1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef LINUX_KEXEC_H #define LINUX_KEXEC_H #define IND_DESTINATION_BIT 0 #define IND_INDIRECTION_BIT 1 #define IND_DONE_BIT 2 #define IND_SOURCE_BIT 3 #define IND_DESTINATION (1 << IND_DESTINATION_BIT) #define IND_INDIRECTION (1 << IND_INDIRECTION_BIT) #define IND_DONE (1 << IND_DONE_BIT) #define IND_SOURCE (1 << IND_SOURCE_BIT) #define IND_FLAGS (IND_DESTINATION | IND_INDIRECTION | IND_DONE | IND_SOURCE) #if !defined(__ASSEMBLY__) #include <linux/crash_core.h> #include <asm/io.h> #include <uapi/linux/kexec.h> #ifdef CONFIG_KEXEC_CORE #include <linux/list.h> #include <linux/compat.h> #include <linux/ioport.h> #include <linux/module.h> #include <asm/kexec.h> /* Verify architecture specific macros are defined */ #ifndef KEXEC_SOURCE_MEMORY_LIMIT #error KEXEC_SOURCE_MEMORY_LIMIT not defined #endif #ifndef KEXEC_DESTINATION_MEMORY_LIMIT #error KEXEC_DESTINATION_MEMORY_LIMIT not defined #endif #ifndef KEXEC_CONTROL_MEMORY_LIMIT #error KEXEC_CONTROL_MEMORY_LIMIT not defined #endif #ifndef KEXEC_CONTROL_MEMORY_GFP #define KEXEC_CONTROL_MEMORY_GFP (GFP_KERNEL | __GFP_NORETRY) #endif #ifndef KEXEC_CONTROL_PAGE_SIZE #error KEXEC_CONTROL_PAGE_SIZE not defined #endif #ifndef KEXEC_ARCH #error KEXEC_ARCH not defined #endif #ifndef KEXEC_CRASH_CONTROL_MEMORY_LIMIT #define KEXEC_CRASH_CONTROL_MEMORY_LIMIT KEXEC_CONTROL_MEMORY_LIMIT #endif #ifndef KEXEC_CRASH_MEM_ALIGN #define KEXEC_CRASH_MEM_ALIGN PAGE_SIZE #endif #define KEXEC_CORE_NOTE_NAME CRASH_CORE_NOTE_NAME /* * This structure is used to hold the arguments that are used when loading * kernel binaries. */ typedef unsigned long kimage_entry_t; struct kexec_segment { /* * This pointer can point to user memory if kexec_load() system * call is used or will point to kernel memory if * kexec_file_load() system call is used. * * Use ->buf when expecting to deal with user memory and use ->kbuf * when expecting to deal with kernel memory. */ union { void __user *buf; void *kbuf; }; size_t bufsz; unsigned long mem; size_t memsz; }; #ifdef CONFIG_COMPAT struct compat_kexec_segment { compat_uptr_t buf; compat_size_t bufsz; compat_ulong_t mem; /* User space sees this as a (void *) ... */ compat_size_t memsz; }; #endif #ifdef CONFIG_KEXEC_FILE struct purgatory_info { /* * Pointer to elf header at the beginning of kexec_purgatory. * Note: kexec_purgatory is read only */ const Elf_Ehdr *ehdr; /* * Temporary, modifiable buffer for sechdrs used for relocation. * This memory can be freed post image load. */ Elf_Shdr *sechdrs; /* * Temporary, modifiable buffer for stripped purgatory used for * relocation. This memory can be freed post image load. */ void *purgatory_buf; }; struct kimage; typedef int (kexec_probe_t)(const char *kernel_buf, unsigned long kernel_size); typedef void *(kexec_load_t)(struct kimage *image, char *kernel_buf, unsigned long kernel_len, char *initrd, unsigned long initrd_len, char *cmdline, unsigned long cmdline_len); typedef int (kexec_cleanup_t)(void *loader_data); #ifdef CONFIG_KEXEC_SIG typedef int (kexec_verify_sig_t)(const char *kernel_buf, unsigned long kernel_len); #endif struct kexec_file_ops { kexec_probe_t *probe; kexec_load_t *load; kexec_cleanup_t *cleanup; #ifdef CONFIG_KEXEC_SIG kexec_verify_sig_t *verify_sig; #endif }; extern const struct kexec_file_ops * const kexec_file_loaders[]; int kexec_image_probe_default(struct kimage *image, void *buf, unsigned long buf_len); int kexec_image_post_load_cleanup_default(struct kimage *image); /* * If kexec_buf.mem is set to this value, kexec_locate_mem_hole() * will try to allocate free memory. Arch may overwrite it. */ #ifndef KEXEC_BUF_MEM_UNKNOWN #define KEXEC_BUF_MEM_UNKNOWN 0 #endif /** * struct kexec_buf - parameters for finding a place for a buffer in memory * @image: kexec image in which memory to search. * @buffer: Contents which will be copied to the allocated memory. * @bufsz: Size of @buffer. * @mem: On return will have address of the buffer in memory. * @memsz: Size for the buffer in memory. * @buf_align: Minimum alignment needed. * @buf_min: The buffer can't be placed below this address. * @buf_max: The buffer can't be placed above this address. * @top_down: Allocate from top of memory. */ struct kexec_buf { struct kimage *image; void *buffer; unsigned long bufsz; unsigned long mem; unsigned long memsz; unsigned long buf_align; unsigned long buf_min; unsigned long buf_max; bool top_down; }; int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf); int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name, void *buf, unsigned int size, bool get_value); void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name); /* Architectures may override the below functions */ int arch_kexec_kernel_image_probe(struct kimage *image, void *buf, unsigned long buf_len); void *arch_kexec_kernel_image_load(struct kimage *image); int arch_kexec_apply_relocations_add(struct purgatory_info *pi, Elf_Shdr *section, const Elf_Shdr *relsec, const Elf_Shdr *symtab); int arch_kexec_apply_relocations(struct purgatory_info *pi, Elf_Shdr *section, const Elf_Shdr *relsec, const Elf_Shdr *symtab); int arch_kimage_file_post_load_cleanup(struct kimage *image); #ifdef CONFIG_KEXEC_SIG int arch_kexec_kernel_verify_sig(struct kimage *image, void *buf, unsigned long buf_len); #endif int arch_kexec_locate_mem_hole(struct kexec_buf *kbuf); extern int kexec_add_buffer(struct kexec_buf *kbuf); int kexec_locate_mem_hole(struct kexec_buf *kbuf); /* Alignment required for elf header segment */ #define ELF_CORE_HEADER_ALIGN 4096 struct crash_mem_range { u64 start, end; }; struct crash_mem { unsigned int max_nr_ranges; unsigned int nr_ranges; struct crash_mem_range ranges[]; }; extern int crash_exclude_mem_range(struct crash_mem *mem, unsigned long long mstart, unsigned long long mend); extern int crash_prepare_elf64_headers(struct crash_mem *mem, int kernel_map, void **addr, unsigned long *sz); #endif /* CONFIG_KEXEC_FILE */ #ifdef CONFIG_KEXEC_ELF struct kexec_elf_info { /* * Where the ELF binary contents are kept. * Memory managed by the user of the struct. */ const char *buffer; const struct elfhdr *ehdr; const struct elf_phdr *proghdrs; }; int kexec_build_elf_info(const char *buf, size_t len, struct elfhdr *ehdr, struct kexec_elf_info *elf_info); int kexec_elf_load(struct kimage *image, struct elfhdr *ehdr, struct kexec_elf_info *elf_info, struct kexec_buf *kbuf, unsigned long *lowest_load_addr); void kexec_free_elf_info(struct kexec_elf_info *elf_info); int kexec_elf_probe(const char *buf, unsigned long len); #endif struct kimage { kimage_entry_t head; kimage_entry_t *entry; kimage_entry_t *last_entry; unsigned long start; struct page *control_code_page; struct page *swap_page; void *vmcoreinfo_data_copy; /* locates in the crash memory */ unsigned long nr_segments; struct kexec_segment segment[KEXEC_SEGMENT_MAX]; struct list_head control_pages; struct list_head dest_pages; struct list_head unusable_pages; /* Address of next control page to allocate for crash kernels. */ unsigned long control_page; /* Flags to indicate special processing */ unsigned int type : 1; #define KEXEC_TYPE_DEFAULT 0 #define KEXEC_TYPE_CRASH 1 unsigned int preserve_context : 1; /* If set, we are using file mode kexec syscall */ unsigned int file_mode:1; #ifdef ARCH_HAS_KIMAGE_ARCH struct kimage_arch arch; #endif #ifdef CONFIG_KEXEC_FILE /* Additional fields for file based kexec syscall */ void *kernel_buf; unsigned long kernel_buf_len; void *initrd_buf; unsigned long initrd_buf_len; char *cmdline_buf; unsigned long cmdline_buf_len; /* File operations provided by image loader */ const struct kexec_file_ops *fops; /* Image loader handling the kernel can store a pointer here */ void *image_loader_data; /* Information for loading purgatory */ struct purgatory_info purgatory_info; #endif #ifdef CONFIG_IMA_KEXEC /* Virtual address of IMA measurement buffer for kexec syscall */ void *ima_buffer; #endif }; /* kexec interface functions */ extern void machine_kexec(struct kimage *image); extern int machine_kexec_prepare(struct kimage *image); extern void machine_kexec_cleanup(struct kimage *image); extern int kernel_kexec(void); extern struct page *kimage_alloc_control_pages(struct kimage *image, unsigned int order); extern void __crash_kexec(struct pt_regs *); extern void crash_kexec(struct pt_regs *); int kexec_should_crash(struct task_struct *); int kexec_crash_loaded(void); void crash_save_cpu(struct pt_regs *regs, int cpu); extern int kimage_crash_copy_vmcoreinfo(struct kimage *image); extern struct kimage *kexec_image; extern struct kimage *kexec_crash_image; extern int kexec_load_disabled; #ifndef kexec_flush_icache_page #define kexec_flush_icache_page(page) #endif /* List of defined/legal kexec flags */ #ifndef CONFIG_KEXEC_JUMP #define KEXEC_FLAGS KEXEC_ON_CRASH #else #define KEXEC_FLAGS (KEXEC_ON_CRASH | KEXEC_PRESERVE_CONTEXT) #endif /* List of defined/legal kexec file flags */ #define KEXEC_FILE_FLAGS (KEXEC_FILE_UNLOAD | KEXEC_FILE_ON_CRASH | \ KEXEC_FILE_NO_INITRAMFS) /* Location of a reserved region to hold the crash kernel. */ extern struct resource crashk_res; extern struct resource crashk_low_res; extern note_buf_t __percpu *crash_notes; /* flag to track if kexec reboot is in progress */ extern bool kexec_in_progress; int crash_shrink_memory(unsigned long new_size); size_t crash_get_memory_size(void); void crash_free_reserved_phys_range(unsigned long begin, unsigned long end); void arch_kexec_protect_crashkres(void); void arch_kexec_unprotect_crashkres(void); #ifndef page_to_boot_pfn static inline unsigned long page_to_boot_pfn(struct page *page) { return page_to_pfn(page); } #endif #ifndef boot_pfn_to_page static inline struct page *boot_pfn_to_page(unsigned long boot_pfn) { return pfn_to_page(boot_pfn); } #endif #ifndef phys_to_boot_phys static inline unsigned long phys_to_boot_phys(phys_addr_t phys) { return phys; } #endif #ifndef boot_phys_to_phys static inline phys_addr_t boot_phys_to_phys(unsigned long boot_phys) { return boot_phys; } #endif static inline unsigned long virt_to_boot_phys(void *addr) { return phys_to_boot_phys(__pa((unsigned long)addr)); } static inline void *boot_phys_to_virt(unsigned long entry) { return phys_to_virt(boot_phys_to_phys(entry)); } #ifndef arch_kexec_post_alloc_pages static inline int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp) { return 0; } #endif #ifndef arch_kexec_pre_free_pages static inline void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages) { } #endif #else /* !CONFIG_KEXEC_CORE */ struct pt_regs; struct task_struct; static inline void __crash_kexec(struct pt_regs *regs) { } static inline void crash_kexec(struct pt_regs *regs) { } static inline int kexec_should_crash(struct task_struct *p) { return 0; } static inline int kexec_crash_loaded(void) { return 0; } #define kexec_in_progress false #endif /* CONFIG_KEXEC_CORE */ #endif /* !defined(__ASSEBMLY__) */ #endif /* LINUX_KEXEC_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM sched #if !defined(_TRACE_SCHED_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_SCHED_H #include <linux/sched/numa_balancing.h> #include <linux/tracepoint.h> #include <linux/binfmts.h> /* * Tracepoint for calling kthread_stop, performed to end a kthread: */ TRACE_EVENT(sched_kthread_stop, TP_PROTO(struct task_struct *t), TP_ARGS(t), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) __field( pid_t, pid ) ), TP_fast_assign( memcpy(__entry->comm, t->comm, TASK_COMM_LEN); __entry->pid = t->pid; ), TP_printk("comm=%s pid=%d", __entry->comm, __entry->pid) ); /* * Tracepoint for the return value of the kthread stopping: */ TRACE_EVENT(sched_kthread_stop_ret, TP_PROTO(int ret), TP_ARGS(ret), TP_STRUCT__entry( __field( int, ret ) ), TP_fast_assign( __entry->ret = ret; ), TP_printk("ret=%d", __entry->ret) ); /* * Tracepoint for waking up a task: */ DECLARE_EVENT_CLASS(sched_wakeup_template, TP_PROTO(struct task_struct *p), TP_ARGS(__perf_task(p)), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) __field( pid_t, pid ) __field( int, prio ) __field( int, success ) __field( int, target_cpu ) ), TP_fast_assign( memcpy(__entry->comm, p->comm, TASK_COMM_LEN); __entry->pid = p->pid; __entry->prio = p->prio; /* XXX SCHED_DEADLINE */ __entry->success = 1; /* rudiment, kill when possible */ __entry->target_cpu = task_cpu(p); ), TP_printk("comm=%s pid=%d prio=%d target_cpu=%03d", __entry->comm, __entry->pid, __entry->prio, __entry->target_cpu) ); /* * Tracepoint called when waking a task; this tracepoint is guaranteed to be * called from the waking context. */ DEFINE_EVENT(sched_wakeup_template, sched_waking, TP_PROTO(struct task_struct *p), TP_ARGS(p)); /* * Tracepoint called when the task is actually woken; p->state == TASK_RUNNNG. * It is not always called from the waking context. */ DEFINE_EVENT(sched_wakeup_template, sched_wakeup, TP_PROTO(struct task_struct *p), TP_ARGS(p)); /* * Tracepoint for waking up a new task: */ DEFINE_EVENT(sched_wakeup_template, sched_wakeup_new, TP_PROTO(struct task_struct *p), TP_ARGS(p)); #ifdef CREATE_TRACE_POINTS static inline long __trace_sched_switch_state(bool preempt, struct task_struct *p) { unsigned int state; #ifdef CONFIG_SCHED_DEBUG BUG_ON(p != current); #endif /* CONFIG_SCHED_DEBUG */ /* * Preemption ignores task state, therefore preempted tasks are always * RUNNING (we will not have dequeued if state != RUNNING). */ if (preempt) return TASK_REPORT_MAX; /* * task_state_index() uses fls() and returns a value from 0-8 range. * Decrement it by 1 (except TASK_RUNNING state i.e 0) before using * it for left shift operation to get the correct task->state * mapping. */ state = task_state_index(p); return state ? (1 << (state - 1)) : state; } #endif /* CREATE_TRACE_POINTS */ /* * Tracepoint for task switches, performed by the scheduler: */ TRACE_EVENT(sched_switch, TP_PROTO(bool preempt, struct task_struct *prev, struct task_struct *next), TP_ARGS(preempt, prev, next), TP_STRUCT__entry( __array( char, prev_comm, TASK_COMM_LEN ) __field( pid_t, prev_pid ) __field( int, prev_prio ) __field( long, prev_state ) __array( char, next_comm, TASK_COMM_LEN ) __field( pid_t, next_pid ) __field( int, next_prio ) ), TP_fast_assign( memcpy(__entry->next_comm, next->comm, TASK_COMM_LEN); __entry->prev_pid = prev->pid; __entry->prev_prio = prev->prio; __entry->prev_state = __trace_sched_switch_state(preempt, prev); memcpy(__entry->prev_comm, prev->comm, TASK_COMM_LEN); __entry->next_pid = next->pid; __entry->next_prio = next->prio; /* XXX SCHED_DEADLINE */ ), TP_printk("prev_comm=%s prev_pid=%d prev_prio=%d prev_state=%s%s ==> next_comm=%s next_pid=%d next_prio=%d", __entry->prev_comm, __entry->prev_pid, __entry->prev_prio, (__entry->prev_state & (TASK_REPORT_MAX - 1)) ? __print_flags(__entry->prev_state & (TASK_REPORT_MAX - 1), "|", { TASK_INTERRUPTIBLE, "S" }, { TASK_UNINTERRUPTIBLE, "D" }, { __TASK_STOPPED, "T" }, { __TASK_TRACED, "t" }, { EXIT_DEAD, "X" }, { EXIT_ZOMBIE, "Z" }, { TASK_PARKED, "P" }, { TASK_DEAD, "I" }) : "R", __entry->prev_state & TASK_REPORT_MAX ? "+" : "", __entry->next_comm, __entry->next_pid, __entry->next_prio) ); /* * Tracepoint for a task being migrated: */ TRACE_EVENT(sched_migrate_task, TP_PROTO(struct task_struct *p, int dest_cpu), TP_ARGS(p, dest_cpu), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) __field( pid_t, pid ) __field( int, prio ) __field( int, orig_cpu ) __field( int, dest_cpu ) ), TP_fast_assign( memcpy(__entry->comm, p->comm, TASK_COMM_LEN); __entry->pid = p->pid; __entry->prio = p->prio; /* XXX SCHED_DEADLINE */ __entry->orig_cpu = task_cpu(p); __entry->dest_cpu = dest_cpu; ), TP_printk("comm=%s pid=%d prio=%d orig_cpu=%d dest_cpu=%d", __entry->comm, __entry->pid, __entry->prio, __entry->orig_cpu, __entry->dest_cpu) ); DECLARE_EVENT_CLASS(sched_process_template, TP_PROTO(struct task_struct *p), TP_ARGS(p), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) __field( pid_t, pid ) __field( int, prio ) ), TP_fast_assign( memcpy(__entry->comm, p->comm, TASK_COMM_LEN); __entry->pid = p->pid; __entry->prio = p->prio; /* XXX SCHED_DEADLINE */ ), TP_printk("comm=%s pid=%d prio=%d", __entry->comm, __entry->pid, __entry->prio) ); /* * Tracepoint for freeing a task: */ DEFINE_EVENT(sched_process_template, sched_process_free, TP_PROTO(struct task_struct *p), TP_ARGS(p)); /* * Tracepoint for a task exiting: */ DEFINE_EVENT(sched_process_template, sched_process_exit, TP_PROTO(struct task_struct *p), TP_ARGS(p)); /* * Tracepoint for waiting on task to unschedule: */ DEFINE_EVENT(sched_process_template, sched_wait_task, TP_PROTO(struct task_struct *p), TP_ARGS(p)); /* * Tracepoint for a waiting task: */ TRACE_EVENT(sched_process_wait, TP_PROTO(struct pid *pid), TP_ARGS(pid), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) __field( pid_t, pid ) __field( int, prio ) ), TP_fast_assign( memcpy(__entry->comm, current->comm, TASK_COMM_LEN); __entry->pid = pid_nr(pid); __entry->prio = current->prio; /* XXX SCHED_DEADLINE */ ), TP_printk("comm=%s pid=%d prio=%d", __entry->comm, __entry->pid, __entry->prio) ); /* * Tracepoint for do_fork: */ TRACE_EVENT(sched_process_fork, TP_PROTO(struct task_struct *parent, struct task_struct *child), TP_ARGS(parent, child), TP_STRUCT__entry( __array( char, parent_comm, TASK_COMM_LEN ) __field( pid_t, parent_pid ) __array( char, child_comm, TASK_COMM_LEN ) __field( pid_t, child_pid ) ), TP_fast_assign( memcpy(__entry->parent_comm, parent->comm, TASK_COMM_LEN); __entry->parent_pid = parent->pid; memcpy(__entry->child_comm, child->comm, TASK_COMM_LEN); __entry->child_pid = child->pid; ), TP_printk("comm=%s pid=%d child_comm=%s child_pid=%d", __entry->parent_comm, __entry->parent_pid, __entry->child_comm, __entry->child_pid) ); /* * Tracepoint for exec: */ TRACE_EVENT(sched_process_exec, TP_PROTO(struct task_struct *p, pid_t old_pid, struct linux_binprm *bprm), TP_ARGS(p, old_pid, bprm), TP_STRUCT__entry( __string( filename, bprm->filename ) __field( pid_t, pid ) __field( pid_t, old_pid ) ), TP_fast_assign( __assign_str(filename, bprm->filename); __entry->pid = p->pid; __entry->old_pid = old_pid; ), TP_printk("filename=%s pid=%d old_pid=%d", __get_str(filename), __entry->pid, __entry->old_pid) ); #ifdef CONFIG_SCHEDSTATS #define DEFINE_EVENT_SCHEDSTAT DEFINE_EVENT #define DECLARE_EVENT_CLASS_SCHEDSTAT DECLARE_EVENT_CLASS #else #define DEFINE_EVENT_SCHEDSTAT DEFINE_EVENT_NOP #define DECLARE_EVENT_CLASS_SCHEDSTAT DECLARE_EVENT_CLASS_NOP #endif /* * XXX the below sched_stat tracepoints only apply to SCHED_OTHER/BATCH/IDLE * adding sched_stat support to SCHED_FIFO/RR would be welcome. */ DECLARE_EVENT_CLASS_SCHEDSTAT(sched_stat_template, TP_PROTO(struct task_struct *tsk, u64 delay), TP_ARGS(__perf_task(tsk), __perf_count(delay)), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) __field( pid_t, pid ) __field( u64, delay ) ), TP_fast_assign( memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN); __entry->pid = tsk->pid; __entry->delay = delay; ), TP_printk("comm=%s pid=%d delay=%Lu [ns]", __entry->comm, __entry->pid, (unsigned long long)__entry->delay) ); /* * Tracepoint for accounting wait time (time the task is runnable * but not actually running due to scheduler contention). */ DEFINE_EVENT_SCHEDSTAT(sched_stat_template, sched_stat_wait, TP_PROTO(struct task_struct *tsk, u64 delay), TP_ARGS(tsk, delay)); /* * Tracepoint for accounting sleep time (time the task is not runnable, * including iowait, see below). */ DEFINE_EVENT_SCHEDSTAT(sched_stat_template, sched_stat_sleep, TP_PROTO(struct task_struct *tsk, u64 delay), TP_ARGS(tsk, delay)); /* * Tracepoint for accounting iowait time (time the task is not runnable * due to waiting on IO to complete). */ DEFINE_EVENT_SCHEDSTAT(sched_stat_template, sched_stat_iowait, TP_PROTO(struct task_struct *tsk, u64 delay), TP_ARGS(tsk, delay)); /* * Tracepoint for accounting blocked time (time the task is in uninterruptible). */ DEFINE_EVENT_SCHEDSTAT(sched_stat_template, sched_stat_blocked, TP_PROTO(struct task_struct *tsk, u64 delay), TP_ARGS(tsk, delay)); /* * Tracepoint for accounting runtime (time the task is executing * on a CPU). */ DECLARE_EVENT_CLASS(sched_stat_runtime, TP_PROTO(struct task_struct *tsk, u64 runtime, u64 vruntime), TP_ARGS(tsk, __perf_count(runtime), vruntime), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) __field( pid_t, pid ) __field( u64, runtime ) __field( u64, vruntime ) ), TP_fast_assign( memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN); __entry->pid = tsk->pid; __entry->runtime = runtime; __entry->vruntime = vruntime; ), TP_printk("comm=%s pid=%d runtime=%Lu [ns] vruntime=%Lu [ns]", __entry->comm, __entry->pid, (unsigned long long)__entry->runtime, (unsigned long long)__entry->vruntime) ); DEFINE_EVENT(sched_stat_runtime, sched_stat_runtime, TP_PROTO(struct task_struct *tsk, u64 runtime, u64 vruntime), TP_ARGS(tsk, runtime, vruntime)); /* * Tracepoint for showing priority inheritance modifying a tasks * priority. */ TRACE_EVENT(sched_pi_setprio, TP_PROTO(struct task_struct *tsk, struct task_struct *pi_task), TP_ARGS(tsk, pi_task), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) __field( pid_t, pid ) __field( int, oldprio ) __field( int, newprio ) ), TP_fast_assign( memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN); __entry->pid = tsk->pid; __entry->oldprio = tsk->prio; __entry->newprio = pi_task ? min(tsk->normal_prio, pi_task->prio) : tsk->normal_prio; /* XXX SCHED_DEADLINE bits missing */ ), TP_printk("comm=%s pid=%d oldprio=%d newprio=%d", __entry->comm, __entry->pid, __entry->oldprio, __entry->newprio) ); #ifdef CONFIG_DETECT_HUNG_TASK TRACE_EVENT(sched_process_hang, TP_PROTO(struct task_struct *tsk), TP_ARGS(tsk), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) __field( pid_t, pid ) ), TP_fast_assign( memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN); __entry->pid = tsk->pid; ), TP_printk("comm=%s pid=%d", __entry->comm, __entry->pid) ); #endif /* CONFIG_DETECT_HUNG_TASK */ /* * Tracks migration of tasks from one runqueue to another. Can be used to * detect if automatic NUMA balancing is bouncing between nodes. */ TRACE_EVENT(sched_move_numa, TP_PROTO(struct task_struct *tsk, int src_cpu, int dst_cpu), TP_ARGS(tsk, src_cpu, dst_cpu), TP_STRUCT__entry( __field( pid_t, pid ) __field( pid_t, tgid ) __field( pid_t, ngid ) __field( int, src_cpu ) __field( int, src_nid ) __field( int, dst_cpu ) __field( int, dst_nid ) ), TP_fast_assign( __entry->pid = task_pid_nr(tsk); __entry->tgid = task_tgid_nr(tsk); __entry->ngid = task_numa_group_id(tsk); __entry->src_cpu = src_cpu; __entry->src_nid = cpu_to_node(src_cpu); __entry->dst_cpu = dst_cpu; __entry->dst_nid = cpu_to_node(dst_cpu); ), TP_printk("pid=%d tgid=%d ngid=%d src_cpu=%d src_nid=%d dst_cpu=%d dst_nid=%d", __entry->pid, __entry->tgid, __entry->ngid, __entry->src_cpu, __entry->src_nid, __entry->dst_cpu, __entry->dst_nid) ); DECLARE_EVENT_CLASS(sched_numa_pair_template, TP_PROTO(struct task_struct *src_tsk, int src_cpu, struct task_struct *dst_tsk, int dst_cpu), TP_ARGS(src_tsk, src_cpu, dst_tsk, dst_cpu), TP_STRUCT__entry( __field( pid_t, src_pid ) __field( pid_t, src_tgid ) __field( pid_t, src_ngid ) __field( int, src_cpu ) __field( int, src_nid ) __field( pid_t, dst_pid ) __field( pid_t, dst_tgid ) __field( pid_t, dst_ngid ) __field( int, dst_cpu ) __field( int, dst_nid ) ), TP_fast_assign( __entry->src_pid = task_pid_nr(src_tsk); __entry->src_tgid = task_tgid_nr(src_tsk); __entry->src_ngid = task_numa_group_id(src_tsk); __entry->src_cpu = src_cpu; __entry->src_nid = cpu_to_node(src_cpu); __entry->dst_pid = dst_tsk ? task_pid_nr(dst_tsk) : 0; __entry->dst_tgid = dst_tsk ? task_tgid_nr(dst_tsk) : 0; __entry->dst_ngid = dst_tsk ? task_numa_group_id(dst_tsk) : 0; __entry->dst_cpu = dst_cpu; __entry->dst_nid = dst_cpu >= 0 ? cpu_to_node(dst_cpu) : -1; ), TP_printk("src_pid=%d src_tgid=%d src_ngid=%d src_cpu=%d src_nid=%d dst_pid=%d dst_tgid=%d dst_ngid=%d dst_cpu=%d dst_nid=%d", __entry->src_pid, __entry->src_tgid, __entry->src_ngid, __entry->src_cpu, __entry->src_nid, __entry->dst_pid, __entry->dst_tgid, __entry->dst_ngid, __entry->dst_cpu, __entry->dst_nid) ); DEFINE_EVENT(sched_numa_pair_template, sched_stick_numa, TP_PROTO(struct task_struct *src_tsk, int src_cpu, struct task_struct *dst_tsk, int dst_cpu), TP_ARGS(src_tsk, src_cpu, dst_tsk, dst_cpu) ); DEFINE_EVENT(sched_numa_pair_template, sched_swap_numa, TP_PROTO(struct task_struct *src_tsk, int src_cpu, struct task_struct *dst_tsk, int dst_cpu), TP_ARGS(src_tsk, src_cpu, dst_tsk, dst_cpu) ); /* * Tracepoint for waking a polling cpu without an IPI. */ TRACE_EVENT(sched_wake_idle_without_ipi, TP_PROTO(int cpu), TP_ARGS(cpu), TP_STRUCT__entry( __field( int, cpu ) ), TP_fast_assign( __entry->cpu = cpu; ), TP_printk("cpu=%d", __entry->cpu) ); /* * Following tracepoints are not exported in tracefs and provide hooking * mechanisms only for testing and debugging purposes. * * Postfixed with _tp to make them easily identifiable in the code. */ DECLARE_TRACE(pelt_cfs_tp, TP_PROTO(struct cfs_rq *cfs_rq), TP_ARGS(cfs_rq)); DECLARE_TRACE(pelt_rt_tp, TP_PROTO(struct rq *rq), TP_ARGS(rq)); DECLARE_TRACE(pelt_dl_tp, TP_PROTO(struct rq *rq), TP_ARGS(rq)); DECLARE_TRACE(pelt_thermal_tp, TP_PROTO(struct rq *rq), TP_ARGS(rq)); DECLARE_TRACE(pelt_irq_tp, TP_PROTO(struct rq *rq), TP_ARGS(rq)); DECLARE_TRACE(pelt_se_tp, TP_PROTO(struct sched_entity *se), TP_ARGS(se)); DECLARE_TRACE(sched_cpu_capacity_tp, TP_PROTO(struct rq *rq), TP_ARGS(rq)); DECLARE_TRACE(sched_overutilized_tp, TP_PROTO(struct root_domain *rd, bool overutilized), TP_ARGS(rd, overutilized)); DECLARE_TRACE(sched_util_est_cfs_tp, TP_PROTO(struct cfs_rq *cfs_rq), TP_ARGS(cfs_rq)); DECLARE_TRACE(sched_util_est_se_tp, TP_PROTO(struct sched_entity *se), TP_ARGS(se)); DECLARE_TRACE(sched_update_nr_running_tp, TP_PROTO(struct rq *rq, int change), TP_ARGS(rq, change)); #endif /* _TRACE_SCHED_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM x86_fpu #if !defined(_TRACE_FPU_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_FPU_H #include <linux/tracepoint.h> DECLARE_EVENT_CLASS(x86_fpu, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu), TP_STRUCT__entry( __field(struct fpu *, fpu) __field(bool, load_fpu) __field(u64, xfeatures) __field(u64, xcomp_bv) ), TP_fast_assign( __entry->fpu = fpu; __entry->load_fpu = test_thread_flag(TIF_NEED_FPU_LOAD); if (boot_cpu_has(X86_FEATURE_OSXSAVE)) { __entry->xfeatures = fpu->state.xsave.header.xfeatures; __entry->xcomp_bv = fpu->state.xsave.header.xcomp_bv; } ), TP_printk("x86/fpu: %p load: %d xfeatures: %llx xcomp_bv: %llx", __entry->fpu, __entry->load_fpu, __entry->xfeatures, __entry->xcomp_bv ) ); DEFINE_EVENT(x86_fpu, x86_fpu_before_save, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu) ); DEFINE_EVENT(x86_fpu, x86_fpu_after_save, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu) ); DEFINE_EVENT(x86_fpu, x86_fpu_before_restore, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu) ); DEFINE_EVENT(x86_fpu, x86_fpu_after_restore, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu) ); DEFINE_EVENT(x86_fpu, x86_fpu_regs_activated, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu) ); DEFINE_EVENT(x86_fpu, x86_fpu_regs_deactivated, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu) ); DEFINE_EVENT(x86_fpu, x86_fpu_init_state, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu) ); DEFINE_EVENT(x86_fpu, x86_fpu_dropped, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu) ); DEFINE_EVENT(x86_fpu, x86_fpu_copy_src, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu) ); DEFINE_EVENT(x86_fpu, x86_fpu_copy_dst, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu) ); DEFINE_EVENT(x86_fpu, x86_fpu_xstate_check_failed, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu) ); #undef TRACE_INCLUDE_PATH #define TRACE_INCLUDE_PATH asm/trace/ #undef TRACE_INCLUDE_FILE #define TRACE_INCLUDE_FILE fpu #endif /* _TRACE_FPU_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Copyright 2003-2005 Red Hat, Inc. All rights reserved. * Copyright 2003-2005 Jeff Garzik * * libata documentation is available via 'make {ps|pdf}docs', * as Documentation/driver-api/libata.rst */ #ifndef __LINUX_LIBATA_H__ #define __LINUX_LIBATA_H__ #include <linux/delay.h> #include <linux/jiffies.h> #include <linux/interrupt.h> #include <linux/dma-mapping.h> #include <linux/scatterlist.h> #include <linux/io.h> #include <linux/ata.h> #include <linux/workqueue.h> #include <scsi/scsi_host.h> #include <linux/acpi.h> #include <linux/cdrom.h> #include <linux/sched.h> #include <linux/async.h> /* * Define if arch has non-standard setup. This is a _PCI_ standard * not a legacy or ISA standard. */ #ifdef CONFIG_ATA_NONSTANDARD #include <asm/libata-portmap.h> #else #define ATA_PRIMARY_IRQ(dev) 14 #define ATA_SECONDARY_IRQ(dev) 15 #endif /* * compile-time options: to be removed as soon as all the drivers are * converted to the new debugging mechanism */ #undef ATA_DEBUG /* debugging output */ #undef ATA_VERBOSE_DEBUG /* yet more debugging output */ #undef ATA_IRQ_TRAP /* define to ack screaming irqs */ #undef ATA_NDEBUG /* define to disable quick runtime checks */ /* note: prints function name for you */ #ifdef ATA_DEBUG #define DPRINTK(fmt, args...) printk(KERN_ERR "%s: " fmt, __func__, ## args) #ifdef ATA_VERBOSE_DEBUG #define VPRINTK(fmt, args...) printk(KERN_ERR "%s: " fmt, __func__, ## args) #else #define VPRINTK(fmt, args...) #endif /* ATA_VERBOSE_DEBUG */ #else #define DPRINTK(fmt, args...) #define VPRINTK(fmt, args...) #endif /* ATA_DEBUG */ #define ata_print_version_once(dev, version) \ ({ \ static bool __print_once; \ \ if (!