1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_LOCAL_H #define _ASM_X86_LOCAL_H #include <linux/percpu.h> #include <linux/atomic.h> #include <asm/asm.h> typedef struct { atomic_long_t a; } local_t; #define LOCAL_INIT(i) { ATOMIC_LONG_INIT(i) } #define local_read(l) atomic_long_read(&(l)->a) #define local_set(l, i) atomic_long_set(&(l)->a, (i)) static inline void local_inc(local_t *l) { asm volatile(_ASM_INC "%0" : "+m" (l->a.counter)); } static inline void local_dec(local_t *l) { asm volatile(_ASM_DEC "%0" : "+m" (l->a.counter)); } static inline void local_add(long i, local_t *l) { asm volatile(_ASM_ADD "%1,%0" : "+m" (l->a.counter) : "ir" (i)); } static inline void local_sub(long i, local_t *l) { asm volatile(_ASM_SUB "%1,%0" : "+m" (l->a.counter) : "ir" (i)); } /** * local_sub_and_test - subtract value from variable and test result * @i: integer value to subtract * @l: pointer to type local_t * * Atomically subtracts @i from @l and returns * true if the result is zero, or false for all * other cases. */ static inline bool local_sub_and_test(long i, local_t *l) { return GEN_BINARY_RMWcc(_ASM_SUB, l->a.counter, e, "er", i); } /** * local_dec_and_test - decrement and test * @l: pointer to type local_t * * Atomically decrements @l by 1 and * returns true if the result is 0, or false for all other * cases. */ static inline bool local_dec_and_test(local_t *l) { return GEN_UNARY_RMWcc(_ASM_DEC, l->a.counter, e); } /** * local_inc_and_test - increment and test * @l: pointer to type local_t * * Atomically increments @l by 1 * and returns true if the result is zero, or false for all * other cases. */ static inline bool local_inc_and_test(local_t *l) { return GEN_UNARY_RMWcc(_ASM_INC, l->a.counter, e); } /** * local_add_negative - add and test if negative * @i: integer value to add * @l: pointer to type local_t * * Atomically adds @i to @l and returns true * if the result is negative, or false when * result is greater than or equal to zero. */ static inline bool local_add_negative(long i, local_t *l) { return GEN_BINARY_RMWcc(_ASM_ADD, l->a.counter, s, "er", i); } /** * local_add_return - add and return * @i: integer value to add * @l: pointer to type local_t * * Atomically adds @i to @l and returns @i + @l */ static inline long local_add_return(long i, local_t *l) { long __i = i; asm volatile(_ASM_XADD "%0, %1;" : "+r" (i), "+m" (l->a.counter) : : "memory"); return i + __i; } static inline long local_sub_return(long i, local_t *l) { return local_add_return(-i, l); } #define local_inc_return(l) (local_add_return(1, l)) #define local_dec_return(l) (local_sub_return(1, l)) #define local_cmpxchg(l, o, n) \ (cmpxchg_local(&((l)->a.counter), (o), (n))) /* Always has a lock prefix */ #define local_xchg(l, n) (xchg(&((l)->a.counter), (n))) /** * local_add_unless - add unless the number is a given value * @l: pointer of type local_t * @a: the amount to add to l... * @u: ...unless l is equal to u. * * Atomically adds @a to @l, so long as it was not @u. * Returns non-zero if @l was not @u, and zero otherwise. */ #define local_add_unless(l, a, u) \ ({ \ long c, old; \ c = local_read((l)); \ for (;;) { \ if (unlikely(c == (u))) \ break; \ old = local_cmpxchg((l), c, c + (a)); \ if (likely(old == c)) \ break; \ c = old; \ } \ c != (u); \ }) #define local_inc_not_zero(l) local_add_unless((l), 1, 0) /* On x86_32, these are no better than the atomic variants. * On x86-64 these are better than the atomic variants on SMP kernels * because they dont use a lock prefix. */ #define __local_inc(l) local_inc(l) #define __local_dec(l) local_dec(l) #define __local_add(i, l) local_add((i), (l)) #define __local_sub(i, l) local_sub((i), (l)) #endif /* _ASM_X86_LOCAL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_BH_H #define _LINUX_BH_H #include <linux/preempt.h> #ifdef CONFIG_TRACE_IRQFLAGS extern void __local_bh_disable_ip(unsigned long ip, unsigned int cnt); #else static __always_inline void __local_bh_disable_ip(unsigned long ip, unsigned int cnt) { preempt_count_add(cnt); barrier(); } #endif static inline void local_bh_disable(void) { __local_bh_disable_ip(_THIS_IP_, SOFTIRQ_DISABLE_OFFSET); } extern void _local_bh_enable(void); extern void __local_bh_enable_ip(unsigned long ip, unsigned int cnt); static inline void local_bh_enable_ip(unsigned long ip) { __local_bh_enable_ip(ip, SOFTIRQ_DISABLE_OFFSET); } static inline void local_bh_enable(void) { __local_bh_enable_ip(_THIS_IP_, SOFTIRQ_DISABLE_OFFSET); } #endif /* _LINUX_BH_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_MMAN_H #define _LINUX_MMAN_H #include <linux/mm.h> #include <linux/percpu_counter.h> #include <linux/atomic.h> #include <uapi/linux/mman.h> /* * Arrange for legacy / undefined architecture specific flags to be * ignored by mmap handling code. */ #ifndef MAP_32BIT #define MAP_32BIT 0 #endif #ifndef MAP_HUGE_2MB #define MAP_HUGE_2MB 0 #endif #ifndef MAP_HUGE_1GB #define MAP_HUGE_1GB 0 #endif #ifndef MAP_UNINITIALIZED #define MAP_UNINITIALIZED 0 #endif #ifndef MAP_SYNC #define MAP_SYNC 0 #endif /* * The historical set of flags that all mmap implementations implicitly * support when a ->mmap_validate() op is not provided in file_operations. */ #define LEGACY_MAP_MASK (MAP_SHARED \ | MAP_PRIVATE \ | MAP_FIXED \ | MAP_ANONYMOUS \ | MAP_DENYWRITE \ | MAP_EXECUTABLE \ | MAP_UNINITIALIZED \ | MAP_GROWSDOWN \ | MAP_LOCKED \ | MAP_NORESERVE \ | MAP_POPULATE \ | MAP_NONBLOCK \ | MAP_STACK \ | MAP_HUGETLB \ | MAP_32BIT \ | MAP_HUGE_2MB \ | MAP_HUGE_1GB) extern int sysctl_overcommit_memory; extern int sysctl_overcommit_ratio; extern unsigned long sysctl_overcommit_kbytes; extern struct percpu_counter vm_committed_as; #ifdef CONFIG_SMP extern s32 vm_committed_as_batch; extern void mm_compute_batch(int overcommit_policy); #else #define vm_committed_as_batch 0 static inline void mm_compute_batch(int overcommit_policy) { } #endif unsigned long vm_memory_committed(void); static inline void vm_acct_memory(long pages) { percpu_counter_add_batch(&vm_committed_as, pages, vm_committed_as_batch); } static inline void vm_unacct_memory(long pages) { vm_acct_memory(-pages); } /* * Allow architectures to handle additional protection and flag bits. The * overriding macros must be defined in the arch-specific asm/mman.h file. */ #ifndef arch_calc_vm_prot_bits #define arch_calc_vm_prot_bits(prot, pkey) 0 #endif #ifndef arch_calc_vm_flag_bits #define arch_calc_vm_flag_bits(flags) 0 #endif #ifndef arch_vm_get_page_prot #define arch_vm_get_page_prot(vm_flags) __pgprot(0) #endif #ifndef arch_validate_prot /* * This is called from mprotect(). PROT_GROWSDOWN and PROT_GROWSUP have * already been masked out. * * Returns true if the prot flags are valid */ static inline bool arch_validate_prot(unsigned long prot, unsigned long addr) { return (prot & ~(PROT_READ | PROT_WRITE | PROT_EXEC | PROT_SEM)) == 0; } #define arch_validate_prot arch_validate_prot #endif #ifndef arch_validate_flags /* * This is called from mmap() and mprotect() with the updated vma->vm_flags. * * Returns true if the VM_* flags are valid. */ static inline bool arch_validate_flags(unsigned long flags) { return true; } #define arch_validate_flags arch_validate_flags #endif /* * Optimisation macro. It is equivalent to: * (x & bit1) ? bit2 : 0 * but this version is faster. * ("bit1" and "bit2" must be single bits) */ #define _calc_vm_trans(x, bit1, bit2) \ ((!(bit1) || !(bit2)) ? 0 : \ ((bit1) <= (bit2) ? ((x) & (bit1)) * ((bit2) / (bit1)) \ : ((x) & (bit1)) / ((bit1) / (bit2)))) /* * Combine the mmap "prot" argument into "vm_flags" used internally. */ static inline unsigned long calc_vm_prot_bits(unsigned long prot, unsigned long pkey) { return _calc_vm_trans(prot, PROT_READ, VM_READ ) | _calc_vm_trans(prot, PROT_WRITE, VM_WRITE) | _calc_vm_trans(prot, PROT_EXEC, VM_EXEC) | arch_calc_vm_prot_bits(prot, pkey); } /* * Combine the mmap "flags" argument into "vm_flags" used internally. */ static inline unsigned long calc_vm_flag_bits(unsigned long flags) { return _calc_vm_trans(flags, MAP_GROWSDOWN, VM_GROWSDOWN ) | _calc_vm_trans(flags, MAP_DENYWRITE, VM_DENYWRITE ) | _calc_vm_trans(flags, MAP_LOCKED, VM_LOCKED ) | _calc_vm_trans(flags, MAP_SYNC, VM_SYNC ) | arch_calc_vm_flag_bits(flags); } unsigned long vm_commit_limit(void); #endif /* _LINUX_MMAN_H */
1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 // SPDX-License-Identifier: GPL-2.0-only /* * NSA Security-Enhanced Linux (SELinux) security module * * This file contains the SELinux hook function implementations. * * Authors: Stephen Smalley, <sds@tycho.nsa.gov> * Chris Vance, <cvance@nai.com> * Wayne Salamon, <wsalamon@nai.com> * James Morris <jmorris@redhat.com> * * Copyright (C) 2001,2002 Networks Associates Technology, Inc. * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com> * Eric Paris <eparis@redhat.com> * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc. * <dgoeddel@trustedcs.com> * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P. * Paul Moore <paul@paul-moore.com> * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd. * Yuichi Nakamura <ynakam@hitachisoft.jp> * Copyright (C) 2016 Mellanox Technologies */ #include <linux/init.h> #include <linux/kd.h> #include <linux/kernel.h> #include <linux/kernel_read_file.h> #include <linux/tracehook.h> #include <linux/errno.h> #include <linux/sched/signal.h> #include <linux/sched/task.h> #include <linux/lsm_hooks.h> #include <linux/xattr.h> #include <linux/capability.h> #include <linux/unistd.h> #include <linux/mm.h> #include <linux/mman.h> #include <linux/slab.h> #include <linux/pagemap.h> #include <linux/proc_fs.h> #include <linux/swap.h> #include <linux/spinlock.h> #include <linux/syscalls.h> #include <linux/dcache.h> #include <linux/file.h> #include <linux/fdtable.h> #include <linux/namei.h> #include <linux/mount.h> #include <linux/fs_context.h> #include <linux/fs_parser.h> #include <linux/netfilter_ipv4.h> #include <linux/netfilter_ipv6.h> #include <linux/tty.h> #include <net/icmp.h> #include <net/ip.h> /* for local_port_range[] */ #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */ #include <net/inet_connection_sock.h> #include <net/net_namespace.h> #include <net/netlabel.h> #include <linux/uaccess.h> #include <asm/ioctls.h> #include <linux/atomic.h> #include <linux/bitops.h> #include <linux/interrupt.h> #include <linux/netdevice.h> /* for network interface checks */ #include <net/netlink.h> #include <linux/tcp.h> #include <linux/udp.h> #include <linux/dccp.h> #include <linux/sctp.h> #include <net/sctp/structs.h> #include <linux/quota.h> #include <linux/un.h> /* for Unix socket types */ #include <net/af_unix.h> /* for Unix socket types */ #include <linux/parser.h> #include <linux/nfs_mount.h> #include <net/ipv6.h> #include <linux/hugetlb.h> #include <linux/personality.h> #include <linux/audit.h> #include <linux/string.h> #include <linux/mutex.h> #include <linux/posix-timers.h> #include <linux/syslog.h> #include <linux/user_namespace.h> #include <linux/export.h> #include <linux/msg.h> #include <linux/shm.h> #include <linux/bpf.h> #include <linux/kernfs.h> #include <linux/stringhash.h> /* for hashlen_string() */ #include <uapi/linux/mount.h> #include <linux/fsnotify.h> #include <linux/fanotify.h> #include "avc.h" #include "objsec.h" #include "netif.h" #include "netnode.h" #include "netport.h" #include "ibpkey.h" #include "xfrm.h" #include "netlabel.h" #include "audit.h" #include "avc_ss.h" struct selinux_state selinux_state; /* SECMARK reference count */ static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0); #ifdef CONFIG_SECURITY_SELINUX_DEVELOP static int selinux_enforcing_boot __initdata; static int __init enforcing_setup(char *str) { unsigned long enforcing; if (!kstrtoul(str, 0, &enforcing)) selinux_enforcing_boot = enforcing ? 1 : 0; return 1; } __setup("enforcing=", enforcing_setup); #else #define selinux_enforcing_boot 1 #endif int selinux_enabled_boot __initdata = 1; #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM static int __init selinux_enabled_setup(char *str) { unsigned long enabled; if (!kstrtoul(str, 0, &enabled)) selinux_enabled_boot = enabled ? 1 : 0; return 1; } __setup("selinux=", selinux_enabled_setup); #endif static unsigned int selinux_checkreqprot_boot = CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE; static int __init checkreqprot_setup(char *str) { unsigned long checkreqprot; if (!kstrtoul(str, 0, &checkreqprot)) { selinux_checkreqprot_boot = checkreqprot ? 1 : 0; if (checkreqprot) pr_warn("SELinux: checkreqprot set to 1 via kernel parameter. This is deprecated and will be rejected in a future kernel release.\n"); } return 1; } __setup("checkreqprot=", checkreqprot_setup); /** * selinux_secmark_enabled - Check to see if SECMARK is currently enabled * * Description: * This function checks the SECMARK reference counter to see if any SECMARK * targets are currently configured, if the reference counter is greater than * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is * enabled, false (0) if SECMARK is disabled. If the always_check_network * policy capability is enabled, SECMARK is always considered enabled. * */ static int selinux_secmark_enabled(void) { return (selinux_policycap_alwaysnetwork() || atomic_read(&selinux_secmark_refcount)); } /** * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled * * Description: * This function checks if NetLabel or labeled IPSEC is enabled. Returns true * (1) if any are enabled or false (0) if neither are enabled. If the * always_check_network policy capability is enabled, peer labeling * is always considered enabled. * */ static int selinux_peerlbl_enabled(void) { return (selinux_policycap_alwaysnetwork() || netlbl_enabled() || selinux_xfrm_enabled()); } static int selinux_netcache_avc_callback(u32 event) { if (event == AVC_CALLBACK_RESET) { sel_netif_flush(); sel_netnode_flush(); sel_netport_flush(); synchronize_net(); } return 0; } static int selinux_lsm_notifier_avc_callback(u32 event) { if (event == AVC_CALLBACK_RESET) { sel_ib_pkey_flush(); call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL); } return 0; } /* * initialise the security for the init task */ static void cred_init_security(void) { struct cred *cred = (struct cred *) current->real_cred; struct task_security_struct *tsec; tsec = selinux_cred(cred); tsec->osid = tsec->sid = SECINITSID_KERNEL; } /* * get the security ID of a set of credentials */ static inline u32 cred_sid(const struct cred *cred) { const struct task_security_struct *tsec; tsec = selinux_cred(cred); return tsec->sid; } /* * get the objective security ID of a task */ static inline u32 task_sid(const struct task_struct *task) { u32 sid; rcu_read_lock(); sid = cred_sid(__task_cred(task)); rcu_read_unlock(); return sid; } static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry); /* * Try reloading inode security labels that have been marked as invalid. The * @may_sleep parameter indicates when sleeping and thus reloading labels is * allowed; when set to false, returns -ECHILD when the label is * invalid. The @dentry parameter should be set to a dentry of the inode. */ static int __inode_security_revalidate(struct inode *inode, struct dentry *dentry, bool may_sleep) { struct inode_security_struct *isec = selinux_inode(inode); might_sleep_if(may_sleep); if (selinux_initialized(&selinux_state) && isec->initialized != LABEL_INITIALIZED) { if (!may_sleep) return -ECHILD; /* * Try reloading the inode security label. This will fail if * @opt_dentry is NULL and no dentry for this inode can be * found; in that case, continue using the old label. */ inode_doinit_with_dentry(inode, dentry); } return 0; } static struct inode_security_struct *inode_security_novalidate(struct inode *inode) { return selinux_inode(inode); } static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu) { int error; error = __inode_security_revalidate(inode, NULL, !rcu); if (error) return ERR_PTR(error); return selinux_inode(inode); } /* * Get the security label of an inode. */ static struct inode_security_struct *inode_security(struct inode *inode) { __inode_security_revalidate(inode, NULL, true); return selinux_inode(inode); } static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry) { struct inode *inode = d_backing_inode(dentry); return selinux_inode(inode); } /* * Get the security label of a dentry's backing inode. */ static struct inode_security_struct *backing_inode_security(struct dentry *dentry) { struct inode *inode = d_backing_inode(dentry); __inode_security_revalidate(inode, dentry, true); return selinux_inode(inode); } static void inode_free_security(struct inode *inode) { struct inode_security_struct *isec = selinux_inode(inode); struct superblock_security_struct *sbsec; if (!isec) return; sbsec = inode->i_sb->s_security; /* * As not all inode security structures are in a list, we check for * empty list outside of the lock to make sure that we won't waste * time taking a lock doing nothing. * * The list_del_init() function can be safely called more than once. * It should not be possible for this function to be called with * concurrent list_add(), but for better safety against future changes * in the code, we use list_empty_careful() here. */ if (!list_empty_careful(&isec->list)) { spin_lock(&sbsec->isec_lock); list_del_init(&isec->list); spin_unlock(&sbsec->isec_lock); } } static void superblock_free_security(struct super_block *sb) { struct superblock_security_struct *sbsec = sb->s_security; sb->s_security = NULL; kfree(sbsec); } struct selinux_mnt_opts { const char *fscontext, *context, *rootcontext, *defcontext; }; static void selinux_free_mnt_opts(void *mnt_opts) { struct selinux_mnt_opts *opts = mnt_opts; kfree(opts->fscontext); kfree(opts->context); kfree(opts->rootcontext); kfree(opts->defcontext); kfree(opts); } enum { Opt_error = -1, Opt_context = 0, Opt_defcontext = 1, Opt_fscontext = 2, Opt_rootcontext = 3, Opt_seclabel = 4, }; #define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg} static struct { const char *name; int len; int opt; bool has_arg; } tokens[] = { A(context, true), A(fscontext, true), A(defcontext, true), A(rootcontext, true), A(seclabel, false), }; #undef A static int match_opt_prefix(char *s, int l, char **arg) { int i; for (i = 0; i < ARRAY_SIZE(tokens); i++) { size_t len = tokens[i].len; if (len > l || memcmp(s, tokens[i].name, len)) continue; if (tokens[i].has_arg) { if (len == l || s[len] != '=') continue; *arg = s + len + 1; } else if (len != l) continue; return tokens[i].opt; } return Opt_error; } #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n" static int may_context_mount_sb_relabel(u32 sid, struct superblock_security_struct *sbsec, const struct cred *cred) { const struct task_security_struct *tsec = selinux_cred(cred); int rc; rc = avc_has_perm(&selinux_state, tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, FILESYSTEM__RELABELFROM, NULL); if (rc) return rc; rc = avc_has_perm(&selinux_state, tsec->sid, sid, SECCLASS_FILESYSTEM, FILESYSTEM__RELABELTO, NULL); return rc; } static int may_context_mount_inode_relabel(u32 sid, struct superblock_security_struct *sbsec, const struct cred *cred) { const struct task_security_struct *tsec = selinux_cred(cred); int rc; rc = avc_has_perm(&selinux_state, tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, FILESYSTEM__RELABELFROM, NULL); if (rc) return rc; rc = avc_has_perm(&selinux_state, sid, sbsec->sid, SECCLASS_FILESYSTEM, FILESYSTEM__ASSOCIATE, NULL); return rc; } static int selinux_is_genfs_special_handling(struct super_block *sb) { /* Special handling. Genfs but also in-core setxattr handler */ return !strcmp(sb->s_type->name, "sysfs") || !strcmp(sb->s_type->name, "pstore") || !strcmp(sb->s_type->name, "debugfs") || !strcmp(sb->s_type->name, "tracefs") || !strcmp(sb->s_type->name, "rootfs") || (selinux_policycap_cgroupseclabel() && (!strcmp(sb->s_type->name, "cgroup") || !strcmp(sb->s_type->name, "cgroup2"))); } static int selinux_is_sblabel_mnt(struct super_block *sb) { struct superblock_security_struct *sbsec = sb->s_security; /* * IMPORTANT: Double-check logic in this function when adding a new * SECURITY_FS_USE_* definition! */ BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7); switch (sbsec->behavior) { case SECURITY_FS_USE_XATTR: case SECURITY_FS_USE_TRANS: case SECURITY_FS_USE_TASK: case SECURITY_FS_USE_NATIVE: return 1; case SECURITY_FS_USE_GENFS: return selinux_is_genfs_special_handling(sb); /* Never allow relabeling on context mounts */ case SECURITY_FS_USE_MNTPOINT: case SECURITY_FS_USE_NONE: default: return 0; } } static int sb_finish_set_opts(struct super_block *sb) { struct superblock_security_struct *sbsec = sb->s_security; struct dentry *root = sb->s_root; struct inode *root_inode = d_backing_inode(root); int rc = 0; if (sbsec->behavior == SECURITY_FS_USE_XATTR) { /* Make sure that the xattr handler exists and that no error other than -ENODATA is returned by getxattr on the root directory. -ENODATA is ok, as this may be the first boot of the SELinux kernel before we have assigned xattr values to the filesystem. */ if (!(root_inode->i_opflags & IOP_XATTR)) { pr_warn("SELinux: (dev %s, type %s) has no " "xattr support\n", sb->s_id, sb->s_type->name); rc = -EOPNOTSUPP; goto out; } rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0); if (rc < 0 && rc != -ENODATA) { if (rc == -EOPNOTSUPP) pr_warn("SELinux: (dev %s, type " "%s) has no security xattr handler\n", sb->s_id, sb->s_type->name); else pr_warn("SELinux: (dev %s, type " "%s) getxattr errno %d\n", sb->s_id, sb->s_type->name, -rc); goto out; } } sbsec->flags |= SE_SBINITIALIZED; /* * Explicitly set or clear SBLABEL_MNT. It's not sufficient to simply * leave the flag untouched because sb_clone_mnt_opts might be handing * us a superblock that needs the flag to be cleared. */ if (selinux_is_sblabel_mnt(sb)) sbsec->flags |= SBLABEL_MNT; else sbsec->flags &= ~SBLABEL_MNT; /* Initialize the root inode. */ rc = inode_doinit_with_dentry(root_inode, root); /* Initialize any other inodes associated with the superblock, e.g. inodes created prior to initial policy load or inodes created during get_sb by a pseudo filesystem that directly populates itself. */ spin_lock(&sbsec->isec_lock); while (!list_empty(&sbsec->isec_head)) { struct inode_security_struct *isec = list_first_entry(&sbsec->isec_head, struct inode_security_struct, list); struct inode *inode = isec->inode; list_del_init(&isec->list); spin_unlock(&sbsec->isec_lock); inode = igrab(inode); if (inode) { if (!IS_PRIVATE(inode)) inode_doinit_with_dentry(inode, NULL); iput(inode); } spin_lock(&sbsec->isec_lock); } spin_unlock(&sbsec->isec_lock); out: return rc; } static int bad_option(struct superblock_security_struct *sbsec, char flag, u32 old_sid, u32 new_sid) { char mnt_flags = sbsec->flags & SE_MNTMASK; /* check if the old mount command had the same options */ if (sbsec->flags & SE_SBINITIALIZED) if (!(sbsec->flags & flag) || (old_sid != new_sid)) return 1; /* check if we were passed the same options twice, * aka someone passed context=a,context=b */ if (!(sbsec->flags & SE_SBINITIALIZED)) if (mnt_flags & flag) return 1; return 0; } static int parse_sid(struct super_block *sb, const char *s, u32 *sid) { int rc = security_context_str_to_sid(&selinux_state, s, sid, GFP_KERNEL); if (rc) pr_warn("SELinux: security_context_str_to_sid" "(%s) failed for (dev %s, type %s) errno=%d\n", s, sb->s_id, sb->s_type->name, rc); return rc; } /* * Allow filesystems with binary mount data to explicitly set mount point * labeling information. */ static int selinux_set_mnt_opts(struct super_block *sb, void *mnt_opts, unsigned long kern_flags, unsigned long *set_kern_flags) { const struct cred *cred = current_cred(); struct superblock_security_struct *sbsec = sb->s_security; struct dentry *root = sbsec->sb->s_root; struct selinux_mnt_opts *opts = mnt_opts; struct inode_security_struct *root_isec; u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0; u32 defcontext_sid = 0; int rc = 0; mutex_lock(&sbsec->lock); if (!selinux_initialized(&selinux_state)) { if (!opts) { /* Defer initialization until selinux_complete_init, after the initial policy is loaded and the security server is ready to handle calls. */ goto out; } rc = -EINVAL; pr_warn("SELinux: Unable to set superblock options " "before the security server is initialized\n"); goto out; } if (kern_flags && !set_kern_flags) { /* Specifying internal flags without providing a place to * place the results is not allowed */ rc = -EINVAL; goto out; } /* * Binary mount data FS will come through this function twice. Once * from an explicit call and once from the generic calls from the vfs. * Since the generic VFS calls will not contain any security mount data * we need to skip the double mount verification. * * This does open a hole in which we will not notice if the first * mount using this sb set explict options and a second mount using * this sb does not set any security options. (The first options * will be used for both mounts) */ if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) && !opts) goto out; root_isec = backing_inode_security_novalidate(root); /* * parse the mount options, check if they are valid sids. * also check if someone is trying to mount the same sb more * than once with different security options. */ if (opts) { if (opts->fscontext) { rc = parse_sid(sb, opts->fscontext, &fscontext_sid); if (rc) goto out; if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, fscontext_sid)) goto out_double_mount; sbsec->flags |= FSCONTEXT_MNT; } if (opts->context) { rc = parse_sid(sb, opts->context, &context_sid); if (rc) goto out; if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, context_sid)) goto out_double_mount; sbsec->flags |= CONTEXT_MNT; } if (opts->rootcontext) { rc = parse_sid(sb, opts->rootcontext, &rootcontext_sid); if (rc) goto out; if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, rootcontext_sid)) goto out_double_mount; sbsec->flags |= ROOTCONTEXT_MNT; } if (opts->defcontext) { rc = parse_sid(sb, opts->defcontext, &defcontext_sid); if (rc) goto out; if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, defcontext_sid)) goto out_double_mount; sbsec->flags |= DEFCONTEXT_MNT; } } if (sbsec->flags & SE_SBINITIALIZED) { /* previously mounted with options, but not on this attempt? */ if ((sbsec->flags & SE_MNTMASK) && !opts) goto out_double_mount; rc = 0; goto out; } if (strcmp(sb->s_type->name, "proc") == 0) sbsec->flags |= SE_SBPROC | SE_SBGENFS; if (!strcmp(sb->s_type->name, "debugfs") || !strcmp(sb->s_type->name, "tracefs") || !strcmp(sb->s_type->name, "binder") || !strcmp(sb->s_type->name, "bpf") || !strcmp(sb->s_type->name, "pstore")) sbsec->flags |= SE_SBGENFS; if (!strcmp(sb->s_type->name, "sysfs") || !strcmp(sb->s_type->name, "cgroup") || !strcmp(sb->s_type->name, "cgroup2")) sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR; if (!sbsec->behavior) { /* * Determine the labeling behavior to use for this * filesystem type. */ rc = security_fs_use(&selinux_state, sb); if (rc) { pr_warn("%s: security_fs_use(%s) returned %d\n", __func__, sb->s_type->name, rc); goto out; } } /* * If this is a user namespace mount and the filesystem type is not * explicitly whitelisted, then no contexts are allowed on the command * line and security labels must be ignored. */ if (sb->s_user_ns != &init_user_ns && strcmp(sb->s_type->name, "tmpfs") && strcmp(sb->s_type->name, "ramfs") && strcmp(sb->s_type->name, "devpts")) { if (context_sid || fscontext_sid || rootcontext_sid || defcontext_sid) { rc = -EACCES; goto out; } if (sbsec->behavior == SECURITY_FS_USE_XATTR) { sbsec->behavior = SECURITY_FS_USE_MNTPOINT; rc = security_transition_sid(&selinux_state, current_sid(), current_sid(), SECCLASS_FILE, NULL, &sbsec->mntpoint_sid); if (rc) goto out; } goto out_set_opts; } /* sets the context of the superblock for the fs being mounted. */ if (fscontext_sid) { rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred); if (rc) goto out; sbsec->sid = fscontext_sid; } /* * Switch to using mount point labeling behavior. * sets the label used on all file below the mountpoint, and will set * the superblock context if not already set. */ if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) { sbsec->behavior = SECURITY_FS_USE_NATIVE; *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; } if (context_sid) { if (!fscontext_sid) { rc = may_context_mount_sb_relabel(context_sid, sbsec, cred); if (rc) goto out; sbsec->sid = context_sid; } else { rc = may_context_mount_inode_relabel(context_sid, sbsec, cred); if (rc) goto out; } if (!rootcontext_sid) rootcontext_sid = context_sid; sbsec->mntpoint_sid = context_sid; sbsec->behavior = SECURITY_FS_USE_MNTPOINT; } if (rootcontext_sid) { rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec, cred); if (rc) goto out; root_isec->sid = rootcontext_sid; root_isec->initialized = LABEL_INITIALIZED; } if (defcontext_sid) { if (sbsec->behavior != SECURITY_FS_USE_XATTR && sbsec->behavior != SECURITY_FS_USE_NATIVE) { rc = -EINVAL; pr_warn("SELinux: defcontext option is " "invalid for this filesystem type\n"); goto out; } if (defcontext_sid != sbsec->def_sid) { rc = may_context_mount_inode_relabel(defcontext_sid, sbsec, cred); if (rc) goto out; } sbsec->def_sid = defcontext_sid; } out_set_opts: rc = sb_finish_set_opts(sb); out: mutex_unlock(&sbsec->lock); return rc; out_double_mount: rc = -EINVAL; pr_warn("SELinux: mount invalid. Same superblock, different " "security settings for (dev %s, type %s)\n", sb->s_id, sb->s_type->name); goto out; } static int selinux_cmp_sb_context(const struct super_block *oldsb, const struct super_block *newsb) { struct superblock_security_struct *old = oldsb->s_security; struct superblock_security_struct *new = newsb->s_security; char oldflags = old->flags & SE_MNTMASK; char newflags = new->flags & SE_MNTMASK; if (oldflags != newflags) goto mismatch; if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid) goto mismatch; if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid) goto mismatch; if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid) goto mismatch; if (oldflags & ROOTCONTEXT_MNT) { struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root); struct inode_security_struct *newroot = backing_inode_security(newsb->s_root); if (oldroot->sid != newroot->sid) goto mismatch; } return 0; mismatch: pr_warn("SELinux: mount invalid. Same superblock, " "different security settings for (dev %s, " "type %s)\n", newsb->s_id, newsb->s_type->name); return -EBUSY; } static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb, struct super_block *newsb, unsigned long kern_flags, unsigned long *set_kern_flags) { int rc = 0; const struct superblock_security_struct *oldsbsec = oldsb->s_security; struct superblock_security_struct *newsbsec = newsb->s_security; int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT); int set_context = (oldsbsec->flags & CONTEXT_MNT); int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT); /* * if the parent was able to be mounted it clearly had no special lsm * mount options. thus we can safely deal with this superblock later */ if (!selinux_initialized(&selinux_state)) return 0; /* * Specifying internal flags without providing a place to * place the results is not allowed. */ if (kern_flags && !set_kern_flags) return -EINVAL; /* how can we clone if the old one wasn't set up?? */ BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED)); /* if fs is reusing a sb, make sure that the contexts match */ if (newsbsec->flags & SE_SBINITIALIZED) { if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; return selinux_cmp_sb_context(oldsb, newsb); } mutex_lock(&newsbsec->lock); newsbsec->flags = oldsbsec->flags; newsbsec->sid = oldsbsec->sid; newsbsec->def_sid = oldsbsec->def_sid; newsbsec->behavior = oldsbsec->behavior; if (newsbsec->behavior == SECURITY_FS_USE_NATIVE && !(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) { rc = security_fs_use(&selinux_state, newsb); if (rc) goto out; } if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) { newsbsec->behavior = SECURITY_FS_USE_NATIVE; *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; } if (set_context) { u32 sid = oldsbsec->mntpoint_sid; if (!set_fscontext) newsbsec->sid = sid; if (!set_rootcontext) { struct inode_security_struct *newisec = backing_inode_security(newsb->s_root); newisec->sid = sid; } newsbsec->mntpoint_sid = sid; } if (set_rootcontext) { const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root); struct inode_security_struct *newisec = backing_inode_security(newsb->s_root); newisec->sid = oldisec->sid; } sb_finish_set_opts(newsb); out: mutex_unlock(&newsbsec->lock); return rc; } static int selinux_add_opt(int token, const char *s, void **mnt_opts) { struct selinux_mnt_opts *opts = *mnt_opts; if (token == Opt_seclabel) /* eaten and completely ignored */ return 0; if (!opts) { opts = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL); if (!opts) return -ENOMEM; *mnt_opts = opts; } if (!s) return -ENOMEM; switch (token) { case Opt_context: if (opts->context || opts->defcontext) goto Einval; opts->context = s; break; case Opt_fscontext: if (opts->fscontext) goto Einval; opts->fscontext = s; break; case Opt_rootcontext: if (opts->rootcontext) goto Einval; opts->rootcontext = s; break; case Opt_defcontext: if (opts->context || opts->defcontext) goto Einval; opts->defcontext = s; break; } return 0; Einval: pr_warn(SEL_MOUNT_FAIL_MSG); return -EINVAL; } static int selinux_add_mnt_opt(const char *option, const char *val, int len, void **mnt_opts) { int token = Opt_error; int rc, i; for (i = 0; i < ARRAY_SIZE(tokens); i++) { if (strcmp(option, tokens[i].name) == 0) { token = tokens[i].opt; break; } } if (token == Opt_error) return -EINVAL; if (token != Opt_seclabel) { val = kmemdup_nul(val, len, GFP_KERNEL); if (!val) { rc = -ENOMEM; goto free_opt; } } rc = selinux_add_opt(token, val, mnt_opts); if (unlikely(rc)) { kfree(val); goto free_opt; } return rc; free_opt: if (*mnt_opts) { selinux_free_mnt_opts(*mnt_opts); *mnt_opts = NULL; } return rc; } static int show_sid(struct seq_file *m, u32 sid) { char *context = NULL; u32 len; int rc; rc = security_sid_to_context(&selinux_state, sid, &context, &len); if (!rc) { bool has_comma = context && strchr(context, ','); seq_putc(m, '='); if (has_comma) seq_putc(m, '\"'); seq_escape(m, context, "\"\n\\"); if (has_comma) seq_putc(m, '\"'); } kfree(context); return rc; } static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb) { struct superblock_security_struct *sbsec = sb->s_security; int rc; if (!(sbsec->flags & SE_SBINITIALIZED)) return 0; if (!selinux_initialized(&selinux_state)) return 0; if (sbsec->flags & FSCONTEXT_MNT) { seq_putc(m, ','); seq_puts(m, FSCONTEXT_STR); rc = show_sid(m, sbsec->sid); if (rc) return rc; } if (sbsec->flags & CONTEXT_MNT) { seq_putc(m, ','); seq_puts(m, CONTEXT_STR); rc = show_sid(m, sbsec->mntpoint_sid); if (rc) return rc; } if (sbsec->flags & DEFCONTEXT_MNT) { seq_putc(m, ','); seq_puts(m, DEFCONTEXT_STR); rc = show_sid(m, sbsec->def_sid); if (rc) return rc; } if (sbsec->flags & ROOTCONTEXT_MNT) { struct dentry *root = sbsec->sb->s_root; struct inode_security_struct *isec = backing_inode_security(root); seq_putc(m, ','); seq_puts(m, ROOTCONTEXT_STR); rc = show_sid(m, isec->sid); if (rc) return rc; } if (sbsec->flags & SBLABEL_MNT) { seq_putc(m, ','); seq_puts(m, SECLABEL_STR); } return 0; } static inline u16 inode_mode_to_security_class(umode_t mode) { switch (mode & S_IFMT) { case S_IFSOCK: return SECCLASS_SOCK_FILE; case S_IFLNK: return SECCLASS_LNK_FILE; case S_IFREG: return SECCLASS_FILE; case S_IFBLK: return SECCLASS_BLK_FILE; case S_IFDIR: return SECCLASS_DIR; case S_IFCHR: return SECCLASS_CHR_FILE; case S_IFIFO: return SECCLASS_FIFO_FILE; } return SECCLASS_FILE; } static inline int default_protocol_stream(int protocol) { return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP); } static inline int default_protocol_dgram(int protocol) { return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP); } static inline u16 socket_type_to_security_class(int family, int type, int protocol) { int extsockclass = selinux_policycap_extsockclass(); switch (family) { case PF_UNIX: switch (type) { case SOCK_STREAM: case SOCK_SEQPACKET: return SECCLASS_UNIX_STREAM_SOCKET; case SOCK_DGRAM: case SOCK_RAW: return SECCLASS_UNIX_DGRAM_SOCKET; } break; case PF_INET: case PF_INET6: switch (type) { case SOCK_STREAM: case SOCK_SEQPACKET: if (default_protocol_stream(protocol)) return SECCLASS_TCP_SOCKET; else if (extsockclass && protocol == IPPROTO_SCTP) return SECCLASS_SCTP_SOCKET; else return SECCLASS_RAWIP_SOCKET; case SOCK_DGRAM: if (default_protocol_dgram(protocol)) return SECCLASS_UDP_SOCKET; else if (extsockclass && (protocol == IPPROTO_ICMP || protocol == IPPROTO_ICMPV6)) return SECCLASS_ICMP_SOCKET; else return SECCLASS_RAWIP_SOCKET; case SOCK_DCCP: return SECCLASS_DCCP_SOCKET; default: return SECCLASS_RAWIP_SOCKET; } break; case PF_NETLINK: switch (protocol) { case NETLINK_ROUTE: return SECCLASS_NETLINK_ROUTE_SOCKET; case NETLINK_SOCK_DIAG: return SECCLASS_NETLINK_TCPDIAG_SOCKET; case NETLINK_NFLOG: return SECCLASS_NETLINK_NFLOG_SOCKET; case NETLINK_XFRM: return SECCLASS_NETLINK_XFRM_SOCKET; case NETLINK_SELINUX: return SECCLASS_NETLINK_SELINUX_SOCKET; case NETLINK_ISCSI: return SECCLASS_NETLINK_ISCSI_SOCKET; case NETLINK_AUDIT: return SECCLASS_NETLINK_AUDIT_SOCKET; case NETLINK_FIB_LOOKUP: return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET; case NETLINK_CONNECTOR: return SECCLASS_NETLINK_CONNECTOR_SOCKET; case NETLINK_NETFILTER: return SECCLASS_NETLINK_NETFILTER_SOCKET; case NETLINK_DNRTMSG: return SECCLASS_NETLINK_DNRT_SOCKET; case NETLINK_KOBJECT_UEVENT: return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET; case NETLINK_GENERIC: return SECCLASS_NETLINK_GENERIC_SOCKET; case NETLINK_SCSITRANSPORT: return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET; case NETLINK_RDMA: return SECCLASS_NETLINK_RDMA_SOCKET; case NETLINK_CRYPTO: return SECCLASS_NETLINK_CRYPTO_SOCKET; default: return SECCLASS_NETLINK_SOCKET; } case PF_PACKET: return SECCLASS_PACKET_SOCKET; case PF_KEY: return SECCLASS_KEY_SOCKET; case PF_APPLETALK: return SECCLASS_APPLETALK_SOCKET; } if (extsockclass) { switch (family) { case PF_AX25: return SECCLASS_AX25_SOCKET; case PF_IPX: return SECCLASS_IPX_SOCKET; case PF_NETROM: return SECCLASS_NETROM_SOCKET; case PF_ATMPVC: return SECCLASS_ATMPVC_SOCKET; case PF_X25: return SECCLASS_X25_SOCKET; case PF_ROSE: return SECCLASS_ROSE_SOCKET; case PF_DECnet: return SECCLASS_DECNET_SOCKET; case PF_ATMSVC: return SECCLASS_ATMSVC_SOCKET; case PF_RDS: return SECCLASS_RDS_SOCKET; case PF_IRDA: return SECCLASS_IRDA_SOCKET; case PF_PPPOX: return SECCLASS_PPPOX_SOCKET; case PF_LLC: return SECCLASS_LLC_SOCKET; case PF_CAN: return SECCLASS_CAN_SOCKET; case PF_TIPC: return SECCLASS_TIPC_SOCKET; case PF_BLUETOOTH: return SECCLASS_BLUETOOTH_SOCKET; case PF_IUCV: return SECCLASS_IUCV_SOCKET; case PF_RXRPC: return SECCLASS_RXRPC_SOCKET; case PF_ISDN: return SECCLASS_ISDN_SOCKET; case PF_PHONET: return SECCLASS_PHONET_SOCKET; case PF_IEEE802154: return SECCLASS_IEEE802154_SOCKET; case PF_CAIF: return SECCLASS_CAIF_SOCKET; case PF_ALG: return SECCLASS_ALG_SOCKET; case PF_NFC: return SECCLASS_NFC_SOCKET; case PF_VSOCK: return SECCLASS_VSOCK_SOCKET; case PF_KCM: return SECCLASS_KCM_SOCKET; case PF_QIPCRTR: return SECCLASS_QIPCRTR_SOCKET; case PF_SMC: return SECCLASS_SMC_SOCKET; case PF_XDP: return SECCLASS_XDP_SOCKET; #if PF_MAX > 45 #error New address family defined, please update this function. #endif } } return SECCLASS_SOCKET; } static int selinux_genfs_get_sid(struct dentry *dentry, u16 tclass, u16 flags, u32 *sid) { int rc; struct super_block *sb = dentry->d_sb; char *buffer, *path; buffer = (char *)__get_free_page(GFP_KERNEL); if (!buffer) return -ENOMEM; path = dentry_path_raw(dentry, buffer, PAGE_SIZE); if (IS_ERR(path)) rc = PTR_ERR(path); else { if (flags & SE_SBPROC) { /* each process gets a /proc/PID/ entry. Strip off the * PID part to get a valid selinux labeling. * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */ while (path[1] >= '0' && path[1] <= '9') { path[1] = '/'; path++; } } rc = security_genfs_sid(&selinux_state, sb->s_type->name, path, tclass, sid); if (rc == -ENOENT) { /* No match in policy, mark as unlabeled. */ *sid = SECINITSID_UNLABELED; rc = 0; } } free_page((unsigned long)buffer); return rc; } static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry, u32 def_sid, u32 *sid) { #define INITCONTEXTLEN 255 char *context; unsigned int len; int rc; len = INITCONTEXTLEN; context = kmalloc(len + 1, GFP_NOFS); if (!context) return -ENOMEM; context[len] = '\0'; rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len); if (rc == -ERANGE) { kfree(context); /* Need a larger buffer. Query for the right size. */ rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0); if (rc < 0) return rc; len = rc; context = kmalloc(len + 1, GFP_NOFS); if (!context) return -ENOMEM; context[len] = '\0'; rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len); } if (rc < 0) { kfree(context); if (rc != -ENODATA) { pr_warn("SELinux: %s: getxattr returned %d for dev=%s ino=%ld\n", __func__, -rc, inode->i_sb->s_id, inode->i_ino); return rc; } *sid = def_sid; return 0; } rc = security_context_to_sid_default(&selinux_state, context, rc, sid, def_sid, GFP_NOFS); if (rc) { char *dev = inode->i_sb->s_id; unsigned long ino = inode->i_ino; if (rc == -EINVAL) { pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s. This indicates you may need to relabel the inode or the filesystem in question.\n", ino, dev, context); } else { pr_warn("SELinux: %s: context_to_sid(%s) returned %d for dev=%s ino=%ld\n", __func__, context, -rc, dev, ino); } } kfree(context); return 0; } /* The inode's security attributes must be initialized before first use. */ static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry) { struct superblock_security_struct *sbsec = NULL; struct inode_security_struct *isec = selinux_inode(inode); u32 task_sid, sid = 0; u16 sclass; struct dentry *dentry; int rc = 0; if (isec->initialized == LABEL_INITIALIZED) return 0; spin_lock(&isec->lock); if (isec->initialized == LABEL_INITIALIZED) goto out_unlock; if (isec->sclass == SECCLASS_FILE) isec->sclass = inode_mode_to_security_class(inode->i_mode); sbsec = inode->i_sb->s_security; if (!