1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _NET_NEIGHBOUR_H #define _NET_NEIGHBOUR_H #include <linux/neighbour.h> /* * Generic neighbour manipulation * * Authors: * Pedro Roque <roque@di.fc.ul.pt> * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> * * Changes: * * Harald Welte: <laforge@gnumonks.org> * - Add neighbour cache statistics like rtstat */ #include <linux/atomic.h> #include <linux/refcount.h> #include <linux/netdevice.h> #include <linux/skbuff.h> #include <linux/rcupdate.h> #include <linux/seq_file.h> #include <linux/bitmap.h> #include <linux/err.h> #include <linux/sysctl.h> #include <linux/workqueue.h> #include <net/rtnetlink.h> /* * NUD stands for "neighbor unreachability detection" */ #define NUD_IN_TIMER (NUD_INCOMPLETE|NUD_REACHABLE|NUD_DELAY|NUD_PROBE) #define NUD_VALID (NUD_PERMANENT|NUD_NOARP|NUD_REACHABLE|NUD_PROBE|NUD_STALE|NUD_DELAY) #define NUD_CONNECTED (NUD_PERMANENT|NUD_NOARP|NUD_REACHABLE) struct neighbour; enum { NEIGH_VAR_MCAST_PROBES, NEIGH_VAR_UCAST_PROBES, NEIGH_VAR_APP_PROBES, NEIGH_VAR_MCAST_REPROBES, NEIGH_VAR_RETRANS_TIME, NEIGH_VAR_BASE_REACHABLE_TIME, NEIGH_VAR_DELAY_PROBE_TIME, NEIGH_VAR_GC_STALETIME, NEIGH_VAR_QUEUE_LEN_BYTES, NEIGH_VAR_PROXY_QLEN, NEIGH_VAR_ANYCAST_DELAY, NEIGH_VAR_PROXY_DELAY, NEIGH_VAR_LOCKTIME, #define NEIGH_VAR_DATA_MAX (NEIGH_VAR_LOCKTIME + 1) /* Following are used as a second way to access one of the above */ NEIGH_VAR_QUEUE_LEN, /* same data as NEIGH_VAR_QUEUE_LEN_BYTES */ NEIGH_VAR_RETRANS_TIME_MS, /* same data as NEIGH_VAR_RETRANS_TIME */ NEIGH_VAR_BASE_REACHABLE_TIME_MS, /* same data as NEIGH_VAR_BASE_REACHABLE_TIME */ /* Following are used by "default" only */ NEIGH_VAR_GC_INTERVAL, NEIGH_VAR_GC_THRESH1, NEIGH_VAR_GC_THRESH2, NEIGH_VAR_GC_THRESH3, NEIGH_VAR_MAX }; struct neigh_parms { possible_net_t net; struct net_device *dev; struct list_head list; int (*neigh_setup)(struct neighbour *); struct neigh_table *tbl; void *sysctl_table; int dead; refcount_t refcnt; struct rcu_head rcu_head; int reachable_time; int data[NEIGH_VAR_DATA_MAX]; DECLARE_BITMAP(data_state, NEIGH_VAR_DATA_MAX); }; static inline void neigh_var_set(struct neigh_parms *p, int index, int val) { set_bit(index, p->data_state); p->data[index] = val; } #define NEIGH_VAR(p, attr) ((p)->data[NEIGH_VAR_ ## attr]) /* In ndo_neigh_setup, NEIGH_VAR_INIT should be used. * In other cases, NEIGH_VAR_SET should be used. */ #define NEIGH_VAR_INIT(p, attr, val) (NEIGH_VAR(p, attr) = val) #define NEIGH_VAR_SET(p, attr, val) neigh_var_set(p, NEIGH_VAR_ ## attr, val) static inline void neigh_parms_data_state_setall(struct neigh_parms *p) { bitmap_fill(p->data_state, NEIGH_VAR_DATA_MAX); } static inline void neigh_parms_data_state_cleanall(struct neigh_parms *p) { bitmap_zero(p->data_state, NEIGH_VAR_DATA_MAX); } struct neigh_statistics { unsigned long allocs; /* number of allocated neighs */ unsigned long destroys; /* number of destroyed neighs */ unsigned long hash_grows; /* number of hash resizes */ unsigned long res_failed; /* number of failed resolutions */ unsigned long lookups; /* number of lookups */ unsigned long hits; /* number of hits (among lookups) */ unsigned long rcv_probes_mcast; /* number of received mcast ipv6 */ unsigned long rcv_probes_ucast; /* number of received ucast ipv6 */ unsigned long periodic_gc_runs; /* number of periodic GC runs */ unsigned long forced_gc_runs; /* number of forced GC runs */ unsigned long unres_discards; /* number of unresolved drops */ unsigned long table_fulls; /* times even gc couldn't help */ }; #define NEIGH_CACHE_STAT_INC(tbl, field) this_cpu_inc((tbl)->stats->field) struct neighbour { struct neighbour __rcu *next; struct neigh_table *tbl; struct neigh_parms *parms; unsigned long confirmed; unsigned long updated; rwlock_t lock; refcount_t refcnt; unsigned int arp_queue_len_bytes; struct sk_buff_head arp_queue; struct timer_list timer; unsigned long used; atomic_t probes; __u8 flags; __u8 nud_state; __u8 type; __u8 dead; u8 protocol; seqlock_t ha_lock; unsigned char ha[ALIGN(MAX_ADDR_LEN, sizeof(unsigned long))] __aligned(8); struct hh_cache hh; int (*output)(struct neighbour *, struct sk_buff *); const struct neigh_ops *ops; struct list_head gc_list; struct rcu_head rcu; struct net_device *dev; u8 primary_key[0]; } __randomize_layout; struct neigh_ops { int family; void (*solicit)(struct neighbour *, struct sk_buff *); void (*error_report)(struct neighbour *, struct sk_buff *); int (*output)(struct neighbour *, struct sk_buff *); int (*connected_output)(struct neighbour *, struct sk_buff *); }; struct pneigh_entry { struct pneigh_entry *next; possible_net_t net; struct net_device *dev; u8 flags; u8 protocol; u8 key[]; }; /* * neighbour table manipulation */ #define NEIGH_NUM_HASH_RND 4 struct neigh_hash_table { struct neighbour __rcu **hash_buckets; unsigned int hash_shift; __u32 hash_rnd[NEIGH_NUM_HASH_RND]; struct rcu_head rcu; }; struct neigh_table { int family; unsigned int entry_size; unsigned int key_len; __be16 protocol; __u32 (*hash)(const void *pkey, const struct net_device *dev, __u32 *hash_rnd); bool (*key_eq)(const struct neighbour *, const void *pkey); int (*constructor)(struct neighbour *); int (*pconstructor)(struct pneigh_entry *); void (*pdestructor)(struct pneigh_entry *); void (*proxy_redo)(struct sk_buff *skb); int (*is_multicast)(const void *pkey); bool (*allow_add)(const struct net_device *dev, struct netlink_ext_ack *extack); char *id; struct neigh_parms parms; struct list_head parms_list; int gc_interval; int gc_thresh1; int gc_thresh2; int gc_thresh3; unsigned long last_flush; struct delayed_work gc_work; struct timer_list proxy_timer; struct sk_buff_head proxy_queue; atomic_t entries; atomic_t gc_entries; struct list_head gc_list; rwlock_t lock; unsigned long last_rand; struct neigh_statistics __percpu *stats; struct neigh_hash_table __rcu *nht; struct pneigh_entry **phash_buckets; }; enum { NEIGH_ARP_TABLE = 0, NEIGH_ND_TABLE = 1, NEIGH_DN_TABLE = 2, NEIGH_NR_TABLES, NEIGH_LINK_TABLE = NEIGH_NR_TABLES /* Pseudo table for neigh_xmit */ }; static inline int neigh_parms_family(struct neigh_parms *p) { return p->tbl->family; } #define NEIGH_PRIV_ALIGN sizeof(long long) #define NEIGH_ENTRY_SIZE(size) ALIGN((size), NEIGH_PRIV_ALIGN) static inline void *neighbour_priv(const struct neighbour *n) { return (char *)n + n->tbl->entry_size; } /* flags for neigh_update() */ #define NEIGH_UPDATE_F_OVERRIDE 0x00000001 #define NEIGH_UPDATE_F_WEAK_OVERRIDE 0x00000002 #define NEIGH_UPDATE_F_OVERRIDE_ISROUTER 0x00000004 #define NEIGH_UPDATE_F_USE 0x10000000 #define NEIGH_UPDATE_F_EXT_LEARNED 0x20000000 #define NEIGH_UPDATE_F_ISROUTER 0x40000000 #define NEIGH_UPDATE_F_ADMIN 0x80000000 extern const struct nla_policy nda_policy[]; static inline bool neigh_key_eq16(const struct neighbour *n, const void *pkey) { return *(const u16 *)n->primary_key == *(const u16 *)pkey; } static inline bool neigh_key_eq32(const struct neighbour *n, const void *pkey) { return *(const u32 *)n->primary_key == *(const u32 *)pkey; } static inline bool neigh_key_eq128(const struct neighbour *n, const void *pkey) { const u32 *n32 = (const u32 *)n->primary_key; const u32 *p32 = pkey; return ((n32[0] ^ p32[0]) | (n32[1] ^ p32[1]) | (n32[2] ^ p32[2]) | (n32[3] ^ p32[3])) == 0; } static inline struct neighbour *___neigh_lookup_noref( struct neigh_table *tbl, bool (*key_eq)(const struct neighbour *n, const void *pkey), __u32 (*hash)(const void *pkey, const struct net_device *dev, __u32 *hash_rnd), const void *pkey, struct net_device *dev) { struct neigh_hash_table *nht = rcu_dereference_bh(tbl->nht); struct neighbour *n; u32 hash_val; hash_val = hash(pkey, dev, nht->hash_rnd) >> (32 - nht->hash_shift); for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]); n != NULL; n = rcu_dereference_bh(n->next)) { if (n->dev == dev && key_eq(n, pkey)) return n; } return NULL; } static inline struct neighbour *__neigh_lookup_noref(struct neigh_table *tbl, const void *pkey, struct net_device *dev) { return ___neigh_lookup_noref(tbl, tbl->key_eq, tbl->hash, pkey, dev); } void neigh_table_init(int index, struct neigh_table *tbl); int neigh_table_clear(int index, struct neigh_table *tbl); struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey, struct net_device *dev); struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, struct net *net, const void *pkey); struct neighbour *__neigh_create(struct neigh_table *tbl, const void *pkey, struct net_device *dev, bool want_ref); static inline struct neighbour *neigh_create(struct neigh_table *tbl, const void *pkey, struct net_device *dev) { return __neigh_create(tbl, pkey, dev, true); } void neigh_destroy(struct neighbour *neigh); int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb); int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new, u32 flags, u32 nlmsg_pid); void __neigh_set_probe_once(struct neighbour *neigh); bool neigh_remove_one(struct neighbour *ndel, struct neigh_table *tbl); void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev); int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev); int neigh_carrier_down(struct neigh_table *tbl, struct net_device *dev); int neigh_resolve_output(struct neighbour *neigh, struct sk_buff *skb); int neigh_connected_output(struct neighbour *neigh, struct sk_buff *skb); int neigh_direct_output(struct neighbour *neigh, struct sk_buff *skb); struct neighbour *neigh_event_ns(struct neigh_table *tbl, u8 *lladdr, void *saddr, struct net_device *dev); struct neigh_parms *neigh_parms_alloc(struct net_device *dev, struct neigh_table *tbl); void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms); static inline struct net *neigh_parms_net(const struct neigh_parms *parms) { return read_pnet(&parms->net); } unsigned long neigh_rand_reach_time(unsigned long base); void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p, struct sk_buff *skb); struct pneigh_entry *pneigh_lookup(struct neigh_table *tbl, struct net *net, const void *key, struct net_device *dev, int creat); struct pneigh_entry *__pneigh_lookup(struct neigh_table *tbl, struct net *net, const void *key, struct net_device *dev); int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *key, struct net_device *dev); static inline struct net *pneigh_net(const struct pneigh_entry *pneigh) { return read_pnet(&pneigh->net); } void neigh_app_ns(struct neighbour *n); void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie); void __neigh_for_each_release(struct neigh_table *tbl, int (*cb)(struct neighbour *)); int neigh_xmit(int fam, struct net_device *, const void *, struct sk_buff *); void pneigh_for_each(struct neigh_table *tbl, void (*cb)(struct pneigh_entry *)); struct neigh_seq_state { struct seq_net_private p; struct neigh_table *tbl; struct neigh_hash_table *nht; void *(*neigh_sub_iter)(struct neigh_seq_state *state, struct neighbour *n, loff_t *pos); unsigned int bucket; unsigned int flags; #define NEIGH_SEQ_NEIGH_ONLY 0x00000001 #define NEIGH_SEQ_IS_PNEIGH 0x00000002 #define NEIGH_SEQ_SKIP_NOARP 0x00000004 }; void *neigh_seq_start(struct seq_file *, loff_t *, struct neigh_table *, unsigned int); void *neigh_seq_next(struct seq_file *, void *, loff_t *); void neigh_seq_stop(struct seq_file *, void *); int neigh_proc_dointvec(struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *ppos); int neigh_proc_dointvec_jiffies(struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *ppos); int neigh_proc_dointvec_ms_jiffies(struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *ppos); int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p, proc_handler *proc_handler); void neigh_sysctl_unregister(struct neigh_parms *p); static inline void __neigh_parms_put(struct neigh_parms *parms) { refcount_dec(&parms->refcnt); } static inline struct neigh_parms *neigh_parms_clone(struct neigh_parms *parms) { refcount_inc(&parms->refcnt); return parms; } /* * Neighbour references */ static inline void neigh_release(struct neighbour *neigh) { if (refcount_dec_and_test(&neigh->refcnt)) neigh_destroy(neigh); } static inline struct neighbour * neigh_clone(struct neighbour *neigh) { if (neigh) refcount_inc(&neigh->refcnt); return neigh; } #define neigh_hold(n) refcount_inc(&(n)->refcnt) static inline int neigh_event_send(struct neighbour *neigh, struct sk_buff *skb) { unsigned long now = jiffies; if (READ_ONCE(neigh->used) != now) WRITE_ONCE(neigh->used, now); if (!(neigh->nud_state&(NUD_CONNECTED|NUD_DELAY|NUD_PROBE))) return __neigh_event_send(neigh, skb); return 0; } #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) static inline int neigh_hh_bridge(struct hh_cache *hh, struct sk_buff *skb) { unsigned int seq, hh_alen; do { seq = read_seqbegin(&hh->hh_lock); hh_alen = HH_DATA_ALIGN(ETH_HLEN); memcpy(skb->data - hh_alen, hh->hh_data, ETH_ALEN + hh_alen - ETH_HLEN); } while (read_seqretry(&hh->hh_lock, seq)); return 0; } #endif static inline int neigh_hh_output(const struct hh_cache *hh, struct sk_buff *skb) { unsigned int hh_alen = 0; unsigned int seq; unsigned int hh_len; do { seq = read_seqbegin(&hh->hh_lock); hh_len = READ_ONCE(hh->hh_len); if (likely(hh_len <= HH_DATA_MOD)) { hh_alen = HH_DATA_MOD; /* skb_push() would proceed silently if we have room for * the unaligned size but not for the aligned size: * check headroom explicitly. */ if (likely(skb_headroom(skb) >= HH_DATA_MOD)) { /* this is inlined by gcc */ memcpy(skb->data - HH_DATA_MOD, hh->hh_data, HH_DATA_MOD); } } else { hh_alen = HH_DATA_ALIGN(hh_len); if (likely(skb_headroom(skb) >= hh_alen)) { memcpy(skb->data - hh_alen, hh->hh_data, hh_alen); } } } while (read_seqretry(&hh->hh_lock, seq)); if (WARN_ON_ONCE(skb_headroom(skb) < hh_alen)) { kfree_skb(skb); return NET_XMIT_DROP; } __skb_push(skb, hh_len); return dev_queue_xmit(skb); } static inline int neigh_output(struct neighbour *n, struct sk_buff *skb, bool skip_cache) { const struct hh_cache *hh = &n->hh; /* n->nud_state and hh->hh_len could be changed under us. * neigh_hh_output() is taking care of the race later. */ if (!skip_cache && (READ_ONCE(n->nud_state) & NUD_CONNECTED) && READ_ONCE(hh->hh_len)) return neigh_hh_output(hh, skb); return n->output(n, skb); } static inline struct neighbour * __neigh_lookup(struct neigh_table *tbl, const void *pkey, struct net_device *dev, int creat) { struct neighbour *n = neigh_lookup(tbl, pkey, dev); if (n || !creat) return n; n = neigh_create(tbl, pkey, dev); return IS_ERR(n) ? NULL : n; } static inline struct neighbour * __neigh_lookup_errno(struct neigh_table *tbl, const void *pkey, struct net_device *dev) { struct neighbour *n = neigh_lookup(tbl, pkey, dev); if (n) return n; return neigh_create(tbl, pkey, dev); } struct neighbour_cb { unsigned long sched_next; unsigned int flags; }; #define LOCALLY_ENQUEUED 0x1 #define NEIGH_CB(skb) ((struct neighbour_cb *)(skb)->cb) static inline void neigh_ha_snapshot(char *dst, const struct neighbour *n, const struct net_device *dev) { unsigned int seq; do { seq = read_seqbegin(&n->ha_lock); memcpy(dst, n->ha, dev->addr_len); } while (read_seqretry(&n->ha_lock, seq)); } static inline void neigh_update_is_router(struct neighbour *neigh, u32 flags, int *notify) { u8 ndm_flags = 0; ndm_flags |= (flags & NEIGH_UPDATE_F_ISROUTER) ? NTF_ROUTER : 0; if ((neigh->flags ^ ndm_flags) & NTF_ROUTER) { if (ndm_flags & NTF_ROUTER) neigh->flags |= NTF_ROUTER; else neigh->flags &= ~NTF_ROUTER; *notify = 1; } } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __SOCK_DIAG_H__ #define __SOCK_DIAG_H__ #include <linux/netlink.h> #include <linux/user_namespace.h> #include <net/net_namespace.h> #include <net/sock.h> #include <uapi/linux/sock_diag.h> struct sk_buff; struct nlmsghdr; struct sock; struct sock_diag_handler { __u8 family; int (*dump)(struct sk_buff *skb, struct nlmsghdr *nlh); int (*get_info)(struct sk_buff *skb, struct sock *sk); int (*destroy)(struct sk_buff *skb, struct nlmsghdr *nlh); }; int sock_diag_register(const struct sock_diag_handler *h); void sock_diag_unregister(const struct sock_diag_handler *h); void sock_diag_register_inet_compat(int (*fn)(struct sk_buff *skb, struct nlmsghdr *nlh)); void sock_diag_unregister_inet_compat(int (*fn)(struct sk_buff *skb, struct nlmsghdr *nlh)); u64 __sock_gen_cookie(struct sock *sk); static inline u64 sock_gen_cookie(struct sock *sk) { u64 cookie; preempt_disable(); cookie = __sock_gen_cookie(sk); preempt_enable(); return cookie; } int sock_diag_check_cookie(struct sock *sk, const __u32 *cookie); void sock_diag_save_cookie(struct sock *sk, __u32 *cookie); int sock_diag_put_meminfo(struct sock *sk, struct sk_buff *skb, int attr); int sock_diag_put_filterinfo(bool may_report_filterinfo, struct sock *sk, struct sk_buff *skb, int attrtype); static inline enum sknetlink_groups sock_diag_destroy_group(const struct sock *sk) { switch (sk->sk_family) { case AF_INET: if (sk->sk_type == SOCK_RAW) return SKNLGRP_NONE; switch (sk->sk_protocol) { case IPPROTO_TCP: return SKNLGRP_INET_TCP_DESTROY; case IPPROTO_UDP: return SKNLGRP_INET_UDP_DESTROY; default: return SKNLGRP_NONE; } case AF_INET6: if (sk->sk_type == SOCK_RAW) return SKNLGRP_NONE; switch (sk->sk_protocol) { case IPPROTO_TCP: return SKNLGRP_INET6_TCP_DESTROY; case IPPROTO_UDP: return SKNLGRP_INET6_UDP_DESTROY; default: return SKNLGRP_NONE; } default: return SKNLGRP_NONE; } } static inline bool sock_diag_has_destroy_listeners(const struct sock *sk) { const struct net *n = sock_net(sk); const enum sknetlink_groups group = sock_diag_destroy_group(sk); return group != SKNLGRP_NONE && n->diag_nlsk && netlink_has_listeners(n->diag_nlsk, group); } void sock_diag_broadcast_destroy(struct sock *sk); int sock_diag_destroy(struct sock *sk, int err); #endif
1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 // SPDX-License-Identifier: GPL-2.0-only /* * linux/mm/memory.c * * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds */ /* * demand-loading started 01.12.91 - seems it is high on the list of * things wanted, and it should be easy to implement. - Linus */ /* * Ok, demand-loading was easy, shared pages a little bit tricker. Shared * pages started 02.12.91, seems to work. - Linus. * * Tested sharing by executing about 30 /bin/sh: under the old kernel it * would have taken more than the 6M I have free, but it worked well as * far as I could see. * * Also corrected some "invalidate()"s - I wasn't doing enough of them. */ /* * Real VM (paging to/from disk) started 18.12.91. Much more work and * thought has to go into this. Oh, well.. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. * Found it. Everything seems to work now. * 20.12.91 - Ok, making the swap-device changeable like the root. */ /* * 05.04.94 - Multi-page memory management added for v1.1. * Idea by Alex Bligh (alex@cconcepts.co.uk) * * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG * (Gerhard.Wichert@pdb.siemens.de) * * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) */ #include <linux/kernel_stat.h> #include <linux/mm.h> #include <linux/sched/mm.h> #include <linux/sched/coredump.h> #include <linux/sched/numa_balancing.h> #include <linux/sched/task.h> #include <linux/hugetlb.h> #include <linux/mman.h> #include <linux/swap.h> #include <linux/highmem.h> #include <linux/pagemap.h> #include <linux/memremap.h> #include <linux/ksm.h> #include <linux/rmap.h> #include <linux/export.h> #include <linux/delayacct.h> #include <linux/init.h> #include <linux/pfn_t.h> #include <linux/writeback.h> #include <linux/memcontrol.h> #include <linux/mmu_notifier.h> #include <linux/swapops.h> #include <linux/elf.h> #include <linux/gfp.h> #include <linux/migrate.h> #include <linux/string.h> #include <linux/debugfs.h> #include <linux/userfaultfd_k.h> #include <linux/dax.h> #include <linux/oom.h> #include <linux/numa.h> #include <linux/perf_event.h> #include <linux/ptrace.h> #include <linux/vmalloc.h> #include <trace/events/kmem.h> #include <asm/io.h> #include <asm/mmu_context.h> #include <asm/pgalloc.h> #include <linux/uaccess.h> #include <asm/tlb.h> #include <asm/tlbflush.h> #include "pgalloc-track.h" #include "internal.h" #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. #endif #ifndef CONFIG_NEED_MULTIPLE_NODES /* use the per-pgdat data instead for discontigmem - mbligh */ unsigned long max_mapnr; EXPORT_SYMBOL(max_mapnr); struct page *mem_map; EXPORT_SYMBOL(mem_map); #endif /* * A number of key systems in x86 including ioremap() rely on the assumption * that high_memory defines the upper bound on direct map memory, then end * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL * and ZONE_HIGHMEM. */ void *high_memory; EXPORT_SYMBOL(high_memory); /* * Randomize the address space (stacks, mmaps, brk, etc.). * * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, * as ancient (libc5 based) binaries can segfault. ) */ int randomize_va_space __read_mostly = #ifdef CONFIG_COMPAT_BRK 1; #else 2; #endif #ifndef arch_faults_on_old_pte static inline bool arch_faults_on_old_pte(void) { /* * Those arches which don't have hw access flag feature need to * implement their own helper. By default, "true" means pagefault * will be hit on old pte. */ return true; } #endif static int __init disable_randmaps(char *s) { randomize_va_space = 0; return 1; } __setup("norandmaps", disable_randmaps); unsigned long zero_pfn __read_mostly; EXPORT_SYMBOL(zero_pfn); unsigned long highest_memmap_pfn __read_mostly; /* * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() */ static int __init init_zero_pfn(void) { zero_pfn = page_to_pfn(ZERO_PAGE(0)); return 0; } early_initcall(init_zero_pfn); void mm_trace_rss_stat(struct mm_struct *mm, int member, long count) { trace_rss_stat(mm, member, count); } #if defined(SPLIT_RSS_COUNTING) void sync_mm_rss(struct mm_struct *mm) { int i; for (i = 0; i < NR_MM_COUNTERS; i++) { if (current->rss_stat.count[i]) { add_mm_counter(mm, i, current->rss_stat.count[i]); current->rss_stat.count[i] = 0; } } current->rss_stat.events = 0; } static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) { struct task_struct *task = current; if (likely(task->mm == mm)) task->rss_stat.count[member] += val; else add_mm_counter(mm, member, val); } #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) /* sync counter once per 64 page faults */ #define TASK_RSS_EVENTS_THRESH (64) static void check_sync_rss_stat(struct task_struct *task) { if (unlikely(task != current)) return; if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) sync_mm_rss(task->mm); } #else /* SPLIT_RSS_COUNTING */ #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) static void check_sync_rss_stat(struct task_struct *task) { } #endif /* SPLIT_RSS_COUNTING */ /* * Note: this doesn't free the actual pages themselves. That * has been handled earlier when unmapping all the memory regions. */ static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, unsigned long addr) { pgtable_t token = pmd_pgtable(*pmd); pmd_clear(pmd); pte_free_tlb(tlb, token, addr); mm_dec_nr_ptes(tlb->mm); } static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, unsigned long addr, unsigned long end, unsigned long floor, unsigned long ceiling) { pmd_t *pmd; unsigned long next; unsigned long start; start = addr; pmd = pmd_offset(pud, addr); do { next = pmd_addr_end(addr, end); if (pmd_none_or_clear_bad(pmd)) continue; free_pte_range(tlb, pmd, addr); } while (pmd++, addr = next, addr != end); start &= PUD_MASK; if (start < floor) return; if (ceiling) { ceiling &= PUD_MASK; if (!ceiling) return; } if (end - 1 > ceiling - 1) return; pmd = pmd_offset(pud, start); pud_clear(pud); pmd_free_tlb(tlb, pmd, start); mm_dec_nr_pmds(tlb->mm); } static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, unsigned long addr, unsigned long end, unsigned long floor, unsigned long ceiling) { pud_t *pud; unsigned long next; unsigned long start; start = addr; pud = pud_offset(p4d, addr); do { next = pud_addr_end(addr, end); if (pud_none_or_clear_bad(pud)) continue; free_pmd_range(tlb, pud, addr, next, floor, ceiling); } while (pud++, addr = next, addr != end); start &= P4D_MASK; if (start < floor) return; if (ceiling) { ceiling &= P4D_MASK; if (!ceiling) return; } if (end - 1 > ceiling - 1) return; pud = pud_offset(p4d, start); p4d_clear(p4d); pud_free_tlb(tlb, pud, start); mm_dec_nr_puds(tlb->mm); } static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, unsigned long addr, unsigned long end, unsigned long floor, unsigned long ceiling) { p4d_t *p4d; unsigned long next; unsigned long start; start = addr; p4d = p4d_offset(pgd, addr); do { next = p4d_addr_end(addr, end); if (p4d_none_or_clear_bad(p4d)) continue; free_pud_range(tlb, p4d, addr, next, floor, ceiling); } while (p4d++, addr = next, addr != end); start &= PGDIR_MASK; if (start < floor) return; if (ceiling) { ceiling &= PGDIR_MASK; if (!ceiling) return; } if (end - 1 > ceiling - 1) return; p4d = p4d_offset(pgd, start); pgd_clear(pgd); p4d_free_tlb(tlb, p4d, start); } /* * This function frees user-level page tables of a process. */ void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, unsigned long end, unsigned long floor, unsigned long ceiling) { pgd_t *pgd; unsigned long next; /* * The next few lines have given us lots of grief... * * Why are we testing PMD* at this top level? Because often * there will be no work to do at all, and we'd prefer not to * go all the way down to the bottom just to discover that. * * Why all these "- 1"s? Because 0 represents both the bottom * of the address space and the top of it (using -1 for the * top wouldn't help much: the masks would do the wrong thing). * The rule is that addr 0 and floor 0 refer to the bottom of * the address space, but end 0 and ceiling 0 refer to the top * Comparisons need to use "end - 1" and "ceiling - 1" (though * that end 0 case should be mythical). * * Wherever addr is brought up or ceiling brought down, we must * be careful to reject "the opposite 0" before it confuses the * subsequent tests. But what about where end is brought down * by PMD_SIZE below? no, end can't go down to 0 there. * * Whereas we round start (addr) and ceiling down, by different * masks at different levels, in order to test whether a table * now has no other vmas using it, so can be freed, we don't * bother to round floor or end up - the tests don't need that. */ addr &= PMD_MASK; if (addr < floor) { addr += PMD_SIZE; if (!addr) return; } if (ceiling) { ceiling &= PMD_MASK; if (!ceiling) return; } if (end - 1 > ceiling - 1) end -= PMD_SIZE; if (addr > end - 1) return; /* * We add page table cache pages with PAGE_SIZE, * (see pte_free_tlb()), flush the tlb if we need */ tlb_change_page_size(tlb, PAGE_SIZE); pgd = pgd_offset(tlb->mm, addr); do { next = pgd_addr_end(addr, end); if (pgd_none_or_clear_bad(pgd)) continue; free_p4d_range(tlb, pgd, addr, next, floor, ceiling); } while (pgd++, addr = next, addr != end); } void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, unsigned long floor, unsigned long ceiling) { while (vma) { struct vm_area_struct *next = vma->vm_next; unsigned long addr = vma->vm_start; /* * Hide vma from rmap and truncate_pagecache before freeing * pgtables */ unlink_anon_vmas(vma); unlink_file_vma(vma); if (is_vm_hugetlb_page(vma)) { hugetlb_free_pgd_range(tlb, addr, vma->vm_end, floor, next ? next->vm_start : ceiling); } else { /* * Optimization: gather nearby vmas into one call down */ while (next && next->vm_start <= vma->vm_end + PMD_SIZE && !is_vm_hugetlb_page(next)) { vma = next; next = vma->vm_next; unlink_anon_vmas(vma); unlink_file_vma(vma); } free_pgd_range(tlb, addr, vma->vm_end, floor, next ? next->vm_start : ceiling); } vma = next; } } int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) { spinlock_t *ptl; pgtable_t new = pte_alloc_one(mm); if (!new) return -ENOMEM; /* * Ensure all pte setup (eg. pte page lock and page clearing) are * visible before the pte is made visible to other CPUs by being * put into page tables. * * The other side of the story is the pointer chasing in the page * table walking code (when walking the page table without locking; * ie. most of the time). Fortunately, these data accesses consist * of a chain of data-dependent loads, meaning most CPUs (alpha * being the notable exception) will already guarantee loads are * seen in-order. See the alpha page table accessors for the * smp_rmb() barriers in page table walking code. */ smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ ptl = pmd_lock(mm, pmd); if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ mm_inc_nr_ptes(mm); pmd_populate(mm, pmd, new); new = NULL; } spin_unlock(ptl); if (new) pte_free(mm, new); return 0; } int __pte_alloc_kernel(pmd_t *pmd) { pte_t *new = pte_alloc_one_kernel(&init_mm); if (!new) return -ENOMEM; smp_wmb(); /* See comment in __pte_alloc */ spin_lock(&init_mm.page_table_lock); if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ pmd_populate_kernel(&init_mm, pmd, new); new = NULL; } spin_unlock(&init_mm.page_table_lock); if (new) pte_free_kernel(&init_mm, new); return 0; } static inline void init_rss_vec(int *rss) { memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); } static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) { int i; if (current->mm == mm) sync_mm_rss(mm); for (i = 0; i < NR_MM_COUNTERS; i++) if (rss[i]) add_mm_counter(mm, i, rss[i]); } /* * This function is called to print an error when a bad pte * is found. For example, we might have a PFN-mapped pte in * a region that doesn't allow it. * * The calling function must still handle the error. */ static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, pte_t pte, struct page *page) { pgd_t *pgd = pgd_offset(vma->vm_mm, addr); p4d_t *p4d = p4d_offset(pgd, addr); pud_t *pud = pud_offset(p4d, addr); pmd_t *pmd = pmd_offset(pud, addr); struct address_space *mapping; pgoff_t index; static unsigned long resume; static unsigned long nr_shown; static unsigned long nr_unshown; /* * Allow a burst of 60 reports, then keep quiet for that minute; * or allow a steady drip of one report per second. */ if (nr_shown == 60) { if (time_before(jiffies, resume)) { nr_unshown++; return; } if (nr_unshown) { pr_alert("BUG: Bad page map: %lu messages suppressed\n", nr_unshown); nr_unshown = 0; } nr_shown = 0; } if (nr_shown++ == 0) resume = jiffies + 60 * HZ; mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; index = linear_page_index(vma, addr); pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", current->comm, (long long)pte_val(pte), (long long)pmd_val(*pmd)); if (page) dump_page(page, "bad pte"); pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n", vma->vm_file, vma->vm_ops ? vma->vm_ops->fault : NULL, vma->vm_file ? vma->vm_file->f_op->mmap : NULL, mapping ? mapping->a_ops->readpage : NULL); dump_stack(); add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); } /* * vm_normal_page -- This function gets the "struct page" associated with a pte. * * "Special" mappings do not wish to be associated with a "struct page" (either * it doesn't exist, or it exists but they don't want to touch it). In this * case, NULL is returned here. "Normal" mappings do have a struct page. * * There are 2 broad cases. Firstly, an architecture may define a pte_special() * pte bit, in which case this function is trivial. Secondly, an architecture * may not have a spare pte bit, which requires a more complicated scheme, * described below. * * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a * special mapping (even if there are underlying and valid "struct pages"). * COWed pages of a VM_PFNMAP are always normal. * * The way we recognize COWed pages within VM_PFNMAP mappings is through the * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit * set, and the vm_pgoff will point to the first PFN mapped: thus every special * mapping will always honor the rule * * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) * * And for normal mappings this is false. * * This restricts such mappings to be a linear translation from virtual address * to pfn. To get around this restriction, we allow arbitrary mappings so long * as the vma is not a COW mapping; in that case, we know that all ptes are * special (because none can have been COWed). * * * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. * * VM_MIXEDMAP mappings can likewise contain memory with or without "struct * page" backing, however the difference is that _all_ pages with a struct * page (that is, those where pfn_valid is true) are refcounted and considered * normal pages by the VM. The disadvantage is that pages are refcounted * (which can be slower and simply not an option for some PFNMAP users). The * advantage is that we don't have to follow the strict linearity rule of * PFNMAP mappings in order to support COWable mappings. * */ struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte) { unsigned long pfn = pte_pfn(pte); if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { if (likely(!pte_special(pte))) goto check_pfn; if (vma->vm_ops && vma->vm_ops->find_special_page) return vma->vm_ops->find_special_page(vma, addr); if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) return NULL; if (is_zero_pfn(pfn)) return NULL; if (pte_devmap(pte)) return NULL; print_bad_pte(vma, addr, pte, NULL); return NULL; } /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { if (vma->vm_flags & VM_MIXEDMAP) { if (!pfn_valid(pfn)) return NULL; goto out; } else { unsigned long off; off = (addr - vma->vm_start) >> PAGE_SHIFT; if (pfn == vma->vm_pgoff + off) return NULL; if (!is_cow_mapping(vma->vm_flags)) return NULL; } } if (is_zero_pfn(pfn)) return NULL; check_pfn: if (unlikely(pfn > highest_memmap_pfn)) { print_bad_pte(vma, addr, pte, NULL); return NULL; } /* * NOTE! We still have PageReserved() pages in the page tables. * eg. VDSO mappings can cause them to exist. */ out: return pfn_to_page(pfn); } #ifdef CONFIG_TRANSPARENT_HUGEPAGE struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, pmd_t pmd) { unsigned long pfn = pmd_pfn(pmd); /* * There is no pmd_special() but there may be special pmds, e.g. * in a direct-access (dax) mapping, so let's just replicate the * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. */ if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { if (vma->vm_flags & VM_MIXEDMAP) { if (!pfn_valid(pfn)) return NULL; goto out; } else { unsigned long off; off = (addr - vma->vm_start) >> PAGE_SHIFT; if (pfn == vma->vm_pgoff + off) return NULL; if (!is_cow_mapping(vma->vm_flags)) return NULL; } } if (pmd_devmap(pmd)) return NULL; if (is_huge_zero_pmd(pmd)) return NULL; if (unlikely(pfn > highest_memmap_pfn)) return NULL; /* * NOTE! We still have PageReserved() pages in the page tables. * eg. VDSO mappings can cause them to exist. */ out: return pfn_to_page(pfn); } #endif /* * copy one vm_area from one task to the other. Assumes the page tables * already present in the new task to be cleared in the whole range * covered by this vma. */ static unsigned long copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, unsigned long addr, int *rss) { unsigned long vm_flags = dst_vma->vm_flags; pte_t pte = *src_pte; struct page *page; swp_entry_t entry = pte_to_swp_entry(pte); if (likely(!non_swap_entry(entry))) { if (swap_duplicate(entry) < 0) return entry.val; /* make sure dst_mm is on swapoff's mmlist. */ if (unlikely(list_empty(&dst_mm->mmlist))) { spin_lock(&mmlist_lock); if (list_empty(&dst_mm->mmlist)) list_add(&dst_mm->mmlist, &src_mm->mmlist); spin_unlock(&mmlist_lock); } rss[MM_SWAPENTS]++; } else if (is_migration_entry(entry)) { page = migration_entry_to_page(entry); rss[mm_counter(page)]++; if (is_write_migration_entry(entry) && is_cow_mapping(vm_flags)) { /* * COW mappings require pages in both * parent and child to be set to read. */ make_migration_entry_read(&entry); pte = swp_entry_to_pte(entry); if (pte_swp_soft_dirty(*src_pte)) pte = pte_swp_mksoft_dirty(pte); if (pte_swp_uffd_wp(*src_pte)) pte = pte_swp_mkuffd_wp(pte); set_pte_at(src_mm, addr, src_pte, pte); } } else if (is_device_private_entry(entry)) { page = device_private_entry_to_page(entry); /* * Update rss count even for unaddressable pages, as * they should treated just like normal pages in this * respect. * * We will likely want to have some new rss counters * for unaddressable pages, at some point. But for now * keep things as they are. */ get_page(page); rss[mm_counter(page)]++; page_dup_rmap(page, false); /* * We do not preserve soft-dirty information, because so * far, checkpoint/restore is the only feature that * requires that. And checkpoint/restore does not work * when a device driver is involved (you cannot easily * save and restore device driver state). */ if (is_write_device_private_entry(entry) && is_cow_mapping(vm_flags)) { make_device_private_entry_read(&entry); pte = swp_entry_to_pte(entry); if (pte_swp_uffd_wp(*src_pte)) pte = pte_swp_mkuffd_wp(pte); set_pte_at(src_mm, addr, src_pte, pte); } } if (!userfaultfd_wp(dst_vma)) pte = pte_swp_clear_uffd_wp(pte); set_pte_at(dst_mm, addr, dst_pte, pte); return 0; } /* * Copy a present and normal page if necessary. * * NOTE! The usual case is that this doesn't need to do * anything, and can just return a positive value. That * will let the caller know that it can just increase * the page refcount and re-use the pte the traditional * way. * * But _if_ we need to copy it because it needs to be * pinned in the parent (and the child should get its own * copy rather than just a reference to the same page), * we'll do that here and return zero to let the caller * know we're done. * * And if we need a pre-allocated page but don't yet have * one, return a negative error to let the preallocation * code know so that it can do so outside the page table * lock. */ static inline int copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, struct page **prealloc, pte_t pte, struct page *page) { struct mm_struct *src_mm = src_vma->vm_mm; struct page *new_page; if (!is_cow_mapping(src_vma->vm_flags)) return 1; /* * What we want to do is to check whether this page may * have been pinned by the parent process. If so, * instead of wrprotect the pte on both sides, we copy * the page immediately so that we'll always guarantee * the pinned page won't be randomly replaced in the * future. * * The page pinning checks are just "has this mm ever * seen pinning", along with the (inexact) check of * the page count. That might give false positives for * for pinning, but it will work correctly. */ if (likely(!atomic_read(&src_mm->has_pinned))) return 1; if (likely(!page_maybe_dma_pinned(page))) return 1; new_page = *prealloc; if (!new_page) return -EAGAIN; /* * We have a prealloc page, all good! Take it * over and copy the page & arm it. */ *prealloc = NULL; copy_user_highpage(new_page, page, addr, src_vma); __SetPageUptodate(new_page); page_add_new_anon_rmap(new_page, dst_vma, addr, false); lru_cache_add_inactive_or_unevictable(new_page, dst_vma); rss[mm_counter(new_page)]++; /* All done, just insert the new page copy in the child */ pte = mk_pte(new_page, dst_vma->vm_page_prot); pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); if (userfaultfd_pte_wp(dst_vma, *src_pte)) /* Uffd-wp needs to be delivered to dest pte as well */ pte = pte_wrprotect(pte_mkuffd_wp(pte)); set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); return 0; } /* * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page * is required to copy this pte. */ static inline int copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, struct page **prealloc) { struct mm_struct *src_mm = src_vma->vm_mm; unsigned long vm_flags = src_vma->vm_flags; pte_t pte = *src_pte; struct page *page; page = vm_normal_page(src_vma, addr, pte); if (page) { int retval; retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte, addr, rss, prealloc, pte, page); if (retval <= 0) return retval; get_page(page); page_dup_rmap(page, false); rss[mm_counter(page)]++; } /* * If it's a COW mapping, write protect it both * in the parent and the child */ if (is_cow_mapping(vm_flags) && pte_write(pte)) { ptep_set_wrprotect(src_mm, addr, src_pte); pte = pte_wrprotect(pte); } /* * If it's a shared mapping, mark it clean in * the child */ if (vm_flags & VM_SHARED) pte = pte_mkclean(pte); pte = pte_mkold(pte); if (!userfaultfd_wp(dst_vma)) pte = pte_clear_uffd_wp(pte); set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); return 0; } static inline struct page * page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma, unsigned long addr) { struct page *new_page; new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr); if (!new_page) return NULL; if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) { put_page(new_page); return NULL; } cgroup_throttle_swaprate(new_page, GFP_KERNEL); return new_page; } static int copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, unsigned long end) { struct mm_struct *dst_mm = dst_vma->vm_mm; struct mm_struct *src_mm = src_vma->vm_mm; pte_t *orig_src_pte, *orig_dst_pte; pte_t *src_pte, *dst_pte; spinlock_t *src_ptl, *dst_ptl; int progress, ret = 0; int rss[NR_MM_COUNTERS]; swp_entry_t entry = (swp_entry_t){0}; struct page *prealloc = NULL; again: progress = 0; init_rss_vec(rss); dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); if (!dst_pte) { ret = -ENOMEM; goto out; } src_pte = pte_offset_map(src_pmd, addr); src_ptl = pte_lockptr(src_mm, src_pmd); spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); orig_src_pte = src_pte; orig_dst_pte = dst_pte; arch_enter_lazy_mmu_mode(); do { /* * We are holding two locks at this point - either of them * could generate latencies in another task on another CPU. */ if (progress >= 32) { progress = 0; if (need_resched() || spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) break; } if (pte_none(*src_pte)) { progress++; continue; } if (unlikely(!pte_present(*src_pte))) { entry.val = copy_nonpresent_pte(dst_mm, src_mm, dst_pte, src_pte, dst_vma, src_vma, addr, rss); if (entry.val) break; progress += 8; continue; } /* copy_present_pte() will clear `*prealloc' if consumed */ ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte, addr, rss, &prealloc); /* * If we need a pre-allocated page for this pte, drop the * locks, allocate, and try again. */ if (unlikely(ret == -EAGAIN)) break; if (unlikely(prealloc)) { /* * pre-alloc page cannot be reused by next time so as * to strictly follow mempolicy (e.g., alloc_page_vma() * will allocate page according to address). This * could only happen if one pinned pte changed. */ put_page(prealloc); prealloc = NULL; } progress += 8; } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); arch_leave_lazy_mmu_mode(); spin_unlock(src_ptl); pte_unmap(orig_src_pte); add_mm_rss_vec(dst_mm, rss); pte_unmap_unlock(orig_dst_pte, dst_ptl); cond_resched(); if (entry.val) { if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { ret = -ENOMEM; goto out; } entry.val = 0; } else if (ret) { WARN_ON_ONCE(ret != -EAGAIN); prealloc = page_copy_prealloc(src_mm, src_vma, addr); if (!prealloc) return -ENOMEM; /* We've captured and resolved the error. Reset, try again. */ ret = 0; } if (addr != end) goto again; out: if (unlikely(prealloc)) put_page(prealloc); return ret; } static inline int copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, pud_t *dst_pud, pud_t *src_pud, unsigned long addr, unsigned long end) { struct mm_struct *dst_mm = dst_vma->vm_mm; struct mm_struct *src_mm = src_vma->vm_mm; pmd_t *src_pmd, *dst_pmd; unsigned long next; dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); if (!dst_pmd) return -ENOMEM; src_pmd = pmd_offset(src_pud, addr); do { next = pmd_addr_end(addr, end); if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) { int err; VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd, addr, dst_vma, src_vma); if (err == -ENOMEM) return -ENOMEM; if (!err) continue; /* fall through */ } if (pmd_none_or_clear_bad(src_pmd)) continue; if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, addr, next)) return -ENOMEM; } while (dst_pmd++, src_pmd++, addr = next, addr != end); return 0; } static inline int copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, unsigned long end) { struct mm_struct *dst_mm = dst_vma->vm_mm; struct mm_struct *src_mm = src_vma->vm_mm; pud_t *src_pud, *dst_pud; unsigned long next; dst_pud = pud_alloc(dst_mm, dst_p4d, addr); if (!dst_pud) return -ENOMEM; src_pud = pud_offset(src_p4d, addr); do { next = pud_addr_end(addr, end); if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { int err; VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); err = copy_huge_pud(dst_mm, src_mm, dst_pud, src_pud, addr, src_vma); if (err == -ENOMEM) return -ENOMEM; if (!err) continue; /* fall through */ } if (pud_none_or_clear_bad(src_pud)) continue; if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, addr, next)) return -ENOMEM; } while (dst_pud++, src_pud++, addr = next, addr != end); return 0; } static inline int copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, unsigned long end) { struct mm_struct *dst_mm = dst_vma->vm_mm; p4d_t *src_p4d, *dst_p4d; unsigned long next; dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); if (!dst_p4d) return -ENOMEM; src_p4d = p4d_offset(src_pgd, addr); do { next = p4d_addr_end(addr, end); if (p4d_none_or_clear_bad(src_p4d)) continue; if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, addr, next)) return -ENOMEM; } while (dst_p4d++, src_p4d++, addr = next, addr != end); return 0; } int copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) { pgd_t *src_pgd, *dst_pgd; unsigned long next; unsigned long addr = src_vma->vm_start; unsigned long end = src_vma->vm_end; struct mm_struct *dst_mm = dst_vma->vm_mm; struct mm_struct *src_mm = src_vma->vm_mm; struct mmu_notifier_range range; bool is_cow; int ret; /* * Don't copy ptes where a page fault will fill them correctly. * Fork becomes much lighter when there are big shared or private * readonly mappings. The tradeoff is that copy_page_range is more * efficient than faulting. */ if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) && !src_vma->anon_vma) return 0; if (is_vm_hugetlb_page(src_vma)) return copy_hugetlb_page_range(dst_mm, src_mm, src_vma); if (unlikely(src_vma->vm_flags & VM_PFNMAP)) { /* * We do not free on error cases below as remove_vma * gets called on error from higher level routine */ ret = track_pfn_copy(src_vma); if (ret) return ret; } /* * We need to invalidate the secondary MMU mappings only when * there could be a permission downgrade on the ptes of the * parent mm. And a permission downgrade will only happen if * is_cow_mapping() returns true. */ is_cow = is_cow_mapping(src_vma->vm_flags); if (is_cow) { mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0, src_vma, src_mm, addr, end); mmu_notifier_invalidate_range_start(&range); /* * Disabling preemption is not needed for the write side, as * the read side doesn't spin, but goes to the mmap_lock. * * Use the raw variant of the seqcount_t write API to avoid * lockdep complaining about preemptibility. */ mmap_assert_write_locked(src_mm); raw_write_seqcount_begin(&src_mm->write_protect_seq); } ret = 0; dst_pgd = pgd_offset(dst_mm, addr); src_pgd = pgd_offset(src_mm, addr); do { next = pgd_addr_end(addr, end); if (pgd_none_or_clear_bad(src_pgd)) continue; if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, addr, next))) { ret = -ENOMEM; break; } } while (dst_pgd++, src_pgd++, addr = next, addr != end); if (is_cow) { raw_write_seqcount_end(&src_mm->write_protect_seq); mmu_notifier_invalidate_range_end(&range); } return ret; } static unsigned long zap_pte_range(struct mmu_gather *tlb, struct vm_area_struct *vma, pmd_t *pmd, unsigned long addr, unsigned long end, struct zap_details *details) { struct mm_struct *mm = tlb->mm; int force_flush = 0; int rss[NR_MM_COUNTERS]; spinlock_t *ptl; pte_t *start_pte; pte_t *pte; swp_entry_t entry; tlb_change_page_size(tlb, PAGE_SIZE); again: init_rss_vec(rss); start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); pte = start_pte; flush_tlb_batched_pending(mm); arch_enter_lazy_mmu_mode(); do { pte_t ptent = *pte; if (pte_none(ptent)) continue; if (need_resched()) break; if (pte_present(ptent)) { struct page *page; page = vm_normal_page(vma, addr, ptent); if (unlikely(details) && page) { /* * unmap_shared_mapping_pages() wants to * invalidate cache without truncating: * unmap shared but keep private pages. */ if (details->check_mapping && details->check_mapping != page_rmapping(page)) continue; } ptent = ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm); tlb_remove_tlb_entry(tlb, pte, addr); if (unlikely(!page)) continue; if (!PageAnon(page)) { if (pte_dirty(ptent)) { force_flush = 1; set_page_dirty(page); } if (pte_young(ptent) && likely(!