__print_once) { \ __print_once = true; \ ata_print_version(dev, version); \ } \ }) /* NEW: debug levels */ #define HAVE_LIBATA_MSG 1 enum { ATA_MSG_DRV = 0x0001, ATA_MSG_INFO = 0x0002, ATA_MSG_PROBE = 0x0004, ATA_MSG_WARN = 0x0008, ATA_MSG_MALLOC = 0x0010, ATA_MSG_CTL = 0x0020, ATA_MSG_INTR = 0x0040, ATA_MSG_ERR = 0x0080, }; #define ata_msg_drv(p) ((p)->msg_enable & ATA_MSG_DRV) #define ata_msg_info(p) ((p)->msg_enable & ATA_MSG_INFO) #define ata_msg_probe(p) ((p)->msg_enable & ATA_MSG_PROBE) #define ata_msg_warn(p) ((p)->msg_enable & ATA_MSG_WARN) #define ata_msg_malloc(p) ((p)->msg_enable & ATA_MSG_MALLOC) #define ata_msg_ctl(p) ((p)->msg_enable & ATA_MSG_CTL) #define ata_msg_intr(p) ((p)->msg_enable & ATA_MSG_INTR) #define ata_msg_err(p) ((p)->msg_enable & ATA_MSG_ERR) static inline u32 ata_msg_init(int dval, int default_msg_enable_bits) { if (dval < 0 || dval >= (sizeof(u32) * 8)) return default_msg_enable_bits; /* should be 0x1 - only driver info msgs */ if (!dval) return 0; return (1 << dval) - 1; } /* defines only for the constants which don't work well as enums */ #define ATA_TAG_POISON 0xfafbfcfdU enum { /* various global constants */ LIBATA_MAX_PRD = ATA_MAX_PRD / 2, LIBATA_DUMB_MAX_PRD = ATA_MAX_PRD / 4, /* Worst case */ ATA_DEF_QUEUE = 1, ATA_MAX_QUEUE = 32, ATA_TAG_INTERNAL = ATA_MAX_QUEUE, ATA_SHORT_PAUSE = 16, ATAPI_MAX_DRAIN = 16 << 10, ATA_ALL_DEVICES = (1 << ATA_MAX_DEVICES) - 1, ATA_SHT_EMULATED = 1, ATA_SHT_THIS_ID = -1, /* struct ata_taskfile flags */ ATA_TFLAG_LBA48 = (1 << 0), /* enable 48-bit LBA and "HOB" */ ATA_TFLAG_ISADDR = (1 << 1), /* enable r/w to nsect/lba regs */ ATA_TFLAG_DEVICE = (1 << 2), /* enable r/w to device reg */ ATA_TFLAG_WRITE = (1 << 3), /* data dir: host->dev==1 (write) */ ATA_TFLAG_LBA = (1 << 4), /* enable LBA */ ATA_TFLAG_FUA = (1 << 5), /* enable FUA */ ATA_TFLAG_POLLING = (1 << 6), /* set nIEN to 1 and use polling */ /* struct ata_device stuff */ ATA_DFLAG_LBA = (1 << 0), /* device supports LBA */ ATA_DFLAG_LBA48 = (1 << 1), /* device supports LBA48 */ ATA_DFLAG_CDB_INTR = (1 << 2), /* device asserts INTRQ when ready for CDB */ ATA_DFLAG_NCQ = (1 << 3), /* device supports NCQ */ ATA_DFLAG_FLUSH_EXT = (1 << 4), /* do FLUSH_EXT instead of FLUSH */ ATA_DFLAG_ACPI_PENDING = (1 << 5), /* ACPI resume action pending */ ATA_DFLAG_ACPI_FAILED = (1 << 6), /* ACPI on devcfg has failed */ ATA_DFLAG_AN = (1 << 7), /* AN configured */ ATA_DFLAG_TRUSTED = (1 << 8), /* device supports trusted send/recv */ ATA_DFLAG_DMADIR = (1 << 10), /* device requires DMADIR */ ATA_DFLAG_CFG_MASK = (1 << 12) - 1, ATA_DFLAG_PIO = (1 << 12), /* device limited to PIO mode */ ATA_DFLAG_NCQ_OFF = (1 << 13), /* device limited to non-NCQ mode */ ATA_DFLAG_SLEEPING = (1 << 15), /* device is sleeping */ ATA_DFLAG_DUBIOUS_XFER = (1 << 16), /* data transfer not verified */ ATA_DFLAG_NO_UNLOAD = (1 << 17), /* device doesn't support unload */ ATA_DFLAG_UNLOCK_HPA = (1 << 18), /* unlock HPA */ ATA_DFLAG_NCQ_SEND_RECV = (1 << 19), /* device supports NCQ SEND and RECV */ ATA_DFLAG_NCQ_PRIO = (1 << 20), /* device supports NCQ priority */ ATA_DFLAG_NCQ_PRIO_ENABLE = (1 << 21), /* Priority cmds sent to dev */ ATA_DFLAG_INIT_MASK = (1 << 24) - 1, ATA_DFLAG_DETACH = (1 << 24), ATA_DFLAG_DETACHED = (1 << 25), ATA_DFLAG_DA = (1 << 26), /* device supports Device Attention */ ATA_DFLAG_DEVSLP = (1 << 27), /* device supports Device Sleep */ ATA_DFLAG_ACPI_DISABLED = (1 << 28), /* ACPI for the device is disabled */ ATA_DFLAG_D_SENSE = (1 << 29), /* Descriptor sense requested */ ATA_DFLAG_ZAC = (1 << 30), /* ZAC device */ ATA_DEV_UNKNOWN = 0, /* unknown device */ ATA_DEV_ATA = 1, /* ATA device */ ATA_DEV_ATA_UNSUP = 2, /* ATA device (unsupported) */ ATA_DEV_ATAPI = 3, /* ATAPI device */ ATA_DEV_ATAPI_UNSUP = 4, /* ATAPI device (unsupported) */ ATA_DEV_PMP = 5, /* SATA port multiplier */ ATA_DEV_PMP_UNSUP = 6, /* SATA port multiplier (unsupported) */ ATA_DEV_SEMB = 7, /* SEMB */ ATA_DEV_SEMB_UNSUP = 8, /* SEMB (unsupported) */ ATA_DEV_ZAC = 9, /* ZAC device */ ATA_DEV_ZAC_UNSUP = 10, /* ZAC device (unsupported) */ ATA_DEV_NONE = 11, /* no device */ /* struct ata_link flags */ /* NOTE: struct ata_force_param currently stores lflags in u16 */ ATA_LFLAG_NO_HRST = (1 << 1), /* avoid hardreset */ ATA_LFLAG_NO_SRST = (1 << 2), /* avoid softreset */ ATA_LFLAG_ASSUME_ATA = (1 << 3), /* assume ATA class */ ATA_LFLAG_ASSUME_SEMB = (1 << 4), /* assume SEMB class */ ATA_LFLAG_ASSUME_CLASS = ATA_LFLAG_ASSUME_ATA | ATA_LFLAG_ASSUME_SEMB, ATA_LFLAG_NO_RETRY = (1 << 5), /* don't retry this link */ ATA_LFLAG_DISABLED = (1 << 6), /* link is disabled */ ATA_LFLAG_SW_ACTIVITY = (1 << 7), /* keep activity stats */ ATA_LFLAG_NO_LPM = (1 << 8), /* disable LPM on this link */ ATA_LFLAG_RST_ONCE = (1 << 9), /* limit recovery to one reset */ ATA_LFLAG_CHANGED = (1 << 10), /* LPM state changed on this link */ ATA_LFLAG_NO_DB_DELAY = (1 << 11), /* no debounce delay on link resume */ /* struct ata_port flags */ ATA_FLAG_SLAVE_POSS = (1 << 0), /* host supports slave dev */ /* (doesn't imply presence) */ ATA_FLAG_SATA = (1 << 1), ATA_FLAG_NO_LPM = (1 << 2), /* host not happy with LPM */ ATA_FLAG_NO_LOG_PAGE = (1 << 5), /* do not issue log page read */ ATA_FLAG_NO_ATAPI = (1 << 6), /* No ATAPI support */ ATA_FLAG_PIO_DMA = (1 << 7), /* PIO cmds via DMA */ ATA_FLAG_PIO_LBA48 = (1 << 8), /* Host DMA engine is LBA28 only */ ATA_FLAG_PIO_POLLING = (1 << 9), /* use polling PIO if LLD * doesn't handle PIO interrupts */ ATA_FLAG_NCQ = (1 << 10), /* host supports NCQ */ ATA_FLAG_NO_POWEROFF_SPINDOWN = (1 << 11), /* don't spindown before poweroff */ ATA_FLAG_NO_HIBERNATE_SPINDOWN = (1 << 12), /* don't spindown before hibernation */ ATA_FLAG_DEBUGMSG = (1 << 13), ATA_FLAG_FPDMA_AA = (1 << 14), /* driver supports Auto-Activate */ ATA_FLAG_IGN_SIMPLEX = (1 << 15), /* ignore SIMPLEX */ ATA_FLAG_NO_IORDY = (1 << 16), /* controller lacks iordy */ ATA_FLAG_ACPI_SATA = (1 << 17), /* need native SATA ACPI layout */ ATA_FLAG_AN = (1 << 18), /* controller supports AN */ ATA_FLAG_PMP = (1 << 19), /* controller supports PMP */ ATA_FLAG_FPDMA_AUX = (1 << 20), /* controller supports H2DFIS aux field */ ATA_FLAG_EM = (1 << 21), /* driver supports enclosure * management */ ATA_FLAG_SW_ACTIVITY = (1 << 22), /* driver supports sw activity * led */ ATA_FLAG_NO_DIPM = (1 << 23), /* host not happy with DIPM */ ATA_FLAG_SAS_HOST = (1 << 24), /* SAS host */ /* bits 24:31 of ap->flags are reserved for LLD specific flags */ /* struct ata_port pflags */ ATA_PFLAG_EH_PENDING = (1 << 0), /* EH pending */ ATA_PFLAG_EH_IN_PROGRESS = (1 << 1), /* EH in progress */ ATA_PFLAG_FROZEN = (1 << 2), /* port is frozen */ ATA_PFLAG_RECOVERED = (1 << 3), /* recovery action performed */ ATA_PFLAG_LOADING = (1 << 4), /* boot/loading probe */ ATA_PFLAG_SCSI_HOTPLUG = (1 << 6), /* SCSI hotplug scheduled */ ATA_PFLAG_INITIALIZING = (1 << 7), /* being initialized, don't touch */ ATA_PFLAG_RESETTING = (1 << 8), /* reset in progress */ ATA_PFLAG_UNLOADING = (1 << 9), /* driver is being unloaded */ ATA_PFLAG_UNLOADED = (1 << 10), /* driver is unloaded */ ATA_PFLAG_SUSPENDED = (1 << 17), /* port is suspended (power) */ ATA_PFLAG_PM_PENDING = (1 << 18), /* PM operation pending */ ATA_PFLAG_INIT_GTM_VALID = (1 << 19), /* initial gtm data valid */ ATA_PFLAG_PIO32 = (1 << 20), /* 32bit PIO */ ATA_PFLAG_PIO32CHANGE = (1 << 21), /* 32bit PIO can be turned on/off */ ATA_PFLAG_EXTERNAL = (1 << 22), /* eSATA/external port */ /* struct ata_queued_cmd flags */ ATA_QCFLAG_ACTIVE = (1 << 0), /* cmd not yet ack'd to scsi lyer */ ATA_QCFLAG_DMAMAP = (1 << 1), /* SG table is DMA mapped */ ATA_QCFLAG_IO = (1 << 3), /* standard IO command */ ATA_QCFLAG_RESULT_TF = (1 << 4), /* result TF requested */ ATA_QCFLAG_CLEAR_EXCL = (1 << 5), /* clear excl_link on completion */ ATA_QCFLAG_QUIET = (1 << 6), /* don't report device error */ ATA_QCFLAG_RETRY = (1 << 7), /* retry after failure */ ATA_QCFLAG_FAILED = (1 << 16), /* cmd failed and is owned by EH */ ATA_QCFLAG_SENSE_VALID = (1 << 17), /* sense data valid */ ATA_QCFLAG_EH_SCHEDULED = (1 << 18), /* EH scheduled (obsolete) */ /* host set flags */ ATA_HOST_SIMPLEX = (1 << 0), /* Host is simplex, one DMA channel per host only */ ATA_HOST_STARTED = (1 << 1), /* Host started */ ATA_HOST_PARALLEL_SCAN = (1 << 2), /* Ports on this host can be scanned in parallel */ ATA_HOST_IGNORE_ATA = (1 << 3), /* Ignore ATA devices on this host. */ /* bits 24:31 of host->flags are reserved for LLD specific flags */ /* various lengths of time */ ATA_TMOUT_BOOT = 30000, /* heuristic */ ATA_TMOUT_BOOT_QUICK = 7000, /* heuristic */ ATA_TMOUT_INTERNAL_QUICK = 5000, ATA_TMOUT_MAX_PARK = 30000, /* * GoVault needs 2s and iVDR disk HHD424020F7SV00 800ms. 2s * is too much without parallel probing. Use 2s if parallel * probing is available, 800ms otherwise. */ ATA_TMOUT_FF_WAIT_LONG = 2000, ATA_TMOUT_FF_WAIT = 800, /* Spec mandates to wait for ">= 2ms" before checking status * after reset. We wait 150ms, because that was the magic * delay used for ATAPI devices in Hale Landis's ATADRVR, for * the period of time between when the ATA command register is * written, and then status is checked. Because waiting for * "a while" before checking status is fine, post SRST, we * perform this magic delay here as well. * * Old drivers/ide uses the 2mS rule and then waits for ready. */ ATA_WAIT_AFTER_RESET = 150, /* If PMP is supported, we have to do follow-up SRST. As some * PMPs don't send D2H Reg FIS after hardreset, LLDs are * advised to wait only for the following duration before * doing SRST. */ ATA_TMOUT_PMP_SRST_WAIT = 5000, /* When the LPM policy is set to ATA_LPM_MAX_POWER, there might * be a spurious PHY event, so ignore the first PHY event that * occurs within 10s after the policy change. */ ATA_TMOUT_SPURIOUS_PHY = 10000, /* ATA bus states */ BUS_UNKNOWN = 0, BUS_DMA = 1, BUS_IDLE = 2, BUS_NOINTR = 3, BUS_NODATA = 4, BUS_TIMER = 5, BUS_PIO = 6, BUS_EDD = 7, BUS_IDENTIFY = 8, BUS_PACKET = 9, /* SATA port states */ PORT_UNKNOWN = 0, PORT_ENABLED = 1, PORT_DISABLED = 2, /* encoding various smaller bitmaps into a single * unsigned long bitmap */ ATA_NR_PIO_MODES = 7, ATA_NR_MWDMA_MODES = 5, ATA_NR_UDMA_MODES = 8, ATA_SHIFT_PIO = 0, ATA_SHIFT_MWDMA = ATA_SHIFT_PIO + ATA_NR_PIO_MODES, ATA_SHIFT_UDMA = ATA_SHIFT_MWDMA + ATA_NR_MWDMA_MODES, ATA_SHIFT_PRIO = 6, ATA_PRIO_HIGH = 2, /* size of buffer to pad xfers ending on unaligned boundaries */ ATA_DMA_PAD_SZ = 4, /* ering size */ ATA_ERING_SIZE = 32, /* return values for ->qc_defer */ ATA_DEFER_LINK = 1, ATA_DEFER_PORT = 2, /* desc_len for ata_eh_info and context */ ATA_EH_DESC_LEN = 80, /* reset / recovery action types */ ATA_EH_REVALIDATE = (1 << 0), ATA_EH_SOFTRESET = (1 << 1), /* meaningful only in ->prereset */ ATA_EH_HARDRESET = (1 << 2), /* meaningful only in ->prereset */ ATA_EH_RESET = ATA_EH_SOFTRESET | ATA_EH_HARDRESET, ATA_EH_ENABLE_LINK = (1 << 3), ATA_EH_PARK = (1 << 5), /* unload heads and stop I/O */ ATA_EH_PERDEV_MASK = ATA_EH_REVALIDATE | ATA_EH_PARK, ATA_EH_ALL_ACTIONS = ATA_EH_REVALIDATE | ATA_EH_RESET | ATA_EH_ENABLE_LINK, /* ata_eh_info->flags */ ATA_EHI_HOTPLUGGED = (1 << 0), /* could have been hotplugged */ ATA_EHI_NO_AUTOPSY = (1 << 2), /* no autopsy */ ATA_EHI_QUIET = (1 << 3), /* be quiet */ ATA_EHI_NO_RECOVERY = (1 << 4), /* no recovery */ ATA_EHI_DID_SOFTRESET = (1 << 16), /* already soft-reset this port */ ATA_EHI_DID_HARDRESET = (1 << 17), /* already soft-reset this port */ ATA_EHI_PRINTINFO = (1 << 18), /* print configuration info */ ATA_EHI_SETMODE = (1 << 19), /* configure transfer mode */ ATA_EHI_POST_SETMODE = (1 << 20), /* revalidating after setmode */ ATA_EHI_DID_RESET = ATA_EHI_DID_SOFTRESET | ATA_EHI_DID_HARDRESET, /* mask of flags to transfer *to* the slave link */ ATA_EHI_TO_SLAVE_MASK = ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, /* max tries if error condition is still set after ->error_handler */ ATA_EH_MAX_TRIES = 5, /* sometimes resuming a link requires several retries */ ATA_LINK_RESUME_TRIES = 5, /* how hard are we gonna try to probe/recover devices */ ATA_PROBE_MAX_TRIES = 3, ATA_EH_DEV_TRIES = 3, ATA_EH_PMP_TRIES = 5, ATA_EH_PMP_LINK_TRIES = 3, SATA_PMP_RW_TIMEOUT = 3000, /* PMP read/write timeout */ /* This should match the actual table size of * ata_eh_cmd_timeout_table in libata-eh.c. */ ATA_EH_CMD_TIMEOUT_TABLE_SIZE = 7, /* Horkage types. May be set by libata or controller on drives (some horkage may be drive/controller pair dependent */ ATA_HORKAGE_DIAGNOSTIC = (1 << 0), /* Failed boot diag */ ATA_HORKAGE_NODMA = (1 << 1), /* DMA problems */ ATA_HORKAGE_NONCQ = (1 << 2), /* Don't use NCQ */ ATA_HORKAGE_MAX_SEC_128 = (1 << 3), /* Limit max sects to 128 */ ATA_HORKAGE_BROKEN_HPA = (1 << 4), /* Broken HPA */ ATA_HORKAGE_DISABLE = (1 << 5), /* Disable it */ ATA_HORKAGE_HPA_SIZE = (1 << 6), /* native size off by one */ ATA_HORKAGE_IVB = (1 << 8), /* cbl det validity bit bugs */ ATA_HORKAGE_STUCK_ERR = (1 << 9), /* stuck ERR on next PACKET */ ATA_HORKAGE_BRIDGE_OK = (1 << 10), /* no bridge limits */ ATA_HORKAGE_ATAPI_MOD16_DMA = (1 << 11), /* use ATAPI DMA for commands not multiple of 16 bytes */ ATA_HORKAGE_FIRMWARE_WARN = (1 << 12), /* firmware update warning */ ATA_HORKAGE_1_5_GBPS = (1 << 13), /* force 1.5 Gbps */ ATA_HORKAGE_NOSETXFER = (1 << 14), /* skip SETXFER, SATA only */ ATA_HORKAGE_BROKEN_FPDMA_AA = (1 << 15), /* skip AA */ ATA_HORKAGE_DUMP_ID = (1 << 16), /* dump IDENTIFY data */ ATA_HORKAGE_MAX_SEC_LBA48 = (1 << 17), /* Set max sects to 65535 */ ATA_HORKAGE_ATAPI_DMADIR = (1 << 18), /* device requires dmadir */ ATA_HORKAGE_NO_NCQ_TRIM = (1 << 19), /* don't use queued TRIM */ ATA_HORKAGE_NOLPM = (1 << 20), /* don't use LPM */ ATA_HORKAGE_WD_BROKEN_LPM = (1 << 21), /* some WDs have broken LPM */ ATA_HORKAGE_ZERO_AFTER_TRIM = (1 << 22),/* guarantees zero after trim */ ATA_HORKAGE_NO_DMA_LOG = (1 << 23), /* don't use DMA for log read */ ATA_HORKAGE_NOTRIM = (1 << 24), /* don't use TRIM */ ATA_HORKAGE_MAX_SEC_1024 = (1 << 25), /* Limit max sects to 1024 */ ATA_HORKAGE_MAX_TRIM_128M = (1 << 26), /* Limit max trim size to 128M */ ATA_HORKAGE_NO_NCQ_ON_ATI = (1 << 27), /* Disable NCQ on ATI chipset */ /* DMA mask for user DMA control: User visible values; DO NOT renumber */ ATA_DMA_MASK_ATA = (1 << 0), /* DMA on ATA Disk */ ATA_DMA_MASK_ATAPI = (1 << 1), /* DMA on ATAPI */ ATA_DMA_MASK_CFA = (1 << 2), /* DMA on CF Card */ /* ATAPI command types */ ATAPI_READ = 0, /* READs */ ATAPI_WRITE = 1, /* WRITEs */ ATAPI_READ_CD = 2, /* READ CD [MSF] */ ATAPI_PASS_THRU = 3, /* SAT pass-thru */ ATAPI_MISC = 4, /* the rest */ /* Timing constants */ ATA_TIMING_SETUP = (1 << 0), ATA_TIMING_ACT8B = (1 << 1), ATA_TIMING_REC8B = (1 << 2), ATA_TIMING_CYC8B = (1 << 3), ATA_TIMING_8BIT = ATA_TIMING_ACT8B | ATA_TIMING_REC8B | ATA_TIMING_CYC8B, ATA_TIMING_ACTIVE = (1 << 4), ATA_TIMING_RECOVER = (1 << 5), ATA_TIMING_DMACK_HOLD = (1 << 6), ATA_TIMING_CYCLE = (1 << 7), ATA_TIMING_UDMA = (1 << 8), ATA_TIMING_ALL = ATA_TIMING_SETUP | ATA_TIMING_ACT8B | ATA_TIMING_REC8B | ATA_TIMING_CYC8B | ATA_TIMING_ACTIVE | ATA_TIMING_RECOVER | ATA_TIMING_DMACK_HOLD | ATA_TIMING_CYCLE | ATA_TIMING_UDMA, /* ACPI constants */ ATA_ACPI_FILTER_SETXFER = 1 << 0, ATA_ACPI_FILTER_LOCK = 1 << 1, ATA_ACPI_FILTER_DIPM = 1 << 2, ATA_ACPI_FILTER_FPDMA_OFFSET = 1 << 3, /* FPDMA non-zero offset */ ATA_ACPI_FILTER_FPDMA_AA = 1 << 4, /* FPDMA auto activate */ ATA_ACPI_FILTER_DEFAULT = ATA_ACPI_FILTER_SETXFER | ATA_ACPI_FILTER_LOCK | ATA_ACPI_FILTER_DIPM, }; enum ata_xfer_mask { ATA_MASK_PIO = ((1LU << ATA_NR_PIO_MODES) - 1) << ATA_SHIFT_PIO, ATA_MASK_MWDMA = ((1LU << ATA_NR_MWDMA_MODES) - 1) << ATA_SHIFT_MWDMA, ATA_MASK_UDMA = ((1LU << ATA_NR_UDMA_MODES) - 1) << ATA_SHIFT_UDMA, }; enum hsm_task_states { HSM_ST_IDLE, /* no command on going */ HSM_ST_FIRST, /* (waiting the device to) write CDB or first data block */ HSM_ST, /* (waiting the device to) transfer data */ HSM_ST_LAST, /* (waiting the device to) complete command */ HSM_ST_ERR, /* error */ }; enum ata_completion_errors { AC_ERR_OK = 0, /* no error */ AC_ERR_DEV = (1 << 0), /* device reported error */ AC_ERR_HSM = (1 << 1), /* host state machine violation */ AC_ERR_TIMEOUT = (1 << 2), /* timeout */ AC_ERR_MEDIA = (1 << 3), /* media error */ AC_ERR_ATA_BUS = (1 << 4), /* ATA bus error */ AC_ERR_HOST_BUS = (1 << 5), /* host bus error */ AC_ERR_SYSTEM = (1 << 6), /* system error */ AC_ERR_INVALID = (1 << 7), /* invalid argument */ AC_ERR_OTHER = (1 << 8), /* unknown */ AC_ERR_NODEV_HINT = (1 << 9), /* polling device detection hint */ AC_ERR_NCQ = (1 << 10), /* marker for offending NCQ qc */ }; /* * Link power management policy: If you alter this, you also need to * alter libata-scsi.c (for the ascii descriptions) */ enum ata_lpm_policy { ATA_LPM_UNKNOWN, ATA_LPM_MAX_POWER, ATA_LPM_MED_POWER, ATA_LPM_MED_POWER_WITH_DIPM, /* Med power + DIPM as win IRST does */ ATA_LPM_MIN_POWER_WITH_PARTIAL, /* Min Power + partial and slumber */ ATA_LPM_MIN_POWER, /* Min power + no partial (slumber only) */ }; enum ata_lpm_hints { ATA_LPM_EMPTY = (1 << 0), /* port empty/probing */ ATA_LPM_HIPM = (1 << 1), /* may use HIPM */ ATA_LPM_WAKE_ONLY = (1 << 2), /* only wake up link */ }; /* forward declarations */ struct scsi_device; struct ata_port_operations; struct ata_port; struct ata_link; struct ata_queued_cmd; /* typedefs */ typedef void (*ata_qc_cb_t) (struct ata_queued_cmd *qc); typedef int (*ata_prereset_fn_t)(struct ata_link *link, unsigned long deadline); typedef int (*ata_reset_fn_t)(struct ata_link *link, unsigned int *classes, unsigned long deadline); typedef void (*ata_postreset_fn_t)(struct ata_link *link, unsigned int *classes); extern struct device_attribute dev_attr_unload_heads; #ifdef CONFIG_SATA_HOST extern struct device_attribute dev_attr_link_power_management_policy; extern struct device_attribute dev_attr_ncq_prio_enable; extern struct device_attribute dev_attr_em_message_type; extern struct device_attribute dev_attr_em_message; extern struct device_attribute dev_attr_sw_activity; #endif enum sw_activity { OFF, BLINK_ON, BLINK_OFF, }; struct ata_taskfile { unsigned long flags; /* ATA_TFLAG_xxx */ u8 protocol; /* ATA_PROT_xxx */ u8 ctl; /* control reg */ u8 hob_feature; /* additional data */ u8 hob_nsect; /* to support LBA48 */ u8 hob_lbal; u8 hob_lbam; u8 hob_lbah; u8 feature; u8 nsect; u8 lbal; u8 lbam; u8 lbah; u8 device; u8 command; /* IO operation */ u32 auxiliary; /* auxiliary field */ /* from SATA 3.1 and */ /* ATA-8 ACS-3 */ }; #ifdef CONFIG_ATA_SFF struct ata_ioports { void __iomem *cmd_addr; void __iomem *data_addr; void __iomem *error_addr; void __iomem *feature_addr; void __iomem *nsect_addr; void __iomem *lbal_addr; void __iomem *lbam_addr; void __iomem *lbah_addr; void __iomem *device_addr; void __iomem *status_addr; void __iomem *command_addr; void __iomem *altstatus_addr; void __iomem *ctl_addr; #ifdef CONFIG_ATA_BMDMA void __iomem *bmdma_addr; #endif /* CONFIG_ATA_BMDMA */ void __iomem *scr_addr; }; #endif /* CONFIG_ATA_SFF */ struct ata_host { spinlock_t lock; struct device *dev; void __iomem * const *iomap; unsigned int n_ports; unsigned int n_tags; /* nr of NCQ tags */ void *private_data; struct ata_port_operations *ops; unsigned long flags; struct kref kref; struct mutex eh_mutex; struct task_struct *eh_owner; struct ata_port *simplex_claimed; /* channel owning the DMA */ struct ata_port *ports[]; }; struct ata_queued_cmd { struct ata_port *ap; struct ata_device *dev; struct scsi_cmnd *scsicmd; void (*scsidone)(struct scsi_cmnd *); struct ata_taskfile tf; u8 cdb[ATAPI_CDB_LEN]; unsigned long flags; /* ATA_QCFLAG_xxx */ unsigned int tag; /* libata core tag */ unsigned int hw_tag; /* driver tag */ unsigned int n_elem; unsigned int orig_n_elem; int dma_dir; unsigned int sect_size; unsigned int nbytes; unsigned int extrabytes; unsigned int curbytes; struct scatterlist sgent; struct scatterlist *sg; struct scatterlist *cursg; unsigned int cursg_ofs; unsigned int err_mask; struct ata_taskfile result_tf; ata_qc_cb_t complete_fn; void *private_data; void *lldd_task; }; struct ata_port_stats { unsigned long unhandled_irq; unsigned long idle_irq; unsigned long rw_reqbuf; }; struct ata_ering_entry { unsigned int eflags; unsigned int err_mask; u64 timestamp; }; struct ata_ering { int cursor; struct ata_ering_entry ring[ATA_ERING_SIZE]; }; struct ata_device { struct ata_link *link; unsigned int devno; /* 0 or 1 */ unsigned int horkage; /* List of broken features */ unsigned long flags; /* ATA_DFLAG_xxx */ struct scsi_device *sdev; /* attached SCSI device */ void *private_data; #ifdef CONFIG_ATA_ACPI union acpi_object *gtf_cache; unsigned int gtf_filter; #endif #ifdef CONFIG_SATA_ZPODD void *zpodd; #endif struct device tdev; /* n_sector is CLEAR_BEGIN, read comment above CLEAR_BEGIN */ u64 n_sectors; /* size of device, if ATA */ u64 n_native_sectors; /* native size, if ATA */ unsigned int class; /* ATA_DEV_xxx */ unsigned long unpark_deadline; u8 pio_mode; u8 dma_mode; u8 xfer_mode; unsigned int xfer_shift; /* ATA_SHIFT_xxx */ unsigned int multi_count; /* sectors count for READ/WRITE MULTIPLE */ unsigned int max_sectors; /* per-device max sectors */ unsigned int cdb_len; /* per-dev xfer mask */ unsigned long pio_mask; unsigned long mwdma_mask; unsigned long udma_mask; /* for CHS addressing */ u16 cylinders; /* Number of cylinders */ u16 heads; /* Number of heads */ u16 sectors; /* Number of sectors per track */ union { u16 id[ATA_ID_WORDS]; /* IDENTIFY xxx DEVICE data */ u32 gscr[SATA_PMP_GSCR_DWORDS]; /* PMP GSCR block */ } ____cacheline_aligned; /* DEVSLP Timing Variables from Identify Device Data Log */ u8 devslp_timing[ATA_LOG_DEVSLP_SIZE]; /* NCQ send and receive log subcommand support */ u8 ncq_send_recv_cmds[ATA_LOG_NCQ_SEND_RECV_SIZE]; u8 ncq_non_data_cmds[ATA_LOG_NCQ_NON_DATA_SIZE]; /* ZAC zone configuration */ u32 zac_zoned_cap; u32 zac_zones_optimal_open; u32 zac_zones_optimal_nonseq; u32 zac_zones_max_open; /* error history */ int spdn_cnt; /* ering is CLEAR_END, read comment above CLEAR_END */ struct ata_ering ering; }; /* Fields between ATA_DEVICE_CLEAR_BEGIN and ATA_DEVICE_CLEAR_END are * cleared to zero on ata_dev_init(). */ #define ATA_DEVICE_CLEAR_BEGIN offsetof(struct ata_device, n_sectors) #define ATA_DEVICE_CLEAR_END offsetof(struct ata_device, ering) struct ata_eh_info { struct ata_device *dev; /* offending device */ u32 serror; /* SError from LLDD */ unsigned int err_mask; /* port-wide err_mask */ unsigned int action; /* ATA_EH_* action mask */ unsigned int dev_action[ATA_MAX_DEVICES]; /* dev EH action */ unsigned int flags; /* ATA_EHI_* flags */ unsigned int probe_mask; char desc[ATA_EH_DESC_LEN]; int desc_len; }; struct ata_eh_context { struct ata_eh_info i; int tries[ATA_MAX_DEVICES]; int cmd_timeout_idx[ATA_MAX_DEVICES] [ATA_EH_CMD_TIMEOUT_TABLE_SIZE]; unsigned int classes[ATA_MAX_DEVICES]; unsigned int did_probe_mask; unsigned int unloaded_mask; unsigned int saved_ncq_enabled; u8 saved_xfer_mode[ATA_MAX_DEVICES]; /* timestamp for the last reset attempt or success */ unsigned long last_reset; }; struct ata_acpi_drive { u32 pio; u32 dma; } __packed; struct ata_acpi_gtm { struct ata_acpi_drive drive[2]; u32 flags; } __packed; struct ata_link { struct ata_port *ap; int pmp; /* port multiplier port # */ struct device tdev; unsigned int active_tag; /* active tag on this link */ u32 sactive; /* active NCQ commands */ unsigned int flags; /* ATA_LFLAG_xxx */ u32 saved_scontrol; /* SControl on probe */ unsigned int hw_sata_spd_limit; unsigned int sata_spd_limit; unsigned int sata_spd; /* current SATA PHY speed */ enum ata_lpm_policy lpm_policy; /* record runtime error info, protected by host_set lock */ struct ata_eh_info eh_info; /* EH context */ struct ata_eh_context eh_context; struct ata_device device[ATA_MAX_DEVICES]; unsigned long last_lpm_change; /* when last LPM change happened */ }; #define ATA_LINK_CLEAR_BEGIN offsetof(struct ata_link, active_tag) #define ATA_LINK_CLEAR_END offsetof(struct ata_link, device[0]) struct ata_port { struct Scsi_Host *scsi_host; /* our co-allocated scsi host */ struct ata_port_operations *ops; spinlock_t *lock; /* Flags owned by the EH context. Only EH should touch these once the port is active */ unsigned long flags; /* ATA_FLAG_xxx */ /* Flags that change dynamically, protected by ap->lock */ unsigned int pflags; /* ATA_PFLAG_xxx */ unsigned int print_id; /* user visible unique port ID */ unsigned int local_port_no; /* host local port num */ unsigned int port_no; /* 0 based port no. inside the host */ #ifdef CONFIG_ATA_SFF struct ata_ioports ioaddr; /* ATA cmd/ctl/dma register blocks */ u8 ctl; /* cache of ATA control register */ u8 last_ctl; /* Cache last written value */ struct ata_link* sff_pio_task_link; /* link currently used */ struct delayed_work sff_pio_task; #ifdef CONFIG_ATA_BMDMA struct ata_bmdma_prd *bmdma_prd; /* BMDMA SG list */ dma_addr_t bmdma_prd_dma; /* and its DMA mapping */ #endif /* CONFIG_ATA_BMDMA */ #endif /* CONFIG_ATA_SFF */ unsigned int pio_mask; unsigned int mwdma_mask; unsigned int udma_mask; unsigned int cbl; /* cable type; ATA_CBL_xxx */ struct ata_queued_cmd qcmd[ATA_MAX_QUEUE + 1]; unsigned long sas_tag_allocated; /* for sas tag allocation only */ u64 qc_active; int nr_active_links; /* #links with active qcs */ unsigned int sas_last_tag; /* track next tag hw expects */ struct ata_link link; /* host default link */ struct ata_link *slave_link; /* see ata_slave_link_init() */ int nr_pmp_links; /* nr of available PMP links */ struct ata_link *pmp_link; /* array of PMP links */ struct ata_link *excl_link; /* for PMP qc exclusion */ struct ata_port_stats stats; struct ata_host *host; struct device *dev; struct device tdev; struct mutex scsi_scan_mutex; struct delayed_work hotplug_task; struct work_struct scsi_rescan_task; unsigned int hsm_task_state; u32 msg_enable; struct list_head eh_done_q; wait_queue_head_t eh_wait_q; int eh_tries; struct completion park_req_pending; pm_message_t pm_mesg; enum ata_lpm_policy target_lpm_policy; struct timer_list fastdrain_timer; unsigned long fastdrain_cnt; async_cookie_t cookie; int em_message_type; void *private_data; #ifdef CONFIG_ATA_ACPI struct ata_acpi_gtm __acpi_init_gtm; /* use ata_acpi_init_gtm() */ #endif /* owned by EH */ u8 sector_buf[ATA_SECT_SIZE] ____cacheline_aligned; }; /* The following initializer overrides a method to NULL whether one of * its parent has the method defined or not. This is equivalent to * ERR_PTR(-ENOENT). Unfortunately, ERR_PTR doesn't render a constant * expression and thus can't be used as an initializer. */ #define ATA_OP_NULL (void *)(unsigned long)(-ENOENT) struct ata_port_operations { /* * Command execution */ int (*qc_defer)(struct ata_queued_cmd *qc); int (*check_atapi_dma)(struct ata_queued_cmd *qc); enum ata_completion_errors (*qc_prep)(struct ata_queued_cmd *qc); unsigned int (*qc_issue)(struct ata_queued_cmd *qc); bool (*qc_fill_rtf)(struct ata_queued_cmd *qc); /* * Configuration and exception handling */ int (*cable_detect)(struct ata_port *ap); unsigned long (*mode_filter)(struct ata_device *dev, unsigned long xfer_mask); void (*set_piomode)(struct ata_port *ap, struct ata_device *dev); void (*set_dmamode)(struct ata_port *ap, struct ata_device *dev); int (*set_mode)(struct ata_link *link, struct ata_device **r_failed_dev); unsigned int (*read_id)(struct ata_device *dev, struct ata_taskfile *tf, u16 *id); void (*dev_config)(struct ata_device *dev); void (*freeze)(struct ata_port *ap); void (*thaw)(struct ata_port *ap); ata_prereset_fn_t prereset; ata_reset_fn_t softreset; ata_reset_fn_t hardreset; ata_postreset_fn_t postreset; ata_prereset_fn_t pmp_prereset; ata_reset_fn_t pmp_softreset; ata_reset_fn_t pmp_hardreset; ata_postreset_fn_t pmp_postreset; void (*error_handler)(struct ata_port *ap); void (*lost_interrupt)(struct ata_port *ap); void (*post_internal_cmd)(struct ata_queued_cmd *qc); void (*sched_eh)(struct ata_port *ap); void (*end_eh)(struct ata_port *ap); /* * Optional features */ int (*scr_read)(struct ata_link *link, unsigned int sc_reg, u32 *val); int (*scr_write)(struct ata_link *link, unsigned int sc_reg, u32 val); void (*pmp_attach)(struct ata_port *ap); void (*pmp_detach)(struct ata_port *ap); int (*set_lpm)(struct ata_link *link, enum ata_lpm_policy policy, unsigned hints); /* * Start, stop, suspend and resume */ int (*port_suspend)(struct ata_port *ap, pm_message_t mesg); int (*port_resume)(struct ata_port *ap); int (*port_start)(struct ata_port *ap); void (*port_stop)(struct ata_port *ap); void (*host_stop)(struct ata_host *host); #ifdef CONFIG_ATA_SFF /* * SFF / taskfile oriented ops */ void (*sff_dev_select)(struct ata_port *ap, unsigned int device); void (*sff_set_devctl)(struct ata_port *ap, u8 ctl); u8 (*sff_check_status)(struct ata_port *ap); u8 (*sff_check_altstatus)(struct ata_port *ap); void (*sff_tf_load)(struct ata_port *ap, const struct ata_taskfile *tf); void (*sff_tf_read)(struct ata_port *ap, struct ata_taskfile *tf); void (*sff_exec_command)(struct ata_port *ap, const struct ata_taskfile *tf); unsigned int (*sff_data_xfer)(struct ata_queued_cmd *qc, unsigned char *buf, unsigned int buflen, int rw); void (*sff_irq_on)(struct ata_port *); bool (*sff_irq_check)(struct ata_port *); void (*sff_irq_clear)(struct ata_port *); void (*sff_drain_fifo)(struct ata_queued_cmd *qc); #ifdef CONFIG_ATA_BMDMA void (*bmdma_setup)(struct ata_queued_cmd *qc); void (*bmdma_start)(struct ata_queued_cmd *qc); void (*bmdma_stop)(struct ata_queued_cmd *qc); u8 (*bmdma_status)(struct ata_port *ap); #endif /* CONFIG_ATA_BMDMA */ #endif /* CONFIG_ATA_SFF */ ssize_t (*em_show)(struct ata_port *ap, char *buf); ssize_t (*em_store)(struct ata_port *ap, const char *message, size_t size); ssize_t (*sw_activity_show)(struct ata_device *dev, char *buf); ssize_t (*sw_activity_store)(struct ata_device *dev, enum sw_activity val); ssize_t (*transmit_led_message)(struct ata_port *ap, u32 state, ssize_t size); /* * Obsolete */ void (*phy_reset)(struct ata_port *ap); void (*eng_timeout)(struct ata_port *ap); /* * ->inherits must be the last field and all the preceding * fields must be pointers. */ const struct ata_port_operations *inherits; }; struct ata_port_info { unsigned long flags; unsigned long link_flags; unsigned long pio_mask; unsigned long mwdma_mask; unsigned long udma_mask; struct ata_port_operations *port_ops; void *private_data; }; struct ata_timing { unsigned short mode; /* ATA mode */ unsigned short setup; /* t1 */ unsigned short act8b; /* t2 for 8-bit I/O */ unsigned short rec8b; /* t2i for 8-bit I/O */ unsigned short cyc8b; /* t0 for 8-bit I/O */ unsigned short active; /* t2 or tD */ unsigned short recover; /* t2i or tK */ unsigned short dmack_hold; /* tj */ unsigned short cycle; /* t0 */ unsigned short udma; /* t2CYCTYP/2 */ }; /* * Core layer - drivers/ata/libata-core.c */ extern struct ata_port_operations ata_dummy_port_ops; extern const struct ata_port_info ata_dummy_port_info; static inline bool ata_is_atapi(u8 prot) { return prot & ATA_PROT_FLAG_ATAPI; } static inline bool ata_is_pio(u8 prot) { return prot & ATA_PROT_FLAG_PIO; } static inline bool ata_is_dma(u8 prot) { return prot & ATA_PROT_FLAG_DMA; } static inline bool ata_is_ncq(u8 prot) { return prot & ATA_PROT_FLAG_NCQ; } static inline bool ata_is_data(u8 prot) { return prot & (ATA_PROT_FLAG_PIO | ATA_PROT_FLAG_DMA); } static inline int is_multi_taskfile(struct ata_taskfile *tf) { return (tf->command == ATA_CMD_READ_MULTI) || (tf->command == ATA_CMD_WRITE_MULTI) || (tf->command == ATA_CMD_READ_MULTI_EXT) || (tf->command == ATA_CMD_WRITE_MULTI_EXT) || (tf->command == ATA_CMD_WRITE_MULTI_FUA_EXT); } static inline int ata_port_is_dummy(struct ata_port *ap) { return ap->ops == &ata_dummy_port_ops; } extern int ata_std_prereset(struct ata_link *link, unsigned long deadline); extern int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, int (*check_ready)(struct ata_link *link)); extern int sata_std_hardreset(struct ata_link *link, unsigned int *class, unsigned long deadline); extern void ata_std_postreset(struct ata_link *link, unsigned int *classes); extern struct ata_host *ata_host_alloc(struct device *dev, int max_ports); extern struct ata_host *ata_host_alloc_pinfo(struct device *dev, const struct ata_port_info * const * ppi, int n_ports); extern void ata_host_get(struct ata_host *host); extern void ata_host_put(struct ata_host *host); extern int ata_host_start(struct ata_host *host); extern int ata_host_register(struct ata_host *host, struct scsi_host_template *sht); extern int ata_host_activate(struct ata_host *host, int irq, irq_handler_t irq_handler, unsigned long irq_flags, struct scsi_host_template *sht); extern void ata_host_detach(struct ata_host *host); extern void ata_host_init(struct ata_host *, struct device *, struct ata_port_operations *); extern int ata_scsi_detect(struct scsi_host_template *sht); extern int ata_scsi_ioctl(struct scsi_device *dev, unsigned int cmd, void __user *arg); #ifdef CONFIG_COMPAT #define ATA_SCSI_COMPAT_IOCTL .compat_ioctl = ata_scsi_ioctl, #else #define ATA_SCSI_COMPAT_IOCTL /* empty */ #endif extern int ata_scsi_queuecmd(struct Scsi_Host *h, struct scsi_cmnd *cmd); #if IS_REACHABLE(CONFIG_ATA) bool ata_scsi_dma_need_drain(struct request *rq); #else #define ata_scsi_dma_need_drain NULL #endif extern int ata_sas_scsi_ioctl(struct ata_port *ap, struct scsi_device *dev, unsigned int cmd, void __user *arg); extern bool ata_link_online(struct ata_link *link); extern bool ata_link_offline(struct ata_link *link); #ifdef CONFIG_PM extern int ata_host_suspend(struct ata_host *host, pm_message_t mesg); extern void ata_host_resume(struct ata_host *host); extern void ata_sas_port_suspend(struct ata_port *ap); extern void ata_sas_port_resume(struct ata_port *ap); #else static inline void ata_sas_port_suspend(struct ata_port *ap) { } static inline void ata_sas_port_resume(struct ata_port *ap) { } #endif extern int ata_ratelimit(void); extern void ata_msleep(struct ata_port *ap, unsigned int msecs); extern u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val, unsigned long interval, unsigned long timeout); extern int atapi_cmd_type(u8 opcode); extern unsigned long ata_pack_xfermask(unsigned long pio_mask, unsigned long mwdma_mask, unsigned long udma_mask); extern void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask, unsigned long *mwdma_mask, unsigned long *udma_mask); extern u8 ata_xfer_mask2mode(unsigned long xfer_mask); extern unsigned long ata_xfer_mode2mask(u8 xfer_mode); extern int ata_xfer_mode2shift(unsigned long xfer_mode); extern const char *ata_mode_string(unsigned long xfer_mask); extern unsigned long ata_id_xfermask(const u16 *id); extern int ata_std_qc_defer(struct ata_queued_cmd *qc); extern enum ata_completion_errors ata_noop_qc_prep(struct ata_queued_cmd *qc); extern void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, unsigned int n_elem); extern unsigned int ata_dev_classify(const struct ata_taskfile *tf); extern void ata_dev_disable(struct ata_device *adev); extern void ata_id_string(const u16 *id, unsigned char *s, unsigned int ofs, unsigned int len); extern void ata_id_c_string(const u16 *id, unsigned char *s, unsigned int ofs, unsigned int len); extern unsigned int ata_do_dev_read_id(struct ata_device *dev, struct ata_taskfile *tf, u16 *id); extern void ata_qc_complete(struct ata_queued_cmd *qc); extern u64 ata_qc_get_active(struct ata_port *ap); extern void ata_scsi_simulate(struct ata_device *dev, struct scsi_cmnd *cmd); extern int ata_std_bios_param(struct scsi_device *sdev, struct block_device *bdev, sector_t capacity, int geom[]); extern void ata_scsi_unlock_native_capacity(struct scsi_device *sdev); extern int ata_scsi_slave_config(struct scsi_device *sdev); extern void ata_scsi_slave_destroy(struct scsi_device *sdev); extern int ata_scsi_change_queue_depth(struct scsi_device *sdev, int queue_depth); extern int __ata_change_queue_depth(struct ata_port *ap, struct scsi_device *sdev, int queue_depth); extern struct ata_device *ata_dev_pair(struct ata_device *adev); extern int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev); extern void ata_scsi_port_error_handler(struct Scsi_Host *host, struct ata_port *ap); extern void ata_scsi_cmd_error_handler(struct Scsi_Host *host, struct ata_port *ap, struct list_head *eh_q); /* * SATA specific code - drivers/ata/libata-sata.c */ #ifdef CONFIG_SATA_HOST extern const unsigned long sata_deb_timing_normal[]; extern const unsigned long sata_deb_timing_hotplug[]; extern const unsigned long sata_deb_timing_long[]; static inline const unsigned long * sata_ehc_deb_timing(struct ata_eh_context *ehc) { if (ehc->i.flags & ATA_EHI_HOTPLUGGED) return sata_deb_timing_hotplug; else return sata_deb_timing_normal; } extern int sata_scr_valid(struct ata_link *link); extern int sata_scr_read(struct ata_link *link, int reg, u32 *val); extern int sata_scr_write(struct ata_link *link, int reg, u32 val); extern int sata_scr_write_flush(struct ata_link *link, int reg, u32 val); extern int sata_set_spd(struct ata_link *link); extern int sata_link_hardreset(struct ata_link *link, const unsigned long *timing, unsigned long deadline, bool *online, int (*check_ready)(struct ata_link *)); extern int sata_link_resume(struct ata_link *link, const unsigned long *params, unsigned long deadline); extern void ata_eh_analyze_ncq_error(struct ata_link *link); #else static inline const unsigned long * sata_ehc_deb_timing(struct ata_eh_context *ehc) { return NULL; } static inline int sata_scr_valid(struct ata_link *link) { return 0; } static inline int sata_scr_read(struct ata_link *link, int reg, u32 *val) { return -EOPNOTSUPP; } static inline int sata_scr_write(struct ata_link *link, int reg, u32 val) { return -EOPNOTSUPP; } static inline int sata_scr_write_flush(struct ata_link *link, int reg, u32 val) { return -EOPNOTSUPP; } static inline int sata_set_spd(struct ata_link *link) { return -EOPNOTSUPP; } static inline int sata_link_hardreset(struct ata_link *link, const unsigned long *timing, unsigned long deadline, bool *online, int (*check_ready)(struct ata_link *)) { if (online) *online = false; return -EOPNOTSUPP; } static inline int sata_link_resume(struct ata_link *link, const unsigned long *params, unsigned long deadline) { return -EOPNOTSUPP; } static inline void ata_eh_analyze_ncq_error(struct ata_link *link) { } #endif extern int sata_link_debounce(struct ata_link *link, const unsigned long *params, unsigned long deadline); extern int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy, bool spm_wakeup); extern