1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SCHED_MM_H #define _LINUX_SCHED_MM_H #include <linux/kernel.h> #include <linux/atomic.h> #include <linux/sched.h> #include <linux/mm_types.h> #include <linux/gfp.h> #include <linux/sync_core.h> /* * Routines for handling mm_structs */ extern struct mm_struct *mm_alloc(void); /** * mmgrab() - Pin a &struct mm_struct. * @mm: The &struct mm_struct to pin. * * Make sure that @mm will not get freed even after the owning task * exits. This doesn't guarantee that the associated address space * will still exist later on and mmget_not_zero() has to be used before * accessing it. * * This is a preferred way to pin @mm for a longer/unbounded amount * of time. * * Use mmdrop() to release the reference acquired by mmgrab(). * * See also <Documentation/vm/active_mm.rst> for an in-depth explanation * of &mm_struct.mm_count vs &mm_struct.mm_users. */ static inline void mmgrab(struct mm_struct *mm) { atomic_inc(&mm->mm_count); } extern void __mmdrop(struct mm_struct *mm); static inline void mmdrop(struct mm_struct *mm) { /* * The implicit full barrier implied by atomic_dec_and_test() is * required by the membarrier system call before returning to * user-space, after storing to rq->curr. */ if (unlikely(atomic_dec_and_test(&mm->mm_count))) __mmdrop(mm); } /** * mmget() - Pin the address space associated with a &struct mm_struct. * @mm: The address space to pin. * * Make sure that the address space of the given &struct mm_struct doesn't * go away. This does not protect against parts of the address space being * modified or freed, however. * * Never use this function to pin this address space for an * unbounded/indefinite amount of time. * * Use mmput() to release the reference acquired by mmget(). * * See also <Documentation/vm/active_mm.rst> for an in-depth explanation * of &mm_struct.mm_count vs &mm_struct.mm_users. */ static inline void mmget(struct mm_struct *mm) { atomic_inc(&mm->mm_users); } static inline bool mmget_not_zero(struct mm_struct *mm) { return atomic_inc_not_zero(&mm->mm_users); } /* mmput gets rid of the mappings and all user-space */ extern void mmput(struct mm_struct *); #ifdef CONFIG_MMU /* same as above but performs the slow path from the async context. Can * be called from the atomic context as well */ void mmput_async(struct mm_struct *); #endif /* Grab a reference to a task's mm, if it is not already going away */ extern struct mm_struct *get_task_mm(struct task_struct *task); /* * Grab a reference to a task's mm, if it is not already going away * and ptrace_may_access with the mode parameter passed to it * succeeds. */ extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode); /* Remove the current tasks stale references to the old mm_struct on exit() */ extern void exit_mm_release(struct task_struct *, struct mm_struct *); /* Remove the current tasks stale references to the old mm_struct on exec() */ extern void exec_mm_release(struct task_struct *, struct mm_struct *); #ifdef CONFIG_MEMCG extern void mm_update_next_owner(struct mm_struct *mm); #else static inline void mm_update_next_owner(struct mm_struct *mm) { } #endif /* CONFIG_MEMCG */ #ifdef CONFIG_MMU extern void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack); extern unsigned long arch_get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); extern unsigned long arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags); #else static inline void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack) {} #endif static inline bool in_vfork(struct task_struct *tsk) { bool ret; /* * need RCU to access ->real_parent if CLONE_VM was used along with * CLONE_PARENT. * * We check real_parent->mm == tsk->mm because CLONE_VFORK does not * imply CLONE_VM * * CLONE_VFORK can be used with CLONE_PARENT/CLONE_THREAD and thus * ->real_parent is not necessarily the task doing vfork(), so in * theory we can't rely on task_lock() if we want to dereference it. * * And in this case we can't trust the real_parent->mm == tsk->mm * check, it can be false negative. But we do not care, if init or * another oom-unkillable task does this it should blame itself. */ rcu_read_lock(); ret = tsk->vfork_done && rcu_dereference(tsk->real_parent)->mm == tsk->mm; rcu_read_unlock(); return ret; } /* * Applies per-task gfp context to the given allocation flags. * PF_MEMALLOC_NOIO implies GFP_NOIO * PF_MEMALLOC_NOFS implies GFP_NOFS */ static inline gfp_t current_gfp_context(gfp_t flags) { unsigned int pflags = READ_ONCE(current->flags); if (unlikely(pflags & (PF_MEMALLOC_NOIO | PF_MEMALLOC_NOFS))) { /* * NOIO implies both NOIO and NOFS and it is a weaker context * so always make sure it makes precedence */ if (pflags & PF_MEMALLOC_NOIO) flags &= ~(__GFP_IO | __GFP_FS); else if (pflags & PF_MEMALLOC_NOFS) flags &= ~__GFP_FS; } return flags; } #ifdef CONFIG_LOCKDEP extern void __fs_reclaim_acquire(void); extern void __fs_reclaim_release(void); extern void fs_reclaim_acquire(gfp_t gfp_mask); extern void fs_reclaim_release(gfp_t gfp_mask); #else static inline void __fs_reclaim_acquire(void) { } static inline void __fs_reclaim_release(void) { } static inline void fs_reclaim_acquire(gfp_t gfp_mask) { } static inline void fs_reclaim_release(gfp_t gfp_mask) { } #endif /** * memalloc_noio_save - Marks implicit GFP_NOIO allocation scope. * * This functions marks the beginning of the GFP_NOIO allocation scope. * All further allocations will implicitly drop __GFP_IO flag and so * they are safe for the IO critical section from the allocation recursion * point of view. Use memalloc_noio_restore to end the scope with flags * returned by this function. * * This function is safe to be used from any context. */ static inline unsigned int memalloc_noio_save(void) { unsigned int flags = current->flags & PF_MEMALLOC_NOIO; current->flags |= PF_MEMALLOC_NOIO; return flags; } /** * memalloc_noio_restore - Ends the implicit GFP_NOIO scope. * @flags: Flags to restore. * * Ends the implicit GFP_NOIO scope started by memalloc_noio_save function. * Always make sure that the given flags is the return value from the * pairing memalloc_noio_save call. */ static inline void memalloc_noio_restore(unsigned int flags) { current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags; } /** * memalloc_nofs_save - Marks implicit GFP_NOFS allocation scope. * * This functions marks the beginning of the GFP_NOFS allocation scope. * All further allocations will implicitly drop __GFP_FS flag and so * they are safe for the FS critical section from the allocation recursion * point of view. Use memalloc_nofs_restore to end the scope with flags * returned by this function. * * This function is safe to be used from any context. */ static inline unsigned int memalloc_nofs_save(void) { unsigned int flags = current->flags & PF_MEMALLOC_NOFS; current->flags |= PF_MEMALLOC_NOFS; return flags; } /** * memalloc_nofs_restore - Ends the implicit GFP_NOFS scope. * @flags: Flags to restore. * * Ends the implicit GFP_NOFS scope started by memalloc_nofs_save function. * Always make sure that the given flags is the return value from the * pairing memalloc_nofs_save call. */ static inline void memalloc_nofs_restore(unsigned int flags) { current->flags = (current->flags & ~PF_MEMALLOC_NOFS) | flags; } static inline unsigned int memalloc_noreclaim_save(void) { unsigned int flags = current->flags & PF_MEMALLOC; current->flags |= PF_MEMALLOC; return flags; } static inline void memalloc_noreclaim_restore(unsigned int flags) { current->flags = (current->flags & ~PF_MEMALLOC) | flags; } #ifdef CONFIG_CMA static inline unsigned int memalloc_nocma_save(void) { unsigned int flags = current->flags & PF_MEMALLOC_NOCMA; current->flags |= PF_MEMALLOC_NOCMA; return flags; } static inline void memalloc_nocma_restore(unsigned int flags) { current->flags = (current->flags & ~PF_MEMALLOC_NOCMA) | flags; } #else static inline unsigned int memalloc_nocma_save(void) { return 0; } static inline void memalloc_nocma_restore(unsigned int flags) { } #endif #ifdef CONFIG_MEMCG DECLARE_PER_CPU(struct mem_cgroup *, int_active_memcg); /** * set_active_memcg - Starts the remote memcg charging scope. * @memcg: memcg to charge. * * This function marks the beginning of the remote memcg charging scope. All the * __GFP_ACCOUNT allocations till the end of the scope will be charged to the * given memcg. * * NOTE: This function can nest. Users must save the return value and * reset the previous value after their own charging scope is over. */ static inline struct mem_cgroup * set_active_memcg(struct mem_cgroup *memcg) { struct mem_cgroup *old; if (in_interrupt()) { old = this_cpu_read(int_active_memcg); this_cpu_write(int_active_memcg, memcg); } else { old = current->active_memcg; current->active_memcg = memcg; } return old; } #else static inline struct mem_cgroup * set_active_memcg(struct mem_cgroup *memcg) { return NULL; } #endif #ifdef CONFIG_MEMBARRIER enum { MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY = (1U << 0), MEMBARRIER_STATE_PRIVATE_EXPEDITED = (1U << 1), MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY = (1U << 2), MEMBARRIER_STATE_GLOBAL_EXPEDITED = (1U << 3), MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY = (1U << 4), MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE = (1U << 5), MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ_READY = (1U << 6), MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ = (1U << 7), }; enum { MEMBARRIER_FLAG_SYNC_CORE = (1U << 0), MEMBARRIER_FLAG_RSEQ = (1U << 1), }; #ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS #include <asm/membarrier.h> #endif static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm) { if (current->mm != mm) return; if (likely(!(atomic_read(&mm->membarrier_state) & MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE))) return; sync_core_before_usermode(); } extern void membarrier_exec_mmap(struct mm_struct *mm); #else #ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS static inline void membarrier_arch_switch_mm(struct mm_struct *prev, struct mm_struct *next, struct task_struct *tsk) { } #endif static inline void membarrier_exec_mmap(struct mm_struct *mm) { } static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm) { } #endif #endif /* _LINUX_SCHED_MM_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_SMP_H #define _ASM_X86_SMP_H #ifndef __ASSEMBLY__ #include <linux/cpumask.h> #include <asm/percpu.h> #include <asm/thread_info.h> #include <asm/cpumask.h> extern int smp_num_siblings; extern unsigned int num_processors; DECLARE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map); DECLARE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map); DECLARE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map); /* cpus sharing the last level cache: */ DECLARE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map); DECLARE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id); DECLARE_PER_CPU_READ_MOSTLY(int, cpu_number); static inline struct cpumask *cpu_llc_shared_mask(int cpu) { return per_cpu(cpu_llc_shared_map, cpu); } DECLARE_EARLY_PER_CPU_READ_MOSTLY(u16, x86_cpu_to_apicid); DECLARE_EARLY_PER_CPU_READ_MOSTLY(u32, x86_cpu_to_acpiid); DECLARE_EARLY_PER_CPU_READ_MOSTLY(u16, x86_bios_cpu_apicid); #if defined(CONFIG_X86_LOCAL_APIC) && defined(CONFIG_X86_32) DECLARE_EARLY_PER_CPU_READ_MOSTLY(int, x86_cpu_to_logical_apicid); #endif struct task_struct; struct smp_ops { void (*smp_prepare_boot_cpu)(void); void (*smp_prepare_cpus)(unsigned max_cpus); void (*smp_cpus_done)(unsigned max_cpus); void (*stop_other_cpus)(int wait); void (*crash_stop_other_cpus)(void); void (*smp_send_reschedule)(int cpu); int (*cpu_up)(unsigned cpu, struct task_struct *tidle); int (*cpu_disable)(void); void (*cpu_die)(unsigned int cpu); void (*play_dead)(void); void (*send_call_func_ipi)(const struct cpumask *mask); void (*send_call_func_single_ipi)(int cpu); }; /* Globals due to paravirt */ extern void set_cpu_sibling_map(int cpu); #ifdef CONFIG_SMP extern struct smp_ops smp_ops; static inline void smp_send_stop(void) { smp_ops.stop_other_cpus(0); } static inline void stop_other_cpus(void) { smp_ops.stop_other_cpus(1); } static inline void smp_prepare_boot_cpu(void) { smp_ops.smp_prepare_boot_cpu(); } static inline void smp_prepare_cpus(unsigned int max_cpus) { smp_ops.smp_prepare_cpus(max_cpus); } static inline void smp_cpus_done(unsigned int max_cpus) { smp_ops.smp_cpus_done(max_cpus); } static inline int __cpu_up(unsigned int cpu, struct task_struct *tidle) { return smp_ops.cpu_up(cpu, tidle); } static inline int __cpu_disable(void) { return smp_ops.cpu_disable(); } static inline void __cpu_die(unsigned int cpu) { smp_ops.cpu_die(cpu); } static inline void play_dead(void) { smp_ops.play_dead(); } static inline void smp_send_reschedule(int cpu) { smp_ops.smp_send_reschedule(cpu); } static inline void arch_send_call_function_single_ipi(int cpu) { smp_ops.send_call_func_single_ipi(cpu); } static inline void arch_send_call_function_ipi_mask(const struct cpumask *mask) { smp_ops.send_call_func_ipi(mask); } void cpu_disable_common(void); void native_smp_prepare_boot_cpu(void); void native_smp_prepare_cpus(unsigned int max_cpus); void calculate_max_logical_packages(void); void native_smp_cpus_done(unsigned int max_cpus); int common_cpu_up(unsigned int cpunum, struct task_struct *tidle); int native_cpu_up(unsigned int cpunum, struct task_struct *tidle); int native_cpu_disable(void); int common_cpu_die(unsigned int cpu); void native_cpu_die(unsigned int cpu); void hlt_play_dead(void); void native_play_dead(void); void play_dead_common(void); void wbinvd_on_cpu(int cpu); int wbinvd_on_all_cpus(void); void cond_wakeup_cpu0(void); void native_smp_send_reschedule(int cpu); void native_send_call_func_ipi(const struct cpumask *mask); void native_send_call_func_single_ipi(int cpu); void x86_idle_thread_init(unsigned int cpu, struct task_struct *idle); void smp_store_boot_cpu_info(void); void smp_store_cpu_info(int id); asmlinkage __visible void smp_reboot_interrupt(void); __visible void smp_reschedule_interrupt(struct pt_regs *regs); __visible void smp_call_function_interrupt(struct pt_regs *regs); __visible void smp_call_function_single_interrupt(struct pt_regs *r); #define cpu_physical_id(cpu) per_cpu(x86_cpu_to_apicid, cpu) #define cpu_acpi_id(cpu) per_cpu(x86_cpu_to_acpiid, cpu) /* * This function is needed by all SMP systems. It must _always_ be valid * from the initial startup. We map APIC_BASE very early in page_setup(), * so this is correct in the x86 case. */ #define raw_smp_processor_id() this_cpu_read(cpu_number) #define __smp_processor_id() __this_cpu_read(cpu_number) #ifdef CONFIG_X86_32 extern int safe_smp_processor_id(void); #else # define safe_smp_processor_id() smp_processor_id() #endif #else /* !CONFIG_SMP */ #define wbinvd_on_cpu(cpu) wbinvd() static inline int wbinvd_on_all_cpus(void) { wbinvd(); return 0; } #endif /* CONFIG_SMP */ extern unsigned disabled_cpus; #ifdef CONFIG_X86_LOCAL_APIC extern int hard_smp_processor_id(void); #else /* CONFIG_X86_LOCAL_APIC */ #define hard_smp_processor_id() 0 #endif /* CONFIG_X86_LOCAL_APIC */ #ifdef CONFIG_DEBUG_NMI_SELFTEST extern void nmi_selftest(void); #else #define nmi_selftest() do { } while (0) #endif #endif /* __ASSEMBLY__ */ #endif /* _ASM_X86_SMP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Framework and drivers for configuring and reading different PHYs * Based on code in sungem_phy.c and (long-removed) gianfar_phy.c * * Author: Andy Fleming * * Copyright (c) 2004 Freescale Semiconductor, Inc. */ #ifndef __PHY_H #define __PHY_H #include <linux/compiler.h> #include <linux/spinlock.h> #include <linux/ethtool.h> #include <linux/linkmode.h> #include <linux/netlink.h> #include <linux/mdio.h> #include <linux/mii.h> #include <linux/mii_timestamper.h> #include <linux/module.h> #include <linux/timer.h> #include <linux/workqueue.h> #include <linux/mod_devicetable.h> #include <linux/u64_stats_sync.h> #include <linux/irqreturn.h> #include <linux/iopoll.h> #include <linux/refcount.h> #include <linux/atomic.h> #define PHY_DEFAULT_FEATURES (SUPPORTED_Autoneg | \ SUPPORTED_TP | \ SUPPORTED_MII) #define PHY_10BT_FEATURES (SUPPORTED_10baseT_Half | \ SUPPORTED_10baseT_Full) #define PHY_100BT_FEATURES (SUPPORTED_100baseT_Half | \ SUPPORTED_100baseT_Full) #define PHY_1000BT_FEATURES (SUPPORTED_1000baseT_Half | \ SUPPORTED_1000baseT_Full) extern __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_features) __ro_after_init; extern __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1_features) __ro_after_init; extern __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_features) __ro_after_init; extern __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_fibre_features) __ro_after_init; extern __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_all_ports_features) __ro_after_init; extern __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_features) __ro_after_init; extern __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_fec_features) __ro_after_init; extern __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_full_features) __ro_after_init; #define PHY_BASIC_FEATURES ((unsigned long *)&phy_basic_features) #define PHY_BASIC_T1_FEATURES ((unsigned long *)&phy_basic_t1_features) #define PHY_GBIT_FEATURES ((unsigned long *)&phy_gbit_features) #define PHY_GBIT_FIBRE_FEATURES ((unsigned long *)&phy_gbit_fibre_features) #define PHY_GBIT_ALL_PORTS_FEATURES ((unsigned long *)&phy_gbit_all_ports_features) #define PHY_10GBIT_FEATURES ((unsigned long *)&phy_10gbit_features) #define PHY_10GBIT_FEC_FEATURES ((unsigned long *)&phy_10gbit_fec_features) #define PHY_10GBIT_FULL_FEATURES ((unsigned long *)&phy_10gbit_full_features) extern const int phy_basic_ports_array[3]; extern const int phy_fibre_port_array[1]; extern const int phy_all_ports_features_array[7]; extern const int phy_10_100_features_array[4]; extern const int phy_basic_t1_features_array[2]; extern const int phy_gbit_features_array[2]; extern const int phy_10gbit_features_array[1]; /* * Set phydev->irq to PHY_POLL if interrupts are not supported, * or not desired for this PHY. Set to PHY_IGNORE_INTERRUPT if * the attached driver handles the interrupt */ #define PHY_POLL -1 #define PHY_IGNORE_INTERRUPT -2 #define PHY_IS_INTERNAL 0x00000001 #define PHY_RST_AFTER_CLK_EN 0x00000002 #define PHY_POLL_CABLE_TEST 0x00000004 #define MDIO_DEVICE_IS_PHY 0x80000000 /** * enum phy_interface_t - Interface Mode definitions * * @PHY_INTERFACE_MODE_NA: Not Applicable - don't touch * @PHY_INTERFACE_MODE_INTERNAL: No interface, MAC and PHY combined * @PHY_INTERFACE_MODE_MII: Median-independent interface * @PHY_INTERFACE_MODE_GMII: Gigabit median-independent interface * @PHY_INTERFACE_MODE_SGMII: Serial gigabit media-independent interface * @PHY_INTERFACE_MODE_TBI: Ten Bit Interface * @PHY_INTERFACE_MODE_REVMII: Reverse Media Independent Interface * @PHY_INTERFACE_MODE_RMII: Reduced Media Independent Interface * @PHY_INTERFACE_MODE_RGMII: Reduced gigabit media-independent interface * @PHY_INTERFACE_MODE_RGMII_ID: RGMII with Internal RX+TX delay * @PHY_INTERFACE_MODE_RGMII_RXID: RGMII with Internal RX delay * @PHY_INTERFACE_MODE_RGMII_TXID: RGMII with Internal RX delay * @PHY_INTERFACE_MODE_RTBI: Reduced TBI * @PHY_INTERFACE_MODE_SMII: ??? MII * @PHY_INTERFACE_MODE_XGMII: 10 gigabit media-independent interface * @PHY_INTERFACE_MODE_XLGMII:40 gigabit media-independent interface * @PHY_INTERFACE_MODE_MOCA: Multimedia over Coax * @PHY_INTERFACE_MODE_QSGMII: Quad SGMII * @PHY_INTERFACE_MODE_TRGMII: Turbo RGMII * @PHY_INTERFACE_MODE_1000BASEX: 1000 BaseX * @PHY_INTERFACE_MODE_2500BASEX: 2500 BaseX * @PHY_INTERFACE_MODE_RXAUI: Reduced XAUI * @PHY_INTERFACE_MODE_XAUI: 10 Gigabit Attachment Unit Interface * @PHY_INTERFACE_MODE_10GBASER: 10G BaseR * @PHY_INTERFACE_MODE_USXGMII: Universal Serial 10GE MII * @PHY_INTERFACE_MODE_10GKR: 10GBASE-KR - with Clause 73 AN * @PHY_INTERFACE_MODE_MAX: Book keeping * * Describes the interface between the MAC and PHY. */ typedef enum { PHY_INTERFACE_MODE_NA, PHY_INTERFACE_MODE_INTERNAL, PHY_INTERFACE_MODE_MII, PHY_INTERFACE_MODE_GMII, PHY_INTERFACE_MODE_SGMII, PHY_INTERFACE_MODE_TBI, PHY_INTERFACE_MODE_REVMII, PHY_INTERFACE_MODE_RMII, PHY_INTERFACE_MODE_RGMII, PHY_INTERFACE_MODE_RGMII_ID, PHY_INTERFACE_MODE_RGMII_RXID, PHY_INTERFACE_MODE_RGMII_TXID, PHY_INTERFACE_MODE_RTBI, PHY_INTERFACE_MODE_SMII, PHY_INTERFACE_MODE_XGMII, PHY_INTERFACE_MODE_XLGMII, PHY_INTERFACE_MODE_MOCA, PHY_INTERFACE_MODE_QSGMII, PHY_INTERFACE_MODE_TRGMII, PHY_INTERFACE_MODE_1000BASEX, PHY_INTERFACE_MODE_2500BASEX, PHY_INTERFACE_MODE_RXAUI, PHY_INTERFACE_MODE_XAUI, /* 10GBASE-R, XFI, SFI - single lane 10G Serdes */ PHY_INTERFACE_MODE_10GBASER, PHY_INTERFACE_MODE_USXGMII, /* 10GBASE-KR - with Clause 73 AN */ PHY_INTERFACE_MODE_10GKR, PHY_INTERFACE_MODE_MAX, } phy_interface_t; /* * phy_supported_speeds - return all speeds currently supported by a PHY device */ unsigned int phy_supported_speeds(struct phy_device *phy, unsigned int *speeds, unsigned int size); /** * phy_modes - map phy_interface_t enum to device tree binding of phy-mode * @interface: enum phy_interface_t value * * Description: maps enum &phy_interface_t defined in this file * into the device tree binding of 'phy-mode', so that Ethernet * device driver can get PHY interface from device tree. */ static inline const char *phy_modes(phy_interface_t interface) { switch (interface) { case PHY_INTERFACE_MODE_NA: return ""; case PHY_INTERFACE_MODE_INTERNAL: return "internal"; case PHY_INTERFACE_MODE_MII: return "mii"; case PHY_INTERFACE_MODE_GMII: return "gmii"; case PHY_INTERFACE_MODE_SGMII: return "sgmii"; case PHY_INTERFACE_MODE_TBI: return "tbi"; case PHY_INTERFACE_MODE_REVMII: return "rev-mii"; case PHY_INTERFACE_MODE_RMII: return "rmii"; case PHY_INTERFACE_MODE_RGMII: return "rgmii"; case PHY_INTERFACE_MODE_RGMII_ID: return "rgmii-id"; case PHY_INTERFACE_MODE_RGMII_RXID: return "rgmii-rxid"; case PHY_INTERFACE_MODE_RGMII_TXID: return "rgmii-txid"; case PHY_INTERFACE_MODE_RTBI: return "rtbi"; case PHY_INTERFACE_MODE_SMII: return "smii"; case PHY_INTERFACE_MODE_XGMII: return "xgmii"; case PHY_INTERFACE_MODE_XLGMII: return "xlgmii"; case PHY_INTERFACE_MODE_MOCA: return "moca"; case PHY_INTERFACE_MODE_QSGMII: return "qsgmii"; case PHY_INTERFACE_MODE_TRGMII: return "trgmii"; case PHY_INTERFACE_MODE_1000BASEX: return "1000base-x"; case PHY_INTERFACE_MODE_2500BASEX: return "2500base-x"; case PHY_INTERFACE_MODE_RXAUI: return "rxaui"; case PHY_INTERFACE_MODE_XAUI: return "xaui"; case PHY_INTERFACE_MODE_10GBASER: return "10gbase-r"; case PHY_INTERFACE_MODE_USXGMII: return "usxgmii"; case PHY_INTERFACE_MODE_10GKR: return "10gbase-kr"; default: return "unknown"; } } #define PHY_INIT_TIMEOUT 100000 #define PHY_FORCE_TIMEOUT 10 #define PHY_MAX_ADDR 32 /* Used when trying to connect to a specific phy (mii bus id:phy device id) */ #define PHY_ID_FMT "%s:%02x" #define MII_BUS_ID_SIZE 61 struct device; struct phylink; struct sfp_bus; struct sfp_upstream_ops; struct sk_buff; /** * struct mdio_bus_stats - Statistics counters for MDIO busses * @transfers: Total number of transfers, i.e. @writes + @reads * @errors: Number of MDIO transfers that returned an error * @writes: Number of write transfers * @reads: Number of read transfers * @syncp: Synchronisation for incrementing statistics */ struct mdio_bus_stats { u64_stats_t transfers; u64_stats_t errors; u64_stats_t writes; u64_stats_t reads; /* Must be last, add new statistics above */ struct u64_stats_sync syncp; }; /** * struct phy_package_shared - Shared information in PHY packages * @addr: Common PHY address used to combine PHYs in one package * @refcnt: Number of PHYs connected to this shared data * @flags: Initialization of PHY package * @priv_size: Size of the shared private data @priv * @priv: Driver private data shared across a PHY package * * Represents a shared structure between different phydev's in the same * package, for example a quad PHY. See phy_package_join() and * phy_package_leave(). */ struct phy_package_shared { int addr; refcount_t refcnt; unsigned long flags; size_t priv_size; /* private data pointer */ /* note that this pointer is shared between different phydevs and * the user has to take care of appropriate locking. It is allocated * and freed automatically by phy_package_join() and * phy_package_leave(). */ void *priv; }; /* used as bit number in atomic bitops */ #define PHY_SHARED_F_INIT_DONE 0 #define PHY_SHARED_F_PROBE_DONE 1 /** * struct mii_bus - Represents an MDIO bus * * @owner: Who owns this device * @name: User friendly name for this MDIO device, or driver name * @id: Unique identifier for this bus, typical from bus hierarchy * @priv: Driver private data * * The Bus class for PHYs. Devices which provide access to * PHYs should register using this structure */ struct mii_bus { struct module *owner; const char *name; char id[MII_BUS_ID_SIZE]; void *priv; /** @read: Perform a read transfer on the bus */ int (*read)(struct mii_bus *bus, int addr, int regnum); /** @write: Perform a write transfer on the bus */ int (*write)(struct mii_bus *bus, int addr, int regnum, u16 val); /** @reset: Perform a reset of the bus */ int (*reset)(struct mii_bus *bus); /** @stats: Statistic counters per device on the bus */ struct mdio_bus_stats stats[PHY_MAX_ADDR]; /** * @mdio_lock: A lock to ensure that only one thing can read/write * the MDIO bus at a time */ struct mutex mdio_lock; /** @parent: Parent device of this bus */ struct device *parent; /** @state: State of bus structure */ enum { MDIOBUS_ALLOCATED = 1, MDIOBUS_REGISTERED, MDIOBUS_UNREGISTERED, MDIOBUS_RELEASED, } state; /** @dev: Kernel device representation */ struct device dev; /** @mdio_map: list of all MDIO devices on bus */ struct mdio_device *mdio_map[PHY_MAX_ADDR]; /** @phy_mask: PHY addresses to be ignored when probing */ u32 phy_mask; /** @phy_ignore_ta_mask: PHY addresses to ignore the TA/read failure */ u32 phy_ignore_ta_mask; /** * @irq: An array of interrupts, each PHY's interrupt at the index * matching its address */ int irq[PHY_MAX_ADDR]; /** @reset_delay_us: GPIO reset pulse width in microseconds */ int reset_delay_us; /** @reset_post_delay_us: GPIO reset deassert delay in microseconds */ int reset_post_delay_us; /** @reset_gpiod: Reset GPIO descriptor pointer */ struct gpio_desc *reset_gpiod; /** @probe_capabilities: bus capabilities, used for probing */ enum { MDIOBUS_NO_CAP = 0, MDIOBUS_C22, MDIOBUS_C45, MDIOBUS_C22_C45, } probe_capabilities; /** @shared_lock: protect access to the shared element */ struct mutex shared_lock; /** @shared: shared state across different PHYs */ struct phy_package_shared *shared[PHY_MAX_ADDR]; }; #define to_mii_bus(d) container_of(d, struct mii_bus, dev) struct mii_bus *mdiobus_alloc_size(size_t size); /** * mdiobus_alloc - Allocate an MDIO bus structure * * The internal state of the MDIO bus will be set of MDIOBUS_ALLOCATED ready * for the driver to register the bus. */ static inline struct mii_bus *mdiobus_alloc(void) { return mdiobus_alloc_size(0); } int __mdiobus_register(struct mii_bus *bus, struct module *owner); int __devm_mdiobus_register(struct device *dev, struct mii_bus *bus, struct module *owner); #define mdiobus_register(bus) __mdiobus_register(bus, THIS_MODULE) #define devm_mdiobus_register(dev, bus) \ __devm_mdiobus_register(dev, bus, THIS_MODULE) void mdiobus_unregister(struct mii_bus *bus); void mdiobus_free(struct mii_bus *bus); struct mii_bus *devm_mdiobus_alloc_size(struct device *dev, int sizeof_priv); static inline struct mii_bus *devm_mdiobus_alloc(struct device *dev) { return devm_mdiobus_alloc_size(dev, 0); } struct mii_bus *mdio_find_bus(const char *mdio_name); struct phy_device *mdiobus_scan(struct mii_bus *bus, int addr); #define PHY_INTERRUPT_DISABLED false #define PHY_INTERRUPT_ENABLED true /** * enum phy_state - PHY state machine states: * * @PHY_DOWN: PHY device and driver are not ready for anything. probe * should be called if and only if the PHY is in this state, * given that the PHY device exists. * - PHY driver probe function will set the state to @PHY_READY * * @PHY_READY: PHY is ready to send and receive packets, but the * controller is not. By default, PHYs which do not implement * probe will be set to this state by phy_probe(). * - start will set the state to UP * * @PHY_UP: The PHY and attached device are ready to do work. * Interrupts should be started here. * - timer moves to @PHY_NOLINK or @PHY_RUNNING * * @PHY_NOLINK: PHY is up, but not currently plugged in. * - irq or timer will set @PHY_RUNNING if link comes back * - phy_stop moves to @PHY_HALTED * * @PHY_RUNNING: PHY is currently up, running, and possibly sending * and/or receiving packets * - irq or timer will set @PHY_NOLINK if link goes down * - phy_stop moves to @PHY_HALTED * * @PHY_CABLETEST: PHY is performing a cable test. Packet reception/sending * is not expected to work, carrier will be indicated as down. PHY will be * poll once per second, or on interrupt for it current state. * Once complete, move to UP to restart the PHY. * - phy_stop aborts the running test and moves to @PHY_HALTED * * @PHY_HALTED: PHY is up, but no polling or interrupts are done. Or * PHY is in an error state. * - phy_start moves to @PHY_UP */ enum phy_state { PHY_DOWN = 0, PHY_READY, PHY_HALTED, PHY_UP, PHY_RUNNING, PHY_NOLINK, PHY_CABLETEST, }; #define MDIO_MMD_NUM 32 /** * struct phy_c45_device_ids - 802.3-c45 Device Identifiers * @devices_in_package: IEEE 802.3 devices in package register value. * @mmds_present: bit vector of MMDs present. * @device_ids: The device identifer for each present device. */ struct phy_c45_device_ids { u32 devices_in_package; u32 mmds_present; u32 device_ids[MDIO_MMD_NUM]; }; struct macsec_context; struct macsec_ops; /** * struct phy_device - An instance of a PHY * * @mdio: MDIO bus this PHY is on * @drv: Pointer to the driver for this PHY instance * @phy_id: UID for this device found during discovery * @c45_ids: 802.3-c45 Device Identifiers if is_c45. * @is_c45: Set to true if this PHY uses clause 45 addressing. * @is_internal: Set to true if this PHY is internal to a MAC. * @is_pseudo_fixed_link: Set to true if this PHY is an Ethernet switch, etc. * @is_gigabit_capable: Set to true if PHY supports 1000Mbps * @has_fixups: Set to true if this PHY has fixups/quirks. * @suspended: Set to true if this PHY has been suspended successfully. * @suspended_by_mdio_bus: Set to true if this PHY was suspended by MDIO bus. * @sysfs_links: Internal boolean tracking sysfs symbolic links setup/removal. * @loopback_enabled: Set true if this PHY has been loopbacked successfully. * @downshifted_rate: Set true if link speed has been downshifted. * @state: State of the PHY for management purposes * @dev_flags: Device-specific flags used by the PHY driver. * @irq: IRQ number of the PHY's interrupt (-1 if none) * @phy_timer: The timer for handling the state machine * @phylink: Pointer to phylink instance for this PHY * @sfp_bus_attached: Flag indicating whether the SFP bus has been attached * @sfp_bus: SFP bus attached to this PHY's fiber port * @attached_dev: The attached enet driver's device instance ptr * @adjust_link: Callback for the enet controller to respond to changes: in the * link state. * @phy_link_change: Callback for phylink for notification of link change * @macsec_ops: MACsec offloading ops. * * @speed: Current link speed * @duplex: Current duplex * @port: Current port * @pause: Current pause * @asym_pause: Current asymmetric pause * @supported: Combined MAC/PHY supported linkmodes * @advertising: Currently advertised linkmodes * @adv_old: Saved advertised while power saving for WoL * @lp_advertising: Current link partner advertised linkmodes * @eee_broken_modes: Energy efficient ethernet modes which should be prohibited * @autoneg: Flag autoneg being used * @link: Current link state * @autoneg_complete: Flag auto negotiation of the link has completed * @mdix: Current crossover * @mdix_ctrl: User setting of crossover * @interrupts: Flag interrupts have been enabled * @interface: enum phy_interface_t value * @skb: Netlink message for cable diagnostics * @nest: Netlink nest used for cable diagnostics * @ehdr: nNtlink header for cable diagnostics * @phy_led_triggers: Array of LED triggers * @phy_num_led_triggers: Number of triggers in @phy_led_triggers * @led_link_trigger: LED trigger for link up/down * @last_triggered: last LED trigger for link speed * @master_slave_set: User requested master/slave configuration * @master_slave_get: Current master/slave advertisement * @master_slave_state: Current master/slave configuration * @mii_ts: Pointer to time stamper callbacks * @lock: Mutex for serialization access to PHY * @state_queue: Work queue for state machine * @shared: Pointer to private data shared by phys in one package * @priv: Pointer to driver private data * * interrupts currently only supports enabled or disabled, * but could be changed in the future to support enabling * and disabling specific interrupts * * Contains some infrastructure for polling and interrupt * handling, as well as handling shifts in PHY hardware state */ struct phy_device { struct mdio_device mdio; /* Information about the PHY type */ /* And management functions */ struct phy_driver *drv; u32 phy_id; struct phy_c45_device_ids c45_ids; unsigned is_c45:1; unsigned is_internal:1; unsigned is_pseudo_fixed_link:1; unsigned is_gigabit_capable:1; unsigned has_fixups:1; unsigned suspended:1; unsigned suspended_by_mdio_bus:1; unsigned sysfs_links:1; unsigned loopback_enabled:1; unsigned downshifted_rate:1; unsigned autoneg:1; /* The most recently read link state */ unsigned link:1; unsigned autoneg_complete:1; /* Interrupts are enabled */ unsigned interrupts:1; enum phy_state state; u32 dev_flags; phy_interface_t interface; /* * forced speed & duplex (no autoneg) * partner speed & duplex & pause (autoneg) */ int speed; int duplex; int port; int pause; int asym_pause; u8 master_slave_get; u8 master_slave_set; u8 master_slave_state; /* Union of PHY and Attached devices' supported link modes */ /* See ethtool.h for more info */ __ETHTOOL_DECLARE_LINK_MODE_MASK(supported); __ETHTOOL_DECLARE_LINK_MODE_MASK(advertising); __ETHTOOL_DECLARE_LINK_MODE_MASK(lp_advertising); /* used with phy_speed_down */ __ETHTOOL_DECLARE_LINK_MODE_MASK(adv_old); /* Energy efficient ethernet modes which should be prohibited */ u32 eee_broken_modes; #ifdef CONFIG_LED_TRIGGER_PHY struct phy_led_trigger *phy_led_triggers; unsigned int phy_num_led_triggers; struct phy_led_trigger *last_triggered; struct phy_led_trigger *led_link_trigger; #endif /* * Interrupt number for this PHY * -1 means no interrupt */ int irq; /* private data pointer */ /* For use by PHYs to maintain extra state */ void *priv; /* shared data pointer */ /* For use by PHYs inside the same package that need a shared state. */ struct phy_package_shared *shared; /* Reporting cable test results */ struct sk_buff *skb; void *ehdr; struct nlattr *nest; /* Interrupt and Polling infrastructure */ struct delayed_work state_queue; struct mutex lock; /* This may be modified under the rtnl lock */ bool sfp_bus_attached; struct sfp_bus *sfp_bus; struct phylink *phylink; struct net_device *attached_dev; struct mii_timestamper *mii_ts; u8 mdix; u8 mdix_ctrl; void (*phy_link_change)(struct phy_device *phydev, bool up); void (*adjust_link)(struct net_device *dev); #if IS_ENABLED(CONFIG_MACSEC) /* MACsec management functions */ const struct macsec_ops *macsec_ops; #endif }; #define to_phy_device(d) container_of(to_mdio_device(d), \ struct phy_device, mdio) /** * struct phy_tdr_config - Configuration of a TDR raw test * * @first: Distance for first data collection point * @last: Distance for last data collection point * @step: Step between data collection points * @pair: Bitmap of cable pairs to collect data for * * A structure containing possible configuration parameters * for a TDR cable test. The driver does not need to implement * all the parameters, but should report what is actually used. * All distances are in centimeters. */ struct phy_tdr_config { u32 first; u32 last; u32 step; s8 pair; }; #define PHY_PAIR_ALL -1 /** * struct phy_driver - Driver structure for a particular PHY type * * @mdiodrv: Data common to all MDIO devices * @phy_id: The result of reading the UID registers of this PHY * type, and ANDing them with the phy_id_mask. This driver * only works for PHYs with IDs which match this field * @name: The friendly name of this PHY type * @phy_id_mask: Defines the important bits of the phy_id * @features: A mandatory list of features (speed, duplex, etc) * supported by this PHY * @flags: A bitfield defining certain other features this PHY * supports (like interrupts) * @driver_data: Static driver data * * All functions are optional. If config_aneg or read_status * are not implemented, the phy core uses the genphy versions. * Note that none of these functions should be called from * interrupt time. The goal is for the bus read/write functions * to be able to block when the bus transaction is happening, * and be freed up by an interrupt (The MPC85xx has this ability, * though it is not currently supported in the driver). */ struct phy_driver { struct mdio_driver_common mdiodrv; u32 phy_id; char *name; u32 phy_id_mask; const unsigned long * const features; u32 flags; const void *driver_data; /** * @soft_reset: Called to issue a PHY software reset */ int (*soft_reset)(struct phy_device *phydev); /** * @config_init: Called to initialize the PHY, * including after a reset */ int (*config_init)(struct phy_device *phydev); /** * @probe: Called during discovery. Used to set * up device-specific structures, if any */ int (*probe)(struct phy_device *phydev); /** * @get_features: Probe the hardware to determine what * abilities it has. Should only set phydev->supported. */ int (*get_features)(struct phy_device *phydev); /* PHY Power Management */ /** @suspend: Suspend the hardware, saving state if needed */ int (*suspend)(struct phy_device *phydev); /** @resume: Resume the hardware, restoring state if needed */ int (*resume)(struct phy_device *phydev); /** * @config_aneg: Configures the advertisement and resets * autonegotiation if phydev->autoneg is on, * forces the speed to the current settings in phydev * if phydev->autoneg is off */ int (*config_aneg)(struct phy_device *phydev); /** @aneg_done: Determines the auto negotiation result */ int (*aneg_done)(struct phy_device *phydev); /** @read_status: Determines the negotiated speed and duplex */ int (*read_status)(struct phy_device *phydev); /** @ack_interrupt: Clears any pending interrupts */ int (*ack_interrupt)(struct phy_device *phydev); /** @config_intr: Enables or disables interrupts */ int (*config_intr)(struct phy_device *phydev); /** * @did_interrupt: Checks if the PHY generated an interrupt. * For multi-PHY devices with shared PHY interrupt pin * Set interrupt bits have to be cleared. */ int (*did_interrupt)(struct phy_device *phydev); /** @handle_interrupt: Override default interrupt handling */ irqreturn_t (*handle_interrupt)(struct phy_device *phydev); /** @remove: Clears up any memory if needed */ void (*remove)(struct phy_device *phydev); /** * @match_phy_device: Returns true if this is a suitable * driver for the given phydev. If NULL, matching is based on * phy_id and phy_id_mask. */ int (*match_phy_device)(struct phy_device *phydev); /** * @set_wol: Some devices (e.g. qnap TS-119P II) require PHY * register changes to enable Wake on LAN, so set_wol is * provided to be called in the ethernet driver's set_wol * function. */ int (*set_wol)(struct phy_device *dev, struct ethtool_wolinfo *wol); /** * @get_wol: See set_wol, but for checking whether Wake on LAN * is enabled. */ void (*get_wol)(struct phy_device *dev, struct ethtool_wolinfo *wol); /** * @link_change_notify: Called to inform a PHY device driver * when the core is about to change the link state. This * callback is supposed to be used as fixup hook for drivers * that need to take action when the link state * changes. Drivers are by no means allowed to mess with the * PHY device structure in their implementations. */ void (*link_change_notify)(struct phy_device *dev); /** * @read_mmd: PHY specific driver override for reading a MMD * register. This function is optional for PHY specific * drivers. When not provided, the default MMD read function * will be used by phy_read_mmd(), which will use either a * direct read for Clause 45 PHYs or an indirect read for * Clause 22 PHYs. devnum is the MMD device number within the * PHY device, regnum is the register within the selected MMD * device. */ int (*read_mmd)(struct phy_device *dev, int devnum, u16 regnum); /** * @write_mmd: PHY specific driver override for writing a MMD * register. This function is optional for PHY specific * drivers. When not provided, the default MMD write function * will be used by phy_write_mmd(), which will use either a * direct write for Clause 45 PHYs, or an indirect write for * Clause 22 PHYs. devnum is the MMD device number within the * PHY device, regnum is the register within the selected MMD * device. val is the value to be written. */ int (*write_mmd)(struct phy_device *dev, int devnum, u16 regnum, u16 val); /** @read_page: Return the current PHY register page number */ int (*read_page)(struct phy_device *dev); /** @write_page: Set the current PHY register page number */ int (*write_page)(struct phy_device *dev, int page); /** * @module_info: Get the size and type of the eeprom contained * within a plug-in module */ int (*module_info)(struct phy_device *dev, struct ethtool_modinfo *modinfo); /** * @module_eeprom: Get the eeprom information from the plug-in * module */ int (*module_eeprom)(struct phy_device *dev, struct ethtool_eeprom *ee, u8 *data); /** @cable_test_start: Start a cable test */ int (*cable_test_start)(struct phy_device *dev); /** @cable_test_tdr_start: Start a raw TDR cable test */ int (*cable_test_tdr_start)(struct phy_device *dev, const struct phy_tdr_config *config); /** * @cable_test_get_status: Once per second, or on interrupt, * request the status of the test. */ int (*cable_test_get_status)(struct phy_device *dev, bool *finished); /* Get statistics from the PHY using ethtool */ /** @get_sset_count: Number of statistic counters */ int (*get_sset_count)(struct phy_device *dev); /** @get_strings: Names of the statistic counters */ void (*get_strings)(struct phy_device *dev, u8 *data); /** @get_stats: Return the statistic counter values */ void (*get_stats)(struct phy_device *dev, struct ethtool_stats *stats, u64 *data); /* Get and Set PHY tunables */ /** @get_tunable: Return the value of a tunable */ int (*get_tunable)(struct phy_device *dev, struct ethtool_tunable *tuna, void *data); /** @set_tunable: Set the value of a tunable */ int (*set_tunable)(struct phy_device *dev, struct ethtool_tunable *tuna, const void *data); /** @set_loopback: Set the loopback mood of the PHY */ int (*set_loopback)(struct phy_device *dev, bool enable); /** @get_sqi: Get the signal quality indication */ int (*get_sqi)(struct phy_device *dev); /** @get_sqi_max: Get the maximum signal quality indication */ int (*get_sqi_max)(struct phy_device *dev); }; #define to_phy_driver(d) container_of(to_mdio_common_driver(d), \ struct phy_driver, mdiodrv) #define PHY_ANY_ID "MATCH ANY PHY" #define PHY_ANY_UID 0xffffffff #define PHY_ID_MATCH_EXACT(id) .phy_id = (id), .phy_id_mask = GENMASK(31, 0) #define PHY_ID_MATCH_MODEL(id) .phy_id = (id), .phy_id_mask = GENMASK(31, 4) #define PHY_ID_MATCH_VENDOR(id) .phy_id = (id), .phy_id_mask = GENMASK(31, 10) /* A Structure for boards to register fixups with the PHY Lib */ struct phy_fixup { struct list_head list; char bus_id[MII_BUS_ID_SIZE + 3]; u32 phy_uid; u32 phy_uid_mask; int (*run)(struct phy_device *phydev); }; const char *phy_speed_to_str(int speed); const char *phy_duplex_to_str(unsigned int duplex); /* A structure for mapping a particular speed and duplex * combination to a particular SUPPORTED and ADVERTISED value */ struct phy_setting { u32 speed; u8 duplex; u8 bit; }; const struct phy_setting * phy_lookup_setting(int speed, int duplex, const unsigned long *mask, bool exact); size_t phy_speeds(unsigned int *speeds, size_t size, unsigned long *mask); void of_set_phy_supported(struct phy_device *phydev); void of_set_phy_eee_broken(struct phy_device *phydev); int phy_speed_down_core(struct phy_device *phydev); /** * phy_is_started - Convenience function to check whether PHY is started * @phydev: The phy_device struct */ static inline bool phy_is_started(struct phy_device *phydev) { return phydev->state >= PHY_UP; } void phy_resolve_aneg_pause(struct phy_device *phydev); void phy_resolve_aneg_linkmode(struct phy_device *phydev); void phy_check_downshift(struct phy_device *phydev); /** * phy_read - Convenience function for reading a given PHY register * @phydev: the phy_device struct * @regnum: register number to read * * NOTE: MUST NOT be called from interrupt context, * because the bus read/write functions may wait for an interrupt * to conclude the operation. */ static inline int phy_read(struct phy_device *phydev, u32 regnum) { return mdiobus_read(phydev->mdio.bus, phydev->mdio.addr, regnum); } #define phy_read_poll_timeout(phydev, regnum, val, cond, sleep_us, \ timeout_us, sleep_before_read) \ ({ \ int __ret = read_poll_timeout(phy_read, val, (cond) || val < 0, \ sleep_us, timeout_us, sleep_before_read, phydev, regnum); \ if (val < 0) \ __ret = val; \ if (__ret) \ phydev_err(phydev, "%s failed: %d\n", __func__, __ret); \ __ret; \ }) /** * __phy_read - convenience function for reading a given PHY register * @phydev: the phy_device struct * @regnum: register number to read * * The caller must have taken the MDIO bus lock. */ static inline int __phy_read(struct phy_device *phydev, u32 regnum) { return __mdiobus_read(phydev->mdio.bus, phydev->mdio.addr, regnum); } /** * phy_write - Convenience function for writing a given PHY register * @phydev: the phy_device struct * @regnum: register number to write * @val: value to write to @regnum * * NOTE: MUST NOT be called from interrupt context, * because the bus read/write functions may wait for an interrupt * to conclude the operation. */ static inline int phy_write(struct phy_device *phydev, u32 regnum, u16 val) { return mdiobus_write(phydev->mdio.bus, phydev->mdio.addr, regnum, val); } /** * __phy_write - Convenience function for writing a given PHY register * @phydev: the phy_device struct * @regnum: register number to write * @val: value to write to @regnum * * The caller must have taken the MDIO bus lock. */ static inline int __phy_write(struct phy_device *phydev, u32 regnum, u16 val) { return __mdiobus_write(phydev->mdio.bus, phydev->mdio.addr, regnum, val); } /** * __phy_modify_changed() - Convenience function for modifying a PHY register * @phydev: a pointer to a &struct phy_device * @regnum: register number * @mask: bit mask of bits to clear * @set: bit mask of bits to set * * Unlocked helper function which allows a PHY register to be modified as * new register value = (old register value & ~mask) | set * * Returns negative errno, 0 if there was no change, and 1 in case of change */ static inline int __phy_modify_changed(struct phy_device *phydev, u32 regnum, u16 mask, u16 set) { return __mdiobus_modify_changed(phydev->mdio.bus, phydev->mdio.addr, regnum, mask, set); } /* * phy_read_mmd - Convenience function for reading a register * from an MMD on a given PHY. */ int phy_read_mmd(struct phy_device *phydev, int devad, u32 regnum); /** * phy_read_mmd_poll_timeout - Periodically poll a PHY register until a * condition is met or a timeout occurs * * @phydev: The phy_device struct * @devaddr: The MMD to read from * @regnum: The register on the MMD to read * @val: Variable to read the register into * @cond: Break condition (usually involving @val) * @sleep_us: Maximum time to sleep between reads in us (0 * tight-loops). Should be less than ~20ms since usleep_range * is used (see Documentation/timers/timers-howto.rst). * @timeout_us: Timeout in us, 0 means never timeout * @sleep_before_read: if it is true, sleep @sleep_us before read. * Returns 0 on success and -ETIMEDOUT upon a timeout. In either * case, the last read value at @args is stored in @val. Must not * be called from atomic context if sleep_us or timeout_us are used. */ #define phy_read_mmd_poll_timeout(phydev, devaddr, regnum, val, cond, \ sleep_us, timeout_us, sleep_before_read) \ ({ \ int __ret = read_poll_timeout(phy_read_mmd, val, (cond) || val < 0, \ sleep_us, timeout_us, sleep_before_read, \ phydev, devaddr, regnum); \ if (val < 0) \ __ret = val; \ if (__ret) \ phydev_err(phydev, "%s failed: %d\n", __func__, __ret); \ __ret; \ }) /* * __phy_read_mmd - Convenience function for reading a register * from an MMD on a given PHY. */ int __phy_read_mmd(struct phy_device *phydev, int devad, u32 regnum); /* * phy_write_mmd - Convenience function for writing a register * on an MMD on a given PHY. */ int phy_write_mmd(struct phy_device *phydev, int devad, u32 regnum, u16 val); /* * __phy_write_mmd - Convenience function for writing a register * on an MMD on a given PHY. */ int __phy_write_mmd(struct phy_device *phydev, int devad, u32 regnum, u16 val); int __phy_modify_changed(struct phy_device *phydev, u32 regnum, u16 mask, u16 set); int phy_modify_changed(struct phy_device *phydev, u32 regnum, u16 mask, u16 set); int __phy_modify(struct phy_device *phydev, u32 regnum, u16 mask, u16 set); int phy_modify(struct phy_device *phydev, u32 regnum, u16 mask, u16 set); int __phy_modify_mmd_changed(struct phy_device *phydev, int devad, u32 regnum, u16 mask, u16 set); int phy_modify_mmd_changed(struct phy_device *phydev, int devad, u32 regnum, u16 mask, u16 set); int __phy_modify_mmd(struct phy_device *phydev, int devad, u32 regnum, u16 mask, u16 set); int phy_modify_mmd(struct phy_device *phydev, int devad, u32 regnum, u16 mask, u16 set); /** * __phy_set_bits - Convenience function for setting bits in a PHY register * @phydev: the phy_device struct * @regnum: register number to write * @val: bits to set * * The caller must have taken the MDIO bus lock. */ static inline int __phy_set_bits(struct phy_device *phydev, u32 regnum, u16 val) { return __phy_modify(phydev, regnum, 0, val); } /** * __phy_clear_bits - Convenience function for clearing bits in a PHY register * @phydev: the phy_device struct * @regnum: register number to write * @val: bits to clear * * The caller must have taken the MDIO bus lock. */ static inline int __phy_clear_bits(struct phy_device *phydev, u32 regnum, u16 val) { return __phy_modify(phydev, regnum, val, 0); } /** * phy_set_bits - Convenience function for setting bits in a PHY register * @phydev: the phy_device struct * @regnum: register number to write * @val: bits to set */ static inline int phy_set_bits(struct phy_device *phydev, u32 regnum, u16 val) { return phy_modify(phydev, regnum, 0, val); } /** * phy_clear_bits - Convenience function for clearing bits in a PHY register * @phydev: the phy_device struct * @regnum: register number to write * @val: bits to clear */ static inline int phy_clear_bits(struct phy_device *phydev, u32 regnum, u16 val) { return phy_modify(phydev, regnum, val, 0); } /** * __phy_set_bits_mmd - Convenience function for setting bits in a register * on MMD * @phydev: the phy_device struct * @devad: the MMD containing register to modify * @regnum: register number to modify * @val: bits to set * * The caller must have taken the MDIO bus lock. */ static inline int __phy_set_bits_mmd(struct phy_device *phydev, int devad, u32 regnum, u16 val) { return __phy_modify_mmd(phydev, devad, regnum, 0, val); } /** * __phy_clear_bits_mmd - Convenience function for clearing bits in a register * on MMD * @phydev: the phy_device struct * @devad: the MMD containing register to modify * @regnum: register number to modify * @val: bits to clear * * The caller must have taken the MDIO bus lock. */ static inline int __phy_clear_bits_mmd(struct phy_device *phydev, int devad, u32 regnum, u16 val) { return __phy_modify_mmd(phydev, devad, regnum, val, 0); } /** * phy_set_bits_mmd - Convenience function for setting bits in a register * on MMD * @phydev: the phy_device struct * @devad: the MMD containing register to modify * @regnum: register number to modify * @val: bits to set */ static inline int phy_set_bits_mmd(struct phy_device *phydev, int devad, u32 regnum, u16 val) { return phy_modify_mmd(phydev, devad, regnum, 0, val); } /** * phy_clear_bits_mmd - Convenience function for clearing bits in a register * on MMD * @phydev: the phy_device struct * @devad: the MMD containing register to modify * @regnum: register number to modify * @val: bits to clear */ static inline int phy_clear_bits_mmd(struct phy_device *phydev, int devad, u32 regnum, u16 val) { return phy_modify_mmd(phydev, devad, regnum, val, 0); } /** * phy_interrupt_is_valid - Convenience function for testing a given PHY irq * @phydev: the phy_device struct * * NOTE: must be kept in sync with addition/removal of PHY_POLL and * PHY_IGNORE_INTERRUPT */ static inline bool phy_interrupt_is_valid(struct phy_device *phydev) { return phydev->irq != PHY_POLL && phydev->irq != PHY_IGNORE_INTERRUPT; } /** * phy_polling_mode - Convenience function for testing whether polling is * used to detect PHY status changes * @phydev: the phy_device struct */ static inline bool phy_polling_mode(struct phy_device *phydev) { if (phydev->state == PHY_CABLETEST) if (phydev->drv->flags & PHY_POLL_CABLE_TEST) return true; return phydev->irq == PHY_POLL; } /** * phy_has_hwtstamp - Tests whether a PHY time stamp configuration. * @phydev: the phy_device struct */ static inline bool phy_has_hwtstamp(struct phy_device *phydev) { return phydev && phydev->mii_ts && phydev->mii_ts->hwtstamp; } /** * phy_has_rxtstamp - Tests whether a PHY supports receive time stamping. * @phydev: the phy_device struct */ static inline bool phy_has_rxtstamp(struct phy_device *phydev) { return phydev && phydev->mii_ts && phydev->mii_ts->rxtstamp; } /** * phy_has_tsinfo - Tests whether a PHY reports time stamping and/or * PTP hardware clock capabilities. * @phydev: the phy_device struct */ static inline bool phy_has_tsinfo(struct phy_device *phydev) { return phydev && phydev->mii_ts && phydev->mii_ts->ts_info; } /** * phy_has_txtstamp - Tests whether a PHY supports transmit time stamping. * @phydev: the phy_device struct */ static inline bool phy_has_txtstamp(struct phy_device *phydev) { return phydev && phydev->mii_ts && phydev->mii_ts->txtstamp; } static inline int phy_hwtstamp(struct phy_device *phydev, struct ifreq *ifr) { return phydev->mii_ts->hwtstamp(phydev->mii_ts, ifr); } static inline bool phy_rxtstamp(struct phy_device *phydev, struct sk_buff *skb, int type) { return phydev->mii_ts->rxtstamp(phydev->mii_ts, skb, type); } static inline int phy_ts_info(struct phy_device *phydev, struct ethtool_ts_info *tsinfo) { return phydev->mii_ts->ts_info(phydev->mii_ts, tsinfo); } static inline void phy_txtstamp(struct phy_device *phydev, struct sk_buff *skb, int type) { phydev->mii_ts->txtstamp(phydev->mii_ts, skb, type); } /** * phy_is_internal - Convenience function for testing if a PHY is internal * @phydev: the phy_device struct */ static inline bool phy_is_internal(struct phy_device *phydev) { return phydev->is_internal; } /** * phy_interface_mode_is_rgmii - Convenience function for testing if a * PHY interface mode is RGMII (all variants) * @mode: the &phy_interface_t enum */ static inline bool phy_interface_mode_is_rgmii(phy_interface_t mode) { return mode >= PHY_INTERFACE_MODE_RGMII && mode <= PHY_INTERFACE_MODE_RGMII_TXID; }; /** * phy_interface_mode_is_8023z() - does the PHY interface mode use 802.3z * negotiation * @mode: one of &enum phy_interface_t * * Returns true if the PHY interface mode uses the 16-bit negotiation * word as defined in 802.3z. (See 802.3-2015 37.2.1 Config_Reg encoding) */ static inline bool phy_interface_mode_is_8023z(phy_interface_t mode) { return mode == PHY_INTERFACE_MODE_1000BASEX || mode == PHY_INTERFACE_MODE_2500BASEX; } /** * phy_interface_is_rgmii - Convenience function for testing if a PHY interface * is RGMII (all variants) * @phydev: the phy_device struct */ static inline bool phy_interface_is_rgmii(struct phy_device *phydev) { return phy_interface_mode_is_rgmii(phydev->interface); }; /** * phy_is_pseudo_fixed_link - Convenience function for testing if this * PHY is the CPU port facing side of an Ethernet switch, or similar. * @phydev: the phy_device struct */ static inline bool phy_is_pseudo_fixed_link(struct phy_device *phydev) { return phydev->is_pseudo_fixed_link; } int phy_save_page(struct phy_device *phydev); int phy_select_page(struct phy_device *phydev, int page); int phy_restore_page(struct phy_device *phydev, int oldpage, int ret); int phy_read_paged(struct phy_device *phydev, int page, u32 regnum); int phy_write_paged(struct phy_device *phydev, int page, u32 regnum, u16 val); int phy_modify_paged_changed(struct phy_device *phydev, int page, u32 regnum, u16 mask, u16 set); int phy_modify_paged(struct phy_device *phydev, int page, u32 regnum, u16 mask, u16 set); struct phy_device *phy_device_create(struct mii_bus *bus, int addr, u32 phy_id, bool is_c45, struct phy_c45_device_ids *c45_ids); #if IS_ENABLED(CONFIG_PHYLIB) struct phy_device *get_phy_device(struct mii_bus *bus, int addr, bool is_c45); int phy_device_register(struct phy_device *phy); void phy_device_free(struct phy_device *phydev); #else static inline struct phy_device *get_phy_device(struct mii_bus *bus, int addr, bool is_c45) { return NULL; } static inline int phy_device_register(struct phy_device *phy) { return 0; } static inline void phy_device_free(struct phy_device *phydev) { } #endif /* CONFIG_PHYLIB */ void phy_device_remove(struct phy_device *phydev); int phy_init_hw(struct phy_device *phydev); int phy_suspend(struct phy_device *phydev); int phy_resume(struct phy_device *phydev); int __phy_resume(struct phy_device *phydev); int phy_loopback(struct phy_device *phydev, bool enable); void phy_sfp_attach(void *upstream, struct sfp_bus *bus); void phy_sfp_detach(void *upstream, struct sfp_bus *bus); int phy_sfp_probe(struct phy_device *phydev, const struct sfp_upstream_ops *ops); struct phy_device *phy_attach(struct net_device *dev, const char *bus_id, phy_interface_t interface); struct phy_device *phy_find_first(struct mii_bus *bus); int phy_attach_direct(struct net_device *dev, struct phy_device *phydev, u32 flags, phy_interface_t interface); int phy_connect_direct(struct net_device *dev, struct phy_device *phydev, void (*handler)(struct net_device *), phy_interface_t interface); struct phy_device *phy_connect(struct net_device *dev, const char *bus_id, void (*handler)(struct net_device *), phy_interface_t interface); void phy_disconnect(struct phy_device *phydev); void phy_detach(struct phy_device *phydev); void phy_start(struct phy_device *phydev); void phy_stop(struct phy_device *phydev); int phy_start_aneg(struct phy_device *phydev); int phy_aneg_done(struct phy_device *phydev); int phy_speed_down(struct phy_device *phydev, bool sync); int phy_speed_up(struct phy_device *phydev); int phy_restart_aneg(struct phy_device *phydev); int phy_reset_after_clk_enable(struct phy_device *phydev); #if IS_ENABLED(CONFIG_PHYLIB) int phy_start_cable_test(struct phy_device *phydev, struct netlink_ext_ack *extack); int phy_start_cable_test_tdr(struct phy_device *phydev, struct netlink_ext_ack *extack, const struct phy_tdr_config *config); #else static inline int phy_start_cable_test(struct phy_device *phydev, struct netlink_ext_ack *extack) { NL_SET_ERR_MSG(extack, "Kernel not compiled with PHYLIB support"); return -EOPNOTSUPP; } static inline int phy_start_cable_test_tdr(struct phy_device *phydev, struct netlink_ext_ack *extack, const struct phy_tdr_config *config) { NL_SET_ERR_MSG(extack, "Kernel not compiled with PHYLIB support"); return -EOPNOTSUPP; } #endif int phy_cable_test_result(struct phy_device *phydev, u8 pair, u16 result); int phy_cable_test_fault_length(struct phy_device *phydev, u8 pair, u16 cm); static inline void phy_device_reset(struct phy_device *phydev, int value) { mdio_device_reset(&phydev->mdio, value); } #define phydev_err(_phydev, format, args...) \ dev_err(&_phydev->mdio.dev, format, ##args) #define phydev_info(_phydev, format, args...) \ dev_info(&_phydev->mdio.dev, format, ##args) #define phydev_warn(_phydev, format, args...) \ dev_warn(&_phydev->mdio.dev, format, ##args) #define phydev_dbg(_phydev, format, args...) \ dev_dbg(&_phydev->mdio.dev, format, ##args) static inline const char *phydev_name(const struct phy_device *phydev) { return dev_name(&phydev->mdio.dev); } static inline void phy_lock_mdio_bus(struct phy_device *phydev) { mutex_lock(&phydev->mdio.bus->mdio_lock); } static inline void phy_unlock_mdio_bus(struct phy_device *phydev) { mutex_unlock(&phydev->mdio.bus->mdio_lock); } void phy_attached_print(struct phy_device *phydev, const char *fmt, ...) __printf(2, 3); char *phy_attached_info_irq(struct phy_device *phydev) __malloc; void phy_attached_info(struct phy_device *phydev); /* Clause 22 PHY */ int genphy_read_abilities(struct phy_device *phydev); int genphy_setup_forced(struct phy_device *phydev); int genphy_restart_aneg(struct phy_device *phydev); int genphy_check_and_restart_aneg(struct phy_device *phydev, bool restart); int genphy_config_eee_advert(struct phy_device *phydev); int __genphy_config_aneg(struct phy_device *phydev, bool changed); int genphy_aneg_done(struct phy_device *phydev); int genphy_update_link(struct phy_device *phydev); int genphy_read_lpa(struct phy_device *phydev); int genphy_read_status_fixed(struct phy_device *phydev); int genphy_read_status(struct phy_device *phydev); int genphy_suspend(struct phy_device *phydev); int genphy_resume(struct phy_device *phydev); int genphy_loopback(struct phy_device *phydev, bool enable); int genphy_soft_reset(struct phy_device *phydev); static inline int genphy_config_aneg(struct phy_device *phydev) { return __genphy_config_aneg(phydev, false); } static inline int genphy_no_ack_interrupt(struct phy_device *phydev) { return 0; } static inline int genphy_no_config_intr(struct phy_device *phydev) { return 0; } int genphy_read_mmd_unsupported(struct phy_device *phdev, int devad, u16 regnum); int genphy_write_mmd_unsupported(struct phy_device *phdev, int devnum, u16 regnum, u16 val); /* Clause 37 */ int genphy_c37_config_aneg(struct phy_device *phydev); int genphy_c37_read_status(struct phy_device *phydev); /* Clause 45 PHY */ int genphy_c45_restart_aneg(struct phy_device *phydev); int genphy_c45_check_and_restart_aneg(struct phy_device *phydev, bool restart); int genphy_c45_aneg_done(struct phy_device *phydev); int genphy_c45_read_link(struct phy_device *phydev); int genphy_c45_read_lpa(struct phy_device *phydev); int genphy_c45_read_pma(struct phy_device *phydev); int genphy_c45_pma_setup_forced(struct phy_device *phydev); int genphy_c45_an_config_aneg(struct phy_device *phydev); int genphy_c45_an_disable_aneg(struct phy_device *phydev); int genphy_c45_read_mdix(struct phy_device *phydev); int genphy_c45_pma_read_abilities(struct phy_device *phydev); int genphy_c45_read_status(struct phy_device *phydev); int genphy_c45_config_aneg(struct phy_device *phydev); /* Generic C45 PHY driver */ extern struct phy_driver genphy_c45_driver; /* The gen10g_* functions are the old Clause 45 stub */ int gen10g_config_aneg(struct phy_device *phydev); static inline int phy_read_status(struct phy_device *phydev) { if (!phydev->drv) return -EIO; if (phydev->drv->read_status) return phydev->drv->read_status(phydev); else return genphy_read_status(phydev); } void phy_driver_unregister(struct phy_driver *drv); void phy_drivers_unregister(struct phy_driver *drv, int n); int phy_driver_register(struct phy_driver *new_driver, struct module *owner); int phy_drivers_register(struct phy_driver *new_driver, int n, struct module *owner); void phy_state_machine(struct work_struct *work); void phy_queue_state_machine(struct phy_device *phydev, unsigned long jiffies); void phy_mac_interrupt(struct phy_device *phydev); void phy_start_machine(struct phy_device *phydev); void phy_stop_machine(struct phy_device *phydev); void phy_ethtool_ksettings_get(struct phy_device *phydev, struct ethtool_link_ksettings *cmd); int phy_ethtool_ksettings_set(struct phy_device *phydev, const struct ethtool_link_ksettings *cmd); int phy_mii_ioctl(struct phy_device *phydev, struct ifreq *ifr, int cmd); int phy_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd); int phy_do_ioctl_running(struct net_device *dev, struct ifreq *ifr, int cmd); int phy_disable_interrupts(struct phy_device *phydev); void phy_request_interrupt(struct phy_device *phydev); void phy_free_interrupt(struct phy_device *phydev); void phy_print_status(struct phy_device *phydev); int phy_set_max_speed(struct phy_device *phydev, u32 max_speed); void phy_remove_link_mode(struct phy_device *phydev, u32 link_mode); void phy_advertise_supported(struct phy_device *phydev); void phy_support_sym_pause(struct phy_device *phydev); void phy_support_asym_pause(struct phy_device *phydev); void phy_set_sym_pause(struct phy_device *phydev, bool rx, bool tx, bool autoneg); void phy_set_asym_pause(struct phy_device *phydev, bool rx, bool tx); bool phy_validate_pause(struct phy_device *phydev, struct ethtool_pauseparam *pp); void phy_get_pause(struct phy_device *phydev, bool *tx_pause, bool *rx_pause); s32 phy_get_internal_delay(struct phy_device *phydev, struct device *dev, const int *delay_values, int size, bool is_rx); void phy_resolve_pause(unsigned long *local_adv, unsigned long *partner_adv, bool *tx_pause, bool *rx_pause); int phy_register_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask, int (*run)(struct phy_device *)); int phy_register_fixup_for_id(const char *bus_id, int (*run)(struct phy_device *)); int phy_register_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask, int (*run)(struct phy_device *)); int phy_unregister_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask); int phy_unregister_fixup_for_id(const char *bus_id); int phy_unregister_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask); int phy_init_eee(struct phy_device *phydev, bool clk_stop_enable); int phy_get_eee_err(struct phy_device *phydev); int phy_ethtool_set_eee(struct phy_device *phydev, struct ethtool_eee *data); int phy_ethtool_get_eee(struct phy_device *phydev, struct ethtool_eee *data); int phy_ethtool_set_wol(struct phy_device *phydev, struct ethtool_wolinfo *wol); void phy_ethtool_get_wol(struct phy_device *phydev, struct ethtool_wolinfo *wol); int phy_ethtool_get_link_ksettings(struct net_device *ndev, struct ethtool_link_ksettings *cmd); int phy_ethtool_set_link_ksettings(struct net_device *ndev, const struct ethtool_link_ksettings *cmd); int phy_ethtool_nway_reset(struct net_device *ndev); int phy_package_join(struct phy_device *phydev, int addr, size_t priv_size); void phy_package_leave(struct phy_device *phydev); int devm_phy_package_join(struct device *dev, struct phy_device *phydev, int addr, size_t priv_size); #if IS_ENABLED(CONFIG_PHYLIB) int __init mdio_bus_init(void); void mdio_bus_exit(void); #endif int phy_ethtool_get_strings(struct phy_device *phydev, u8 *data); int phy_ethtool_get_sset_count(struct phy_device *phydev); int phy_ethtool_get_stats(struct phy_device *phydev, struct ethtool_stats *stats, u64 *data); static inline int phy_package_read(struct phy_device *phydev, u32 regnum) { struct phy_package_shared *shared = phydev->shared; if (!shared) return -EIO; return mdiobus_read(phydev->mdio.bus, shared->addr, regnum); } static inline int __phy_package_read(struct phy_device *phydev, u32 regnum) { struct phy_package_shared *shared = phydev->shared; if (!shared) return -EIO; return __mdiobus_read(phydev->mdio.bus, shared->addr, regnum); } static inline int phy_package_write(struct phy_device *phydev, u32 regnum, u16 val) { struct phy_package_shared *shared = phydev->shared; if (!shared) return -EIO; return mdiobus_write(phydev->mdio.bus, shared->addr, regnum, val); } static inline int __phy_package_write(struct phy_device *phydev, u32 regnum, u16 val) { struct phy_package_shared *shared = phydev->shared; if (!shared) return -EIO; return __mdiobus_write(phydev->mdio.bus, shared->addr, regnum, val); } static inline bool __phy_package_set_once(struct phy_device *phydev, unsigned int b) { struct phy_package_shared *shared = phydev->shared; if (!shared) return false; return !test_and_set_bit(b, &shared->flags); } static inline bool phy_package_init_once(struct phy_device *phydev) { return __phy_package_set_once(phydev, PHY_SHARED_F_INIT_DONE); } static inline bool phy_package_probe_once(struct phy_device *phydev) { return __phy_package_set_once(phydev, PHY_SHARED_F_PROBE_DONE); } extern struct bus_type mdio_bus_type; struct mdio_board_info { const char *bus_id; char modalias[MDIO_NAME_SIZE]; int mdio_addr; const void *platform_data; }; #if IS_ENABLED(CONFIG_MDIO_DEVICE) int mdiobus_register_board_info(const struct mdio_board_info *info, unsigned int n); #else static inline int mdiobus_register_board_info(const struct mdio_board_info *i, unsigned int n) { return 0; } #endif /** * phy_module_driver() - Helper macro for registering PHY drivers * @__phy_drivers: array of PHY drivers to register * @__count: Numbers of members in array * * Helper macro for PHY drivers which do not do anything special in module * init/exit. Each module may only use this macro once, and calling it * replaces module_init() and module_exit(). */ #define phy_module_driver(__phy_drivers, __count) \ static int __init phy_module_init(void) \ { \ return phy_drivers_register(__phy_drivers, __count, THIS_MODULE); \ } \ module_init(phy_module_init); \ static void __exit phy_module_exit(void) \ { \ phy_drivers_unregister(__phy_drivers, __count); \ } \ module_exit(phy_module_exit) #define module_phy_driver(__phy_drivers) \ phy_module_driver(__phy_drivers, ARRAY_SIZE(__phy_drivers)) bool phy_driver_is_genphy(struct phy_device *phydev); bool phy_driver_is_genphy_10g(struct phy_device *phydev); #endif /* __PHY_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_MMAN_H #define _LINUX_MMAN_H #include <linux/mm.h> #include <linux/percpu_counter.h> #include <linux/atomic.h> #include <uapi/linux/mman.h> /* * Arrange for legacy / undefined architecture specific flags to be * ignored by mmap handling code. */ #ifndef MAP_32BIT #define MAP_32BIT 0 #endif #ifndef MAP_HUGE_2MB #define MAP_HUGE_2MB 0 #endif #ifndef MAP_HUGE_1GB #define MAP_HUGE_1GB 0 #endif #ifndef MAP_UNINITIALIZED #define MAP_UNINITIALIZED 0 #endif #ifndef MAP_SYNC #define MAP_SYNC 0 #endif /* * The historical set of flags that all mmap implementations implicitly * support when a ->mmap_validate() op is not provided in file_operations. */ #define LEGACY_MAP_MASK (MAP_SHARED \ | MAP_PRIVATE \ | MAP_FIXED \ | MAP_ANONYMOUS \ | MAP_DENYWRITE \ | MAP_EXECUTABLE \ | MAP_UNINITIALIZED \ | MAP_GROWSDOWN \ | MAP_LOCKED \ | MAP_NORESERVE \ | MAP_POPULATE \ | MAP_NONBLOCK \ | MAP_STACK \ | MAP_HUGETLB \ | MAP_32BIT \ | MAP_HUGE_2MB \ | MAP_HUGE_1GB) extern int sysctl_overcommit_memory; extern int sysctl_overcommit_ratio; extern unsigned long sysctl_overcommit_kbytes; extern struct percpu_counter vm_committed_as; #ifdef CONFIG_SMP extern s32 vm_committed_as_batch; extern void mm_compute_batch(int overcommit_policy); #else #define vm_committed_as_batch 0 static inline void mm_compute_batch(int overcommit_policy) { } #endif unsigned long vm_memory_committed(void); static inline void vm_acct_memory(long pages) { percpu_counter_add_batch(&vm_committed_as, pages, vm_committed_as_batch); } static inline void vm_unacct_memory(long pages) { vm_acct_memory(-pages); } /* * Allow architectures to handle additional protection and flag bits. The * overriding macros must be defined in the arch-specific asm/mman.h file. */ #ifndef arch_calc_vm_prot_bits #define arch_calc_vm_prot_bits(prot, pkey) 0 #endif #ifndef arch_calc_vm_flag_bits #define arch_calc_vm_flag_bits(flags) 0 #endif #ifndef arch_vm_get_page_prot #define arch_vm_get_page_prot(vm_flags) __pgprot(0) #endif #ifndef arch_validate_prot /* * This is called from mprotect(). PROT_GROWSDOWN and PROT_GROWSUP have * already been masked out. * * Returns true if the prot flags are valid */ static inline bool arch_validate_prot(unsigned long prot, unsigned long addr) { return (prot & ~(PROT_READ | PROT_WRITE | PROT_EXEC | PROT_SEM)) == 0; } #define arch_validate_prot arch_validate_prot #endif #ifndef arch_validate_flags /* * This is called from mmap() and mprotect() with the updated vma->vm_flags. * * Returns true if the VM_* flags are valid. */ static inline bool arch_validate_flags(unsigned long flags) { return true; } #define arch_validate_flags arch_validate_flags #endif /* * Optimisation macro. It is equivalent to: * (x & bit1) ? bit2 : 0 * but this version is faster. * ("bit1" and "bit2" must be single bits) */ #define _calc_vm_trans(x, bit1, bit2) \ ((!(bit1) || !(bit2)) ? 0 : \ ((bit1) <= (bit2) ? ((x) & (bit1)) * ((bit2) / (bit1)) \ : ((x) & (bit1)) / ((bit1) / (bit2)))) /* * Combine the mmap "prot" argument into "vm_flags" used internally. */ static inline unsigned long calc_vm_prot_bits(unsigned long prot, unsigned long pkey) { return _calc_vm_trans(prot, PROT_READ, VM_READ ) | _calc_vm_trans(prot, PROT_WRITE, VM_WRITE) | _calc_vm_trans(prot, PROT_EXEC, VM_EXEC) | arch_calc_vm_prot_bits(prot, pkey); } /* * Combine the mmap "flags" argument into "vm_flags" used internally. */ static inline unsigned long calc_vm_flag_bits(unsigned long flags) { return _calc_vm_trans(flags, MAP_GROWSDOWN, VM_GROWSDOWN ) | _calc_vm_trans(flags, MAP_DENYWRITE, VM_DENYWRITE ) | _calc_vm_trans(flags, MAP_LOCKED, VM_LOCKED ) | _calc_vm_trans(flags, MAP_SYNC, VM_SYNC ) | arch_calc_vm_flag_bits(flags); } unsigned long vm_commit_limit(void); #endif /* _LINUX_MMAN_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM writeback #if !defined(_TRACE_WRITEBACK_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_WRITEBACK_H #include <linux/tracepoint.h> #include <linux/backing-dev.h> #include <linux/writeback.h> #define show_inode_state(state) \ __print_flags(state, "|", \ {I_DIRTY_SYNC, "I_DIRTY_SYNC"}, \ {I_DIRTY_DATASYNC, "I_DIRTY_DATASYNC"}, \ {I_DIRTY_PAGES, "I_DIRTY_PAGES"}, \ {I_NEW, "I_NEW"}, \ {I_WILL_FREE, "I_WILL_FREE"}, \ {I_FREEING, "I_FREEING"}, \ {I_CLEAR, "I_CLEAR"}, \ {I_SYNC, "I_SYNC"}, \ {I_DIRTY_TIME, "I_DIRTY_TIME"}, \ {I_REFERENCED, "I_REFERENCED"} \ ) /* enums need to be exported to user space */ #undef EM #undef EMe #define EM(a,b) TRACE_DEFINE_ENUM(a); #define EMe(a,b) TRACE_DEFINE_ENUM(a); #define WB_WORK_REASON \ EM( WB_REASON_BACKGROUND, "background") \ EM( WB_REASON_VMSCAN, "vmscan") \ EM( WB_REASON_SYNC, "sync") \ EM( WB_REASON_PERIODIC, "periodic") \ EM( WB_REASON_LAPTOP_TIMER, "laptop_timer") \ EM( WB_REASON_FS_FREE_SPACE, "fs_free_space") \ EMe(WB_REASON_FORKER_THREAD, "forker_thread") WB_WORK_REASON /* * Now redefine the EM() and EMe() macros to map the enums to the strings * that will be printed in the output. */ #undef EM #undef EMe #define EM(a,b) { a, b }, #define EMe(a,b) { a, b } struct wb_writeback_work; DECLARE_EVENT_CLASS(writeback_page_template, TP_PROTO(struct page *page, struct address_space *mapping), TP_ARGS(page, mapping), TP_STRUCT__entry ( __array(char, name, 32) __field(ino_t, ino) __field(pgoff_t, index) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(mapping ? inode_to_bdi(mapping->host) : NULL), 32); __entry->ino = mapping ? mapping->host->i_ino : 0; __entry->index = page->index; ), TP_printk("bdi %s: ino=%lu index=%lu", __entry->name, (unsigned long)__entry->ino, __entry->index ) ); DEFINE_EVENT(writeback_page_template, writeback_dirty_page, TP_PROTO(struct page *page, struct address_space *mapping), TP_ARGS(page, mapping) ); DEFINE_EVENT(writeback_page_template, wait_on_page_writeback, TP_PROTO(struct page *page, struct address_space *mapping), TP_ARGS(page, mapping) ); DECLARE_EVENT_CLASS(writeback_dirty_inode_template, TP_PROTO(struct inode *inode, int flags), TP_ARGS(inode, flags), TP_STRUCT__entry ( __array(char, name, 32) __field(ino_t, ino) __field(unsigned long, state) __field(unsigned long, flags) ), TP_fast_assign( struct backing_dev_info *bdi = inode_to_bdi(inode); /* may be called for files on pseudo FSes w/ unregistered bdi */ strscpy_pad(__entry->name, bdi_dev_name(bdi), 32); __entry->ino = inode->i_ino; __entry->state = inode->i_state; __entry->flags = flags; ), TP_printk("bdi %s: ino=%lu state=%s flags=%s", __entry->name, (unsigned long)__entry->ino, show_inode_state(__entry->state), show_inode_state(__entry->flags) ) ); DEFINE_EVENT(writeback_dirty_inode_template, writeback_mark_inode_dirty, TP_PROTO(struct inode *inode, int flags), TP_ARGS(inode, flags) ); DEFINE_EVENT(writeback_dirty_inode_template, writeback_dirty_inode_start, TP_PROTO(struct inode *inode, int flags), TP_ARGS(inode, flags) ); DEFINE_EVENT(writeback_dirty_inode_template, writeback_dirty_inode, TP_PROTO(struct inode *inode, int flags), TP_ARGS(inode, flags) ); #ifdef CREATE_TRACE_POINTS #ifdef CONFIG_CGROUP_WRITEBACK static inline ino_t __trace_wb_assign_cgroup(struct bdi_writeback *wb) { return cgroup_ino(wb->memcg_css->cgroup); } static inline ino_t __trace_wbc_assign_cgroup(struct writeback_control *wbc) { if (wbc->wb) return __trace_wb_assign_cgroup(wbc->wb); else return 1; } #else /* CONFIG_CGROUP_WRITEBACK */ static inline ino_t __trace_wb_assign_cgroup(struct bdi_writeback *wb) { return 1; } static inline ino_t __trace_wbc_assign_cgroup(struct writeback_control *wbc) { return 1; } #endif /* CONFIG_CGROUP_WRITEBACK */ #endif /* CREATE_TRACE_POINTS */ #ifdef CONFIG_CGROUP_WRITEBACK TRACE_EVENT(inode_foreign_history, TP_PROTO(struct inode *inode, struct writeback_control *wbc, unsigned int history), TP_ARGS(inode, wbc, history), TP_STRUCT__entry( __array(char, name, 32) __field(ino_t, ino) __field(ino_t, cgroup_ino) __field(unsigned int, history) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(inode_to_bdi(inode)), 32); __entry->ino = inode->i_ino; __entry->cgroup_ino = __trace_wbc_assign_cgroup(wbc); __entry->history = history; ), TP_printk("bdi %s: ino=%lu cgroup_ino=%lu history=0x%x", __entry->name, (unsigned long)__entry->ino, (unsigned long)__entry->cgroup_ino, __entry->history ) ); TRACE_EVENT(inode_switch_wbs, TP_PROTO(struct inode *inode, struct bdi_writeback *old_wb, struct bdi_writeback *new_wb), TP_ARGS(inode, old_wb, new_wb), TP_STRUCT__entry( __array(char, name, 32) __field(ino_t, ino) __field(ino_t, old_cgroup_ino) __field(ino_t, new_cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(old_wb->bdi), 32); __entry->ino = inode->i_ino; __entry->old_cgroup_ino = __trace_wb_assign_cgroup(old_wb); __entry->new_cgroup_ino = __trace_wb_assign_cgroup(new_wb); ), TP_printk("bdi %s: ino=%lu old_cgroup_ino=%lu new_cgroup_ino=%lu", __entry->name, (unsigned long)__entry->ino, (unsigned long)__entry->old_cgroup_ino, (unsigned long)__entry->new_cgroup_ino ) ); TRACE_EVENT(track_foreign_dirty, TP_PROTO(struct page *page, struct bdi_writeback *wb), TP_ARGS(page, wb), TP_STRUCT__entry( __array(char, name, 32) __field(u64, bdi_id) __field(ino_t, ino) __field(unsigned int, memcg_id) __field(ino_t, cgroup_ino) __field(ino_t, page_cgroup_ino) ), TP_fast_assign( struct address_space *mapping = page_mapping(page); struct inode *inode = mapping ? mapping->host : NULL; strscpy_pad(__entry->name, bdi_dev_name(wb->bdi), 32); __entry->bdi_id = wb->bdi->id; __entry->ino = inode ? inode->i_ino : 0; __entry->memcg_id = wb->memcg_css->id; __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); __entry->page_cgroup_ino = cgroup_ino(page->mem_cgroup->css.cgroup); ), TP_printk("bdi %s[%llu]: ino=%lu memcg_id=%u cgroup_ino=%lu page_cgroup_ino=%lu", __entry->name, __entry->bdi_id, (unsigned long)__entry->ino, __entry->memcg_id, (unsigned long)__entry->cgroup_ino, (unsigned long)__entry->page_cgroup_ino ) ); TRACE_EVENT(flush_foreign, TP_PROTO(struct bdi_writeback *wb, unsigned int frn_bdi_id, unsigned int frn_memcg_id), TP_ARGS(wb, frn_bdi_id, frn_memcg_id), TP_STRUCT__entry( __array(char, name, 32) __field(ino_t, cgroup_ino) __field(unsigned int, frn_bdi_id) __field(unsigned int, frn_memcg_id) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(wb->bdi), 32); __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); __entry->frn_bdi_id = frn_bdi_id; __entry->frn_memcg_id = frn_memcg_id; ), TP_printk("bdi %s: cgroup_ino=%lu frn_bdi_id=%u frn_memcg_id=%u", __entry->name, (unsigned long)__entry->cgroup_ino, __entry->frn_bdi_id, __entry->frn_memcg_id ) ); #endif DECLARE_EVENT_CLASS(writeback_write_inode_template, TP_PROTO(struct inode *inode, struct writeback_control *wbc), TP_ARGS(inode, wbc), TP_STRUCT__entry ( __array(char, name, 32) __field(ino_t, ino) __field(int, sync_mode) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(inode_to_bdi(inode)), 32); __entry->ino = inode->i_ino; __entry->sync_mode = wbc->sync_mode; __entry->cgroup_ino = __trace_wbc_assign_cgroup(wbc); ), TP_printk("bdi %s: ino=%lu sync_mode=%d cgroup_ino=%lu", __entry->name, (unsigned long)__entry->ino, __entry->sync_mode, (unsigned long)__entry->cgroup_ino ) ); DEFINE_EVENT(writeback_write_inode_template, writeback_write_inode_start, TP_PROTO(struct inode *inode, struct writeback_control *wbc), TP_ARGS(inode, wbc) ); DEFINE_EVENT(writeback_write_inode_template, writeback_write_inode, TP_PROTO(struct inode *inode, struct writeback_control *wbc), TP_ARGS(inode, wbc) ); DECLARE_EVENT_CLASS(writeback_work_class, TP_PROTO(struct bdi_writeback *wb, struct wb_writeback_work *work), TP_ARGS(wb, work), TP_STRUCT__entry( __array(char, name, 32) __field(long, nr_pages) __field(dev_t, sb_dev) __field(int, sync_mode) __field(int, for_kupdate) __field(int, range_cyclic) __field(int, for_background) __field(int, reason) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(wb->bdi), 32); __entry->nr_pages = work->nr_pages; __entry->sb_dev = work->sb ? work->sb->s_dev : 0; __entry->sync_mode = work->sync_mode; __entry->for_kupdate = work->for_kupdate; __entry->range_cyclic = work->range_cyclic; __entry->for_background = work->for_background; __entry->reason = work->reason; __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); ), TP_printk("bdi %s: sb_dev %d:%d nr_pages=%ld sync_mode=%d " "kupdate=%d range_cyclic=%d background=%d reason=%s cgroup_ino=%lu", __entry->name, MAJOR(__entry->sb_dev), MINOR(__entry->sb_dev), __entry->nr_pages, __entry->sync_mode, __entry->for_kupdate, __entry->range_cyclic, __entry->for_background, __print_symbolic(__entry->reason, WB_WORK_REASON), (unsigned long)__entry->cgroup_ino ) ); #define DEFINE_WRITEBACK_WORK_EVENT(name) \ DEFINE_EVENT(writeback_work_class, name, \ TP_PROTO(struct bdi_writeback *wb, struct wb_writeback_work *work), \ TP_ARGS(wb, work)) DEFINE_WRITEBACK_WORK_EVENT(writeback_queue); DEFINE_WRITEBACK_WORK_EVENT(writeback_exec); DEFINE_WRITEBACK_WORK_EVENT(writeback_start); DEFINE_WRITEBACK_WORK_EVENT(writeback_written); DEFINE_WRITEBACK_WORK_EVENT(writeback_wait); TRACE_EVENT(writeback_pages_written, TP_PROTO(long pages_written), TP_ARGS(pages_written), TP_STRUCT__entry( __field(long, pages) ), TP_fast_assign( __entry->pages = pages_written; ), TP_printk("%ld", __entry->pages) ); DECLARE_EVENT_CLASS(writeback_class, TP_PROTO(struct bdi_writeback *wb), TP_ARGS(wb), TP_STRUCT__entry( __array(char, name, 32) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(wb->bdi), 32); __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); ), TP_printk("bdi %s: cgroup_ino=%lu", __entry->name, (unsigned long)__entry->cgroup_ino ) ); #define DEFINE_WRITEBACK_EVENT(name) \ DEFINE_EVENT(writeback_class, name, \ TP_PROTO(struct bdi_writeback *wb), \ TP_ARGS(wb)) DEFINE_WRITEBACK_EVENT(writeback_wake_background); TRACE_EVENT(writeback_bdi_register, TP_PROTO(struct backing_dev_info *bdi), TP_ARGS(bdi), TP_STRUCT__entry( __array(char, name, 32) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(bdi), 32); ), TP_printk("bdi %s", __entry->name ) ); DECLARE_EVENT_CLASS(wbc_class, TP_PROTO(struct writeback_control *wbc, struct backing_dev_info *bdi), TP_ARGS(wbc, bdi), TP_STRUCT__entry( __array(char, name, 32) __field(long, nr_to_write) __field(long, pages_skipped) __field(int, sync_mode) __field(int, for_kupdate) __field(int, for_background) __field(int, for_reclaim) __field(int, range_cyclic) __field(long, range_start) __field(long, range_end) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(bdi), 32); __entry->nr_to_write = wbc->nr_to_write; __entry->pages_skipped = wbc->pages_skipped; __entry->sync_mode = wbc->sync_mode; __entry->for_kupdate = wbc->for_kupdate; __entry->for_background = wbc->for_background; __entry->for_reclaim = wbc->for_reclaim; __entry->range_cyclic = wbc->range_cyclic; __entry->range_start = (long)wbc->range_start; __entry->range_end = (long)wbc->range_end; __entry->cgroup_ino = __trace_wbc_assign_cgroup(wbc); ), TP_printk("bdi %s: towrt=%ld skip=%ld mode=%d kupd=%d " "bgrd=%d reclm=%d cyclic=%d " "start=0x%lx end=0x%lx cgroup_ino=%lu", __entry->name, __entry->nr_to_write, __entry->pages_skipped, __entry->sync_mode, __entry->for_kupdate, __entry->for_background, __entry->for_reclaim, __entry->range_cyclic, __entry->range_start, __entry->range_end, (unsigned long)__entry->cgroup_ino ) ) #define DEFINE_WBC_EVENT(name) \ DEFINE_EVENT(wbc_class, name, \ TP_PROTO(struct writeback_control *wbc, struct backing_dev_info *bdi), \ TP_ARGS(wbc, bdi)) DEFINE_WBC_EVENT(wbc_writepage); TRACE_EVENT(writeback_queue_io, TP_PROTO(struct bdi_writeback *wb, struct wb_writeback_work *work, unsigned long dirtied_before, int moved), TP_ARGS(wb, work, dirtied_before, moved), TP_STRUCT__entry( __array(char, name, 32) __field(unsigned long, older) __field(long, age) __field(int, moved) __field(int, reason) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(wb->bdi), 32); __entry->older = dirtied_before; __entry->age = (jiffies - dirtied_before) * 1000 / HZ; __entry->moved = moved; __entry->reason = work->reason; __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); ), TP_printk("bdi %s: older=%lu age=%ld enqueue=%d reason=%s cgroup_ino=%lu", __entry->name, __entry->older, /* dirtied_before in jiffies */ __entry->age, /* dirtied_before in relative milliseconds */ __entry->moved, __print_symbolic(__entry->reason, WB_WORK_REASON), (unsigned long)__entry->cgroup_ino ) ); TRACE_EVENT(global_dirty_state, TP_PROTO(unsigned long background_thresh, unsigned long dirty_thresh ), TP_ARGS(background_thresh, dirty_thresh ), TP_STRUCT__entry( __field(unsigned long, nr_dirty) __field(unsigned long, nr_writeback) __field(unsigned long, background_thresh) __field(unsigned long, dirty_thresh) __field(unsigned long, dirty_limit) __field(unsigned long, nr_dirtied) __field(unsigned long, nr_written) ), TP_fast_assign( __entry->nr_dirty = global_node_page_state(NR_FILE_DIRTY); __entry->nr_writeback = global_node_page_state(NR_WRITEBACK); __entry->nr_dirtied = global_node_page_state(NR_DIRTIED); __entry->nr_written = global_node_page_state(NR_WRITTEN); __entry->background_thresh = background_thresh; __entry->dirty_thresh = dirty_thresh; __entry->dirty_limit = global_wb_domain.dirty_limit; ), TP_printk("dirty=%lu writeback=%lu " "bg_thresh=%lu thresh=%lu limit=%lu " "dirtied=%lu written=%lu", __entry->nr_dirty, __entry->nr_writeback, __entry->background_thresh, __entry->dirty_thresh, __entry->dirty_limit, __entry->nr_dirtied, __entry->nr_written ) ); #define KBps(x) ((x) << (PAGE_SHIFT - 10)) TRACE_EVENT(bdi_dirty_ratelimit, TP_PROTO(struct bdi_writeback *wb, unsigned long dirty_rate, unsigned long task_ratelimit), TP_ARGS(wb, dirty_rate, task_ratelimit), TP_STRUCT__entry( __array(char, bdi, 32) __field(unsigned long, write_bw) __field(unsigned long, avg_write_bw) __field(unsigned long, dirty_rate) __field(unsigned long, dirty_ratelimit) __field(unsigned long, task_ratelimit) __field(unsigned long, balanced_dirty_ratelimit) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->bdi, bdi_dev_name(wb->bdi), 32); __entry->write_bw = KBps(wb->write_bandwidth); __entry->avg_write_bw = KBps(wb->avg_write_bandwidth); __entry->dirty_rate = KBps(dirty_rate); __entry->dirty_ratelimit = KBps(wb->dirty_ratelimit); __entry->task_ratelimit = KBps(task_ratelimit); __entry->balanced_dirty_ratelimit = KBps(wb->balanced_dirty_ratelimit); __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); ), TP_printk("bdi %s: " "write_bw=%lu awrite_bw=%lu dirty_rate=%lu " "dirty_ratelimit=%lu task_ratelimit=%lu " "balanced_dirty_ratelimit=%lu cgroup_ino=%lu", __entry->bdi, __entry->write_bw, /* write bandwidth */ __entry->avg_write_bw, /* avg write bandwidth */ __entry->dirty_rate, /* bdi dirty rate */ __entry->dirty_ratelimit, /* base ratelimit */ __entry->task_ratelimit, /* ratelimit with position control */ __entry->balanced_dirty_ratelimit, /* the balanced ratelimit */ (unsigned long)__entry->cgroup_ino ) ); TRACE_EVENT(balance_dirty_pages, TP_PROTO(struct bdi_writeback *wb, unsigned long thresh, unsigned long bg_thresh, unsigned long dirty, unsigned long bdi_thresh, unsigned long bdi_dirty, unsigned long dirty_ratelimit, unsigned long task_ratelimit, unsigned long dirtied, unsigned long period, long pause, unsigned long start_time), TP_ARGS(wb, thresh, bg_thresh, dirty, bdi_thresh, bdi_dirty, dirty_ratelimit, task_ratelimit, dirtied, period, pause, start_time), TP_STRUCT__entry( __array( char, bdi, 32) __field(unsigned long, limit) __field(unsigned long, setpoint) __field(unsigned long, dirty) __field(unsigned long, bdi_setpoint) __field(unsigned long, bdi_dirty) __field(unsigned long, dirty_ratelimit) __field(unsigned long, task_ratelimit) __field(unsigned int, dirtied) __field(unsigned int, dirtied_pause) __field(unsigned long, paused) __field( long, pause) __field(unsigned long, period) __field( long, think) __field(ino_t, cgroup_ino) ), TP_fast_assign( unsigned long freerun = (thresh + bg_thresh) / 2; strscpy_pad(__entry->bdi, bdi_dev_name(wb->bdi), 32); __entry->limit = global_wb_domain.dirty_limit; __entry->setpoint = (global_wb_domain.dirty_limit + freerun) / 2; __entry->dirty = dirty; __entry->bdi_setpoint = __entry->setpoint * bdi_thresh / (thresh + 1); __entry->bdi_dirty = bdi_dirty; __entry->dirty_ratelimit = KBps(dirty_ratelimit); __entry->task_ratelimit = KBps(task_ratelimit); __entry->dirtied = dirtied; __entry->dirtied_pause = current->nr_dirtied_pause; __entry->think = current->dirty_paused_when == 0 ? 