(sbsec->flags & SE_SBINITIALIZED)) { /* Defer initialization until selinux_complete_init, after the initial policy is loaded and the security server is ready to handle calls. */ spin_lock(&sbsec->isec_lock); if (list_empty(&isec->list)) list_add(&isec->list, &sbsec->isec_head); spin_unlock(&sbsec->isec_lock); goto out_unlock; } sclass = isec->sclass; task_sid = isec->task_sid; sid = isec->sid; isec->initialized = LABEL_PENDING; spin_unlock(&isec->lock); switch (sbsec->behavior) { case SECURITY_FS_USE_NATIVE: break; case SECURITY_FS_USE_XATTR: if (!(inode->i_opflags & IOP_XATTR)) { sid = sbsec->def_sid; break; } /* Need a dentry, since the xattr API requires one. Life would be simpler if we could just pass the inode. */ if (opt_dentry) { /* Called from d_instantiate or d_splice_alias. */ dentry = dget(opt_dentry); } else { /* * Called from selinux_complete_init, try to find a dentry. * Some filesystems really want a connected one, so try * that first. We could split SECURITY_FS_USE_XATTR in * two, depending upon that... */ dentry = d_find_alias(inode); if (!dentry) dentry = d_find_any_alias(inode); } if (!dentry) { /* * this is can be hit on boot when a file is accessed * before the policy is loaded. When we load policy we * may find inodes that have no dentry on the * sbsec->isec_head list. No reason to complain as these * will get fixed up the next time we go through * inode_doinit with a dentry, before these inodes could * be used again by userspace. */ goto out_invalid; } rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid, &sid); dput(dentry); if (rc) goto out; break; case SECURITY_FS_USE_TASK: sid = task_sid; break; case SECURITY_FS_USE_TRANS: /* Default to the fs SID. */ sid = sbsec->sid; /* Try to obtain a transition SID. */ rc = security_transition_sid(&selinux_state, task_sid, sid, sclass, NULL, &sid); if (rc) goto out; break; case SECURITY_FS_USE_MNTPOINT: sid = sbsec->mntpoint_sid; break; default: /* Default to the fs superblock SID. */ sid = sbsec->sid; if ((sbsec->flags & SE_SBGENFS) && (!S_ISLNK(inode->i_mode) || selinux_policycap_genfs_seclabel_symlinks())) { /* We must have a dentry to determine the label on * procfs inodes */ if (opt_dentry) { /* Called from d_instantiate or * d_splice_alias. */ dentry = dget(opt_dentry); } else { /* Called from selinux_complete_init, try to * find a dentry. Some filesystems really want * a connected one, so try that first. */ dentry = d_find_alias(inode); if (!dentry) dentry = d_find_any_alias(inode); } /* * This can be hit on boot when a file is accessed * before the policy is loaded. When we load policy we * may find inodes that have no dentry on the * sbsec->isec_head list. No reason to complain as * these will get fixed up the next time we go through * inode_doinit() with a dentry, before these inodes * could be used again by userspace. */ if (!dentry) goto out_invalid; rc = selinux_genfs_get_sid(dentry, sclass, sbsec->flags, &sid); if (rc) { dput(dentry); goto out; } if ((sbsec->flags & SE_SBGENFS_XATTR) && (inode->i_opflags & IOP_XATTR)) { rc = inode_doinit_use_xattr(inode, dentry, sid, &sid); if (rc) { dput(dentry); goto out; } } dput(dentry); } break; } out: spin_lock(&isec->lock); if (isec->initialized == LABEL_PENDING) { if (rc) { isec->initialized = LABEL_INVALID; goto out_unlock; } isec->initialized = LABEL_INITIALIZED; isec->sid = sid; } out_unlock: spin_unlock(&isec->lock); return rc; out_invalid: spin_lock(&isec->lock); if (isec->initialized == LABEL_PENDING) { isec->initialized = LABEL_INVALID; isec->sid = sid; } spin_unlock(&isec->lock); return 0; } /* Convert a Linux signal to an access vector. */ static inline u32 signal_to_av(int sig) { u32 perm = 0; switch (sig) { case SIGCHLD: /* Commonly granted from child to parent. */ perm = PROCESS__SIGCHLD; break; case SIGKILL: /* Cannot be caught or ignored */ perm = PROCESS__SIGKILL; break; case SIGSTOP: /* Cannot be caught or ignored */ perm = PROCESS__SIGSTOP; break; default: /* All other signals. */ perm = PROCESS__SIGNAL; break; } return perm; } #if CAP_LAST_CAP > 63 #error Fix SELinux to handle capabilities > 63. #endif /* Check whether a task is allowed to use a capability. */ static int cred_has_capability(const struct cred *cred, int cap, unsigned int opts, bool initns) { struct common_audit_data ad; struct av_decision avd; u16 sclass; u32 sid = cred_sid(cred); u32 av = CAP_TO_MASK(cap); int rc; ad.type = LSM_AUDIT_DATA_CAP; ad.u.cap = cap; switch (CAP_TO_INDEX(cap)) { case 0: sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS; break; case 1: sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS; break; default: pr_err("SELinux: out of range capability %d\n", cap); BUG(); return -EINVAL; } rc = avc_has_perm_noaudit(&selinux_state, sid, sid, sclass, av, 0, &avd); if (!(opts & CAP_OPT_NOAUDIT)) { int rc2 = avc_audit(&selinux_state, sid, sid, sclass, av, &avd, rc, &ad, 0); if (rc2) return rc2; } return rc; } /* Check whether a task has a particular permission to an inode. The 'adp' parameter is optional and allows other audit data to be passed (e.g. the dentry). */ static int inode_has_perm(const struct cred *cred, struct inode *inode, u32 perms, struct common_audit_data *adp) { struct inode_security_struct *isec; u32 sid; validate_creds(cred); if (unlikely(IS_PRIVATE(inode))) return 0; sid = cred_sid(cred); isec = selinux_inode(inode); return avc_has_perm(&selinux_state, sid, isec->sid, isec->sclass, perms, adp); } /* Same as inode_has_perm, but pass explicit audit data containing the dentry to help the auditing code to more easily generate the pathname if needed. */ static inline int dentry_has_perm(const struct cred *cred, struct dentry *dentry, u32 av) { struct inode *inode = d_backing_inode(dentry); struct common_audit_data ad; ad.type = LSM_AUDIT_DATA_DENTRY; ad.u.dentry = dentry; __inode_security_revalidate(inode, dentry, true); return inode_has_perm(cred, inode, av, &ad); } /* Same as inode_has_perm, but pass explicit audit data containing the path to help the auditing code to more easily generate the pathname if needed. */ static inline int path_has_perm(const struct cred *cred, const struct path *path, u32 av) { struct inode *inode = d_backing_inode(path->dentry); struct common_audit_data ad; ad.type = LSM_AUDIT_DATA_PATH; ad.u.path = *path; __inode_security_revalidate(inode, path->dentry, true); return inode_has_perm(cred, inode, av, &ad); } /* Same as path_has_perm, but uses the inode from the file struct. */ static inline int file_path_has_perm(const struct cred *cred, struct file *file, u32 av) { struct common_audit_data ad; ad.type = LSM_AUDIT_DATA_FILE; ad.u.file = file; return inode_has_perm(cred, file_inode(file), av, &ad); } #ifdef CONFIG_BPF_SYSCALL static int bpf_fd_pass(struct file *file, u32 sid); #endif /* Check whether a task can use an open file descriptor to access an inode in a given way. Check access to the descriptor itself, and then use dentry_has_perm to check a particular permission to the file. Access to the descriptor is implicitly granted if it has the same SID as the process. If av is zero, then access to the file is not checked, e.g. for cases where only the descriptor is affected like seek. */ static int file_has_perm(const struct cred *cred, struct file *file, u32 av) { struct file_security_struct *fsec = selinux_file(file); struct inode *inode = file_inode(file); struct common_audit_data ad; u32 sid = cred_sid(cred); int rc; ad.type = LSM_AUDIT_DATA_FILE; ad.u.file = file; if (sid != fsec->sid) { rc = avc_has_perm(&selinux_state, sid, fsec->sid, SECCLASS_FD, FD__USE, &ad); if (rc) goto out; } #ifdef CONFIG_BPF_SYSCALL rc = bpf_fd_pass(file, cred_sid(cred)); if (rc) return rc; #endif /* av is zero if only checking access to the descriptor. */ rc = 0; if (av) rc = inode_has_perm(cred, inode, av, &ad); out: return rc; } /* * Determine the label for an inode that might be unioned. */ static int selinux_determine_inode_label(const struct task_security_struct *tsec, struct inode *dir, const struct qstr *name, u16 tclass, u32 *_new_isid) { const struct superblock_security_struct *sbsec = dir->i_sb->s_security; if ((sbsec->flags & SE_SBINITIALIZED) && (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) { *_new_isid = sbsec->mntpoint_sid; } else if ((sbsec->flags & SBLABEL_MNT) && tsec->create_sid) { *_new_isid = tsec->create_sid; } else { const struct inode_security_struct *dsec = inode_security(dir); return security_transition_sid(&selinux_state, tsec->sid, dsec->sid, tclass, name, _new_isid); } return 0; } /* Check whether a task can create a file. */ static int may_create(struct inode *dir, struct dentry *dentry, u16 tclass) { const struct task_security_struct *tsec = selinux_cred(current_cred()); struct inode_security_struct *dsec; struct superblock_security_struct *sbsec; u32 sid, newsid; struct common_audit_data ad; int rc; dsec = inode_security(dir); sbsec = dir->i_sb->s_security; sid = tsec->sid; ad.type = LSM_AUDIT_DATA_DENTRY; ad.u.dentry = dentry; rc = avc_has_perm(&selinux_state, sid, dsec->sid, SECCLASS_DIR, DIR__ADD_NAME | DIR__SEARCH, &ad); if (rc) return rc; rc = selinux_determine_inode_label(tsec, dir, &dentry->d_name, tclass, &newsid); if (rc) return rc; rc = avc_has_perm(&selinux_state, sid, newsid, tclass, FILE__CREATE, &ad); if (rc) return rc; return avc_has_perm(&selinux_state, newsid, sbsec->sid, SECCLASS_FILESYSTEM, FILESYSTEM__ASSOCIATE, &ad); } #define MAY_LINK 0 #define MAY_UNLINK 1 #define MAY_RMDIR 2 /* Check whether a task can link, unlink, or rmdir a file/directory. */ static int may_link(struct inode *dir, struct dentry *dentry, int kind) { struct inode_security_struct *dsec, *isec; struct common_audit_data ad; u32 sid = current_sid(); u32 av; int rc; dsec = inode_security(dir); isec = backing_inode_security(dentry); ad.type = LSM_AUDIT_DATA_DENTRY; ad.u.dentry = dentry; av = DIR__SEARCH; av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME); rc = avc_has_perm(&selinux_state, sid, dsec->sid, SECCLASS_DIR, av, &ad); if (rc) return rc; switch (kind) { case MAY_LINK: av = FILE__LINK; break; case MAY_UNLINK: av = FILE__UNLINK; break; case MAY_RMDIR: av = DIR__RMDIR; break; default: pr_warn("SELinux: %s: unrecognized kind %d\n", __func__, kind); return 0; } rc = avc_has_perm(&selinux_state, sid, isec->sid, isec->sclass, av, &ad); return rc; } static inline int may_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) { struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec; struct common_audit_data ad; u32 sid = current_sid(); u32 av; int old_is_dir, new_is_dir; int rc; old_dsec = inode_security(old_dir); old_isec = backing_inode_security(old_dentry); old_is_dir = d_is_dir(old_dentry); new_dsec = inode_security(new_dir); ad.type = LSM_AUDIT_DATA_DENTRY; ad.u.dentry = old_dentry; rc = avc_has_perm(&selinux_state, sid, old_dsec->sid, SECCLASS_DIR, DIR__REMOVE_NAME | DIR__SEARCH, &ad); if (rc) return rc; rc = avc_has_perm(&selinux_state, sid, old_isec->sid, old_isec->sclass, FILE__RENAME, &ad); if (rc) return rc; if (old_is_dir && new_dir != old_dir) { rc = avc_has_perm(&selinux_state, sid, old_isec->sid, old_isec->sclass, DIR__REPARENT, &ad); if (rc) return rc; } ad.u.dentry = new_dentry; av = DIR__ADD_NAME | DIR__SEARCH; if (d_is_positive(new_dentry)) av |= DIR__REMOVE_NAME; rc = avc_has_perm(&selinux_state, sid, new_dsec->sid, SECCLASS_DIR, av, &ad); if (rc) return rc; if (d_is_positive(new_dentry)) { new_isec = backing_inode_security(new_dentry); new_is_dir = d_is_dir(new_dentry); rc = avc_has_perm(&selinux_state, sid, new_isec->sid, new_isec->sclass, (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad); if (rc) return rc; } return 0; } /* Check whether a task can perform a filesystem operation. */ static int superblock_has_perm(const struct cred *cred, struct super_block *sb, u32 perms, struct common_audit_data *ad) { struct superblock_security_struct *sbsec; u32 sid = cred_sid(cred); sbsec = sb->s_security; return avc_has_perm(&selinux_state, sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad); } /* Convert a Linux mode and permission mask to an access vector. */ static inline u32 file_mask_to_av(int mode, int mask) { u32 av = 0; if (!S_ISDIR(mode)) { if (mask & MAY_EXEC) av |= FILE__EXECUTE; if (mask & MAY_READ) av |= FILE__READ; if (mask & MAY_APPEND) av |= FILE__APPEND; else if (mask & MAY_WRITE) av |= FILE__WRITE; } else { if (mask & MAY_EXEC) av |= DIR__SEARCH; if (mask & MAY_WRITE) av |= DIR__WRITE; if (mask & MAY_READ) av |= DIR__READ; } return av; } /* Convert a Linux file to an access vector. */ static inline u32 file_to_av(struct file *file) { u32 av = 0; if (file->f_mode & FMODE_READ) av |= FILE__READ; if (file->f_mode & FMODE_WRITE) { if (file->f_flags & O_APPEND) av |= FILE__APPEND; else av |= FILE__WRITE; } if (!av) { /* * Special file opened with flags 3 for ioctl-only use. */ av = FILE__IOCTL; } return av; } /* * Convert a file to an access vector and include the correct * open permission. */ static inline u32 open_file_to_av(struct file *file) { u32 av = file_to_av(file); struct inode *inode = file_inode(file); if (selinux_policycap_openperm() && inode->i_sb->s_magic != SOCKFS_MAGIC) av |= FILE__OPEN; return av; } /* Hook functions begin here. */ static int selinux_binder_set_context_mgr(const struct cred *mgr) { return avc_has_perm(&selinux_state, current_sid(), cred_sid(mgr), SECCLASS_BINDER, BINDER__SET_CONTEXT_MGR, NULL); } static int selinux_binder_transaction(const struct cred *from, const struct cred *to) { u32 mysid = current_sid(); u32 fromsid = cred_sid(from); u32 tosid = cred_sid(to); int rc; if (mysid != fromsid) { rc = avc_has_perm(&selinux_state, mysid, fromsid, SECCLASS_BINDER, BINDER__IMPERSONATE, NULL); if (rc) return rc; } return avc_has_perm(&selinux_state, fromsid, tosid, SECCLASS_BINDER, BINDER__CALL, NULL); } static int selinux_binder_transfer_binder(const struct cred *from, const struct cred *to) { return avc_has_perm(&selinux_state, cred_sid(from), cred_sid(to), SECCLASS_BINDER, BINDER__TRANSFER, NULL); } static int selinux_binder_transfer_file(const struct cred *from, const struct cred *to, struct file *file) { u32 sid = cred_sid(to); struct file_security_struct *fsec = selinux_file(file); struct dentry *dentry = file->f_path.dentry; struct inode_security_struct *isec; struct common_audit_data ad; int rc; ad.type = LSM_AUDIT_DATA_PATH; ad.u.path = file->f_path; if (sid != fsec->sid) { rc = avc_has_perm(&selinux_state, sid, fsec->sid, SECCLASS_FD, FD__USE, &ad); if (rc) return rc; } #ifdef CONFIG_BPF_SYSCALL rc = bpf_fd_pass(file, sid); if (rc) return rc; #endif if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) return 0; isec = backing_inode_security(dentry); return avc_has_perm(&selinux_state, sid, isec->sid, isec->sclass, file_to_av(file), &ad); } static int selinux_ptrace_access_check(struct task_struct *child, unsigned int mode) { u32 sid = current_sid(); u32 csid = task_sid(child); if (mode & PTRACE_MODE_READ) return avc_has_perm(&selinux_state, sid, csid, SECCLASS_FILE, FILE__READ, NULL); return avc_has_perm(&selinux_state, sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL); } static int selinux_ptrace_traceme(struct task_struct *parent) { return avc_has_perm(&selinux_state, task_sid(parent), current_sid(), SECCLASS_PROCESS, PROCESS__PTRACE, NULL); } static int selinux_capget(struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted) { return avc_has_perm(&selinux_state, current_sid(), task_sid(target), SECCLASS_PROCESS, PROCESS__GETCAP, NULL); } static int selinux_capset(struct cred *new, const struct cred *old, const kernel_cap_t *effective, const kernel_cap_t *inheritable, const kernel_cap_t *permitted) { return avc_has_perm(&selinux_state, cred_sid(old), cred_sid(new), SECCLASS_PROCESS, PROCESS__SETCAP, NULL); } /* * (This comment used to live with the selinux_task_setuid hook, * which was removed). * * Since setuid only affects the current process, and since the SELinux * controls are not based on the Linux identity attributes, SELinux does not * need to control this operation. However, SELinux does control the use of * the CAP_SETUID and CAP_SETGID capabilities using the capable hook. */ static int selinux_capable(const struct cred *cred, struct user_namespace *ns, int cap, unsigned int opts) { return cred_has_capability(cred, cap, opts, ns == &init_user_ns); } static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb) { const struct cred *cred = current_cred(); int rc = 0; if (!sb) return 0; switch (cmds) { case Q_SYNC: case Q_QUOTAON: case Q_QUOTAOFF: case Q_SETINFO: case Q_SETQUOTA: case Q_XQUOTAOFF: case Q_XQUOTAON: case Q_XSETQLIM: rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL); break; case Q_GETFMT: case Q_GETINFO: case Q_GETQUOTA: case Q_XGETQUOTA: case Q_XGETQSTAT: case Q_XGETQSTATV: case Q_XGETNEXTQUOTA: rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL); break; default: rc = 0; /* let the kernel handle invalid cmds */ break; } return rc; } static int selinux_quota_on(struct dentry *dentry) { const struct cred *cred = current_cred(); return dentry_has_perm(cred, dentry, FILE__QUOTAON); } static int selinux_syslog(int type) { switch (type) { case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */ case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */ return avc_has_perm(&selinux_state, current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL); case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */ case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */ /* Set level of messages printed to console */ case SYSLOG_ACTION_CONSOLE_LEVEL: return avc_has_perm(&selinux_state, current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE, NULL); } /* All other syslog types */ return avc_has_perm(&selinux_state, current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL); } /* * Check that a process has enough memory to allocate a new virtual * mapping. 0 means there is enough memory for the allocation to * succeed and -ENOMEM implies there is not. * * Do not audit the selinux permission check, as this is applied to all * processes that allocate mappings. */ static int selinux_vm_enough_memory(struct mm_struct *mm, long pages) { int rc, cap_sys_admin = 0; rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN, CAP_OPT_NOAUDIT, true); if (rc == 0) cap_sys_admin = 1; return cap_sys_admin; } /* binprm security operations */ static u32 ptrace_parent_sid(void) { u32 sid = 0; struct task_struct *tracer; rcu_read_lock(); tracer = ptrace_parent(current); if (tracer) sid = task_sid(tracer); rcu_read_unlock(); return sid; } static int check_nnp_nosuid(const struct linux_binprm *bprm, const struct task_security_struct *old_tsec, const struct task_security_struct *new_tsec) { int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS); int nosuid = !mnt_may_suid(bprm->file->f_path.mnt); int rc; u32 av; if (!nnp && !nosuid) return 0; /* neither NNP nor nosuid */ if (new_tsec->sid == old_tsec->sid) return 0; /* No change in credentials */ /* * If the policy enables the nnp_nosuid_transition policy capability, * then we permit transitions under NNP or nosuid if the * policy allows the corresponding permission between * the old and new contexts. */ if (selinux_policycap_nnp_nosuid_transition()) { av = 0; if (nnp) av |= PROCESS2__NNP_TRANSITION; if (nosuid) av |= PROCESS2__NOSUID_TRANSITION; rc = avc_has_perm(&selinux_state, old_tsec->sid, new_tsec->sid, SECCLASS_PROCESS2, av, NULL); if (!rc) return 0; } /* * We also permit NNP or nosuid transitions to bounded SIDs, * i.e. SIDs that are guaranteed to only be allowed a subset * of the permissions of the current SID. */ rc = security_bounded_transition(&selinux_state, old_tsec->sid, new_tsec->sid); if (!rc) return 0; /* * On failure, preserve the errno values for NNP vs nosuid. * NNP: Operation not permitted for caller. * nosuid: Permission denied to file. */ if (nnp) return -EPERM; return -EACCES; } static int selinux_bprm_creds_for_exec(struct linux_binprm *bprm) { const struct task_security_struct *old_tsec; struct task_security_struct *new_tsec; struct inode_security_struct *isec; struct common_audit_data ad; struct inode *inode = file_inode(bprm->file); int rc; /* SELinux context only depends on initial program or script and not * the script interpreter */ old_tsec = selinux_cred(current_cred()); new_tsec = selinux_cred(bprm->cred); isec = inode_security(inode); /* Default to the current task SID. */ new_tsec->sid = old_tsec->sid; new_tsec->osid = old_tsec->sid; /* Reset fs, key, and sock SIDs on execve. */ new_tsec->create_sid = 0; new_tsec->keycreate_sid = 0; new_tsec->sockcreate_sid = 0; if (old_tsec->exec_sid) { new_tsec->sid = old_tsec->exec_sid; /* Reset exec SID on execve. */ new_tsec->exec_sid = 0; /* Fail on NNP or nosuid if not an allowed transition. */ rc = check_nnp_nosuid(bprm, old_tsec, new_tsec); if (rc) return rc; } else { /* Check for a default transition on this program. */ rc = security_transition_sid(&selinux_state, old_tsec->sid, isec->sid, SECCLASS_PROCESS, NULL, &new_tsec->sid); if (rc) return rc; /* * Fallback to old SID on NNP or nosuid if not an allowed * transition. */ rc = check_nnp_nosuid(bprm, old_tsec, new_tsec); if (rc) new_tsec->sid = old_tsec->sid; } ad.type = LSM_AUDIT_DATA_FILE; ad.u.file = bprm->file; if (new_tsec->sid == old_tsec->sid) { rc = avc_has_perm(&selinux_state, old_tsec->sid, isec->sid, SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad); if (rc) return rc; } else { /* Check permissions for the transition. */ rc = avc_has_perm(&selinux_state, old_tsec->sid, new_tsec->sid, SECCLASS_PROCESS, PROCESS__TRANSITION, &ad); if (rc) return rc; rc = avc_has_perm(&selinux_state, new_tsec->sid, isec->sid, SECCLASS_FILE, FILE__ENTRYPOINT, &ad); if (rc) return rc; /* Check for shared state */ if (bprm->unsafe & LSM_UNSAFE_SHARE) { rc = avc_has_perm(&selinux_state, old_tsec->sid, new_tsec->sid, SECCLASS_PROCESS, PROCESS__SHARE, NULL); if (rc) return -EPERM; } /* Make sure that anyone attempting to ptrace over a task that * changes its SID has the appropriate permit */ if (bprm->unsafe & LSM_UNSAFE_PTRACE) { u32 ptsid = ptrace_parent_sid(); if (ptsid != 0) { rc = avc_has_perm(&selinux_state, ptsid, new_tsec->sid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL); if (rc) return -EPERM; } } /* Clear any possibly unsafe personality bits on exec: */ bprm->per_clear |= PER_CLEAR_ON_SETID; /* Enable secure mode for SIDs transitions unless the noatsecure permission is granted between the two SIDs, i.e. ahp returns 0. */ rc = avc_has_perm(&selinux_state, old_tsec->sid, new_tsec->sid, SECCLASS_PROCESS, PROCESS__NOATSECURE, NULL); bprm->secureexec |= !!rc; } return 0; } static int match_file(const void *p, struct file *file, unsigned fd) { return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0; } /* Derived from fs/exec.c:flush_old_files. */ static inline void flush_unauthorized_files(const struct cred *cred, struct files_struct *files) { struct file *file, *devnull = NULL; struct tty_struct *tty; int drop_tty = 0; unsigned n; tty = get_current_tty(); if (tty) { spin_lock(&tty->files_lock); if (!list_empty(&tty->tty_files)) { struct tty_file_private *file_priv; /* Revalidate access to controlling tty. Use file_path_has_perm on the tty path directly rather than using file_has_perm, as this particular open file may belong to another process and we are only interested in the inode-based check here. */ file_priv = list_first_entry(&tty->tty_files, struct tty_file_private, list); file = file_priv->file; if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE)) drop_tty = 1; } spin_unlock(&tty->files_lock); tty_kref_put(tty); } /* Reset controlling tty. */ if (drop_tty) no_tty(); /* Revalidate access to inherited open files. */ n = iterate_fd(files, 0, match_file, cred); if (!n) /* none found? */ return; devnull = dentry_open(&selinux_null, O_RDWR, cred); if (IS_ERR(devnull)) devnull = NULL; /* replace all the matching ones with this */ do { replace_fd(n - 1, devnull, 0); } while ((n = iterate_fd(files, n, match_file, cred)) != 0); if (devnull) fput(devnull); } /* * Prepare a process for imminent new credential changes due to exec */ static void selinux_bprm_committing_creds(struct linux_binprm *bprm) { struct task_security_struct *new_tsec; struct rlimit *rlim, *initrlim; int rc, i; new_tsec = selinux_cred(bprm->cred); if (new_tsec->sid == new_tsec->osid) return; /* Close files for which the new task SID is not authorized. */ flush_unauthorized_files(bprm->cred, current->files); /* Always clear parent death signal on SID transitions. */ current->pdeath_signal = 0; /* Check whether the new SID can inherit resource limits from the old * SID. If not, reset all soft limits to the lower of the current * task's hard limit and the init task's soft limit. * * Note that the setting of hard limits (even to lower them) can be * controlled by the setrlimit check. The inclusion of the init task's * soft limit into the computation is to avoid resetting soft limits * higher than the default soft limit for cases where the default is * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK. */ rc = avc_has_perm(&selinux_state, new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS, PROCESS__RLIMITINH, NULL); if (rc) { /* protect against do_prlimit() */ task_lock(current); for (i = 0; i < RLIM_NLIMITS; i++) { rlim = current->signal->rlim + i; initrlim = init_task.signal->rlim + i; rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur); } task_unlock(current); if (IS_ENABLED(CONFIG_POSIX_TIMERS)) update_rlimit_cpu(current, rlimit(RLIMIT_CPU)); } } /* * Clean up the process immediately after the installation of new credentials * due to exec */ static void selinux_bprm_committed_creds(struct linux_binprm *bprm) { const struct task_security_struct *tsec = selinux_cred(current_cred()); u32 osid, sid; int rc; osid = tsec->osid; sid = tsec->sid; if (sid == osid) return; /* Check whether the new SID can inherit signal state from the old SID. * If not, clear itimers to avoid subsequent signal generation and * flush and unblock signals. * * This must occur _after_ the task SID has been updated so that any * kill done after the flush will be checked against the new SID. */ rc = avc_has_perm(&selinux_state, osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL); if (rc) { clear_itimer(); spin_lock_irq(&current->sighand->siglock); if (!fatal_signal_pending(current)) { flush_sigqueue(&current->pending); flush_sigqueue(&current->signal->shared_pending); flush_signal_handlers(current, 1); sigemptyset(&current->blocked); recalc_sigpending(); } spin_unlock_irq(&current->sighand->siglock); } /* Wake up the parent if it is waiting so that it can recheck * wait permission to the new task SID. */ read_lock(&tasklist_lock); __wake_up_parent(current, current->real_parent); read_unlock(&tasklist_lock); } /* superblock security operations */ static int selinux_sb_alloc_security(struct super_block *sb) { struct superblock_security_struct *sbsec; sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL); if (!sbsec) return -ENOMEM; mutex_init(&sbsec->lock); INIT_LIST_HEAD(&sbsec->isec_head); spin_lock_init(&sbsec->isec_lock); sbsec->sb = sb; sbsec->sid = SECINITSID_UNLABELED; sbsec->def_sid = SECINITSID_FILE; sbsec->mntpoint_sid = SECINITSID_UNLABELED; sb->s_security = sbsec; return 0; } static void selinux_sb_free_security(struct super_block *sb) { superblock_free_security(sb); } static inline int opt_len(const char *s) { bool open_quote = false; int len; char c; for (len = 0; (c = s[len]) != '\0'; len++) { if (c == '"') open_quote = !open_quote; if (c == ',' && !open_quote) break; } return len; } static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts) { char *from = options; char *to = options; bool first = true; int rc; while (1) { int len = opt_len(from); int token; char *arg = NULL; token = match_opt_prefix(from, len, &arg); if (token != Opt_error) { char *p, *q; /* strip quotes */ if (arg) { for (p = q = arg; p < from + len; p++) { char c = *p; if (c != '"') *q++ = c; } arg = kmemdup_nul(arg, q - arg, GFP_KERNEL); if (!arg) { rc = -ENOMEM; goto free_opt; } } rc = selinux_add_opt(token, arg, mnt_opts); if (unlikely(rc)) { kfree(arg); goto free_opt; } } else { if (!first) { // copy with preceding comma from--; len++; } if (to != from) memmove(to, from, len); to += len; first = false; } if (!from[len]) break; from += len + 1; } *to = '\0'; return 0; free_opt: if (*mnt_opts) { selinux_free_mnt_opts(*mnt_opts); *mnt_opts = NULL; } return rc; } static int selinux_sb_remount(struct super_block *sb, void *mnt_opts) { struct selinux_mnt_opts *opts = mnt_opts; struct superblock_security_struct *sbsec = sb->s_security; u32 sid; int rc; if (!(sbsec->flags & SE_SBINITIALIZED)) return 0; if (!opts) return 0; if (opts->fscontext) { rc = parse_sid(sb, opts->fscontext, &sid); if (rc) return rc; if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid)) goto out_bad_option; } if (opts->context) { rc = parse_sid(sb, opts->context, &sid); if (rc) return rc; if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid)) goto out_bad_option; } if (opts->rootcontext) { struct inode_security_struct *root_isec; root_isec = backing_inode_security(sb->s_root); rc = parse_sid(sb, opts->rootcontext, &sid); if (rc) return rc; if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid)) goto out_bad_option; } if (opts->defcontext) { rc = parse_sid(sb, opts->defcontext, &sid); if (rc) return rc; if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid)) goto out_bad_option; } return 0; out_bad_option: pr_warn("SELinux: unable to change security options " "during remount (dev %s, type=%s)\n", sb->s_id, sb->s_type->name); return -EINVAL; } static int selinux_sb_kern_mount(struct super_block *sb) { const struct cred *cred = current_cred(); struct common_audit_data ad; ad.type = LSM_AUDIT_DATA_DENTRY; ad.u.dentry = sb->s_root; return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad); } static int selinux_sb_statfs(struct dentry *dentry) { const struct cred *cred = current_cred(); struct common_audit_data ad; ad.type = LSM_AUDIT_DATA_DENTRY; ad.u.dentry = dentry->d_sb->s_root; return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad); } static int selinux_mount(const char *dev_name, const struct path *path, const char *type, unsigned long flags, void *data) { const struct cred *cred = current_cred(); if (flags & MS_REMOUNT) return superblock_has_perm(cred, path->dentry->d_sb, FILESYSTEM__REMOUNT, NULL); else return path_has_perm(cred, path, FILE__MOUNTON); } static int selinux_move_mount(const struct path *from_path, const struct path *to_path) { const struct cred *cred = current_cred(); return path_has_perm(cred, to_path, FILE__MOUNTON); } static int selinux_umount(struct vfsmount *mnt, int flags) { const struct cred *cred = current_cred(); return superblock_has_perm(cred, mnt->mnt_sb, FILESYSTEM__UNMOUNT, NULL); } static int selinux_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc) { const struct selinux_mnt_opts *src = src_fc->security; struct selinux_mnt_opts *opts; if (!src) return 0; fc->security = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL); if (!fc->security) return -ENOMEM; opts = fc->security; if (src->fscontext) { opts->fscontext = kstrdup(src->fscontext, GFP_KERNEL); if (!opts->fscontext) return -ENOMEM; } if (src->context) { opts->context = kstrdup(src->context, GFP_KERNEL); if (!opts->context) return -ENOMEM; } if (src->rootcontext) { opts->rootcontext = kstrdup(src->rootcontext, GFP_KERNEL); if (!opts->rootcontext) return -ENOMEM; } if (src->defcontext) { opts->defcontext = kstrdup(src->defcontext, GFP_KERNEL); if (!opts->defcontext) return -ENOMEM; } return 0; } static const struct fs_parameter_spec selinux_fs_parameters[] = { fsparam_string(CONTEXT_STR, Opt_context), fsparam_string(DEFCONTEXT_STR, Opt_defcontext), fsparam_string(FSCONTEXT_STR, Opt_fscontext), fsparam_string(ROOTCONTEXT_STR, Opt_rootcontext), fsparam_flag (SECLABEL_STR, Opt_seclabel), {} }; static int selinux_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param) { struct fs_parse_result result; int opt, rc; opt = fs_parse(fc, selinux_fs_parameters, param, &result); if (opt < 0) return opt; rc = selinux_add_opt(opt, param->string, &fc->security); if (!rc) { param->string = NULL; rc = 1; } return rc; } /* inode security operations */ static int selinux_inode_alloc_security(struct inode *inode) { struct inode_security_struct *isec = selinux_inode(inode); u32 sid = current_sid(); spin_lock_init(&isec->lock); INIT_LIST_HEAD(&isec->list); isec->inode = inode; isec->sid = SECINITSID_UNLABELED; isec->sclass = SECCLASS_FILE; isec->task_sid = sid; isec->initialized = LABEL_INVALID; return 0; } static void selinux_inode_free_security(struct inode *inode) { inode_free_security(inode); } static int selinux_dentry_init_security(struct dentry *dentry, int mode, const struct qstr *name, void **ctx, u32 *ctxlen) { u32 newsid; int rc; rc = selinux_determine_inode_label(selinux_cred(current_cred()), d_inode(dentry->d_parent), name, inode_mode_to_security_class(mode), &newsid); if (rc) return rc; return security_sid_to_context(&selinux_state, newsid, (char **)ctx, ctxlen); } static int selinux_dentry_create_files_as(struct dentry *dentry, int mode, struct qstr *name, const struct cred *old, struct cred *new) { u32 newsid; int rc; struct task_security_struct *tsec; rc = selinux_determine_inode_label(selinux_cred(old), d_inode(dentry->d_parent), name, inode_mode_to_security_class(mode), &newsid); if (rc) return rc; tsec = selinux_cred(new); tsec->create_sid = newsid; return 0; } static int selinux_inode_init_security(struct inode *inode, struct inode *dir, const struct qstr *qstr, const char **name, void **value, size_t *len) { const struct task_security_struct *tsec = selinux_cred(current_cred()); struct superblock_security_struct *sbsec; u32 newsid, clen; int rc; char *context; sbsec = dir->i_sb->s_security; newsid = tsec->create_sid; rc = selinux_determine_inode_label(tsec, dir, qstr, inode_mode_to_security_class(inode->i_mode), &newsid); if (rc) return rc; /* Possibly defer initialization to selinux_complete_init. */ if (sbsec->flags & SE_SBINITIALIZED) { struct inode_security_struct *isec = selinux_inode(inode); isec->sclass = inode_mode_to_security_class(inode->i_mode); isec->sid = newsid; isec->initialized = LABEL_INITIALIZED; } if (!selinux_initialized(&selinux_state) || !(sbsec->flags & SBLABEL_MNT)) return -EOPNOTSUPP; if (name) *name = XATTR_SELINUX_SUFFIX; if (value && len) { rc = security_sid_to_context_force(&selinux_state, newsid, &context, &clen); if (rc) return rc; *value = context; *len = clen; } return 0; } static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) { return may_create(dir, dentry, SECCLASS_FILE); } static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) { return may_link(dir, old_dentry, MAY_LINK); } static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry) { return may_link(dir, dentry, MAY_UNLINK); } static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name) { return may_create(dir, dentry, SECCLASS_LNK_FILE); } static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask) { return may_create(dir, dentry, SECCLASS_DIR); } static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry) { return may_link(dir, dentry, MAY_RMDIR); } static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) { return may_create(dir, dentry, inode_mode_to_security_class(mode)); } static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry, struct inode *new_inode, struct dentry *new_dentry) { return may_rename(old_inode, old_dentry, new_inode, new_dentry); } static int selinux_inode_readlink(struct dentry *dentry) { const struct cred *cred = current_cred(); return dentry_has_perm(cred, dentry, FILE__READ); } static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode, bool rcu) { const struct cred *cred = current_cred(); struct common_audit_data ad; struct inode_security_struct *isec; u32 sid; validate_creds(cred); ad.type = LSM_AUDIT_DATA_DENTRY; ad.u.dentry = dentry; sid = cred_sid(cred); isec = inode_security_rcu(inode, rcu); if (IS_ERR(isec)) return PTR_ERR(isec); return avc_has_perm_flags(&selinux_state, sid, isec->sid, isec->sclass, FILE__READ, &ad, rcu ? MAY_NOT_BLOCK : 0); } static noinline int audit_inode_permission(struct inode *inode, u32 perms, u32 audited, u32 denied, int result) { struct common_audit_data ad; struct inode_security_struct *isec = selinux_inode(inode); int rc; ad.type = LSM_AUDIT_DATA_INODE; ad.u.inode = inode; rc = slow_avc_audit(&selinux_state, current_sid(), isec->sid, isec->sclass, perms, audited, denied, result, &ad); if (rc) return rc; return 0; } static int selinux_inode_permission(struct inode *inode, int mask) { const struct cred *cred = current_cred(); u32 perms; bool from_access; bool no_block = mask & MAY_NOT_BLOCK; struct inode_security_struct *isec; u32 sid; struct av_decision avd; int rc, rc2; u32 audited, denied; from_access = mask & MAY_ACCESS; mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND); /* No permission to check. Existence test. */ if (!mask) return 0; validate_creds(cred); if (unlikely(IS_PRIVATE(inode))) return 0; perms = file_mask_to_av(inode->i_mode, mask); sid = cred_sid(cred); isec = inode_security_rcu(inode, no_block); if (IS_ERR(isec)) return PTR_ERR(isec); rc = avc_has_perm_noaudit(&selinux_state, sid, isec->sid, isec->sclass, perms, no_block ? AVC_NONBLOCKING : 0, &avd); audited = avc_audit_required(perms, &avd, rc, from_access ? FILE__AUDIT_ACCESS : 0, &denied); if (likely(!audited)) return rc; /* fall back to ref-walk if we have to generate audit */ if (no_block) return -ECHILD; rc2 = audit_inode_permission(inode, perms, audited, denied, rc); if (rc2) return rc2; return rc; } static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr) { const struct cred *cred = current_cred(); struct inode *inode = d_backing_inode(dentry); unsigned int ia_valid = iattr->ia_valid; __u32 av = FILE__WRITE; /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */ if (ia_valid & ATTR_FORCE) { ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE | ATTR_FORCE); if (!ia_valid) return 0; } if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID | ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET)) return dentry_has_perm(cred, dentry, FILE__SETATTR); if (selinux_policycap_openperm() && inode->i_sb->s_magic != SOCKFS_MAGIC && (ia_valid & ATTR_SIZE) && !(ia_valid & ATTR_FILE)) av |= FILE__OPEN; return dentry_has_perm(cred, dentry, av); } static int selinux_inode_getattr(const struct path *path) { return path_has_perm(current_cred(), path, FILE__GETATTR); } static bool has_cap_mac_admin(bool audit) { const struct cred *cred = current_cred(); unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT; if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts)) return false; if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true)) return false; return true; } static int selinux_inode_setxattr(struct dentry *dentry, const char *name, const void *value, size_t size, int flags) { struct inode *inode = d_backing_inode(dentry); struct inode_security_struct *isec; struct superblock_security_struct *sbsec; struct common_audit_data ad; u32 newsid, sid = current_sid(); int rc = 0; if (strcmp(name, XATTR_NAME_SELINUX)) { rc = cap_inode_setxattr(dentry, name, value, size, flags); if (rc) return rc; /* Not an attribute we recognize, so just check the ordinary setattr permission. */ return dentry_has_perm(current_cred(), dentry, FILE__SETATTR); } if (!selinux_initialized(&selinux_state)) return (inode_owner_or_capable(inode) ? 0 : -EPERM); sbsec = inode->i_sb->s_security; if (!