(vma->vm_flags & VM_SEQ_READ))) mark_page_accessed(page); } rss[mm_counter(page)]--; page_remove_rmap(page, false); if (unlikely(page_mapcount(page) < 0)) print_bad_pte(vma, addr, ptent, page); if (unlikely(__tlb_remove_page(tlb, page))) { force_flush = 1; addr += PAGE_SIZE; break; } continue; } entry = pte_to_swp_entry(ptent); if (is_device_private_entry(entry)) { struct page *page = device_private_entry_to_page(entry); if (unlikely(details && details->check_mapping)) { /* * unmap_shared_mapping_pages() wants to * invalidate cache without truncating: * unmap shared but keep private pages. */ if (details->check_mapping != page_rmapping(page)) continue; } pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); rss[mm_counter(page)]--; page_remove_rmap(page, false); put_page(page); continue; } /* If details->check_mapping, we leave swap entries. */ if (unlikely(details)) continue; if (!non_swap_entry(entry)) rss[MM_SWAPENTS]--; else if (is_migration_entry(entry)) { struct page *page; page = migration_entry_to_page(entry); rss[mm_counter(page)]--; } if (unlikely(!free_swap_and_cache(entry))) print_bad_pte(vma, addr, ptent, NULL); pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); } while (pte++, addr += PAGE_SIZE, addr != end); add_mm_rss_vec(mm, rss); arch_leave_lazy_mmu_mode(); /* Do the actual TLB flush before dropping ptl */ if (force_flush) tlb_flush_mmu_tlbonly(tlb); pte_unmap_unlock(start_pte, ptl); /* * If we forced a TLB flush (either due to running out of * batch buffers or because we needed to flush dirty TLB * entries before releasing the ptl), free the batched * memory too. Restart if we didn't do everything. */ if (force_flush) { force_flush = 0; tlb_flush_mmu(tlb); } if (addr != end) { cond_resched(); goto again; } return addr; } static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, struct vm_area_struct *vma, pud_t *pud, unsigned long addr, unsigned long end, struct zap_details *details) { pmd_t *pmd; unsigned long next; pmd = pmd_offset(pud, addr); do { next = pmd_addr_end(addr, end); if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { if (next - addr != HPAGE_PMD_SIZE) __split_huge_pmd(vma, pmd, addr, false, NULL); else if (zap_huge_pmd(tlb, vma, pmd, addr)) goto next; /* fall through */ } else if (details && details->single_page && PageTransCompound(details->single_page) && next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) { spinlock_t *ptl = pmd_lock(tlb->mm, pmd); /* * Take and drop THP pmd lock so that we cannot return * prematurely, while zap_huge_pmd() has cleared *pmd, * but not yet decremented compound_mapcount(). */ spin_unlock(ptl); } /* * Here there can be other concurrent MADV_DONTNEED or * trans huge page faults running, and if the pmd is * none or trans huge it can change under us. This is * because MADV_DONTNEED holds the mmap_lock in read * mode. */ if (pmd_none_or_trans_huge_or_clear_bad(pmd)) goto next; next = zap_pte_range(tlb, vma, pmd, addr, next, details); next: cond_resched(); } while (pmd++, addr = next, addr != end); return addr; } static inline unsigned long zap_pud_range(struct mmu_gather *tlb, struct vm_area_struct *vma, p4d_t *p4d, unsigned long addr, unsigned long end, struct zap_details *details) { pud_t *pud; unsigned long next; pud = pud_offset(p4d, addr); do { next = pud_addr_end(addr, end); if (pud_trans_huge(*pud) || pud_devmap(*pud)) { if (next - addr != HPAGE_PUD_SIZE) { mmap_assert_locked(tlb->mm); split_huge_pud(vma, pud, addr); } else if (zap_huge_pud(tlb, vma, pud, addr)) goto next; /* fall through */ } if (pud_none_or_clear_bad(pud)) continue; next = zap_pmd_range(tlb, vma, pud, addr, next, details); next: cond_resched(); } while (pud++, addr = next, addr != end); return addr; } static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, struct vm_area_struct *vma, pgd_t *pgd, unsigned long addr, unsigned long end, struct zap_details *details) { p4d_t *p4d; unsigned long next; p4d = p4d_offset(pgd, addr); do { next = p4d_addr_end(addr, end); if (p4d_none_or_clear_bad(p4d)) continue; next = zap_pud_range(tlb, vma, p4d, addr, next, details); } while (p4d++, addr = next, addr != end); return addr; } void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma, unsigned long addr, unsigned long end, struct zap_details *details) { pgd_t *pgd; unsigned long next; BUG_ON(addr >= end); tlb_start_vma(tlb, vma); pgd = pgd_offset(vma->vm_mm, addr); do { next = pgd_addr_end(addr, end); if (pgd_none_or_clear_bad(pgd)) continue; next = zap_p4d_range(tlb, vma, pgd, addr, next, details); } while (pgd++, addr = next, addr != end); tlb_end_vma(tlb, vma); } static void unmap_single_vma(struct mmu_gather *tlb, struct vm_area_struct *vma, unsigned long start_addr, unsigned long end_addr, struct zap_details *details) { unsigned long start = max(vma->vm_start, start_addr); unsigned long end; if (start >= vma->vm_end) return; end = min(vma->vm_end, end_addr); if (end <= vma->vm_start) return; if (vma->vm_file) uprobe_munmap(vma, start, end); if (unlikely(vma->vm_flags & VM_PFNMAP)) untrack_pfn(vma, 0, 0); if (start != end) { if (unlikely(is_vm_hugetlb_page(vma))) { /* * It is undesirable to test vma->vm_file as it * should be non-null for valid hugetlb area. * However, vm_file will be NULL in the error * cleanup path of mmap_region. When * hugetlbfs ->mmap method fails, * mmap_region() nullifies vma->vm_file * before calling this function to clean up. * Since no pte has actually been setup, it is * safe to do nothing in this case. */ if (vma->vm_file) { i_mmap_lock_write(vma->vm_file->f_mapping); __unmap_hugepage_range_final(tlb, vma, start, end, NULL); i_mmap_unlock_write(vma->vm_file->f_mapping); } } else unmap_page_range(tlb, vma, start, end, details); } } /** * unmap_vmas - unmap a range of memory covered by a list of vma's * @tlb: address of the caller's struct mmu_gather * @vma: the starting vma * @start_addr: virtual address at which to start unmapping * @end_addr: virtual address at which to end unmapping * * Unmap all pages in the vma list. * * Only addresses between `start' and `end' will be unmapped. * * The VMA list must be sorted in ascending virtual address order. * * unmap_vmas() assumes that the caller will flush the whole unmapped address * range after unmap_vmas() returns. So the only responsibility here is to * ensure that any thus-far unmapped pages are flushed before unmap_vmas() * drops the lock and schedules. */ void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *vma, unsigned long start_addr, unsigned long end_addr) { struct mmu_notifier_range range; mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm, start_addr, end_addr); mmu_notifier_invalidate_range_start(&range); for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); mmu_notifier_invalidate_range_end(&range); } /** * zap_page_range - remove user pages in a given range * @vma: vm_area_struct holding the applicable pages * @start: starting address of pages to zap * @size: number of bytes to zap * * Caller must protect the VMA list */ void zap_page_range(struct vm_area_struct *vma, unsigned long start, unsigned long size) { struct mmu_notifier_range range; struct mmu_gather tlb; lru_add_drain(); mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, start, start + size); tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end); update_hiwater_rss(vma->vm_mm); mmu_notifier_invalidate_range_start(&range); for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next) unmap_single_vma(&tlb, vma, start, range.end, NULL); mmu_notifier_invalidate_range_end(&range); tlb_finish_mmu(&tlb, start, range.end); } /** * zap_page_range_single - remove user pages in a given range * @vma: vm_area_struct holding the applicable pages * @address: starting address of pages to zap * @size: number of bytes to zap * @details: details of shared cache invalidation * * The range must fit into one VMA. */ static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, unsigned long size, struct zap_details *details) { struct mmu_notifier_range range; struct mmu_gather tlb; lru_add_drain(); mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, address, address + size); tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end); update_hiwater_rss(vma->vm_mm); mmu_notifier_invalidate_range_start(&range); unmap_single_vma(&tlb, vma, address, range.end, details); mmu_notifier_invalidate_range_end(&range); tlb_finish_mmu(&tlb, address, range.end); } /** * zap_vma_ptes - remove ptes mapping the vma * @vma: vm_area_struct holding ptes to be zapped * @address: starting address of pages to zap * @size: number of bytes to zap * * This function only unmaps ptes assigned to VM_PFNMAP vmas. * * The entire address range must be fully contained within the vma. * */ void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, unsigned long size) { if (address < vma->vm_start || address + size > vma->vm_end || !(vma->vm_flags & VM_PFNMAP)) return; zap_page_range_single(vma, address, size, NULL); } EXPORT_SYMBOL_GPL(zap_vma_ptes); static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) { pgd_t *pgd; p4d_t *p4d; pud_t *pud; pmd_t *pmd; pgd = pgd_offset(mm, addr); p4d = p4d_alloc(mm, pgd, addr); if (!p4d) return NULL; pud = pud_alloc(mm, p4d, addr); if (!pud) return NULL; pmd = pmd_alloc(mm, pud, addr); if (!pmd) return NULL; VM_BUG_ON(pmd_trans_huge(*pmd)); return pmd; } pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl) { pmd_t *pmd = walk_to_pmd(mm, addr); if (!pmd) return NULL; return pte_alloc_map_lock(mm, pmd, addr, ptl); } static int validate_page_before_insert(struct page *page) { if (PageAnon(page) || PageSlab(page) || page_has_type(page)) return -EINVAL; flush_dcache_page(page); return 0; } static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte, unsigned long addr, struct page *page, pgprot_t prot) { if (!pte_none(*pte)) return -EBUSY; /* Ok, finally just insert the thing.. */ get_page(page); inc_mm_counter_fast(mm, mm_counter_file(page)); page_add_file_rmap(page, false); set_pte_at(mm, addr, pte, mk_pte(page, prot)); return 0; } /* * This is the old fallback for page remapping. * * For historical reasons, it only allows reserved pages. Only * old drivers should use this, and they needed to mark their * pages reserved for the old functions anyway. */ static int insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page, pgprot_t prot) { struct mm_struct *mm = vma->vm_mm; int retval; pte_t *pte; spinlock_t *ptl; retval = validate_page_before_insert(page); if (retval) goto out; retval = -ENOMEM; pte = get_locked_pte(mm, addr, &ptl); if (!pte) goto out; retval = insert_page_into_pte_locked(mm, pte, addr, page, prot); pte_unmap_unlock(pte, ptl); out: return retval; } #ifdef pte_index static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte, unsigned long addr, struct page *page, pgprot_t prot) { int err; if (!page_count(page)) return -EINVAL; err = validate_page_before_insert(page); if (err) return err; return insert_page_into_pte_locked(mm, pte, addr, page, prot); } /* insert_pages() amortizes the cost of spinlock operations * when inserting pages in a loop. Arch *must* define pte_index. */ static int insert_pages(struct vm_area_struct *vma, unsigned long addr, struct page **pages, unsigned long *num, pgprot_t prot) { pmd_t *pmd = NULL; pte_t *start_pte, *pte; spinlock_t *pte_lock; struct mm_struct *const mm = vma->vm_mm; unsigned long curr_page_idx = 0; unsigned long remaining_pages_total = *num; unsigned long pages_to_write_in_pmd; int ret; more: ret = -EFAULT; pmd = walk_to_pmd(mm, addr); if (!pmd) goto out; pages_to_write_in_pmd = min_t(unsigned long, remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); /* Allocate the PTE if necessary; takes PMD lock once only. */ ret = -ENOMEM; if (pte_alloc(mm, pmd)) goto out; while (pages_to_write_in_pmd) { int pte_idx = 0; const int batch_size = min_t(int, pages_to_write_in_pmd, 8); start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { int err = insert_page_in_batch_locked(mm, pte, addr, pages[curr_page_idx], prot); if (unlikely(err)) { pte_unmap_unlock(start_pte, pte_lock); ret = err; remaining_pages_total -= pte_idx; goto out; } addr += PAGE_SIZE; ++curr_page_idx; } pte_unmap_unlock(start_pte, pte_lock); pages_to_write_in_pmd -= batch_size; remaining_pages_total -= batch_size; } if (remaining_pages_total) goto more; ret = 0; out: *num = remaining_pages_total; return ret; } #endif /* ifdef pte_index */ /** * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. * @vma: user vma to map to * @addr: target start user address of these pages * @pages: source kernel pages * @num: in: number of pages to map. out: number of pages that were *not* * mapped. (0 means all pages were successfully mapped). * * Preferred over vm_insert_page() when inserting multiple pages. * * In case of error, we may have mapped a subset of the provided * pages. It is the caller's responsibility to account for this case. * * The same restrictions apply as in vm_insert_page(). */ int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, struct page **pages, unsigned long *num) { #ifdef pte_index const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; if (addr < vma->vm_start || end_addr >= vma->vm_end) return -EFAULT; if (!(vma->vm_flags & VM_MIXEDMAP)) { BUG_ON(mmap_read_trylock(vma->vm_mm)); BUG_ON(vma->vm_flags & VM_PFNMAP); vma->vm_flags |= VM_MIXEDMAP; } /* Defer page refcount checking till we're about to map that page. */ return insert_pages(vma, addr, pages, num, vma->vm_page_prot); #else unsigned long idx = 0, pgcount = *num; int err = -EINVAL; for (; idx < pgcount; ++idx) { err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]); if (err) break; } *num = pgcount - idx; return err; #endif /* ifdef pte_index */ } EXPORT_SYMBOL(vm_insert_pages); /** * vm_insert_page - insert single page into user vma * @vma: user vma to map to * @addr: target user address of this page * @page: source kernel page * * This allows drivers to insert individual pages they've allocated * into a user vma. * * The page has to be a nice clean _individual_ kernel allocation. * If you allocate a compound page, you need to have marked it as * such (__GFP_COMP), or manually just split the page up yourself * (see split_page()). * * NOTE! Traditionally this was done with "remap_pfn_range()" which * took an arbitrary page protection parameter. This doesn't allow * that. Your vma protection will have to be set up correctly, which * means that if you want a shared writable mapping, you'd better * ask for a shared writable mapping! * * The page does not need to be reserved. * * Usually this function is called from f_op->mmap() handler * under mm->mmap_lock write-lock, so it can change vma->vm_flags. * Caller must set VM_MIXEDMAP on vma if it wants to call this * function from other places, for example from page-fault handler. * * Return: %0 on success, negative error code otherwise. */ int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page) { if (addr < vma->vm_start || addr >= vma->vm_end) return -EFAULT; if (!page_count(page)) return -EINVAL; if (!(vma->vm_flags & VM_MIXEDMAP)) { BUG_ON(mmap_read_trylock(vma->vm_mm)); BUG_ON(vma->vm_flags & VM_PFNMAP); vma->vm_flags |= VM_MIXEDMAP; } return insert_page(vma, addr, page, vma->vm_page_prot); } EXPORT_SYMBOL(vm_insert_page); /* * __vm_map_pages - maps range of kernel pages into user vma * @vma: user vma to map to * @pages: pointer to array of source kernel pages * @num: number of pages in page array * @offset: user's requested vm_pgoff * * This allows drivers to map range of kernel pages into a user vma. * * Return: 0 on success and error code otherwise. */ static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, unsigned long num, unsigned long offset) { unsigned long count = vma_pages(vma); unsigned long uaddr = vma->vm_start; int ret, i; /* Fail if the user requested offset is beyond the end of the object */ if (offset >= num) return -ENXIO; /* Fail if the user requested size exceeds available object size */ if (count > num - offset) return -ENXIO; for (i = 0; i < count; i++) { ret = vm_insert_page(vma, uaddr, pages[offset + i]); if (ret < 0) return ret; uaddr += PAGE_SIZE; } return 0; } /** * vm_map_pages - maps range of kernel pages starts with non zero offset * @vma: user vma to map to * @pages: pointer to array of source kernel pages * @num: number of pages in page array * * Maps an object consisting of @num pages, catering for the user's * requested vm_pgoff * * If we fail to insert any page into the vma, the function will return * immediately leaving any previously inserted pages present. Callers * from the mmap handler may immediately return the error as their caller * will destroy the vma, removing any successfully inserted pages. Other * callers should make their own arrangements for calling unmap_region(). * * Context: Process context. Called by mmap handlers. * Return: 0 on success and error code otherwise. */ int vm_map_pages(struct vm_area_struct *vma, struct page **pages, unsigned long num) { return __vm_map_pages(vma, pages, num, vma->vm_pgoff); } EXPORT_SYMBOL(vm_map_pages); /** * vm_map_pages_zero - map range of kernel pages starts with zero offset * @vma: user vma to map to * @pages: pointer to array of source kernel pages * @num: number of pages in page array * * Similar to vm_map_pages(), except that it explicitly sets the offset * to 0. This function is intended for the drivers that did not consider * vm_pgoff. * * Context: Process context. Called by mmap handlers. * Return: 0 on success and error code otherwise. */ int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, unsigned long num) { return __vm_map_pages(vma, pages, num, 0); } EXPORT_SYMBOL(vm_map_pages_zero); static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, pfn_t pfn, pgprot_t prot, bool mkwrite) { struct mm_struct *mm = vma->vm_mm; pte_t *pte, entry; spinlock_t *ptl; pte = get_locked_pte(mm, addr, &ptl); if (!pte) return VM_FAULT_OOM; if (!pte_none(*pte)) { if (mkwrite) { /* * For read faults on private mappings the PFN passed * in may not match the PFN we have mapped if the * mapped PFN is a writeable COW page. In the mkwrite * case we are creating a writable PTE for a shared * mapping and we expect the PFNs to match. If they * don't match, we are likely racing with block * allocation and mapping invalidation so just skip the * update. */ if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) { WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte))); goto out_unlock; } entry = pte_mkyoung(*pte); entry = maybe_mkwrite(pte_mkdirty(entry), vma); if (ptep_set_access_flags(vma, addr, pte, entry, 1)) update_mmu_cache(vma, addr, pte); } goto out_unlock; } /* Ok, finally just insert the thing.. */ if (pfn_t_devmap(pfn)) entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); else entry = pte_mkspecial(pfn_t_pte(pfn, prot)); if (mkwrite) { entry = pte_mkyoung(entry); entry = maybe_mkwrite(pte_mkdirty(entry), vma); } set_pte_at(mm, addr, pte, entry); update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ out_unlock: pte_unmap_unlock(pte, ptl); return VM_FAULT_NOPAGE; } /** * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot * @vma: user vma to map to * @addr: target user address of this page * @pfn: source kernel pfn * @pgprot: pgprot flags for the inserted page * * This is exactly like vmf_insert_pfn(), except that it allows drivers * to override pgprot on a per-page basis. * * This only makes sense for IO mappings, and it makes no sense for * COW mappings. In general, using multiple vmas is preferable; * vmf_insert_pfn_prot should only be used if using multiple VMAs is * impractical. * * See vmf_insert_mixed_prot() for a discussion of the implication of using * a value of @pgprot different from that of @vma->vm_page_prot. * * Context: Process context. May allocate using %GFP_KERNEL. * Return: vm_fault_t value. */ vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn, pgprot_t pgprot) { /* * Technically, architectures with pte_special can avoid all these * restrictions (same for remap_pfn_range). However we would like * consistency in testing and feature parity among all, so we should * try to keep these invariants in place for everybody. */ BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == (VM_PFNMAP|VM_MIXEDMAP)); BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); if (addr < vma->vm_start || addr >= vma->vm_end) return VM_FAULT_SIGBUS; if (!pfn_modify_allowed(pfn, pgprot)) return VM_FAULT_SIGBUS; track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, false); } EXPORT_SYMBOL(vmf_insert_pfn_prot); /** * vmf_insert_pfn - insert single pfn into user vma * @vma: user vma to map to * @addr: target user address of this page * @pfn: source kernel pfn * * Similar to vm_insert_page, this allows drivers to insert individual pages * they've allocated into a user vma. Same comments apply. * * This function should only be called from a vm_ops->fault handler, and * in that case the handler should return the result of this function. * * vma cannot be a COW mapping. * * As this is called only for pages that do not currently exist, we * do not need to flush old virtual caches or the TLB. * * Context: Process context. May allocate using %GFP_KERNEL. * Return: vm_fault_t value. */ vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn) { return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); } EXPORT_SYMBOL(vmf_insert_pfn); static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) { /* these checks mirror the abort conditions in vm_normal_page */ if (vma->vm_flags & VM_MIXEDMAP) return true; if (pfn_t_devmap(pfn)) return true; if (pfn_t_special(pfn)) return true; if (is_zero_pfn(pfn_t_to_pfn(pfn))) return true; return false; } static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, pfn_t pfn, pgprot_t pgprot, bool mkwrite) { int err; BUG_ON(!vm_mixed_ok(vma, pfn)); if (addr < vma->vm_start || addr >= vma->vm_end) return VM_FAULT_SIGBUS; track_pfn_insert(vma, &pgprot, pfn); if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) return VM_FAULT_SIGBUS; /* * If we don't have pte special, then we have to use the pfn_valid() * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* * refcount the page if pfn_valid is true (hence insert_page rather * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP * without pte special, it would there be refcounted as a normal page. */ if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { struct page *page; /* * At this point we are committed to insert_page() * regardless of whether the caller specified flags that * result in pfn_t_has_page() == false. */ page = pfn_to_page(pfn_t_to_pfn(pfn)); err = insert_page(vma, addr, page, pgprot); } else { return insert_pfn(vma, addr, pfn, pgprot, mkwrite); } if (err == -ENOMEM) return VM_FAULT_OOM; if (err < 0 && err != -EBUSY) return VM_FAULT_SIGBUS; return VM_FAULT_NOPAGE; } /** * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot * @vma: user vma to map to * @addr: target user address of this page * @pfn: source kernel pfn * @pgprot: pgprot flags for the inserted page * * This is exactly like vmf_insert_mixed(), except that it allows drivers * to override pgprot on a per-page basis. * * Typically this function should be used by drivers to set caching- and * encryption bits different than those of @vma->vm_page_prot, because * the caching- or encryption mode may not be known at mmap() time. * This is ok as long as @vma->vm_page_prot is not used by the core vm * to set caching and encryption bits for those vmas (except for COW pages). * This is ensured by core vm only modifying these page table entries using * functions that don't touch caching- or encryption bits, using pte_modify() * if needed. (See for example mprotect()). * Also when new page-table entries are created, this is only done using the * fault() callback, and never using the value of vma->vm_page_prot, * except for page-table entries that point to anonymous pages as the result * of COW. * * Context: Process context. May allocate using %GFP_KERNEL. * Return: vm_fault_t value. */ vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, pfn_t pfn, pgprot_t pgprot) { return __vm_insert_mixed(vma, addr, pfn, pgprot, false); } EXPORT_SYMBOL(vmf_insert_mixed_prot); vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, pfn_t pfn) { return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false); } EXPORT_SYMBOL(vmf_insert_mixed); /* * If the insertion of PTE failed because someone else already added a * different entry in the mean time, we treat that as success as we assume * the same entry was actually inserted. */ vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr, pfn_t pfn) { return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true); } EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); /* * maps a range of physical memory into the requested pages. the old * mappings are removed. any references to nonexistent pages results * in null mappings (currently treated as "copy-on-access") */ static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, unsigned long addr, unsigned long end, unsigned long pfn, pgprot_t prot) { pte_t *pte, *mapped_pte; spinlock_t *ptl; int err = 0; mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); if (!pte) return -ENOMEM; arch_enter_lazy_mmu_mode(); do { BUG_ON(!pte_none(*pte)); if (!pfn_modify_allowed(pfn, prot)) { err = -EACCES; break; } set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); pfn++; } while (pte++, addr += PAGE_SIZE, addr != end); arch_leave_lazy_mmu_mode(); pte_unmap_unlock(mapped_pte, ptl); return err; } static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, unsigned long addr, unsigned long end, unsigned long pfn, pgprot_t prot) { pmd_t *pmd; unsigned long next; int err; pfn -= addr >> PAGE_SHIFT; pmd = pmd_alloc(mm, pud, addr); if (!pmd) return -ENOMEM; VM_BUG_ON(pmd_trans_huge(*pmd)); do { next = pmd_addr_end(addr, end); err = remap_pte_range(mm, pmd, addr, next, pfn + (addr >> PAGE_SHIFT), prot); if (err) return err; } while (pmd++, addr = next, addr != end); return 0; } static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, unsigned long addr, unsigned long end, unsigned long pfn, pgprot_t prot) { pud_t *pud; unsigned long next; int err; pfn -= addr >> PAGE_SHIFT; pud = pud_alloc(mm, p4d, addr); if (!pud) return -ENOMEM; do { next = pud_addr_end(addr, end); err = remap_pmd_range(mm, pud, addr, next, pfn + (addr >> PAGE_SHIFT), prot); if (err) return err; } while (pud++, addr = next, addr != end); return 0; } static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, unsigned long addr, unsigned long end, unsigned long pfn, pgprot_t prot) { p4d_t *p4d; unsigned long next; int err; pfn -= addr >> PAGE_SHIFT; p4d = p4d_alloc(mm, pgd, addr); if (!p4d) return -ENOMEM; do { next = p4d_addr_end(addr, end); err = remap_pud_range(mm, p4d, addr, next, pfn + (addr >> PAGE_SHIFT), prot); if (err) return err; } while (p4d++, addr = next, addr != end); return 0; } /** * remap_pfn_range - remap kernel memory to userspace * @vma: user vma to map to * @addr: target page aligned user address to start at * @pfn: page frame number of kernel physical memory address * @size: size of mapping area * @prot: page protection flags for this mapping * * Note: this is only safe if the mm semaphore is held when called. * * Return: %0 on success, negative error code otherwise. */ int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn, unsigned long size, pgprot_t prot) { pgd_t *pgd; unsigned long next; unsigned long end = addr + PAGE_ALIGN(size); struct mm_struct *mm = vma->vm_mm; unsigned long remap_pfn = pfn; int err; if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) return -EINVAL; /* * Physically remapped pages are special. Tell the * rest of the world about it: * VM_IO tells people not to look at these pages * (accesses can have side effects). * VM_PFNMAP tells the core MM that the base pages are just * raw PFN mappings, and do not have a "struct page" associated * with them. * VM_DONTEXPAND * Disable vma merging and expanding with mremap(). * VM_DONTDUMP * Omit vma from core dump, even when VM_IO turned off. * * There's a horrible special case to handle copy-on-write * behaviour that some programs depend on. We mark the "original" * un-COW'ed pages by matching them up with "vma->vm_pgoff". * See vm_normal_page() for details. */ if (is_cow_mapping(vma->vm_flags)) { if (addr != vma->vm_start || end != vma->vm_end) return -EINVAL; vma->vm_pgoff = pfn; } err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size)); if (err) return -EINVAL; vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; BUG_ON(addr >= end); pfn -= addr >> PAGE_SHIFT; pgd = pgd_offset(mm, addr); flush_cache_range(vma, addr, end); do { next = pgd_addr_end(addr, end); err = remap_p4d_range(mm, pgd, addr, next, pfn + (addr >> PAGE_SHIFT), prot); if (err) break; } while (pgd++, addr = next, addr != end); if (err) untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size)); return err; } EXPORT_SYMBOL(remap_pfn_range); /** * vm_iomap_memory - remap memory to userspace * @vma: user vma to map to * @start: start of the physical memory to be mapped * @len: size of area * * This is a simplified io_remap_pfn_range() for common driver use. The * driver just needs to give us the physical memory range to be mapped, * we'll figure out the rest from the vma information. * * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get * whatever write-combining details or similar. * * Return: %0 on success, negative error code otherwise. */ int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) { unsigned long vm_len, pfn, pages; /* Check that the physical memory area passed in looks valid */ if (start + len < start) return -EINVAL; /* * You *really* shouldn't map things that aren't page-aligned, * but we've historically allowed it because IO memory might * just have smaller alignment. */ len += start & ~PAGE_MASK; pfn = start >> PAGE_SHIFT; pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; if (pfn + pages < pfn) return -EINVAL; /* We start the mapping 'vm_pgoff' pages into the area */ if (vma->vm_pgoff > pages) return -EINVAL; pfn += vma->vm_pgoff; pages -= vma->vm_pgoff; /* Can we fit all of the mapping? */ vm_len = vma->vm_end - vma->vm_start; if (vm_len >> PAGE_SHIFT > pages) return -EINVAL; /* Ok, let it rip */ return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); } EXPORT_SYMBOL(vm_iomap_memory); static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, unsigned long addr, unsigned long end, pte_fn_t fn, void *data, bool create, pgtbl_mod_mask *mask) { pte_t *pte; int err = 0; spinlock_t *ptl; if (create) { pte = (mm == &init_mm) ? pte_alloc_kernel_track(pmd, addr, mask) : pte_alloc_map_lock(mm, pmd, addr, &ptl); if (!pte) return -ENOMEM; } else { pte = (mm == &init_mm) ? pte_offset_kernel(pmd, addr) : pte_offset_map_lock(mm, pmd, addr, &ptl); } BUG_ON(pmd_huge(*pmd)); arch_enter_lazy_mmu_mode(); if (fn) { do { if (create || !pte_none(*pte)) { err = fn(pte++, addr, data); if (err) break; } } while (addr += PAGE_SIZE, addr != end); } *mask |= PGTBL_PTE_MODIFIED; arch_leave_lazy_mmu_mode(); if (mm != &init_mm) pte_unmap_unlock(pte-1, ptl); return err; } static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, unsigned long addr, unsigned long end, pte_fn_t fn, void *data, bool create, pgtbl_mod_mask *mask) { pmd_t *pmd; unsigned long next; int err = 0; BUG_ON(pud_huge(*pud)); if (create) { pmd = pmd_alloc_track(mm, pud, addr, mask); if (!pmd) return -ENOMEM; } else { pmd = pmd_offset(pud, addr); } do { next = pmd_addr_end(addr, end); if (create || !pmd_none_or_clear_bad(pmd)) { err = apply_to_pte_range(mm, pmd, addr, next, fn, data, create, mask); if (err) break; } } while (pmd++, addr = next, addr != end); return err; } static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, unsigned long addr, unsigned long end, pte_fn_t fn, void *data, bool create, pgtbl_mod_mask *mask) { pud_t *pud; unsigned long next; int err = 0; if (create) { pud = pud_alloc_track(mm, p4d, addr, mask); if (!pud) return -ENOMEM; } else { pud = pud_offset(p4d, addr); } do { next = pud_addr_end(addr, end); if (create || !pud_none_or_clear_bad(pud)) { err = apply_to_pmd_range(mm, pud, addr, next, fn, data, create, mask); if (err) break; } } while (pud++, addr = next, addr != end); return err; } static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, unsigned long addr, unsigned long end, pte_fn_t fn, void *data, bool create, pgtbl_mod_mask *mask) { p4d_t *p4d; unsigned long next; int err = 0; if (create) { p4d = p4d_alloc_track(mm, pgd, addr, mask); if (!p4d) return -ENOMEM; } else { p4d = p4d_offset(pgd, addr); } do { next = p4d_addr_end(addr, end); if (create || !p4d_none_or_clear_bad(p4d)) { err = apply_to_pud_range(mm, p4d, addr, next, fn, data, create, mask); if (err) break; } } while (p4d++, addr = next, addr != end); return err; } static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, unsigned long size, pte_fn_t fn, void *data, bool create) { pgd_t *pgd; unsigned long start = addr, next; unsigned long end = addr + size; pgtbl_mod_mask mask = 0; int err = 0; if (WARN_ON(addr >= end)) return -EINVAL; pgd = pgd_offset(mm, addr); do { next = pgd_addr_end(addr, end); if (!create && pgd_none_or_clear_bad(pgd)) continue; err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create, &mask); if (err) break; } while (pgd++, addr = next, addr != end); if (mask & ARCH_PAGE_TABLE_SYNC_MASK) arch_sync_kernel_mappings(start, start + size); return err; } /* * Scan a region of virtual memory, filling in page tables as necessary * and calling a provided function on each leaf page table. */ int apply_to_page_range(struct mm_struct *mm, unsigned long addr, unsigned long size, pte_fn_t fn, void *data) { return __apply_to_page_range(mm, addr, size, fn, data, true); } EXPORT_SYMBOL_GPL(apply_to_page_range); /* * Scan a region of virtual memory, calling a provided function on * each leaf page table where it exists. * * Unlike apply_to_page_range, this does _not_ fill in page tables * where they are absent. */ int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, unsigned long size, pte_fn_t fn, void *data) { return __apply_to_page_range(mm, addr, size, fn, data, false); } EXPORT_SYMBOL_GPL(apply_to_existing_page_range); /* * handle_pte_fault chooses page fault handler according to an entry which was * read non-atomically. Before making any commitment, on those architectures * or configurations (e.g. i386 with PAE) which might give a mix of unmatched * parts, do_swap_page must check under lock before unmapping the pte and * proceeding (but do_wp_page is only called after already making such a check; * and do_anonymous_page can safely check later on). */ static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, pte_t *page_table, pte_t orig_pte) { int same = 1; #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) if (sizeof(pte_t) > sizeof(unsigned long)) { spinlock_t *ptl = pte_lockptr(mm, pmd); spin_lock(ptl); same = pte_same(*page_table, orig_pte); spin_unlock(ptl); } #endif pte_unmap(page_table); return same; } static inline bool cow_user_page(struct page *dst, struct page *src, struct vm_fault *vmf) { bool ret; void *kaddr; void __user *uaddr; bool locked = false; struct vm_area_struct *vma = vmf->vma; struct mm_struct *mm = vma->vm_mm; unsigned long addr = vmf->address; if (likely(src)) { copy_user_highpage(dst, src, addr, vma); return true; } /* * If the source page was a PFN mapping, we don't have * a "struct page" for it. We do a best-effort copy by * just copying from the original user address. If that * fails, we just zero-fill it. Live with it. */ kaddr = kmap_atomic(dst); uaddr = (void __user *)(addr & PAGE_MASK); /* * On architectures with software "accessed" bits, we would * take a double page fault, so mark it accessed here. */ if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) { pte_t entry; vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); locked = true; if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { /* * Other thread has already handled the fault * and update local tlb only */ update_mmu_tlb(vma, addr, vmf->pte); ret = false; goto pte_unlock; } entry = pte_mkyoung(vmf->orig_pte); if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) update_mmu_cache(vma, addr, vmf->pte); } /* * This really shouldn't fail, because the page is there * in the page tables. But it might just be unreadable, * in which case we just give up and fill the result with * zeroes. */ if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { if (locked) goto warn; /* Re-validate under PTL if the page is still mapped */ vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); locked = true; if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { /* The PTE changed under us, update local tlb */ update_mmu_tlb(vma, addr, vmf->pte); ret = false; goto pte_unlock; } /* * The same page can be mapped back since last copy attempt. * Try to copy again under PTL. */ if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { /* * Give a warn in case there can be some obscure * use-case */ warn: WARN_ON_ONCE(1); clear_page(kaddr); } } ret = true; pte_unlock: if (locked) pte_unmap_unlock(vmf->pte, vmf->ptl); kunmap_atomic(kaddr); flush_dcache_page(dst); return ret; } static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) { struct file *vm_file = vma->vm_file; if (vm_file) return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; /* * Special mappings (e.g. VDSO) do not have any file so fake * a default GFP_KERNEL for them. */ return GFP_KERNEL; } /* * Notify the address space that the page is about to become writable so that * it can prohibit this or wait for the page to get into an appropriate state. * * We do this without the lock held, so that it can sleep if it needs to. */ static vm_fault_t do_page_mkwrite(struct vm_fault *vmf) { vm_fault_t ret; struct page *page = vmf->page; unsigned int old_flags = vmf->flags; vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; if (vmf->vma->vm_file && IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) return VM_FAULT_SIGBUS; ret = vmf->vma->vm_ops->page_mkwrite(vmf); /* Restore original flags so that caller is not surprised */ vmf->flags = old_flags; if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) return ret; if (unlikely(!