsigned int gup_flags, struct page **pages, struct vm_area_struct **vmas, int *locked); long get_user_pages(unsigned long start, unsigned long nr_pages, unsigned int gup_flags, struct page **pages, struct vm_area_struct **vmas); long pin_user_pages(unsigned long start, unsigned long nr_pages, unsigned int gup_flags, struct page **pages, struct vm_area_struct **vmas); long get_user_pages_locked(unsigned long start, unsigned long nr_pages, unsigned int gup_flags, struct page **pages, int *locked); long pin_user_pages_locked(unsigned long start, unsigned long nr_pages, unsigned int gup_flags, struct page **pages, int *locked); long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, struct page **pages, unsigned int gup_flags); long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, struct page **pages, unsigned int gup_flags); int get_user_pages_fast(unsigned long start, int nr_pages, unsigned int gup_flags, struct page **pages); int pin_user_pages_fast(unsigned long start, int nr_pages, unsigned int gup_flags, struct page **pages); int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, struct task_struct *task, bool bypass_rlim); /* Container for pinned pfns / pages */ struct frame_vector { unsigned int nr_allocated; /* Number of frames we have space for */ unsigned int nr_frames; /* Number of frames stored in ptrs array */ bool got_ref; /* Did we pin pages by getting page ref? */ bool is_pfns; /* Does array contain pages or pfns? */ void *ptrs[]; /* Array of pinned pfns / pages. Use * pfns_vector_pages() or pfns_vector_pfns() * for access */ }; struct frame_vector *frame_vector_create(unsigned int nr_frames); void frame_vector_destroy(struct frame_vector *vec); int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, unsigned int gup_flags, struct frame_vector *vec); void put_vaddr_frames(struct frame_vector *vec); int frame_vector_to_pages(struct frame_vector *vec); void frame_vector_to_pfns(struct frame_vector *vec); static inline unsigned int frame_vector_count(struct frame_vector *vec) { return vec->nr_frames; } static inline struct page **frame_vector_pages(struct frame_vector *vec) { if (vec->is_pfns) { int err = frame_vector_to_pages(vec); if (err) return ERR_PTR(err); } return (struct page **)(vec->ptrs); } static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) { if (!vec->is_pfns) frame_vector_to_pfns(vec); return (unsigned long *)(vec->ptrs); } struct kvec; int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, struct page **pages); int get_kernel_page(unsigned long start, int write, struct page **pages); struct page *get_dump_page(unsigned long addr); extern int try_to_release_page(struct page * page, gfp_t gfp_mask); extern void do_invalidatepage(struct page *page, unsigned int offset, unsigned int length); void __set_page_dirty(struct page *, struct address_space *, int warn); int __set_page_dirty_nobuffers(struct page *page); int __set_page_dirty_no_writeback(struct page *page); int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page); void account_page_dirtied(struct page *page, struct address_space *mapping); void account_page_cleaned(struct page *page, struct address_space *mapping, struct bdi_writeback *wb); int set_page_dirty(struct page *page); int set_page_dirty_lock(struct page *page); void __cancel_dirty_page(struct page *page); static inline void cancel_dirty_page(struct page *page) { /* Avoid atomic ops, locking, etc. when not actually needed. */ if (PageDirty(page)) __cancel_dirty_page(page); } int clear_page_dirty_for_io(struct page *page); int get_cmdline(struct task_struct *task, char *buffer, int buflen); extern unsigned long move_page_tables(struct vm_area_struct *vma, unsigned long old_addr, struct vm_area_struct *new_vma, unsigned long new_addr, unsigned long len, bool need_rmap_locks); /* * Flags used by change_protection(). For now we make it a bitmap so * that we can pass in multiple flags just like parameters. However * for now all the callers are only use one of the flags at the same * time. */ /* Whether we should allow dirty bit accounting */ #define MM_CP_DIRTY_ACCT (1UL << 0) /* Whether this protection change is for NUMA hints */ #define MM_CP_PROT_NUMA (1UL << 1) /* Whether this change is for write protecting */ #define MM_CP_UFFD_WP (1UL << 2) /* do wp */ #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ MM_CP_UFFD_WP_RESOLVE) extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, unsigned long end, pgprot_t newprot, unsigned long cp_flags); extern int mprotect_fixup(struct vm_area_struct *vma, struct vm_area_struct **pprev, unsigned long start, unsigned long end, unsigned long newflags); /* * doesn't attempt to fault and will return short. */ int get_user_pages_fast_only(unsigned long start, int nr_pages, unsigned int gup_flags, struct page **pages); int pin_user_pages_fast_only(unsigned long start, int nr_pages, unsigned int gup_flags, struct page **pages); static inline bool get_user_page_fast_only(unsigned long addr, unsigned int gup_flags, struct page **pagep) { return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; } /* * per-process(per-mm_struct) statistics. */ static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) { long val = atomic_long_read(&mm->rss_stat.count[member]); #ifdef SPLIT_RSS_COUNTING /* * counter is updated in asynchronous manner and may go to minus. * But it's never be expected number for users. */ if (val < 0) val = 0; #endif return (unsigned long)val; } void mm_trace_rss_stat(struct mm_struct *mm, int member, long count); static inline void add_mm_counter(struct mm_struct *mm, int member, long value) { long count = atomic_long_add_return(value, &mm->rss_stat.count[member]); mm_trace_rss_stat(mm, member, count); } static inline void inc_mm_counter(struct mm_struct *mm, int member) { long count = atomic_long_inc_return(&mm->rss_stat.count[member]); mm_trace_rss_stat(mm, member, count); } static inline void dec_mm_counter(struct mm_struct *mm, int member) { long count = atomic_long_dec_return(&mm->rss_stat.count[member]); mm_trace_rss_stat(mm, member, count); } /* Optimized variant when page is already known not to be PageAnon */ static inline int mm_counter_file(struct page *page) { if (PageSwapBacked(page)) return MM_SHMEMPAGES; return MM_FILEPAGES; } static inline int mm_counter(struct page *page) { if (PageAnon(page)) return MM_ANONPAGES; return mm_counter_file(page); } static inline unsigned long get_mm_rss(struct mm_struct *mm) { return get_mm_counter(mm, MM_FILEPAGES) + get_mm_counter(mm, MM_ANONPAGES) + get_mm_counter(mm, MM_SHMEMPAGES); } static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) { return max(mm->hiwater_rss, get_mm_rss(mm)); } static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) { return max(mm->hiwater_vm, mm->total_vm); } static inline void update_hiwater_rss(struct mm_struct *mm) { unsigned long _rss = get_mm_rss(mm); if ((mm)->hiwater_rss < _rss) (mm)->hiwater_rss = _rss; } static inline void update_hiwater_vm(struct mm_struct *mm) { if (mm->hiwater_vm < mm->total_vm) mm->hiwater_vm = mm->total_vm; } static inline void reset_mm_hiwater_rss(struct mm_struct *mm) { mm->hiwater_rss = get_mm_rss(mm); } static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, struct mm_struct *mm) { unsigned long hiwater_rss = get_mm_hiwat