(sbsec->flags & SBLABEL_MNT)) return -EOPNOTSUPP; if (!inode_owner_or_capable(inode)) return -EPERM; ad.type = LSM_AUDIT_DATA_DENTRY; ad.u.dentry = dentry; isec = backing_inode_security(dentry); rc = avc_has_perm(&selinux_state, sid, isec->sid, isec->sclass, FILE__RELABELFROM, &ad); if (rc) return rc; rc = security_context_to_sid(&selinux_state, value, size, &newsid, GFP_KERNEL); if (rc == -EINVAL) { if (!has_cap_mac_admin(true)) { struct audit_buffer *ab; size_t audit_size; /* We strip a nul only if it is at the end, otherwise the * context contains a nul and we should audit that */ if (value) { const char *str = value; if (str[size - 1] == '\0') audit_size = size - 1; else audit_size = size; } else { audit_size = 0; } ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR); audit_log_format(ab, "op=setxattr invalid_context="); audit_log_n_untrustedstring(ab, value, audit_size); audit_log_end(ab); return rc; } rc = security_context_to_sid_force(&selinux_state, value, size, &newsid); } if (rc) return rc; rc = avc_has_perm(&selinux_state, sid, newsid, isec->sclass, FILE__RELABELTO, &ad); if (rc) return rc; rc = security_validate_transition(&selinux_state, isec->sid, newsid, sid, isec->sclass); if (rc) return rc; return avc_has_perm(&selinux_state, newsid, sbsec->sid, SECCLASS_FILESYSTEM, FILESYSTEM__ASSOCIATE, &ad); } static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name, const void *value, size_t size, int flags) { struct inode *inode = d_backing_inode(dentry); struct inode_security_struct *isec; u32 newsid; int rc; if (strcmp(name, XATTR_NAME_SELINUX)) { /* Not an attribute we recognize, so nothing to do. */ return; } if (!selinux_initialized(&selinux_state)) { /* If we haven't even been initialized, then we can't validate * against a policy, so leave the label as invalid. It may * resolve to a valid label on the next revalidation try if * we've since initialized. */ return; } rc = security_context_to_sid_force(&selinux_state, value, size, &newsid); if (rc) { pr_err("SELinux: unable to map context to SID" "for (%s, %lu), rc=%d\n", inode->i_sb->s_id, inode->i_ino, -rc); return; } isec = backing_inode_security(dentry); spin_lock(&isec->lock); isec->sclass = inode_mode_to_security_class(inode->i_mode); isec->sid = newsid; isec->initialized = LABEL_INITIALIZED; spin_unlock(&isec->lock); return; } static int selinux_inode_getxattr(struct dentry *dentry, const char *name) { const struct cred *cred = current_cred(); return dentry_has_perm(cred, dentry, FILE__GETATTR); } static int selinux_inode_listxattr(struct dentry *dentry) { const struct cred *cred = current_cred(); return dentry_has_perm(cred, dentry, FILE__GETATTR); } static int selinux_inode_removexattr(struct dentry *dentry, const char *name) { if (strcmp(name, XATTR_NAME_SELINUX)) { int rc = cap_inode_removexattr(dentry, name); if (rc) return rc; /* Not an attribute we recognize, so just check the ordinary setattr permission. */ return dentry_has_perm(current_cred(), dentry, FILE__SETATTR); } if (!selinux_initialized(&selinux_state)) return 0; /* No one is allowed to remove a SELinux security label. You can change the label, but all data must be labeled. */ return -EACCES; } static int selinux_path_notify(const struct path *path, u64 mask, unsigned int obj_type) { int ret; u32 perm; struct common_audit_data ad; ad.type = LSM_AUDIT_DATA_PATH; ad.u.path = *path; /* * Set permission needed based on the type of mark being set. * Performs an additional check for sb watches. */ switch (obj_type) { case FSNOTIFY_OBJ_TYPE_VFSMOUNT: perm = FILE__WATCH_MOUNT; break; case FSNOTIFY_OBJ_TYPE_SB: perm = FILE__WATCH_SB; ret = superblock_has_perm(current_cred(), path->dentry->d_sb, FILESYSTEM__WATCH, &ad); if (ret) return ret; break; case FSNOTIFY_OBJ_TYPE_INODE: perm = FILE__WATCH; break; default: return -EINVAL; } /* blocking watches require the file:watch_with_perm permission */ if (mask & (ALL_FSNOTIFY_PERM_EVENTS)) perm |= FILE__WATCH_WITH_PERM; /* watches on read-like events need the file:watch_reads permission */ if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE)) perm |= FILE__WATCH_READS; return path_has_perm(current_cred(), path, perm); } /* * Copy the inode security context value to the user. * * Permission check is handled by selinux_inode_getxattr hook. */ static int selinux_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc) { u32 size; int error; char *context = NULL; struct inode_security_struct *isec; /* * If we're not initialized yet, then we can't validate contexts, so * just let vfs_getxattr fall back to using the on-disk xattr. */ if (!selinux_initialized(&selinux_state) || strcmp(name, XATTR_SELINUX_SUFFIX)) return -EOPNOTSUPP; /* * If the caller has CAP_MAC_ADMIN, then get the raw context * value even if it is not defined by current policy; otherwise, * use the in-core value under current policy. * Use the non-auditing forms of the permission checks since * getxattr may be called by unprivileged processes commonly * and lack of permission just means that we fall back to the * in-core context value, not a denial. */ isec = inode_security(inode); if (has_cap_mac_admin(false)) error = security_sid_to_context_force(&selinux_state, isec->sid, &context, &size); else error = security_sid_to_context(&selinux_state, isec->sid, &context, &size); if (error) return error; error = size; if (alloc) { *buffer = context; goto out_nofree; } kfree(context); out_nofree: return error; } static int selinux_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) { struct inode_security_struct *isec = inode_security_novalidate(inode); struct superblock_security_struct *sbsec = inode->i_sb->s_security; u32 newsid; int rc; if (strcmp(name, XATTR_SELINUX_SUFFIX)) return -EOPNOTSUPP; if (!(sbsec->flags & SBLABEL_MNT)) return -EOPNOTSUPP; if (!value || !size) return -EACCES; rc = security_context_to_sid(&selinux_state, value, size, &newsid, GFP_KERNEL); if (rc) return rc; spin_lock(&isec->lock); isec->sclass = inode_mode_to_security_class(inode->i_mode); isec->sid = newsid; isec->initialized = LABEL_INITIALIZED; spin_unlock(&isec->lock); return 0; } static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) { const int len = sizeof(XATTR_NAME_SELINUX); if (!selinux_initialized(&selinux_state)) return 0; if (buffer && len <= buffer_size) memcpy(buffer, XATTR_NAME_SELINUX, len); return len; } static void selinux_inode_getsecid(struct inode *inode, u32 *secid) { struct inode_security_struct *isec = inode_security_novalidate(inode); *secid = isec->sid; } static int selinux_inode_copy_up(struct dentry *src, struct cred **new) { u32 sid; struct task_security_struct *tsec; struct cred *new_creds = *new; if (new_creds == NULL) { new_creds = prepare_creds(); if (!new_creds) return -ENOMEM; } tsec = selinux_cred(new_creds); /* Get label from overlay inode and set it in create_sid */ selinux_inode_getsecid(d_inode(src), &sid); tsec->create_sid = sid; *new = new_creds; return 0; } static int selinux_inode_copy_up_xattr(const char *name) { /* The copy_up hook above sets the initial context on an inode, but we * don't then want to overwrite it by blindly copying all the lower * xattrs up. Instead, we have to filter out SELinux-related xattrs. */ if (strcmp(name, XATTR_NAME_SELINUX) == 0) return 1; /* Discard */ /* * Any other attribute apart from SELINUX is not claimed, supported * by selinux. */ return -EOPNOTSUPP; } /* kernfs node operations */ static int selinux_kernfs_init_security(struct kernfs_node *kn_dir, struct kernfs_node *kn) { const struct task_security_struct *tsec = selinux_cred(current_cred()); u32 parent_sid, newsid, clen; int rc; char *context; rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0); if (rc == -ENODATA) return 0; else if (rc < 0) return rc; clen = (u32)rc; context = kmalloc(clen, GFP_KERNEL); if (!context) return -ENOMEM; rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen); if (rc < 0) { kfree(context); return rc; } rc = security_context_to_sid(&selinux_state, context, clen, &parent_sid, GFP_KERNEL); kfree(context); if (rc) return rc; if (tsec->create_sid) { newsid = tsec->create_sid; } else { u16 secclass = inode_mode_to_security_class(kn->mode); struct qstr q; q.name = kn->name; q.hash_len = hashlen_string(kn_dir, kn->name); rc = security_transition_sid(&selinux_state, tsec->sid, parent_sid, secclass, &q, &newsid); if (rc) return rc; } rc = security_sid_to_context_force(&selinux_state, newsid, &context, &clen); if (rc) return rc; rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen, XATTR_CREATE); kfree(context); return rc; } /* file security operations */ static int selinux_revalidate_file_permission(struct file *file, int mask) { const struct cred *cred = current_cred(); struct inode *inode = file_inode(file); /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */ if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE)) mask |= MAY_APPEND; return file_has_perm(cred, file, file_mask_to_av(inode->i_mode, mask)); } static int selinux_file_permission(struct file *file, int mask) { struct inode *inode = file_inode(file); struct file_security_struct *fsec = selinux_file(file); struct inode_security_struct *isec; u32 sid = current_sid(); if (!mask) /* No permission to check. Existence test. */ return 0; isec = inode_security(inode); if (sid == fsec->sid && fsec->isid == isec->sid && fsec->pseqno == avc_policy_seqno(&selinux_state)) /* No change since file_open check. */ return 0; return selinux_revalidate_file_permission(file, mask); } static int selinux_file_alloc_security(struct file *file) { struct file_security_struct *fsec = selinux_file(file); u32 sid = current_sid(); fsec->sid = sid; fsec->fown_sid = sid; return 0; } /* * Check whether a task has the ioctl permission and cmd * operation to an inode. */ static int ioctl_has_perm(const struct cred *cred, struct file *file, u32 requested, u16 cmd) { struct common_audit_data ad; struct file_security_struct *fsec = selinux_file(file); struct inode *inode = file_inode(file); struct inode_security_struct *isec; struct lsm_ioctlop_audit ioctl; u32 ssid = cred_sid(cred); int rc; u8 driver = cmd >> 8; u8 xperm = cmd & 0xff; ad.type = LSM_AUDIT_DATA_IOCTL_OP; ad.u.op = &ioctl; ad.u.op->cmd = cmd; ad.u.op->path = file->f_path; if (ssid != fsec->sid) { rc = avc_has_perm(&selinux_state, ssid, fsec->sid, SECCLASS_FD, FD__USE, &ad); if (rc) goto out; } if (unlikely(IS_PRIVATE(inode))) return 0; isec = inode_security(inode); rc = avc_has_extended_perms(&selinux_state, ssid, isec->sid, isec->sclass, requested, driver, xperm, &ad); out: return rc; } static int selinux_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { const struct cred *cred = current_cred(); int error = 0; switch (cmd) { case FIONREAD: case FIBMAP: case FIGETBSZ: case FS_IOC_GETFLAGS: case FS_IOC_GETVERSION: error = file_has_perm(cred, file, FILE__GETATTR); break; case FS_IOC_SETFLAGS: case FS_IOC_SETVERSION: error = file_has_perm(cred, file, FILE__SETATTR); break; /* sys_ioctl() checks */ case FIONBIO: case FIOASYNC: error = file_has_perm(cred, file, 0); break; case KDSKBENT: case KDSKBSENT: error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG, CAP_OPT_NONE, true); break; /* default case assumes that the command will go * to the file's ioctl() function. */ default: error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd); } return error; } static int default_noexec __ro_after_init; static int file_map_prot_check(struct file *file, unsigned long prot, int shared) { const struct cred *cred = current_cred(); u32 sid = cred_sid(cred); int rc = 0; if (default_noexec && (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) || (!shared && (prot & PROT_WRITE)))) { /* * We are making executable an anonymous mapping or a * private file mapping that will also be writable. * This has an additional check. */ rc = avc_has_perm(&selinux_state, sid, sid, SECCLASS_PROCESS, PROCESS__EXECMEM, NULL); if (rc) goto error; } if (file) { /* read access is always possible with a mapping */ u32 av = FILE__READ; /* write access only matters if the mapping is shared */ if (shared && (prot & PROT_WRITE)) av |= FILE__WRITE; if (prot & PROT_EXEC) av |= FILE__EXECUTE; return file_has_perm(cred, file, av); } error: return rc; } static int selinux_mmap_addr(unsigned long addr) { int rc = 0; if (addr < CONFIG_LSM_MMAP_MIN_ADDR) { u32 sid = current_sid(); rc = avc_has_perm(&selinux_state, sid, sid, SECCLASS_MEMPROTECT, MEMPROTECT__MMAP_ZERO, NULL); } return rc; } static int selinux_mmap_file(struct file *file, unsigned long reqprot, unsigned long prot, unsigned long flags) { struct common_audit_data ad; int rc; if (file) { ad.type = LSM_AUDIT_DATA_FILE; ad.u.file = file; rc = inode_has_perm(current_cred(), file_inode(file), FILE__MAP, &ad); if (rc) return rc; } if (checkreqprot_get(&selinux_state)) prot = reqprot; return file_map_prot_check(file, prot, (flags & MAP_TYPE) == MAP_SHARED); } static int selinux_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, unsigned long prot) { const struct cred *cred = current_cred(); u32 sid = cred_sid(cred); if (checkreqprot_get(&selinux_state)) prot = reqprot; if (default_noexec && (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) { int rc = 0; if (vma->vm_start >= vma->vm_mm->start_brk && vma->vm_end <= vma->vm_mm->brk) { rc = avc_has_perm(&selinux_state, sid, sid, SECCLASS_PROCESS, PROCESS__EXECHEAP, NULL); } else if (!vma->vm_file && ((vma->vm_start <= vma->vm_mm->start_stack && vma->vm_end >= vma->vm_mm->start_stack) || vma_is_stack_for_current(vma))) { rc = avc_has_perm(&selinux_state, sid, sid, SECCLASS_PROCESS, PROCESS__EXECSTACK, NULL); } else if (vma->vm_file && vma->anon_vma) { /* * We are making executable a file mapping that has * had some COW done. Since pages might have been * written, check ability to execute the possibly * modified content. This typically should only * occur for text relocations. */ rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD); } if (rc) return rc; } return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED); } static int selinux_file_lock(struct file *file, unsigned int cmd) { const struct cred *cred = current_cred(); return file_has_perm(cred, file, FILE__LOCK); } static int selinux_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) { const struct cred *cred = current_cred(); int err = 0; switch (cmd) { case F_SETFL: if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) { err = file_has_perm(cred, file, FILE__WRITE); break; } fallthrough; case F_SETOWN: case F_SETSIG: case F_GETFL: case F_GETOWN: case F_GETSIG: case F_GETOWNER_UIDS: /* Just check FD__USE permission */ err = file_has_perm(cred, file, 0); break; case F_GETLK: case F_SETLK: case F_SETLKW: case F_OFD_GETLK: case F_OFD_SETLK: case F_OFD_SETLKW: #if BITS_PER_LONG == 32 case F_GETLK64: case F_SETLK64: case F_SETLKW64: #endif err = file_has_perm(cred, file, FILE__LOCK); break; } return err; } static void selinux_file_set_fowner(struct file *file) { struct file_security_struct *fsec; fsec = selinux_file(file); fsec->fown_sid = current_sid(); } static int selinux_file_send_sigiotask(struct task_struct *tsk, struct fown_struct *fown, int signum) { struct file *file; u32 sid = task_sid(tsk); u32 perm; struct file_security_struct *fsec; /* struct fown_struct is never outside the context of a struct file */ file = container_of(fown, struct file, f_owner); fsec = selinux_file(file); if (!signum) perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */ else perm = signal_to_av(signum); return avc_has_perm(&selinux_state, fsec->fown_sid, sid, SECCLASS_PROCESS, perm, NULL); } static int selinux_file_receive(struct file *file) { const struct cred *cred = current_cred(); return file_has_perm(cred, file, file_to_av(file)); } static int selinux_file_open(struct file *file) { struct file_security_struct *fsec; struct inode_security_struct *isec; fsec = selinux_file(file); isec = inode_security(file_inode(file)); /* * Save inode label and policy sequence number * at open-time so that selinux_file_permission * can determine whether revalidation is necessary. * Task label is already saved in the file security * struct as its SID. */ fsec->isid = isec->sid; fsec->pseqno = avc_policy_seqno(&selinux_state); /* * Since the inode label or policy seqno may have changed * between the selinux_inode_permission check and the saving * of state above, recheck that access is still permitted. * Otherwise, access might never be revalidated against the * new inode label or new policy. * This check is not redundant - do not remove. */ return file_path_has_perm(file->f_cred, file, open_file_to_av(file)); } /* task security operations */ static int selinux_task_alloc(struct task_struct *task, unsigned long clone_flags) { u32 sid = current_sid(); return avc_has_perm(&selinux_state, sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL); } /* * prepare a new set of credentials for modification */ static int selinux_cred_prepare(struct cred *new, const struct cred *old, gfp_t gfp) { const struct task_security_struct *old_tsec = selinux_cred(old); struct task_security_struct *tsec = selinux_cred(new); *tsec = *old_tsec; return 0; } /* * transfer the SELinux data to a blank set of creds */ static void selinux_cred_transfer(struct cred *new, const struct cred *old) { const struct task_security_struct *old_tsec = selinux_cred(old); struct task_security_struct *tsec = selinux_cred(new); *tsec = *old_tsec; } static void selinux_cred_getsecid(const struct cred *c, u32 *secid) { *secid = cred_sid(c); } /* * set the security data for a kernel service * - all the creation contexts are set to unlabelled */ static int selinux_kernel_act_as(struct cred *new, u32 secid) { struct task_security_struct *tsec = selinux_cred(new); u32 sid = current_sid(); int ret; ret = avc_has_perm(&selinux_state, sid, secid, SECCLASS_KERNEL_SERVICE, KERNEL_SERVICE__USE_AS_OVERRIDE, NULL); if (ret == 0) { tsec->sid = secid; tsec->create_sid = 0; tsec->keycreate_sid = 0; tsec->sockcreate_sid = 0; } return ret; } /* * set the file creation context in a security record to the same as the * objective context of the specified inode */ static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode) { struct inode_security_struct *isec = inode_security(inode); struct task_security_struct *tsec = selinux_cred(new); u32 sid = current_sid(); int ret; ret = avc_has_perm(&selinux_state, sid, isec->sid, SECCLASS_KERNEL_SERVICE, KERNEL_SERVICE__CREATE_FILES_AS, NULL); if (ret == 0) tsec->create_sid = isec->sid; return ret; } static int selinux_kernel_module_request(char *kmod_name) { struct common_audit_data ad; ad.type = LSM_AUDIT_DATA_KMOD; ad.u.kmod_name = kmod_name; return avc_has_perm(&selinux_state, current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM, SYSTEM__MODULE_REQUEST, &ad); } static int selinux_kernel_module_from_file(struct file *file) { struct common_audit_data ad; struct inode_security_struct *isec; struct file_security_struct *fsec; u32 sid = current_sid(); int rc; /* init_module */ if (file == NULL) return avc_has_perm(&selinux_state, sid, sid, SECCLASS_SYSTEM, SYSTEM__MODULE_LOAD, NULL); /* finit_module */ ad.type = LSM_AUDIT_DATA_FILE; ad.u.file = file; fsec = selinux_file(file); if (sid != fsec->sid) { rc = avc_has_perm(&selinux_state, sid, fsec->sid, SECCLASS_FD, FD__USE, &ad); if (rc) return rc; } isec = inode_security(file_inode(file)); return avc_has_perm(&selinux_state, sid, isec->sid, SECCLASS_SYSTEM, SYSTEM__MODULE_LOAD, &ad); } static int selinux_kernel_read_file(struct file *file, enum kernel_read_file_id id, bool contents) { int rc = 0; switch (id) { case READING_MODULE: rc = selinux_kernel_module_from_file(contents ? file : NULL); break; default: break; } return rc; } static int selinux_kernel_load_data(enum kernel_load_data_id id, bool contents) { int rc = 0; switch (id) { case LOADING_MODULE: rc = selinux_kernel_module_from_file(NULL); default: break; } return rc; } static int selinux_task_setpgid(struct task_struct *p, pid_t pgid) { return avc_has_perm(&selinux_state, current_sid(), task_sid(p), SECCLASS_PROCESS, PROCESS__SETPGID, NULL); } static int selinux_task_getpgid(struct task_struct *p) { return avc_has_perm(&selinux_state, current_sid(), task_sid(p), SECCLASS_PROCESS, PROCESS__GETPGID, NULL); } static int selinux_task_getsid(struct task_struct *p) { return avc_has_perm(&selinux_state, current_sid(), task_sid(p), SECCLASS_PROCESS, PROCESS__GETSESSION, NULL); } static void selinux_task_getsecid(struct task_struct *p, u32 *secid) { *secid = task_sid(p); } static int selinux_task_setnice(struct task_struct *p, int nice) { return avc_has_perm(&selinux_state, current_sid(), task_sid(p), SECCLASS_PROCESS, PROCESS__SETSCHED, NULL); } static int selinux_task_setioprio(struct task_struct *p, int ioprio) { return avc_has_perm(&selinux_state, current_sid(), task_sid(p), SECCLASS_PROCESS, PROCESS__SETSCHED, NULL); } static int selinux_task_getioprio(struct task_struct *p) { return avc_has_perm(&selinux_state, current_sid(), task_sid(p), SECCLASS_PROCESS, PROCESS__GETSCHED, NULL); } static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred, unsigned int flags) { u32 av = 0; if (!flags) return 0; if (flags & LSM_PRLIMIT_WRITE) av |= PROCESS__SETRLIMIT; if (flags & LSM_PRLIMIT_READ) av |= PROCESS__GETRLIMIT; return avc_has_perm(&selinux_state, cred_sid(cred), cred_sid(tcred), SECCLASS_PROCESS, av, NULL); } static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource, struct rlimit *new_rlim) { struct rlimit *old_rlim = p->signal->rlim + resource; /* Control the ability to change the hard limit (whether lowering or raising it), so that the hard limit can later be used as a safe reset point for the soft limit upon context transitions. See selinux_bprm_committing_creds. */ if (old_rlim->rlim_max != new_rlim->rlim_max) return avc_has_perm(&selinux_state, current_sid(), task_sid(p), SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL); return 0; } static int selinux_task_setscheduler(struct task_struct *p) { return avc_has_perm(&selinux_state, current_sid(), task_sid(p), SECCLASS_PROCESS, PROCESS__SETSCHED, NULL); } static int selinux_task_getscheduler(struct task_struct *p) { return avc_has_perm(&selinux_state, current_sid(), task_sid(p), SECCLASS_PROCESS, PROCESS__GETSCHED, NULL); } static int selinux_task_movememory(struct task_struct *p) { return avc_has_perm(&selinux_state, current_sid(), task_sid(p), SECCLASS_PROCESS, PROCESS__SETSCHED, NULL); } static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info, int sig, const struct cred *cred) { u32 secid; u32 perm; if (!sig) perm = PROCESS__SIGNULL; /* null signal; existence test */ else perm = signal_to_av(sig); if (!cred) secid = current_sid(); else secid = cred_sid(cred); return avc_has_perm(&selinux_state, secid, task_sid(p), SECCLASS_PROCESS, perm, NULL); } static void selinux_task_to_inode(struct task_struct *p, struct inode *inode) { struct inode_security_struct *isec = selinux_inode(inode); u32 sid = task_sid(p); spin_lock(&isec->lock); isec->sclass = inode_mode_to_security_class(inode->i_mode); isec->sid = sid; isec->initialized = LABEL_INITIALIZED; spin_unlock(&isec->lock); } /* Returns error only if unable to parse addresses */ static int selinux_parse_skb_ipv4(struct sk_buff *skb, struct common_audit_data *ad, u8 *proto) { int offset, ihlen, ret = -EINVAL; struct iphdr _iph, *ih; offset = skb_network_offset(skb); ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph); if (ih == NULL) goto out; ihlen = ih->ihl * 4; if (ihlen < sizeof(_iph)) goto out; ad->u.net->v4info.saddr = ih->saddr; ad->u.net->v4info.daddr = ih->daddr; ret = 0; if (proto) *proto = ih->protocol; switch (ih->protocol) { case IPPROTO_TCP: { struct tcphdr _tcph, *th; if (ntohs(ih->frag_off) & IP_OFFSET) break; offset += ihlen; th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); if (th == NULL) break; ad->u.net->sport = th->source; ad->u.net->dport = th->dest; break; } case IPPROTO_UDP: { struct udphdr _udph, *uh; if (ntohs(ih->frag_off) & IP_OFFSET) break; offset += ihlen; uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); if (uh == NULL) break; ad->u.net->sport = uh->source; ad->u.net->dport = uh->dest; break; } case IPPROTO_DCCP: { struct dccp_hdr _dccph, *dh; if (ntohs(ih->frag_off) & IP_OFFSET) break; offset += ihlen; dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); if (dh == NULL) break; ad->u.net->sport = dh->dccph_sport; ad->u.net->dport = dh->dccph_dport; break; } #if IS_ENABLED(CONFIG_IP_SCTP) case IPPROTO_SCTP: { struct sctphdr _sctph, *sh; if (ntohs(ih->frag_off) & IP_OFFSET) break; offset += ihlen; sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph); if (sh == NULL) break; ad->u.net->sport = sh->source; ad->u.net->dport = sh->dest; break; } #endif default: break; } out: return ret; } #if IS_ENABLED(CONFIG_IPV6) /* Returns error only if unable to parse addresses */ static int selinux_parse_skb_ipv6(struct sk_buff *skb, struct common_audit_data *ad, u8 *proto) { u8 nexthdr; int ret = -EINVAL, offset; struct ipv6hdr _ipv6h, *ip6; __be16 frag_off; offset = skb_network_offset(skb); ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); if (ip6 == NULL) goto out; ad->u.net->v6info.saddr = ip6->saddr; ad->u.net->v6info.daddr = ip6->daddr; ret = 0; nexthdr = ip6->nexthdr; offset += sizeof(_ipv6h); offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off); if (offset < 0) goto out; if (proto) *proto = nexthdr; switch (nexthdr) { case IPPROTO_TCP: { struct tcphdr _tcph, *th; th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); if (th == NULL) break; ad->u.net->sport = th->source; ad->u.net->dport = th->dest; break; } case IPPROTO_UDP: { struct udphdr _udph, *uh; uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); if (uh == NULL) break; ad->u.net->sport = uh->source; ad->u.net->dport = uh->dest; break; } case IPPROTO_DCCP: { struct dccp_hdr _dccph, *dh; dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); if (dh == NULL) break; ad->u.net->sport = dh->dccph_sport; ad->u.net->dport = dh->dccph_dport; break; } #if IS_ENABLED(CONFIG_IP_SCTP) case IPPROTO_SCTP: { struct sctphdr _sctph, *sh; sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph); if (sh == NULL) break; ad->u.net->sport = sh->source; ad->u.net->dport = sh->dest; break; } #endif /* includes fragments */ default: break; } out: return ret; } #endif /* IPV6 */ static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad, char **_addrp, int src, u8 *proto) { char *addrp; int ret; switch (ad->u.net->family) { case PF_INET: ret = selinux_parse_skb_ipv4(skb, ad, proto); if (ret) goto parse_error; addrp = (char *)(src ? &ad->u.net->v4info.saddr : &ad->u.net->v4info.daddr); goto okay; #if IS_ENABLED(CONFIG_IPV6) case PF_INET6: ret = selinux_parse_skb_ipv6(skb, ad, proto); if (ret) goto parse_error; addrp = (char *)(src ? &ad->u.net->v6info.saddr : &ad->u.net->v6info.daddr); goto okay; #endif /* IPV6 */ default: addrp = NULL; goto okay; } parse_error: pr_warn( "SELinux: failure in selinux_parse_skb()," " unable to parse packet\n"); return ret; okay: if (_addrp) *_addrp = addrp; return 0; } /** * selinux_skb_peerlbl_sid - Determine the peer label of a packet * @skb: the packet * @family: protocol family * @sid: the packet's peer label SID * * Description: * Check the various different forms of network peer labeling and determine * the peer label/SID for the packet; most of the magic actually occurs in * the security server function security_net_peersid_cmp(). The function * returns zero if the value in @sid is valid (although it may be SECSID_NULL) * or -EACCES if @sid is invalid due to inconsistencies with the different * peer labels. * */ static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid) { int err; u32 xfrm_sid; u32 nlbl_sid; u32 nlbl_type; err = selinux_xfrm_skb_sid(skb, &xfrm_sid); if (unlikely(err)) return -EACCES; err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid); if (unlikely(err)) return -EACCES; err = security_net_peersid_resolve(&selinux_state, nlbl_sid, nlbl_type, xfrm_sid, sid); if (unlikely(err)) { pr_warn( "SELinux: failure in selinux_skb_peerlbl_sid()," " unable to determine packet's peer label\n"); return -EACCES; } return 0; } /** * selinux_conn_sid - Determine the child socket label for a connection * @sk_sid: the parent socket's SID * @skb_sid: the packet's SID * @conn_sid: the resulting connection SID * * If @skb_sid is valid then the user:role:type information from @sk_sid is * combined with the MLS information from @skb_sid in order to create * @conn_sid. If @skb_sid is not valid then @conn_sid is simply a copy * of @sk_sid. Returns zero on success, negative values on failure. * */ static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid) { int err = 0; if (skb_sid != SECSID_NULL) err = security_sid_mls_copy(&selinux_state, sk_sid, skb_sid, conn_sid); else *conn_sid = sk_sid; return err; } /* socket security operations */ static int socket_sockcreate_sid(const struct task_security_struct *tsec, u16 secclass, u32 *socksid) { if (tsec->sockcreate_sid > SECSID_NULL) { *socksid = tsec->sockcreate_sid; return 0; } return security_transition_sid(&selinux_state, tsec->sid, tsec->sid, secclass, NULL, socksid); } static int sock_has_perm(struct sock *sk, u32 perms) { struct sk_security_struct *sksec = sk->sk_security; struct common_audit_data ad; struct lsm_network_audit net = {0,}; if (sksec->sid == SECINITSID_KERNEL) return 0; ad.type = LSM_AUDIT_DATA_NET; ad.u.net = &net; ad.u.net->sk = sk; return avc_has_perm(&selinux_state, current_sid(), sksec->sid, sksec->sclass, perms, &ad); } static int selinux_socket_create(int family, int type, int protocol, int kern) { const struct task_security_struct *tsec = selinux_cred(current_cred()); u32 newsid; u16 secclass; int rc; if (kern) return 0; secclass = socket_type_to_security_class(family, type, protocol); rc = socket_sockcreate_sid(tsec, secclass, &newsid); if (rc) return rc; return avc_has_perm(&selinux_state, tsec->sid, newsid, secclass, SOCKET__CREATE, NULL); } static int selinux_socket_post_create(struct socket *sock, int family, int type, int protocol, int kern) { const struct task_security_struct *tsec = selinux_cred(current_cred()); struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock)); struct sk_security_struct *sksec; u16 sclass = socket_type_to_security_class(family, type, protocol); u32 sid = SECINITSID_KERNEL; int err = 0; if (!kern) { err = socket_sockcreate_sid(tsec, sclass, &sid); if (err) return err; } isec->sclass = sclass; isec->sid = sid; isec->initialized = LABEL_INITIALIZED; if (sock->sk) { sksec = sock->sk->sk_security; sksec->sclass = sclass; sksec->sid = sid; /* Allows detection of the first association on this socket */ if (sksec->sclass == SECCLASS_SCTP_SOCKET) sksec->sctp_assoc_state = SCTP_ASSOC_UNSET; err = selinux_netlbl_socket_post_create(sock->sk, family); } return err; } static int selinux_socket_socketpair(struct socket *socka, struct socket *sockb) { struct sk_security_struct *sksec_a = socka->sk->sk_security; struct sk_security_struct *sksec_b = sockb->sk->sk_security; sksec_a->peer_sid = sksec_b->sid; sksec_b->peer_sid = sksec_a->sid; return 0; } /* Range of port numbers used to automatically bind. Need to determine whether we should perform a name_bind permission check between the socket and the port number. */ static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) { struct sock *sk = sock->sk; struct sk_security_struct *sksec = sk->sk_security; u16 family; int err; err = sock_has_perm(sk, SOCKET__BIND); if (err) goto out; /* If PF_INET or PF_INET6, check name_bind permission for the port. */ family = sk->sk_family; if (family == PF_INET || family == PF_INET6) { char *addrp; struct common_audit_data ad; struct lsm_network_audit net = {0,}; struct sockaddr_in *addr4 = NULL; struct sockaddr_in6 *addr6 = NULL; u16 family_sa; unsigned short snum; u32 sid, node_perm; /* * sctp_bindx(3) calls via selinux_sctp_bind_connect() * that validates multiple binding addresses. Because of this * need to check address->sa_family as it is possible to have * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET. */ if (addrlen < offsetofend(struct sockaddr, sa_family)) return -EINVAL; family_sa = address->sa_family; switch (family_sa) { case AF_UNSPEC: case AF_INET: if (addrlen < sizeof(struct sockaddr_in)) return -EINVAL; addr4 = (struct sockaddr_in *)address; if (family_sa == AF_UNSPEC) { /* see __inet_bind(), we only want to allow * AF_UNSPEC if the address is INADDR_ANY */ if (addr4->sin_addr.s_addr != htonl(INADDR_ANY)) goto err_af; family_sa = AF_INET; } snum = ntohs(addr4->sin_port); addrp = (char *)&addr4->sin_addr.s_addr; break; case AF_INET6: if (addrlen < SIN6_LEN_RFC2133) return -EINVAL; addr6 = (struct sockaddr_in6 *)address; snum = ntohs(addr6->sin6_port); addrp = (char *)&addr6->sin6_addr.s6_addr; break; default: goto err_af; } ad.type = LSM_AUDIT_DATA_NET; ad.u.net = &net; ad.u.net->sport = htons(snum); ad.u.net->family = family_sa; if (snum) { int low, high; inet_get_local_port_range(sock_net(sk), &low, &high); if (inet_port_requires_bind_service(sock_net(sk), snum) || snum < low || snum > high) { err = sel_netport_sid(sk->sk_protocol, snum, &sid); if (err) goto out; err = avc_has_perm(&selinux_state, sksec->sid, sid, sksec->sclass, SOCKET__NAME_BIND, &ad); if (err) goto out; } } switch (sksec->sclass) { case SECCLASS_TCP_SOCKET: node_perm = TCP_SOCKET__NODE_BIND; break; case SECCLASS_UDP_SOCKET: node_perm = UDP_SOCKET__NODE_BIND; break; case SECCLASS_DCCP_SOCKET: node_perm = DCCP_SOCKET__NODE_BIND; break; case SECCLASS_SCTP_SOCKET: node_perm = SCTP_SOCKET__NODE_BIND; break; default: node_perm = RAWIP_SOCKET__NODE_BIND; break; } err = sel_netnode_sid(addrp, family_sa, &sid); if (err) goto out; if (family_sa == AF_INET) ad.u.net->v4info.saddr = addr4->sin_addr.s_addr; else ad.u.net->v6info.saddr = addr6->sin6_addr; err = avc_has_perm(&selinux_state, sksec->sid, sid, sksec->sclass, node_perm, &ad); if (err) goto out; } out: return err; err_af: /* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */ if (sksec->sclass == SECCLASS_SCTP_SOCKET) return -EINVAL; return -EAFNOSUPPORT; } /* This supports connect(2) and SCTP connect services such as sctp_connectx(3) * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst */ static int selinux_socket_connect_helper(struct socket *sock, struct sockaddr *address, int addrlen) { struct sock *sk = sock->sk; struct sk_security_struct *sksec = sk->sk_security; int err; err = sock_has_perm(sk, SOCKET__CONNECT); if (err) return err; if (addrlen < offsetofend(struct sockaddr, sa_family)) return -EINVAL; /* connect(AF_UNSPEC) has special handling, as it is a documented * way to disconnect the socket */ if (address->sa_family == AF_UNSPEC) return 0; /* * If a TCP, DCCP or SCTP socket, check name_connect permission * for the port. */ if (sksec->sclass == SECCLASS_TCP_SOCKET || sksec->sclass == SECCLASS_DCCP_SOCKET || sksec->sclass == SECCLASS_SCTP_SOCKET) { struct common_audit_data ad; struct lsm_network_audit net = {0,}; struct sockaddr_in *addr4 = NULL; struct sockaddr_in6 *addr6 = NULL; unsigned short snum; u32 sid, perm; /* sctp_connectx(3) calls via selinux_sctp_bind_connect() * that validates multiple connect addresses. Because of this * need to check address->sa_family as it is possible to have * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET. */ switch (address->sa_family) { case AF_INET: addr4 = (struct sockaddr_in *)address; if (addrlen < sizeof(struct sockaddr_in)) return -EINVAL; snum = ntohs(addr4->sin_port); break; case AF_INET6: addr6 = (struct sockaddr_in6 *)address; if (addrlen < SIN6_LEN_RFC2133) return -EINVAL; snum = ntohs(addr6->sin6_port); break; default: /* Note that SCTP services expect -EINVAL, whereas * others expect -EAFNOSUPPORT. */ if (sksec->sclass == SECCLASS_SCTP_SOCKET) return -EINVAL; else return -EAFNOSUPPORT; } err = sel_netport_sid(sk->sk_protocol, snum, &sid); if (err) return err; switch (sksec->sclass) { case SECCLASS_TCP_SOCKET: perm = TCP_SOCKET__NAME_CONNECT; break; case SECCLASS_DCCP_SOCKET: perm = DCCP_SOCKET__NAME_CONNECT; break; case SECCLASS_SCTP_SOCKET: perm = SCTP_SOCKET__NAME_CONNECT; break; } ad.type = LSM_AUDIT_DATA_NET; ad.u.net = &net; ad.u.net->dport = htons(snum); ad.u.net->family = address->sa_family; err = avc_has_perm(&selinux_state, sksec->sid, sid, sksec->sclass, perm, &ad); if (err) return err; } return 0; } /* Supports connect(2), see comments in selinux_socket_connect_helper() */ static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) { int err; struct sock *sk = sock->sk; err = selinux_socket_connect_helper(sock, address, addrlen); if (err) return err; return selinux_netlbl_socket_connect(sk, address); } static int selinux_socket_listen(struct socket *sock, int backlog) { return sock_has_perm(sock->sk, SOCKET__LISTEN); } static int selinux_socket_accept(struct socket *sock, struct socket *newsock) { int err; struct inode_security_struct *isec; struct inode_security_struct *newisec; u16 sclass; u32 sid; err = sock_has_perm(sock->sk, SOCKET__ACCEPT); if (err) return err; isec = inode_security_novalidate(SOCK_INODE(sock)); spin_lock(&isec->lock); sclass = isec->sclass; sid = isec->sid; spin_unlock(&isec->lock); newisec = inode_security_novalidate(SOCK_INODE(newsock)); newisec->sclass = sclass; newisec->sid = sid; newisec->initialized = LABEL_INITIALIZED; return 0; } static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) { return sock_has_perm(sock->sk, SOCKET__WRITE); } static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg, int size, int flags) { return sock_has_perm(sock->sk, SOCKET__READ); } static int selinux_socket_getsockname(struct socket *sock) { return sock_has_perm(sock->sk, SOCKET__GETATTR); } static int selinux_socket_getpeername(struct socket *sock) { return sock_has_perm(sock->sk, SOCKET__GETATTR); } static int selinux_socket_setsockopt(struct socket *sock, int level, int optname) { int err; err = sock_has_perm(sock->sk, SOCKET__SETOPT); if (err) return err; return selinux_netlbl_socket_setsockopt(sock, level, optname); } static int selinux_socket_getsockopt(struct socket *sock, int level, int optname) { return sock_has_perm(sock->sk, SOCKET__GETOPT); } static int selinux_socket_shutdown(struct socket *sock, int how) { return sock_has_perm(sock->sk, SOCKET__SHUTDOWN); } static int selinux_socket_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk) { struct sk_security_struct *sksec_sock = sock->sk_security; struct sk_security_struct *sksec_other = other->sk_security; struct sk_security_struct *sksec_new = newsk->sk_security; struct common_audit_data ad; struct lsm_network_audit net = {0,}; int err; ad.type = LSM_AUDIT_DATA_NET; ad.u.net = &net; ad.u.net->sk = other; err = avc_has_perm(&selinux_state, sksec_sock->sid, sksec_other->sid, sksec_other->sclass, UNIX_STREAM_SOCKET__CONNECTTO, &ad); if (err) return err; /* server child socket */ sksec_new->peer_sid = sksec_sock->sid; err = security_sid_mls_copy(&selinux_state, sksec_other->sid, sksec_sock->sid, &sksec_new->sid); if (err) return err; /* connecting socket */ sksec_sock->peer_sid = sksec_new->sid; return 0; } static int selinux_socket_unix_may_send(struct socket *sock, struct socket *other) { struct sk_security_struct *ssec = sock->sk->sk_security; struct sk_security_struct *osec = other->sk->sk_security; struct common_audit_data ad; struct lsm_network_audit net = {0,}; ad.type = LSM_AUDIT_DATA_NET; ad.u.net = &net; ad.u.net->sk = other->sk; return avc_has_perm(&selinux_state, ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO, &ad); } static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex, char *addrp, u16 family, u32 peer_sid, struct common_audit_data *ad) { int err; u32 if_sid; u32 node_sid; err = sel_netif_sid(ns, ifindex, &if_sid); if (err) return err; err = avc_has_perm(&selinux_state, peer_sid, if_sid, SECCLASS_NETIF, NETIF__INGRESS, ad); if (err) return err; err = sel_netnode_sid(addrp, family, &node_sid); if (err) return err; return avc_has_perm(&selinux_state, peer_sid, node_sid, SECCLASS_NODE, NODE__RECVFROM, ad); } static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb, u16 family) { int err = 0; struct sk_security_struct *sksec = sk->sk_security; u32 sk_sid = sksec->sid; struct common_audit_data ad; struct lsm_network_audit net = {0,}; char *addrp; ad.type = LSM_AUDIT_DATA_NET; ad.u.net = &net; ad.u.net->netif = skb->skb_iif; ad.u.net->family = family; err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); if (err) return err; if (selinux_secmark_enabled()) { err = avc_has_perm(&selinux_state, sk_sid, skb->secmark, SECCLASS_PACKET, PACKET__RECV, &ad); if (err) return err; } err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad); if (err) return err; err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad); return err; } static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) { int err; struct sk_security_struct *sksec = sk->sk_security; u16 family = sk->sk_family; u32 sk_sid = sksec->sid; struct common_audit_data ad; struct lsm_network_audit net = {0,}; char *addrp; u8 secmark_active; u8 peerlbl_active; if (family != PF_INET && family != PF_INET6) return 0; /* Handle mapped IPv4 packets arriving via IPv6 sockets */ if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) family = PF_INET; /* If any sort of compatibility mode is enabled then handoff processing * to the selinux_sock_rcv_skb_compat() function to deal with the * special handling. We do this in an attempt to keep this function * as fast and as clean as possible. */ if (!selinux_policycap_netpeer()) return selinux_sock_rcv_skb_compat(sk, skb, family); secmark_active = selinux_secmark_enabled(); peerlbl_active = selinux_peerlbl_enabled(); if (!secmark_active && !peerlbl_active) return 0; ad.type = LSM_AUDIT_DATA_NET; ad.u.net = &net; ad.u.net->netif = skb->skb_iif; ad.u.net->family = family; err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); if (err) return err; if (peerlbl_active) { u32 peer_sid; err = selinux_skb_peerlbl_sid(skb, family, &peer_sid); if (err) return err; err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif, addrp, family, peer_sid, &ad); if (err) { selinux_netlbl_err(skb, family, err, 0); return err; } err = avc_has_perm(&selinux_state, sk_sid, peer_sid, SECCLASS_PEER, PEER__RECV, &ad); if (err) { selinux_netlbl_err(skb, family, err, 0); return err; } } if (secmark_active) { err = avc_has_perm(&selinux_state, sk_sid, skb->secmark, SECCLASS_PACKET, PACKET__RECV, &ad); if (err) return err; } return err; } static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval, int __user *optlen, unsigned len) { int err = 0; char *scontext; u32 scontext_len; struct sk_security_struct *sksec = sock->sk->sk_security; u32 peer_sid = SECSID_NULL; if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET || sksec->sclass == SECCLASS_TCP_SOCKET || sksec->sclass == SECCLASS_SCTP_SOCKET) peer_sid = sksec->peer_sid; if (peer_sid == SECSID_NULL) return -ENOPROTOOPT; err = security_sid_to_context(&selinux_state, peer_sid, &scontext, &scontext_len); if (err) return err; if (scontext_len > len) { err = -ERANGE; goto out_len; } if (copy_to_user(optval, scontext, scontext_len)) err = -EFAULT; out_len: if (put_user(scontext_len, optlen)) err = -EFAULT; kfree(scontext); return err; } static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) { u32 peer_secid = SECSID_NULL; u16 family; struct inode_security_struct *isec; if (skb && skb->protocol == htons(ETH_P_IP)) family = PF_INET; else if (skb && skb->protocol == htons(ETH_P_IPV6)) family = PF_INET6; else if (sock) family = sock->sk->sk_family; else goto out; if (sock && family == PF_UNIX) { isec = inode_security_novalidate(SOCK_INODE(sock)); peer_secid = isec->sid; } else if (skb) selinux_skb_peerlbl_sid(skb, family, &peer_secid); out: *secid = peer_secid; if (peer_secid == SECSID_NULL) return -EINVAL; return 0; } static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority) { struct sk_security_struct *sksec; sksec = kzalloc(sizeof(*sksec), priority); if (!sksec) return -ENOMEM; sksec->peer_sid = SECINITSID_UNLABELED; sksec->sid = SECINITSID_UNLABELED; sksec->sclass = SECCLASS_SOCKET; selinux_netlbl_sk_security_reset(sksec); sk->sk_security = sksec; return 0; } static void selinux_sk_free_security(struct sock *sk) { struct sk_security_struct *sksec = sk->sk_security; sk->sk_security = NULL; selinux_netlbl_sk_security_free(sksec); kfree(sksec); } static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk) { struct sk_security_struct *sksec = sk->sk_security; struct sk_security_struct *newsksec = newsk->sk_security; newsksec->sid = sksec->sid; newsksec->peer_sid = sksec->peer_sid; newsksec->sclass = sksec->sclass; selinux_netlbl_sk_security_reset(newsksec); } static void selinux_sk_getsecid(struct sock *sk, u32 *secid) { if (!sk) *secid = SECINITSID_ANY_SOCKET; else { struct sk_security_struct *sksec = sk->sk_security; *secid = sksec->sid; } } static void selinux_sock_graft(struct sock *sk, struct socket *parent) { struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(parent)); struct sk_security_struct *sksec = sk->sk_security; if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 || sk->sk_family == PF_UNIX) isec->sid = sksec->sid; sksec->sclass = isec->sclass; } /* Called whenever SCTP receives an INIT chunk. This happens when an incoming * connect(2), sctp_connectx(3) or sctp_sendmsg(3) (with no association * already present). */ static int selinux_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb) { struct sk_security_struct *sksec = ep->base.sk->sk_security; struct common_audit_data ad; struct lsm_network_audit net = {0,}; u8 peerlbl_active; u32 peer_sid = SECINITSID_UNLABELED; u32 conn_sid; int err = 0; if (!selinux_policycap_extsockclass()) return 0; peerlbl_active = selinux_peerlbl_enabled(); if (peerlbl_active) { /* This will return peer_sid = SECSID_NULL if there are * no peer labels, see security_net_peersid_resolve(). */ err = selinux_skb_peerlbl_sid(skb, ep->base.sk->sk_family, &peer_sid); if (err) return err; if (peer_sid == SECSID_NULL) peer_sid = SECINITSID_UNLABELED; } if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) { sksec->sctp_assoc_state = SCTP_ASSOC_SET; /* Here as first association on socket. As the peer SID * was allowed by peer recv (and the netif/node checks), * then it is approved by policy and used as the primary * peer SID for getpeercon(3). */ sksec->peer_sid = peer_sid; } else if (sksec->peer_sid != peer_sid) { /* Other association peer SIDs are checked to enforce * consistency among the peer SIDs. */ ad.type = LSM_AUDIT_DATA_NET; ad.u.net = &net; ad.u.net->sk = ep->base.sk; err = avc_has_perm(&selinux_state, sksec->peer_sid, peer_sid, sksec->sclass, SCTP_SOCKET__ASSOCIATION, &ad); if (err) return err; } /* Compute the MLS component for the connection and store * the information in ep. This will be used by SCTP TCP type * sockets and peeled off connections as they cause a new * socket to be generated. selinux_sctp_sk_clone() will then * plug this into the new socket. */ err = selinux_conn_sid(sksec->sid, peer_sid, &conn_sid); if (err) return err; ep->secid = conn_sid; ep->peer_secid = peer_sid; /* Set any NetLabel labels including CIPSO/CALIPSO options. */ return selinux_netlbl_sctp_assoc_request(ep, skb); } /* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting * based on their @optname. */ static int selinux_sctp_bind_connect(struct sock *sk, int optname, struct sockaddr *address, int addrlen) { int len, err = 0, walk_size = 0; void *addr_buf; struct sockaddr *addr; struct socket *sock; if (!selinux_policycap_extsockclass()) return 0; /* Process one or more addresses that may be IPv4 or IPv6 */ sock = sk->sk_socket; addr_buf = address; while (walk_size < addrlen) { if (walk_size + sizeof(sa_family_t) > addrlen) return -EINVAL; addr = addr_buf; switch (addr->sa_family) { case AF_UNSPEC: case AF_INET: len = sizeof(struct sockaddr_in); break; case AF_INET6: len = sizeof(struct sockaddr_in6); break; default: return -EINVAL; } if (walk_size + len > addrlen) return -EINVAL; err = -EINVAL; switch (optname) { /* Bind checks */ case SCTP_PRIMARY_ADDR: case SCTP_SET_PEER_PRIMARY_ADDR: case SCTP_SOCKOPT_BINDX_ADD: err = selinux_socket_bind(sock, addr, len); break; /* Connect checks */ case SCTP_SOCKOPT_CONNECTX: case SCTP_PARAM_SET_PRIMARY: case SCTP_PARAM_ADD_IP: case SCTP_SENDMSG_CONNECT: err = selinux_socket_connect_helper(sock, addr, len); if (err) return err; /* As selinux_sctp_bind_connect() is called by the * SCTP protocol layer, the socket is already locked, * therefore selinux_netlbl_socket_connect_locked() * is called here. The situations handled are: * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2), * whenever a new IP address is added or when a new * primary address is selected. * Note that an SCTP connect(2) call happens before * the SCTP protocol layer and is handled via * selinux_socket_connect(). */ err = selinux_netlbl_socket_connect_locked(sk, addr); break; } if (err) return err; addr_buf += len; walk_size += len; } return 0; } /* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */ static void selinux_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk, struct sock *newsk) { struct sk_security_struct *sksec = sk->sk_security; struct sk_security_struct *newsksec = newsk->sk_security; /* If policy does not support SECCLASS_SCTP_SOCKET then call * the non-sctp clone version. */ if (!selinux_policycap_extsockclass()) return selinux_sk_clone_security(sk, newsk); newsksec->sid = ep->secid; newsksec->peer_sid = ep->peer_secid; newsksec->sclass = sksec->sclass; selinux_netlbl_sctp_sk_clone(sk, newsk); } static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb, struct request_sock *req) { struct sk_security_struct *sksec = sk->sk_security; int err; u16 family = req->rsk_ops->family; u32 connsid; u32 peersid; err = selinux_skb_peerlbl_sid(skb, family, &peersid); if (err) return err; err = selinux_conn_sid(sksec->sid, peersid, &connsid); if (err) return err; req->secid = connsid; req->peer_secid = peersid; return selinux_netlbl_inet_conn_request(req, family); } static void selinux_inet_csk_clone(struct sock *newsk, const struct request_sock *req) { struct sk_security_struct *newsksec = newsk->sk_security; newsksec->sid = req->secid; newsksec->peer_sid = req->peer_secid; /* NOTE: Ideally, we should also get the isec->sid for the new socket in sync, but we don't have the isec available yet. So we will wait until sock_graft to do it, by which time it will have been created and available. */ /* We don't need to take any sort of lock here as we are the only * thread with access to newsksec */ selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family); } static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb) { u16 family = sk->sk_family; struct sk_security_struct *sksec = sk->sk_security; /* handle mapped IPv4 packets arriving via IPv6 sockets */ if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) family = PF_INET; selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid); } static int selinux_secmark_relabel_packet(u32 sid) { const struct task_security_struct *__tsec; u32 tsid; __tsec = selinux_cred(current_cred()); tsid = __tsec->sid; return avc_has_perm(&selinux_state, tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL); } static void selinux_secmark_refcount_inc(void) { atomic_inc(&selinux_secmark_refcount); } static void selinux_secmark_refcount_dec(void) { atomic_dec(&selinux_secmark_refcount); } static void selinux_req_classify_flow(const struct request_sock *req, struct flowi *fl) { fl->flowi_secid = req->secid; } static int selinux_tun_dev_alloc_security(void **security) { struct tun_security_struct *tunsec; tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL); if (!tunsec) return -ENOMEM; tunsec->sid = current_sid(); *security = tunsec; return 0; } static void selinux_tun_dev_free_security(void *security) { kfree(security); } static int selinux_tun_dev_create(void) { u32 sid = current_sid(); /* we aren't taking into account the "sockcreate" SID since the socket * that is being created here is not a socket in the traditional sense, * instead it is a private sock, accessible only to the kernel, and * representing a wide range of network traffic spanning multiple * connections unlike traditional sockets - check the TUN driver to * get a better understanding of why this socket is special */ return avc_has_perm(&selinux_state, sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE, NULL); } static int selinux_tun_dev_attach_queue(void *security) { struct tun_security_struct *tunsec = security; return avc_has_perm(&selinux_state, current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__ATTACH_QUEUE, NULL); } static int selinux_tun_dev_attach(struct sock *sk, void *security) { struct tun_security_struct *tunsec = security; struct sk_security_struct *sksec = sk->sk_security; /* we don't currently perform any NetLabel based labeling here and it * isn't clear that we would want to do so anyway; while we could apply * labeling without the support of the TUN user the resulting labeled * traffic from the other end of the connection would almost certainly * cause confusion to the TUN user that had no idea network labeling * protocols were being used */ sksec->sid = tunsec->sid; sksec->sclass = SECCLASS_TUN_SOCKET; return 0; } static int selinux_tun_dev_open(void *security) { struct tun_security_struct *tunsec = security; u32 sid = current_sid(); int err; err = avc_has_perm(&selinux_state, sid, tunsec->sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__RELABELFROM, NULL); if (err) return err; err = avc_has_perm(&selinux_state, sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__RELABELTO, NULL); if (err) return err; tunsec->sid = sid; return 0; } #ifdef CONFIG_NETFILTER static unsigned int selinux_ip_forward(struct sk_buff *skb, const struct net_device *indev, u16 family) { int err; char *addrp; u32 peer_sid; struct common_audit_data ad; struct lsm_network_audit net = {0,}; u8 secmark_active; u8 netlbl_active; u8 peerlbl_active; if (!selinux_policycap_netpeer()) return NF_ACCEPT; secmark_active = selinux_secmark_enabled(); netlbl_active = netlbl_enabled(); peerlbl_active = selinux_peerlbl_enabled(); if (!secmark_active && !peerlbl_active) return NF_ACCEPT; if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0) return NF_DROP; ad.type = LSM_AUDIT_DATA_NET; ad.u.net = &net; ad.u.net->netif = indev->ifindex; ad.u.net->family = family; if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0) return NF_DROP; if (peerlbl_active) { err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex, addrp, family, peer_sid, &ad); if (err) { selinux_netlbl_err(skb, family, err, 1); return NF_DROP; } } if (secmark_active) if (avc_has_perm(&selinux_state, peer_sid, skb->secmark, SECCLASS_PACKET, PACKET__FORWARD_IN, &ad)) return NF_DROP; if (netlbl_active) /* we do this in the FORWARD path and not the POST_ROUTING * path because we want to make sure we apply the necessary * labeling before IPsec is applied so we can leverage AH * protection */ if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0) return NF_DROP; return NF_ACCEPT; } static unsigned int selinux_ipv4_forward(void *priv, struct sk_buff *skb, const struct nf_hook_state *state) { return selinux_ip_forward(skb, state->in, PF_INET); } #if IS_ENABLED(CONFIG_IPV6) static unsigned int selinux_ipv6_forward(void *priv, struct sk_buff *skb, const struct nf_hook_state *state) { return selinux_ip_forward(skb, state->in, PF_INET6); } #endif /* IPV6 */ static unsigned int selinux_ip_output(struct sk_buff *skb, u16 family) { struct sock *sk; u32 sid; if (!netlbl_enabled()) return NF_ACCEPT; /* we do this in the LOCAL_OUT path and not the POST_ROUTING path * because we want to make sure we apply the necessary labeling * before IPsec is applied so we can leverage AH protection */ sk = skb->sk; if (sk) { struct sk_security_struct *sksec; if (sk_listener(sk)) /* if the socket is the listening state then this * packet is a SYN-ACK packet which means it needs to * be labeled based on the connection/request_sock and * not the parent socket. unfortunately, we can't * lookup the request_sock yet as it isn't queued on * the parent socket until after the SYN-ACK is sent. * the "solution" is to simply pass the packet as-is * as any IP option based labeling should be copied * from the initial connection request (in the IP * layer). it is far from ideal, but until we get a * security label in the packet itself this is the * best we can do. */ return NF_ACCEPT; /* standard practice, label using the parent socket */ sksec = sk->sk_security; sid = sksec->sid; } else sid = SECINITSID_KERNEL; if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0) return NF_DROP; return NF_ACCEPT; } static unsigned int selinux_ipv4_output(void *priv, struct sk_buff *skb, const struct nf_hook_state *state) { return selinux_ip_output(skb, PF_INET); } #if IS_ENABLED(CONFIG_IPV6) static unsigned int selinux_ipv6_output(void *priv, struct sk_buff *skb, const struct nf_hook_state *state) { return selinux_ip_output(skb, PF_INET6); } #endif /* IPV6 */ static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb, int ifindex, u16 family) { struct sock *sk = skb_to_full_sk(skb); struct sk_security_struct *sksec; struct common_audit_data ad; struct lsm_network_audit net = {0,}; char *addrp; u8 proto = 0; if (sk == NULL) return NF_ACCEPT; sksec = sk->sk_security; ad.type = LSM_AUDIT_DATA_NET; ad.u.net = &net; ad.u.net->netif = ifindex; ad.u.net->family = family; if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto)) return NF_DROP; if (selinux_secmark_enabled()) if (avc_has_perm(&selinux_state, sksec->sid, skb->secmark, SECCLASS_PACKET, PACKET__SEND, &ad)) return NF_DROP_ERR(-ECONNREFUSED); if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto)) return NF_DROP_ERR(-ECONNREFUSED); return NF_ACCEPT; } static unsigned int selinux_ip_postroute(struct sk_buff *skb, const struct net_device *outdev, u16 family) { u32 secmark_perm; u32 peer_sid; int ifindex = outdev->ifindex; struct sock *sk; struct common_audit_data ad; struct lsm_network_audit net = {0,}; char *addrp; u8 secmark_active; u8 peerlbl_active; /* If any sort of compatibility mode is enabled then handoff processing * to the selinux_ip_postroute_compat() function to deal with the * special handling. We do this in an attempt to keep this function * as fast and as clean as possible. */ if (!selinux_policycap_netpeer()) return selinux_ip_postroute_compat(skb, ifindex, family); secmark_active = selinux_secmark_enabled(); peerlbl_active = selinux_peerlbl_enabled(); if (!secmark_active && !peerlbl_active) return NF_ACCEPT; sk = skb_to_full_sk(skb); #ifdef CONFIG_XFRM /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec * packet transformation so allow the packet to pass without any checks * since we'll have another chance to perform access control checks * when the packet is on it's final way out. * NOTE: there appear to be some IPv6 multicast cases where skb->dst * is NULL, in this case go ahead and apply access control. * NOTE: if this is a local socket (skb->sk != NULL) that is in the * TCP listening state we cannot wait until the XFRM processing * is done as we will miss out on the SA label if we do; * unfortunately, this means more work, but it is only once per * connection. */ if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL && !(sk && sk_listener(sk))) return NF_ACCEPT; #endif if (sk == NULL) { /* Without an associated socket the packet is either coming * from the kernel or it is being forwarded; check the packet * to determine which and if the packet is being forwarded * query the packet directly to determine the security label. */ if (skb->skb_iif) { secmark_perm = PACKET__FORWARD_OUT; if (selinux_skb_peerlbl_sid(skb, family, &peer_sid)) return NF_DROP; } else { secmark_perm = PACKET__SEND; peer_sid = SECINITSID_KERNEL; } } else if (sk_listener(sk)) { /* Locally generated packet but the associated socket is in the * listening state which means this is a SYN-ACK packet. In * this particular case the correct security label is assigned * to the connection/request_sock but unfortunately we can't * query the request_sock as it isn't queued on the parent * socket until after the SYN-ACK packet is sent; the only * viable choice is to regenerate the label like we do in * selinux_inet_conn_request(). See also selinux_ip_output() * for similar problems. */ u32 skb_sid; struct sk_security_struct *sksec; sksec = sk->sk_security; if (selinux_skb_peerlbl_sid(skb, family, &skb_sid)) return NF_DROP; /* At this point, if the returned skb peerlbl is SECSID_NULL * and the packet has been through at least one XFRM * transformation then we must be dealing with the "final" * form of labeled IPsec packet; since we've already applied * all of our access controls on this packet we can safely * pass the packet. */ if (skb_sid == SECSID_NULL) { switch (family) { case PF_INET: if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED) return NF_ACCEPT; break; case PF_INET6: if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED) return NF_ACCEPT; break; default: return NF_DROP_ERR(-ECONNREFUSED); } } if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid)) return NF_DROP; secmark_perm = PACKET__SEND; } else { /* Locally generated packet, fetch the security label from the * associated socket. */ struct sk_security_struct *sksec = sk->sk_security; peer_sid = sksec->sid; secmark_perm = PACKET__SEND; } ad.type = LSM_AUDIT_DATA_NET; ad.u.net = &net; ad.u.net->netif = ifindex; ad.u.net->family = family; if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL)) return NF_DROP; if (secmark_active) if (avc_has_perm(&selinux_state, peer_sid, skb->secmark, SECCLASS_PACKET, secmark_perm, &ad)) return NF_DROP_ERR(-ECONNREFUSED); if (peerlbl_active) { u32 if_sid; u32 node_sid; if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid)) return NF_DROP; if (avc_has_perm(&selinux_state, peer_sid, if_sid, SECCLASS_NETIF, NETIF__EGRESS, &ad)) return NF_DROP_ERR(-ECONNREFUSED); if (sel_netnode_sid(addrp, family, &node_sid)) return NF_DROP; if (avc_has_perm(&selinux_state, peer_sid, node_sid, SECCLASS_NODE, NODE__SENDTO, &ad)) return NF_DROP_ERR(-ECONNREFUSED); } return NF_ACCEPT; } static unsigned int selinux_ipv4_postroute(void *priv, struct sk_buff *skb, const struct nf_hook_state *state) { return selinux_ip_postroute(skb, state->out, PF_INET); } #if IS_ENABLED(CONFIG_IPV6) static unsigned int selinux_ipv6_postroute(void *priv, struct sk_buff *skb, const struct nf_hook_state *state) { return selinux_ip_postroute(skb, state->out, PF_INET6); } #endif /* IPV6 */ #endif /* CONFIG_NETFILTER */ static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb) { int rc = 0; unsigned int msg_len; unsigned int data_len = skb->len; unsigned char *data = skb->data; struct nlmsghdr *nlh; struct sk_security_struct *sksec = sk->sk_security; u16 sclass = sksec->sclass; u32 perm; while (data_len >= nlmsg_total_size(0)) { nlh = (struct nlmsghdr *)data; /* NOTE: the nlmsg_len field isn't reliably set by some netlink * users which means we can't reject skb's with bogus * length fields; our solution is to follow what * netlink_rcv_skb() does and simply skip processing at * messages with length fields that are clearly junk */ if (nlh->nlmsg_len < NLMSG_HDRLEN || nlh->nlmsg_len > data_len) return 0; rc = selinux_nlmsg_lookup(sclass, nlh->nlmsg_type, &perm); if (rc == 0) { rc = sock_has_perm(sk, perm); if (rc) return rc; } else if (rc == -EINVAL) { /* -EINVAL is a missing msg/perm mapping */ pr_warn_ratelimited("SELinux: unrecognized netlink" " message: protocol=%hu nlmsg_type=%hu sclass=%s" " pid=%d comm=%s\n", sk->sk_protocol, nlh->nlmsg_type, secclass_map[sclass - 1].name, task_pid_nr(current), current->comm); if (enforcing_enabled(&selinux_state) && !security_get_allow_unknown(&selinux_state)) return rc; rc = 0; } else if (rc == -ENOENT) { /* -ENOENT is a missing socket/class mapping, ignore */ rc = 0; } else { return rc; } /* move to the next message after applying netlink padding */ msg_len = NLMSG_ALIGN(nlh->nlmsg_len); if (msg_len >= data_len) return 0; data_len -= msg_len; data += msg_len; } return rc; } static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass) { isec->sclass = sclass; isec->sid = current_sid(); } static int ipc_has_perm(struct kern_ipc_perm *ipc_perms, u32 perms) { struct ipc_security_struct *isec; struct common_audit_data ad; u32 sid = current_sid(); isec = selinux_ipc(ipc_perms); ad.type = LSM_AUDIT_DATA_IPC; ad.u.ipc_id = ipc_perms->key; return avc_has_perm(&selinux_state, sid, isec->sid, isec->sclass, perms, &ad); } static int selinux_msg_msg_alloc_security(struct msg_msg *msg) { struct msg_security_struct *msec; msec = selinux_msg_msg(msg); msec->sid = SECINITSID_UNLABELED; return 0; } /* message queue security operations */ static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq) { struct ipc_security_struct *isec; struct common_audit_data ad; u32 sid = current_sid(); int rc; isec = selinux_ipc(msq); ipc_init_security(isec, SECCLASS_MSGQ); ad.type = LSM_AUDIT_DATA_IPC; ad.u.ipc_id = msq->key; rc = avc_has_perm(&selinux_state, sid, isec->sid, SECCLASS_MSGQ, MSGQ__CREATE, &ad); return rc; } static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg) { struct ipc_security_struct *isec; struct common_audit_data ad; u32 sid = current_sid(); isec = selinux_ipc(msq); ad.type = LSM_AUDIT_DATA_IPC; ad.u.ipc_id = msq->key; return avc_has_perm(&selinux_state, sid, isec->sid, SECCLASS_MSGQ, MSGQ__ASSOCIATE, &ad); } static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd) { int err; int perms; switch (cmd) { case IPC_INFO: case MSG_INFO: /* No specific object, just general system-wide information. */ return avc_has_perm(&selinux_state, current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL); case IPC_STAT: case MSG_STAT: case MSG_STAT_ANY: perms = MSGQ__GETATTR | MSGQ__ASSOCIATE; break; case IPC_SET: perms = MSGQ__SETATTR; break; case IPC_RMID: perms = MSGQ__DESTROY; break; default: return 0; } err = ipc_has_perm(msq, perms); return err; } static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg) { struct ipc_security_struct *isec; struct msg_security_struct *msec; struct common_audit_data ad; u32 sid = current_sid(); int rc; isec = selinux_ipc(msq); msec = selinux_msg_msg(msg); /* * First time through, need to assign label to the message */ if (msec->sid == SECINITSID_UNLABELED) { /* * Compute new sid based on current process and * message queue this message will be stored in */ rc = security_transition_sid(&selinux_state, sid, isec->sid, SECCLASS_MSG, NULL, &msec->sid); if (rc) return rc; } ad.type = LSM_AUDIT_DATA_IPC; ad.u.ipc_id = msq->key; /* Can this process write to the queue? */ rc = avc_has_perm(&selinux_state, sid, isec->sid, SECCLASS_MSGQ, MSGQ__WRITE, &ad); if (!rc) /* Can this process send the message */ rc = avc_has_perm(&selinux_state, sid, msec->sid, SECCLASS_MSG, MSG__SEND, &ad); if (!rc) /* Can the message be put in the queue? */ rc = avc_has_perm(&selinux_state, msec->sid, isec->sid, SECCLASS_MSGQ, MSGQ__ENQUEUE, &ad); return rc; } static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg, struct task_struct *target, long type, int mode) { struct ipc_security_struct *isec; struct msg_security_struct *msec; struct common_audit_data ad; u32 sid = task_sid(target); int rc; isec = selinux_ipc(msq); msec = selinux_msg_msg(msg); ad.type = LSM_AUDIT_DATA_IPC; ad.u.ipc_id = msq->key; rc = avc_has_perm(&selinux_state, sid, isec->sid, SECCLASS_MSGQ, MSGQ__READ, &ad); if (!rc) rc = avc_has_perm(&selinux_state, sid, msec->sid, SECCLASS_MSG, MSG__RECEIVE, &ad); return rc; } /* Shared Memory security operations */ static int selinux_shm_alloc_security(struct kern_ipc_perm *shp) { struct ipc_security_struct *isec; struct common_audit_data ad; u32 sid = current_sid(); int rc; isec = selinux_ipc(shp); ipc_init_security(isec, SECCLASS_SHM); ad.type = LSM_AUDIT_DATA_IPC; ad.u.ipc_id = shp->key; rc = avc_has_perm(&selinux_state, sid, isec->sid, SECCLASS_SHM, SHM__CREATE, &ad); return rc; } static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg) { struct ipc_security_struct *isec; struct common_audit_data ad; u32 sid = current_sid(); isec = selinux_ipc(shp); ad.type = LSM_AUDIT_DATA_IPC; ad.u.ipc_id = shp->key; return avc_has_perm(&selinux_state, sid, isec->sid, SECCLASS_SHM, SHM__ASSOCIATE, &ad); } /* Note, at this point, shp is locked down */ static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd) { int perms; int err; switch (cmd) { case IPC_INFO: case SHM_INFO: /* No specific object, just general system-wide information. */ return avc_has_perm(&selinux_state, current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL); case IPC_STAT: case SHM_STAT: case SHM_STAT_ANY: perms = SHM__GETATTR | SHM__ASSOCIATE; break; case IPC_SET: perms = SHM__SETATTR; break; case SHM_LOCK: case SHM_UNLOCK: perms = SHM__LOCK; break; case IPC_RMID: perms = SHM__DESTROY; break; default: return 0; } err = ipc_has_perm(shp, perms); return err; } static int selinux_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg) { u32 perms; if (shmflg & SHM_RDONLY) perms = SHM__READ; else perms = SHM__READ | SHM__WRITE; return ipc_has_perm(shp, perms); } /* Semaphore security operations */ static int selinux_sem_alloc_security(struct kern_ipc_perm *sma) { struct ipc_security_struct *isec; struct common_audit_data ad; u32 sid = current_sid(); int rc; isec = selinux_ipc(sma); ipc_init_security(isec, SECCLASS_SEM); ad.type = LSM_AUDIT_DATA_IPC; ad.u.ipc_id = sma->key; rc = avc_has_perm(&selinux_state, sid, isec->sid, SECCLASS_SEM, SEM__CREATE, &ad); return rc; } static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg) { struct ipc_security_struct *isec; struct common_audit_data ad; u32 sid = current_sid(); isec = selinux_ipc(sma); ad.type = LSM_AUDIT_DATA_IPC; ad.u.ipc_id = sma->key; return avc_has_perm(&selinux_state, sid, isec->sid, SECCLASS_SEM, SEM__ASSOCIATE, &ad); } /* Note, at this point, sma is locked down */ static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd) { int err; u32 perms; switch (cmd) { case IPC_INFO: case SEM_INFO: /* No specific object, just general system-wide information. */ return avc_has_perm(&selinux_state, current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL); case GETPID: case GETNCNT: case GETZCNT: perms = SEM__GETATTR; break; case GETVAL: case GETALL: perms = SEM__READ; break; case SETVAL: case SETALL: perms = SEM__WRITE; break; case IPC_RMID: perms = SEM__DESTROY; break; case IPC_SET: perms = SEM__SETATTR; break; case IPC_STAT: case SEM_STAT: case SEM_STAT_ANY: perms = SEM__GETATTR | SEM__ASSOCIATE; break; default: return 0; } err = ipc_has_perm(sma, perms); return err; } static int selinux_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops, unsigned nsops, int alter) { u32 perms; if (alter) perms = SEM__READ | SEM__WRITE; else perms = SEM__READ; return ipc_has_perm(sma, perms); } static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag) { u32 av = 0; av = 0; if (flag & S_IRUGO) av |= IPC__UNIX_READ; if (flag & S_IWUGO) av |= IPC__UNIX_WRITE; if (av == 0) return 0; return ipc_has_perm(ipcp, av); } static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) { struct ipc_security_struct *isec = selinux_ipc(ipcp); *secid = isec->sid; } static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode) { if (inode) inode_doinit_with_dentry(inode, dentry); } static int selinux_getprocattr(struct task_struct *p, char *name, char **value) { const struct task_security_struct *__tsec; u32 sid; int error; unsigned len; rcu_read_lock(); __tsec = selinux_cred(__task_cred(p)); if (current != p) { error = avc_has_perm(&selinux_state, current_sid(), __tsec->sid, SECCLASS_PROCESS, PROCESS__GETATTR, NULL); if (error) goto bad; } if (!strcmp(name, "current")) sid = __tsec->sid; else if (!strcmp(name, "prev")) sid = __tsec->osid; else if (!strcmp(name, "exec")) sid = __tsec->exec_sid; else if (!strcmp(name, "fscreate")) sid = __tsec->create_sid; else if (!strcmp(name, "keycreate")) sid = __tsec->keycreate_sid; else if (!strcmp(name, "sockcreate")) sid = __tsec->sockcreate_sid; else { error = -EINVAL; goto bad; } rcu_read_unlock(); if (!sid) return 0; error = security_sid_to_context(&selinux_state, sid, value, &len); if (error) return error; return len; bad: rcu_read_unlock(); return error; } static int selinux_setprocattr(const char *name, void *value, size_t size) { struct task_security_struct *tsec; struct cred *new; u32 mysid = current_sid(), sid = 0, ptsid; int error; char *str = value; /* * Basic control over ability to set these attributes at all. */ if (!strcmp(name, "exec")) error = avc_has_perm(&selinux_state, mysid, mysid, SECCLASS_PROCESS, PROCESS__SETEXEC, NULL); else if (!strcmp(name, "fscreate")) error = avc_has_perm(&selinux_state, mysid, mysid, SECCLASS_PROCESS, PROCESS__SETFSCREATE, NULL); else if (!strcmp(name, "keycreate")) error = avc_has_perm(&selinux_state, mysid, mysid, SECCLASS_PROCESS, PROCESS__SETKEYCREATE, NULL); else if (!strcmp(name, "sockcreate")) error = avc_has_perm(&selinux_state, mysid, mysid, SECCLASS_PROCESS, PROCESS__SETSOCKCREATE, NULL); else if (!strcmp(name, "current")) error = avc_has_perm(&selinux_state, mysid, mysid, SECCLASS_PROCESS, PROCESS__SETCURRENT, NULL); else error = -EINVAL; if (error) return error; /* Obtain a SID for the context, if one was specified. */ if (size && str[0] && str[0] != '\n') { if (str[size-1] == '\n') { str[size-1] = 0; size--; } error = security_context_to_sid(&selinux_state, value, size, &sid, GFP_KERNEL); if (error == -EINVAL && !strcmp(name, "fscreate")) { if (!has_cap_mac_admin(true)) { struct audit_buffer *ab; size_t audit_size; /* We strip a nul only if it is at the end, otherwise the * context contains a nul and we should audit that */ if (str[size - 1] == '\0') audit_size = size - 1; else audit_size = size; ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR); audit_log_format(ab, "op=fscreate invalid_context="); audit_log_n_untrustedstring(ab, value, audit_size); audit_log_end(ab); return error; } error = security_context_to_sid_force( &selinux_state, value, size, &sid); } if (error) return error; } new = prepare_creds(); if (!new) return -ENOMEM; /* Permission checking based on the specified context is performed during the actual operation (execve, open/mkdir/...), when we know the full context of the operation. See selinux_bprm_creds_for_exec for the execve checks and may_create for the file creation checks. The operation will then fail if the context is not permitted. */ tsec = selinux_cred(new); if (!strcmp(name, "exec")) { tsec->exec_sid = sid; } else if (!strcmp(name, "fscreate")) { tsec->create_sid = sid; } else if (!strcmp(name, "keycreate")) { if (sid) { error = avc_has_perm(&selinux_state, mysid, sid, SECCLASS_KEY, KEY__CREATE, NULL); if (error) goto abort_change; } tsec->keycreate_sid = sid; } else if (!strcmp(name, "sockcreate")) { tsec->sockcreate_sid = sid; } else if (!strcmp(name, "current")) { error = -EINVAL; if (sid == 0) goto abort_change; /* Only allow single threaded processes to change context */ error = -EPERM; if (!current_is_single_threaded()) { error = security_bounded_transition(&selinux_state, tsec->sid, sid); if (error) goto abort_change; } /* Check permissions for the transition. */ error = avc_has_perm(&selinux_state, tsec->sid, sid, SECCLASS_PROCESS, PROCESS__DYNTRANSITION, NULL); if (error) goto abort_change; /* Check for ptracing, and update the task SID if ok. Otherwise, leave SID unchanged and fail. */ ptsid = ptrace_parent_sid(); if (ptsid != 0) { error = avc_has_perm(&selinux_state, ptsid, sid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL); if (error) goto abort_change; } tsec->sid = sid; } else { error = -EINVAL; goto abort_change; } commit_creds(new); return size; abort_change: abort_creds(new); return error; } static int selinux_ismaclabel(const char *name) { return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0); } static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) { return security_sid_to_context(&selinux_state, secid, secdata, seclen); } static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) { return security_context_to_sid(&selinux_state, secdata, seclen, secid, GFP_KERNEL); } static void selinux_release_secctx(char *secdata, u32 seclen) { kfree(secdata); } static void selinux_inode_invalidate_secctx(struct inode *inode) { struct inode_security_struct *isec = selinux_inode(inode); spin_lock(&isec->lock); isec->initialized = LABEL_INVALID; spin_unlock(&isec->lock); } /* * called with inode->i_mutex locked */ static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) { int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0); /* Do not return error when suppressing label (SBLABEL_MNT not set). */ return rc == -EOPNOTSUPP ? 0 : rc; } /* * called with inode->i_mutex locked */ static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) { return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0); } static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) { int len = 0; len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, true); if (len < 0) return len; *ctxlen = len; return 0; } #ifdef CONFIG_KEYS static int selinux_key_alloc(struct key *k, const struct cred *cred, unsigned long flags) { const struct task_security_struct *tsec; struct key_security_struct *ksec; ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL); if (!ksec) return -ENOMEM; tsec = selinux_cred(cred); if (tsec->keycreate_sid) ksec->sid = tsec->keycreate_sid; else ksec->sid = tsec->sid; k->security = ksec; return 0; } static void selinux_key_free(struct key *k) { struct key_security_struct *ksec = k->security; k->security = NULL; kfree(ksec); } static int selinux_key_permission(key_ref_t key_ref, const struct cred *cred, enum key_need_perm need_perm) { struct key *key; struct key_security_struct *ksec; u32 perm, sid; switch (need_perm) { case KEY_NEED_VIEW: perm = KEY__VIEW; break; case KEY_NEED_READ: perm = KEY__READ; break; case KEY_NEED_WRITE: perm = KEY__WRITE; break; case KEY_NEED_SEARCH: perm = KEY__SEARCH; break; case KEY_NEED_LINK: perm = KEY__LINK; break; case KEY_NEED_SETATTR: perm = KEY__SETATTR; break; case KEY_NEED_UNLINK: case KEY_SYSADMIN_OVERRIDE: case KEY_AUTHTOKEN_OVERRIDE: case KEY_DEFER_PERM_CHECK: return 0; default: WARN_ON(1); return -EPERM; } sid = cred_sid(cred); key = key_ref_to_ptr(key_ref); ksec = key->security; return avc_has_perm(&selinux_state, sid, ksec->sid, SECCLASS_KEY, perm, NULL); } static int selinux_key_getsecurity(struct key *key, char **_buffer) { struct key_security_struct *ksec = key->security; char *context = NULL; unsigned len; int rc; rc = security_sid_to_context(&selinux_state, ksec->sid, &context, &len); if (!rc) rc = len; *_buffer = context; return rc; } #ifdef CONFIG_KEY_NOTIFICATIONS static int selinux_watch_key(struct key *key) { struct key_security_struct *ksec = key->security; u32 sid = current_sid(); return avc_has_perm(&selinux_state, sid, ksec->sid, SECCLASS_KEY, KEY__VIEW, NULL); } #endif #endif #ifdef CONFIG_SECURITY_INFINIBAND static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val) { struct common_audit_data ad; int err; u32 sid = 0; struct ib_security_struct *sec = ib_sec; struct lsm_ibpkey_audit ibpkey; err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid); if (err) return err; ad.type = LSM_AUDIT_DATA_IBPKEY; ibpkey.subnet_prefix = subnet_prefix; ibpkey.pkey = pkey_val; ad.u.ibpkey = &ibpkey; return avc_has_perm(&selinux_state, sec->sid, sid, SECCLASS_INFINIBAND_PKEY, INFINIBAND_PKEY__ACCESS, &ad); } static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name, u8 port_num) { struct common_audit_data ad; int err; u32 sid = 0; struct ib_security_struct *sec = ib_sec; struct lsm_ibendport_audit ibendport; err = security_ib_endport_sid(&selinux_state, dev_name, port_num, &sid); if (err) return err; ad.type = LSM_AUDIT_DATA_IBENDPORT; strncpy(ibendport.dev_name, dev_name, sizeof(ibendport.dev_name)); ibendport.port = port_num; ad.u.ibendport = &ibendport; return avc_has_perm(&selinux_state, sec->sid, sid, SECCLASS_INFINIBAND_ENDPORT, INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad); } static int selinux_ib_alloc_security(void **ib_sec) { struct ib_security_struct *sec; sec = kzalloc(sizeof(*sec), GFP_KERNEL); if (!sec) return -ENOMEM; sec->sid = current_sid(); *ib_sec = sec; return 0; } static void selinux_ib_free_security(void *ib_sec) { kfree(ib_sec); } #endif #ifdef CONFIG_BPF_SYSCALL static int selinux_bpf(int cmd, union bpf_attr *attr, unsigned int size) { u32 sid = current_sid(); int ret; switch (cmd) { case BPF_MAP_CREATE: ret = avc_has_perm(&selinux_state, sid, sid, SECCLASS_BPF, BPF__MAP_CREATE, NULL); break; case BPF_PROG_LOAD: ret = avc_has_perm(&selinux_state, sid, sid, SECCLASS_BPF, BPF__PROG_LOAD, NULL); break; default: ret = 0; break; } return ret; } static u32 bpf_map_fmode_to_av(fmode_t fmode) { u32 av = 0; if (fmode & FMODE_READ) av |= BPF__MAP_READ; if (fmode & FMODE_WRITE) av |= BPF__MAP_WRITE; return av; } /* This function will check the file pass through unix socket or binder to see * if it is a bpf related object. And apply correspinding checks on the bpf * object based on the type. The bpf maps and programs, not like other files and * socket, are using a shared anonymous inode inside the kernel as their inode. * So checking that inode cannot identify if the process have privilege to * access the bpf object and that's why we have to add this additional check in * selinux_file_receive and selinux_binder_transfer_files. */ static int bpf_fd_pass(struct file *file, u32 sid) { struct bpf_security_struct *bpfsec; struct bpf_prog *prog; struct bpf_map *map; int ret; if (file->f_op == &bpf_map_fops) { map = file->private_data; bpfsec = map->security; ret = avc_has_perm(&selinux_state, sid, bpfsec->sid, SECCLASS_BPF, bpf_map_fmode_to_av(file->f_mode), NULL); if (ret) return ret; } else if (file->f_op == &bpf_prog_fops) { prog = file->private_data; bpfsec = prog->aux->security; ret = avc_has_perm(&selinux_state, sid, bpfsec->sid, SECCLASS_BPF, BPF__PROG_RUN, NULL); if (ret) return ret; } return 0; } static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode) { u32 sid = current_sid(); struct bpf_security_struct *bpfsec; bpfsec = map->security; return avc_has_perm(&selinux_state, sid, bpfsec->sid, SECCLASS_BPF, bpf_map_fmode_to_av(fmode), NULL); } static int selinux_bpf_prog(struct bpf_prog *prog) { u32 sid = current_sid(); struct bpf_security_struct *bpfsec; bpfsec = prog->aux->security; return avc_has_perm(&selinux_state, sid, bpfsec->sid, SECCLASS_BPF, BPF__PROG_RUN, NULL); } static int selinux_bpf_map_alloc(struct bpf_map *map) { struct bpf_security_struct *bpfsec; bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL); if (!bpfsec) return -ENOMEM; bpfsec->sid = current_sid(); map->security = bpfsec; return 0; } static void selinux_bpf_map_free(struct bpf_map *map) { struct bpf_security_struct *bpfsec = map->security; map->security = NULL; kfree(bpfsec); } static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux) { struct bpf_security_struct *bpfsec; bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL); if (!bpfsec) return -ENOMEM; bpfsec->sid = current_sid(); aux->security = bpfsec; return 0; } static void selinux_bpf_prog_free(struct bpf_prog_aux *aux) { struct bpf_security_struct *bpfsec = aux->security; aux->security = NULL; kfree(bpfsec); } #endif static int selinux_lockdown(enum lockdown_reason what) { struct common_audit_data ad; u32 sid = current_sid(); int invalid_reason = (what <= LOCKDOWN_NONE) || (what == LOCKDOWN_INTEGRITY_MAX) || (what >= LOCKDOWN_CONFIDENTIALITY_MAX); if (WARN(invalid_reason, "Invalid lockdown reason")) { audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR, "lockdown_reason=invalid"); return -EINVAL; } ad.type = LSM_AUDIT_DATA_LOCKDOWN; ad.u.reason = what; if (what <= LOCKDOWN_INTEGRITY_MAX) return avc_has_perm(&selinux_state, sid, sid, SECCLASS_LOCKDOWN, LOCKDOWN__INTEGRITY, &ad); else return avc_has_perm(&selinux_state, sid, sid, SECCLASS_LOCKDOWN, LOCKDOWN__CONFIDENTIALITY, &ad); } struct lsm_blob_sizes selinux_blob_sizes __lsm_ro_after_init = { .lbs_cred = sizeof(struct task_security_struct), .lbs_file = sizeof(struct file_security_struct), .lbs_inode = sizeof(struct inode_security_struct), .lbs_ipc = sizeof(struct ipc_security_struct), .lbs_msg_msg = sizeof(struct msg_security_struct), }; #ifdef CONFIG_PERF_EVENTS static int selinux_perf_event_open(struct perf_event_attr *attr, int type) { u32 requested, sid = current_sid(); if (type == PERF_SECURITY_OPEN) requested = PERF_EVENT__OPEN; else if (type == PERF_SECURITY_CPU) requested = PERF_EVENT__CPU; else if (type == PERF_SECURITY_KERNEL) requested = PERF_EVENT__KERNEL; else if (type == PERF_SECURITY_TRACEPOINT) requested = PERF_EVENT__TRACEPOINT; else return -EINVAL; return avc_has_perm(&selinux_state, sid, sid, SECCLASS_PERF_EVENT, requested, NULL); } static int selinux_perf_event_alloc(struct perf_event *event) { struct perf_event_security_struct *perfsec; perfsec = kzalloc(sizeof(*perfsec), GFP_KERNEL); if (!perfsec) return -ENOMEM; perfsec->sid = current_sid(); event->security = perfsec; return 0; } static void selinux_perf_event_free(struct perf_event *event) { struct perf_event_security_struct *perfsec = event->security; event->security = NULL; kfree(perfsec); } static int selinux_perf_event_read(struct perf_event *event) { struct perf_event_security_struct *perfsec = event->security; u32 sid = current_sid(); return avc_has_perm(&selinux_state, sid, perfsec->sid, SECCLASS_PERF_EVENT, PERF_EVENT__READ, NULL); } static int selinux_perf_event_write(struct perf_event *event) { struct perf_event_security_struct *perfsec = event->security; u32 sid = current_sid(); return avc_has_perm(&selinux_state, sid, perfsec->sid, SECCLASS_PERF_EVENT, PERF_EVENT__WRITE, NULL); } #endif /* * IMPORTANT NOTE: When adding new hooks, please be careful to keep this order: * 1. any hooks that don't belong to (2.) or (3.) below, * 2. hooks that both access structures allocated by other hooks, and allocate * structures that can be later accessed by other hooks (mostly "cloning" * hooks), * 3. hooks that only allocate structures that can be later accessed by other * hooks ("allocating" hooks). * * Please follow block comment delimiters in the list to keep this order. * * This ordering is needed for SELinux runtime disable to work at least somewhat * safely. Breaking the ordering rules above might lead to NULL pointer derefs * when disabling SELinux at runtime. */ static struct security_hook_list