0 : (long)(jiffies - current->dirty_paused_when) * 1000/HZ; __entry->period = period * 1000 / HZ; __entry->pause = pause * 1000 / HZ; __entry->paused = (jiffies - start_time) * 1000 / HZ; __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); ), TP_printk("bdi %s: " "limit=%lu setpoint=%lu dirty=%lu " "bdi_setpoint=%lu bdi_dirty=%lu " "dirty_ratelimit=%lu task_ratelimit=%lu " "dirtied=%u dirtied_pause=%u " "paused=%lu pause=%ld period=%lu think=%ld cgroup_ino=%lu", __entry->bdi, __entry->limit, __entry->setpoint, __entry->dirty, __entry->bdi_setpoint, __entry->bdi_dirty, __entry->dirty_ratelimit, __entry->task_ratelimit, __entry->dirtied, __entry->dirtied_pause, __entry->paused, /* ms */ __entry->pause, /* ms */ __entry->period, /* ms */ __entry->think, /* ms */ (unsigned long)__entry->cgroup_ino ) ); TRACE_EVENT(writeback_sb_inodes_requeue, TP_PROTO(struct inode *inode), TP_ARGS(inode), TP_STRUCT__entry( __array(char, name, 32) __field(ino_t, ino) __field(unsigned long, state) __field(unsigned long, dirtied_when) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(inode_to_bdi(inode)), 32); __entry->ino = inode->i_ino; __entry->state = inode->i_state; __entry->dirtied_when = inode->dirtied_when; __entry->cgroup_ino = __trace_wb_assign_cgroup(inode_to_wb(inode)); ), TP_printk("bdi %s: ino=%lu state=%s dirtied_when=%lu age=%lu cgroup_ino=%lu", __entry->name, (unsigned long)__entry->ino, show_inode_state(__entry->state), __entry->dirtied_when, (jiffies - __entry->dirtied_when) / HZ, (unsigned long)__entry->cgroup_ino ) ); DECLARE_EVENT_CLASS(writeback_congest_waited_template, TP_PROTO(unsigned int usec_timeout, unsigned int usec_delayed), TP_ARGS(usec_timeout, usec_delayed), TP_STRUCT__entry( __field( unsigned int, usec_timeout ) __field( unsigned int, usec_delayed ) ), TP_fast_assign( __entry->usec_timeout = usec_timeout; __entry->usec_delayed = usec_delayed; ), TP_printk("usec_timeout=%u usec_delayed=%u", __entry->usec_timeout, __entry->usec_delayed) ); DEFINE_EVENT(writeback_congest_waited_template, writeback_congestion_wait, TP_PROTO(unsigned int usec_timeout, unsigned int usec_delayed), TP_ARGS(usec_timeout, usec_delayed) ); DEFINE_EVENT(writeback_congest_waited_template, writeback_wait_iff_congested, TP_PROTO(unsigned int usec_timeout, unsigned int usec_delayed), TP_ARGS(usec_timeout, usec_delayed) ); DECLARE_EVENT_CLASS(writeback_single_inode_template, TP_PROTO(struct inode *inode, struct writeback_control *wbc, unsigned long nr_to_write ), TP_ARGS(inode, wbc, nr_to_write), TP_STRUCT__entry( __array(char, name, 32) __field(ino_t, ino) __field(unsigned long, state) __field(unsigned long, dirtied_when) __field(unsigned long, writeback_index) __field(long, nr_to_write) __field(unsigned long, wrote) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(inode_to_bdi(inode)), 32); __entry->ino = inode->i_ino; __entry->state = inode->i_state; __entry->dirtied_when = inode->dirtied_when; __entry->writeback_index = inode->i_mapping->writeback_index; __entry->nr_to_write = nr_to_write; __entry->wrote = nr_to_write - wbc->nr_to_write; __entry->cgroup_ino = __trace_wbc_assign_cgroup(wbc); ), TP_printk("bdi %s: ino=%lu state=%s dirtied_when=%lu age=%lu " "index=%lu to_write=%ld wrote=%lu cgroup_ino=%lu", __entry->name, (unsigned long)__entry->ino, show_inode_state(__entry->state), __entry->dirtied_when, (jiffies - __entry->dirtied_when) / HZ, __entry->writeback_index, __entry->nr_to_write, __entry->wrote, (unsigned long)__entry->cgroup_ino ) ); DEFINE_EVENT(writeback_single_inode_template, writeback_single_inode_start, TP_PROTO(struct inode *inode, struct writeback_control *wbc, unsigned long nr_to_write), TP_ARGS(inode, wbc, nr_to_write) ); DEFINE_EVENT(writeback_single_inode_template, writeback_single_inode, TP_PROTO(struct inode *inode, struct writeback_control *wbc, unsigned long nr_to_write), TP_ARGS(inode, wbc, nr_to_write) ); DECLARE_EVENT_CLASS(writeback_inode_template, TP_PROTO(struct inode *inode), TP_ARGS(inode), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field(unsigned long, state ) __field( __u16, mode ) __field(unsigned long, dirtied_when ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->state = inode->i_state; __entry->mode = inode->i_mode; __entry->dirtied_when = inode->dirtied_when; ), TP_printk("dev %d,%d ino %lu dirtied %lu state %s mode 0%o", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long)__entry->ino, __entry->dirtied_when, show_inode_state(__entry->state), __entry->mode) ); DEFINE_EVENT(writeback_inode_template, writeback_lazytime, TP_PROTO(struct inode *inode), TP_ARGS(inode) ); DEFINE_EVENT(writeback_inode_template, writeback_lazytime_iput, TP_PROTO(struct inode *inode), TP_ARGS(inode) ); DEFINE_EVENT(writeback_inode_template, writeback_dirty_inode_enqueue, TP_PROTO(struct inode *inode), TP_ARGS(inode) ); /* * Inode writeback list tracking. */ DEFINE_EVENT(writeback_inode_template, sb_mark_inode_writeback, TP_PROTO(struct inode *inode), TP_ARGS(inode) ); DEFINE_EVENT(writeback_inode_template, sb_clear_inode_writeback, TP_PROTO(struct inode *inode), TP_ARGS(inode) ); #endif /* _TRACE_WRITEBACK_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_TTY_H #define _LINUX_TTY_H #include <linux/fs.h> #include <linux/major.h> #include <linux/termios.h> #include <linux/workqueue.h> #include <linux/tty_driver.h> #include <linux/tty_ldisc.h> #include <linux/mutex.h> #include <linux/tty_flags.h> #include <linux/seq_file.h> #include <uapi/linux/tty.h> #include <linux/rwsem.h> #include <linux/llist.h> /* * Lock subclasses for tty locks * * TTY_LOCK_NORMAL is for normal ttys and master ptys. * TTY_LOCK_SLAVE is for slave ptys only. * * Lock subclasses are necessary for handling nested locking with pty pairs. * tty locks which use nested locking: * * legacy_mutex - Nested tty locks are necessary for releasing pty pairs. * The stable lock order is master pty first, then slave pty. * termios_rwsem - The stable lock order is tty_buffer lock->termios_rwsem. * Subclassing this lock enables the slave pty to hold its * termios_rwsem when claiming the master tty_buffer lock. * tty_buffer lock - slave ptys can claim nested buffer lock when handling * signal chars. The stable lock order is slave pty, then * master. */ enum { TTY_LOCK_NORMAL = 0, TTY_LOCK_SLAVE, }; /* * (Note: the *_driver.minor_start values 1, 64, 128, 192 are * hardcoded at present.) */ #define NR_UNIX98_PTY_DEFAULT 4096 /* Default maximum for Unix98 ptys */ #define NR_UNIX98_PTY_RESERVE 1024 /* Default reserve for main devpts */ #define NR_UNIX98_PTY_MAX (1 << MINORBITS) /* Absolute limit */ /* * This character is the same as _POSIX_VDISABLE: it cannot be used as * a c_cc[] character, but indicates that a particular special character * isn't in use (eg VINTR has no character etc) */ #define __DISABLED_CHAR '\0' struct tty_buffer { union { struct tty_buffer *next; struct llist_node free; }; int used; int size; int commit; int read; int flags; /* Data points here */ unsigned long data[]; }; /* Values for .flags field of tty_buffer */ #define TTYB_NORMAL 1 /* buffer has no flags buffer */ static inline unsigned char *char_buf_ptr(struct tty_buffer *b, int ofs) { return ((unsigned char *)b->data) + ofs; } static inline char *flag_buf_ptr(struct tty_buffer *b, int ofs) { return (char *)char_buf_ptr(b, ofs) + b->size; } struct tty_bufhead { struct tty_buffer *head; /* Queue head */ struct work_struct work; struct mutex lock; atomic_t priority; struct tty_buffer sentinel; struct llist_head free; /* Free queue head */ atomic_t mem_used; /* In-use buffers excluding free list */ int mem_limit; struct tty_buffer *tail; /* Active buffer */ }; /* * When a break, frame error, or parity error happens, these codes are * stuffed into the flags buffer. */ #define TTY_NORMAL 0 #define TTY_BREAK 1 #define TTY_FRAME 2 #define TTY_PARITY 3 #define TTY_OVERRUN 4 #define INTR_CHAR(tty) ((tty)->termios.c_cc[VINTR]) #define QUIT_CHAR(tty) ((tty)->termios.c_cc[VQUIT]) #define ERASE_CHAR(tty) ((tty)->termios.c_cc[VERASE]) #define KILL_CHAR(tty) ((tty)->termios.c_cc[VKILL]) #define EOF_CHAR(tty) ((tty)->termios.c_cc[VEOF]) #define TIME_CHAR(tty) ((tty)->termios.c_cc[VTIME]) #define MIN_CHAR(tty) ((tty)->termios.c_cc[VMIN]) #define SWTC_CHAR(tty) ((tty)->termios.c_cc[VSWTC]) #define START_CHAR(tty) ((tty)->termios.c_cc[VSTART]) #define STOP_CHAR(tty) ((tty)->termios.c_cc[VSTOP]) #define SUSP_CHAR(tty) ((tty)->termios.c_cc[VSUSP]) #define EOL_CHAR(tty) ((tty)->termios.c_cc[VEOL]) #define REPRINT_CHAR(tty) ((tty)->termios.c_cc[VREPRINT]) #define DISCARD_CHAR(tty) ((tty)->termios.c_cc[VDISCARD]) #define WERASE_CHAR(tty) ((tty)->termios.c_cc[VWERASE]) #define LNEXT_CHAR(tty) ((tty)->termios.c_cc[VLNEXT]) #define EOL2_CHAR(tty) ((tty)->termios.c_cc[VEOL2]) #define _I_FLAG(tty, f) ((tty)->termios.c_iflag & (f)) #define _O_FLAG(tty, f) ((tty)->termios.c_oflag & (f)) #define _C_FLAG(tty, f) ((tty)->termios.c_cflag & (f)) #define _L_FLAG(tty, f) ((tty)->termios.c_lflag & (f)) #define I_IGNBRK(tty) _I_FLAG((tty), IGNBRK) #define I_BRKINT(tty) _I_FLAG((tty), BRKINT) #define I_IGNPAR(tty) _I_FLAG((tty), IGNPAR) #define I_PARMRK(tty) _I_FLAG((tty), PARMRK) #define I_INPCK(tty) _I_FLAG((tty), INPCK) #define I_ISTRIP(tty) _I_FLAG((tty), ISTRIP) #define I_INLCR(tty) _I_FLAG((tty), INLCR) #define I_IGNCR(tty) _I_FLAG((tty), IGNCR) #define I_ICRNL(tty) _I_FLAG((tty), ICRNL) #define I_IUCLC(tty) _I_FLAG((tty), IUCLC) #define I_IXON(tty) _I_FLAG((tty), IXON) #define I_IXANY(tty) _I_FLAG((tty), IXANY) #define I_IXOFF(tty) _I_FLAG((tty), IXOFF) #define I_IMAXBEL(tty) _I_FLAG((tty), IMAXBEL) #define I_IUTF8(tty) _I_FLAG((tty), IUTF8) #define O_OPOST(tty) _O_FLAG((tty), OPOST) #define O_OLCUC(tty) _O_FLAG((tty), OLCUC) #define O_ONLCR(tty) _O_FLAG((tty), ONLCR) #define O_OCRNL(tty) _O_FLAG((tty), OCRNL) #define O_ONOCR(tty) _O_FLAG((tty), ONOCR) #define O_ONLRET(tty) _O_FLAG((tty), ONLRET) #define O_OFILL(tty) _O_FLAG((tty), OFILL) #define O_OFDEL(tty) _O_FLAG((tty), OFDEL) #define O_NLDLY(tty) _O_FLAG((tty), NLDLY) #define O_CRDLY(tty) _O_FLAG((tty), CRDLY) #define O_TABDLY(tty) _O_FLAG((tty), TABDLY) #define O_BSDLY(tty) _O_FLAG((tty), BSDLY) #define O_VTDLY(tty) _O_FLAG((tty), VTDLY) #define O_FFDLY(tty) _O_FLAG((tty), FFDLY) #define C_BAUD(tty) _C_FLAG((tty), CBAUD) #define C_CSIZE(tty) _C_FLAG((tty), CSIZE) #define C_CSTOPB(tty) _C_FLAG((tty), CSTOPB) #define C_CREAD(tty) _C_FLAG((tty), CREAD) #define C_PARENB(tty) _C_FLAG((tty), PARENB) #define C_PARODD(tty) _C_FLAG((tty), PARODD) #define C_HUPCL(tty) _C_FLAG((tty), HUPCL) #define C_CLOCAL(tty) _C_FLAG((tty), CLOCAL) #define C_CIBAUD(tty) _C_FLAG((tty), CIBAUD) #define C_CRTSCTS(tty) _C_FLAG((tty), CRTSCTS) #define C_CMSPAR(tty) _C_FLAG((tty), CMSPAR) #define L_ISIG(tty) _L_FLAG((tty), ISIG) #define L_ICANON(tty) _L_FLAG((tty), ICANON) #define L_XCASE(tty) _L_FLAG((tty), XCASE) #define L_ECHO(tty) _L_FLAG((tty), ECHO) #define L_ECHOE(tty) _L_FLAG((tty), ECHOE) #define L_ECHOK(tty) _L_FLAG((tty), ECHOK) #define L_ECHONL(tty) _L_FLAG((tty), ECHONL) #define L_NOFLSH(tty) _L_FLAG((tty), NOFLSH) #define L_TOSTOP(tty) _L_FLAG((tty), TOSTOP) #define L_ECHOCTL(tty) _L_FLAG((tty), ECHOCTL) #define L_ECHOPRT(tty) _L_FLAG((tty), ECHOPRT) #define L_ECHOKE(tty) _L_FLAG((tty), ECHOKE) #define L_FLUSHO(tty) _L_FLAG((tty), FLUSHO) #define L_PENDIN(tty) _L_FLAG((tty), PENDIN) #define L_IEXTEN(tty) _L_FLAG((tty), IEXTEN) #define L_EXTPROC(tty) _L_FLAG((tty), EXTPROC) struct device; struct signal_struct; /* * Port level information. Each device keeps its own port level information * so provide a common structure for those ports wanting to use common support * routines. * * The tty port has a different lifetime to the tty so must be kept apart. * In addition be careful as tty -> port mappings are valid for the life * of the tty object but in many cases port -> tty mappings are valid only * until a hangup so don't use the wrong path. */ struct tty_port; struct tty_port_operations { /* Return 1 if the carrier is raised */ int (*carrier_raised)(struct tty_port *port); /* Control the DTR line */ void (*dtr_rts)(struct tty_port *port, int raise); /* Called when the last close completes or a hangup finishes IFF the port was initialized. Do not use to free resources. Called under the port mutex to serialize against activate/shutdowns */ void (*shutdown)(struct tty_port *port); /* Called under the port mutex from tty_port_open, serialized using the port mutex */ /* FIXME: long term getting the tty argument *out* of this would be good for consoles */ int (*activate)(struct tty_port *port, struct tty_struct *tty); /* Called on the final put of a port */ void (*destruct)(struct tty_port *port); }; struct tty_port_client_operations { int (*receive_buf)(struct tty_port *port, const unsigned char *, const unsigned char *, size_t); void (*write_wakeup)(struct tty_port *port); }; extern const struct tty_port_client_operations tty_port_default_client_ops; struct tty_port { struct tty_bufhead buf; /* Locked internally */ struct tty_struct *tty; /* Back pointer */ struct tty_struct *itty; /* internal back ptr */ const struct tty_port_operations *ops; /* Port operations */ const struct tty_port_client_operations *client_ops; /* Port client operations */ spinlock_t lock; /* Lock protecting tty field */ int blocked_open; /* Waiting to open */ int count; /* Usage count */ wait_queue_head_t open_wait; /* Open waiters */ wait_queue_head_t delta_msr_wait; /* Modem status change */ unsigned long flags; /* User TTY flags ASYNC_ */ unsigned long iflags; /* Internal flags TTY_PORT_ */ unsigned char console:1, /* port is a console */ low_latency:1; /* optional: tune for latency */ struct mutex mutex; /* Locking */ struct mutex buf_mutex; /* Buffer alloc lock */ unsigned char *xmit_buf; /* Optional buffer */ unsigned int close_delay; /* Close port delay */ unsigned int closing_wait; /* Delay for output */ int drain_delay; /* Set to zero if no pure time based drain is needed else set to size of fifo */ struct kref kref; /* Ref counter */ void *client_data; }; /* tty_port::iflags bits -- use atomic bit ops */ #define TTY_PORT_INITIALIZED 0 /* device is initialized */ #define TTY_PORT_SUSPENDED 1 /* device is suspended */ #define TTY_PORT_ACTIVE 2 /* device is open */ /* * uart drivers: use the uart_port::status field and the UPSTAT_* defines * for s/w-based flow control steering and carrier detection status */ #define TTY_PORT_CTS_FLOW 3 /* h/w flow control enabled */ #define TTY_PORT_CHECK_CD 4 /* carrier detect enabled */ #define TTY_PORT_KOPENED 5 /* device exclusively opened by kernel */ /* * Where all of the state associated with a tty is kept while the tty * is open. Since the termios state should be kept even if the tty * has been closed --- for things like the baud rate, etc --- it is * not stored here, but rather a pointer to the real state is stored * here. Possible the winsize structure should have the same * treatment, but (1) the default 80x24 is usually right and (2) it's * most often used by a windowing system, which will set the correct * size each time the window is created or resized anyway. * - TYT, 9/14/92 */ struct tty_operations; struct tty_struct { int magic; struct kref kref; struct device *dev; struct tty_driver *driver; const struct tty_operations *ops; int index; /* Protects ldisc changes: Lock tty not pty */ struct ld_semaphore ldisc_sem; struct tty_ldisc *ldisc; struct mutex atomic_write_lock; struct mutex legacy_mutex; struct mutex throttle_mutex; struct rw_semaphore termios_rwsem; struct mutex winsize_mutex; spinlock_t ctrl_lock; spinlock_t flow_lock; /* Termios values are protected by the termios rwsem */ struct ktermios termios, termios_locked; char name[64]; struct pid *pgrp; /* Protected by ctrl lock */ /* * Writes protected by both ctrl lock and legacy mutex, readers must use * at least one of them. */ struct pid *session; unsigned long flags; int count; struct winsize winsize; /* winsize_mutex */ unsigned long stopped:1, /* flow_lock */ flow_stopped:1, unused:BITS_PER_LONG - 2; int hw_stopped; unsigned long ctrl_status:8, /* ctrl_lock */ packet:1, unused_ctrl:BITS_PER_LONG - 9; unsigned int receive_room; /* Bytes free for queue */ int flow_change; struct tty_struct *link; struct fasync_struct *fasync; wait_queue_head_t write_wait; wait_queue_head_t read_wait; struct work_struct hangup_work; void *disc_data; void *driver_data; spinlock_t files_lock; /* protects tty_files list */ struct list_head tty_files; #define N_TTY_BUF_SIZE 4096 int closing; unsigned char *write_buf; int write_cnt; /* If the tty has a pending do_SAK, queue it here - akpm */ struct work_struct SAK_work; struct tty_port *port; } __randomize_layout; /* Each of a tty's open files has private_data pointing to tty_file_private */ struct tty_file_private { struct tty_struct *tty; struct file *file; struct list_head list; }; /* tty magic number */ #define TTY_MAGIC 0x5401 /* * These bits are used in the flags field of the tty structure. * * So that interrupts won't be able to mess up the queues, * copy_to_cooked must be atomic with respect to itself, as must * tty->write. Thus, you must use the inline functions set_bit() and * clear_bit() to make things atomic. */ #define TTY_THROTTLED 0 /* Call unthrottle() at threshold min */ #define TTY_IO_ERROR 1 /* Cause an I/O error (may be no ldisc too) */ #define TTY_OTHER_CLOSED 2 /* Other side (if any) has closed */ #define TTY_EXCLUSIVE 3 /* Exclusive open mode */ #define TTY_DO_WRITE_WAKEUP 5 /* Call write_wakeup after queuing new */ #define TTY_LDISC_OPEN 11 /* Line discipline is open */ #define TTY_PTY_LOCK 16 /* pty private */ #define TTY_NO_WRITE_SPLIT 17 /* Preserve write boundaries to driver */ #define TTY_HUPPED 18 /* Post driver->hangup() */ #define TTY_HUPPING 19 /* Hangup in progress */ #define TTY_LDISC_CHANGING 20 /* Change pending - non-block IO */ #define TTY_LDISC_HALTED 22 /* Line discipline is halted */ /* Values for tty->flow_change */ #define TTY_THROTTLE_SAFE 1 #define TTY_UNTHROTTLE_SAFE 2 static inline void __tty_set_flow_change(struct tty_struct *tty, int val) { tty->flow_change = val; } static inline void tty_set_flow_change(struct tty_struct *tty, int val) { tty->flow_change = val; smp_mb(); } static inline bool tty_io_nonblock(struct tty_struct *tty, struct file *file) { return file->f_flags & O_NONBLOCK || test_bit(TTY_LDISC_CHANGING, &tty->flags); } static inline bool tty_io_error(struct tty_struct *tty) { return test_bit(TTY_IO_ERROR, &tty->flags); } static inline bool tty_throttled(struct tty_struct *tty) { return test_bit(TTY_THROTTLED, &tty->flags); } #ifdef CONFIG_TTY extern void tty_kref_put(struct tty_struct *tty); extern struct pid *tty_get_pgrp(struct tty_struct *tty); extern void tty_vhangup_self(void); extern void disassociate_ctty(int priv); extern dev_t tty_devnum(struct tty_struct *tty); extern void proc_clear_tty(struct task_struct *p); extern struct tty_struct *get_current_tty(void); /* tty_io.c */ extern int __init tty_init(void); extern const char *tty_name(const struct tty_struct *tty); extern struct tty_struct *tty_kopen(dev_t device); extern void tty_kclose(struct tty_struct *tty); extern int tty_dev_name_to_number(const char *name, dev_t *number); extern int tty_ldisc_lock(struct tty_struct *tty, unsigned long timeout); extern void tty_ldisc_unlock(struct tty_struct *tty); extern ssize_t redirected_tty_write(struct kiocb *, struct iov_iter *); #else static inline void tty_kref_put(struct tty_struct *tty) { } static inline struct pid *tty_get_pgrp(struct tty_struct *tty) { return NULL; } static inline void tty_vhangup_self(void) { } static inline void disassociate_ctty(int priv) { } static inline dev_t tty_devnum(struct tty_struct *tty) { return 0; } static inline void proc_clear_tty(struct task_struct *p) { } static inline struct tty_struct *get_current_tty(void) { return NULL; } /* tty_io.c */ static inline int __init tty_init(void) { return 0; } static inline const char *tty_name(const struct tty_struct *tty) { return "(none)"; } static inline struct tty_struct *tty_kopen(dev_t device) { return ERR_PTR(-ENODEV); } static inline void tty_kclose(struct tty_struct *tty) { } static inline int tty_dev_name_to_number(const char *name, dev_t *number) { return -ENOTSUPP; } #endif extern struct ktermios tty_std_termios; extern int vcs_init(void); extern struct class *tty_class; /** * tty_kref_get - get a tty reference * @tty: tty device * * Return a new reference to a tty object. The caller must hold * sufficient locks/counts to ensure that their existing reference cannot * go away */ static inline struct tty_struct *tty_kref_get(struct tty_struct *tty) { if (tty) kref_get(&tty->kref); return tty; } extern const char *tty_driver_name(const struct tty_struct *tty); extern void tty_wait_until_sent(struct tty_struct *tty, long timeout); extern int __tty_check_change(struct tty_struct *tty, int sig); extern int tty_check_change(struct tty_struct *tty); extern void __stop_tty(struct tty_struct *tty); extern void stop_tty(struct tty_struct *tty); extern void __start_tty(struct tty_struct *tty); extern void start_tty(struct tty_struct *tty); extern int tty_register_driver(struct tty_driver *driver); extern int tty_unregister_driver(struct tty_driver *driver); extern struct device *tty_register_device(struct tty_driver *driver, unsigned index, struct device *dev); extern struct device *tty_register_device_attr(struct tty_driver *driver, unsigned index, struct device *device, void *drvdata, const struct attribute_group **attr_grp); extern void tty_unregister_device(struct tty_driver *driver, unsigned index); extern void tty_write_message(struct tty_struct *tty, char *msg); extern int tty_send_xchar(struct tty_struct *tty, char ch); extern int tty_put_char(struct tty_struct *tty, unsigned char c); extern int tty_chars_in_buffer(struct tty_struct *tty); extern int tty_write_room(struct tty_struct *tty); extern void tty_driver_flush_buffer(struct tty_struct *tty); extern void tty_throttle(struct tty_struct *tty); extern void tty_unthrottle(struct tty_struct *tty); extern int tty_throttle_safe(struct tty_struct *tty); extern int tty_unthrottle_safe(struct tty_struct *tty); extern int tty_do_resize(struct tty_struct *tty, struct winsize *ws); extern int is_current_pgrp_orphaned(void); extern void tty_hangup(struct tty_struct *tty); extern void tty_vhangup(struct tty_struct *tty); extern void tty_vhangup_session(struct tty_struct *tty); extern int tty_hung_up_p(struct file *filp); extern void do_SAK(struct tty_struct *tty); extern void __do_SAK(struct tty_struct *tty); extern void tty_open_proc_set_tty(struct file *filp, struct tty_struct *tty); extern int tty_signal_session_leader(struct tty_struct *tty, int exit_session); extern void session_clear_tty(struct pid *session); extern void no_tty(void); extern void tty_buffer_free_all(struct tty_port *port); extern void tty_buffer_flush(struct tty_struct *tty, struct tty_ldisc *ld); extern void tty_buffer_init(struct tty_port *port); extern void tty_buffer_set_lock_subclass(struct tty_port *port); extern bool tty_buffer_restart_work(struct tty_port *port); extern bool tty_buffer_cancel_work(struct tty_port *port); extern void tty_buffer_flush_work(struct tty_port *port); extern speed_t tty_termios_baud_rate(struct ktermios *termios); extern speed_t tty_termios_input_baud_rate(struct ktermios *termios); extern void tty_termios_encode_baud_rate(struct ktermios *termios, speed_t ibaud, speed_t obaud); extern void tty_encode_baud_rate(struct tty_struct *tty, speed_t ibaud, speed_t obaud); /** * tty_get_baud_rate - get tty bit rates * @tty: tty to query * * Returns the baud rate as an integer for this terminal. The * termios lock must be held by the caller and the terminal bit * flags may be updated. * * Locking: none */ static inline speed_t tty_get_baud_rate(struct tty_struct *tty) { return tty_termios_baud_rate(&tty->termios); } extern void tty_termios_copy_hw(struct ktermios *new, struct ktermios *old); extern int tty_termios_hw_change(const struct ktermios *a, const struct ktermios *b); extern int tty_set_termios(struct tty_struct *tty, struct ktermios *kt); extern struct tty_ldisc *tty_ldisc_ref(struct tty_struct *); extern void tty_ldisc_deref(struct tty_ldisc *); extern struct tty_ldisc *tty_ldisc_ref_wait(struct tty_struct *); extern void tty_ldisc_hangup(struct tty_struct *tty, bool reset); extern int tty_ldisc_reinit(struct tty_struct *tty, int disc); extern const struct seq_operations tty_ldiscs_seq_ops; extern void tty_wakeup(struct tty_struct *tty); extern void tty_ldisc_flush(struct tty_struct *tty); extern long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg); extern int tty_mode_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg); extern long tty_jobctrl_ioctl(struct tty_struct *tty, struct tty_struct *real_tty, struct file *file, unsigned int cmd, unsigned long arg); extern int tty_perform_flush(struct tty_struct *tty, unsigned long arg); extern void tty_default_fops(struct file_operations *fops); extern struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx); extern int tty_alloc_file(struct file *file); extern void tty_add_file(struct tty_struct *tty, struct file *file); extern void tty_free_file(struct file *file); extern struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx); extern void tty_release_struct(struct tty_struct *tty, int idx); extern int tty_release(struct inode *inode, struct file *filp); extern void tty_init_termios(struct tty_struct *tty); extern void tty_save_termios(struct tty_struct *tty); extern int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty); extern struct mutex tty_mutex; #define tty_is_writelocked(tty) (mutex_is_locked(&tty->atomic_write_lock)) extern void tty_port_init(struct tty_port *port); extern void tty_port_link_device(struct tty_port *port, struct tty_driver *driver, unsigned index); extern struct device *tty_port_register_device(struct tty_port *port, struct tty_driver *driver, unsigned index, struct device *device); extern struct device *tty_port_register_device_attr(struct tty_port *port, struct tty_driver *driver, unsigned index, struct device *device, void *drvdata, const struct attribute_group **attr_grp); extern struct device *tty_port_register_device_serdev(struct tty_port *port, struct tty_driver *driver, unsigned index, struct device *device); extern struct device *tty_port_register_device_attr_serdev(struct tty_port *port, struct tty_driver *driver, unsigned index, struct device *device, void *drvdata, const struct attribute_group **attr_grp); extern void tty_port_unregister_device(struct tty_port *port, struct tty_driver *driver, unsigned index); extern int tty_port_alloc_xmit_buf(struct tty_port *port); extern void tty_port_free_xmit_buf(struct tty_port *port); extern void tty_port_destroy(struct tty_port *port); extern void tty_port_put(struct tty_port *port); static inline struct tty_port *tty_port_get(struct tty_port *port) { if (port && kref_get_unless_zero(&port->kref)) return port; return NULL; } /* If the cts flow control is enabled, return true. */ static inline bool tty_port_cts_enabled(struct tty_port *port) { return test_bit(TTY_PORT_CTS_FLOW, &port->iflags); } static inline void tty_port_set_cts_flow(struct tty_port *port, bool val) { if (val) set_bit(TTY_PORT_CTS_FLOW, &port->iflags); else clear_bit(TTY_PORT_CTS_FLOW, &port->iflags); } static inline bool tty_port_active(struct tty_port *port) { return test_bit(TTY_PORT_ACTIVE, &port->iflags); } static inline void tty_port_set_active(struct tty_port *port, bool val) { if (val) set_bit(TTY_PORT_ACTIVE, &port->iflags); else clear_bit(TTY_PORT_ACTIVE, &port->iflags); } static inline bool tty_port_check_carrier(struct tty_port *port) { return test_bit(TTY_PORT_CHECK_CD, &port->iflags); } static inline void tty_port_set_check_carrier(struct tty_port *port, bool val) { if (val) set_bit(TTY_PORT_CHECK_CD, &port->iflags); else clear_bit(TTY_PORT_CHECK_CD, &port->iflags); } static inline bool tty_port_suspended(struct tty_port *port) { return test_bit(TTY_PORT_SUSPENDED, &port->iflags); } static inline void tty_port_set_suspended(struct tty_port *port, bool val) { if (val) set_bit(TTY_PORT_SUSPENDED, &port->iflags); else clear_bit(TTY_PORT_SUSPENDED, &port->iflags); } static inline bool tty_port_initialized(struct tty_port *port) { return test_bit(TTY_PORT_INITIALIZED, &port->iflags); } static inline void tty_port_set_initialized(struct tty_port *port, bool val) { if (val) set_bit(TTY_PORT_INITIALIZED, &port->iflags); else clear_bit(TTY_PORT_INITIALIZED, &port->iflags); } static inline bool tty_port_kopened(struct tty_port *port) { return test_bit(TTY_PORT_KOPENED, &port->iflags); } static inline void tty_port_set_kopened(struct tty_port *port, bool val) { if (val) set_bit(TTY_PORT_KOPENED, &port->iflags); else clear_bit(TTY_PORT_KOPENED, &port->iflags); } extern struct tty_struct *tty_port_tty_get(struct tty_port *port); extern void tty_port_tty_set(struct tty_port *port, struct tty_struct *tty); extern int tty_port_carrier_raised(struct tty_port *port); extern void tty_port_raise_dtr_rts(struct tty_port *port); extern void tty_port_lower_dtr_rts(struct tty_port *port); extern void tty_port_hangup(struct tty_port *port); extern void tty_port_tty_hangup(struct tty_port *port, bool check_clocal); extern void tty_port_tty_wakeup(struct tty_port *port); extern int tty_port_block_til_ready(struct tty_port *port, struct tty_struct *tty, struct file *filp); extern int tty_port_close_start(struct tty_port *port, struct tty_struct *tty, struct file *filp); extern void tty_port_close_end(struct tty_port *port, struct tty_struct *tty); extern void tty_port_close(struct tty_port *port, struct tty_struct *tty, struct file *filp); extern int tty_port_install(struct tty_port *port, struct tty_driver *driver, struct tty_struct *tty); extern int tty_port_open(struct tty_port *port, struct tty_struct *tty, struct file *filp); static inline int tty_port_users(struct tty_port *port) { return port->count + port->blocked_open; } extern int tty_register_ldisc(int disc, struct tty_ldisc_ops *new_ldisc); extern int tty_unregister_ldisc(int disc); extern int tty_set_ldisc(struct tty_struct *tty, int disc); extern int tty_ldisc_setup(struct tty_struct *tty, struct tty_struct *o_tty); extern void tty_ldisc_release(struct tty_struct *tty); extern int __must_check tty_ldisc_init(struct tty_struct *tty); extern void tty_ldisc_deinit(struct tty_struct *tty); extern int tty_ldisc_receive_buf(struct tty_ldisc *ld, const unsigned char *p, char *f, int count); /* n_tty.c */ extern void n_tty_inherit_ops(struct tty_ldisc_ops *ops); #ifdef CONFIG_TTY extern void __init n_tty_init(void); #else static inline void n_tty_init(void) { } #endif /* tty_audit.c */ #ifdef CONFIG_AUDIT extern void tty_audit_add_data(struct tty_struct *tty, const void *data, size_t size); extern void tty_audit_exit(void); extern void tty_audit_fork(struct signal_struct *sig); extern void tty_audit_tiocsti(struct tty_struct *tty, char ch); extern int tty_audit_push(void); #else static inline void tty_audit_add_data(struct tty_struct *tty, const void *data, size_t size) { } static inline void tty_audit_tiocsti(struct tty_struct *tty, char ch) { } static inline void tty_audit_exit(void) { } static inline void tty_audit_fork(struct signal_struct *sig) { } static inline int tty_audit_push(void) { return 0; } #endif /* tty_ioctl.c */ extern int n_tty_ioctl_helper(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg); /* vt.c */ extern int vt_ioctl(struct tty_struct *tty, unsigned int cmd, unsigned long arg); extern long vt_compat_ioctl(struct tty_struct *tty, unsigned int cmd, unsigned long arg); /* tty_mutex.c */ /* functions for preparation of BKL removal */ extern void tty_lock(struct tty_struct *tty); extern int tty_lock_interruptible(struct tty_struct *tty); extern void tty_unlock(struct tty_struct *tty); extern void tty_lock_slave(struct tty_struct *tty); extern void tty_unlock_slave(struct tty_struct *tty); extern void tty_set_lock_subclass(struct tty_struct *tty); #ifdef CONFIG_PROC_FS extern void proc_tty_register_driver(struct tty_driver *); extern void proc_tty_unregister_driver(struct tty_driver *); #else static inline void proc_tty_register_driver(struct tty_driver *d) {} static inline void proc_tty_unregister_driver(struct tty_driver *d) {} #endif #define tty_msg(fn, tty, f, ...) \ fn("%s %s: " f, tty_driver_name(tty), tty_name(tty), ##__VA_ARGS__) #define tty_debug(tty, f, ...) tty_msg(pr_debug, tty, f, ##__VA_ARGS__) #define tty_info(tty, f, ...) tty_msg(pr_info, tty, f, ##__VA_ARGS__) #define tty_notice(tty, f, ...) tty_msg(pr_notice, tty, f, ##__VA_ARGS__) #define tty_warn(tty, f, ...) tty_msg(pr_warn, tty, f, ##__VA_ARGS__) #define tty_err(tty, f, ...) tty_msg(pr_err, tty, f, ##__VA_ARGS__) #define tty_info_ratelimited(tty, f, ...) \ tty_msg(pr_info_ratelimited, tty, f, ##__VA_ARGS__) #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 // SPDX-License-Identifier: GPL-2.0-or-later /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Implementation of the Transmission Control Protocol(TCP). * * IPv4 specific functions * * code split from: * linux/ipv4/tcp.c * linux/ipv4/tcp_input.c * linux/ipv4/tcp_output.c * * See tcp.c for author information */ /* * Changes: * David S. Miller : New socket lookup architecture. * This code is dedicated to John Dyson. * David S. Miller : Change semantics of established hash, * half is devoted to TIME_WAIT sockets * and the rest go in the other half. * Andi Kleen : Add support for syncookies and fixed * some bugs: ip options weren't passed to * the TCP layer, missed a check for an * ACK bit. * Andi Kleen : Implemented fast path mtu discovery. * Fixed many serious bugs in the * request_sock handling and moved * most of it into the af independent code. * Added tail drop and some other bugfixes. * Added new listen semantics. * Mike McLagan : Routing by source * Juan Jose Ciarlante: ip_dynaddr bits * Andi Kleen: various fixes. * Vitaly E. Lavrov : Transparent proxy revived after year * coma. * Andi Kleen : Fix new listen. * Andi Kleen : Fix accept error reporting. * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind * a single port at the same time. */ #define pr_fmt(fmt) "TCP: " fmt #include <linux/bottom_half.h> #include <linux/types.h> #include <linux/fcntl.h> #include <linux/module.h> #include <linux/random.h> #include <linux/cache.h> #include <linux/jhash.h> #include <linux/init.h> #include <linux/times.h> #include <linux/slab.h> #include <net/net_namespace.h> #include <net/icmp.h> #include <net/inet_hashtables.h> #include <net/tcp.h> #include <net/transp_v6.h> #include <net/ipv6.h> #include <net/inet_common.h> #include <net/timewait_sock.h> #include <net/xfrm.h> #include <net/secure_seq.h> #include <net/busy_poll.h> #include <linux/inet.h> #include <linux/ipv6.h> #include <linux/stddef.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/inetdevice.h> #include <linux/btf_ids.h> #include <crypto/hash.h> #include <linux/scatterlist.h> #include <trace/events/tcp.h> #ifdef CONFIG_TCP_MD5SIG static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key, __be32 daddr, __be32 saddr, const struct tcphdr *th); #endif struct inet_hashinfo tcp_hashinfo; EXPORT_SYMBOL(tcp_hashinfo); static u32 tcp_v4_init_seq(const struct sk_buff *skb) { return secure_tcp_seq(ip_hdr(skb)->daddr, ip_hdr(skb)->saddr, tcp_hdr(skb)->dest, tcp_hdr(skb)->source); } static u32 tcp_v4_init_ts_off(const struct net *net, const struct sk_buff *skb) { return secure_tcp_ts_off(net, ip_hdr(skb)->daddr, ip_hdr(skb)->saddr); } int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp) { const struct inet_timewait_sock *tw = inet_twsk(sktw); const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw); struct tcp_sock *tp = tcp_sk(sk); int reuse = sock_net(sk)->ipv4.sysctl_tcp_tw_reuse; if (reuse == 2) { /* Still does not detect *everything* that goes through * lo, since we require a loopback src or dst address * or direct binding to 'lo' interface. */ bool loopback = false; if (tw->tw_bound_dev_if == LOOPBACK_IFINDEX) loopback = true; #if IS_ENABLED(CONFIG_IPV6) if (tw->tw_family == AF_INET6) { if (ipv6_addr_loopback(&tw->tw_v6_daddr) || ipv6_addr_v4mapped_loopback(&tw->tw_v6_daddr) || ipv6_addr_loopback(&tw->tw_v6_rcv_saddr) || ipv6_addr_v4mapped_loopback(&tw->tw_v6_rcv_saddr)) loopback = true; } else #endif { if (ipv4_is_loopback(tw->tw_daddr) || ipv4_is_loopback(tw->tw_rcv_saddr)) loopback = true; } if (!loopback) reuse = 0; } /* With PAWS, it is safe from the viewpoint of data integrity. Even without PAWS it is safe provided sequence spaces do not overlap i.e. at data rates <= 80Mbit/sec. Actually, the idea is close to VJ's one, only timestamp cache is held not per host, but per port pair and TW bucket is used as state holder. If TW bucket has been already destroyed we fall back to VJ's scheme and use initial timestamp retrieved from peer table. */ if (tcptw->tw_ts_recent_stamp && (!twp || (reuse && time_after32(ktime_get_seconds(), tcptw->tw_ts_recent_stamp)))) { /* In case of repair and re-using TIME-WAIT sockets we still * want to be sure that it is safe as above but honor the * sequence numbers and time stamps set as part of the repair * process. * * Without this check re-using a TIME-WAIT socket with TCP * repair would accumulate a -1 on the repair assigned * sequence number. The first time it is reused the sequence * is -1, the second time -2, etc. This fixes that issue * without appearing to create any others. */ if (likely(!tp->repair)) { u32 seq = tcptw->tw_snd_nxt + 65535 + 2; if (!seq) seq = 1; WRITE_ONCE(tp->write_seq, seq); tp->rx_opt.ts_recent = tcptw->tw_ts_recent; tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp; } sock_hold(sktw); return 1; } return 0; } EXPORT_SYMBOL_GPL(tcp_twsk_unique); static int tcp_v4_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) { /* This check is replicated from tcp_v4_connect() and intended to * prevent BPF program called below from accessing bytes that are out * of the bound specified by user in addr_len. */ if (addr_len < sizeof(struct sockaddr_in)) return -EINVAL; sock_owned_by_me(sk); return BPF_CGROUP_RUN_PROG_INET4_CONNECT(sk, uaddr); } /* This will initiate an outgoing connection. */ int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) { struct sockaddr_in *usin = (struct sockaddr_in *)uaddr; struct inet_sock *inet = inet_sk(sk); struct tcp_sock *tp = tcp_sk(sk); __be16 orig_sport, orig_dport; __be32 daddr, nexthop; struct flowi4 *fl4; struct rtable *rt; int err; struct ip_options_rcu *inet_opt; struct inet_timewait_death_row *tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row; if (addr_len < sizeof(struct sockaddr_in)) return -EINVAL; if (usin->sin_family != AF_INET) return -EAFNOSUPPORT; nexthop = daddr = usin->sin_addr.s_addr; inet_opt = rcu_dereference_protected(inet->inet_opt, lockdep_sock_is_held(sk)); if (inet_opt && inet_opt->opt.srr) { if (!daddr) return -EINVAL; nexthop = inet_opt->opt.faddr; } orig_sport = inet->inet_sport; orig_dport = usin->sin_port; fl4 = &inet->cork.fl.u.ip4; rt = ip_route_connect(fl4, nexthop, inet->inet_saddr, RT_CONN_FLAGS(sk), sk->sk_bound_dev_if, IPPROTO_TCP, orig_sport, orig_dport, sk); if (IS_ERR(rt)) { err = PTR_ERR(rt); if (err == -ENETUNREACH) IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES); return err; } if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) { ip_rt_put(rt); return -ENETUNREACH; } if (!inet_opt || !inet_opt->opt.srr) daddr = fl4->daddr; if (!inet->inet_saddr) inet->inet_saddr = fl4->saddr; sk_rcv_saddr_set(sk, inet->inet_saddr); if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) { /* Reset inherited state */ tp->rx_opt.ts_recent = 0; tp->rx_opt.ts_recent_stamp = 0; if (likely(!tp->repair)) WRITE_ONCE(tp->write_seq, 0); } inet->inet_dport = usin->sin_port; sk_daddr_set(sk, daddr); inet_csk(sk)->icsk_ext_hdr_len = 0; if (inet_opt) inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen; tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT; /* Socket identity is still unknown (sport may be zero). * However we set state to SYN-SENT and not releasing socket * lock select source port, enter ourselves into the hash tables and * complete initialization after this. */ tcp_set_state(sk, TCP_SYN_SENT); err = inet_hash_connect(tcp_death_row, sk); if (err) goto failure; sk_set_txhash(sk); rt = ip_route_newports(fl4, rt, orig_sport, orig_dport, inet->inet_sport, inet->inet_dport, sk); if (IS_ERR(rt)) { err = PTR_ERR(rt); rt = NULL; goto failure; } /* OK, now commit destination to socket. */ sk->sk_gso_type = SKB_GSO_TCPV4; sk_setup_caps(sk, &rt->dst); rt = NULL; if (likely(!tp->repair)) { if (!tp->write_seq) WRITE_ONCE(tp->write_seq, secure_tcp_seq(inet->inet_saddr, inet->inet_daddr, inet->inet_sport, usin->sin_port)); tp->tsoffset = secure_tcp_ts_off(sock_net(sk), inet->inet_saddr, inet->inet_daddr); } inet->inet_id = prandom_u32(); if (tcp_fastopen_defer_connect(sk, &err)) return err; if (err) goto failure; err = tcp_connect(sk); if (err) goto failure; return 0; failure: /* * This unhashes the socket and releases the local port, * if necessary. */ tcp_set_state(sk, TCP_CLOSE); ip_rt_put(rt); sk->sk_route_caps = 0; inet->inet_dport = 0; return err; } EXPORT_SYMBOL(tcp_v4_connect); /* * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191. * It can be called through tcp_release_cb() if socket was owned by user * at the time tcp_v4_err() was called to handle ICMP message. */ void tcp_v4_mtu_reduced(struct sock *sk) { struct inet_sock *inet = inet_sk(sk); struct dst_entry *dst; u32 mtu; if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) return; mtu = READ_ONCE(tcp_sk(sk)->mtu_info); dst = inet_csk_update_pmtu(sk, mtu); if (!dst) return; /* Something is about to be wrong... Remember soft error * for the case, if this connection will not able to recover. */ if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst)) sk->sk_err_soft = EMSGSIZE; mtu = dst_mtu(dst); if (inet->pmtudisc != IP_PMTUDISC_DONT && ip_sk_accept_pmtu(sk) && inet_csk(sk)->icsk_pmtu_cookie > mtu) { tcp_sync_mss(sk, mtu); /* Resend the TCP packet because it's * clear that the old packet has been * dropped. This is the new "fast" path mtu * discovery. */ tcp_simple_retransmit(sk); } /* else let the usual retransmit timer handle it */ } EXPORT_SYMBOL(tcp_v4_mtu_reduced); static void do_redirect(struct sk_buff *skb, struct sock *sk) { struct dst_entry *dst = __sk_dst_check(sk, 0); if (dst) dst->ops->redirect(dst, sk, skb); } /* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */ void tcp_req_err(struct sock *sk, u32 seq, bool abort) { struct request_sock *req = inet_reqsk(sk); struct net *net = sock_net(sk); /* ICMPs are not backlogged, hence we cannot get * an established socket here. */ if (seq != tcp_rsk(req)->snt_isn) { __NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS); } else if (abort) { /* * Still in SYN_RECV, just remove it silently. * There is no good way to pass the error to the newly * created socket, and POSIX does not want network * errors returned from accept(). */ inet_csk_reqsk_queue_drop(req->rsk_listener, req); tcp_listendrop(req->rsk_listener); } reqsk_put(req); } EXPORT_SYMBOL(tcp_req_err); /* TCP-LD (RFC 6069) logic */ void tcp_ld_RTO_revert(struct sock *sk, u32 seq) { struct inet_connection_sock *icsk = inet_csk(sk); struct tcp_sock *tp = tcp_sk(sk); struct sk_buff *skb; s32 remaining; u32 delta_us; if (sock_owned_by_user(sk)) return; if (seq != tp->snd_una || !icsk->icsk_retransmits || !icsk->icsk_backoff) return; skb = tcp_rtx_queue_head(sk); if (WARN_ON_ONCE(!skb)) return; icsk->icsk_backoff--; icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) : TCP_TIMEOUT_INIT; icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX); tcp_mstamp_refresh(tp); delta_us = (u32)(tp->tcp_mstamp - tcp_skb_timestamp_us(skb)); remaining = icsk->icsk_rto - usecs_to_jiffies(delta_us); if (remaining > 0) { inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, remaining, TCP_RTO_MAX); } else { /* RTO revert clocked out retransmission. * Will retransmit now. */ tcp_retransmit_timer(sk); } } EXPORT_SYMBOL(tcp_ld_RTO_revert); /* * This routine is called by the ICMP module when it gets some * sort of error condition. If err < 0 then the socket should * be closed and the error returned to the user. If err > 0 * it's just the icmp type << 8 | icmp code. After adjustment * header points to the first 8 bytes of the tcp header. We need * to find the appropriate port. * * The locking strategy used here is very "optimistic". When * someone else accesses the socket the ICMP is just dropped * and for some paths there is no check at all. * A more general error queue to queue errors for later handling * is probably better. * */ int tcp_v4_err(struct sk_buff *skb, u32 info) { const struct iphdr *iph = (const struct iphdr *)skb->data; struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2)); struct tcp_sock *tp; struct inet_sock *inet; const int type = icmp_hdr(skb)->type; const int code = icmp_hdr(skb)->code; struct sock *sk; struct request_sock *fastopen; u32 seq, snd_una; int err; struct net *net = dev_net(skb->dev); sk = __inet_lookup_established(net, &tcp_hashinfo, iph->daddr, th->dest, iph->saddr, ntohs(th->source), inet_iif(skb), 0); if (!sk) { __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); return -ENOENT; } if (sk->sk_state == TCP_TIME_WAIT) { inet_twsk_put(inet_twsk(sk)); return 0; } seq = ntohl(th->seq); if (sk->sk_state == TCP_NEW_SYN_RECV) { tcp_req_err(sk, seq, type == ICMP_PARAMETERPROB || type == ICMP_TIME_EXCEEDED || (type == ICMP_DEST_UNREACH && (code == ICMP_NET_UNREACH || code == ICMP_HOST_UNREACH))); return 0; } bh_lock_sock(sk); /* If too many ICMPs get dropped on busy * servers this needs to be solved differently. * We do take care of PMTU discovery (RFC1191) special case : * we can receive locally generated ICMP messages while socket is held. */ if (sock_owned_by_user(sk)) { if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED)) __NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS); } if (sk->sk_state == TCP_CLOSE) goto out; if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) { __NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP); goto out; } tp = tcp_sk(sk); /* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */ fastopen = rcu_dereference(tp->fastopen_rsk); snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una; if (sk->sk_state != TCP_LISTEN && !between(seq, snd_una, tp->snd_nxt)) { __NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS); goto out; } switch (type) { case ICMP_REDIRECT: if (!sock_owned_by_user(sk)) do_redirect(skb, sk); goto out; case ICMP_SOURCE_QUENCH: /* Just silently ignore these. */ goto out; case ICMP_PARAMETERPROB: err = EPROTO; break; case ICMP_DEST_UNREACH: if (code > NR_ICMP_UNREACH) goto out; if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */ /* We are not interested in TCP_LISTEN and open_requests * (SYN-ACKs send out by Linux are always <576bytes so * they should go through unfragmented). */ if (sk->sk_state == TCP_LISTEN) goto out; WRITE_ONCE(tp->mtu_info, info); if (!sock_owned_by_user(sk)) { tcp_v4_mtu_reduced(sk); } else { if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &sk->sk_tsq_flags)) sock_hold(sk); } goto out; } err = icmp_err_convert[code].errno; /* check if this ICMP message allows revert of backoff. * (see RFC 6069) */ if (!fastopen && (code == ICMP_NET_UNREACH || code == ICMP_HOST_UNREACH)) tcp_ld_RTO_revert(sk, seq); break; case ICMP_TIME_EXCEEDED: err = EHOSTUNREACH; break; default: goto out; } switch (sk->sk_state) { case TCP_SYN_SENT: case TCP_SYN_RECV: /* Only in fast or simultaneous open. If a fast open socket is * already accepted it is treated as a connected one below. */ if (fastopen && !fastopen->sk) break; ip_icmp_error(sk, skb, err, th->dest, info, (u8 *)th); if (!sock_owned_by_user(sk)) { sk->sk_err = err; sk->sk_error_report(sk); tcp_done(sk); } else { sk->sk_err_soft = err; } goto out; } /* If we've already connected we will keep trying * until we time out, or the user gives up. * * rfc1122 4.2.3.9 allows to consider as hard errors * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too, * but it is obsoleted by pmtu discovery). * * Note, that in modern internet, where routing is unreliable * and in each dark corner broken firewalls sit, sending random * errors ordered by their masters even this two messages finally lose * their original sense (even Linux sends invalid PORT_UNREACHs) * * Now we are in compliance with RFCs. * --ANK (980905) */ inet = inet_sk(sk); if (!sock_owned_by_user(sk) && inet->recverr) { sk->sk_err = err; sk->sk_error_report(sk); } else { /* Only an error on timeout */ sk->sk_err_soft = err; } out: bh_unlock_sock(sk); sock_put(sk); return 0; } void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr) { struct tcphdr *th = tcp_hdr(skb); th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0); skb->csum_start = skb_transport_header(skb) - skb->head; skb->csum_offset = offsetof(struct tcphdr, check); } /* This routine computes an IPv4 TCP checksum. */ void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb) { const struct inet_sock *inet = inet_sk(sk); __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr); } EXPORT_SYMBOL(tcp_v4_send_check); /* * This routine will send an RST to the other tcp. * * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.) * for reset. * Answer: if a packet caused RST, it is not for a socket * existing in our system, if it is matched to a socket, * it is just duplicate segment or bug in other side's TCP. * So that we build reply only basing on parameters * arrived with segment. * Exception: precedence violation. We do not implement it in any case. */ static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb) { const struct tcphdr *th = tcp_hdr(skb); struct { struct tcphdr th; #ifdef CONFIG_TCP_MD5SIG __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)]; #endif } rep; struct ip_reply_arg arg; #ifdef CONFIG_TCP_MD5SIG struct tcp_md5sig_key *key = NULL; const __u8 *hash_location = NULL; unsigned char newhash[16]; int genhash; struct sock *sk1 = NULL; #endif u64 transmit_time = 0; struct sock *ctl_sk; struct net *net; /* Never send a reset in response to a reset. */ if (th->rst) return; /* If sk not NULL, it means we did a successful lookup and incoming * route had to be correct. prequeue might have dropped our dst. */ if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL) return; /* Swap the send and the receive. */ memset(&rep, 0, sizeof(rep)); rep.th.dest = th->source; rep.th.source = th->dest; rep.th.doff = sizeof(struct tcphdr) / 4; rep.th.rst = 1; if (th->ack) { rep.th.seq = th->ack_seq; } else { rep.th.ack = 1; rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin + skb->len - (th->doff << 2)); } memset(&arg, 0, sizeof(arg)); arg.iov[0].iov_base = (unsigned char *)&rep; arg.iov[0].iov_len = sizeof(rep.th); net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev); #ifdef CONFIG_TCP_MD5SIG rcu_read_lock(); hash_location = tcp_parse_md5sig_option(th); if (sk && sk_fullsock(sk)) { const union tcp_md5_addr *addr; int l3index; /* sdif set, means packet ingressed via a device * in an L3 domain and inet_iif is set to it. */ l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0; addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr; key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET); } else if (hash_location) { const union tcp_md5_addr *addr; int sdif = tcp_v4_sdif(skb); int dif = inet_iif(skb); int l3index; /* * active side is lost. Try to find listening socket through * source port, and then find md5 key through listening socket. * we are not loose security here: * Incoming packet is checked with md5 hash with finding key, * no RST generated if md5 hash doesn't match. */ sk1 = __inet_lookup_listener(net, &tcp_hashinfo, NULL, 0, ip_hdr(skb)->saddr, th->source, ip_hdr(skb)->daddr, ntohs(th->source), dif, sdif); /* don't send rst if it can't find key */ if (!sk1) goto out; /* sdif set, means packet ingressed via a device * in an L3 domain and dif is set to it. */ l3index = sdif ? dif : 0; addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr; key = tcp_md5_do_lookup(sk1, l3index, addr, AF_INET); if (!key) goto out; genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb); if (genhash || memcmp(hash_location, newhash, 16) != 0) goto out; } if (key) { rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); /* Update length and the length the header thinks exists */ arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED; rep.th.doff = arg.iov[0].iov_len / 4; tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1], key, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr, &rep.th); } #endif arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr, ip_hdr(skb)->saddr, /* XXX */ arg.iov[0].iov_len, IPPROTO_TCP, 0); arg.csumoffset = offsetof(struct tcphdr, check) / 2; arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0; /* When socket is gone, all binding information is lost. * routing might fail in this case. No choice here, if we choose to force * input interface, we will misroute in case of asymmetric route. */ if (sk) { arg.bound_dev_if = sk->sk_bound_dev_if; if (sk_fullsock(sk)) trace_tcp_send_reset(sk, skb); } BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) != offsetof(struct inet_timewait_sock, tw_bound_dev_if)); arg.tos = ip_hdr(skb)->tos; arg.uid = sock_net_uid(net, sk && sk_fullsock(sk) ? sk : NULL); local_bh_disable(); ctl_sk = this_cpu_read(*net->ipv4.tcp_sk); if (sk) { ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ? inet_twsk(sk)->tw_mark : sk->sk_mark; ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ? inet_twsk(sk)->tw_priority : sk->sk_priority; transmit_time = tcp_transmit_time(sk); } ip_send_unicast_reply(ctl_sk, skb, &TCP_SKB_CB(skb)->header.h4.opt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len, transmit_time); ctl_sk->sk_mark = 0; __TCP_INC_STATS(net, TCP_MIB_OUTSEGS); __TCP_INC_STATS(net, TCP_MIB_OUTRSTS); local_bh_enable(); #ifdef CONFIG_TCP_MD5SIG out: rcu_read_unlock(); #endif } /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states outside socket context is ugly, certainly. What can I do? */ static void tcp_v4_send_ack(const struct sock *sk, struct sk_buff *skb, u32 seq, u32 ack, u32 win, u32 tsval, u32 tsecr, int oif, struct tcp_md5sig_key *key, int reply_flags, u8 tos) { const struct tcphdr *th = tcp_hdr(skb); struct { struct tcphdr th; __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2) #ifdef CONFIG_TCP_MD5SIG + (TCPOLEN_MD5SIG_ALIGNED >> 2) #endif ]; } rep; struct net *net = sock_net(sk); struct ip_reply_arg arg; struct sock *ctl_sk; u64 transmit_time; memset(&rep.th, 0, sizeof(struct tcphdr)); memset(&arg, 0, sizeof(arg)); arg.iov[0].iov_base = (unsigned char *)&rep; arg.iov[0].iov_len = sizeof(rep.th); if (tsecr) { rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP); rep.opt[1] = htonl(tsval); rep.opt[2] = htonl(tsecr); arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED; } /* Swap the send and the receive. */ rep.th.dest = th->source; rep.th.source = th->dest; rep.th.doff = arg.iov[0].iov_len / 4; rep.th.seq = htonl(seq); rep.th.ack_seq = htonl(ack); rep.th.ack = 1; rep.th.window = htons(win); #ifdef CONFIG_TCP_MD5SIG if (key) { int offset = (tsecr) ? 