(ret & VM_FAULT_LOCKED))) { lock_page(page); if (!page->mapping) { unlock_page(page); return 0; /* retry */ } ret |= VM_FAULT_LOCKED; } else VM_BUG_ON_PAGE(!PageLocked(page), page); return ret; } /* * Handle dirtying of a page in shared file mapping on a write fault. * * The function expects the page to be locked and unlocks it. */ static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; struct address_space *mapping; struct page *page = vmf->page; bool dirtied; bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; dirtied = set_page_dirty(page); VM_BUG_ON_PAGE(PageAnon(page), page); /* * Take a local copy of the address_space - page.mapping may be zeroed * by truncate after unlock_page(). The address_space itself remains * pinned by vma->vm_file's reference. We rely on unlock_page()'s * release semantics to prevent the compiler from undoing this copying. */ mapping = page_rmapping(page); unlock_page(page); if (!page_mkwrite) file_update_time(vma->vm_file); /* * Throttle page dirtying rate down to writeback speed. * * mapping may be NULL here because some device drivers do not * set page.mapping but still dirty their pages * * Drop the mmap_lock before waiting on IO, if we can. The file * is pinning the mapping, as per above. */ if ((dirtied || page_mkwrite) && mapping) { struct file *fpin; fpin = maybe_unlock_mmap_for_io(vmf, NULL); balance_dirty_pages_ratelimited(mapping); if (fpin) { fput(fpin); return VM_FAULT_RETRY; } } return 0; } /* * Handle write page faults for pages that can be reused in the current vma * * This can happen either due to the mapping being with the VM_SHARED flag, * or due to us being the last reference standing to the page. In either * case, all we need to do here is to mark the page as writable and update * any related book-keeping. */ static inline void wp_page_reuse(struct vm_fault *vmf) __releases(vmf->ptl) { struct vm_area_struct *vma = vmf->vma; struct page *page = vmf->page; pte_t entry; /* * Clear the pages cpupid information as the existing * information potentially belongs to a now completely * unrelated process. */ if (page) page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); entry = pte_mkyoung(vmf->orig_pte); entry = maybe_mkwrite(pte_mkdirty(entry), vma); if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) update_mmu_cache(vma, vmf->address, vmf->pte); pte_unmap_unlock(vmf->pte, vmf->ptl); count_vm_event(PGREUSE); } /* * Handle the case of a page which we actually need to copy to a new page. * * Called with mmap_lock locked and the old page referenced, but * without the ptl held. * * High level logic flow: * * - Allocate a page, copy the content of the old page to the new one. * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. * - Take the PTL. If the pte changed, bail out and release the allocated page * - If the pte is still the way we remember it, update the page table and all * relevant references. This includes dropping the reference the page-table * held to the old page, as well as updating the rmap. * - In any case, unlock the PTL and drop the reference we took to the old page. */ static vm_fault_t wp_page_copy(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; struct mm_struct *mm = vma->vm_mm; struct page *old_page = vmf->page; struct page *new_page = NULL; pte_t entry; int page_copied = 0; struct mmu_notifier_range range; if (unlikely(anon_vma_prepare(vma))) goto oom; if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { new_page = alloc_zeroed_user_highpage_movable(vma, vmf->address); if (!new_page) goto oom; } else { new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); if (!new_page) goto oom; if (!cow_user_page(new_page, old_page, vmf)) { /* * COW failed, if the fault was solved by other, * it's fine. If not, userspace would re-fault on * the same address and we will handle the fault * from the second attempt. */ put_page(new_page); if (old_page) put_page(old_page); return 0; } } if (mem_cgroup_charge(new_page, mm, GFP_KERNEL)) goto oom_free_new; cgroup_throttle_swaprate(new_page, GFP_KERNEL); __SetPageUptodate(new_page); mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, vmf->address & PAGE_MASK, (vmf->address & PAGE_MASK) + PAGE_SIZE); mmu_notifier_invalidate_range_start(&range); /* * Re-check the pte - we dropped the lock */ vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); if (likely(pte_same(*vmf->pte, vmf->orig_pte))) { if (old_page) { if (!PageAnon(old_page)) { dec_mm_counter_fast(mm, mm_counter_file(old_page)); inc_mm_counter_fast(mm, MM_ANONPAGES); } } else { inc_mm_counter_fast(mm, MM_ANONPAGES); } flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); entry = mk_pte(new_page, vma->vm_page_prot); entry = pte_sw_mkyoung(entry); entry = maybe_mkwrite(pte_mkdirty(entry), vma); /* * Clear the pte entry and flush it first, before updating the * pte with the new entry. This will avoid a race condition * seen in the presence of one thread doing SMC and another * thread doing COW. */ ptep_clear_flush_notify(vma, vmf->address, vmf->pte); page_add_new_anon_rmap(new_page, vma, vmf->address, false); lru_cache_add_inactive_or_unevictable(new_page, vma); /* * We call the notify macro here because, when using secondary * mmu page tables (such as kvm shadow page tables), we want the * new page to be mapped directly into the secondary page table. */ set_pte_at_notify(mm, vmf->address, vmf->pte, entry); update_mmu_cache(vma, vmf->address, vmf->pte); if (old_page) { /* * Only after switching the pte to the new page may * we remove the mapcount here. Otherwise another * process may come and find the rmap count decremented * before the pte is switched to the new page, and * "reuse" the old page writing into it while our pte * here still points into it and can be read by other * threads. * * The critical issue is to order this * page_remove_rmap with the ptp_clear_flush above. * Those stores are ordered by (if nothing else,) * the barrier present in the atomic_add_negative * in page_remove_rmap. * * Then the TLB flush in ptep_clear_flush ensures that * no process can access the old page before the * decremented mapcount is visible. And the old page * cannot be reused until after the decremented * mapcount is visible. So transitively, TLBs to * old page will be flushed before it can be reused. */ page_remove_rmap(old_page, false); } /* Free the old page.. */ new_page = old_page; page_copied = 1; } else { update_mmu_tlb(vma, vmf->address, vmf->pte); } if (new_page) put_page(new_page); pte_unmap_unlock(vmf->pte, vmf->ptl); /* * No need to double call mmu_notifier->invalidate_range() callback as * the above ptep_clear_flush_notify() did already call it. */ mmu_notifier_invalidate_range_only_end(&range); if (old_page) { /* * Don't let another task, with possibly unlocked vma, * keep the mlocked page. */ if (page_copied && (vma->vm_flags & VM_LOCKED)) { lock_page(old_page); /* LRU manipulation */ if (PageMlocked(old_page)) munlock_vma_page(old_page); unlock_page(old_page); } put_page(old_page); } return page_copied ? VM_FAULT_WRITE : 0; oom_free_new: put_page(new_page); oom: if (old_page) put_page(old_page); return VM_FAULT_OOM; } /** * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE * writeable once the page is prepared * * @vmf: structure describing the fault * * This function handles all that is needed to finish a write page fault in a * shared mapping due to PTE being read-only once the mapped page is prepared. * It handles locking of PTE and modifying it. * * The function expects the page to be locked or other protection against * concurrent faults / writeback (such as DAX radix tree locks). * * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before * we acquired PTE lock. */ vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf) { WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, &vmf->ptl); /* * We might have raced with another page fault while we released the * pte_offset_map_lock. */ if (!pte_same(*vmf->pte, vmf->orig_pte)) { update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); pte_unmap_unlock(vmf->pte, vmf->ptl); return VM_FAULT_NOPAGE; } wp_page_reuse(vmf); return 0; } /* * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED * mapping */ static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { vm_fault_t ret; pte_unmap_unlock(vmf->pte, vmf->ptl); vmf->flags |= FAULT_FLAG_MKWRITE; ret = vma->vm_ops->pfn_mkwrite(vmf); if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) return ret; return finish_mkwrite_fault(vmf); } wp_page_reuse(vmf); return VM_FAULT_WRITE; } static vm_fault_t wp_page_shared(struct vm_fault *vmf) __releases(vmf->ptl) { struct vm_area_struct *vma = vmf->vma; vm_fault_t ret = VM_FAULT_WRITE; get_page(vmf->page); if (vma->vm_ops && vma->vm_ops->page_mkwrite) { vm_fault_t tmp; pte_unmap_unlock(vmf->pte, vmf->ptl); tmp = do_page_mkwrite(vmf); if (unlikely(!tmp || (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { put_page(vmf->page); return tmp; } tmp = finish_mkwrite_fault(vmf); if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { unlock_page(vmf->page); put_page(vmf->page); return tmp; } } else { wp_page_reuse(vmf); lock_page(vmf->page); } ret |= fault_dirty_shared_page(vmf); put_page(vmf->page); return ret; } /* * This routine handles present pages, when users try to write * to a shared page. It is done by copying the page to a new address * and decrementing the shared-page counter for the old page. * * Note that this routine assumes that the protection checks have been * done by the caller (the low-level page fault routine in most cases). * Thus we can safely just mark it writable once we've done any necessary * COW. * * We also mark the page dirty at this point even though the page will * change only once the write actually happens. This avoids a few races, * and potentially makes it more efficient. * * We enter with non-exclusive mmap_lock (to exclude vma changes, * but allow concurrent faults), with pte both mapped and locked. * We return with mmap_lock still held, but pte unmapped and unlocked. */ static vm_fault_t do_wp_page(struct vm_fault *vmf) __releases(vmf->ptl) { struct vm_area_struct *vma = vmf->vma; if (userfaultfd_pte_wp(vma, *vmf->pte)) { pte_unmap_unlock(vmf->pte, vmf->ptl); return handle_userfault(vmf, VM_UFFD_WP); } /* * Userfaultfd write-protect can defer flushes. Ensure the TLB * is flushed in this case before copying. */ if (unlikely(userfaultfd_wp(vmf->vma) && mm_tlb_flush_pending(vmf->vma->vm_mm))) flush_tlb_page(vmf->vma, vmf->address); vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); if (!vmf->page) { /* * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a * VM_PFNMAP VMA. * * We should not cow pages in a shared writeable mapping. * Just mark the pages writable and/or call ops->pfn_mkwrite. */ if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == (VM_WRITE|VM_SHARED)) return wp_pfn_shared(vmf); pte_unmap_unlock(vmf->pte, vmf->ptl); return wp_page_copy(vmf); } /* * Take out anonymous pages first, anonymous shared vmas are * not dirty accountable. */ if (PageAnon(vmf->page)) { struct page *page = vmf->page; /* PageKsm() doesn't necessarily raise the page refcount */ if (PageKsm(page) || page_count(page) != 1) goto copy; if (!trylock_page(page)) goto copy; if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) { unlock_page(page); goto copy; } /* * Ok, we've got the only map reference, and the only * page count reference, and the page is locked, * it's dark out, and we're wearing sunglasses. Hit it. */ unlock_page(page); wp_page_reuse(vmf); return VM_FAULT_WRITE; } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == (VM_WRITE|VM_SHARED))) { return wp_page_shared(vmf); } copy: /* * Ok, we need to copy. Oh, well.. */ get_page(vmf->page); pte_unmap_unlock(vmf->pte, vmf->ptl); return wp_page_copy(vmf); } static void unmap_mapping_range_vma(struct vm_area_struct *vma, unsigned long start_addr, unsigned long end_addr, struct zap_details *details) { zap_page_range_single(vma, start_addr, end_addr - start_addr, details); } static inline void unmap_mapping_range_tree(struct rb_root_cached *root, struct zap_details *details) { struct vm_area_struct *vma; pgoff_t vba, vea, zba, zea; vma_interval_tree_foreach(vma, root, details->first_index, details->last_index) { vba = vma->vm_pgoff; vea = vba + vma_pages(vma) - 1; zba = details->first_index; if (zba < vba) zba = vba; zea = details->last_index; if (zea > vea) zea = vea; unmap_mapping_range_vma(vma, ((zba - vba) << PAGE_SHIFT) + vma->vm_start, ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, details); } } /** * unmap_mapping_page() - Unmap single page from processes. * @page: The locked page to be unmapped. * * Unmap this page from any userspace process which still has it mmaped. * Typically, for efficiency, the range of nearby pages has already been * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once * truncation or invalidation holds the lock on a page, it may find that * the page has been remapped again: and then uses unmap_mapping_page() * to unmap it finally. */ void unmap_mapping_page(struct page *page) { struct address_space *mapping = page->mapping; struct zap_details details = { }; VM_BUG_ON(!PageLocked(page)); VM_BUG_ON(PageTail(page)); details.check_mapping = mapping; details.first_index = page->index; details.last_index = page->index + thp_nr_pages(page) - 1; details.single_page = page; i_mmap_lock_write(mapping); if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) unmap_mapping_range_tree(&mapping->i_mmap, &details); i_mmap_unlock_write(mapping); } /** * unmap_mapping_pages() - Unmap pages from processes. * @mapping: The address space containing pages to be unmapped. * @start: Index of first page to be unmapped. * @nr: Number of pages to be unmapped. 0 to unmap to end of file. * @even_cows: Whether to unmap even private COWed pages. * * Unmap the pages in this address space from any userspace process which * has them mmaped. Generally, you want to remove COWed pages as well when * a file is being truncated, but not when invalidating pages from the page * cache. */ void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, pgoff_t nr, bool even_cows) { struct zap_details details = { }; details.check_mapping = even_cows ? NULL : mapping; details.first_index = start; details.last_index = start + nr - 1; if (details.last_index < details.first_index) details.last_index = ULONG_MAX; i_mmap_lock_write(mapping); if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) unmap_mapping_range_tree(&mapping->i_mmap, &details); i_mmap_unlock_write(mapping); } /** * unmap_mapping_range - unmap the portion of all mmaps in the specified * address_space corresponding to the specified byte range in the underlying * file. * * @mapping: the address space containing mmaps to be unmapped. * @holebegin: byte in first page to unmap, relative to the start of * the underlying file. This will be rounded down to a PAGE_SIZE * boundary. Note that this is different from truncate_pagecache(), which * must keep the partial page. In contrast, we must get rid of * partial pages. * @holelen: size of prospective hole in bytes. This will be rounded * up to a PAGE_SIZE boundary. A holelen of zero truncates to the * end of the file. * @even_cows: 1 when truncating a file, unmap even private COWed pages; * but 0 when invalidating pagecache, don't throw away private data. */ void unmap_mapping_range(struct address_space *mapping, loff_t const holebegin, loff_t const holelen, int even_cows) { pgoff_t hba = holebegin >> PAGE_SHIFT; pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; /* Check for overflow. */ if (sizeof(holelen) > sizeof(hlen)) { long long holeend = (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; if (holeend & ~(long long)ULONG_MAX) hlen = ULONG_MAX - hba + 1; } unmap_mapping_pages(mapping, hba, hlen, even_cows); } EXPORT_SYMBOL(unmap_mapping_range); /* * We enter with non-exclusive mmap_lock (to exclude vma changes, * but allow concurrent faults), and pte mapped but not yet locked. * We return with pte unmapped and unlocked. * * We return with the mmap_lock locked or unlocked in the same cases * as does filemap_fault(). */ vm_fault_t do_swap_page(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; struct page *page = NULL, *swapcache; swp_entry_t entry; pte_t pte; int locked; int exclusive = 0; vm_fault_t ret = 0; void *shadow = NULL; if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) goto out; entry = pte_to_swp_entry(vmf->orig_pte); if (unlikely(non_swap_entry(entry))) { if (is_migration_entry(entry)) { migration_entry_wait(vma->vm_mm, vmf->pmd, vmf->address); } else if (is_device_private_entry(entry)) { vmf->page = device_private_entry_to_page(entry); ret = vmf->page->pgmap->ops->migrate_to_ram(vmf); } else if (is_hwpoison_entry(entry)) { ret = VM_FAULT_HWPOISON; } else { print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); ret = VM_FAULT_SIGBUS; } goto out; } delayacct_set_flag(DELAYACCT_PF_SWAPIN); page = lookup_swap_cache(entry, vma, vmf->address); swapcache = page; if (!page) { struct swap_info_struct *si = swp_swap_info(entry); if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && __swap_count(entry) == 1) { /* skip swapcache */ page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); if (page) { int err; __SetPageLocked(page); __SetPageSwapBacked(page); set_page_private(page, entry.val); /* Tell memcg to use swap ownership records */ SetPageSwapCache(page); err = mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL); ClearPageSwapCache(page); if (err) { ret = VM_FAULT_OOM; goto out_page; } shadow = get_shadow_from_swap_cache(entry); if (shadow) workingset_refault(page, shadow); lru_cache_add(page); swap_readpage(page, true); } } else { page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, vmf); swapcache = page; } if (!page) { /* * Back out if somebody else faulted in this pte * while we released the pte lock. */ vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, &vmf->ptl); if (likely(pte_same(*vmf->pte, vmf->orig_pte))) ret = VM_FAULT_OOM; delayacct_clear_flag(DELAYACCT_PF_SWAPIN); goto unlock; } /* Had to read the page from swap area: Major fault */ ret = VM_FAULT_MAJOR; count_vm_event(PGMAJFAULT); count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); } else if (PageHWPoison(page)) { /* * hwpoisoned dirty swapcache pages are kept for killing * owner processes (which may be unknown at hwpoison time) */ ret = VM_FAULT_HWPOISON; delayacct_clear_flag(DELAYACCT_PF_SWAPIN); goto out_release; } locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags); delayacct_clear_flag(DELAYACCT_PF_SWAPIN); if (!locked) { ret |= VM_FAULT_RETRY; goto out_release; } /* * Make sure try_to_free_swap or reuse_swap_page or swapoff did not * release the swapcache from under us. The page pin, and pte_same * test below, are not enough to exclude that. Even if it is still * swapcache, we need to check that the page's swap has not changed. */ if (unlikely((!PageSwapCache(page) || page_private(page) != entry.val)) && swapcache) goto out_page; page = ksm_might_need_to_copy(page, vma, vmf->address); if (unlikely(!page)) { ret = VM_FAULT_OOM; page = swapcache; goto out_page; } cgroup_throttle_swaprate(page, GFP_KERNEL); /* * Back out if somebody else already faulted in this pte. */ vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, &vmf->ptl); if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) goto out_nomap; if (unlikely(!PageUptodate(page))) { ret = VM_FAULT_SIGBUS; goto out_nomap; } /* * The page isn't present yet, go ahead with the fault. * * Be careful about the sequence of operations here. * To get its accounting right, reuse_swap_page() must be called * while the page is counted on swap but not yet in mapcount i.e. * before page_add_anon_rmap() and swap_free(); try_to_free_swap() * must be called after the swap_free(), or it will never succeed. */ inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS); pte = mk_pte(page, vma->vm_page_prot); if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) { pte = maybe_mkwrite(pte_mkdirty(pte), vma); vmf->flags &= ~FAULT_FLAG_WRITE; ret |= VM_FAULT_WRITE; exclusive = RMAP_EXCLUSIVE; } flush_icache_page(vma, page); if (pte_swp_soft_dirty(vmf->orig_pte)) pte = pte_mksoft_dirty(pte); if (pte_swp_uffd_wp(vmf->orig_pte)) { pte = pte_mkuffd_wp(pte); pte = pte_wrprotect(pte); } set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); vmf->orig_pte = pte; /* ksm created a completely new copy */ if (unlikely(page != swapcache && swapcache)) { page_add_new_anon_rmap(page, vma, vmf->address, false); lru_cache_add_inactive_or_unevictable(page, vma); } else { do_page_add_anon_rmap(page, vma, vmf->address, exclusive); } swap_free(entry); if (mem_cgroup_swap_full(page) || (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) try_to_free_swap(page); unlock_page(page); if (page != swapcache && swapcache) { /* * Hold the lock to avoid the swap entry to be reused * until we take the PT lock for the pte_same() check * (to avoid false positives from pte_same). For * further safety release the lock after the swap_free * so that the swap count won't change under a * parallel locked swapcache. */ unlock_page(swapcache); put_page(swapcache); } if (vmf->flags & FAULT_FLAG_WRITE) { ret |= do_wp_page(vmf); if (ret & VM_FAULT_ERROR) ret &= VM_FAULT_ERROR; goto out; } /* No need to invalidate - it was non-present before */ update_mmu_cache(vma, vmf->address, vmf->pte); unlock: pte_unmap_unlock(vmf->pte, vmf->ptl); out: return ret; out_nomap: pte_unmap_unlock(vmf->pte, vmf->ptl); out_page: unlock_page(page); out_release: put_page(page); if (page != swapcache && swapcache) { unlock_page(swapcache); put_page(swapcache); } return ret; } /* * We enter with non-exclusive mmap_lock (to exclude vma changes, * but allow concurrent faults), and pte mapped but not yet locked. * We return with mmap_lock still held, but pte unmapped and unlocked. */ static vm_fault_t do_anonymous_page(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; struct page *page; vm_fault_t ret = 0; pte_t entry; /* File mapping without ->vm_ops ? */ if (vma->vm_flags & VM_SHARED) return VM_FAULT_SIGBUS; /* * Use pte_alloc() instead of pte_alloc_map(). We can't run * pte_offset_map() on pmds where a huge pmd might be created * from a different thread. * * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when * parallel threads are excluded by other means. * * Here we only have mmap_read_lock(mm). */ if (pte_alloc(vma->vm_mm, vmf->pmd)) return VM_FAULT_OOM; /* See the comment in pte_alloc_one_map() */ if (unlikely(pmd_trans_unstable(vmf->pmd))) return 0; /* Use the zero-page for reads */ if (!(vmf->flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(vma->vm_mm)) { entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), vma->vm_page_prot)); vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, &vmf->ptl); if (!pte_none(*vmf->pte)) { update_mmu_tlb(vma, vmf->address, vmf->pte); goto unlock; } ret = check_stable_address_space(vma->vm_mm); if (ret) goto unlock; /* Deliver the page fault to userland, check inside PT lock */ if (userfaultfd_missing(vma)) { pte_unmap_unlock(vmf->pte, vmf->ptl); return handle_userfault(vmf, VM_UFFD_MISSING); } goto setpte; } /* Allocate our own private page. */ if (unlikely(anon_vma_prepare(vma))) goto oom; page = alloc_zeroed_user_highpage_movable(vma, vmf->address); if (!page) goto oom; if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL)) goto oom_free_page; cgroup_throttle_swaprate(page, GFP_KERNEL); /* * The memory barrier inside __SetPageUptodate makes sure that * preceding stores to the page contents become visible before * the set_pte_at() write. */ __SetPageUptodate(page); entry = mk_pte(page, vma->vm_page_prot); entry = pte_sw_mkyoung(entry); if (vma->vm_flags & VM_WRITE) entry = pte_mkwrite(pte_mkdirty(entry)); vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, &vmf->ptl); if (!pte_none(*vmf->pte)) { update_mmu_cache(vma, vmf->address, vmf->pte); goto release; } ret = check_stable_address_space(vma->vm_mm); if (ret) goto release; /* Deliver the page fault to userland, check inside PT lock */ if (userfaultfd_missing(vma)) { pte_unmap_unlock(vmf->pte, vmf->ptl); put_page(page); return handle_userfault(vmf, VM_UFFD_MISSING); } inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); page_add_new_anon_rmap(page, vma, vmf->address, false); lru_cache_add_inactive_or_unevictable(page, vma); setpte: set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); /* No need to invalidate - it was non-present before */ update_mmu_cache(vma, vmf->address, vmf->pte); unlock: pte_unmap_unlock(vmf->pte, vmf->ptl); return ret; release: put_page(page); goto unlock; oom_free_page: put_page(page); oom: return VM_FAULT_OOM; } /* * The mmap_lock must have been held on entry, and may have been * released depending on flags and vma->vm_ops->fault() return value. * See filemap_fault() and __lock_page_retry(). */ static vm_fault_t __do_fault(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; vm_fault_t ret; /* * Preallocate pte before we take page_lock because this might lead to * deadlocks for memcg reclaim which waits for pages under writeback: * lock_page(A) * SetPageWriteback(A) * unlock_page(A) * lock_page(B) * lock_page(B) * pte_alloc_one * shrink_page_list * wait_on_page_writeback(A) * SetPageWriteback(B) * unlock_page(B) * # flush A, B to clear the writeback */ if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); if (!vmf->prealloc_pte) return VM_FAULT_OOM; smp_wmb(); /* See comment in __pte_alloc() */ } ret = vma->vm_ops->fault(vmf); if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | VM_FAULT_DONE_COW))) return ret; if (unlikely(PageHWPoison(vmf->page))) { if (ret & VM_FAULT_LOCKED) unlock_page(vmf->page); put_page(vmf->page); vmf->page = NULL; return VM_FAULT_HWPOISON; } if (unlikely(!(ret & VM_FAULT_LOCKED))) lock_page(vmf->page); else VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); return ret; } /* * The ordering of these checks is important for pmds with _PAGE_DEVMAP set. * If we check pmd_trans_unstable() first we will trip the bad_pmd() check * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly * returning 1 but not before it spams dmesg with the pmd_clear_bad() output. */ static int pmd_devmap_trans_unstable(pmd_t *pmd) { return pmd_devmap(*pmd) || pmd_trans_unstable(pmd); } static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; if (!pmd_none(*vmf->pmd)) goto map_pte; if (vmf->prealloc_pte) { vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); if (unlikely(!pmd_none(*vmf->pmd))) { spin_unlock(vmf->ptl); goto map_pte; } mm_inc_nr_ptes(vma->vm_mm); pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); spin_unlock(vmf->ptl); vmf->prealloc_pte = NULL; } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) { return VM_FAULT_OOM; } map_pte: /* * If a huge pmd materialized under us just retry later. Use * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge * under us and then back to pmd_none, as a result of MADV_DONTNEED * running immediately after a huge pmd fault in a different thread of * this mm, in turn leading to a misleading pmd_trans_huge() retval. * All we have to ensure is that it is a regular pmd that we can walk * with pte_offset_map() and we can do that through an atomic read in * C, which is what pmd_trans_unstable() provides. */ if (pmd_devmap_trans_unstable(vmf->pmd)) return VM_FAULT_NOPAGE; /* * At this point we know that our vmf->pmd points to a page of ptes * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge() * for the duration of the fault. If a racing MADV_DONTNEED runs and * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still * be valid and we will re-check to make sure the vmf->pte isn't * pte_none() under vmf->ptl protection when we return to * alloc_set_pte(). */ vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, &vmf->ptl); return 0; } #ifdef CONFIG_TRANSPARENT_HUGEPAGE static void deposit_prealloc_pte(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); /* * We are going to consume the prealloc table, * count that as nr_ptes. */ mm_inc_nr_ptes(vma->vm_mm); vmf->prealloc_pte = NULL; } static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) { struct vm_area_struct *vma = vmf->vma; bool write = vmf->flags & FAULT_FLAG_WRITE; unsigned long haddr = vmf->address & HPAGE_PMD_MASK; pmd_t entry; int i; vm_fault_t ret = VM_FAULT_FALLBACK; if (!transhuge_vma_suitable(vma, haddr)) return ret; page = compound_head(page); if (compound_order(page) != HPAGE_PMD_ORDER) return ret; /* * Archs like ppc64 need additonal space to store information * related to pte entry. Use the preallocated table for that. */ if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); if (!vmf->prealloc_pte) return VM_FAULT_OOM; smp_wmb(); /* See comment in __pte_alloc() */ } vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); if (unlikely(!pmd_none(*vmf->pmd))) goto out; for (i = 0; i < HPAGE_PMD_NR; i++) flush_icache_page(vma, page + i); entry = mk_huge_pmd(page, vma->vm_page_prot); if (write) entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR); page_add_file_rmap(page, true); /* * deposit and withdraw with pmd lock held */ if (arch_needs_pgtable_deposit()) deposit_prealloc_pte(vmf); set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); update_mmu_cache_pmd(vma, haddr, vmf->pmd); /* fault is handled */ ret = 0; count_vm_event(THP_FILE_MAPPED); out: spin_unlock(vmf->ptl); return ret; } #else static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) { BUILD_BUG(); return 0; } #endif /** * alloc_set_pte - setup new PTE entry for given page and add reverse page * mapping. If needed, the function allocates page table or use pre-allocated. * * @vmf: fault environment * @page: page to map * * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on * return. * * Target users are page handler itself and implementations of * vm_ops->map_pages. * * Return: %0 on success, %VM_FAULT_ code in case of error. */ vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page) { struct vm_area_struct *vma = vmf->vma; bool write = vmf->flags & FAULT_FLAG_WRITE; pte_t entry; vm_fault_t ret; if (pmd_none(*vmf->pmd) && PageTransCompound(page)) { ret = do_set_pmd(vmf, page); if (ret != VM_FAULT_FALLBACK) return ret; } if (!vmf->pte) { ret = pte_alloc_one_map(vmf); if (ret) return ret; } /* Re-check under ptl */ if (unlikely(!pte_none(*vmf->pte))) { update_mmu_tlb(vma, vmf->address, vmf->pte); return VM_FAULT_NOPAGE; } flush_icache_page(vma, page); entry = mk_pte(page, vma->vm_page_prot); entry = pte_sw_mkyoung(entry); if (write) entry = maybe_mkwrite(pte_mkdirty(entry), vma); /* copy-on-write page */ if (write && !(vma->vm_flags & VM_SHARED)) { inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); page_add_new_anon_rmap(page, vma, vmf->address, false); lru_cache_add_inactive_or_unevictable(page, vma); } else { inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); page_add_file_rmap(page, false); } set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); /* no need to invalidate: a not-present page won't be cached */ update_mmu_cache(vma, vmf->address, vmf->pte); return 0; } /** * finish_fault - finish page fault once we have prepared the page to fault * * @vmf: structure describing the fault * * This function handles all that is needed to finish a page fault once the * page to fault in is prepared. It handles locking of PTEs, inserts PTE for * given page, adds reverse page mapping, handles memcg charges and LRU * addition. * * The function expects the page to be locked and on success it consumes a * reference of a page being mapped (for the PTE which maps it). * * Return: %0 on success, %VM_FAULT_ code in case of error. */ vm_fault_t finish_fault(struct vm_fault *vmf) { struct page *page; vm_fault_t ret = 0; /* Did we COW the page? */ if ((vmf->flags & FAULT_FLAG_WRITE) && !(vmf->vma->vm_flags & VM_SHARED)) page = vmf->cow_page; else page = vmf->page; /* * check even for read faults because we might have lost our CoWed * page */ if (!(vmf->vma->vm_flags & VM_SHARED)) ret = check_stable_address_space(vmf->vma->vm_mm); if (!ret) ret = alloc_set_pte(vmf, page); if (vmf->pte) pte_unmap_unlock(vmf->pte, vmf->ptl); return ret; } static unsigned long fault_around_bytes __read_mostly = rounddown_pow_of_two(65536); #ifdef CONFIG_DEBUG_FS static int fault_around_bytes_get(void *data, u64 *val) { *val = fault_around_bytes; return 0; } /* * fault_around_bytes must be rounded down to the nearest page order as it's * what do_fault_around() expects to see. */ static int fault_around_bytes_set(void *data, u64 val) { if (val / PAGE_SIZE > PTRS_PER_PTE) return -EINVAL; if (val > PAGE_SIZE) fault_around_bytes = rounddown_pow_of_two(val); else fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ return 0; } DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); static int __init fault_around_debugfs(void) { debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, &fault_around_bytes_fops); return 0; } late_initcall(fault_around_debugfs); #endif /* * do_fault_around() tries to map few pages around the fault address. The hope * is that the pages will be needed soon and this will lower the number of * faults to handle. * * It uses vm_ops->map_pages() to map the pages, which skips the page if it's * not ready to be mapped: not up-to-date, locked, etc. * * This function is called with the page table lock taken. In the split ptlock * case the page table lock only protects only those entries which belong to * the page table corresponding to the fault address. * * This function doesn't cross the VMA boundaries, in order to call map_pages() * only once. * * fault_around_bytes defines how many bytes we'll try to map. * do_fault_around() expects it to be set to a power of two less than or equal * to PTRS_PER_PTE. * * The virtual address of the area that we map is naturally aligned to * fault_around_bytes rounded down to the machine page size * (and therefore to page order). This way it's easier to guarantee * that we don't cross page table boundaries. */ static vm_fault_t do_fault_around(struct vm_fault *vmf) { unsigned long address = vmf->address, nr_pages, mask; pgoff_t start_pgoff = vmf->pgoff; pgoff_t end_pgoff; int off; vm_fault_t ret = 0; nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; vmf->address = max(address & mask, vmf->vma->vm_start); off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); start_pgoff -= off; /* * end_pgoff is either the end of the page table, the end of * the vma or nr_pages from start_pgoff, depending what is nearest. */ end_pgoff = start_pgoff - ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + PTRS_PER_PTE - 1; end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1, start_pgoff + nr_pages - 1); if (pmd_none(*vmf->pmd)) { vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); if (!vmf->prealloc_pte) goto out; smp_wmb(); /* See comment in __pte_alloc() */ } vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff); /* Huge page is mapped? Page fault is solved */ if (pmd_trans_huge(*vmf->pmd)) { ret = VM_FAULT_NOPAGE; goto out; } /* ->map_pages() haven't done anything useful. Cold page cache? */ if (!vmf->pte) goto out; /* check if the page fault is solved */ vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT); if (!pte_none(*vmf->pte)) ret = VM_FAULT_NOPAGE; pte_unmap_unlock(vmf->pte, vmf->ptl); out: vmf->address = address; vmf->pte = NULL; return ret; } static vm_fault_t do_read_fault(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; vm_fault_t ret = 0; /* * Let's call ->map_pages() first and use ->fault() as fallback * if page by the offset is not ready to be mapped (cold cache or * something). */ if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) { ret = do_fault_around(vmf); if (ret) return ret; } ret = __do_fault(vmf); if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) return ret; ret |= finish_fault(vmf); unlock_page(vmf->page); if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) put_page(vmf->page); return ret; } static vm_fault_t do_cow_fault(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; vm_fault_t ret; if (unlikely(anon_vma_prepare(vma))) return VM_FAULT_OOM; vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); if (!vmf->cow_page) return VM_FAULT_OOM; if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) { put_page(vmf->cow_page); return VM_FAULT_OOM; } cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL); ret = __do_fault(vmf); if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) goto uncharge_out; if (ret & VM_FAULT_DONE_COW) return ret; copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); __SetPageUptodate(vmf->cow_page); ret |= finish_fault(vmf); unlock_page(vmf->page); put_page(vmf->page); if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) goto uncharge_out; return ret; uncharge_out: put_page(vmf->cow_page); return ret; } static vm_fault_t do_shared_fault(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; vm_fault_t ret, tmp; ret = __do_fault(vmf); if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) return ret; /* * Check if the backing address space wants to know that the page is * about to become writable */ if (vma->vm_ops->page_mkwrite) { unlock_page(vmf->page); tmp = do_page_mkwrite(vmf); if (unlikely(!tmp || (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { put_page(vmf->page); return tmp; } } ret |= finish_fault(vmf); if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) { unlock_page(vmf->page); put_page(vmf->page); return ret; } ret |= fault_dirty_shared_page(vmf); return ret; } /* * We enter with non-exclusive mmap_lock (to exclude vma changes, * but allow concurrent faults). * The mmap_lock may have been released depending on flags and our * return value. See filemap_fault() and __lock_page_or_retry(). * If mmap_lock is released, vma may become invalid (for example * by other thread calling munmap()). */ static vm_fault_t do_fault(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; struct mm_struct *vm_mm = vma->vm_mm; vm_fault_t ret; /* * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */ if (!vma->vm_ops->fault) { /* * If we find a migration pmd entry or a none pmd entry, which * should never happen, return SIGBUS */ if (unlikely(!pmd_present(*vmf->pmd))) ret = VM_FAULT_SIGBUS; else { vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, &vmf->ptl); /* * Make sure this is not a temporary clearing of pte * by holding ptl and checking again. A R/M/W update * of pte involves: take ptl, clearing the pte so that * we don't have concurrent modification by hardware * followed by an update. */ if (unlikely(pte_none(*vmf->pte))) ret = VM_FAULT_SIGBUS; else ret = VM_FAULT_NOPAGE; pte_unmap_unlock(vmf->pte, vmf->ptl); } } else if (!(vmf->flags & FAULT_FLAG_WRITE)) ret = do_read_fault(vmf); else if (!(vma->vm_flags & VM_SHARED)) ret = do_cow_fault(vmf); else ret = do_shared_fault(vmf); /* preallocated pagetable is unused: free it */ if (vmf->prealloc_pte) { pte_free(vm_mm, vmf->prealloc_pte); vmf->prealloc_pte = NULL; } return ret; } static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, unsigned long addr, int page_nid, int *flags) { get_page(page); count_vm_numa_event(NUMA_HINT_FAULTS); if (page_nid == numa_node_id()) { count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); *flags |= TNF_FAULT_LOCAL; } return mpol_misplaced(page, vma, addr); } static vm_fault_t do_numa_page(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; struct page *page = NULL; int page_nid = NUMA_NO_NODE; int last_cpupid; int target_nid; bool migrated = false; pte_t pte, old_pte; bool was_writable = pte_savedwrite(vmf->orig_pte); int flags = 0; /* * The "pte" at this point cannot be used safely without * validation through pte_unmap_same(). It's of NUMA type but * the pfn may be screwed if the read is non atomic. */ vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd); spin_lock(vmf->ptl); if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { pte_unmap_unlock(vmf->pte, vmf->ptl); goto out; } /* * Make it present again, Depending on how arch implementes non * accessible ptes, some can allow access by kernel mode. */ old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte); pte = pte_modify(old_pte, vma->vm_page_prot); pte = pte_mkyoung(pte); if (was_writable) pte = pte_mkwrite(pte); ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte); update_mmu_cache(vma, vmf->address, vmf->pte); page = vm_normal_page(vma, vmf->address, pte); if (!page) { pte_unmap_unlock(vmf->pte, vmf->ptl); return 0; } /* TODO: handle PTE-mapped THP */ if (PageCompound(page)) { pte_unmap_unlock(vmf->pte, vmf->ptl); return 0; } /* * Avoid grouping on RO pages in general. RO pages shouldn't hurt as * much anyway since they can be in shared cache state. This misses * the case where a mapping is writable but the process never writes * to it but pte_write gets cleared during protection updates and * pte_dirty has unpredictable behaviour between PTE scan updates, * background writeback, dirty balancing and application behaviour. */ if (!pte_write(pte)) flags |= TNF_NO_GROUP; /* * Flag if the page is shared between multiple address spaces. This * is later used when determining whether to group tasks together */ if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) flags |= TNF_SHARED; last_cpupid = page_cpupid_last(page); page_nid = page_to_nid(page); target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, &flags); pte_unmap_unlock(vmf->pte, vmf->ptl); if (target_nid == NUMA_NO_NODE) { put_page(page); goto out; } /* Migrate to the requested node */ migrated = migrate_misplaced_page(page, vma, target_nid); if (migrated) { page_nid = target_nid; flags |= TNF_MIGRATED; } else flags |= TNF_MIGRATE_FAIL; out: if (page_nid != NUMA_NO_NODE) task_numa_fault(last_cpupid, page_nid, 1, flags); return 0; } static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) { if (vma_is_anonymous(vmf->vma)) return do_huge_pmd_anonymous_page(vmf); if (vmf->vma->vm_ops->huge_fault) return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); return VM_FAULT_FALLBACK; } /* `inline' is required to avoid gcc 4.1.2 build error */ static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd) { if (vma_is_anonymous(vmf->vma)) { if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd)) return handle_userfault(vmf, VM_UFFD_WP); return do_huge_pmd_wp_page(vmf, orig_pmd); } if (vmf->vma->vm_ops->huge_fault) { vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); if (!