selinux_hooks[] __lsm_ro_after_init = { LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr), LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction), LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder), LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file), LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check), LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme), LSM_HOOK_INIT(capget, selinux_capget), LSM_HOOK_INIT(capset, selinux_capset), LSM_HOOK_INIT(capable, selinux_capable), LSM_HOOK_INIT(quotactl, selinux_quotactl), LSM_HOOK_INIT(quota_on, selinux_quota_on), LSM_HOOK_INIT(syslog, selinux_syslog), LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory), LSM_HOOK_INIT(netlink_send, selinux_netlink_send), LSM_HOOK_INIT(bprm_creds_for_exec, selinux_bprm_creds_for_exec), LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds), LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds), LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security), LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts), LSM_HOOK_INIT(sb_remount, selinux_sb_remount), LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount), LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options), LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs), LSM_HOOK_INIT(sb_mount, selinux_mount), LSM_HOOK_INIT(sb_umount, selinux_umount), LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts), LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts), LSM_HOOK_INIT(move_mount, selinux_move_mount), LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security), LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as), LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security), LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security), LSM_HOOK_INIT(inode_create, selinux_inode_create), LSM_HOOK_INIT(inode_link, selinux_inode_link), LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink), LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink), LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir), LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir), LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod), LSM_HOOK_INIT(inode_rename, selinux_inode_rename), LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink), LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link), LSM_HOOK_INIT(inode_permission, selinux_inode_permission), LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr), LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr), LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr), LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr), LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr), LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr), LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr), LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity), LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity), LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity), LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid), LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up), LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr), LSM_HOOK_INIT(path_notify, selinux_path_notify), LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security), LSM_HOOK_INIT(file_permission, selinux_file_permission), LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security), LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl), LSM_HOOK_INIT(mmap_file, selinux_mmap_file), LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr), LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect), LSM_HOOK_INIT(file_lock, selinux_file_lock), LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl), LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner), LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask), LSM_HOOK_INIT(file_receive, selinux_file_receive), LSM_HOOK_INIT(file_open, selinux_file_open), LSM_HOOK_INIT(task_alloc, selinux_task_alloc), LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare), LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer), LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid), LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as), LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as), LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request), LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data), LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file), LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid), LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid), LSM_HOOK_INIT(task_getsid, selinux_task_getsid), LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid), LSM_HOOK_INIT(task_setnice, selinux_task_setnice), LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio), LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio), LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit), LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit), LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler), LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler), LSM_HOOK_INIT(task_movememory, selinux_task_movememory), LSM_HOOK_INIT(task_kill, selinux_task_kill), LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode), LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission), LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid), LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate), LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl), LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd), LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv), LSM_HOOK_INIT(shm_associate, selinux_shm_associate), LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl), LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat), LSM_HOOK_INIT(sem_associate, selinux_sem_associate), LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl), LSM_HOOK_INIT(sem_semop, selinux_sem_semop), LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate), LSM_HOOK_INIT(getprocattr, selinux_getprocattr), LSM_HOOK_INIT(setprocattr, selinux_setprocattr), LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel), LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid), LSM_HOOK_INIT(release_secctx, selinux_release_secctx), LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx), LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx), LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx), LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect), LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send), LSM_HOOK_INIT(socket_create, selinux_socket_create), LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create), LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair), LSM_HOOK_INIT(socket_bind, selinux_socket_bind), LSM_HOOK_INIT(socket_connect, selinux_socket_connect), LSM_HOOK_INIT(socket_listen, selinux_socket_listen), LSM_HOOK_INIT(socket_accept, selinux_socket_accept), LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg), LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg), LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname), LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername), LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt), LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt), LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown), LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb), LSM_HOOK_INIT(socket_getpeersec_stream, selinux_socket_getpeersec_stream), LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram), LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security), LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security), LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid), LSM_HOOK_INIT(sock_graft, selinux_sock_graft), LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request), LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone), LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect), LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request), LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone), LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established), LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet), LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc), LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec), LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow), LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security), LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create), LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue), LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach), LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open), #ifdef CONFIG_SECURITY_INFINIBAND LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access), LSM_HOOK_INIT(ib_endport_manage_subnet, selinux_ib_endport_manage_subnet), LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security), #endif #ifdef CONFIG_SECURITY_NETWORK_XFRM LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free), LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete), LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free), LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete), LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup), LSM_HOOK_INIT(xfrm_state_pol_flow_match, selinux_xfrm_state_pol_flow_match), LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session), #endif #ifdef CONFIG_KEYS LSM_HOOK_INIT(key_free, selinux_key_free), LSM_HOOK_INIT(key_permission, selinux_key_permission), LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity), #ifdef CONFIG_KEY_NOTIFICATIONS LSM_HOOK_INIT(watch_key, selinux_watch_key), #endif #endif #ifdef CONFIG_AUDIT LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known), LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match), LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free), #endif #ifdef CONFIG_BPF_SYSCALL LSM_HOOK_INIT(bpf, selinux_bpf), LSM_HOOK_INIT(bpf_map, selinux_bpf_map), LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog), LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free), LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free), #endif #ifdef CONFIG_PERF_EVENTS LSM_HOOK_INIT(perf_event_open, selinux_perf_event_open), LSM_HOOK_INIT(perf_event_free, selinux_perf_event_free), LSM_HOOK_INIT(perf_event_read, selinux_perf_event_read), LSM_HOOK_INIT(perf_event_write, selinux_perf_event_write), #endif LSM_HOOK_INIT(locked_down, selinux_lockdown), /* * PUT "CLONING" (ACCESSING + ALLOCATING) HOOKS HERE */ LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup), LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param), LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts), LSM_HOOK_INIT(sb_add_mnt_opt, selinux_add_mnt_opt), #ifdef CONFIG_SECURITY_NETWORK_XFRM LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone), #endif /* * PUT "ALLOCATING" HOOKS HERE */ LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security), LSM_HOOK_INIT(msg_queue_alloc_security, selinux_msg_queue_alloc_security), LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security), LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security), LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security), LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security), LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx), LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx), LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security), LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security), #ifdef CONFIG_SECURITY_INFINIBAND LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security), #endif #ifdef CONFIG_SECURITY_NETWORK_XFRM LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc), LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc), LSM_HOOK_INIT(xfrm_state_alloc_acquire, selinux_xfrm_state_alloc_acquire), #endif #ifdef CONFIG_KEYS LSM_HOOK_INIT(key_alloc, selinux_key_alloc), #endif #ifdef CONFIG_AUDIT LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init), #endif #ifdef CONFIG_BPF_SYSCALL LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc), LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc), #endif #ifdef CONFIG_PERF_EVENTS LSM_HOOK_INIT(perf_event_alloc, selinux_perf_event_alloc), #endif }; static __init int selinux_init(void) { pr_info("SELinux: Initializing.\n"); memset(&selinux_state, 0, sizeof(selinux_state)); enforcing_set(&selinux_state, selinux_enforcing_boot); checkreqprot_set(&selinux_state, selinux_checkreqprot_boot); selinux_avc_init(&selinux_state.avc); mutex_init(&selinux_state.status_lock); mutex_init(&selinux_state.policy_mutex); /* Set the security state for the initial task. */ cred_init_security(); default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC); avc_init(); avtab_cache_init(); ebitmap_cache_init(); hashtab_cache_init(); security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux"); if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET)) panic("SELinux: Unable to register AVC netcache callback\n"); if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET)) panic("SELinux: Unable to register AVC LSM notifier callback\n"); if (selinux_enforcing_boot) pr_debug("SELinux: Starting in enforcing mode\n"); else pr_debug("SELinux: Starting in permissive mode\n"); fs_validate_description("selinux", selinux_fs_parameters); return 0; } static void delayed_superblock_init(struct super_block *sb, void *unused) { selinux_set_mnt_opts(sb, NULL, 0, NULL); } void selinux_complete_init(void) { pr_debug("SELinux: Completing initialization.\n"); /* Set up any superblocks initialized prior to the policy load. */ pr_debug("SELinux: Setting up existing superblocks.\n"); iterate_supers(delayed_superblock_init, NULL); } /* SELinux requires early initialization in order to label all processes and objects when they are created. */ DEFINE_LSM(selinux) = { .name = "selinux", .flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE, .enabled = &selinux_enabled_boot, .blobs = &selinux_blob_sizes, .init = selinux_init, }; #if defined(CONFIG_NETFILTER) static const struct nf_hook_ops selinux_nf_ops[] = { { .hook = selinux_ipv4_postroute, .pf = NFPROTO_IPV4, .hooknum = NF_INET_POST_ROUTING, .priority = NF_IP_PRI_SELINUX_LAST, }, { .hook = selinux_ipv4_forward, .pf = NFPROTO_IPV4, .hooknum = NF_INET_FORWARD, .priority = NF_IP_PRI_SELINUX_FIRST, }, { .hook = selinux_ipv4_output, .pf = NFPROTO_IPV4, .hooknum = NF_INET_LOCAL_OUT, .priority = NF_IP_PRI_SELINUX_FIRST, }, #if IS_ENABLED(CONFIG_IPV6) { .hook = selinux_ipv6_postroute, .pf = NFPROTO_IPV6, .hooknum = NF_INET_POST_ROUTING, .priority = NF_IP6_PRI_SELINUX_LAST, }, { .hook = selinux_ipv6_forward, .pf = NFPROTO_IPV6, .hooknum = NF_INET_FORWARD, .priority = NF_IP6_PRI_SELINUX_FIRST, }, { .hook = selinux_ipv6_output, .pf = NFPROTO_IPV6, .hooknum = NF_INET_LOCAL_OUT, .priority = NF_IP6_PRI_SELINUX_FIRST, }, #endif /* IPV6 */ }; static int __net_init selinux_nf_register(struct net *net) { return nf_register_net_hooks(net, selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops)); } static void __net_exit selinux_nf_unregister(struct net *net) { nf_unregister_net_hooks(net, selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops)); } static struct pernet_operations selinux_net_ops = { .init = selinux_nf_register, .exit = selinux_nf_unregister, }; static int __init selinux_nf_ip_init(void) { int err; if (!selinux_enabled_boot) return 0; pr_debug("SELinux: Registering netfilter hooks\n"); err = register_pernet_subsys(&selinux_net_ops); if (err) panic("SELinux: register_pernet_subsys: error %d\n", err); return 0; } __initcall(selinux_nf_ip_init); #ifdef CONFIG_SECURITY_SELINUX_DISABLE static void selinux_nf_ip_exit(void) { pr_debug("SELinux: Unregistering netfilter hooks\n"); unregister_pernet_subsys(&selinux_net_ops); } #endif #else /* CONFIG_NETFILTER */ #ifdef CONFIG_SECURITY_SELINUX_DISABLE #define selinux_nf_ip_exit() #endif #endif /* CONFIG_NETFILTER */ #ifdef CONFIG_SECURITY_SELINUX_DISABLE int selinux_disable(struct selinux_state *state) { if (selinux_initialized(state)) { /* Not permitted after initial policy load. */ return -EINVAL; } if (selinux_disabled(state)) { /* Only do this once. */ return -EINVAL; } selinux_mark_disabled(state); pr_info("SELinux: Disabled at runtime.\n"); /* * Unregister netfilter hooks. * Must be done before security_delete_hooks() to avoid breaking * runtime disable. */ selinux_nf_ip_exit(); security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks)); /* Try to destroy the avc node cache */ avc_disable(); /* Unregister selinuxfs. */ exit_sel_fs(); return 0; } #endif
1 2 3 4 5 6 7 8 9 10 11 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __NET_NS_HASH_H__ #define __NET_NS_HASH_H__ #include <net/net_namespace.h> static inline u32 net_hash_mix(const struct net *net) { return net->hash_mix; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _KERNEL_EVENTS_INTERNAL_H #define _KERNEL_EVENTS_INTERNAL_H #include <linux/hardirq.h> #include <linux/uaccess.h> #include <linux/refcount.h> /* Buffer handling */ #define RING_BUFFER_WRITABLE 0x01 struct perf_buffer { refcount_t refcount; struct rcu_head rcu_head; #ifdef CONFIG_PERF_USE_VMALLOC struct work_struct work; int page_order; /* allocation order */ #endif int nr_pages; /* nr of data pages */ int overwrite; /* can overwrite itself */ int paused; /* can write into ring buffer */ atomic_t poll; /* POLL_ for wakeups */ local_t head; /* write position */ unsigned int nest; /* nested writers */ local_t events; /* event limit */ local_t wakeup; /* wakeup stamp */ local_t lost; /* nr records lost */ long watermark; /* wakeup watermark */ long aux_watermark; /* poll crap */ spinlock_t event_lock; struct list_head event_list; atomic_t mmap_count; unsigned long mmap_locked; struct user_struct *mmap_user; /* AUX area */ long aux_head; unsigned int aux_nest; long aux_wakeup; /* last aux_watermark boundary crossed by aux_head */ unsigned long aux_pgoff; int aux_nr_pages; int aux_overwrite; atomic_t aux_mmap_count; unsigned long aux_mmap_locked; void (*free_aux)(void *); refcount_t aux_refcount; int aux_in_sampling; void **aux_pages; void *aux_priv; struct perf_event_mmap_page *user_page; void *data_pages[]; }; extern void rb_free(struct perf_buffer *rb); static inline void rb_free_rcu(struct rcu_head *rcu_head) { struct perf_buffer *rb; rb = container_of(rcu_head, struct perf_buffer, rcu_head); rb_free(rb); } static inline void rb_toggle_paused(struct perf_buffer *rb, bool pause) { if (!pause && rb->nr_pages) rb->paused = 0; else rb->paused = 1; } extern struct perf_buffer * rb_alloc(int nr_pages, long watermark, int cpu, int flags); extern void perf_event_wakeup(struct perf_event *event); extern int rb_alloc_aux(struct perf_buffer *rb, struct perf_event *event, pgoff_t pgoff, int nr_pages, long watermark, int flags); extern void rb_free_aux(struct perf_buffer *rb); extern struct perf_buffer *ring_buffer_get(struct perf_event *event); extern void ring_buffer_put(struct perf_buffer *rb); static inline bool rb_has_aux(struct perf_buffer *rb) { return !!rb->aux_nr_pages; } void perf_event_aux_event(struct perf_event *event, unsigned long head, unsigned long size, u64 flags); extern struct page * perf_mmap_to_page(struct perf_buffer *rb, unsigned long pgoff); #ifdef CONFIG_PERF_USE_VMALLOC /* * Back perf_mmap() with vmalloc memory. * * Required for architectures that have d-cache aliasing issues. */ static inline int page_order(struct perf_buffer *rb) { return rb->page_order; } #else static inline int page_order(struct perf_buffer *rb) { return 0; } #endif static inline unsigned long perf_data_size(struct perf_buffer *rb) { return rb->nr_pages << (PAGE_SHIFT + page_order(rb)); } static inline unsigned long perf_aux_size(struct perf_buffer *rb) { return rb->aux_nr_pages << PAGE_SHIFT; } #define __DEFINE_OUTPUT_COPY_BODY(advance_buf, memcpy_func, ...) \ { \ unsigned long size, written; \ \ do { \ size = min(handle->size, len); \ written = memcpy_func(__VA_ARGS__); \ written = size - written; \ \ len -= written; \ handle->addr += written; \ if (advance_buf) \ buf += written; \ handle->size -= written; \ if (!handle->size) { \ struct perf_buffer *rb = handle->rb; \ \ handle->page++; \ handle->page &= rb->nr_pages - 1; \ handle->addr = rb->data_pages[handle->page]; \ handle->size = PAGE_SIZE << page_order(rb); \ } \ } while (len && written == size); \ \ return len; \ } #define DEFINE_OUTPUT_COPY(func_name, memcpy_func) \ static inline unsigned long \ func_name(struct perf_output_handle *handle, \ const void *buf, unsigned long len) \ __DEFINE_OUTPUT_COPY_BODY(true, memcpy_func, handle->addr, buf, size) static inline unsigned long __output_custom(struct perf_output_handle *handle, perf_copy_f copy_func, const void *buf, unsigned long len) { unsigned long orig_len = len; __DEFINE_OUTPUT_COPY_BODY(false, copy_func, handle->addr, buf, orig_len - len, size) } static inline unsigned long memcpy_common(void *dst, const void *src, unsigned long n) { memcpy(dst, src, n); return 0; } DEFINE_OUTPUT_COPY(__output_copy, memcpy_common) static inline unsigned long memcpy_skip(void *dst, const void *src, unsigned long n) { return 0; } DEFINE_OUTPUT_COPY(__output_skip, memcpy_skip) #ifndef arch_perf_out_copy_user #define arch_perf_out_copy_user arch_perf_out_copy_user static inline unsigned long arch_perf_out_copy_user(void *dst, const void *src, unsigned long n) { unsigned long ret; pagefault_disable(); ret = __copy_from_user_inatomic(dst, src, n); pagefault_enable(); return ret; } #endif DEFINE_OUTPUT_COPY(__output_copy_user, arch_perf_out_copy_user) static inline int get_recursion_context(int *recursion) { unsigned int pc = preempt_count(); unsigned char rctx = 0; rctx += !!(pc & (NMI_MASK)); rctx += !!(pc & (NMI_MASK | HARDIRQ_MASK)); rctx += !!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)); if (recursion[rctx]) return -1; recursion[rctx]++; barrier(); return rctx; } static inline void put_recursion_context(int *recursion, int rctx) { barrier(); recursion[rctx]--; } #ifdef CONFIG_HAVE_PERF_USER_STACK_DUMP static inline bool arch_perf_have_user_stack_dump(void) { return true; } #define perf_user_stack_pointer(regs) user_stack_pointer(regs) #else static inline bool arch_perf_have_user_stack_dump(void) { return false; } #define perf_user_stack_pointer(regs) 0 #endif /* CONFIG_HAVE_PERF_USER_STACK_DUMP */ #endif /* _KERNEL_EVENTS_INTERNAL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM pagemap #if !defined(_TRACE_PAGEMAP_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_PAGEMAP_H #include <linux/tracepoint.h> #include <linux/mm.h> #define PAGEMAP_MAPPED 0x0001u #define PAGEMAP_ANONYMOUS 0x0002u #define PAGEMAP_FILE 0x0004u #define PAGEMAP_SWAPCACHE 0x0008u #define PAGEMAP_SWAPBACKED 0x0010u #define PAGEMAP_MAPPEDDISK 0x0020u #define PAGEMAP_BUFFERS 0x0040u #define trace_pagemap_flags(page) ( \ (PageAnon(page) ? PAGEMAP_ANONYMOUS : PAGEMAP_FILE) | \ (page_mapped(page) ? PAGEMAP_MAPPED : 0) | \ (PageSwapCache(page) ? PAGEMAP_SWAPCACHE : 0) | \ (PageSwapBacked(page) ? PAGEMAP_SWAPBACKED : 0) | \ (PageMappedToDisk(page) ? PAGEMAP_MAPPEDDISK : 0) | \ (page_has_private(page) ? PAGEMAP_BUFFERS : 0) \ ) TRACE_EVENT(mm_lru_insertion, TP_PROTO( struct page *page, int lru ), TP_ARGS(page, lru), TP_STRUCT__entry( __field(struct page *, page ) __field(unsigned long, pfn ) __field(int, lru ) __field(unsigned long, flags ) ), TP_fast_assign( __entry->page = page; __entry->pfn = page_to_pfn(page); __entry->lru = lru; __entry->flags = trace_pagemap_flags(page); ), /* Flag format is based on page-types.c formatting for pagemap */ TP_printk("page=%p pfn=%lu lru=%d flags=%s%s%s%s%s%s", __entry->page, __entry->pfn, __entry->lru, __entry->flags & PAGEMAP_MAPPED ? "M" : " ", __entry->flags & PAGEMAP_ANONYMOUS ? "a" : "f", __entry->flags & PAGEMAP_SWAPCACHE ? "s" : " ", __entry->flags & PAGEMAP_SWAPBACKED ? "b" : " ", __entry->flags & PAGEMAP_MAPPEDDISK ? "d" : " ", __entry->flags & PAGEMAP_BUFFERS ? "B" : " ") ); TRACE_EVENT(mm_lru_activate, TP_PROTO(struct page *page), TP_ARGS(page), TP_STRUCT__entry( __field(struct page *, page ) __field(unsigned long, pfn ) ), TP_fast_assign( __entry->page = page; __entry->pfn = page_to_pfn(page); ), /* Flag format is based on page-types.c formatting for pagemap */ TP_printk("page=%p pfn=%lu", __entry->page, __entry->pfn) ); #endif /* _TRACE_PAGEMAP_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* Red Black Trees (C) 1999 Andrea Arcangeli <andrea@suse.de> (C) 2002 David Woodhouse <dwmw2@infradead.org> (C) 2012 Michel Lespinasse <walken@google.com> linux/include/linux/rbtree_augmented.h */ #ifndef _LINUX_RBTREE_AUGMENTED_H #define _LINUX_RBTREE_AUGMENTED_H #include <linux/compiler.h> #include <linux/rbtree.h> #include <linux/rcupdate.h> /* * Please note - only struct rb_augment_callbacks and the prototypes for * rb_insert_augmented() and rb_erase_augmented() are intended to be public. * The rest are implementation details you are not expected to depend on. * * See Documentation/core-api/rbtree.rst for documentation and samples. */ struct rb_augment_callbacks { void (*propagate)(struct rb_node *node, struct rb_node *stop); void (*copy)(struct rb_node *old, struct rb_node *new); void (*rotate)(struct rb_node *old, struct rb_node *new); }; extern void __rb_insert_augmented(struct rb_node *node, struct rb_root *root, void (*augment_rotate)(struct rb_node *old, struct rb_node *new)); /* * Fixup the rbtree and update the augmented information when rebalancing. * * On insertion, the user must update the augmented information on the path * leading to the inserted node, then call rb_link_node() as usual and * rb_insert_augmented() instead of the usual rb_insert_color() call. * If rb_insert_augmented() rebalances the rbtree, it will callback into * a user provided function to update the augmented information on the * affected subtrees. */ static inline void rb_insert_augmented(struct rb_node *node, struct rb_root *root, const struct rb_augment_callbacks *augment) { __rb_insert_augmented(node, root, augment->rotate); } static inline void rb_insert_augmented_cached(struct rb_node *node, struct rb_root_cached *root, bool newleft, const struct rb_augment_callbacks *augment) { if (newleft) root->rb_leftmost = node; rb_insert_augmented(node, &root->rb_root, augment); } /* * Template for declaring augmented rbtree callbacks (generic case) * * RBSTATIC: 'static' or empty * RBNAME: name of the rb_augment_callbacks structure * RBSTRUCT: struct type of the tree nodes * RBFIELD: name of struct rb_node field within RBSTRUCT * RBAUGMENTED: name of field within RBSTRUCT holding data for subtree * RBCOMPUTE: name of function that recomputes the RBAUGMENTED data */ #define RB_DECLARE_CALLBACKS(RBSTATIC, RBNAME, \ RBSTRUCT, RBFIELD, RBAUGMENTED, RBCOMPUTE) \ static inline void \ RBNAME ## _propagate(struct rb_node *rb, struct rb_node *stop) \ { \ while (rb != stop) { \ RBSTRUCT *node = rb_entry(rb, RBSTRUCT, RBFIELD); \ if (RBCOMPUTE(node, true)) \ break; \ rb = rb_parent(&node->RBFIELD); \ } \ } \ static inline void \ RBNAME ## _copy(struct rb_node *rb_old, struct rb_node *rb_new) \ { \ RBSTRUCT *old = rb_entry(rb_old, RBSTRUCT, RBFIELD); \ RBSTRUCT *new = rb_entry(rb_new, RBSTRUCT, RBFIELD); \ new->RBAUGMENTED = old->RBAUGMENTED; \ } \ static void \ RBNAME ## _rotate(struct rb_node *rb_old, struct rb_node *rb_new) \ { \ RBSTRUCT *old = rb_entry(rb_old, RBSTRUCT, RBFIELD); \ RBSTRUCT *new = rb_entry(rb_new, RBSTRUCT, RBFIELD); \ new->RBAUGMENTED = old->RBAUGMENTED; \ RBCOMPUTE(old, false); \ } \ RBSTATIC const struct rb_augment_callbacks RBNAME = { \ .propagate = RBNAME ## _propagate, \ .copy = RBNAME ## _copy, \ .rotate = RBNAME ## _rotate \ }; /* * Template for declaring augmented rbtree callbacks, * computing RBAUGMENTED scalar as max(RBCOMPUTE(node)) for all subtree nodes. * * RBSTATIC: 'static' or empty * RBNAME: name of the rb_augment_callbacks structure * RBSTRUCT: struct type of the tree nodes * RBFIELD: name of struct rb_node field within RBSTRUCT * RBTYPE: type of the RBAUGMENTED field * RBAUGMENTED: name of RBTYPE field within RBSTRUCT holding data for subtree * RBCOMPUTE: name of function that returns the per-node RBTYPE scalar */ #define RB_DECLARE_CALLBACKS_MAX(RBSTATIC, RBNAME, RBSTRUCT, RBFIELD, \ RBTYPE, RBAUGMENTED, RBCOMPUTE) \ static inline bool RBNAME ## _compute_max(RBSTRUCT *node, bool exit) \ { \ RBSTRUCT *child; \ RBTYPE max = RBCOMPUTE(node); \ if (node->RBFIELD.rb_left) { \ child = rb_entry(node->RBFIELD.rb_left, RBSTRUCT, RBFIELD); \ if (child->RBAUGMENTED > max) \ max = child->RBAUGMENTED; \ } \ if (node->RBFIELD.rb_right) { \ child = rb_entry(node->RBFIELD.rb_right, RBSTRUCT, RBFIELD); \ if (child->RBAUGMENTED > max) \ max = child->RBAUGMENTED; \ } \ if (exit && node->RBAUGMENTED == max) \ return true; \ node->RBAUGMENTED = max; \ return false; \ } \ RB_DECLARE_CALLBACKS(RBSTATIC, RBNAME, \ RBSTRUCT, RBFIELD, RBAUGMENTED, RBNAME ## _compute_max) #define RB_RED 0 #define RB_BLACK 1 #define __rb_parent(pc) ((struct rb_node *)(pc & ~3)) #define __rb_color(pc) ((pc) & 1) #define __rb_is_black(pc) __rb_color(pc) #define __rb_is_red(pc) (!__rb_color(pc)) #define rb_color(rb) __rb_color((rb)->__rb_parent_color) #define rb_is_red(rb) __rb_is_red((rb)->__rb_parent_color) #define rb_is_black(rb) __rb_is_black((rb)->__rb_parent_color) static inline void rb_set_parent(struct rb_node *rb, struct rb_node *p) { rb->__rb_parent_color = rb_color(rb) | (unsigned long)p; } static inline void rb_set_parent_color(struct rb_node *rb, struct rb_node *p, int color) { rb->__rb_parent_color = (unsigned long)p | color; } static inline void __rb_change_child(struct rb_node *old, struct rb_node *new, struct rb_node *parent, struct rb_root *root) { if (parent) { if (parent->rb_left == old) WRITE_ONCE(parent->rb_left, new); else WRITE_ONCE(parent->rb_right, new); } else WRITE_ONCE(root->rb_node, new); } static inline void __rb_change_child_rcu(struct rb_node *old, struct rb_node *new, struct rb_node *parent, struct rb_root *root) { if (parent) { if (parent->rb_left == old) rcu_assign_pointer(parent->rb_left, new); else rcu_assign_pointer(parent->rb_right, new); } else rcu_assign_pointer(root->rb_node, new); } extern void __rb_erase_color(struct rb_node *parent, struct rb_root *root, void (*augment_rotate)(struct rb_node *old, struct rb_node *new)); static __always_inline struct rb_node * __rb_erase_augmented(struct rb_node *node, struct rb_root *root, const struct rb_augment_callbacks *augment) { struct rb_node *child = node->rb_right; struct rb_node *tmp = node->rb_left; struct rb_node *parent, *rebalance; unsigned long pc; if (!tmp) { /* * Case 1: node to erase has no more than 1 child (easy!) * * Note that if there is one child it must be red due to 5) * and node must be black due to 4). We adjust colors locally * so as to bypass __rb_erase_color() later on. */ pc = node->__rb_parent_color; parent = __rb_parent(pc); __rb_change_child(node, child, parent, root); if (child) { child->__rb_parent_color = pc; rebalance = NULL; } else rebalance = __rb_is_black(pc) ? parent : NULL; tmp = parent; } else if (!child) { /* Still case 1, but this time the child is node->rb_left */ tmp->__rb_parent_color = pc = node->__rb_parent_color; parent = __rb_parent(pc); __rb_change_child(node, tmp, parent, root); rebalance = NULL; tmp = parent; } else { struct rb_node *successor = child, *child2; tmp = child->rb_left; if (!tmp) { /* * Case 2: node's successor is its right child * * (n) (s) * / \ / \ * (x) (s) -> (x) (c) * \ * (c) */ parent = successor; child2 = successor->rb_right; augment->copy(node, successor); } else { /* * Case 3: node's successor is leftmost under * node's right child subtree * * (n) (s) * / \ / \ * (x) (y) -> (x) (y) * / / * (p) (p) * / / * (s) (c) * \ * (c) */ do { parent = successor; successor = tmp; tmp = tmp->rb_left; } while (tmp); child2 = successor->rb_right; WRITE_ONCE(parent->rb_left, child2); WRITE_ONCE(successor->rb_right, child); rb_set_parent(child, successor); augment->copy(node, successor); augment->propagate(parent, successor); } tmp = node->rb_left; WRITE_ONCE(successor->rb_left, tmp); rb_set_parent(tmp, successor); pc = node->__rb_parent_color; tmp = __rb_parent(pc); __rb_change_child(node, successor, tmp, root); if (child2) { rb_set_parent_color(child2, parent, RB_BLACK); rebalance = NULL; } else { rebalance = rb_is_black(successor) ? parent : NULL; } successor->__rb_parent_color = pc; tmp = successor; } augment->propagate(tmp, NULL); return rebalance; } static __always_inline void rb_erase_augmented(struct rb_node *node, struct rb_root *root, const struct rb_augment_callbacks *augment) { struct rb_node *rebalance = __rb_erase_augmented(node, root, augment); if (rebalance) __rb_erase_color(rebalance, root, augment->rotate); } static __always_inline void rb_erase_augmented_cached(struct rb_node *node, struct rb_root_cached *root, const struct rb_augment_callbacks *augment) { if (root->rb_leftmost == node) root->rb_leftmost = rb_next(node); rb_erase_augmented(node, &root->rb_root, augment); } #endif /* _LINUX_RBTREE_AUGMENTED_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_PGTABLE_H #define _ASM_X86_PGTABLE_H #include <linux/mem_encrypt.h> #include <asm/page.h> #include <asm/pgtable_types.h> /* * Macro to mark a page protection value as UC- */ #define pgprot_noncached(prot) \ ((boot_cpu_data.x86 > 3) \ ? (__pgprot(pgprot_val(prot) | \ cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS))) \ : (prot)) /* * Macros to add or remove encryption attribute */ #define pgprot_encrypted(prot) __pgprot(__sme_set(pgprot_val(prot))) #define pgprot_decrypted(prot) __pgprot(__sme_clr(pgprot_val(prot))) #ifndef __ASSEMBLY__ #include <asm/x86_init.h> #include <asm/fpu/xstate.h> #include <asm/fpu/api.h> #include <asm-generic/pgtable_uffd.h> extern pgd_t early_top_pgt[PTRS_PER_PGD]; bool __init __early_make_pgtable(unsigned long address, pmdval_t pmd); void ptdump_walk_pgd_level(struct seq_file *m, struct mm_struct *mm); void ptdump_walk_pgd_level_debugfs(struct seq_file *m, struct mm_struct *mm, bool user); void ptdump_walk_pgd_level_checkwx(void); void ptdump_walk_user_pgd_level_checkwx(void); #ifdef CONFIG_DEBUG_WX #define debug_checkwx() ptdump_walk_pgd_level_checkwx() #define debug_checkwx_user() ptdump_walk_user_pgd_level_checkwx() #else #define debug_checkwx() do { } while (0) #define debug_checkwx_user() do { } while (0) #endif /* * ZERO_PAGE is a global shared page that is always zero: used * for zero-mapped memory areas etc.. */ extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)] __visible; #define ZERO_PAGE(vaddr) ((void)(vaddr),virt_to_page(empty_zero_page)) extern spinlock_t pgd_lock; extern struct list_head pgd_list; extern struct mm_struct *pgd_page_get_mm(struct page *page); extern pmdval_t early_pmd_flags; #ifdef CONFIG_PARAVIRT_XXL #include <asm/paravirt.h> #else /* !CONFIG_PARAVIRT_XXL */ #define set_pte(ptep, pte) native_set_pte(ptep, pte) #define set_pte_atomic(ptep, pte) \ native_set_pte_atomic(ptep, pte) #define set_pmd(pmdp, pmd) native_set_pmd(pmdp, pmd) #ifndef __PAGETABLE_P4D_FOLDED #define set_pgd(pgdp, pgd) native_set_pgd(pgdp, pgd) #define pgd_clear(pgd) (pgtable_l5_enabled() ? native_pgd_clear(pgd) : 0) #endif #ifndef set_p4d # define set_p4d(p4dp, p4d) native_set_p4d(p4dp, p4d) #endif #ifndef __PAGETABLE_PUD_FOLDED #define p4d_clear(p4d) native_p4d_clear(p4d) #endif #ifndef set_pud # define set_pud(pudp, pud) native_set_pud(pudp, pud) #endif #ifndef __PAGETABLE_PUD_FOLDED #define pud_clear(pud) native_pud_clear(pud) #endif #define pte_clear(mm, addr, ptep) native_pte_clear(mm, addr, ptep) #define pmd_clear(pmd) native_pmd_clear(pmd) #define pgd_val(x) native_pgd_val(x) #define __pgd(x) native_make_pgd(x) #ifndef __PAGETABLE_P4D_FOLDED #define p4d_val(x) native_p4d_val(x) #define __p4d(x) native_make_p4d(x) #endif #ifndef __PAGETABLE_PUD_FOLDED #define pud_val(x) native_pud_val(x) #define __pud(x) native_make_pud(x) #endif #ifndef __PAGETABLE_PMD_FOLDED #define pmd_val(x) native_pmd_val(x) #define __pmd(x) native_make_pmd(x) #endif #define pte_val(x) native_pte_val(x) #define __pte(x) native_make_pte(x) #define arch_end_context_switch(prev) do {} while(0) #endif /* CONFIG_PARAVIRT_XXL */ /* * The following only work if pte_present() is true. * Undefined behaviour if not.. */ static inline int pte_dirty(pte_t pte) { return pte_flags(pte) & _PAGE_DIRTY; } static inline u32 read_pkru(void) { if (boot_cpu_has(X86_FEATURE_OSPKE)) return rdpkru(); return 0; } static inline void write_pkru(u32 pkru) { struct pkru_state *pk; if (!boot_cpu_has(X86_FEATURE_OSPKE)) return; pk = get_xsave_addr(&current->thread.fpu.state.xsave, XFEATURE_PKRU); /* * The PKRU value in xstate needs to be in sync with the value that is * written to the CPU. The FPU restore on return to userland would * otherwise load the previous value again. */ fpregs_lock(); if (pk) pk->pkru = pkru; __write_pkru(pkru); fpregs_unlock(); } static inline int pte_young(pte_t pte) { return pte_flags(pte) & _PAGE_ACCESSED; } static inline int pmd_dirty(pmd_t pmd) { return pmd_flags(pmd) & _PAGE_DIRTY; } static inline int pmd_young(pmd_t pmd) { return pmd_flags(pmd) & _PAGE_ACCESSED; } static inline int pud_dirty(pud_t pud) { return pud_flags(pud) & _PAGE_DIRTY; } static inline int pud_young(pud_t pud) { return pud_flags(pud) & _PAGE_ACCESSED; } static inline int pte_write(pte_t pte) { return pte_flags(pte) & _PAGE_RW; } static inline int pte_huge(pte_t pte) { return pte_flags(pte) & _PAGE_PSE; } static inline int pte_global(pte_t pte) { return pte_flags(pte) & _PAGE_GLOBAL; } static inline int pte_exec(pte_t pte) { return !(pte_flags(pte) & _PAGE_NX); } static inline int pte_special(pte_t pte) { return pte_flags(pte) & _PAGE_SPECIAL; } /* Entries that were set to PROT_NONE are inverted */ static inline u64 protnone_mask(u64 val); static inline unsigned long pte_pfn(pte_t pte) { phys_addr_t pfn = pte_val(pte); pfn ^= protnone_mask(pfn); return (pfn & PTE_PFN_MASK) >> PAGE_SHIFT; } static inline unsigned long pmd_pfn(pmd_t pmd) { phys_addr_t pfn = pmd_val(pmd); pfn ^= protnone_mask(pfn); return (pfn & pmd_pfn_mask(pmd)) >> PAGE_SHIFT; } static inline unsigned long pud_pfn(pud_t pud) { phys_addr_t pfn = pud_val(pud); pfn ^= protnone_mask(pfn); return (pfn & pud_pfn_mask(pud)) >> PAGE_SHIFT; } static inline unsigned long p4d_pfn(p4d_t p4d) { return (p4d_val(p4d) & p4d_pfn_mask(p4d)) >> PAGE_SHIFT; } static inline unsigned long pgd_pfn(pgd_t pgd) { return (pgd_val(pgd) & PTE_PFN_MASK) >> PAGE_SHIFT; } #define p4d_leaf p4d_large static inline int p4d_large(p4d_t p4d) { /* No 512 GiB pages yet */ return 0; } #define pte_page(pte) pfn_to_page(pte_pfn(pte)) #define pmd_leaf pmd_large static inline int pmd_large(pmd_t pte) { return pmd_flags(pte) & _PAGE_PSE; } #ifdef CONFIG_TRANSPARENT_HUGEPAGE /* NOTE: when predicate huge page, consider also pmd_devmap, or use pmd_large */ static inline int pmd_trans_huge(pmd_t pmd) { return (pmd_val(pmd) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE; } #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD static inline int pud_trans_huge(pud_t pud) { return (pud_val(pud) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE; } #endif #define has_transparent_hugepage has_transparent_hugepage static inline int has_transparent_hugepage(void) { return boot_cpu_has(X86_FEATURE_PSE); } #ifdef CONFIG_ARCH_HAS_PTE_DEVMAP static inline int pmd_devmap(pmd_t pmd) { return !!(pmd_val(pmd) & _PAGE_DEVMAP); } #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD static inline int pud_devmap(pud_t pud) { return !!