3 : 0; rep.opt[offset++] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED; rep.th.doff = arg.iov[0].iov_len/4; tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset], key, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr, &rep.th); } #endif arg.flags = reply_flags; arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr, ip_hdr(skb)->saddr, /* XXX */ arg.iov[0].iov_len, IPPROTO_TCP, 0); arg.csumoffset = offsetof(struct tcphdr, check) / 2; if (oif) arg.bound_dev_if = oif; arg.tos = tos; arg.uid = sock_net_uid(net, sk_fullsock(sk) ? sk : NULL); local_bh_disable(); ctl_sk = this_cpu_read(*net->ipv4.tcp_sk); ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ? inet_twsk(sk)->tw_mark : sk->sk_mark; ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ? inet_twsk(sk)->tw_priority : sk->sk_priority; transmit_time = tcp_transmit_time(sk); ip_send_unicast_reply(ctl_sk, skb, &TCP_SKB_CB(skb)->header.h4.opt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len, transmit_time); ctl_sk->sk_mark = 0; __TCP_INC_STATS(net, TCP_MIB_OUTSEGS); local_bh_enable(); } static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb) { struct inet_timewait_sock *tw = inet_twsk(sk); struct tcp_timewait_sock *tcptw = tcp_twsk(sk); tcp_v4_send_ack(sk, skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt, tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale, tcp_time_stamp_raw() + tcptw->tw_ts_offset, tcptw->tw_ts_recent, tw->tw_bound_dev_if, tcp_twsk_md5_key(tcptw), tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0, tw->tw_tos ); inet_twsk_put(tw); } static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb, struct request_sock *req) { const union tcp_md5_addr *addr; int l3index; /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV * sk->sk_state == TCP_SYN_RECV -> for Fast Open. */ u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 : tcp_sk(sk)->snd_nxt; /* RFC 7323 2.3 * The window field (SEG.WND) of every outgoing segment, with the * exception of <SYN> segments, MUST be right-shifted by * Rcv.Wind.Shift bits: */ addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr; l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0; tcp_v4_send_ack(sk, skb, seq, tcp_rsk(req)->rcv_nxt, req->rsk_rcv_wnd >> inet_rsk(req)->rcv_wscale, tcp_time_stamp_raw() + tcp_rsk(req)->ts_off, req->ts_recent, 0, tcp_md5_do_lookup(sk, l3index, addr, AF_INET), inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0, ip_hdr(skb)->tos); } /* * Send a SYN-ACK after having received a SYN. * This still operates on a request_sock only, not on a big * socket. */ static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst, struct flowi *fl, struct request_sock *req, struct tcp_fastopen_cookie *foc, enum tcp_synack_type synack_type, struct sk_buff *syn_skb) { const struct inet_request_sock *ireq = inet_rsk(req); struct flowi4 fl4; int err = -1; struct sk_buff *skb; u8 tos; /* First, grab a route. */ if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL) return -1; skb = tcp_make_synack(sk, dst, req, foc, synack_type, syn_skb); if (skb) { __tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr); tos = sock_net(sk)->ipv4.sysctl_tcp_reflect_tos ? (tcp_rsk(req)->syn_tos & ~INET_ECN_MASK) | (inet_sk(sk)->tos & INET_ECN_MASK) : inet_sk(sk)->tos; if (!INET_ECN_is_capable(tos) && tcp_bpf_ca_needs_ecn((struct sock *)req)) tos |= INET_ECN_ECT_0; rcu_read_lock(); err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr, ireq->ir_rmt_addr, rcu_dereference(ireq->ireq_opt), tos); rcu_read_unlock(); err = net_xmit_eval(err); } return err; } /* * IPv4 request_sock destructor. */ static void tcp_v4_reqsk_destructor(struct request_sock *req) { kfree(rcu_dereference_protected(inet_rsk(req)->ireq_opt, 1)); } #ifdef CONFIG_TCP_MD5SIG /* * RFC2385 MD5 checksumming requires a mapping of * IP address->MD5 Key. * We need to maintain these in the sk structure. */ DEFINE_STATIC_KEY_FALSE(tcp_md5_needed); EXPORT_SYMBOL(tcp_md5_needed); static bool better_md5_match(struct tcp_md5sig_key *old, struct tcp_md5sig_key *new) { if (!old) return true; /* l3index always overrides non-l3index */ if (old->l3index && new->l3index == 0) return false; if (old->l3index == 0 && new->l3index) return true; return old->prefixlen < new->prefixlen; } /* Find the Key structure for an address. */ struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index, const union tcp_md5_addr *addr, int family) { const struct tcp_sock *tp = tcp_sk(sk); struct tcp_md5sig_key *key; const struct tcp_md5sig_info *md5sig; __be32 mask; struct tcp_md5sig_key *best_match = NULL; bool match; /* caller either holds rcu_read_lock() or socket lock */ md5sig = rcu_dereference_check(tp->md5sig_info, lockdep_sock_is_held(sk)); if (!md5sig) return NULL; hlist_for_each_entry_rcu(key, &md5sig->head, node, lockdep_sock_is_held(sk)) { if (key->family != family) continue; if (key->l3index && key->l3index != l3index) continue; if (family == AF_INET) { mask = inet_make_mask(key->prefixlen); match = (key->addr.a4.s_addr & mask) == (addr->a4.s_addr & mask); #if IS_ENABLED(CONFIG_IPV6) } else if (family == AF_INET6) { match = ipv6_prefix_equal(&key->addr.a6, &addr->a6, key->prefixlen); #endif } else { match = false; } if (match && better_md5_match(best_match, key)) best_match = key; } return best_match; } EXPORT_SYMBOL(__tcp_md5_do_lookup); static struct tcp_md5sig_key *tcp_md5_do_lookup_exact(const struct sock *sk, const union tcp_md5_addr *addr, int family, u8 prefixlen, int l3index) { const struct tcp_sock *tp = tcp_sk(sk); struct tcp_md5sig_key *key; unsigned int size = sizeof(struct in_addr); const struct tcp_md5sig_info *md5sig; /* caller either holds rcu_read_lock() or socket lock */ md5sig = rcu_dereference_check(tp->md5sig_info, lockdep_sock_is_held(sk)); if (!md5sig) return NULL; #if IS_ENABLED(CONFIG_IPV6) if (family == AF_INET6) size = sizeof(struct in6_addr); #endif hlist_for_each_entry_rcu(key, &md5sig->head, node, lockdep_sock_is_held(sk)) { if (key->family != family) continue; if (key->l3index != l3index) continue; if (!memcmp(&key->addr, addr, size) && key->prefixlen == prefixlen) return key; } return NULL; } struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk, const struct sock *addr_sk) { const union tcp_md5_addr *addr; int l3index; l3index = l3mdev_master_ifindex_by_index(sock_net(sk), addr_sk->sk_bound_dev_if); addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr; return tcp_md5_do_lookup(sk, l3index, addr, AF_INET); } EXPORT_SYMBOL(tcp_v4_md5_lookup); /* This can be called on a newly created socket, from other files */ int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr, int family, u8 prefixlen, int l3index, const u8 *newkey, u8 newkeylen, gfp_t gfp) { /* Add Key to the list */ struct tcp_md5sig_key *key; struct tcp_sock *tp = tcp_sk(sk); struct tcp_md5sig_info *md5sig; key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index); if (key) { /* Pre-existing entry - just update that one. * Note that the key might be used concurrently. * data_race() is telling kcsan that we do not care of * key mismatches, since changing MD5 key on live flows * can lead to packet drops. */ data_race(memcpy(key->key, newkey, newkeylen)); /* Pairs with READ_ONCE() in tcp_md5_hash_key(). * Also note that a reader could catch new key->keylen value * but old key->key[], this is the reason we use __GFP_ZERO * at sock_kmalloc() time below these lines. */ WRITE_ONCE(key->keylen, newkeylen); return 0; } md5sig = rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk)); if (!md5sig) { md5sig = kmalloc(sizeof(*md5sig), gfp); if (!md5sig) return -ENOMEM; sk_nocaps_add(sk, NETIF_F_GSO_MASK); INIT_HLIST_HEAD(&md5sig->head); rcu_assign_pointer(tp->md5sig_info, md5sig); } key = sock_kmalloc(sk, sizeof(*key), gfp | __GFP_ZERO); if (!key) return -ENOMEM; if (!tcp_alloc_md5sig_pool()) { sock_kfree_s(sk, key, sizeof(*key)); return -ENOMEM; } memcpy(key->key, newkey, newkeylen); key->keylen = newkeylen; key->family = family; key->prefixlen = prefixlen; key->l3index = l3index; memcpy(&key->addr, addr, (family == AF_INET6) ? sizeof(struct in6_addr) : sizeof(struct in_addr)); hlist_add_head_rcu(&key->node, &md5sig->head); return 0; } EXPORT_SYMBOL(tcp_md5_do_add); int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family, u8 prefixlen, int l3index) { struct tcp_md5sig_key *key; key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index); if (!key) return -ENOENT; hlist_del_rcu(&key->node); atomic_sub(sizeof(*key), &sk->sk_omem_alloc); kfree_rcu(key, rcu); return 0; } EXPORT_SYMBOL(tcp_md5_do_del); static void tcp_clear_md5_list(struct sock *sk) { struct tcp_sock *tp = tcp_sk(sk); struct tcp_md5sig_key *key; struct hlist_node *n; struct tcp_md5sig_info *md5sig; md5sig = rcu_dereference_protected(tp->md5sig_info, 1); hlist_for_each_entry_safe(key, n, &md5sig->head, node) { hlist_del_rcu(&key->node); atomic_sub(sizeof(*key), &sk->sk_omem_alloc); kfree_rcu(key, rcu); } } static int tcp_v4_parse_md5_keys(struct sock *sk, int optname, sockptr_t optval, int optlen) { struct tcp_md5sig cmd; struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr; const union tcp_md5_addr *addr; u8 prefixlen = 32; int l3index = 0; if (optlen < sizeof(cmd)) return -EINVAL; if (copy_from_sockptr(&cmd, optval, sizeof(cmd))) return -EFAULT; if (sin->sin_family != AF_INET) return -EINVAL; if (optname == TCP_MD5SIG_EXT && cmd.tcpm_flags & TCP_MD5SIG_FLAG_PREFIX) { prefixlen = cmd.tcpm_prefixlen; if (prefixlen > 32) return -EINVAL; } if (optname == TCP_MD5SIG_EXT && cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX) { struct net_device *dev; rcu_read_lock(); dev = dev_get_by_index_rcu(sock_net(sk), cmd.tcpm_ifindex); if (dev && netif_is_l3_master(dev)) l3index = dev->ifindex; rcu_read_unlock(); /* ok to reference set/not set outside of rcu; * right now device MUST be an L3 master */ if (!dev || !l3index) return -EINVAL; } addr = (union tcp_md5_addr *)&sin->sin_addr.s_addr; if (!cmd.tcpm_keylen) return tcp_md5_do_del(sk, addr, AF_INET, prefixlen, l3index); if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN) return -EINVAL; return tcp_md5_do_add(sk, addr, AF_INET, prefixlen, l3index, cmd.tcpm_key, cmd.tcpm_keylen, GFP_KERNEL); } static int tcp_v4_md5_hash_headers(struct tcp_md5sig_pool *hp, __be32 daddr, __be32 saddr, const struct tcphdr *th, int nbytes) { struct tcp4_pseudohdr *bp; struct scatterlist sg; struct tcphdr *_th; bp = hp->scratch; bp->saddr = saddr; bp->daddr = daddr; bp->pad = 0; bp->protocol = IPPROTO_TCP; bp->len = cpu_to_be16(nbytes); _th = (struct tcphdr *)(bp + 1); memcpy(_th, th, sizeof(*th)); _th->check = 0; sg_init_one(&sg, bp, sizeof(*bp) + sizeof(*th)); ahash_request_set_crypt(hp->md5_req, &sg, NULL, sizeof(*bp) + sizeof(*th)); return crypto_ahash_update(hp->md5_req); } static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key, __be32 daddr, __be32 saddr, const struct tcphdr *th) { struct tcp_md5sig_pool *hp; struct ahash_request *req; hp = tcp_get_md5sig_pool(); if (!hp) goto clear_hash_noput; req = hp->md5_req; if (crypto_ahash_init(req)) goto clear_hash; if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, th->doff << 2)) goto clear_hash; if (tcp_md5_hash_key(hp, key)) goto clear_hash; ahash_request_set_crypt(req, NULL, md5_hash, 0); if (crypto_ahash_final(req)) goto clear_hash; tcp_put_md5sig_pool(); return 0; clear_hash: tcp_put_md5sig_pool(); clear_hash_noput: memset(md5_hash, 0, 16); return 1; } int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key, const struct sock *sk, const struct sk_buff *skb) { struct tcp_md5sig_pool *hp; struct ahash_request *req; const struct tcphdr *th = tcp_hdr(skb); __be32 saddr, daddr; if (sk) { /* valid for establish/request sockets */ saddr = sk->sk_rcv_saddr; daddr = sk->sk_daddr; } else { const struct iphdr *iph = ip_hdr(skb); saddr = iph->saddr; daddr = iph->daddr; } hp = tcp_get_md5sig_pool(); if (!hp) goto clear_hash_noput; req = hp->md5_req; if (crypto_ahash_init(req)) goto clear_hash; if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, skb->len)) goto clear_hash; if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2)) goto clear_hash; if (tcp_md5_hash_key(hp, key)) goto clear_hash; ahash_request_set_crypt(req, NULL, md5_hash, 0); if (crypto_ahash_final(req)) goto clear_hash; tcp_put_md5sig_pool(); return 0; clear_hash: tcp_put_md5sig_pool(); clear_hash_noput: memset(md5_hash, 0, 16); return 1; } EXPORT_SYMBOL(tcp_v4_md5_hash_skb); #endif /* Called with rcu_read_lock() */ static bool tcp_v4_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, int dif, int sdif) { #ifdef CONFIG_TCP_MD5SIG /* * This gets called for each TCP segment that arrives * so we want to be efficient. * We have 3 drop cases: * o No MD5 hash and one expected. * o MD5 hash and we're not expecting one. * o MD5 hash and its wrong. */ const __u8 *hash_location = NULL; struct tcp_md5sig_key *hash_expected; const struct iphdr *iph = ip_hdr(skb); const struct tcphdr *th = tcp_hdr(skb); const union tcp_md5_addr *addr; unsigned char newhash[16]; int genhash, l3index; /* sdif set, means packet ingressed via a device * in an L3 domain and dif is set to the l3mdev */ l3index = sdif ? dif : 0; addr = (union tcp_md5_addr *)&iph->saddr; hash_expected = tcp_md5_do_lookup(sk, l3index, addr, AF_INET); hash_location = tcp_parse_md5sig_option(th); /* We've parsed the options - do we have a hash? */ if (!hash_expected && !hash_location) return false; if (hash_expected && !hash_location) { NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND); return true; } if (!hash_expected && hash_location) { NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); return true; } /* Okay, so this is hash_expected and hash_location - * so we need to calculate the checksum. */ genhash = tcp_v4_md5_hash_skb(newhash, hash_expected, NULL, skb); if (genhash || memcmp(hash_location, newhash, 16) != 0) { NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE); net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n", &iph->saddr, ntohs(th->source), &iph->daddr, ntohs(th->dest), genhash ? " tcp_v4_calc_md5_hash failed" : "", l3index); return true; } return false; #endif return false; } static void tcp_v4_init_req(struct request_sock *req, const struct sock *sk_listener, struct sk_buff *skb) { struct inet_request_sock *ireq = inet_rsk(req); struct net *net = sock_net(sk_listener); sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr); sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr); RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(net, skb)); } static struct dst_entry *tcp_v4_route_req(const struct sock *sk, struct flowi *fl, const struct request_sock *req) { return inet_csk_route_req(sk, &fl->u.ip4, req); } struct request_sock_ops tcp_request_sock_ops __read_mostly = { .family = PF_INET, .obj_size = sizeof(struct tcp_request_sock), .rtx_syn_ack = tcp_rtx_synack, .send_ack = tcp_v4_reqsk_send_ack, .destructor = tcp_v4_reqsk_destructor, .send_reset = tcp_v4_send_reset, .syn_ack_timeout = tcp_syn_ack_timeout, }; const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = { .mss_clamp = TCP_MSS_DEFAULT, #ifdef CONFIG_TCP_MD5SIG .req_md5_lookup = tcp_v4_md5_lookup, .calc_md5_hash = tcp_v4_md5_hash_skb, #endif .init_req = tcp_v4_init_req, #ifdef CONFIG_SYN_COOKIES .cookie_init_seq = cookie_v4_init_sequence, #endif .route_req = tcp_v4_route_req, .init_seq = tcp_v4_init_seq, .init_ts_off = tcp_v4_init_ts_off, .send_synack = tcp_v4_send_synack, }; int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb) { /* Never answer to SYNs send to broadcast or multicast */ if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST)) goto drop; return tcp_conn_request(&tcp_request_sock_ops, &tcp_request_sock_ipv4_ops, sk, skb); drop: tcp_listendrop(sk); return 0; } EXPORT_SYMBOL(tcp_v4_conn_request); /* * The three way handshake has completed - we got a valid synack - * now create the new socket. */ struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb, struct request_sock *req, struct dst_entry *dst, struct request_sock *req_unhash, bool *own_req) { struct inet_request_sock *ireq; bool found_dup_sk = false; struct inet_sock *newinet; struct tcp_sock *newtp; struct sock *newsk; #ifdef CONFIG_TCP_MD5SIG const union tcp_md5_addr *addr; struct tcp_md5sig_key *key; int l3index; #endif struct ip_options_rcu *inet_opt; if (sk_acceptq_is_full(sk)) goto exit_overflow; newsk = tcp_create_openreq_child(sk, req, skb); if (!newsk) goto exit_nonewsk; newsk->sk_gso_type = SKB_GSO_TCPV4; inet_sk_rx_dst_set(newsk, skb); newtp = tcp_sk(newsk); newinet = inet_sk(newsk); ireq = inet_rsk(req); sk_daddr_set(newsk, ireq->ir_rmt_addr); sk_rcv_saddr_set(newsk, ireq->ir_loc_addr); newsk->sk_bound_dev_if = ireq->ir_iif; newinet->inet_saddr = ireq->ir_loc_addr; inet_opt = rcu_dereference(ireq->ireq_opt); RCU_INIT_POINTER(newinet->inet_opt, inet_opt); newinet->mc_index = inet_iif(skb); newinet->mc_ttl = ip_hdr(skb)->ttl; newinet->rcv_tos = ip_hdr(skb)->tos; inet_csk(newsk)->icsk_ext_hdr_len = 0; if (inet_opt) inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen; newinet->inet_id = prandom_u32(); /* Set ToS of the new socket based upon the value of incoming SYN. * ECT bits are set later in tcp_init_transfer(). */ if (sock_net(sk)->ipv4.sysctl_tcp_reflect_tos) newinet->tos = tcp_rsk(req)->syn_tos & ~INET_ECN_MASK; if (!dst) { dst = inet_csk_route_child_sock(sk, newsk, req); if (!dst) goto put_and_exit; } else { /* syncookie case : see end of cookie_v4_check() */ } sk_setup_caps(newsk, dst); tcp_ca_openreq_child(newsk, dst); tcp_sync_mss(newsk, dst_mtu(dst)); newtp->advmss = tcp_mss_clamp(tcp_sk(sk), dst_metric_advmss(dst)); tcp_initialize_rcv_mss(newsk); #ifdef CONFIG_TCP_MD5SIG l3index = l3mdev_master_ifindex_by_index(sock_net(sk), ireq->ir_iif); /* Copy over the MD5 key from the original socket */ addr = (union tcp_md5_addr *)&newinet->inet_daddr; key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET); if (key) { /* * We're using one, so create a matching key * on the newsk structure. If we fail to get * memory, then we end up not copying the key * across. Shucks. */ tcp_md5_do_add(newsk, addr, AF_INET, 32, l3index, key->key, key->keylen, GFP_ATOMIC); sk_nocaps_add(newsk, NETIF_F_GSO_MASK); } #endif if (__inet_inherit_port(sk, newsk) < 0) goto put_and_exit; *own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash), &found_dup_sk); if (likely(*own_req)) { tcp_move_syn(newtp, req); ireq->ireq_opt = NULL; } else { newinet->inet_opt = NULL; if (!req_unhash && found_dup_sk) { /* This code path should only be executed in the * syncookie case only */ bh_unlock_sock(newsk); sock_put(newsk); newsk = NULL; } } return newsk; exit_overflow: NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); exit_nonewsk: dst_release(dst); exit: tcp_listendrop(sk); return NULL; put_and_exit: newinet->inet_opt = NULL; inet_csk_prepare_forced_close(newsk); tcp_done(newsk); goto exit; } EXPORT_SYMBOL(tcp_v4_syn_recv_sock); static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb) { #ifdef CONFIG_SYN_COOKIES const struct tcphdr *th = tcp_hdr(skb); if (!th->syn) sk = cookie_v4_check(sk, skb); #endif return sk; } u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph, struct tcphdr *th, u32 *cookie) { u16 mss = 0; #ifdef CONFIG_SYN_COOKIES mss = tcp_get_syncookie_mss(&tcp_request_sock_ops, &tcp_request_sock_ipv4_ops, sk, th); if (mss) { *cookie = __cookie_v4_init_sequence(iph, th, &mss); tcp_synq_overflow(sk); } #endif return mss; } /* The socket must have it's spinlock held when we get * here, unless it is a TCP_LISTEN socket. * * We have a potential double-lock case here, so even when * doing backlog processing we use the BH locking scheme. * This is because we cannot sleep with the original spinlock * held. */ int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb) { struct sock *rsk; if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */ struct dst_entry *dst = sk->sk_rx_dst; sock_rps_save_rxhash(sk, skb); sk_mark_napi_id(sk, skb); if (dst) { if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif || !dst->ops->check(dst, 0)) { dst_release(dst); sk->sk_rx_dst = NULL; } } tcp_rcv_established(sk, skb); return 0; } if (tcp_checksum_complete(skb)) goto csum_err; if (sk->sk_state == TCP_LISTEN) { struct sock *nsk = tcp_v4_cookie_check(sk, skb); if (!nsk) goto discard; if (nsk != sk) { if (tcp_child_process(sk, nsk, skb)) { rsk = nsk; goto reset; } return 0; } } else sock_rps_save_rxhash(sk, skb); if (tcp_rcv_state_process(sk, skb)) { rsk = sk; goto reset; } return 0; reset: tcp_v4_send_reset(rsk, skb); discard: kfree_skb(skb); /* Be careful here. If this function gets more complicated and * gcc suffers from register pressure on the x86, sk (in %ebx) * might be destroyed here. This current version compiles correctly, * but you have been warned. */ return 0; csum_err: TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); goto discard; } EXPORT_SYMBOL(tcp_v4_do_rcv); int tcp_v4_early_demux(struct sk_buff *skb) { const struct iphdr *iph; const struct tcphdr *th; struct sock *sk; if (skb->pkt_type != PACKET_HOST) return 0; if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr))) return 0; iph = ip_hdr(skb); th = tcp_hdr(skb); if (th->doff < sizeof(struct tcphdr) / 4) return 0; sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo, iph->saddr, th->source, iph->daddr, ntohs(th->dest), skb->skb_iif, inet_sdif(skb)); if (sk) { skb->sk = sk; skb->destructor = sock_edemux; if (sk_fullsock(sk)) { struct dst_entry *dst = READ_ONCE(sk->sk_rx_dst); if (dst) dst = dst_check(dst, 0); if (dst && inet_sk(sk)->rx_dst_ifindex == skb->skb_iif) skb_dst_set_noref(skb, dst); } } return 0; } bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb) { u32 limit = READ_ONCE(sk->sk_rcvbuf) + READ_ONCE(sk->sk_sndbuf); u32 tail_gso_size, tail_gso_segs; struct skb_shared_info *shinfo; const struct tcphdr *th; struct tcphdr *thtail; struct sk_buff *tail; unsigned int hdrlen; bool fragstolen; u32 gso_segs; u32 gso_size; int delta; /* In case all data was pulled from skb frags (in __pskb_pull_tail()), * we can fix skb->truesize to its real value to avoid future drops. * This is valid because skb is not yet charged to the socket. * It has been noticed pure SACK packets were sometimes dropped * (if cooked by drivers without copybreak feature). */ skb_condense(skb); skb_dst_drop(skb); if (unlikely(tcp_checksum_complete(skb))) { bh_unlock_sock(sk); __TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); __TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); return true; } /* Attempt coalescing to last skb in backlog, even if we are * above the limits. * This is okay because skb capacity is limited to MAX_SKB_FRAGS. */ th = (const struct tcphdr *)skb->data; hdrlen = th->doff * 4; tail = sk->sk_backlog.tail; if (!tail) goto no_coalesce; thtail = (struct tcphdr *)tail->data; if (TCP_SKB_CB(tail)->end_seq != TCP_SKB_CB(skb)->seq || TCP_SKB_CB(tail)->ip_dsfield != TCP_SKB_CB(skb)->ip_dsfield || ((TCP_SKB_CB(tail)->tcp_flags | TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_SYN | TCPHDR_RST | TCPHDR_URG)) || !((TCP_SKB_CB(tail)->tcp_flags & TCP_SKB_CB(skb)->tcp_flags) & TCPHDR_ACK) || ((TCP_SKB_CB(tail)->tcp_flags ^ TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_ECE | TCPHDR_CWR)) || #ifdef CONFIG_TLS_DEVICE tail->decrypted != skb->decrypted || #endif thtail->doff != th->doff || memcmp(thtail + 1, th + 1, hdrlen - sizeof(*th))) goto no_coalesce; __skb_pull(skb, hdrlen); shinfo = skb_shinfo(skb); gso_size = shinfo->gso_size ?: skb->len; gso_segs = shinfo->gso_segs ?: 1; shinfo = skb_shinfo(tail); tail_gso_size = shinfo->gso_size ?: (tail->len - hdrlen); tail_gso_segs = shinfo->gso_segs ?: 1; if (skb_try_coalesce(tail, skb, &fragstolen, &delta)) { TCP_SKB_CB(tail)->end_seq = TCP_SKB_CB(skb)->end_seq; if (likely(!before(TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(tail)->ack_seq))) { TCP_SKB_CB(tail)->ack_seq = TCP_SKB_CB(skb)->ack_seq; thtail->window = th->window; } /* We have to update both TCP_SKB_CB(tail)->tcp_flags and * thtail->fin, so that the fast path in tcp_rcv_established() * is not entered if we append a packet with a FIN. * SYN, RST, URG are not present. * ACK is set on both packets. * PSH : we do not really care in TCP stack, * at least for 'GRO' packets. */ thtail->fin |= th->fin; TCP_SKB_CB(tail)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; if (TCP_SKB_CB(skb)->has_rxtstamp) { TCP_SKB_CB(tail)->has_rxtstamp = true; tail->tstamp = skb->tstamp; skb_hwtstamps(tail)->hwtstamp = skb_hwtstamps(skb)->hwtstamp; } /* Not as strict as GRO. We only need to carry mss max value */ shinfo->gso_size = max(gso_size, tail_gso_size); shinfo->gso_segs = min_t(u32, gso_segs + tail_gso_segs, 0xFFFF); sk->sk_backlog.len += delta; __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPBACKLOGCOALESCE); kfree_skb_partial(skb, fragstolen); return false; } __skb_push(skb, hdrlen); no_coalesce: /* Only socket owner can try to collapse/prune rx queues * to reduce memory overhead, so add a little headroom here. * Few sockets backlog are possibly concurrently non empty. */ limit += 64*1024; if (unlikely(sk_add_backlog(sk, skb, limit))) { bh_unlock_sock(sk); __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPBACKLOGDROP); return true; } return false; } EXPORT_SYMBOL(tcp_add_backlog); int tcp_filter(struct sock *sk, struct sk_buff *skb) { struct tcphdr *th = (struct tcphdr *)skb->data; return sk_filter_trim_cap(sk, skb, th->doff * 4); } EXPORT_SYMBOL(tcp_filter); static void tcp_v4_restore_cb(struct sk_buff *skb) { memmove(IPCB(skb), &TCP_SKB_CB(skb)->header.h4, sizeof(struct inet_skb_parm)); } static void tcp_v4_fill_cb(struct sk_buff *skb, const struct iphdr *iph, const struct tcphdr *th) { /* This is tricky : We move IPCB at its correct location into TCP_SKB_CB() * barrier() makes sure compiler wont play fool^Waliasing games. */ memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb), sizeof(struct inet_skb_parm)); barrier(); TCP_SKB_CB(skb)->seq = ntohl(th->seq); TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin + skb->len - th->doff * 4); TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq); TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th); TCP_SKB_CB(skb)->tcp_tw_isn = 0; TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph); TCP_SKB_CB(skb)->sacked = 0; TCP_SKB_CB(skb)->has_rxtstamp = skb->tstamp || skb_hwtstamps(skb)->hwtstamp; } /* * From tcp_input.c */ int tcp_v4_rcv(struct sk_buff *skb) { struct net *net = dev_net(skb->dev); struct sk_buff *skb_to_free; int sdif = inet_sdif(skb); int dif = inet_iif(skb); const struct iphdr *iph; const struct tcphdr *th; bool refcounted; struct sock *sk; int ret; if (skb->pkt_type != PACKET_HOST) goto discard_it; /* Count it even if it's bad */ __TCP_INC_STATS(net, TCP_MIB_INSEGS); if (!pskb_may_pull(skb, sizeof(struct tcphdr))) goto discard_it; th = (const struct tcphdr *)skb->data; if (unlikely(th->doff < sizeof(struct tcphdr) / 4)) goto bad_packet; if (!pskb_may_pull(skb, th->doff * 4)) goto discard_it; /* An explanation is required here, I think. * Packet length and doff are validated by header prediction, * provided case of th->doff==0 is eliminated. * So, we defer the checks. */ if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo)) goto csum_error; th = (const struct tcphdr *)skb->data; iph = ip_hdr(skb); lookup: sk = __inet_lookup_skb(&tcp_hashinfo, skb, __tcp_hdrlen(th), th->source, th->dest, sdif, &refcounted); if (!sk) goto no_tcp_socket; process: if (sk->sk_state == TCP_TIME_WAIT) goto do_time_wait; if (sk->sk_state == TCP_NEW_SYN_RECV) { struct request_sock *req = inet_reqsk(sk); bool req_stolen = false; struct sock *nsk; sk = req->rsk_listener; if (unlikely(tcp_v4_inbound_md5_hash(sk, skb, dif, sdif))) { sk_drops_add(sk, skb); reqsk_put(req); goto discard_it; } if (tcp_checksum_complete(skb)) { reqsk_put(req); goto csum_error; } if (unlikely(sk->sk_state != TCP_LISTEN)) { inet_csk_reqsk_queue_drop_and_put(sk, req); goto lookup; } /* We own a reference on the listener, increase it again * as we might lose it too soon. */ sock_hold(sk); refcounted = true; nsk = NULL; if (!tcp_filter(sk, skb)) { th = (const struct tcphdr *)skb->data; iph = ip_hdr(skb); tcp_v4_fill_cb(skb, iph, th); nsk = tcp_check_req(sk, skb, req, false, &req_stolen); } if (!nsk) { reqsk_put(req); if (req_stolen) { /* Another cpu got exclusive access to req * and created a full blown socket. * Try to feed this packet to this socket * instead of discarding it. */ tcp_v4_restore_cb(skb); sock_put(sk); goto lookup; } goto discard_and_relse; } if (nsk == sk) { reqsk_put(req); tcp_v4_restore_cb(skb); } else if (tcp_child_process(sk, nsk, skb)) { tcp_v4_send_reset(nsk, skb); goto discard_and_relse; } else { sock_put(sk); return 0; } } if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) { __NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP); goto discard_and_relse; } if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) goto discard_and_relse; if (tcp_v4_inbound_md5_hash(sk, skb, dif, sdif)) goto discard_and_relse; nf_reset_ct(skb); if (tcp_filter(sk, skb)) goto discard_and_relse; th = (const struct tcphdr *)skb->data; iph = ip_hdr(skb); tcp_v4_fill_cb(skb, iph, th); skb->dev = NULL; if (sk->sk_state == TCP_LISTEN) { ret = tcp_v4_do_rcv(sk, skb); goto put_and_return; } sk_incoming_cpu_update(sk); bh_lock_sock_nested(sk); tcp_segs_in(tcp_sk(sk), skb); ret = 0; if (!sock_owned_by_user(sk)) { skb_to_free = sk->sk_rx_skb_cache; sk->sk_rx_skb_cache = NULL; ret = tcp_v4_do_rcv(sk, skb); } else { if (tcp_add_backlog(sk, skb)) goto discard_and_relse; skb_to_free = NULL; } bh_unlock_sock(sk); if (skb_to_free) __kfree_skb(skb_to_free); put_and_return: if (refcounted) sock_put(sk); return ret; no_tcp_socket: if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) goto discard_it; tcp_v4_fill_cb(skb, iph, th); if (tcp_checksum_complete(skb)) { csum_error: __TCP_INC_STATS(net, TCP_MIB_CSUMERRORS); bad_packet: __TCP_INC_STATS(net, TCP_MIB_INERRS); } else { tcp_v4_send_reset(NULL, skb); } discard_it: /* Discard frame. */ kfree_skb(skb); return 0; discard_and_relse: sk_drops_add(sk, skb); if (refcounted) sock_put(sk); goto discard_it; do_time_wait: if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) { inet_twsk_put(inet_twsk(sk)); goto discard_it; } tcp_v4_fill_cb(skb, iph, th); if (tcp_checksum_complete(skb)) { inet_twsk_put(inet_twsk(sk)); goto csum_error; } switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) { case TCP_TW_SYN: { struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev), &tcp_hashinfo, skb, __tcp_hdrlen(th), iph->saddr, th->source, iph->daddr, th->dest, inet_iif(skb), sdif); if (sk2) { inet_twsk_deschedule_put(inet_twsk(sk)); sk = sk2; tcp_v4_restore_cb(skb); refcounted = false; goto process; } } /* to ACK */ fallthrough; case TCP_TW_ACK: tcp_v4_timewait_ack(sk, skb); break; case TCP_TW_RST: tcp_v4_send_reset(sk, skb); inet_twsk_deschedule_put(inet_twsk(sk)); goto discard_it; case TCP_TW_SUCCESS:; } goto discard_it; } static struct timewait_sock_ops tcp_timewait_sock_ops = { .twsk_obj_size = sizeof(struct tcp_timewait_sock), .twsk_unique = tcp_twsk_unique, .twsk_destructor= tcp_twsk_destructor, }; void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb) { struct dst_entry *dst = skb_dst(skb); if (dst && dst_hold_safe(dst)) { sk->sk_rx_dst = dst; inet_sk(sk)->rx_dst_ifindex = skb->skb_iif; } } EXPORT_SYMBOL(inet_sk_rx_dst_set); const struct inet_connection_sock_af_ops ipv4_specific = { .queue_xmit = ip_queue_xmit, .send_check = tcp_v4_send_check, .rebuild_header = inet_sk_rebuild_header, .sk_rx_dst_set = inet_sk_rx_dst_set, .conn_request = tcp_v4_conn_request, .syn_recv_sock = tcp_v4_syn_recv_sock, .net_header_len = sizeof(struct iphdr), .setsockopt = ip_setsockopt, .getsockopt = ip_getsockopt, .addr2sockaddr = inet_csk_addr2sockaddr, .sockaddr_len = sizeof(struct sockaddr_in), .mtu_reduced = tcp_v4_mtu_reduced, }; EXPORT_SYMBOL(ipv4_specific); #ifdef CONFIG_TCP_MD5SIG static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = { .md5_lookup = tcp_v4_md5_lookup, .calc_md5_hash = tcp_v4_md5_hash_skb, .md5_parse = tcp_v4_parse_md5_keys, }; #endif /* NOTE: A lot of things set to zero explicitly by call to * sk_alloc() so need not be done here. */ static int tcp_v4_init_sock(struct sock *sk) { struct inet_connection_sock *icsk = inet_csk(sk); tcp_init_sock(sk); icsk->icsk_af_ops = &ipv4_specific; #ifdef CONFIG_TCP_MD5SIG tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific; #endif return 0; } void tcp_v4_destroy_sock(struct sock *sk) { struct tcp_sock *tp = tcp_sk(sk); trace_tcp_destroy_sock(sk); tcp_clear_xmit_timers(sk); tcp_cleanup_congestion_control(sk); tcp_cleanup_ulp(sk); /* Cleanup up the write buffer. */ tcp_write_queue_purge(sk); /* Check if we want to disable active TFO */ tcp_fastopen_active_disable_ofo_check(sk); /* Cleans up our, hopefully empty, out_of_order_queue. */ skb_rbtree_purge(&tp->out_of_order_queue); #ifdef CONFIG_TCP_MD5SIG /* Clean up the MD5 key list, if any */ if (tp->md5sig_info) { tcp_clear_md5_list(sk); kfree_rcu(rcu_dereference_protected(tp->md5sig_info, 1), rcu); tp->md5sig_info = NULL; } #endif /* Clean up a referenced TCP bind bucket. */ if (inet_csk(sk)->icsk_bind_hash) inet_put_port(sk); BUG_ON(rcu_access_pointer(tp->fastopen_rsk)); /* If socket is aborted during connect operation */ tcp_free_fastopen_req(tp); tcp_fastopen_destroy_cipher(sk); tcp_saved_syn_free(tp); sk_sockets_allocated_dec(sk); } EXPORT_SYMBOL(tcp_v4_destroy_sock); #ifdef CONFIG_PROC_FS /* Proc filesystem TCP sock list dumping. */ /* * Get next listener socket follow cur. If cur is NULL, get first socket * starting from bucket given in st->bucket; when st->bucket is zero the * very first socket in the hash table is returned. */ static void *listening_get_next(struct seq_file *seq, void *cur) { struct tcp_seq_afinfo *afinfo; struct tcp_iter_state *st = seq->private; struct net *net = seq_file_net(seq); struct inet_listen_hashbucket *ilb; struct hlist_nulls_node *node; struct sock *sk = cur; if (st->bpf_seq_afinfo) afinfo = st->bpf_seq_afinfo; else afinfo = PDE_DATA(file_inode(seq->file)); if (!sk) { get_head: ilb = &tcp_hashinfo.listening_hash[st->bucket]; spin_lock(&ilb->lock); sk = sk_nulls_head(&ilb->nulls_head); st->offset = 0; goto get_sk; } ilb = &tcp_hashinfo.listening_hash[st->bucket]; ++st->num; ++st->offset; sk = sk_nulls_next(sk); get_sk: sk_nulls_for_each_from(sk, node) { if (!net_eq(sock_net(sk), net)) continue; if (afinfo->family == AF_UNSPEC || sk->sk_family == afinfo->family) return sk; } spin_unlock(&ilb->lock); st->offset = 0; if (++st->bucket < INET_LHTABLE_SIZE) goto get_head; return NULL; } static void *listening_get_idx(struct seq_file *seq, loff_t *pos) { struct tcp_iter_state *st = seq->private; void *rc; st->bucket = 0; st->offset = 0; rc = listening_get_next(seq, NULL); while (rc && *pos) { rc = listening_get_next(seq, rc); --*pos; } return rc; } static inline bool empty_bucket(const struct tcp_iter_state *st) { return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain); } /* * Get first established socket starting from bucket given in st->bucket. * If st->bucket is zero, the very first socket in the hash is returned. */ static void *established_get_first(struct seq_file *seq) { struct tcp_seq_afinfo *afinfo; struct tcp_iter_state *st = seq->private; struct net *net = seq_file_net(seq); void *rc = NULL; if (st->bpf_seq_afinfo) afinfo = st->bpf_seq_afinfo; else afinfo = PDE_DATA(file_inode(seq->file)); st->offset = 0; for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) { struct sock *sk; struct hlist_nulls_node *node; spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket); /* Lockless fast path for the common case of empty buckets */ if (empty_bucket(st)) continue; spin_lock_bh(lock); sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) { if ((afinfo->family != AF_UNSPEC && sk->sk_family != afinfo->family) || !net_eq(sock_net(sk), net)) { continue; } rc = sk; goto out; } spin_unlock_bh(lock); } out: return rc; } static void *established_get_next(struct seq_file *seq, void *cur) { struct tcp_seq_afinfo *afinfo; struct sock *sk = cur; struct hlist_nulls_node *node; struct tcp_iter_state *st = seq->private; struct net *net = seq_file_net(seq); if (st->bpf_seq_afinfo) afinfo = st->bpf_seq_afinfo; else afinfo = PDE_DATA(file_inode(seq->file)); ++st->num; ++st->offset; sk = sk_nulls_next(sk); sk_nulls_for_each_from(sk, node) { if ((afinfo->family == AF_UNSPEC || sk->sk_family == afinfo->family) && net_eq(sock_net(sk), net)) return sk; } spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket)); ++st->bucket; return established_get_first(seq); } static void *established_get_idx(struct seq_file *seq, loff_t pos) { struct tcp_iter_state *st = seq->private; void *rc; st->bucket = 0; rc = established_get_first(seq); while (rc && pos) { rc = established_get_next(seq, rc); --pos; } return rc; } static void *tcp_get_idx(struct seq_file *seq, loff_t pos) { void *rc; struct tcp_iter_state *st = seq->private; st->state = TCP_SEQ_STATE_LISTENING; rc = listening_get_idx(seq, &pos); if (!rc) { st->state = TCP_SEQ_STATE_ESTABLISHED; rc = established_get_idx(seq, pos); } return rc; } static void *tcp_seek_last_pos(struct seq_file *seq) { struct tcp_iter_state *st = seq->private; int bucket = st->bucket; int offset = st->offset; int orig_num = st->num; void *rc = NULL; switch (st->state) { case TCP_SEQ_STATE_LISTENING: if (st->bucket >= INET_LHTABLE_SIZE) break; st->state = TCP_SEQ_STATE_LISTENING; rc = listening_get_next(seq, NULL); while (offset-- && rc && bucket == st->bucket) rc = listening_get_next(seq, rc); if (rc) break; st->bucket = 0; st->state = TCP_SEQ_STATE_ESTABLISHED; fallthrough; case TCP_SEQ_STATE_ESTABLISHED: if (st->bucket > tcp_hashinfo.ehash_mask) break; rc = established_get_first(seq); while (offset-- && rc && bucket == st->bucket) rc = established_get_next(seq, rc); } st->num = orig_num; return rc; } void *tcp_seq_start(struct seq_file *seq, loff_t *pos) { struct tcp_iter_state *st = seq->private; void *rc; if (*pos && *pos == st->last_pos) { rc = tcp_seek_last_pos(seq); if (rc) goto out; } st->state = TCP_SEQ_STATE_LISTENING; st->num = 0; st->bucket = 0; st->offset = 0; rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN; out: st->last_pos = *pos; return rc; } EXPORT_SYMBOL(tcp_seq_start); void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos) { struct tcp_iter_state *st = seq->private; void *rc = NULL; if (v == SEQ_START_TOKEN) { rc = tcp_get_idx(seq, 0); goto out; } switch (st->state) { case TCP_SEQ_STATE_LISTENING: rc = listening_get_next(seq, v); if (!rc) { st->state = TCP_SEQ_STATE_ESTABLISHED; st->bucket = 0; st->offset = 0; rc = established_get_first(seq); } break; case TCP_SEQ_STATE_ESTABLISHED: rc = established_get_next(seq, v); break; } out: ++*pos; st->last_pos = *pos; return rc; } EXPORT_SYMBOL(tcp_seq_next); void tcp_seq_stop(struct seq_file *seq, void *v) { struct tcp_iter_state *st = seq->private; switch (st->state) { case TCP_SEQ_STATE_LISTENING: if (v != SEQ_START_TOKEN) spin_unlock(&tcp_hashinfo.listening_hash[st->bucket].lock); break; case TCP_SEQ_STATE_ESTABLISHED: if (v) spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket)); break; } } EXPORT_SYMBOL(tcp_seq_stop); static void get_openreq4(const struct request_sock *req, struct seq_file *f, int i) { const struct inet_request_sock *ireq = inet_rsk(req); long delta = req->rsk_timer.expires - jiffies; seq_printf(f, "%4d: %08X:%04X %08X:%04X" " %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK", i, ireq->ir_loc_addr, ireq->ir_num, ireq->ir_rmt_addr, ntohs(ireq->ir_rmt_port), TCP_SYN_RECV, 0, 0, /* could print option size, but that is af dependent. */ 1, /* timers active (only the expire timer) */ jiffies_delta_to_clock_t(delta), req->num_timeout, from_kuid_munged(seq_user_ns(f), sock_i_uid(req->rsk_listener)), 0, /* non standard timer */ 0, /* open_requests have no inode */ 0, req); } static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i) { int timer_active; unsigned long timer_expires; const struct tcp_sock *tp = tcp_sk(sk); const struct inet_connection_sock *icsk = inet_csk(sk); const struct inet_sock *inet = inet_sk(sk); const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq; __be32 dest = inet->inet_daddr; __be32 src = inet->inet_rcv_saddr; __u16 destp = ntohs(inet->inet_dport); __u16 srcp = ntohs(inet->inet_sport); int rx_queue; int state; if (icsk->icsk_pending == ICSK_TIME_RETRANS || icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { timer_active = 1; timer_expires = icsk->icsk_timeout; } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) { timer_active = 4; timer_expires = icsk->icsk_timeout; } else if (timer_pending(&sk->sk_timer)) { timer_active = 2; timer_expires = sk->sk_timer.expires; } else { timer_active = 0; timer_expires = jiffies; } state = inet_sk_state_load(sk); if (state == TCP_LISTEN) rx_queue = READ_ONCE(sk->sk_ack_backlog); else /* Because we don't lock the socket, * we might find a transient negative value. */ rx_queue = max_t(int, READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq), 0); seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX " "%08X %5u %8d %lu %d %pK %lu %lu %u %u %d", i, src, srcp, dest, destp, state, READ_ONCE(tp->write_seq) - tp->snd_una, rx_queue, timer_active, jiffies_delta_to_clock_t(timer_expires - jiffies), icsk->icsk_retransmits, from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)), icsk->icsk_probes_out, sock_i_ino(sk), refcount_read(&sk->sk_refcnt), sk, jiffies_to_clock_t(icsk->icsk_rto), jiffies_to_clock_t(icsk->icsk_ack.ato), (icsk->icsk_ack.quick << 1) | inet_csk_in_pingpong_mode(sk), tp->snd_cwnd, state == TCP_LISTEN ? fastopenq->max_qlen : (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh)); } static void get_timewait4_sock(const struct inet_timewait_sock *tw, struct seq_file *f, int i) { long delta = tw->tw_timer.expires - jiffies; __be32 dest, src; __u16 destp, srcp; dest = tw->tw_daddr; src = tw->tw_rcv_saddr; destp = ntohs(tw->tw_dport); srcp = ntohs(tw->tw_sport); seq_printf(f, "%4d: %08X:%04X %08X:%04X" " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK", i, src, srcp, dest, destp, tw->tw_substate, 0, 0, 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0, refcount_read(&tw->tw_refcnt), tw); } #define TMPSZ 150 static int tcp4_seq_show(struct seq_file *seq, void *v) { struct tcp_iter_state *st; struct sock *sk = v; seq_setwidth(seq, TMPSZ - 1); if (v == SEQ_START_TOKEN) { seq_puts(seq, " sl local_address rem_address st tx_queue " "rx_queue tr tm->when retrnsmt uid timeout " "inode"); goto out; } st = seq->private; if (sk->sk_state == TCP_TIME_WAIT) get_timewait4_sock(v, seq, st->num); else if (sk->sk_state == TCP_NEW_SYN_RECV) get_openreq4(v, seq, st->num); else get_tcp4_sock(v, seq, st->num); out: seq_pad(seq, '\n'); return 0; } #ifdef CONFIG_BPF_SYSCALL struct bpf_iter__tcp { __bpf_md_ptr(struct bpf_iter_meta *, meta); __bpf_md_ptr(struct sock_common *, sk_common); uid_t uid __aligned(8); }; static int tcp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta, struct sock_common *sk_common, uid_t uid) { struct bpf_iter__tcp ctx; meta->seq_num--; /* skip SEQ_START_TOKEN */ ctx.meta = meta; ctx.sk_common = sk_common; ctx.uid = uid; return bpf_iter_run_prog(prog, &ctx); } static int bpf_iter_tcp_seq_show(struct seq_file *seq, void *v) { struct bpf_iter_meta meta; struct bpf_prog *prog; struct sock *sk = v; uid_t uid; if (v == SEQ_START_TOKEN) return 0; if (sk->sk_state == TCP_TIME_WAIT) { uid = 0; } else if (sk->sk_state == TCP_NEW_SYN_RECV) { const struct request_sock *req = v; uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(req->rsk_listener)); } else { uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk)); } meta.seq = seq; prog = bpf_iter_get_info(&meta, false); return tcp_prog_seq_show(prog, &meta, v, uid); } static void bpf_iter_tcp_seq_stop(struct seq_file *seq, void *v) { struct bpf_iter_meta meta; struct bpf_prog *prog; if (!v) { meta.seq = seq; prog = bpf_iter_get_info(&meta, true); if (prog) (void)tcp_prog_seq_show(prog, &meta, v, 0); } tcp_seq_stop(seq, v); } static const struct seq_operations bpf_iter_tcp_seq_ops = { .show = bpf_iter_tcp_seq_show, .start = tcp_seq_start, .next = tcp_seq_next, .stop = bpf_iter_tcp_seq_stop, }; #endif static const struct seq_operations tcp4_seq_ops = { .show = tcp4_seq_show, .start = tcp_seq_start, .next = tcp_seq_next, .stop = tcp_seq_stop, }; static struct tcp_seq_afinfo tcp4_seq_afinfo = { .family = AF_INET, }; static int __net_init tcp4_proc_init_net(struct net *net) { if (!proc_create_net_data("tcp", 0444, net->proc_net, &tcp4_seq_ops, sizeof(struct tcp_iter_state), &tcp4_seq_afinfo)) return -ENOMEM; return 0; } static void __net_exit tcp4_proc_exit_net(struct net *net) { remove_proc_entry("tcp", net->proc_net); } static struct pernet_operations tcp4_net_ops = { .init = tcp4_proc_init_net, .exit = tcp4_proc_exit_net, }; int __init tcp4_proc_init(void) { return register_pernet_subsys(&tcp4_net_ops); } void tcp4_proc_exit(void) { unregister_pernet_subsys(&tcp4_net_ops); } #endif /* CONFIG_PROC_FS */ struct proto tcp_prot = { .name = "TCP", .owner = THIS_MODULE, .close = tcp_close, .pre_connect = tcp_v4_pre_connect, .connect = tcp_v4_connect, .disconnect = tcp_disconnect, .accept = inet_csk_accept, .ioctl = tcp_ioctl, .init = tcp_v4_init_sock, .destroy = tcp_v4_destroy_sock, .shutdown = tcp_shutdown, .setsockopt = tcp_setsockopt, .getsockopt = tcp_getsockopt, .keepalive = tcp_set_keepalive, .recvmsg = tcp_recvmsg, .sendmsg = tcp_sendmsg, .sendpage = tcp_sendpage, .backlog_rcv = tcp_v4_do_rcv, .release_cb = tcp_release_cb, .hash = inet_hash, .unhash = inet_unhash, .get_port = inet_csk_get_port, .enter_memory_pressure = tcp_enter_memory_pressure, .leave_memory_pressure = tcp_leave_memory_pressure, .stream_memory_free = tcp_stream_memory_free, .sockets_allocated = &tcp_sockets_allocated, .orphan_count = &tcp_orphan_count, .memory_allocated = &tcp_memory_allocated, .memory_pressure = &tcp_memory_pressure, .sysctl_mem = sysctl_tcp_mem, .