int ata_slave_link_init(struct ata_port *ap); extern void ata_sas_port_destroy(struct ata_port *); extern struct ata_port *ata_sas_port_alloc(struct ata_host *, struct ata_port_info *, struct Scsi_Host *); extern void ata_sas_async_probe(struct ata_port *ap); extern int ata_sas_sync_probe(struct ata_port *ap); extern int ata_sas_port_init(struct ata_port *); extern int ata_sas_port_start(struct ata_port *ap); extern int ata_sas_tport_add(struct device *parent, struct ata_port *ap); extern void ata_sas_tport_delete(struct ata_port *ap); extern void ata_sas_port_stop(struct ata_port *ap); extern int ata_sas_slave_configure(struct scsi_device *, struct ata_port *); extern int ata_sas_queuecmd(struct scsi_cmnd *cmd, struct ata_port *ap); extern void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis); extern void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf); extern int ata_qc_complete_multiple(struct ata_port *ap, u64 qc_active); extern bool sata_lpm_ignore_phy_events(struct ata_link *link); extern int sata_async_notification(struct ata_port *ap); extern int ata_cable_40wire(struct ata_port *ap); extern int ata_cable_80wire(struct ata_port *ap); extern int ata_cable_sata(struct ata_port *ap); extern int ata_cable_ignore(struct ata_port *ap); extern int ata_cable_unknown(struct ata_port *ap); /* Timing helpers */ extern unsigned int ata_pio_need_iordy(const struct ata_device *); extern u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle); /* PCI */ #ifdef CONFIG_PCI struct pci_dev; struct pci_bits { unsigned int reg; /* PCI config register to read */ unsigned int width; /* 1 (8 bit), 2 (16 bit), 4 (32 bit) */ unsigned long mask; unsigned long val; }; extern int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits); extern void ata_pci_shutdown_one(struct pci_dev *pdev); extern void ata_pci_remove_one(struct pci_dev *pdev); #ifdef CONFIG_PM extern void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg); extern int __must_check ata_pci_device_do_resume(struct pci_dev *pdev); extern int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg); extern int ata_pci_device_resume(struct pci_dev *pdev); #endif /* CONFIG_PM */ #endif /* CONFIG_PCI */ struct platform_device; extern int ata_platform_remove_one(struct platform_device *pdev); /* * ACPI - drivers/ata/libata-acpi.c */ #ifdef CONFIG_ATA_ACPI static inline const struct ata_acpi_gtm *ata_acpi_init_gtm(struct ata_port *ap) { if (ap->pflags & ATA_PFLAG_INIT_GTM_VALID) return &ap->__acpi_init_gtm; return NULL; } int ata_acpi_stm(struct ata_port *ap, const struct ata_acpi_gtm *stm); int ata_acpi_gtm(struct ata_port *ap, struct ata_acpi_gtm *stm); unsigned long ata_acpi_gtm_xfermask(struct ata_device *dev, const struct ata_acpi_gtm *gtm); int ata_acpi_cbl_80wire(struct ata_port *ap, const struct ata_acpi_gtm *gtm); #else static inline const struct ata_acpi_gtm *ata_acpi_init_gtm(struct ata_port *ap) { return NULL; } static inline int ata_acpi_stm(const struct ata_port *ap, struct ata_acpi_gtm *stm) { return -ENOSYS; } static inline int ata_acpi_gtm(const struct ata_port *ap, struct ata_acpi_gtm *stm) { return -ENOSYS; } static inline unsigned int ata_acpi_gtm_xfermask(struct ata_device *dev, const struct ata_acpi_gtm *gtm) { return 0; } static inline int ata_acpi_cbl_80wire(struct ata_port *ap, const struct ata_acpi_gtm *gtm) { return 0; } #endif /* * EH - drivers/ata/libata-eh.c */ extern void ata_port_schedule_eh(struct ata_port *ap); extern void ata_port_wait_eh(struct ata_port *ap); extern int ata_link_abort(struct ata_link *link); extern int ata_port_abort(struct ata_port *ap); extern int ata_port_freeze(struct ata_port *ap); extern void ata_eh_freeze_port(struct ata_port *ap); extern void ata_eh_thaw_port(struct ata_port *ap); extern void ata_eh_qc_complete(struct ata_queued_cmd *qc); extern void ata_eh_qc_retry(struct ata_queued_cmd *qc); extern void ata_do_eh(struct ata_port *ap, ata_prereset_fn_t prereset, ata_reset_fn_t softreset, ata_reset_fn_t hardreset, ata_postreset_fn_t postreset); extern void ata_std_error_handler(struct ata_port *ap); extern void ata_std_sched_eh(struct ata_port *ap); extern void ata_std_end_eh(struct ata_port *ap); extern int ata_link_nr_enabled(struct ata_link *link); /* * Base operations to inherit from and initializers for sht * * Operations * * base : Common to all libata drivers. * sata : SATA controllers w/ native interface. * pmp : SATA controllers w/ PMP support. * sff : SFF ATA controllers w/o BMDMA support. * bmdma : SFF ATA controllers w/ BMDMA support. * * sht initializers * * BASE : Common to all libata drivers. The user must set * sg_tablesize and dma_boundary. * PIO : SFF ATA controllers w/ only PIO support. * BMDMA : SFF ATA controllers w/ BMDMA support. sg_tablesize and * dma_boundary are set to BMDMA limits. * NCQ : SATA controllers supporting NCQ. The user must set * sg_tablesize, dma_boundary and can_queue. */ extern const struct ata_port_operations ata_base_port_ops; extern const struct ata_port_operations sata_port_ops; extern struct device_attribute *ata_common_sdev_attrs[]; /* * All sht initializers (BASE, PIO, BMDMA, NCQ) must be instantiated * by the edge drivers. Because the 'module' field of sht must be the * edge driver's module reference, otherwise the driver can be unloaded * even if the scsi_device is being accessed. */ #define __ATA_BASE_SHT(drv_name) \ .module = THIS_MODULE, \ .name = drv_name, \ .ioctl = ata_scsi_ioctl, \ ATA_SCSI_COMPAT_IOCTL \ .queuecommand = ata_scsi_queuecmd, \ .dma_need_drain = ata_scsi_dma_need_drain, \ .can_queue = ATA_DEF_QUEUE, \ .tag_alloc_policy = BLK_TAG_ALLOC_RR, \ .this_id = ATA_SHT_THIS_ID, \ .emulated = ATA_SHT_EMULATED, \ .proc_name = drv_name, \ .slave_configure = ata_scsi_slave_config, \ .slave_destroy = ata_scsi_slave_destroy, \ .bios_param = ata_std_bios_param, \ .unlock_native_capacity = ata_scsi_unlock_native_capacity #define ATA_BASE_SHT(drv_name) \ __ATA_BASE_SHT(drv_name), \ .sdev_attrs = ata_common_sdev_attrs #ifdef CONFIG_SATA_HOST extern struct device_attribute *ata_ncq_sdev_attrs[]; #define ATA_NCQ_SHT(drv_name) \ __ATA_BASE_SHT(drv_name), \ .sdev_attrs = ata_ncq_sdev_attrs, \ .change_queue_depth = ata_scsi_change_queue_depth #endif /* * PMP helpers */ #ifdef CONFIG_SATA_PMP static inline bool sata_pmp_supported(struct ata_port *ap) { return ap->flags & ATA_FLAG_PMP; } static inline bool sata_pmp_attached(struct ata_port *ap) { return ap->nr_pmp_links != 0; } static inline bool ata_is_host_link(const struct ata_link *link) { return link == &link->ap->link || link == link->ap->slave_link; } #else /* CONFIG_SATA_PMP */ static inline bool sata_pmp_supported(struct ata_port *ap) { return false; } static inline bool sata_pmp_attached(struct ata_port *ap) { return false; } static inline bool ata_is_host_link(const struct ata_link *link) { return 1; } #endif /* CONFIG_SATA_PMP */ static inline int sata_srst_pmp(struct ata_link *link) { if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) return SATA_PMP_CTRL_PORT; return link->pmp; } /* * printk helpers */ __printf(3, 4) void ata_port_printk(const struct ata_port *ap, const char *level, const char *fmt, ...); __printf(3, 4) void ata_link_printk(const struct ata_link *link, const char *level, const char *fmt, ...); __printf(3, 4) void ata_dev_printk(const struct ata_device *dev, const char *level, const char *fmt, ...); #define ata_port_err(ap, fmt, ...) \ ata_port_printk(ap, KERN_ERR, fmt, ##__VA_ARGS__) #define ata_port_warn(ap, fmt, ...) \ ata_port_printk(ap, KERN_WARNING, fmt, ##__VA_ARGS__) #define ata_port_notice(ap, fmt, ...) \ ata_port_printk(ap, KERN_NOTICE, fmt, ##__VA_ARGS__) #define ata_port_info(ap, fmt, ...) \ ata_port_printk(ap, KERN_INFO, fmt, ##__VA_ARGS__) #define ata_port_dbg(ap, fmt, ...) \ ata_port_printk(ap, KERN_DEBUG, fmt, ##__VA_ARGS__) #define ata_link_err(link, fmt, ...) \ ata_link_printk(link, KERN_ERR, fmt, ##__VA_ARGS__) #define ata_link_warn(link, fmt, ...) \ ata_link_printk(link, KERN_WARNING, fmt, ##__VA_ARGS__) #define ata_link_notice(link, fmt, ...) \ ata_link_printk(link, KERN_NOTICE, fmt, ##__VA_ARGS__) #define ata_link_info(link, fmt, ...) \ ata_link_printk(link, KERN_INFO, fmt, ##__VA_ARGS__) #define ata_link_dbg(link, fmt, ...) \ ata_link_printk(link, KERN_DEBUG, fmt, ##__VA_ARGS__) #define ata_dev_err(dev, fmt, ...) \ ata_dev_printk(dev, KERN_ERR, fmt, ##__VA_ARGS__) #define ata_dev_warn(dev, fmt, ...) \ ata_dev_printk(dev, KERN_WARNING, fmt, ##__VA_ARGS__) #define ata_dev_notice(dev, fmt, ...) \ ata_dev_printk(dev, KERN_NOTICE, fmt, ##__VA_ARGS__) #define ata_dev_info(dev, fmt, ...) \ ata_dev_printk(dev, KERN_INFO, fmt, ##__VA_ARGS__) #define ata_dev_dbg(dev, fmt, ...) \ ata_dev_printk(dev, KERN_DEBUG, fmt, ##__VA_ARGS__) void ata_print_version(const struct device *dev, const char *version); /* * ata_eh_info helpers */ extern __printf(2, 3) void __ata_ehi_push_desc(struct ata_eh_info *ehi, const char *fmt, ...); extern __printf(2, 3) void ata_ehi_push_desc(struct ata_eh_info *ehi, const char *fmt, ...); extern void ata_ehi_clear_desc(struct ata_eh_info *ehi); static inline void ata_ehi_hotplugged(struct ata_eh_info *ehi) { ehi->probe_mask |= (1 << ATA_MAX_DEVICES) - 1; ehi->flags |= ATA_EHI_HOTPLUGGED; ehi->action |= ATA_EH_RESET | ATA_EH_ENABLE_LINK; ehi->err_mask |= AC_ERR_ATA_BUS; } /* * port description helpers */ extern __printf(2, 3) void ata_port_desc(struct ata_port *ap, const char *fmt, ...); #ifdef CONFIG_PCI extern void ata_port_pbar_desc(struct ata_port *ap, int bar, ssize_t offset, const char *name); #endif static inline bool ata_tag_internal(unsigned int tag) { return tag == ATA_TAG_INTERNAL; } static inline bool ata_tag_valid(unsigned int tag) { return tag < ATA_MAX_QUEUE || ata_tag_internal(tag); } #define __ata_qc_for_each(ap, qc, tag, max_tag, fn) \ for ((tag) = 0; (tag) < (max_tag) && \ ({ qc = fn((ap), (tag)); 1; }); (tag)++) \ /* * Internal use only, iterate commands ignoring error handling and * status of 'qc'. */ #define ata_qc_for_each_raw(ap, qc, tag) \ __ata_qc_for_each(ap, qc, tag, ATA_MAX_QUEUE, __ata_qc_from_tag) /* * Iterate all potential commands that can be queued */ #define ata_qc_for_each(ap, qc, tag) \ __ata_qc_for_each(ap, qc, tag, ATA_MAX_QUEUE, ata_qc_from_tag) /* * Like ata_qc_for_each, but with the internal tag included */ #define ata_qc_for_each_with_internal(ap, qc, tag) \ __ata_qc_for_each(ap, qc, tag, ATA_MAX_QUEUE + 1, ata_qc_from_tag) /* * device helpers */ static inline unsigned int ata_class_enabled(unsigned int class) { return class == ATA_DEV_ATA || class == ATA_DEV_ATAPI || class == ATA_DEV_PMP || class == ATA_DEV_SEMB || class == ATA_DEV_ZAC; } static inline unsigned int ata_class_disabled(unsigned int class) { return class == ATA_DEV_ATA_UNSUP || class == ATA_DEV_ATAPI_UNSUP || class == ATA_DEV_PMP_UNSUP || class == ATA_DEV_SEMB_UNSUP || class == ATA_DEV_ZAC_UNSUP; } static inline unsigned int ata_class_absent(unsigned int class) { return !ata_class_enabled(class) && !ata_class_disabled(class); } static inline unsigned int ata_dev_enabled(const struct ata_device *dev) { return ata_class_enabled(dev->class); } static inline unsigned int ata_dev_disabled(const struct ata_device *dev) { return ata_class_disabled(dev->class); } static inline unsigned int ata_dev_absent(const struct ata_device *dev) { return ata_class_absent(dev->class); } /* * link helpers */ static inline int ata_link_max_devices(const struct ata_link *link) { if (ata_is_host_link(link) && link->ap->flags & ATA_FLAG_SLAVE_POSS) return 2; return 1; } static inline int ata_link_active(struct ata_link *link) { return ata_tag_valid(link->active_tag) || link->sactive; } /* * Iterators * * ATA_LITER_* constants are used to select link iteration mode and * ATA_DITER_* device iteration mode. * * For a custom iteration directly using ata_{link|dev}_next(), if * @link or @dev, respectively, is NULL, the first element is * returned. @dev and @link can be any valid device or link and the * next element according to the iteration mode will be returned. * After the last element, NULL is returned. */ enum ata_link_iter_mode { ATA_LITER_EDGE, /* if present, PMP links only; otherwise, * host link. no slave link */ ATA_LITER_HOST_FIRST, /* host link followed by PMP or slave links */ ATA_LITER_PMP_FIRST, /* PMP links followed by host link, * slave link still comes after host link */ }; enum ata_dev_iter_mode { ATA_DITER_ENABLED, ATA_DITER_ENABLED_REVERSE, ATA_DITER_ALL, ATA_DITER_ALL_REVERSE, }; extern struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap, enum ata_link_iter_mode mode); extern struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link, enum ata_dev_iter_mode mode); /* * Shortcut notation for iterations * * ata_for_each_link() iterates over each link of @ap according to * @mode. @link points to the current link in the loop. @link is * NULL after loop termination. ata_for_each_dev() works the same way * except that it iterates over each device of @link. * * Note that the mode prefixes ATA_{L|D}ITER_ shouldn't need to be * specified when using the following shorthand notations. Only the * mode itself (EDGE, HOST_FIRST, ENABLED, etc...) should be * specified. This not only increases brevity but also makes it * impossible to use ATA_LITER_* for device iteration or vice-versa. */ #define ata_for_each_link(link, ap, mode) \ for ((link) = ata_link_next(NULL, (ap), ATA_LITER_##mode); (link); \ (link) = ata_link_next((link), (ap), ATA_LITER_##mode)) #define ata_for_each_dev(dev, link, mode) \ for ((dev) = ata_dev_next(NULL, (link), ATA_DITER_##mode); (dev); \ (dev) = ata_dev_next((dev), (link), ATA_DITER_##mode)) /** * ata_ncq_enabled - Test whether NCQ is enabled * @dev: ATA device to test for * * LOCKING: * spin_lock_irqsave(host lock) * * RETURNS: * 1 if NCQ is enabled for @dev, 0 otherwise. */ static inline int ata_ncq_enabled(struct ata_device *dev) { if (!IS_ENABLED(CONFIG_SATA_HOST)) return 0; return (dev->flags & (ATA_DFLAG_PIO | ATA_DFLAG_NCQ_OFF | ATA_DFLAG_NCQ)) == ATA_DFLAG_NCQ; } static inline bool ata_fpdma_dsm_supported(struct ata_device *dev) { return (dev->flags & ATA_DFLAG_NCQ_SEND_RECV) && (dev->ncq_send_recv_cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] & ATA_LOG_NCQ_SEND_RECV_DSM_TRIM); } static inline bool ata_fpdma_read_log_supported(struct ata_device *dev) { return (dev->flags & ATA_DFLAG_NCQ_SEND_RECV) && (dev->ncq_send_recv_cmds[ATA_LOG_NCQ_SEND_RECV_RD_LOG_OFFSET] & ATA_LOG_NCQ_SEND_RECV_RD_LOG_SUPPORTED); } static inline bool ata_fpdma_zac_mgmt_in_supported(struct ata_device *dev) { return (dev->flags & ATA_DFLAG_NCQ_SEND_RECV) && (dev->ncq_send_recv_cmds[ATA_LOG_NCQ_SEND_RECV_ZAC_MGMT_OFFSET] & ATA_LOG_NCQ_SEND_RECV_ZAC_MGMT_IN_SUPPORTED); } static inline bool ata_fpdma_zac_mgmt_out_supported(struct ata_device *dev) { return (dev->ncq_non_data_cmds[ATA_LOG_NCQ_NON_DATA_ZAC_MGMT_OFFSET] & ATA_LOG_NCQ_NON_DATA_ZAC_MGMT_OUT); } static inline void ata_qc_set_polling(struct ata_queued_cmd *qc) { qc->tf.ctl |= ATA_NIEN; } static inline struct ata_queued_cmd *__ata_qc_from_tag(struct ata_port *ap, unsigned int tag) { if (ata_tag_valid(tag)) return &ap->qcmd[tag]; return NULL; } static inline struct ata_queued_cmd *ata_qc_from_tag(struct ata_port *ap, unsigned int tag) { struct ata_queued_cmd *qc = __ata_qc_from_tag(ap, tag); if (unlikely(!qc) || !ap->ops->error_handler) return qc; if ((qc->flags & (ATA_QCFLAG_ACTIVE | ATA_QCFLAG_FAILED)) == ATA_QCFLAG_ACTIVE) return qc; return NULL; } static inline unsigned int ata_qc_raw_nbytes(struct ata_queued_cmd *qc) { return qc->nbytes - min(qc->extrabytes, qc->nbytes); } static inline void ata_tf_init(struct ata_device *dev, struct ata_taskfile *tf) { memset(tf, 0, sizeof(*tf)); #ifdef CONFIG_ATA_SFF tf->ctl = dev->link->ap->ctl; #else tf->ctl = ATA_DEVCTL_OBS; #endif if (dev->devno == 0) tf->device = ATA_DEVICE_OBS; else tf->device = ATA_DEVICE_OBS | ATA_DEV1; } static inline void ata_qc_reinit(struct ata_queued_cmd *qc) { qc->dma_dir = DMA_NONE; qc->sg = NULL; qc->flags = 0; qc->cursg = NULL; qc->cursg_ofs = 0; qc->nbytes = qc->extrabytes = qc->curbytes = 0; qc->n_elem = 0; qc->err_mask = 0; qc->sect_size = ATA_SECT_SIZE; ata_tf_init(qc->dev, &qc->tf); /* init result_tf such that it indicates normal completion */ qc->result_tf.command = ATA_DRDY; qc->result_tf.feature = 0; } static inline int ata_try_flush_cache(const struct ata_device *dev) { return ata_id_wcache_enabled(dev->id) || ata_id_has_flush(dev->id) || ata_id_has_flush_ext(dev->id); } static inline unsigned int ac_err_mask(u8 status) { if (status & (ATA_BUSY | ATA_DRQ)) return AC_ERR_HSM; if (status & (ATA_ERR | ATA_DF)) return AC_ERR_DEV; return 0; } static inline unsigned int __ac_err_mask(u8 status) { unsigned int mask = ac_err_mask(status); if (mask == 0) return AC_ERR_OTHER; return mask; } static inline struct ata_port *ata_shost_to_port(struct Scsi_Host *host) { return *(struct ata_port **)&host->hostdata[0]; } static inline int ata_check_ready(u8 status) { if (!(status & ATA_BUSY)) return 1; /* 0xff indicates either no device or device not ready */ if (status == 0xff) return -ENODEV; return 0; } static inline unsigned long ata_deadline(unsigned long from_jiffies, unsigned long timeout_msecs) { return from_jiffies + msecs_to_jiffies(timeout_msecs); } /* Don't open code these in drivers as there are traps. Firstly the range may change in future hardware and specs, secondly 0xFF means 'no DMA' but is > UDMA_0. Dyma ddreigiau */ static inline int ata_using_mwdma(struct ata_device *adev) { if (adev->dma_mode >= XFER_MW_DMA_0 && adev->dma_mode <= XFER_MW_DMA_4) return 1; return 0; } static inline int ata_using_udma(struct ata_device *adev) { if (adev->dma_mode >= XFER_UDMA_0 && adev->dma_mode <= XFER_UDMA_7) return 1; return 0; } static inline int ata_dma_enabled(struct ata_device *adev) { return (adev->dma_mode == 0xFF ? 0 : 1); } /************************************************************************** * PATA timings - drivers/ata/libata-pata-timings.c */ extern const struct ata_timing *ata_timing_find_mode(u8 xfer_mode); extern int ata_timing_compute(struct ata_device *, unsigned short, struct ata_timing *, int, int); extern void ata_timing_merge(const struct ata_timing *, const struct ata_timing *, struct ata_timing *, unsigned int); /************************************************************************** * PMP - drivers/ata/libata-pmp.c */ #ifdef CONFIG_SATA_PMP extern const struct ata_port_operations sata_pmp_port_ops; extern int sata_pmp_qc_defer_cmd_switch(struct ata_queued_cmd *qc); extern void sata_pmp_error_handler(struct ata_port *ap); #else /* CONFIG_SATA_PMP */ #define sata_pmp_port_ops sata_port_ops #define sata_pmp_qc_defer_cmd_switch ata_std_qc_defer #define sata_pmp_error_handler ata_std_error_handler #endif /* CONFIG_SATA_PMP */ /************************************************************************** * SFF - drivers/ata/libata-sff.c */ #ifdef CONFIG_ATA_SFF extern const struct ata_port_operations ata_sff_port_ops; extern const struct ata_port_operations ata_bmdma32_port_ops; /* PIO only, sg_tablesize and dma_boundary limits can be removed */ #define ATA_PIO_SHT(drv_name) \ ATA_BASE_SHT(drv_name), \ .sg_tablesize = LIBATA_MAX_PRD, \ .dma_boundary = ATA_DMA_BOUNDARY extern void ata_sff_dev_select(struct ata_port *ap, unsigned int device); extern u8 ata_sff_check_status(struct ata_port *ap); extern void ata_sff_pause(struct ata_port *ap); extern void ata_sff_dma_pause(struct ata_port *ap); extern int ata_sff_busy_sleep(struct ata_port *ap, unsigned long timeout_pat, unsigned long timeout); extern int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline); extern void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf); extern void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf); extern void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf); extern unsigned int ata_sff_data_xfer(struct ata_queued_cmd *qc, unsigned char *buf, unsigned int buflen, int rw); extern unsigned int ata_sff_data_xfer32(struct ata_queued_cmd *qc, unsigned char *buf, unsigned int buflen, int rw); extern void ata_sff_irq_on(struct ata_port *ap); extern void ata_sff_irq_clear(struct ata_port *ap); extern int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc, u8 status, int in_wq); extern void ata_sff_queue_work(struct work_struct *work); extern void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay); extern void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay); extern unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc); extern bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc); extern unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc); extern irqreturn_t ata_sff_interrupt(int irq, void *dev_instance); extern void ata_sff_lost_interrupt(struct ata_port *ap); extern void ata_sff_freeze(struct ata_port *ap); extern void ata_sff_thaw(struct ata_port *ap); extern int ata_sff_prereset(struct ata_link *link, unsigned long deadline); extern unsigned int ata_sff_dev_classify(struct ata_device *dev, int present, u8 *r_err); extern int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask, unsigned long deadline); extern int ata_sff_softreset(struct ata_link *link, unsigned int *classes, unsigned long deadline); extern int sata_sff_hardreset(struct ata_link *link, unsigned int *class, unsigned long deadline); extern void ata_sff_postreset(struct ata_link *link, unsigned int *classes); extern void ata_sff_drain_fifo(struct ata_queued_cmd *qc); extern void ata_sff_error_handler(struct ata_port *ap); extern void ata_sff_std_ports(struct ata_ioports *ioaddr); #ifdef CONFIG_PCI extern int ata_pci_sff_init_host(struct ata_host *host); extern int ata_pci_sff_prepare_host(struct pci_dev *pdev, const struct ata_port_info * const * ppi, struct ata_host **r_host); extern int ata_pci_sff_activate_host(struct ata_host *host, irq_handler_t irq_handler, struct scsi_host_template *sht); extern int ata_pci_sff_init_one(struct pci_dev *pdev, const struct ata_port_info * const * ppi, struct scsi_host_template *sht, void *host_priv, int hflags); #endif /* CONFIG_PCI */ #ifdef CONFIG_ATA_BMDMA extern const struct ata_port_operations ata_bmdma_port_ops; #define ATA_BMDMA_SHT(drv_name) \ ATA_BASE_SHT(drv_name), \ .sg_tablesize = LIBATA_MAX_PRD, \ .dma_boundary = ATA_DMA_BOUNDARY extern enum ata_completion_errors ata_bmdma_qc_prep(struct ata_queued_cmd *qc); extern unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc); extern enum ata_completion_errors ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc); extern unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc); extern irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance); extern void ata_bmdma_error_handler(struct ata_port *ap); extern void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc); extern void ata_bmdma_irq_clear(struct ata_port *ap); extern void ata_bmdma_setup(struct ata_queued_cmd *qc); extern void ata_bmdma_start(struct ata_queued_cmd *qc); extern void ata_bmdma_stop(struct ata_queued_cmd *qc); extern u8 ata_bmdma_status(struct ata_port *ap); extern int ata_bmdma_port_start(struct ata_port *ap); extern int ata_bmdma_port_start32(struct ata_port *ap); #ifdef CONFIG_PCI extern int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev); extern void ata_pci_bmdma_init(struct ata_host *host); extern int ata_pci_bmdma_prepare_host(struct pci_dev *pdev, const struct ata_port_info * const * ppi, struct ata_host **r_host); extern int ata_pci_bmdma_init_one(struct pci_dev *pdev, const struct ata_port_info * const * ppi, struct scsi_host_template *sht, void *host_priv, int hflags); #endif /* CONFIG_PCI */ #endif /* CONFIG_ATA_BMDMA */ /** * ata_sff_busy_wait - Wait for a port status register * @ap: Port to wait for. * @bits: bits that must be clear * @max: number of 10uS waits to perform * * Waits up to max*10 microseconds for the selected bits in the port's * status register to be cleared. * Returns final value of status register. * * LOCKING: * Inherited from caller. */ static inline u8 ata_sff_busy_wait(struct ata_port *ap, unsigned int bits, unsigned int max) { u8 status; do { udelay(10); status = ap->ops->sff_check_status(ap); max--; } while (status != 0xff && (status & bits) && (max > 0)); return status; } /** * ata_wait_idle - Wait for a port to be idle. * @ap: Port to wait for. * * Waits up to 10ms for port's BUSY and DRQ signals to clear. * Returns final value of status register. * * LOCKING: * Inherited from caller. */ static inline u8 ata_wait_idle(struct ata_port *ap) { u8 status = ata_sff_busy_wait(ap, ATA_BUSY | ATA_DRQ, 1000); #ifdef ATA_DEBUG if (status != 0xff && (status & (ATA_BUSY | ATA_DRQ))) ata_port_printk(ap, KERN_DEBUG, "abnormal Status 0x%X\n", status); #endif return status; } #endif /* CONFIG_ATA_SFF */ #endif /* __LINUX_LIBATA_H__ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 /* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright 2002-2005, Instant802 Networks, Inc. * Copyright 2005, Devicescape Software, Inc. * Copyright (c) 2006 Jiri Benc <jbenc@suse.cz> */ #ifndef IEEE80211_RATE_H #define IEEE80211_RATE_H #include <linux/netdevice.h> #include <linux/skbuff.h> #include <linux/types.h> #include <net/mac80211.h> #include "ieee80211_i.h" #include "sta_info.h" #include "driver-ops.h" struct rate_control_ref { const struct rate_control_ops *ops; void *priv; }; void rate_control_get_rate(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, struct ieee80211_tx_rate_control *txrc); void rate_control_tx_status(struct ieee80211_local *local, struct ieee80211_supported_band *sband, struct ieee80211_tx_status *st); void rate_control_rate_init(struct sta_info *sta); void rate_control_rate_update(struct ieee80211_local *local, struct ieee80211_supported_band *sband, struct sta_info *sta, u32 changed); static inline void *rate_control_alloc_sta(struct rate_control_ref *ref, struct sta_info *sta, gfp_t gfp) { spin_lock_init(&sta->rate_ctrl_lock); return ref->ops->alloc_sta(ref->priv, &sta->sta, gfp); } static inline void rate_control_free_sta(struct sta_info *sta) { struct rate_control_ref *ref = sta->rate_ctrl; struct ieee80211_sta *ista = &sta->sta; void *priv_sta = sta->rate_ctrl_priv; ref->ops->free_sta(ref->priv, ista, priv_sta); } static inline void rate_control_add_sta_debugfs(struct sta_info *sta) { #ifdef CONFIG_MAC80211_DEBUGFS struct rate_control_ref *ref = sta->rate_ctrl; if (ref && sta->debugfs_dir && ref->ops->add_sta_debugfs) ref->ops->add_sta_debugfs(ref->priv, sta->rate_ctrl_priv, sta->debugfs_dir); #endif } extern const struct file_operations rcname_ops; static inline void rate_control_add_debugfs(struct ieee80211_local *local) { #ifdef CONFIG_MAC80211_DEBUGFS struct dentry *debugfsdir; if (!local->rate_ctrl) return; if (!local->rate_ctrl->ops->add_debugfs) return; debugfsdir = debugfs_create_dir("rc", local->hw.wiphy->debugfsdir); local->debugfs.rcdir = debugfsdir; debugfs_create_file("name", 0400, debugfsdir, local->rate_ctrl, &rcname_ops); local->rate_ctrl->ops->add_debugfs(&local->hw, local->rate_ctrl->priv, debugfsdir); #endif } void ieee80211_check_rate_mask(struct ieee80211_sub_if_data *sdata); /* Get a reference to the rate control algorithm. If `name' is NULL, get the * first available algorithm. */ int ieee80211_init_rate_ctrl_alg(struct ieee80211_local *local, const char *name); void rate_control_deinitialize(struct ieee80211_local *local); /* Rate control algorithms */ #ifdef CONFIG_MAC80211_RC_MINSTREL int rc80211_minstrel_init(void); void rc80211_minstrel_exit(void); #else static inline int rc80211_minstrel_init(void) { return 0; } static inline void rc80211_minstrel_exit(void) { } #endif #endif /* IEEE80211_RATE_H */
1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 // SPDX-License-Identifier: GPL-2.0 /* * Implementation of the diskquota system for the LINUX operating system. QUOTA * is implemented using the BSD system call interface as the means of * communication with the user level. This file contains the generic routines * called by the different filesystems on allocation of an inode or block. * These routines take care of the administration needed to have a consistent * diskquota tracking system. The ideas of both user and group quotas are based * on the Melbourne quota system as used on BSD derived systems. The internal * implementation is based on one of the several variants of the LINUX * inode-subsystem with added complexity of the diskquota system. * * Author: Marco van Wieringen <mvw@planets.elm.net> * * Fixes: Dmitry Gorodchanin <pgmdsg@ibi.com>, 11 Feb 96 * * Revised list management to avoid races * -- Bill Hawes, <whawes@star.net>, 9/98 * * Fixed races in dquot_transfer(), dqget() and dquot_alloc_...(). * As the consequence the locking was moved from dquot_decr_...(), * dquot_incr_...() to calling functions. * invalidate_dquots() now writes modified dquots. * Serialized quota_off() and quota_on() for mount point. * Fixed a few bugs in grow_dquots(). * Fixed deadlock in write_dquot() - we no longer account quotas on * quota files * remove_dquot_ref() moved to inode.c - it now traverses through inodes * add_dquot_ref() restarts after blocking * Added check for bogus uid and fixed check for group in quotactl. * Jan Kara, <jack@suse.cz>, sponsored by SuSE CR, 10-11/99 * * Used struct list_head instead of own list struct * Invalidation of referenced dquots is no longer possible * Improved free_dquots list management * Quota and i_blocks are now updated in one place to avoid races * Warnings are now delayed so we won't block in critical section * Write updated not to require dquot lock * Jan Kara, <jack@suse.cz>, 9/2000 * * Added dynamic quota structure allocation * Jan Kara <jack@suse.cz> 12/2000 * * Rewritten quota interface. Implemented new quota format and * formats registering. * Jan Kara, <jack@suse.cz>, 2001,2002 * * New SMP locking. * Jan Kara, <jack@suse.cz>, 10/2002 * * Added journalled quota support, fix lock inversion problems * Jan Kara, <jack@suse.cz>, 2003,2004 * * (C) Copyright 1994 - 1997 Marco van Wieringen */ #include <linux/errno.h> #include <linux/kernel.h> #include <linux/fs.h> #include <linux/mount.h> #include <linux/mm.h> #include <linux/time.h> #include <linux/types.h> #include <linux/string.h> #include <linux/fcntl.h> #include <linux/stat.h> #include <linux/tty.h> #include <linux/file.h> #include <linux/slab.h> #include <linux/sysctl.h> #include <linux/init.h> #include <linux/module.h> #include <linux/proc_fs.h> #include <linux/security.h> #include <linux/sched.h> #include <linux/cred.h> #include <linux/kmod.h> #include <linux/namei.h> #include <linux/capability.h> #include <linux/quotaops.h> #include <linux/blkdev.h> #include "../internal.h" /* ugh */ #include <linux/uaccess.h> /* * There are five quota SMP locks: * * dq_list_lock protects all lists with quotas and quota formats. * * dquot->dq_dqb_lock protects data from dq_dqb * * inode->i_lock protects inode->i_blocks, i_bytes and also guards * consistency of dquot->dq_dqb with inode->i_blocks, i_bytes so that * dquot_transfer() can stabilize amount it transfers * * dq_data_lock protects mem_dqinfo structures and modifications of dquot * pointers in the inode * * dq_state_lock protects modifications of quota state (on quotaon and * quotaoff) and readers who care about latest values take it as well. * * The spinlock ordering is hence: * dq_data_lock > dq_list_lock > i_lock > dquot->dq_dqb_lock, * dq_list_lock > dq_state_lock * * Note that some things (eg. sb pointer, type, id) doesn't change during * the life of the dquot structure and so needn't to be protected by a lock * * Operation accessing dquots via inode pointers are protected by dquot_srcu. * Operation of reading pointer needs srcu_read_lock(&dquot_srcu), and * synchronize_srcu(&dquot_srcu) is called after clearing pointers from * inode and before dropping dquot references to avoid use of dquots after * they are freed. dq_data_lock is used to serialize the pointer setting and * clearing operations. * Special care needs to be taken about S_NOQUOTA inode flag (marking that * inode is a quota file). Functions adding pointers from inode to dquots have * to check this flag under dq_data_lock and then (if S_NOQUOTA is not set) they * have to do all pointer modifications before dropping dq_data_lock. This makes * sure they cannot race with quotaon which first sets S_NOQUOTA flag and * then drops all pointers to dquots from an inode. * * Each dquot has its dq_lock mutex. Dquot is locked when it is being read to * memory (or space for it is being allocated) on the first dqget(), when it is * being written out, and when it is being released on the last dqput(). The * allocation and release operations are serialized by the dq_lock and by * checking the use count in dquot_release(). * * Lock ordering (including related VFS locks) is the following: * s_umount > i_mutex > journal_lock > dquot->dq_lock > dqio_sem */ static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dq_list_lock); static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dq_state_lock); __cacheline_aligned_in_smp DEFINE_SPINLOCK(dq_data_lock); EXPORT_SYMBOL(dq_data_lock); DEFINE_STATIC_SRCU(dquot_srcu); static DECLARE_WAIT_QUEUE_HEAD(dquot_ref_wq); void __quota_error(struct super_block *sb, const char *func, const char *fmt, ...) { if (printk_ratelimit()) { va_list args; struct va_format vaf; va_start(args, fmt); vaf.fmt = fmt; vaf.va = &args; printk(KERN_ERR "Quota error (device %s): %s: %pV\n", sb->s_id, func, &vaf); va_end(args); } } EXPORT_SYMBOL(__quota_error); #if defined(CONFIG_QUOTA_DEBUG) || defined(CONFIG_PRINT_QUOTA_WARNING) static char *quotatypes[] = INITQFNAMES; #endif static struct quota_format_type *quota_formats; /* List of registered formats */ static struct quota_module_name module_names[] = INIT_QUOTA_MODULE_NAMES; /* SLAB cache for dquot structures */ static struct kmem_cache *dquot_cachep; int register_quota_format(struct quota_format_type *fmt) { spin_lock(&dq_list_lock); fmt->qf_next = quota_formats; quota_formats = fmt; spin_unlock(&dq_list_lock); return 