(pud_val(pud) & _PAGE_DEVMAP); } #else static inline int pud_devmap(pud_t pud) { return 0; } #endif static inline int pgd_devmap(pgd_t pgd) { return 0; } #endif #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ static inline pte_t pte_set_flags(pte_t pte, pteval_t set) { pteval_t v = native_pte_val(pte); return native_make_pte(v | set); } static inline pte_t pte_clear_flags(pte_t pte, pteval_t clear) { pteval_t v = native_pte_val(pte); return native_make_pte(v & ~clear); } #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP static inline int pte_uffd_wp(pte_t pte) { return pte_flags(pte) & _PAGE_UFFD_WP; } static inline pte_t pte_mkuffd_wp(pte_t pte) { return pte_set_flags(pte, _PAGE_UFFD_WP); } static inline pte_t pte_clear_uffd_wp(pte_t pte) { return pte_clear_flags(pte, _PAGE_UFFD_WP); } #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */ static inline pte_t pte_mkclean(pte_t pte) { return pte_clear_flags(pte, _PAGE_DIRTY); } static inline pte_t pte_mkold(pte_t pte) { return pte_clear_flags(pte, _PAGE_ACCESSED); } static inline pte_t pte_wrprotect(pte_t pte) { return pte_clear_flags(pte, _PAGE_RW); } static inline pte_t pte_mkexec(pte_t pte) { return pte_clear_flags(pte, _PAGE_NX); } static inline pte_t pte_mkdirty(pte_t pte) { return pte_set_flags(pte, _PAGE_DIRTY | _PAGE_SOFT_DIRTY); } static inline pte_t pte_mkyoung(pte_t pte) { return pte_set_flags(pte, _PAGE_ACCESSED); } static inline pte_t pte_mkwrite(pte_t pte) { return pte_set_flags(pte, _PAGE_RW); } static inline pte_t pte_mkhuge(pte_t pte) { return pte_set_flags(pte, _PAGE_PSE); } static inline pte_t pte_clrhuge(pte_t pte) { return pte_clear_flags(pte, _PAGE_PSE); } static inline pte_t pte_mkglobal(pte_t pte) { return pte_set_flags(pte, _PAGE_GLOBAL); } static inline pte_t pte_clrglobal(pte_t pte) { return pte_clear_flags(pte, _PAGE_GLOBAL); } static inline pte_t pte_mkspecial(pte_t pte) { return pte_set_flags(pte, _PAGE_SPECIAL); } static inline pte_t pte_mkdevmap(pte_t pte) { return pte_set_flags(pte, _PAGE_SPECIAL|_PAGE_DEVMAP); } static inline pmd_t pmd_set_flags(pmd_t pmd, pmdval_t set) { pmdval_t v = native_pmd_val(pmd); return native_make_pmd(v | set); } static inline pmd_t pmd_clear_flags(pmd_t pmd, pmdval_t clear) { pmdval_t v = native_pmd_val(pmd); return native_make_pmd(v & ~clear); } #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP static inline int pmd_uffd_wp(pmd_t pmd) { return pmd_flags(pmd) & _PAGE_UFFD_WP; } static inline pmd_t pmd_mkuffd_wp(pmd_t pmd) { return pmd_set_flags(pmd, _PAGE_UFFD_WP); } static inline pmd_t pmd_clear_uffd_wp(pmd_t pmd) { return pmd_clear_flags(pmd, _PAGE_UFFD_WP); } #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */ static inline pmd_t pmd_mkold(pmd_t pmd) { return pmd_clear_flags(pmd, _PAGE_ACCESSED); } static inline pmd_t pmd_mkclean(pmd_t pmd) { return pmd_clear_flags(pmd, _PAGE_DIRTY); } static inline pmd_t pmd_wrprotect(pmd_t pmd) { return pmd_clear_flags(pmd, _PAGE_RW); } static inline pmd_t pmd_mkdirty(pmd_t pmd) { return pmd_set_flags(pmd, _PAGE_DIRTY | _PAGE_SOFT_DIRTY); } static inline pmd_t pmd_mkdevmap(pmd_t pmd) { return pmd_set_flags(pmd, _PAGE_DEVMAP); } static inline pmd_t pmd_mkhuge(pmd_t pmd) { return pmd_set_flags(pmd, _PAGE_PSE); } static inline pmd_t pmd_mkyoung(pmd_t pmd) { return pmd_set_flags(pmd, _PAGE_ACCESSED); } static inline pmd_t pmd_mkwrite(pmd_t pmd) { return pmd_set_flags(pmd, _PAGE_RW); } static inline pud_t pud_set_flags(pud_t pud, pudval_t set) { pudval_t v = native_pud_val(pud); return native_make_pud(v | set); } static inline pud_t pud_clear_flags(pud_t pud, pudval_t clear) { pudval_t v = native_pud_val(pud); return native_make_pud(v & ~clear); } static inline pud_t pud_mkold(pud_t pud) { return pud_clear_flags(pud, _PAGE_ACCESSED); } static inline pud_t pud_mkclean(pud_t pud) { return pud_clear_flags(pud, _PAGE_DIRTY); } static inline pud_t pud_wrprotect(pud_t pud) { return pud_clear_flags(pud, _PAGE_RW); } static inline pud_t pud_mkdirty(pud_t pud) { return pud_set_flags(pud, _PAGE_DIRTY | _PAGE_SOFT_DIRTY); } static inline pud_t pud_mkdevmap(pud_t pud) { return pud_set_flags(pud, _PAGE_DEVMAP); } static inline pud_t pud_mkhuge(pud_t pud) { return pud_set_flags(pud, _PAGE_PSE); } static inline pud_t pud_mkyoung(pud_t pud) { return pud_set_flags(pud, _PAGE_ACCESSED); } static inline pud_t pud_mkwrite(pud_t pud) { return pud_set_flags(pud, _PAGE_RW); } #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY static inline int pte_soft_dirty(pte_t pte) { return pte_flags(pte) & _PAGE_SOFT_DIRTY; } static inline int pmd_soft_dirty(pmd_t pmd) { return pmd_flags(pmd) & _PAGE_SOFT_DIRTY; } static inline int pud_soft_dirty(pud_t pud) { return pud_flags(pud) & _PAGE_SOFT_DIRTY; } static inline pte_t pte_mksoft_dirty(pte_t pte) { return pte_set_flags(pte, _PAGE_SOFT_DIRTY); } static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) { return pmd_set_flags(pmd, _PAGE_SOFT_DIRTY); } static inline pud_t pud_mksoft_dirty(pud_t pud) { return pud_set_flags(pud, _PAGE_SOFT_DIRTY); } static inline pte_t pte_clear_soft_dirty(pte_t pte) { return pte_clear_flags(pte, _PAGE_SOFT_DIRTY); } static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd) { return pmd_clear_flags(pmd, _PAGE_SOFT_DIRTY); } static inline pud_t pud_clear_soft_dirty(pud_t pud) { return pud_clear_flags(pud, _PAGE_SOFT_DIRTY); } #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */ /* * Mask out unsupported bits in a present pgprot. Non-present pgprots * can use those bits for other purposes, so leave them be. */ static inline pgprotval_t massage_pgprot(pgprot_t pgprot) { pgprotval_t protval = pgprot_val(pgprot); if (protval & _PAGE_PRESENT) protval &= __supported_pte_mask; return protval; } static inline pgprotval_t check_pgprot(pgprot_t pgprot) { pgprotval_t massaged_val = massage_pgprot(pgprot); /* mmdebug.h can not be included here because of dependencies */ #ifdef CONFIG_DEBUG_VM WARN_ONCE(pgprot_val(pgprot) != massaged_val, "attempted to set unsupported pgprot: %016llx " "bits: %016llx supported: %016llx\n", (u64)pgprot_val(pgprot), (u64)pgprot_val(pgprot) ^ massaged_val, (u64)__supported_pte_mask); #endif return massaged_val; } static inline pte_t pfn_pte(unsigned long page_nr, pgprot_t pgprot) { phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT; pfn ^= protnone_mask(pgprot_val(pgprot)); pfn &= PTE_PFN_MASK; return __pte(pfn | check_pgprot(pgprot)); } static inline pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot) { phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT; pfn ^= protnone_mask(pgprot_val(pgprot)); pfn &= PHYSICAL_PMD_PAGE_MASK; return __pmd(pfn | check_pgprot(pgprot)); } static inline pud_t pfn_pud(unsigned long page_nr, pgprot_t pgprot) { phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT; pfn ^= protnone_mask(pgprot_val(pgprot)); pfn &= PHYSICAL_PUD_PAGE_MASK; return __pud(pfn | check_pgprot(pgprot)); } static inline pmd_t pmd_mkinvalid(pmd_t pmd) { return pfn_pmd(pmd_pfn(pmd), __pgprot(pmd_flags(pmd) & ~(_PAGE_PRESENT|_PAGE_PROTNONE))); } static inline u64 flip_protnone_guard(u64 oldval, u64 val, u64 mask); static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) { pteval_t val = pte_val(pte), oldval = val; /* * Chop off the NX bit (if present), and add the NX portion of * the newprot (if present): */ val &= _PAGE_CHG_MASK; val |= check_pgprot(newprot) & ~_PAGE_CHG_MASK; val = flip_protnone_guard(oldval, val, PTE_PFN_MASK); return __pte(val); } static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) { pmdval_t val = pmd_val(pmd), oldval = val; val &= _HPAGE_CHG_MASK; val |= check_pgprot(newprot) & ~_HPAGE_CHG_MASK; val = flip_protnone_guard(oldval, val, PHYSICAL_PMD_PAGE_MASK); return __pmd(val); } /* * mprotect needs to preserve PAT and encryption bits when updating * vm_page_prot */ #define pgprot_modify pgprot_modify static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot) { pgprotval_t preservebits = pgprot_val(oldprot) & _PAGE_CHG_MASK; pgprotval_t addbits = pgprot_val(newprot) & ~_PAGE_CHG_MASK; return __pgprot(preservebits | addbits); } #define pte_pgprot(x) __pgprot(pte_flags(x)) #define pmd_pgprot(x) __pgprot(pmd_flags(x)) #define pud_pgprot(x) __pgprot(pud_flags(x)) #define p4d_pgprot(x) __pgprot(p4d_flags(x)) #define canon_pgprot(p) __pgprot(massage_pgprot(p)) static inline pgprot_t arch_filter_pgprot(pgprot_t prot) { return canon_pgprot(prot); } static inline int is_new_memtype_allowed(u64 paddr, unsigned long size, enum page_cache_mode pcm, enum page_cache_mode new_pcm) { /* * PAT type is always WB for untracked ranges, so no need to check. */ if (x86_platform.is_untracked_pat_range(paddr, paddr + size)) return 1; /* * Certain new memtypes are not allowed with certain * requested memtype: * - request is uncached, return cannot be write-back * - request is write-combine, return cannot be write-back * - request is write-through, return cannot be write-back * - request is write-through, return cannot be write-combine */ if ((pcm == _PAGE_CACHE_MODE_UC_MINUS && new_pcm == _PAGE_CACHE_MODE_WB) || (pcm == _PAGE_CACHE_MODE_WC && new_pcm == _PAGE_CACHE_MODE_WB) || (pcm == _PAGE_CACHE_MODE_WT && new_pcm == _PAGE_CACHE_MODE_WB) || (pcm == _PAGE_CACHE_MODE_WT && new_pcm == _PAGE_CACHE_MODE_WC)) { return 0; } return 1; } pmd_t *populate_extra_pmd(unsigned long vaddr); pte_t *populate_extra_pte(unsigned long vaddr); #ifdef CONFIG_PAGE_TABLE_ISOLATION pgd_t __pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd); /* * Take a PGD location (pgdp) and a pgd value that needs to be set there. * Populates the user and returns the resulting PGD that must be set in * the kernel copy of the page tables. */ static inline pgd_t pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd) { if (!static_cpu_has(X86_FEATURE_PTI)) return pgd; return __pti_set_user_pgtbl(pgdp, pgd); } #else /* CONFIG_PAGE_TABLE_ISOLATION */ static inline pgd_t pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd) { return pgd; } #endif /* CONFIG_PAGE_TABLE_ISOLATION */ #endif /* __ASSEMBLY__ */ #ifdef CONFIG_X86_32 # include <asm/pgtable_32.h> #else # include <asm/pgtable_64.h> #endif #ifndef __ASSEMBLY__ #include <linux/mm_types.h> #include <linux/mmdebug.h> #include <linux/log2.h> #include <asm/fixmap.h> static inline int pte_none(pte_t pte) { return !(pte.pte & ~(_PAGE_KNL_ERRATUM_MASK)); } #define __HAVE_ARCH_PTE_SAME static inline int pte_same(pte_t a, pte_t b) { return a.pte == b.pte; } static inline int pte_present(pte_t a) { return pte_flags(a) & (_PAGE_PRESENT | _PAGE_PROTNONE); } #ifdef CONFIG_ARCH_HAS_PTE_DEVMAP static inline int pte_devmap(pte_t a) { return (pte_flags(a) & _PAGE_DEVMAP) == _PAGE_DEVMAP; } #endif #define pte_accessible pte_accessible static inline bool pte_accessible(struct mm_struct *mm, pte_t a) { if (pte_flags(a) & _PAGE_PRESENT) return true; if ((pte_flags(a) & _PAGE_PROTNONE) && mm_tlb_flush_pending(mm)) return true; return false; } static inline int pmd_present(pmd_t pmd) { /* * Checking for _PAGE_PSE is needed too because * split_huge_page will temporarily clear the present bit (but * the _PAGE_PSE flag will remain set at all times while the * _PAGE_PRESENT bit is clear). */ return pmd_flags(pmd) & (_PAGE_PRESENT | _PAGE_PROTNONE | _PAGE_PSE); } #ifdef CONFIG_NUMA_BALANCING /* * These work without NUMA balancing but the kernel does not care. See the * comment in include/linux/pgtable.h */ static inline int pte_protnone(pte_t pte) { return (pte_flags(pte) & (_PAGE_PROTNONE | _PAGE_PRESENT)) == _PAGE_PROTNONE; } static inline int pmd_protnone(pmd_t pmd) { return (pmd_flags(pmd) & (_PAGE_PROTNONE | _PAGE_PRESENT)) == _PAGE_PROTNONE; } #endif /* CONFIG_NUMA_BALANCING */ static inline int pmd_none(pmd_t pmd) { /* Only check low word on 32-bit platforms, since it might be out of sync with upper half. */ unsigned long val = native_pmd_val(pmd); return (val & ~_PAGE_KNL_ERRATUM_MASK) == 0; } static inline unsigned long pmd_page_vaddr(pmd_t pmd) { return (unsigned long)__va(pmd_val(pmd) & pmd_pfn_mask(pmd)); } /* * Currently stuck as a macro due to indirect forward reference to * linux/mmzone.h's __section_mem_map_addr() definition: */ #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd)) /* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. * * (Currently stuck as a macro because of indirect forward reference * to linux/mm.h:page_to_nid()) */ #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) static inline int pmd_bad(pmd_t pmd) { return (pmd_flags(pmd) & ~_PAGE_USER) != _KERNPG_TABLE; } static inline unsigned long pages_to_mb(unsigned long npg) { return npg >> (20 - PAGE_SHIFT); } #if CONFIG_PGTABLE_LEVELS > 2 static inline int pud_none(pud_t pud) { return (native_pud_val(pud) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0; } static inline int pud_present(pud_t pud) { return pud_flags(pud) & _PAGE_PRESENT; } static inline unsigned long pud_page_vaddr(pud_t pud) { return (unsigned long)__va(pud_val(pud) & pud_pfn_mask(pud)); } /* * Currently stuck as a macro due to indirect forward reference to * linux/mmzone.h's __section_mem_map_addr() definition: */ #define pud_page(pud) pfn_to_page(pud_pfn(pud)) #define pud_leaf pud_large static inline int pud_large(pud_t pud) { return (pud_val(pud) & (_PAGE_PSE | _PAGE_PRESENT)) == (_PAGE_PSE | _PAGE_PRESENT); } static inline int pud_bad(pud_t pud) { return (pud_flags(pud) & ~(_KERNPG_TABLE | _PAGE_USER)) != 0; } #else #define pud_leaf pud_large static inline int pud_large(pud_t pud) { return 0; } #endif /* CONFIG_PGTABLE_LEVELS > 2 */ #if CONFIG_PGTABLE_LEVELS > 3 static inline int p4d_none(p4d_t p4d) { return (native_p4d_val(p4d) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0; } static inline int p4d_present(p4d_t p4d) { return p4d_flags(p4d) & _PAGE_PRESENT; } static inline unsigned long p4d_page_vaddr(p4d_t p4d) { return (unsigned long)__va(p4d_val(p4d) & p4d_pfn_mask(p4d)); } /* * Currently stuck as a macro due to indirect forward reference to * linux/mmzone.h's __section_mem_map_addr() definition: */ #define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d)) static inline int p4d_bad(p4d_t p4d) { unsigned long ignore_flags = _KERNPG_TABLE | _PAGE_USER; if (IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION)) ignore_flags |= _PAGE_NX; return (p4d_flags(p4d) & ~ignore_flags) != 0; } #endif /* CONFIG_PGTABLE_LEVELS > 3 */ static inline unsigned long p4d_index(unsigned long address) { return (address >> P4D_SHIFT) & (PTRS_PER_P4D - 1); } #if CONFIG_PGTABLE_LEVELS > 4 static inline int pgd_present(pgd_t pgd) { if (!pgtable_l5_enabled()) return 1; return pgd_flags(pgd) & _PAGE_PRESENT; } static inline unsigned long pgd_page_vaddr(pgd_t pgd) { return (unsigned long)__va((unsigned long)pgd_val(pgd) & PTE_PFN_MASK); } /* * Currently stuck as a macro due to indirect forward reference to * linux/mmzone.h's __section_mem_map_addr() definition: */ #define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd)) /* to find an entry in a page-table-directory. */ static inline p4d_t *p4d_offset(pgd_t *pgd, unsigned long address) { if (!pgtable_l5_enabled()) return (p4d_t *)pgd; return (p4d_t *)pgd_page_vaddr(*pgd) + p4d_index(address); } static inline int pgd_bad(pgd_t pgd) { unsigned long ignore_flags = _PAGE_USER; if (!pgtable_l5_enabled()) return 0; if (IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION)) ignore_flags |= _PAGE_NX; return (pgd_flags(pgd) & ~ignore_flags) != _KERNPG_TABLE; } static inline int pgd_none(pgd_t pgd) { if (!pgtable_l5_enabled()) return 0; /* * There is no need to do a workaround for the KNL stray * A/D bit erratum here. PGDs only point to page tables * except on 32-bit non-PAE which is not supported on * KNL. */ return !native_pgd_val(pgd); } #endif /* CONFIG_PGTABLE_LEVELS > 4 */ #endif /* __ASSEMBLY__ */ #define KERNEL_PGD_BOUNDARY pgd_index(PAGE_OFFSET) #define KERNEL_PGD_PTRS (PTRS_PER_PGD - KERNEL_PGD_BOUNDARY) #ifndef __ASSEMBLY__ extern int direct_gbpages; void init_mem_mapping(void); void early_alloc_pgt_buf(void); extern void memblock_find_dma_reserve(void); void __init poking_init(void); unsigned long init_memory_mapping(unsigned long start, unsigned long end, pgprot_t prot); #ifdef CONFIG_X86_64 extern pgd_t trampoline_pgd_entry; #endif /* local pte updates need not use xchg for locking */ static inline pte_t native_local_ptep_get_and_clear(pte_t *ptep) { pte_t res = *ptep; /* Pure native function needs no input for mm, addr */ native_pte_clear(NULL, 0, ptep); return res; } static inline pmd_t native_local_pmdp_get_and_clear(pmd_t *pmdp) { pmd_t res = *pmdp; native_pmd_clear(pmdp); return res; } static inline pud_t native_local_pudp_get_and_clear(pud_t *pudp) { pud_t res = *pudp; native_pud_clear(pudp); return res; } static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pte) { set_pte(ptep, pte); } static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp, pmd_t pmd) { set_pmd(pmdp, pmd); } static inline void set_pud_at(struct mm_struct *mm, unsigned long addr, pud_t *pudp, pud_t pud) { native_set_pud(pudp, pud); } /* * We only update the dirty/accessed state if we set * the dirty bit by hand in the kernel, since the hardware * will do the accessed bit for us, and we don't want to * race with other CPU's that might be updating the dirty * bit at the same time. */ struct vm_area_struct; #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address, pte_t *ptep, pte_t entry, int dirty); #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG extern int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep); #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH extern int ptep_clear_flush_young(struct vm_area_struct *vma, unsigned long address, pte_t *ptep); #define __HAVE_ARCH_PTEP_GET_AND_CLEAR static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { pte_t pte = native_ptep_get_and_clear(ptep); return pte; } #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, unsigned long addr, pte_t *ptep, int full) { pte_t pte; if (full) { /* * Full address destruction in progress; paravirt does not * care about updates and native needs no locking */ pte = native_local_ptep_get_and_clear(ptep); } else { pte = ptep_get_and_clear(mm, addr, ptep); } return pte; } #define __HAVE_ARCH_PTEP_SET_WRPROTECT static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { clear_bit(_PAGE_BIT_RW, (unsigned long *)&ptep->pte); } #define flush_tlb_fix_spurious_fault(vma, address) do { } while (0) #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot)) #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS extern int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp, pmd_t entry, int dirty); extern int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address, pud_t *pudp, pud_t entry, int dirty); #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG extern int pmdp_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pmd_t *pmdp); extern int pudp_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pud_t *pudp); #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH extern int pmdp_clear_flush_young(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp); #define pmd_write pmd_write static inline int pmd_write(pmd_t pmd) { return pmd_flags(pmd) & _PAGE_RW; } #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp) { return native_pmdp_get_and_clear(pmdp); } #define __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm, unsigned long addr, pud_t *pudp) { return native_pudp_get_and_clear(pudp); } #define __HAVE_ARCH_PMDP_SET_WRPROTECT static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp) { clear_bit(_PAGE_BIT_RW, (unsigned long *)pmdp); } #define pud_write pud_write static inline int pud_write(pud_t pud) { return pud_flags(pud) & _PAGE_RW; } #ifndef pmdp_establish #define pmdp_establish pmdp_establish static inline pmd_t pmdp_establish(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp, pmd_t pmd) { if (IS_ENABLED(CONFIG_SMP)) { return xchg(pmdp, pmd); } else { pmd_t old = *pmdp; WRITE_ONCE(*pmdp, pmd); return old; } } #endif /* * Page table pages are page-aligned. The lower half of the top * level is used for userspace and the top half for the kernel. * * Returns true for parts of the PGD that map userspace and * false for the parts that map the kernel. */ static inline bool pgdp_maps_userspace(void *__ptr) { unsigned long ptr = (unsigned long)__ptr; return (((ptr & ~PAGE_MASK) / sizeof(pgd_t)) < PGD_KERNEL_START); } #define pgd_leaf pgd_large static inline int pgd_large(pgd_t pgd) { return 0; } #ifdef CONFIG_PAGE_TABLE_ISOLATION /* * All top-level PAGE_TABLE_ISOLATION page tables are order-1 pages * (8k-aligned and 8k in size). The kernel one is at the beginning 4k and * the user one is in the last 4k. To switch between them, you * just need to flip the 12th bit in their addresses. */ #define PTI_PGTABLE_SWITCH_BIT PAGE_SHIFT /* * This generates better code than the inline assembly in * __set_bit(). */ static inline void *ptr_set_bit(void *ptr, int bit) { unsigned long __ptr = (unsigned long)ptr; __ptr |= BIT(bit); return (void *)__ptr; } static inline void *ptr_clear_bit(void *ptr, int bit) { unsigned long __ptr = (unsigned long)ptr; __ptr &= ~BIT(bit); return (void *)__ptr; } static inline pgd_t *kernel_to_user_pgdp(pgd_t *pgdp) { return ptr_set_bit(pgdp, PTI_PGTABLE_SWITCH_BIT); } static inline pgd_t *user_to_kernel_pgdp(pgd_t *pgdp) { return ptr_clear_bit(pgdp, PTI_PGTABLE_SWITCH_BIT); } static inline p4d_t *kernel_to_user_p4dp(p4d_t *p4dp) { return ptr_set_bit(p4dp, PTI_PGTABLE_SWITCH_BIT); } static inline p4d_t *user_to_kernel_p4dp(p4d_t *p4dp) { return ptr_clear_bit(p4dp, PTI_PGTABLE_SWITCH_BIT); } #endif /* CONFIG_PAGE_TABLE_ISOLATION */ /* * clone_pgd_range(pgd_t *dst, pgd_t *src, int count); * * dst - pointer to pgd range anwhere on a pgd page * src - "" * count - the number of pgds to copy. * * dst and src can be on the same page, but the range must not overlap, * and must not cross a page boundary. */ static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count) { memcpy(dst, src, count * sizeof(pgd_t)); #ifdef CONFIG_PAGE_TABLE_ISOLATION if (!static_cpu_has(X86_FEATURE_PTI)) return; /* Clone the user space pgd as well */ memcpy(kernel_to_user_pgdp(dst), kernel_to_user_pgdp(src), count * sizeof(pgd_t)); #endif } #define PTE_SHIFT ilog2(PTRS_PER_PTE) static inline int page_level_shift(enum pg_level level) { return (PAGE_SHIFT - PTE_SHIFT) + level * PTE_SHIFT; } static inline unsigned long page_level_size(enum pg_level level) { return 1UL << page_level_shift(level); } static inline unsigned long page_level_mask(enum pg_level level) { return ~(page_level_size(level) - 1); } /* * The x86 doesn't have any external MMU info: the kernel page * tables contain all the necessary information. */ static inline void update_mmu_cache(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) { } static inline void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr, pmd_t *pmd) { } static inline void update_mmu_cache_pud(struct vm_area_struct *vma, unsigned long addr, pud_t *pud) { } #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY static inline pte_t pte_swp_mksoft_dirty(pte_t pte) { return pte_set_flags(pte, _PAGE_SWP_SOFT_DIRTY); } static inline int pte_swp_soft_dirty(pte_t pte) { return pte_flags(pte) & _PAGE_SWP_SOFT_DIRTY; } static inline pte_t pte_swp_clear_soft_dirty(pte_t pte) { return pte_clear_flags(pte, _PAGE_SWP_SOFT_DIRTY); } #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) { return pmd_set_flags(pmd, _PAGE_SWP_SOFT_DIRTY); } static inline int pmd_swp_soft_dirty(pmd_t pmd) { return pmd_flags(pmd) & _PAGE_SWP_SOFT_DIRTY; } static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) { return pmd_clear_flags(pmd, _PAGE_SWP_SOFT_DIRTY); } #endif #endif #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP static inline pte_t pte_swp_mkuffd_wp(pte_t pte) { return pte_set_flags(pte, _PAGE_SWP_UFFD_WP); } static inline int pte_swp_uffd_wp(pte_t pte) { return pte_flags(pte) & _PAGE_SWP_UFFD_WP; } static inline pte_t pte_swp_clear_uffd_wp(pte_t pte) { return pte_clear_flags(pte, _PAGE_SWP_UFFD_WP); } static inline pmd_t pmd_swp_mkuffd_wp(pmd_t pmd) { return pmd_set_flags(pmd, _PAGE_SWP_UFFD_WP); } static inline int pmd_swp_uffd_wp(pmd_t pmd) { return pmd_flags(pmd) & _PAGE_SWP_UFFD_WP; } static inline pmd_t pmd_swp_clear_uffd_wp(pmd_t pmd) { return pmd_clear_flags(pmd, _PAGE_SWP_UFFD_WP); } #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */ #define PKRU_AD_BIT 0x1u #define PKRU_WD_BIT 0x2u #define PKRU_BITS_PER_PKEY 2 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS extern u32 init_pkru_value; #else #define init_pkru_value 0 #endif static inline bool __pkru_allows_read(u32 pkru, u16 pkey) { int pkru_pkey_bits = pkey * PKRU_BITS_PER_PKEY; return !(pkru & (PKRU_AD_BIT << pkru_pkey_bits)); } static inline bool __pkru_allows_write(u32 pkru, u16 pkey) { int pkru_pkey_bits = pkey * PKRU_BITS_PER_PKEY; /* * Access-disable disables writes too so we need to check * both bits here. */ return !(pkru & ((PKRU_AD_BIT|PKRU_WD_BIT) << pkru_pkey_bits)); } static inline u16 pte_flags_pkey(unsigned long pte_flags) { #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS /* ifdef to avoid doing 59-bit shift on 32-bit values */ return (pte_flags & _PAGE_PKEY_MASK) >> _PAGE_BIT_PKEY_BIT0; #else return 0; #endif } static inline bool __pkru_allows_pkey(u16 pkey, bool write) { u32 pkru = read_pkru(); if (!__pkru_allows_read(pkru, pkey)) return false; if (write && !__pkru_allows_write(pkru, pkey)) return false; return true; } /* * 'pteval' can come from a PTE, PMD or PUD. We only check * _PAGE_PRESENT, _PAGE_USER, and _PAGE_RW in here which are the * same value on all 3 types. */ static inline bool __pte_access_permitted(unsigned long pteval, bool write) { unsigned long need_pte_bits = _PAGE_PRESENT|_PAGE_USER; if (write) need_pte_bits |= _PAGE_RW; if ((pteval & need_pte_bits) != need_pte_bits) return 0; return __pkru_allows_pkey(pte_flags_pkey(pteval), write); } #define pte_access_permitted pte_access_permitted static inline bool pte_access_permitted(pte_t pte, bool write) { return __pte_access_permitted(pte_val(pte), write); } #define pmd_access_permitted pmd_access_permitted static inline bool pmd_access_permitted(pmd_t pmd, bool write) { return __pte_access_permitted(pmd_val(pmd), write); } #define pud_access_permitted pud_access_permitted static inline bool pud_access_permitted(pud_t pud, bool write) { return __pte_access_permitted(pud_val(pud), write); } #define __HAVE_ARCH_PFN_MODIFY_ALLOWED 1 extern bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot); static inline bool arch_has_pfn_modify_check(void) { return boot_cpu_has_bug(X86_BUG_L1TF); } #define arch_faults_on_old_pte arch_faults_on_old_pte static inline bool arch_faults_on_old_pte(void) { return false; } #endif /* __ASSEMBLY__ */ #endif /* _ASM_X86_PGTABLE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* user-type.h: User-defined key type * * Copyright (C) 2005 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) */ #ifndef _KEYS_USER_TYPE_H #define _KEYS_USER_TYPE_H #include <linux/key.h> #include <linux/rcupdate.h> #ifdef CONFIG_KEYS /*****************************************************************************/ /* * the payload for a key of type "user" or "logon" * - once filled in and attached to a key: * - the payload struct is invariant may not be changed, only replaced * - the payload must be read with RCU procedures or with the key semaphore * held * - the payload may only be replaced with the key semaphore write-locked * - the key's data length is the size of the actual data, not including the * payload wrapper */ struct user_key_payload { struct rcu_head rcu; /* RCU destructor */ unsigned short datalen; /* length of this data */ char data[] __aligned(__alignof__(u64)); /* actual data */ }; extern struct key_type key_type_user; extern struct key_type key_type_logon; struct key_preparsed_payload; extern int user_preparse(struct key_preparsed_payload *prep); extern void user_free_preparse(struct key_preparsed_payload *prep); extern int user_update(struct key *key, struct key_preparsed_payload *prep); extern void user_revoke(struct key *key); extern void user_destroy(struct key *key); extern void user_describe(const struct key *user, struct seq_file *m); extern long user_read(const struct key *key, char *buffer, size_t buflen); static inline const struct user_key_payload *user_key_payload_rcu(const struct key *key) { return (struct user_key_payload *)dereference_key_rcu(key); } static inline struct user_key_payload *user_key_payload_locked(const struct key *key) { return (struct user_key_payload *)dereference_key_locked((struct key *)key); } #endif /* CONFIG_KEYS */ #endif /* _KEYS_USER_TYPE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM timer #if !defined(_TRACE_TIMER_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_TIMER_H #include <linux/tracepoint.h> #include <linux/hrtimer.h> #include <linux/timer.h> DECLARE_EVENT_CLASS(timer_class, TP_PROTO(struct timer_list *timer), TP_ARGS(timer), TP_STRUCT__entry( __field( void *, timer ) ), TP_fast_assign( __entry->timer = timer; ), TP_printk("timer=%p", __entry->timer) ); /** * timer_init - called when the timer is initialized * @timer: pointer to struct timer_list */ DEFINE_EVENT(timer_class, timer_init, TP_PROTO(struct timer_list *timer), TP_ARGS(timer) ); #define decode_timer_flags(flags) \ __print_flags(flags, "|", \ { TIMER_MIGRATING, "M" }, \ { TIMER_DEFERRABLE, "D" }, \ { TIMER_PINNED, "P" }, \ { TIMER_IRQSAFE, "I" }) /** * timer_start - called when the timer is started * @timer: pointer to struct timer_list * @expires: the timers expiry time */ TRACE_EVENT(timer_start, TP_PROTO(struct timer_list *timer, unsigned long expires, unsigned int flags), TP_ARGS(timer, expires, flags), TP_STRUCT__entry( __field( void *, timer ) __field( void *, function ) __field( unsigned long, expires ) __field( unsigned long, now ) __field( unsigned int, flags ) ), TP_fast_assign( __entry->timer = timer; __entry->function = timer->function; __entry->expires = expires; __entry->now = jiffies; __entry->flags = flags; ), TP_printk("timer=%p function=%ps expires=%lu [timeout=%ld] cpu=%u idx=%u flags=%s", __entry->timer, __entry->function, __entry->expires, (long)__entry->expires - __entry->now, __entry->flags & TIMER_CPUMASK, __entry->flags >> TIMER_ARRAYSHIFT, decode_timer_flags(__entry->flags & TIMER_TRACE_FLAGMASK)) ); /** * timer_expire_entry - called immediately before the timer callback * @timer: pointer to struct timer_list * * Allows to determine the timer latency. */ TRACE_EVENT(timer_expire_entry, TP_PROTO(struct timer_list *timer, unsigned long baseclk), TP_ARGS(timer, baseclk), TP_STRUCT__entry( __field( void *, timer ) __field( unsigned long, now ) __field( void *, function) __field( unsigned long, baseclk ) ), TP_fast_assign( __entry->timer = timer; __entry->now = jiffies; __entry->function = timer->function; __entry->baseclk = baseclk; ), TP_printk("timer=%p function=%ps now=%lu baseclk=%lu", __entry->timer, __entry->function, __entry->now, __entry->baseclk) ); /** * timer_expire_exit - called immediately after the timer callback returns * @timer: pointer to struct timer_list * * When used in combination with the timer_expire_entry tracepoint we can * determine the runtime of the timer callback function. * * NOTE: Do NOT derefernce timer in TP_fast_assign. The pointer might * be invalid. We solely track the pointer. */ DEFINE_EVENT(timer_class, timer_expire_exit, TP_PROTO(struct timer_list *timer), TP_ARGS(timer) ); /** * timer_cancel - called when the timer is canceled * @timer: pointer to struct timer_list */ DEFINE_EVENT(timer_class, timer_cancel, TP_PROTO(struct timer_list *timer), TP_ARGS(timer) ); #define decode_clockid(type) \ __print_symbolic(type, \ { CLOCK_REALTIME, "CLOCK_REALTIME" }, \ { CLOCK_MONOTONIC, "CLOCK_MONOTONIC" }, \ { CLOCK_BOOTTIME, "CLOCK_BOOTTIME" }, \ { CLOCK_TAI, "CLOCK_TAI" }) #define decode_hrtimer_mode(mode) \ __print_symbolic(mode, \ { HRTIMER_MODE_ABS, "ABS" }, \ { HRTIMER_MODE_REL, "REL" }, \ { HRTIMER_MODE_ABS_PINNED, "ABS|PINNED" }, \ { HRTIMER_MODE_REL_PINNED, "REL|PINNED" }, \ { HRTIMER_MODE_ABS_SOFT, "ABS|SOFT" }, \ { HRTIMER_MODE_REL_SOFT, "REL|SOFT" }, \ { HRTIMER_MODE_ABS_PINNED_SOFT, "ABS|PINNED|SOFT" }, \ { HRTIMER_MODE_REL_PINNED_SOFT, "REL|PINNED|SOFT" }) /** * hrtimer_init - called when the hrtimer is initialized * @hrtimer: pointer to struct hrtimer * @clockid: the hrtimers clock * @mode: the hrtimers mode */ TRACE_EVENT(hrtimer_init, TP_PROTO(struct hrtimer *hrtimer, clockid_t clockid, enum hrtimer_mode mode), TP_ARGS(hrtimer, clockid, mode), TP_STRUCT__entry( __field( void *, hrtimer ) __field( clockid_t, clockid ) __field( enum hrtimer_mode, mode ) ), TP_fast_assign( __entry->hrtimer = hrtimer; __entry->clockid = clockid; __entry->mode = mode; ), TP_printk("hrtimer=%p clockid=%s mode=%s", __entry->hrtimer, decode_clockid(__entry->clockid), decode_hrtimer_mode(__entry->mode)) ); /** * hrtimer_start - called when the hrtimer is started * @hrtimer: pointer to struct hrtimer */ TRACE_EVENT(hrtimer_start, TP_PROTO(struct hrtimer *hrtimer, enum hrtimer_mode mode), TP_ARGS(hrtimer, mode), TP_STRUCT__entry( __field( void *, hrtimer ) __field( void *, function ) __field( s64, expires ) __field( s64, softexpires ) __field( enum hrtimer_mode, mode ) ), TP_fast_assign( __entry->hrtimer = hrtimer; __entry->function = hrtimer->function; __entry->expires = hrtimer_get_expires(hrtimer); __entry->softexpires = hrtimer_get_softexpires(hrtimer); __entry->mode = mode; ), TP_printk("hrtimer=%p function=%ps expires=%llu softexpires=%llu " "mode=%s", __entry->hrtimer, __entry->function, (unsigned long long) __entry->expires, (unsigned long long) __entry->softexpires, decode_hrtimer_mode(__entry->mode)) ); /** * hrtimer_expire_entry - called immediately before the hrtimer callback * @hrtimer: pointer to struct hrtimer * @now: pointer to variable which contains current time of the * timers base. * * Allows to determine the timer latency. */ TRACE_EVENT(hrtimer_expire_entry, TP_PROTO(struct hrtimer *hrtimer, ktime_t *now), TP_ARGS(hrtimer, now), TP_STRUCT__entry( __field( void *, hrtimer ) __field( s64, now ) __field( void *, function) ), TP_fast_assign( __entry->hrtimer = hrtimer; __entry->now = *now; __entry->function = hrtimer->function; ), TP_printk("hrtimer=%p function=%ps now=%llu", __entry->hrtimer, __entry->function, (unsigned long long) __entry->now) ); DECLARE_EVENT_CLASS(hrtimer_class, TP_PROTO(struct hrtimer *hrtimer), TP_ARGS(hrtimer), TP_STRUCT__entry( __field( void *, hrtimer ) ), TP_fast_assign( __entry->hrtimer = hrtimer; ), TP_printk("hrtimer=%p", __entry->hrtimer) ); /** * hrtimer_expire_exit - called immediately after the hrtimer callback returns * @hrtimer: pointer to struct hrtimer * * When used in combination with the hrtimer_expire_entry tracepoint we can * determine the runtime of the callback function. */ DEFINE_EVENT(hrtimer_class, hrtimer_expire_exit, TP_PROTO(struct hrtimer *hrtimer), TP_ARGS(hrtimer) ); /** * hrtimer_cancel - called when the hrtimer is canceled * @hrtimer: pointer to struct hrtimer */ DEFINE_EVENT(hrtimer_class, hrtimer_cancel, TP_PROTO(struct hrtimer *hrtimer), TP_ARGS(hrtimer) ); /** * itimer_state - called when itimer is started or canceled * @which: name of the interval timer * @value: the itimers value, itimer is canceled if value->it_value is * zero, otherwise it is started * @expires: the itimers expiry time */ TRACE_EVENT(itimer_state, TP_PROTO(int which, const struct itimerspec64 *const value, unsigned long long expires), TP_ARGS(which, value, expires), TP_STRUCT__entry( __field( int, which ) __field( unsigned long long, expires ) __field( long, value_sec ) __field( long, value_nsec ) __field( long, interval_sec ) __field( long, interval_nsec ) ), TP_fast_assign( __entry->which = which; __entry->expires = expires; __entry->value_sec = value->it_value.tv_sec; __entry->value_nsec = value->it_value.tv_nsec; __entry->interval_sec = value->it_interval.tv_sec; __entry->interval_nsec = value->it_interval.tv_nsec; ), TP_printk("which=%d expires=%llu it_value=%ld.%06ld it_interval=%ld.%06ld", __entry->which, __entry->expires, __entry->value_sec, __entry->value_nsec / NSEC_PER_USEC, __entry->interval_sec, __entry->interval_nsec / NSEC_PER_USEC) ); /** * itimer_expire - called when itimer expires * @which: type of the interval timer * @pid: pid of the process which owns the timer * @now: current time, used to calculate the latency of itimer */ TRACE_EVENT(itimer_expire, TP_PROTO(int which, struct pid *pid, unsigned long long now), TP_ARGS(which, pid, now), TP_STRUCT__entry( __field( int , which ) __field( pid_t, pid ) __field( unsigned long long, now ) ), TP_fast_assign( __entry->which = which; __entry->now = now; __entry->pid = pid_nr(pid); ), TP_printk("which=%d pid=%d now=%llu", __entry->which, (int) __entry->pid, __entry->now) ); #ifdef CONFIG_NO_HZ_COMMON #define TICK_DEP_NAMES \ tick_dep_mask_name(NONE) \ tick_dep_name(POSIX_TIMER) \ tick_dep_name(PERF_EVENTS) \ tick_dep_name(SCHED) \ tick_dep_name(CLOCK_UNSTABLE) \ tick_dep_name_end(RCU) #undef tick_dep_name #undef tick_dep_mask_name #undef tick_dep_name_end /* The MASK will convert to their bits and they need to be processed too */ #define tick_dep_name(sdep) TRACE_DEFINE_ENUM(TICK_DEP_BIT_##sdep); \ TRACE_DEFINE_ENUM(TICK_DEP_MASK_##sdep); #define tick_dep_name_end(sdep) TRACE_DEFINE_ENUM(TICK_DEP_BIT_##sdep); \ TRACE_DEFINE_ENUM(TICK_DEP_MASK_##sdep); /* NONE only has a mask defined for it */ #define tick_dep_mask_name(sdep) TRACE_DEFINE_ENUM(TICK_DEP_MASK_##sdep); TICK_DEP_NAMES #undef tick_dep_name #undef tick_dep_mask_name #undef tick_dep_name_end #define tick_dep_name(sdep) { TICK_DEP_MASK_##sdep, #sdep }, #define tick_dep_mask_name(sdep) { TICK_DEP_MASK_##sdep, #sdep }, #define tick_dep_name_end(sdep) { TICK_DEP_MASK_##sdep, #sdep } #define show_tick_dep_name(val) \ __print_symbolic(val, TICK_DEP_NAMES) TRACE_EVENT(tick_stop, TP_PROTO(int success, int dependency), TP_ARGS(success, dependency), TP_STRUCT__entry( __field( int , success ) __field( int , dependency ) ), TP_fast_assign( __entry->success = success; __entry->dependency = dependency; ), TP_printk("success=%d dependency=%s", __entry->success, \ show_tick_dep_name(__entry->dependency)) ); #endif #endif /* _TRACE_TIMER_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 /* SPDX-License-Identifier: GPL-2.0 */ /* * Generic RTC interface. * This version contains the part of the user interface to the Real Time Clock * service. It is used with both the legacy mc146818 and also EFI * Struct rtc_time and first 12 ioctl by Paul Gortmaker, 1996 - separated out * from <linux/mc146818rtc.h> to this file for 2.4 kernels. * * Copyright (C) 1999 Hewlett-Packard Co. * Copyright (C) 1999 Stephane Eranian <eranian@hpl.hp.com> */ #ifndef _LINUX_RTC_H_ #define _LINUX_RTC_H_ #include <linux/types.h> #include <linux/interrupt.h> #include <linux/nvmem-provider.h> #include <uapi/linux/rtc.h> extern int rtc_month_days(unsigned int month, unsigned int year); extern int rtc_year_days(unsigned int day, unsigned int month, unsigned int year); extern int rtc_valid_tm(struct rtc_time *tm); extern time64_t rtc_tm_to_time64(struct rtc_time *tm); extern void rtc_time64_to_tm(time64_t time, struct rtc_time *tm); ktime_t rtc_tm_to_ktime(struct rtc_time tm); struct rtc_time rtc_ktime_to_tm(ktime_t kt); /* * rtc_tm_sub - Return the difference in seconds. */ static inline time64_t rtc_tm_sub(struct rtc_time *lhs, struct rtc_time *rhs) { return rtc_tm_to_time64(lhs) - rtc_tm_to_time64(rhs); } #include <linux/device.h> #include <linux/seq_file.h> #include <linux/cdev.h> #include <linux/poll.h> #include <linux/mutex.h> #include <linux/timerqueue.h> #include <linux/workqueue.h> extern struct class *rtc_class; /* * For these RTC methods the device parameter is the physical device * on whatever bus holds the hardware (I2C, Platform, SPI, etc), which * was passed to rtc_device_register(). Its driver_data normally holds * device state, including the rtc_device pointer for the RTC. * * Most of these methods are called with rtc_device.ops_lock held, * through the rtc_*(struct rtc_device *, ...) calls. * * The (current) exceptions are mostly filesystem hooks: * - the proc() hook for procfs */ struct rtc_class_ops { int (*ioctl)(struct device *, unsigned int, unsigned long); int (*read_time)(struct device *, struct rtc_time *); int (*set_time)(struct device *, struct rtc_time *); int (*read_alarm)(struct device *, struct rtc_wkalrm *); int (*set_alarm)(struct device *, struct rtc_wkalrm *); int (*proc)(struct device *, struct seq_file *); int (*alarm_irq_enable)(struct device *, unsigned int enabled); int (*read_offset)(struct device *, long *offset); int (*set_offset)(struct device *, long offset); }; struct rtc_device; struct rtc_timer { struct timerqueue_node node; ktime_t period; void (*func)(struct rtc_device *rtc); struct rtc_device *rtc; int enabled; }; /* flags */ #define RTC_DEV_BUSY 0 struct rtc_device { struct device dev; struct module *owner; int id; const struct rtc_class_ops *ops; struct mutex ops_lock; struct cdev char_dev; unsigned long flags; unsigned long irq_data; spinlock_t irq_lock; wait_queue_head_t irq_queue; struct fasync_struct *async_queue; int irq_freq; int max_user_freq; struct timerqueue_head timerqueue; struct rtc_timer aie_timer; struct rtc_timer uie_rtctimer; struct hrtimer pie_timer; /* sub second exp, so needs hrtimer */ int pie_enabled; struct work_struct irqwork; /* Some hardware can't support UIE mode */ int uie_unsupported; /* Number of nsec it takes to set the RTC clock. This influences when * the set ops are called. An offset: * - of 0.5 s will call RTC set for wall clock time 10.0 s at 9.5 s * - of 1.5 s will call RTC set for wall clock time 10.0 s at 8.5 s * - of -0.5 s will call RTC set for wall clock time 10.0 s at 10.5 s */ long set_offset_nsec; bool registered; /* Old ABI support */ bool nvram_old_abi; struct bin_attribute *nvram; time64_t range_min; timeu64_t range_max; time64_t start_secs; time64_t offset_secs; bool set_start_time; #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL struct work_struct uie_task; struct timer_list uie_timer; /* Those fields are protected by rtc->irq_lock */ unsigned int oldsecs; unsigned int uie_irq_active:1; unsigned int stop_uie_polling:1; unsigned int uie_task_active:1; unsigned int uie_timer_active:1; #endif }; #define to_rtc_device(d) container_of(d, struct rtc_device, dev) #define rtc_lock(d) mutex_lock(&d->ops_lock) #define rtc_unlock(d) mutex_unlock(&d->ops_lock) /* useful timestamps */ #define RTC_TIMESTAMP_BEGIN_0000 -62167219200ULL /* 0000-01-01 00:00:00 */ #define RTC_TIMESTAMP_BEGIN_1900 -2208988800LL /* 1900-01-01 00:00:00 */ #define RTC_TIMESTAMP_BEGIN_2000 946684800LL /* 2000-01-01 00:00:00 */ #define RTC_TIMESTAMP_END_2063 2966371199LL /* 2063-12-31 23:59:59 */ #define RTC_TIMESTAMP_END_2079 3471292799LL /* 2079-12-31 23:59:59 */ #define RTC_TIMESTAMP_END_2099 4102444799LL /* 2099-12-31 23:59:59 */ #define RTC_TIMESTAMP_END_2199 7258118399LL /* 2199-12-31 23:59:59 */ #define RTC_TIMESTAMP_END_9999 253402300799LL /* 9999-12-31 23:59:59 */ extern struct rtc_device *devm_rtc_device_register(struct device *dev, const char *name, const struct rtc_class_ops *ops, struct module *owner); struct rtc_device *devm_rtc_allocate_device(struct device *dev); int __rtc_register_device(struct module *owner, struct rtc_device *rtc); extern int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm); extern int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm); extern int rtc_set_ntp_time(struct timespec64 now, unsigned long *target_nsec); int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm); extern int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alrm); extern int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alrm); extern int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alrm); extern void rtc_update_irq(struct rtc_device *rtc, unsigned long num, unsigned long events); extern struct rtc_device *rtc_class_open(const char *name); extern void rtc_class_close(struct rtc_device *rtc); extern int rtc_irq_set_state(struct rtc_device *rtc, int enabled); extern int rtc_irq_set_freq(struct rtc_device *rtc, int freq); extern int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled); extern int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled); extern int rtc_dev_update_irq_enable_emul(struct rtc_device *rtc, unsigned int enabled); void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode); void rtc_aie_update_irq(struct rtc_device *rtc); void rtc_uie_update_irq(struct rtc_device *rtc); enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer); void rtc_timer_init(struct rtc_timer *timer, void (*f)(struct rtc_device *r), struct rtc_device *rtc); int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer, ktime_t expires, ktime_t period); void rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer); int rtc_read_offset(struct rtc_device *rtc, long *offset); int rtc_set_offset(struct rtc_device *rtc, long offset); void rtc_timer_do_work(struct work_struct *work); static inline bool is_leap_year(unsigned int year) { return (!