(ret & VM_FAULT_FALLBACK)) return ret; } /* COW or write-notify handled on pte level: split pmd. */ __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); return VM_FAULT_FALLBACK; } static vm_fault_t create_huge_pud(struct vm_fault *vmf) { #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) /* No support for anonymous transparent PUD pages yet */ if (vma_is_anonymous(vmf->vma)) goto split; if (vmf->vma->vm_ops->huge_fault) { vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); if (!(ret & VM_FAULT_FALLBACK)) return ret; } split: /* COW or write-notify not handled on PUD level: split pud.*/ __split_huge_pud(vmf->vma, vmf->pud, vmf->address); #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ return VM_FAULT_FALLBACK; } static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) { #ifdef CONFIG_TRANSPARENT_HUGEPAGE /* No support for anonymous transparent PUD pages yet */ if (vma_is_anonymous(vmf->vma)) return VM_FAULT_FALLBACK; if (vmf->vma->vm_ops->huge_fault) return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ return VM_FAULT_FALLBACK; } /* * These routines also need to handle stuff like marking pages dirty * and/or accessed for architectures that don't do it in hardware (most * RISC architectures). The early dirtying is also good on the i386. * * There is also a hook called "update_mmu_cache()" that architectures * with external mmu caches can use to update those (ie the Sparc or * PowerPC hashed page tables that act as extended TLBs). * * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow * concurrent faults). * * The mmap_lock may have been released depending on flags and our return value. * See filemap_fault() and __lock_page_or_retry(). */ static vm_fault_t handle_pte_fault(struct vm_fault *vmf) { pte_t entry; if (unlikely(pmd_none(*vmf->pmd))) { /* * Leave __pte_alloc() until later: because vm_ops->fault may * want to allocate huge page, and if we expose page table * for an instant, it will be difficult to retract from * concurrent faults and from rmap lookups. */ vmf->pte = NULL; } else { /* See comment in pte_alloc_one_map() */ if (pmd_devmap_trans_unstable(vmf->pmd)) return 0; /* * A regular pmd is established and it can't morph into a huge * pmd from under us anymore at this point because we hold the * mmap_lock read mode and khugepaged takes it in write mode. * So now it's safe to run pte_offset_map(). */ vmf->pte = pte_offset_map(vmf->pmd, vmf->address); vmf->orig_pte = *vmf->pte; /* * some architectures can have larger ptes than wordsize, * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic * accesses. The code below just needs a consistent view * for the ifs and we later double check anyway with the * ptl lock held. So here a barrier will do. */ barrier(); if (pte_none(vmf->orig_pte)) { pte_unmap(vmf->pte); vmf->pte = NULL; } } if (!vmf->pte) { if (vma_is_anonymous(vmf->vma)) return do_anonymous_page(vmf); else return do_fault(vmf); } if (!pte_present(vmf->orig_pte)) return do_swap_page(vmf); if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) return do_numa_page(vmf); vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); spin_lock(vmf->ptl); entry = vmf->orig_pte; if (unlikely(!pte_same(*vmf->pte, entry))) { update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); goto unlock; } if (vmf->flags & FAULT_FLAG_WRITE) { if (!pte_write(entry)) return do_wp_page(vmf); entry = pte_mkdirty(entry); } entry = pte_mkyoung(entry); if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, vmf->flags & FAULT_FLAG_WRITE)) { update_mmu_cache(vmf->vma, vmf->address, vmf->pte); } else { /* Skip spurious TLB flush for retried page fault */ if (vmf->flags & FAULT_FLAG_TRIED) goto unlock; /* * This is needed only for protection faults but the arch code * is not yet telling us if this is a protection fault or not. * This still avoids useless tlb flushes for .text page faults * with threads. */ if (vmf->flags & FAULT_FLAG_WRITE) flush_tlb_fix_spurious_fault(vmf->vma, vmf->address); } unlock: pte_unmap_unlock(vmf->pte, vmf->ptl); return 0; } /* * By the time we get here, we already hold the mm semaphore * * The mmap_lock may have been released depending on flags and our * return value. See filemap_fault() and __lock_page_or_retry(). */ static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, unsigned long address, unsigned int flags) { struct vm_fault vmf = { .vma = vma, .address = address & PAGE_MASK, .flags = flags, .pgoff = linear_page_index(vma, address), .gfp_mask = __get_fault_gfp_mask(vma), }; unsigned int dirty = flags & FAULT_FLAG_WRITE; struct mm_struct *mm = vma->vm_mm; pgd_t *pgd; p4d_t *p4d; vm_fault_t ret; pgd = pgd_offset(mm, address); p4d = p4d_alloc(mm, pgd, address); if (!p4d) return VM_FAULT_OOM; vmf.pud = pud_alloc(mm, p4d, address); if (!vmf.pud) return VM_FAULT_OOM; retry_pud: if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) { ret = create_huge_pud(&vmf); if (!(ret & VM_FAULT_FALLBACK)) return ret; } else { pud_t orig_pud = *vmf.pud; barrier(); if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { /* NUMA case for anonymous PUDs would go here */ if (dirty && !pud_write(orig_pud)) { ret = wp_huge_pud(&vmf, orig_pud); if (!(ret & VM_FAULT_FALLBACK)) return ret; } else { huge_pud_set_accessed(&vmf, orig_pud); return 0; } } } vmf.pmd = pmd_alloc(mm, vmf.pud, address); if (!vmf.pmd) return VM_FAULT_OOM; /* Huge pud page fault raced with pmd_alloc? */ if (pud_trans_unstable(vmf.pud)) goto retry_pud; if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) { ret = create_huge_pmd(&vmf); if (!(ret & VM_FAULT_FALLBACK)) return ret; } else { pmd_t orig_pmd = *vmf.pmd; barrier(); if (unlikely(is_swap_pmd(orig_pmd))) { VM_BUG_ON(thp_migration_supported() && !is_pmd_migration_entry(orig_pmd)); if (is_pmd_migration_entry(orig_pmd)) pmd_migration_entry_wait(mm, vmf.pmd); return 0; } if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) { if (pmd_protnone(orig_pmd) && vma_is_accessible(vma)) return do_huge_pmd_numa_page(&vmf, orig_pmd); if (dirty && !pmd_write(orig_pmd)) { ret = wp_huge_pmd(&vmf, orig_pmd); if (!(ret & VM_FAULT_FALLBACK)) return ret; } else { huge_pmd_set_accessed(&vmf, orig_pmd); return 0; } } } return handle_pte_fault(&vmf); } /** * mm_account_fault - Do page fault accountings * * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting * of perf event counters, but we'll still do the per-task accounting to * the task who triggered this page fault. * @address: the faulted address. * @flags: the fault flags. * @ret: the fault retcode. * * This will take care of most of the page fault accountings. Meanwhile, it * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter * updates. However note that the handling of PERF_COUNT_SW_PAGE_FAULTS should * still be in per-arch page fault handlers at the entry of page fault. */ static inline void mm_account_fault(struct pt_regs *regs, unsigned long address, unsigned int flags, vm_fault_t ret) { bool major; /* * We don't do accounting for some specific faults: * * - Unsuccessful faults (e.g. when the address wasn't valid). That * includes arch_vma_access_permitted() failing before reaching here. * So this is not a "this many hardware page faults" counter. We * should use the hw profiling for that. * * - Incomplete faults (VM_FAULT_RETRY). They will only be counted * once they're completed. */ if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY)) return; /* * We define the fault as a major fault when the final successful fault * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't * handle it immediately previously). */ major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); if (major) current->maj_flt++; else current->min_flt++; /* * If the fault is done for GUP, regs will be NULL. We only do the * accounting for the per thread fault counters who triggered the * fault, and we skip the perf event updates. */ if (!regs) return; if (major) perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); else perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); } /* * By the time we get here, we already hold the mm semaphore * * The mmap_lock may have been released depending on flags and our * return value. See filemap_fault() and __lock_page_or_retry(). */ vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, unsigned int flags, struct pt_regs *regs) { vm_fault_t ret; __set_current_state(TASK_RUNNING); count_vm_event(PGFAULT); count_memcg_event_mm(vma->vm_mm, PGFAULT); /* do counter updates before entering really critical section. */ check_sync_rss_stat(current); if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, flags & FAULT_FLAG_INSTRUCTION, flags & FAULT_FLAG_REMOTE)) return VM_FAULT_SIGSEGV; /* * Enable the memcg OOM handling for faults triggered in user * space. Kernel faults are handled more gracefully. */ if (flags & FAULT_FLAG_USER) mem_cgroup_enter_user_fault(); if (unlikely(is_vm_hugetlb_page(vma))) ret = hugetlb_fault(vma->vm_mm, vma, address, flags); else ret = __handle_mm_fault(vma, address, flags); if (flags & FAULT_FLAG_USER) { mem_cgroup_exit_user_fault(); /* * The task may have entered a memcg OOM situation but * if the allocation error was handled gracefully (no * VM_FAULT_OOM), there is no need to kill anything. * Just clean up the OOM state peacefully. */ if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) mem_cgroup_oom_synchronize(false); } mm_account_fault(regs, address, flags, ret); return ret; } EXPORT_SYMBOL_GPL(handle_mm_fault); #ifndef __PAGETABLE_P4D_FOLDED /* * Allocate p4d page table. * We've already handled the fast-path in-line. */ int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) { p4d_t *new = p4d_alloc_one(mm, address); if (!new) return -ENOMEM; smp_wmb(); /* See comment in __pte_alloc */ spin_lock(&mm->page_table_lock); if (pgd_present(*pgd)) /* Another has populated it */ p4d_free(mm, new); else pgd_populate(mm, pgd, new); spin_unlock(&mm->page_table_lock); return 0; } #endif /* __PAGETABLE_P4D_FOLDED */ #ifndef __PAGETABLE_PUD_FOLDED /* * Allocate page upper directory. * We've already handled the fast-path in-line. */ int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) { pud_t *new = pud_alloc_one(mm, address); if (!new) return -ENOMEM; smp_wmb(); /* See comment in __pte_alloc */ spin_lock(&mm->page_table_lock); if (!p4d_present(*p4d)) { mm_inc_nr_puds(mm); p4d_populate(mm, p4d, new); } else /* Another has populated it */ pud_free(mm, new); spin_unlock(&mm->page_table_lock); return 0; } #endif /* __PAGETABLE_PUD_FOLDED */ #ifndef __PAGETABLE_PMD_FOLDED /* * Allocate page middle directory. * We've already handled the fast-path in-line. */ int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) { spinlock_t *ptl; pmd_t *new = pmd_alloc_one(mm, address); if (!new) return -ENOMEM; smp_wmb(); /* See comment in __pte_alloc */ ptl = pud_lock(mm, pud); if (!pud_present(*pud)) { mm_inc_nr_pmds(mm); pud_populate(mm, pud, new); } else /* Another has populated it */ pmd_free(mm, new); spin_unlock(ptl); return 0; } #endif /* __PAGETABLE_PMD_FOLDED */ int follow_invalidate_pte(struct mm_struct *mm, unsigned long address, struct mmu_notifier_range *range, pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) { pgd_t *pgd; p4d_t *p4d; pud_t *pud; pmd_t *pmd; pte_t *ptep; pgd = pgd_offset(mm, address); if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) goto out; p4d = p4d_offset(pgd, address); if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) goto out; pud = pud_offset(p4d, address); if (pud_none(*pud) || unlikely(pud_bad(*pud))) goto out; pmd = pmd_offset(pud, address); VM_BUG_ON(pmd_trans_huge(*pmd)); if (pmd_huge(*pmd)) { if (!pmdpp) goto out; if (range) { mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm, address & PMD_MASK, (address & PMD_MASK) + PMD_SIZE); mmu_notifier_invalidate_range_start(range); } *ptlp = pmd_lock(mm, pmd); if (pmd_huge(*pmd)) { *pmdpp = pmd; return 0; } spin_unlock(*ptlp); if (range) mmu_notifier_invalidate_range_end(range); } if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) goto out; if (range) { mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm, address & PAGE_MASK, (address & PAGE_MASK) + PAGE_SIZE); mmu_notifier_invalidate_range_start(range); } ptep = pte_offset_map_lock(mm, pmd, address, ptlp); if (!pte_present(*ptep)) goto unlock; *ptepp = ptep; return 0; unlock: pte_unmap_unlock(ptep, *ptlp); if (range) mmu_notifier_invalidate_range_end(range); out: return -EINVAL; } /** * follow_pte - look up PTE at a user virtual address * @mm: the mm_struct of the target address space * @address: user virtual address * @ptepp: location to store found PTE * @ptlp: location to store the lock for the PTE * * On a successful return, the pointer to the PTE is stored in @ptepp; * the corresponding lock is taken and its location is stored in @ptlp. * The contents of the PTE are only stable until @ptlp is released; * any further use, if any, must be protected against invalidation * with MMU notifiers. * * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore * should be taken for read. * * KVM uses this function. While it is arguably less bad than ``follow_pfn``, * it is not a good general-purpose API. * * Return: zero on success, -ve otherwise. */ int follow_pte(struct mm_struct *mm, unsigned long address, pte_t **ptepp, spinlock_t **ptlp) { return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp); } EXPORT_SYMBOL_GPL(follow_pte); /** * follow_pfn - look up PFN at a user virtual address * @vma: memory mapping * @address: user virtual address * @pfn: location to store found PFN * * Only IO mappings and raw PFN mappings are allowed. * * This function does not allow the caller to read the permissions * of the PTE. Do not use it. * * Return: zero and the pfn at @pfn on success, -ve otherwise. */ int follow_pfn(struct vm_area_struct *vma, unsigned long address, unsigned long *pfn) { int ret = -EINVAL; spinlock_t *ptl; pte_t *ptep; if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) return ret; ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); if (ret) return ret; *pfn = pte_pfn(*ptep); pte_unmap_unlock(ptep, ptl); return 0; } EXPORT_SYMBOL(follow_pfn); #ifdef CONFIG_HAVE_IOREMAP_PROT int follow_phys(struct vm_area_struct *vma, unsigned long address, unsigned int flags, unsigned long *prot, resource_size_t *phys) { int ret = -EINVAL; pte_t *ptep, pte; spinlock_t *ptl; if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) goto out; if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) goto out; pte = *ptep; if ((flags & FOLL_WRITE) && !pte_write(pte)) goto unlock; *prot = pgprot_val(pte_pgprot(pte)); *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; ret = 0; unlock: pte_unmap_unlock(ptep, ptl); out: return ret; } int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, void *buf, int len, int write) { resource_size_t phys_addr; unsigned long prot = 0; void __iomem *maddr; int offset = addr & (PAGE_SIZE-1); if (follow_phys(vma, addr, write, &prot, &phys_addr)) return -EINVAL; maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); if (!maddr) return -ENOMEM; if (write) memcpy_toio(maddr + offset, buf, len); else memcpy_fromio(buf, maddr + offset, len); iounmap(maddr); return len; } EXPORT_SYMBOL_GPL(generic_access_phys); #endif /* * Access another process' address space as given in mm. If non-NULL, use the * given task for page fault accounting. */ int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, unsigned long addr, void *buf, int len, unsigned int gup_flags) { struct vm_area_struct *vma; void *old_buf = buf; int write = gup_flags & FOLL_WRITE; if (mmap_read_lock_killable(mm)) return 0; /* ignore errors, just check how much was successfully transferred */ while (len) { int bytes, ret, offset; void *maddr; struct page *page = NULL; ret = get_user_pages_remote(mm, addr, 1, gup_flags, &page, &vma, NULL); if (ret <= 0) { #ifndef CONFIG_HAVE_IOREMAP_PROT break; #else /* * Check if this is a VM_IO | VM_PFNMAP VMA, which * we can access using slightly different code. */ vma = find_vma(mm, addr); if (!vma || vma->vm_start > addr) break; if (vma->vm_ops && vma->vm_ops->access) ret = vma->vm_ops->access(vma, addr, buf, len, write); if (ret <= 0) break; bytes = ret; #endif } else { bytes = len; offset = addr & (PAGE_SIZE-1); if (bytes > PAGE_SIZE-offset) bytes = PAGE_SIZE-offset; maddr = kmap(page); if (write) { copy_to_user_page(vma, page, addr, maddr + offset, buf, bytes); set_page_dirty_lock(page); } else { copy_from_user_page(vma, page, addr, buf, maddr + offset, bytes); } kunmap(page); put_page(page); } len -= bytes; buf += bytes; addr += bytes; } mmap_read_unlock(mm); return buf - old_buf; } /** * access_remote_vm - access another process' address space * @mm: the mm_struct of the target address space * @addr: start address to access * @buf: source or destination buffer * @len: number of bytes to transfer * @gup_flags: flags modifying lookup behaviour * * The caller must hold a reference on @mm. * * Return: number of bytes copied from source to destination. */ int access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf, int len, unsigned int gup_flags) { return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags); } /* * Access another process' address space. * Source/target buffer must be kernel space, * Do not walk the page table directly, use get_user_pages */ int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, unsigned int gup_flags) { struct mm_struct *mm; int ret; mm = get_task_mm(tsk); if (!mm) return 0; ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags); mmput(mm); return ret; } EXPORT_SYMBOL_GPL(access_process_vm); /* * Print the name of a VMA. */ void print_vma_addr(char *prefix, unsigned long ip) { struct mm_struct *mm = current->mm; struct vm_area_struct *vma; /* * we might be running from an atomic context so we cannot sleep */ if (!mmap_read_trylock(mm)) return; vma = find_vma(mm, ip); if (vma && vma->vm_file) { struct file *f = vma->vm_file; char *buf = (char *)__get_free_page(GFP_NOWAIT); if (buf) { char *p; p = file_path(f, buf, PAGE_SIZE); if (IS_ERR(p)) p = "?"; printk("%s%s[%lx+%lx]", prefix, kbasename(p), vma->vm_start, vma->vm_end - vma->vm_start); free_page((unsigned long)buf); } } mmap_read_unlock(mm); } #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) void __might_fault(const char *file, int line) { /* * Some code (nfs/sunrpc) uses socket ops on kernel memory while * holding the mmap_lock, this is safe because kernel memory doesn't * get paged out, therefore we'll never actually fault, and the * below annotations will generate false positives. */ if (uaccess_kernel()) return; if (pagefault_disabled()) return; __might_sleep(file, line, 0); #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) if (current->mm) might_lock_read(&current->mm->mmap_lock); #endif } EXPORT_SYMBOL(__might_fault); #endif #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) /* * Process all subpages of the specified huge page with the specified * operation. The target subpage will be processed last to keep its * cache lines hot. */ static inline void process_huge_page( unsigned long addr_hint, unsigned int pages_per_huge_page, void (*process_subpage)(unsigned long addr, int idx, void *arg), void *arg) { int i, n, base, l; unsigned long addr = addr_hint & ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); /* Process target subpage last to keep its cache lines hot */ might_sleep(); n = (addr_hint - addr) / PAGE_SIZE; if (2 * n <= pages_per_huge_page) { /* If target subpage in first half of huge page */ base = 0; l = n; /* Process subpages at the end of huge page */ for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { cond_resched(); process_subpage(addr + i * PAGE_SIZE, i, arg); } } else { /* If target subpage in second half of huge page */ base = pages_per_huge_page - 2 * (pages_per_huge_page - n); l = pages_per_huge_page - n; /* Process subpages at the begin of huge page */ for (i = 0; i < base; i++) { cond_resched(); process_subpage(addr + i * PAGE_SIZE, i, arg); } } /* * Process remaining subpages in left-right-left-right pattern * towards the target subpage */ for (i = 0; i < l; i++) { int left_idx = base + i; int right_idx = base + 2 * l - 1 - i; cond_resched(); process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); cond_resched(); process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); } } static void clear_gigantic_page(struct page *page, unsigned long addr, unsigned int pages_per_huge_page) { int i; struct page *p = page; might_sleep(); for (i = 0; i < pages_per_huge_page; i++, p = mem_map_next(p, page, i)) { cond_resched(); clear_user_highpage(p, addr + i * PAGE_SIZE); } } static void clear_subpage(unsigned long addr, int idx, void *arg) { struct page *page = arg; clear_user_highpage(page + idx, addr); } void clear_huge_page(struct page *page, unsigned long addr_hint, unsigned int pages_per_huge_page) { unsigned long addr = addr_hint & ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { clear_gigantic_page(page, addr, pages_per_huge_page); return; } process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); } static void copy_user_gigantic_page(struct page *dst, struct page *src, unsigned long addr, struct vm_area_struct *vma, unsigned int pages_per_huge_page) { int i; struct page *dst_base = dst; struct page *src_base = src; for (i = 0; i < pages_per_huge_page; ) { cond_resched(); copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); i++; dst = mem_map_next(dst, dst_base, i); src = mem_map_next(src, src_base, i); } } struct copy_subpage_arg { struct page *dst; struct page *src; struct vm_area_struct *vma; }; static void copy_subpage(unsigned long addr, int idx, void *arg) { struct copy_subpage_arg *copy_arg = arg; copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx, addr, copy_arg->vma); } void copy_user_huge_page(struct page *dst, struct page *src, unsigned long addr_hint, struct vm_area_struct *vma, unsigned int pages_per_huge_page) { unsigned long addr = addr_hint & ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); struct copy_subpage_arg arg = { .dst = dst, .src = src, .vma = vma, }; if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { copy_user_gigantic_page(dst, src, addr, vma, pages_per_huge_page); return; } process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); } long copy_huge_page_from_user(struct page *dst_page, const void __user *usr_src, unsigned int pages_per_huge_page, bool allow_pagefault) { void *src = (void *)usr_src; void *page_kaddr; unsigned long i, rc = 0; unsigned long ret_val = pages_per_huge_page * PAGE_SIZE; struct page *subpage = dst_page; for (i = 0; i < pages_per_huge_page; i++, subpage = mem_map_next(subpage, dst_page, i)) { if (allow_pagefault) page_kaddr = kmap(subpage); else page_kaddr = kmap_atomic(subpage); rc = copy_from_user(page_kaddr, (const void __user *)(src + i * PAGE_SIZE), PAGE_SIZE); if (allow_pagefault) kunmap(subpage); else kunmap_atomic(page_kaddr); ret_val -= (PAGE_SIZE - rc); if (rc) break; cond_resched(); } return ret_val; } #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS static struct kmem_cache *page_ptl_cachep; void __init ptlock_cache_init(void) { page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, SLAB_PANIC, NULL); } bool ptlock_alloc(struct page *page) { spinlock_t *ptl; ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); if (!ptl) return false; page->ptl = ptl; return true; } void ptlock_free(struct page *page) { kmem_cache_free(page_ptl_cachep, page->ptl); } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_BIT_SPINLOCK_H #define __LINUX_BIT_SPINLOCK_H #include <linux/kernel.h> #include <linux/preempt.h> #include <linux/atomic.h> #include <linux/bug.h> /* * bit-based spin_lock() * * Don't use this unless you really need to: spin_lock() and spin_unlock() * are significantly faster. */ static inline void bit_spin_lock(int bitnum, unsigned long *addr) { /* * Assuming the lock is uncontended, this never enters * the body of the outer loop. If it is contended, then * within the inner loop a non-atomic test is used to * busywait with less bus contention for a good time to * attempt to acquire the lock bit. */ preempt_disable(); #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) while (unlikely(test_and_set_bit_lock(bitnum, addr))) { preempt_enable(); do { cpu_relax(); } while (test_bit(bitnum, addr)); preempt_disable(); } #endif __acquire(bitlock); } /* * Return true if it was acquired */ static inline int bit_spin_trylock(int bitnum, unsigned long *addr) { preempt_disable(); #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) if (unlikely(test_and_set_bit_lock(bitnum, addr))) { preempt_enable(); return 0; } #endif __acquire(bitlock); return 1; } /* * bit-based spin_unlock() */ static inline void bit_spin_unlock(int bitnum, unsigned long *addr) { #ifdef CONFIG_DEBUG_SPINLOCK BUG_ON(!test_bit(bitnum, addr)); #endif #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) clear_bit_unlock(bitnum, addr); #endif preempt_enable(); __release(bitlock); } /* * bit-based spin_unlock() * non-atomic version, which can be used eg. if the bit lock itself is * protecting the rest of the flags in the word. */ static inline void __bit_spin_unlock(int bitnum, unsigned long *addr) { #ifdef CONFIG_DEBUG_SPINLOCK BUG_ON(!test_bit(bitnum, addr)); #endif #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) __clear_bit_unlock(bitnum, addr); #endif preempt_enable(); __release(bitlock); } /* * Return true if the lock is held. */ static inline int bit_spin_is_locked(int bitnum, unsigned long *addr) { #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) return test_bit(bitnum, addr); #elif defined CONFIG_PREEMPT_COUNT return preempt_count(); #else return 1; #endif } #endif /* __LINUX_BIT_SPINLOCK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 /* SPDX-License-Identifier: GPL-2.0 */ /* * include/linux/buffer_head.h * * Everything to do with buffer_heads. */ #ifndef _LINUX_BUFFER_HEAD_H #define _LINUX_BUFFER_HEAD_H #include <linux/types.h> #include <linux/fs.h> #include <linux/linkage.h> #include <linux/pagemap.h> #include <linux/wait.h> #include <linux/atomic.h> #ifdef CONFIG_BLOCK enum bh_state_bits { BH_Uptodate, /* Contains valid data */ BH_Dirty, /* Is dirty */ BH_Lock, /* Is locked */ BH_Req, /* Has been submitted for I/O */ BH_Mapped, /* Has a disk mapping */ BH_New, /* Disk mapping was newly created by get_block */ BH_Async_Read, /* Is under end_buffer_async_read I/O */ BH_Async_Write, /* Is under end_buffer_async_write I/O */ BH_Delay, /* Buffer is not yet allocated on disk */ BH_Boundary, /* Block is followed by a discontiguity */ BH_Write_EIO, /* I/O error on write */ BH_Unwritten, /* Buffer is allocated on disk but not written */ BH_Quiet, /* Buffer Error Prinks to be quiet */ BH_Meta, /* Buffer contains metadata */ BH_Prio, /* Buffer should be submitted with REQ_PRIO */ BH_Defer_Completion, /* Defer AIO completion to workqueue */ BH_PrivateStart,/* not a state bit, but the first bit available * for private allocation by other entities */ }; #define MAX_BUF_PER_PAGE (PAGE_SIZE / 512) struct page; struct buffer_head; struct address_space; typedef void (bh_end_io_t)(struct buffer_head *bh, int uptodate); /* * Historically, a buffer_head was used to map a single block * within a page, and of course as the unit of I/O through the * filesystem and block layers. Nowadays the basic I/O unit * is the bio, and buffer_heads are used for extracting block * mappings (via a get_block_t call), for tracking state within * a page (via a page_mapping) and for wrapping bio submission * for backward compatibility reasons (e.g. submit_bh). */ struct buffer_head { unsigned long b_state; /* buffer state bitmap (see above) */ struct buffer_head *b_this_page;/* circular list of page's buffers */ struct page *b_page; /* the page this bh is mapped to */ sector_t b_blocknr; /* start block number */ size_t b_size; /* size of mapping */ char *b_data; /* pointer to data within the page */ struct block_device *b_bdev; bh_end_io_t *b_end_io; /* I/O completion */ void *b_private; /* reserved for b_end_io */ struct list_head b_assoc_buffers; /* associated with another mapping */ struct address_space *b_assoc_map; /* mapping this buffer is associated with */ atomic_t b_count; /* users using this buffer_head */ spinlock_t b_uptodate_lock; /* Used by the first bh in a page, to * serialise IO completion of other * buffers in the page */ }; /* * macro tricks to expand the set_buffer_foo(), clear_buffer_foo() * and buffer_foo() functions. * To avoid reset buffer flags that are already set, because that causes * a costly cache line transition, check the flag first. */ #define BUFFER_FNS(bit, name) \ static __always_inline void set_buffer_##name(struct buffer_head *bh) \ { \ if (!test_bit(BH_##bit, &(bh)->b_state)) \ set_bit(BH_##bit, &(bh)->b_state); \ } \ static __always_inline void clear_buffer_##name(struct buffer_head *bh) \ { \ clear_bit(BH_##bit, &(bh)->b_state); \ } \ static __always_inline int buffer_##name(const struct buffer_head *bh) \ { \ return test_bit(BH_##bit, &(bh)->b_state); \ } /* * test_set_buffer_foo() and test_clear_buffer_foo() */ #define TAS_BUFFER_FNS(bit, name) \ static __always_inline int test_set_buffer_##name(struct buffer_head *bh) \ { \ return test_and_set_bit(BH_##bit, &(bh)->b_state); \ } \ static __always_inline int test_clear_buffer_##name(struct buffer_head *bh) \ { \ return test_and_clear_bit(BH_##bit, &(bh)->b_state); \ } \ /* * Emit the buffer bitops functions. Note that there are also functions * of the form "mark_buffer_foo()". These are higher-level functions which * do something in addition to setting a b_state bit. */ BUFFER_FNS(Uptodate, uptodate) BUFFER_FNS(Dirty, dirty) TAS_BUFFER_FNS(Dirty, dirty) BUFFER_FNS(Lock, locked) BUFFER_FNS(Req, req) TAS_BUFFER_FNS(Req, req) BUFFER_FNS(Mapped, mapped) BUFFER_FNS(New, new) BUFFER_FNS(Async_Read, async_read) BUFFER_FNS(Async_Write, async_write) BUFFER_FNS(Delay, delay) BUFFER_FNS(Boundary, boundary) BUFFER_FNS(Write_EIO, write_io_error) BUFFER_FNS(Unwritten, unwritten) BUFFER_FNS(Meta, meta) BUFFER_FNS(Prio, prio) BUFFER_FNS(Defer_Completion, defer_completion) #define bh_offset(bh) ((unsigned long)(bh)->b_data & ~PAGE_MASK) /* If we *know* page->private refers to buffer_heads */ #define page_buffers(page) \ ({ \ BUG_ON(!PagePrivate(page)); \ ((struct buffer_head *)page_private(page)); \ }) #define page_has_buffers(page) PagePrivate(page) void buffer_check_dirty_writeback(struct page *page, bool *dirty, bool *writeback); /* * Declarations */ void mark_buffer_dirty(struct buffer_head *bh); void mark_buffer_write_io_error(struct buffer_head *bh); void touch_buffer(struct buffer_head *bh); void set_bh_page(struct buffer_head *bh, struct page *page, unsigned long offset); int try_to_free_buffers(struct page *); struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, bool retry); void create_empty_buffers(struct page *, unsigned long, unsigned long b_state); void end_buffer_read_sync(struct buffer_head *bh, int uptodate); void end_buffer_write_sync(struct buffer_head *bh, int uptodate); void end_buffer_async_write(struct buffer_head *bh, int uptodate); /* Things to do with buffers at mapping->private_list */ void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode); int inode_has_buffers(struct inode *); void invalidate_inode_buffers(struct inode *); int remove_inode_buffers(struct inode *inode); int sync_mapping_buffers(struct address_space *mapping); void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len); static inline void clean_bdev_bh_alias(struct buffer_head *bh) { clean_bdev_aliases(bh->b_bdev, bh->b_blocknr, 1); } void mark_buffer_async_write(struct buffer_head *bh); void __wait_on_buffer(struct buffer_head *); wait_queue_head_t *bh_waitq_head(struct buffer_head *bh); struct buffer_head *__find_get_block(struct block_device *bdev, sector_t block, unsigned size); struct buffer_head *__getblk_gfp(struct block_device *bdev, sector_t block, unsigned size, gfp_t gfp); void __brelse(struct buffer_head *); void __bforget(struct buffer_head *); void __breadahead(struct block_device *, sector_t block, unsigned int size); void __breadahead_gfp(struct block_device *, sector_t block, unsigned int size, gfp_t gfp); struct buffer_head *__bread_gfp(struct block_device *, sector_t block, unsigned size, gfp_t gfp); void invalidate_bh_lrus(void); struct buffer_head *alloc_buffer_head(gfp_t gfp_flags); void free_buffer_head(struct buffer_head * bh); void unlock_buffer(struct buffer_head *bh); void __lock_buffer(struct buffer_head *bh); void ll_rw_block(int, int, int, struct buffer_head * bh[]); int sync_dirty_buffer(struct buffer_head *bh); int __sync_dirty_buffer(struct buffer_head *bh, int op_flags); void write_dirty_buffer(struct buffer_head *bh, int op_flags); int submit_bh(int, int, struct buffer_head *); void write_boundary_block(struct block_device *bdev, sector_t bblock, unsigned blocksize); int bh_uptodate_or_lock(struct buffer_head *bh); int bh_submit_read(struct buffer_head *bh); extern int buffer_heads_over_limit; /* * Generic address_space_operations implementations for buffer_head-backed * address_spaces. */ void block_invalidatepage(struct page *page, unsigned int offset, unsigned int length); int block_write_full_page(struct page *page, get_block_t *get_block, struct writeback_control *wbc); int __block_write_full_page(struct inode *inode, struct page *page, get_block_t *get_block, struct writeback_control *wbc, bh_end_io_t *handler); int block_read_full_page(struct page*, get_block_t*); int block_is_partially_uptodate(struct page *page, unsigned long from, unsigned long count); int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, unsigned flags, struct page **pagep, get_block_t *get_block); int __block_write_begin(struct page *page, loff_t pos, unsigned len, get_block_t *get_block); int block_write_end(struct file *, struct address_space *, loff_t, unsigned, unsigned, struct page *, void *); int generic_write_end(struct file *, struct address_space *, loff_t, unsigned, unsigned, struct page *, void *); void page_zero_new_buffers(struct page *page, unsigned from, unsigned to); void clean_page_buffers(struct page *page); int cont_write_begin(struct file *, struct address_space *, loff_t, unsigned, unsigned, struct page **, void **, get_block_t *, loff_t *); int generic_cont_expand_simple(struct inode *inode, loff_t size); int block_commit_write(struct page *page, unsigned from, unsigned to); int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, get_block_t get_block); /* Convert errno to return value from ->page_mkwrite() call */ static inline vm_fault_t block_page_mkwrite_return(int err) { if (err == 0) return VM_FAULT_LOCKED; if (err == -EFAULT || err == -EAGAIN) return VM_FAULT_NOPAGE; if (err == -ENOMEM) return VM_FAULT_OOM; /* -ENOSPC, -EDQUOT, -EIO ... */ return VM_FAULT_SIGBUS; } sector_t generic_block_bmap(struct address_space *, sector_t, get_block_t *); int block_truncate_page(struct address_space *, loff_t, get_block_t *); int nobh_write_begin(struct address_space *, loff_t, unsigned, unsigned, struct page **, void **, get_block_t*); int nobh_write_end(struct file *, struct address_space *, loff_t, unsigned, unsigned, struct page *, void *); int nobh_truncate_page(struct address_space *, loff_t, get_block_t *); int nobh_writepage(struct page *page, get_block_t *get_block, struct writeback_control *wbc); void buffer_init(void); /* * inline definitions */ static inline void get_bh(struct buffer_head *bh) { atomic_inc(&bh->b_count); } static inline void put_bh(struct buffer_head *bh) { smp_mb__before_atomic(); atomic_dec(&bh->b_count); } static inline void brelse(struct buffer_head *bh) { if (bh) __brelse(bh); } static inline void bforget(struct buffer_head *bh) { if (bh) __bforget(bh); } static inline struct buffer_head * sb_bread(struct super_block *sb, sector_t block) { return __bread_gfp(sb->s_bdev, block, sb->s_blocksize, __GFP_MOVABLE); } static inline struct buffer_head * sb_bread_unmovable(struct super_block *sb, sector_t block) { return __bread_gfp(sb->s_bdev, block, sb->s_blocksize, 0); } static inline void sb_breadahead(struct super_block *sb, sector_t block) { __breadahead(sb->s_bdev, block, sb->s_blocksize); } static inline void sb_breadahead_unmovable(struct super_block *sb, sector_t block) { __breadahead_gfp(sb->s_bdev, block, sb->s_blocksize, 0); } static inline struct buffer_head * sb_getblk(struct super_block *sb, sector_t block) { return __getblk_gfp(sb->s_bdev, block, sb->s_blocksize, __GFP_MOVABLE); } static inline struct buffer_head * sb_getblk_gfp(struct super_block *sb, sector_t block, gfp_t gfp) { return __getblk_gfp(sb->s_bdev, block, sb->s_blocksize, gfp); } static inline struct buffer_head * sb_find_get_block(struct super_block *sb, sector_t block) { return __find_get_block(sb->s_bdev, block, sb->s_blocksize); } static inline void map_bh(struct buffer_head *bh, struct super_block *sb, sector_t block) { set_buffer_mapped(bh); bh->b_bdev = sb->s_bdev; bh->b_blocknr = block; bh->b_size = sb->s_blocksize; } static inline void wait_on_buffer(struct buffer_head *bh) { might_sleep(); if (buffer_locked(bh)) __wait_on_buffer(bh); } static inline int trylock_buffer(struct buffer_head *bh) { return likely(!test_and_set_bit_lock(BH_Lock, &bh->b_state)); } static inline void lock_buffer(struct buffer_head *bh) { might_sleep(); if (!trylock_buffer(bh)) __lock_buffer(bh); } static inline struct buffer_head *getblk_unmovable(struct block_device *bdev, sector_t block, unsigned size) { return __getblk_gfp(bdev, block, size, 0); } static inline struct buffer_head *__getblk(struct block_device *bdev, sector_t block, unsigned size) { return __getblk_gfp(bdev, block, size, __GFP_MOVABLE); } /** * __bread() - reads a specified block and returns the bh * @bdev: the block_device to read from * @block: number of block * @size: size (in bytes) to read * * Reads a specified block, and returns buffer head that contains it. * The page cache is allocated from movable area so that it can be migrated. * It returns NULL if the block was unreadable. */ static inline struct buffer_head * __bread(struct block_device *bdev, sector_t block, unsigned size) { return __bread_gfp(bdev, block, size, __GFP_MOVABLE); } extern int __set_page_dirty_buffers(struct page *page); #else /* CONFIG_BLOCK */ static inline void buffer_init(void) {} static inline int try_to_free_buffers(struct page *page) { return 1; } static inline int inode_has_buffers(struct inode *inode) { return 0; } static inline void invalidate_inode_buffers(struct inode *inode) {} static inline int remove_inode_buffers(struct inode *inode) { return 1; } static inline int sync_mapping_buffers(struct address_space *mapping) { return 0; } #define buffer_heads_over_limit 0 #endif /* CONFIG_BLOCK */ #endif /* _LINUX_BUFFER_HEAD_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_WAIT_BIT_H #define _LINUX_WAIT_BIT_H /* * Linux wait-bit related types and methods: */ #include <linux/wait.h> struct wait_bit_key { void *flags; int bit_nr; unsigned long timeout; }; struct wait_bit_queue_entry { struct wait_bit_key key; struct wait_queue_entry wq_entry; }; #define __WAIT_BIT_KEY_INITIALIZER(word, bit) \ { .flags = word, .bit_nr = bit, } typedef int wait_bit_action_f(struct wait_bit_key *key, int mode); void __wake_up_bit(struct wait_queue_head *wq_head, void *word, int bit); int __wait_on_bit(struct wait_queue_head *wq_head, struct wait_bit_queue_entry *wbq_entry, wait_bit_action_f *action, unsigned int mode); int __wait_on_bit_lock(struct wait_queue_head *wq_head, struct wait_bit_queue_entry *wbq_entry, wait_bit_action_f *action, unsigned int mode); void wake_up_bit(void *word, int bit); int out_of_line_wait_on_bit(void *word, int, wait_bit_action_f *action, unsigned int mode); int out_of_line_wait_on_bit_timeout(void *word, int, wait_bit_action_f *action, unsigned int mode, unsigned long timeout); int out_of_line_wait_on_bit_lock(void *word, int, wait_bit_action_f *action, unsigned int mode); struct wait_queue_head *bit_waitqueue(void *word, int bit); extern void __init wait_bit_init(void); int wake_bit_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *key); #define DEFINE_WAIT_BIT(name, word, bit) \ struct wait_bit_queue_entry name = { \ .key = __WAIT_BIT_KEY_INITIALIZER(word, bit), \ .wq_entry = { \ .private = current, \ .func = wake_bit_function, \ .entry = \ LIST_HEAD_INIT((name).wq_entry.entry), \ }, \ } extern int bit_wait(struct wait_bit_key *key, int mode); extern int bit_wait_io(struct wait_bit_key *key, int mode); extern int bit_wait_timeout(struct wait_bit_key *key, int mode); extern int bit_wait_io_timeout(struct wait_bit_key *key, int mode); /** * wait_on_bit - wait for a bit to be cleared * @word: the word being waited on, a kernel virtual address * @bit: the bit of the word being waited on * @mode: the task state to sleep in * * There is a standard hashed waitqueue table for generic use. This * is the part of the hashtable's accessor API that waits on a bit. * For instance, if one were to have waiters on a