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), .max_header = MAX_TCP_HEADER, .obj_size = sizeof(struct tcp_sock), .slab_flags = SLAB_TYPESAFE_BY_RCU, .twsk_prot = &tcp_timewait_sock_ops, .rsk_prot = &tcp_request_sock_ops, .h.hashinfo = &tcp_hashinfo, .no_autobind = true, .diag_destroy = tcp_abort, }; EXPORT_SYMBOL(tcp_prot); static void __net_exit tcp_sk_exit(struct net *net) { int cpu; if (net->ipv4.tcp_congestion_control) bpf_module_put(net->ipv4.tcp_congestion_control, net->ipv4.tcp_congestion_control->owner); for_each_possible_cpu(cpu) inet_ctl_sock_destroy(*per_cpu_ptr(net->ipv4.tcp_sk, cpu)); free_percpu(net->ipv4.tcp_sk); } static int __net_init tcp_sk_init(struct net *net) { int res, cpu, cnt; net->ipv4.tcp_sk = alloc_percpu(struct sock *); if (!net->ipv4.tcp_sk) return -ENOMEM; for_each_possible_cpu(cpu) { struct sock *sk; res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW, IPPROTO_TCP, net); if (res) goto fail; sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); /* Please enforce IP_DF and IPID==0 for RST and * ACK sent in SYN-RECV and TIME-WAIT state. */ inet_sk(sk)->pmtudisc = IP_PMTUDISC_DO; *per_cpu_ptr(net->ipv4.tcp_sk, cpu) = sk; } net->ipv4.sysctl_tcp_ecn = 2; net->ipv4.sysctl_tcp_ecn_fallback = 1; net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS; net->ipv4.sysctl_tcp_min_snd_mss = TCP_MIN_SND_MSS; net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD; net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL; net->ipv4.sysctl_tcp_mtu_probe_floor = TCP_MIN_SND_MSS; net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME; net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES; net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL; net->ipv4.sysctl_tcp_syn_retries = TCP_SYN_RETRIES; net->ipv4.sysctl_tcp_synack_retries = TCP_SYNACK_RETRIES; net->ipv4.sysctl_tcp_syncookies = 1; net->ipv4.sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH; net->ipv4.sysctl_tcp_retries1 = TCP_RETR1; net->ipv4.sysctl_tcp_retries2 = TCP_RETR2; net->ipv4.sysctl_tcp_orphan_retries = 0; net->ipv4.sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT; net->ipv4.sysctl_tcp_notsent_lowat = UINT_MAX; net->ipv4.sysctl_tcp_tw_reuse = 2; net->ipv4.sysctl_tcp_no_ssthresh_metrics_save = 1; cnt = tcp_hashinfo.ehash_mask + 1; net->ipv4.tcp_death_row.sysctl_max_tw_buckets = cnt / 2; net->ipv4.tcp_death_row.hashinfo = &tcp_hashinfo; net->ipv4.sysctl_max_syn_backlog = max(128, cnt / 128); net->ipv4.sysctl_tcp_sack = 1; net->ipv4.sysctl_tcp_window_scaling = 1; net->ipv4.sysctl_tcp_timestamps = 1; net->ipv4.sysctl_tcp_early_retrans = 3; net->ipv4.sysctl_tcp_recovery = TCP_RACK_LOSS_DETECTION; net->ipv4.sysctl_tcp_slow_start_after_idle = 1; /* By default, RFC2861 behavior. */ net->ipv4.sysctl_tcp_retrans_collapse = 1; net->ipv4.sysctl_tcp_max_reordering = 300; net->ipv4.sysctl_tcp_dsack = 1; net->ipv4.sysctl_tcp_app_win = 31; net->ipv4.sysctl_tcp_adv_win_scale = 1; net->ipv4.sysctl_tcp_frto = 2; net->ipv4.sysctl_tcp_moderate_rcvbuf = 1; /* This limits the percentage of the congestion window which we * will allow a single TSO frame to consume. Building TSO frames * which are too large can cause TCP streams to be bursty. */ net->ipv4.sysctl_tcp_tso_win_divisor = 3; /* Default TSQ limit of 16 TSO segments */ net->ipv4.sysctl_tcp_limit_output_bytes = 16 * 65536; /* rfc5961 challenge ack rate limiting */ net->ipv4.sysctl_tcp_challenge_ack_limit = 1000; net->ipv4.sysctl_tcp_min_tso_segs = 2; net->ipv4.sysctl_tcp_min_rtt_wlen = 300; net->ipv4.sysctl_tcp_autocorking = 1; net->ipv4.sysctl_tcp_invalid_ratelimit = HZ/2; net->ipv4.sysctl_tcp_pacing_ss_ratio = 200; net->ipv4.sysctl_tcp_pacing_ca_ratio = 120; if (net != &init_net) { memcpy(net->ipv4.sysctl_tcp_rmem, init_net.ipv4.sysctl_tcp_rmem, sizeof(init_net.ipv4.sysctl_tcp_rmem)); memcpy(net->ipv4.sysctl_tcp_wmem, init_net.ipv4.sysctl_tcp_wmem, sizeof(init_net.ipv4.sysctl_tcp_wmem)); } net->ipv4.sysctl_tcp_comp_sack_delay_ns = NSEC_PER_MSEC; net->ipv4.sysctl_tcp_comp_sack_slack_ns = 100 * NSEC_PER_USEC; net->ipv4.sysctl_tcp_comp_sack_nr = 44; net->ipv4.sysctl_tcp_fastopen = TFO_CLIENT_ENABLE; spin_lock_init(&net->ipv4.tcp_fastopen_ctx_lock); net->ipv4.sysctl_tcp_fastopen_blackhole_timeout = 0; atomic_set(&net->ipv4.tfo_active_disable_times, 0); /* Reno is always built in */ if (!net_eq(net, &init_net) && bpf_try_module_get(init_net.ipv4.tcp_congestion_control, init_net.ipv4.tcp_congestion_control->owner)) net->ipv4.tcp_congestion_control = init_net.ipv4.tcp_congestion_control; else net->ipv4.tcp_congestion_control = &tcp_reno; return 0; fail: tcp_sk_exit(net); return res; } static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list) { struct net *net; inet_twsk_purge(&tcp_hashinfo, AF_INET); list_for_each_entry(net, net_exit_list, exit_list) tcp_fastopen_ctx_destroy(net); } static struct pernet_operations __net_initdata tcp_sk_ops = { .init = tcp_sk_init, .exit = tcp_sk_exit, .exit_batch = tcp_sk_exit_batch, }; #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) DEFINE_BPF_ITER_FUNC(tcp, struct bpf_iter_meta *meta, struct sock_common *sk_common, uid_t uid) static int bpf_iter_init_tcp(void *priv_data, struct bpf_iter_aux_info *aux) { struct tcp_iter_state *st = priv_data; struct tcp_seq_afinfo *afinfo; int ret; afinfo = kmalloc(sizeof(*afinfo), GFP_USER | __GFP_NOWARN); if (!afinfo) return -ENOMEM; afinfo->family = AF_UNSPEC; st->bpf_seq_afinfo = afinfo; ret = bpf_iter_init_seq_net(priv_data, aux); if (ret) kfree(afinfo); return ret; } static void bpf_iter_fini_tcp(void *priv_data) { struct tcp_iter_state *st = priv_data; kfree(st->bpf_seq_afinfo); bpf_iter_fini_seq_net(priv_data); } static const struct bpf_iter_seq_info tcp_seq_info = { .seq_ops = &bpf_iter_tcp_seq_ops, .init_seq_private = bpf_iter_init_tcp, .fini_seq_private = bpf_iter_fini_tcp, .seq_priv_size = sizeof(struct tcp_iter_state), }; static struct bpf_iter_reg tcp_reg_info = { .target = "tcp", .ctx_arg_info_size = 1, .ctx_arg_info = { { offsetof(struct bpf_iter__tcp, sk_common), PTR_TO_BTF_ID_OR_NULL }, }, .seq_info = &tcp_seq_info, }; static void __init bpf_iter_register(void) { tcp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON]; if (bpf_iter_reg_target(&tcp_reg_info)) pr_warn("Warning: could not register bpf iterator tcp\n"); } #endif void __init tcp_v4_init(void) { if (register_pernet_subsys(&tcp_sk_ops)) panic("Failed to create the TCP control socket.\n"); #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) bpf_iter_register(); #endif }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 #ifndef _LINUX_HASH_H #define _LINUX_HASH_H /* Fast hashing routine for ints, longs and pointers. (C) 2002 Nadia Yvette Chambers, IBM */ #include <asm/types.h> #include <linux/compiler.h> /* * The "GOLDEN_RATIO_PRIME" is used in ifs/btrfs/brtfs_inode.h and * fs/inode.c. It's not actually prime any more (the previous primes * were actively bad for hashing), but the name remains. */ #if BITS_PER_LONG == 32 #define GOLDEN_RATIO_PRIME GOLDEN_RATIO_32 #define hash_long(val, bits) hash_32(val, bits) #elif BITS_PER_LONG == 64 #define hash_long(val, bits) hash_64(val, bits) #define GOLDEN_RATIO_PRIME GOLDEN_RATIO_64 #else #error Wordsize not 32 or 64 #endif /* * This hash multiplies the input by a large odd number and takes the * high bits. Since multiplication propagates changes to the most * significant end only, it is essential that the high bits of the * product be used for the hash value. * * Chuck Lever verified the effectiveness of this technique: * http://www.citi.umich.edu/techreports/reports/citi-tr-00-1.pdf * * Although a random odd number will do, it turns out that the golden * ratio phi = (sqrt(5)-1)/2, or its negative, has particularly nice * properties. (See Knuth vol 3, section 6.4, exercise 9.) * * These are the negative, (1 - phi) = phi**2 = (3 - sqrt(5))/2, * which is very slightly easier to multiply by and makes no * difference to the hash distribution. */ #define GOLDEN_RATIO_32 0x61C88647 #define GOLDEN_RATIO_64 0x61C8864680B583EBull #ifdef CONFIG_HAVE_ARCH_HASH /* This header may use the GOLDEN_RATIO_xx constants */ #include <asm/hash.h> #endif /* * The _generic versions exist only so lib/test_hash.c can compare * the arch-optimized versions with the generic. * * Note that if you change these, any <asm/hash.h> that aren't updated * to match need to have their HAVE_ARCH_* define values updated so the * self-test will not false-positive. */ #ifndef HAVE_ARCH__HASH_32 #define __hash_32 __hash_32_generic #endif static inline u32 __hash_32_generic(u32 val) { return val * GOLDEN_RATIO_32; } #ifndef HAVE_ARCH_HASH_32 #define hash_32 hash_32_generic #endif static inline u32 hash_32_generic(u32 val, unsigned int bits) { /* High bits are more random, so use them. */ return __hash_32(val) >> (32 - bits); } #ifndef HAVE_ARCH_HASH_64 #define hash_64 hash_64_generic #endif static __always_inline u32 hash_64_generic(u64 val, unsigned int bits) { #if BITS_PER_LONG == 64 /* 64x64-bit multiply is efficient on all 64-bit processors */ return val * GOLDEN_RATIO_64 >> (64 - bits); #else /* Hash 64 bits using only 32x32-bit multiply. */ return hash_32((u32)val ^ __hash_32(val >> 32), bits); #endif } static inline u32 hash_ptr(const void *ptr, unsigned int bits) { return hash_long((unsigned long)ptr, bits); } /* This really should be called fold32_ptr; it does no hashing to speak of. */ static inline u32 hash32_ptr(const void *ptr) { unsigned long val = (unsigned long)ptr; #if BITS_PER_LONG == 64 val ^= (val >> 32); #endif return (u32)val; } #endif /* _LINUX_HASH_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_KASAN_H #define _LINUX_KASAN_H #include <linux/types.h> struct kmem_cache; struct page; struct vm_struct; struct task_struct; #ifdef CONFIG_KASAN #include <linux/pgtable.h> #include <asm/kasan.h> /* kasan_data struct is used in KUnit tests for KASAN expected failures */ struct kunit_kasan_expectation { bool report_expected; bool report_found; }; extern unsigned char kasan_early_shadow_page[PAGE_SIZE]; extern pte_t kasan_early_shadow_pte[PTRS_PER_PTE]; extern pmd_t kasan_early_shadow_pmd[PTRS_PER_PMD]; extern pud_t kasan_early_shadow_pud[PTRS_PER_PUD]; extern p4d_t kasan_early_shadow_p4d[MAX_PTRS_PER_P4D]; int kasan_populate_early_shadow(const void *shadow_start, const void *shadow_end); static inline void *kasan_mem_to_shadow(const void *addr) { return (void *)((unsigned long)addr >> KASAN_SHADOW_SCALE_SHIFT) + KASAN_SHADOW_OFFSET; } /* Enable reporting bugs after kasan_disable_current() */ extern void kasan_enable_current(void); /* Disable reporting bugs for current task */ extern void kasan_disable_current(void); void kasan_unpoison_shadow(const void *address, size_t size); void kasan_unpoison_task_stack(struct task_struct *task); void kasan_alloc_pages(struct page *page, unsigned int order); void kasan_free_pages(struct page *page, unsigned int order); void kasan_cache_create(struct kmem_cache *cache, unsigned int *size, slab_flags_t *flags); void kasan_poison_slab(struct page *page); void kasan_unpoison_object_data(struct kmem_cache *cache, void *object); void kasan_poison_object_data(struct kmem_cache *cache, void *object); void * __must_check kasan_init_slab_obj(struct kmem_cache *cache, const void *object); void * __must_check kasan_kmalloc_large(const void *ptr, size_t size, gfp_t flags); void kasan_kfree_large(void *ptr, unsigned long ip); void kasan_poison_kfree(void *ptr, unsigned long ip); void * __must_check kasan_kmalloc(struct kmem_cache *s, const void *object, size_t size, gfp_t flags); void * __must_check kasan_krealloc(const void *object, size_t new_size, gfp_t flags); void * __must_check kasan_slab_alloc(struct kmem_cache *s, void *object, gfp_t flags); bool kasan_slab_free(struct kmem_cache *s, void *object, unsigned long ip); struct kasan_cache { int alloc_meta_offset; int free_meta_offset; }; /* * These functions provide a special case to support backing module * allocations with real shadow memory. With KASAN vmalloc, the special * case is unnecessary, as the work is handled in the generic case. */ #ifndef CONFIG_KASAN_VMALLOC int kasan_module_alloc(void *addr, size_t size); void kasan_free_shadow(const struct vm_struct *vm); #else static inline int kasan_module_alloc(void *addr, size_t size) { return 0; } static inline void kasan_free_shadow(const struct vm_struct *vm) {} #endif int kasan_add_zero_shadow(void *start, unsigned long size); void kasan_remove_zero_shadow(void *start, unsigned long size); size_t __ksize(const void *); static inline void kasan_unpoison_slab(const void *ptr) { kasan_unpoison_shadow(ptr, __ksize(ptr)); } size_t kasan_metadata_size(struct kmem_cache *cache); bool kasan_save_enable_multi_shot(void); void kasan_restore_multi_shot(bool enabled); #else /* CONFIG_KASAN */ static inline void kasan_unpoison_shadow(const void *address, size_t size) {} static inline void kasan_unpoison_task_stack(struct task_struct *task) {} static inline void kasan_enable_current(void) {} static inline void kasan_disable_current(void) {} static inline void kasan_alloc_pages(struct page *page, unsigned int order) {} static inline void kasan_free_pages(struct page *page, unsigned int order) {} static inline void kasan_cache_create(struct kmem_cache *cache, unsigned int *size, slab_flags_t *flags) {} static inline void kasan_poison_slab(struct page *page) {} static inline void kasan_unpoison_object_data(struct kmem_cache *cache, void *object) {} static inline void kasan_poison_object_data(struct kmem_cache *cache, void *object) {} static inline void *kasan_init_slab_obj(struct kmem_cache *cache, const void *object) { return (void *)object; } static inline void *kasan_kmalloc_large(void *ptr, size_t size, gfp_t flags) { return ptr; } static inline void kasan_kfree_large(void *ptr, unsigned long ip) {} static inline void kasan_poison_kfree(void *ptr, unsigned long ip) {} static inline void *kasan_kmalloc(struct kmem_cache *s, const void *object, size_t size, gfp_t flags) { return (void *)object; } static inline void *kasan_krealloc(const void *object, size_t new_size, gfp_t flags) { return (void *)object; } static inline void *kasan_slab_alloc(struct kmem_cache *s, void *object, gfp_t flags) { return object; } static inline bool kasan_slab_free(struct kmem_cache *s, void *object, unsigned long ip) { return false; } static inline int kasan_module_alloc(void *addr, size_t size) { return 0; } static inline void kasan_free_shadow(const struct vm_struct *vm) {} static inline int kasan_add_zero_shadow(void *start, unsigned long size) { return 0; } static inline void kasan_remove_zero_shadow(void *start, unsigned long size) {} static inline void kasan_unpoison_slab(const void *ptr) { } static inline size_t kasan_metadata_size(struct kmem_cache *cache) { return 0; } #endif /* CONFIG_KASAN */ #ifdef CONFIG_KASAN_GENERIC #define KASAN_SHADOW_INIT 0 void kasan_cache_shrink(struct kmem_cache *cache); void kasan_cache_shutdown(struct kmem_cache *cache); void kasan_record_aux_stack(void *ptr); #else /* CONFIG_KASAN_GENERIC */ static inline void kasan_cache_shrink(struct kmem_cache *cache) {} static inline void kasan_cache_shutdown(struct kmem_cache *cache) {} static inline void kasan_record_aux_stack(void *ptr) {} #endif /* CONFIG_KASAN_GENERIC */ #ifdef CONFIG_KASAN_SW_TAGS #define KASAN_SHADOW_INIT 0xFF void kasan_init_tags(void); void *kasan_reset_tag(const void *addr); bool kasan_report(unsigned long addr, size_t size, bool is_write, unsigned long ip); #else /* CONFIG_KASAN_SW_TAGS */ static inline void kasan_init_tags(void) { } static inline void *kasan_reset_tag(const void *addr) { return (void *)addr; } #endif /* CONFIG_KASAN_SW_TAGS */ #ifdef CONFIG_KASAN_VMALLOC int kasan_populate_vmalloc(unsigned long addr, unsigned long size); void kasan_poison_vmalloc(const void *start, unsigned long size); void kasan_unpoison_vmalloc(const void *start, unsigned long size); void kasan_release_vmalloc(unsigned long start, unsigned long end, unsigned long free_region_start, unsigned long free_region_end); #else static inline int kasan_populate_vmalloc(unsigned long start, unsigned long size) { return 0; } static inline void kasan_poison_vmalloc(const void *start, unsigned long size) { } static inline void kasan_unpoison_vmalloc(const void *start, unsigned long size) { } static inline void kasan_release_vmalloc(unsigned long start, unsigned long end, unsigned long free_region_start, unsigned long free_region_end) {} #endif #ifdef CONFIG_KASAN_INLINE void kasan_non_canonical_hook(unsigned long addr); #else /* CONFIG_KASAN_INLINE */ static inline void kasan_non_canonical_hook(unsigned long addr) { } #endif /* CONFIG_KASAN_INLINE */ #endif /* LINUX_KASAN_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_LOCAL_LOCK_H # error "Do not include directly, include linux/local_lock.h" #endif #include <linux/percpu-defs.h> #include <linux/lockdep.h> typedef struct { #ifdef CONFIG_DEBUG_LOCK_ALLOC struct lockdep_map dep_map; struct task_struct *owner; #endif } local_lock_t; #ifdef CONFIG_DEBUG_LOCK_ALLOC # define LOCAL_LOCK_DEBUG_INIT(lockname) \ .dep_map = { \ .name = #lockname, \ .wait_type_inner = LD_WAIT_CONFIG, \ .lock_type = LD_LOCK_PERCPU, \ }, \ .owner = NULL, static inline void local_lock_acquire(local_lock_t *l) { lock_map_acquire(&l->dep_map); DEBUG_LOCKS_WARN_ON(l->owner); l->owner = current; } static inline void local_lock_release(local_lock_t *l) { DEBUG_LOCKS_WARN_ON(l->owner != current); l->owner = NULL; lock_map_release(&l->dep_map); } static inline void local_lock_debug_init(local_lock_t *l) { l->owner = NULL; } #else /* CONFIG_DEBUG_LOCK_ALLOC */ # define LOCAL_LOCK_DEBUG_INIT(lockname) static inline void local_lock_acquire(local_lock_t *l) { } static inline void local_lock_release(local_lock_t *l) { } static inline void local_lock_debug_init(local_lock_t *l) { } #endif /* !CONFIG_DEBUG_LOCK_ALLOC */ #define INIT_LOCAL_LOCK(lockname) { LOCAL_LOCK_DEBUG_INIT(lockname) } #define __local_lock_init(lock) \ do { \ static struct lock_class_key __key; \ \ debug_check_no_locks_freed((void *)lock, sizeof(*lock));\ lockdep_init_map_type(&(lock)->dep_map, #lock, &__key, \ 0, LD_WAIT_CONFIG, LD_WAIT_INV, \ LD_LOCK_PERCPU); \ local_lock_debug_init(lock); \ } while (0) #define __local_lock(lock) \ do { \ preempt_disable(); \ local_lock_acquire(this_cpu_ptr(lock)); \ } while (0) #define __local_lock_irq(lock) \ do { \ local_irq_disable(); \ local_lock_acquire(this_cpu_ptr(lock)); \ } while (0) #define __local_lock_irqsave(lock, flags) \ do { \ local_irq_save(flags); \ local_lock_acquire(this_cpu_ptr(lock)); \ } while (0) #define __local_unlock(lock) \ do { \ local_lock_release(this_cpu_ptr(lock)); \ preempt_enable(); \ } while (0) #define __local_unlock_irq(lock) \ do { \ local_lock_release(this_cpu_ptr(lock)); \ local_irq_enable(); \ } while (0) #define __local_unlock_irqrestore(lock, flags) \ do { \ local_lock_release(this_cpu_ptr(lock)); \ local_irq_restore(flags); \ } while (0)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 #ifndef _LINUX_SCHED_ISOLATION_H #define _LINUX_SCHED_ISOLATION_H #include <linux/cpumask.h> #include <linux/init.h> #include <linux/tick.h> enum hk_flags { HK_FLAG_TIMER = 1, HK_FLAG_RCU = (1 << 1), HK_FLAG_MISC = (1 << 2), HK_FLAG_SCHED = (1 << 3), HK_FLAG_TICK = (1 << 4), HK_FLAG_DOMAIN = (1 << 5), HK_FLAG_WQ = (1 << 6), HK_FLAG_MANAGED_IRQ = (1 << 7), HK_FLAG_KTHREAD = (1 << 8), }; #ifdef CONFIG_CPU_ISOLATION DECLARE_STATIC_KEY_FALSE(housekeeping_overridden); extern int housekeeping_any_cpu(enum hk_flags flags); extern const struct cpumask *housekeeping_cpumask(enum hk_flags flags); extern bool housekeeping_enabled(enum hk_flags flags); extern void housekeeping_affine(struct task_struct *t, enum hk_flags flags); extern bool housekeeping_test_cpu(int cpu, enum hk_flags flags); extern void __init housekeeping_init(void); #else static inline int housekeeping_any_cpu(enum hk_flags flags) { return smp_processor_id(); } static inline const struct cpumask *housekeeping_cpumask(enum hk_flags flags) { return cpu_possible_mask; } static inline bool housekeeping_enabled(enum hk_flags flags) { return false; } static inline void housekeeping_affine(struct task_struct *t, enum hk_flags flags) { } static inline void housekeeping_init(void) { } #endif /* CONFIG_CPU_ISOLATION */ static inline bool housekeeping_cpu(int cpu, enum hk_flags flags) { #ifdef CONFIG_CPU_ISOLATION if (static_branch_unlikely(&housekeeping_overridden)) return housekeeping_test_cpu(cpu, flags); #endif return true; } #endif /* _LINUX_SCHED_ISOLATION_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM pagemap #if !defined(_TRACE_PAGEMAP_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_PAGEMAP_H #include <linux/tracepoint.h> #include <linux/mm.h> #define PAGEMAP_MAPPED 0x0001u #define PAGEMAP_ANONYMOUS 0x0002u #define PAGEMAP_FILE 0x0004u #define PAGEMAP_SWAPCACHE 0x0008u #define PAGEMAP_SWAPBACKED 0x0010u #define PAGEMAP_MAPPEDDISK 0x0020u #define PAGEMAP_BUFFERS 0x0040u #define trace_pagemap_flags(page) ( \ (PageAnon(page) ? PAGEMAP_ANONYMOUS : PAGEMAP_FILE) | \ (page_mapped(page) ? PAGEMAP_MAPPED : 0) | \ (PageSwapCache(page) ? PAGEMAP_SWAPCACHE : 0) | \ (PageSwapBacked(page) ? PAGEMAP_SWAPBACKED : 0) | \ (PageMappedToDisk(page) ? PAGEMAP_MAPPEDDISK : 0) | \ (page_has_private(page) ? PAGEMAP_BUFFERS : 0) \ ) TRACE_EVENT(mm_lru_insertion, TP_PROTO( struct page *page, int lru ), TP_ARGS(page, lru), TP_STRUCT__entry( __field(struct page *, page ) __field(unsigned long, pfn ) __field(int, lru ) __field(unsigned long, flags ) ), TP_fast_assign( __entry->page = page; __entry->pfn = page_to_pfn(page); __entry->lru = lru; __entry->flags = trace_pagemap_flags(page); ), /* Flag format is based on page-types.c formatting for pagemap */ TP_printk("page=%p pfn=%lu lru=%d flags=%s%s%s%s%s%s", __entry->page, __entry->pfn, __entry->lru, __entry->flags & PAGEMAP_MAPPED ? "M" : " ", __entry->flags & PAGEMAP_ANONYMOUS ? "a" : "f", __entry->flags & PAGEMAP_SWAPCACHE ? "s" : " ", __entry->flags & PAGEMAP_SWAPBACKED ? "b" : " ", __entry->flags & PAGEMAP_MAPPEDDISK ? "d" : " ", __entry->flags & PAGEMAP_BUFFERS ? "B" : " ") ); TRACE_EVENT(mm_lru_activate, TP_PROTO(struct page *page), TP_ARGS(page), TP_STRUCT__entry( __field(struct page *, page ) __field(unsigned long, pfn ) ), TP_fast_assign( __entry->page = page; __entry->pfn = page_to_pfn(page); ), /* Flag format is based on page-types.c formatting for pagemap */ TP_printk("page=%p pfn=%lu", __entry->page, __entry->pfn) ); #endif /* _TRACE_PAGEMAP_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */ /* * 25-Jul-1998 Major changes to allow for ip chain table * * 3-Jan-2000 Named tables to allow packet selection for different uses. */ /* * Format of an IP6 firewall descriptor * * src, dst, src_mask, dst_mask are always stored in network byte order. * flags are stored in host byte order (of course). * Port numbers are stored in HOST byte order. */ #ifndef _UAPI_IP6_TABLES_H #define _UAPI_IP6_TABLES_H #include <linux/types.h> #include <linux/compiler.h> #include <linux/if.h> #include <linux/netfilter_ipv6.h> #include <linux/netfilter/x_tables.h> #ifndef __KERNEL__ #define IP6T_FUNCTION_MAXNAMELEN XT_FUNCTION_MAXNAMELEN #define IP6T_TABLE_MAXNAMELEN XT_TABLE_MAXNAMELEN #define ip6t_match xt_match #define ip6t_target xt_target #define ip6t_table xt_table #define ip6t_get_revision xt_get_revision #define ip6t_entry_match xt_entry_match #define ip6t_entry_target xt_entry_target #define ip6t_standard_target xt_standard_target #define ip6t_error_target xt_error_target #define ip6t_counters xt_counters #define IP6T_CONTINUE XT_CONTINUE #define IP6T_RETURN XT_RETURN /* Pre-iptables-1.4.0 */ #include <linux/netfilter/xt_tcpudp.h> #define ip6t_tcp xt_tcp #define ip6t_udp xt_udp #define IP6T_TCP_INV_SRCPT XT_TCP_INV_SRCPT #define IP6T_TCP_INV_DSTPT XT_TCP_INV_DSTPT #define IP6T_TCP_INV_FLAGS XT_TCP_INV_FLAGS #define IP6T_TCP_INV_OPTION XT_TCP_INV_OPTION #define IP6T_TCP_INV_MASK XT_TCP_INV_MASK #define IP6T_UDP_INV_SRCPT XT_UDP_INV_SRCPT #define IP6T_UDP_INV_DSTPT XT_UDP_INV_DSTPT #define IP6T_UDP_INV_MASK XT_UDP_INV_MASK #define ip6t_counters_info xt_counters_info #define IP6T_STANDARD_TARGET XT_STANDARD_TARGET #define IP6T_ERROR_TARGET XT_ERROR_TARGET #define IP6T_MATCH_ITERATE(e, fn, args...) \ XT_MATCH_ITERATE(struct ip6t_entry, e, fn, ## args) #define IP6T_ENTRY_ITERATE(entries, size, fn, args...) \ XT_ENTRY_ITERATE(struct ip6t_entry, entries, size, fn, ## args) #endif /* Yes, Virginia, you have to zero the padding. */ struct ip6t_ip6 { /* Source and destination IP6 addr */ struct in6_addr src, dst; /* Mask for src and dest IP6 addr */ struct in6_addr smsk, dmsk; char iniface[IFNAMSIZ], outiface[IFNAMSIZ]; unsigned char iniface_mask[IFNAMSIZ], outiface_mask[IFNAMSIZ]; /* Upper protocol number * - The allowed value is 0 (any) or protocol number of last parsable * header, which is 50 (ESP), 59 (No Next Header), 135 (MH), or * the non IPv6 extension headers. * - The protocol numbers of IPv6 extension headers except of ESP and * MH do not match any packets. * - You also need to set IP6T_FLAGS_PROTO to "flags" to check protocol. */ __u16 proto; /* TOS to match iff flags & IP6T_F_TOS */ __u8 tos; /* Flags word */ __u8 flags; /* Inverse flags */ __u8 invflags; }; /* Values for "flag" field in struct ip6t_ip6 (general ip6 structure). */ #define IP6T_F_PROTO 0x01 /* Set if rule cares about upper protocols */ #define IP6T_F_TOS 0x02 /* Match the TOS. */ #define IP6T_F_GOTO 0x04 /* Set if jump is a goto */ #define IP6T_F_MASK 0x07 /* All possible flag bits mask. */ /* Values for "inv" field in struct ip6t_ip6. */ #define IP6T_INV_VIA_IN 0x01 /* Invert the sense of IN IFACE. */ #define IP6T_INV_VIA_OUT 0x02 /* Invert the sense of OUT IFACE */ #define IP6T_INV_TOS 0x04 /* Invert the sense of TOS. */ #define IP6T_INV_SRCIP 0x08 /* Invert the sense of SRC IP. */ #define IP6T_INV_DSTIP 0x10 /* Invert the sense of DST OP. */ #define IP6T_INV_FRAG 0x20 /* Invert the sense of FRAG. */ #define IP6T_INV_PROTO XT_INV_PROTO #define IP6T_INV_MASK 0x7F /* All possible flag bits mask. */ /* This structure defines each of the firewall rules. Consists of 3 parts which are 1) general IP header stuff 2) match specific stuff 3) the target to perform if the rule matches */ struct ip6t_entry { struct ip6t_ip6 ipv6; /* Mark with fields that we care about. */ unsigned int nfcache; /* Size of ipt_entry + matches */ __u16 target_offset; /* Size of ipt_entry + matches + target */ __u16 next_offset; /* Back pointer */ unsigned int comefrom; /* Packet and byte counters. */ struct xt_counters counters; /* The matches (if any), then the target. */ unsigned char elems[0]; }; /* Standard entry */ struct ip6t_standard { struct ip6t_entry entry; struct xt_standard_target target; }; struct ip6t_error { struct ip6t_entry entry; struct xt_error_target target; }; #define IP6T_ENTRY_INIT(__size) \ { \ .target_offset = sizeof(struct ip6t_entry), \ .next_offset = (__size), \ } #define IP6T_STANDARD_INIT(__verdict) \ { \ .entry = IP6T_ENTRY_INIT(sizeof(struct ip6t_standard)), \ .target = XT_TARGET_INIT(XT_STANDARD_TARGET, \ sizeof(struct xt_standard_target)), \ .target.verdict = -(__verdict) - 1, \ } #define IP6T_ERROR_INIT \ { \ .entry = IP6T_ENTRY_INIT(sizeof(struct ip6t_error)), \ .target = XT_TARGET_INIT(XT_ERROR_TARGET, \ sizeof(struct xt_error_target)), \ .target.errorname = "ERROR", \ } /* * New IP firewall options for [gs]etsockopt at the RAW IP level. * Unlike BSD Linux inherits IP options so you don't have to use * a raw socket for this. Instead we check rights in the calls. * * ATTENTION: check linux/in6.h before adding new number here. */ #define IP6T_BASE_CTL 64 #define IP6T_SO_SET_REPLACE (IP6T_BASE_CTL) #define IP6T_SO_SET_ADD_COUNTERS (IP6T_BASE_CTL + 1) #define IP6T_SO_SET_MAX IP6T_SO_SET_ADD_COUNTERS #define IP6T_SO_GET_INFO (IP6T_BASE_CTL) #define IP6T_SO_GET_ENTRIES (IP6T_BASE_CTL + 1) #define IP6T_SO_GET_REVISION_MATCH (IP6T_BASE_CTL + 4) #define IP6T_SO_GET_REVISION_TARGET (IP6T_BASE_CTL + 5) #define IP6T_SO_GET_MAX IP6T_SO_GET_REVISION_TARGET /* obtain original address if REDIRECT'd connection */ #define IP6T_SO_ORIGINAL_DST 80 /* ICMP matching stuff */ struct ip6t_icmp { __u8 type; /* type to match */ __u8 code[2]; /* range of code */ __u8 invflags; /* Inverse flags */ }; /* Values for "inv" field for struct ipt_icmp. */ #define IP6T_ICMP_INV 0x01 /* Invert the sense of type/code test */ /* The argument to IP6T_SO_GET_INFO */ struct ip6t_getinfo { /* Which table: caller fills this in. */ char name[XT_TABLE_MAXNAMELEN]; /* Kernel fills these in. */ /* Which hook entry points are valid: bitmask */ unsigned int valid_hooks; /* Hook entry points: one per netfilter hook. */ unsigned int hook_entry[NF_INET_NUMHOOKS]; /* Underflow points. */ unsigned int underflow[NF_INET_NUMHOOKS]; /* Number of entries */ unsigned int num_entries; /* Size of entries. */ unsigned int size; }; /* The argument to IP6T_SO_SET_REPLACE. */ struct ip6t_replace { /* Which table. */ char name[XT_TABLE_MAXNAMELEN]; /* Which hook entry points are valid: bitmask. You can't change this. */ unsigned int valid_hooks; /* Number of entries */ unsigned int num_entries; /* Total size of new entries */ unsigned int size; /* Hook entry points. */ unsigned int hook_entry[NF_INET_NUMHOOKS]; /* Underflow points. */ unsigned int underflow[NF_INET_NUMHOOKS]; /* Information about old entries: */ /* Number of counters (must be equal to current number of entries). */ unsigned int num_counters; /* The old entries' counters. */ struct xt_counters __user *counters; /* The entries (hang off end: not really an array). */ struct ip6t_entry entries[0]; }; /* The argument to IP6T_SO_GET_ENTRIES. */ struct ip6t_get_entries { /* Which table: user fills this in. */ char name[XT_TABLE_MAXNAMELEN]; /* User fills this in: total entry size. */ unsigned int size; /* The entries. */ struct ip6t_entry entrytable[0]; }; /* Helper functions */ static __inline__ struct xt_entry_target * ip6t_get_target(struct ip6t_entry *e) { return (struct xt_entry_target *)((char *)e + e->target_offset); } /* * Main firewall chains definitions and global var's definitions. */ #endif /* _UAPI_IP6_TABLES_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 /* SPDX-License-Identifier: GPL-2.0-or-later */ #ifndef __SOUND_CORE_H #define __SOUND_CORE_H /* * Main header file for the ALSA driver * Copyright (c) 1994-2001 by Jaroslav Kysela <perex@perex.cz> */ #include <linux/device.h> #include <linux/sched.h> /* wake_up() */ #include <linux/mutex.h> /* struct mutex */ #include <linux/rwsem.h> /* struct rw_semaphore */ #include <linux/pm.h> /* pm_message_t */ #include <linux/stringify.h> #include <linux/printk.h> /* number of supported soundcards */ #ifdef CONFIG_SND_DYNAMIC_MINORS #define SNDRV_CARDS CONFIG_SND_MAX_CARDS #else #define SNDRV_CARDS 8 /* don't change - minor numbers */ #endif #define CONFIG_SND_MAJOR 116 /* standard configuration */ /* forward declarations */ struct pci_dev; struct module; struct completion; /* device allocation stuff */ /* type of the object used in snd_device_*() * this also defines the calling order */ enum snd_device_type { SNDRV_DEV_LOWLEVEL, SNDRV_DEV_INFO, SNDRV_DEV_BUS, SNDRV_DEV_CODEC, SNDRV_DEV_PCM, SNDRV_DEV_COMPRESS, SNDRV_DEV_RAWMIDI, SNDRV_DEV_TIMER, SNDRV_DEV_SEQUENCER, SNDRV_DEV_HWDEP, SNDRV_DEV_JACK, SNDRV_DEV_CONTROL, /* NOTE: this must be the last one */ }; enum snd_device_state { SNDRV_DEV_BUILD, SNDRV_DEV_REGISTERED, SNDRV_DEV_DISCONNECTED, }; struct snd_device; struct snd_device_ops { int (*dev_free)(struct snd_device *dev); int (*dev_register)(struct snd_device *dev); int (*dev_disconnect)(struct snd_device *dev); }; struct snd_device { struct list_head list; /* list of registered devices */ struct snd_card *card; /* card which holds this device */ enum snd_device_state state; /* state of the device */ enum snd_device_type type; /* device type */ void *device_data; /* device structure */ const struct snd_device_ops *ops; /* operations */ }; #define snd_device(n) list_entry(n, struct snd_device, list) /* main structure for soundcard */ struct snd_card { int number; /* number of soundcard (index to snd_cards) */ char id[16]; /* id string of this card */ char driver[16]; /* driver name */ char shortname[32]; /* short name of this soundcard */ char longname[80]; /* name of this soundcard */ char irq_descr[32]; /* Interrupt description */ char mixername[80]; /* mixer name */ char components[128]; /* card components delimited with space */ struct module *module; /* top-level module */ void *private_data; /* private data for soundcard */ void (*private_free) (struct snd_card *card); /* callback for freeing of private data */ struct list_head devices; /* devices */ struct device ctl_dev; /* control device */ unsigned int last_numid; /* last used numeric ID */ struct rw_semaphore controls_rwsem; /* controls list lock */ rwlock_t ctl_files_rwlock; /* ctl_files list lock */ int controls_count; /* count of all controls */ int user_ctl_count; /* count of all user controls */ struct list_head controls; /* all controls for this card */ struct list_head ctl_files; /* active control files */ struct snd_info_entry *proc_root; /* root for soundcard specific files */ struct proc_dir_entry *proc_root_link; /* number link to real id */ struct list_head files_list; /* all files associated to this card */ struct snd_shutdown_f_ops *s_f_ops; /* file operations in the shutdown state */ spinlock_t files_lock; /* lock the files for this card */ int shutdown; /* this card is going down */ struct completion *release_completion; struct device *dev; /* device assigned to this card */ struct device card_dev; /* cardX object for sysfs */ const struct attribute_group *dev_groups[4]; /* assigned sysfs attr */ bool registered; /* card_dev is registered? */ int sync_irq; /* assigned irq, used for PCM sync */ wait_queue_head_t remove_sleep; size_t total_pcm_alloc_bytes; /* total amount of allocated buffers */ struct mutex memory_mutex; /* protection for the above */ #ifdef CONFIG_PM unsigned int power_state; /* power state */ wait_queue_head_t power_sleep; #endif #if IS_ENABLED(CONFIG_SND_MIXER_OSS) struct snd_mixer_oss *mixer_oss; int mixer_oss_change_count; #endif }; #define dev_to_snd_card(p) container_of(p, struct snd_card, card_dev) #ifdef CONFIG_PM static inline unsigned int snd_power_get_state(struct snd_card *card) { return card->power_state; } static inline void snd_power_change_state(struct snd_card *card, unsigned int state) { card->power_state = state; wake_up(&card->power_sleep); } /* init.c */ int snd_power_wait(struct snd_card *card, unsigned int power_state); #else /* ! CONFIG_PM */ static inline int snd_power_wait(struct snd_card *card, unsigned int state) { return 0; } #define snd_power_get_state(card) ({ (void)(card); SNDRV_CTL_POWER_D0; }) #define snd_power_change_state(card, state) do { (void)(card); } while (0) #endif /* CONFIG_PM */ struct snd_minor { int type; /* SNDRV_DEVICE_TYPE_XXX */ int card; /* card number */ int device; /* device number */ const struct file_operations *f_ops; /* file operations */ void *private_data; /* private data for f_ops->open */ struct device *dev; /* device for sysfs */ struct snd_card *card_ptr; /* assigned card instance */ }; /* return a device pointer linked to each sound device as a parent */ static inline struct device *snd_card_get_device_link(struct snd_card *card) { return card ? &card->card_dev : NULL; } /* sound.c */ extern int snd_major; extern int snd_ecards_limit; extern struct class *sound_class; void snd_request_card(int card); void snd_device_initialize(struct device *dev, struct snd_card *card); int snd_register_device(int type, struct snd_card *card, int dev, const struct file_operations *f_ops, void *private_data, struct device *device); int snd_unregister_device(struct device *dev); void *snd_lookup_minor_data(unsigned int minor, int type); #ifdef CONFIG_SND_OSSEMUL int snd_register_oss_device(int type, struct snd_card *card, int dev, const struct file_operations *f_ops, void *private_data); int snd_unregister_oss_device(int type, struct snd_card *card, int dev); void *snd_lookup_oss_minor_data(unsigned int minor, int type); #endif int snd_minor_info_init(void); /* sound_oss.c */ #ifdef CONFIG_SND_OSSEMUL int snd_minor_info_oss_init(void); #else static inline int snd_minor_info_oss_init(void) { return 0; } #endif /* memory.c */ int copy_to_user_fromio(void __user *dst, const volatile void __iomem *src, size_t count); int copy_from_user_toio(volatile void __iomem *dst, const void __user *src, size_t count); /* init.c */ int snd_card_locked(int card); #if IS_ENABLED(CONFIG_SND_MIXER_OSS) #define SND_MIXER_OSS_NOTIFY_REGISTER 0 #define SND_MIXER_OSS_NOTIFY_DISCONNECT 1 #define SND_MIXER_OSS_NOTIFY_FREE 2 extern int (*snd_mixer_oss_notify_callback)(struct snd_card *card, int cmd); #endif int snd_card_new(struct device *parent, int idx, const char *xid, struct module *module, int extra_size, struct snd_card **card_ret); int snd_card_disconnect(struct snd_card *card); void snd_card_disconnect_sync(struct snd_card *card); int snd_card_free(struct snd_card *card); int snd_card_free_when_closed(struct snd_card *card); void snd_card_set_id(struct snd_card *card, const char *id); int snd_card_register(struct snd_card *card); int snd_card_info_init(void); int snd_card_add_dev_attr(struct snd_card *card, const struct attribute_group *group); int snd_component_add(struct snd_card *card, const char *component); int snd_card_file_add(struct snd_card *card, struct file *file); int snd_card_file_remove(struct snd_card *card, struct file *file); struct snd_card *snd_card_ref(int card); /** * snd_card_unref - Unreference the card object * @card: the card object to unreference * * Call this function for the card object that was obtained via snd_card_ref() * or snd_lookup_minor_data(). */ static inline void snd_card_unref(struct snd_card *card) { put_device(&card->card_dev); } #define snd_card_set_dev(card, devptr) ((card)->dev = (devptr)) /* device.c */ int snd_device_new(struct snd_card *card, enum snd_device_type type, void *device_data, const struct snd_device_ops *ops); int snd_device_register(struct snd_card *card, void *device_data); int snd_device_register_all(struct snd_card *card); void snd_device_disconnect(struct snd_card *card, void *device_data); void snd_device_disconnect_all(struct snd_card *card); void snd_device_free(struct snd_card *card, void *device_data); void snd_device_free_all(struct snd_card *card); int snd_device_get_state(struct snd_card *card, void *device_data); /* isadma.c */ #ifdef CONFIG_ISA_DMA_API #define DMA_MODE_NO_ENABLE 0x0100 void snd_dma_program(unsigned long dma, unsigned long addr, unsigned int size, unsigned short mode); void snd_dma_disable(unsigned long dma); unsigned int snd_dma_pointer(unsigned long dma, unsigned int size); #endif /* misc.c */ struct resource; void release_and_free_resource(struct resource *res); /* --- */ /* sound printk debug levels */ enum { SND_PR_ALWAYS, SND_PR_DEBUG, SND_PR_VERBOSE, }; #if defined(CONFIG_SND_DEBUG) || defined(CONFIG_SND_VERBOSE_PRINTK) __printf(4, 5) void __snd_printk(unsigned int level, const char *file, int line, const char *format, ...); #else #define __snd_printk(level, file, line, format, ...) \ printk(format, ##__VA_ARGS__) #endif /** * snd_printk - printk wrapper * @fmt: format string * * Works like printk() but prints the file and the line of the caller * when configured with CONFIG_SND_VERBOSE_PRINTK. */ #define snd_printk(fmt, ...) \ __snd_printk(0, __FILE__, __LINE__, fmt, ##__VA_ARGS__) #ifdef CONFIG_SND_DEBUG /** * snd_printd - debug printk * @fmt: format string * * Works like snd_printk() for debugging purposes. * Ignored when CONFIG_SND_DEBUG is not set. */ #define snd_printd(fmt, ...) \ __snd_printk(1, __FILE__, __LINE__, fmt, ##__VA_ARGS__) #define _snd_printd(level, fmt, ...) \ __snd_printk(level, __FILE__, __LINE__, fmt, ##__VA_ARGS__) /** * snd_BUG - give a BUG warning message and stack trace * * Calls WARN() if CONFIG_SND_DEBUG is set. * Ignored when CONFIG_SND_DEBUG is not set. */ #define snd_BUG() WARN(1, "BUG?\n") /** * snd_printd_ratelimit - Suppress high rates of output when * CONFIG_SND_DEBUG is enabled. */ #define snd_printd_ratelimit() printk_ratelimit() /** * snd_BUG_ON - debugging check macro * @cond: condition to evaluate * * Has the same behavior as WARN_ON when CONFIG_SND_DEBUG is set, * otherwise just evaluates the conditional and returns the value. */ #define snd_BUG_ON(cond) WARN_ON((cond)) #else /* !CONFIG_SND_DEBUG */ __printf(1, 2) static inline void snd_printd(const char *format, ...) {} __printf(2, 3) static inline void _snd_printd(int level, const char *format, ...) {} #define snd_BUG() do { } while (0) #define snd_BUG_ON(condition) ({ \ int __ret_warn_on = !!