(year % 4) && (year % 100)) || !(year % 400); } /* Determine if we can call to driver to set the time. Drivers can only be * called to set a second aligned time value, and the field set_offset_nsec * specifies how far away from the second aligned time to call the driver. * * This also computes 'to_set' which is the time we are trying to set, and has * a zero in tv_nsecs, such that: * to_set - set_delay_nsec == now +/- FUZZ * */ static inline bool rtc_tv_nsec_ok(s64 set_offset_nsec, struct timespec64 *to_set, const struct timespec64 *now) { /* Allowed error in tv_nsec, arbitarily set to 5 jiffies in ns. */ const unsigned long TIME_SET_NSEC_FUZZ = TICK_NSEC * 5; struct timespec64 delay = {.tv_sec = 0, .tv_nsec = set_offset_nsec}; *to_set = timespec64_add(*now, delay); if (to_set->tv_nsec < TIME_SET_NSEC_FUZZ) { to_set->tv_nsec = 0; return true; } if (to_set->tv_nsec > NSEC_PER_SEC - TIME_SET_NSEC_FUZZ) { to_set->tv_sec++; to_set->tv_nsec = 0; return true; } return false; } #define rtc_register_device(device) \ __rtc_register_device(THIS_MODULE, device) #ifdef CONFIG_RTC_HCTOSYS_DEVICE extern int rtc_hctosys_ret; #else #define rtc_hctosys_ret -ENODEV #endif #ifdef CONFIG_RTC_NVMEM int rtc_nvmem_register(struct rtc_device *rtc, struct nvmem_config *nvmem_config); void rtc_nvmem_unregister(struct rtc_device *rtc); #else static inline int rtc_nvmem_register(struct rtc_device *rtc, struct nvmem_config *nvmem_config) { return 0; } static inline void rtc_nvmem_unregister(struct rtc_device *rtc) {} #endif #ifdef CONFIG_RTC_INTF_SYSFS int rtc_add_group(struct rtc_device *rtc, const struct attribute_group *grp); int rtc_add_groups(struct rtc_device *rtc, const struct attribute_group **grps); #else static inline int rtc_add_group(struct rtc_device *rtc, const struct attribute_group *grp) { return 0; } static inline int rtc_add_groups(struct rtc_device *rtc, const struct attribute_group **grps) { return 0; } #endif #endif /* _LINUX_RTC_H_ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _SCSI_DISK_H #define _SCSI_DISK_H /* * More than enough for everybody ;) The huge number of majors * is a leftover from 16bit dev_t days, we don't really need that * much numberspace. */ #define SD_MAJORS 16 /* * Time out in seconds for disks and Magneto-opticals (which are slower). */ #define SD_TIMEOUT (30 * HZ) #define SD_MOD_TIMEOUT (75 * HZ) /* * Flush timeout is a multiplier over the standard device timeout which is * user modifiable via sysfs but initially set to SD_TIMEOUT */ #define SD_FLUSH_TIMEOUT_MULTIPLIER 2 #define SD_WRITE_SAME_TIMEOUT (120 * HZ) /* * Number of allowed retries */ #define SD_MAX_RETRIES 5 #define SD_PASSTHROUGH_RETRIES 1 #define SD_MAX_MEDIUM_TIMEOUTS 2 /* * Size of the initial data buffer for mode and read capacity data */ #define SD_BUF_SIZE 512 /* * Number of sectors at the end of the device to avoid multi-sector * accesses to in the case of last_sector_bug */ #define SD_LAST_BUGGY_SECTORS 8 enum { SD_EXT_CDB_SIZE = 32, /* Extended CDB size */ SD_MEMPOOL_SIZE = 2, /* CDB pool size */ }; enum { SD_DEF_XFER_BLOCKS = 0xffff, SD_MAX_XFER_BLOCKS = 0xffffffff, SD_MAX_WS10_BLOCKS = 0xffff, SD_MAX_WS16_BLOCKS = 0x7fffff, }; enum { SD_LBP_FULL = 0, /* Full logical block provisioning */ SD_LBP_UNMAP, /* Use UNMAP command */ SD_LBP_WS16, /* Use WRITE SAME(16) with UNMAP bit */ SD_LBP_WS10, /* Use WRITE SAME(10) with UNMAP bit */ SD_LBP_ZERO, /* Use WRITE SAME(10) with zero payload */ SD_LBP_DISABLE, /* Discard disabled due to failed cmd */ }; enum { SD_ZERO_WRITE = 0, /* Use WRITE(10/16) command */ SD_ZERO_WS, /* Use WRITE SAME(10/16) command */ SD_ZERO_WS16_UNMAP, /* Use WRITE SAME(16) with UNMAP */ SD_ZERO_WS10_UNMAP, /* Use WRITE SAME(10) with UNMAP */ }; struct scsi_disk { struct scsi_driver *driver; /* always &sd_template */ struct scsi_device *device; struct device dev; struct gendisk *disk; struct opal_dev *opal_dev; #ifdef CONFIG_BLK_DEV_ZONED u32 nr_zones; u32 rev_nr_zones; u32 zone_blocks; u32 rev_zone_blocks; u32 zones_optimal_open; u32 zones_optimal_nonseq; u32 zones_max_open; u32 *zones_wp_offset; spinlock_t zones_wp_offset_lock; u32 *rev_wp_offset; struct mutex rev_mutex; struct work_struct zone_wp_offset_work; char *zone_wp_update_buf; #endif atomic_t openers; sector_t capacity; /* size in logical blocks */ int max_retries; u32 max_xfer_blocks; u32 opt_xfer_blocks; u32 max_ws_blocks; u32 max_unmap_blocks; u32 unmap_granularity; u32 unmap_alignment; u32 index; unsigned int physical_block_size; unsigned int max_medium_access_timeouts; unsigned int medium_access_timed_out; u8 media_present; u8 write_prot; u8 protection_type;/* Data Integrity Field */ u8 provisioning_mode; u8 zeroing_mode; unsigned ATO : 1; /* state of disk ATO bit */ unsigned cache_override : 1; /* temp override of WCE,RCD */ unsigned WCE : 1; /* state of disk WCE bit */ unsigned RCD : 1; /* state of disk RCD bit, unused */ unsigned DPOFUA : 1; /* state of disk DPOFUA bit */ unsigned first_scan : 1; unsigned lbpme : 1; unsigned lbprz : 1; unsigned lbpu : 1; unsigned lbpws : 1; unsigned lbpws10 : 1; unsigned lbpvpd : 1; unsigned ws10 : 1; unsigned ws16 : 1; unsigned rc_basis: 2; unsigned zoned: 2; unsigned urswrz : 1; unsigned security : 1; unsigned ignore_medium_access_errors : 1; }; #define to_scsi_disk(obj) container_of(obj,struct scsi_disk,dev) static inline struct scsi_disk *scsi_disk(struct gendisk *disk) { return container_of(disk->private_data, struct scsi_disk, driver); } #define sd_printk(prefix, sdsk, fmt, a...) \ (sdsk)->disk ? \ sdev_prefix_printk(prefix, (sdsk)->device, \ (sdsk)->disk->disk_name, fmt, ##a) : \ sdev_printk(prefix, (sdsk)->device, fmt, ##a) #define sd_first_printk(prefix, sdsk, fmt, a...) \ do { \ if ((sdsk)->first_scan) \ sd_printk(prefix, sdsk, fmt, ##a); \ } while (0) static inline int scsi_medium_access_command(struct scsi_cmnd *scmd) { switch (scmd->cmnd[0]) { case READ_6: case READ_10: case READ_12: case READ_16: case SYNCHRONIZE_CACHE: case VERIFY: case VERIFY_12: case VERIFY_16: case WRITE_6: case WRITE_10: case WRITE_12: case WRITE_16: case WRITE_SAME: case WRITE_SAME_16: case UNMAP: return 1; case VARIABLE_LENGTH_CMD: switch (scmd->cmnd[9]) { case READ_32: case VERIFY_32: case WRITE_32: case WRITE_SAME_32: return 1; } } return 0; } static inline sector_t logical_to_sectors(struct scsi_device *sdev, sector_t blocks) { return blocks << (ilog2(sdev->sector_size) - 9); } static inline unsigned int logical_to_bytes(struct scsi_device *sdev, sector_t blocks) { return blocks * sdev->sector_size; } static inline sector_t bytes_to_logical(struct scsi_device *sdev, unsigned int bytes) { return bytes >> ilog2(sdev->sector_size); } static inline sector_t sectors_to_logical(struct scsi_device *sdev, sector_t sector) { return sector >> (ilog2(sdev->sector_size) - 9); } #ifdef CONFIG_BLK_DEV_INTEGRITY extern void sd_dif_config_host(struct scsi_disk *); #else /* CONFIG_BLK_DEV_INTEGRITY */ static inline void sd_dif_config_host(struct scsi_disk *disk) { } #endif /* CONFIG_BLK_DEV_INTEGRITY */ static inline int sd_is_zoned(struct scsi_disk *sdkp) { return sdkp->zoned == 1 || sdkp->device->type == TYPE_ZBC; } #ifdef CONFIG_BLK_DEV_ZONED void sd_zbc_release_disk(struct scsi_disk *sdkp); int sd_zbc_read_zones(struct scsi_disk *sdkp, unsigned char *buffer); int sd_zbc_revalidate_zones(struct scsi_disk *sdkp); blk_status_t sd_zbc_setup_zone_mgmt_cmnd(struct scsi_cmnd *cmd, unsigned char op, bool all); unsigned int sd_zbc_complete(struct scsi_cmnd *cmd, unsigned int good_bytes, struct scsi_sense_hdr *sshdr); int sd_zbc_report_zones(struct gendisk *disk, sector_t sector, unsigned int nr_zones, report_zones_cb cb, void *data); blk_status_t sd_zbc_prepare_zone_append(struct scsi_cmnd *cmd, sector_t *lba, unsigned int nr_blocks); #else /* CONFIG_BLK_DEV_ZONED */ static inline void sd_zbc_release_disk(struct scsi_disk *sdkp) {} static inline int sd_zbc_read_zones(struct scsi_disk *sdkp, unsigned char *buf) { return 0; } static inline int sd_zbc_revalidate_zones(struct scsi_disk *sdkp) { return 0; } static inline blk_status_t sd_zbc_setup_zone_mgmt_cmnd(struct scsi_cmnd *cmd, unsigned char op, bool all) { return BLK_STS_TARGET; } static inline unsigned int sd_zbc_complete(struct scsi_cmnd *cmd, unsigned int good_bytes, struct scsi_sense_hdr *sshdr) { return good_bytes; } static inline blk_status_t sd_zbc_prepare_zone_append(struct scsi_cmnd *cmd, sector_t *lba, unsigned int nr_blocks) { return BLK_STS_TARGET; } #define sd_zbc_report_zones NULL #endif /* CONFIG_BLK_DEV_ZONED */ void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr); void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result); #endif /* _SCSI_DISK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 /* SPDX-License-Identifier: GPL-2.0 */ /* * Type definitions for the multi-level security (MLS) policy. * * Author : Stephen Smalley, <sds@tycho.nsa.gov> */ /* * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com> * * Support for enhanced MLS infrastructure. * * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc. */ #ifndef _SS_MLS_TYPES_H_ #define _SS_MLS_TYPES_H_ #include "security.h" #include "ebitmap.h" struct mls_level { u32 sens; /* sensitivity */ struct ebitmap cat; /* category set */ }; struct mls_range { struct mls_level level[2]; /* low == level[0], high == level[1] */ }; static inline int mls_level_eq(struct mls_level *l1, struct mls_level *l2) { return ((l1->sens == l2->sens) && ebitmap_cmp(&l1->cat, &l2->cat)); } static inline int mls_level_dom(struct mls_level *l1, struct mls_level *l2) { return ((l1->sens >= l2->sens) && ebitmap_contains(&l1->cat, &l2->cat, 0)); } #define mls_level_incomp(l1, l2) \ (!mls_level_dom((l1), (l2)) && !mls_level_dom((l2), (l1))) #define mls_level_between(l1, l2, l3) \ (mls_level_dom((l1), (l2)) && mls_level_dom((l3), (l1))) #define mls_range_contains(r1, r2) \ (mls_level_dom(&(r2).level[0], &(r1).level[0]) && \ mls_level_dom(&(r1).level[1], &(r2).level[1])) #endif /* _SS_MLS_TYPES_H_ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_VMSTAT_H #define _LINUX_VMSTAT_H #include <linux/types.h> #include <linux/percpu.h> #include <linux/mmzone.h> #include <linux/vm_event_item.h> #include <linux/atomic.h> #include <linux/static_key.h> #include <linux/mmdebug.h> extern int sysctl_stat_interval; #ifdef CONFIG_NUMA #define ENABLE_NUMA_STAT 1 #define DISABLE_NUMA_STAT 0 extern int sysctl_vm_numa_stat; DECLARE_STATIC_KEY_TRUE(vm_numa_stat_key); int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write, void *buffer, size_t *length, loff_t *ppos); #endif struct reclaim_stat { unsigned nr_dirty; unsigned nr_unqueued_dirty; unsigned nr_congested; unsigned nr_writeback; unsigned nr_immediate; unsigned nr_pageout; unsigned nr_activate[ANON_AND_FILE]; unsigned nr_ref_keep; unsigned nr_unmap_fail; unsigned nr_lazyfree_fail; }; enum writeback_stat_item { NR_DIRTY_THRESHOLD, NR_DIRTY_BG_THRESHOLD, NR_VM_WRITEBACK_STAT_ITEMS, }; #ifdef CONFIG_VM_EVENT_COUNTERS /* * Light weight per cpu counter implementation. * * Counters should only be incremented and no critical kernel component * should rely on the counter values. * * Counters are handled completely inline. On many platforms the code * generated will simply be the increment of a global address. */ struct vm_event_state { unsigned long event[NR_VM_EVENT_ITEMS]; }; DECLARE_PER_CPU(struct vm_event_state, vm_event_states); /* * vm counters are allowed to be racy. Use raw_cpu_ops to avoid the * local_irq_disable overhead. */ static inline void __count_vm_event(enum vm_event_item item) { raw_cpu_inc(vm_event_states.event[item]); } static inline void count_vm_event(enum vm_event_item item) { this_cpu_inc(vm_event_states.event[item]); } static inline void __count_vm_events(enum vm_event_item item, long delta) { raw_cpu_add(vm_event_states.event[item], delta); } static inline void count_vm_events(enum vm_event_item item, long delta) { this_cpu_add(vm_event_states.event[item], delta); } extern void all_vm_events(unsigned long *); extern void vm_events_fold_cpu(int cpu); #else /* Disable counters */ static inline void count_vm_event(enum vm_event_item item) { } static inline void count_vm_events(enum vm_event_item item, long delta) { } static inline void __count_vm_event(enum vm_event_item item) { } static inline void __count_vm_events(enum vm_event_item item, long delta) { } static inline void all_vm_events(unsigned long *ret) { } static inline void vm_events_fold_cpu(int cpu) { } #endif /* CONFIG_VM_EVENT_COUNTERS */ #ifdef CONFIG_NUMA_BALANCING #define count_vm_numa_event(x) count_vm_event(x) #define count_vm_numa_events(x, y) count_vm_events(x, y) #else #define count_vm_numa_event(x) do {} while (0) #define count_vm_numa_events(x, y) do { (void)(y); } while (0) #endif /* CONFIG_NUMA_BALANCING */ #ifdef CONFIG_DEBUG_TLBFLUSH #define count_vm_tlb_event(x) count_vm_event(x) #define count_vm_tlb_events(x, y) count_vm_events(x, y) #else #define count_vm_tlb_event(x) do {} while (0) #define count_vm_tlb_events(x, y) do { (void)(y); } while (0) #endif #ifdef CONFIG_DEBUG_VM_VMACACHE #define count_vm_vmacache_event(x) count_vm_event(x) #else #define count_vm_vmacache_event(x) do {} while (0) #endif #define __count_zid_vm_events(item, zid, delta) \ __count_vm_events(item##_NORMAL - ZONE_NORMAL + zid, delta) /* * Zone and node-based page accounting with per cpu differentials. */ extern atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS]; extern atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS]; extern atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS]; #ifdef CONFIG_NUMA static inline void zone_numa_state_add(long x, struct zone *zone, enum numa_stat_item item) { atomic_long_add(x, &zone->vm_numa_stat[item]); atomic_long_add(x, &vm_numa_stat[item]); } static inline unsigned long global_numa_state(enum numa_stat_item item) { long x = atomic_long_read(&vm_numa_stat[item]); return x; } static inline unsigned long zone_numa_state_snapshot(struct zone *zone, enum numa_stat_item item) { long x = atomic_long_read(&zone->vm_numa_stat[item]); int cpu; for_each_online_cpu(cpu) x += per_cpu_ptr(zone->pageset, cpu)->vm_numa_stat_diff[item]; return x; } #endif /* CONFIG_NUMA */ static inline void zone_page_state_add(long x, struct zone *zone, enum zone_stat_item item) { atomic_long_add(x, &zone->vm_stat[item]); atomic_long_add(x, &vm_zone_stat[item]); } static inline void node_page_state_add(long x, struct pglist_data *pgdat, enum node_stat_item item) { atomic_long_add(x, &pgdat->vm_stat[item]); atomic_long_add(x, &vm_node_stat[item]); } static inline unsigned long global_zone_page_state(enum zone_stat_item item) { long x = atomic_long_read(&vm_zone_stat[item]); #ifdef CONFIG_SMP if (x < 0) x = 0; #endif return x; } static inline unsigned long global_node_page_state_pages(enum node_stat_item item) { long x = atomic_long_read(&vm_node_stat[item]); #ifdef CONFIG_SMP if (x < 0) x = 0; #endif return x; } static inline unsigned long global_node_page_state(enum node_stat_item item) { VM_WARN_ON_ONCE(vmstat_item_in_bytes(item)); return global_node_page_state_pages(item); } static inline unsigned long zone_page_state(struct zone *zone, enum zone_stat_item item) { long x = atomic_long_read(&zone->vm_stat[item]); #ifdef CONFIG_SMP if (x < 0) x = 0; #endif return x; } /* * More accurate version that also considers the currently pending * deltas. For that we need to loop over all cpus to find the current * deltas. There is no synchronization so the result cannot be * exactly accurate either. */ static inline unsigned long zone_page_state_snapshot(struct zone *zone, enum zone_stat_item item) { long x = atomic_long_read(&zone->vm_stat[item]); #ifdef CONFIG_SMP int cpu; for_each_online_cpu(cpu) x += per_cpu_ptr(zone->pageset, cpu)->vm_stat_diff[item]; if (x < 0) x = 0; #endif return x; } #ifdef CONFIG_NUMA extern void __inc_numa_state(struct zone *zone, enum numa_stat_item item); extern unsigned long sum_zone_node_page_state(int node, enum zone_stat_item item); extern unsigned long sum_zone_numa_state(int node, enum numa_stat_item item); extern unsigned long node_page_state(struct pglist_data *pgdat, enum node_stat_item item); extern unsigned long node_page_state_pages(struct pglist_data *pgdat, enum node_stat_item item); #else #define sum_zone_node_page_state(node, item) global_zone_page_state(item) #define node_page_state(node, item) global_node_page_state(item) #define node_page_state_pages(node, item) global_node_page_state_pages(item) #endif /* CONFIG_NUMA */ #ifdef CONFIG_SMP void __mod_zone_page_state(struct zone *, enum zone_stat_item item, long); void __inc_zone_page_state(struct page *, enum zone_stat_item); void __dec_zone_page_state(struct page *, enum zone_stat_item); void __mod_node_page_state(struct pglist_data *, enum node_stat_item item, long); void __inc_node_page_state(struct page *, enum node_stat_item); void __dec_node_page_state(struct page *, enum node_stat_item); void mod_zone_page_state(struct zone *, enum zone_stat_item, long); void inc_zone_page_state(struct page *, enum zone_stat_item); void dec_zone_page_state(struct page *, enum zone_stat_item); void mod_node_page_state(struct pglist_data *, enum node_stat_item, long); void inc_node_page_state(struct page *, enum node_stat_item); void dec_node_page_state(struct page *, enum node_stat_item); extern void inc_node_state(struct pglist_data *, enum node_stat_item); extern void __inc_zone_state(struct zone *, enum zone_stat_item); extern void __inc_node_state(struct pglist_data *, enum node_stat_item); extern void dec_zone_state(struct zone *, enum zone_stat_item); extern void __dec_zone_state(struct zone *, enum zone_stat_item); extern void __dec_node_state(struct pglist_data *, enum node_stat_item); void quiet_vmstat(void); void cpu_vm_stats_fold(int cpu); void refresh_zone_stat_thresholds(void); struct ctl_table; int vmstat_refresh(struct ctl_table *, int write, void *buffer, size_t *lenp, loff_t *ppos); void drain_zonestat(struct zone *zone, struct per_cpu_pageset *); int calculate_pressure_threshold(struct zone *zone); int calculate_normal_threshold(struct zone *zone); void set_pgdat_percpu_threshold(pg_data_t *pgdat, int (*calculate_pressure)(struct zone *)); #else /* CONFIG_SMP */ /* * We do not maintain differentials in a single processor configuration. * The functions directly modify the zone and global counters. */ static inline void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item, long delta) { zone_page_state_add(delta, zone, item); } static inline void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, int delta) { if (vmstat_item_in_bytes(item)) { VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1)); delta >>= PAGE_SHIFT; } node_page_state_add(delta, pgdat, item); } static inline void __inc_zone_state(struct zone *zone, enum zone_stat_item item) { atomic_long_inc(&zone->vm_stat[item]); atomic_long_inc(&vm_zone_stat[item]); } static inline void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) { atomic_long_inc(&pgdat->vm_stat[item]); atomic_long_inc(&vm_node_stat[item]); } static inline void __dec_zone_state(struct zone *zone, enum zone_stat_item item) { atomic_long_dec(&zone->vm_stat[item]); atomic_long_dec(&vm_zone_stat[item]); } static inline void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item) { atomic_long_dec(&pgdat->vm_stat[item]); atomic_long_dec(&vm_node_stat[item]); } static inline void __inc_zone_page_state(struct page *page, enum zone_stat_item item) { __inc_zone_state(page_zone(page), item); } static inline void __inc_node_page_state(struct page *page, enum node_stat_item item) { __inc_node_state(page_pgdat(page), item); } static inline void __dec_zone_page_state(struct page *page, enum zone_stat_item item) { __dec_zone_state(page_zone(page), item); } static inline void __dec_node_page_state(struct page *page, enum node_stat_item item) { __dec_node_state(page_pgdat(page), item); } /* * We only use atomic operations to update counters. So there is no need to * disable interrupts. */ #define inc_zone_page_state __inc_zone_page_state #define dec_zone_page_state __dec_zone_page_state #define mod_zone_page_state __mod_zone_page_state #define inc_node_page_state __inc_node_page_state #define dec_node_page_state __dec_node_page_state #define mod_node_page_state __mod_node_page_state #define inc_zone_state __inc_zone_state #define inc_node_state __inc_node_state #define dec_zone_state __dec_zone_state #define set_pgdat_percpu_threshold(pgdat, callback) { } static inline void refresh_zone_stat_thresholds(void) { } static inline void cpu_vm_stats_fold(int cpu) { } static inline void quiet_vmstat(void) { } static inline void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset) { } #endif /* CONFIG_SMP */ static inline void __mod_zone_freepage_state(struct zone *zone, int nr_pages, int migratetype) { __mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages); if (is_migrate_cma(migratetype)) __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages); } extern const char * const vmstat_text[]; static inline const char *zone_stat_name(enum zone_stat_item item) { return vmstat_text[item]; } #ifdef CONFIG_NUMA static inline const char *numa_stat_name(enum numa_stat_item item) { return vmstat_text[NR_VM_ZONE_STAT_ITEMS + item]; } #endif /* CONFIG_NUMA */ static inline const char *node_stat_name(enum node_stat_item item) { return vmstat_text[NR_VM_ZONE_STAT_ITEMS + NR_VM_NUMA_STAT_ITEMS + item]; } static inline const char *lru_list_name(enum lru_list lru) { return node_stat_name(NR_LRU_BASE + lru) + 3; // skip "nr_" } static inline const char *writeback_stat_name(enum writeback_stat_item item) { return vmstat_text[NR_VM_ZONE_STAT_ITEMS + NR_VM_NUMA_STAT_ITEMS + NR_VM_NODE_STAT_ITEMS + item]; } #if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG) static inline const char *vm_event_name(enum vm_event_item item) { return vmstat_text[NR_VM_ZONE_STAT_ITEMS + NR_VM_NUMA_STAT_ITEMS + NR_VM_NODE_STAT_ITEMS + NR_VM_WRITEBACK_STAT_ITEMS + item]; } #endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */ #endif /* _LINUX_VMSTAT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* Asymmetric public-key cryptography key subtype * * See Documentation/crypto/asymmetric-keys.rst * * Copyright (C) 2012 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) */ #ifndef _KEYS_ASYMMETRIC_SUBTYPE_H #define _KEYS_ASYMMETRIC_SUBTYPE_H #include <linux/seq_file.h> #include <keys/asymmetric-type.h> struct kernel_pkey_query; struct kernel_pkey_params; struct public_key_signature; /* * Keys of this type declare a subtype that indicates the handlers and * capabilities. */ struct asymmetric_key_subtype { struct module *owner; const char *name; unsigned short name_len; /* length of name */ /* Describe a key of this subtype for /proc/keys */ void (*describe)(const struct key *key, struct seq_file *m); /* Destroy a key of this subtype */ void (*destroy)(void *payload_crypto, void *payload_auth); int (*query)(const struct kernel_pkey_params *params, struct kernel_pkey_query *info); /* Encrypt/decrypt/sign data */ int (*eds_op)(struct kernel_pkey_params *params, const void *in, void *out); /* Verify the signature on a key of this subtype (optional) */ int (*verify_signature)(const struct key *key, const struct public_key_signature *sig); }; /** * asymmetric_key_subtype - Get the subtype from an asymmetric key * @key: The key of interest. * * Retrieves and returns the subtype pointer of the asymmetric key from the * type-specific data attached to the key. */ static inline struct asymmetric_key_subtype *asymmetric_key_subtype(const struct key *key) { return key->payload.data[asym_subtype]; } #endif /* _KEYS_ASYMMETRIC_SUBTYPE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* audit.h -- Auditing support * * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina. * All Rights Reserved. * * Written by Rickard E. (Rik) Faith <faith@redhat.com> */ #ifndef _LINUX_AUDIT_H_ #define _LINUX_AUDIT_H_ #include <linux/sched.h> #include <linux/ptrace.h> #include <uapi/linux/audit.h> #include <uapi/linux/netfilter/nf_tables.h> #define AUDIT_INO_UNSET ((unsigned long)-1) #define AUDIT_DEV_UNSET ((dev_t)-1) struct audit_sig_info { uid_t uid; pid_t pid; char ctx[]; }; struct audit_buffer; struct audit_context; struct inode; struct netlink_skb_parms; struct path; struct linux_binprm; struct mq_attr; struct mqstat; struct audit_watch; struct audit_tree; struct sk_buff; struct audit_krule { u32 pflags; u32 flags; u32 listnr; u32 action; u32 mask[AUDIT_BITMASK_SIZE]; u32 buflen; /* for data alloc on list rules */ u32 field_count; char *filterkey; /* ties events to rules */ struct audit_field *fields; struct audit_field *arch_f; /* quick access to arch field */ struct audit_field *inode_f; /* quick access to an inode field */ struct audit_watch *watch; /* associated watch */ struct audit_tree *tree; /* associated watched tree */ struct audit_fsnotify_mark *exe; struct list_head rlist; /* entry in audit_{watch,tree}.rules list */ struct list_head list; /* for AUDIT_LIST* purposes only */ u64 prio; }; /* Flag to indicate legacy AUDIT_LOGINUID unset usage */ #define AUDIT_LOGINUID_LEGACY 0x1 struct audit_field { u32 type; union { u32 val; kuid_t uid; kgid_t gid; struct { char *lsm_str; void *lsm_rule; }; }; u32 op; }; enum audit_ntp_type { AUDIT_NTP_OFFSET, AUDIT_NTP_FREQ, AUDIT_NTP_STATUS, AUDIT_NTP_TAI, AUDIT_NTP_TICK, AUDIT_NTP_ADJUST, AUDIT_NTP_NVALS /* count */ }; #ifdef CONFIG_AUDITSYSCALL struct audit_ntp_val { long long oldval, newval; }; struct audit_ntp_data { struct audit_ntp_val vals[AUDIT_NTP_NVALS]; }; #else struct audit_ntp_data {}; #endif enum audit_nfcfgop { AUDIT_XT_OP_REGISTER, AUDIT_XT_OP_REPLACE, AUDIT_XT_OP_UNREGISTER, AUDIT_NFT_OP_TABLE_REGISTER, AUDIT_NFT_OP_TABLE_UNREGISTER, AUDIT_NFT_OP_CHAIN_REGISTER, AUDIT_NFT_OP_CHAIN_UNREGISTER, AUDIT_NFT_OP_RULE_REGISTER, AUDIT_NFT_OP_RULE_UNREGISTER, AUDIT_NFT_OP_SET_REGISTER, AUDIT_NFT_OP_SET_UNREGISTER, AUDIT_NFT_OP_SETELEM_REGISTER, AUDIT_NFT_OP_SETELEM_UNREGISTER, AUDIT_NFT_OP_GEN_REGISTER, AUDIT_NFT_OP_OBJ_REGISTER, AUDIT_NFT_OP_OBJ_UNREGISTER, AUDIT_NFT_OP_OBJ_RESET, AUDIT_NFT_OP_FLOWTABLE_REGISTER, AUDIT_NFT_OP_FLOWTABLE_UNREGISTER, AUDIT_NFT_OP_INVALID, }; extern int is_audit_feature_set(int which); extern int __init audit_register_class(int class, unsigned *list); extern int audit_classify_syscall(int abi, unsigned syscall); extern int audit_classify_arch(int arch); /* only for compat system calls */ extern unsigned compat_write_class[]; extern unsigned compat_read_class[]; extern unsigned compat_dir_class[]; extern unsigned compat_chattr_class[]; extern unsigned compat_signal_class[]; extern int audit_classify_compat_syscall(int abi, unsigned syscall); /* audit_names->type values */ #define AUDIT_TYPE_UNKNOWN 0 /* we don't know yet */ #define AUDIT_TYPE_NORMAL 1 /* a "normal" audit record */ #define AUDIT_TYPE_PARENT 2 /* a parent audit record */ #define AUDIT_TYPE_CHILD_DELETE 3 /* a child being deleted */ #define AUDIT_TYPE_CHILD_CREATE 4 /* a child being created */ /* maximized args number that audit_socketcall can process */ #define AUDITSC_ARGS 6 /* bit values for ->signal->audit_tty */ #define AUDIT_TTY_ENABLE BIT(0) #define AUDIT_TTY_LOG_PASSWD BIT(1) struct filename; #define AUDIT_OFF 0 #define AUDIT_ON 1 #define AUDIT_LOCKED 2 #ifdef CONFIG_AUDIT /* These are defined in audit.c */ /* Public API */ extern __printf(4, 5) void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type, const char *fmt, ...); extern struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask, int type); extern __printf(2, 3) void audit_log_format(struct audit_buffer *ab, const char *fmt, ...); extern void audit_log_end(struct audit_buffer *ab); extern bool audit_string_contains_control(const char *string, size_t len); extern void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf, size_t len); extern void audit_log_n_string(struct audit_buffer *ab, const char *buf, size_t n); extern void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string, size_t n); extern void audit_log_untrustedstring(struct audit_buffer *ab, const char *string); extern void audit_log_d_path(struct audit_buffer *ab, const char *prefix, const struct path *path); extern void audit_log_key(struct audit_buffer *ab, char *key); extern void audit_log_path_denied(int type, const char *operation); extern void audit_log_lost(const char *message); extern int audit_log_task_context(struct audit_buffer *ab); extern void audit_log_task_info(struct audit_buffer *ab); extern int audit_update_lsm_rules(void); /* Private API (for audit.c only) */ extern int audit_rule_change(int type, int seq, void *data, size_t datasz); extern int audit_list_rules_send(struct sk_buff *request_skb, int seq); extern int audit_set_loginuid(kuid_t loginuid); static inline kuid_t audit_get_loginuid(struct task_struct *tsk) { return tsk->loginuid; } static inline unsigned int audit_get_sessionid(struct task_struct *tsk) { return tsk->sessionid; } extern u32 audit_enabled; extern int audit_signal_info(int sig, struct task_struct *t); #else /* CONFIG_AUDIT */ static inline __printf(4, 5) void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type, const char *fmt, ...) { } static inline struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask, int type) { return NULL; } static inline __printf(2, 3) void audit_log_format(struct audit_buffer *ab, const char *fmt, ...) { } static inline void audit_log_end(struct audit_buffer *ab) { } static inline void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf, size_t len) { } static inline void audit_log_n_string(struct audit_buffer *ab, const char *buf, size_t n) { } static inline void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string, size_t n) { } static inline void audit_log_untrustedstring(struct audit_buffer *ab, const char *string) { } static inline void audit_log_d_path(struct audit_buffer *ab, const char *prefix, const struct path *path) { } static inline void audit_log_key(struct audit_buffer *ab, char *key) { } static inline void audit_log_path_denied(int type, const char *operation) { } static inline int audit_log_task_context(struct audit_buffer *ab) { return 0; } static inline void audit_log_task_info(struct audit_buffer *ab) { } static inline kuid_t audit_get_loginuid(struct task_struct *tsk) { return INVALID_UID; } static inline unsigned int audit_get_sessionid(struct task_struct *tsk) { return AUDIT_SID_UNSET; } #define audit_enabled AUDIT_OFF static inline int audit_signal_info(int sig, struct task_struct *t) { return 0; } #endif /* CONFIG_AUDIT */ #ifdef CONFIG_AUDIT_COMPAT_GENERIC #define audit_is_compat(arch) (!((arch) & __AUDIT_ARCH_64BIT)) #else #define audit_is_compat(arch) false #endif #define AUDIT_INODE_PARENT 1 /* dentry represents the parent */ #define AUDIT_INODE_HIDDEN 2 /* audit record should be hidden */ #define AUDIT_INODE_NOEVAL 4 /* audit record incomplete */ #ifdef CONFIG_AUDITSYSCALL #include <asm/syscall.h> /* for syscall_get_arch() */ /* These are defined in auditsc.c */ /* Public API */ extern int audit_alloc(struct task_struct *task); extern void __audit_free(struct task_struct *task); extern void __audit_syscall_entry(int major, unsigned long a0, unsigned long a1, unsigned long a2, unsigned long a3); extern void __audit_syscall_exit(int ret_success, long ret_value); extern struct filename *__audit_reusename(const __user char *uptr); extern void __audit_getname(struct filename *name); extern void __audit_getcwd(void); extern void __audit_inode(struct filename *name, const struct dentry *dentry, unsigned int flags); extern void __audit_file(const struct file *); extern void __audit_inode_child(struct inode *parent, const struct dentry *dentry, const unsigned char type); extern void audit_seccomp(unsigned long syscall, long signr, int code); extern void audit_seccomp_actions_logged(const char *names, const char *old_names, int res); extern void __audit_ptrace(struct task_struct *t); static inline void audit_set_context(struct task_struct *task, struct audit_context *ctx) { task->audit_context = ctx; } static inline struct audit_context *audit_context(void) { return current->audit_context; } static inline bool audit_dummy_context(void) { void *p = audit_context(); return !p || *(int *)p; } static inline void audit_free(struct task_struct *task) { if (unlikely(task->audit_context)) __audit_free(task); } static inline void audit_syscall_entry(int major, unsigned long a0, unsigned long a1, unsigned long a2, unsigned long a3) { if (unlikely(audit_context())) __audit_syscall_entry(major, a0, a1, a2, a3); } static inline void audit_syscall_exit(void *pt_regs) { if (unlikely(audit_context())) { int success = is_syscall_success(pt_regs); long return_code = regs_return_value(pt_regs); __audit_syscall_exit(success, return_code); } } static inline struct filename *audit_reusename(const __user char *name) { if (unlikely(!audit_dummy_context())) return __audit_reusename(name); return NULL; } static inline void audit_getname(struct filename *name) { if (unlikely(!audit_dummy_context())) __audit_getname(name); } static inline void audit_getcwd(void) { if (unlikely(audit_context())) __audit_getcwd(); } static inline void audit_inode(struct filename *name, const struct dentry *dentry, unsigned int aflags) { if (unlikely(!audit_dummy_context())) __audit_inode(name, dentry, aflags); } static inline void audit_file(struct file *file) { if (unlikely(!audit_dummy_context())) __audit_file(file); } static inline void audit_inode_parent_hidden(struct filename *name, const struct dentry *dentry) { if (unlikely(!audit_dummy_context())) __audit_inode(name, dentry, AUDIT_INODE_PARENT | AUDIT_INODE_HIDDEN); } static inline void audit_inode_child(struct inode *parent, const struct dentry *dentry, const unsigned char type) { if (unlikely(!audit_dummy_context())) __audit_inode_child(parent, dentry, type); } void audit_core_dumps(long signr); static inline void audit_ptrace(struct task_struct *t) { if (unlikely(!audit_dummy_context())) __audit_ptrace(t); } /* Private API (for audit.c only) */ extern void __audit_ipc_obj(struct kern_ipc_perm *ipcp); extern void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode); extern void __audit_bprm(struct linux_binprm *bprm); extern int __audit_socketcall(int nargs, unsigned long *args); extern int __audit_sockaddr(int len, void *addr); extern void __audit_fd_pair(int fd1, int fd2); extern void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr); extern void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, const struct timespec64 *abs_timeout); extern void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification); extern void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat); extern int __audit_log_bprm_fcaps(struct linux_binprm *bprm, const struct cred *new, const struct cred *old); extern void __audit_log_capset(const struct cred *new, const struct cred *old); extern void __audit_mmap_fd(int fd, int flags); extern void __audit_log_kern_module(char *name); extern void __audit_fanotify(unsigned int response); extern void __audit_tk_injoffset(struct timespec64 offset); extern void __audit_ntp_log(const struct audit_ntp_data *ad); extern void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries, enum audit_nfcfgop op, gfp_t gfp); static inline void audit_ipc_obj(struct kern_ipc_perm *ipcp) { if (unlikely(!audit_dummy_context())) __audit_ipc_obj(ipcp); } static inline void audit_fd_pair(int fd1, int fd2) { if (unlikely(!audit_dummy_context())) __audit_fd_pair(fd1, fd2); } static inline void audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode) { if (unlikely(!audit_dummy_context())) __audit_ipc_set_perm(qbytes, uid, gid, mode); } static inline void audit_bprm(struct linux_binprm *bprm) { if (unlikely(!audit_dummy_context())) __audit_bprm(bprm); } static inline int audit_socketcall(int nargs, unsigned long *args) { if (unlikely(!audit_dummy_context())) return __audit_socketcall(nargs, args); return 0; } static inline int audit_socketcall_compat(int nargs, u32 *args) { unsigned long a[AUDITSC_ARGS]; int i; if (audit_dummy_context()) return 0; for (i = 0; i < nargs; i++) a[i] = (unsigned long)args[i]; return __audit_socketcall(nargs, a); } static inline int audit_sockaddr(int len, void *addr) { if (unlikely(!audit_dummy_context())) return __audit_sockaddr(len, addr); return 0; } static inline void audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr) { if (unlikely(!audit_dummy_context())) __audit_mq_open(oflag, mode, attr); } static inline void audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, const struct timespec64 *abs_timeout) { if (unlikely(!audit_dummy_context())) __audit_mq_sendrecv(mqdes, msg_len, msg_prio, abs_timeout); } static inline void audit_mq_notify(mqd_t mqdes, const struct sigevent *notification) { if (unlikely(!audit_dummy_context())) __audit_mq_notify(mqdes, notification); } static inline void audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat) { if (unlikely(!audit_dummy_context())) __audit_mq_getsetattr(mqdes, mqstat); } static inline int audit_log_bprm_fcaps(struct linux_binprm *bprm, const struct cred *new, const struct cred *old) { if (unlikely(!audit_dummy_context())) return __audit_log_bprm_fcaps(bprm, new, old); return 0; } static inline void audit_log_capset(const struct cred *new, const struct cred *old) { if (unlikely(!audit_dummy_context())) __audit_log_capset(new, old); } static inline void audit_mmap_fd(int fd, int flags) { if (unlikely(!audit_dummy_context())) __audit_mmap_fd(fd, flags); } static inline void audit_log_kern_module(char *name) { if (!audit_dummy_context()) __audit_log_kern_module(name); } static inline void audit_fanotify(unsigned int response) { if (!audit_dummy_context()) __audit_fanotify(response); } static inline void audit_tk_injoffset(struct timespec64 offset) { /* ignore no-op events */ if (offset.tv_sec == 0 && offset.tv_nsec == 0) return; if (!audit_dummy_context()) __audit_tk_injoffset(offset); } static inline void audit_ntp_init(struct audit_ntp_data *ad) { memset(ad, 0, sizeof(*ad)); } static inline void audit_ntp_set_old(struct audit_ntp_data *ad, enum audit_ntp_type type, long long val) { ad->vals[type].oldval = val; } static inline void audit_ntp_set_new(struct audit_ntp_data *ad, enum audit_ntp_type type, long long val) { ad->vals[type].newval = val; } static inline void audit_ntp_log(const struct audit_ntp_data *ad) { if (!audit_dummy_context()) __audit_ntp_log(ad); } static inline void audit_log_nfcfg(const char *name, u8 af, unsigned int nentries, enum audit_nfcfgop op, gfp_t gfp) { if (audit_enabled) __audit_log_nfcfg(name, af, nentries, op, gfp); } extern int audit_n_rules; extern int audit_signals; #else /* CONFIG_AUDITSYSCALL */ static inline int audit_alloc(struct task_struct *task) { return 0; } static inline void audit_free(struct task_struct *task) { } static inline void audit_syscall_entry(int major, unsigned long a0, unsigned long a1, unsigned long a2, unsigned long a3) { } static inline void audit_syscall_exit(void *pt_regs) { } static inline bool audit_dummy_context(void) { return true; } static inline void audit_set_context(struct task_struct *task, struct audit_context *ctx) { } static inline struct audit_context *audit_context(void) { return NULL; } static inline struct filename *audit_reusename(const __user char *name) { return NULL; } static inline void audit_getname(struct filename *name) { } static inline void audit_getcwd(void) { } static inline void audit_inode(struct filename *name, const struct dentry *dentry, unsigned int aflags) { } static inline void audit_file(struct file *file) { } static inline void audit_inode_parent_hidden(struct filename *name, const struct dentry *dentry) { } static inline void audit_inode_child(struct inode *parent, const struct dentry *dentry, const unsigned char type) { } static inline void audit_core_dumps(long signr) { } static inline void audit_seccomp(unsigned long syscall, long signr, int code) { } static inline void audit_seccomp_actions_logged(const char *names, const char *old_names, int res) { } static inline void audit_ipc_obj(struct kern_ipc_perm *ipcp) { } static inline void audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode) { } static inline void audit_bprm(struct linux_binprm *bprm) { } static inline int audit_socketcall(int nargs, unsigned long *args) { return 0; } static inline int audit_socketcall_compat(int nargs, u32 *args) { return 0; } static inline void audit_fd_pair(int fd1, int fd2) { } static inline int audit_sockaddr(int len, void *addr) { return 0; } static inline void audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr) { } static inline void audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, const struct timespec64 *abs_timeout) { } static inline void audit_mq_notify(mqd_t mqdes, const struct sigevent *notification) { } static inline void audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat) { } static inline int audit_log_bprm_fcaps(struct linux_binprm *bprm, const struct cred *new, const struct cred *old) { return 0; } static inline void audit_log_capset(const struct cred *new, const struct cred *old) { } static inline void audit_mmap_fd(int fd, int flags) { } static inline void audit_log_kern_module(char *name) { } static inline void audit_fanotify(unsigned int response) { } static inline void audit_tk_injoffset(struct timespec64 offset) { } static inline void audit_ntp_init(struct audit_ntp_data *ad) { } static inline void audit_ntp_set_old(struct audit_ntp_data *ad, enum audit_ntp_type type, long long val) { } static inline void audit_ntp_set_new(struct audit_ntp_data *ad, enum audit_ntp_type type, long long val) { } static