bitflag, one would * call wait_on_bit() in threads waiting for the bit to clear. * One uses wait_on_bit() where one is waiting for the bit to clear, * but has no intention of setting it. * Returned value will be zero if the bit was cleared, or non-zero * if the process received a signal and the mode permitted wakeup * on that signal. */ static inline int wait_on_bit(unsigned long *word, int bit, unsigned mode) { might_sleep(); if (!test_bit(bit, word)) return 0; return out_of_line_wait_on_bit(word, bit, bit_wait, mode); } /** * wait_on_bit_io - wait for a bit to be cleared * @word: the word being waited on, a kernel virtual address * @bit: the bit of the word being waited on * @mode: the task state to sleep in * * Use the standard hashed waitqueue table to wait for a bit * to be cleared. This is similar to wait_on_bit(), but calls * io_schedule() instead of schedule() for the actual waiting. * * Returned value will be zero if the bit was cleared, or non-zero * if the process received a signal and the mode permitted wakeup * on that signal. */ static inline int wait_on_bit_io(unsigned long *word, int bit, unsigned mode) { might_sleep(); if (!test_bit(bit, word)) return 0; return out_of_line_wait_on_bit(word, bit, bit_wait_io, mode); } /** * wait_on_bit_timeout - wait for a bit to be cleared or a timeout elapses * @word: the word being waited on, a kernel virtual address * @bit: the bit of the word being waited on * @mode: the task state to sleep in * @timeout: timeout, in jiffies * * Use the standard hashed waitqueue table to wait for a bit * to be cleared. This is similar to wait_on_bit(), except also takes a * timeout parameter. * * Returned value will be zero if the bit was cleared before the * @timeout elapsed, or non-zero if the @timeout elapsed or process * received a signal and the mode permitted wakeup on that signal. */ static inline int wait_on_bit_timeout(unsigned long *word, int bit, unsigned mode, unsigned long timeout) { might_sleep(); if (!test_bit(bit, word)) return 0; return out_of_line_wait_on_bit_timeout(word, bit, bit_wait_timeout, mode, timeout); } /** * wait_on_bit_action - wait for a bit to be cleared * @word: the word being waited on, a kernel virtual address * @bit: the bit of the word being waited on * @action: the function used to sleep, which may take special actions * @mode: the task state to sleep in * * Use the standard hashed waitqueue table to wait for a bit * to be cleared, and allow the waiting action to be specified. * This is like wait_on_bit() but allows fine control of how the waiting * is done. * * Returned value will be zero if the bit was cleared, or non-zero * if the process received a signal and the mode permitted wakeup * on that signal. */ static inline int wait_on_bit_action(unsigned long *word, int bit, wait_bit_action_f *action, unsigned mode) { might_sleep(); if (!test_bit(bit, word)) return 0; return out_of_line_wait_on_bit(word, bit, action, mode); } /** * wait_on_bit_lock - wait for a bit to be cleared, when wanting to set it * @word: the word being waited on, a kernel virtual address * @bit: the bit of the word being waited on * @mode: the task state to sleep in * * There is a standard hashed waitqueue table for generic use. This * is the part of the hashtable's accessor API that waits on a bit * when one intends to set it, for instance, trying to lock bitflags. * For instance, if one were to have waiters trying to set bitflag * and waiting for it to clear before setting it, one would call * wait_on_bit() in threads waiting to be able to set the bit. * One uses wait_on_bit_lock() where one is waiting for the bit to * clear with the intention of setting it, and when done, clearing it. * * Returns zero if the bit was (eventually) found to be clear and was * set. Returns non-zero if a signal was delivered to the process and * the @mode allows that signal to wake the process. */ static inline int wait_on_bit_lock(unsigned long *word, int bit, unsigned mode) { might_sleep(); if (!test_and_set_bit(bit, word)) return 0; return out_of_line_wait_on_bit_lock(word, bit, bit_wait, mode); } /** * wait_on_bit_lock_io - wait for a bit to be cleared, when wanting to set it * @word: the word being waited on, a kernel virtual address * @bit: the bit of the word being waited on * @mode: the task state to sleep in * * Use the standard hashed waitqueue table to wait for a bit * to be cleared and then to atomically set it. This is similar * to wait_on_bit(), but calls io_schedule() instead of schedule() * for the actual waiting. * * Returns zero if the bit was (eventually) found to be clear and was * set. Returns non-zero if a signal was delivered to the process and * the @mode allows that signal to wake the process. */ static inline int wait_on_bit_lock_io(unsigned long *word, int bit, unsigned mode) { might_sleep(); if (!test_and_set_bit(bit, word)) return 0; return out_of_line_wait_on_bit_lock(word, bit, bit_wait_io, mode); } /** * wait_on_bit_lock_action - wait for a bit to be cleared, when wanting to set it * @word: the word being waited on, a kernel virtual address * @bit: the bit of the word being waited on * @action: the function used to sleep, which may take special actions * @mode: the task state to sleep in * * Use the standard hashed waitqueue table to wait for a bit * to be cleared and then to set it, and allow the waiting action * to be specified. * This is like wait_on_bit() but allows fine control of how the waiting * is done. * * Returns zero if the bit was (eventually) found to be clear and was * set. Returns non-zero if a signal was delivered to the process and * the @mode allows that signal to wake the process. */ static inline int wait_on_bit_lock_action(unsigned long *word, int bit, wait_bit_action_f *action, unsigned mode) { might_sleep(); if (!test_and_set_bit(bit, word)) return 0; return out_of_line_wait_on_bit_lock(word, bit, action, mode); } extern void init_wait_var_entry(struct wait_bit_queue_entry *wbq_entry, void *var, int flags); extern void wake_up_var(void *var); extern wait_queue_head_t *__var_waitqueue(void *p); #define ___wait_var_event(var, condition, state, exclusive, ret, cmd) \ ({ \ __label__ __out; \ struct wait_queue_head *__wq_head = __var_waitqueue(var); \ struct wait_bit_queue_entry __wbq_entry; \ long __ret = ret; /* explicit shadow */ \ \ init_wait_var_entry(&__wbq_entry, var, \ exclusive ? WQ_FLAG_EXCLUSIVE : 0); \ for (;;) { \ long __int = prepare_to_wait_event(__wq_head, \ &__wbq_entry.wq_entry, \ state); \ if (condition) \ break; \ \ if (___wait_is_interruptible(state) && __int) { \ __ret = __int; \ goto __out; \ } \ \ cmd; \ } \ finish_wait(__wq_head, &__wbq_entry.wq_entry); \ __out: __ret; \ }) #define __wait_var_event(var, condition) \ ___wait_var_event(var, condition, TASK_UNINTERRUPTIBLE, 0, 0, \ schedule()) #define wait_var_event(var, condition) \ do { \ might_sleep(); \ if (condition) \ break; \ __wait_var_event(var, condition); \ } while (0) #define __wait_var_event_killable(var, condition) \ ___wait_var_event(var, condition, TASK_KILLABLE, 0, 0, \ schedule()) #define wait_var_event_killable(var, condition) \ ({ \ int __ret = 0; \ might_sleep(); \ if (!(condition)) \ __ret = __wait_var_event_killable(var, condition); \ __ret; \ }) #define __wait_var_event_timeout(var, condition, timeout) \ ___wait_var_event(var, ___wait_cond_timeout(condition), \ TASK_UNINTERRUPTIBLE, 0, timeout, \ __ret = schedule_timeout(__ret)) #define wait_var_event_timeout(var, condition, timeout) \ ({ \ long __ret = timeout; \ might_sleep(); \ if (!___wait_cond_timeout(condition)) \ __ret = __wait_var_event_timeout(var, condition, timeout); \ __ret; \ }) #define __wait_var_event_interruptible(var, condition) \ ___wait_var_event(var, condition, TASK_INTERRUPTIBLE, 0, 0, \ schedule()) #define wait_var_event_interruptible(var, condition) \ ({ \ int __ret = 0; \ might_sleep(); \ if (!(condition)) \ __ret = __wait_var_event_interruptible(var, condition); \ __ret; \ }) /** * clear_and_wake_up_bit - clear a bit and wake up anyone waiting on that bit * * @bit: the bit of the word being waited on * @word: the word being waited on, a kernel virtual address * * You can use this helper if bitflags are manipulated atomically rather than * non-atomically under a lock. */ static inline void clear_and_wake_up_bit(int bit, void *word) { clear_bit_unlock(bit, word); /* See wake_up_bit() for which memory barrier you need to use. */ smp_mb__after_atomic(); wake_up_bit(word, bit); } #endif /* _LINUX_WAIT_BIT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __CFG802154_RDEV_OPS #define __CFG802154_RDEV_OPS #include <net/cfg802154.h> #include "core.h" #include "trace.h" static inline struct net_device * rdev_add_virtual_intf_deprecated(struct cfg802154_registered_device *rdev, const char *name, unsigned char name_assign_type, int type) { return rdev->ops->add_virtual_intf_deprecated(&rdev->wpan_phy, name, name_assign_type, type); } static inline void rdev_del_virtual_intf_deprecated(struct cfg802154_registered_device *rdev, struct net_device *dev) { rdev->ops->del_virtual_intf_deprecated(&rdev->wpan_phy, dev); } static inline int rdev_suspend(struct cfg802154_registered_device *rdev) { int ret; trace_802154_rdev_suspend(&rdev->wpan_phy); ret = rdev->ops->suspend(&rdev->wpan_phy); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_resume(struct cfg802154_registered_device *rdev) { int ret; trace_802154_rdev_resume(&rdev->wpan_phy); ret = rdev->ops->resume(&rdev->wpan_phy); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_add_virtual_intf(struct cfg802154_registered_device *rdev, char *name, unsigned char name_assign_type, enum nl802154_iftype type, __le64 extended_addr) { int ret; trace_802154_rdev_add_virtual_intf(&rdev->wpan_phy, name, type, extended_addr); ret = rdev->ops->add_virtual_intf(&rdev->wpan_phy, name, name_assign_type, type, extended_addr); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_del_virtual_intf(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev) { int ret; trace_802154_rdev_del_virtual_intf(&rdev->wpan_phy, wpan_dev); ret = rdev->ops->del_virtual_intf(&rdev->wpan_phy, wpan_dev); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_set_channel(struct cfg802154_registered_device *rdev, u8 page, u8 channel) { int ret; trace_802154_rdev_set_channel(&rdev->wpan_phy, page, channel); ret = rdev->ops->set_channel(&rdev->wpan_phy, page, channel); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_set_cca_mode(struct cfg802154_registered_device *rdev, const struct wpan_phy_cca *cca) { int ret; trace_802154_rdev_set_cca_mode(&rdev->wpan_phy, cca); ret = rdev->ops->set_cca_mode(&rdev->wpan_phy, cca); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_set_cca_ed_level(struct cfg802154_registered_device *rdev, s32 ed_level) { int ret; trace_802154_rdev_set_cca_ed_level(&rdev->wpan_phy, ed_level); ret = rdev->ops->set_cca_ed_level(&rdev->wpan_phy, ed_level); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_set_tx_power(struct cfg802154_registered_device *rdev, s32 power) { int ret; trace_802154_rdev_set_tx_power(&rdev->wpan_phy, power); ret = rdev->ops->set_tx_power(&rdev->wpan_phy, power); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_set_pan_id(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, __le16 pan_id) { int ret; trace_802154_rdev_set_pan_id(&rdev->wpan_phy, wpan_dev, pan_id); ret = rdev->ops->set_pan_id(&rdev->wpan_phy, wpan_dev, pan_id); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_set_short_addr(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, __le16 short_addr) { int ret; trace_802154_rdev_set_short_addr(&rdev->wpan_phy, wpan_dev, short_addr); ret = rdev->ops->set_short_addr(&rdev->wpan_phy, wpan_dev, short_addr); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_set_backoff_exponent(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, u8 min_be, u8 max_be) { int ret; trace_802154_rdev_set_backoff_exponent(&rdev->wpan_phy, wpan_dev, min_be, max_be); ret = rdev->ops->set_backoff_exponent(&rdev->wpan_phy, wpan_dev, min_be, max_be); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_set_max_csma_backoffs(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, u8 max_csma_backoffs) { int ret; trace_802154_rdev_set_csma_backoffs(&rdev->wpan_phy, wpan_dev, max_csma_backoffs); ret = rdev->ops->set_max_csma_backoffs(&rdev->wpan_phy, wpan_dev, max_csma_backoffs); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_set_max_frame_retries(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, s8 max_frame_retries) { int ret; trace_802154_rdev_set_max_frame_retries(&rdev->wpan_phy, wpan_dev, max_frame_retries); ret = rdev->ops->set_max_frame_retries(&rdev->wpan_phy, wpan_dev, max_frame_retries); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_set_lbt_mode(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, bool mode) { int ret; trace_802154_rdev_set_lbt_mode(&rdev->wpan_phy, wpan_dev, mode); ret = rdev->ops->set_lbt_mode(&rdev->wpan_phy, wpan_dev, mode); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_set_ackreq_default(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, bool ackreq) { int ret; trace_802154_rdev_set_ackreq_default(&rdev->wpan_phy, wpan_dev, ackreq); ret = rdev->ops->set_ackreq_default(&rdev->wpan_phy, wpan_dev, ackreq); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } #ifdef CONFIG_IEEE802154_NL802154_EXPERIMENTAL /* TODO this is already a nl802154, so move into ieee802154 */ static inline void rdev_get_llsec_table(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, struct ieee802154_llsec_table **table) { rdev->ops->get_llsec_table(&rdev->wpan_phy, wpan_dev, table); } static inline void rdev_lock_llsec_table(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev) { rdev->ops->lock_llsec_table(&rdev->wpan_phy, wpan_dev); } static inline void rdev_unlock_llsec_table(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev) { rdev->ops->unlock_llsec_table(&rdev->wpan_phy, wpan_dev); } static inline int rdev_get_llsec_params(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, struct ieee802154_llsec_params *params) { return rdev->ops->get_llsec_params(&rdev->wpan_phy, wpan_dev, params); } static inline int rdev_set_llsec_params(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, const struct ieee802154_llsec_params *params, u32 changed) { return rdev->ops->set_llsec_params(&rdev->wpan_phy, wpan_dev, params, changed); } static inline int rdev_add_llsec_key(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, const struct ieee802154_llsec_key_id *id, const struct ieee802154_llsec_key *key) { return rdev->ops->add_llsec_key(&rdev->wpan_phy, wpan_dev, id, key); } static inline int rdev_del_llsec_key(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, const struct ieee802154_llsec_key_id *id) { return rdev->ops->del_llsec_key(&rdev->wpan_phy, wpan_dev, id); } static inline int rdev_add_seclevel(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, const struct ieee802154_llsec_seclevel *sl) { return rdev->ops->add_seclevel(&rdev->wpan_phy, wpan_dev, sl); } static inline int rdev_del_seclevel(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, const struct ieee802154_llsec_seclevel *sl) { return rdev->ops->del_seclevel(&rdev->wpan_phy, wpan_dev, sl); } static inline int rdev_add_device(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, const struct ieee802154_llsec_device *dev_desc) { return rdev->ops->add_device(&rdev->wpan_phy, wpan_dev, dev_desc); } static inline int rdev_del_device(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, __le64 extended_addr) { return rdev->ops->del_device(&rdev->wpan_phy, wpan_dev, extended_addr); } static inline int rdev_add_devkey(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, __le64 extended_addr, const struct ieee802154_llsec_device_key *devkey) { return rdev->ops->add_devkey(&rdev->wpan_phy, wpan_dev, extended_addr, devkey); } static inline int rdev_del_devkey(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, __le64 extended_addr, const struct ieee802154_llsec_device_key *devkey) { return rdev->ops->del_devkey(&rdev->wpan_phy, wpan_dev, extended_addr, devkey); } #endif /* CONFIG_IEEE802154_NL802154_EXPERIMENTAL */ #endif /* __CFG802154_RDEV_OPS */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SCHED_CPUTIME_H #define _LINUX_SCHED_CPUTIME_H #include <linux/sched/signal.h> /* * cputime accounting APIs: */ #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE #include <asm/cputime.h> #ifndef cputime_to_nsecs # define cputime_to_nsecs(__ct) \ (cputime_to_usecs(__ct) * NSEC_PER_USEC) #endif #endif /* CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */ #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN extern void task_cputime(struct task_struct *t, u64 *utime, u64 *stime); extern u64 task_gtime(struct task_struct *t); #else static inline void task_cputime(struct task_struct *t, u64 *utime, u64 *stime) { *utime = t->utime; *stime = t->stime; } static inline u64 task_gtime(struct task_struct *t) { return t->gtime; } #endif #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME static inline void task_cputime_scaled(struct task_struct *t, u64 *utimescaled, u64 *stimescaled) { *utimescaled = t->utimescaled; *stimescaled = t->stimescaled; } #else static inline void task_cputime_scaled(struct task_struct *t, u64 *utimescaled, u64 *stimescaled) { task_cputime(t, utimescaled, stimescaled); } #endif extern void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st); extern void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st); extern void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev, u64 *ut, u64 *st); /* * Thread group CPU time accounting. */ void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); void thread_group_sample_cputime(struct task_struct *tsk, u64 *samples); /* * The following are functions that support scheduler-internal time accounting. * These functions are generally called at the timer tick. None of this depends * on CONFIG_SCHEDSTATS. */ /** * get_running_cputimer - return &tsk->signal->cputimer if cputimers are active * * @tsk: Pointer to target task. */ #ifdef CONFIG_POSIX_TIMERS static inline struct thread_group_cputimer *get_running_cputimer(struct task_struct *tsk) { struct thread_group_cputimer *cputimer = &tsk->signal->cputimer; /* * Check whether posix CPU timers are active. If not the thread * group accounting is not active either. Lockless check. */ if (!READ_ONCE(tsk->signal->posix_cputimers.timers_active)) return NULL; /* * After we flush the task's sum_exec_runtime to sig->sum_sched_runtime * in __exit_signal(), we won't account to the signal struct further * cputime consumed by that task, even though the task can still be * ticking after __exit_signal(). * * In order to keep a consistent behaviour between thread group cputime * and thread group cputimer accounting, lets also ignore the cputime * elapsing after __exit_signal() in any thread group timer running. * * This makes sure that POSIX CPU clocks and timers are synchronized, so * that a POSIX CPU timer won't expire while the corresponding POSIX CPU * clock delta is behind the expiring timer value. */ if (unlikely(!tsk->sighand)) return NULL; return cputimer; } #else static inline struct thread_group_cputimer *get_running_cputimer(struct task_struct *tsk) { return NULL; } #endif /** * account_group_user_time - Maintain utime for a thread group. * * @tsk: Pointer to task structure. * @cputime: Time value by which to increment the utime field of the * thread_group_cputime structure. * * If thread group time is being maintained, get the structure for the * running CPU and update the utime field there. */ static inline void account_group_user_time(struct task_struct *tsk, u64 cputime) { struct thread_group_cputimer *cputimer = get_running_cputimer(tsk); if (!cputimer) return; atomic64_add(cputime, &cputimer->cputime_atomic.utime); } /** * account_group_system_time - Maintain stime for a thread group. * * @tsk: Pointer to task structure. * @cputime: Time value by which to increment the stime field of the * thread_group_cputime structure. * * If thread group time is being maintained, get the structure for the * running CPU and update the stime field there. */ static inline void account_group_system_time(struct task_struct *tsk, u64 cputime) { struct thread_group_cputimer *cputimer = get_running_cputimer(tsk); if (!cputimer) return; atomic64_add(cputime, &cputimer->cputime_atomic.stime); } /** * account_group_exec_runtime - Maintain exec runtime for a thread group. * * @tsk: Pointer to task structure. * @ns: Time value by which to increment the sum_exec_runtime field * of the thread_group_cputime structure. * * If thread group time is being maintained, get the structure for the * running CPU and update the sum_exec_runtime field there. */ static inline void account_group_exec_runtime(struct task_struct *tsk, unsigned long long ns) { struct thread_group_cputimer *cputimer = get_running_cputimer(tsk); if (!cputimer) return; atomic64_add(ns, &cputimer->cputime_atomic.sum_exec_runtime); } static inline void prev_cputime_init(struct prev_cputime *prev) { #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE prev->utime = prev->stime = 0; raw_spin_lock_init(&prev->lock); #endif } extern unsigned long long task_sched_runtime(struct task_struct *task); #endif /* _LINUX_SCHED_CPUTIME_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _SCSI_SCSI_HOST_H #define _SCSI_SCSI_HOST_H #include <linux/device.h> #include <linux/list.h> #include <linux/types.h> #include <linux/workqueue.h> #include <linux/mutex.h> #include <linux/seq_file.h> #include <linux/blk-mq.h> #include <scsi/scsi.h> struct block_device; struct completion; struct module; struct scsi_cmnd; struct scsi_device; struct scsi_host_cmd_pool; struct scsi_target; struct Scsi_Host; struct scsi_host_cmd_pool; struct scsi_transport_template; #define SG_ALL SG_CHUNK_SIZE #define MODE_UNKNOWN 0x00 #define MODE_INITIATOR 0x01 #define MODE_TARGET 0x02 struct scsi_host_template { struct module *module; const char *name; /* * The info function will return whatever useful information the * developer sees fit. If not provided, then the name field will * be used instead. * * Status: OPTIONAL */ const char *(* info)(struct Scsi_Host *); /* * Ioctl interface * * Status: OPTIONAL */ int (*ioctl)(struct scsi_device *dev, unsigned int cmd, void __user *arg); #ifdef CONFIG_COMPAT /* * Compat handler. Handle 32bit ABI. * When unknown ioctl is passed return -ENOIOCTLCMD. * * Status: OPTIONAL */ int (*compat_ioctl)(struct scsi_device *dev, unsigned int cmd, void __user *arg); #endif int (*init_cmd_priv)(struct Scsi_Host *shost, struct scsi_cmnd *cmd); int (*exit_cmd_priv)(struct Scsi_Host *shost, struct scsi_cmnd *cmd); /* * The queuecommand function is used to queue up a scsi * command block to the LLDD. When the driver finished * processing the command the done callback is invoked. * * If queuecommand returns 0, then the driver has accepted the * command. It must also push it to the HBA if the scsi_cmnd * flag SCMD_LAST is set, or if the driver does not implement * commit_rqs. The done() function must be called on the command * when the driver has finished with it. (you may call done on the * command before queuecommand returns, but in this case you * *must* return 0 from queuecommand). * * Queuecommand may also reject the command, in which case it may * not touch the command and must not call done() for it. * * There are two possible rejection returns: * * SCSI_MLQUEUE_DEVICE_BUSY: Block this device temporarily, but * allow commands to other devices serviced by this host. * * SCSI_MLQUEUE_HOST_BUSY: Block all devices served by this * host temporarily. * * For compatibility, any other non-zero return is treated the * same as SCSI_MLQUEUE_HOST_BUSY. * * NOTE: "temporarily" means either until the next command for# * this device/host completes, or a period of time determined by * I/O pressure in the system if there are no other outstanding * commands. * * STATUS: REQUIRED */ int (* queuecommand)(struct Scsi_Host *, struct scsi_cmnd *); /* * The commit_rqs function is used to trigger a hardware * doorbell after some requests have been queued with * queuecommand, when an error is encountered before sending * the request with SCMD_LAST set. * * STATUS: OPTIONAL */ void (*commit_rqs)(struct Scsi_Host *, u16); /* * This is an error handling strategy routine. You don't need to * define one of these if you don't want to - there is a default * routine that is present that should work in most cases. For those * driver authors that have the inclination and ability to write their * own strategy routine, this is where it is specified. Note - the * strategy routine is *ALWAYS* run in the context of the kernel eh * thread. Thus you are guaranteed to *NOT* be in an interrupt * handler when you execute this, and you are also guaranteed to * *NOT* have any other commands being queued while you are in the * strategy routine. When you return from this function, operations * return to normal. * * See scsi_error.c scsi_unjam_host for additional comments about * what this function should and should not be attempting to do. * * Status: REQUIRED (at least one of them) */ int (* eh_abort_handler)(struct scsi_cmnd *); int (* eh_device_reset_handler)(struct scsi_cmnd *); int (* eh_target_reset_handler)(struct scsi_cmnd *); int (* eh_bus_reset_handler)(struct scsi_cmnd *); int (* eh_host_reset_handler)(struct scsi_cmnd *); /* * Before the mid layer attempts to scan for a new device where none * currently exists, it will call this entry in your driver. Should * your driver need to allocate any structs or perform any other init * items in order to send commands to a currently unused target/lun * combo, then this is where you can perform those allocations. This * is specifically so that drivers won't have to perform any kind of * "is this a new device" checks in their queuecommand routine, * thereby making the hot path a bit quicker. * * Return values: 0 on success, non-0 on failure * * Deallocation: If we didn't find any devices at this ID, you will * get an immediate call to slave_destroy(). If we find something * here then you will get a call to slave_configure(), then the * device will be used for however long it is kept around, then when * the device is removed from the system (or * possibly at reboot * time), you will then get a call to slave_destroy(). This is * assuming you implement slave_configure and slave_destroy. * However, if you allocate memory and hang it off the device struct, * then you must implement the slave_destroy() routine at a minimum * in order to avoid leaking memory * each time a device is tore down. * * Status: OPTIONAL */ int (* slave_alloc)(struct scsi_device *); /* * Once the device has responded to an INQUIRY and we know the * device is online, we call into the low level driver with the * struct scsi_device *. If the low level device driver implements * this function, it *must* perform the task of setting the queue * depth on the device. All other tasks are optional and depend * on what the driver supports and various implementation details. * * Things currently recommended to be handled at this time include: * * 1. Setting the device queue depth. Proper setting of this is * described in the comments for scsi_change_queue_depth. * 2. Determining if the device supports the various synchronous * negotiation protocols. The device struct will already have * responded to INQUIRY and the results of the standard items * will have been shoved into the various device flag bits, eg. * device->sdtr will be true if the device supports SDTR messages. * 3. Allocating command structs that the device will need. * 4. Setting the default timeout on this device (if needed). * 5. Anything else the low level driver might want to do on a device * specific setup basis... * 6. Return 0 on success, non-0 on error. The device will be marked * as offline on error so that no access will occur. If you return * non-0, your slave_destroy routine will never get called for this * device, so don't leave any loose memory hanging around, clean * up after yourself before returning non-0 * * Status: OPTIONAL */ int (* slave_configure)(struct scsi_device *); /* * Immediately prior to deallocating the device and after all activity * has ceased the mid layer calls this point so that the low level * driver may completely detach itself from the scsi device and vice * versa. The low level driver is responsible for freeing any memory * it allocated in the slave_alloc or slave_configure calls. * * Status: OPTIONAL */ void (* slave_destroy)(struct scsi_device *); /* * Before the mid layer attempts to scan for a new device attached * to a target where no target currently exists, it will call this * entry in your driver. Should your driver need to allocate any * structs or perform any other init items in order to send commands * to a currently unused target, then this is where you can perform * those allocations. * * Return values: 0 on success, non-0 on failure * * Status: OPTIONAL */ int (* target_alloc)(struct scsi_target *); /* * Immediately prior to deallocating the target structure, and * after all activity to attached scsi devices has ceased, the * midlayer calls this point so that the driver may deallocate * and terminate any references to the target. * * Status: OPTIONAL */ void (* target_destroy)(struct scsi_target *); /* * If a host has the ability to discover targets on its own instead * of scanning the entire bus, it can fill in this function and * call scsi_scan_host(). This function will be called periodically * until it returns 1 with the scsi_host and the elapsed time of * the scan in jiffies. * * Status: OPTIONAL */ int (* scan_finished)(struct Scsi_Host *, unsigned long); /* * If the host wants to be called before the scan starts, but * after the midlayer has set up ready for the scan, it can fill * in this function. * * Status: OPTIONAL */ void (* scan_start)(struct Scsi_Host *); /* * Fill in this function to allow the queue depth of this host * to be changeable (on a per device basis). Returns either * the current queue depth setting (may be different from what * was passed in) or an error. An error should only be * returned if the requested depth is legal but the driver was * unable to set it. If the requested depth is illegal, the * driver should set and return the closest legal queue depth. * * Status: OPTIONAL */ int (* change_queue_depth)(struct scsi_device *, int); /* * This functions lets the driver expose the queue mapping * to the block layer. * * Status: OPTIONAL */ int (* map_queues)(struct Scsi_Host *shost); /* * Check if scatterlists need to be padded for DMA draining. * * Status: OPTIONAL */ bool (* dma_need_drain)(struct request *rq); /* * This function determines the BIOS parameters for a given * harddisk. These tend to be numbers that are made up by * the host adapter. Parameters: * size, device, list (heads, sectors, cylinders) * * Status: OPTIONAL */ int (* bios_param)(struct scsi_device *, struct block_device *, sector_t, int []); /* * This function is called when one or more partitions on the * device reach beyond the end of the device. * * Status: OPTIONAL */ void (*unlock_native_capacity)(struct scsi_device *); /* * Can be used to export driver statistics and other infos to the * world outside the kernel ie. userspace and it also provides an * interface to feed the driver with information. * * Status: OBSOLETE */ int (*show_info)(struct seq_file *, struct Scsi_Host *); int (*write_info)(struct Scsi_Host *, char *, int); /* * This is an optional routine that allows the transport to become * involved when a scsi io timer fires. The return value tells the * timer routine how to finish the io timeout handling. * * Status: OPTIONAL */ enum blk_eh_timer_return (*eh_timed_out)(struct scsi_cmnd *); /* This is an optional routine that allows transport to initiate * LLD adapter or firmware reset using sysfs attribute. * * Return values: 0 on success, -ve value on failure. * * Status: OPTIONAL */ int (*host_reset)(struct Scsi_Host *shost, int reset_type); #define SCSI_ADAPTER_RESET 1 #define SCSI_FIRMWARE_RESET 2 /* * Name of proc directory */ const char *proc_name; /* * Used to store the procfs directory if a driver implements the * show_info method. */ struct proc_dir_entry *proc_dir; /* * This determines if we will use a non-interrupt driven * or an interrupt driven scheme. It is set to the maximum number * of simultaneous commands a single hw queue in HBA will accept. */ int can_queue; /* * In many instances, especially where disconnect / reconnect are * supported, our host also has an ID on the SCSI bus. If this is * the case, then it must be reserved. Please set this_id to -1 if * your setup is in single initiator mode, and the host lacks an * ID. */ int this_id; /* * This determines the degree to which the host adapter is capable * of scatter-gather. */ unsigned short sg_tablesize; unsigned short sg_prot_tablesize; /* * Set this if the host adapter has limitations beside segment count. */ unsigned int max_sectors; /* * Maximum size in bytes of a single segment. */ unsigned int max_segment_size; /* * DMA scatter gather segment boundary limit. A segment crossing this * boundary will be split in two. */ unsigned long dma_boundary; unsigned long virt_boundary_mask; /* * This specifies "machine infinity" for host templates which don't * limit the transfer size. Note this limit represents an absolute * maximum, and may be over the transfer limits allowed for * individual devices (e.g. 256 for SCSI-1). */ #define SCSI_DEFAULT_MAX_SECTORS 1024 /* * True if this host adapter can make good use of linked commands. * This will allow more than one command to be queued to a given * unit on a given host. Set this to the maximum number of command * blocks to be provided for each device. Set this to 1 for one * command block per lun, 2 for two, etc. Do not set this to 0. * You should make sure that the host adapter will do the right thing * before you try setting this above 1. */ short cmd_per_lun; /* * present contains counter indicating how many boards of this * type were found when we did the scan. */ unsigned char present; /* If use block layer to manage tags, this is tag allocation policy */ int tag_alloc_policy; /* * Track QUEUE_FULL events and reduce queue depth on demand. */ unsigned track_queue_depth:1; /* * This specifies the mode that a LLD supports. */ unsigned supported_mode:2; /* * True if this host adapter uses unchecked DMA onto an ISA bus. */ unsigned unchecked_isa_dma:1; /* * True for emulated SCSI host adapters (e.g. ATAPI). */ unsigned emulated:1; /* * True if the low-level driver performs its own reset-settle delays. */ unsigned skip_settle_delay:1; /* True if the controller does not support WRITE SAME */ unsigned no_write_same:1; /* True if the host uses host-wide tagspace */ unsigned host_tagset:1; /* * Countdown for host blocking with no commands outstanding. */ unsigned int max_host_blocked; /* * Default value for the blocking. If the queue is empty, * host_blocked counts down in the request_fn until it restarts * host operations as zero is reached. * * FIXME: This should probably be a value in the template */ #define SCSI_DEFAULT_HOST_BLOCKED 7 /* * Pointer to the sysfs class properties for this host, NULL terminated. */ struct device_attribute **shost_attrs; /* * Pointer to the SCSI device properties for this host, NULL terminated. */ struct device_attribute **sdev_attrs; /* * Pointer to the SCSI device attribute groups for this host, * NULL terminated. */ const struct attribute_group **sdev_groups; /* * Vendor Identifier associated with the host * * Note: When specifying vendor_id, be sure to read the * Vendor Type and ID formatting requirements specified in * scsi_netlink.h */ u64 vendor_id; /* * Additional per-command data allocated for the driver. */ unsigned int cmd_size; struct scsi_host_cmd_pool *cmd_pool; /* Delay for runtime autosuspend */ int rpm_autosuspend_delay; }; /* * Temporary #define for host lock push down. Can be removed when all * drivers have been updated to take advantage of unlocked * queuecommand. * */ #define DEF_SCSI_QCMD(func_name) \ int func_name(struct Scsi_Host *shost, struct scsi_cmnd *cmd) \ { \ unsigned long irq_flags; \ int rc; \ spin_lock_irqsave(shost->host_lock, irq_flags); \ rc = func_name##_lck (cmd, cmd->scsi_done); \ spin_unlock_irqrestore(shost->host_lock, irq_flags); \ return rc; \ } /* * shost state: If you alter this, you also need to alter scsi_sysfs.c * (for the ascii descriptions) and the state model enforcer: * scsi_host_set_state() */ enum scsi_host_state { SHOST_CREATED = 1, SHOST_RUNNING, SHOST_CANCEL, SHOST_DEL, SHOST_RECOVERY, SHOST_CANCEL_RECOVERY, SHOST_DEL_RECOVERY, }; struct Scsi_Host { /* * __devices is protected by the host_lock, but you should * usually use scsi_device_lookup / shost_for_each_device * to access it and don't care about locking yourself. * In the rare case of being in irq context you can use * their __ prefixed variants with the lock held. NEVER * access this list directly from a driver. */ struct list_head __devices; struct list_head __targets; struct list_head starved_list; spinlock_t default_lock; spinlock_t *host_lock; struct mutex scan_mutex;/* serialize scanning activity */ struct list_head eh_cmd_q; struct task_struct * ehandler; /* Error recovery thread. */ struct completion * eh_action; /* Wait for specific actions on the host. */ wait_queue_head_t host_wait; struct scsi_host_template *hostt; struct scsi_transport_template *transportt; /* Area to keep a shared tag map */ struct blk_mq_tag_set tag_set; atomic_t host_blocked; unsigned int host_failed; /* commands that failed. protected by host_lock */ unsigned int host_eh_scheduled; /* EH scheduled without command */ unsigned int host_no; /* Used for IOCTL_GET_IDLUN, /proc/scsi et al. */ /* next two fields are used to bound the time spent in error handling */ int eh_deadline; unsigned long last_reset; /* * These three parameters can be used to allow for wide scsi, * and for host adapters that support multiple busses * The last two should be set to 1 more than the actual max id * or lun (e.g. 8 for SCSI parallel systems). */ unsigned int max_channel; unsigned int max_id; u64 max_lun; /* * This is a unique identifier that must be assigned so that we * have some way of identifying each detected host adapter properly * and uniquely. For hosts that do not support more than one card * in the system at one time, this does not need to be set. It is * initialized to 0 in scsi_register. */ unsigned int unique_id; /* * The maximum length of SCSI commands that this host can accept. * Probably 12 for most host adapters, but could be 16 for others. * or 260 if the driver supports variable length cdbs. * For drivers that don't set this field, a value of 12 is * assumed. */ unsigned short max_cmd_len; int this_id; int can_queue; short cmd_per_lun; short unsigned int sg_tablesize; short unsigned int sg_prot_tablesize; unsigned int max_sectors; unsigned int max_segment_size; unsigned long dma_boundary; unsigned long virt_boundary_mask; /* * In scsi-mq mode, the number of hardware queues supported by the LLD. * * Note: it is assumed that each hardware queue has a queue depth of * can_queue. In other words, the total queue depth per host * is nr_hw_queues * can_queue. However, for when host_tagset is set, * the total queue depth is can_queue. */ unsigned nr_hw_queues; unsigned active_mode:2; unsigned unchecked_isa_dma:1; /* * Host has requested that no further requests come through for the * time being. */ unsigned host_self_blocked:1; /* * Host uses correct SCSI ordering not PC ordering. The bit is * set for the minority of drivers whose authors actually read * the spec ;). */ unsigned reverse_ordering:1; /* Task mgmt function in progress */ unsigned tmf_in_progress:1; /* Asynchronous scan in progress */ unsigned async_scan:1; /* Don't resume host in EH */ unsigned eh_noresume:1; /* The controller does not support WRITE SAME */ unsigned no_write_same:1; /* True if the host uses host-wide tagspace */ unsigned host_tagset:1; /* Host responded with short (<36 bytes) INQUIRY result */ unsigned short_inquiry:1; /* The transport requires the LUN bits NOT to be stored in CDB[1] */ unsigned no_scsi2_lun_in_cdb:1; /* * Optional work queue to be utilized by the transport */ char work_q_name[20]; struct workqueue_struct *work_q; /* * Task management function work queue */ struct workqueue_struct *tmf_work_q; /* * Value host_blocked counts down from */ unsigned int max_host_blocked; /* Protection Information */ unsigned int prot_capabilities; unsigned char prot_guard_type; /* legacy crap */ unsigned long base; unsigned long io_port; unsigned char n_io_port; unsigned char dma_channel; unsigned int irq; enum scsi_host_state shost_state; /* ldm bits */ struct device shost_gendev, shost_dev; /* * Points to the transport data (if any) which is allocated * separately */ void *shost_data; /* * Points to the physical bus device we'd use to do DMA * Needed just in case we have virtual hosts. */ struct device *dma_dev; /* * We should ensure that this is aligned, both for better performance * and also because some compilers (m68k) don't automatically force * alignment to a long boundary. */ unsigned long hostdata[] /* Used for storage of host specific stuff */ __attribute__ ((aligned (sizeof(unsigned long)))); }; #define class_to_shost(d) \ container_of(d, struct Scsi_Host, shost_dev) #define shost_printk(prefix, shost, fmt, a...) \ dev_printk(prefix, &(shost)->shost_gendev, fmt, ##a) static inline void *shost_priv(struct Scsi_Host *shost) { return (void *)shost->hostdata; } int scsi_is_host_device(const struct device *); static inline struct Scsi_Host *dev_to_shost(struct device *dev) { while (!scsi_is_host_device(dev)) { if (!dev->parent) return NULL; dev = dev->parent; } return container_of(dev, struct Scsi_Host, shost_gendev); } static inline int scsi_host_in_recovery(struct Scsi_Host *shost) { return shost->shost_state == SHOST_RECOVERY || shost->shost_state == SHOST_CANCEL_RECOVERY || shost->shost_state == SHOST_DEL_RECOVERY || shost->tmf_in_progress; } extern int scsi_queue_work(struct Scsi_Host *, struct work_struct *); extern void scsi_flush_work(struct Scsi_Host *); extern struct Scsi_Host *scsi_host_alloc(struct scsi_host_template *, int); extern int __must_check scsi_add_host_with_dma(struct Scsi_Host *, struct device *, struct device *); extern void scsi_scan_host(struct Scsi_Host *); extern void scsi_rescan_device(struct device *); extern void scsi_remove_host(struct Scsi_Host *); extern struct Scsi_Host *scsi_host_get(struct Scsi_Host *); extern int scsi_host_busy(struct Scsi_Host *shost); extern void scsi_host_put(struct Scsi_Host *t); extern struct Scsi_Host *scsi_host_lookup(unsigned short); extern const char *scsi_host_state_name(enum scsi_host_state); extern void scsi_host_complete_all_commands(struct Scsi_Host *shost, int status); static inline int __must_check scsi_add_host(struct Scsi_Host *host, struct device *dev) { return scsi_add_host_with_dma(host, dev, dev); } static inline struct device *scsi_get_device(struct Scsi_Host *shost) { return shost->shost_gendev.parent; } /** * scsi_host_scan_allowed - Is scanning of this host allowed * @shost: Pointer to Scsi_Host. **/ static inline int scsi_host_scan_allowed(struct Scsi_Host *shost) { return shost->shost_state == SHOST_RUNNING || shost->shost_state == SHOST_RECOVERY; } extern void scsi_unblock_requests(struct Scsi_Host *); extern void scsi_block_requests(struct Scsi_Host *); extern int scsi_host_block(struct Scsi_Host *shost); extern int scsi_host_unblock(struct Scsi_Host *shost, int new_state); void scsi_host_busy_iter(struct Scsi_Host *, bool (*fn)(struct scsi_cmnd *, void *, bool), void *priv); struct class_container; /* * These two functions are used to allocate and free a pseudo device * which will connect to the host adapter itself rather than any * physical device. You must deallocate when you are done with the * thing. This physical pseudo-device isn't real and won't be available * from any high-level drivers. */ extern void scsi_free_host_dev(struct scsi_device *); extern struct scsi_device *scsi_get_host_dev(struct Scsi_Host *); /* * DIF defines the exchange of protection information between * initiator and SBC block device. * * DIX defines the exchange of protection information between OS and * initiator. */ enum scsi_host_prot_capabilities { SHOST_DIF_TYPE1_PROTECTION = 1 << 0, /* T10 DIF Type 1 */ SHOST_DIF_TYPE2_PROTECTION = 1 << 1, /* T10 DIF Type 2 */ SHOST_DIF_TYPE3_PROTECTION = 1 << 2, /* T10 DIF Type 3 */ SHOST_DIX_TYPE0_PROTECTION = 1 << 3, /* DIX between OS and HBA only */ SHOST_DIX_TYPE1_PROTECTION = 1 << 4, /* DIX with DIF Type 1 */ SHOST_DIX_TYPE2_PROTECTION = 1 << 5, /* DIX with DIF Type 2 */ SHOST_DIX_TYPE3_PROTECTION = 1 << 6, /* DIX with DIF Type 3 */ }; /* * SCSI hosts which support the Data Integrity Extensions must * indicate their capabilities by setting the prot_capabilities using * this call. */ static inline void scsi_host_set_prot(struct Scsi_Host *shost, unsigned int mask) { shost->prot_capabilities = mask; } static inline unsigned int scsi_host_get_prot(struct Scsi_Host *shost) { return shost->prot_capabilities; } static inline int scsi_host_prot_dma(struct Scsi_Host *shost) { return shost->prot_capabilities >= SHOST_DIX_TYPE0_PROTECTION; } static inline unsigned int scsi_host_dif_capable(struct Scsi_Host *shost, unsigned int target_type) { static unsigned char cap[] = { 0, SHOST_DIF_TYPE1_PROTECTION, SHOST_DIF_TYPE2_PROTECTION, SHOST_DIF_TYPE3_PROTECTION }; if (target_type >= ARRAY_SIZE(cap)) return 0; return shost->prot_capabilities & cap[target_type] ? target_type : 0; } static inline unsigned int scsi_host_dix_capable(struct Scsi_Host *shost, unsigned int target_type) { #if defined(CONFIG_BLK_DEV_INTEGRITY) static unsigned char cap[] = { SHOST_DIX_TYPE0_PROTECTION, SHOST_DIX_TYPE1_PROTECTION, SHOST_DIX_TYPE2_PROTECTION, SHOST_DIX_TYPE3_PROTECTION }; if (target_type >= ARRAY_SIZE(cap)) return 0; return shost->prot_capabilities & cap[target_type]; #endif return 0; } /* * All DIX-capable initiators must support the T10-mandated CRC * checksum. Controllers can optionally implement the IP checksum * scheme which has much lower impact on system performance. Note * that the main rationale for the checksum is to match integrity * metadata with data. Detecting bit errors are a job for ECC memory * and buses. */ enum scsi_host_guard_type { SHOST_DIX_GUARD_CRC = 1 << 0, SHOST_DIX_GUARD_IP = 1 << 1, }; static inline void scsi_host_set_guard(struct Scsi_Host *shost, unsigned char type) { shost->prot_guard_type = type; } static inline unsigned char scsi_host_get_guard(struct Scsi_Host *shost) { return shost->prot_guard_type; } extern int scsi_host_set_state(struct Scsi_Host *, enum scsi_host_state); #endif /* _SCSI_SCSI_HOST_H */