(condition); \ unlikely(__ret_warn_on); \ }) static inline bool snd_printd_ratelimit(void) { return false; } #endif /* CONFIG_SND_DEBUG */ #ifdef CONFIG_SND_DEBUG_VERBOSE /** * snd_printdd - debug printk * @format: format string * * Works like snd_printk() for debugging purposes. * Ignored when CONFIG_SND_DEBUG_VERBOSE is not set. */ #define snd_printdd(format, ...) \ __snd_printk(2, __FILE__, __LINE__, format, ##__VA_ARGS__) #else __printf(1, 2) static inline void snd_printdd(const char *format, ...) {} #endif #define SNDRV_OSS_VERSION ((3<<16)|(8<<8)|(1<<4)|(0)) /* 3.8.1a */ /* for easier backward-porting */ #if IS_ENABLED(CONFIG_GAMEPORT) #define gameport_set_dev_parent(gp,xdev) ((gp)->dev.parent = (xdev)) #define gameport_set_port_data(gp,r) ((gp)->port_data = (r)) #define gameport_get_port_data(gp) (gp)->port_data #endif /* PCI quirk list helper */ struct snd_pci_quirk { unsigned short subvendor; /* PCI subvendor ID */ unsigned short subdevice; /* PCI subdevice ID */ unsigned short subdevice_mask; /* bitmask to match */ int value; /* value */ #ifdef CONFIG_SND_DEBUG_VERBOSE const char *name; /* name of the device (optional) */ #endif }; #define _SND_PCI_QUIRK_ID_MASK(vend, mask, dev) \ .subvendor = (vend), .subdevice = (dev), .subdevice_mask = (mask) #define _SND_PCI_QUIRK_ID(vend, dev) \ _SND_PCI_QUIRK_ID_MASK(vend, 0xffff, dev) #define SND_PCI_QUIRK_ID(vend,dev) {_SND_PCI_QUIRK_ID(vend, dev)} #ifdef CONFIG_SND_DEBUG_VERBOSE #define SND_PCI_QUIRK(vend,dev,xname,val) \ {_SND_PCI_QUIRK_ID(vend, dev), .value = (val), .name = (xname)} #define SND_PCI_QUIRK_VENDOR(vend, xname, val) \ {_SND_PCI_QUIRK_ID_MASK(vend, 0, 0), .value = (val), .name = (xname)} #define SND_PCI_QUIRK_MASK(vend, mask, dev, xname, val) \ {_SND_PCI_QUIRK_ID_MASK(vend, mask, dev), \ .value = (val), .name = (xname)} #define snd_pci_quirk_name(q) ((q)->name) #else #define SND_PCI_QUIRK(vend,dev,xname,val) \ {_SND_PCI_QUIRK_ID(vend, dev), .value = (val)} #define SND_PCI_QUIRK_MASK(vend, mask, dev, xname, val) \ {_SND_PCI_QUIRK_ID_MASK(vend, mask, dev), .value = (val)} #define SND_PCI_QUIRK_VENDOR(vend, xname, val) \ {_SND_PCI_QUIRK_ID_MASK(vend, 0, 0), .value = (val)} #define snd_pci_quirk_name(q) "" #endif #ifdef CONFIG_PCI const struct snd_pci_quirk * snd_pci_quirk_lookup(struct pci_dev *pci, const struct snd_pci_quirk *list); const struct snd_pci_quirk * snd_pci_quirk_lookup_id(u16 vendor, u16 device, const struct snd_pci_quirk *list); #else static inline const struct snd_pci_quirk * snd_pci_quirk_lookup(struct pci_dev *pci, const struct snd_pci_quirk *list) { return NULL; } static inline const struct snd_pci_quirk * snd_pci_quirk_lookup_id(u16 vendor, u16 device, const struct snd_pci_quirk *list) { return NULL; } #endif #endif /* __SOUND_CORE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_PIPE_FS_I_H #define _LINUX_PIPE_FS_I_H #define PIPE_DEF_BUFFERS 16 #define PIPE_BUF_FLAG_LRU 0x01 /* page is on the LRU */ #define PIPE_BUF_FLAG_ATOMIC 0x02 /* was atomically mapped */ #define PIPE_BUF_FLAG_GIFT 0x04 /* page is a gift */ #define PIPE_BUF_FLAG_PACKET 0x08 /* read() as a packet */ #define PIPE_BUF_FLAG_CAN_MERGE 0x10 /* can merge buffers */ #define PIPE_BUF_FLAG_WHOLE 0x20 /* read() must return entire buffer or error */ #ifdef CONFIG_WATCH_QUEUE #define PIPE_BUF_FLAG_LOSS 0x40 /* Message loss happened after this buffer */ #endif /** * struct pipe_buffer - a linux kernel pipe buffer * @page: the page containing the data for the pipe buffer * @offset: offset of data inside the @page * @len: length of data inside the @page * @ops: operations associated with this buffer. See @pipe_buf_operations. * @flags: pipe buffer flags. See above. * @private: private data owned by the ops. **/ struct pipe_buffer { struct page *page; unsigned int offset, len; const struct pipe_buf_operations *ops; unsigned int flags; unsigned long private; }; /** * struct pipe_inode_info - a linux kernel pipe * @mutex: mutex protecting the whole thing * @rd_wait: reader wait point in case of empty pipe * @wr_wait: writer wait point in case of full pipe * @head: The point of buffer production * @tail: The point of buffer consumption * @note_loss: The next read() should insert a data-lost message * @max_usage: The maximum number of slots that may be used in the ring * @ring_size: total number of buffers (should be a power of 2) * @nr_accounted: The amount this pipe accounts for in user->pipe_bufs * @tmp_page: cached released page * @readers: number of current readers of this pipe * @writers: number of current writers of this pipe * @files: number of struct file referring this pipe (protected by ->i_lock) * @r_counter: reader counter * @w_counter: writer counter * @poll_usage: is this pipe used for epoll, which has crazy wakeups? * @fasync_readers: reader side fasync * @fasync_writers: writer side fasync * @bufs: the circular array of pipe buffers * @user: the user who created this pipe * @watch_queue: If this pipe is a watch_queue, this is the stuff for that **/ struct pipe_inode_info { struct mutex mutex; wait_queue_head_t rd_wait, wr_wait; unsigned int head; unsigned int tail; unsigned int max_usage; unsigned int ring_size; #ifdef CONFIG_WATCH_QUEUE bool note_loss; #endif unsigned int nr_accounted; unsigned int readers; unsigned int writers; unsigned int files; unsigned int r_counter; unsigned int w_counter; unsigned int poll_usage; struct page *tmp_page; struct fasync_struct *fasync_readers; struct fasync_struct *fasync_writers; struct pipe_buffer *bufs; struct user_struct *user; #ifdef CONFIG_WATCH_QUEUE struct watch_queue *watch_queue; #endif }; /* * Note on the nesting of these functions: * * ->confirm() * ->try_steal() * * That is, ->try_steal() must be called on a confirmed buffer. See below for * the meaning of each operation. Also see the kerneldoc in fs/pipe.c for the * pipe and generic variants of these hooks. */ struct pipe_buf_operations { /* * ->confirm() verifies that the data in the pipe buffer is there * and that the contents are good. If the pages in the pipe belong * to a file system, we may need to wait for IO completion in this * hook. Returns 0 for good, or a negative error value in case of * error. If not present all pages are considered good. */ int (*confirm)(struct pipe_inode_info *, struct pipe_buffer *); /* * When the contents of this pipe buffer has been completely * consumed by a reader, ->release() is called. */ void (*release)(struct pipe_inode_info *, struct pipe_buffer *); /* * Attempt to take ownership of the pipe buffer and its contents. * ->try_steal() returns %true for success, in which case the contents * of the pipe (the buf->page) is locked and now completely owned by the * caller. The page may then be transferred to a different mapping, the * most often used case is insertion into different file address space * cache. */ bool (*try_steal)(struct pipe_inode_info *, struct pipe_buffer *); /* * Get a reference to the pipe buffer. */ bool (*get)(struct pipe_inode_info *, struct pipe_buffer *); }; /** * pipe_empty - Return true if the pipe is empty * @head: The pipe ring head pointer * @tail: The pipe ring tail pointer */ static inline bool pipe_empty(unsigned int head, unsigned int tail) { return head == tail; } /** * pipe_occupancy - Return number of slots used in the pipe * @head: The pipe ring head pointer * @tail: The pipe ring tail pointer */ static inline unsigned int pipe_occupancy(unsigned int head, unsigned int tail) { return head - tail; } /** * pipe_full - Return true if the pipe is full * @head: The pipe ring head pointer * @tail: The pipe ring tail pointer * @limit: The maximum amount of slots available. */ static inline bool pipe_full(unsigned int head, unsigned int tail, unsigned int limit) { return pipe_occupancy(head, tail) >= limit; } /** * pipe_space_for_user - Return number of slots available to userspace * @head: The pipe ring head pointer * @tail: The pipe ring tail pointer * @pipe: The pipe info structure */ static inline unsigned int pipe_space_for_user(unsigned int head, unsigned int tail, struct pipe_inode_info *pipe) { unsigned int p_occupancy, p_space; p_occupancy = pipe_occupancy(head, tail); if (p_occupancy >= pipe->max_usage) return 0; p_space = pipe->ring_size - p_occupancy; if (p_space > pipe->max_usage) p_space = pipe->max_usage; return p_space; } /** * pipe_buf_get - get a reference to a pipe_buffer * @pipe: the pipe that the buffer belongs to * @buf: the buffer to get a reference to * * Return: %true if the reference was successfully obtained. */ static inline __must_check bool pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf) { return buf->ops->get(pipe, buf); } /** * pipe_buf_release - put a reference to a pipe_buffer * @pipe: the pipe that the buffer belongs to * @buf: the buffer to put a reference to */ static inline void pipe_buf_release(struct pipe_inode_info *pipe, struct pipe_buffer *buf) { const struct pipe_buf_operations *ops = buf->ops; buf->ops = NULL; ops->release(pipe, buf); } /** * pipe_buf_confirm - verify contents of the pipe buffer * @pipe: the pipe that the buffer belongs to * @buf: the buffer to confirm */ static inline int pipe_buf_confirm(struct pipe_inode_info *pipe, struct pipe_buffer *buf) { if (!buf->ops->confirm) return 0; return buf->ops->confirm(pipe, buf); } /** * pipe_buf_try_steal - attempt to take ownership of a pipe_buffer * @pipe: the pipe that the buffer belongs to * @buf: the buffer to attempt to steal */ static inline bool pipe_buf_try_steal(struct pipe_inode_info *pipe, struct pipe_buffer *buf) { if (!buf->ops->try_steal) return false; return buf->ops->try_steal(pipe, buf); } /* Differs from PIPE_BUF in that PIPE_SIZE is the length of the actual memory allocation, whereas PIPE_BUF makes atomicity guarantees. */ #define PIPE_SIZE PAGE_SIZE /* Pipe lock and unlock operations */ void pipe_lock(struct pipe_inode_info *); void pipe_unlock(struct pipe_inode_info *); void pipe_double_lock(struct pipe_inode_info *, struct pipe_inode_info *); extern unsigned int pipe_max_size; extern unsigned long pipe_user_pages_hard; extern unsigned long pipe_user_pages_soft; /* Wait for a pipe to be readable/writable while dropping the pipe lock */ void pipe_wait_readable(struct pipe_inode_info *); void pipe_wait_writable(struct pipe_inode_info *); struct pipe_inode_info *alloc_pipe_info(void); void free_pipe_info(struct pipe_inode_info *); /* Generic pipe buffer ops functions */ bool generic_pipe_buf_get(struct pipe_inode_info *, struct pipe_buffer *); bool generic_pipe_buf_try_steal(struct pipe_inode_info *, struct pipe_buffer *); void generic_pipe_buf_release(struct pipe_inode_info *, struct pipe_buffer *); extern const struct pipe_buf_operations nosteal_pipe_buf_ops; #ifdef CONFIG_WATCH_QUEUE unsigned long account_pipe_buffers(struct user_struct *user, unsigned long old, unsigned long new); bool too_many_pipe_buffers_soft(unsigned long user_bufs); bool too_many_pipe_buffers_hard(unsigned long user_bufs); bool pipe_is_unprivileged_user(void); #endif /* for F_SETPIPE_SZ and F_GETPIPE_SZ */ #ifdef CONFIG_WATCH_QUEUE int pipe_resize_ring(struct pipe_inode_info *pipe, unsigned int nr_slots); #endif long pipe_fcntl(struct file *, unsigned int, unsigned long arg); struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice); int create_pipe_files(struct file **, int); unsigned int round_pipe_size(unsigned long size); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __ASM_GENERIC_PGALLOC_H #define __ASM_GENERIC_PGALLOC_H #ifdef CONFIG_MMU #define GFP_PGTABLE_KERNEL (GFP_KERNEL | __GFP_ZERO) #define GFP_PGTABLE_USER (GFP_PGTABLE_KERNEL | __GFP_ACCOUNT) /** * __pte_alloc_one_kernel - allocate a page for PTE-level kernel page table * @mm: the mm_struct of the current context * * This function is intended for architectures that need * anything beyond simple page allocation. * * Return: pointer to the allocated memory or %NULL on error */ static inline pte_t *__pte_alloc_one_kernel(struct mm_struct *mm) { return (pte_t *)__get_free_page(GFP_PGTABLE_KERNEL); } #ifndef __HAVE_ARCH_PTE_ALLOC_ONE_KERNEL /** * pte_alloc_one_kernel - allocate a page for PTE-level kernel page table * @mm: the mm_struct of the current context * * Return: pointer to the allocated memory or %NULL on error */ static inline pte_t *pte_alloc_one_kernel(struct mm_struct *mm) { return __pte_alloc_one_kernel(mm); } #endif /** * pte_free_kernel - free PTE-level kernel page table page * @mm: the mm_struct of the current context * @pte: pointer to the memory containing the page table */ static inline void pte_free_kernel(struct mm_struct *mm, pte_t *pte) { free_page((unsigned long)pte); } /** * __pte_alloc_one - allocate a page for PTE-level user page table * @mm: the mm_struct of the current context * @gfp: GFP flags to use for the allocation * * Allocates a page and runs the pgtable_pte_page_ctor(). * * This function is intended for architectures that need * anything beyond simple page allocation or must have custom GFP flags. * * Return: `struct page` initialized as page table or %NULL on error */ static inline pgtable_t __pte_alloc_one(struct mm_struct *mm, gfp_t gfp) { struct page *pte; pte = alloc_page(gfp); if (!pte) return NULL; if (!pgtable_pte_page_ctor(pte)) { __free_page(pte); return NULL; } return pte; } #ifndef __HAVE_ARCH_PTE_ALLOC_ONE /** * pte_alloc_one - allocate a page for PTE-level user page table * @mm: the mm_struct of the current context * * Allocates a page and runs the pgtable_pte_page_ctor(). * * Return: `struct page` initialized as page table or %NULL on error */ static inline pgtable_t pte_alloc_one(struct mm_struct *mm) { return __pte_alloc_one(mm, GFP_PGTABLE_USER); } #endif /* * Should really implement gc for free page table pages. This could be * done with a reference count in struct page. */ /** * pte_free - free PTE-level user page table page * @mm: the mm_struct of the current context * @pte_page: the `struct page` representing the page table */ static inline void pte_free(struct mm_struct *mm, struct page *pte_page) { pgtable_pte_page_dtor(pte_page); __free_page(pte_page); } #if CONFIG_PGTABLE_LEVELS > 2 #ifndef __HAVE_ARCH_PMD_ALLOC_ONE /** * pmd_alloc_one - allocate a page for PMD-level page table * @mm: the mm_struct of the current context * * Allocates a page and runs the pgtable_pmd_page_ctor(). * Allocations use %GFP_PGTABLE_USER in user context and * %GFP_PGTABLE_KERNEL in kernel context. * * Return: pointer to the allocated memory or %NULL on error */ static inline pmd_t *pmd_alloc_one(struct mm_struct *mm, unsigned long addr) { struct page *page; gfp_t gfp = GFP_PGTABLE_USER; if (mm == &init_mm) gfp = GFP_PGTABLE_KERNEL; page = alloc_pages(gfp, 0); if (!page) return NULL; if (!pgtable_pmd_page_ctor(page)) { __free_pages(page, 0); return NULL; } return (pmd_t *)page_address(page); } #endif #ifndef __HAVE_ARCH_PMD_FREE static inline void pmd_free(struct mm_struct *mm, pmd_t *pmd) { BUG_ON((unsigned long)pmd & (PAGE_SIZE-1)); pgtable_pmd_page_dtor(virt_to_page(pmd)); free_page((unsigned long)pmd); } #endif #endif /* CONFIG_PGTABLE_LEVELS > 2 */ #if CONFIG_PGTABLE_LEVELS > 3 #ifndef __HAVE_ARCH_PUD_ALLOC_ONE /** * pud_alloc_one - allocate a page for PUD-level page table * @mm: the mm_struct of the current context * * Allocates a page using %GFP_PGTABLE_USER for user context and * %GFP_PGTABLE_KERNEL for kernel context. * * Return: pointer to the allocated memory or %NULL on error */ static inline pud_t *pud_alloc_one(struct mm_struct *mm, unsigned long addr) { gfp_t gfp = GFP_PGTABLE_USER; if (mm == &init_mm) gfp = GFP_PGTABLE_KERNEL; return (pud_t *)get_zeroed_page(gfp); } #endif static inline void pud_free(struct mm_struct *mm, pud_t *pud) { BUG_ON((unsigned long)pud & (PAGE_SIZE-1)); free_page((unsigned long)pud); } #endif /* CONFIG_PGTABLE_LEVELS > 3 */ #ifndef __HAVE_ARCH_PGD_FREE static inline void pgd_free(struct mm_struct *mm, pgd_t *pgd) { free_page((unsigned long)pgd); } #endif #endif /* CONFIG_MMU */ #endif /* __ASM_GENERIC_PGALLOC_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 /* BlueZ - Bluetooth protocol stack for Linux Copyright (C) 2000-2001 Qualcomm Incorporated Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2 as published by the Free Software Foundation; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS SOFTWARE IS DISCLAIMED. */ #ifndef __BLUETOOTH_H #define __BLUETOOTH_H #include <linux/poll.h> #include <net/sock.h> #include <linux/seq_file.h> #define BT_SUBSYS_VERSION 2 #define BT_SUBSYS_REVISION 22 #ifndef AF_BLUETOOTH #define AF_BLUETOOTH 31 #define PF_BLUETOOTH AF_BLUETOOTH #endif /* Bluetooth versions */ #define BLUETOOTH_VER_1_1 1 #define BLUETOOTH_VER_1_2 2 #define BLUETOOTH_VER_2_0 3 #define BLUETOOTH_VER_2_1 4 #define BLUETOOTH_VER_4_0 6 /* Reserv for core and drivers use */ #define BT_SKB_RESERVE 8 #define BTPROTO_L2CAP 0 #define BTPROTO_HCI 1 #define BTPROTO_SCO 2 #define BTPROTO_RFCOMM 3 #define BTPROTO_BNEP 4 #define BTPROTO_CMTP 5 #define BTPROTO_HIDP 6 #define BTPROTO_AVDTP 7 #define SOL_HCI 0 #define SOL_L2CAP 6 #define SOL_SCO 17 #define SOL_RFCOMM 18 #define BT_SECURITY 4 struct bt_security { __u8 level; __u8 key_size; }; #define BT_SECURITY_SDP 0 #define BT_SECURITY_LOW 1 #define BT_SECURITY_MEDIUM 2 #define BT_SECURITY_HIGH 3 #define BT_SECURITY_FIPS 4 #define BT_DEFER_SETUP 7 #define BT_FLUSHABLE 8 #define BT_FLUSHABLE_OFF 0 #define BT_FLUSHABLE_ON 1 #define BT_POWER 9 struct bt_power { __u8 force_active; }; #define BT_POWER_FORCE_ACTIVE_OFF 0 #define BT_POWER_FORCE_ACTIVE_ON 1 #define BT_CHANNEL_POLICY 10 /* BR/EDR only (default policy) * AMP controllers cannot be used. * Channel move requests from the remote device are denied. * If the L2CAP channel is currently using AMP, move the channel to BR/EDR. */ #define BT_CHANNEL_POLICY_BREDR_ONLY 0 /* BR/EDR Preferred * Allow use of AMP controllers. * If the L2CAP channel is currently on AMP, move it to BR/EDR. * Channel move requests from the remote device are allowed. */ #define BT_CHANNEL_POLICY_BREDR_PREFERRED 1 /* AMP Preferred * Allow use of AMP controllers * If the L2CAP channel is currently on BR/EDR and AMP controller * resources are available, initiate a channel move to AMP. * Channel move requests from the remote device are allowed. * If the L2CAP socket has not been connected yet, try to create * and configure the channel directly on an AMP controller rather * than BR/EDR. */ #define BT_CHANNEL_POLICY_AMP_PREFERRED 2 #define BT_VOICE 11 struct bt_voice { __u16 setting; }; #define BT_VOICE_TRANSPARENT 0x0003 #define BT_VOICE_CVSD_16BIT 0x0060 #define BT_SNDMTU 12 #define BT_RCVMTU 13 #define BT_PHY 14 #define BT_PHY_BR_1M_1SLOT 0x00000001 #define BT_PHY_BR_1M_3SLOT 0x00000002 #define BT_PHY_BR_1M_5SLOT 0x00000004 #define BT_PHY_EDR_2M_1SLOT 0x00000008 #define BT_PHY_EDR_2M_3SLOT 0x00000010 #define BT_PHY_EDR_2M_5SLOT 0x00000020 #define BT_PHY_EDR_3M_1SLOT 0x00000040 #define BT_PHY_EDR_3M_3SLOT 0x00000080 #define BT_PHY_EDR_3M_5SLOT 0x00000100 #define BT_PHY_LE_1M_TX 0x00000200 #define BT_PHY_LE_1M_RX 0x00000400 #define BT_PHY_LE_2M_TX 0x00000800 #define BT_PHY_LE_2M_RX 0x00001000 #define BT_PHY_LE_CODED_TX 0x00002000 #define BT_PHY_LE_CODED_RX 0x00004000 #define BT_MODE 15 #define BT_MODE_BASIC 0x00 #define BT_MODE_ERTM 0x01 #define BT_MODE_STREAMING 0x02 #define BT_MODE_LE_FLOWCTL 0x03 #define BT_MODE_EXT_FLOWCTL 0x04 #define BT_PKT_STATUS 16 #define BT_SCM_PKT_STATUS 0x03 __printf(1, 2) void bt_info(const char *fmt, ...); __printf(1, 2) void bt_warn(const char *fmt, ...); __printf(1, 2) void bt_err(const char *fmt, ...); #if IS_ENABLED(CONFIG_BT_FEATURE_DEBUG) void bt_dbg_set(bool enable); bool bt_dbg_get(void); __printf(1, 2) void bt_dbg(const char *fmt, ...); #endif __printf(1, 2) void bt_warn_ratelimited(const char *fmt, ...); __printf(1, 2) void bt_err_ratelimited(const char *fmt, ...); #define BT_INFO(fmt, ...) bt_info(fmt "\n", ##__VA_ARGS__) #define BT_WARN(fmt, ...) bt_warn(fmt "\n", ##__VA_ARGS__) #define BT_ERR(fmt, ...) bt_err(fmt "\n", ##__VA_ARGS__) #if IS_ENABLED(CONFIG_BT_FEATURE_DEBUG) #define BT_DBG(fmt, ...) bt_dbg(fmt "\n", ##__VA_ARGS__) #else #define BT_DBG(fmt, ...) pr_debug(fmt "\n", ##__VA_ARGS__) #endif #define bt_dev_info(hdev, fmt, ...) \ BT_INFO("%s: " fmt, (hdev)->name, ##__VA_ARGS__) #define bt_dev_warn(hdev, fmt, ...) \ BT_WARN("%s: " fmt, (hdev)->name, ##__VA_ARGS__) #define bt_dev_err(hdev, fmt, ...) \ BT_ERR("%s: " fmt, (hdev)->name, ##__VA_ARGS__) #define bt_dev_dbg(hdev, fmt, ...) \ BT_DBG("%s: " fmt, (hdev)->name, ##__VA_ARGS__) #define bt_dev_warn_ratelimited(hdev, fmt, ...) \ bt_warn_ratelimited("%s: " fmt, (hdev)->name, ##__VA_ARGS__) #define bt_dev_err_ratelimited(hdev, fmt, ...) \ bt_err_ratelimited("%s: " fmt, (hdev)->name, ##__VA_ARGS__) /* Connection and socket states */ enum { BT_CONNECTED = 1, /* Equal to TCP_ESTABLISHED to make net code happy */ BT_OPEN, BT_BOUND, BT_LISTEN, BT_CONNECT, BT_CONNECT2, BT_CONFIG, BT_DISCONN, BT_CLOSED }; /* If unused will be removed by compiler */ static inline const char *state_to_string(int state) { switch (state) { case BT_CONNECTED: return "BT_CONNECTED"; case BT_OPEN: return "BT_OPEN"; case BT_BOUND: return "BT_BOUND"; case BT_LISTEN: return "BT_LISTEN"; case BT_CONNECT: return "BT_CONNECT"; case BT_CONNECT2: return "BT_CONNECT2"; case BT_CONFIG: return "BT_CONFIG"; case BT_DISCONN: return "BT_DISCONN"; case BT_CLOSED: return "BT_CLOSED"; } return "invalid state"; } /* BD Address */ typedef struct { __u8 b[6]; } __packed bdaddr_t; /* BD Address type */ #define BDADDR_BREDR 0x00 #define BDADDR_LE_PUBLIC 0x01 #define BDADDR_LE_RANDOM 0x02 static inline bool bdaddr_type_is_valid(u8 type) { switch (type) { case BDADDR_BREDR: case BDADDR_LE_PUBLIC: case BDADDR_LE_RANDOM: return true; } return false; } static inline bool bdaddr_type_is_le(u8 type) { switch (type) { case BDADDR_LE_PUBLIC: case BDADDR_LE_RANDOM: return true; } return false; } #define BDADDR_ANY (&(bdaddr_t) {{0, 0, 0, 0, 0, 0}}) #define BDADDR_NONE (&(bdaddr_t) {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff}}) /* Copy, swap, convert BD Address */ static inline int bacmp(const bdaddr_t *ba1, const bdaddr_t *ba2) { return memcmp(ba1, ba2, sizeof(bdaddr_t)); } static inline void bacpy(bdaddr_t *dst, const bdaddr_t *src) { memcpy(dst, src, sizeof(bdaddr_t)); } void baswap(bdaddr_t *dst, const bdaddr_t *src); /* Common socket structures and functions */ #define bt_sk(__sk) ((struct bt_sock *) __sk) struct bt_sock { struct sock sk; struct list_head accept_q; struct sock *parent; unsigned long flags; void (*skb_msg_name)(struct sk_buff *, void *, int *); void (*skb_put_cmsg)(struct sk_buff *, struct msghdr *, struct sock *); }; enum { BT_SK_DEFER_SETUP, BT_SK_SUSPEND, }; struct bt_sock_list { struct hlist_head head; rwlock_t lock; #ifdef CONFIG_PROC_FS int (* custom_seq_show)(struct seq_file *, void *); #endif }; int bt_sock_register(int proto, const struct net_proto_family *ops); void bt_sock_unregister(int proto); void bt_sock_link(struct bt_sock_list *l, struct sock *s); void bt_sock_unlink(struct bt_sock_list *l, struct sock *s); int bt_sock_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, int flags); int bt_sock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, int flags); __poll_t bt_sock_poll(struct file *file, struct socket *sock, poll_table *wait); int bt_sock_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg); int bt_sock_wait_state(struct sock *sk, int state, unsigned long timeo); int bt_sock_wait_ready(struct sock *sk, unsigned long flags); void bt_accept_enqueue(struct sock *parent, struct sock *sk, bool bh); void bt_accept_unlink(struct sock *sk); struct sock *bt_accept_dequeue(struct sock *parent, struct socket *newsock); /* Skb helpers */ struct l2cap_ctrl { u8 sframe:1, poll:1, final:1, fcs:1, sar:2, super:2; u16 reqseq; u16 txseq; u8 retries; __le16 psm; bdaddr_t bdaddr; struct l2cap_chan *chan; }; struct sco_ctrl { u8 pkt_status; }; struct hci_dev; typedef void (*hci_req_complete_t)(struct hci_dev *hdev, u8 status, u16 opcode); typedef void (*hci_req_complete_skb_t)(struct hci_dev *hdev, u8 status, u16 opcode, struct sk_buff *skb); #define HCI_REQ_START BIT(0) #define HCI_REQ_SKB BIT(1) struct hci_ctrl { u16 opcode; u8 req_flags; u8 req_event; union { hci_req_complete_t req_complete; hci_req_complete_skb_t req_complete_skb; }; }; struct bt_skb_cb { u8 pkt_type; u8 force_active; u16 expect; u8 incoming:1; union { struct l2cap_ctrl l2cap; struct sco_ctrl sco; struct hci_ctrl hci; }; }; #define bt_cb(skb) ((struct bt_skb_cb *)((skb)->cb)) #define hci_skb_pkt_type(skb) bt_cb((skb))->pkt_type #define hci_skb_expect(skb) bt_cb((skb))->expect #define hci_skb_opcode(skb) bt_cb((skb))->hci.opcode static inline struct sk_buff *bt_skb_alloc(unsigned int len, gfp_t how) { struct sk_buff *skb; skb = alloc_skb(len + BT_SKB_RESERVE, how); if (skb) skb_reserve(skb, BT_SKB_RESERVE); return skb; } static inline struct sk_buff *bt_skb_send_alloc(struct sock *sk, unsigned long len, int nb, int *err) { struct sk_buff *skb; skb = sock_alloc_send_skb(sk, len + BT_SKB_RESERVE, nb, err); if (skb) skb_reserve(skb, BT_SKB_RESERVE); if (!skb && *err) return NULL; *err = sock_error(sk); if (*err) goto out; if (sk->sk_shutdown) { *err = -ECONNRESET; goto out; } return skb; out: kfree_skb(skb); return NULL; } int bt_to_errno(u16 code); void hci_sock_set_flag(struct sock *sk, int nr); void hci_sock_clear_flag(struct sock *sk, int nr); int hci_sock_test_flag(struct sock *sk, int nr); unsigned short hci_sock_get_channel(struct sock *sk); u32 hci_sock_get_cookie(struct sock *sk); int hci_sock_init(void); void hci_sock_cleanup(void); int bt_sysfs_init(void); void bt_sysfs_cleanup(void); int bt_procfs_init(struct net *net, const char *name, struct bt_sock_list *sk_list, int (*seq_show)(struct seq_file *, void *)); void bt_procfs_cleanup(struct net *net, const char *name); extern struct dentry *bt_debugfs; int l2cap_init(void); void l2cap_exit(void); #if IS_ENABLED(CONFIG_BT_BREDR) int sco_init(void); void sco_exit(void); #else static inline int sco_init(void) { return 0; } static inline void sco_exit(void) { } #endif int mgmt_init(void); void mgmt_exit(void); void bt_sock_reclassify_lock(struct sock *sk, int proto); #endif /* __BLUETOOTH_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_RCULIST_BL_H #define _LINUX_RCULIST_BL_H /* * RCU-protected bl list version. See include/linux/list_bl.h. */ #include <linux/list_bl.h> #include <linux/rcupdate.h> static inline void hlist_bl_set_first_rcu(struct hlist_bl_head *h, struct hlist_bl_node *n) { LIST_BL_BUG_ON((unsigned long)n & LIST_BL_LOCKMASK); LIST_BL_BUG_ON(((unsigned long)h->first & LIST_BL_LOCKMASK) != LIST_BL_LOCKMASK); rcu_assign_pointer(h->first, (struct hlist_bl_node *)((unsigned long)n | LIST_BL_LOCKMASK)); } static inline struct hlist_bl_node *hlist_bl_first_rcu(struct hlist_bl_head *h) { return (struct hlist_bl_node *) ((unsigned long)rcu_dereference_check(h->first, hlist_bl_is_locked(h)) & ~LIST_BL_LOCKMASK); } /** * hlist_bl_del_rcu - deletes entry from hash list without re-initialization * @n: the element to delete from the hash list. * * Note: hlist_bl_unhashed() on entry does not return true after this, * the entry is in an undefined state. It is useful for RCU based * lockfree traversal. * * In particular, it means that we can not poison the forward * pointers that may still be used for walking the hash list. * * The caller must take whatever precautions are necessary * (such as holding appropriate locks) to avoid racing * with another list-mutation primitive, such as hlist_bl_add_head_rcu() * or hlist_bl_del_rcu(), running on this same list. * However, it is perfectly legal to run concurrently with * the _rcu list-traversal primitives, such as * hlist_bl_for_each_entry(). */ static inline void hlist_bl_del_rcu(struct hlist_bl_node *n) { __hlist_bl_del(n); n->pprev = LIST_POISON2; } /** * hlist_bl_add_head_rcu * @n: the element to add to the hash list. * @h: the list to add to. * * Description: * Adds the specified element to the specified hlist_bl, * while permitting racing traversals. * * The caller must take whatever precautions are necessary * (such as holding appropriate locks) to avoid racing * with another list-mutation primitive, such as hlist_bl_add_head_rcu() * or hlist_bl_del_rcu(), running on this same list. * However, it is perfectly legal to run concurrently with * the _rcu list-traversal primitives, such as * hlist_bl_for_each_entry_rcu(), used to prevent memory-consistency * problems on Alpha CPUs. Regardless of the type of CPU, the * list-traversal primitive must be guarded by rcu_read_lock(). */ static inline void hlist_bl_add_head_rcu(struct hlist_bl_node *n, struct hlist_bl_head *h) { struct hlist_bl_node *first; /* don't need hlist_bl_first_rcu because we're under lock */ first = hlist_bl_first(h); n->next = first; if (first) first->pprev = &n->next; n->pprev = &h->first; /* need _rcu because we can have concurrent lock free readers */ hlist_bl_set_first_rcu(h, n); } /** * hlist_bl_for_each_entry_rcu - iterate over rcu list of given type * @tpos: the type * to use as a loop cursor. * @pos: the &struct hlist_bl_node to use as a loop cursor. * @head: the head for your list. * @member: the name of the hlist_bl_node within the struct. * */ #define hlist_bl_for_each_entry_rcu(tpos, pos, head, member) \ for (pos = hlist_bl_first_rcu(head); \ pos && \ ({ tpos = hlist_bl_entry(pos, typeof(*tpos), member); 1; }); \ pos = rcu_dereference_raw(pos->next)) #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Symmetric key ciphers. * * Copyright (c) 2007 Herbert Xu <herbert@gondor.apana.org.au> */ #ifndef _CRYPTO_INTERNAL_SKCIPHER_H #define _CRYPTO_INTERNAL_SKCIPHER_H #include <crypto/algapi.h> #include <crypto/skcipher.h> #include <linux/list.h> #include <linux/types.h> struct aead_request; struct rtattr; struct skcipher_instance { void (*free)(struct skcipher_instance *inst); union { struct { char head[offsetof(struct skcipher_alg, base)]; struct crypto_instance base; } s; struct skcipher_alg alg; }; }; struct crypto_skcipher_spawn { struct crypto_spawn base; }; struct skcipher_walk { union { struct { struct page *page; unsigned long offset; } phys; struct { u8 *page; void *addr; } virt; } src, dst; struct scatter_walk in; unsigned int nbytes; struct scatter_walk out; unsigned int total; struct list_head buffers; u8 *page; u8 *buffer; u8 *oiv; void *iv; unsigned int ivsize; int flags; unsigned int blocksize; unsigned int stride; unsigned int alignmask; }; static inline struct crypto_instance *skcipher_crypto_instance( struct skcipher_instance *inst) { return &inst->s.base; } static inline struct skcipher_instance *skcipher_alg_instance( struct crypto_skcipher *skcipher) { return container_of(crypto_skcipher_alg(skcipher), struct skcipher_instance, alg); } static inline void *skcipher_instance_ctx(struct skcipher_instance *inst) { return crypto_instance_ctx(skcipher_crypto_instance(inst)); } static inline void skcipher_request_complete(struct skcipher_request *req, int err) { req->base.complete(&req->base, err); } int crypto_grab_skcipher(struct crypto_skcipher_spawn *spawn, struct crypto_instance *inst, const char *name, u32 type, u32 mask); static inline void crypto_drop_skcipher(struct crypto_skcipher_spawn *spawn) { crypto_drop_spawn(&spawn->base); } static inline struct skcipher_alg *crypto_skcipher_spawn_alg( struct crypto_skcipher_spawn *spawn) { return container_of(spawn->base.alg, struct skcipher_alg, base); } static inline struct skcipher_alg *crypto_spawn_skcipher_alg( struct crypto_skcipher_spawn *spawn) { return crypto_skcipher_spawn_alg(spawn); } static inline struct crypto_skcipher *crypto_spawn_skcipher( struct crypto_skcipher_spawn *spawn) { return crypto_spawn_tfm2(&spawn->base); } static inline void crypto_skcipher_set_reqsize( struct crypto_skcipher *skcipher, unsigned int reqsize) { skcipher->reqsize = reqsize; } int crypto_register_skcipher(struct skcipher_alg *alg); void crypto_unregister_skcipher(struct skcipher_alg *alg); int crypto_register_skciphers(struct skcipher_alg *algs, int count); void crypto_unregister_skciphers(struct skcipher_alg *algs, int count); int skcipher_register_instance(struct crypto_template *tmpl, struct skcipher_instance *inst); int skcipher_walk_done(struct skcipher_walk *walk, int err); int skcipher_walk_virt(struct skcipher_walk *walk, struct skcipher_request *req, bool atomic); void skcipher_walk_atomise(struct skcipher_walk *walk); int skcipher_walk_async(struct skcipher_walk *walk, struct skcipher_request *req); int skcipher_walk_aead_encrypt(struct skcipher_walk *walk, struct aead_request *req, bool atomic); int skcipher_walk_aead_decrypt(struct skcipher_walk *walk, struct aead_request *req, bool atomic); void skcipher_walk_complete(struct skcipher_walk *walk, int err); static inline void skcipher_walk_abort(struct skcipher_walk *walk) { skcipher_walk_done(walk, -ECANCELED); } static inline void *crypto_skcipher_ctx(struct crypto_skcipher *tfm) { return crypto_tfm_ctx(&tfm->base); } static inline void *skcipher_request_ctx(struct skcipher_request *req) { return req->__ctx; } static inline u32 skcipher_request_flags(struct skcipher_request *req) { return req->base.flags; } static inline unsigned int crypto_skcipher_alg_min_keysize( struct skcipher_alg *alg) { return alg->min_keysize; } static inline unsigned int crypto_skcipher_alg_max_keysize( struct skcipher_alg *alg) { return alg->max_keysize; } static inline unsigned int crypto_skcipher_alg_walksize( struct skcipher_alg *alg) { return alg->walksize; } /** * crypto_skcipher_walksize() - obtain walk size * @tfm: cipher handle * * In some cases, algorithms can only perform optimally when operating on * multiple blocks in parallel. This is reflected by the walksize, which * must be a multiple of the chunksize (or equal if the concern does not * apply) * * Return: walk size in bytes */ static inline unsigned int crypto_skcipher_walksize( struct crypto_skcipher *tfm) { return crypto_skcipher_alg_walksize(crypto_skcipher_alg(tfm)); } /* Helpers for simple block cipher modes of operation */ struct skcipher_ctx_simple { struct crypto_cipher *cipher; /* underlying block cipher */ }; static inline struct crypto_cipher * skcipher_cipher_simple(struct crypto_skcipher *tfm) { struct skcipher_ctx_simple *ctx = crypto_skcipher_ctx(tfm); return ctx->cipher; } struct skcipher_instance *skcipher_alloc_instance_simple( struct crypto_template *tmpl, struct rtattr **tb); static inline struct crypto_alg *skcipher_ialg_simple( struct skcipher_instance *inst) { struct crypto_cipher_spawn *spawn = skcipher_instance_ctx(inst); return crypto_spawn_cipher_alg(spawn); } #endif /* _CRYPTO_INTERNAL_SKCIPHER_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Hash: Hash algorithms under the crypto API * * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au> */ #ifndef _CRYPTO_HASH_H #define _CRYPTO_HASH_H #include <linux/crypto.h> #include <linux/string.h> struct crypto_ahash; /** * DOC: Message Digest Algorithm Definitions * * These data structures define modular message digest algorithm * implementations, managed via crypto_register_ahash(), * crypto_register_shash(), crypto_unregister_ahash() and * crypto_unregister_shash(). */ /** * struct hash_alg_common - define properties of message digest * @digestsize: Size of the result of the transformation. A buffer of this size * must be available to the @final and @finup calls, so they can * store the resulting hash into it. For various predefined sizes, * search include/crypto/ using * git grep _DIGEST_SIZE include/crypto. * @statesize: Size of the block for partial state of the transformation. A * buffer of this size must be passed to the @export function as it * will save the partial state of the transformation into it. On the * other side, the @import function will load the state from a * buffer of this size as well. * @base: Start of data structure of cipher algorithm. The common data * structure of crypto_alg contains information common to all ciphers. * The hash_alg_common data structure now adds the hash-specific * information. */ struct hash_alg_common { unsigned int digestsize; unsigned int statesize; struct crypto_alg base; }; struct ahash_request { struct crypto_async_request base; unsigned int nbytes; struct scatterlist *src; u8 *result; /* This field may only be used by the ahash API code. */ void *priv; void *__ctx[] CRYPTO_MINALIGN_ATTR; }; /** * struct ahash_alg - asynchronous message digest definition * @init: **[mandatory]** Initialize the transformation context. Intended only to initialize the * state of the HASH transformation at the beginning. This shall fill in * the internal structures used during the entire duration of the whole * transformation. No data processing happens at this point. Driver code * implementation must not use req->result. * @update: **[mandatory]** Push a chunk of data into the driver for transformation. This * function actually pushes blocks of data from upper layers into the * driver, which then passes those to the hardware as seen fit. This * function must not finalize the HASH transformation by calculating the * final message digest as this only adds more data into the * transformation. This function shall not modify the transformation * context, as this function may be called in parallel with the same * transformation object. Data processing can happen synchronously * [SHASH] or asynchronously [AHASH] at this point. Driver must not use * req->result. * @final: **[mandatory]** Retrieve result from the driver. This function finalizes the * transformation and retrieves the resulting hash from the driver and * pushes it back to upper layers. No data processing happens at this * point unless hardware requires it to finish the transformation * (then the data buffered by the device driver is processed). * @finup: **[optional]** Combination of @update and @final. This function is effectively a * combination of @update and @final calls issued in sequence. As some * hardware cannot do @update and @final separately, this callback was * added to allow such hardware to be used at least by IPsec. Data * processing can happen synchronously [SHASH] or asynchronously [AHASH] * at this point. * @digest: Combination of @init and @update and @final. This function * effectively behaves as the entire chain of operations, @init, * @update and @final issued in sequence. Just like @finup, this was * added for hardware which cannot do even the @finup, but can only do * the whole transformation in one run. Data processing can happen * synchronously [SHASH] or asynchronously [AHASH] at this point. * @setkey: Set optional key used by the hashing algorithm. Intended to push * optional key used by the hashing algorithm from upper layers into * the driver. This function can store the key in the transformation * context or can outright program it into the hardware. In the former * case, one must be careful to program the key into the hardware at * appropriate time and one must be careful that .setkey() can be * called multiple times during the existence of the transformation * object. Not all hashing algorithms do implement this function as it * is only needed for keyed message digests. SHAx/MDx/CRCx do NOT * implement this function. HMAC(MDx)/HMAC(SHAx)/CMAC(AES) do implement * this function. This function must be called before any other of the * @init, @update, @final, @finup, @digest is called. No data * processing happens at this point. * @export: Export partial state of the transformation. This function dumps the * entire state of the ongoing transformation into a provided block of * data so it can be @import 'ed back later on. This is useful in case * you want to save partial result of the transformation after * processing certain amount of data and reload this partial result * multiple times later on for multiple re-use. No data processing * happens at this point. Driver must not use req->result. * @import: Import partial state of the transformation. This function loads the * entire state of the ongoing transformation from a provided block of * data so the transformation can continue from this point onward. No * data processing happens at this point. Driver must not use * req->result. * @init_tfm: Initialize the cryptographic transformation object. * This function is called only once at the instantiation * time, right after the transformation context was * allocated. In case the cryptographic hardware has * some special requirements which need to be handled * by software, this function shall check for the precise * requirement of the transformation and put any software * fallbacks in place. * @exit_tfm: Deinitialize the cryptographic transformation object. * This is a counterpart to @init_tfm, used to remove * various changes set in @init_tfm. * @halg: see struct hash_alg_common */ struct ahash_alg { int (*init)(struct ahash_request *req); int (*update)(struct ahash_request *req); int (*final)(struct ahash_request *req); int (*finup)(struct ahash_request *req); int (*digest)(struct ahash_request *req); int (*export)(struct ahash_request *req, void *out); int (*import)(struct ahash_request *req, const void *in); int (*setkey)(struct crypto_ahash *tfm, const u8 *key, unsigned int keylen); int (*init_tfm)(struct crypto_ahash *tfm); void (*exit_tfm)(struct crypto_ahash *tfm); struct hash_alg_common halg; }; struct shash_desc { struct crypto_shash *tfm; void *__ctx[] __aligned(ARCH_SLAB_MINALIGN); }; #define HASH_MAX_DIGESTSIZE 64 /* * Worst case is hmac(sha3-224-generic). Its context is a nested 'shash_desc' * containing a 'struct sha3_state'. */ #define HASH_MAX_DESCSIZE (sizeof(struct shash_desc) + 360) #define HASH_MAX_STATESIZE 512 #define SHASH_DESC_ON_STACK(shash, ctx) \ char __##shash##_desc[sizeof(struct shash_desc) + HASH_MAX_DESCSIZE] \ __aligned(__alignof__(struct shash_desc)); \ struct shash_desc *shash = (struct shash_desc *)__##shash##_desc /** * struct shash_alg - synchronous message digest definition * @init: see struct ahash_alg * @update: see struct ahash_alg * @final: see struct ahash_alg * @finup: see struct ahash_alg * @digest: see struct ahash_alg * @export: see struct ahash_alg * @import: see struct ahash_alg * @setkey: see struct ahash_alg * @init_tfm: Initialize the cryptographic transformation object. * This function is called only once at the instantiation * time, right after the transformation context was * allocated. In case the cryptographic hardware has * some special requirements which need to be handled * by software, this function shall check for the precise * requirement of the transformation and put any software * fallbacks in place. * @exit_tfm: Deinitialize the cryptographic transformation object. * This is a counterpart to @init_tfm, used to remove * various changes set in @init_tfm. * @digestsize: see struct ahash_alg * @statesize: see struct ahash_alg * @descsize: Size of the operational state for the message digest. This state * size is the memory size that needs to be allocated for * shash_desc.__ctx * @base: internally used */ struct shash_alg { int (*init)(struct shash_desc *desc); int (*update)(struct shash_desc *desc, const u8 *data, unsigned int len); int (*final)(struct shash_desc *desc, u8 *out); int (*finup)(struct shash_desc *desc, const u8 *data, unsigned int len, u8 *out); int (*digest)(struct shash_desc *desc, const u8 *data, unsigned int len, u8 *out); int (*export)(struct shash_desc *desc, void *out); int (*import)(struct shash_desc *desc, const void *in); int (*setkey)(struct crypto_shash *tfm, const u8 *key, unsigned int keylen); int (*init_tfm)(struct crypto_shash *tfm); void (*exit_tfm)(struct crypto_shash *tfm); unsigned int descsize; /* These fields must match hash_alg_common. */ unsigned int digestsize __attribute__ ((aligned(__alignof__(struct hash_alg_common)))); unsigned int statesize; struct crypto_alg base; }; struct crypto_ahash { int (*init)(struct ahash_request *req); int (*update)(struct ahash_request *req); int (*final)(struct ahash_request *req); int (*finup)(struct ahash_request *req); int (*digest)(struct ahash_request *req); int (*export)(struct ahash_request *req, void *out); int (*import)(struct ahash_request *req, const void *in); int (*setkey)(struct crypto_ahash *tfm, const u8 *key, unsigned int keylen); unsigned int reqsize; struct crypto_tfm base; }; struct crypto_shash { unsigned int descsize; struct crypto_tfm base; }; /** * DOC: Asynchronous Message Digest API * * The asynchronous message digest API is used with the ciphers of type * CRYPTO_ALG_TYPE_AHASH (listed as type "ahash" in /proc/crypto) * * The asynchronous cipher operation discussion provided for the * CRYPTO_ALG_TYPE_SKCIPHER API applies here as well. */ static inline struct crypto_ahash *__crypto_ahash_cast(struct crypto_tfm *tfm) { return container_of(tfm, struct crypto_ahash, base); } /** * crypto_alloc_ahash() - allocate ahash cipher handle * @alg_name: is the cra_name / name or cra_driver_name / driver name of the * ahash cipher * @type: specifies the type of the cipher * @mask: specifies the mask for the cipher * * Allocate a cipher handle for an ahash. The returned struct * crypto_ahash is the cipher handle that is required for any subsequent * API invocation for that ahash. * * Return: allocated cipher handle in case of success; IS_ERR() is true in case * of an error, PTR_ERR() returns the error code. */ struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type, u32 mask); static inline struct crypto_tfm *crypto_ahash_tfm(struct crypto_ahash *tfm) { return &tfm->base; } /** * crypto_free_ahash() - zeroize and free the ahash handle * @tfm: cipher handle to be freed * * If @tfm is a NULL or error pointer, this function does nothing. */ static inline void crypto_free_ahash(struct crypto_ahash *tfm) { crypto_destroy_tfm(tfm, crypto_ahash_tfm(tfm)); } /** * crypto_has_ahash() - Search for the availability of an ahash. * @alg_name: is the cra_name / name or cra_driver_name / driver name of the * ahash * @type: specifies the type of the ahash * @mask: specifies the mask for the ahash * * Return: true when the ahash is known to the kernel crypto API; false * otherwise */ int crypto_has_ahash(const char *alg_name, u32 type, u32 mask); static inline const char *crypto_ahash_alg_name(struct crypto_ahash *tfm) { return crypto_tfm_alg_name(crypto_ahash_tfm(tfm)); } static inline const char *crypto_ahash_driver_name(struct crypto_ahash *tfm) { return crypto_tfm_alg_driver_name(crypto_ahash_tfm(tfm)); } static inline unsigned int crypto_ahash_alignmask( struct crypto_ahash *tfm) { return crypto_tfm_alg_alignmask(crypto_ahash_tfm(tfm)); } /** * crypto_ahash_blocksize() - obtain block size for cipher * @tfm: cipher handle * * The block size for the message digest cipher referenced with the cipher * handle is returned. * * Return: block size of cipher */ static inline unsigned int crypto_ahash_blocksize(struct crypto_ahash *tfm) { return crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm)); } static inline struct hash_alg_common *__crypto_hash_alg_common( struct crypto_alg *alg) { return container_of(alg, struct hash_alg_common, base); } static inline struct hash_alg_common *crypto_hash_alg_common( struct crypto_ahash *tfm) { return __crypto_hash_alg_common(crypto_ahash_tfm(tfm)->__crt_alg); } /** * crypto_ahash_digestsize() - obtain message digest size * @tfm: cipher handle * * The size for the message digest created by the message digest cipher * referenced with the cipher handle is returned. * * * Return: message digest size of cipher */ static inline unsigned int crypto_ahash_digestsize(struct crypto_ahash *tfm) { return crypto_hash_alg_common(tfm)->digestsize; } /** * crypto_ahash_statesize() - obtain size of the ahash state * @tfm: cipher handle * * Return the size of the ahash state. With the crypto_ahash_export() * function, the caller can export the state into a buffer whose size is * defined with this function. * * Return: size of the ahash state */ static inline unsigned int crypto_ahash_statesize(struct crypto_ahash *tfm) { return crypto_hash_alg_common(tfm)->statesize; } static inline u32 crypto_ahash_get_flags(struct crypto_ahash *tfm) { return crypto_tfm_get_flags(crypto_ahash_tfm(tfm)); } static inline void crypto_ahash_set_flags(struct crypto_ahash *tfm, u32 flags) { crypto_tfm_set_flags(crypto_ahash_tfm(tfm), flags); } static inline void crypto_ahash_clear_flags(struct crypto_ahash *tfm, u32 flags) { crypto_tfm_clear_flags(crypto_ahash_tfm(tfm), flags); } /** * crypto_ahash_reqtfm() - obtain cipher handle from request * @req: asynchronous request handle that contains the reference to the ahash * cipher handle * * Return the ahash cipher handle that is registered with the asynchronous * request handle ahash_request. * * Return: ahash cipher handle */ static inline struct crypto_ahash *crypto_ahash_reqtfm( struct ahash_request *req) { return __crypto_ahash_cast(req->base.tfm); } /** * crypto_ahash_reqsize() - obtain size of the request data structure * @tfm: cipher handle * * Return: size of the request data */ static inline unsigned int crypto_ahash_reqsize(struct crypto_ahash *tfm) { return tfm->reqsize; } static inline void *ahash_request_ctx(struct ahash_request *req) { return req->__ctx; } /** * crypto_ahash_setkey - set key for cipher handle * @tfm: cipher handle * @key: buffer holding the key * @keylen: length of the key in bytes * * The caller provided key is set for the ahash cipher. The cipher * handle must point to a keyed hash in order for this function to succeed. * * Return: 0 if the setting of the key was successful; < 0 if an error occurred */ int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key, unsigned int keylen); /** * crypto_ahash_finup() - update and finalize message digest * @req: reference to the ahash_request handle that holds all information * needed to perform the cipher operation * * This function is a "short-hand" for the function calls of * crypto_ahash_update and crypto_ahash_final. The parameters have the same * meaning as discussed for those separate functions. * * Return: see crypto_ahash_final() */ int crypto_ahash_finup(struct ahash_request *req); /** * crypto_ahash_final() - calculate message digest * @req: reference to the ahash_request handle that holds all information * needed to perform the cipher operation * * Finalize the message digest operation and create the message digest * based on all data added to the cipher handle. The message digest is placed * into the output buffer registered with the ahash_request handle. * * Return: * 0 if the message digest was successfully calculated; * -EINPROGRESS if data is feeded into hardware (DMA) or queued for later; * -EBUSY if queue is full and request should be resubmitted later; * other < 0 if an error occurred */ int crypto_ahash_final(struct ahash_request *req); /** * crypto_ahash_digest() - calculate message digest for a buffer * @req: reference to the ahash_request handle that holds all information * needed to perform the cipher operation * * This function is a "short-hand" for the function calls of crypto_ahash_init, * crypto_ahash_update and crypto_ahash_final. The parameters have the same * meaning as discussed for those separate three functions. * * Return: see crypto_ahash_final() */ int crypto_ahash_digest(struct ahash_request *req); /** * crypto_ahash_export() - extract current message digest state * @req: reference to the ahash_request handle whose state is exported * @out: output buffer of sufficient size that can hold the hash state * * This function exports the hash state of the ahash_request handle into the * caller-allocated output buffer out which must have sufficient size (e.g. by * calling crypto_ahash_statesize()). * * Return: 0 if the export was successful; < 0 if an error occurred */ static inline int crypto_ahash_export(struct ahash_request *req, void *out) { return crypto_ahash_reqtfm(req)->export(req, out); } /** * crypto_ahash_import() - import message digest state * @req: reference to ahash_request handle the state is imported into * @in: buffer holding the state * * This function imports the hash state into the ahash_request handle from the * input buffer. That buffer should have been generated with the * crypto_ahash_export function. * * Return: 0 if the import was successful; < 0 if an error occurred */ static inline int crypto_ahash_import(struct ahash_request *req, const void *in) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); if (crypto_ahash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY) return -ENOKEY; return tfm->import(req, in); } /** * crypto_ahash_init() - (re)initialize message digest handle * @req: ahash_request handle that already is initialized with all necessary * data using the ahash_request_* API functions * * The call (re-)initializes the message digest referenced by the ahash_request * handle. Any potentially existing state created by previous operations is * discarded. * * Return: see crypto_ahash_final() */ static inline int crypto_ahash_init(struct ahash_request *req) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); if (crypto_ahash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY) return -ENOKEY; return tfm->init(req); } /** * crypto_ahash_update() - add data to message digest for processing * @req: ahash_request handle that was previously initialized with the * crypto_ahash_init call. * * Updates the message digest state of the &ahash_request handle. The input data * is pointed to by the scatter/gather list registered in the &ahash_request * handle * * Return: see crypto_ahash_final() */ static inline int crypto_ahash_update(struct ahash_request *req) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct crypto_alg *alg = tfm->base.