inline void audit_ntp_log(const struct audit_ntp_data *ad) { } static inline void audit_ptrace(struct task_struct *t) { } static inline void audit_log_nfcfg(const char *name, u8 af, unsigned int nentries, enum audit_nfcfgop op, gfp_t gfp) { } #define audit_n_rules 0 #define audit_signals 0 #endif /* CONFIG_AUDITSYSCALL */ static inline bool audit_loginuid_set(struct task_struct *tsk) { return uid_valid(audit_get_loginuid(tsk)); } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_BITMAP_H #define __LINUX_BITMAP_H #ifndef __ASSEMBLY__ #include <linux/types.h> #include <linux/bitops.h> #include <linux/string.h> #include <linux/kernel.h> /* * bitmaps provide bit arrays that consume one or more unsigned * longs. The bitmap interface and available operations are listed * here, in bitmap.h * * Function implementations generic to all architectures are in * lib/bitmap.c. Functions implementations that are architecture * specific are in various include/asm-<arch>/bitops.h headers * and other arch/<arch> specific files. * * See lib/bitmap.c for more details. */ /** * DOC: bitmap overview * * The available bitmap operations and their rough meaning in the * case that the bitmap is a single unsigned long are thus: * * The generated code is more efficient when nbits is known at * compile-time and at most BITS_PER_LONG. * * :: * * bitmap_zero(dst, nbits) *dst = 0UL * bitmap_fill(dst, nbits) *dst = ~0UL * bitmap_copy(dst, src, nbits) *dst = *src * bitmap_and(dst, src1, src2, nbits) *dst = *src1 & *src2 * bitmap_or(dst, src1, src2, nbits) *dst = *src1 | *src2 * bitmap_xor(dst, src1, src2, nbits) *dst = *src1 ^ *src2 * bitmap_andnot(dst, src1, src2, nbits) *dst = *src1 & ~(*src2) * bitmap_complement(dst, src, nbits) *dst = ~(*src) * bitmap_equal(src1, src2, nbits) Are *src1 and *src2 equal? * bitmap_intersects(src1, src2, nbits) Do *src1 and *src2 overlap? * bitmap_subset(src1, src2, nbits) Is *src1 a subset of *src2? * bitmap_empty(src, nbits) Are all bits zero in *src? * bitmap_full(src, nbits) Are all bits set in *src? * bitmap_weight(src, nbits) Hamming Weight: number set bits * bitmap_set(dst, pos, nbits) Set specified bit area * bitmap_clear(dst, pos, nbits) Clear specified bit area * bitmap_find_next_zero_area(buf, len, pos, n, mask) Find bit free area * bitmap_find_next_zero_area_off(buf, len, pos, n, mask, mask_off) as above * bitmap_next_clear_region(map, &start, &end, nbits) Find next clear region * bitmap_next_set_region(map, &start, &end, nbits) Find next set region * bitmap_for_each_clear_region(map, rs, re, start, end) * Iterate over all clear regions * bitmap_for_each_set_region(map, rs, re, start, end) * Iterate over all set regions * bitmap_shift_right(dst, src, n, nbits) *dst = *src >> n * bitmap_shift_left(dst, src, n, nbits) *dst = *src << n * bitmap_cut(dst, src, first, n, nbits) Cut n bits from first, copy rest * bitmap_replace(dst, old, new, mask, nbits) *dst = (*old & ~(*mask)) | (*new & *mask) * bitmap_remap(dst, src, old, new, nbits) *dst = map(old, new)(src) * bitmap_bitremap(oldbit, old, new, nbits) newbit = map(old, new)(oldbit) * bitmap_onto(dst, orig, relmap, nbits) *dst = orig relative to relmap * bitmap_fold(dst, orig, sz, nbits) dst bits = orig bits mod sz * bitmap_parse(buf, buflen, dst, nbits) Parse bitmap dst from kernel buf * bitmap_parse_user(ubuf, ulen, dst, nbits) Parse bitmap dst from user buf * bitmap_parselist(buf, dst, nbits) Parse bitmap dst from kernel buf * bitmap_parselist_user(buf, dst, nbits) Parse bitmap dst from user buf * bitmap_find_free_region(bitmap, bits, order) Find and allocate bit region * bitmap_release_region(bitmap, pos, order) Free specified bit region * bitmap_allocate_region(bitmap, pos, order) Allocate specified bit region * bitmap_from_arr32(dst, buf, nbits) Copy nbits from u32[] buf to dst * bitmap_to_arr32(buf, src, nbits) Copy nbits from buf to u32[] dst * bitmap_get_value8(map, start) Get 8bit value from map at start * bitmap_set_value8(map, value, start) Set 8bit value to map at start * * Note, bitmap_zero() and bitmap_fill() operate over the region of * unsigned longs, that is, bits behind bitmap till the unsigned long * boundary will be zeroed or filled as well. Consider to use * bitmap_clear() or bitmap_set() to make explicit zeroing or filling * respectively. */ /** * DOC: bitmap bitops * * Also the following operations in asm/bitops.h apply to bitmaps.:: * * set_bit(bit, addr) *addr |= bit * clear_bit(bit, addr) *addr &= ~bit * change_bit(bit, addr) *addr ^= bit * test_bit(bit, addr) Is bit set in *addr? * test_and_set_bit(bit, addr) Set bit and return old value * test_and_clear_bit(bit, addr) Clear bit and return old value * test_and_change_bit(bit, addr) Change bit and return old value * find_first_zero_bit(addr, nbits) Position first zero bit in *addr * find_first_bit(addr, nbits) Position first set bit in *addr * find_next_zero_bit(addr, nbits, bit) * Position next zero bit in *addr >= bit * find_next_bit(addr, nbits, bit) Position next set bit in *addr >= bit * find_next_and_bit(addr1, addr2, nbits, bit) * Same as find_next_bit, but in * (*addr1 & *addr2) * */ /** * DOC: declare bitmap * The DECLARE_BITMAP(name,bits) macro, in linux/types.h, can be used * to declare an array named 'name' of just enough unsigned longs to * contain all bit positions from 0 to 'bits' - 1. */ /* * Allocation and deallocation of bitmap. * Provided in lib/bitmap.c to avoid circular dependency. */ extern unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags); extern unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags); extern void bitmap_free(const unsigned long *bitmap); /* * lib/bitmap.c provides these functions: */ extern int __bitmap_empty(const unsigned long *bitmap, unsigned int nbits); extern int __bitmap_full(const unsigned long *bitmap, unsigned int nbits); extern int __bitmap_equal(const unsigned long *bitmap1, const unsigned long *bitmap2, unsigned int nbits); extern bool __pure __bitmap_or_equal(const unsigned long *src1, const unsigned long *src2, const unsigned long *src3, unsigned int nbits); extern void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int nbits); extern void __bitmap_shift_right(unsigned long *dst, const unsigned long *src, unsigned int shift, unsigned int nbits); extern void __bitmap_shift_left(unsigned long *dst, const unsigned long *src, unsigned int shift, unsigned int nbits); extern void bitmap_cut(unsigned long *dst, const unsigned long *src, unsigned int first, unsigned int cut, unsigned int nbits); extern int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1, const unsigned long *bitmap2, unsigned int nbits); extern void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1, const unsigned long *bitmap2, unsigned int nbits); extern void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1, const unsigned long *bitmap2, unsigned int nbits); extern int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1, const unsigned long *bitmap2, unsigned int nbits); extern void __bitmap_replace(unsigned long *dst, const unsigned long *old, const unsigned long *new, const unsigned long *mask, unsigned int nbits); extern int __bitmap_intersects(const unsigned long *bitmap1, const unsigned long *bitmap2, unsigned int nbits); extern int __bitmap_subset(const unsigned long *bitmap1, const unsigned long *bitmap2, unsigned int nbits); extern int __bitmap_weight(const unsigned long *bitmap, unsigned int nbits); extern void __bitmap_set(unsigned long *map, unsigned int start, int len); extern void __bitmap_clear(unsigned long *map, unsigned int start, int len); extern unsigned long bitmap_find_next_zero_area_off(unsigned long *map, unsigned long size, unsigned long start, unsigned int nr, unsigned long align_mask, unsigned long align_offset); /** * bitmap_find_next_zero_area - find a contiguous aligned zero area * @map: The address to base the search on * @size: The bitmap size in bits * @start: The bitnumber to start searching at * @nr: The number of zeroed bits we're looking for * @align_mask: Alignment mask for zero area * * The @align_mask should be one less than a power of 2; the effect is that * the bit offset of all zero areas this function finds is multiples of that * power of 2. A @align_mask of 0 means no alignment is required. */ static inline unsigned long bitmap_find_next_zero_area(unsigned long *map, unsigned long size, unsigned long start, unsigned int nr, unsigned long align_mask) { return bitmap_find_next_zero_area_off(map, size, start, nr, align_mask, 0); } extern int bitmap_parse(const char *buf, unsigned int buflen, unsigned long *dst, int nbits); extern int bitmap_parse_user(const char __user *ubuf, unsigned int ulen, unsigned long *dst, int nbits); extern int bitmap_parselist(const char *buf, unsigned long *maskp, int nmaskbits); extern int bitmap_parselist_user(const char __user *ubuf, unsigned int ulen, unsigned long *dst, int nbits); extern void bitmap_remap(unsigned long *dst, const unsigned long *src, const unsigned long *old, const unsigned long *new, unsigned int nbits); extern int bitmap_bitremap(int oldbit, const unsigned long *old, const unsigned long *new, int bits); extern void bitmap_onto(unsigned long *dst, const unsigned long *orig, const unsigned long *relmap, unsigned int bits); extern void bitmap_fold(unsigned long *dst, const unsigned long *orig, unsigned int sz, unsigned int nbits); extern int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order); extern void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order); extern int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order); #ifdef __BIG_ENDIAN extern void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits); #else #define bitmap_copy_le bitmap_copy #endif extern unsigned int bitmap_ord_to_pos(const unsigned long *bitmap, unsigned int ord, unsigned int nbits); extern int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp, int nmaskbits); #define BITMAP_FIRST_WORD_MASK(start) (~0UL << ((start) & (BITS_PER_LONG - 1))) #define BITMAP_LAST_WORD_MASK(nbits) (~0UL >> (-(nbits) & (BITS_PER_LONG - 1))) /* * The static inlines below do not handle constant nbits==0 correctly, * so make such users (should any ever turn up) call the out-of-line * versions. */ #define small_const_nbits(nbits) \ (__builtin_constant_p(nbits) && (nbits) <= BITS_PER_LONG && (nbits) > 0) static inline void bitmap_zero(unsigned long *dst, unsigned int nbits) { unsigned int len = BITS_TO_LONGS(nbits) * sizeof(unsigned long); memset(dst, 0, len); } static inline void bitmap_fill(unsigned long *dst, unsigned int nbits) { unsigned int len = BITS_TO_LONGS(nbits) * sizeof(unsigned long); memset(dst, 0xff, len); } static inline void bitmap_copy(unsigned long *dst, const unsigned long *src, unsigned int nbits) { unsigned int len = BITS_TO_LONGS(nbits) * sizeof(unsigned long); memcpy(dst, src, len); } /* * Copy bitmap and clear tail bits in last word. */ static inline void bitmap_copy_clear_tail(unsigned long *dst, const unsigned long *src, unsigned int nbits) { bitmap_copy(dst, src, nbits); if (nbits % BITS_PER_LONG) dst[nbits / BITS_PER_LONG] &= BITMAP_LAST_WORD_MASK(nbits); } /* * On 32-bit systems bitmaps are represented as u32 arrays internally, and * therefore conversion is not needed when copying data from/to arrays of u32. */ #if BITS_PER_LONG == 64 extern void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits); extern void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits); #else #define bitmap_from_arr32(bitmap, buf, nbits) \ bitmap_copy_clear_tail((unsigned long *) (bitmap), \ (const unsigned long *) (buf), (nbits)) #define bitmap_to_arr32(buf, bitmap, nbits) \ bitmap_copy_clear_tail((unsigned long *) (buf), \ (const unsigned long *) (bitmap), (nbits)) #endif static inline int bitmap_and(unsigned long *dst, const unsigned long *src1, const unsigned long *src2, unsigned int nbits) { if (small_const_nbits(nbits)) return (*dst = *src1 & *src2 & BITMAP_LAST_WORD_MASK(nbits)) != 0; return __bitmap_and(dst, src1, src2, nbits); } static inline void bitmap_or(unsigned long *dst, const unsigned long *src1, const unsigned long *src2, unsigned int nbits) { if (small_const_nbits(nbits)) *dst = *src1 | *src2; else __bitmap_or(dst, src1, src2, nbits); } static inline void bitmap_xor(unsigned long *dst, const unsigned long *src1, const unsigned long *src2, unsigned int nbits) { if (small_const_nbits(nbits)) *dst = *src1 ^ *src2; else __bitmap_xor(dst, src1, src2, nbits); } static inline int bitmap_andnot(unsigned long *dst, const unsigned long *src1, const unsigned long *src2, unsigned int nbits) { if (small_const_nbits(nbits)) return (*dst = *src1 & ~(*src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0; return __bitmap_andnot(dst, src1, src2, nbits); } static inline void bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int nbits) { if (small_const_nbits(nbits)) *dst = ~(*src); else __bitmap_complement(dst, src, nbits); } #ifdef __LITTLE_ENDIAN #define BITMAP_MEM_ALIGNMENT 8 #else #define BITMAP_MEM_ALIGNMENT (8 * sizeof(unsigned long)) #endif #define BITMAP_MEM_MASK (BITMAP_MEM_ALIGNMENT - 1) static inline int bitmap_equal(const unsigned long *src1, const unsigned long *src2, unsigned int nbits) { if (small_const_nbits(nbits)) return !((*src1 ^ *src2) & BITMAP_LAST_WORD_MASK(nbits)); if (__builtin_constant_p(nbits & BITMAP_MEM_MASK) && IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT)) return !memcmp(src1, src2, nbits / 8); return __bitmap_equal(src1, src2, nbits); } /** * bitmap_or_equal - Check whether the or of two bitmaps is equal to a third * @src1: Pointer to bitmap 1 * @src2: Pointer to bitmap 2 will be or'ed with bitmap 1 * @src3: Pointer to bitmap 3. Compare to the result of *@src1 | *@src2 * @nbits: number of bits in each of these bitmaps * * Returns: True if (*@src1 | *@src2) == *@src3, false otherwise */ static inline bool bitmap_or_equal(const unsigned long *src1, const unsigned long *src2, const unsigned long *src3, unsigned int nbits) { if (!small_const_nbits(nbits)) return __bitmap_or_equal(src1, src2, src3, nbits); return !(((*src1 | *src2) ^ *src3) & BITMAP_LAST_WORD_MASK(nbits)); } static inline int bitmap_intersects(const unsigned long *src1, const unsigned long *src2, unsigned int nbits) { if (small_const_nbits(nbits)) return ((*src1 & *src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0; else return __bitmap_intersects(src1, src2, nbits); } static inline int bitmap_subset(const unsigned long *src1, const unsigned long *src2, unsigned int nbits) { if (small_const_nbits(nbits)) return ! ((*src1 & ~(*src2)) & BITMAP_LAST_WORD_MASK(nbits)); else return __bitmap_subset(src1, src2, nbits); } static inline int bitmap_empty(const unsigned long *src, unsigned nbits) { if (small_const_nbits(nbits)) return ! (*src & BITMAP_LAST_WORD_MASK(nbits)); return find_first_bit(src, nbits) == nbits; } static inline int bitmap_full(const unsigned long *src, unsigned int nbits) { if (small_const_nbits(nbits)) return ! (~(*src) & BITMAP_LAST_WORD_MASK(nbits)); return find_first_zero_bit(src, nbits) == nbits; } static __always_inline int bitmap_weight(const unsigned long *src, unsigned int nbits) { if (small_const_nbits(nbits)) return hweight_long(*src & BITMAP_LAST_WORD_MASK(nbits)); return __bitmap_weight(src, nbits); } static __always_inline void bitmap_set(unsigned long *map, unsigned int start, unsigned int nbits) { if (__builtin_constant_p(nbits) && nbits == 1) __set_bit(start, map); else if (__builtin_constant_p(start & BITMAP_MEM_MASK) && IS_ALIGNED(start, BITMAP_MEM_ALIGNMENT) && __builtin_constant_p(nbits & BITMAP_MEM_MASK) && IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT)) memset((char *)map + start / 8, 0xff, nbits / 8); else __bitmap_set(map, start, nbits); } static __always_inline void bitmap_clear(unsigned long *map, unsigned int start, unsigned int nbits) { if (__builtin_constant_p(nbits) && nbits == 1) __clear_bit(start, map); else if (__builtin_constant_p(start & BITMAP_MEM_MASK) && IS_ALIGNED(start, BITMAP_MEM_ALIGNMENT) && __builtin_constant_p(nbits & BITMAP_MEM_MASK) && IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT)) memset((char *)map + start / 8, 0, nbits / 8); else __bitmap_clear(map, start, nbits); } static inline void bitmap_shift_right(unsigned long *dst, const unsigned long *src, unsigned int shift, unsigned int nbits) { if (small_const_nbits(nbits)) *dst = (*src & BITMAP_LAST_WORD_MASK(nbits)) >> shift; else __bitmap_shift_right(dst, src, shift, nbits); } static inline void bitmap_shift_left(unsigned long *dst, const unsigned long *src, unsigned int shift, unsigned int nbits) { if (small_const_nbits(nbits)) *dst = (*src << shift) & BITMAP_LAST_WORD_MASK(nbits); else __bitmap_shift_left(dst, src, shift, nbits); } static inline void bitmap_replace(unsigned long *dst, const unsigned long *old, const unsigned long *new, const unsigned long *mask, unsigned int nbits) { if (small_const_nbits(nbits)) *dst = (*old & ~(*mask)) | (*new & *mask); else __bitmap_replace(dst, old, new, mask, nbits); } static inline void bitmap_next_clear_region(unsigned long *bitmap, unsigned int *rs, unsigned int *re, unsigned int end) { *rs = find_next_zero_bit(bitmap, end, *rs); *re = find_next_bit(bitmap, end, *rs + 1); } static inline void bitmap_next_set_region(unsigned long *bitmap, unsigned int *rs, unsigned int *re, unsigned int end) { *rs = find_next_bit(bitmap, end, *rs); *re = find_next_zero_bit(bitmap, end, *rs + 1); } /* * Bitmap region iterators. Iterates over the bitmap between [@start, @end). * @rs and @re should be integer variables and will be set to start and end * index of the current clear or set region. */ #define bitmap_for_each_clear_region(bitmap, rs, re, start, end) \ for ((rs) = (start), \ bitmap_next_clear_region((bitmap), &(rs), &(re), (end)); \ (rs) < (re); \ (rs) = (re) + 1, \ bitmap_next_clear_region((bitmap), &(rs), &(re), (end))) #define bitmap_for_each_set_region(bitmap, rs, re, start, end) \ for ((rs) = (start), \ bitmap_next_set_region((bitmap), &(rs), &(re), (end)); \ (rs) < (re); \ (rs) = (re) + 1, \ bitmap_next_set_region((bitmap), &(rs), &(re), (end))) /** * BITMAP_FROM_U64() - Represent u64 value in the format suitable for bitmap. * @n: u64 value * * Linux bitmaps are internally arrays of unsigned longs, i.e. 32-bit * integers in 32-bit environment, and 64-bit integers in 64-bit one. * * There are four combinations of endianness and length of the word in linux * ABIs: LE64, BE64, LE32 and BE32. * * On 64-bit kernels 64-bit LE and BE numbers are naturally ordered in * bitmaps and therefore don't require any special handling. * * On 32-bit kernels 32-bit LE ABI orders lo word of 64-bit number in memory * prior to hi, and 32-bit BE orders hi word prior to lo. The bitmap on the * other hand is represented as an array of 32-bit words and the position of * bit N may therefore be calculated as: word #(N/32) and bit #(N%32) in that * word. For example, bit #42 is located at 10th position of 2nd word. * It matches 32-bit LE ABI, and we can simply let the compiler store 64-bit * values in memory as it usually does. But for BE we need to swap hi and lo * words manually. * * With all that, the macro BITMAP_FROM_U64() does explicit reordering of hi and * lo parts of u64. For LE32 it does nothing, and for BE environment it swaps * hi and lo words, as is expected by bitmap. */ #if __BITS_PER_LONG == 64 #define BITMAP_FROM_U64(n) (n) #else #define BITMAP_FROM_U64(n) ((unsigned long) ((u64)(n) & ULONG_MAX)), \ ((unsigned long) ((u64)(n) >> 32)) #endif /** * bitmap_from_u64 - Check and swap words within u64. * @mask: source bitmap * @dst: destination bitmap * * In 32-bit Big Endian kernel, when using ``(u32 *)(&val)[*]`` * to read u64 mask, we will get the wrong word. * That is ``(u32 *)(&val)[0]`` gets the upper 32 bits, * but we expect the lower 32-bits of u64. */ static inline void bitmap_from_u64(unsigned long *dst, u64 mask) { dst[0] = mask & ULONG_MAX; if (sizeof(mask) > sizeof(unsigned long)) dst[1] = mask >> 32; } /** * bitmap_get_value8 - get an 8-bit value within a memory region * @map: address to the bitmap memory region * @start: bit offset of the 8-bit value; must be a multiple of 8 * * Returns the 8-bit value located at the @start bit offset within the @src * memory region. */ static inline unsigned long bitmap_get_value8(const unsigned long *map, unsigned long start) { const size_t index = BIT_WORD(start); const unsigned long offset = start % BITS_PER_LONG; return (map[index] >> offset) & 0xFF; } /** * bitmap_set_value8 - set an 8-bit value within a memory region * @map: address to the bitmap memory region * @value: the 8-bit value; values wider than 8 bits may clobber bitmap * @start: bit offset of the 8-bit value; must be a multiple of 8 */ static inline void bitmap_set_value8(unsigned long *map, unsigned long value, unsigned long start) { const size_t index = BIT_WORD(start); const unsigned long offset = start % BITS_PER_LONG; map[index] &= ~(0xFFUL << offset); map[index] |= value << offset; } #endif /* __ASSEMBLY__ */ #endif /* __LINUX_BITMAP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 /* SPDX-License-Identifier: GPL-2.0 */ /* * Definitions for diskquota-operations. When diskquota is configured these * macros expand to the right source-code. * * Author: Marco van Wieringen <mvw@planets.elm.net> */ #ifndef _LINUX_QUOTAOPS_ #define _LINUX_QUOTAOPS_ #include <linux/fs.h> #define DQUOT_SPACE_WARN 0x1 #define DQUOT_SPACE_RESERVE 0x2 #define DQUOT_SPACE_NOFAIL 0x4 static inline struct quota_info *sb_dqopt(struct super_block *sb) { return &sb->s_dquot; } /* i_mutex must being held */ static inline bool is_quota_modification(struct inode *inode, struct iattr *ia) { return (ia->ia_valid & ATTR_SIZE) || (ia->ia_valid & ATTR_UID && !uid_eq(ia->ia_uid, inode->i_uid)) || (ia->ia_valid & ATTR_GID && !gid_eq(ia->ia_gid, inode->i_gid)); } #if defined(CONFIG_QUOTA) #define quota_error(sb, fmt, args...) \ __quota_error((sb), __func__, fmt , ## args) extern __printf(3, 4) void __quota_error(struct super_block *sb, const char *func, const char *fmt, ...); /* * declaration of quota_function calls in kernel. */ int dquot_initialize(struct inode *inode); bool dquot_initialize_needed(struct inode *inode); void dquot_drop(struct inode *inode); struct dquot *dqget(struct super_block *sb, struct kqid qid); static inline struct dquot *dqgrab(struct dquot *dquot) { /* Make sure someone else has active reference to dquot */ WARN_ON_ONCE(!atomic_read(&dquot->dq_count)); WARN_ON_ONCE(!test_bit(DQ_ACTIVE_B, &dquot->dq_flags)); atomic_inc(&dquot->dq_count); return dquot; } static inline bool dquot_is_busy(struct dquot *dquot) { if (test_bit(DQ_MOD_B, &dquot->dq_flags)) return true; if (atomic_read(&dquot->dq_count) > 1) return true; return false; } void dqput(struct dquot *dquot); int dquot_scan_active(struct super_block *sb, int (*fn)(struct dquot *dquot, unsigned long priv), unsigned long priv); struct dquot *dquot_alloc(struct super_block *sb, int type); void dquot_destroy(struct dquot *dquot); int __dquot_alloc_space(struct inode *inode, qsize_t number, int flags); void __dquot_free_space(struct inode *inode, qsize_t number, int flags); int dquot_alloc_inode(struct inode *inode); int dquot_claim_space_nodirty(struct inode *inode, qsize_t number); void dquot_free_inode(struct inode *inode); void dquot_reclaim_space_nodirty(struct inode *inode, qsize_t number); int dquot_disable(struct super_block *sb, int type, unsigned int flags); /* Suspend quotas on remount RO */ static inline int dquot_suspend(struct super_block *sb, int type) { return dquot_disable(sb, type, DQUOT_SUSPENDED); } int dquot_resume(struct super_block *sb, int type); int dquot_commit(struct dquot *dquot); int dquot_acquire(struct dquot *dquot); int dquot_release(struct dquot *dquot); int dquot_commit_info(struct super_block *sb, int type); int dquot_get_next_id(struct super_block *sb, struct kqid *qid); int dquot_mark_dquot_dirty(struct dquot *dquot); int dquot_file_open(struct inode *inode, struct file *file); int dquot_load_quota_sb(struct super_block *sb, int type, int format_id, unsigned int flags); int dquot_load_quota_inode(struct inode *inode, int type, int format_id, unsigned int flags); int dquot_quota_on(struct super_block *sb, int type, int format_id, const struct path *path); int dquot_quota_on_mount(struct super_block *sb, char *qf_name, int format_id, int type); int dquot_quota_off(struct super_block *sb, int type); int dquot_writeback_dquots(struct super_block *sb, int type); int dquot_quota_sync(struct super_block *sb, int type); int dquot_get_state(struct super_block *sb, struct qc_state *state); int dquot_set_dqinfo(struct super_block *sb, int type, struct qc_info *ii); int dquot_get_dqblk(struct super_block *sb, struct kqid id, struct qc_dqblk *di); int dquot_get_next_dqblk(struct super_block *sb, struct kqid *id, struct qc_dqblk *di); int dquot_set_dqblk(struct super_block *sb, struct kqid id, struct qc_dqblk *di); int __dquot_transfer(struct inode *inode, struct dquot **transfer_to); int dquot_transfer(struct inode *inode, struct iattr *iattr); static inline struct mem_dqinfo *sb_dqinfo(struct super_block *sb, int type) { return sb_dqopt(sb)->info + type; } /* * Functions for checking status of quota */ static inline bool sb_has_quota_usage_enabled(struct super_block *sb, int type) { return sb_dqopt(sb)->flags & dquot_state_flag(DQUOT_USAGE_ENABLED, type); } static inline bool sb_has_quota_limits_enabled(struct super_block *sb, int type) { return sb_dqopt(sb)->flags & dquot_state_flag(DQUOT_LIMITS_ENABLED, type); } static inline bool sb_has_quota_suspended(struct super_block *sb, int type) { return sb_dqopt(sb)->flags & dquot_state_flag(DQUOT_SUSPENDED, type); } static inline unsigned sb_any_quota_suspended(struct super_block *sb) { return dquot_state_types(sb_dqopt(sb)->flags, DQUOT_SUSPENDED); } /* Does kernel know about any quota information for given sb + type? */ static inline bool sb_has_quota_loaded(struct super_block *sb, int type) { /* Currently if anything is on, then quota usage is on as well */ return sb_has_quota_usage_enabled(sb, type); } static inline unsigned sb_any_quota_loaded(struct super_block *sb) { return dquot_state_types(sb_dqopt(sb)->flags, DQUOT_USAGE_ENABLED); } static inline bool sb_has_quota_active(struct super_block *sb, int type) { return sb_has_quota_loaded(sb, type) && !sb_has_quota_suspended(sb, type); } /* * Operations supported for diskquotas. */ extern const struct dquot_operations dquot_operations; extern const struct quotactl_ops dquot_quotactl_sysfile_ops; #else static inline int sb_has_quota_usage_enabled(struct super_block *sb, int type) { return 0; } static inline int sb_has_quota_limits_enabled(struct super_block *sb, int type) { return 0; } static inline int sb_has_quota_suspended(struct super_block *sb, int type) { return 0; } static inline int sb_any_quota_suspended(struct super_block *sb) { return 0; } /* Does kernel know about any quota information for given sb + type? */ static inline int sb_has_quota_loaded(struct super_block *sb, int type) { return 0; } static inline int sb_any_quota_loaded(struct super_block *sb) { return 0; } static inline int sb_has_quota_active(struct super_block *sb, int type) { return 0; } static inline int dquot_initialize(struct inode *inode) { return 0; } static inline bool dquot_initialize_needed(struct inode *inode) { return false; } static inline void dquot_drop(struct inode *inode) { } static inline int dquot_alloc_inode(struct inode *inode) { return 0; } static inline void dquot_free_inode(struct inode *inode) { } static inline int dquot_transfer(struct inode *inode, struct iattr *iattr) { return 0; } static inline int __dquot_alloc_space(struct inode *inode, qsize_t number, int flags) { if (!(flags & DQUOT_SPACE_RESERVE)) inode_add_bytes(inode, number); return 0; } static inline void __dquot_free_space(struct inode *inode, qsize_t number, int flags) { if (!(flags & DQUOT_SPACE_RESERVE)) inode_sub_bytes(inode, number); } static inline int dquot_claim_space_nodirty(struct inode *inode, qsize_t number) { inode_add_bytes(inode, number); return 0; } static inline int dquot_reclaim_space_nodirty(struct inode *inode, qsize_t number) { inode_sub_bytes(inode, number); return 0; } static inline int dquot_disable(struct super_block *sb, int type, unsigned int flags) { return 0; } static inline int dquot_suspend(struct super_block *sb, int type) { return 0; } static inline int dquot_resume(struct super_block *sb, int type) { return 0; } #define dquot_file_open generic_file_open static inline int dquot_writeback_dquots(struct super_block *sb, int type) { return 0; } #endif /* CONFIG_QUOTA */ static inline int dquot_alloc_space_nodirty(struct inode *inode, qsize_t nr) { return __dquot_alloc_space(inode, nr, DQUOT_SPACE_WARN); } static inline void dquot_alloc_space_nofail(struct inode *inode, qsize_t nr) { __dquot_alloc_space(inode, nr, DQUOT_SPACE_WARN|DQUOT_SPACE_NOFAIL); mark_inode_dirty_sync(inode); } static inline int dquot_alloc_space(struct inode *inode, qsize_t nr) { int ret; ret = dquot_alloc_space_nodirty(inode, nr); if (!ret) { /* * Mark inode fully dirty. Since we are allocating blocks, inode * would become fully dirty soon anyway and it reportedly * reduces lock contention. */ mark_inode_dirty(inode); } return ret; } static inline int dquot_alloc_block_nodirty(struct inode *inode, qsize_t nr) { return dquot_alloc_space_nodirty(inode, nr << inode->i_blkbits); } static inline void dquot_alloc_block_nofail(struct inode *inode, qsize_t nr) { dquot_alloc_space_nofail(inode, nr << inode->i_blkbits); } static inline int dquot_alloc_block(struct inode *inode, qsize_t nr) { return dquot_alloc_space(inode, nr << inode->i_blkbits); } static inline int dquot_prealloc_block_nodirty(struct inode *inode, qsize_t nr) { return __dquot_alloc_space(inode, nr << inode->i_blkbits, 0); } static inline int dquot_prealloc_block(struct inode *inode, qsize_t nr) { int ret; ret = dquot_prealloc_block_nodirty(inode, nr); if (!ret) mark_inode_dirty_sync(inode); return ret; } static inline int dquot_reserve_block(struct inode *inode, qsize_t nr) { return __dquot_alloc_space(inode, nr << inode->i_blkbits, DQUOT_SPACE_WARN|DQUOT_SPACE_RESERVE); } static inline int dquot_claim_block(struct inode *inode, qsize_t nr) { int ret; ret = dquot_claim_space_nodirty(inode, nr << inode->i_blkbits); if (!ret) mark_inode_dirty_sync(inode); return ret; } static inline void dquot_reclaim_block(struct inode *inode, qsize_t nr) { dquot_reclaim_space_nodirty(inode, nr << inode->i_blkbits); mark_inode_dirty_sync(inode); } static inline void dquot_free_space_nodirty(struct inode *inode, qsize_t nr) { __dquot_free_space(inode, nr, 0); } static inline void dquot_free_space(struct inode *inode, qsize_t nr) { dquot_free_space_nodirty(inode, nr); mark_inode_dirty_sync(inode); } static inline void dquot_free_block_nodirty(struct inode *inode, qsize_t nr) { dquot_free_space_nodirty(inode, nr << inode->i_blkbits); } static inline void dquot_free_block(struct inode *inode, qsize_t nr) { dquot_free_space(inode, nr << inode->i_blkbits); } static inline void dquot_release_reservation_block(struct inode *inode, qsize_t nr) { __dquot_free_space(inode, nr << inode->i_blkbits, DQUOT_SPACE_RESERVE); } unsigned int qtype_enforce_flag(int type); #endif /* _LINUX_QUOTAOPS_ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 /* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright (c) 1999-2002 Vojtech Pavlik */ #ifndef _INPUT_H #define _INPUT_H #include <linux/time.h> #include <linux/list.h> #include <uapi/linux/input.h> /* Implementation details, userspace should not care about these */ #define ABS_MT_FIRST ABS_MT_TOUCH_MAJOR #define ABS_MT_LAST ABS_MT_TOOL_Y /* * In-kernel definitions. */ #include <linux/device.h> #include <linux/fs.h> #include <linux/timer.h> #include <linux/mod_devicetable.h> struct input_dev_poller; /** * struct input_value - input value representation * @type: type of value (EV_KEY, EV_ABS, etc) * @code: the value code * @value: the value */ struct input_value { __u16 type; __u16 code; __s32 value; }; enum input_clock_type { INPUT_CLK_REAL = 0, INPUT_CLK_MONO, INPUT_CLK_BOOT, INPUT_CLK_MAX }; /** * struct input_dev - represents an input device * @name: name of the device * @phys: physical path to the device in the system hierarchy * @uniq: unique identification code for the device (if device has it) * @id: id of the device (struct input_id) * @propbit: bitmap of device properties and quirks * @evbit: bitmap of types of events supported by the device (EV_KEY, * EV_REL, etc.) * @keybit: bitmap of keys/buttons this device has * @relbit: bitmap of relative axes for the device * @absbit: bitmap of absolute axes for the device * @mscbit: bitmap of miscellaneous events supported by the device * @ledbit: bitmap of leds present on the device * @sndbit: bitmap of sound effects supported by the device * @ffbit: bitmap of force feedback effects supported by the device * @swbit: bitmap of switches present on the device * @hint_events_per_packet: average number of events generated by the * device in a packet (between EV_SYN/SYN_REPORT events). Used by * event handlers to estimate size of the buffer needed to hold * events. * @keycodemax: size of keycode table * @keycodesize: size of elements in keycode table * @keycode: map of scancodes to keycodes for this device * @getkeycode: optional legacy method to retrieve current keymap. * @setkeycode: optional method to alter current keymap, used to implement * sparse keymaps. If not supplied default mechanism will be used. * The method is being called while holding event_lock and thus must * not sleep * @ff: force feedback structure associated with the device if device * supports force feedback effects * @poller: poller structure associated with the device if device is * set up to use polling mode * @repeat_key: stores key code of the last key pressed; used to implement * software autorepeat * @timer: timer for software autorepeat * @rep: current values for autorepeat parameters (delay, rate) * @mt: pointer to multitouch state * @absinfo: array of &struct input_absinfo elements holding information * about absolute axes (current value, min, max, flat, fuzz, * resolution) * @key: reflects current state of device's keys/buttons * @led: reflects current state of device's LEDs * @snd: reflects current state of sound effects * @sw: reflects current state of device's switches * @open: this method is called when the very first user calls * input_open_device(). The driver must prepare the device * to start generating events (start polling thread, * request an IRQ, submit URB, etc.) * @close: this method is called when the very last user calls * input_close_device(). * @flush: purges the device. Most commonly used to get rid of force * feedback effects loaded into the device when disconnecting * from it * @event: event handler for events sent _to_ the device, like EV_LED * or EV_SND. The device is expected to carry out the requested * action (turn on a LED, play sound, etc.) The call is protected * by @event_lock and must not sleep * @grab: input handle that currently has the device grabbed (via * EVIOCGRAB ioctl). When a handle grabs a device it becomes sole * recipient for all input events coming from the device * @event_lock: this spinlock is taken when input core receives * and processes a new event for the device (in input_event()). * Code that accesses and/or modifies parameters of a device * (such as keymap or absmin, absmax, absfuzz, etc.) after device * has been registered with input core must take this lock. * @mutex: serializes calls to open(), close() and flush() methods * @users: stores number of users (input handlers) that opened this * device. It is used by input_open_device() and input_close_device() * to make sure that dev->open() is only called when the first * user opens device and dev->close() is called when the very * last user closes the device * @going_away: marks devices that are in a middle of unregistering and * causes input_open_device*() fail with -ENODEV. * @dev: driver model's view of this device * @h_list: list of input handles associated with the device. When * accessing the list dev->mutex must be held * @node: used to place the device onto input_dev_list * @num_vals: number of values queued in the current frame * @max_vals: maximum number of values queued in a frame * @vals: array of values queued in the current frame * @devres_managed: indicates that devices is managed with devres framework * and needs not be explicitly unregistered or freed. * @timestamp: storage for a timestamp set by input_set_timestamp called * by a driver */ struct input_dev { const char *name; const char *phys; const char *uniq; struct input_id id; unsigned long propbit[BITS_TO_LONGS(INPUT_PROP_CNT)]; unsigned long evbit[BITS_TO_LONGS(EV_CNT)]; unsigned long keybit[BITS_TO_LONGS(KEY_CNT)]; unsigned long relbit[BITS_TO_LONGS(REL_CNT)]; unsigned long absbit[BITS_TO_LONGS(ABS_CNT)]; unsigned long mscbit[BITS_TO_LONGS(MSC_CNT)]; unsigned long ledbit[BITS_TO_LONGS(LED_CNT)]; unsigned long sndbit[BITS_TO_LONGS(SND_CNT)]; unsigned long ffbit[BITS_TO_LONGS(FF_CNT)]; unsigned long swbit[BITS_TO_LONGS(SW_CNT)]; unsigned int hint_events_per_packet; unsigned int keycodemax; unsigned int keycodesize; void *keycode; int (*setkeycode)(struct input_dev *dev, const struct input_keymap_entry *ke, unsigned int *old_keycode); int (*getkeycode)(struct input_dev *dev, struct input_keymap_entry *ke); struct ff_device *ff; struct input_dev_poller *poller; unsigned int repeat_key; struct timer_list timer; int rep[REP_CNT]; struct input_mt *mt; struct input_absinfo *absinfo; unsigned long key[BITS_TO_LONGS(KEY_CNT)]; unsigned long led[BITS_TO_LONGS(LED_CNT)]; unsigned long snd[BITS_TO_LONGS(SND_CNT)]; unsigned long sw[BITS_TO_LONGS(SW_CNT)]; int (*open)(struct input_dev *dev); void (*close)(struct input_dev *dev); int (*flush)(struct input_dev *dev, struct file *file); int (*event)(struct input_dev *dev, unsigned int type, unsigned int code, int value); struct input_handle __rcu *grab; spinlock_t event_lock; struct mutex mutex; unsigned int users; bool going_away; struct device dev; struct list_head h_list; struct list_head node; unsigned int num_vals; unsigned int max_vals; struct input_value *vals; bool devres_managed; ktime_t timestamp[INPUT_CLK_MAX]; }; #define to_input_dev(d) container_of(d, struct input_dev, dev) /* * Verify that we are in sync with input_device_id mod_devicetable.h #defines */ #if EV_MAX != INPUT_DEVICE_ID_EV_MAX #error "EV_MAX and INPUT_DEVICE_ID_EV_MAX do not match" #endif #if KEY_MIN_INTERESTING != INPUT_DEVICE_ID_KEY_MIN_INTERESTING #error "KEY_MIN_INTERESTING and INPUT_DEVICE_ID_KEY_MIN_INTERESTING do not match" #endif #if KEY_MAX != INPUT_DEVICE_ID_KEY_MAX #error "KEY_MAX and INPUT_DEVICE_ID_KEY_MAX do not match" #endif #if REL_MAX != INPUT_DEVICE_ID_REL_MAX #error "REL_MAX and INPUT_DEVICE_ID_REL_MAX do not match" #endif #if ABS_MAX != INPUT_DEVICE_ID_ABS_MAX #error "ABS_MAX and INPUT_DEVICE_ID_ABS_MAX do not match" #endif #if MSC_MAX != INPUT_DEVICE_ID_MSC_MAX #error "MSC_MAX and INPUT_DEVICE_ID_MSC_MAX do not match" #endif #if LED_MAX != INPUT_DEVICE_ID_LED_MAX #error "LED_MAX and INPUT_DEVICE_ID_LED_MAX do not match" #endif #if SND_MAX != INPUT_DEVICE_ID_SND_MAX #error "SND_MAX and INPUT_DEVICE_ID_SND_MAX do not match" #endif #if FF_MAX != INPUT_DEVICE_ID_FF_MAX #error "FF_MAX and INPUT_DEVICE_ID_FF_MAX do not match" #endif #if SW_MAX != INPUT_DEVICE_ID_SW_MAX #error "SW_MAX and INPUT_DEVICE_ID_SW_MAX do not match" #endif #if INPUT_PROP_MAX != INPUT_DEVICE_ID_PROP_MAX #error "INPUT_PROP_MAX and INPUT_DEVICE_ID_PROP_MAX do not match" #endif #define INPUT_DEVICE_ID_MATCH_DEVICE \ (INPUT_DEVICE_ID_MATCH_BUS | INPUT_DEVICE_ID_MATCH_VENDOR | INPUT_DEVICE_ID_MATCH_PRODUCT) #define INPUT_DEVICE_ID_MATCH_DEVICE_AND_VERSION \ (INPUT_DEVICE_ID_MATCH_DEVICE | INPUT_DEVICE_ID_MATCH_VERSION) struct input_handle; /** * struct input_handler - implements one of interfaces for input devices * @private: driver-specific data * @event: event handler. This method is being called by input core with * interrupts disabled and dev->event_lock spinlock held and so * it may not sleep * @events: event sequence handler. This method is being called by * input core with interrupts disabled and dev->event_lock * spinlock held and so it may not sleep * @filter: similar to @event; separates normal event handlers from * "filters". * @match: called after comparing device's id with handler's id_table * to perform fine-grained matching between device and handler * @connect: called when attaching a handler to an input device * @disconnect: disconnects a handler from input device * @start: starts handler for given handle. This function is called by * input core right after connect() method and also when a process * that "grabbed" a device releases it * @legacy_minors: set to %true by drivers using legacy minor ranges * @minor: beginning of range of 32 legacy minors for devices this driver * can provide * @name: name of the handler, to be shown in /proc/bus/input/handlers * @id_table: pointer to a table of input_device_ids this driver can * handle * @h_list: list of input handles associated with the handler * @node: for placing the driver onto input_handler_list * * Input handlers attach to input devices and create input handles. There * are likely several handlers attached to any given input device at the * same time. All of them will get their copy of input event generated by * the device. * * The very same structure is used to implement input filters. Input core * allows filters to run first and will not pass event to regular handlers * if any of the filters indicate that the event should be filtered (by * returning %true from their filter() method). * * Note that input core serializes calls to connect() and disconnect() * methods. */ struct input_handler { void *private; void (*event)(struct input_handle *handle, unsigned int type, unsigned int code, int value); void (*events)(struct input_handle *handle, const struct input_value *vals, unsigned int count); bool (*filter)(struct input_handle *handle, unsigned