1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 // SPDX-License-Identifier: GPL-2.0-or-later /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Ethernet-type device handling. * * Version: @(#)eth.c 1.0.7 05/25/93 * * Authors: Ross Biro * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> * Mark Evans, <evansmp@uhura.aston.ac.uk> * Florian La Roche, <rzsfl@rz.uni-sb.de> * Alan Cox, <gw4pts@gw4pts.ampr.org> * * Fixes: * Mr Linux : Arp problems * Alan Cox : Generic queue tidyup (very tiny here) * Alan Cox : eth_header ntohs should be htons * Alan Cox : eth_rebuild_header missing an htons and * minor other things. * Tegge : Arp bug fixes. * Florian : Removed many unnecessary functions, code cleanup * and changes for new arp and skbuff. * Alan Cox : Redid header building to reflect new format. * Alan Cox : ARP only when compiled with CONFIG_INET * Greg Page : 802.2 and SNAP stuff. * Alan Cox : MAC layer pointers/new format. * Paul Gortmaker : eth_copy_and_sum shouldn't csum padding. * Alan Cox : Protect against forwarding explosions with * older network drivers and IFF_ALLMULTI. * Christer Weinigel : Better rebuild header message. * Andrew Morton : 26Feb01: kill ether_setup() - use netdev_boot_setup(). */ #include <linux/module.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/string.h> #include <linux/mm.h> #include <linux/socket.h> #include <linux/in.h> #include <linux/inet.h> #include <linux/ip.h> #include <linux/netdevice.h> #include <linux/nvmem-consumer.h> #include <linux/etherdevice.h> #include <linux/skbuff.h> #include <linux/errno.h> #include <linux/init.h> #include <linux/if_ether.h> #include <linux/of_net.h> #include <linux/pci.h> #include <net/dst.h> #include <net/arp.h> #include <net/sock.h> #include <net/ipv6.h> #include <net/ip.h> #include <net/dsa.h> #include <net/flow_dissector.h> #include <linux/uaccess.h> #include <net/pkt_sched.h> __setup("ether=", netdev_boot_setup); /** * eth_header - create the Ethernet header * @skb: buffer to alter * @dev: source device * @type: Ethernet type field * @daddr: destination address (NULL leave destination address) * @saddr: source address (NULL use device source address) * @len: packet length (<= skb->len) * * * Set the protocol type. For a packet of type ETH_P_802_3/2 we put the length * in here instead. */ int eth_header(struct sk_buff *skb, struct net_device *dev, unsigned short type, const void *daddr, const void *saddr, unsigned int len) { struct ethhdr *eth = skb_push(skb, ETH_HLEN); if (type != ETH_P_802_3 && type != ETH_P_802_2) eth->h_proto = htons(type); else eth->h_proto = htons(len); /* * Set the source hardware address. */ if (!saddr) saddr = dev->dev_addr; memcpy(eth->h_source, saddr, ETH_ALEN); if (daddr) { memcpy(eth->h_dest, daddr, ETH_ALEN); return ETH_HLEN; } /* * Anyway, the loopback-device should never use this function... */ if (dev->flags & (IFF_LOOPBACK | IFF_NOARP)) { eth_zero_addr(eth->h_dest); return ETH_HLEN; } return -ETH_HLEN; } EXPORT_SYMBOL(eth_header); /** * eth_get_headlen - determine the length of header for an ethernet frame * @dev: pointer to network device * @data: pointer to start of frame * @len: total length of frame * * Make a best effort attempt to pull the length for all of the headers for * a given frame in a linear buffer. */ u32 eth_get_headlen(const struct net_device *dev, void *data, unsigned int len) { const unsigned int flags = FLOW_DISSECTOR_F_PARSE_1ST_FRAG; const struct ethhdr *eth = (const struct ethhdr *)data; struct flow_keys_basic keys; /* this should never happen, but better safe than sorry */ if (unlikely(len < sizeof(*eth))) return len; /* parse any remaining L2/L3 headers, check for L4 */ if (!skb_flow_dissect_flow_keys_basic(dev_net(dev), NULL, &keys, data, eth->h_proto, sizeof(*eth), len, flags)) return max_t(u32, keys.control.thoff, sizeof(*eth)); /* parse for any L4 headers */ return min_t(u32, __skb_get_poff(NULL, data, &keys, len), len); } EXPORT_SYMBOL(eth_get_headlen); /** * eth_type_trans - determine the packet's protocol ID. * @skb: received socket data * @dev: receiving network device * * The rule here is that we * assume 802.3 if the type field is short enough to be a length. * This is normal practice and works for any 'now in use' protocol. */ __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev) { unsigned short _service_access_point; const unsigned short *sap; const struct ethhdr *eth; skb->dev = dev; skb_reset_mac_header(skb); eth = (struct ethhdr *)skb->data; skb_pull_inline(skb, ETH_HLEN); if (unlikely(!ether_addr_equal_64bits(eth->h_dest, dev->dev_addr))) { if (unlikely(is_multicast_ether_addr_64bits(eth->h_dest))) { if (ether_addr_equal_64bits(eth->h_dest, dev->broadcast)) skb->pkt_type = PACKET_BROADCAST; else skb->pkt_type = PACKET_MULTICAST; } else { skb->pkt_type = PACKET_OTHERHOST; } } /* * Some variants of DSA tagging don't have an ethertype field * at all, so we check here whether one of those tagging * variants has been configured on the receiving interface, * and if so, set skb->protocol without looking at the packet. * The DSA tagging protocol may be able to decode some but not all * traffic (for example only for management). In that case give it the * option to filter the packets from which it can decode source port * information. */ if (unlikely(netdev_uses_dsa(dev)) && dsa_can_decode(skb, dev)) return htons(ETH_P_XDSA); if (likely(eth_proto_is_802_3(eth->h_proto))) return eth->h_proto; /* * This is a magic hack to spot IPX packets. Older Novell breaks * the protocol design and runs IPX over 802.3 without an 802.2 LLC * layer. We look for FFFF which isn't a used 802.2 SSAP/DSAP. This * won't work for fault tolerant netware but does for the rest. */ sap = skb_header_pointer(skb, 0, sizeof(*sap), &_service_access_point); if (sap && *sap == 0xFFFF) return htons(ETH_P_802_3); /* * Real 802.2 LLC */ return htons(ETH_P_802_2); } EXPORT_SYMBOL(eth_type_trans); /** * eth_header_parse - extract hardware address from packet * @skb: packet to extract header from * @haddr: destination buffer */ int eth_header_parse(const struct sk_buff *skb, unsigned char *haddr) { const struct ethhdr *eth = eth_hdr(skb); memcpy(haddr, eth->h_source, ETH_ALEN); return ETH_ALEN; } EXPORT_SYMBOL(eth_header_parse); /** * eth_header_cache - fill cache entry from neighbour * @neigh: source neighbour * @hh: destination cache entry * @type: Ethernet type field * * Create an Ethernet header template from the neighbour. */ int eth_header_cache(const struct neighbour *neigh, struct hh_cache *hh, __be16 type) { struct ethhdr *eth; const struct net_device *dev = neigh->dev; eth = (struct ethhdr *) (((u8 *) hh->hh_data) + (HH_DATA_OFF(sizeof(*eth)))); if (type == htons(ETH_P_802_3)) return -1; eth->h_proto = type; memcpy(eth->h_source, dev->dev_addr, ETH_ALEN); memcpy(eth->h_dest, neigh->ha, ETH_ALEN); /* Pairs with READ_ONCE() in neigh_resolve_output(), * neigh_hh_output() and neigh_update_hhs(). */ smp_store_release(&hh->hh_len, ETH_HLEN); return 0; } EXPORT_SYMBOL(eth_header_cache); /** * eth_header_cache_update - update cache entry * @hh: destination cache entry * @dev: network device * @haddr: new hardware address * * Called by Address Resolution module to notify changes in address. */ void eth_header_cache_update(struct hh_cache *hh, const struct net_device *dev, const unsigned char *haddr) { memcpy(((u8 *) hh->hh_data) + HH_DATA_OFF(sizeof(struct ethhdr)), haddr, ETH_ALEN); } EXPORT_SYMBOL(eth_header_cache_update); /** * eth_header_parser_protocol - extract protocol from L2 header * @skb: packet to extract protocol from */ __be16 eth_header_parse_protocol(const struct sk_buff *skb) { const struct ethhdr *eth = eth_hdr(skb); return eth->h_proto; } EXPORT_SYMBOL(eth_header_parse_protocol); /** * eth_prepare_mac_addr_change - prepare for mac change * @dev: network device * @p: socket address */ int eth_prepare_mac_addr_change(struct net_device *dev, void *p) { struct sockaddr *addr = p; if (!(dev->priv_flags & IFF_LIVE_ADDR_CHANGE) && netif_running(dev)) return -EBUSY; if (!is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; return 0; } EXPORT_SYMBOL(eth_prepare_mac_addr_change); /** * eth_commit_mac_addr_change - commit mac change * @dev: network device * @p: socket address */ void eth_commit_mac_addr_change(struct net_device *dev, void *p) { struct sockaddr *addr = p; memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN); } EXPORT_SYMBOL(eth_commit_mac_addr_change); /** * eth_mac_addr - set new Ethernet hardware address * @dev: network device * @p: socket address * * Change hardware address of device. * * This doesn't change hardware matching, so needs to be overridden * for most real devices. */ int eth_mac_addr(struct net_device *dev, void *p) { int ret; ret = eth_prepare_mac_addr_change(dev, p); if (ret < 0) return ret; eth_commit_mac_addr_change(dev, p); return 0; } EXPORT_SYMBOL(eth_mac_addr); int eth_validate_addr(struct net_device *dev) { if (!is_valid_ether_addr(dev->dev_addr)) return -EADDRNOTAVAIL; return 0; } EXPORT_SYMBOL(eth_validate_addr); const struct header_ops eth_header_ops ____cacheline_aligned = { .create = eth_header, .parse = eth_header_parse, .cache = eth_header_cache, .cache_update = eth_header_cache_update, .parse_protocol = eth_header_parse_protocol, }; /** * ether_setup - setup Ethernet network device * @dev: network device * * Fill in the fields of the device structure with Ethernet-generic values. */ void ether_setup(struct net_device *dev) { dev->header_ops = &eth_header_ops; dev->type = ARPHRD_ETHER; dev->hard_header_len = ETH_HLEN; dev->min_header_len = ETH_HLEN; dev->mtu = ETH_DATA_LEN; dev->min_mtu = ETH_MIN_MTU; dev->max_mtu = ETH_DATA_LEN; dev->addr_len = ETH_ALEN; dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; dev->flags = IFF_BROADCAST|IFF_MULTICAST; dev->priv_flags |= IFF_TX_SKB_SHARING; eth_broadcast_addr(dev->broadcast); } EXPORT_SYMBOL(ether_setup); /** * alloc_etherdev_mqs - Allocates and sets up an Ethernet device * @sizeof_priv: Size of additional driver-private structure to be allocated * for this Ethernet device * @txqs: The number of TX queues this device has. * @rxqs: The number of RX queues this device has. * * Fill in the fields of the device structure with Ethernet-generic * values. Basically does everything except registering the device. * * Constructs a new net device, complete with a private data area of * size (sizeof_priv). A 32-byte (not bit) alignment is enforced for * this private data area. */ struct net_device *alloc_etherdev_mqs(int sizeof_priv, unsigned int txqs, unsigned int rxqs) { return alloc_netdev_mqs(sizeof_priv, "eth%d", NET_NAME_UNKNOWN, ether_setup, txqs, rxqs); } EXPORT_SYMBOL(alloc_etherdev_mqs); ssize_t sysfs_format_mac(char *buf, const unsigned char *addr, int len) { return scnprintf(buf, PAGE_SIZE, "%*phC\n", len, addr); } EXPORT_SYMBOL(sysfs_format_mac); struct sk_buff *eth_gro_receive(struct list_head *head, struct sk_buff *skb) { const struct packet_offload *ptype; unsigned int hlen, off_eth; struct sk_buff *pp = NULL; struct ethhdr *eh, *eh2; struct sk_buff *p; __be16 type; int flush = 1; off_eth = skb_gro_offset(skb); hlen = off_eth + sizeof(*eh); eh = skb_gro_header_fast(skb, off_eth); if (skb_gro_header_hard(skb, hlen)) { eh = skb_gro_header_slow(skb, hlen, off_eth); if (unlikely(!eh)) goto out; } flush = 0; list_for_each_entry(p, head, list) { if (!NAPI_GRO_CB(p)->same_flow) continue; eh2 = (struct ethhdr *)(p->data + off_eth); if (compare_ether_header(eh, eh2)) { NAPI_GRO_CB(p)->same_flow = 0; continue; } } type = eh->h_proto; rcu_read_lock(); ptype = gro_find_receive_by_type(type); if (ptype == NULL) { flush = 1; goto out_unlock; } skb_gro_pull(skb, sizeof(*eh)); skb_gro_postpull_rcsum(skb, eh, sizeof(*eh)); pp = call_gro_receive(ptype->callbacks.gro_receive, head, skb); out_unlock: rcu_read_unlock(); out: skb_gro_flush_final(skb, pp, flush); return pp; } EXPORT_SYMBOL(eth_gro_receive); int eth_gro_complete(struct sk_buff *skb, int nhoff) { struct ethhdr *eh = (struct ethhdr *)(skb->data + nhoff); __be16 type = eh->h_proto; struct packet_offload *ptype; int err = -ENOSYS; if (skb->encapsulation) skb_set_inner_mac_header(skb, nhoff); rcu_read_lock(); ptype = gro_find_complete_by_type(type); if (ptype != NULL) err = ptype->callbacks.gro_complete(skb, nhoff + sizeof(struct ethhdr)); rcu_read_unlock(); return err; } EXPORT_SYMBOL(eth_gro_complete); static struct packet_offload eth_packet_offload __read_mostly = { .type = cpu_to_be16(ETH_P_TEB), .priority = 10, .callbacks = { .gro_receive = eth_gro_receive, .gro_complete = eth_gro_complete, }, }; static int __init eth_offload_init(void) { dev_add_offload(&eth_packet_offload); return 0; } fs_initcall(eth_offload_init); unsigned char * __weak arch_get_platform_mac_address(void) { return NULL; } int eth_platform_get_mac_address(struct device *dev, u8 *mac_addr) { const unsigned char *addr = NULL; if (dev->of_node) addr = of_get_mac_address(dev->of_node); if (IS_ERR_OR_NULL(addr)) addr = arch_get_platform_mac_address(); if (!addr) return -ENODEV; ether_addr_copy(mac_addr, addr); return 0; } EXPORT_SYMBOL(eth_platform_get_mac_address); /** * Obtain the MAC address from an nvmem cell named 'mac-address' associated * with given device. * * @dev: Device with which the mac-address cell is associated. * @addrbuf: Buffer to which the MAC address will be copied on success. * * Returns 0 on success or a negative error number on failure. */ int nvmem_get_mac_address(struct device *dev, void *addrbuf) { struct nvmem_cell *cell; const void *mac; size_t len; cell = nvmem_cell_get(dev, "mac-address"); if (IS_ERR(cell)) return PTR_ERR(cell); mac = nvmem_cell_read(cell, &len); nvmem_cell_put(cell); if (IS_ERR(mac)) return PTR_ERR(mac); if (len != ETH_ALEN || !is_valid_ether_addr(mac)) { kfree(mac); return -EINVAL; } ether_addr_copy(addrbuf, mac); kfree(mac); return 0; } EXPORT_SYMBOL(nvmem_get_mac_address);
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_RATELIMIT_H #define _LINUX_RATELIMIT_H #include <linux/ratelimit_types.h> #include <linux/sched.h> #include <linux/spinlock.h> static inline void ratelimit_state_init(struct ratelimit_state *rs, int interval, int burst) { memset(rs, 0, sizeof(*rs)); raw_spin_lock_init(&rs->lock); rs->interval = interval; rs->burst = burst; } static inline void ratelimit_default_init(struct ratelimit_state *rs) { return ratelimit_state_init(rs, DEFAULT_RATELIMIT_INTERVAL, DEFAULT_RATELIMIT_BURST); } static inline void ratelimit_state_exit(struct ratelimit_state *rs) { if (!(rs->flags & RATELIMIT_MSG_ON_RELEASE)) return; if (rs->missed) { pr_warn("%s: %d output lines suppressed due to ratelimiting\n", current->comm, rs->missed); rs->missed = 0; } } static inline void ratelimit_set_flags(struct ratelimit_state *rs, unsigned long flags) { rs->flags = flags; } extern struct ratelimit_state printk_ratelimit_state; #ifdef CONFIG_PRINTK #define WARN_ON_RATELIMIT(condition, state) ({ \ bool __rtn_cond = !!(condition); \ WARN_ON(__rtn_cond && __ratelimit(state)); \ __rtn_cond; \ }) #define WARN_RATELIMIT(condition, format, ...) \ ({ \ static DEFINE_RATELIMIT_STATE(_rs, \ DEFAULT_RATELIMIT_INTERVAL, \ DEFAULT_RATELIMIT_BURST); \ int rtn = !!(condition); \ \ if (unlikely(rtn && __ratelimit(&_rs))) \ WARN(rtn, format, ##__VA_ARGS__); \ \ rtn; \ }) #else #define WARN_ON_RATELIMIT(condition, state) \ WARN_ON(condition) #define WARN_RATELIMIT(condition, format, ...) \ ({ \ int rtn = WARN(condition, format, ##__VA_ARGS__); \ rtn; \ }) #endif #endif /* _LINUX_RATELIMIT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * RNG: Random Number Generator algorithms under the crypto API * * Copyright (c) 2008 Neil Horman <nhorman@tuxdriver.com> * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au> */ #ifndef _CRYPTO_RNG_H #define _CRYPTO_RNG_H #include <linux/crypto.h> struct crypto_rng; /** * struct rng_alg - random number generator definition * * @generate: The function defined by this variable obtains a * random number. The random number generator transform * must generate the random number out of the context * provided with this call, plus any additional data * if provided to the call. * @seed: Seed or reseed the random number generator. With the * invocation of this function call, the random number * generator shall become ready for generation. If the * random number generator requires a seed for setting * up a new state, the seed must be provided by the * consumer while invoking this function. The required * size of the seed is defined with @seedsize . * @set_ent: Set entropy that would otherwise be obtained from * entropy source. Internal use only. * @seedsize: The seed size required for a random number generator * initialization defined with this variable. Some * random number generators does not require a seed * as the seeding is implemented internally without * the need of support by the consumer. In this case, * the seed size is set to zero. * @base: Common crypto API algorithm data structure. */ struct rng_alg { int (*generate)(struct crypto_rng *tfm, const u8 *src, unsigned int slen, u8 *dst, unsigned int dlen); int (*seed)(struct crypto_rng *tfm, const u8 *seed, unsigned int slen); void (*set_ent)(struct crypto_rng *tfm, const u8 *data, unsigned int len); unsigned int seedsize; struct crypto_alg base; }; struct crypto_rng { struct crypto_tfm base; }; extern struct crypto_rng *crypto_default_rng; int crypto_get_default_rng(void); void crypto_put_default_rng(void); /** * DOC: Random number generator API * * The random number generator API is used with the ciphers of type * CRYPTO_ALG_TYPE_RNG (listed as type "rng" in /proc/crypto) */ /** * crypto_alloc_rng() -- allocate RNG handle * @alg_name: is the cra_name / name or cra_driver_name / driver name of the * message digest cipher * @type: specifies the type of the cipher * @mask: specifies the mask for the cipher * * Allocate a cipher handle for a random number generator. The returned struct * crypto_rng is the cipher handle that is required for any subsequent * API invocation for that random number generator. * * For all random number generators, this call creates a new private copy of * the random number generator that does not share a state with other * instances. The only exception is the "krng" random number generator which * is a kernel crypto API use case for the get_random_bytes() function of the * /dev/random driver. * * Return: allocated cipher handle in case of success; IS_ERR() is true in case * of an error, PTR_ERR() returns the error code. */ struct crypto_rng *crypto_alloc_rng(const char *alg_name, u32 type, u32 mask); static inline struct crypto_tfm *crypto_rng_tfm(struct crypto_rng *tfm) { return &tfm->base; } /** * crypto_rng_alg - obtain name of RNG * @tfm: cipher handle * * Return the generic name (cra_name) of the initialized random number generator * * Return: generic name string */ static inline struct rng_alg *crypto_rng_alg(struct crypto_rng *tfm) { return container_of(crypto_rng_tfm(tfm)->__crt_alg, struct rng_alg, base); } /** * crypto_free_rng() - zeroize and free RNG handle * @tfm: cipher handle to be freed * * If @tfm is a NULL or error pointer, this function does nothing. */ static inline void crypto_free_rng(struct crypto_rng *tfm) { crypto_destroy_tfm(tfm, crypto_rng_tfm(tfm)); } /** * crypto_rng_generate() - get random number * @tfm: cipher handle * @src: Input buffer holding additional data, may be NULL * @slen: Length of additional data * @dst: output buffer holding the random numbers * @dlen: length of the output buffer * * This function fills the caller-allocated buffer with random * numbers using the random number generator referenced by the * cipher handle. * * Return: 0 function was successful; < 0 if an error occurred */ static inline int crypto_rng_generate(struct crypto_rng *tfm, const u8 *src, unsigned int slen, u8 *dst, unsigned int dlen) { struct crypto_alg *alg = tfm->base.__crt_alg; int ret; crypto_stats_get(alg); ret = crypto_rng_alg(tfm)->generate(tfm, src, slen, dst, dlen); crypto_stats_rng_generate(alg, dlen, ret); return ret; } /** * crypto_rng_get_bytes() - get random number * @tfm: cipher handle * @rdata: output buffer holding the random numbers * @dlen: length of the output buffer * * This function fills the caller-allocated buffer with random numbers using the * random number generator referenced by the cipher handle. * * Return: 0 function was successful; < 0 if an error occurred */ static inline int crypto_rng_get_bytes(struct crypto_rng *tfm, u8 *rdata, unsigned int dlen) { return crypto_rng_generate(tfm, NULL, 0, rdata, dlen); } /** * crypto_rng_reset() - re-initialize the RNG * @tfm: cipher handle * @seed: seed input data * @slen: length of the seed input data * * The reset function completely re-initializes the random number generator * referenced by the cipher handle by clearing the current state. The new state * is initialized with the caller provided seed or automatically, depending * on the random number generator type (the ANSI X9.31 RNG requires * caller-provided seed, the SP800-90A DRBGs perform an automatic seeding). * The seed is provided as a parameter to this function call. The provided seed * should have the length of the seed size defined for the random number * generator as defined by crypto_rng_seedsize. * * Return: 0 if the setting of the key was successful; < 0 if an error occurred */ int crypto_rng_reset(struct crypto_rng *tfm, const u8 *seed, unsigned int slen); /** * crypto_rng_seedsize() - obtain seed size of RNG * @tfm: cipher handle * * The function returns the seed size for the random number generator * referenced by the cipher handle. This value may be zero if the random * number generator does not implement or require a reseeding. For example, * the SP800-90A DRBGs implement an automated reseeding after reaching a * pre-defined threshold. * * Return: seed size for the random number generator */ static inline int crypto_rng_seedsize(struct crypto_rng *tfm) { return crypto_rng_alg(tfm)->seedsize; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 #undef TRACE_SYSTEM #define TRACE_SYSTEM rtc #if !defined(_TRACE_RTC_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_RTC_H #include <linux/rtc.h> #include <linux/tracepoint.h> DECLARE_EVENT_CLASS(rtc_time_alarm_class, TP_PROTO(time64_t secs, int err), TP_ARGS(secs, err), TP_STRUCT__entry( __field(time64_t, secs) __field(int, err) ), TP_fast_assign( __entry->secs = secs; __entry->err = err; ), TP_printk("UTC (%lld) (%d)", __entry->secs, __entry->err ) ); DEFINE_EVENT(rtc_time_alarm_class, rtc_set_time, TP_PROTO(time64_t secs, int err), TP_ARGS(secs, err) ); DEFINE_EVENT(rtc_time_alarm_class, rtc_read_time, TP_PROTO(time64_t secs, int err), TP_ARGS(secs, err) ); DEFINE_EVENT(rtc_time_alarm_class, rtc_set_alarm, TP_PROTO(time64_t secs, int err), TP_ARGS(secs, err) ); DEFINE_EVENT(rtc_time_alarm_class, rtc_read_alarm, TP_PROTO(time64_t secs, int err), TP_ARGS(secs, err) ); TRACE_EVENT(rtc_irq_set_freq, TP_PROTO(int freq, int err), TP_ARGS(freq, err), TP_STRUCT__entry( __field(int, freq) __field(int, err) ), TP_fast_assign( __entry->freq = freq; __entry->err = err; ), TP_printk("set RTC periodic IRQ frequency:%u (%d)", __entry->freq, __entry->err ) ); TRACE_EVENT(rtc_irq_set_state, TP_PROTO(int enabled, int err), TP_ARGS(enabled, err), TP_STRUCT__entry( __field(int, enabled) __field(int, err) ), TP_fast_assign( __entry->enabled = enabled; __entry->err = err; ), TP_printk("%s RTC 2^N Hz periodic IRQs (%d)", __entry->enabled ? "enable" : "disable", __entry->err ) ); TRACE_EVENT(rtc_alarm_irq_enable, TP_PROTO(unsigned int enabled, int err), TP_ARGS(enabled, err), TP_STRUCT__entry( __field(unsigned int, enabled) __field(int, err) ), TP_fast_assign( __entry->enabled = enabled; __entry->err = err; ), TP_printk("%s RTC alarm IRQ (%d)", __entry->enabled ? "enable" : "disable", __entry->err ) ); DECLARE_EVENT_CLASS(rtc_offset_class, TP_PROTO(long offset, int err), TP_ARGS(offset, err), TP_STRUCT__entry( __field(long, offset) __field(int, err) ), TP_fast_assign( __entry->offset = offset; __entry->err = err; ), TP_printk("RTC offset: %ld (%d)", __entry->offset, __entry->err ) ); DEFINE_EVENT(rtc_offset_class, rtc_set_offset, TP_PROTO(long offset, int err), TP_ARGS(offset, err) ); DEFINE_EVENT(rtc_offset_class, rtc_read_offset, TP_PROTO(long offset, int err), TP_ARGS(offset, err) ); DECLARE_EVENT_CLASS(rtc_timer_class, TP_PROTO(struct rtc_timer *timer), TP_ARGS(timer), TP_STRUCT__entry( __field(struct rtc_timer *, timer) __field(ktime_t, expires) __field(ktime_t, period) ), TP_fast_assign( __entry->timer = timer; __entry->expires = timer->node.expires; __entry->period = timer->period; ), TP_printk("RTC timer:(%p) expires:%lld period:%lld", __entry->timer, __entry->expires, __entry->period ) ); DEFINE_EVENT(rtc_timer_class, rtc_timer_enqueue, TP_PROTO(struct rtc_timer *timer), TP_ARGS(timer) ); DEFINE_EVENT(rtc_timer_class, rtc_timer_dequeue, TP_PROTO(struct rtc_timer *timer), TP_ARGS(timer) ); DEFINE_EVENT(rtc_timer_class, rtc_timer_fired, TP_PROTO(struct rtc_timer *timer), TP_ARGS(timer) ); #endif /* _TRACE_RTC_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_BARRIER_H #define _ASM_X86_BARRIER_H #include <asm/alternative.h> #include <asm/nops.h> /* * Force strict CPU ordering. * And yes, this might be required on UP too when we're talking * to devices. */ #ifdef CONFIG_X86_32 #define mb() asm volatile(ALTERNATIVE("lock; addl $0,-4(%%esp)", "mfence", \ X86_FEATURE_XMM2) ::: "memory", "cc") #define rmb() asm volatile(ALTERNATIVE("lock; addl $0,-4(%%esp)", "lfence", \ X86_FEATURE_XMM2) ::: "memory", "cc") #define wmb() asm volatile(ALTERNATIVE("lock; addl $0,-4(%%esp)", "sfence", \ X86_FEATURE_XMM2) ::: "memory", "cc") #else #define mb() asm volatile("mfence":::"memory") #define rmb() asm volatile("lfence":::"memory") #define wmb() asm volatile("sfence" ::: "memory") #endif /** * array_index_mask_nospec() - generate a mask that is ~0UL when the * bounds check succeeds and 0 otherwise * @index: array element index * @size: number of elements in array * * Returns: * 0 - (index < size) */ static inline unsigned long array_index_mask_nospec(unsigned long index, unsigned long size) { unsigned long mask; asm volatile ("cmp %1,%2; sbb %0,%0;" :"=r" (mask) :"g"(size),"r" (index) :"cc"); return mask; } /* Override the default implementation from linux/nospec.h. */ #define array_index_mask_nospec array_index_mask_nospec /* Prevent speculative execution past this barrier. */ #define barrier_nospec() alternative("", "lfence", X86_FEATURE_LFENCE_RDTSC) #define dma_rmb() barrier() #define dma_wmb() barrier() #ifdef CONFIG_X86_32 #define __smp_mb() asm volatile("lock; addl $0,-4(%%esp)" ::: "memory", "cc") #else #define __smp_mb() asm volatile("lock; addl $0,-4(%%rsp)" ::: "memory", "cc") #endif #define __smp_rmb() dma_rmb() #define __smp_wmb() barrier() #define __smp_store_mb(var, value) do { (void)xchg(&var, value); } while (0) #define __smp_store_release(p, v) \ do { \ compiletime_assert_atomic_type(*p); \ barrier(); \ WRITE_ONCE(*p, v); \ } while (0) #define __smp_load_acquire(p) \ ({ \ typeof(*p) ___p1 = READ_ONCE(*p); \ compiletime_assert_atomic_type(*p); \ barrier(); \ ___p1; \ }) /* Atomic operations are already serializing on x86 */ #define __smp_mb__before_atomic() do { } while (0) #define __smp_mb__after_atomic() do { } while (0) #include <asm-generic/barrier.h> /* * Make previous memory operations globally visible before * a WRMSR. * * MFENCE makes writes visible, but only affects load/store * instructions. WRMSR is unfortunately not a load/store * instruction and is unaffected by MFENCE. The LFENCE ensures * that the WRMSR is not reordered. * * Most WRMSRs are full serializing instructions themselves and * do not require this barrier. This is only required for the * IA32_TSC_DEADLINE and X2APIC MSRs. */ static inline void weak_wrmsr_fence(void) { asm volatile("mfence; lfence" : : : "memory"); } #endif /* _ASM_X86_BARRIER_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* Authentication token and access key management * * Copyright (C) 2004, 2007 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) * * See Documentation/security/keys/core.rst for information on keys/keyrings. */ #ifndef _LINUX_KEY_H #define _LINUX_KEY_H #include <linux/types.h> #include <linux/list.h> #include <linux/rbtree.h> #include <linux/rcupdate.h> #include <linux/sysctl.h> #include <linux/rwsem.h> #include <linux/atomic.h> #include <linux/assoc_array.h> #include <linux/refcount.h> #include <linux/time64.h> #ifdef __KERNEL__ #include <linux/uidgid.h> /* key handle serial number */ typedef int32_t key_serial_t; /* key handle permissions mask */ typedef uint32_t key_perm_t; struct key; struct net; #ifdef CONFIG_KEYS #undef KEY_DEBUGGING #define KEY_POS_VIEW 0x01000000 /* possessor can view a key's attributes */ #define KEY_POS_READ 0x02000000 /* possessor can read key payload / view keyring */ #define KEY_POS_WRITE 0x04000000 /* possessor can update key payload / add link to keyring */ #define KEY_POS_SEARCH 0x08000000 /* possessor can find a key in search / search a keyring */ #define KEY_POS_LINK 0x10000000 /* possessor can create a link to a key/keyring */ #define KEY_POS_SETATTR 0x20000000 /* possessor can set key attributes */ #define KEY_POS_ALL 0x3f000000 #define KEY_USR_VIEW 0x00010000 /* user permissions... */ #define KEY_USR_READ 0x00020000 #define KEY_USR_WRITE 0x00040000 #define KEY_USR_SEARCH 0x00080000 #define KEY_USR_LINK 0x00100000 #define KEY_USR_SETATTR 0x00200000 #define KEY_USR_ALL 0x003f0000 #define KEY_GRP_VIEW 0x00000100 /* group permissions... */ #define KEY_GRP_READ 0x00000200 #define KEY_GRP_WRITE 0x00000400 #define KEY_GRP_SEARCH 0x00000800 #define KEY_GRP_LINK 0x00001000 #define KEY_GRP_SETATTR 0x00002000 #define KEY_GRP_ALL 0x00003f00 #define KEY_OTH_VIEW 0x00000001 /* third party permissions... */ #define KEY_OTH_READ 0x00000002 #define KEY_OTH_WRITE 0x00000004 #define KEY_OTH_SEARCH 0x00000008 #define KEY_OTH_LINK 0x00000010 #define KEY_OTH_SETATTR 0x00000020 #define KEY_OTH_ALL 0x0000003f #define KEY_PERM_UNDEF 0xffffffff /* * The permissions required on a key that we're looking up. */ enum key_need_perm { KEY_NEED_UNSPECIFIED, /* Needed permission unspecified */ KEY_NEED_VIEW, /* Require permission to view attributes */ KEY_NEED_READ, /* Require permission to read content */ KEY_NEED_WRITE, /* Require permission to update / modify */ KEY_NEED_SEARCH, /* Require permission to search (keyring) or find (key) */ KEY_NEED_LINK, /* Require permission to link */ KEY_NEED_SETATTR, /* Require permission to change attributes */ KEY_NEED_UNLINK, /* Require permission to unlink key */ KEY_SYSADMIN_OVERRIDE, /* Special: override by CAP_SYS_ADMIN */ KEY_AUTHTOKEN_OVERRIDE, /* Special: override by possession of auth token */ KEY_DEFER_PERM_CHECK, /* Special: permission check is deferred */ }; struct seq_file; struct user_struct; struct signal_struct; struct cred; struct key_type; struct key_owner; struct key_tag; struct keyring_list; struct keyring_name; struct key_tag { struct rcu_head rcu; refcount_t usage; bool removed; /* T when subject removed */ }; struct keyring_index_key { /* [!] If this structure is altered, the union in struct key must change too! */ unsigned long hash; /* Hash value */ union { struct { #ifdef __LITTLE_ENDIAN /* Put desc_len at the LSB of x */ u16 desc_len; char desc[sizeof(long) - 2]; /* First few chars of description */ #else char desc[sizeof(long) - 2]; /* First few chars of description */ u16 desc_len; #endif }; unsigned long x; }; struct key_type *type; struct key_tag *domain_tag; /* Domain of operation */ const char *description; }; union key_payload { void __rcu *rcu_data0; void *data[4]; }; /*****************************************************************************/ /* * key reference with possession attribute handling * * NOTE! key_ref_t is a typedef'd pointer to a type that is not actually * defined. This is because we abuse the bottom bit of the reference to carry a * flag to indicate whether the calling process possesses that key in one of * its keyrings. * * the key_ref_t has been made a separate type so that the compiler can reject * attempts to dereference it without proper conversion. * * the three functions are used to assemble and disassemble references */ typedef struct __key_reference_with_attributes *key_ref_t; static inline key_ref_t make_key_ref(const struct key *key, bool possession) { return (key_ref_t) ((unsigned long) key | possession); } static inline struct key *key_ref_to_ptr(const key_ref_t key_ref) { return (struct key *) ((unsigned long) key_ref & ~1UL); } static inline bool is_key_possessed(const key_ref_t key_ref) { return (unsigned long) key_ref & 1UL; } typedef int (*key_restrict_link_func_t)(struct key *dest_keyring, const struct key_type *type, const union key_payload *payload, struct key *restriction_key); struct key_restriction { key_restrict_link_func_t check; struct key *key; struct key_type *keytype; }; enum key_state { KEY_IS_UNINSTANTIATED, KEY_IS_POSITIVE, /* Positively instantiated */ }; /*****************************************************************************/ /* * authentication token / access credential / keyring * - types of key include: * - keyrings * - disk encryption IDs * - Kerberos TGTs and tickets */ struct key { refcount_t usage; /* number of references */ key_serial_t serial; /* key serial number */ union { struct list_head graveyard_link; struct rb_node serial_node; }; #ifdef CONFIG_KEY_NOTIFICATIONS struct watch_list *watchers; /* Entities watching this key for changes */ #endif struct rw_semaphore sem; /* change vs change sem */ struct key_user *user; /* owner of this key */ void *security; /* security data for this key */ union { time64_t expiry; /* time at which key expires (or 0) */ time64_t revoked_at; /* time at which key was revoked */ }; time64_t last_used_at; /* last time used for LRU keyring discard */ kuid_t uid; kgid_t gid; key_perm_t perm; /* access permissions */ unsigned short quotalen; /* length added to quota */ unsigned short datalen; /* payload data length * - may not match RCU dereferenced payload * - payload should contain own length */ short state; /* Key state (+) or rejection error (-) */ #ifdef KEY_DEBUGGING unsigned magic; #define KEY_DEBUG_MAGIC 0x18273645u #endif unsigned long flags; /* status flags (change with bitops) */ #define KEY_FLAG_DEAD 0 /* set if key type has been deleted */ #define KEY_FLAG_REVOKED 1 /* set if key had been revoked */ #define KEY_FLAG_IN_QUOTA 2 /* set if key consumes quota */ #define KEY_FLAG_USER_CONSTRUCT 3 /* set if key is being constructed in userspace */ #define KEY_FLAG_ROOT_CAN_CLEAR 4 /* set if key can be cleared by root without permission */ #define KEY_FLAG_INVALIDATED 5 /* set if key has been invalidated */ #define KEY_FLAG_BUILTIN 6 /* set if key is built in to the kernel */ #define KEY_FLAG_ROOT_CAN_INVAL 7 /* set if key can be invalidated by root without permission */ #define KEY_FLAG_KEEP 8 /* set if key should not be removed */ #define KEY_FLAG_UID_KEYRING 9 /* set if key is a user or user session keyring */ /* the key type and key description string * - the desc is used to match a key against search criteria * - it should be a printable string * - eg: for krb5 AFS, this might be "afs@REDHAT.COM" */ union { struct keyring_index_key index_key; struct { unsigned long hash; unsigned long len_desc; struct key_type *type; /* type of key */ struct key_tag *domain_tag; /* Domain of operation */ char *description; }; }; /* key data * - this is used to hold the data actually used in cryptography or * whatever */ union { union key_payload payload; struct { /* Keyring bits */ struct list_head name_link; struct assoc_array keys; }; }; /* This is set on a keyring to restrict the addition of a link to a key * to it. If this structure isn't provided then it is assumed that the * keyring is open to any addition. It is ignored for non-keyring * keys. Only set this value using keyring_restrict(), keyring_alloc(), * or key_alloc(). * * This is intended for use with rings of trusted keys whereby addition * to the keyring needs to be controlled. KEY_ALLOC_BYPASS_RESTRICTION * overrides this, allowing the kernel to add extra keys without * restriction. */ struct key_restriction *restrict_link; }; extern struct key *key_alloc(struct key_type *type, const char *desc, kuid_t uid, kgid_t gid, const struct cred *cred, key_perm_t perm, unsigned long flags, struct key_restriction *restrict_link); #define KEY_ALLOC_IN_QUOTA 0x0000 /* add to quota, reject if would overrun */ #define KEY_ALLOC_QUOTA_OVERRUN 0x0001 /* add to quota, permit even if overrun */ #define KEY_ALLOC_NOT_IN_QUOTA 0x0002 /* not in quota */ #define KEY_ALLOC_BUILT_IN 0x0004 /* Key is built into kernel */ #define KEY_ALLOC_BYPASS_RESTRICTION 0x0008 /* Override the check on restricted keyrings */ #define KEY_ALLOC_UID_KEYRING 0x0010 /* allocating a user or user session keyring */ #define KEY_ALLOC_SET_KEEP 0x0020 /* Set the KEEP flag on the key/keyring */ extern void key_revoke(struct key *key); extern void key_invalidate(struct key *key); extern void key_put(struct key *key); extern bool key_put_tag(struct key_tag *tag); extern void key_remove_domain(struct key_tag *domain_tag); static inline struct key *__key_get(struct key *key) { refcount_inc(&key->usage); return key; } static inline struct key *key_get(struct key *key) { return key ? __key_get(key) : key; } static inline void key_ref_put(key_ref_t key_ref) { key_put(key_ref_to_ptr(key_ref)); } extern struct key *request_key_tag(struct key_type *type, const char *description, struct key_tag *domain_tag, const char *callout_info); extern struct key *request_key_rcu(struct key_type *type, const char *description, struct key_tag *domain_tag); extern struct key *request_key_with_auxdata(struct key_type *type, const char *description, struct key_tag *domain_tag, const void *callout_info, size_t callout_len, void *aux); /** * request_key - Request a key and wait for construction * @type: Type of key. * @description: The searchable description of the key. * @callout_info: The data to pass to the instantiation upcall (or NULL). * * As for request_key_tag(), but with the default global domain tag. */ static inline struct key *request_key(struct key_type *type, const char *description, const char *callout_info) { return request_key_tag(type, description, NULL, callout_info); } #ifdef CONFIG_NET /** * request_key_net - Request a key for a net namespace and wait for construction * @type: Type of key. * @description: The searchable description of the key. * @net: The network namespace that is the key's domain of operation. * @callout_info: The data to pass to the instantiation upcall (or NULL). * * As for request_key() except that it does not add the returned key to a * keyring if found, new keys are always allocated in the user's quota, the * callout_info must be a NUL-terminated string and no auxiliary data can be * passed. Only keys that operate the specified network namespace are used. * * Furthermore, it then works as wait_for_key_construction() to wait for the * completion of keys undergoing construction with a non-interruptible wait. */ #define request_key_net(type, description, net, callout_info) \ request_key_tag(type, description, net->key_domain, callout_info); /** * request_key_net_rcu - Request a key for a net namespace under RCU conditions * @type: Type of key. * @description: The searchable description of the key. * @net: The network namespace that is the key's domain of operation. * * As for request_key_rcu() except that only keys that operate the specified * network namespace are used. */ #define request_key_net_rcu(type, description, net) \ request_key_rcu(type, description, net->key_domain); #endif /* CONFIG_NET */ extern int wait_for_key_construction(struct key *key, bool intr); extern int key_validate(const struct key *key); extern key_ref_t key_create_or_update(key_ref_t keyring, const char *type, const char *description, const void *payload, size_t plen, key_perm_t perm, unsigned long flags); extern int key_update(key_ref_t key, const void *payload, size_t plen); extern int key_link(struct key *keyring, struct key *key); extern int key_move(struct key *key, struct key *from_keyring, struct key *to_keyring, unsigned int flags); extern int key_unlink(struct key *keyring, struct key *key); extern struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid, const struct cred *cred, key_perm_t perm, unsigned long flags, struct key_restriction *restrict_link, struct key *dest); extern int restrict_link_reject(struct key *keyring, const struct key_type *type, const union key_payload *payload, struct key *restriction_key); extern int keyring_clear(struct key *keyring); extern key_ref_t keyring_search(key_ref_t keyring, struct key_type *type, const char *description, bool recurse); extern int keyring_add_key(struct key *keyring, struct key *key); extern int keyring_restrict(key_ref_t keyring, const char *type, const char *restriction); extern struct key *key_lookup(key_serial_t id); static inline key_serial_t key_serial(const struct key *key) { return key ? key->serial : 0; } extern void key_set_timeout(struct key *, unsigned); extern key_ref_t lookup_user_key(key_serial_t id, unsigned long flags, enum key_need_perm need_perm); extern void key_free_user_ns(struct user_namespace *); static inline short key_read_state(const struct key *key) { /* Barrier versus mark_key_instantiated(). */ return smp_load_acquire(&key->state); } /** * key_is_positive - Determine if a key has been positively instantiated * @key: The key to check. * * Return true if the specified key has been positively instantiated, false * otherwise. */ static inline bool key_is_positive(const struct key *key) { return key_read_state(key) == KEY_IS_POSITIVE; } static inline bool key_is_negative(const struct key *key) { return key_read_state(key) < 0; } #define dereference_key_rcu(KEY) \ (rcu_dereference((KEY)->payload.rcu_data0)) #define dereference_key_locked(KEY) \ (rcu_dereference_protected((KEY)->payload.rcu_data0, \ rwsem_is_locked(&((struct key *)(KEY))->sem))) #define rcu_assign_keypointer(KEY, PAYLOAD) \ do { \ rcu_assign_pointer((KEY)->payload.rcu_data0, (PAYLOAD)); \ } while (0) #ifdef CONFIG_SYSCTL extern struct ctl_table key_sysctls[]; #endif /* * the userspace interface */ extern int install_thread_keyring_to_cred(struct cred *cred); extern void key_fsuid_changed(struct cred *new_cred); extern void key_fsgid_changed(struct cred *new_cred); extern void key_init(void); #else /* CONFIG_KEYS */ #define key_validate(k) 0 #define key_serial(k) 0 #define key_get(k) ({ NULL; }) #define key_revoke(k) do { } while(0) #define key_invalidate(k) do { } while(0) #define key_put(k) do { } while(0) #define key_ref_put(k) do { } while(0) #define make_key_ref(k, p) NULL #define key_ref_to_ptr(k) NULL #define is_key_possessed(k) 0 #define key_fsuid_changed(c) do { } while(0) #define key_fsgid_changed(c) do { } while(0) #define key_init() do { } while(0) #define key_free_user_ns(ns) do { } while(0) #define key_remove_domain(d) do { } while(0) #endif /* CONFIG_KEYS */ #endif /* __KERNEL__ */ #endif /* _LINUX_KEY_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _NET_IP6_ROUTE_H #define _NET_IP6_ROUTE_H struct route_info { __u8 type; __u8 length; __u8 prefix_len; #if defined(__BIG_ENDIAN_BITFIELD) __u8 reserved_h:3, route_pref:2, reserved_l:3; #elif defined(__LITTLE_ENDIAN_BITFIELD) __u8 reserved_l:3, route_pref:2, reserved_h:3; #endif __be32 lifetime; __u8 prefix[]; /* 0,8 or 16 */ }; #include <net/addrconf.h> #include <net/flow.h> #include <net/ip6_fib.h> #include <net/sock.h> #include <net/lwtunnel.h> #include <linux/ip.h> #include <linux/ipv6.h> #include <linux/route.h> #include <net/nexthop.h> #define RT6_LOOKUP_F_IFACE 0x00000001 #define RT6_LOOKUP_F_REACHABLE 0x00000002 #define RT6_LOOKUP_F_HAS_SADDR 0x00000004 #define RT6_LOOKUP_F_SRCPREF_TMP 0x00000008 #define RT6_LOOKUP_F_SRCPREF_PUBLIC 0x00000010 #define RT6_LOOKUP_F_SRCPREF_COA 0x00000020 #define RT6_LOOKUP_F_IGNORE_LINKSTATE 0x00000040 #define RT6_LOOKUP_F_DST_NOREF 0x00000080 /* We do not (yet ?) support IPv6 jumbograms (RFC 2675) * Unlike IPv4, hdr->seg_len doesn't include the IPv6 header */ #define IP6_MAX_MTU (0xFFFF + sizeof(struct ipv6hdr)) /* * rt6_srcprefs2flags() and rt6_flags2srcprefs() translate * between IPV6_ADDR_PREFERENCES socket option values * IPV6_PREFER_SRC_TMP = 0x1 * IPV6_PREFER_SRC_PUBLIC = 0x2 * IPV6_PREFER_SRC_COA = 0x4 * and above RT6_LOOKUP_F_SRCPREF_xxx flags. */ static inline int rt6_srcprefs2flags(unsigned int srcprefs) { /* No need to bitmask because srcprefs have only 3 bits. */ return srcprefs << 3; } static inline unsigned int rt6_flags2srcprefs(int flags) { return (flags >> 3) & 7; } static inline bool rt6_need_strict(const struct in6_addr *daddr) { return ipv6_addr_type(daddr) & (IPV6_ADDR_MULTICAST | IPV6_ADDR_LINKLOCAL | IPV6_ADDR_LOOPBACK); } /* fib entries using a nexthop object can not be coalesced into * a multipath route */ static inline bool rt6_qualify_for_ecmp(const struct fib6_info *f6i) { /* the RTF_ADDRCONF flag filters out RA's */ return !(f6i->fib6_flags & RTF_ADDRCONF) && !f6i->nh && f6i->fib6_nh->fib_nh_gw_family; } void ip6_route_input(struct sk_buff *skb); struct dst_entry *ip6_route_input_lookup(struct net *net, struct net_device *dev, struct flowi6 *fl6, const struct sk_buff *skb, int flags); struct dst_entry *ip6_route_output_flags_noref(struct net *net, const struct sock *sk, struct flowi6 *fl6, int flags); struct dst_entry *ip6_route_output_flags(struct net *net, const struct sock *sk, struct flowi6 *fl6, int flags); static inline struct dst_entry *ip6_route_output(struct net *net, const struct sock *sk, struct flowi6 *fl6) { return ip6_route_output_flags(net, sk, fl6, 0); } /* Only conditionally release dst if flags indicates * !RT6_LOOKUP_F_DST_NOREF or dst is in uncached_list. */ static inline void ip6_rt_put_flags(struct rt6_info *rt, int flags) { if (!(flags & RT6_LOOKUP_F_DST_NOREF) || !list_empty(&rt->rt6i_uncached)) ip6_rt_put(rt); } struct dst_entry *ip6_route_lookup(struct net *net, struct flowi6 *fl6, const struct sk_buff *skb, int flags); struct rt6_info *ip6_pol_route(struct net *net, struct fib6_table *table, int ifindex, struct flowi6 *fl6, const struct sk_buff *skb, int flags); void ip6_route_init_special_entries(void); int ip6_route_init(void); void ip6_route_cleanup(void); int ipv6_route_ioctl(struct net *net, unsigned int cmd, struct in6_rtmsg *rtmsg); int ip6_route_add(struct fib6_config *cfg, gfp_t gfp_flags, struct netlink_ext_ack *extack); int ip6_ins_rt(struct net *net, struct fib6_info *f6i); int ip6_del_rt(struct net *net, struct fib6_info *f6i, bool skip_notify); void rt6_flush_exceptions(struct fib6_info *f6i); void rt6_age_exceptions(struct fib6_info *f6i, struct fib6_gc_args *gc_args, unsigned long now); static inline int ip6_route_get_saddr(struct net *net, struct fib6_info *f6i, const struct in6_addr *daddr, unsigned int prefs, struct in6_addr *saddr) { int err = 0; if (f6i && f6i->fib6_prefsrc.plen) { *saddr = f6i->fib6_prefsrc.addr; } else { struct net_device *dev = f6i ? fib6_info_nh_dev(f6i) : NULL; err = ipv6_dev_get_saddr(net, dev, daddr, prefs, saddr); } return err; } struct rt6_info *rt6_lookup(struct net *net, const struct in6_addr *daddr, const struct in6_addr *saddr, int oif, const struct sk_buff *skb, int flags); u32 rt6_multipath_hash(const struct net *net, const struct flowi6 *fl6, const struct sk_buff *skb, struct flow_keys *hkeys); struct dst_entry *icmp6_dst_alloc(struct net_device *dev, struct flowi6 *fl6); void fib6_force_start_gc(struct net *net); struct fib6_info *addrconf_f6i_alloc(struct net *net, struct inet6_dev *idev, const struct in6_addr *addr, bool anycast, gfp_t gfp_flags); struct rt6_info *ip6_dst_alloc(struct net *net, struct net_device *dev, int flags); /* * support functions for ND * */ struct fib6_info *rt6_get_dflt_router(struct net *net, const struct in6_addr *addr, struct net_device *dev); struct fib6_info *rt6_add_dflt_router(struct net *net, const struct in6_addr *gwaddr, struct net_device *dev, unsigned int pref); void rt6_purge_dflt_routers(struct net *net); int rt6_route_rcv(struct net_device *dev, u8 *opt, int len, const struct in6_addr *gwaddr); void ip6_update_pmtu(struct sk_buff *skb, struct net *net, __be32 mtu, int oif, u32 mark, kuid_t uid); void ip6_sk_update_pmtu(struct sk_buff *skb, struct sock *sk, __be32 mtu); void ip6_redirect(struct sk_buff *skb, struct net *net, int oif, u32 mark, kuid_t uid); void ip6_redirect_no_header(struct sk_buff *skb, struct net *net, int oif); void ip6_sk_redirect(struct sk_buff *skb, struct sock *sk); struct netlink_callback; struct rt6_rtnl_dump_arg { struct sk_buff *skb; struct netlink_callback *cb; struct net *net; struct fib_dump_filter filter; }; int rt6_dump_route(struct fib6_info *f6i, void *p_arg, unsigned int skip); void rt6_mtu_change(struct net_device *dev, unsigned int mtu); void rt6_remove_prefsrc(struct inet6_ifaddr *ifp); void rt6_clean_tohost(struct net *net, struct in6_addr *gateway); void rt6_sync_up(struct net_device *dev, unsigned char nh_flags); void rt6_disable_ip(struct net_device *dev, unsigned long event); void rt6_sync_down_dev(struct net_device *dev, unsigned long event); void rt6_multipath_rebalance(struct fib6_info *f6i); void rt6_uncached_list_add(struct rt6_info *rt); void rt6_uncached_list_del(struct rt6_info *rt); static inline const struct rt6_info *skb_rt6_info(const struct sk_buff *skb) { const struct dst_entry *dst = skb_dst(skb); const struct rt6_info *rt6 = NULL; if (dst) rt6 = container_of(dst, struct rt6_info, dst); return rt6; } /* * Store a destination cache entry in a socket */ static inline void ip6_dst_store(struct sock *sk, struct dst_entry *dst, const struct in6_addr *daddr, const struct in6_addr *saddr) { struct ipv6_pinfo *np = inet6_sk(sk); np->dst_cookie = rt6_get_cookie((struct rt6_info *)dst); sk_setup_caps(sk, dst); np->daddr_cache = daddr; #ifdef CONFIG_IPV6_SUBTREES np->saddr_cache = saddr; #endif } void ip6_sk_dst_store_flow(struct sock *sk, struct dst_entry *dst, const struct flowi6 *fl6); static inline bool ipv6_unicast_destination(const struct sk_buff *skb) { struct rt6_info *rt = (struct rt6_info *) skb_dst(skb); return rt->rt6i_flags & RTF_LOCAL; } static inline bool ipv6_anycast_destination(const struct dst_entry *dst, const struct in6_addr *daddr) { struct rt6_info *rt = (struct rt6_info *)dst; return rt->rt6i_flags & RTF_ANYCAST || (rt->rt6i_dst.plen < 127 && !(rt->rt6i_flags & (RTF_GATEWAY | RTF_NONEXTHOP)) && ipv6_addr_equal(&rt->rt6i_dst.addr, daddr)); } int ip6_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, int (*output)(struct net *, struct sock *, struct sk_buff *)); static inline unsigned int ip6_skb_dst_mtu(struct sk_buff *skb) { unsigned int mtu; struct ipv6_pinfo *np = skb->sk && !dev_recursion_level() ? inet6_sk(skb->sk) : NULL; if (np && np->pmtudisc >= IPV6_PMTUDISC_PROBE) { mtu = READ_ONCE(skb_dst(skb)->dev->mtu); mtu -= lwtunnel_headroom(skb_dst(skb)->lwtstate, mtu); } else mtu = dst_mtu(skb_dst(skb)); return mtu; } static inline bool ip6_sk_accept_pmtu(const struct sock *sk) { return inet6_sk(sk)->pmtudisc != IPV6_PMTUDISC_INTERFACE && inet6_sk(sk)->pmtudisc != IPV6_PMTUDISC_OMIT; } static inline bool ip6_sk_ignore_df(const struct sock *sk) { return inet6_sk(sk)->pmtudisc < IPV6_PMTUDISC_DO || inet6_sk(sk)->pmtudisc == IPV6_PMTUDISC_OMIT; } static inline const struct in6_addr *rt6_nexthop(const struct rt6_info *rt, const struct in6_addr *daddr) { if (rt->rt6i_flags & RTF_GATEWAY) return &rt->rt6i_gateway; else if (unlikely(rt->rt6i_flags & RTF_CACHE)) return &rt->rt6i_dst.addr; else return daddr; } static inline bool rt6_duplicate_nexthop(struct fib6_info *a, struct fib6_info *b) { struct fib6_nh *nha, *nhb; if (a->nh || b->nh) return nexthop_cmp(a->nh, b->nh); nha = a->fib6_nh; nhb = b->fib6_nh; return nha->fib_nh_dev == nhb->fib_nh_dev && ipv6_addr_equal(&nha->fib_nh_gw6, &nhb->fib_nh_gw6) && !lwtunnel_cmp_encap(nha->fib_nh_lws, nhb->fib_nh_lws); } static inline unsigned int ip6_dst_mtu_forward(const struct dst_entry *dst) { struct inet6_dev *idev; unsigned int mtu; if (dst_metric_locked(dst, RTAX_MTU)) { mtu = dst_metric_raw(dst, RTAX_MTU); if (mtu) goto out; } mtu = IPV6_MIN_MTU; rcu_read_lock(); idev = __in6_dev_get(dst->dev); if (idev) mtu = idev->cnf.mtu6; rcu_read_unlock(); out: return mtu - lwtunnel_headroom(dst->lwtstate, mtu); } u32 ip6_mtu_from_fib6(const struct fib6_result *res, const struct in6_addr *daddr, const struct in6_addr *saddr); struct neighbour *ip6_neigh_lookup(const struct in6_addr *gw, struct net_device *dev, struct sk_buff *skb, const void *daddr); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_TRACE_EVENT_H #define _LINUX_TRACE_EVENT_H #include <linux/ring_buffer.h> #include <linux/trace_seq.h> #include <linux/percpu.h> #include <linux/hardirq.h> #include <linux/perf_event.h> #include <linux/tracepoint.h> struct trace_array; struct array_buffer; struct tracer; struct dentry; struct bpf_prog; const char *trace_print_flags_seq(struct trace_seq *p, const char *delim, unsigned long flags, const struct trace_print_flags *flag_array); const char *trace_print_symbols_seq(struct trace_seq *p, unsigned long val, const struct trace_print_flags *symbol_array); #if BITS_PER_LONG == 32 const char *trace_print_flags_seq_u64(struct trace_seq *p, const char *delim, unsigned long long flags, const struct trace_print_flags_u64 *flag_array); const char *trace_print_symbols_seq_u64(struct trace_seq *p, unsigned long long val, const struct trace_print_flags_u64 *symbol_array); #endif const char *trace_print_bitmask_seq(struct trace_seq *p, void *bitmask_ptr, unsigned int bitmask_size); const char *trace_print_hex_seq(struct trace_seq *p, const unsigned char *buf, int len, bool concatenate); const char *trace_print_array_seq(struct trace_seq *p, const void *buf, int count, size_t el_size); const char * trace_print_hex_dump_seq(struct trace_seq *p, const char *prefix_str, int prefix_type, int rowsize, int groupsize, const void *buf, size_t len, bool ascii); struct trace_iterator; struct trace_event; int trace_raw_output_prep(struct trace_iterator *iter, struct trace_event *event); /* * The trace entry - the most basic unit of tracing. This is what * is printed in the end as a single line in the trace output, such as: * * bash-15816 [01] 235.197585: idle_cpu <- irq_enter */ struct trace_entry { unsigned short type; unsigned char flags; unsigned char preempt_count; int pid; }; #define TRACE_EVENT_TYPE_MAX \ ((1 << (sizeof(((struct trace_entry *)0)->type) * 8)) - 1) /* * Trace iterator - used by printout routines who present trace * results to users and which routines might sleep, etc: */ struct trace_iterator { struct trace_array *tr; struct tracer *trace; struct array_buffer *array_buffer; void *private; int cpu_file; struct mutex mutex; struct ring_buffer_iter **buffer_iter; unsigned long iter_flags; void *temp; /* temp holder */ unsigned int temp_size; /* trace_seq for __print_flags() and __print_symbolic() etc. */ struct trace_seq tmp_seq; cpumask_var_t started; /* it's true when current open file is snapshot */ bool snapshot; /* The below is zeroed out in pipe_read */ struct trace_seq seq; struct trace_entry *ent; unsigned long lost_events; int leftover; int ent_size; int cpu; u64 ts; loff_t pos; long idx; /* All new field here will be zeroed out in pipe_read */ }; enum trace_iter_flags { TRACE_FILE_LAT_FMT = 1, TRACE_FILE_ANNOTATE = 2, TRACE_FILE_TIME_IN_NS = 4, }; typedef enum print_line_t (*trace_print_func)(struct trace_iterator *iter, int flags, struct trace_event *event); struct trace_event_functions { trace_print_func trace; trace_print_func raw; trace_print_func hex; trace_print_func binary; }; struct trace_event { struct hlist_node node; struct list_head list; int type; struct trace_event_functions *funcs; }; extern int register_trace_event(struct trace_event *event); extern int unregister_trace_event(struct trace_event *event); /* Return values for print_line callback */ enum print_line_t { TRACE_TYPE_PARTIAL_LINE = 0, /* Retry after flushing the seq */ TRACE_TYPE_HANDLED = 1, TRACE_TYPE_UNHANDLED = 2, /* Relay to other output functions */ TRACE_TYPE_NO_CONSUME = 3 /* Handled but ask to not consume */ }; enum print_line_t trace_handle_return(struct trace_seq *s); void tracing_generic_entry_update(struct trace_entry *entry, unsigned short type, unsigned long flags, int pc); struct trace_event_file; struct ring_buffer_event * trace_event_buffer_lock_reserve(struct trace_buffer **current_buffer, struct trace_event_file *trace_file, int type, unsigned long len, unsigned long flags, int pc); #define TRACE_RECORD_CMDLINE BIT(0) #define TRACE_RECORD_TGID BIT(1) void tracing_record_taskinfo(struct task_struct *task, int flags); void tracing_record_taskinfo_sched_switch(struct task_struct *prev, struct task_struct *next, int flags); void tracing_record_cmdline(struct task_struct *task); void tracing_record_tgid(struct task_struct *task); int trace_output_call(struct trace_iterator *iter, char *name, char *fmt, ...); struct event_filter; enum trace_reg { TRACE_REG_REGISTER, TRACE_REG_UNREGISTER, #ifdef CONFIG_PERF_EVENTS TRACE_REG_PERF_REGISTER, TRACE_REG_PERF_UNREGISTER, TRACE_REG_PERF_OPEN, TRACE_REG_PERF_CLOSE, /* * These (ADD/DEL) use a 'boolean' return value, where 1 (true) means a * custom action was taken and the default action is not to be * performed. */ TRACE_REG_PERF_ADD, TRACE_REG_PERF_DEL, #endif }; struct trace_event_call; #define TRACE_FUNCTION_TYPE ((const char *)~0UL) struct trace_event_fields { const char *type; union { struct { const char *name; const int size; const int align; const int is_signed; const int filter_type; }; int (*define_fields)(struct trace_event_call *); }; }; struct trace_event_class { const char *system; void *probe; #ifdef CONFIG_PERF_EVENTS void *perf_probe; #endif int (*reg)(struct trace_event_call *event, enum trace_reg type, void *data); struct trace_event_fields *fields_array; struct list_head *(*get_fields)(struct trace_event_call *); struct list_head fields; int (*raw_init)(struct trace_event_call *); }; extern int trace_event_reg(struct trace_event_call *event, enum trace_reg type, void *data); struct trace_event_buffer { struct trace_buffer *buffer; struct ring_buffer_event *event; struct trace_event_file *trace_file; void *entry; unsigned long flags; int pc; struct pt_regs *regs; }; void *trace_event_buffer_reserve(struct trace_event_buffer *fbuffer, struct trace_event_file *trace_file, unsigned long len); void trace_event_buffer_commit(struct trace_event_buffer *fbuffer); enum { TRACE_EVENT_FL_FILTERED_BIT, TRACE_EVENT_FL_CAP_ANY_BIT, TRACE_EVENT_FL_NO_SET_FILTER_BIT, TRACE_EVENT_FL_IGNORE_ENABLE_BIT, TRACE_EVENT_FL_TRACEPOINT_BIT, TRACE_EVENT_FL_KPROBE_BIT, TRACE_EVENT_FL_UPROBE_BIT, }; /* * Event flags: * FILTERED - The event has a filter attached * CAP_ANY - Any user can enable for perf * NO_SET_FILTER - Set when filter has error and is to be ignored * IGNORE_ENABLE - For trace internal events, do not enable with debugfs file * TRACEPOINT - Event is a tracepoint * KPROBE - Event is a kprobe * UPROBE - Event is a uprobe */ enum { TRACE_EVENT_FL_FILTERED = (1 << TRACE_EVENT_FL_FILTERED_BIT), TRACE_EVENT_FL_CAP_ANY = (1 << TRACE_EVENT_FL_CAP_ANY_BIT), TRACE_EVENT_FL_NO_SET_FILTER = (1 << TRACE_EVENT_FL_NO_SET_FILTER_BIT), TRACE_EVENT_FL_IGNORE_ENABLE = (1 << TRACE_EVENT_FL_IGNORE_ENABLE_BIT), TRACE_EVENT_FL_TRACEPOINT = (1 << TRACE_EVENT_FL_TRACEPOINT_BIT), TRACE_EVENT_FL_KPROBE = (1 << TRACE_EVENT_FL_KPROBE_BIT), TRACE_EVENT_FL_UPROBE = (1 << TRACE_EVENT_FL_UPROBE_BIT), }; #define TRACE_EVENT_FL_UKPROBE (TRACE_EVENT_FL_KPROBE | TRACE_EVENT_FL_UPROBE) struct trace_event_call { struct list_head list; struct trace_event_class *class; union { char *name; /* Set TRACE_EVENT_FL_TRACEPOINT flag when using "tp" */ struct tracepoint *tp; }; struct trace_event event; char *print_fmt; struct event_filter *filter; void *mod; void *data; /* * bit 0: filter_active * bit 1: allow trace by non root (cap any) * bit 2: failed to apply filter * bit 3: trace internal event (do not enable) * bit 4: Event was enabled by module * bit 5: use call filter rather than file filter * bit 6: Event is a tracepoint */ int flags; /* static flags of different events */ #ifdef CONFIG_PERF_EVENTS int perf_refcount; struct hlist_head __percpu *perf_events; struct bpf_prog_array __rcu *prog_array; int (*perf_perm)(struct trace_event_call *, struct perf_event *); #endif }; #ifdef CONFIG_PERF_EVENTS static inline bool bpf_prog_array_valid(struct trace_event_call *call) { /* * This inline function checks whether call->prog_array * is valid or not. The function is called in various places, * outside rcu_read_lock/unlock, as a heuristic to speed up execution. * * If this function returns true, and later call->prog_array * becomes false inside rcu_read_lock/unlock region, * we bail out then. If this function return false, * there is a risk that we might miss a few events if the checking * were delayed until inside rcu_read_lock/unlock region and * call->prog_array happened to become non-NULL then. * * Here, READ_ONCE() is used instead of rcu_access_pointer(). * rcu_access_pointer() requires the actual definition of * "struct bpf_prog_array" while READ_ONCE() only needs * a declaration of the same type. */ return !!READ_ONCE(call->prog_array); } #endif static inline const char * trace_event_name(struct trace_event_call *call) { if (call->flags & TRACE_EVENT_FL_TRACEPOINT) return call->tp ? call->tp->name : NULL; else return call->name; } static inline struct list_head * trace_get_fields(struct trace_event_call *event_call) { if (!event_call->class->get_fields) return &event_call->class->fields; return event_call->class->get_fields(event_call); } struct trace_array; struct trace_subsystem_dir; enum { EVENT_FILE_FL_ENABLED_BIT, EVENT_FILE_FL_RECORDED_CMD_BIT, EVENT_FILE_FL_RECORDED_TGID_BIT, EVENT_FILE_FL_FILTERED_BIT, EVENT_FILE_FL_NO_SET_FILTER_BIT, EVENT_FILE_FL_SOFT_MODE_BIT, EVENT_FILE_FL_SOFT_DISABLED_BIT, EVENT_FILE_FL_TRIGGER_MODE_BIT, EVENT_FILE_FL_TRIGGER_COND_BIT, EVENT_FILE_FL_PID_FILTER_BIT, EVENT_FILE_FL_WAS_ENABLED_BIT, }; extern struct trace_event_file *trace_get_event_file(const char *instance, const char *system, const char *event); extern void trace_put_event_file(struct trace_event_file *file); #define MAX_DYNEVENT_CMD_LEN (2048) enum dynevent_type { DYNEVENT_TYPE_SYNTH = 1, DYNEVENT_TYPE_KPROBE, DYNEVENT_TYPE_NONE, }; struct dynevent_cmd; typedef int (*dynevent_create_fn_t)(struct dynevent_cmd *cmd); struct dynevent_cmd { struct seq_buf seq; const char *event_name; unsigned int n_fields; enum dynevent_type type; dynevent_create_fn_t run_command; void *private_data; }; extern int dynevent_create(struct dynevent_cmd *cmd); extern int synth_event_delete(const char *name); extern void synth_event_cmd_init(struct dynevent_cmd *cmd, char *buf, int maxlen); extern int __synth_event_gen_cmd_start(struct dynevent_cmd *cmd, const char *name, struct module *mod, ...); #define synth_event_gen_cmd_start(cmd, name, mod, ...) \ __synth_event_gen_cmd_start(cmd, name, mod, ## __VA_ARGS__, NULL) struct synth_field_desc { const char *type; const char *name; }; extern int synth_event_gen_cmd_array_start(struct dynevent_cmd *cmd, const char *name, struct module *mod, struct synth_field_desc *fields, unsigned int n_fields); extern int synth_event_create(const char *name, struct synth_field_desc *fields, unsigned int n_fields, struct module *mod); extern int synth_event_add_field(struct dynevent_cmd *cmd, const char *type, const char *name); extern int synth_event_add_field_str(struct dynevent_cmd *cmd, const char *type_name); extern int synth_event_add_fields(struct dynevent_cmd *cmd, struct synth_field_desc *fields, unsigned int n_fields); #define synth_event_gen_cmd_end(cmd) \ dynevent_create(cmd) struct synth_event; struct synth_event_trace_state { struct trace_event_buffer fbuffer; struct synth_trace_event *entry; struct trace_buffer *buffer; struct synth_event *event; unsigned int cur_field; unsigned int n_u64; bool disabled; bool add_next; bool add_name; }; extern int synth_event_trace(struct trace_event_file *file, unsigned int n_vals, ...); extern int synth_event_trace_array(struct trace_event_file *file, u64 *vals, unsigned int n_vals); extern int synth_event_trace_start(struct trace_event_file *file, struct synth_event_trace_state *trace_state); extern int synth_event_add_next_val(u64 val, struct synth_event_trace_state *trace_state); extern int synth_event_add_val(const char *field_name, u64 val, struct synth_event_trace_state *trace_state); extern int synth_event_trace_end(struct synth_event_trace_state *trace_state); extern int kprobe_event_delete(const char *name); extern void kprobe_event_cmd_init(struct dynevent_cmd *cmd, char *buf, int maxlen); #define kprobe_event_gen_cmd_start(cmd, name, loc, ...) \ __kprobe_event_gen_cmd_start(cmd, false, name, loc, ## __VA_ARGS__, NULL) #define kretprobe_event_gen_cmd_start(cmd, name, loc, ...) \ __kprobe_event_gen_cmd_start(cmd, true, name, loc, ## __VA_ARGS__, NULL) extern int __kprobe_event_gen_cmd_start(struct dynevent_cmd *cmd, bool kretprobe, const char *name, const char *loc, ...); #define kprobe_event_add_fields(cmd, ...) \ __kprobe_event_add_fields(cmd, ## __VA_ARGS__, NULL) #define kprobe_event_add_field(cmd, field) \ __kprobe_event_add_fields(cmd, field, NULL) extern int __kprobe_event_add_fields(struct dynevent_cmd *cmd, ...); #define kprobe_event_gen_cmd_end(cmd) \ dynevent_create(cmd) #define kretprobe_event_gen_cmd_end(cmd) \ dynevent_create(cmd) /* * Event file flags: * ENABLED - The event is enabled * RECORDED_CMD - The comms should be recorded at sched_switch * RECORDED_TGID - The tgids should be recorded at sched_switch * FILTERED - The event has a filter attached * NO_SET_FILTER - Set when filter has error and is to be ignored * SOFT_MODE - The event is enabled/disabled by SOFT_DISABLED * SOFT_DISABLED - When set, do not trace the event (even though its * tracepoint may be enabled) * TRIGGER_MODE - When set, invoke the triggers associated with the event * TRIGGER_COND - When set, one or more triggers has an associated filter * PID_FILTER - When set, the event is filtered based on pid * WAS_ENABLED - Set when enabled to know to clear trace on module removal */ enum { EVENT_FILE_FL_ENABLED = (1 << EVENT_FILE_FL_ENABLED_BIT), EVENT_FILE_FL_RECORDED_CMD = (1 << EVENT_FILE_FL_RECORDED_CMD_BIT), EVENT_FILE_FL_RECORDED_TGID = (1 << EVENT_FILE_FL_RECORDED_TGID_BIT), EVENT_FILE_FL_FILTERED = (1 << EVENT_FILE_FL_FILTERED_BIT), EVENT_FILE_FL_NO_SET_FILTER = (1 << EVENT_FILE_FL_NO_SET_FILTER_BIT), EVENT_FILE_FL_SOFT_MODE = (1 << EVENT_FILE_FL_SOFT_MODE_BIT), EVENT_FILE_FL_SOFT_DISABLED = (1 << EVENT_FILE_FL_SOFT_DISABLED_BIT), EVENT_FILE_FL_TRIGGER_MODE = (1 << EVENT_FILE_FL_TRIGGER_MODE_BIT), EVENT_FILE_FL_TRIGGER_COND = (1 << EVENT_FILE_FL_TRIGGER_COND_BIT), EVENT_FILE_FL_PID_FILTER = (1 << EVENT_FILE_FL_PID_FILTER_BIT), EVENT_FILE_FL_WAS_ENABLED = (1 << EVENT_FILE_FL_WAS_ENABLED_BIT), }; struct trace_event_file { struct list_head list; struct trace_event_call *event_call; struct event_filter __rcu *filter; struct dentry *dir; struct trace_array *tr; struct trace_subsystem_dir *system; struct list_head triggers; /* * 32 bit flags: * bit 0: enabled * bit 1: enabled cmd record * bit 2: enable/disable with the soft disable bit * bit 3: soft disabled * bit 4: trigger enabled * * Note: The bits must be set atomically to prevent races * from other writers. Reads of flags do not need to be in * sync as they occur in critical sections. But the way flags * is currently used, these changes do not affect the code * except that when a change is made, it may have a slight * delay in propagating the changes to other CPUs due to * caching and such. Which is mostly OK ;-) */ unsigned long flags; atomic_t sm_ref; /* soft-mode reference counter */ atomic_t tm_ref; /* trigger-mode reference counter */ }; #define __TRACE_EVENT_FLAGS(name, value) \ static int __init trace_init_flags_##name(void) \ { \ event_##name.flags |= value; \ return 0; \ } \ early_initcall(trace_init_flags_##name); #define __TRACE_EVENT_PERF_PERM(name, expr...) \ static int perf_perm_##name(struct trace_event_call *tp_event, \ struct perf_event *p_event) \ { \ return ({ expr; }); \ } \ static int __init trace_init_perf_perm_##name(void) \ { \ event_##name.perf_perm = &perf_perm_##name; \ return 0; \ } \ early_initcall(trace_init_perf_perm_##name); #define PERF_MAX_TRACE_SIZE 2048 #define MAX_FILTER_STR_VAL 256U /* Should handle KSYM_SYMBOL_LEN */ enum event_trigger_type { ETT_NONE = (0), ETT_TRACE_ONOFF = (1 << 0), ETT_SNAPSHOT = (1 << 1), ETT_STACKTRACE = (1 << 2), ETT_EVENT_ENABLE = (1 << 3), ETT_EVENT_HIST = (1 << 4), ETT_HIST_ENABLE = (1 << 5), }; extern int filter_match_preds(struct event_filter *filter, void *rec); extern enum event_trigger_type event_triggers_call(struct trace_event_file *file, void *rec, struct ring_buffer_event *event); extern void event_triggers_post_call(struct trace_event_file *file, enum event_trigger_type tt); bool trace_event_ignore_this_pid(struct trace_event_file *trace_file); /** * trace_trigger_soft_disabled - do triggers and test if soft disabled * @file: The file pointer of the event to test * * If any triggers without filters are attached to this event, they * will be called here. If the event is soft disabled and has no * triggers that require testing the fields, it will return true, * otherwise false. */ static inline bool trace_trigger_soft_disabled(struct trace_event_file *file) { unsigned long eflags = file->flags; if (!(eflags & EVENT_FILE_FL_TRIGGER_COND)) { if (eflags & EVENT_FILE_FL_TRIGGER_MODE) event_triggers_call(file, NULL, NULL); if (eflags & EVENT_FILE_FL_SOFT_DISABLED) return true; if (eflags & EVENT_FILE_FL_PID_FILTER) return trace_event_ignore_this_pid(file); } return false; } #ifdef CONFIG_BPF_EVENTS unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx); int perf_event_attach_bpf_prog(struct perf_event *event, struct bpf_prog *prog); void perf_event_detach_bpf_prog(struct perf_event *event); int perf_event_query_prog_array(struct perf_event *event, void __user *info); int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog); int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog); struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name); void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp); int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id, u32 *fd_type, const char **buf, u64 *probe_offset, u64 *probe_addr); #else static inline unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx) { return 1; } static inline int perf_event_attach_bpf_prog(struct perf_event *event, struct bpf_prog *prog) { return -EOPNOTSUPP; } static inline void perf_event_detach_bpf_prog(struct perf_event *event) { } static inline int perf_event_query_prog_array(struct perf_event *event, void __user *info) { return -EOPNOTSUPP; } static inline int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *p) { return -EOPNOTSUPP; } static inline int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *p) { return -EOPNOTSUPP; } static inline struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name) { return NULL; } static inline void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp) { } static inline int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id, u32 *fd_type, const char **buf, u64 *probe_offset, u64 *probe_addr) { return -EOPNOTSUPP; } #endif enum { FILTER_OTHER = 0, FILTER_STATIC_STRING, FILTER_DYN_STRING, FILTER_PTR_STRING, FILTER_TRACE_FN, FILTER_COMM, FILTER_CPU, }; extern int trace_event_raw_init(struct trace_event_call *call); extern int trace_define_field(struct trace_event_call *call, const char *type, const char *name, int offset, int size, int is_signed, int filter_type); extern int trace_add_event_call(struct trace_event_call *call); extern int trace_remove_event_call(struct trace_event_call *call); extern int trace_event_get_offsets(struct trace_event_call *call); #define is_signed_type(type) (((type)(-1)) < (type)1) int ftrace_set_clr_event(struct trace_array *tr, char *buf, int set); int trace_set_clr_event(const char *system, const char *event, int set); int trace_array_set_clr_event(struct trace_array *tr, const char *system, const char *event, bool enable); /* * The double __builtin_constant_p is because gcc will give us an error * if we try to allocate the static variable to fmt if it is not a * constant. Even with the outer if statement optimizing out. */ #define event_trace_printk(ip, fmt, args...) \ do { \ __trace_printk_check_format(fmt, ##args); \ tracing_record_cmdline(current); \ if (__builtin_constant_p(fmt)) { \ static const char *trace_printk_fmt \ __section("__trace_printk_fmt") = \ __builtin_constant_p(fmt) ? fmt : NULL; \ \ __trace_bprintk(ip, trace_printk_fmt, ##args); \ } else \ __trace_printk(ip, fmt, ##args); \ } while (0) #ifdef CONFIG_PERF_EVENTS struct perf_event; DECLARE_PER_CPU(struct pt_regs, perf_trace_regs); DECLARE_PER_CPU(int, bpf_kprobe_override); extern int perf_trace_init(struct perf_event *event); extern void perf_trace_destroy(struct perf_event *event); extern int perf_trace_add(struct perf_event *event, int flags); extern void perf_trace_del(struct perf_event *event, int flags); #ifdef CONFIG_KPROBE_EVENTS extern int perf_kprobe_init(struct perf_event *event, bool is_retprobe); extern void perf_kprobe_destroy(struct perf_event *event); extern int bpf_get_kprobe_info(const struct perf_event *event, u32 *fd_type, const char **symbol, u64 *probe_offset, u64 *probe_addr, bool perf_type_tracepoint); #endif #ifdef CONFIG_UPROBE_EVENTS extern int perf_uprobe_init(struct perf_event *event, unsigned long ref_ctr_offset, bool is_retprobe); extern void perf_uprobe_destroy(struct perf_event *event); extern int bpf_get_uprobe_info(const struct perf_event *event, u32 *fd_type, const char **filename, u64 *probe_offset, bool perf_type_tracepoint); #endif extern int ftrace_profile_set_filter(struct perf_event *event, int event_id, char *filter_str); extern void ftrace_profile_free_filter(struct perf_event *event); void perf_trace_buf_update(void *record, u16 type); void *perf_trace_buf_alloc(int size, struct pt_regs **regs, int *rctxp); void bpf_trace_run1(struct bpf_prog *prog, u64 arg1); void bpf_trace_run2(struct bpf_prog *prog, u64 arg1, u64 arg2); void bpf_trace_run3(struct bpf_prog *prog, u64 arg1, u64 arg2, u64 arg3); void bpf_trace_run4(struct bpf_prog *prog, u64 arg1, u64 arg2, u64 arg3, u64 arg4); void bpf_trace_run5(struct bpf_prog *prog, u64 arg1, u64 arg2, u64 arg3, u64 arg4, u64 arg5); void bpf_trace_run6(struct bpf_prog *prog, u64 arg1, u64 arg2, u64 arg3, u64 arg4, u64 arg5, u64 arg6); void bpf_trace_run7(struct bpf_prog *prog, u64 arg1, u64 arg2, u64 arg3, u64 arg4, u64 arg5, u64 arg6, u64 arg7); void bpf_trace_run8(struct bpf_prog *prog, u64 arg1, u64 arg2, u64 arg3, u64 arg4, u64 arg5, u64 arg6, u64 arg7, u64 arg8); void bpf_trace_run9(struct bpf_prog *prog, u64 arg1, u64 arg2, u64 arg3, u64 arg4, u64 arg5, u64 arg6, u64 arg7, u64 arg8, u64 arg9); void bpf_trace_run10(struct bpf_prog *prog, u64 arg1, u64 arg2, u64 arg3, u64 arg4, u64 arg5, u64 arg6, u64 arg7, u64 arg8, u64 arg9, u64 arg10); void bpf_trace_run11(struct bpf_prog *prog, u64 arg1, u64 arg2, u64 arg3, u64 arg4, u64 arg5, u64 arg6, u64 arg7, u64 arg8, u64 arg9, u64 arg10, u64 arg11); void bpf_trace_run12(struct bpf_prog *prog, u64 arg1, u64 arg2, u64 arg3, u64 arg4, u64 arg5, u64 arg6, u64 arg7, u64 arg8, u64 arg9, u64 arg10, u64 arg11, u64 arg12); void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, struct trace_event_call *call, u64 count, struct pt_regs *regs, struct hlist_head *head, struct task_struct *task); static inline void perf_trace_buf_submit(void *raw_data, int size, int rctx, u16 type, u64 count, struct pt_regs *regs, void *head, struct task_struct *task) { perf_tp_event(type, count, raw_data, size, regs, head, rctx, task); } #endif #endif /* _LINUX_TRACE_EVENT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* internal.h: mm/ internal definitions * * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) */ #ifndef __MM_INTERNAL_H #define __MM_INTERNAL_H #include <linux/fs.h> #include <linux/mm.h> #include <linux/pagemap.h> #include <linux/tracepoint-defs.h> /* * The set of flags that only affect watermark checking and reclaim * behaviour. This is used by the MM to obey the caller constraints * about IO, FS and watermark checking while ignoring placement * hints such as HIGHMEM usage. */ #define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\ __GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\ __GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\ __GFP_ATOMIC) /* The GFP flags allowed during early boot */ #define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS)) /* Control allocation cpuset and node placement constraints */ #define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE) /* Do not use these with a slab allocator */ #define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK) void page_writeback_init(void); vm_fault_t do_swap_page(struct vm_fault *vmf); void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *start_vma, unsigned long floor, unsigned long ceiling); static inline bool can_madv_lru_vma(struct vm_area_struct *vma) { return !