0; } EXPORT_SYMBOL(register_quota_format); void unregister_quota_format(struct quota_format_type *fmt) { struct quota_format_type **actqf; spin_lock(&dq_list_lock); for (actqf = &quota_formats; *actqf && *actqf != fmt; actqf = &(*actqf)->qf_next) ; if (*actqf) *actqf = (*actqf)->qf_next; spin_unlock(&dq_list_lock); } EXPORT_SYMBOL(unregister_quota_format); static struct quota_format_type *find_quota_format(int id) { struct quota_format_type *actqf; spin_lock(&dq_list_lock); for (actqf = quota_formats; actqf && actqf->qf_fmt_id != id; actqf = actqf->qf_next) ; if (!actqf || !try_module_get(actqf->qf_owner)) { int qm; spin_unlock(&dq_list_lock); for (qm = 0; module_names[qm].qm_fmt_id && module_names[qm].qm_fmt_id != id; qm++) ; if (!module_names[qm].qm_fmt_id || request_module(module_names[qm].qm_mod_name)) return NULL; spin_lock(&dq_list_lock); for (actqf = quota_formats; actqf && actqf->qf_fmt_id != id; actqf = actqf->qf_next) ; if (actqf && !try_module_get(actqf->qf_owner)) actqf = NULL; } spin_unlock(&dq_list_lock); return actqf; } static void put_quota_format(struct quota_format_type *fmt) { module_put(fmt->qf_owner); } /* * Dquot List Management: * The quota code uses four lists for dquot management: the inuse_list, * free_dquots, dqi_dirty_list, and dquot_hash[] array. A single dquot * structure may be on some of those lists, depending on its current state. * * All dquots are placed to the end of inuse_list when first created, and this * list is used for invalidate operation, which must look at every dquot. * * Unused dquots (dq_count == 0) are added to the free_dquots list when freed, * and this list is searched whenever we need an available dquot. Dquots are * removed from the list as soon as they are used again, and * dqstats.free_dquots gives the number of dquots on the list. When * dquot is invalidated it's completely released from memory. * * Dirty dquots are added to the dqi_dirty_list of quota_info when mark * dirtied, and this list is searched when writing dirty dquots back to * quota file. Note that some filesystems do dirty dquot tracking on their * own (e.g. in a journal) and thus don't use dqi_dirty_list. * * Dquots with a specific identity (device, type and id) are placed on * one of the dquot_hash[] hash chains. The provides an efficient search * mechanism to locate a specific dquot. */ static LIST_HEAD(inuse_list); static LIST_HEAD(free_dquots); static unsigned int dq_hash_bits, dq_hash_mask; static struct hlist_head *dquot_hash; struct dqstats dqstats; EXPORT_SYMBOL(dqstats); static qsize_t inode_get_rsv_space(struct inode *inode); static qsize_t __inode_get_rsv_space(struct inode *inode); static int __dquot_initialize(struct inode *inode, int type); static inline unsigned int hashfn(const struct super_block *sb, struct kqid qid) { unsigned int id = from_kqid(&init_user_ns, qid); int type = qid.type; unsigned long tmp; tmp = (((unsigned long)sb>>L1_CACHE_SHIFT) ^ id) * (MAXQUOTAS - type); return (tmp + (tmp >> dq_hash_bits)) & dq_hash_mask; } /* * Following list functions expect dq_list_lock to be held */ static inline void insert_dquot_hash(struct dquot *dquot) { struct hlist_head *head; head = dquot_hash + hashfn(dquot->dq_sb, dquot->dq_id); hlist_add_head(&dquot->dq_hash, head); } static inline void remove_dquot_hash(struct dquot *dquot) { hlist_del_init(&dquot->dq_hash); } static struct dquot *find_dquot(unsigned int hashent, struct super_block *sb, struct kqid qid) { struct hlist_node *node; struct dquot *dquot; hlist_for_each (node, dquot_hash+hashent) { dquot = hlist_entry(node, struct dquot, dq_hash); if (dquot->dq_sb == sb && qid_eq(dquot->dq_id, qid)) return dquot; } return NULL; } /* Add a dquot to the tail of the free list */ static inline void put_dquot_last(struct dquot *dquot) { list_add_tail(&dquot->dq_free, &free_dquots); dqstats_inc(DQST_FREE_DQUOTS); } static inline void remove_free_dquot(struct dquot *dquot) { if (list_empty(&dquot->dq_free)) return; list_del_init(&dquot->dq_free); dqstats_dec(DQST_FREE_DQUOTS); } static inline void put_inuse(struct dquot *dquot) { /* We add to the back of inuse list so we don't have to restart * when traversing this list and we block */ list_add_tail(&dquot->dq_inuse, &inuse_list); dqstats_inc(DQST_ALLOC_DQUOTS); } static inline void remove_inuse(struct dquot *dquot) { dqstats_dec(DQST_ALLOC_DQUOTS); list_del(&dquot->dq_inuse); } /* * End of list functions needing dq_list_lock */ static void wait_on_dquot(struct dquot *dquot) { mutex_lock(&dquot->dq_lock); mutex_unlock(&dquot->dq_lock); } static inline int dquot_dirty(struct dquot *dquot) { return test_bit(DQ_MOD_B, &dquot->dq_flags); } static inline int mark_dquot_dirty(struct dquot *dquot) { return dquot->dq_sb->dq_op->mark_dirty(dquot); } /* Mark dquot dirty in atomic manner, and return it's old dirty flag state */ int dquot_mark_dquot_dirty(struct dquot *dquot) { int ret = 1; if (!test_bit(DQ_ACTIVE_B, &dquot->dq_flags)) return 0; if (sb_dqopt(dquot->dq_sb)->flags & DQUOT_NOLIST_DIRTY) return test_and_set_bit(DQ_MOD_B, &dquot->dq_flags); /* If quota is dirty already, we don't have to acquire dq_list_lock */ if (test_bit(DQ_MOD_B, &dquot->dq_flags)) return 1; spin_lock(&dq_list_lock); if (!test_and_set_bit(DQ_MOD_B, &dquot->dq_flags)) { list_add(&dquot->dq_dirty, &sb_dqopt(dquot->dq_sb)-> info[dquot->dq_id.type].dqi_dirty_list); ret = 0; } spin_unlock(&dq_list_lock); return ret; } EXPORT_SYMBOL(dquot_mark_dquot_dirty); /* Dirtify all the dquots - this can block when journalling */ static inline int mark_all_dquot_dirty(struct dquot * const *dquot) { int ret, err, cnt; ret = err = 0; for (cnt = 0; cnt < MAXQUOTAS; cnt++) { if (dquot[cnt]) /* Even in case of error we have to continue */ ret = mark_dquot_dirty(dquot[cnt]); if (!err) err = ret; } return err; } static inline void dqput_all(struct dquot **dquot) { unsigned int cnt; for (cnt = 0; cnt < MAXQUOTAS; cnt++) dqput(dquot[cnt]); } static inline int clear_dquot_dirty(struct dquot *dquot) { if (sb_dqopt(dquot->dq_sb)->flags & DQUOT_NOLIST_DIRTY) return test_and_clear_bit(DQ_MOD_B, &dquot->dq_flags); spin_lock(&dq_list_lock); if (!test_and_clear_bit(DQ_MOD_B, &dquot->dq_flags)) { spin_unlock(&dq_list_lock); return 0; } list_del_init(&dquot->dq_dirty); spin_unlock(&dq_list_lock); return 1; } void mark_info_dirty(struct super_block *sb, int type) { spin_lock(&dq_data_lock); sb_dqopt(sb)->info[type].dqi_flags |= DQF_INFO_DIRTY; spin_unlock(&dq_data_lock); } EXPORT_SYMBOL(mark_info_dirty); /* * Read dquot from disk and alloc space for it */ int dquot_acquire(struct dquot *dquot) { int ret = 0, ret2 = 0; struct quota_info *dqopt = sb_dqopt(dquot->dq_sb); mutex_lock(&dquot->dq_lock); if (!test_bit(DQ_READ_B, &dquot->dq_flags)) { ret = dqopt->ops[dquot->dq_id.type]->read_dqblk(dquot); if (ret < 0) goto out_iolock; } /* Make sure flags update is visible after dquot has been filled */ smp_mb__before_atomic(); set_bit(DQ_READ_B, &dquot->dq_flags); /* Instantiate dquot if needed */ if (!test_bit(DQ_ACTIVE_B, &dquot->dq_flags) && !dquot->dq_off) { ret = dqopt->ops[dquot->dq_id.type]->commit_dqblk(dquot); /* Write the info if needed */ if (info_dirty(&dqopt->info[dquot->dq_id.type])) { ret2 = dqopt->ops[dquot->dq_id.type]->write_file_info( dquot->dq_sb, dquot->dq_id.type); } if (ret < 0) goto out_iolock; if (ret2 < 0) { ret = ret2; goto out_iolock; } } /* * Make sure flags update is visible after on-disk struct has been * allocated. Paired with smp_rmb() in dqget(). */ smp_mb__before_atomic(); set_bit(DQ_ACTIVE_B, &dquot->dq_flags); out_iolock: mutex_unlock(&dquot->dq_lock); return ret; } EXPORT_SYMBOL(dquot_acquire); /* * Write dquot to disk */ int dquot_commit(struct dquot *dquot) { int ret = 0; struct quota_info *dqopt = sb_dqopt(dquot->dq_sb); mutex_lock(&dquot->dq_lock); if (!clear_dquot_dirty(dquot)) goto out_lock; /* Inactive dquot can be only if there was error during read/init * => we have better not writing it */ if (test_bit(DQ_ACTIVE_B, &dquot->dq_flags)) ret = dqopt->ops[dquot->dq_id.type]->commit_dqblk(dquot); else ret = -EIO; out_lock: mutex_unlock(&dquot->dq_lock); return ret; } EXPORT_SYMBOL(dquot_commit); /* * Release dquot */ int dquot_release(struct dquot *dquot) { int ret = 0, ret2 = 0; struct quota_info *dqopt = sb_dqopt(dquot->dq_sb); mutex_lock(&dquot->dq_lock); /* Check whether we are not racing with some other dqget() */ if (dquot_is_busy(dquot)) goto out_dqlock; if (dqopt->ops[dquot->dq_id.type]->release_dqblk) { ret = dqopt->ops[dquot->dq_id.type]->release_dqblk(dquot); /* Write the info */ if (info_dirty(&dqopt->info[dquot->dq_id.type])) { ret2 = dqopt->ops[dquot->dq_id.type]->write_file_info( dquot->dq_sb, dquot->dq_id.type); } if (ret >= 0) ret = ret2; } clear_bit(DQ_ACTIVE_B, &dquot->dq_flags); out_dqlock: mutex_unlock(&dquot->dq_lock); return ret; } EXPORT_SYMBOL(dquot_release); void dquot_destroy(struct dquot *dquot) { kmem_cache_free(dquot_cachep, dquot); } EXPORT_SYMBOL(dquot_destroy); static inline void do_destroy_dquot(struct dquot *dquot) { dquot->dq_sb->dq_op->destroy_dquot(dquot); } /* Invalidate all dquots on the list. Note that this function is called after * quota is disabled and pointers from inodes removed so there cannot be new * quota users. There can still be some users of quotas due to inodes being * just deleted or pruned by prune_icache() (those are not attached to any * list) or parallel quotactl call. We have to wait for such users. */ static void invalidate_dquots(struct super_block *sb, int type) { struct dquot *dquot, *tmp; restart: spin_lock(&dq_list_lock); list_for_each_entry_safe(dquot, tmp, &inuse_list, dq_inuse) { if (dquot->dq_sb != sb) continue; if (dquot->dq_id.type != type) continue; /* Wait for dquot users */ if (atomic_read(&dquot->dq_count)) { dqgrab(dquot); spin_unlock(&dq_list_lock); /* * Once dqput() wakes us up, we know it's time to free * the dquot. * IMPORTANT: we rely on the fact that there is always * at most one process waiting for dquot to free. * Otherwise dq_count would be > 1 and we would never * wake up. */ wait_event(dquot_ref_wq, atomic_read(&dquot->dq_count) == 1); dqput(dquot); /* At this moment dquot() need not exist (it could be * reclaimed by prune_dqcache(). Hence we must * restart. */ goto restart; } /* * Quota now has no users and it has been written on last * dqput() */ remove_dquot_hash(dquot); remove_free_dquot(dquot); remove_inuse(dquot); do_destroy_dquot(dquot); } spin_unlock(&dq_list_lock); } /* Call callback for every active dquot on given filesystem */ int dquot_scan_active(struct super_block *sb, int (*fn)(struct dquot *dquot, unsigned long priv), unsigned long priv) { struct dquot *dquot, *old_dquot = NULL; int ret = 0; WARN_ON_ONCE(!rwsem_is_locked(&sb->s_umount)); spin_lock(&dq_list_lock); list_for_each_entry(dquot, &inuse_list, dq_inuse) { if (!test_bit(DQ_ACTIVE_B, &dquot->dq_flags)) continue; if (dquot->dq_sb != sb) continue; /* Now we have active dquot so we can just increase use count */ atomic_inc(&dquot->dq_count); spin_unlock(&dq_list_lock); dqput(old_dquot); old_dquot = dquot; /* * ->release_dquot() can be racing with us. Our reference * protects us from new calls to it so just wait for any * outstanding call and recheck the DQ_ACTIVE_B after that. */ wait_on_dquot(dquot); if (test_bit(DQ_ACTIVE_B, &dquot->dq_flags)) { ret = fn(dquot, priv); if (ret < 0) goto out; } spin_lock(&dq_list_lock); /* We are safe to continue now because our dquot could not * be moved out of the inuse list while we hold the reference */ } spin_unlock(&dq_list_lock); out: dqput(old_dquot); return ret; } EXPORT_SYMBOL(dquot_scan_active); /* Write all dquot structures to quota files */ int dquot_writeback_dquots(struct super_block *sb, int type) { struct list_head dirty; struct dquot *dquot; struct quota_info *dqopt = sb_dqopt(sb); int cnt; int err, ret = 0; WARN_ON_ONCE(!rwsem_is_locked(&sb->s_umount)); for (cnt = 0; cnt < MAXQUOTAS; cnt++) { if (type != -1 && cnt != type) continue; if (!sb_has_quota_active(sb, cnt)) continue; spin_lock(&dq_list_lock); /* Move list away to avoid livelock. */ list_replace_init(&dqopt->info[cnt].dqi_dirty_list, &dirty); while (!list_empty(&dirty)) { dquot = list_first_entry(&dirty, struct dquot, dq_dirty); WARN_ON(!test_bit(DQ_ACTIVE_B, &dquot->dq_flags)); /* Now we have active dquot from which someone is * holding reference so we can safely just increase * use count */ dqgrab(dquot); spin_unlock(&dq_list_lock); err = sb->dq_op->write_dquot(dquot); if (err) { /* * Clear dirty bit anyway to avoid infinite * loop here. */ clear_dquot_dirty(dquot); if (!ret) ret = err; } dqput(dquot); spin_lock(&dq_list_lock); } spin_unlock(&dq_list_lock); } for (cnt = 0; cnt < MAXQUOTAS; cnt++) if ((cnt == type || type == -1) && sb_has_quota_active(sb, cnt) && info_dirty(&dqopt->info[cnt])) sb->dq_op->write_info(sb, cnt); dqstats_inc(DQST_SYNCS); return ret; } EXPORT_SYMBOL(dquot_writeback_dquots); /* Write all dquot structures to disk and make them visible from userspace */ int dquot_quota_sync(struct super_block *sb, int type) { struct quota_info *dqopt = sb_dqopt(sb); int cnt; int ret; ret = dquot_writeback_dquots(sb, type); if (ret) return ret; if (dqopt->flags & DQUOT_QUOTA_SYS_FILE) return 0; /* This is not very clever (and fast) but currently I don't know about * any other simple way of getting quota data to disk and we must get * them there for userspace to be visible... */ if (sb->s_op->sync_fs) sb->s_op->sync_fs(sb, 1); sync_blockdev(sb->s_bdev); /* * Now when everything is written we can discard the pagecache so * that userspace sees the changes. */ for (cnt = 0; cnt < MAXQUOTAS; cnt++) { if (type != -1 && cnt != type) continue; if (!sb_has_quota_active(sb, cnt)) continue; inode_lock(dqopt->files[cnt]); truncate_inode_pages(&dqopt->files[cnt]->i_data, 0); inode_unlock(dqopt->files[cnt]); } return 0; } EXPORT_SYMBOL(dquot_quota_sync); static unsigned long dqcache_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) { struct dquot *dquot; unsigned long freed = 0; spin_lock(&dq_list_lock); while (!list_empty(&free_dquots) && sc->nr_to_scan) { dquot = list_first_entry(&free_dquots, struct dquot, dq_free); remove_dquot_hash(dquot); remove_free_dquot(dquot); remove_inuse(dquot); do_destroy_dquot(dquot); sc->nr_to_scan--; freed++; } spin_unlock(&dq_list_lock); return freed; } static unsigned long dqcache_shrink_count(struct shrinker *shrink, struct shrink_control *sc) { return vfs_pressure_ratio( percpu_counter_read_positive(&dqstats.counter[DQST_FREE_DQUOTS])); } static struct shrinker dqcache_shrinker = { .count_objects = dqcache_shrink_count, .scan_objects = dqcache_shrink_scan, .seeks = DEFAULT_SEEKS, }; /* * Put reference to dquot */ void dqput(struct dquot *dquot) { int ret; if (!dquot) return; #ifdef CONFIG_QUOTA_DEBUG if (!atomic_read(&dquot->dq_count)) { quota_error(dquot->dq_sb, "trying to free free dquot of %s %d", quotatypes[dquot->dq_id.type], from_kqid(&init_user_ns, dquot->dq_id)); BUG(); } #endif dqstats_inc(DQST_DROPS); we_slept: spin_lock(&dq_list_lock); if (atomic_read(&dquot->dq_count) > 1) { /* We have more than one user... nothing to do */ atomic_dec(&dquot->dq_count); /* Releasing dquot during quotaoff phase? */ if (!sb_has_quota_active(dquot->dq_sb, dquot->dq_id.type) && atomic_read(&dquot->dq_count) == 1) wake_up(&dquot_ref_wq); spin_unlock(&dq_list_lock); return; } /* Need to release dquot? */ if (dquot_dirty(dquot)) { spin_unlock(&dq_list_lock); /* Commit dquot before releasing */ ret = dquot->dq_sb->dq_op->write_dquot(dquot); if (ret < 0) { quota_error(dquot->dq_sb, "Can't write quota structure" " (error %d). Quota may get out of sync!", ret); /* * We clear dirty bit anyway, so that we avoid * infinite loop here */ clear_dquot_dirty(dquot); } goto we_slept; } if (test_bit(DQ_ACTIVE_B, &dquot->dq_flags)) { spin_unlock(&dq_list_lock); dquot->dq_sb->dq_op->release_dquot(dquot); goto we_slept; } atomic_dec(&dquot->dq_count); #ifdef CONFIG_QUOTA_DEBUG /* sanity check */ BUG_ON(!list_empty(&dquot->dq_free)); #endif put_dquot_last(dquot); spin_unlock(&dq_list_lock); } EXPORT_SYMBOL(dqput); struct dquot *dquot_alloc(struct super_block *sb, int type) { return kmem_cache_zalloc(dquot_cachep, GFP_NOFS); } EXPORT_SYMBOL(dquot_alloc); static struct dquot *get_empty_dquot(struct super_block *sb, int type) { struct dquot *dquot; dquot = sb->dq_op->alloc_dquot(sb, type); if(!dquot) return NULL; mutex_init(&dquot->dq_lock); INIT_LIST_HEAD(&dquot->dq_free); INIT_LIST_HEAD(&dquot->dq_inuse); INIT_HLIST_NODE(&dquot->dq_hash); INIT_LIST_HEAD(&dquot->dq_dirty); dquot->dq_sb = sb; dquot->dq_id = make_kqid_invalid(type); atomic_set(&dquot->dq_count, 1); spin_lock_init(&dquot->dq_dqb_lock); return dquot; } /* * Get reference to dquot * * Locking is slightly tricky here. We are guarded from parallel quotaoff() * destroying our dquot by: * a) checking for quota flags under dq_list_lock and * b) getting a reference to dquot before we release dq_list_lock */ struct dquot *dqget(struct super_block *sb, struct kqid qid) { unsigned int hashent = hashfn(sb, qid); struct dquot *dquot, *empty = NULL; if (!qid_has_mapping(sb->s_user_ns, qid)) return ERR_PTR(-EINVAL); if (!sb_has_quota_active(sb, qid.type)) return ERR_PTR(-ESRCH); we_slept: spin_lock(&dq_list_lock); spin_lock(&dq_state_lock); if (!sb_has_quota_active(sb, qid.type)) { spin_unlock(&dq_state_lock); spin_unlock(&dq_list_lock); dquot = ERR_PTR(-ESRCH); goto out; } spin_unlock(&dq_state_lock); dquot = find_dquot(hashent, sb, qid); if (!dquot) { if (!empty) { spin_unlock(&dq_list_lock); empty = get_empty_dquot(sb, qid.type); if (!empty) schedule(); /* Try to wait for a moment... */ goto we_slept; } dquot = empty; empty = NULL; dquot->dq_id = qid; /* all dquots go on the inuse_list */ put_inuse(dquot); /* hash it first so it can be found */ insert_dquot_hash(dquot); spin_unlock(&dq_list_lock); dqstats_inc(DQST_LOOKUPS); } else { if (!atomic_read(&dquot->dq_count)) remove_free_dquot(dquot); atomic_inc(&dquot->dq_count); spin_unlock(&dq_list_lock); dqstats_inc(DQST_CACHE_HITS); dqstats_inc(DQST_LOOKUPS); } /* Wait for dq_lock - after this we know that either dquot_release() is * already finished or it will be canceled due to dq_count > 1 test */ wait_on_dquot(dquot); /* Read the dquot / allocate space in quota file */ if (!test_bit(DQ_ACTIVE_B, &dquot->dq_flags)) { int err; err = sb->dq_op->acquire_dquot(dquot); if (err < 0) { dqput(dquot); dquot = ERR_PTR(err); goto out; } } /* * Make sure following reads see filled structure - paired with * smp_mb__before_atomic() in dquot_acquire(). */ smp_rmb(); #ifdef CONFIG_QUOTA_DEBUG BUG_ON(!dquot->dq_sb); /* Has somebody invalidated entry under us? */ #endif out: if (empty) do_destroy_dquot(empty); return dquot; } EXPORT_SYMBOL(dqget); static inline struct dquot **i_dquot(struct inode *inode) { return inode->i_sb->s_op->get_dquots(inode); } static int dqinit_needed(struct inode *inode, int type) { struct dquot * const *dquots; int cnt; if (IS_NOQUOTA(inode)) return 0; dquots = i_dquot(inode); if (type != -1) return !dquots[type]; for (cnt = 0; cnt < MAXQUOTAS; cnt++) if (!dquots[cnt]) return 1; return 0; } /* This routine is guarded by s_umount semaphore */ static int add_dquot_ref(struct super_block *sb, int type) { struct inode *inode, *old_inode = NULL; #ifdef CONFIG_QUOTA_DEBUG int reserved = 0; #endif int err = 0; spin_lock(&sb->s_inode_list_lock); list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { spin_lock(&inode->i_lock); if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) || !atomic_read(&inode->i_writecount) || !dqinit_needed(inode, type)) { spin_unlock(&inode->i_lock); continue; } __iget(inode); spin_unlock(&inode->i_lock); spin_unlock(&sb->s_inode_list_lock); #ifdef CONFIG_QUOTA_DEBUG if (unlikely(inode_get_rsv_space(inode) > 0)) reserved = 1; #endif iput(old_inode); err = __dquot_initialize(inode, type); if (err) { iput(inode); goto out; } /* * We hold a reference to 'inode' so it couldn't have been * removed from s_inodes list while we dropped the * s_inode_list_lock. We cannot iput the inode now as we can be * holding the last reference and we cannot iput it under * s_inode_list_lock. So we keep the reference and iput it * later. */ old_inode = inode; cond_resched(); spin_lock(&sb->s_inode_list_lock); } spin_unlock(&sb->s_inode_list_lock); iput(old_inode); out: #ifdef CONFIG_QUOTA_DEBUG if (reserved) { quota_error(sb, "Writes happened before quota was turned on " "thus quota information is probably inconsistent. " "Please run quotacheck(8)"); } #endif return err; } /* * Remove references to dquots from inode and add dquot to list for freeing * if we have the last reference to dquot */ static void remove_inode_dquot_ref(struct inode *inode, int type, struct list_head *tofree_head) { struct dquot **dquots = i_dquot(inode); struct dquot *dquot = dquots[type]; if (!dquot) return; dquots[type] = NULL; if (list_empty(&dquot->dq_free)) { /* * The inode still has reference to dquot so it can't be in the * free list */ spin_lock(&dq_list_lock); list_add(&dquot->dq_free, tofree_head); spin_unlock(&dq_list_lock); } else { /* * Dquot is already in a list to put so we won't drop the last * reference here. */ dqput(dquot); } } /* * Free list of dquots * Dquots are removed from inodes and no new references can be got so we are * the only ones holding reference */ static void put_dquot_list(struct list_head *tofree_head) { struct list_head *act_head; struct dquot *dquot; act_head = tofree_head->next; while (act_head != tofree_head) { dquot = list_entry(act_head, struct dquot, dq_free); act_head = act_head->next; /* Remove dquot from the list so we won't have problems... */ list_del_init(&dquot->dq_free); dqput(dquot); } } static void remove_dquot_ref(struct super_block *sb, int type, struct list_head *tofree_head) { struct inode *inode; #ifdef CONFIG_QUOTA_DEBUG int reserved = 0; #endif spin_lock(&sb->s_inode_list_lock); list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { /* * We have to scan also I_NEW inodes because they can already * have quota pointer initialized. Luckily, we need to touch * only quota pointers and these have separate locking * (dq_data_lock). */ spin_lock(&dq_data_lock); if (!IS_NOQUOTA(inode)) { #ifdef CONFIG_QUOTA_DEBUG if (unlikely(inode_get_rsv_space(inode) > 0)) reserved = 1; #endif remove_inode_dquot_ref(inode, type, tofree_head); } spin_unlock(&dq_data_lock); } spin_unlock(&sb->s_inode_list_lock); #ifdef CONFIG_QUOTA_DEBUG if (reserved) { printk(KERN_WARNING "VFS (%s): Writes happened after quota" " was disabled thus quota information is probably " "inconsistent. Please run quotacheck(8).\n", sb->s_id); } #endif } /* Gather all references from inodes and drop them */ static void drop_dquot_ref(struct super_block *sb, int type) { LIST_HEAD(tofree_head); if (sb->dq_op) { remove_dquot_ref(sb, type, &tofree_head); synchronize_srcu(&dquot_srcu); put_dquot_list(&tofree_head); } } static inline void dquot_free_reserved_space(struct dquot *dquot, qsize_t number) { if (dquot->dq_dqb.dqb_rsvspace >= number) dquot->dq_dqb.dqb_rsvspace -= number; else { WARN_ON_ONCE(1); dquot->dq_dqb.dqb_rsvspace = 0; } if (dquot->dq_dqb.dqb_curspace + dquot->dq_dqb.dqb_rsvspace <= dquot->dq_dqb.dqb_bsoftlimit) dquot->dq_dqb.dqb_btime = (time64_t) 0; clear_bit(DQ_BLKS_B, &dquot->dq_flags); } static void dquot_decr_inodes(struct dquot *dquot, qsize_t number) { if (sb_dqopt(dquot->dq_sb)->flags & DQUOT_NEGATIVE_USAGE || dquot->dq_dqb.dqb_curinodes >= number) dquot->dq_dqb.dqb_curinodes -= number; else dquot->dq_dqb.dqb_curinodes = 0; if (dquot->dq_dqb.dqb_curinodes <= dquot->dq_dqb.dqb_isoftlimit) dquot->dq_dqb.dqb_itime = (time64_t) 0; clear_bit(DQ_INODES_B, &dquot->dq_flags); } static void dquot_decr_space(struct dquot *dquot, qsize_t number) { if (sb_dqopt(dquot->dq_sb)->flags & DQUOT_NEGATIVE_USAGE || dquot->dq_dqb.dqb_curspace >= number) dquot->dq_dqb.dqb_curspace -= number; else dquot->dq_dqb.dqb_curspace = 0; if (dquot->dq_dqb.dqb_curspace + dquot->dq_dqb.dqb_rsvspace <= dquot->dq_dqb.dqb_bsoftlimit) dquot->dq_dqb.dqb_btime = (time64_t) 0; clear_bit(DQ_BLKS_B, &dquot->dq_flags); } struct dquot_warn { struct super_block *w_sb; struct kqid w_dq_id; short w_type; }; static int warning_issued(struct dquot *dquot, const int warntype) { int flag = (warntype == QUOTA_NL_BHARDWARN || warntype == QUOTA_NL_BSOFTLONGWARN) ? DQ_BLKS_B : ((warntype == QUOTA_NL_IHARDWARN || warntype == QUOTA_NL_ISOFTLONGWARN) ? DQ_INODES_B : 0); if (!flag) return 0; return test_and_set_bit(flag, &dquot->dq_flags); } #ifdef CONFIG_PRINT_QUOTA_WARNING static int flag_print_warnings = 1; static int need_print_warning(struct dquot_warn *warn) { if (!flag_print_warnings) return 0; switch (warn->w_dq_id.type) { case USRQUOTA: return uid_eq(current_fsuid(), warn->w_dq_id.uid); case GRPQUOTA: return in_group_p(warn->w_dq_id.gid); case PRJQUOTA: return 1; } return 0; } /* Print warning to user which exceeded quota */ static void print_warning(struct dquot_warn *warn) { char *msg = NULL; struct tty_struct *tty; int warntype = warn->w_type; if (warntype == QUOTA_NL_IHARDBELOW || warntype == QUOTA_NL_ISOFTBELOW || warntype == QUOTA_NL_BHARDBELOW || warntype == QUOTA_NL_BSOFTBELOW || !need_print_warning(warn)) return; tty = get_current_tty(); if (!tty) return; tty_write_message(tty, warn->w_sb->s_id); if (warntype == QUOTA_NL_ISOFTWARN || warntype == QUOTA_NL_BSOFTWARN) tty_write_message(tty, ": warning, "); else tty_write_message(tty, ": write failed, "); tty_write_message(tty, quotatypes[warn->w_dq_id.type]); switch (warntype) { case QUOTA_NL_IHARDWARN: msg = " file limit reached.\r\n"; break; case QUOTA_NL_ISOFTLONGWARN: msg = " file quota exceeded too long.\r\n"; break; case QUOTA_NL_ISOFTWARN: msg = " file quota exceeded.\r\n"; break; case QUOTA_NL_BHARDWARN: msg = " block limit reached.\r\n"; break; case QUOTA_NL_BSOFTLONGWARN: msg = " block quota exceeded too long.\r\n"; break; case QUOTA_NL_BSOFTWARN: msg = " block quota exceeded.\r\n"; break; } tty_write_message(tty, msg); tty_kref_put(tty); } #endif static void prepare_warning(struct dquot_warn *warn, struct dquot *dquot, int warntype) { if (warning_issued(dquot, warntype)) return; warn->w_type = warntype; warn->w_sb = dquot->dq_sb; warn->w_dq_id = dquot->dq_id; } /* * Write warnings to the console and send warning messages over netlink. * * Note that this function can call into tty and networking code. */ static void flush_warnings(struct dquot_warn *warn) { int i; for (i = 0; i < MAXQUOTAS; i++) { if (warn[i].w_type == QUOTA_NL_NOWARN) continue; #ifdef CONFIG_PRINT_QUOTA_WARNING print_warning(&warn[i]); #endif quota_send_warning(warn[i].w_dq_id, warn[i].w_sb->s_dev, warn[i].w_type); } } static int ignore_hardlimit(struct dquot *dquot) { struct mem_dqinfo *info = &sb_dqopt(dquot->dq_sb)->info[dquot->dq_id.type]; return capable(CAP_SYS_RESOURCE) && (info->dqi_format->qf_fmt_id != QFMT_VFS_OLD || !(info->dqi_flags & DQF_ROOT_SQUASH)); } static int dquot_add_inodes(struct dquot *dquot, qsize_t inodes, struct dquot_warn *warn) { qsize_t newinodes; int ret = 0; spin_lock(&dquot->dq_dqb_lock); newinodes = dquot->dq_dqb.dqb_curinodes + inodes; if (!sb_has_quota_limits_enabled(dquot->dq_sb, dquot->dq_id.type) || test_bit(DQ_FAKE_B, &dquot->dq_flags)) goto add; if (dquot->dq_dqb.dqb_ihardlimit && newinodes > dquot->dq_dqb.dqb_ihardlimit && !ignore_hardlimit(dquot)) { prepare_warning(warn, dquot, QUOTA_NL_IHARDWARN); ret = -EDQUOT; goto out; } if (dquot->dq_dqb.dqb_isoftlimit && newinodes > dquot->dq_dqb.dqb_isoftlimit && dquot->dq_dqb.dqb_itime && ktime_get_real_seconds() >= dquot->dq_dqb.dqb_itime && !ignore_hardlimit(dquot)) { prepare_warning(warn, dquot, QUOTA_NL_ISOFTLONGWARN); ret = -EDQUOT; goto out; } if (dquot->dq_dqb.dqb_isoftlimit && newinodes > dquot->dq_dqb.dqb_isoftlimit && dquot->dq_dqb.dqb_itime == 0) { prepare_warning(warn, dquot, QUOTA_NL_ISOFTWARN); dquot->dq_dqb.dqb_itime = ktime_get_real_seconds() + sb_dqopt(dquot->dq_sb)->info[dquot->dq_id.type].dqi_igrace; } add: dquot->dq_dqb.dqb_curinodes = newinodes; out: spin_unlock(&dquot->dq_dqb_lock); return ret; } static int dquot_add_space(struct dquot *dquot, qsize_t space, qsize_t rsv_space, unsigned int flags, struct dquot_warn *warn) { qsize_t tspace; struct super_block *sb = dquot->dq_sb; int ret = 0; spin_lock(&dquot->dq_dqb_lock); if (!sb_has_quota_limits_enabled(sb, dquot->dq_id.type) || test_bit(DQ_FAKE_B, &dquot->dq_flags)) goto finish; tspace = dquot->dq_dqb.dqb_curspace + dquot->dq_dqb.dqb_rsvspace + space + rsv_space; if (dquot->dq_dqb.dqb_bhardlimit && tspace > dquot->dq_dqb.dqb_bhardlimit && !ignore_hardlimit(dquot)) { if (flags & DQUOT_SPACE_WARN) prepare_warning(warn, dquot, QUOTA_NL_BHARDWARN); ret = -EDQUOT; goto finish; } if (dquot->dq_dqb.dqb_bsoftlimit && tspace > dquot->dq_dqb.dqb_bsoftlimit && dquot->dq_dqb.dqb_btime && ktime_get_real_seconds() >= dquot->dq_dqb.dqb_btime && !ignore_hardlimit(dquot)) { if (flags & DQUOT_SPACE_WARN) prepare_warning(warn, dquot, QUOTA_NL_BSOFTLONGWARN); ret = -EDQUOT; goto finish; } if (dquot->dq_dqb.dqb_bsoftlimit && tspace > dquot->dq_dqb.dqb_bsoftlimit && dquot->dq_dqb.dqb_btime == 0) { if (flags & DQUOT_SPACE_WARN) { prepare_warning(warn, dquot, QUOTA_NL_BSOFTWARN); dquot->dq_dqb.dqb_btime = ktime_get_real_seconds() + sb_dqopt(sb)->info[dquot->dq_id.type].dqi_bgrace; } else { /* * We don't allow preallocation to exceed softlimit so exceeding will * be always printed */ ret = -EDQUOT; goto finish; } } finish: /* * We have to be careful and go through warning generation & grace time * setting even if DQUOT_SPACE_NOFAIL is set. That's why we check it * only here... */ if (flags & DQUOT_SPACE_NOFAIL) ret = 0; if (!ret) { dquot->dq_dqb.dqb_rsvspace += rsv_space; dquot->dq_dqb.dqb_curspace += space; } spin_unlock(&dquot->dq_dqb_lock); return ret; } static int info_idq_free(struct dquot *dquot, qsize_t inodes) { qsize_t newinodes; if (test_bit(DQ_FAKE_B, &dquot->dq_flags) || dquot->dq_dqb.dqb_curinodes <= dquot->dq_dqb.dqb_isoftlimit || !sb_has_quota_limits_enabled(dquot->dq_sb, dquot->dq_id.type)) return QUOTA_NL_NOWARN; newinodes = dquot->dq_dqb.dqb_curinodes - inodes; if (newinodes <= dquot->dq_dqb.dqb_isoftlimit) return QUOTA_NL_ISOFTBELOW; if (dquot->dq_dqb.dqb_curinodes >= dquot->dq_dqb.dqb_ihardlimit && newinodes < dquot->dq_dqb.dqb_ihardlimit) return QUOTA_NL_IHARDBELOW; return QUOTA_NL_NOWARN; } static int info_bdq_free(struct dquot *dquot, qsize_t space) { qsize_t tspace; tspace = dquot->dq_dqb.dqb_curspace + dquot->dq_dqb.dqb_rsvspace; if (test_bit(DQ_FAKE_B, &dquot->dq_flags) || tspace <= dquot->dq_dqb.dqb_bsoftlimit) return QUOTA_NL_NOWARN; if (tspace - space <= dquot->dq_dqb.dqb_bsoftlimit) return QUOTA_NL_BSOFTBELOW; if (tspace >= dquot->dq_dqb.dqb_bhardlimit && tspace - space < dquot->dq_dqb.dqb_bhardlimit) return QUOTA_NL_BHARDBELOW; return QUOTA_NL_NOWARN; } static int dquot_active(const struct inode *inode) { struct super_block *sb = inode->i_sb; if (IS_NOQUOTA(inode)) return 0; return sb_any_quota_loaded(sb) & ~sb_any_quota_suspended(sb); } /* * Initialize quota pointers in inode * * It is better to call this function outside of any transaction as it * might need a lot of space in journal for dquot structure allocation. */ static int __dquot_initialize(struct inode *inode, int type) { int cnt, init_needed = 0; struct dquot **dquots, *got[MAXQUOTAS] = {}; struct super_block *sb = inode->i_sb; qsize_t rsv; int ret = 0; if (!dquot_active(inode)) return 0; dquots = i_dquot(inode); /* First get references to structures we might need. */ for (cnt = 0; cnt < MAXQUOTAS; cnt++) { struct kqid qid; kprojid_t projid; int rc; struct dquot *dquot; if (type != -1 && cnt != type) continue; /* * The i_dquot should have been initialized in most cases, * we check it without locking here to avoid unnecessary * dqget()/dqput() calls. */ if (dquots[cnt]) continue; if (!sb_has_quota_active(sb, cnt)) continue; init_needed = 1; switch (cnt) { case USRQUOTA: qid = make_kqid_uid(inode->i_uid); break; case GRPQUOTA: qid = make_kqid_gid(inode->i_gid); break; case PRJQUOTA: rc = inode->i_sb->dq_op->get_projid(inode, &projid); if (rc) continue; qid = make_kqid_projid(projid); break; } dquot = dqget(sb, qid); if (IS_ERR(dquot)) { /* We raced with somebody turning quotas off... */ if (PTR_ERR(dquot) != -ESRCH) { ret = PTR_ERR(dquot); goto out_put; } dquot = NULL; } got[cnt] = dquot; } /* All required i_dquot has been initialized */ if (!init_needed) return 0; spin_lock(&dq_data_lock); if (IS_NOQUOTA(inode)) goto out_lock; for (cnt = 0; cnt < MAXQUOTAS; cnt++) { if (type != -1 && cnt != type) continue; /* Avoid races with quotaoff() */ if (!sb_has_quota_active(sb, cnt)) continue; /* We could race with quotaon or dqget() could have failed */ if (!got[cnt]) continue; if (!dquots[cnt]) { dquots[cnt] = got[cnt]; got[cnt] = NULL; /* * Make quota reservation system happy if someone * did a write before quota was turned on */ rsv = inode_get_rsv_space(inode); if (unlikely(rsv)) { spin_lock(&inode->i_lock); /* Get reservation again under proper lock */ rsv = __inode_get_rsv_space(inode); spin_lock(&dquots[cnt]->dq_dqb_lock); dquots[cnt]->dq_dqb.dqb_rsvspace += rsv; spin_unlock(&dquots[cnt]->dq_dqb_lock); spin_unlock(&inode->i_lock); } } } out_lock: spin_unlock(&dq_data_lock); out_put: /* Drop unused references */ dqput_all(got); return ret; } int dquot_initialize(struct inode *inode) { return __dquot_initialize(inode, -1); } EXPORT_SYMBOL(dquot_initialize); bool dquot_initialize_needed(struct inode *inode) { struct dquot **dquots; int i; if (!dquot_active(inode)) return false; dquots = i_dquot(inode); for (i = 0; i < MAXQUOTAS; i++) if (!dquots[i] && sb_has_quota_active(inode->i_sb, i)) return true; return false; } EXPORT_SYMBOL(dquot_initialize_needed); /* * Release all quotas referenced by inode. * * This function only be called on inode free or converting * a file to quota file, no other users for the i_dquot in * both cases, so we needn't call synchronize_srcu() after * clearing i_dquot. */ static void __dquot_drop(struct inode *inode) { int cnt; struct dquot **dquots = i_dquot(inode); struct dquot *put[MAXQUOTAS]; spin_lock(&dq_data_lock); for (cnt = 0; cnt < MAXQUOTAS; cnt++) { put[cnt] = dquots[cnt]; dquots[cnt] = NULL; } spin_unlock(&dq_data_lock); dqput_all(put); } void dquot_drop(struct inode *inode) { struct dquot * const *dquots; int cnt; if (IS_NOQUOTA(inode)) return; /* * Test before calling to rule out calls from proc and such * where we are not allowed to block. Note that this is * actually reliable test even without the lock - the caller * must assure that nobody can come after the DQUOT_DROP and * add quota pointers back anyway. */ dquots = i_dquot(inode); for (cnt = 0; cnt < MAXQUOTAS; cnt++) { if (dquots[cnt]) break; } if (cnt < MAXQUOTAS) __dquot_drop(inode); } EXPORT_SYMBOL(dquot_drop); /* * inode_reserved_space is managed internally by quota, and protected by * i_lock similar to i_blocks+i_bytes. */ static qsize_t *inode_reserved_space(struct inode * inode) { /* Filesystem must explicitly define it's own method in order to use * quota reservation interface */ BUG_ON(!inode->i_sb->dq_op->get_reserved_space); return inode->i_sb->dq_op->get_reserved_space(inode); } static qsize_t __inode_get_rsv_space(struct inode *inode) { if (!inode->i_sb->dq_op->get_reserved_space) return 0; return *inode_reserved_space(inode); } static qsize_t inode_get_rsv_space(struct inode *inode) { qsize_t ret; if (!inode->i_sb->dq_op->get_reserved_space) return 0; spin_lock(&inode->i_lock); ret = __inode_get_rsv_space(inode); spin_unlock(&inode->i_lock); return ret; } /* * This functions updates i_blocks+i_bytes fields and quota information * (together with appropriate checks). * * NOTE: We absolutely rely on the fact that caller dirties the inode * (usually helpers in quotaops.h care about this) and holds a handle for * the current transaction so that dquot write and inode write go into the * same transaction. */ /* * This operation can block, but only after everything is updated */ int __dquot_alloc_space(struct inode *inode, qsize_t number, int flags) { int cnt, ret = 0, index; struct dquot_warn warn[MAXQUOTAS]; int reserve = flags & DQUOT_SPACE_RESERVE; struct dquot **dquots; if (!dquot_active(inode)) { if (reserve) { spin_lock(&inode->i_lock); *inode_reserved_space(inode) += number; spin_unlock(&inode->i_lock); } else { inode_add_bytes(inode, number); } goto out; } for (cnt = 0; cnt < MAXQUOTAS; cnt++) warn[cnt].w_type = QUOTA_NL_NOWARN; dquots = i_dquot(inode); index = srcu_read_lock(&dquot_srcu); spin_lock(&inode->i_lock); for (cnt = 0; cnt < MAXQUOTAS; cnt++) { if (!dquots[cnt]) continue; if (reserve) { ret = dquot_add_space(dquots[cnt], 0, number, flags, &warn[cnt]); } else { ret = dquot_add_space(dquots[cnt], number, 0, flags, &warn[cnt]); } if (ret) { /* Back out changes we already did */ for (cnt--; cnt >= 0; cnt--) { if (!dquots[cnt]) continue; spin_lock(&dquots[cnt]->dq_dqb_lock); if (reserve) dquot_free_reserved_space(dquots[cnt], number); else dquot_decr_space(dquots[cnt], number); spin_unlock(&dquots[cnt]->dq_dqb_lock); } spin_unlock(&inode->i_lock); goto out_flush_warn; } } if (reserve) *inode_reserved_space(inode) += number; else __inode_add_bytes(inode, number); spin_unlock(&inode->i_lock); if (reserve) goto out_flush_warn; mark_all_dquot_dirty(dquots); out_flush_warn: srcu_read_unlock(&dquot_srcu, index); flush_warnings(warn); out: return ret; } EXPORT_SYMBOL(__dquot_alloc_space); /* * This operation can block, but only after everything is updated */ int dquot_alloc_inode(struct inode *inode) { int cnt, ret = 0, index; struct dquot_warn warn[MAXQUOTAS]; struct dquot * const *dquots; if (!dquot_active(inode)) return 0; for (cnt = 0; cnt < MAXQUOTAS; cnt++) warn[cnt].w_type = QUOTA_NL_NOWARN; dquots = i_dquot(inode); index = srcu_read_lock(&dquot_srcu); spin_lock(&inode->i_lock); for (cnt = 0; cnt < MAXQUOTAS; cnt++) { if (!dquots[cnt]) continue; ret = dquot_add_inodes(dquots[cnt], 1, &warn[cnt]); if (ret) { for (cnt--; cnt >= 0; cnt--) { if (!dquots[cnt]) continue; /* Back out changes we already did */ spin_lock(&dquots[cnt]->dq_dqb_lock); dquot_decr_inodes(dquots[cnt], 1); spin_unlock(&dquots[cnt]->dq_dqb_lock); } goto warn_put_all; } } warn_put_all: spin_unlock(&inode->i_lock); if (ret == 0) mark_all_dquot_dirty(dquots); srcu_read_unlock(&dquot_srcu, index); flush_warnings(warn); return ret; } EXPORT_SYMBOL(dquot_alloc_inode); /* * Convert in-memory reserved quotas to real consumed quotas */ int dquot_claim_space_nodirty(struct inode *inode, qsize_t number) { struct dquot **dquots; int cnt, index; if (!dquot_active(inode)) { spin_lock(&inode->i_lock); *inode_reserved_space(inode) -= number; __inode_add_bytes(inode, number); spin_unlock(&inode->i_lock); return 0; } dquots = i_dquot(inode); index = srcu_read_lock(&dquot_srcu); spin_lock(&inode->i_lock); /* Claim reserved quotas to allocated quotas */ for (cnt = 0; cnt < MAXQUOTAS; cnt++) { if (dquots[cnt]) { struct dquot *dquot = dquots[cnt]; spin_lock(&dquot->dq_dqb_lock); if (WARN_ON_ONCE(dquot->dq_dqb.dqb_rsvspace < number)) number = dquot->dq_dqb.dqb_rsvspace; dquot->dq_dqb.dqb_curspace += number; dquot->dq_dqb.dqb_rsvspace -= number; spin_unlock(&dquot->dq_dqb_lock); } } /* Update inode bytes */ *inode_reserved_space(inode) -= number; __inode_add_bytes(inode, number); spin_unlock(&inode->i_lock); mark_all_dquot_dirty(dquots); srcu_read_unlock(&dquot_srcu, index); return 0; } EXPORT_SYMBOL(dquot_claim_space_nodirty); /* * Convert allocated space back to in-memory reserved quotas */ void dquot_reclaim_space_nodirty(struct inode *inode, qsize_t number) { struct dquot **dquots; int cnt, index; if (!dquot_active(inode)) { spin_lock(&inode->i_lock); *inode_reserved_space(inode) += number; __inode_sub_bytes(inode, number); spin_unlock(&inode->i_lock); return; } dquots = i_dquot(inode); index = srcu_read_lock(&dquot_srcu); spin_lock(&inode->i_lock); /* Claim reserved quotas to allocated quotas */ for (cnt = 0; cnt < MAXQUOTAS; cnt++) { if (dquots[cnt]) { struct dquot *dquot = dquots[cnt]; spin_lock(&dquot->dq_dqb_lock); if (WARN_ON_ONCE(dquot->dq_dqb.dqb_curspace < number)) number = dquot->dq_dqb.dqb_curspace; dquot->dq_dqb.dqb_rsvspace += number; dquot->dq_dqb.dqb_curspace -= number; spin_unlock(&dquot->dq_dqb_lock); } } /* Update inode bytes */ *inode_reserved_space(inode) += number; __inode_sub_bytes(inode, number); spin_unlock(&inode->i_lock); mark_all_dquot_dirty(dquots); srcu_read_unlock(&dquot_srcu, index); return; } EXPORT_SYMBOL(dquot_reclaim_space_nodirty); /* * This operation can block, but only after everything is updated */ void __dquot_free_space(struct inode *inode, qsize_t number, int flags) { unsigned int cnt; struct dquot_warn warn[MAXQUOTAS]; struct dquot **dquots; int reserve = flags & DQUOT_SPACE_RESERVE, index; if (!dquot_active(inode)) { if (reserve) { spin_lock(&inode->i_lock); *inode_reserved_space(inode) -= number; spin_unlock(&inode->i_lock); } else { inode_sub_bytes(inode, number); } return; } dquots = i_dquot(inode); index = srcu_read_lock(&dquot_srcu); spin_lock(&inode->i_lock); for (cnt = 0; cnt < MAXQUOTAS; cnt++) { int wtype; warn[cnt].w_type = QUOTA_NL_NOWARN; if (!dquots[cnt]) continue; spin_lock(&dquots[cnt]->dq_dqb_lock); wtype = info_bdq_free(dquots[cnt], number); if (wtype != QUOTA_NL_NOWARN) prepare_warning(&warn[cnt], dquots[cnt], wtype); if (reserve) dquot_free_reserved_space(dquots[cnt], number); else dquot_decr_space(dquots[cnt], number); spin_unlock(&dquots[cnt]->dq_dqb_lock); } if (reserve) *inode_reserved_space(inode) -= number; else __inode_sub_bytes(inode, number); spin_unlock(&inode->i_lock); if (reserve) goto out_unlock; mark_all_dquot_dirty(dquots); out_unlock: srcu_read_unlock(&dquot_srcu, index); flush_warnings(warn); } EXPORT_SYMBOL(__dquot_free_space); /* * This operation can block, but only after everything is updated */ void dquot_free_inode(struct inode *inode) { unsigned int cnt; struct dquot_warn warn[MAXQUOTAS]; struct dquot * const *dquots; int index; if (!dquot_active(inode)) return; dquots = i_dquot(inode); index = srcu_read_lock(&dquot_srcu); spin_lock(&inode->i_lock); for (cnt = 0; cnt < MAXQUOTAS; cnt++) { int wtype; warn[cnt].w_type = QUOTA_NL_NOWARN; if (!dquots[cnt]) continue; spin_lock(&dquots[cnt]->dq_dqb_lock); wtype = info_idq_free(dquots[cnt], 1); if (wtype != QUOTA_NL_NOWARN) prepare_warning(&warn[cnt], dquots[cnt], wtype); dquot_decr_inodes(dquots[cnt], 1); spin_unlock(&dquots[cnt]->dq_dqb_lock); } spin_unlock(&inode->i_lock); mark_all_dquot_dirty(dquots); srcu_read_unlock(&dquot_srcu, index); flush_warnings(warn); } EXPORT_SYMBOL(dquot_free_inode); /* * Transfer the number of inode and blocks from one diskquota to an other. * On success, dquot references in transfer_to are consumed and references * to original dquots that need to be released are placed there. On failure, * references are kept untouched. * * This operation can block, but only after everything is updated * A transaction must be started when entering this function. * * We are holding reference on transfer_from & transfer_to, no need to * protect them by srcu_read_lock(). */ int __dquot_transfer(struct inode *inode, struct dquot **transfer_to) { qsize_t cur_space; qsize_t rsv_space = 0; qsize_t inode_usage = 1; struct dquot *transfer_from[MAXQUOTAS] = {}; int cnt, ret = 0; char is_valid[MAXQUOTAS] = {}; struct dquot_warn warn_to[MAXQUOTAS]; struct dquot_warn warn_from_inodes[MAXQUOTAS]; struct dquot_warn warn_from_space[MAXQUOTAS]; if (IS_NOQUOTA(inode)) return 0; if (inode->i_sb->dq_op->get_inode_usage) { ret = inode->i_sb->dq_op->get_inode_usage(inode, &inode_usage); if (ret) return ret; } /* Initialize the arrays */ for (cnt = 0; cnt < MAXQUOTAS; cnt++) { warn_to[cnt].w_type = QUOTA_NL_NOWARN; warn_from_inodes[cnt].w_type = QUOTA_NL_NOWARN; warn_from_space[cnt].w_type = QUOTA_NL_NOWARN; } spin_lock(&dq_data_lock); spin_lock(&inode->i_lock); if (IS_NOQUOTA(inode)) { /* File without quota accounting? */ spin_unlock(&inode->i_lock); spin_unlock(&dq_data_lock); return 0; } cur_space = __inode_get_bytes(inode); rsv_space = __inode_get_rsv_space(inode); /* * Build the transfer_from list, check limits, and update usage in * the target structures. */ for (cnt = 0; cnt < MAXQUOTAS; cnt++) { /* * Skip changes for same uid or gid or for turned off quota-type. */ if (!transfer_to[cnt]) continue; /* Avoid races with quotaoff() */ if (!sb_has_quota_active(inode->i_sb, cnt)) continue; is_valid[cnt] = 1; transfer_from[cnt] = i_dquot(inode)[cnt]; ret = dquot_add_inodes(transfer_to[cnt], inode_usage, &warn_to[cnt]); if (ret) goto over_quota; ret = dquot_add_space(transfer_to[cnt], cur_space, rsv_space, DQUOT_SPACE_WARN, &warn_to[cnt]); if (ret) { spin_lock(&transfer_to[cnt]->dq_dqb_lock); dquot_decr_inodes(transfer_to[cnt], inode_usage); spin_unlock(&transfer_to[cnt]->dq_dqb_lock); goto over_quota; } } /* Decrease usage for source structures and update quota pointers */ for (cnt = 0; cnt < MAXQUOTAS; cnt++) { if (!is_valid[cnt]) continue; /* Due to IO error we might not have transfer_from[] structure */ if (transfer_from[cnt]) { int wtype; spin_lock(&transfer_from[cnt]->dq_dqb_lock); wtype = info_idq_free(transfer_from[cnt], inode_usage); if (wtype != QUOTA_NL_NOWARN) prepare_warning(&warn_from_inodes[cnt], transfer_from[cnt], wtype); wtype = info_bdq_free(transfer_from[cnt], cur_space + rsv_space); if (wtype != QUOTA_NL_NOWARN) prepare_warning(&warn_from_space[cnt], transfer_from[cnt], wtype); dquot_decr_inodes(transfer_from[cnt], inode_usage); dquot_decr_space(transfer_from[cnt], cur_space); dquot_free_reserved_space(transfer_from[cnt], rsv_space); spin_unlock(&transfer_from[cnt]->dq_dqb_lock); } i_dquot(inode)[cnt] = transfer_to[cnt]; } spin_unlock(&inode->i_lock); spin_unlock(&dq_data_lock); mark_all_dquot_dirty(transfer_from); mark_all_dquot_dirty(transfer_to); flush_warnings(warn_to); flush_warnings(warn_from_inodes); flush_warnings(warn_from_space); /* Pass back references to put */ for (cnt = 0; cnt < MAXQUOTAS; cnt++) if (is_valid[cnt]) transfer_to[cnt] = transfer_from[cnt]; return 0; over_quota: /* Back out changes we already did */ for (cnt--; cnt >= 0; cnt--) { if (!is_valid[cnt]) continue; spin_lock(&transfer_to[cnt]->dq_dqb_lock); dquot_decr_inodes(transfer_to[cnt], inode_usage); dquot_decr_space(transfer_to[cnt], cur_space); dquot_free_reserved_space(transfer_to[cnt], rsv_space); spin_unlock(&transfer_to[cnt]->dq_dqb_lock); } spin_unlock(&inode->i_lock); spin_unlock(&dq_data_lock); flush_warnings(warn_to); return ret; } EXPORT_SYMBOL(__dquot_transfer); /* Wrapper for transferring ownership of an inode for uid/gid only * Called from FSXXX_setattr() */ int dquot_transfer(struct inode *inode, struct iattr *iattr) { struct dquot *transfer_to[MAXQUOTAS] = {}; struct dquot *dquot; struct super_block *sb = inode->i_sb; int ret; if (!dquot_active(inode)) return 0; if (iattr->ia_valid & ATTR_UID && !uid_eq(iattr->ia_uid, inode->i_uid)){ dquot = dqget(sb, make_kqid_uid(iattr->ia_uid)); if (IS_ERR(dquot)) { if (PTR_ERR(dquot) != -ESRCH) { ret = PTR_ERR(dquot); goto out_put; } dquot = NULL; } transfer_to[USRQUOTA] = dquot; } if (iattr->ia_valid & ATTR_GID && !gid_eq(iattr->ia_gid, inode->i_gid)){ dquot = dqget(sb, make_kqid_gid(iattr->ia_gid)); if (IS_ERR(dquot)) { if (PTR_ERR(dquot) != -ESRCH) { ret = PTR_ERR(dquot); goto out_put; } dquot = NULL; } transfer_to[GRPQUOTA] = dquot; } ret = __dquot_transfer(inode, transfer_to); out_put: dqput_all(transfer_to); return ret; } EXPORT_SYMBOL(dquot_transfer); /* * Write info of quota file to disk */ int dquot_commit_info(struct super_block *sb, int type) { struct quota_info *dqopt = sb_dqopt(sb); return dqopt->ops[type]->write_file_info(sb, type); } EXPORT_SYMBOL(dquot_commit_info); int dquot_get_next_id(struct super_block *sb, struct kqid *qid) { struct quota_info *dqopt = sb_dqopt(sb); if (!sb_has_quota_active(sb, qid->type)) return -ESRCH; if (!dqopt->ops[qid->type]->get_next_id) return -ENOSYS; return dqopt->ops[qid->type]->get_next_id(sb, qid); } EXPORT_SYMBOL(dquot_get_next_id); /* * Definitions of diskquota operations. */ const struct dquot_operations dquot_operations = { .write_dquot = dquot_commit, .acquire_dquot = dquot_acquire, .release_dquot = dquot_release, .mark_dirty = dquot_mark_dquot_dirty, .write_info = dquot_commit_info, .alloc_dquot = dquot_alloc, .destroy_dquot = dquot_destroy, .get_next_id = dquot_get_next_id, }; EXPORT_SYMBOL(dquot_operations); /* * Generic helper for ->open on filesystems supporting disk quotas. */ int dquot_file_open(struct inode *inode, struct file *file) { int error; error = generic_file_open(inode, file); if (!error && (file->f_mode & FMODE_WRITE)) error = dquot_initialize(inode); return error; } EXPORT_SYMBOL(dquot_file_open); static void vfs_cleanup_quota_inode(struct super_block *sb, int type) { struct quota_info *dqopt = sb_dqopt(sb); struct inode *inode = dqopt->files[type]; if (!inode) return; if (!(dqopt->flags & DQUOT_QUOTA_SYS_FILE)) { inode_lock(inode); inode->i_flags &= ~S_NOQUOTA; inode_unlock(inode); } dqopt->files[type] = NULL; iput(inode); } /* * Turn quota off on a device. type == -1 ==> quotaoff for all types (umount) */ int dquot_disable(struct super_block *sb, int type, unsigned int flags) { int cnt; struct quota_info *dqopt = sb_dqopt(sb); /* s_umount should be held in exclusive mode */ if (WARN_ON_ONCE(down_read_trylock(&sb->s_umount))) up_read(&sb->s_umount); /* Cannot turn off usage accounting without turning off limits, or * suspend quotas and simultaneously turn quotas off. */ if ((flags & DQUOT_USAGE_ENABLED && !(flags & DQUOT_LIMITS_ENABLED)) || (flags & DQUOT_SUSPENDED && flags & (DQUOT_LIMITS_ENABLED | DQUOT_USAGE_ENABLED))) return -EINVAL; /* * Skip everything if there's nothing to do. We have to do this because * sometimes we are called when fill_super() failed and calling * sync_fs() in such cases does no good. */ if (!sb_any_quota_loaded(sb)) return 0; for (cnt = 0; cnt < MAXQUOTAS; cnt++) { if (type != -1 && cnt != type) continue; if (!sb_has_quota_loaded(sb, cnt)) continue; if (flags & DQUOT_SUSPENDED) { spin_lock(&dq_state_lock); dqopt->flags |= dquot_state_flag(DQUOT_SUSPENDED, cnt); spin_unlock(&dq_state_lock); } else { spin_lock(&dq_state_lock); dqopt->flags &= ~dquot_state_flag(flags, cnt); /* Turning off suspended quotas? */ if (!sb_has_quota_loaded(sb, cnt) && sb_has_quota_suspended(sb, cnt)) { dqopt->flags &= ~dquot_state_flag( DQUOT_SUSPENDED, cnt); spin_unlock(&dq_state_lock); vfs_cleanup_quota_inode(sb, cnt); continue; } spin_unlock(&dq_state_lock); } /* We still have to keep quota loaded? */ if (sb_has_quota_loaded(sb, cnt) && !(flags & DQUOT_SUSPENDED)) continue; /* Note: these are blocking operations */ drop_dquot_ref(sb, cnt); invalidate_dquots(sb, cnt); /* * Now all dquots should be invalidated, all writes done so we * should be only users of the info. No locks needed. */ if (info_dirty(&dqopt->info[cnt])) sb->dq_op->write_info(sb, cnt); if (dqopt->ops[cnt]->free_file_info) dqopt->ops[cnt]->free_file_info(sb, cnt); put_quota_format(dqopt->info[cnt].dqi_format); dqopt->info[cnt].dqi_flags = 0; dqopt->info[cnt].dqi_igrace = 0; dqopt->info[cnt].dqi_bgrace = 0; dqopt->ops[cnt] = NULL; } /* Skip syncing and setting flags if quota files are hidden */ if (dqopt->flags & DQUOT_QUOTA_SYS_FILE) goto put_inodes; /* Sync the superblock so that buffers with quota data are written to * disk (and so userspace sees correct data afterwards). */ if (sb->s_op->sync_fs) sb->s_op->sync_fs(sb, 1); sync_blockdev(sb->s_bdev); /* Now the quota files are just ordinary files and we can set the * inode flags back. Moreover we discard the pagecache so that * userspace sees the writes we did bypassing the pagecache. We * must also discard the blockdev buffers so that we see the * changes done by userspace on the next quotaon() */ for (cnt = 0; cnt < MAXQUOTAS; cnt++) if (!sb_has_quota_loaded(sb, cnt) && dqopt->files[cnt]) { inode_lock(dqopt->files[cnt]); truncate_inode_pages(&dqopt->files[cnt]->i_data, 0); inode_unlock(dqopt->files[cnt]); } if (sb->s_bdev) invalidate_bdev(sb->s_bdev); put_inodes: /* We are done when suspending quotas */ if (flags & DQUOT_SUSPENDED) return 0; for (cnt = 0; cnt < MAXQUOTAS; cnt++) if (!sb_has_quota_loaded(sb, cnt)) vfs_cleanup_quota_inode(sb, cnt); return 0; } EXPORT_SYMBOL(dquot_disable); int dquot_quota_off(struct super_block *sb, int type) { return dquot_disable(sb, type, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED); } EXPORT_SYMBOL(dquot_quota_off); /* * Turn quotas on on a device */ static int vfs_setup_quota_inode(struct inode *inode, int type) { struct super_block *sb = inode->i_sb; struct quota_info *dqopt = sb_dqopt(sb); if (!S_ISREG(inode->i_mode)) return -EACCES; if (IS_RDONLY(inode)) return -EROFS; if (sb_has_quota_loaded(sb, type)) return -EBUSY; dqopt->files[type] = igrab(inode); if (!dqopt->files[type]) return -EIO; if (!(dqopt->flags & DQUOT_QUOTA_SYS_FILE)) { /* We don't want quota and atime on quota files (deadlocks * possible) Also nobody should write to the file - we use * special IO operations which ignore the immutable bit. */ inode_lock(inode); inode->i_flags |= S_NOQUOTA; inode_unlock(inode); /* * When S_NOQUOTA is set, remove dquot references as no more * references can be added */ __dquot_drop(inode); } return 0; } int dquot_load_quota_sb(struct super_block *sb, int type, int format_id, unsigned int flags) { struct quota_format_type *fmt = find_quota_format(format_id); struct quota_info *dqopt = sb_dqopt(sb); int error; /* Just unsuspend quotas? */ BUG_ON(flags & DQUOT_SUSPENDED); /* s_umount should be held in exclusive mode */ if (WARN_ON_ONCE(down_read_trylock(&sb->s_umount))) up_read(&sb->s_umount); if (!fmt) return -ESRCH; if (!sb->s_op->quota_write || !sb->s_op->quota_read || (type == PRJQUOTA && sb->dq_op->get_projid == NULL)) { error = -EINVAL; goto out_fmt; } /* Filesystems outside of init_user_ns not yet supported */ if (sb->s_user_ns != &init_user_ns) { error = -EINVAL; goto out_fmt; } /* Usage always has to be set... */ if (!(flags & DQUOT_USAGE_ENABLED)) { error = -EINVAL; goto out_fmt; } if (sb_has_quota_loaded(sb, type)) { error = -EBUSY; goto out_fmt; } if (!(dqopt->flags & DQUOT_QUOTA_SYS_FILE)) { /* As we bypass the pagecache we must now flush all the * dirty data and invalidate caches so that kernel sees * changes from userspace. It is not enough to just flush * the quota file since if blocksize < pagesize, invalidation * of the cache could fail because of other unrelated dirty * data */ sync_filesystem(sb); invalidate_bdev(sb->s_bdev); } error = -EINVAL; if (!fmt->qf_ops->check_quota_file(sb, type)) goto out_fmt; dqopt->ops[type] = fmt->qf_ops; dqopt->info[type].dqi_format = fmt; dqopt->info[type].dqi_fmt_id = format_id; INIT_LIST_HEAD(&dqopt->info[type].dqi_dirty_list); error = dqopt->ops[type]->read_file_info(sb, type); if (error < 0) goto out_fmt; if (dqopt->flags & DQUOT_QUOTA_SYS_FILE) { spin_lock(&dq_data_lock); dqopt->info[type].dqi_flags |= DQF_SYS_FILE; spin_unlock(&dq_data_lock); } spin_lock(&dq_state_lock); dqopt->flags |= dquot_state_flag(flags, type); spin_unlock(&dq_state_lock); error = add_dquot_ref(sb, type); if (error) dquot_disable(sb, type, flags); return error; out_fmt: put_quota_format(fmt); return error; } EXPORT_SYMBOL(dquot_load_quota_sb); /* * More powerful function for turning on quotas on given quota inode allowing * setting of individual quota flags */ int dquot_load_quota_inode(struct inode *inode, int type, int format_id, unsigned int flags) { int err; err = vfs_setup_quota_inode(inode, type); if (err < 0) return err; err = dquot_load_quota_sb(inode->i_sb, type, format_id, flags); if (err < 0) vfs_cleanup_quota_inode(inode->i_sb, type); return err; } EXPORT_SYMBOL(dquot_load_quota_inode); /* Reenable quotas on remount RW */ int dquot_resume(struct super_block *sb, int type) { struct quota_info *dqopt = sb_dqopt(sb); int ret = 0, cnt; unsigned int flags; /* s_umount should be held in exclusive mode */ if (WARN_ON_ONCE(down_read_trylock(&sb->s_umount))) up_read(&sb->s_umount); for (cnt = 0; cnt < MAXQUOTAS; cnt++) { if (type != -1 && cnt != type) continue; if (!sb_has_quota_suspended(sb, cnt)) continue; spin_lock(&dq_state_lock); flags = dqopt->flags & dquot_state_flag(DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED, cnt); dqopt->flags &= ~dquot_state_flag(DQUOT_STATE_FLAGS, cnt); spin_unlock(&dq_state_lock); flags = dquot_generic_flag(flags, cnt); ret = dquot_load_quota_sb(sb, cnt, dqopt->info[cnt].dqi_fmt_id, flags); if (ret < 0) vfs_cleanup_quota_inode(sb, cnt); } return ret; } EXPORT_SYMBOL(dquot_resume); int dquot_quota_on(struct super_block *sb, int type, int format_id, const struct path *path) { int error = security_quota_on(path->dentry); if (error) return error; /* Quota file not on the same filesystem? */ if (path->dentry->d_sb != sb) error = -EXDEV; else error = dquot_load_quota_inode(d_inode(path->dentry), type, format_id, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED); return error; } EXPORT_SYMBOL(dquot_quota_on); /* * This function is used when filesystem needs to initialize quotas * during mount time. */ int dquot_quota_on_mount(struct super_block *sb, char *qf_name, int format_id, int type) { struct dentry *dentry; int error; dentry = lookup_positive_unlocked(qf_name, sb->s_root, strlen(qf_name)); if (IS_ERR(dentry)) return PTR_ERR(dentry); error = security_quota_on(dentry); if (!error) error = dquot_load_quota_inode(d_inode(dentry), type, format_id, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED); dput(dentry); return error; } EXPORT_SYMBOL(dquot_quota_on_mount); static int dquot_quota_enable(struct super_block *sb, unsigned int flags) { int ret; int type; struct quota_info *dqopt = sb_dqopt(sb); if (!(dqopt->flags & DQUOT_QUOTA_SYS_FILE)) return -ENOSYS; /* Accounting cannot be turned on while fs is mounted */ flags &= ~(FS_QUOTA_UDQ_ACCT | FS_QUOTA_GDQ_ACCT | FS_QUOTA_PDQ_ACCT); if (!flags) return -EINVAL; for (type = 0; type < MAXQUOTAS; type++) { if (!(flags & qtype_enforce_flag(type))) continue; /* Can't enforce without accounting */ if (!sb_has_quota_usage_enabled(sb, type)) { ret = -EINVAL; goto out_err; } if (sb_has_quota_limits_enabled(sb, type)) { ret = -EBUSY; goto out_err; } spin_lock(&dq_state_lock); dqopt->flags |= dquot_state_flag(DQUOT_LIMITS_ENABLED, type); spin_unlock(&dq_state_lock); } return 0; out_err: /* Backout enforcement enablement we already did */ for (type--; type >= 0; type--) { if (flags & qtype_enforce_flag(type)) dquot_disable(sb, type, DQUOT_LIMITS_ENABLED); } /* Error code translation for better compatibility with XFS */ if (ret == -EBUSY) ret = -EEXIST; return ret; } static int dquot_quota_disable(struct super_block *sb, unsigned int flags) { int ret; int type; struct quota_info *dqopt = sb_dqopt(sb); if (!(dqopt->flags & DQUOT_QUOTA_SYS_FILE)) return -ENOSYS; /* * We don't support turning off accounting via quotactl. In principle * quota infrastructure can do this but filesystems don't expect * userspace to be able to do it. */ if (flags & (FS_QUOTA_UDQ_ACCT | FS_QUOTA_GDQ_ACCT | FS_QUOTA_PDQ_ACCT)) return -EOPNOTSUPP; /* Filter out limits not enabled */ for (type = 0; type < MAXQUOTAS; type++) if (!sb_has_quota_limits_enabled(sb, type)) flags &= ~qtype_enforce_flag(type); /* Nothing left? */ if (!flags) return -EEXIST; for (type = 0; type < MAXQUOTAS; type++) { if (flags & qtype_enforce_flag(type)) { ret = dquot_disable(sb, type, DQUOT_LIMITS_ENABLED); if (ret < 0) goto out_err; } } return 0; out_err: /* Backout enforcement disabling we already did */ for (type--; type >= 0; type--) { if (flags & qtype_enforce_flag(type)) { spin_lock(&dq_state_lock); dqopt->flags |= dquot_state_flag(DQUOT_LIMITS_ENABLED, type); spin_unlock(&dq_state_lock); } } return ret; } /* Generic routine for getting common part of quota structure */ static void do_get_dqblk(struct dquot *dquot, struct qc_dqblk *di) { struct mem_dqblk *dm = &dquot->dq_dqb; memset(di, 0, sizeof(*di)); spin_lock(&dquot->dq_dqb_lock); di->d_spc_hardlimit = dm->dqb_bhardlimit; di->d_spc_softlimit = dm->dqb_bsoftlimit; di->d_ino_hardlimit = dm->dqb_ihardlimit; di->d_ino_softlimit = dm->dqb_isoftlimit; di->d_space = dm->dqb_curspace + dm->dqb_rsvspace; di->d_ino_count = dm->dqb_curinodes; di->d_spc_timer = dm->dqb_btime; di->d_ino_timer = dm->dqb_itime; spin_unlock(&dquot->dq_dqb_lock); } int dquot_get_dqblk(struct super_block *sb, struct kqid qid, struct qc_dqblk *di) { struct dquot *dquot; dquot = dqget(sb, qid); if (IS_ERR(dquot)) return PTR_ERR(dquot); do_get_dqblk(dquot, di); dqput(dquot); return 0; } EXPORT_SYMBOL(dquot_get_dqblk); int dquot_get_next_dqblk(struct super_block *sb, struct kqid *qid, struct qc_dqblk *di) { struct dquot *dquot; int err; if (!sb->dq_op->get_next_id) return -ENOSYS; err = sb->dq_op->get_next_id(sb, qid); if (err < 0) return err; dquot = dqget(sb, *qid); if (IS_ERR(dquot)) return PTR_ERR(dquot); do_get_dqblk(dquot, di); dqput(dquot); return 0; } EXPORT_SYMBOL(dquot_get_next_dqblk); #define VFS_QC_MASK \ (QC_SPACE | QC_SPC_SOFT | QC_SPC_HARD | \ QC_INO_COUNT | QC_INO_SOFT | QC_INO_HARD | \ QC_SPC_TIMER | QC_INO_TIMER) /* Generic routine for setting common part of quota structure */ static int do_set_dqblk(struct dquot *dquot, struct qc_dqblk *di) { struct mem_dqblk *dm = &dquot->dq_dqb; int check_blim = 0, check_ilim = 0; struct mem_dqinfo *dqi = &sb_dqopt(dquot->dq_sb)->info[dquot->dq_id.type]; if (di->d_fieldmask & ~VFS_QC_MASK) return -EINVAL; if (((di->d_fieldmask & QC_SPC_SOFT) && di->d_spc_softlimit > dqi->dqi_max_spc_limit) || ((di->d_fieldmask & QC_SPC_HARD) && di->d_spc_hardlimit > dqi->dqi_max_spc_limit) || ((di->d_fieldmask & QC_INO_SOFT) && (di->d_ino_softlimit > dqi->dqi_max_ino_limit)) || ((di->d_fieldmask & QC_INO_HARD) && (di->d_ino_hardlimit > dqi->dqi_max_ino_limit))) return -ERANGE; spin_lock(&dquot->dq_dqb_lock); if (di->d_fieldmask & QC_SPACE) { dm->dqb_curspace = di->d_space - dm->dqb_rsvspace; check_blim = 1; set_bit(DQ_LASTSET_B + QIF_SPACE_B, &dquot->dq_flags); } if (di->d_fieldmask & QC_SPC_SOFT) dm->dqb_bsoftlimit = di->d_spc_softlimit; if (di->d_fieldmask & QC_SPC_HARD) dm->dqb_bhardlimit = di->d_spc_hardlimit; if (di->d_fieldmask & (QC_SPC_SOFT | QC_SPC_HARD)) { check_blim = 1; set_bit(DQ_LASTSET_B + QIF_BLIMITS_B, &dquot->dq_flags); } if (di->d_fieldmask & QC_INO_COUNT) { dm->dqb_curinodes = di->d_ino_count; check_ilim = 1; set_bit(DQ_LASTSET_B + QIF_INODES_B, &dquot->dq_flags); } if (di->d_fieldmask & QC_INO_SOFT) dm->dqb_isoftlimit = di->d_ino_softlimit; if (di->d_fieldmask & QC_INO_HARD) dm->dqb_ihardlimit = di->d_ino_hardlimit; if (di->d_fieldmask & (QC_INO_SOFT | QC_INO_HARD)) { check_ilim = 1; set_bit(DQ_LASTSET_B + QIF_ILIMITS_B, &dquot->dq_flags); } if (di->d_fieldmask & QC_SPC_TIMER) { dm->dqb_btime = di->d_spc_timer; check_blim = 1; set_bit(DQ_LASTSET_B + QIF_BTIME_B, &dquot->dq_flags); } if (di->d_fieldmask & QC_INO_TIMER) { dm->dqb_itime = di->d_ino_timer; check_ilim = 1; set_bit(DQ_LASTSET_B + QIF_ITIME_B, &dquot->dq_flags); } if (check_blim) { if (!dm->dqb_bsoftlimit || dm->dqb_curspace + dm->dqb_rsvspace <= dm->dqb_bsoftlimit) { dm->dqb_btime = 0; clear_bit(DQ_BLKS_B, &dquot->dq_flags); } else if (!(di->d_fieldmask & QC_SPC_TIMER)) /* Set grace only if user hasn't provided his own... */ dm->dqb_btime = ktime_get_real_seconds() + dqi->dqi_bgrace; } if (check_ilim) { if (!dm->dqb_isoftlimit || dm->dqb_curinodes <= dm->dqb_isoftlimit) { dm->dqb_itime = 0; clear_bit(DQ_INODES_B, &dquot->dq_flags); } else if (!(di->d_fieldmask & QC_INO_TIMER)) /* Set grace only if user hasn't provided his own... */ dm->dqb_itime = ktime_get_real_seconds() + dqi->dqi_igrace; } if (dm->dqb_bhardlimit || dm->dqb_bsoftlimit || dm->dqb_ihardlimit || dm->dqb_isoftlimit) clear_bit(DQ_FAKE_B, &dquot->dq_flags); else set_bit(DQ_FAKE_B, &dquot->dq_flags); spin_unlock(&dquot->dq_dqb_lock); mark_dquot_dirty(dquot); return 0; } int dquot_set_dqblk(struct super_block *sb, struct kqid qid, struct qc_dqblk *di) { struct dquot *dquot; int rc; dquot = dqget(sb, qid); if (IS_ERR(dquot)) { rc = PTR_ERR(dquot); goto out; } rc = do_set_dqblk(dquot, di); dqput(dquot); out: return rc; } EXPORT_SYMBOL(dquot_set_dqblk); /* Generic routine for getting common part of quota file information */ int dquot_get_state(struct super_block *sb, struct qc_state *state) { struct mem_dqinfo *mi; struct qc_type_state *tstate; struct quota_info *dqopt = sb_dqopt(sb); int type; memset(state, 0, sizeof(*state)); for (type = 0; type < MAXQUOTAS; type++) { if (!sb_has_quota_active(sb, type)) continue; tstate = state->s_state + type; mi = sb_dqopt(sb)->info + type; tstate->flags = QCI_ACCT_ENABLED; spin_lock(&dq_data_lock); if (mi->dqi_flags & DQF_SYS_FILE) tstate->flags |= QCI_SYSFILE; if (mi->dqi_flags & DQF_ROOT_SQUASH) tstate->flags |= QCI_ROOT_SQUASH; if (sb_has_quota_limits_enabled(sb, type)) tstate->flags |= QCI_LIMITS_ENFORCED; tstate->spc_timelimit = mi->dqi_bgrace; tstate->ino_timelimit = mi->dqi_igrace; if (dqopt->files[type]) { tstate->ino = dqopt->files[type]->i_ino; tstate->blocks = dqopt->files[type]->i_blocks; } tstate->nextents = 1; /* We don't know... */ spin_unlock(&dq_data_lock); } return 0; } EXPORT_SYMBOL(dquot_get_state); /* Generic routine for setting common part of quota file information */ int dquot_set_dqinfo(struct super_block *sb, int type, struct qc_info *ii) { struct mem_dqinfo *mi; int err = 0; if ((ii->i_fieldmask & QC_WARNS_MASK) || (ii->i_fieldmask & QC_RT_SPC_TIMER)) return -EINVAL; if (!sb_has_quota_active(sb, type)) return -ESRCH; mi = sb_dqopt(sb)->info + type; if (ii->i_fieldmask & QC_FLAGS) { if ((ii->i_flags & QCI_ROOT_SQUASH && mi->dqi_format->qf_fmt_id != QFMT_VFS_OLD)) return -EINVAL; } spin_lock(&dq_data_lock); if (ii->i_fieldmask & QC_SPC_TIMER) mi->dqi_bgrace = ii->i_spc_timelimit; if (ii->i_fieldmask & QC_INO_TIMER) mi->dqi_igrace = ii->i_ino_timelimit; if (ii->i_fieldmask & QC_FLAGS) { if (ii->i_flags & QCI_ROOT_SQUASH) mi->dqi_flags |= DQF_ROOT_SQUASH; else mi->dqi_flags &= ~DQF_ROOT_SQUASH; } spin_unlock(&dq_data_lock); mark_info_dirty(sb, type); /* Force write to disk */ sb->dq_op->write_info(sb, type); return err; } EXPORT_SYMBOL(dquot_set_dqinfo); const struct quotactl_ops dquot_quotactl_sysfile_ops = { .quota_enable = dquot_quota_enable, .quota_disable = dquot_quota_disable, .quota_sync = dquot_quota_sync, .get_state = dquot_get_state, .set_info = dquot_set_dqinfo, .get_dqblk = dquot_get_dqblk, .get_nextdqblk = dquot_get_next_dqblk, .set_dqblk = dquot_set_dqblk }; EXPORT_SYMBOL(dquot_quotactl_sysfile_ops); static int do_proc_dqstats(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { unsigned int type = (unsigned long *)table->data - dqstats.stat; s64 value = percpu_counter_sum(&dqstats.counter[type]); /* Filter negative values for non-monotonic counters */ if (value < 0 && (type == DQST_ALLOC_DQUOTS || type == DQST_FREE_DQUOTS)) value = 0; /* Update global table */ dqstats.stat[type] = value; return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); } static struct ctl_table fs_dqstats_table[] = { { .procname = "lookups", .data = &dqstats.stat[DQST_LOOKUPS], .maxlen = sizeof(unsigned long), .mode = 0444, .proc_handler = do_proc_dqstats, }, { .procname = "drops", .data = &dqstats.stat[DQST_DROPS], .maxlen = sizeof(unsigned long), .mode = 0444, .proc_handler = do_proc_dqstats, }, { .procname = "reads", .data = &dqstats.stat[DQST_READS], .maxlen = sizeof(unsigned long), .mode = 0444, .proc_handler = do_proc_dqstats, }, { .procname = "writes", .data = &dqstats.stat[DQST_WRITES], .maxlen = sizeof(unsigned long), .mode = 0444, .proc_handler = do_proc_dqstats, }, { .procname = "cache_hits", .data = &dqstats.stat[DQST_CACHE_HITS], .maxlen = sizeof(unsigned long), .mode = 0444, .proc_handler = do_proc_dqstats, }, { .procname = "allocated_dquots", .data = &dqstats.stat[DQST_ALLOC_DQUOTS], .maxlen = sizeof(unsigned long), .mode = 0444, .proc_handler = do_proc_dqstats, }, { .procname = "free_dquots", .data = &dqstats.stat[DQST_FREE_DQUOTS], .maxlen = sizeof(unsigned long), .mode = 0444, .proc_handler = do_proc_dqstats, }, { .procname = "syncs", .data = &dqstats.stat[DQST_SYNCS], .maxlen = sizeof(unsigned long), .mode = 0444, .proc_handler = do_proc_dqstats, }, #ifdef CONFIG_PRINT_QUOTA_WARNING { .procname = "warnings", .data = &flag_print_warnings, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec, }, #endif { }, }; static struct ctl_table fs_table[] = { { .procname = "quota", .mode = 0555, .child = fs_dqstats_table, }, { }, }; static struct ctl_table sys_table[] = { { .procname = "fs", .mode = 0555, .child = fs_table, }, { }, }; static int __init dquot_init(void) { int i, ret; unsigned long nr_hash, order; printk(KERN_NOTICE "VFS: Disk quotas %s\n", __DQUOT_VERSION__); register_sysctl_table(sys_table); dquot_cachep = kmem_cache_create("dquot", sizeof(struct dquot), sizeof(unsigned long) * 4, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT| SLAB_MEM_SPREAD|SLAB_PANIC), NULL); order = 0; dquot_hash = (struct hlist_head *)__get_free_pages(GFP_KERNEL, order); if (!dquot_hash) panic("Cannot create dquot hash table"); for (i = 0; i < _DQST_DQSTAT_LAST; i++) { ret = percpu_counter_init(&dqstats.counter[i], 0, GFP_KERNEL); if (ret) panic("Cannot create dquot stat counters"); } /* Find power-of-two hlist_heads which can fit into allocation */ nr_hash = (1UL << order) * PAGE_SIZE / sizeof(struct hlist_head); dq_hash_bits = ilog2(nr_hash); nr_hash = 1UL << dq_hash_bits; dq_hash_mask = nr_hash - 1; for (i = 0; i < nr_hash; i++) INIT_HLIST_HEAD(dquot_hash + i); pr_info("VFS: Dquot-cache hash table entries: %ld (order %ld," " %ld bytes)\n", nr_hash, order, (PAGE_SIZE << order)); if (register_shrinker(&dqcache_shrinker)) panic("Cannot register dquot shrinker"); return 0; } fs_initcall(dquot_init);