__crt_alg; unsigned int nbytes = req->nbytes; int ret; crypto_stats_get(alg); ret = crypto_ahash_reqtfm(req)->update(req); crypto_stats_ahash_update(nbytes, ret, alg); return ret; } /** * DOC: Asynchronous Hash Request Handle * * The &ahash_request data structure contains all pointers to data * required for the asynchronous cipher operation. This includes the cipher * handle (which can be used by multiple &ahash_request instances), pointer * to plaintext and the message digest output buffer, asynchronous callback * function, etc. It acts as a handle to the ahash_request_* API calls in a * similar way as ahash handle to the crypto_ahash_* API calls. */ /** * ahash_request_set_tfm() - update cipher handle reference in request * @req: request handle to be modified * @tfm: cipher handle that shall be added to the request handle * * Allow the caller to replace the existing ahash handle in the request * data structure with a different one. */ static inline void ahash_request_set_tfm(struct ahash_request *req, struct crypto_ahash *tfm) { req->base.tfm = crypto_ahash_tfm(tfm); } /** * ahash_request_alloc() - allocate request data structure * @tfm: cipher handle to be registered with the request * @gfp: memory allocation flag that is handed to kmalloc by the API call. * * Allocate the request data structure that must be used with the ahash * message digest API calls. During * the allocation, the provided ahash handle * is registered in the request data structure. * * Return: allocated request handle in case of success, or NULL if out of memory */ static inline struct ahash_request *ahash_request_alloc( struct crypto_ahash *tfm, gfp_t gfp) { struct ahash_request *req; req = kmalloc(sizeof(struct ahash_request) + crypto_ahash_reqsize(tfm), gfp); if (likely(req)) ahash_request_set_tfm(req, tfm); return req; } /** * ahash_request_free() - zeroize and free the request data structure * @req: request data structure cipher handle to be freed */ static inline void ahash_request_free(struct ahash_request *req) { kfree_sensitive(req); } static inline void ahash_request_zero(struct ahash_request *req) { memzero_explicit(req, sizeof(*req) + crypto_ahash_reqsize(crypto_ahash_reqtfm(req))); } static inline struct ahash_request *ahash_request_cast( struct crypto_async_request *req) { return container_of(req, struct ahash_request, base); } /** * ahash_request_set_callback() - set asynchronous callback function * @req: request handle * @flags: specify zero or an ORing of the flags * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and * increase the wait queue beyond the initial maximum size; * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep * @compl: callback function pointer to be registered with the request handle * @data: The data pointer refers to memory that is not used by the kernel * crypto API, but provided to the callback function for it to use. Here, * the caller can provide a reference to memory the callback function can * operate on. As the callback function is invoked asynchronously to the * related functionality, it may need to access data structures of the * related functionality which can be referenced using this pointer. The * callback function can access the memory via the "data" field in the * &crypto_async_request data structure provided to the callback function. * * This function allows setting the callback function that is triggered once * the cipher operation completes. * * The callback function is registered with the &ahash_request handle and * must comply with the following template:: * * void callback_function(struct crypto_async_request *req, int error) */ static inline void ahash_request_set_callback(struct ahash_request *req, u32 flags, crypto_completion_t compl, void *data) { req->base.complete = compl; req->base.data = data; req->base.flags = flags; } /** * ahash_request_set_crypt() - set data buffers * @req: ahash_request handle to be updated * @src: source scatter/gather list * @result: buffer that is filled with the message digest -- the caller must * ensure that the buffer has sufficient space by, for example, calling * crypto_ahash_digestsize() * @nbytes: number of bytes to process from the source scatter/gather list * * By using this call, the caller references the source scatter/gather list. * The source scatter/gather list points to the data the message digest is to * be calculated for. */ static inline void ahash_request_set_crypt(struct ahash_request *req, struct scatterlist *src, u8 *result, unsigned int nbytes) { req->src = src; req->nbytes = nbytes; req->result = result; } /** * DOC: Synchronous Message Digest API * * The synchronous message digest API is used with the ciphers of type * CRYPTO_ALG_TYPE_SHASH (listed as type "shash" in /proc/crypto) * * The message digest API is able to maintain state information for the * caller. * * The synchronous message digest API can store user-related context in its * shash_desc request data structure. */ /** * crypto_alloc_shash() - allocate message digest handle * @alg_name: is the cra_name / name or cra_driver_name / driver name of the * message digest cipher * @type: specifies the type of the cipher * @mask: specifies the mask for the cipher * * Allocate a cipher handle for a message digest. The returned &struct * crypto_shash is the cipher handle that is required for any subsequent * API invocation for that message digest. * * Return: allocated cipher handle in case of success; IS_ERR() is true in case * of an error, PTR_ERR() returns the error code. */ struct crypto_shash *crypto_alloc_shash(const char *alg_name, u32 type, u32 mask); static inline struct crypto_tfm *crypto_shash_tfm(struct crypto_shash *tfm) { return &tfm->base; } /** * crypto_free_shash() - zeroize and free the message digest handle * @tfm: cipher handle to be freed * * If @tfm is a NULL or error pointer, this function does nothing. */ static inline void crypto_free_shash(struct crypto_shash *tfm) { crypto_destroy_tfm(tfm, crypto_shash_tfm(tfm)); } static inline const char *crypto_shash_alg_name(struct crypto_shash *tfm) { return crypto_tfm_alg_name(crypto_shash_tfm(tfm)); } static inline const char *crypto_shash_driver_name(struct crypto_shash *tfm) { return crypto_tfm_alg_driver_name(crypto_shash_tfm(tfm)); } static inline unsigned int crypto_shash_alignmask( struct crypto_shash *tfm) { return crypto_tfm_alg_alignmask(crypto_shash_tfm(tfm)); } /** * crypto_shash_blocksize() - obtain block size for cipher * @tfm: cipher handle * * The block size for the message digest cipher referenced with the cipher * handle is returned. * * Return: block size of cipher */ static inline unsigned int crypto_shash_blocksize(struct crypto_shash *tfm) { return crypto_tfm_alg_blocksize(crypto_shash_tfm(tfm)); } static inline struct shash_alg *__crypto_shash_alg(struct crypto_alg *alg) { return container_of(alg, struct shash_alg, base); } static inline struct shash_alg *crypto_shash_alg(struct crypto_shash *tfm) { return __crypto_shash_alg(crypto_shash_tfm(tfm)->__crt_alg); } /** * crypto_shash_digestsize() - obtain message digest size * @tfm: cipher handle * * The size for the message digest created by the message digest cipher * referenced with the cipher handle is returned. * * Return: digest size of cipher */ static inline unsigned int crypto_shash_digestsize(struct crypto_shash *tfm) { return crypto_shash_alg(tfm)->digestsize; } static inline unsigned int crypto_shash_statesize(struct crypto_shash *tfm) { return crypto_shash_alg(tfm)->statesize; } static inline u32 crypto_shash_get_flags(struct crypto_shash *tfm) { return crypto_tfm_get_flags(crypto_shash_tfm(tfm)); } static inline void crypto_shash_set_flags(struct crypto_shash *tfm, u32 flags) { crypto_tfm_set_flags(crypto_shash_tfm(tfm), flags); } static inline void crypto_shash_clear_flags(struct crypto_shash *tfm, u32 flags) { crypto_tfm_clear_flags(crypto_shash_tfm(tfm), flags); } /** * crypto_shash_descsize() - obtain the operational state size * @tfm: cipher handle * * The size of the operational state the cipher needs during operation is * returned for the hash referenced with the cipher handle. This size is * required to calculate the memory requirements to allow the caller allocating * sufficient memory for operational state. * * The operational state is defined with struct shash_desc where the size of * that data structure is to be calculated as * sizeof(struct shash_desc) + crypto_shash_descsize(alg) * * Return: size of the operational state */ static inline unsigned int crypto_shash_descsize(struct crypto_shash *tfm) { return tfm->descsize; } static inline void *shash_desc_ctx(struct shash_desc *desc) { return desc->__ctx; } /** * crypto_shash_setkey() - set key for message digest * @tfm: cipher handle * @key: buffer holding the key * @keylen: length of the key in bytes * * The caller provided key is set for the keyed message digest cipher. The * cipher handle must point to a keyed message digest cipher in order for this * function to succeed. * * Context: Any context. * Return: 0 if the setting of the key was successful; < 0 if an error occurred */ int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key, unsigned int keylen); /** * crypto_shash_digest() - calculate message digest for buffer * @desc: see crypto_shash_final() * @data: see crypto_shash_update() * @len: see crypto_shash_update() * @out: see crypto_shash_final() * * This function is a "short-hand" for the function calls of crypto_shash_init, * crypto_shash_update and crypto_shash_final. The parameters have the same * meaning as discussed for those separate three functions. * * Context: Any context. * Return: 0 if the message digest creation was successful; < 0 if an error * occurred */ int crypto_shash_digest(struct shash_desc *desc, const u8 *data, unsigned int len, u8 *out); /** * crypto_shash_tfm_digest() - calculate message digest for buffer * @tfm: hash transformation object * @data: see crypto_shash_update() * @len: see crypto_shash_update() * @out: see crypto_shash_final() * * This is a simplified version of crypto_shash_digest() for users who don't * want to allocate their own hash descriptor (shash_desc). Instead, * crypto_shash_tfm_digest() takes a hash transformation object (crypto_shash) * directly, and it allocates a hash descriptor on the stack internally. * Note that this stack allocation may be fairly large. * * Context: Any context. * Return: 0 on success; < 0 if an error occurred. */ int crypto_shash_tfm_digest(struct crypto_shash *tfm, const u8 *data, unsigned int len, u8 *out); /** * crypto_shash_export() - extract operational state for message digest * @desc: reference to the operational state handle whose state is exported * @out: output buffer of sufficient size that can hold the hash state * * This function exports the hash state of the operational state handle into the * caller-allocated output buffer out which must have sufficient size (e.g. by * calling crypto_shash_descsize). * * Context: Any context. * Return: 0 if the export creation was successful; < 0 if an error occurred */ static inline int crypto_shash_export(struct shash_desc *desc, void *out) { return crypto_shash_alg(desc->tfm)->export(desc, out); } /** * crypto_shash_import() - import operational state * @desc: reference to the operational state handle the state imported into * @in: buffer holding the state * * This function imports the hash state into the operational state handle from * the input buffer. That buffer should have been generated with the * crypto_ahash_export function. * * Context: Any context. * Return: 0 if the import was successful; < 0 if an error occurred */ static inline int crypto_shash_import(struct shash_desc *desc, const void *in) { struct crypto_shash *tfm = desc->tfm; if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY) return -ENOKEY; return crypto_shash_alg(tfm)->import(desc, in); } /** * crypto_shash_init() - (re)initialize message digest * @desc: operational state handle that is already filled * * The call (re-)initializes the message digest referenced by the * operational state handle. Any potentially existing state created by * previous operations is discarded. * * Context: Any context. * Return: 0 if the message digest initialization was successful; < 0 if an * error occurred */ static inline int crypto_shash_init(struct shash_desc *desc) { struct crypto_shash *tfm = desc->tfm; if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY) return -ENOKEY; return crypto_shash_alg(tfm)->init(desc); } /** * crypto_shash_update() - add data to message digest for processing * @desc: operational state handle that is already initialized * @data: input data to be added to the message digest * @len: length of the input data * * Updates the message digest state of the operational state handle. * * Context: Any context. * Return: 0 if the message digest update was successful; < 0 if an error * occurred */ int crypto_shash_update(struct shash_desc *desc, const u8 *data, unsigned int len); /** * crypto_shash_final() - calculate message digest * @desc: operational state handle that is already filled with data * @out: output buffer filled with the message digest * * Finalize the message digest operation and create the message digest * based on all data added to the cipher handle. The message digest is placed * into the output buffer. The caller must ensure that the output buffer is * large enough by using crypto_shash_digestsize. * * Context: Any context. * Return: 0 if the message digest creation was successful; < 0 if an error * occurred */ int crypto_shash_final(struct shash_desc *desc, u8 *out); /** * crypto_shash_finup() - calculate message digest of buffer * @desc: see crypto_shash_final() * @data: see crypto_shash_update() * @len: see crypto_shash_update() * @out: see crypto_shash_final() * * This function is a "short-hand" for the function calls of * crypto_shash_update and crypto_shash_final. The parameters have the same * meaning as discussed for those separate functions. * * Context: Any context. * Return: 0 if the message digest creation was successful; < 0 if an error * occurred */ int crypto_shash_finup(struct shash_desc *desc, const u8 *data, unsigned int len, u8 *out); static inline void shash_desc_zero(struct shash_desc *desc) { memzero_explicit(desc, sizeof(*desc) + crypto_shash_descsize(desc->tfm)); } #endif /* _CRYPTO_HASH_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef PM_TRACE_H #define PM_TRACE_H #include <linux/types.h> #ifdef CONFIG_PM_TRACE #include <asm/pm-trace.h> extern int pm_trace_enabled; extern bool pm_trace_rtc_abused; static inline bool pm_trace_rtc_valid(void) { return !pm_trace_rtc_abused; } static inline int pm_trace_is_enabled(void) { return pm_trace_enabled; } struct device; extern void set_trace_device(struct device *); extern void generate_pm_trace(const void *tracedata, unsigned int user); extern int show_trace_dev_match(char *buf, size_t size); #define TRACE_DEVICE(dev) do { \ if (pm_trace_enabled) \ set_trace_device(dev); \ } while(0) #else static inline bool pm_trace_rtc_valid(void) { return true; } static inline int pm_trace_is_enabled(void) { return 0; } #define TRACE_DEVICE(dev) do { } while (0) #define TRACE_RESUME(dev) do { } while (0) #define TRACE_SUSPEND(dev) do { } while (0) #endif #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_MEMREMAP_H_ #define _LINUX_MEMREMAP_H_ #include <linux/range.h> #include <linux/ioport.h> #include <linux/percpu-refcount.h> struct resource; struct device; /** * struct vmem_altmap - pre-allocated storage for vmemmap_populate * @base_pfn: base of the entire dev_pagemap mapping * @reserve: pages mapped, but reserved for driver use (relative to @base) * @free: free pages set aside in the mapping for memmap storage * @align: pages reserved to meet allocation alignments * @alloc: track pages consumed, private to vmemmap_populate() */ struct vmem_altmap { const unsigned long base_pfn; const unsigned long end_pfn; const unsigned long reserve; unsigned long free; unsigned long align; unsigned long alloc; }; /* * Specialize ZONE_DEVICE memory into multiple types each having differents * usage. * * MEMORY_DEVICE_PRIVATE: * Device memory that is not directly addressable by the CPU: CPU can neither * read nor write private memory. In this case, we do still have struct pages * backing the device memory. Doing so simplifies the implementation, but it is * important to remember that there are certain points at which the struct page * must be treated as an opaque object, rather than a "normal" struct page. * * A more complete discussion of unaddressable memory may be found in * include/linux/hmm.h and Documentation/vm/hmm.rst. * * MEMORY_DEVICE_FS_DAX: * Host memory that has similar access semantics as System RAM i.e. DMA * coherent and supports page pinning. In support of coordinating page * pinning vs other operations MEMORY_DEVICE_FS_DAX arranges for a * wakeup event whenever a page is unpinned and becomes idle. This * wakeup is used to coordinate physical address space management (ex: * fs truncate/hole punch) vs pinned pages (ex: device dma). * * MEMORY_DEVICE_GENERIC: * Host memory that has similar access semantics as System RAM i.e. DMA * coherent and supports page pinning. This is for example used by DAX devices * that expose memory using a character device. * * MEMORY_DEVICE_PCI_P2PDMA: * Device memory residing in a PCI BAR intended for use with Peer-to-Peer * transactions. */ enum memory_type { /* 0 is reserved to catch uninitialized type fields */ MEMORY_DEVICE_PRIVATE = 1, MEMORY_DEVICE_FS_DAX, MEMORY_DEVICE_GENERIC, MEMORY_DEVICE_PCI_P2PDMA, }; struct dev_pagemap_ops { /* * Called once the page refcount reaches 1. (ZONE_DEVICE pages never * reach 0 refcount unless there is a refcount bug. This allows the * device driver to implement its own memory management.) */ void (*page_free)(struct page *page); /* * Transition the refcount in struct dev_pagemap to the dead state. */ void (*kill)(struct dev_pagemap *pgmap); /* * Wait for refcount in struct dev_pagemap to be idle and reap it. */ void (*cleanup)(struct dev_pagemap *pgmap); /* * Used for private (un-addressable) device memory only. Must migrate * the page back to a CPU accessible page. */ vm_fault_t (*migrate_to_ram)(struct vm_fault *vmf); }; #define PGMAP_ALTMAP_VALID (1 << 0) /** * struct dev_pagemap - metadata for ZONE_DEVICE mappings * @altmap: pre-allocated/reserved memory for vmemmap allocations * @ref: reference count that pins the devm_memremap_pages() mapping * @internal_ref: internal reference if @ref is not provided by the caller * @done: completion for @internal_ref * @type: memory type: see MEMORY_* in memory_hotplug.h * @flags: PGMAP_* flags to specify defailed behavior * @ops: method table * @owner: an opaque pointer identifying the entity that manages this * instance. Used by various helpers to make sure that no * foreign ZONE_DEVICE memory is accessed. * @nr_range: number of ranges to be mapped * @range: range to be mapped when nr_range == 1 * @ranges: array of ranges to be mapped when nr_range > 1 */ struct dev_pagemap { struct vmem_altmap altmap; struct percpu_ref *ref; struct percpu_ref internal_ref; struct completion done; enum memory_type type; unsigned int flags; const struct dev_pagemap_ops *ops; void *owner; int nr_range; union { struct range range; struct range ranges[0]; }; }; static inline struct vmem_altmap *pgmap_altmap(struct dev_pagemap *pgmap) { if (pgmap->flags & PGMAP_ALTMAP_VALID) return &pgmap->altmap; return NULL; } #ifdef CONFIG_ZONE_DEVICE void *memremap_pages(struct dev_pagemap *pgmap, int nid); void memunmap_pages(struct dev_pagemap *pgmap); void *devm_memremap_pages(struct device *dev, struct dev_pagemap *pgmap); void devm_memunmap_pages(struct device *dev, struct dev_pagemap *pgmap); struct dev_pagemap *get_dev_pagemap(unsigned long pfn, struct dev_pagemap *pgmap); bool pgmap_pfn_valid(struct dev_pagemap *pgmap, unsigned long pfn); unsigned long vmem_altmap_offset(struct vmem_altmap *altmap); void vmem_altmap_free(struct vmem_altmap *altmap, unsigned long nr_pfns); unsigned long memremap_compat_align(void); #else static inline void *devm_memremap_pages(struct device *dev, struct dev_pagemap *pgmap) { /* * Fail attempts to call devm_memremap_pages() without * ZONE_DEVICE support enabled, this requires callers to fall * back to plain devm_memremap() based on config */ WARN_ON_ONCE(1); return ERR_PTR(-ENXIO); } static inline void devm_memunmap_pages(struct device *dev, struct dev_pagemap *pgmap) { } static inline struct dev_pagemap *get_dev_pagemap(unsigned long pfn, struct dev_pagemap *pgmap) { return NULL; } static inline bool pgmap_pfn_valid(struct dev_pagemap *pgmap, unsigned long pfn) { return false; } static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) { return 0; } static inline void vmem_altmap_free(struct vmem_altmap *altmap, unsigned long nr_pfns) { } /* when memremap_pages() is disabled all archs can remap a single page */ static inline unsigned long memremap_compat_align(void) { return PAGE_SIZE; } #endif /* CONFIG_ZONE_DEVICE */ static inline void put_dev_pagemap(struct dev_pagemap *pgmap) { if (pgmap) percpu_ref_put(pgmap->ref); } #endif /* _LINUX_MEMREMAP_H_ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 // SPDX-License-Identifier: GPL-2.0 /* * Common header file for probe-based Dynamic events. * * This code was copied from kernel/trace/trace_kprobe.h written by * Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> * * Updates to make this generic: * Copyright (C) IBM Corporation, 2010-2011 * Author: Srikar Dronamraju */ #include <linux/seq_file.h> #include <linux/slab.h> #include <linux/smp.h> #include <linux/tracefs.h> #include <linux/types.h> #include <linux/string.h> #include <linux/ptrace.h> #include <linux/perf_event.h> #include <linux/kprobes.h> #include <linux/stringify.h> #include <linux/limits.h> #include <linux/uaccess.h> #include <linux/bitops.h> #include <asm/bitsperlong.h> #include "trace.h" #include "trace_output.h" #define MAX_TRACE_ARGS 128 #define MAX_ARGSTR_LEN 63 #define MAX_ARRAY_LEN 64 #define MAX_ARG_NAME_LEN 32 #define MAX_STRING_SIZE PATH_MAX /* Reserved field names */ #define FIELD_STRING_IP "__probe_ip" #define FIELD_STRING_RETIP "__probe_ret_ip" #define FIELD_STRING_FUNC "__probe_func" #undef DEFINE_FIELD #define DEFINE_FIELD(type, item, name, is_signed) \ do { \ ret = trace_define_field(event_call, #type, name, \ offsetof(typeof(field), item), \ sizeof(field.item), is_signed, \ FILTER_OTHER); \ if (ret) \ return ret; \ } while (0) /* Flags for trace_probe */ #define TP_FLAG_TRACE 1 #define TP_FLAG_PROFILE 2 /* data_loc: data location, compatible with u32 */ #define make_data_loc(len, offs) \ (((u32)(len) << 16) | ((u32)(offs) & 0xffff)) #define get_loc_len(dl) ((u32)(dl) >> 16) #define get_loc_offs(dl) ((u32)(dl) & 0xffff) static nokprobe_inline void *get_loc_data(u32 *dl, void *ent) { return (u8 *)ent + get_loc_offs(*dl); } static nokprobe_inline u32 update_data_loc(u32 loc, int consumed) { u32 maxlen = get_loc_len(loc); u32 offset = get_loc_offs(loc); return make_data_loc(maxlen - consumed, offset + consumed); } /* Printing function type */ typedef int (*print_type_func_t)(struct trace_seq *, void *, void *); enum fetch_op { FETCH_OP_NOP = 0, // Stage 1 (load) ops FETCH_OP_REG, /* Register : .param = offset */ FETCH_OP_STACK, /* Stack : .param = index */ FETCH_OP_STACKP, /* Stack pointer */ FETCH_OP_RETVAL, /* Return value */ FETCH_OP_IMM, /* Immediate : .immediate */ FETCH_OP_COMM, /* Current comm */ FETCH_OP_ARG, /* Function argument : .param */ FETCH_OP_FOFFS, /* File offset: .immediate */ FETCH_OP_DATA, /* Allocated data: .data */ // Stage 2 (dereference) op FETCH_OP_DEREF, /* Dereference: .offset */ FETCH_OP_UDEREF, /* User-space Dereference: .offset */ // Stage 3 (store) ops FETCH_OP_ST_RAW, /* Raw: .size */ FETCH_OP_ST_MEM, /* Mem: .offset, .size */ FETCH_OP_ST_UMEM, /* Mem: .offset, .size */ FETCH_OP_ST_STRING, /* String: .offset, .size */ FETCH_OP_ST_USTRING, /* User String: .offset, .size */ // Stage 4 (modify) op FETCH_OP_MOD_BF, /* Bitfield: .basesize, .lshift, .rshift */ // Stage 5 (loop) op FETCH_OP_LP_ARRAY, /* Array: .param = loop count */ FETCH_OP_END, FETCH_NOP_SYMBOL, /* Unresolved Symbol holder */ }; struct fetch_insn { enum fetch_op op; union { unsigned int param; struct { unsigned int size; int offset; }; struct { unsigned char basesize; unsigned char lshift; unsigned char rshift; }; unsigned long immediate; void *data; }; }; /* fetch + deref*N + store + mod + end <= 16, this allows N=12, enough */ #define FETCH_INSN_MAX 16 #define FETCH_TOKEN_COMM (-ECOMM) /* Fetch type information table */ struct fetch_type { const char *name; /* Name of type */ size_t size; /* Byte size of type */ int is_signed; /* Signed flag */ print_type_func_t print; /* Print functions */ const char *fmt; /* Fromat string */ const char *fmttype; /* Name in format file */ }; /* For defining macros, define string/string_size types */ typedef u32 string; typedef u32 string_size; #define PRINT_TYPE_FUNC_NAME(type) print_type_##type #define PRINT_TYPE_FMT_NAME(type) print_type_format_##type /* Printing in basic type function template */ #define DECLARE_BASIC_PRINT_TYPE_FUNC(type) \ int PRINT_TYPE_FUNC_NAME(type)(struct trace_seq *s, void *data, void *ent);\ extern const char PRINT_TYPE_FMT_NAME(type)[] DECLARE_BASIC_PRINT_TYPE_FUNC(u8); DECLARE_BASIC_PRINT_TYPE_FUNC(u16); DECLARE_BASIC_PRINT_TYPE_FUNC(u32); DECLARE_BASIC_PRINT_TYPE_FUNC(u64); DECLARE_BASIC_PRINT_TYPE_FUNC(s8); DECLARE_BASIC_PRINT_TYPE_FUNC(s16); DECLARE_BASIC_PRINT_TYPE_FUNC(s32); DECLARE_BASIC_PRINT_TYPE_FUNC(s64); DECLARE_BASIC_PRINT_TYPE_FUNC(x8); DECLARE_BASIC_PRINT_TYPE_FUNC(x16); DECLARE_BASIC_PRINT_TYPE_FUNC(x32); DECLARE_BASIC_PRINT_TYPE_FUNC(x64); DECLARE_BASIC_PRINT_TYPE_FUNC(string); DECLARE_BASIC_PRINT_TYPE_FUNC(symbol); /* Default (unsigned long) fetch type */ #define __DEFAULT_FETCH_TYPE(t) x##t #define _DEFAULT_FETCH_TYPE(t) __DEFAULT_FETCH_TYPE(t) #define DEFAULT_FETCH_TYPE _DEFAULT_FETCH_TYPE(BITS_PER_LONG) #define DEFAULT_FETCH_TYPE_STR __stringify(DEFAULT_FETCH_TYPE) #define __ADDR_FETCH_TYPE(t) u##t #define _ADDR_FETCH_TYPE(t) __ADDR_FETCH_TYPE(t) #define ADDR_FETCH_TYPE _ADDR_FETCH_TYPE(BITS_PER_LONG) #define __ASSIGN_FETCH_TYPE(_name, ptype, ftype, _size, sign, _fmttype) \ {.name = _name, \ .size = _size, \ .is_signed = sign, \ .print = PRINT_TYPE_FUNC_NAME(ptype), \ .fmt = PRINT_TYPE_FMT_NAME(ptype), \ .fmttype = _fmttype, \ } #define _ASSIGN_FETCH_TYPE(_name, ptype, ftype, _size, sign, _fmttype) \ __ASSIGN_FETCH_TYPE(_name, ptype, ftype, _size, sign, #_fmttype) #define ASSIGN_FETCH_TYPE(ptype, ftype, sign) \ _ASSIGN_FETCH_TYPE(#ptype, ptype, ftype, sizeof(ftype), sign, ptype) /* If ptype is an alias of atype, use this macro (show atype in format) */ #define ASSIGN_FETCH_TYPE_ALIAS(ptype, atype, ftype, sign) \ _ASSIGN_FETCH_TYPE(#ptype, ptype, ftype, sizeof(ftype), sign, atype) #define ASSIGN_FETCH_TYPE_END {} #define MAX_ARRAY_LEN 64 #ifdef CONFIG_KPROBE_EVENTS bool trace_kprobe_on_func_entry(struct trace_event_call *call); bool trace_kprobe_error_injectable(struct trace_event_call *call); #else static inline bool trace_kprobe_on_func_entry(struct trace_event_call *call) { return false; } static inline bool trace_kprobe_error_injectable(struct trace_event_call *call) { return false; } #endif /* CONFIG_KPROBE_EVENTS */ struct probe_arg { struct fetch_insn *code; bool dynamic;/* Dynamic array (string) is used */ unsigned int offset; /* Offset from argument entry */ unsigned int count; /* Array count */ const char *name; /* Name of this argument */ const char *comm; /* Command of this argument */ char *fmt; /* Format string if needed */ const struct fetch_type *type; /* Type of this argument */ }; struct trace_uprobe_filter { rwlock_t rwlock; int nr_systemwide; struct list_head perf_events; }; /* Event call and class holder */ struct trace_probe_event { unsigned int flags; /* For TP_FLAG_* */ struct trace_event_class class; struct trace_event_call call; struct list_head files; struct list_head probes; struct trace_uprobe_filter filter[]; }; struct trace_probe { struct list_head list; struct trace_probe_event *event; ssize_t size; /* trace entry size */ unsigned int nr_args; struct probe_arg args[]; }; struct event_file_link { struct trace_event_file *file; struct list_head list; }; static inline bool trace_probe_test_flag(struct trace_probe *tp, unsigned int flag) { return !!(tp->event->flags & flag); } static inline void trace_probe_set_flag(struct trace_probe *tp, unsigned int flag) { tp->event->flags |= flag; } static inline void trace_probe_clear_flag(struct trace_probe *tp, unsigned int flag) { tp->event->flags &= ~flag; } static inline bool trace_probe_is_enabled(struct trace_probe *tp) { return trace_probe_test_flag(tp, TP_FLAG_TRACE | TP_FLAG_PROFILE); } static inline const char *trace_probe_name(struct trace_probe *tp) { return trace_event_name(&tp->event->call); } static inline const char *trace_probe_group_name(struct trace_probe *tp) { return tp->event->call.class->system; } static inline struct trace_event_call * trace_probe_event_call(struct trace_probe *tp) { return &tp->event->call; } static inline struct trace_probe_event * trace_probe_event_from_call(struct trace_event_call *event_call) { return container_of(event_call, struct trace_probe_event, call); } static inline struct trace_probe * trace_probe_primary_from_call(struct trace_event_call *call) { struct trace_probe_event *tpe = trace_probe_event_from_call(call); return list_first_entry(&tpe->probes, struct trace_probe, list); } static inline struct list_head *trace_probe_probe_list(struct trace_probe *tp) { return &tp->event->probes; } static inline bool trace_probe_has_sibling(struct trace_probe *tp) { struct list_head *list = trace_probe_probe_list(tp); return !list_empty(list) && !list_is_singular(list); } static inline int trace_probe_unregister_event_call(struct trace_probe *tp) { /* tp->event is unregistered in trace_remove_event_call() */ return trace_remove_event_call(&tp->event->call); } static inline bool trace_probe_has_single_file(struct trace_probe *tp) { return !!list_is_singular(&tp->event->files); } int trace_probe_init(struct trace_probe *tp, const char *event, const char *group, bool alloc_filter); void trace_probe_cleanup(struct trace_probe *tp); int trace_probe_append(struct trace_probe *tp, struct trace_probe *to); void trace_probe_unlink(struct trace_probe *tp); int trace_probe_register_event_call(struct trace_probe *tp); int trace_probe_add_file(struct trace_probe *tp, struct trace_event_file *file); int trace_probe_remove_file(struct trace_probe *tp, struct trace_event_file *file); struct event_file_link *trace_probe_get_file_link(struct trace_probe *tp, struct trace_event_file *file); int trace_probe_compare_arg_type(struct trace_probe *a, struct trace_probe *b); bool trace_probe_match_command_args(struct trace_probe *tp, int argc, const char **argv); #define trace_probe_for_each_link(pos, tp) \ list_for_each_entry(pos, &(tp)->event->files, list) #define trace_probe_for_each_link_rcu(pos, tp) \ list_for_each_entry_rcu(pos, &(tp)->event->files, list) #define TPARG_FL_RETURN BIT(0) #define TPARG_FL_KERNEL BIT(1) #define TPARG_FL_FENTRY BIT(2) #define TPARG_FL_MASK GENMASK(2, 0) extern int traceprobe_parse_probe_arg(struct trace_probe *tp, int i, char *arg, unsigned int flags); extern int traceprobe_update_arg(struct probe_arg *arg); extern void traceprobe_free_probe_arg(struct probe_arg *arg); extern int traceprobe_split_symbol_offset(char *symbol, long *offset); int traceprobe_parse_event_name(const char **pevent, const char **pgroup, char *buf, int offset); extern int traceprobe_set_print_fmt(struct trace_probe *tp, bool is_return); #ifdef CONFIG_PERF_EVENTS extern struct trace_event_call * create_local_trace_kprobe(char *func, void *addr, unsigned long offs, bool is_return); extern void destroy_local_trace_kprobe(struct trace_event_call *event_call); extern struct trace_event_call * create_local_trace_uprobe(char *name, unsigned long offs, unsigned long ref_ctr_offset, bool is_return); extern void destroy_local_trace_uprobe(struct trace_event_call *event_call); #endif extern int traceprobe_define_arg_fields(struct trace_event_call *event_call, size_t offset, struct trace_probe *tp); #undef ERRORS #define ERRORS \ C(FILE_NOT_FOUND, "Failed to find the given file"), \ C(NO_REGULAR_FILE, "Not a regular file"), \ C(BAD_REFCNT, "Invalid reference counter offset"), \ C(REFCNT_OPEN_BRACE, "Reference counter brace is not closed"), \ C(BAD_REFCNT_SUFFIX, "Reference counter has wrong suffix"), \ C(BAD_UPROBE_OFFS, "Invalid uprobe offset"), \ C(MAXACT_NO_KPROBE, "Maxactive is not for kprobe"), \ C(BAD_MAXACT, "Invalid maxactive number"), \ C(MAXACT_TOO_BIG, "Maxactive is too big"), \ C(BAD_PROBE_ADDR, "Invalid probed address or symbol"), \ C(BAD_RETPROBE, "Retprobe address must be an function entry"), \ C(BAD_ADDR_SUFFIX, "Invalid probed address suffix"), \ C(NO_GROUP_NAME, "Group name is not specified"), \ C(GROUP_TOO_LONG, "Group name is too long"), \ C(BAD_GROUP_NAME, "Group name must follow the same rules as C identifiers"), \ C(NO_EVENT_NAME, "Event name is not specified"), \ C(EVENT_TOO_LONG, "Event name is too long"), \ C(BAD_EVENT_NAME, "Event name must follow the same rules as C identifiers"), \ C(EVENT_EXIST, "Given group/event name is already used by another event"), \ C(RETVAL_ON_PROBE, "$retval is not available on probe"), \ C(BAD_STACK_NUM, "Invalid stack number"), \ C(BAD_ARG_NUM, "Invalid argument number"), \ C(BAD_VAR, "Invalid $-valiable specified"), \ C(BAD_REG_NAME, "Invalid register name"), \ C(BAD_MEM_ADDR, "Invalid memory address"), \ C(BAD_IMM, "Invalid immediate value"), \ C(IMMSTR_NO_CLOSE, "String is not closed with '\"'"), \ C(FILE_ON_KPROBE, "File offset is not available with kprobe"), \ C(BAD_FILE_OFFS, "Invalid file offset value"), \ C(SYM_ON_UPROBE, "Symbol is not available with uprobe"), \ C(TOO_MANY_OPS, "Dereference is too much nested"), \ C(DEREF_NEED_BRACE, "Dereference needs a brace"), \ C(BAD_DEREF_OFFS, "Invalid dereference offset"), \ C(DEREF_OPEN_BRACE, "Dereference brace is not closed"), \ C(COMM_CANT_DEREF, "$comm can not be dereferenced"), \ C(BAD_FETCH_ARG, "Invalid fetch argument"), \ C(ARRAY_NO_CLOSE, "Array is not closed"), \ C(BAD_ARRAY_SUFFIX, "Array has wrong suffix"), \ C(BAD_ARRAY_NUM, "Invalid array size"), \ C(ARRAY_TOO_BIG, "Array number is too big"), \ C(BAD_TYPE, "Unknown type is specified"), \ C(BAD_STRING, "String accepts only memory argument"), \ C(BAD_BITFIELD, "Invalid bitfield"), \ C(ARG_NAME_TOO_LONG, "Argument name is too long"), \ C(NO_ARG_NAME, "Argument name is not specified"), \ C(BAD_ARG_NAME, "Argument name must follow the same rules as C identifiers"), \ C(USED_ARG_NAME, "This argument name is already used"), \ C(ARG_TOO_LONG, "Argument expression is too long"), \ C(NO_ARG_BODY, "No argument expression"), \ C(BAD_INSN_BNDRY, "Probe point is not an instruction boundary"),\ C(FAIL_REG_PROBE, "Failed to register probe event"),\ C(DIFF_PROBE_TYPE, "Probe type is different from existing probe"),\ C(DIFF_ARG_TYPE, "Argument type or name is different from existing probe"),\ C(SAME_PROBE, "There is already the exact same probe event"), #undef C #define C(a, b) TP_ERR_##a /* Define TP_ERR_ */ enum { ERRORS }; /* Error text is defined in trace_probe.c */ struct trace_probe_log { const char *subsystem; const char **argv; int argc; int index; }; void trace_probe_log_init(const char *subsystem, int argc, const char **argv); void trace_probe_log_set_index(int index); void trace_probe_log_clear(void); void __trace_probe_log_err(int offset, int err); #define trace_probe_log_err(offs, err) \ __trace_probe_log_err(offs, TP_ERR_##err)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 /* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright (C) 2007, 2008, 2009 Siemens AG * * Written by: * Dmitry Eremin-Solenikov <dbaryshkov@gmail.com> */ #ifndef __NET_CFG802154_H #define __NET_CFG802154_H #include <linux/ieee802154.h> #include <linux/netdevice.h> #include <linux/mutex.h> #include <linux/bug.h> #include <net/nl802154.h> struct wpan_phy; struct wpan_phy_cca; #ifdef CONFIG_IEEE802154_NL802154_EXPERIMENTAL struct ieee802154_llsec_device_key; struct ieee802154_llsec_seclevel; struct ieee802154_llsec_params; struct ieee802154_llsec_device; struct ieee802154_llsec_table; struct ieee802154_llsec_key_id; struct ieee802154_llsec_key; #endif /* CONFIG_IEEE802154_NL802154_EXPERIMENTAL */ struct cfg802154_ops { struct net_device * (*add_virtual_intf_deprecated)(struct wpan_phy *wpan_phy, const char *name, unsigned char name_assign_type, int type); void (*del_virtual_intf_deprecated)(struct wpan_phy *wpan_phy, struct net_device *dev); int (*suspend)(struct wpan_phy *wpan_phy); int (*resume)(struct wpan_phy *wpan_phy); int (*add_virtual_intf)(struct wpan_phy *wpan_phy, const char *name, unsigned char name_assign_type, enum nl802154_iftype type, __le64 extended_addr); int (*del_virtual_intf)(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev); int (*set_channel)(struct wpan_phy *wpan_phy, u8 page, u8 channel); int (*set_cca_mode)(struct wpan_phy *wpan_phy, const struct wpan_phy_cca *cca); int (*set_cca_ed_level)(struct wpan_phy *wpan_phy, s32 ed_level); int (*set_tx_power)(struct wpan_phy *wpan_phy, s32 power); int (*set_pan_id)(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, __le16 pan_id); int (*set_short_addr)(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, __le16 short_addr); int (*set_backoff_exponent)(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, u8 min_be, u8 max_be); int (*set_max_csma_backoffs)(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, u8 max_csma_backoffs); int (*set_max_frame_retries)(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, s8 max_frame_retries); int (*set_lbt_mode)(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, bool mode); int (*set_ackreq_default)(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, bool ackreq); #ifdef CONFIG_IEEE802154_NL802154_EXPERIMENTAL void (*get_llsec_table)(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, struct ieee802154_llsec_table **table); void (*lock_llsec_table)(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev); void (*unlock_llsec_table)(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev); /* TODO remove locking/get table callbacks, this is part of the * nl802154 interface and should be accessible from ieee802154 layer. */ int (*get_llsec_params)(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, struct ieee802154_llsec_params *params); int (*set_llsec_params)(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, const struct ieee802154_llsec_params *params, int changed); int (*add_llsec_key)(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, const struct ieee802154_llsec_key_id *id, const struct ieee802154_llsec_key *key); int (*del_llsec_key)(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, const struct ieee802154_llsec_key_id *id); int (*add_seclevel)(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, const struct ieee802154_llsec_seclevel *sl); int (*del_seclevel)(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, const struct ieee802154_llsec_seclevel *sl); int (*add_device)(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, const struct ieee802154_llsec_device *dev); int (*del_device)(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, __le64 extended_addr); int (*add_devkey)(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, __le64 extended_addr, const struct ieee802154_llsec_device_key *key); int (*del_devkey)(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, __le64 extended_addr, const struct ieee802154_llsec_device_key *key); #endif /* CONFIG_IEEE802154_NL802154_EXPERIMENTAL */ }; static inline bool wpan_phy_supported_bool(bool b, enum nl802154_supported_bool_states st) { switch (st) { case NL802154_SUPPORTED_BOOL_TRUE: return b; case NL802154_SUPPORTED_BOOL_FALSE: return !b; case NL802154_SUPPORTED_BOOL_BOTH: return true; default: WARN_ON(1); } return false; } struct wpan_phy_supported { u32 channels[IEEE802154_MAX_PAGE + 1], cca_modes, cca_opts, iftypes; enum nl802154_supported_bool_states lbt; u8 min_minbe, max_minbe, min_maxbe, max_maxbe, min_csma_backoffs, max_csma_backoffs; s8 min_frame_retries, max_frame_retries; size_t tx_powers_size, cca_ed_levels_size; const s32 *tx_powers, *cca_ed_levels; }; struct wpan_phy_cca { enum nl802154_cca_modes mode; enum nl802154_cca_opts opt; }; static inline bool wpan_phy_cca_cmp(const struct wpan_phy_cca *a, const struct wpan_phy_cca *b) { if (a->mode != b->mode) return false; if (a->mode == NL802154_CCA_ENERGY_CARRIER) return a->opt == b->opt; return true; } /** * @WPAN_PHY_FLAG_TRANSMIT_POWER: Indicates that transceiver will support * transmit power setting. * @WPAN_PHY_FLAG_CCA_ED_LEVEL: Indicates that transceiver will support cca ed * level setting. * @WPAN_PHY_FLAG_CCA_MODE: Indicates that transceiver will support cca mode * setting. */ enum wpan_phy_flags { WPAN_PHY_FLAG_TXPOWER = BIT(1), WPAN_PHY_FLAG_CCA_ED_LEVEL = BIT(2), WPAN_PHY_FLAG_CCA_MODE = BIT(3), }; struct wpan_phy { /* If multiple wpan_phys are registered and you're handed e.g. * a regular netdev with assigned ieee802154_ptr, you won't * know whether it points to a wpan_phy your driver has registered * or not. Assign this to something global to your driver to * help determine whether you own this wpan_phy or not. */ const void *privid; u32 flags; /* * This is a PIB according to 802.15.4-2011. * We do not provide timing-related variables, as they * aren't used outside of driver */ u8 current_channel; u8 current_page; struct wpan_phy_supported supported; /* current transmit_power in mBm */ s32 transmit_power; struct wpan_phy_cca cca; __le64 perm_extended_addr; /* current cca ed threshold in mBm */ s32 cca_ed_level; /* PHY depended MAC PIB values */ /* 802.15.4 acronym: Tdsym in usec */ u8 symbol_duration; /* lifs and sifs periods timing */ u16 lifs_period; u16 sifs_period; struct device dev; /* the network namespace this phy lives in currently */ possible_net_t _net; char priv[] __aligned(NETDEV_ALIGN); }; static inline struct net *wpan_phy_net(struct wpan_phy *wpan_phy) { return read_pnet(&wpan_phy->_net); } static inline void wpan_phy_net_set(struct wpan_phy *wpan_phy, struct net *net) { write_pnet(&wpan_phy->_net, net); } struct ieee802154_addr { u8 mode; __le16 pan_id; union { __le16 short_addr; __le64 extended_addr; }; }; struct ieee802154_llsec_key_id { u8 mode; u8 id; union { struct ieee802154_addr device_addr; __le32 short_source; __le64 extended_source; }; }; #define IEEE802154_LLSEC_KEY_SIZE 16 struct ieee802154_llsec_key { u8 frame_types; u32 cmd_frame_ids; /* TODO replace with NL802154_KEY_SIZE */ u8 key[IEEE802154_LLSEC_KEY_SIZE]; }; struct ieee802154_llsec_key_entry { struct list_head list; struct ieee802154_llsec_key_id id; struct ieee802154_llsec_key *key; }; struct ieee802154_llsec_params { bool enabled; __be32 frame_counter; u8 out_level; struct ieee802154_llsec_key_id out_key; __le64 default_key_source; __le16 pan_id; __le64 hwaddr; __le64 coord_hwaddr; __le16 coord_shortaddr; }; struct ieee802154_llsec_table { struct list_head keys; struct list_head devices; struct list_head security_levels; }; struct ieee802154_llsec_seclevel { struct list_head list; u8 frame_type; u8 cmd_frame_id; bool device_override; u32 sec_levels; }; struct ieee802154_llsec_device { struct list_head list; __le16 pan_id; __le16 short_addr; __le64 hwaddr; u32 frame_counter; bool seclevel_exempt; u8 key_mode; struct list_head keys; }; struct ieee802154_llsec_device_key { struct list_head list; struct ieee802154_llsec_key_id key_id; u32 frame_counter; }; struct wpan_dev_header_ops { /* TODO create callback currently assumes ieee802154_mac_cb inside * skb->cb. This should be changed to give these information as * parameter. */ int (*create)(struct sk_buff *skb, struct net_device *dev, const struct ieee802154_addr *daddr, const struct ieee802154_addr *saddr, unsigned int len); }; struct wpan_dev { struct wpan_phy *wpan_phy; int iftype; /* the remainder of this struct should be private to cfg802154 */ struct list_head list; struct net_device *netdev; const struct wpan_dev_header_ops *header_ops; /* lowpan interface, set when the wpan_dev belongs to one lowpan_dev */ struct net_device *lowpan_dev; u32 identifier; /* MAC PIB */ __le16 pan_id; __le16 short_addr; __le64 extended_addr; /* MAC BSN field */ atomic_t bsn; /* MAC DSN field */ atomic_t dsn; u8 min_be; u8 max_be; u8 csma_retries; s8 frame_retries; bool lbt; bool promiscuous_mode; /* fallback for acknowledgment bit setting */ bool ackreq; }; #define to_phy(_dev) container_of(_dev, struct wpan_phy, dev) static inline int wpan_dev_hard_header(struct sk_buff *skb, struct net_device *dev, const struct ieee802154_addr *daddr, const struct ieee802154_addr *saddr, unsigned int len) { struct wpan_dev *wpan_dev = dev->ieee802154_ptr; return wpan_dev->header_ops->create(skb, dev, daddr, saddr, len); } struct wpan_phy * wpan_phy_new(const struct cfg802154_ops *ops, size_t priv_size); static inline void wpan_phy_set_dev(struct wpan_phy *phy, struct device *dev) { phy->dev.parent = dev; } int wpan_phy_register(struct wpan_phy *phy); void wpan_phy_unregister(struct wpan_phy *phy); void wpan_phy_free(struct wpan_phy *phy); /* Same semantics as for class_for_each_device */ int wpan_phy_for_each(int (*fn)(struct wpan_phy *phy, void *data), void *data); static inline void *wpan_phy_priv(struct wpan_phy *phy) { BUG_ON(!phy); return &phy->priv; } struct wpan_phy *wpan_phy_find(const char *str); static inline void wpan_phy_put(struct wpan_phy *phy) { put_device(&phy->dev); } static inline const char *wpan_phy_name(struct wpan_phy *phy) { return dev_name(&phy->dev); } #endif /* __NET_CFG802154_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * NetLabel Network Address Lists * * This file contains network address list functions used to manage ordered * lists of network addresses for use by the NetLabel subsystem. The NetLabel * system manages static and dynamic label mappings for network protocols such * as CIPSO and RIPSO. * * Author: Paul Moore <paul@paul-moore.com> */ /* * (c) Copyright Hewlett-Packard Development Company, L.P., 2008 */ #ifndef _NETLABEL_ADDRLIST_H #define _NETLABEL_ADDRLIST_H #include <linux/types.h> #include <linux/rcupdate.h> #include <linux/list.h> #include <linux/in6.h> #include <linux/audit.h> /** * struct netlbl_af4list - NetLabel IPv4 address list * @addr: IPv4 address * @mask: IPv4 address mask * @valid: valid flag * @list: list structure, used internally */ struct netlbl_af4list { __be32 addr; __be32 mask; u32 valid; struct list_head list; }; /** * struct netlbl_af6list - NetLabel IPv6 address list * @addr: IPv6 address * @mask: IPv6 address mask * @valid: valid flag * @list: list structure, used internally */ struct netlbl_af6list { struct in6_addr addr; struct in6_addr mask; u32 valid; struct list_head list; }; #define __af4list_entry(ptr) container_of(ptr, struct netlbl_af4list, list) static inline struct netlbl_af4list *__af4list_valid(struct list_head *s, struct list_head *h) { struct list_head *i = s; struct netlbl_af4list *n = __af4list_entry(s); while (i != h && !n->valid) { i = i->next; n = __af4list_entry(i); } return n; } static inline struct netlbl_af4list *__af4list_valid_rcu(struct list_head *s, struct list_head *h) { struct list_head *i = s; struct netlbl_af4list *n = __af4list_entry(s); while (i != h && !n->valid) { i = rcu_dereference(list_next_rcu(i)); n = __af4list_entry(i); } return n; } #define netlbl_af4list_foreach(iter, head) \ for (iter = __af4list_valid((head)->next, head); \ &iter->list != (head); \ iter = __af4list_valid(iter->list.next, head)) #define netlbl_af4list_foreach_rcu(iter, head) \ for (iter = __af4list_valid_rcu((head)->next, head); \ &iter->list != (head); \ iter = __af4list_valid_rcu(iter->list.next, head)) #define netlbl_af4list_foreach_safe(iter, tmp, head) \ for (iter = __af4list_valid((head)->next, head), \ tmp = __af4list_valid(iter->list.next, head); \ &iter->list != (head); \ iter = tmp, tmp = __af4list_valid(iter->list.next, head)) int netlbl_af4list_add(struct netlbl_af4list *entry, struct list_head *head); struct netlbl_af4list *netlbl_af4list_remove(__be32 addr, __be32 mask, struct list_head *head); void netlbl_af4list_remove_entry(struct netlbl_af4list *entry); struct netlbl_af4list *netlbl_af4list_search(__be32 addr, struct list_head *head); struct netlbl_af4list *netlbl_af4list_search_exact(__be32 addr, __be32 mask, struct list_head *head); #ifdef CONFIG_AUDIT void netlbl_af4list_audit_addr(struct audit_buffer *audit_buf, int src, const char *dev, __be32 addr, __be32 mask); #else static inline void netlbl_af4list_audit_addr(struct audit_buffer *audit_buf, int src, const char *dev, __be32 addr, __be32 mask) { } #endif #if IS_ENABLED(CONFIG_IPV6) #define __af6list_entry(ptr) container_of(ptr, struct netlbl_af6list, list) static inline struct netlbl_af6list *__af6list_valid(struct list_head *s, struct list_head *h) { struct list_head *i = s; struct netlbl_af6list *n = __af6list_entry(s); while (i != h && !n->valid) { i = i->next; n = __af6list_entry(i); } return n; } static inline struct netlbl_af6list *__af6list_valid_rcu(struct list_head *s, struct list_head *h) { struct list_head *i = s; struct netlbl_af6list *n = __af6list_entry(s); while (i != h && !n->valid) { i = rcu_dereference(list_next_rcu(i)); n = __af6list_entry(i); } return n; } #define netlbl_af6list_foreach(iter, head) \ for (iter = __af6list_valid((head)->next, head); \ &iter->list != (head); \ iter = __af6list_valid(iter->list.next, head)) #define netlbl_af6list_foreach_rcu(iter, head) \ for (iter = __af6list_valid_rcu((head)->next, head); \ &iter->list != (head); \ iter = __af6list_valid_rcu(iter->list.next, head)) #define netlbl_af6list_foreach_safe(iter, tmp, head) \ for (iter = __af6list_valid((head)->next, head), \ tmp = __af6list_valid(iter->list.next, head); \ &iter->list != (head); \ iter = tmp, tmp = __af6list_valid(iter->list.next, head)) int netlbl_af6list_add(struct netlbl_af6list *entry, struct list_head *head); struct netlbl_af6list *netlbl_af6list_remove(const struct in6_addr *addr, const struct in6_addr *mask, struct list_head *head); void netlbl_af6list_remove_entry(struct netlbl_af6list *entry); struct netlbl_af6list *netlbl_af6list_search(const struct in6_addr *addr, struct list_head *head); struct netlbl_af6list *netlbl_af6list_search_exact(const struct in6_addr *addr, const struct in6_addr *mask, struct list_head *head); #ifdef CONFIG_AUDIT void netlbl_af6list_audit_addr(struct audit_buffer *audit_buf, int src, const char *dev, const struct in6_addr *addr, const struct in6_addr *mask); #else static inline void netlbl_af6list_audit_addr(struct audit_buffer *audit_buf, int src, const char *dev, const struct in6_addr *addr, const struct in6_addr *mask) { } #endif #endif /* IPV6 */ #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_ICMPV6_H #define _LINUX_ICMPV6_H #include <linux/skbuff.h> #include <linux/ipv6.h> #include <uapi/linux/icmpv6.h> static inline struct icmp6hdr *icmp6_hdr(const struct sk_buff *skb) { return (struct icmp6hdr *)skb_transport_header(skb); } #include <linux/netdevice.h> #if IS_ENABLED(CONFIG_IPV6) typedef void ip6_icmp_send_t(struct sk_buff *skb, u8 type, u8 code, __u32 info, const struct in6_addr *force_saddr, const struct inet6_skb_parm *parm); void icmp6_send(struct sk_buff *skb, u8 type, u8 code, __u32 info, const struct in6_addr *force_saddr, const struct inet6_skb_parm *parm); #if IS_BUILTIN(CONFIG_IPV6) static inline void __icmpv6_send(struct sk_buff *skb, u8 type, u8 code, __u32 info, const struct inet6_skb_parm *parm) { icmp6_send(skb, type, code, info, NULL, parm); } static inline int inet6_register_icmp_sender(ip6_icmp_send_t *fn) { BUILD_BUG_ON(fn != icmp6_send); return 0; } static inline int inet6_unregister_icmp_sender(ip6_icmp_send_t *fn) { BUILD_BUG_ON(fn != icmp6_send); return 0; } #else extern void __icmpv6_send(struct sk_buff *skb, u8 type, u8 code, __u32 info, const struct inet6_skb_parm *parm); extern int inet6_register_icmp_sender(ip6_icmp_send_t *fn); extern int inet6_unregister_icmp_sender(ip6_icmp_send_t *fn); #endif static inline void icmpv6_send(struct sk_buff *skb, u8 type, u8 code, __u32 info) { __icmpv6_send(skb, type, code, info, IP6CB(skb)); } int ip6_err_gen_icmpv6_unreach(struct sk_buff *skb, int nhs, int type, unsigned int data_len); #if IS_ENABLED(CONFIG_NF_NAT) void icmpv6_ndo_send(struct sk_buff *skb_in, u8 type, u8 code, __u32 info); #else static inline void icmpv6_ndo_send(struct sk_buff *skb_in, u8 type, u8 code, __u32 info) { struct inet6_skb_parm parm = { 0 }; __icmpv6_send(skb_in, type, code, info, &parm); } #endif #else static inline void icmpv6_send(struct sk_buff *skb, u8 type, u8 code, __u32 info) { } static inline void icmpv6_ndo_send(struct sk_buff *skb, u8 type, u8 code, __u32 info) { } #endif extern int icmpv6_init(void); extern int icmpv6_err_convert(u8 type, u8 code, int *err); extern void icmpv6_cleanup(void); extern void icmpv6_param_prob(struct sk_buff *skb, u8 code, int pos); struct flowi6; struct in6_addr; extern void icmpv6_flow_init(struct sock *sk, struct flowi6 *fl6, u8 type, const struct in6_addr *saddr, const struct in6_addr *daddr, int oif); static inline bool icmpv6_is_err(int type) { switch (type) { case ICMPV6_DEST_UNREACH: case ICMPV6_PKT_TOOBIG: case ICMPV6_TIME_EXCEED: case ICMPV6_PARAMPROB: return true; } return false; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 #undef TRACE_SYSTEM #define TRACE_SYSTEM rtc #if !defined(_TRACE_RTC_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_RTC_H #include <linux/rtc.h> #include <linux/tracepoint.h> DECLARE_EVENT_CLASS(rtc_time_alarm_class, TP_PROTO(time64_t secs, int err), TP_ARGS(secs, err), TP_STRUCT__entry( __field(time64_t, secs) __field(int, err) ), TP_fast_assign( __entry->secs = secs; __entry->err = err; ), TP_printk("UTC (%lld) (%d)", __entry->secs, __entry->err ) ); DEFINE_EVENT(rtc_time_alarm_class, rtc_set_time, TP_PROTO(time64_t secs, int err), TP_ARGS(secs, err) ); DEFINE_EVENT(rtc_time_alarm_class, rtc_read_time, TP_PROTO(time64_t secs, int err), TP_ARGS(secs, err) ); DEFINE_EVENT(rtc_time_alarm_class, rtc_set_alarm, TP_PROTO(time64_t secs, int err), TP_ARGS(secs, err) ); DEFINE_EVENT(rtc_time_alarm_class, rtc_read_alarm, TP_PROTO(time64_t secs, int err), TP_ARGS(secs, err) ); TRACE_EVENT(rtc_irq_set_freq, TP_PROTO(int freq, int err), TP_ARGS(freq, err), TP_STRUCT__entry( __field(int, freq) __field(int, err) ), TP_fast_assign( __entry->freq = freq; __entry->err = err; ), TP_printk("set RTC periodic IRQ frequency:%u (%d)", __entry->freq, __entry->err ) ); TRACE_EVENT(rtc_irq_set_state, TP_PROTO(int enabled, int err), TP_ARGS(enabled, err), TP_STRUCT__entry( __field(int, enabled) __field(int, err) ), TP_fast_assign( __entry->enabled = enabled; __entry->err = err; ), TP_printk("%s RTC 2^N Hz periodic IRQs (%d)", __entry->enabled ? "enable" : "disable", __entry->err ) ); TRACE_EVENT(rtc_alarm_irq_enable, TP_PROTO(unsigned int enabled, int err), TP_ARGS(enabled, err), TP_STRUCT__entry( __field(unsigned int, enabled) __field(int, err) ), TP_fast_assign( __entry->enabled = enabled; __entry->err = err; ), TP_printk("%s RTC alarm IRQ (%d)", __entry->enabled ? "enable" : "disable", __entry->err ) ); DECLARE_EVENT_CLASS(rtc_offset_class, TP_PROTO(long offset, int err), TP_ARGS(offset, err), TP_STRUCT__entry( __field(long, offset) __field(int, err) ), TP_fast_assign( __entry->offset = offset; __entry->err = err; ), TP_printk("RTC offset: %ld (%d)", __entry->offset, __entry->err ) ); DEFINE_EVENT(rtc_offset_class, rtc_set_offset, TP_PROTO(long offset, int err), TP_ARGS(offset, err) ); DEFINE_EVENT(rtc_offset_class, rtc_read_offset, TP_PROTO(long offset, int err), TP_ARGS(offset, err) ); DECLARE_EVENT_CLASS(rtc_timer_class, TP_PROTO(struct rtc_timer *timer), TP_ARGS(timer), TP_STRUCT__entry( __field(struct rtc_timer *, timer) __field(ktime_t, expires) __field(ktime_t, period) ), TP_fast_assign( __entry->timer = timer; __entry->expires = timer->node.expires; __entry->period = timer->period; ), TP_printk("RTC timer:(%p) expires:%lld period:%lld", __entry->timer, __entry->expires, __entry->period ) ); DEFINE_EVENT(rtc_timer_class, rtc_timer_enqueue, TP_PROTO(struct rtc_timer *timer), TP_ARGS(timer) ); DEFINE_EVENT(rtc_timer_class, rtc_timer_dequeue, TP_PROTO(struct rtc_timer *timer), TP_ARGS(timer) ); DEFINE_EVENT(rtc_timer_class, rtc_timer_fired, TP_PROTO(struct rtc_timer *timer), TP_ARGS(timer) ); #endif /* _TRACE_RTC_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __NET_NS_HASH_H__ #define __NET_NS_HASH_H__ #include <net/net_namespace.h> static inline u32 net_hash_mix(const struct net *net) { return net->hash_mix; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 /* SPDX-License-Identifier: GPL-2.0 */ /* * workqueue.h --- work queue handling for Linux. */ #ifndef _LINUX_WORKQUEUE_H #define _LINUX_WORKQUEUE_H #include <linux/timer.h> #include <linux/linkage.h> #include <linux/bitops.h> #include <linux/lockdep.h> #include <linux/threads.h> #include <linux/atomic.h> #include <linux/cpumask.h> #include <linux/rcupdate.h> struct workqueue_struct; struct work_struct; typedef void (*work_func_t)(struct work_struct *work); void delayed_work_timer_fn(struct timer_list *t); /* * The first word is the work queue pointer and the flags rolled into * one */ #define work_data_bits(work) ((unsigned long *)(&(work)->data)) enum { WORK_STRUCT_PENDING_BIT = 0, /* work item is pending execution */ WORK_STRUCT_DELAYED_BIT = 1, /* work item is delayed */ WORK_STRUCT_PWQ_BIT = 2, /* data points to pwq */ WORK_STRUCT_LINKED_BIT = 3, /* next work is linked to this one */ #ifdef CONFIG_DEBUG_OBJECTS_WORK WORK_STRUCT_STATIC_BIT = 4, /* static initializer (debugobjects) */ WORK_STRUCT_COLOR_SHIFT = 5, /* color for workqueue flushing */ #else WORK_STRUCT_COLOR_SHIFT = 4, /* color for workqueue flushing */ #endif WORK_STRUCT_COLOR_BITS = 4, WORK_STRUCT_PENDING = 1 << WORK_STRUCT_PENDING_BIT, WORK_STRUCT_DELAYED = 1 << WORK_STRUCT_DELAYED_BIT, WORK_STRUCT_PWQ = 1 << WORK_STRUCT_PWQ_BIT, WORK_STRUCT_LINKED = 1 << WORK_STRUCT_LINKED_BIT, #ifdef CONFIG_DEBUG_OBJECTS_WORK WORK_STRUCT_STATIC = 1 << WORK_STRUCT_STATIC_BIT, #else WORK_STRUCT_STATIC = 0, #endif /* * The last color is no color used for works which don't * participate in workqueue flushing. */ WORK_NR_COLORS = (1 << WORK_STRUCT_COLOR_BITS) - 1, WORK_NO_COLOR = WORK_NR_COLORS, /* not bound to any CPU, prefer the local CPU */ WORK_CPU_UNBOUND = NR_CPUS, /* * Reserve 8 bits off of pwq pointer w/ debugobjects turned off. * This makes pwqs aligned to 256 bytes and allows 15 workqueue * flush colors. */ WORK_STRUCT_FLAG_BITS = WORK_STRUCT_COLOR_SHIFT + WORK_STRUCT_COLOR_BITS, /* data contains off-queue information when !WORK_STRUCT_PWQ */ WORK_OFFQ_FLAG_BASE = WORK_STRUCT_COLOR_SHIFT, __WORK_OFFQ_CANCELING = WORK_OFFQ_FLAG_BASE, WORK_OFFQ_CANCELING = (1 << __WORK_OFFQ_CANCELING), /* * When a work item is off queue, its high bits point to the last * pool it was on. Cap at 31 bits and use the highest number to * indicate that no pool is associated. */ WORK_OFFQ_FLAG_BITS = 1, WORK_OFFQ_POOL_SHIFT = WORK_OFFQ_FLAG_BASE + WORK_OFFQ_FLAG_BITS, WORK_OFFQ_LEFT = BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT, WORK_OFFQ_POOL_BITS = WORK_OFFQ_LEFT <= 31 ? WORK_OFFQ_LEFT : 31, WORK_OFFQ_POOL_NONE = (1LU << WORK_OFFQ_POOL_BITS) - 1, /* convenience constants */ WORK_STRUCT_FLAG_MASK = (1UL << WORK_STRUCT_FLAG_BITS) - 1, WORK_STRUCT_WQ_DATA_MASK = ~WORK_STRUCT_FLAG_MASK, WORK_STRUCT_NO_POOL = (unsigned long)WORK_OFFQ_POOL_NONE << WORK_OFFQ_POOL_SHIFT, /* bit mask for work_busy() return values */ WORK_BUSY_PENDING = 1 << 0, WORK_BUSY_RUNNING = 1 << 1, /* maximum string length for set_worker_desc() */ WORKER_DESC_LEN = 24, }; struct work_struct { atomic_long_t data; struct list_head entry; work_func_t func; #ifdef CONFIG_LOCKDEP struct lockdep_map lockdep_map; #endif }; #define WORK_DATA_INIT() ATOMIC_LONG_INIT((unsigned long)WORK_STRUCT_NO_POOL) #define WORK_DATA_STATIC_INIT() \ ATOMIC_LONG_INIT((unsigned long)(WORK_STRUCT_NO_POOL | WORK_STRUCT_STATIC)) struct delayed_work { struct work_struct work; struct timer_list timer; /* target workqueue and CPU ->timer uses to queue ->work */ struct workqueue_struct *wq; int cpu; }; struct rcu_work { struct work_struct work; struct rcu_head rcu; /* target workqueue ->rcu uses to queue ->work */ struct workqueue_struct *wq; }; /** * struct workqueue_attrs - A struct for workqueue attributes. * * This can be used to change attributes of an unbound workqueue. */ struct workqueue_attrs { /** * @nice: nice level */ int nice; /** * @cpumask: allowed CPUs */ cpumask_var_t cpumask; /** * @no_numa: disable NUMA affinity * * Unlike other fields, ``no_numa`` isn't a property of a worker_pool. It * only modifies how :c:func:`apply_workqueue_attrs` select pools and thus * doesn't participate in pool hash calculations or equality comparisons. */ bool no_numa; }; static inline struct delayed_work *to_delayed_work(struct work_struct *work) { return container_of(work, struct delayed_work, work); } static inline struct rcu_work *to_rcu_work(struct work_struct *work) { return container_of(work, struct rcu_work, work); } struct execute_work { struct work_struct work; }; #ifdef CONFIG_LOCKDEP /* * NB: because we have to copy the lockdep_map, setting _key * here is required, otherwise it could get initialised to the * copy of the lockdep_map! */ #define __WORK_INIT_LOCKDEP_MAP(n, k) \ .lockdep_map = STATIC_LOCKDEP_MAP_INIT(n, k), #else #define __WORK_INIT_LOCKDEP_MAP(n, k) #endif #define __WORK_INITIALIZER(n, f) { \ .data = WORK_DATA_STATIC_INIT(), \ .entry = { &(n).entry, &(n).entry }, \ .func = (f), \ __WORK_INIT_LOCKDEP_MAP(#n, &(n)) \ } #define __DELAYED_WORK_INITIALIZER(n, f, tflags) { \ .work = __WORK_INITIALIZER((n).work, (f)), \ .timer = __TIMER_INITIALIZER(delayed_work_timer_fn,\ (tflags) | TIMER_IRQSAFE), \ } #define DECLARE_WORK(n, f) \ struct work_struct n = __WORK_INITIALIZER(n, f) #define DECLARE_DELAYED_WORK(n, f) \ struct delayed_work n = __DELAYED_WORK_INITIALIZER(n, f, 0) #define DECLARE_DEFERRABLE_WORK(n, f) \ struct delayed_work n = __DELAYED_WORK_INITIALIZER(n, f, TIMER_DEFERRABLE) #ifdef CONFIG_DEBUG_OBJECTS_WORK extern void __init_work(struct work_struct *work, int onstack); extern void destroy_work_on_stack(struct work_struct *work); extern void destroy_delayed_work_on_stack(struct delayed_work *work); static inline unsigned int work_static(struct work_struct *work) { return *work_data_bits(work) & WORK_STRUCT_STATIC; } #else static inline void __init_work(struct work_struct *work, int onstack) { } static inline void destroy_work_on_stack(struct work_struct *work) { } static inline void destroy_delayed_work_on_stack(struct delayed_work *work) { } static inline unsigned int work_static(struct work_struct *work) { return 0; } #endif /* * initialize all of a work item in one go * * NOTE! No point in using "atomic_long_set()": using a direct * assignment of the work data initializer allows the compiler * to generate better code. */ #ifdef CONFIG_LOCKDEP #define __INIT_WORK(_work, _func, _onstack) \ do { \ static struct lock_class_key __key; \ \ __init_work((_work), _onstack); \ (_work)->data = (atomic_long_t) WORK_DATA_INIT(); \ lockdep_init_map(&(_work)->lockdep_map, "(work_completion)"#_work, &__key, 0); \ INIT_LIST_HEAD(&(_work)->entry); \ (_work)->func = (_func); \ } while (0) #else #define __INIT_WORK(_work, _func, _onstack) \ do { \ __init_work((_work), _onstack); \ (_work)->data = (atomic_long_t) WORK_DATA_INIT(); \ INIT_LIST_HEAD(&(_work)->entry); \ (_work)->func = (_func); \ } while (0) #endif #define INIT_WORK(_work, _func) \ __INIT_WORK((_work), (_func), 0) #define INIT_WORK_ONSTACK(_work, _func) \ __INIT_WORK((_work), (_func), 1) #define __INIT_DELAYED_WORK(_work, _func, _tflags) \ do { \ INIT_WORK(&(_work)->work, (_func)); \ __init_timer(&(_work)->timer, \ delayed_work_timer_fn, \ (_tflags) | TIMER_IRQSAFE); \ } while (0) #define __INIT_DELAYED_WORK_ONSTACK(_work, _func, _tflags) \ do { \ INIT_WORK_ONSTACK(&(_work)->work, (_func)); \ __init_timer_on_stack(&(_work)->timer, \ delayed_work_timer_fn, \ (_tflags) | TIMER_IRQSAFE); \ } while (0) #define INIT_DELAYED_WORK(_work, _func) \ __INIT_DELAYED_WORK(_work, _func, 0) #define INIT_DELAYED_WORK_ONSTACK(_work, _func) \ __INIT_DELAYED_WORK_ONSTACK(_work, _func, 0) #define INIT_DEFERRABLE_WORK(_work, _func) \ __INIT_DELAYED_WORK(_work, _func, TIMER_DEFERRABLE) #define INIT_DEFERRABLE_WORK_ONSTACK(_work, _func) \ __INIT_DELAYED_WORK_ONSTACK(_work, _func, TIMER_DEFERRABLE) #define INIT_RCU_WORK(_work, _func) \ INIT_WORK(&(_work)->work, (_func)) #define INIT_RCU_WORK_ONSTACK(_work, _func) \ INIT_WORK_ONSTACK(&(_work)->work, (_func)) /** * work_pending - Find out whether a work item is currently pending * @work: The work item in question */ #define work_pending(work) \ test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) /** * delayed_work_pending - Find out whether a delayable work item is currently * pending * @w: The work item in question */ #define delayed_work_pending(w) \ work_pending(&(w)->work) /* * Workqueue flags and constants. For details, please refer to * Documentation/core-api/workqueue.rst. */ enum { WQ_UNBOUND = 1 << 1, /* not bound to any cpu */ WQ_FREEZABLE = 1 << 2, /* freeze during suspend */ WQ_MEM_RECLAIM = 1 << 3, /* may be used for memory reclaim */ WQ_HIGHPRI = 1 << 4, /* high priority */ WQ_CPU_INTENSIVE = 1 << 5, /* cpu intensive workqueue */ WQ_SYSFS = 1 << 6, /* visible in sysfs, see wq_sysfs_register() */ /* * Per-cpu workqueues are generally preferred because they tend to * show better performance thanks to cache locality. Per-cpu * workqueues exclude the scheduler from choosing the CPU to * execute the worker threads, which has an unfortunate side effect * of increasing power consumption. * * The scheduler considers a CPU idle if it doesn't have any task * to execute and tries to keep idle cores idle to conserve power; * however, for example, a per-cpu work item scheduled from an * interrupt handler on an idle CPU will force the scheduler to * excute the work item on that CPU breaking the idleness, which in * turn may lead to more scheduling choices which are sub-optimal * in terms of power consumption. * * Workqueues marked with WQ_POWER_EFFICIENT are per-cpu by default * but become unbound if workqueue.power_efficient kernel param is * specified. Per-cpu workqueues which are identified to * contribute significantly to power-consumption are identified and * marked with this flag and enabling the power_efficient mode * leads to noticeable power saving at the cost of small * performance disadvantage. * * http://thread.gmane.org/gmane.linux.kernel/1480396 */ WQ_POWER_EFFICIENT = 1 << 7, __WQ_DRAINING = 1 << 16, /* internal: workqueue is draining */ __WQ_ORDERED = 1 << 17, /* internal: workqueue is ordered */ __WQ_LEGACY = 1 << 18, /* internal: create*_workqueue() */ __WQ_ORDERED_EXPLICIT = 1 << 19, /* internal: alloc_ordered_workqueue() */ WQ_MAX_ACTIVE = 512, /* I like 512, better ideas? */ WQ_MAX_UNBOUND_PER_CPU = 4, /* 4 * #cpus for unbound wq */ WQ_DFL_ACTIVE = WQ_MAX_ACTIVE / 2, }; /* unbound wq's aren't per-cpu, scale max_active according to #cpus */ #define WQ_UNBOUND_MAX_ACTIVE \ max_t(int, WQ_MAX_ACTIVE, num_possible_cpus() * WQ_MAX_UNBOUND_PER_CPU) /* * System-wide workqueues which are always present. * * system_wq is the one used by schedule[_delayed]_work[_on](). * Multi-CPU multi-threaded. There are users which expect relatively * short queue flush time. Don't queue works which can run for too * long. * * system_highpri_wq is similar to system_wq but for work items which * require WQ_HIGHPRI. * * system_long_wq is similar to system_wq but may host long running * works. Queue flushing might take relatively long. * * system_unbound_wq is unbound workqueue. Workers are not bound to * any specific CPU, not concurrency managed, and all queued works are * executed immediately as long as max_active limit is not reached and * resources are available. * * system_freezable_wq is equivalent to system_wq except that it's * freezable. * * *_power_efficient_wq are inclined towards saving power and converted * into WQ_UNBOUND variants if 'wq_power_efficient' is enabled; otherwise, * they are same as their non-power-efficient counterparts - e.g. * system_power_efficient_wq is identical to system_wq if * 'wq_power_efficient' is disabled. See WQ_POWER_EFFICIENT for more info. */ extern struct workqueue_struct *system_wq; extern struct workqueue_struct *system_highpri_wq; extern struct workqueue_struct *system_long_wq; extern struct workqueue_struct *system_unbound_wq; extern struct workqueue_struct *system_freezable_wq; extern struct workqueue_struct *system_power_efficient_wq; extern struct workqueue_struct *system_freezable_power_efficient_wq; /** * alloc_workqueue - allocate a workqueue * @fmt: printf format for the name of the workqueue * @flags: WQ_* flags * @max_active: max in-flight work items, 0 for default * remaining args: args for @fmt * * Allocate a workqueue with the specified parameters. For detailed * information on WQ_* flags, please refer to * Documentation/core-api/workqueue.rst. * * RETURNS: * Pointer to the allocated workqueue on success, %NULL on failure. */ struct workqueue_struct *alloc_workqueue(const char *fmt, unsigned int flags, int max_active, ...); /** * alloc_ordered_workqueue - allocate an ordered workqueue * @fmt: printf format for the name of the workqueue * @flags: WQ_* flags (only WQ_FREEZABLE and WQ_MEM_RECLAIM are meaningful) * @args...: args for @fmt * * Allocate an ordered workqueue. An ordered workqueue executes at * most one work item at any given time in the queued order. They are * implemented as unbound workqueues with @max_active of one. * * RETURNS: * Pointer to the allocated workqueue on success, %NULL on failure. */ #define alloc_ordered_workqueue(fmt, flags, args...) \ alloc_workqueue(fmt, WQ_UNBOUND | __WQ_ORDERED | \ __WQ_ORDERED_EXPLICIT | (flags), 1, ##args) #define create_workqueue(name) \ alloc_workqueue("%s", __WQ_LEGACY | WQ_MEM_RECLAIM, 1, (name)) #define create_freezable_workqueue(name) \ alloc_workqueue("%s", __WQ_LEGACY | WQ_FREEZABLE | WQ_UNBOUND | \ WQ_MEM_RECLAIM, 1, (name)) #define create_singlethread_workqueue(name) \ alloc_ordered_workqueue("%s", __WQ_LEGACY | WQ_MEM_RECLAIM, name) extern void destroy_workqueue(struct workqueue_struct *wq); struct workqueue_attrs *alloc_workqueue_attrs(void); void free_workqueue_attrs(struct workqueue_attrs *attrs); int apply_workqueue_attrs(struct workqueue_struct *wq, const struct workqueue_attrs *attrs); int workqueue_set_unbound_cpumask(cpumask_var_t cpumask); extern bool queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work); extern bool queue_work_node(int node, struct workqueue_struct *wq, struct work_struct *work); extern bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, struct delayed_work *work, unsigned long delay); extern bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, struct delayed_work *dwork, unsigned long delay); extern bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork); extern void flush_workqueue(struct workqueue_struct *wq); extern void drain_workqueue(struct workqueue_struct *wq); extern int schedule_on_each_cpu(work_func_t func); int execute_in_process_context(work_func_t fn, struct execute_work *); extern bool flush_work(struct work_struct *work); extern bool cancel_work_sync(struct work_struct *work); extern bool flush_delayed_work(struct delayed_work *dwork); extern bool cancel_delayed_work(struct delayed_work *dwork); extern bool cancel_delayed_work_sync(struct delayed_work *dwork); extern bool flush_rcu_work(struct rcu_work *rwork); extern void workqueue_set_max_active(struct workqueue_struct *wq, int max_active); extern struct work_struct *current_work(void); extern bool current_is_workqueue_rescuer(void); extern bool workqueue_congested(int cpu, struct workqueue_struct *wq); extern unsigned int work_busy(struct work_struct *work); extern __printf(1, 2) void set_worker_desc(const char *fmt, ...); extern void print_worker_info(const char *log_lvl, struct task_struct *task); extern void show_workqueue_state(void); extern void wq_worker_comm(char *buf, size_t size, struct task_struct *task); /** * queue_work - queue work on a workqueue * @wq: workqueue to use * @work: work to queue * * Returns %false if @work was already on a queue, %true otherwise. * * We queue the work to the CPU on which it was submitted, but if the CPU dies * it can be processed by another CPU. * * Memory-ordering properties: If it returns %true, guarantees that all stores * preceding the call to queue_work() in the program order will be visible from * the CPU which will execute @work by the time such work executes, e.g., * * { x is initially 0 } * * CPU0 CPU1 * * WRITE_ONCE(x, 1); [ @work is being executed ] * r0 = queue_work(wq, work); r1 = READ_ONCE(x); * * Forbids: r0 == true && r1 == 0 */ static inline bool queue_work(struct workqueue_struct *wq, struct work_struct *work) { return queue_work_on(WORK_CPU_UNBOUND, wq, work); } /** * queue_delayed_work - queue work on a workqueue after delay * @wq: workqueue to use * @dwork: delayable work to queue * @delay: number of jiffies to wait before queueing * * Equivalent to queue_delayed_work_on() but tries to use the local CPU. */ static inline bool queue_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork, unsigned long delay) { return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay); } /** * mod_delayed_work - modify delay of or queue a delayed work * @wq: workqueue to use * @dwork: work to queue * @delay: number of jiffies to wait before queueing * * mod_delayed_work_on() on local CPU. */ static inline bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork, unsigned long delay) { return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay); } /** * schedule_work_on - put work task on a specific cpu * @cpu: cpu to put the work task on * @work: job to be done * * This puts a job on a specific cpu */ static inline bool schedule_work_on(int cpu, struct work_struct *work) { return queue_work_on(cpu, system_wq, work); } /** * schedule_work - put work task in global workqueue * @work: job to be done * * Returns %false if @work was already on the kernel-global workqueue and * %true otherwise. * * This puts a job in the kernel-global workqueue if it was not already * queued and leaves it in the same position on the kernel-global * workqueue otherwise. * * Shares the same memory-ordering properties of queue_work(), cf. the * DocBook header of queue_work(). */ static inline bool schedule_work(struct work_struct *work) { return queue_work(system_wq, work); } /** * flush_scheduled_work - ensure that any scheduled work has run to completion. * * Forces execution of the kernel-global workqueue and blocks until its * completion. * * Think twice before calling this function! It's very easy to get into * trouble if you don't take great care. Either of the following situations * will lead to deadlock: * * One of the work items currently on the workqueue needs to acquire * a lock held by your code or its caller. * * Your code is running in the context of a work routine. * * They will be detected by lockdep when they occur, but the first might not * occur very often. It depends on what work items are on the workqueue and * what locks they need, which you have no control over. * * In most situations flushing the entire workqueue is overkill; you merely * need to know that a particular work item isn't queued and isn't running. * In such cases you should use cancel_delayed_work_sync() or * cancel_work_sync() instead. */ static inline void flush_scheduled_work(void) { flush_workqueue(system_wq); } /** * schedule_delayed_work_on - queue work in global workqueue on CPU after delay * @cpu: cpu to use * @dwork: job to be done * @delay: number of jiffies to wait * * After waiting for a given time this puts a job in the kernel-global * workqueue on the specified CPU. */ static inline bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay) { return queue_delayed_work_on(cpu, system_wq, dwork, delay); } /** * schedule_delayed_work - put work task in global workqueue after delay * @dwork: job to be done * @delay: number of jiffies to wait or 0 for immediate execution * * After waiting for a given time this puts a job in the kernel-global * workqueue. */ static inline bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay) { return queue_delayed_work(system_wq, dwork, delay); } #ifndef CONFIG_SMP static inline long work_on_cpu(int cpu, long (*fn)(void *), void *arg) { return fn(arg); } static inline long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg) { return fn(arg); } #else long work_on_cpu(int cpu, long (*fn)(void *), void *arg); long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg); #endif /* CONFIG_SMP */ #ifdef CONFIG_FREEZER extern void freeze_workqueues_begin(void); extern bool freeze_workqueues_busy(void); extern void thaw_workqueues(void); #endif /* CONFIG_FREEZER */ #ifdef CONFIG_SYSFS int workqueue_sysfs_register(struct workqueue_struct *wq); #else /* CONFIG_SYSFS */ static inline int workqueue_sysfs_register(struct workqueue_struct *wq) { return 0; } #endif /* CONFIG_SYSFS */ #ifdef CONFIG_WQ_WATCHDOG void wq_watchdog_touch(int cpu); #else /* CONFIG_WQ_WATCHDOG */ static inline void wq_watchdog_touch(int cpu) { } #endif /* CONFIG_WQ_WATCHDOG */ #ifdef CONFIG_SMP int workqueue_prepare_cpu(unsigned int cpu); int workqueue_online_cpu(unsigned int cpu); int workqueue_offline_cpu(unsigned int cpu); #endif void __init workqueue_init_early(void); void __init workqueue_init(void); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 /* SPDX-License-Identifier: GPL-2.0-only */ /* * IEEE802.15.4-2003 specification * * Copyright (C) 2007, 2008 Siemens AG * * Written by: * Pavel Smolenskiy <pavel.smolenskiy@gmail.com> * Maxim Gorbachyov <maxim.gorbachev@siemens.com> * Maxim Osipov <maxim.osipov@siemens.com> * Dmitry Eremin-Solenikov <dbaryshkov@gmail.com> * Alexander Smirnov <alex.bluesman.smirnov@gmail.com> */ #ifndef LINUX_IEEE802154_H #define LINUX_IEEE802154_H #include <linux/types.h> #include <linux/random.h> #define IEEE802154_MTU 127 #define IEEE802154_ACK_PSDU_LEN 5 #define IEEE802154_MIN_PSDU_LEN 9 #define IEEE802154_FCS_LEN 2 #define IEEE802154_MAX_AUTH_TAG_LEN 16 #define IEEE802154_FC_LEN 2 #define IEEE802154_SEQ_LEN 1 /* General MAC frame format: * 2 bytes: Frame Control * 1 byte: Sequence Number * 20 bytes: Addressing fields * 14 bytes: Auxiliary Security Header */ #define IEEE802154_MAX_HEADER_LEN (2 + 1 + 20 + 14) #define IEEE802154_MIN_HEADER_LEN (IEEE802154_ACK_PSDU_LEN - \ IEEE802154_FCS_LEN) #define IEEE802154_PAN_ID_BROADCAST 0xffff #define IEEE802154_ADDR_SHORT_BROADCAST 0xffff #define IEEE802154_ADDR_SHORT_UNSPEC 0xfffe #define IEEE802154_EXTENDED_ADDR_LEN 8 #define IEEE802154_SHORT_ADDR_LEN 2 #define IEEE802154_PAN_ID_LEN 2 #define IEEE802154_LIFS_PERIOD 40 #define IEEE802154_SIFS_PERIOD 12 #define IEEE802154_MAX_SIFS_FRAME_SIZE 18 #define IEEE802154_MAX_CHANNEL 26 #define IEEE802154_MAX_PAGE 31 #define IEEE802154_FC_TYPE_BEACON 0x0 /* Frame is beacon */ #define IEEE802154_FC_TYPE_DATA 0x1 /* Frame is data */ #define IEEE802154_FC_TYPE_ACK 0x2 /* Frame is acknowledgment */ #define IEEE802154_FC_TYPE_MAC_CMD 0x3 /* Frame is MAC command */ #define IEEE802154_FC_TYPE_SHIFT 0 #define IEEE802154_FC_TYPE_MASK ((1 << 3) - 1) #define IEEE802154_FC_TYPE(x) ((x & IEEE802154_FC_TYPE_MASK) >> IEEE802154_FC_TYPE_SHIFT) #define IEEE802154_FC_SET_TYPE(v, x) do { \ v = (((v) & ~IEEE802154_FC_TYPE_MASK) | \ (((x) << IEEE802154_FC_TYPE_SHIFT) & IEEE802154_FC_TYPE_MASK)); \ } while (0) #define IEEE802154_FC_SECEN_SHIFT 3 #define IEEE802154_FC_SECEN (1 << IEEE802154_FC_SECEN_SHIFT) #define IEEE802154_FC_FRPEND_SHIFT 4 #define IEEE802154_FC_FRPEND (1 << IEEE802154_FC_FRPEND_SHIFT) #define IEEE802154_FC_ACK_REQ_SHIFT 5 #define IEEE802154_FC_ACK_REQ (1 << IEEE802154_FC_ACK_REQ_SHIFT) #define IEEE802154_FC_INTRA_PAN_SHIFT 6 #define IEEE802154_FC_INTRA_PAN (1 << IEEE802154_FC_INTRA_PAN_SHIFT) #define IEEE802154_FC_SAMODE_SHIFT 14 #define IEEE802154_FC_SAMODE_MASK (3 << IEEE802154_FC_SAMODE_SHIFT) #define IEEE802154_FC_DAMODE_SHIFT 10 #define IEEE802154_FC_DAMODE_MASK (3 << IEEE802154_FC_DAMODE_SHIFT) #define IEEE802154_FC_VERSION_SHIFT 12 #define IEEE802154_FC_VERSION_MASK (3 << IEEE802154_FC_VERSION_SHIFT) #define IEEE802154_FC_VERSION(x) ((x & IEEE802154_FC_VERSION_MASK) >> IEEE802154_FC_VERSION_SHIFT) #define IEEE802154_FC_SAMODE(x) \ (((x) & IEEE802154_FC_SAMODE_MASK) >> IEEE802154_FC_SAMODE_SHIFT) #define IEEE802154_FC_DAMODE(x) \ (((x) & IEEE802154_FC_DAMODE_MASK) >> IEEE802154_FC_DAMODE_SHIFT) #define IEEE802154_SCF_SECLEVEL_MASK 7 #define IEEE802154_SCF_SECLEVEL_SHIFT 0 #define IEEE802154_SCF_SECLEVEL(x) (x & IEEE802154_SCF_SECLEVEL_MASK) #define IEEE802154_SCF_KEY_ID_MODE_SHIFT 3 #define IEEE802154_SCF_KEY_ID_MODE_MASK (3 << IEEE802154_SCF_KEY_ID_MODE_SHIFT) #define IEEE802154_SCF_KEY_ID_MODE(x) \ ((x & IEEE802154_SCF_KEY_ID_MODE_MASK) >> IEEE802154_SCF_KEY_ID_MODE_SHIFT) #define IEEE802154_SCF_KEY_IMPLICIT 0 #define IEEE802154_SCF_KEY_INDEX 1 #define IEEE802154_SCF_KEY_SHORT_INDEX 2 #define IEEE802154_SCF_KEY_HW_INDEX 3 #define IEEE802154_SCF_SECLEVEL_NONE 0 #define IEEE802154_SCF_SECLEVEL_MIC32 1 #define IEEE802154_SCF_SECLEVEL_MIC64 2 #define IEEE802154_SCF_SECLEVEL_MIC128 3 #define IEEE802154_SCF_SECLEVEL_ENC 4 #define IEEE802154_SCF_SECLEVEL_ENC_MIC32 5 #define IEEE802154_SCF_SECLEVEL_ENC_MIC64 6 #define IEEE802154_SCF_SECLEVEL_ENC_MIC128 7 /* MAC footer size */ #define IEEE802154_MFR_SIZE 2 /* 2 octets */ /* MAC's Command Frames Identifiers */ #define IEEE802154_CMD_ASSOCIATION_REQ 0x01 #define IEEE802154_CMD_ASSOCIATION_RESP 0x02 #define IEEE802154_CMD_DISASSOCIATION_NOTIFY 0x03 #define IEEE802154_CMD_DATA_REQ 0x04 #define IEEE802154_CMD_PANID_CONFLICT_NOTIFY 0x05 #define IEEE802154_CMD_ORPHAN_NOTIFY 0x06 #define IEEE802154_CMD_BEACON_REQ 0x07 #define IEEE802154_CMD_COORD_REALIGN_NOTIFY 0x08 #define IEEE802154_CMD_GTS_REQ 0x09 /* * The return values of MAC operations */ enum { /* * The requested operation was completed successfully. * For a transmission request, this value indicates * a successful transmission. */ IEEE802154_SUCCESS = 0x0, /* The beacon was lost following a synchronization request. */ IEEE802154_BEACON_LOSS = 0xe0, /* * A transmission could not take place due to activity on the * channel, i.e., the CSMA-CA mechanism has failed. */ IEEE802154_CHNL_ACCESS_FAIL = 0xe1, /* The GTS request has been denied by the PAN coordinator. */ IEEE802154_DENINED = 0xe2, /* The attempt to disable the transceiver has failed. */ IEEE802154_DISABLE_TRX_FAIL = 0xe3, /* * The received frame induces a failed security check according to * the security suite. */ IEEE802154_FAILED_SECURITY_CHECK = 0xe4, /* * The frame resulting from secure processing has a length that is * greater than aMACMaxFrameSize. */ IEEE802154_FRAME_TOO_LONG = 0xe5, /* * The requested GTS transmission failed because the specified GTS * either did not have a transmit GTS direction or was not defined. */ IEEE802154_INVALID_GTS = 0xe6, /* * A request to purge an MSDU from the transaction queue was made using * an MSDU handle that was not found in the transaction table. */ IEEE802154_INVALID_HANDLE = 0xe7, /* A parameter in the primitive is out of the valid range.*/ IEEE802154_INVALID_PARAMETER = 0xe8, /* No acknowledgment was received after aMaxFrameRetries. */ IEEE802154_NO_ACK = 0xe9, /* A scan operation failed to find any network beacons.*/ IEEE802154_NO_BEACON = 0xea, /* No response data were available following a request. */ IEEE802154_NO_DATA = 0xeb, /* The operation failed because a short address was not allocated. */ IEEE802154_NO_SHORT_ADDRESS = 0xec, /* * A receiver enable request was unsuccessful because it could not be * completed within the CAP. */ IEEE802154_OUT_OF_CAP = 0xed, /* * A PAN identifier conflict has been detected and communicated to the * PAN coordinator. */ IEEE802154_PANID_CONFLICT = 0xee, /* A coordinator realignment command has been received. */ IEEE802154_REALIGMENT = 0xef, /* The transaction has expired and its information discarded. */ IEEE802154_TRANSACTION_EXPIRED = 0xf0, /* There is no capacity to store the transaction. */ IEEE802154_TRANSACTION_OVERFLOW = 0xf1, /* * The transceiver was in the transmitter enabled state when the * receiver was requested to be enabled. */ IEEE802154_TX_ACTIVE = 0xf2, /* The appropriate key is not available in the ACL. */ IEEE802154_UNAVAILABLE_KEY = 0xf3, /* * A SET/GET request was issued with the identifier of a PIB attribute * that is not supported. */ IEEE802154_UNSUPPORTED_ATTR = 0xf4, /* * A request to perform a scan operation failed because the MLME was * in the process of performing a previously initiated scan operation. */ IEEE802154_SCAN_IN_PROGRESS = 0xfc, }; /* frame control handling */ #define IEEE802154_FCTL_FTYPE 0x0003 #define IEEE802154_FCTL_ACKREQ 0x0020 #define IEEE802154_FCTL_SECEN 0x0004 #define IEEE802154_FCTL_INTRA_PAN 0x0040 #define IEEE802154_FCTL_DADDR 0x0c00 #define IEEE802154_FCTL_SADDR 0xc000 #define IEEE802154_FTYPE_DATA 0x0001 #define IEEE802154_FCTL_ADDR_NONE 0x0000 #define IEEE802154_FCTL_DADDR_SHORT 0x0800 #define IEEE802154_FCTL_DADDR_EXTENDED 0x0c00 #define IEEE802154_FCTL_SADDR_SHORT 0x8000 #define IEEE802154_FCTL_SADDR_EXTENDED 0xc000 /* * ieee802154_is_data - check if type is IEEE802154_FTYPE_DATA * @fc: frame control bytes in little-endian byteorder */ static inline int ieee802154_is_data(__le16 fc) { return (fc & cpu_to_le16(IEEE802154_FCTL_FTYPE)) == cpu_to_le16(IEEE802154_FTYPE_DATA); } /** * ieee802154_is_secen - check if Security bit is set * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee802154_is_secen(__le16 fc) { return fc & cpu_to_le16(IEEE802154_FCTL_SECEN); } /** * ieee802154_is_ackreq - check if acknowledgment request bit is set * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee802154_is_ackreq(__le16 fc) { return fc & cpu_to_le16(IEEE802154_FCTL_ACKREQ); } /** * ieee802154_is_intra_pan - check if intra pan id communication * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee802154_is_intra_pan(__le16 fc) { return fc & cpu_to_le16(IEEE802154_FCTL_INTRA_PAN); } /* * ieee802154_daddr_mode - get daddr mode from fc * @fc: frame control bytes in little-endian byteorder */ static inline __le16 ieee802154_daddr_mode(__le16 fc) { return fc & cpu_to_le16(IEEE802154_FCTL_DADDR); } /* * ieee802154_saddr_mode - get saddr mode from fc * @fc: frame control bytes in little-endian byteorder */ static inline __le16 ieee802154_saddr_mode(__le16 fc) { return fc & cpu_to_le16(IEEE802154_FCTL_SADDR); } /** * ieee802154_is_valid_psdu_len - check if psdu len is valid * available lengths: * 0-4 Reserved * 5 MPDU (Acknowledgment) * 6-8 Reserved * 9-127 MPDU * * @len: psdu len with (MHR + payload + MFR) */ static inline bool ieee802154_is_valid_psdu_len(u8 len) { return (len == IEEE802154_ACK_PSDU_LEN || (len >= IEEE802154_MIN_PSDU_LEN && len <= IEEE802154_MTU)); } /** * ieee802154_is_valid_extended_unicast_addr - check if extended addr is valid * @addr: extended addr to check */ static inline bool ieee802154_is_valid_extended_unicast_addr(__le64 addr) { /* Bail out if the address is all zero, or if the group * address bit is set. */ return ((addr != cpu_to_le64(0x0000000000000000ULL)) && !(addr & cpu_to_le64(0x0100000000000000ULL))); } /** * ieee802154_is_broadcast_short_addr - check if short addr is broadcast * @addr: short addr to check */ static inline bool ieee802154_is_broadcast_short_addr(__le16 addr) { return (addr == cpu_to_le16(IEEE802154_ADDR_SHORT_BROADCAST)); } /** * ieee802154_is_unspec_short_addr - check if short addr is unspecified * @addr: short addr to check */ static inline bool ieee802154_is_unspec_short_addr(__le16 addr) { return (addr == cpu_to_le16(IEEE802154_ADDR_SHORT_UNSPEC)); } /** * ieee802154_is_valid_src_short_addr - check if source short address is valid * @addr: short addr to check */ static inline bool ieee802154_is_valid_src_short_addr(__le16 addr) { return !(ieee802154_is_broadcast_short_addr(addr) || ieee802154_is_unspec_short_addr(addr)); } /** * ieee802154_random_extended_addr - generates a random extended address * @addr: extended addr pointer to place the random address */ static inline void ieee802154_random_