(vma->vm_flags & (VM_LOCKED|VM_HUGETLB|VM_PFNMAP)); } void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma, unsigned long addr, unsigned long end, struct zap_details *details); void do_page_cache_ra(struct readahead_control *, unsigned long nr_to_read, unsigned long lookahead_size); void force_page_cache_ra(struct readahead_control *, struct file_ra_state *, unsigned long nr); static inline void force_page_cache_readahead(struct address_space *mapping, struct file *file, pgoff_t index, unsigned long nr_to_read) { DEFINE_READAHEAD(ractl, file, mapping, index); force_page_cache_ra(&ractl, &file->f_ra, nr_to_read); } struct page *find_get_entry(struct address_space *mapping, pgoff_t index); struct page *find_lock_entry(struct address_space *mapping, pgoff_t index); /** * page_evictable - test whether a page is evictable * @page: the page to test * * Test whether page is evictable--i.e., should be placed on active/inactive * lists vs unevictable list. * * Reasons page might not be evictable: * (1) page's mapping marked unevictable * (2) page is part of an mlocked VMA * */ static inline bool page_evictable(struct page *page) { bool ret; /* Prevent address_space of inode and swap cache from being freed */ rcu_read_lock(); ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); rcu_read_unlock(); return ret; } /* * Turn a non-refcounted page (->_refcount == 0) into refcounted with * a count of one. */ static inline void set_page_refcounted(struct page *page) { VM_BUG_ON_PAGE(PageTail(page), page); VM_BUG_ON_PAGE(page_ref_count(page), page); set_page_count(page, 1); } extern unsigned long highest_memmap_pfn; /* * Maximum number of reclaim retries without progress before the OOM * killer is consider the only way forward. */ #define MAX_RECLAIM_RETRIES 16 /* * in mm/vmscan.c: */ extern int isolate_lru_page(struct page *page); extern void putback_lru_page(struct page *page); /* * in mm/rmap.c: */ extern pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address); /* * in mm/page_alloc.c */ /* * Structure for holding the mostly immutable allocation parameters passed * between functions involved in allocations, including the alloc_pages* * family of functions. * * nodemask, migratetype and highest_zoneidx are initialized only once in * __alloc_pages_nodemask() and then never change. * * zonelist, preferred_zone and highest_zoneidx are set first in * __alloc_pages_nodemask() for the fast path, and might be later changed * in __alloc_pages_slowpath(). All other functions pass the whole structure * by a const pointer. */ struct alloc_context { struct zonelist *zonelist; nodemask_t *nodemask; struct zoneref *preferred_zoneref; int migratetype; /* * highest_zoneidx represents highest usable zone index of * the allocation request. Due to the nature of the zone, * memory on lower zone than the highest_zoneidx will be * protected by lowmem_reserve[highest_zoneidx]. * * highest_zoneidx is also used by reclaim/compaction to limit * the target zone since higher zone than this index cannot be * usable for this allocation request. */ enum zone_type highest_zoneidx; bool spread_dirty_pages; }; /* * Locate the struct page for both the matching buddy in our * pair (buddy1) and the combined O(n+1) page they form (page). * * 1) Any buddy B1 will have an order O twin B2 which satisfies * the following equation: * B2 = B1 ^ (1 << O) * For example, if the starting buddy (buddy2) is #8 its order * 1 buddy is #10: * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 * * 2) Any buddy B will have an order O+1 parent P which * satisfies the following equation: * P = B & ~(1 << O) * * Assumption: *_mem_map is contiguous at least up to MAX_ORDER */ static inline unsigned long __find_buddy_pfn(unsigned long page_pfn, unsigned int order) { return page_pfn ^ (1 << order); } extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn, unsigned long end_pfn, struct zone *zone); static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn, unsigned long end_pfn, struct zone *zone) { if (zone->contiguous) return pfn_to_page(start_pfn); return __pageblock_pfn_to_page(start_pfn, end_pfn, zone); } extern int __isolate_free_page(struct page *page, unsigned int order); extern void __putback_isolated_page(struct page *page, unsigned int order, int mt); extern void memblock_free_pages(struct page *page, unsigned long pfn, unsigned int order); extern void __free_pages_core(struct page *page, unsigned int order); extern void prep_compound_page(struct page *page, unsigned int order); extern void post_alloc_hook(struct page *page, unsigned int order, gfp_t gfp_flags); extern int user_min_free_kbytes; extern void zone_pcp_update(struct zone *zone); extern void zone_pcp_reset(struct zone *zone); #if defined CONFIG_COMPACTION || defined CONFIG_CMA /* * in mm/compaction.c */ /* * compact_control is used to track pages being migrated and the free pages * they are being migrated to during memory compaction. The free_pfn starts * at the end of a zone and migrate_pfn begins at the start. Movable pages * are moved to the end of a zone during a compaction run and the run * completes when free_pfn <= migrate_pfn */ struct compact_control { struct list_head freepages; /* List of free pages to migrate to */ struct list_head migratepages; /* List of pages being migrated */ unsigned int nr_freepages; /* Number of isolated free pages */ unsigned int nr_migratepages; /* Number of pages to migrate */ unsigned long free_pfn; /* isolate_freepages search base */ unsigned long migrate_pfn; /* isolate_migratepages search base */ unsigned long fast_start_pfn; /* a pfn to start linear scan from */ struct zone *zone; unsigned long total_migrate_scanned; unsigned long total_free_scanned; unsigned short fast_search_fail;/* failures to use free list searches */ short search_order; /* order to start a fast search at */ const gfp_t gfp_mask; /* gfp mask of a direct compactor */ int order; /* order a direct compactor needs */ int migratetype; /* migratetype of direct compactor */ const unsigned int alloc_flags; /* alloc flags of a direct compactor */ const int highest_zoneidx; /* zone index of a direct compactor */ enum migrate_mode mode; /* Async or sync migration mode */ bool ignore_skip_hint; /* Scan blocks even if marked skip */ bool no_set_skip_hint; /* Don't mark blocks for skipping */ bool ignore_block_suitable; /* Scan blocks considered unsuitable */ bool direct_compaction; /* False from kcompactd or /proc/... */ bool proactive_compaction; /* kcompactd proactive compaction */ bool whole_zone; /* Whole zone should/has been scanned */ bool contended; /* Signal lock or sched contention */ bool rescan; /* Rescanning the same pageblock */ bool alloc_contig; /* alloc_contig_range allocation */ }; /* * Used in direct compaction when a page should be taken from the freelists * immediately when one is created during the free path. */ struct capture_control { struct compact_control *cc; struct page *page; }; unsigned long isolate_freepages_range(struct compact_control *cc, unsigned long start_pfn, unsigned long end_pfn); unsigned long isolate_migratepages_range(struct compact_control *cc, unsigned long low_pfn, unsigned long end_pfn); int find_suitable_fallback(struct free_area *area, unsigned int order, int migratetype, bool only_stealable, bool *can_steal); #endif /* * This function returns the order of a free page in the buddy system. In * general, page_zone(page)->lock must be held by the caller to prevent the * page from being allocated in parallel and returning garbage as the order. * If a caller does not hold page_zone(page)->lock, it must guarantee that the * page cannot be allocated or merged in parallel. Alternatively, it must * handle invalid values gracefully, and use buddy_order_unsafe() below. */ static inline unsigned int buddy_order(struct page *page) { /* PageBuddy() must be checked by the caller */ return page_private(page); } /* * Like buddy_order(), but for callers who cannot afford to hold the zone lock. * PageBuddy() should be checked first by the caller to minimize race window, * and invalid values must be handled gracefully. * * READ_ONCE is used so that if the caller assigns the result into a local * variable and e.g. tests it for valid range before using, the compiler cannot * decide to remove the variable and inline the page_private(page) multiple * times, potentially observing different values in the tests and the actual * use of the result. */ #define buddy_order_unsafe(page) READ_ONCE(page_private(page)) static inline bool is_cow_mapping(vm_flags_t flags) { return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; } /* * These three helpers classifies VMAs for virtual memory accounting. */ /* * Executable code area - executable, not writable, not stack */ static inline bool is_exec_mapping(vm_flags_t flags) { return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC; } /* * Stack area - atomatically grows in one direction * * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous: * do_mmap() forbids all other combinations. */ static inline bool is_stack_mapping(vm_flags_t flags) { return (flags & VM_STACK) == VM_STACK; } /* * Data area - private, writable, not stack */ static inline bool is_data_mapping(vm_flags_t flags) { return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE; } /* mm/util.c */ void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, struct vm_area_struct *prev); void __vma_unlink_list(struct mm_struct *mm, struct vm_area_struct *vma); #ifdef CONFIG_MMU extern long populate_vma_page_range(struct vm_area_struct *vma, unsigned long start, unsigned long end, int *nonblocking); extern void munlock_vma_pages_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); static inline void munlock_vma_pages_all(struct vm_area_struct *vma) { munlock_vma_pages_range(vma, vma->vm_start, vma->vm_end); } /* * must be called with vma's mmap_lock held for read or write, and page locked. */ extern void mlock_vma_page(struct page *page); extern unsigned int munlock_vma_page(struct page *page); /* * Clear the page's PageMlocked(). This can be useful in a situation where * we want to unconditionally remove a page from the pagecache -- e.g., * on truncation or freeing. * * It is legal to call this function for any page, mlocked or not. * If called for a page that is still mapped by mlocked vmas, all we do * is revert to lazy LRU behaviour -- semantics are not broken. */ extern void clear_page_mlock(struct page *page); /* * mlock_migrate_page - called only from migrate_misplaced_transhuge_page() * (because that does not go through the full procedure of migration ptes): * to migrate the Mlocked page flag; update statistics. */ static inline void mlock_migrate_page(struct page *newpage, struct page *page) { if (TestClearPageMlocked(page)) { int nr_pages = thp_nr_pages(page); /* Holding pmd lock, no change in irq context: __mod is safe */ __mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages); SetPageMlocked(newpage); __mod_zone_page_state(page_zone(newpage), NR_MLOCK, nr_pages); } } extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma); /* * At what user virtual address is page expected in vma? * Returns -EFAULT if all of the page is outside the range of vma. * If page is a compound head, the entire compound page is considered. */ static inline unsigned long vma_address(struct page *page, struct vm_area_struct *vma) { pgoff_t pgoff; unsigned long address; VM_BUG_ON_PAGE(PageKsm(page), page); /* KSM page->index unusable */ pgoff = page_to_pgoff(page); if (pgoff >= vma->vm_pgoff) { address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); /* Check for address beyond vma (or wrapped through 0?) */ if (address < vma->vm_start || address >= vma->vm_end) address = -EFAULT; } else if (PageHead(page) && pgoff + compound_nr(page) - 1 >= vma->vm_pgoff) { /* Test above avoids possibility of wrap to 0 on 32-bit */ address = vma->vm_start; } else { address = -EFAULT; } return address; } /* * Then at what user virtual address will none of the page be found in vma? * Assumes that vma_address() already returned a good starting address. * If page is a compound head, the entire compound page is considered. */ static inline unsigned long vma_address_end(struct page *page, struct vm_area_struct *vma) { pgoff_t pgoff; unsigned long address; VM_BUG_ON_PAGE(PageKsm(page), page); /* KSM page->index unusable */ pgoff = page_to_pgoff(page) + compound_nr(page); address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); /* Check for address beyond vma (or wrapped through 0?) */ if (address < vma->vm_start || address > vma->vm_end) address = vma->vm_end; return address; } static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf, struct file *fpin) { int flags = vmf->flags; if (fpin) return fpin; /* * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or * anything, so we only pin the file and drop the mmap_lock if only * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt. */ if (fault_flag_allow_retry_first(flags) && !(flags & FAULT_FLAG_RETRY_NOWAIT)) { fpin = get_file(vmf->vma->vm_file); mmap_read_unlock(vmf->vma->vm_mm); } return fpin; } #else /* !CONFIG_MMU */ static inline void clear_page_mlock(struct page *page) { } static inline void mlock_vma_page(struct page *page) { } static inline void mlock_migrate_page(struct page *new, struct page *old) { } #endif /* !CONFIG_MMU */ /* * Return the mem_map entry representing the 'offset' subpage within * the maximally aligned gigantic page 'base'. Handle any discontiguity * in the mem_map at MAX_ORDER_NR_PAGES boundaries. */ static inline struct page *mem_map_offset(struct page *base, int offset) { if (unlikely(offset >= MAX_ORDER_NR_PAGES)) return nth_page(base, offset); return base + offset; } /* * Iterator over all subpages within the maximally aligned gigantic * page 'base'. Handle any discontiguity in the mem_map. */ static inline struct page *mem_map_next(struct page *iter, struct page *base, int offset) { if (unlikely((offset & (MAX_ORDER_NR_PAGES - 1)) == 0)) { unsigned long pfn = page_to_pfn(base) + offset; if (!pfn_valid(pfn)) return NULL; return pfn_to_page(pfn); } return iter + 1; } /* Memory initialisation debug and verification */ enum mminit_level { MMINIT_WARNING, MMINIT_VERIFY, MMINIT_TRACE }; #ifdef CONFIG_DEBUG_MEMORY_INIT extern int mminit_loglevel; #define mminit_dprintk(level, prefix, fmt, arg...) \ do { \ if (level < mminit_loglevel) { \ if (level <= MMINIT_WARNING) \ pr_warn("mminit::" prefix " " fmt, ##arg); \ else \ printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \ } \ } while (0) extern void mminit_verify_pageflags_layout(void); extern void mminit_verify_zonelist(void); #else static inline void mminit_dprintk(enum mminit_level level, const char *prefix, const char *fmt, ...) { } static inline void mminit_verify_pageflags_layout(void) { } static inline void mminit_verify_zonelist(void) { } #endif /* CONFIG_DEBUG_MEMORY_INIT */ /* mminit_validate_memmodel_limits is independent of CONFIG_DEBUG_MEMORY_INIT */ #if defined(CONFIG_SPARSEMEM) extern void mminit_validate_memmodel_limits(unsigned long *start_pfn, unsigned long *end_pfn); #else static inline void mminit_validate_memmodel_limits(unsigned long *start_pfn, unsigned long *end_pfn) { } #endif /* CONFIG_SPARSEMEM */ #define NODE_RECLAIM_NOSCAN -2 #define NODE_RECLAIM_FULL -1 #define NODE_RECLAIM_SOME 0 #define NODE_RECLAIM_SUCCESS 1 #ifdef CONFIG_NUMA extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int); #else static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask, unsigned int order) { return NODE_RECLAIM_NOSCAN; } #endif extern int hwpoison_filter(struct page *p); extern u32 hwpoison_filter_dev_major; extern u32 hwpoison_filter_dev_minor; extern u64 hwpoison_filter_flags_mask; extern u64 hwpoison_filter_flags_value; extern u64 hwpoison_filter_memcg; extern u32 hwpoison_filter_enable; extern unsigned long __must_check vm_mmap_pgoff(struct file *, unsigned long, unsigned long, unsigned long, unsigned long, unsigned long); extern void set_pageblock_order(void); unsigned int reclaim_clean_pages_from_list(struct zone *zone, struct list_head *page_list); /* The ALLOC_WMARK bits are used as an index to zone->watermark */ #define ALLOC_WMARK_MIN WMARK_MIN #define ALLOC_WMARK_LOW WMARK_LOW #define ALLOC_WMARK_HIGH WMARK_HIGH #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */ /* Mask to get the watermark bits */ #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1) /* * Only MMU archs have async oom victim reclaim - aka oom_reaper so we * cannot assume a reduced access to memory reserves is sufficient for * !MMU */ #ifdef CONFIG_MMU #define ALLOC_OOM 0x08 #else #define ALLOC_OOM ALLOC_NO_WATERMARKS #endif #define ALLOC_HARDER 0x10 /* try to alloc harder */ #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ #define ALLOC_CMA 0x80 /* allow allocations from CMA areas */ #ifdef CONFIG_ZONE_DMA32 #define ALLOC_NOFRAGMENT 0x100 /* avoid mixing pageblock types */ #else #define ALLOC_NOFRAGMENT 0x0 #endif #define ALLOC_KSWAPD 0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */ enum ttu_flags; struct tlbflush_unmap_batch; /* * only for MM internal work items which do not depend on * any allocations or locks which might depend on allocations */ extern struct workqueue_struct *mm_percpu_wq; #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH void try_to_unmap_flush(void); void try_to_unmap_flush_dirty(void); void flush_tlb_batched_pending(struct mm_struct *mm); #else static inline void try_to_unmap_flush(void) { } static inline void try_to_unmap_flush_dirty(void) { } static inline void flush_tlb_batched_pending(struct mm_struct *mm) { } #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ extern const struct trace_print_flags pageflag_names[]; extern const struct trace_print_flags vmaflag_names[]; extern const struct trace_print_flags gfpflag_names[]; static inline bool is_migrate_highatomic(enum migratetype migratetype) { return migratetype == MIGRATE_HIGHATOMIC; } static inline bool is_migrate_highatomic_page(struct page *page) { return get_pageblock_migratetype(page) == MIGRATE_HIGHATOMIC; } void setup_zone_pageset(struct zone *zone); struct migration_target_control { int nid; /* preferred node id */ nodemask_t *nmask; gfp_t gfp_mask; }; #endif /* __MM_INTERNAL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 /* SPDX-License-Identifier: GPL-2.0 */ /* * Internals of the DMA direct mapping implementation. Only for use by the * DMA mapping code and IOMMU drivers. */ #ifndef _LINUX_DMA_DIRECT_H #define _LINUX_DMA_DIRECT_H 1 #include <linux/dma-mapping.h> #include <linux/dma-map-ops.h> #include <linux/memblock.h> /* for min_low_pfn */ #include <linux/mem_encrypt.h> #include <linux/swiotlb.h> extern unsigned int zone_dma_bits; /* * Record the mapping of CPU physical to DMA addresses for a given region. */ struct bus_dma_region { phys_addr_t cpu_start; dma_addr_t dma_start; u64 size; u64 offset; }; static inline dma_addr_t translate_phys_to_dma(struct device *dev, phys_addr_t paddr) { const struct bus_dma_region *m; for (m = dev->dma_range_map; m->size; m++) if (paddr >= m->cpu_start && paddr - m->cpu_start < m->size) return (dma_addr_t)paddr - m->offset; /* make sure dma_capable fails when no translation is available */ return DMA_MAPPING_ERROR; } static inline phys_addr_t translate_dma_to_phys(struct device *dev, dma_addr_t dma_addr) { const struct bus_dma_region *m; for (m = dev->dma_range_map; m->size; m++) if (dma_addr >= m->dma_start && dma_addr - m->dma_start < m->size) return (phys_addr_t)dma_addr + m->offset; return (phys_addr_t)-1; } #ifdef CONFIG_ARCH_HAS_PHYS_TO_DMA #include <asm/dma-direct.h> #ifndef phys_to_dma_unencrypted #define phys_to_dma_unencrypted phys_to_dma #endif #else static inline dma_addr_t phys_to_dma_unencrypted(struct device *dev, phys_addr_t paddr) { if (dev->dma_range_map) return translate_phys_to_dma(dev, paddr); return paddr; } /* * If memory encryption is supported, phys_to_dma will set the memory encryption * bit in the DMA address, and dma_to_phys will clear it. * phys_to_dma_unencrypted is for use on special unencrypted memory like swiotlb * buffers. */ static inline dma_addr_t phys_to_dma(struct device *dev, phys_addr_t paddr) { return __sme_set(phys_to_dma_unencrypted(dev, paddr)); } static inline phys_addr_t dma_to_phys(struct device *dev, dma_addr_t dma_addr) { phys_addr_t paddr; if (dev->dma_range_map) paddr = translate_dma_to_phys(dev, dma_addr); else paddr = dma_addr; return __sme_clr(paddr); } #endif /* !CONFIG_ARCH_HAS_PHYS_TO_DMA */ #ifdef CONFIG_ARCH_HAS_FORCE_DMA_UNENCRYPTED bool force_dma_unencrypted(struct device *dev); #else static inline bool force_dma_unencrypted(struct device *dev) { return false; } #endif /* CONFIG_ARCH_HAS_FORCE_DMA_UNENCRYPTED */ static inline bool dma_capable(struct device *dev, dma_addr_t addr, size_t size, bool is_ram) { dma_addr_t end = addr + size - 1; if (addr == DMA_MAPPING_ERROR) return false; if (is_ram && !IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT) && min(addr, end) < phys_to_dma(dev, PFN_PHYS(min_low_pfn))) return false; return end <= min_not_zero(*dev->dma_mask, dev->bus_dma_limit); } u64 dma_direct_get_required_mask(struct device *dev); void *dma_direct_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs); void dma_direct_free(struct device *dev, size_t size, void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs); struct page *dma_direct_alloc_pages(struct device *dev, size_t size, dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp); void dma_direct_free_pages(struct device *dev, size_t size, struct page *page, dma_addr_t dma_addr, enum dma_data_direction dir); int dma_direct_supported(struct device *dev, u64 mask); dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr, size_t size, enum dma_data_direction dir, unsigned long attrs); #endif /* _LINUX_DMA_DIRECT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * inet6 interface/address list definitions * Linux INET6 implementation * * Authors: * Pedro Roque <roque@di.fc.ul.pt> */ #ifndef _NET_IF_INET6_H #define _NET_IF_INET6_H #include <net/snmp.h> #include <linux/ipv6.h> #include <linux/refcount.h> /* inet6_dev.if_flags */ #define IF_RA_OTHERCONF 0x80 #define IF_RA_MANAGED 0x40 #define IF_RA_RCVD 0x20 #define IF_RS_SENT 0x10 #define IF_READY 0x80000000 /* prefix flags */ #define IF_PREFIX_ONLINK 0x01 #define IF_PREFIX_AUTOCONF 0x02 enum { INET6_IFADDR_STATE_PREDAD, INET6_IFADDR_STATE_DAD, INET6_IFADDR_STATE_POSTDAD, INET6_IFADDR_STATE_ERRDAD, INET6_IFADDR_STATE_DEAD, }; struct inet6_ifaddr { struct in6_addr addr; __u32 prefix_len; __u32 rt_priority; /* In seconds, relative to tstamp. Expiry is at tstamp + HZ * lft. */ __u32 valid_lft; __u32 prefered_lft; refcount_t refcnt; spinlock_t lock; int state; __u32 flags; __u8 dad_probes; __u8 stable_privacy_retry; __u16 scope; __u64 dad_nonce; unsigned long cstamp; /* created timestamp */ unsigned long tstamp; /* updated timestamp */ struct delayed_work dad_work; struct inet6_dev *idev; struct fib6_info *rt; struct hlist_node addr_lst; struct list_head if_list; struct list_head tmp_list; struct inet6_ifaddr *ifpub; int regen_count; bool tokenized; struct rcu_head rcu; struct in6_addr peer_addr; }; struct ip6_sf_socklist { unsigned int sl_max; unsigned int sl_count; struct in6_addr sl_addr[]; }; #define IP6_SFLSIZE(count) (sizeof(struct ip6_sf_socklist) + \ (count) * sizeof(struct in6_addr)) #define IP6_SFBLOCK 10 /* allocate this many at once */ struct ipv6_mc_socklist { struct in6_addr addr; int ifindex; unsigned int sfmode; /* MCAST_{INCLUDE,EXCLUDE} */ struct ipv6_mc_socklist __rcu *next; rwlock_t sflock; struct ip6_sf_socklist *sflist; struct rcu_head rcu; }; struct ip6_sf_list { struct ip6_sf_list *sf_next; struct in6_addr sf_addr; unsigned long sf_count[2]; /* include/exclude counts */ unsigned char sf_gsresp; /* include in g & s response? */ unsigned char sf_oldin; /* change state */ unsigned char sf_crcount; /* retrans. left to send */ }; #define MAF_TIMER_RUNNING 0x01 #define MAF_LAST_REPORTER 0x02 #define MAF_LOADED 0x04 #define MAF_NOREPORT 0x08 #define MAF_GSQUERY 0x10 struct ifmcaddr6 { struct in6_addr mca_addr; struct inet6_dev *idev; struct ifmcaddr6 *next; struct ip6_sf_list *mca_sources; struct ip6_sf_list *mca_tomb; unsigned int mca_sfmode; unsigned char mca_crcount; unsigned long mca_sfcount[2]; struct timer_list mca_timer; unsigned int mca_flags; int mca_users; refcount_t mca_refcnt; spinlock_t mca_lock; unsigned long mca_cstamp; unsigned long mca_tstamp; }; /* Anycast stuff */ struct ipv6_ac_socklist { struct in6_addr acl_addr; int acl_ifindex; struct ipv6_ac_socklist *acl_next; }; struct ifacaddr6 { struct in6_addr aca_addr; struct fib6_info *aca_rt; struct ifacaddr6 *aca_next; struct hlist_node aca_addr_lst; int aca_users; refcount_t aca_refcnt; unsigned long aca_cstamp; unsigned long aca_tstamp; struct rcu_head rcu; }; #define IFA_HOST IPV6_ADDR_LOOPBACK #define IFA_LINK IPV6_ADDR_LINKLOCAL #define IFA_SITE IPV6_ADDR_SITELOCAL struct ipv6_devstat { struct proc_dir_entry *proc_dir_entry; DEFINE_SNMP_STAT(struct ipstats_mib, ipv6); DEFINE_SNMP_STAT_ATOMIC(struct icmpv6_mib_device, icmpv6dev); DEFINE_SNMP_STAT_ATOMIC(struct icmpv6msg_mib_device, icmpv6msgdev); }; struct inet6_dev { struct net_device *dev; struct list_head addr_list; struct ifmcaddr6 *mc_list; struct ifmcaddr6 *mc_tomb; spinlock_t mc_lock; unsigned char mc_qrv; /* Query Robustness Variable */ unsigned char mc_gq_running; unsigned char mc_ifc_count; unsigned char mc_dad_count; unsigned long mc_v1_seen; /* Max time we stay in MLDv1 mode */ unsigned long mc_qi; /* Query Interval */ unsigned long mc_qri; /* Query Response Interval */ unsigned long mc_maxdelay; struct timer_list mc_gq_timer; /* general query timer */ struct timer_list mc_ifc_timer; /* interface change timer */ struct timer_list mc_dad_timer; /* dad complete mc timer */ struct ifacaddr6 *ac_list; rwlock_t lock; refcount_t refcnt; __u32 if_flags; int dead; u32 desync_factor; struct list_head tempaddr_list; struct in6_addr token; struct neigh_parms *nd_parms; struct ipv6_devconf cnf; struct ipv6_devstat stats; struct timer_list rs_timer; __s32 rs_interval; /* in jiffies */ __u8 rs_probes; unsigned long tstamp; /* ipv6InterfaceTable update timestamp */ struct rcu_head rcu; }; static inline void ipv6_eth_mc_map(const struct in6_addr *addr, char *buf) { /* * +-------+-------+-------+-------+-------+-------+ * | 33 | 33 | DST13 | DST14 | DST15 | DST16 | * +-------+-------+-------+-------+-------+-------+ */ buf[0]= 0x33; buf[1]= 0x33; memcpy(buf + 2, &addr->s6_addr32[3], sizeof(__u32)); } static inline void ipv6_arcnet_mc_map(const struct in6_addr *addr, char *buf) { buf[0] = 0x00; } static inline void ipv6_ib_mc_map(const struct in6_addr *addr, const unsigned char *broadcast, char *buf) { unsigned char scope = broadcast[5] & 0xF; buf[0] = 0; /* Reserved */ buf[1] = 0xff; /* Multicast QPN */ buf[2] = 0xff; buf[3] = 0xff; buf[4] = 0xff; buf[5] = 0x10 | scope; /* scope from broadcast address */ buf[6] = 0x60; /* IPv6 signature */ buf[7] = 0x1b; buf[8] = broadcast[8]; /* P_Key */ buf[9] = broadcast[9]; memcpy(buf + 10, addr->s6_addr + 6, 10); } static inline int ipv6_ipgre_mc_map(const struct in6_addr *addr, const unsigned char *broadcast, char *buf) { if ((broadcast[0] | broadcast[1] | broadcast[2] | broadcast[3]) != 0) { memcpy(buf, broadcast, 4); } else { /* v4mapped? */ if ((addr->s6_addr32[0] | addr->s6_addr32[1] | (addr->s6_addr32[2] ^ htonl(0x0000ffff))) != 0) return -EINVAL; memcpy(buf, &addr->s6_addr32[3], 4); } return 0; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 #ifndef _LINUX_SCHED_ISOLATION_H #define _LINUX_SCHED_ISOLATION_H #include <linux/cpumask.h> #include <linux/init.h> #include <linux/tick.h> enum hk_flags { HK_FLAG_TIMER = 1, HK_FLAG_RCU = (1 << 1), HK_FLAG_MISC = (1 << 2), HK_FLAG_SCHED = (1 << 3), HK_FLAG_TICK = (1 << 4), HK_FLAG_DOMAIN = (1 << 5), HK_FLAG_WQ = (1 << 6), HK_FLAG_MANAGED_IRQ = (1 << 7), HK_FLAG_KTHREAD = (1 << 8), }; #ifdef CONFIG_CPU_ISOLATION DECLARE_STATIC_KEY_FALSE(housekeeping_overridden); extern int housekeeping_any_cpu(enum hk_flags flags); extern const struct cpumask *housekeeping_cpumask(enum hk_flags flags); extern bool housekeeping_enabled(enum hk_flags flags); extern void housekeeping_affine(struct task_struct *t, enum hk_flags flags); extern bool housekeeping_test_cpu(int cpu, enum hk_flags flags); extern void __init housekeeping_init(void); #else static inline int housekeeping_any_cpu(enum hk_flags flags) { return smp_processor_id(); } static inline const struct cpumask *housekeeping_cpumask(enum hk_flags flags) { return cpu_possible_mask; } static inline bool housekeeping_enabled(enum hk_flags flags) { return false; } static inline void housekeeping_affine(struct task_struct *t, enum hk_flags flags) { } static inline void housekeeping_init(void) { } #endif /* CONFIG_CPU_ISOLATION */ static inline bool housekeeping_cpu(int cpu, enum hk_flags flags) { #ifdef CONFIG_CPU_ISOLATION if (static_branch_unlikely(&housekeeping_overridden)) return housekeeping_test_cpu(cpu, flags); #endif return true; } #endif /* _LINUX_SCHED_ISOLATION_H */
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 // SPDX-License-Identifier: GPL-2.0 // Generated by scripts/atomic/gen-atomic-fallback.sh // DO NOT MODIFY THIS FILE DIRECTLY #ifndef _LINUX_ATOMIC_FALLBACK_H #define _LINUX_ATOMIC_FALLBACK_H #include <linux/compiler.h> #ifndef arch_xchg_relaxed #define arch_xchg_relaxed arch_xchg #define arch_xchg_acquire arch_xchg #define arch_xchg_release arch_xchg #else /* arch_xchg_relaxed */ #ifndef arch_xchg_acquire #define arch_xchg_acquire(...) \ __atomic_op_acquire(arch_xchg, __VA_ARGS__) #endif #ifndef arch_xchg_release #define arch_xchg_release(...) \ __atomic_op_release(arch_xchg, __VA_ARGS__) #endif #ifndef arch_xchg #define arch_xchg(...) \ __atomic_op_fence(arch_xchg, __VA_ARGS__) #endif #endif /* arch_xchg_relaxed */ #ifndef arch_cmpxchg_relaxed #define arch_cmpxchg_relaxed arch_cmpxchg #define arch_cmpxchg_acquire arch_cmpxchg #define arch_cmpxchg_release arch_cmpxchg #else /* arch_cmpxchg_relaxed */ #ifndef arch_cmpxchg_acquire #define arch_cmpxchg_acquire(...) \ __atomic_op_acquire(arch_cmpxchg, __VA_ARGS__) #endif #ifndef arch_cmpxchg_release #define arch_cmpxchg_release(...) \ __atomic_op_release(arch_cmpxchg, __VA_ARGS__) #endif #ifndef arch_cmpxchg #define arch_cmpxchg(...) \ __atomic_op_fence(arch_cmpxchg, __VA_ARGS__) #endif #endif /* arch_cmpxchg_relaxed */ #ifndef arch_cmpxchg64_relaxed #define arch_cmpxchg64_relaxed arch_cmpxchg64 #define arch_cmpxchg64_acquire arch_cmpxchg64 #define arch_cmpxchg64_release arch_cmpxchg64 #else /* arch_cmpxchg64_relaxed */ #ifndef arch_cmpxchg64_acquire #define arch_cmpxchg64_acquire(...) \ __atomic_op_acquire(arch_cmpxchg64, __VA_ARGS__) #endif #ifndef arch_cmpxchg64_release #define arch_cmpxchg64_release(...) \ __atomic_op_release(arch_cmpxchg64, __VA_ARGS__) #endif #ifndef arch_cmpxchg64 #define arch_cmpxchg64(...) \ __atomic_op_fence(arch_cmpxchg64, __VA_ARGS__) #endif #endif /* arch_cmpxchg64_relaxed */ #ifndef arch_atomic_read_acquire static __always_inline int arch_atomic_read_acquire(const atomic_t *v) { return smp_load_acquire(&(v)->counter); } #define arch_atomic_read_acquire arch_atomic_read_acquire #endif #ifndef arch_atomic_set_release static __always_inline void arch_atomic_set_release(atomic_t *v, int i) { smp_store_release(&(v)->counter, i); } #define arch_atomic_set_release arch_atomic_set_release #endif #ifndef arch_atomic_add_return_relaxed #define arch_atomic_add_return_acquire arch_atomic_add_return #define arch_atomic_add_return_release arch_atomic_add_return #define arch_atomic_add_return_relaxed arch_atomic_add_return #else /* arch_atomic_add_return_relaxed */ #ifndef arch_atomic_add_return_acquire static __always_inline int arch_atomic_add_return_acquire(int i, atomic_t *v) { int ret = arch_atomic_add_return_relaxed(i, v); __atomic_acquire_fence(); return ret; } #define arch_atomic_add_return_acquire arch_atomic_add_return_acquire #endif #ifndef arch_atomic_add_return_release static __always_inline int arch_atomic_add_return_release(int i, atomic_t *v) { __atomic_release_fence(); return arch_atomic_add_return_relaxed(i, v); } #define arch_atomic_add_return_release arch_atomic_add_return_release #endif #ifndef arch_atomic_add_return static __always_inline int arch_atomic_add_return(int i, atomic_t *v) { int ret; __atomic_pre_full_fence(); ret = arch_atomic_add_return_relaxed(i, v); __atomic_post_full_fence(); return ret; } #define arch_atomic_add_return arch_atomic_add_return #endif #endif /* arch_atomic_add_return_relaxed */ #ifndef arch_atomic_fetch_add_relaxed #define arch_atomic_fetch_add_acquire arch_atomic_fetch_add #define arch_atomic_fetch_add_release arch_atomic_fetch_add #define arch_atomic_fetch_add_relaxed arch_atomic_fetch_add #else /* arch_atomic_fetch_add_relaxed */ #ifndef arch_atomic_fetch_add_acquire static __always_inline int arch_atomic_fetch_add_acquire(int i, atomic_t *v) { int ret = arch_atomic_fetch_add_relaxed(i, v); __atomic_acquire_fence(); return ret; } #define arch_atomic_fetch_add_acquire arch_atomic_fetch_add_acquire #endif #ifndef arch_atomic_fetch_add_release static __always_inline int arch_atomic_fetch_add_release(int i, atomic_t *v) { __atomic_release_fence(); return arch_atomic_fetch_add_relaxed(i, v); } #define arch_atomic_fetch_add_release arch_atomic_fetch_add_release #endif #ifndef arch_atomic_fetch_add static __always_inline int arch_atomic_fetch_add(int i, atomic_t *v) { int ret; __atomic_pre_full_fence(); ret = arch_atomic_fetch_add_relaxed(i, v); __atomic_post_full_fence(); return ret; } #define arch_atomic_fetch_add arch_atomic_fetch_add #endif #endif /* arch_atomic_fetch_add_relaxed */ #ifndef arch_atomic_sub_return_relaxed #define arch_atomic_sub_return_acquire arch_atomic_sub_return #define arch_atomic_sub_return_release arch_atomic_sub_return #define arch_atomic_sub_return_relaxed arch_atomic_sub_return #else /* arch_atomic_sub_return_relaxed */ #ifndef arch_atomic_sub_return_acquire static __always_inline int arch_atomic_sub_return_acquire(int i, atomic_t *v) { int ret = arch_atomic_sub_return_relaxed(i, v); __atomic_acquire_fence(); return ret; } #define arch_atomic_sub_return_acquire arch_atomic_sub_return_acquire #endif #ifndef arch_atomic_sub_return_release static __always_inline int arch_atomic_sub_return_release(int i, atomic_t *v) { __atomic_release_fence(); return arch_atomic_sub_return_relaxed(i, v); } #define arch_atomic_sub_return_release arch_atomic_sub_return_release #endif #ifndef arch_atomic_sub_return static __always_inline int arch_atomic_sub_return(int i, atomic_t *v) { int ret; __atomic_pre_full_fence(); ret = arch_atomic_sub_return_relaxed(i, v); __atomic_post_full_fence(); return ret; } #define arch_atomic_sub_return arch_atomic_sub_return #endif #endif /* arch_atomic_sub_return_relaxed */ #ifndef arch_atomic_fetch_sub_relaxed #define arch_atomic_fetch_sub_acquire arch_atomic_fetch_sub #define arch_atomic_fetch_sub_release arch_atomic_fetch_sub #define arch_atomic_fetch_sub_relaxed arch_atomic_fetch_sub #else /* arch_atomic_fetch_sub_relaxed */ #ifndef arch_atomic_fetch_sub_acquire static __always_inline int arch_atomic_fetch_sub_acquire(int i, atomic_t *v) { int ret = arch_atomic_fetch_sub_relaxed(i, v); __atomic_acquire_fence(); return ret; } #define arch_atomic_fetch_sub_acquire arch_atomic_fetch_sub_acquire #endif #ifndef arch_atomic_fetch_sub_release static __always_inline int arch_atomic_fetch_sub_release(int i, atomic_t *v) { __atomic_release_fence(); return arch_atomic_fetch_sub_relaxed(i, v); } #define arch_atomic_fetch_sub_release arch_atomic_fetch_sub_release #endif #ifndef arch_atomic_fetch_sub static __always_inline int arch_atomic_fetch_sub(int i, atomic_t *v) { int ret; __atomic_pre_full_fence(); ret = arch_atomic_fetch_sub_relaxed(i, v); __atomic_post_full_fence(); return ret; } #define arch_atomic_fetch_sub arch_atomic_fetch_sub #endif #endif /* arch_atomic_fetch_sub_relaxed */ #ifndef arch_atomic_inc static __always_inline void arch_atomic_inc(atomic_t *v) { arch_atomic_add(1, v); } #define arch_atomic_inc arch_atomic_inc #endif #ifndef arch_atomic_inc_return_relaxed #ifdef arch_atomic_inc_return #define arch_atomic_inc_return_acquire arch_atomic_inc_return #define arch_atomic_inc_return_release arch_atomic_inc_return #define arch_atomic_inc_return_relaxed arch_atomic_inc_return #endif /* arch_atomic_inc_return */ #ifndef arch_atomic_inc_return static __always_inline int arch_atomic_inc_return(atomic_t *v) { return arch_atomic_add_return(1, v); } #define arch_atomic_inc_return arch_atomic_inc_return #endif #ifndef arch_atomic_inc_return_acquire static __always_inline int arch_atomic_inc_return_acquire(atomic_t *v) { return arch_atomic_add_return_acquire(1, v); } #define arch_atomic_inc_return_acquire arch_atomic_inc_return_acquire #endif #ifndef arch_atomic_inc_return_release static __always_inline int arch_atomic_inc_return_release(atomic_t *v) { return arch_atomic_add_return_release(1, v); } #define arch_atomic_inc_return_release arch_atomic_inc_return_release #endif #ifndef arch_atomic_inc_return_relaxed static __always_inline int arch_atomic_inc_return_relaxed(atomic_t *v) { return arch_atomic_add_return_relaxed(1, v); } #define arch_atomic_inc_return_relaxed arch_atomic_inc_return_relaxed #endif #else /* arch_atomic_inc_return_relaxed */ #ifndef arch_atomic_inc_return_acquire static __always_inline int arch_atomic_inc_return_acquire(atomic_t *v) { int ret = arch_atomic_inc_return_relaxed(v); __atomic_acquire_fence(); return ret; } #define arch_atomic_inc_return_acquire arch_atomic_inc_return_acquire #endif #ifndef arch_atomic_inc_return_release static __always_inline int arch_atomic_inc_return_release(atomic_t *v) { __atomic_release_fence(); return arch_atomic_inc_return_relaxed(v); } #define arch_atomic_inc_return_release arch_atomic_inc_return_release #endif #ifndef arch_atomic_inc_return static __always_inline int arch_atomic_inc_return(atomic_t *v) { int ret; __atomic_pre_full_fence(); ret = arch_atomic_inc_return_relaxed(v); __atomic_post_full_fence(); return ret; } #define arch_atomic_inc_return arch_atomic_inc_return #endif #endif /* arch_atomic_inc_return_relaxed */ #ifndef arch_atomic_fetch_inc_relaxed #ifdef arch_atomic_fetch_inc #define arch_atomic_fetch_inc_acquire arch_atomic_fetch_inc #define arch_atomic_fetch_inc_release arch_atomic_fetch_inc #define arch_atomic_fetch_inc_relaxed arch_atomic_fetch_inc #endif /* arch_atomic_fetch_inc */ #ifndef arch_atomic_fetch_inc static __always_inline int arch_atomic_fetch_inc(atomic_t *v) { return arch_atomic_fetch_add(1, v); } #define arch_atomic_fetch_inc arch_atomic_fetch_inc #endif #ifndef arch_atomic_fetch_inc_acquire static __always_inline int arch_atomic_fetch_inc_acquire(atomic_t *v) { return arch_atomic_fetch_add_acquire(1, v); } #define arch_atomic_fetch_inc_acquire arch_atomic_fetch_inc_acquire #endif #ifndef arch_atomic_fetch_inc_release static __always_inline int arch_atomic_fetch_inc_release(atomic_t *v) { return arch_atomic_fetch_add_release(1, v); } #define arch_atomic_fetch_inc_release arch_atomic_fetch_inc_release #endif #ifndef arch_atomic_fetch_inc_relaxed static __always_inline int arch_atomic_fetch_inc_relaxed(atomic_t *v) { return arch_atomic_fetch_add_relaxed(1, v); } #define arch_atomic_fetch_inc_relaxed arch_atomic_fetch_inc_relaxed #endif #else /* arch_atomic_fetch_inc_relaxed */ #ifndef arch_atomic_fetch_inc_acquire static __always_inline int arch_atomic_fetch_inc_acquire(atomic_t *v) { int ret = arch_atomic_fetch_inc_relaxed(v); __atomic_acquire_fence(); return ret; } #define arch_atomic_fetch_inc_acquire arch_atomic_fetch_inc_acquire #endif #ifndef arch_atomic_fetch_inc_release static __always_inline int arch_atomic_fetch_inc_release(atomic_t *v) { __atomic_release_fence(); return arch_atomic_fetch_inc_relaxed(v); } #define arch_atomic_fetch_inc_release arch_atomic_fetch_inc_release #endif #ifndef arch_atomic_fetch_inc static __always_inline int arch_atomic_fetch_inc(atomic_t *v) { int ret; __atomic_pre_full_fence(); ret = arch_atomic_fetch_inc_relaxed(v); __atomic_post_full_fence(); return ret; } #define arch_atomic_fetch_inc arch_atomic_fetch_inc #endif #endif /* arch_atomic_fetch_inc_relaxed */ #ifndef arch_atomic_dec static __always_inline void arch_atomic_dec(atomic_t *v) { arch_atomic_sub(1, v); } #define arch_atomic_dec arch_atomic_dec #endif #ifndef arch_atomic_dec_return_relaxed #ifdef arch_atomic_dec_return #define arch_atomic_dec_return_acquire arch_atomic_dec_return #define arch_atomic_dec_return_release arch_atomic_dec_return #define arch_atomic_dec_return_relaxed arch_atomic_dec_return #endif /* arch_atomic_dec_return */ #ifndef arch_atomic_dec_return static __always_inline int arch_atomic_dec_return(atomic_t *v) { return arch_atomic_sub_return(1, v); } #define arch_atomic_dec_return arch_atomic_dec_return #endif #ifndef arch_atomic_dec_return_acquire static __always_inline int arch_atomic_dec_return_acquire(atomic_t *v) { return arch_atomic_sub_return_acquire(1, v); } #define arch_atomic_dec_return_acquire arch_atomic_dec_return_acquire #endif #ifndef arch_atomic_dec_return_release static __always_inline int arch_atomic_dec_return_release(atomic_t *v) { return arch_atomic_sub_return_release(1, v); } #define arch_atomic_dec_return_release arch_atomic_dec_return_release #endif #ifndef arch_atomic_dec_return_relaxed static __always_inline int arch_atomic_dec_return_relaxed(atomic_t *v) { return arch_atomic_sub_return_relaxed(1, v); } #define arch_atomic_dec_return_relaxed arch_atomic_dec_return_relaxed #endif #else /* arch_atomic_dec_return_relaxed */ #ifndef arch_atomic_dec_return_acquire static __always_inline int arch_atomic_dec_return_acquire(atomic_t *v) { int ret = arch_atomic_dec_return_relaxed(v); __atomic_acquire_fence(); return ret; } #define arch_atomic_dec_return_acquire arch_atomic_dec_return_acquire #endif #ifndef arch_atomic_dec_return_release static __always_inline int arch_atomic_dec_return_release(atomic_t *v) { __atomic_release_fence(); return arch_atomic_dec_return_relaxed(v); } #define arch_atomic_dec_return_release arch_atomic_dec_return_release #endif #ifndef arch_atomic_dec_return static __always_inline int arch_atomic_dec_return(atomic_t *v) { int ret; __atomic_pre_full_fence(); ret = arch_atomic_dec_return_relaxed(v); __atomic_post_full_fence(); return ret; } #define arch_atomic_dec_return arch_atomic_dec_return #endif #endif /* arch_atomic_dec_return_relaxed */ #ifndef arch_atomic_fetch_dec_relaxed #ifdef arch_atomic_fetch_dec #define arch_atomic_fetch_dec_acquire arch_atomic_fetch_dec #define arch_atomic_fetch_dec_release arch_atomic_fetch_dec #define arch_atomic_fetch_dec_relaxed arch_atomic_fetch_dec #endif /* arch_atomic_fetch_dec */ #ifndef arch_atomic_fetch_dec static __always_inline int arch_atomic_fetch_dec(atomic_t *v) { return arch_atomic_fetch_sub(1, v); } #define arch_atomic_fetch_dec arch_atomic_fetch_dec #endif #ifndef arch_atomic_fetch_dec_acquire static __always_inline int arch_atomic_fetch_dec_acquire(atomic_t *v) { return arch_atomic_fetch_sub_acquire(1, v); } #define arch_atomic_fetch_dec_acquire arch_atomic_fetch_dec_acquire #endif #ifndef arch_atomic_fetch_dec_release static __always_inline int arch_atomic_fetch_dec_release(atomic_t *v) { return arch_atomic_fetch_sub_release(1, v); } #define arch_atomic_fetch_dec_release arch_atomic_fetch_dec_release #endif #ifndef arch_atomic_fetch_dec_relaxed static __always_inline int arch_atomic_fetch_dec_relaxed(atomic_t *v) { return arch_atomic_fetch_sub_relaxed(1, v); } #define arch_atomic_fetch_dec_relaxed arch_atomic_fetch_dec_relaxed #endif #else /* arch_atomic_fetch_dec_relaxed */ #ifndef arch_atomic_fetch_dec_acquire static __always_inline int arch_atomic_fetch_dec_acquire(atomic_t *v) { int ret = arch_atomic_fetch_dec_relaxed(v); __atomic_acquire_fence(); return ret; } #define arch_atomic_fetch_dec_acquire arch_atomic_fetch_dec_acquire #endif #ifndef arch_atomic_fetch_dec_release static __always_inline int arch_atomic_fetch_dec_release(atomic_t *v) { __atomic_release_fence(); return arch_atomic_fetch_dec_relaxed(v); } #define arch_atomic_fetch_dec_release arch_atomic_fetch_dec_release #endif #ifndef arch_atomic_fetch_dec static __always_inline int arch_atomic_fetch_dec(atomic_t *v) { int ret; __atomic_pre_full_fence(); ret = arch_atomic_fetch_dec_relaxed(v); __atomic_post_full_fence(); return ret; } #define arch_atomic_fetch_dec arch_atomic_fetch_dec #endif #endif /* arch_atomic_fetch_dec_relaxed */ #ifndef arch_atomic_fetch_and_relaxed #define arch_atomic_fetch_and_acquire arch_atomic_fetch_and #define arch_atomic_fetch_and_release arch_atomic_fetch_and #define arch_atomic_fetch_and_relaxed arch_atomic_fetch_and #else /* arch_atomic_fetch_and_relaxed */ #ifndef arch_atomic_fetch_and_acquire static __always_inline int arch_atomic_fetch_and_acquire(int i, atomic_t *v) { int ret = arch_atomic_fetch_and_relaxed(i, v); __atomic_acquire_fence(); return ret; } #define arch_atomic_fetch_and_acquire arch_atomic_fetch_and_acquire #endif #ifndef arch_atomic_fetch_and_release static __always_inline int arch_atomic_fetch_and_release(int i, atomic_t *v) { __atomic_release_fence(); return arch_atomic_fetch_and_relaxed(i, v); } #define arch_atomic_fetch_and_release arch_atomic_fetch_and_release #endif #ifndef arch_atomic_fetch_and static __always_inline int arch_atomic_fetch_and(int i, atomic_t *v) { int ret; __atomic_pre_full_fence(); ret = arch_atomic_fetch_and_relaxed(i, v); __atomic_post_full_fence(); return ret; } #define arch_atomic_fetch_and arch_atomic_fetch_and #endif #endif /* arch_atomic_fetch_and_relaxed */ #ifndef arch_atomic_andnot static __always_inline void arch_atomic_andnot(int i, atomic_t *v) { arch_atomic_and(~i, v); } #define arch_atomic_andnot arch_atomic_andnot #endif #ifndef arch_atomic_fetch_andnot_relaxed #ifdef arch_atomic_fetch_andnot #define arch_atomic_fetch_andnot_acquire arch_atomic_fetch_and