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_TRACE_EVENT_H #define _LINUX_TRACE_EVENT_H #include <linux/ring_buffer.h> #include <linux/trace_seq.h> #include <linux/percpu.h> #include <linux/hardirq.h> #include <linux/perf_event.h> #include <linux/tracepoint.h> struct trace_array; struct array_buffer; struct tracer; struct dentry; struct bpf_prog; const char *trace_print_flags_seq(struct trace_seq *p, const char *delim, unsigned long flags, const struct trace_print_flags *flag_array); const char *trace_print_symbols_seq(struct trace_seq *p, unsigned long val, const struct trace_print_flags *symbol_array); #if BITS_PER_LONG == 32 const char *trace_print_flags_seq_u64(struct trace_seq *p, const char *delim, unsigned long long flags, const struct trace_print_flags_u64 *flag_array); const char *trace_print_symbols_seq_u64(struct trace_seq *p, unsigned long long val, const struct trace_print_flags_u64 *symbol_array); #endif const char *trace_print_bitmask_seq(struct trace_seq *p, void *bitmask_ptr, unsigned int bitmask_size); const char *trace_print_hex_seq(struct trace_seq *p, const unsigned char *buf, int len, bool concatenate); const char *trace_print_array_seq(struct trace_seq *p, const void *buf, int count, size_t el_size); const char * trace_print_hex_dump_seq(struct trace_seq *p, const char *prefix_str, int prefix_type, int rowsize, int groupsize, const void *buf, size_t len, bool ascii); struct trace_iterator; struct trace_event; int trace_raw_output_prep(struct trace_iterator *iter, struct trace_event *event); /* * The trace entry - the most basic unit of tracing. This is what * is printed in the end as a single line in the trace output, such as: * * bash-15816 [01] 235.197585: idle_cpu <- irq_enter */ struct trace_entry { unsigned short type; unsigned char flags; unsigned char preempt_count; int pid; }; #define TRACE_EVENT_TYPE_MAX \ ((1 << (sizeof(((struct trace_entry *)0)->type) * 8)) - 1) /* * Trace iterator - used by printout routines who present trace * results to users and which routines might sleep, etc: */ struct trace_iterator { struct trace_array *tr; struct tracer *trace; struct array_buffer *array_buffer; void *private; int cpu_file; struct mutex mutex; struct ring_buffer_iter **buffer_iter; unsigned long iter_flags; void *temp; /* temp holder */ unsigned int temp_size; /* trace_seq for __print_flags() and __print_symbolic() etc. */ struct trace_seq tmp_seq; cpumask_var_t started; /* it's true when current open file is snapshot */ bool snapshot; /* The below is zeroed out in pipe_read */ struct trace_seq seq; struct trace_entry *ent; unsigned long lost_events; int leftover; int ent_size; int cpu; u64 ts; loff_t pos; long idx; /* All new field here will be zeroed out in pipe_read */ }; enum trace_iter_flags { TRACE_FILE_LAT_FMT = 1, TRACE_FILE_ANNOTATE = 2, TRACE_FILE_TIME_IN_NS = 4, }; typedef enum print_line_t (*trace_print_func)(struct trace_iterator *iter, int flags, struct trace_event *event); struct trace_event_functions { trace_print_func trace; trace_print_func raw; trace_print_func hex; trace_print_func binary; }; struct trace_event { struct hlist_node node; struct list_head list; int type; struct trace_event_functions *funcs; }; extern int register_trace_event(struct trace_event *event); extern int unregister_trace_event(struct trace_event *event); /* Return values for print_line callback */ enum print_line_t { TRACE_TYPE_PARTIAL_LINE = 0, /* Retry after flushing the seq */ TRACE_TYPE_HANDLED = 1, TRACE_TYPE_UNHANDLED = 2, /* Relay to other output functions */ TRACE_TYPE_NO_CONSUME = 3 /* Handled but ask to not consume */ }; enum print_line_t trace_handle_return(struct trace_seq *s); void tracing_generic_entry_update(struct trace_entry *entry, unsigned short type, unsigned long flags, int pc); struct trace_event_file; struct ring_buffer_event * trace_event_buffer_lock_reserve(struct trace_buffer **current_buffer, struct trace_event_file *trace_file, int type, unsigned long len, unsigned long flags, int pc); #define TRACE_RECORD_CMDLINE BIT(0) #define TRACE_RECORD_TGID BIT(1) void tracing_record_taskinfo(struct task_struct *task, int flags); void tracing_record_taskinfo_sched_switch(struct task_struct *prev, struct task_struct *next, int flags); void tracing_record_cmdline(struct task_struct *task); void tracing_record_tgid(struct task_struct *task); int trace_output_call(struct trace_iterator *iter, char *name, char *fmt, ...); struct event_filter; enum trace_reg { TRACE_REG_REGISTER, TRACE_REG_UNREGISTER, #ifdef CONFIG_PERF_EVENTS TRACE_REG_PERF_REGISTER, TRACE_REG_PERF_UNREGISTER, TRACE_REG_PERF_OPEN, TRACE_REG_PERF_CLOSE, /* * These (ADD/DEL) use a 'boolean' return value, where 1 (true) means a * custom action was taken and the default action is not to be * performed. */ TRACE_REG_PERF_ADD, TRACE_REG_PERF_DEL, #endif }; struct trace_event_call; #define TRACE_FUNCTION_TYPE ((const char *)~0UL) struct trace_event_fields { const char *type; union { struct { const char *name; const int size; const int align; const int is_signed; const int filter_type; }; int (*define_fields)(struct trace_event_call *); }; }; struct trace_event_class { const char *system; void *probe; #ifdef CONFIG_PERF_EVENTS void *perf_probe; #endif int (*reg)(struct trace_event_call *event, enum trace_reg type, void *data); struct trace_event_fields *fields_array; struct list_head *(*get_fields)(struct trace_event_call *); struct list_head fields; int (*raw_init)(struct trace_event_call *); }; extern int trace_event_reg(struct trace_event_call *event, enum trace_reg type, void *data); struct trace_event_buffer { struct trace_buffer *buffer; struct ring_buffer_event *event; struct trace_event_file *trace_file; void *entry; unsigned long flags; int pc; struct pt_regs *regs; }; void *trace_event_buffer_reserve(struct trace_event_buffer *fbuffer, struct trace_event_file *trace_file, unsigned long len); void trace_event_buffer_commit(struct trace_event_buffer *fbuffer); enum { TRACE_EVENT_FL_FILTERED_BIT, TRACE_EVENT_FL_CAP_ANY_BIT, TRACE_EVENT_FL_NO_SET_FILTER_BIT, TRACE_EVENT_FL_IGNORE_ENABLE_BIT, TRACE_EVENT_FL_TRACEPOINT_BIT, TRACE_EVENT_FL_KPROBE_BIT, TRACE_EVENT_FL_UPROBE_BIT, }; /* * Event flags: * FILTERED - The event has a filter attached * CAP_ANY - Any user can enable for perf * NO_SET_FILTER - Set when filter has error and is to be ignored * IGNORE_ENABLE - For trace internal events, do not enable with debugfs file * TRACEPOINT - Event is a tracepoint * KPROBE - Event is a kprobe * UPROBE - Event is a uprobe */ enum { TRACE_EVENT_FL_FILTERED = (1 << TRACE_EVENT_FL_FILTERED_BIT), TRACE_EVENT_FL_CAP_ANY = (1 << TRACE_EVENT_FL_CAP_ANY_BIT), TRACE_EVENT_FL_NO_SET_FILTER = (1 << TRACE_EVENT_FL_NO_SET_FILTER_BIT), TRACE_EVENT_FL_IGNORE_ENABLE = (1 << TRACE_EVENT_FL_IGNORE_ENABLE_BIT), TRACE_EVENT_FL_TRACEPOINT = (1 << TRACE_EVENT_FL_TRACEPOINT_BIT), TRACE_EVENT_FL_KPROBE = (1 << TRACE_EVENT_FL_KPROBE_BIT), TRACE_EVENT_FL_UPROBE = (1 << TRACE_EVENT_FL_UPROBE_BIT), }; #define TRACE_EVENT_FL_UKPROBE (TRACE_EVENT_FL_KPROBE | TRACE_EVENT_FL_UPROBE) struct trace_event_call { struct list_head list; struct trace_event_class *class; union { char *name; /* Set TRACE_EVENT_FL_TRACEPOINT flag when using "tp" */ struct tracepoint *tp; }; struct trace_event event; char *print_fmt; struct event_filter *filter; void *mod; void *data; /* * bit 0: filter_active * bit 1: allow trace by non root (cap any) * bit 2: failed to apply filter * bit 3: trace internal event (do not enable) * bit 4: Event was enabled by module * bit 5: use call filter rather than file filter * bit 6: Event is a tracepoint */ int flags; /* static flags of different events */ #ifdef CONFIG_PERF_EVENTS int perf_refcount; struct hlist_head __percpu *perf_events; struct bpf_prog_array __rcu *prog_array; int (*perf_perm)(struct trace_event_call *, struct perf_event *); #endif }; #ifdef CONFIG_PERF_EVENTS static inline bool bpf_prog_array_valid(struct trace_event_call *call) { /* * This inline function checks whether call->prog_array * is valid or not. The function is called in various places, * outside rcu_read_lock/unlock, as a heuristic to speed up execution. * * If this function returns true, and later call->prog_array * becomes false inside rcu_read_lock/unlock region, * we bail out then. If this function return false, * there is a risk that we might miss a few events if the checking * were delayed until inside rcu_read_lock/unlock region and * call->prog_array happened to become non-NULL then. * * Here, READ_ONCE() is used instead of rcu_access_pointer(). * rcu_access_pointer() requires the actual definition of * "struct bpf_prog_array" while READ_ONCE() only needs * a declaration of the same type. */ return !!READ_ONCE(call->prog_array); } #endif static inline const char * trace_event_name(struct trace_event_call *call) { if (call->flags & TRACE_EVENT_FL_TRACEPOINT) return call->tp ? call->tp->name : NULL; else return call->name; } static inline struct list_head * trace_get_fields(struct trace_event_call *event_call) { if (!event_call->class->get_fields) return &event_call->class->fields; return event_call->class->get_fields(event_call); } struct trace_array; struct trace_subsystem_dir; enum { EVENT_FILE_FL_ENABLED_BIT, EVENT_FILE_FL_RECORDED_CMD_BIT, EVENT_FILE_FL_RECORDED_TGID_BIT, EVENT_FILE_FL_FILTERED_BIT, EVENT_FILE_FL_NO_SET_FILTER_BIT, EVENT_FILE_FL_SOFT_MODE_BIT, EVENT_FILE_FL_SOFT_DISABLED_BIT, EVENT_FILE_FL_TRIGGER_MODE_BIT, EVENT_FILE_FL_TRIGGER_COND_BIT, EVENT_FILE_FL_PID_FILTER_BIT, EVENT_FILE_FL_WAS_ENABLED_BIT, }; extern struct trace_event_file *trace_get_event_file(const char *instance, const char *system, const char *event); extern void trace_put_event_file(struct trace_event_file *file); #define MAX_DYNEVENT_CMD_LEN (2048) enum dynevent_type { DYNEVENT_TYPE_SYNTH = 1, DYNEVENT_TYPE_KPROBE, DYNEVENT_TYPE_NONE, }; struct dynevent_cmd; typedef int (*dynevent_create_fn_t)(struct dynevent_cmd *cmd); struct dynevent_cmd { struct seq_buf seq; const char *event_name; unsigned int n_fields; enum dynevent_type type; dynevent_create_fn_t run_command; void *private_data; }; extern int dynevent_create(struct dynevent_cmd *cmd); extern int synth_event_delete(const char *name); extern void synth_event_cmd_init(struct dynevent_cmd *cmd, char *buf, int maxlen); extern int __synth_event_gen_cmd_start(struct dynevent_cmd *cmd, const char *name, struct module *mod, ...); #define synth_event_gen_cmd_start(cmd, name, mod, ...) \ __synth_event_gen_cmd_start(cmd, name, mod, ## __VA_ARGS__, NULL) struct synth_field_desc { const char *type; const char *name; }; extern int synth_event_gen_cmd_array_start(struct dynevent_cmd *cmd, const char *name, struct module *mod, struct synth_field_desc *fields, unsigned int n_fields); extern int synth_event_create(const char *name, struct synth_field_desc *fields, unsigned int n_fields, struct module *mod); extern int synth_event_add_field(struct dynevent_cmd *cmd, const char *type, const char *name); extern int synth_event_add_field_str(struct dynevent_cmd *cmd, const char *type_name); extern int synth_event_add_fields(struct dynevent_cmd *cmd, struct synth_field_desc *fields, unsigned int n_fields); #define synth_event_gen_cmd_end(cmd) \ dynevent_create(cmd) struct synth_event; struct synth_event_trace_state { struct trace_event_buffer fbuffer; struct synth_trace_event *entry; struct trace_buffer *buffer; struct synth_event *event; unsigned int cur_field; unsigned int n_u64; bool disabled; bool add_next; bool add_name; }; extern int synth_event_trace(struct trace_event_file *file, unsigned int n_vals, ...); extern int synth_event_trace_array(struct trace_event_file *file, u64 *vals, unsigned int n_vals); extern int synth_event_trace_start(struct trace_event_file *file, struct synth_event_trace_state *trace_state); extern int synth_event_add_next_val(u64 val, struct synth_event_trace_state *trace_state); extern int synth_event_add_val(const char *field_name, u64 val, struct synth_event_trace_state *trace_state); extern int synth_event_trace_end(struct synth_event_trace_state *trace_state); extern int kprobe_event_delete(const char *name); extern void kprobe_event_cmd_init(struct dynevent_cmd *cmd, char *buf, int maxlen); #define kprobe_event_gen_cmd_start(cmd, name, loc, ...) \ __kprobe_event_gen_cmd_start(cmd, false, name, loc, ## __VA_ARGS__, NULL) #define kretprobe_event_gen_cmd_start(cmd, name, loc, ...) \ __kprobe_event_gen_cmd_start(cmd, true, name, loc, ## __VA_ARGS__, NULL) extern int __kprobe_event_gen_cmd_start(struct dynevent_cmd *cmd, bool kretprobe, const char *name, const char *loc, ...); #define kprobe_event_add_fields(cmd, ...) \ __kprobe_event_add_fields(cmd, ## __VA_ARGS__, NULL) #define kprobe_event_add_field(cmd, field) \ __kprobe_event_add_fields(cmd, field, NULL) extern int __kprobe_event_add_fields(struct dynevent_cmd *cmd, ...); #define kprobe_event_gen_cmd_end(cmd) \ dynevent_create(cmd) #define kretprobe_event_gen_cmd_end(cmd) \ dynevent_create(cmd) /* * Event file flags: * ENABLED - The event is enabled * RECORDED_CMD - The comms should be recorded at sched_switch * RECORDED_TGID - The tgids should be recorded at sched_switch * FILTERED - The event has a filter attached * NO_SET_FILTER - Set when filter has error and is to be ignored * SOFT_MODE - The event is enabled/disabled by SOFT_DISABLED * SOFT_DISABLED - When set, do not trace the event (even though its * tracepoint may be enabled) * TRIGGER_MODE - When set, invoke the triggers associated with the event * TRIGGER_COND - When set, one or more triggers has an associated filter * PID_FILTER - When set, the event is filtered based on pid * WAS_ENABLED - Set when enabled to know to clear trace on module removal */ enum { EVENT_FILE_FL_ENABLED = (1 << EVENT_FILE_FL_ENABLED_BIT), EVENT_FILE_FL_RECORDED_CMD = (1 << EVENT_FILE_FL_RECORDED_CMD_BIT), EVENT_FILE_FL_RECORDED_TGID = (1 << EVENT_FILE_FL_RECORDED_TGID_BIT), EVENT_FILE_FL_FILTERED = (1 << EVENT_FILE_FL_FILTERED_BIT), EVENT_FILE_FL_NO_SET_FILTER = (1 << EVENT_FILE_FL_NO_SET_FILTER_BIT), EVENT_FILE_FL_SOFT_MODE = (1 << EVENT_FILE_FL_SOFT_MODE_BIT), EVENT_FILE_FL_SOFT_DISABLED = (1 << EVENT_FILE_FL_SOFT_DISABLED_BIT), EVENT_FILE_FL_TRIGGER_MODE = (1 << EVENT_FILE_FL_TRIGGER_MODE_BIT), EVENT_FILE_FL_TRIGGER_COND = (1 << EVENT_FILE_FL_TRIGGER_COND_BIT), EVENT_FILE_FL_PID_FILTER = (1 << EVENT_FILE_FL_PID_FILTER_BIT), EVENT_FILE_FL_WAS_ENABLED = (1 << EVENT_FILE_FL_WAS_ENABLED_BIT), }; struct trace_event_file { struct list_head list; struct trace_event_call *event_call; struct event_filter __rcu *filter; struct dentry *dir; struct trace_array *tr; struct trace_subsystem_dir *system; struct list_head triggers; /* * 32 bit flags: * bit 0: enabled * bit 1: enabled cmd record * bit 2: enable/disable with the soft disable bit * bit 3: soft disabled * bit 4: trigger enabled * * Note: The bits must be set atomically to prevent races * from other writers. Reads of flags do not need to be in * sync as they occur in critical sections. But the way flags * is currently used, these changes do not affect the code * except that when a change is made, it may have a slight * delay in propagating the changes to other CPUs due to * caching and such. Which is mostly OK ;-) */ unsigned long flags; atomic_t sm_ref; /* soft-mode reference counter */ atomic_t tm_ref; /* trigger-mode reference counter */ }; #define __TRACE_EVENT_FLAGS(name, value) \ static int __init trace_init_flags_##name(void) \ { \ event_##name.flags |= value; \ return 0; \ } \ early_initcall(trace_init_flags_##name); #define __TRACE_EVENT_PERF_PERM(name, expr...) \ static int perf_perm_##name(struct trace_event_call *tp_event, \ struct perf_event *p_event) \ { \ return ({ expr; }); \ } \ static int __init trace_init_perf_perm_##name(void) \ { \ event_##name.perf_perm = &perf_perm_##name; \ return 0; \ } \ early_initcall(trace_init_perf_perm_##name); #define PERF_MAX_TRACE_SIZE 2048 #define MAX_FILTER_STR_VAL 256U /* Should handle KSYM_SYMBOL_LEN */ enum event_trigger_type { ETT_NONE = (0), ETT_TRACE_ONOFF = (1 << 0), ETT_SNAPSHOT = (1 << 1), ETT_STACKTRACE = (1 << 2), ETT_EVENT_ENABLE = (1 << 3), ETT_EVENT_HIST = (1 << 4), ETT_HIST_ENABLE = (1 << 5), }; extern int filter_match_preds(struct event_filter *filter, void *rec); extern enum event_trigger_type event_triggers_call(struct trace_event_file *file, void *rec, struct ring_buffer_event *event); extern void event_triggers_post_call(struct trace_event_file *file, enum event_trigger_type tt); bool trace_event_ignore_this_pid(struct trace_event_file *trace_file); /** * trace_trigger_soft_disabled - do triggers and test if soft disabled * @file: The file pointer of the event to test * * If any triggers without filters are attached to this event, they * will be called here. If the event is soft disabled and has no * triggers that require testing the fields, it will return true, * otherwise false. */ static inline bool trace_trigger_soft_disabled(struct trace_event_file *file) { unsigned long eflags = file->flags; if (!(eflags & EVENT_FILE_FL_TRIGGER_COND)) { if (eflags & EVENT_FILE_FL_TRIGGER_MODE) event_triggers_call(file, NULL, NULL); if (eflags & EVENT_FILE_FL_SOFT_DISABLED) return true; if (eflags & EVENT_FILE_FL_PID_FILTER) return trace_event_ignore_this_pid(file); } return false; } #ifdef CONFIG_BPF_EVENTS unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx); int perf_event_attach_bpf_prog(struct perf_event *event, struct bpf_prog *prog); void perf_event_detach_bpf_prog(struct perf_event *event); int perf_event_query_prog_array(struct perf_event *event, void __user *info); int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog); int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog); struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name); void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp); int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id, u32 *fd_type, const char **buf, u64 *probe_offset, u64 *probe_addr); #else static inline unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx) { return 1; } static inline int perf_event_attach_bpf_prog(struct perf_event *event, struct bpf_prog *prog) { return -EOPNOTSUPP; } static inline void perf_event_detach_bpf_prog(struct perf_event *event) { } static inline int perf_event_query_prog_array(struct perf_event *event, void __user *info) { return -EOPNOTSUPP; } static inline int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *p) { return -EOPNOTSUPP; } static inline int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *p) { return -EOPNOTSUPP; } static inline struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name) { return NULL; } static inline void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp) { } static inline int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id, u32 *fd_type, const char **buf, u64 *probe_offset, u64 *probe_addr) { return -EOPNOTSUPP; } #endif enum { FILTER_OTHER = 0, FILTER_STATIC_STRING, FILTER_DYN_STRING, FILTER_PTR_STRING, FILTER_TRACE_FN, FILTER_COMM, FILTER_CPU, }; extern int trace_event_raw_init(struct trace_event_call *call); extern int trace_define_field(struct trace_event_call *call, const char *type, const char *name, int offset, int size, int is_signed, int filter_type); extern int trace_add_event_call(struct trace_event_call *call); extern int trace_remove_event_call(struct trace_event_call *call); extern int trace_event_get_offsets(struct trace_event_call *call); #define is_signed_type(type) (((type)(-1)) < (type)1) int ftrace_set_clr_event(struct trace_array *tr, char *buf, int set); int trace_set_clr_event(const char *system, const char *event, int set); int trace_array_set_clr_event(struct trace_array *tr, const char *system, const char *event, bool enable); /* * The double __builtin_constant_p is because gcc will give us an error * if we try to allocate the static variable to fmt if it is not a * constant. Even with the outer if statement optimizing out. */ #define event_trace_printk(ip, fmt, args...) \ do { \ __trace_printk_check_format(fmt, ##args); \ tracing_record_cmdline(current); \ if (__builtin_constant_p(fmt)) { \ static const char *trace_printk_fmt \ __section("__trace_printk_fmt") = \ __builtin_constant_p(fmt) ? fmt : NULL; \ \ __trace_bprintk(ip, trace_printk_fmt, ##args); \ } else \ __trace_printk(ip, fmt, ##args); \ } while (0) #ifdef CONFIG_PERF_EVENTS struct perf_event; DECLARE_PER_CPU(struct pt_regs, perf_trace_regs); DECLARE_PER_CPU(int, bpf_kprobe_override); extern int perf_trace_init(struct perf_event *event); extern void perf_trace_destroy(struct perf_event *event); extern int perf_trace_add(struct perf_event *event, int flags); extern void perf_trace_del(struct perf_event *event, int flags); #ifdef CONFIG_KPROBE_EVENTS extern int perf_kprobe_init(struct perf_event *event, bool is_retprobe); extern void perf_kprobe_destroy(struct perf_event *event); extern int bpf_get_kprobe_info(const struct perf_event *event, u32 *fd_type, const char **symbol, u64 *probe_offset, u64 *probe_addr, bool perf_type_tracepoint); #endif #ifdef CONFIG_UPROBE_EVENTS extern int perf_uprobe_init(struct perf_event *event, unsigned long ref_ctr_offset, bool is_retprobe); extern void perf_uprobe_destroy(struct perf_event *event); extern int bpf_get_uprobe_info(const struct perf_event *event, u32 *fd_type, const char **filename, u64 *probe_offset, bool perf_type_tracepoint); #endif extern int ftrace_profile_set_filter(struct perf_event *event, int event_id, char *filter_str); extern void ftrace_profile_free_filter(struct perf_event *event); void perf_trace_buf_update(void *record, u16 type); void *perf_trace_buf_alloc(int size, struct pt_regs **regs, int *rctxp); void bpf_trace_run1(struct bpf_prog *prog, u64 arg1); void bpf_trace_run2(struct bpf_prog *prog, u64 arg1, u64 arg2); void bpf_trace_run3(struct bpf_prog *prog, u64 arg1, u64 arg2, u64 arg3); void bpf_trace_run4(struct bpf_prog *prog, u64 arg1, u64 arg2, u64 arg3, u64 arg4); void bpf_trace_run5(struct bpf_prog *prog, u64 arg1, u64 arg2, u64 arg3, u64 arg4, u64 arg5); void bpf_trace_run6(struct bpf_prog *prog, u64 arg1, u64 arg2, u64 arg3, u64 arg4, u64 arg5, u64 arg6); void bpf_trace_run7(struct bpf_prog *prog, u64 arg1, u64 arg2, u64 arg3, u64 arg4, u64 arg5, u64 arg6, u64 arg7); void bpf_trace_run8(struct bpf_prog *prog, u64 arg1, u64 arg2, u64 arg3, u64 arg4, u64 arg5, u64 arg6, u64 arg7, u64 arg8); void bpf_trace_run9(struct bpf_prog *prog, u64 arg1, u64 arg2, u64 arg3, u64 arg4, u64 arg5, u64 arg6, u64 arg7, u64 arg8, u64 arg9); void bpf_trace_run10(struct bpf_prog *prog, u64 arg1, u64 arg2, u64 arg3, u64 arg4, u64 arg5, u64 arg6, u64 arg7, u64 arg8, u64 arg9, u64 arg10); void bpf_trace_run11(struct bpf_prog *prog, u64 arg1, u64 arg2, u64 arg3, u64 arg4, u64 arg5, u64 arg6, u64 arg7, u64 arg8, u64 arg9, u64 arg10, u64 arg11); void bpf_trace_run12(struct bpf_prog *prog, u64 arg1, u64 arg2, u64 arg3, u64 arg4, u64 arg5, u64 arg6, u64 arg7, u64 arg8, u64 arg9, u64 arg10, u64 arg11, u64 arg12); void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, struct trace_event_call *call, u64 count, struct pt_regs *regs, struct hlist_head *head, struct task_struct *task); static inline void perf_trace_buf_submit(void *raw_data, int size, int rctx, u16 type, u64 count, struct pt_regs *regs, void *head, struct task_struct *task) { perf_tp_event(type, count, raw_data, size, regs, head, rctx, task); } #endif #endif /* _LINUX_TRACE_EVENT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SCHED_TASK_H #define _LINUX_SCHED_TASK_H /* * Interface between the scheduler and various task lifetime (fork()/exit()) * functionality: */ #include <linux/sched.h> #include <linux/uaccess.h> struct task_struct; struct rusage; union thread_union; struct css_set; /* All the bits taken by the old clone syscall. */ #define CLONE_LEGACY_FLAGS 0xffffffffULL struct kernel_clone_args { u64 flags; int __user *pidfd; int __user *child_tid; int __user *parent_tid; int exit_signal; unsigned long stack; unsigned long stack_size; unsigned long tls; pid_t *set_tid; /* Number of elements in *set_tid */ size_t set_tid_size; int cgroup; struct cgroup *cgrp; struct css_set *cset; }; /* * This serializes "schedule()" and also protects * the run-queue from deletions/modifications (but * _adding_ to the beginning of the run-queue has * a separate lock). */ extern rwlock_t tasklist_lock; extern spinlock_t mmlist_lock; extern union thread_union init_thread_union; extern struct task_struct init_task; #ifdef CONFIG_PROVE_RCU extern int lockdep_tasklist_lock_is_held(void); #endif /* #ifdef CONFIG_PROVE_RCU */ extern asmlinkage void schedule_tail(struct task_struct *prev); extern void init_idle(struct task_struct *idle, int cpu); extern int sched_fork(unsigned long clone_flags, struct task_struct *p); extern void sched_post_fork(struct task_struct *p, struct kernel_clone_args *kargs); extern void sched_dead(struct task_struct *p); void __noreturn do_task_dead(void); extern void proc_caches_init(void); extern void fork_init(void); extern void release_task(struct task_struct * p); extern int copy_thread(unsigned long, unsigned long, unsigned long, struct task_struct *, unsigned long); extern void flush_thread(void); #ifdef CONFIG_HAVE_EXIT_THREAD extern void exit_thread(struct task_struct *tsk); #else static inline void exit_thread(struct task_struct *tsk) { } #endif extern void do_group_exit(int); extern void exit_files(struct task_struct *); extern void exit_itimers(struct signal_struct *); extern pid_t kernel_clone(struct kernel_clone_args *kargs); struct task_struct *fork_idle(int); struct mm_struct *copy_init_mm(void); extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags); extern long kernel_wait4(pid_t, int __user *, int, struct rusage *); int kernel_wait(pid_t pid, int *stat); extern void free_task(struct task_struct *tsk); /* sched_exec is called by processes performing an exec */ #ifdef CONFIG_SMP extern void sched_exec(void); #else #define sched_exec() {} #endif static inline struct task_struct *get_task_struct(struct task_struct *t) { refcount_inc(&t->usage); return t; } extern void __put_task_struct(struct task_struct *t); static inline void put_task_struct(struct task_struct *t) { if (refcount_dec_and_test(&t->usage)) __put_task_struct(t); } static inline void put_task_struct_many(struct task_struct *t, int nr) { if (refcount_sub_and_test(nr, &t->usage)) __put_task_struct(t); } void put_task_struct_rcu_user(struct task_struct *task); #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT extern int arch_task_struct_size __read_mostly; #else # define arch_task_struct_size (sizeof(struct task_struct)) #endif #ifndef CONFIG_HAVE_ARCH_THREAD_STRUCT_WHITELIST /* * If an architecture has not declared a thread_struct whitelist we * must assume something there may need to be copied to userspace. */ static inline void arch_thread_struct_whitelist(unsigned long *offset, unsigned long *size) { *offset = 0; /* Handle dynamically sized thread_struct. */ *size = arch_task_struct_size - offsetof(struct task_struct, thread); } #endif #ifdef CONFIG_VMAP_STACK static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t) { return t->stack_vm_area; } #else static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t) { return NULL; } #endif /* * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring * subscriptions and synchronises with wait4(). Also used in procfs. Also * pins the final release of task.io_context. Also protects ->cpuset and * ->cgroup.subsys[]. And ->vfork_done. And ->sysvshm.shm_clist. * * Nests both inside and outside of read_lock(&tasklist_lock). * It must not be nested with write_lock_irq(&tasklist_lock), * neither inside nor outside. */ static inline void task_lock(struct task_struct *p) { spin_lock(&p->alloc_lock); } static inline void task_unlock(struct task_struct *p) { spin_unlock(&p->alloc_lock); } #endif /* _LINUX_SCHED_TASK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 /* SPDX-License-Identifier: GPL-2.0 */ /* * Portions of this file * Copyright (C) 2018 Intel Corporation */ #ifndef __NET_WIRELESS_NL80211_H #define __NET_WIRELESS_NL80211_H #include "core.h" int nl80211_init(void); void nl80211_exit(void); void *nl80211hdr_put(struct sk_buff *skb, u32 portid, u32 seq, int flags, u8 cmd); bool nl80211_put_sta_rate(struct sk_buff *msg, struct rate_info *info, int attr); static inline u64 wdev_id(struct wireless_dev *wdev) { return (u64)wdev->identifier | ((u64)wiphy_to_rdev(wdev->wiphy)->wiphy_idx << 32); } int nl80211_prepare_wdev_dump(struct netlink_callback *cb, struct cfg80211_registered_device **rdev, struct wireless_dev **wdev); int nl80211_parse_chandef(struct cfg80211_registered_device *rdev, struct genl_info *info, struct cfg80211_chan_def *chandef); int nl80211_parse_random_mac(struct nlattr **attrs, u8 *mac_addr, u8 *mac_addr_mask); void nl80211_notify_wiphy(struct cfg80211_registered_device *rdev, enum nl80211_commands cmd); void nl80211_notify_iface(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, enum nl80211_commands cmd); void nl80211_send_scan_start(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev); struct sk_buff *nl80211_build_scan_msg(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, bool aborted); void nl80211_send_scan_msg(struct cfg80211_registered_device *rdev, struct sk_buff *msg); void nl80211_send_sched_scan(struct cfg80211_sched_scan_request *req, u32 cmd); void nl80211_common_reg_change_event(enum nl80211_commands cmd_id, struct regulatory_request *request); static inline void nl80211_send_reg_change_event(struct regulatory_request *request) { nl80211_common_reg_change_event(NL80211_CMD_REG_CHANGE, request); } static inline void nl80211_send_wiphy_reg_change_event(struct regulatory_request *request) { nl80211_common_reg_change_event(NL80211_CMD_WIPHY_REG_CHANGE, request); } void nl80211_send_rx_auth(struct cfg80211_registered_device *rdev, struct net_device *netdev, const u8 *buf, size_t len, gfp_t gfp); void nl80211_send_rx_assoc(struct cfg80211_registered_device *rdev, struct net_device *netdev, const u8 *buf, size_t len, gfp_t gfp, int uapsd_queues, const u8 *req_ies, size_t req_ies_len); void nl80211_send_deauth(struct cfg80211_registered_device *rdev, struct net_device *netdev, const u8 *buf, size_t len, gfp_t gfp); void nl80211_send_disassoc(struct cfg80211_registered_device *rdev, struct net_device *netdev, const u8 *buf, size_t len, gfp_t gfp); void nl80211_send_auth_timeout(struct cfg80211_registered_device *rdev, struct net_device *netdev, const u8 *addr, gfp_t gfp); void nl80211_send_assoc_timeout(struct cfg80211_registered_device *rdev, struct net_device *netdev, const u8 *addr, gfp_t gfp); void nl80211_send_connect_result(struct cfg80211_registered_device *rdev, struct net_device *netdev, struct cfg80211_connect_resp_params *params, gfp_t gfp); void nl80211_send_roamed(struct cfg80211_registered_device *rdev, struct net_device *netdev, struct cfg80211_roam_info *info, gfp_t gfp); void nl80211_send_port_authorized(struct cfg80211_registered_device *rdev, struct net_device *netdev, const u8 *bssid); void nl80211_send_disconnected(struct cfg80211_registered_device *rdev, struct net_device *netdev, u16 reason, const u8 *ie, size_t ie_len, bool from_ap); void nl80211_michael_mic_failure(struct cfg80211_registered_device *rdev, struct net_device *netdev, const u8 *addr, enum nl80211_key_type key_type, int key_id, const u8 *tsc, gfp_t gfp); void nl80211_send_beacon_hint_event(struct wiphy *wiphy, struct ieee80211_channel *channel_before, struct ieee80211_channel *channel_after); void nl80211_send_ibss_bssid(struct cfg80211_registered_device *rdev, struct net_device *netdev, const u8 *bssid, gfp_t gfp); int nl80211_send_mgmt(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, u32 nlpid, int freq, int sig_dbm, const u8 *buf, size_t len, u32 flags, gfp_t gfp); void nl80211_radar_notify(struct cfg80211_registered_device *rdev, const struct cfg80211_chan_def *chandef, enum nl80211_radar_event event, struct net_device *netdev, gfp_t gfp); void nl80211_send_ap_stopped(struct wireless_dev *wdev); void cfg80211_rdev_free_coalesce(struct cfg80211_registered_device *rdev); /* peer measurement */ int nl80211_pmsr_start(struct sk_buff *skb, struct genl_info *info); int nl80211_pmsr_dump_results(struct sk_buff *skb, struct netlink_callback *cb); #endif /* __NET_WIRELESS_NL80211_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __VDSO_MATH64_H #define __VDSO_MATH64_H static __always_inline u32 __iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder) { u32 ret = 0; while (dividend >= divisor) { /* The following asm() prevents the compiler from optimising this loop into a modulo operation. */ asm("" : "+rm"(dividend)); dividend -= divisor; ret++; } *remainder = dividend; return ret; } #endif /* __VDSO_MATH64_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Definitions for the IP router. * * Version: @(#)route.h 1.0.4 05/27/93 * * Authors: Ross Biro * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> * Fixes: * Alan Cox : Reformatted. Added ip_rt_local() * Alan Cox : Support for TCP parameters. * Alexey Kuznetsov: Major changes for new routing code. * Mike McLagan : Routing by source * Robert Olsson : Added rt_cache statistics */ #ifndef _ROUTE_H #define _ROUTE_H #include <net/dst.h> #include <net/inetpeer.h> #include <net/flow.h> #include <net/inet_sock.h> #include <net/ip_fib.h> #include <net/arp.h> #include <net/ndisc.h> #include <linux/in_route.h> #include <linux/rtnetlink.h> #include <linux/rcupdate.h> #include <linux/route.h> #include <linux/ip.h> #include <linux/cache.h> #include <linux/security.h> /* IPv4 datagram length is stored into 16bit field (tot_len) */ #define IP_MAX_MTU 0xFFFFU #define RTO_ONLINK 0x01 #define RT_CONN_FLAGS(sk) (RT_TOS(inet_sk(sk)->tos) | sock_flag(sk, SOCK_LOCALROUTE)) #define RT_CONN_FLAGS_TOS(sk,tos) (RT_TOS(tos) | sock_flag(sk, SOCK_LOCALROUTE)) struct fib_nh; struct fib_info; struct uncached_list; struct rtable { struct dst_entry dst; int rt_genid; unsigned int rt_flags; __u16 rt_type; __u8 rt_is_input; __u8 rt_uses_gateway; int rt_iif; u8 rt_gw_family; /* Info on neighbour */ union { __be32 rt_gw4; struct in6_addr rt_gw6; }; /* Miscellaneous cached information */ u32 rt_mtu_locked:1, rt_pmtu:31; struct list_head rt_uncached; struct uncached_list *rt_uncached_list; }; static inline bool rt_is_input_route(const struct rtable *rt) { return rt->rt_is_input != 0; } static inline bool rt_is_output_route(const struct rtable *rt) { return rt->rt_is_input == 0; } static inline __be32 rt_nexthop(const struct rtable *rt, __be32 daddr) { if (rt->rt_gw_family == AF_INET) return rt->rt_gw4; return daddr; } struct ip_rt_acct { __u32 o_bytes; __u32 o_packets; __u32 i_bytes; __u32 i_packets; }; struct rt_cache_stat { unsigned int in_slow_tot; unsigned int in_slow_mc; unsigned int in_no_route; unsigned int in_brd; unsigned int in_martian_dst; unsigned int in_martian_src; unsigned int out_slow_tot; unsigned int out_slow_mc; }; extern struct ip_rt_acct __percpu *ip_rt_acct; struct in_device; int ip_rt_init(void); void rt_cache_flush(struct net *net); void rt_flush_dev(struct net_device *dev); struct rtable *ip_route_output_key_hash(struct net *net, struct flowi4 *flp, const struct sk_buff *skb); struct rtable *ip_route_output_key_hash_rcu(struct net *net, struct flowi4 *flp, struct fib_result *res, const struct sk_buff *skb); static inline struct rtable *__ip_route_output_key(struct net *net, struct flowi4 *flp) { return ip_route_output_key_hash(net, flp, NULL); } struct rtable *ip_route_output_flow(struct net *, struct flowi4 *flp, const struct sock *sk); struct rtable *ip_route_output_tunnel(struct sk_buff *skb, struct net_device *dev, struct net *net, __be32 *saddr, const struct ip_tunnel_info *info, u8 protocol, bool use_cache); struct dst_entry *ipv4_blackhole_route(struct net *net, struct dst_entry *dst_orig); static inline struct rtable *ip_route_output_key(struct net *net, struct flowi4 *flp) { return ip_route_output_flow(net, flp, NULL); } static inline struct rtable *ip_route_output(struct net *net, __be32 daddr, __be32 saddr, u8 tos, int oif) { struct flowi4 fl4 = { .flowi4_oif = oif, .flowi4_tos = tos, .daddr = daddr, .saddr = saddr, }; return ip_route_output_key(net, &fl4); } static inline struct rtable *ip_route_output_ports(struct net *net, struct flowi4 *fl4, struct sock *sk, __be32 daddr, __be32 saddr, __be16 dport, __be16 sport, __u8 proto, __u8 tos, int oif) { flowi4_init_output(fl4, oif, sk ? sk->sk_mark : 0, tos, RT_SCOPE_UNIVERSE, proto, sk ? inet_sk_flowi_flags(sk) : 0, daddr, saddr, dport, sport, sock_net_uid(net, sk)); if (sk) security_sk_classify_flow(sk, flowi4_to_flowi(fl4)); return ip_route_output_flow(net, fl4, sk); } static inline struct rtable *ip_route_output_gre(struct net *net, struct flowi4 *fl4, __be32 daddr, __be32 saddr, __be32 gre_key, __u8 tos, int oif) { memset(fl4, 0, sizeof(*fl4)); fl4->flowi4_oif = oif; fl4->daddr = daddr; fl4->saddr = saddr; fl4->flowi4_tos = tos; fl4->flowi4_proto = IPPROTO_GRE; fl4->fl4_gre_key = gre_key; return ip_route_output_key(net, fl4); } int ip_mc_validate_source(struct sk_buff *skb, __be32 daddr, __be32 saddr, u8 tos, struct net_device *dev, struct in_device *in_dev, u32 *itag); int ip_route_input_noref(struct sk_buff *skb, __be32 dst, __be32 src, u8 tos, struct net_device *devin); int ip_route_input_rcu(struct sk_buff *skb, __be32 dst, __be32 src, u8 tos, struct net_device *devin, struct fib_result *res); int ip_route_use_hint(struct sk_buff *skb, __be32 dst, __be32 src, u8 tos, struct net_device *devin, const struct sk_buff *hint); static inline int ip_route_input(struct sk_buff *skb, __be32 dst, __be32 src, u8 tos, struct net_device *devin) { int err; rcu_read_lock(); err = ip_route_input_noref(skb, dst, src, tos, devin); if (!err) { skb_dst_force(skb); if (!skb_dst(skb)) err = -EINVAL; } rcu_read_unlock(); return err; } void ipv4_update_pmtu(struct sk_buff *skb, struct net *net, u32 mtu, int oif, u8 protocol); void ipv4_sk_update_pmtu(struct sk_buff *skb, struct sock *sk, u32 mtu); void ipv4_redirect(struct sk_buff *skb, struct net *net, int oif, u8 protocol); void ipv4_sk_redirect(struct sk_buff *skb, struct sock *sk); void ip_rt_send_redirect(struct sk_buff *skb); unsigned int inet_addr_type(struct net *net, __be32 addr); unsigned int inet_addr_type_table(struct net *net, __be32 addr, u32 tb_id); unsigned int inet_dev_addr_type(struct net *net, const struct net_device *dev, __be32 addr); unsigned int inet_addr_type_dev_table(struct net *net, const struct net_device *dev, __be32 addr); void ip_rt_multicast_event(struct in_device *); int ip_rt_ioctl(struct net *, unsigned int cmd, struct rtentry *rt); void ip_rt_get_source(u8 *src, struct sk_buff *skb, struct rtable *rt); struct rtable *rt_dst_alloc(struct net_device *dev, unsigned int flags, u16 type, bool nopolicy, bool noxfrm); struct rtable *rt_dst_clone(struct net_device *dev, struct rtable *rt); struct in_ifaddr; void fib_add_ifaddr(struct in_ifaddr *); void fib_del_ifaddr(struct in_ifaddr *, struct in_ifaddr *); void fib_modify_prefix_metric(struct in_ifaddr *ifa, u32 new_metric); void rt_add_uncached_list(struct rtable *rt); void rt_del_uncached_list(struct rtable *rt); int fib_dump_info_fnhe(struct sk_buff *skb, struct netlink_callback *cb, u32 table_id, struct fib_info *fi, int *fa_index, int fa_start, unsigned int flags); static inline void ip_rt_put(struct rtable *rt) { /* dst_release() accepts a NULL parameter. * We rely on dst being first structure in struct rtable */ BUILD_BUG_ON(offsetof(struct rtable, dst) != 0); dst_release(&rt->dst); } #define IPTOS_RT_MASK (IPTOS_TOS_MASK & ~3) extern const __u8 ip_tos2prio[16]; static inline char rt_tos2priority(u8 tos) { return ip_tos2prio[IPTOS_TOS(tos)>>1]; } /* ip_route_connect() and ip_route_newports() work in tandem whilst * binding a socket for a new outgoing connection. * * In order to use IPSEC properly, we must, in the end, have a * route that was looked up using all available keys including source * and destination ports. * * However, if a source port needs to be allocated (the user specified * a wildcard source port) we need to obtain addressing information * in order to perform that allocation. * * So ip_route_connect() looks up a route using wildcarded source and * destination ports in the key, simply so that we can get a pair of * addresses to use for port allocation. * * Later, once the ports are allocated, ip_route_newports() will make * another route lookup if needed to make sure we catch any IPSEC * rules keyed on the port information. * * The callers allocate the flow key on their stack, and must pass in * the same flowi4 object to both the ip_route_connect() and the * ip_route_newports() calls. */ static inline void ip_route_connect_init(struct flowi4 *fl4, __be32 dst, __be32 src, u32 tos, int oif, u8 protocol, __be16 sport, __be16 dport, struct sock *sk) { __u8 flow_flags = 0; if (inet_sk(sk)->transparent) flow_flags |= FLOWI_FLAG_ANYSRC; flowi4_init_output(fl4, oif, sk->sk_mark, tos, RT_SCOPE_UNIVERSE, protocol, flow_flags, dst, src, dport, sport, sk->sk_uid); } static inline struct rtable *ip_route_connect(struct flowi4 *fl4, __be32 dst, __be32 src, u32 tos, int oif, u8 protocol, __be16 sport, __be16 dport, struct sock *sk) { struct net *net = sock_net(sk); struct rtable *rt; ip_route_connect_init(fl4, dst, src, tos, oif, protocol, sport, dport, sk); if (!dst || !src) { rt = __ip_route_output_key(net, fl4); if (IS_ERR(rt)) return rt; ip_rt_put(rt); flowi4_update_output(fl4, oif, tos, fl4->daddr, fl4->saddr); } security_sk_classify_flow(sk, flowi4_to_flowi(fl4)); return ip_route_output_flow(net, fl4, sk); } static inline struct rtable *ip_route_newports(struct flowi4 *fl4, struct rtable *rt, __be16 orig_sport, __be16 orig_dport, __be16 sport, __be16 dport, struct sock *sk) { if (sport != orig_sport || dport != orig_dport) { fl4->fl4_dport = dport; fl4->fl4_sport = sport; ip_rt_put(rt); flowi4_update_output(fl4, sk->sk_bound_dev_if, RT_CONN_FLAGS(sk), fl4->daddr, fl4->saddr); security_sk_classify_flow(sk, flowi4_to_flowi(fl4)); return ip_route_output_flow(sock_net(sk), fl4, sk); } return rt; } static inline int inet_iif(const struct sk_buff *skb) { struct rtable *rt = skb_rtable(skb); if (rt && rt->rt_iif) return rt->rt_iif; return skb->skb_iif; } static inline int ip4_dst_hoplimit(const struct dst_entry *dst) { int hoplimit = dst_metric_raw(dst, RTAX_HOPLIMIT); struct net *net = dev_net(dst->dev); if (hoplimit == 0) hoplimit = net->ipv4.sysctl_ip_default_ttl; return hoplimit; } static inline struct neighbour *ip_neigh_gw4(struct net_device *dev, __be32 daddr) { struct neighbour *neigh; neigh = __ipv4_neigh_lookup_noref(dev, daddr); if (unlikely(!neigh)) neigh = __neigh_create(&arp_tbl, &daddr, dev, false); return neigh; } static inline struct neighbour *ip_neigh_for_gw(struct rtable *rt, struct sk_buff *skb, bool *is_v6gw) { struct net_device *dev = rt->dst.dev; struct neighbour *neigh; if (likely(rt->rt_gw_family == AF_INET)) { neigh = ip_neigh_gw4(dev, rt->rt_gw4); } else if (rt->rt_gw_family == AF_INET6) { neigh = ip_neigh_gw6(dev, &rt->rt_gw6); *is_v6gw = true; } else { neigh = ip_neigh_gw4(dev, ip_hdr(skb)->daddr); } return neigh; } #endif /* _ROUTE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _FIB_LOOKUP_H #define _FIB_LOOKUP_H #include <linux/types.h> #include <linux/list.h> #include <net/ip_fib.h> #include <net/nexthop.h> struct fib_alias { struct hlist_node fa_list; struct fib_info *fa_info; u8 fa_tos; u8 fa_type; u8 fa_state; u8 fa_slen; u32 tb_id; s16 fa_default; u8 offload:1, trap:1, unused:6; struct rcu_head rcu; }; #define FA_S_ACCESSED 0x01 /* Dont write on fa_state unless needed, to keep it shared on all cpus */ static inline void fib_alias_accessed(struct fib_alias *fa) { if (!(fa->fa_state & FA_S_ACCESSED)) fa->fa_state |= FA_S_ACCESSED; } /* Exported by fib_semantics.c */ void fib_release_info(struct fib_info *); struct fib_info *fib_create_info(struct fib_config *cfg, struct netlink_ext_ack *extack); int fib_nh_match(struct net *net, struct fib_config *cfg, struct fib_info *fi, struct netlink_ext_ack *extack); bool fib_metrics_match(struct fib_config *cfg, struct fib_info *fi); int fib_dump_info(struct sk_buff *skb, u32 pid, u32 seq, int event, struct fib_rt_info *fri, unsigned int flags); void rtmsg_fib(int event, __be32 key, struct fib_alias *fa, int dst_len, u32 tb_id, const struct nl_info *info, unsigned int nlm_flags); static inline void fib_result_assign(struct fib_result *res, struct fib_info *fi) { /* we used to play games with refcounts, but we now use RCU */ res->fi = fi; res->nhc = fib_info_nhc(fi, 0); } struct fib_prop { int error; u8 scope; }; extern const struct fib_prop fib_props[RTN_MAX + 1]; #endif /* _FIB_LOOKUP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _FAT_H #define _FAT_H #include <linux/buffer_head.h> #include <linux/nls.h> #include <linux/hash.h> #include <linux/ratelimit.h> #include <linux/msdos_fs.h> /* * vfat shortname flags */ #define VFAT_SFN_DISPLAY_LOWER 0x0001 /* convert to lowercase for display */ #define VFAT_SFN_DISPLAY_WIN95 0x0002 /* emulate win95 rule for display */ #define VFAT_SFN_DISPLAY_WINNT 0x0004 /* emulate winnt rule for display */ #define VFAT_SFN_CREATE_WIN95 0x0100 /* emulate win95 rule for create */ #define VFAT_SFN_CREATE_WINNT 0x0200 /* emulate winnt rule for create */ #define FAT_ERRORS_CONT 1 /* ignore error and continue */ #define FAT_ERRORS_PANIC 2 /* panic on error */ #define FAT_ERRORS_RO 3 /* remount r/o on error */ #define FAT_NFS_STALE_RW 1 /* NFS RW support, can cause ESTALE */ #define FAT_NFS_NOSTALE_RO 2 /* NFS RO support, no ESTALE issue */ struct fat_mount_options { kuid_t fs_uid; kgid_t fs_gid; unsigned short fs_fmask; unsigned short fs_dmask; unsigned short codepage; /* Codepage for shortname conversions */ int time_offset; /* Offset of timestamps from UTC (in minutes) */ char *iocharset; /* Charset used for filename input/display */ unsigned short shortname; /* flags for shortname display/create rule */ unsigned char name_check; /* r = relaxed, n = normal, s = strict */ unsigned char errors; /* On error: continue, panic, remount-ro */ unsigned char nfs; /* NFS support: nostale_ro, stale_rw */ unsigned short allow_utime;/* permission for setting the [am]time */ unsigned quiet:1, /* set = fake successful chmods and chowns */ showexec:1, /* set = only set x bit for com/exe/bat */ sys_immutable:1, /* set = system files are immutable */ dotsOK:1, /* set = hidden and system files are named '.filename' */ isvfat:1, /* 0=no vfat long filename support, 1=vfat support */ utf8:1, /* Use of UTF-8 character set (Default) */ unicode_xlate:1, /* create escape sequences for unhandled Unicode */ numtail:1, /* Does first alias have a numeric '~1' type tail? */ flush:1, /* write things quickly */ nocase:1, /* Does this need case conversion? 0=need case conversion*/ usefree:1, /* Use free_clusters for FAT32 */ tz_set:1, /* Filesystem timestamps' offset set */ rodir:1, /* allow ATTR_RO for directory */ discard:1, /* Issue discard requests on deletions */ dos1xfloppy:1; /* Assume default BPB for DOS 1.x floppies */ }; #define FAT_HASH_BITS 8 #define FAT_HASH_SIZE (1UL << FAT_HASH_BITS) /* * MS-DOS file system in-core superblock data */ struct msdos_sb_info { unsigned short sec_per_clus; /* sectors/cluster */ unsigned short cluster_bits; /* log2(cluster_size) */ unsigned int cluster_size; /* cluster size */ unsigned char fats, fat_bits; /* number of FATs, FAT bits (12,16 or 32) */ unsigned short fat_start; unsigned long fat_length; /* FAT start & length (sec.) */ unsigned long dir_start; unsigned short dir_entries; /* root dir start & entries */ unsigned long data_start; /* first data sector */ unsigned long max_cluster; /* maximum cluster number */ unsigned long root_cluster; /* first cluster of the root directory */ unsigned long fsinfo_sector; /* sector number of FAT32 fsinfo */ struct mutex fat_lock; struct mutex nfs_build_inode_lock; struct mutex s_lock; unsigned int prev_free; /* previously allocated cluster number */ unsigned int free_clusters; /* -1 if undefined */ unsigned int free_clus_valid; /* is free_clusters valid? */ struct fat_mount_options options; struct nls_table *nls_disk; /* Codepage used on disk */ struct nls_table *nls_io; /* Charset used for input and display */ const void *dir_ops; /* Opaque; default directory operations */ int dir_per_block; /* dir entries per block */ int dir_per_block_bits; /* log2(dir_per_block) */ unsigned int vol_id; /*volume ID*/ int fatent_shift; const struct fatent_operations *fatent_ops; struct inode *fat_inode; struct inode *fsinfo_inode; struct ratelimit_state ratelimit; spinlock_t inode_hash_lock; struct hlist_head inode_hashtable[FAT_HASH_SIZE]; spinlock_t dir_hash_lock; struct hlist_head dir_hashtable[FAT_HASH_SIZE]; unsigned int dirty; /* fs state before mount */ struct rcu_head rcu; }; #define FAT_CACHE_VALID 0 /* special case for valid cache */ /* * MS-DOS file system inode data in memory */ struct msdos_inode_info { spinlock_t cache_lru_lock; struct list_head cache_lru; int nr_caches; /* for avoiding the race between fat_free() and fat_get_cluster() */ unsigned int cache_valid_id; /* NOTE: mmu_private is 64bits, so must hold ->i_mutex to access */ loff_t mmu_private; /* physically allocated size */ int i_start; /* first cluster or 0 */ int i_logstart; /* logical first cluster */ int i_attrs; /* unused attribute bits */ loff_t i_pos; /* on-disk position of directory entry or 0 */ struct hlist_node i_fat_hash; /* hash by i_location */ struct hlist_node i_dir_hash; /* hash by i_logstart */ struct rw_semaphore truncate_lock; /* protect bmap against truncate */ struct inode vfs_inode; }; struct fat_slot_info { loff_t i_pos; /* on-disk position of directory entry */ loff_t slot_off; /* offset for slot or de start */ int nr_slots; /* number of slots + 1(de) in filename */ struct msdos_dir_entry *de; struct buffer_head *bh; }; static inline struct msdos_sb_info *MSDOS_SB(struct super_block *sb) { return sb->s_fs_info; } /* * Functions that determine the variant of the FAT file system (i.e., * whether this is FAT12, FAT16 or FAT32. */ static inline bool is_fat12(const struct msdos_sb_info *sbi) { return sbi->fat_bits == 12; } static inline bool is_fat16(const struct msdos_sb_info *sbi) { return sbi->fat_bits == 16; } static inline bool is_fat32(const struct msdos_sb_info *sbi) { return sbi->fat_bits == 32; } /* Maximum number of clusters */ static inline u32 max_fat(struct super_block *sb) { struct msdos_sb_info *sbi = MSDOS_SB(sb); return is_fat32(sbi) ? MAX_FAT32 : is_fat16(sbi) ? MAX_FAT16 : MAX_FAT12; } static inline struct msdos_inode_info *MSDOS_I(struct inode *inode) { return container_of(inode, struct msdos_inode_info, vfs_inode); } /* * If ->i_mode can't hold S_IWUGO (i.e. ATTR_RO), we use ->i_attrs to * save ATTR_RO instead of ->i_mode. * * If it's directory and !sbi->options.rodir, ATTR_RO isn't read-only * bit, it's just used as flag for app. */ static inline int fat_mode_can_hold_ro(struct inode *inode) { struct msdos_sb_info *sbi = MSDOS_SB(inode->i_sb); umode_t mask; if (S_ISDIR(inode->i_mode)) { if (!sbi->options.rodir) return 0; mask = ~sbi->options.fs_dmask; } else mask = ~sbi->options.fs_fmask; if (!(mask & S_IWUGO)) return 0; return 1; } /* Convert attribute bits and a mask to the UNIX mode. */ static inline umode_t fat_make_mode(struct msdos_sb_info *sbi, u8 attrs, umode_t mode) { if (attrs & ATTR_RO && !((attrs & ATTR_DIR) && !sbi->options.rodir)) mode &= ~S_IWUGO; if (attrs & ATTR_DIR) return (mode & ~sbi->options.fs_dmask) | S_IFDIR; else return (mode & ~sbi->options.fs_fmask) | S_IFREG; } /* Return the FAT attribute byte for this inode */ static inline u8 fat_make_attrs(struct inode *inode) { u8 attrs = MSDOS_I(inode)->i_attrs; if (S_ISDIR(inode->i_mode)) attrs |= ATTR_DIR; if (fat_mode_can_hold_ro(inode) && !(inode->i_mode & S_IWUGO)) attrs |= ATTR_RO; return attrs; } static inline void fat_save_attrs(struct inode *inode, u8 attrs) { if (fat_mode_can_hold_ro(inode)) MSDOS_I(inode)->i_attrs = attrs & ATTR_UNUSED; else MSDOS_I(inode)->i_attrs = attrs & (ATTR_UNUSED | ATTR_RO); } static inline unsigned char fat_checksum(const __u8 *name) { unsigned char s = name[0]; s = (s<<7) + (s>>1) + name[1]; s = (s<<7) + (s>>1) + name[2]; s = (s<<7) + (s>>1) + name[3]; s = (s<<7) + (s>>1) + name[4]; s = (s<<7) + (s>>1) + name[5]; s = (s<<7) + (s>>1) + name[6]; s = (s<<7) + (s>>1) + name[7]; s = (s<<7) + (s>>1) + name[8]; s = (s<<7) + (s>>1) + name[9]; s = (s<<7) + (s>>1) + name[10]; return s; } static inline sector_t fat_clus_to_blknr(struct msdos_sb_info *sbi, int clus) { return ((sector_t)clus - FAT_START_ENT) * sbi->sec_per_clus + sbi->data_start; } static inline void fat_get_blknr_offset(struct msdos_sb_info *sbi, loff_t i_pos, sector_t *blknr, int *offset) { *blknr = i_pos >> sbi->dir_per_block_bits; *offset = i_pos & (sbi->dir_per_block - 1); } static inline loff_t fat_i_pos_read(struct msdos_sb_info *sbi, struct inode *inode) { loff_t i_pos; #if BITS_PER_LONG == 32 spin_lock(&sbi->inode_hash_lock); #endif i_pos = MSDOS_I(inode)->i_pos; #if BITS_PER_LONG == 32 spin_unlock(&sbi->inode_hash_lock); #endif return i_pos; } static inline void fat16_towchar(wchar_t *dst, const __u8 *src, size_t len) { #ifdef __BIG_ENDIAN while (len--) { *dst++ = src[0] | (src[1] << 8); src += 2; } #else memcpy(dst, src, len * 2); #endif } static inline int fat_get_start(const struct msdos_sb_info *sbi, const struct msdos_dir_entry *de) { int cluster = le16_to_cpu(de->start); if (is_fat32(sbi)) cluster |= (le16_to_cpu(de->starthi) << 16); return cluster; } static inline void fat_set_start(struct msdos_dir_entry *de, int cluster) { de->start = cpu_to_le16(cluster); de->starthi = cpu_to_le16(cluster >> 16); } static inline void fatwchar_to16(__u8 *dst, const wchar_t *src, size_t len) { #ifdef __BIG_ENDIAN while (len--) { dst[0] = *src & 0x00FF; dst[1] = (*src & 0xFF00) >> 8; dst += 2; src++; } #else memcpy(dst, src, len * 2); #endif } /* fat/cache.c */ extern void fat_cache_inval_inode(struct inode *inode); extern int fat_get_cluster(struct inode *inode, int cluster, int *fclus, int *dclus); extern int fat_get_mapped_cluster(struct inode *inode, sector_t sector, sector_t last_block, unsigned long *mapped_blocks, sector_t *bmap); extern int fat_bmap(struct inode *inode, sector_t sector, sector_t *phys, unsigned long *mapped_blocks, int create, bool from_bmap); /* fat/dir.c */ extern const struct file_operations fat_dir_operations; extern int fat_search_long(struct inode *inode, const unsigned char *name, int name_len, struct fat_slot_info *sinfo); extern int fat_dir_empty(struct inode *dir); extern int fat_subdirs(struct inode *dir); extern int fat_scan(struct inode *dir, const unsigned char *name, struct fat_slot_info *sinfo); extern int fat_scan_logstart(struct inode *dir, int i_logstart, struct fat_slot_info *sinfo); extern int fat_get_dotdot_entry(struct inode *dir, struct buffer_head **bh, struct msdos_dir_entry **de); extern int fat_alloc_new_dir(struct inode *dir, struct timespec64 *ts); extern int fat_add_entries(struct inode *dir, void *slots, int nr_slots, struct fat_slot_info *sinfo); extern int fat_remove_entries(struct inode *dir, struct fat_slot_info *sinfo); /* fat/fatent.c */ struct fat_entry { int entry; union { u8 *ent12_p[2]; __le16 *ent16_p; __le32 *ent32_p; } u; int nr_bhs; struct buffer_head *bhs[2]; struct inode *fat_inode; }; static inline void fatent_init(struct fat_entry *fatent) { fatent->nr_bhs = 0; fatent->entry = 0; fatent->u.ent32_p = NULL; fatent->bhs[0] = fatent->bhs[1] = NULL; fatent->fat_inode = NULL; } static inline void fatent_set_entry(struct fat_entry *fatent, int entry) { fatent->entry = entry; fatent->u.ent32_p = NULL; } static inline void fatent_brelse(struct fat_entry *fatent) { int i; fatent->u.ent32_p = NULL; for (i = 0; i < fatent->nr_bhs; i++) brelse(fatent->bhs[i]); fatent->nr_bhs = 0; fatent->bhs[0] = fatent->bhs[1] = NULL; fatent->fat_inode = NULL; } static inline bool fat_valid_entry(struct msdos_sb_info *sbi, int entry) { return FAT_START_ENT <= entry && entry < sbi->max_cluster; } extern void fat_ent_access_init(struct super_block *sb); extern int fat_ent_read(struct inode *inode, struct fat_entry *fatent, int entry); extern int fat_ent_write(struct inode *inode, struct fat_entry *fatent, int new, int wait); extern int fat_alloc_clusters(struct inode *inode, int *cluster, int nr_cluster); extern int fat_free_clusters(struct inode *inode, int cluster); extern int fat_count_free_clusters(struct super_block *sb); extern int fat_trim_fs(struct inode *inode, struct fstrim_range *range); /* fat/file.c */ extern long fat_generic_ioctl(struct file *filp, unsigned int cmd, unsigned long arg); extern const struct file_operations fat_file_operations; extern const struct inode_operations fat_file_inode_operations; extern int fat_setattr(struct dentry *dentry, struct iattr *attr); extern void fat_truncate_blocks(struct inode *inode, loff_t offset); extern int fat_getattr(const struct path *path, struct kstat *stat, u32 request_mask, unsigned int flags); extern int fat_file_fsync(struct file *file, loff_t start, loff_t end, int datasync); /* fat/inode.c */ extern int fat_block_truncate_page(struct inode *inode, loff_t from); extern void fat_attach(struct inode *inode, loff_t i_pos); extern void fat_detach(struct inode *inode); extern struct inode *fat_iget(struct super_block *sb, loff_t i_pos); extern struct inode *fat_build_inode(struct super_block *sb, struct msdos_dir_entry *de, loff_t i_pos); extern int fat_sync_inode(struct inode *inode); extern int fat_fill_super(struct super_block *sb, void *data, int silent, int isvfat, void (*setup)(struct super_block *)); extern int fat_fill_inode(struct inode *inode, struct msdos_dir_entry *de); extern int fat_flush_inodes(struct super_block *sb, struct inode *i1, struct inode *i2); static inline unsigned long fat_dir_hash(int logstart) { return hash_32(logstart, FAT_HASH_BITS); } extern int fat_add_cluster(struct inode *inode); /* fat/misc.c */ extern __printf(3, 4) __cold void __fat_fs_error(struct super_block *sb, int report, const char *fmt, ...); #define fat_fs_error(sb, fmt, args...) \ __fat_fs_error(sb, 1, fmt , ## args) #define fat_fs_error_ratelimit(sb, fmt, args...) \ __fat_fs_error(sb, __ratelimit(&MSDOS_SB(sb)->ratelimit), fmt , ## args) __printf(3, 4) __cold void fat_msg(struct super_block *sb, const char *level, const char *fmt, ...); #define fat_msg_ratelimit(sb, level, fmt, args...) \ do { \ if (__ratelimit(&MSDOS_SB(sb)->ratelimit)) \ fat_msg(sb, level, fmt, ## args); \ } while (0) extern int fat_clusters_flush(struct super_block *sb); extern int fat_chain_add(struct inode *inode, int new_dclus, int nr_cluster); extern void fat_time_fat2unix(struct msdos_sb_info *sbi, struct timespec64 *ts, __le16 __time, __le16 __date, u8 time_cs); extern void fat_time_unix2fat(struct msdos_sb_info *sbi, struct timespec64 *ts, __le16 *time, __le16 *date, u8 *time_cs); extern int fat_truncate_time(struct inode *inode, struct timespec64 *now, int flags); extern int fat_update_time(struct inode *inode, struct timespec64 *now, int flags); extern int fat_sync_bhs(struct buffer_head **bhs, int nr_bhs); int fat_cache_init(void); void fat_cache_destroy(void); /* fat/nfs.c */ extern const struct export_operations fat_export_ops; extern const struct export_operations fat_export_ops_nostale; /* helper for printk */ typedef unsigned long long llu; #endif /* !_FAT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_MBCACHE_H #define _LINUX_MBCACHE_H #include <linux/hash.h> #include <linux/list_bl.h> #include <linux/list.h> #include <linux/atomic.h> #include <linux/fs.h> struct mb_cache; struct mb_cache_entry { /* List of entries in cache - protected by cache->c_list_lock */ struct list_head e_list; /* Hash table list - protected by hash chain bitlock */ struct hlist_bl_node e_hash_list; atomic_t e_refcnt; /* Key in hash - stable during lifetime of the entry */ u32 e_key; u32 e_referenced:1; u32 e_reusable:1; /* User provided value - stable during lifetime of the entry */ u64 e_value; }; struct mb_cache *mb_cache_create(int bucket_bits); void mb_cache_destroy(struct mb_cache *cache); int mb_cache_entry_create(struct mb_cache *cache, gfp_t mask, u32 key, u64 value, bool reusable); void __mb_cache_entry_free(struct mb_cache_entry *entry); static inline int mb_cache_entry_put(struct mb_cache *cache, struct mb_cache_entry *entry) { if (!atomic_dec_and_test(&entry->e_refcnt)) return 0; __mb_cache_entry_free(entry); return 1; } void mb_cache_entry_delete(struct mb_cache *cache, u32 key, u64 value); struct mb_cache_entry *mb_cache_entry_get(struct mb_cache *cache, u32 key, u64 value); struct mb_cache_entry *mb_cache_entry_find_first(struct mb_cache *cache, u32 key); struct mb_cache_entry *mb_cache_entry_find_next(struct mb_cache *cache, struct mb_cache_entry *entry); void mb_cache_entry_touch(struct mb_cache *cache, struct mb_cache_entry *entry); #endif /* _LINUX_MBCACHE_H */
1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 // SPDX-License-Identifier: GPL-2.0 #include <linux/memblock.h> #include <linux/mmdebug.h> #include <linux/export.h> #include <linux/mm.h> #include <asm/page.h> #include <linux/vmalloc.h> #include "physaddr.h" #ifdef CONFIG_X86_64 #ifdef CONFIG_DEBUG_VIRTUAL unsigned long __phys_addr(unsigned long x) { unsigned long y = x - __START_KERNEL_map; /* use the carry flag to determine if x was < __START_KERNEL_map */ if (unlikely(x > y)) { x = y + phys_base; VIRTUAL_BUG_ON(y >= KERNEL_IMAGE_SIZE); } else { x = y + (__START_KERNEL_map - PAGE_OFFSET); /* carry flag will be set if starting x was >= PAGE_OFFSET */ VIRTUAL_BUG_ON((x > y) || !phys_addr_valid(x)); } return x; } EXPORT_SYMBOL(__phys_addr); unsigned long __phys_addr_symbol(unsigned long x) { unsigned long y = x - __START_KERNEL_map; /* only check upper bounds since lower bounds will trigger carry */ VIRTUAL_BUG_ON(y >= KERNEL_IMAGE_SIZE); return y + phys_base; } EXPORT_SYMBOL(__phys_addr_symbol); #endif bool __virt_addr_valid(unsigned long x) { unsigned long y = x - __START_KERNEL_map; /* use the carry flag to determine if x was < __START_KERNEL_map */ if (unlikely(x > y)) { x = y + phys_base; if (y >= KERNEL_IMAGE_SIZE) return false; } else { x = y + (__START_KERNEL_map - PAGE_OFFSET); /* carry flag will be set if starting x was >= PAGE_OFFSET */ if ((x > y) || !phys_addr_valid(x)) return false; } return pfn_valid(x >> PAGE_SHIFT); } EXPORT_SYMBOL(__virt_addr_valid); #else #ifdef CONFIG_DEBUG_VIRTUAL unsigned long __phys_addr(unsigned long x) { unsigned long phys_addr = x - PAGE_OFFSET; /* VMALLOC_* aren't constants */ VIRTUAL_BUG_ON(x < PAGE_OFFSET); VIRTUAL_BUG_ON(__vmalloc_start_set && is_vmalloc_addr((void *) x)); /* max_low_pfn is set early, but not _that_ early */ if (max_low_pfn) { VIRTUAL_BUG_ON((phys_addr >> PAGE_SHIFT) > max_low_pfn); BUG_ON(slow_virt_to_phys((void *)x) != phys_addr); } return phys_addr; } EXPORT_SYMBOL(__phys_addr); #endif bool __virt_addr_valid(unsigned long x) { if (x < PAGE_OFFSET) return false; if (__vmalloc_start_set && is_vmalloc_addr((void *) x)) return false; if (x >= FIXADDR_START) return false; return pfn_valid((x - PAGE_OFFSET) >> PAGE_SHIFT); } EXPORT_SYMBOL(__virt_addr_valid); #endif /* CONFIG_X86_64 */
1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 // SPDX-License-Identifier: GPL-2.0 /* * Lockless hierarchical page accounting & limiting * * Copyright (C) 2014 Red Hat, Inc., Johannes Weiner */ #include <linux/page_counter.h> #include <linux/atomic.h> #include <linux/kernel.h> #include <linux/string.h> #include <linux/sched.h> #include <linux/bug.h> #include <asm/page.h> static void propagate_protected_usage(struct page_counter *c, unsigned long usage) { unsigned long protected, old_protected; unsigned long low, min; long delta; if (!c->parent) return; min = READ_ONCE(c->min); if (min || atomic_long_read(&c->min_usage)) { protected = min(usage, min); old_protected = atomic_long_xchg(&c->min_usage, protected); delta = protected - old_protected; if (delta) atomic_long_add(delta, &c->parent->children_min_usage); } low = READ_ONCE(c->low); if (low || atomic_long_read(&c->low_usage)) { protected = min(usage, low); old_protected = atomic_long_xchg(&c->low_usage, protected); delta = protected - old_protected; if (delta) atomic_long_add(delta, &c->parent->children_low_usage); } } /** * page_counter_cancel - take pages out of the local counter * @counter: counter * @nr_pages: number of pages to cancel */ void page_counter_cancel(struct page_counter *counter, unsigned long nr_pages) { long new; new = atomic_long_sub_return(nr_pages, &counter->usage); propagate_protected_usage(counter, new); /* More uncharges than charges? */ WARN_ON_ONCE(new < 0); } /** * page_counter_charge - hierarchically charge pages * @counter: counter * @nr_pages: number of pages to charge * * NOTE: This does not consider any configured counter limits. */ void page_counter_charge(struct page_counter *counter, unsigned long nr_pages) { struct page_counter *c; for (c = counter; c; c = c->parent) { long new; new = atomic_long_add_return(nr_pages, &c->usage); propagate_protected_usage(c, new); /* * This is indeed racy, but we can live with some * inaccuracy in the watermark. */ if (new > READ_ONCE(c->watermark)) WRITE_ONCE(c->watermark, new); } } /** * page_counter_try_charge - try to hierarchically charge pages * @counter: counter * @nr_pages: number of pages to charge * @fail: points first counter to hit its limit, if any * * Returns %true on success, or %false and @fail if the counter or one * of its ancestors has hit its configured limit. */ bool page_counter_try_charge(struct page_counter *counter, unsigned long nr_pages, struct page_counter **fail) { struct page_counter *c; for (c = counter; c; c = c->parent) { long new; /* * Charge speculatively to avoid an expensive CAS. If * a bigger charge fails, it might falsely lock out a * racing smaller charge and send it into reclaim * early, but the error is limited to the difference * between the two sizes, which is less than 2M/4M in * case of a THP locking out a regular page charge. * * The atomic_long_add_return() implies a full memory * barrier between incrementing the count and reading * the limit. When racing with page_counter_set_max(), * we either see the new limit or the setter sees the * counter has changed and retries. */ new = atomic_long_add_return(nr_pages, &c->usage); if (new > c->max) { atomic_long_sub(nr_pages, &c->usage); propagate_protected_usage(c, new); /* * This is racy, but we can live with some * inaccuracy in the failcnt which is only used * to report stats. */ data_race(c->failcnt++); *fail = c; goto failed; } propagate_protected_usage(c, new); /* * Just like with failcnt, we can live with some * inaccuracy in the watermark. */ if (new > READ_ONCE(c->watermark)) WRITE_ONCE(c->watermark, new); } return true; failed: for (c = counter; c != *fail; c = c->parent) page_counter_cancel(c, nr_pages); return false; } /** * page_counter_uncharge - hierarchically uncharge pages * @counter: counter * @nr_pages: number of pages to uncharge */ void page_counter_uncharge(struct page_counter *counter, unsigned long nr_pages) { struct page_counter *c; for (c = counter; c; c = c->parent) page_counter_cancel(c, nr_pages); } /** * page_counter_set_max - set the maximum number of pages allowed * @counter: counter * @nr_pages: limit to set * * Returns 0 on success, -EBUSY if the current number of pages on the * counter already exceeds the specified limit. * * The caller must serialize invocations on the same counter. */ int page_counter_set_max(struct page_counter *counter, unsigned long nr_pages) { for (;;) { unsigned long old; long usage; /* * Update the limit while making sure that it's not * below the concurrently-changing counter value. * * The xchg implies two full memory barriers before * and after, so the read-swap-read is ordered and * ensures coherency with page_counter_try_charge(): * that function modifies the count before checking * the limit, so if it sees the old limit, we see the * modified counter and retry. */ usage = atomic_long_read(&counter->usage); if (usage > nr_pages) return -EBUSY; old = xchg(&counter->max, nr_pages); if (atomic_long_read(&counter->usage) <= usage) return 0; counter->max = old; cond_resched(); } } /** * page_counter_set_min - set the amount of protected memory * @counter: counter * @nr_pages: value to set * * The caller must serialize invocations on the same counter. */ void page_counter_set_min(struct page_counter *counter, unsigned long nr_pages) { struct page_counter *c; WRITE_ONCE(counter->min, nr_pages); for (c = counter; c; c = c->parent) propagate_protected_usage(c, atomic_long_read(&c->usage)); } /** * page_counter_set_low - set the amount of protected memory * @counter: counter * @nr_pages: value to set * * The caller must serialize invocations on the same counter. */ void page_counter_set_low(struct page_counter *counter, unsigned long nr_pages) { struct page_counter *c; WRITE_ONCE(counter->low, nr_pages); for (c = counter; c; c = c->parent) propagate_protected_usage(c, atomic_long_read(&c->usage)); } /** * page_counter_memparse - memparse() for page counter limits * @buf: string to parse * @max: string meaning maximum possible value * @nr_pages: returns the result in number of pages * * Returns -EINVAL, or 0 and @nr_pages on success. @nr_pages will be * limited to %PAGE_COUNTER_MAX. */ int page_counter_memparse(const char *buf, const char *max, unsigned long *nr_pages) { char *end; u64 bytes; if (!strcmp(buf, max)) { *nr_pages = PAGE_COUNTER_MAX; return 0; } bytes = memparse(buf, &end); if (*end != '\0') return -EINVAL; *nr_pages = min(bytes / PAGE_SIZE, (u64)PAGE_COUNTER_MAX); return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_MMIOTRACE_H #define _LINUX_MMIOTRACE_H #include <linux/types.h> #include <linux/list.h> struct kmmio_probe; struct pt_regs; typedef void (*kmmio_pre_handler_t)(struct kmmio_probe *, struct pt_regs *, unsigned long addr); typedef void (*kmmio_post_handler_t)(struct kmmio_probe *, unsigned long condition, struct pt_regs *); struct kmmio_probe { /* kmmio internal list: */ struct list_head list; /* start location of the probe point: */ unsigned long addr; /* length of the probe region: */ unsigned long len; /* Called before addr is executed: */ kmmio_pre_handler_t pre_handler; /* Called after addr is executed: */ kmmio_post_handler_t post_handler; void *private; }; extern unsigned int kmmio_count; extern int register_kmmio_probe(struct kmmio_probe *p); extern void unregister_kmmio_probe(struct kmmio_probe *p); extern int kmmio_init(void); extern void kmmio_cleanup(void); #ifdef CONFIG_MMIOTRACE /* kmmio is active by some kmmio_probes? */ static inline int is_kmmio_active(void) { return kmmio_count; } /* Called from page fault handler. */ extern int kmmio_handler(struct pt_regs *regs, unsigned long addr); /* Called from ioremap.c */ extern void mmiotrace_ioremap(resource_size_t offset, unsigned long size, void __iomem *addr); extern void mmiotrace_iounmap(volatile void __iomem *addr); /* For anyone to insert markers. Remember trailing newline. */ extern __printf(1, 2) int mmiotrace_printk(const char *fmt, ...); #else /* !CONFIG_MMIOTRACE: */ static inline int is_kmmio_active(void) { return 0; } static inline int kmmio_handler(struct pt_regs *regs, unsigned long addr) { return 0; } static inline void mmiotrace_ioremap(resource_size_t offset, unsigned long size, void __iomem *addr) { } static inline void mmiotrace_iounmap(volatile void __iomem *addr) { } static inline __printf(1, 2) int mmiotrace_printk(const char *fmt, ...) { return 0; } #endif /* CONFIG_MMIOTRACE */ enum mm_io_opcode { MMIO_READ = 0x1, /* struct mmiotrace_rw */ MMIO_WRITE = 0x2, /* struct mmiotrace_rw */ MMIO_PROBE = 0x3, /* struct mmiotrace_map */ MMIO_UNPROBE = 0x4, /* struct mmiotrace_map */ MMIO_UNKNOWN_OP = 0x5, /* struct mmiotrace_rw */ }; struct mmiotrace_rw { resource_size_t phys; /* PCI address of register */ unsigned long value; unsigned long pc; /* optional program counter */ int map_id; unsigned char opcode; /* one of MMIO_{READ,WRITE,UNKNOWN_OP} */ unsigned char width; /* size of register access in bytes */ }; struct mmiotrace_map { resource_size_t phys; /* base address in PCI space */ unsigned long virt; /* base virtual address */ unsigned long len; /* mapping size */ int map_id; unsigned char opcode; /* MMIO_PROBE or MMIO_UNPROBE */ }; /* in kernel/trace/trace_mmiotrace.c */ extern void enable_mmiotrace(void); extern void disable_mmiotrace(void); extern void mmio_trace_rw(struct mmiotrace_rw *rw); extern void mmio_trace_mapping(struct mmiotrace_map *map); extern __printf(1, 0) int mmio_trace_printk(const char *fmt, va_list args); #endif /* _LINUX_MMIOTRACE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Definitions for the RAW-IP module. * * Version: @(#)raw.h 1.0.2 05/07/93 * * Author: Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> */ #ifndef _RAW_H #define _RAW_H #include <net/inet_sock.h> #include <net/protocol.h> #include <linux/icmp.h> extern struct proto raw_prot; extern struct raw_hashinfo raw_v4_hashinfo; struct sock *__raw_v4_lookup(struct net *net, struct sock *sk, unsigned short num, __be32 raddr, __be32 laddr, int dif, int sdif); int raw_abort(struct sock *sk, int err); void raw_icmp_error(struct sk_buff *, int, u32); int raw_local_deliver(struct sk_buff *, int); int raw_rcv(struct sock *, struct sk_buff *); #define RAW_HTABLE_SIZE MAX_INET_PROTOS struct raw_hashinfo { rwlock_t lock; struct hlist_head ht[RAW_HTABLE_SIZE]; }; #ifdef CONFIG_PROC_FS int raw_proc_init(void); void raw_proc_exit(void); struct raw_iter_state { struct seq_net_private p; int bucket; }; static inline struct raw_iter_state *raw_seq_private(struct seq_file *seq) { return seq->private; } void *raw_seq_start(struct seq_file *seq, loff_t *pos); void *raw_seq_next(struct seq_file *seq, void *v, loff_t *pos); void raw_seq_stop(struct seq_file *seq, void *v); #endif int raw_hash_sk(struct sock *sk); void raw_unhash_sk(struct sock *sk); void raw_init(void); struct raw_sock { /* inet_sock has to be the first member */ struct inet_sock inet; struct icmp_filter filter; u32 ipmr_table; }; static inline struct raw_sock *raw_sk(const struct sock *sk) { return (struct raw_sock *)sk; } static inline bool raw_sk_bound_dev_eq(struct net *net, int bound_dev_if, int dif, int sdif) { #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) return inet_bound_dev_eq(!!net->ipv4.sysctl_raw_l3mdev_accept, bound_dev_if, dif, sdif); #else return inet_bound_dev_eq(true, bound_dev_if, dif, sdif); #endif } #endif /* _RAW_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SWAP_H #define _LINUX_SWAP_H #include <linux/spinlock.h> #include <linux/linkage.h> #include <linux/mmzone.h> #include <linux/list.h> #include <linux/memcontrol.h> #include <linux/sched.h> #include <linux/node.h> #include <linux/fs.h> #include <linux/atomic.h> #include <linux/page-flags.h> #include <asm/page.h> struct notifier_block; struct bio; struct pagevec; #define SWAP_FLAG_PREFER 0x8000 /* set if swap priority specified */ #define SWAP_FLAG_PRIO_MASK 0x7fff #define SWAP_FLAG_PRIO_SHIFT 0 #define SWAP_FLAG_DISCARD 0x10000 /* enable discard for swap */ #define SWAP_FLAG_DISCARD_ONCE 0x20000 /* discard swap area at swapon-time */ #define SWAP_FLAG_DISCARD_PAGES 0x40000 /* discard page-clusters after use */ #define SWAP_FLAGS_VALID (SWAP_FLAG_PRIO_MASK | SWAP_FLAG_PREFER | \ SWAP_FLAG_DISCARD | SWAP_FLAG_DISCARD_ONCE | \ SWAP_FLAG_DISCARD_PAGES) #define SWAP_BATCH 64 static inline int current_is_kswapd(void) { return current->flags & PF_KSWAPD; } /* * MAX_SWAPFILES defines the maximum number of swaptypes: things which can * be swapped to. The swap type and the offset into that swap type are * encoded into pte's and into pgoff_t's in the swapcache. Using five bits * for the type means that the maximum number of swapcache pages is 27 bits * on 32-bit-pgoff_t architectures. And that assumes that the architecture packs * the type/offset into the pte as 5/27 as well. */ #define MAX_SWAPFILES_SHIFT 5 /* * Use some of the swap files numbers for other purposes. This * is a convenient way to hook into the VM to trigger special * actions on faults. */ /* * Unaddressable device memory support. See include/linux/hmm.h and * Documentation/vm/hmm.rst. Short description is we need struct pages for * device memory that is unaddressable (inaccessible) by CPU, so that we can * migrate part of a process memory to device memory. * * When a page is migrated from CPU to device, we set the CPU page table entry * to a special SWP_DEVICE_* entry. */ #ifdef CONFIG_DEVICE_PRIVATE #define SWP_DEVICE_NUM 2 #define SWP_DEVICE_WRITE (MAX_SWAPFILES+SWP_HWPOISON_NUM+SWP_MIGRATION_NUM) #define SWP_DEVICE_READ (MAX_SWAPFILES+SWP_HWPOISON_NUM+SWP_MIGRATION_NUM+1) #else #define SWP_DEVICE_NUM 0 #endif /* * NUMA node memory migration support */ #ifdef CONFIG_MIGRATION #define SWP_MIGRATION_NUM 2 #define SWP_MIGRATION_READ (MAX_SWAPFILES + SWP_HWPOISON_NUM) #define SWP_MIGRATION_WRITE (MAX_SWAPFILES + SWP_HWPOISON_NUM + 1) #else #define SWP_MIGRATION_NUM 0 #endif /* * Handling of hardware poisoned pages with memory corruption. */ #ifdef CONFIG_MEMORY_FAILURE #define SWP_HWPOISON_NUM 1 #define SWP_HWPOISON MAX_SWAPFILES #else #define SWP_HWPOISON_NUM 0 #endif #define MAX_SWAPFILES \ ((1 << MAX_SWAPFILES_SHIFT) - SWP_DEVICE_NUM - \ SWP_MIGRATION_NUM - SWP_HWPOISON_NUM) /* * Magic header for a swap area. The first part of the union is * what the swap magic looks like for the old (limited to 128MB) * swap area format, the second part of the union adds - in the * old reserved area - some extra information. Note that the first * kilobyte is reserved for boot loader or disk label stuff... * * Having the magic at the end of the PAGE_SIZE makes detecting swap * areas somewhat tricky on machines that support multiple page sizes. * For 2.5 we'll probably want to move the magic to just beyond the * bootbits... */ union swap_header { struct { char reserved[PAGE_SIZE - 10]; char magic[10]; /* SWAP-SPACE or SWAPSPACE2 */ } magic; struct { char bootbits[1024]; /* Space for disklabel etc. */ __u32 version; __u32 last_page; __u32 nr_badpages; unsigned char sws_uuid[16]; unsigned char sws_volume[16]; __u32 padding[117]; __u32 badpages[1]; } info; }; /* * current->reclaim_state points to one of these when a task is running * memory reclaim */ struct reclaim_state { unsigned long reclaimed_slab; }; #ifdef __KERNEL__ struct address_space; struct sysinfo; struct writeback_control; struct zone; /* * A swap extent maps a range of a swapfile's PAGE_SIZE pages onto a range of * disk blocks. A list of swap extents maps the entire swapfile. (Where the * term `swapfile' refers to either a blockdevice or an IS_REG file. Apart * from setup, they're handled identically. * * We always assume that blocks are of size PAGE_SIZE. */ struct swap_extent { struct rb_node rb_node; pgoff_t start_page; pgoff_t nr_pages; sector_t start_block; }; /* * Max bad pages in the new format.. */ #define MAX_SWAP_BADPAGES \ ((offsetof(union swap_header, magic.magic) - \ offsetof(union swap_header, info.badpages)) / sizeof(int)) enum { SWP_USED = (1 << 0), /* is slot in swap_info[] used? */ SWP_WRITEOK = (1 << 1), /* ok to write to this swap? */ SWP_DISCARDABLE = (1 << 2), /* blkdev support discard */ SWP_DISCARDING = (1 << 3), /* now discarding a free cluster */ SWP_SOLIDSTATE = (1 << 4), /* blkdev seeks are cheap */ SWP_CONTINUED = (1 << 5), /* swap_map has count continuation */ SWP_BLKDEV = (1 << 6), /* its a block device */ SWP_ACTIVATED = (1 << 7), /* set after swap_activate success */ SWP_FS_OPS = (1 << 8), /* swapfile operations go through fs */ SWP_AREA_DISCARD = (1 << 9), /* single-time swap area discards */ SWP_PAGE_DISCARD = (1 << 10), /* freed swap page-cluster discards */ SWP_STABLE_WRITES = (1 << 11), /* no overwrite PG_writeback pages */ SWP_SYNCHRONOUS_IO = (1 << 12), /* synchronous IO is efficient */ SWP_VALID = (1 << 13), /* swap is valid to be operated on? */ /* add others here before... */ SWP_SCANNING = (1 << 14), /* refcount in scan_swap_map */ }; #define SWAP_CLUSTER_MAX 32UL #define COMPACT_CLUSTER_MAX SWAP_CLUSTER_MAX /* Bit flag in swap_map */ #define SWAP_HAS_CACHE 0x40 /* Flag page is cached, in first swap_map */ #define COUNT_CONTINUED 0x80 /* Flag swap_map continuation for full count */ /* Special value in first swap_map */ #define SWAP_MAP_MAX 0x3e /* Max count */ #define SWAP_MAP_BAD 0x3f /* Note page is bad */ #define SWAP_MAP_SHMEM 0xbf /* Owned by shmem/tmpfs */ /* Special value in each swap_map continuation */ #define SWAP_CONT_MAX 0x7f /* Max count */ /* * We use this to track usage of a cluster. A cluster is a block of swap disk * space with SWAPFILE_CLUSTER pages long and naturally aligns in disk. All * free clusters are organized into a list. We fetch an entry from the list to * get a free cluster. * * The data field stores next cluster if the cluster is free or cluster usage * counter otherwise. The flags field determines if a cluster is free. This is * protected by swap_info_struct.lock. */ struct swap_cluster_info { spinlock_t lock; /* * Protect swap_cluster_info fields * and swap_info_struct->swap_map * elements correspond to the swap * cluster */ unsigned int data:24; unsigned int flags:8; }; #define CLUSTER_FLAG_FREE 1 /* This cluster is free */ #define CLUSTER_FLAG_NEXT_NULL 2 /* This cluster has no next cluster */ #define CLUSTER_FLAG_HUGE 4 /* This cluster is backing a transparent huge page */ /* * We assign a cluster to each CPU, so each CPU can allocate swap entry from * its own cluster and swapout sequentially. The purpose is to optimize swapout * throughput. */ struct percpu_cluster { struct swap_cluster_info index; /* Current cluster index */ unsigned int next; /* Likely next allocation offset */ }; struct swap_cluster_list { struct swap_cluster_info head; struct swap_cluster_info tail; }; /* * The in-memory structure used to track swap areas. */ struct swap_info_struct { unsigned long flags; /* SWP_USED etc: see above */ signed short prio; /* swap priority of this type */ struct plist_node list; /* entry in swap_active_head */ signed char type; /* strange name for an index */ unsigned int max; /* extent of the swap_map */ unsigned char *swap_map; /* vmalloc'ed array of usage counts */ struct swap_cluster_info *cluster_info; /* cluster info. Only for SSD */ struct swap_cluster_list free_clusters; /* free clusters list */ unsigned int lowest_bit; /* index of first free in swap_map */ unsigned int highest_bit; /* index of last free in swap_map */ unsigned int pages; /* total of usable pages of swap */ unsigned int inuse_pages; /* number of those currently in use */ unsigned int cluster_next; /* likely index for next allocation */ unsigned int cluster_nr; /* countdown to next cluster search */ unsigned int __percpu *cluster_next_cpu; /*percpu index for next allocation */ struct percpu_cluster __percpu *percpu_cluster; /* per cpu's swap location */ struct rb_root swap_extent_root;/* root of the swap extent rbtree */ struct block_device *bdev; /* swap device or bdev of swap file */ struct file *swap_file; /* seldom referenced */ unsigned int old_block_size; /* seldom referenced */ #ifdef CONFIG_FRONTSWAP unsigned long *frontswap_map; /* frontswap in-use, one bit per page */ atomic_t frontswap_pages; /* frontswap pages in-use counter */ #endif spinlock_t lock; /* * protect map scan related fields like * swap_map, lowest_bit, highest_bit, * inuse_pages, cluster_next, * cluster_nr, lowest_alloc, * highest_alloc, free/discard cluster * list. other fields are only changed * at swapon/swapoff, so are protected * by swap_lock. changing flags need * hold this lock and swap_lock. If * both locks need hold, hold swap_lock * first. */ spinlock_t cont_lock; /* * protect swap count continuation page * list. */ struct work_struct discard_work; /* discard worker */ struct swap_cluster_list discard_clusters; /* discard clusters list */ struct plist_node avail_lists[]; /* * entries in swap_avail_heads, one * entry per node. * Must be last as the number of the * array is nr_node_ids, which is not * a fixed value so have to allocate * dynamically. * And it has to be an array so that * plist_for_each_* can work. */ }; #ifdef CONFIG_64BIT #define SWAP_RA_ORDER_CEILING 5 #else /* Avoid stack overflow, because we need to save part of page table */ #define SWAP_RA_ORDER_CEILING 3 #define SWAP_RA_PTE_CACHE_SIZE (1 << SWAP_RA_ORDER_CEILING) #endif struct vma_swap_readahead { unsigned short win; unsigned short offset; unsigned short nr_pte; #ifdef CONFIG_64BIT pte_t *ptes; #else pte_t ptes[SWAP_RA_PTE_CACHE_SIZE]; #endif }; /* linux/mm/workingset.c */ void workingset_age_nonresident(struct lruvec *lruvec, unsigned long nr_pages); void *workingset_eviction(struct page *page, struct mem_cgroup *target_memcg); void workingset_refault(struct page *page, void *shadow); void workingset_activation(struct page *page); /* Only track the nodes of mappings with shadow entries */ void workingset_update_node(struct xa_node *node); #define mapping_set_update(xas, mapping) do { \ if (!dax_mapping(mapping) && !shmem_mapping(mapping)) \ xas_set_update(xas, workingset_update_node); \ } while (0) /* linux/mm/page_alloc.c */ extern unsigned long totalreserve_pages; extern unsigned long nr_free_buffer_pages(void); /* Definition of global_zone_page_state not available yet */ #define nr_free_pages() global_zone_page_state(NR_FREE_PAGES) /* linux/mm/swap.c */ extern void lru_note_cost(struct lruvec *lruvec, bool file, unsigned int nr_pages); extern void lru_note_cost_page(struct page *); extern void lru_cache_add(struct page *); extern void lru_add_page_tail(struct page *page, struct page *page_tail, struct lruvec *lruvec, struct list_head *head); extern void mark_page_accessed(struct page *); extern void lru_add_drain(void); extern void lru_add_drain_cpu(int cpu); extern void lru_add_drain_cpu_zone(struct zone *zone); extern void lru_add_drain_all(void); extern void rotate_reclaimable_page(struct page *page); extern void deactivate_file_page(struct page *page); extern void deactivate_page(struct page *page); extern void mark_page_lazyfree(struct page *page); extern void swap_setup(void); extern void lru_cache_add_inactive_or_unevictable(struct page *page, struct vm_area_struct *vma); /* linux/mm/vmscan.c */ extern unsigned long zone_reclaimable_pages(struct zone *zone); extern unsigned long try_to_free_pages(struct zonelist *zonelist, int order, gfp_t gfp_mask, nodemask_t *mask); extern int __isolate_lru_page(struct page *page, isolate_mode_t mode); extern unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, unsigned long nr_pages, gfp_t gfp_mask, bool may_swap); extern unsigned long mem_cgroup_shrink_node(struct mem_cgroup *mem, gfp_t gfp_mask, bool noswap, pg_data_t *pgdat, unsigned long *nr_scanned); extern unsigned long shrink_all_memory(unsigned long nr_pages); extern int vm_swappiness; extern int remove_mapping(struct address_space *mapping, struct page *page); extern unsigned long reclaim_pages(struct list_head *page_list); #ifdef CONFIG_NUMA extern int node_reclaim_mode; extern int sysctl_min_unmapped_ratio; extern int sysctl_min_slab_ratio; #else #define node_reclaim_mode 0 #endif extern void check_move_unevictable_pages(struct pagevec *pvec); extern int kswapd_run(int nid); extern void kswapd_stop(int nid); #ifdef CONFIG_SWAP #include <linux/blk_types.h> /* for bio_end_io_t */ /* linux/mm/page_io.c */ extern int swap_readpage(struct page *page, bool do_poll); extern int swap_writepage(struct page *page, struct writeback_control *wbc); extern void end_swap_bio_write(struct bio *bio); extern int __swap_writepage(struct page *page, struct writeback_control *wbc, bio_end_io_t end_write_func); extern int swap_set_page_dirty(struct page *page); int add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, unsigned long nr_pages, sector_t start_block); int generic_swapfile_activate(struct swap_info_struct *, struct file *, sector_t *); /* linux/mm/swap_state.c */ /* One swap address space for each 64M swap space */ #define SWAP_ADDRESS_SPACE_SHIFT 14 #define SWAP_ADDRESS_SPACE_PAGES (1 << SWAP_ADDRESS_SPACE_SHIFT) extern struct address_space *swapper_spaces[]; #define swap_address_space(entry) \ (&swapper_spaces[swp_type(entry)][swp_offset(entry) \ >> SWAP_ADDRESS_SPACE_SHIFT]) extern unsigned long total_swapcache_pages(void); extern void show_swap_cache_info(void); extern int add_to_swap(struct page *page); extern void *get_shadow_from_swap_cache(swp_entry_t entry); extern int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp, void **shadowp); extern void __delete_from_swap_cache(struct page *page, swp_entry_t entry, void *shadow); extern void delete_from_swap_cache(struct page *); extern void clear_shadow_from_swap_cache(int type, unsigned long begin, unsigned long end); extern void free_page_and_swap_cache(struct page *); extern void free_pages_and_swap_cache(struct page **, int); extern struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma, unsigned long addr); struct page *find_get_incore_page(struct address_space *mapping, pgoff_t index); extern struct page *read_swap_cache_async(swp_entry_t, gfp_t, struct vm_area_struct *vma, unsigned long addr, bool do_poll); extern struct page *__read_swap_cache_async(swp_entry_t, gfp_t, struct vm_area_struct *vma, unsigned long addr, bool *new_page_allocated); extern struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t flag, struct vm_fault *vmf); extern struct page *swapin_readahead(swp_entry_t entry, gfp_t flag, struct vm_fault *vmf); /* linux/mm/swapfile.c */ extern atomic_long_t nr_swap_pages; extern long total_swap_pages; extern atomic_t nr_rotate_swap; extern bool has_usable_swap(void); /* Swap 50% full? Release swapcache more aggressively.. */ static inline bool vm_swap_full(void) { return atomic_long_read(&nr_swap_pages) * 2 < total_swap_pages; } static inline long get_nr_swap_pages(void) { return atomic_long_read(&nr_swap_pages); } extern void si_swapinfo(struct sysinfo *); extern swp_entry_t get_swap_page(struct page *page); extern void put_swap_page(struct page *page, swp_entry_t entry); extern swp_entry_t get_swap_page_of_type(int); extern int get_swap_pages(int n, swp_entry_t swp_entries[], int entry_size); extern int add_swap_count_continuation(swp_entry_t, gfp_t); extern void swap_shmem_alloc(swp_entry_t); extern int swap_duplicate(swp_entry_t); extern int swapcache_prepare(swp_entry_t); extern void swap_free(swp_entry_t); extern void swapcache_free_entries(swp_entry_t *entries, int n); extern int free_swap_and_cache(swp_entry_t); int swap_type_of(dev_t device, sector_t offset); int find_first_swap(dev_t *device); extern unsigned int count_swap_pages(int, int); extern sector_t map_swap_page(struct page *, struct block_device **); extern sector_t swapdev_block(int, pgoff_t); extern int page_swapcount(struct page *); extern int __swap_count(swp_entry_t entry); extern int __swp_swapcount(swp_entry_t entry); extern int swp_swapcount(swp_entry_t entry); extern struct swap_info_struct *page_swap_info(struct page *); extern struct swap_info_struct *swp_swap_info(swp_entry_t entry); extern bool reuse_swap_page(struct page *, int *); extern int try_to_free_swap(struct page *); struct backing_dev_info; extern int init_swap_address_space(unsigned int type, unsigned long nr_pages); extern void exit_swap_address_space(unsigned int type); extern struct swap_info_struct *get_swap_device(swp_entry_t entry); sector_t swap_page_sector(struct page *page); static inline void put_swap_device(struct swap_info_struct *si) { rcu_read_unlock(); } #else /* CONFIG_SWAP */ static inline int swap_readpage(struct page *page, bool do_poll) { return 0; } static inline struct swap_info_struct *swp_swap_info(swp_entry_t entry) { return NULL; } #define swap_address_space(entry) (NULL) #define get_nr_swap_pages() 0L #define total_swap_pages 0L #define total_swapcache_pages() 0UL #define vm_swap_full() 0 #define si_swapinfo(val) \ do { (val)->freeswap = (val)->totalswap = 0; } while (0) /* only sparc can not include linux/pagemap.h in this file * so leave put_page and release_pages undeclared... */ #define free_page_and_swap_cache(page) \ put_page(page) #define free_pages_and_swap_cache(pages, nr) \ release_pages((pages), (nr)); static inline void show_swap_cache_info(void) { } #define free_swap_and_cache(e) ({(is_migration_entry(e) || is_device_private_entry(e));}) #define swapcache_prepare(e) ({(is_migration_entry(e) || is_device_private_entry(e));}) static inline int add_swap_count_continuation(swp_entry_t swp, gfp_t gfp_mask) { return 0; } static inline void swap_shmem_alloc(swp_entry_t swp) { } static inline int swap_duplicate(swp_entry_t swp) { return 0; } static inline void swap_free(swp_entry_t swp) { } static inline void put_swap_page(struct page *page, swp_entry_t swp) { } static inline struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask, struct vm_fault *vmf) { return NULL; } static inline struct page *swapin_readahead(swp_entry_t swp, gfp_t gfp_mask, struct vm_fault *vmf) { return NULL; } static inline int swap_writepage(struct page *p, struct writeback_control *wbc) { return 0; } static inline struct page *lookup_swap_cache(swp_entry_t swp, struct vm_area_struct *vma, unsigned long addr) { return NULL; } static inline struct page *find_get_incore_page(struct address_space *mapping, pgoff_t index) { return find_get_page(mapping, index); } static inline int add_to_swap(struct page *page) { return 0; } static inline void *get_shadow_from_swap_cache(swp_entry_t entry) { return NULL; } static inline int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask, void **shadowp) { return -1; } static inline void __delete_from_swap_cache(struct page *page, swp_entry_t entry, void *shadow) { } static inline void delete_from_swap_cache(struct page *page) { } static inline void clear_shadow_from_swap_cache(int type, unsigned long begin, unsigned long end) { } static inline int page_swapcount(struct page *page) { return 0; } static inline int __swap_count(swp_entry_t entry) { return 0; } static inline int __swp_swapcount(swp_entry_t entry) { return 0; } static inline int swp_swapcount(swp_entry_t entry) { return 0; } #define reuse_swap_page(page, total_map_swapcount) \ (page_trans_huge_mapcount(page, total_map_swapcount) == 1) static inline int try_to_free_swap(struct page *page) { return 0; } static inline swp_entry_t get_swap_page(struct page *page) { swp_entry_t entry; entry.val = 0; return entry; } #endif /* CONFIG_SWAP */ #ifdef CONFIG_THP_SWAP extern int split_swap_cluster(swp_entry_t entry); #else static inline int split_swap_cluster(swp_entry_t entry) { return 0; } #endif #ifdef CONFIG_MEMCG static inline int mem_cgroup_swappiness(struct mem_cgroup *memcg) { /* Cgroup2 doesn't have per-cgroup swappiness */ if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) return vm_swappiness; /* root ? */ if (mem_cgroup_disabled() || mem_cgroup_is_root(memcg)) return vm_swappiness; return memcg->swappiness; } #else static inline int mem_cgroup_swappiness(struct mem_cgroup *mem) { return vm_swappiness; } #endif #if defined(CONFIG_SWAP) && defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP) extern void cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask); #else static inline void cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask) { } #endif #ifdef CONFIG_MEMCG_SWAP extern void mem_cgroup_swapout(struct page *page, swp_entry_t entry); extern int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry); extern void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages); extern long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg); extern bool mem_cgroup_swap_full(struct page *page); #else static inline void mem_cgroup_swapout(struct page *page, swp_entry_t entry) { } static inline int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry) { return 0; } static inline void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) { } static inline long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) { return get_nr_swap_pages(); } static inline bool mem_cgroup_swap_full(struct page *page) { return vm_swap_full(); } #endif #endif /* __KERNEL__*/ #endif /* _LINUX_SWAP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Cryptographic scatter and gather helpers. * * Copyright (c) 2002 James Morris <jmorris@intercode.com.au> * Copyright (c) 2002 Adam J. Richter <adam@yggdrasil.com> * Copyright (c) 2004 Jean-Luc Cooke <jlcooke@certainkey.com> * Copyright (c) 2007 Herbert Xu <herbert@gondor.apana.org.au> */ #ifndef _CRYPTO_SCATTERWALK_H #define _CRYPTO_SCATTERWALK_H #include <crypto/algapi.h> #include <linux/highmem.h> #include <linux/kernel.h> #include <linux/scatterlist.h> static inline void scatterwalk_crypto_chain(struct scatterlist *head, struct scatterlist *sg, int num) { if (sg) sg_chain(head, num, sg); else sg_mark_end(head); } static inline unsigned int scatterwalk_pagelen(struct scatter_walk *walk) { unsigned int len = walk->sg->offset + walk->sg->length - walk->offset; unsigned int len_this_page = offset_in_page(~walk->offset) + 1; return len_this_page > len ? len : len_this_page; } static inline unsigned int scatterwalk_clamp(struct scatter_walk *walk, unsigned int nbytes) { unsigned int len_this_page = scatterwalk_pagelen(walk); return nbytes > len_this_page ? len_this_page : nbytes; } static inline void scatterwalk_advance(struct scatter_walk *walk, unsigned int nbytes) { walk->offset += nbytes; } static inline unsigned int scatterwalk_aligned(struct scatter_walk *walk, unsigned int alignmask) { return !(walk->offset & alignmask); } static inline struct page *scatterwalk_page(struct scatter_walk *walk) { return sg_page(walk->sg) + (walk->offset >> PAGE_SHIFT); } static inline void scatterwalk_unmap(void *vaddr) { kunmap_atomic(vaddr); } static inline void scatterwalk_start(struct scatter_walk *walk, struct scatterlist *sg) { walk->sg = sg; walk->offset = sg->offset; } static inline void *scatterwalk_map(struct scatter_walk *walk) { return kmap_atomic(scatterwalk_page(walk)) + offset_in_page(walk->offset); } static inline void scatterwalk_pagedone(struct scatter_walk *walk, int out, unsigned int more) { if (out) { struct page *page; page = sg_page(walk->sg) + ((walk->offset - 1) >> PAGE_SHIFT); /* Test ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE first as * PageSlab cannot be optimised away per se due to * use of volatile pointer. */ if (ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE && !PageSlab(page)) flush_dcache_page(page); } if (more && walk->offset >= walk->sg->offset + walk->sg->length) scatterwalk_start(walk, sg_next(walk->sg)); } static inline void scatterwalk_done(struct scatter_walk *walk, int out, int more) { if (!more || walk->offset >= walk->sg->offset + walk->sg->length || !(walk->offset & (PAGE_SIZE - 1))) scatterwalk_pagedone(walk, out, more); } void scatterwalk_copychunks(void *buf, struct scatter_walk *walk, size_t nbytes, int out); void *scatterwalk_map(struct scatter_walk *walk); void scatterwalk_map_and_copy(void *buf, struct scatterlist *sg, unsigned int start, unsigned int nbytes, int out); struct scatterlist *scatterwalk_ffwd(struct scatterlist dst[2], struct scatterlist *src, unsigned int len); #endif /* _CRYPTO_SCATTERWALK_H */
1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 /* SPDX-License-Identifier: GPL-2.0+ */ /* * Read-Copy Update mechanism for mutual exclusion * * Copyright IBM Corporation, 2001 * * Author: Dipankar Sarma <dipankar@in.ibm.com> * * Based on the original work by Paul McKenney <paulmck@vnet.ibm.com> * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. * Papers: * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) * * For detailed explanation of Read-Copy Update mechanism see - * http://lse.sourceforge.net/locking/rcupdate.html * */ #ifndef __LINUX_RCUPDATE_H #define __LINUX_RCUPDATE_H #include <linux/types.h> #include <linux/compiler.h> #include <linux/atomic.h> #include <linux/irqflags.h> #include <linux/preempt.h> #include <linux/bottom_half.h> #include <linux/lockdep.h> #include <asm/processor.h> #include <linux/cpumask.h> #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b)) #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b)) #define ulong2long(a) (*(long *)(&(a))) #define USHORT_CMP_GE(a, b) (USHRT_MAX / 2 >= (unsigned short)((a) - (b))) #define USHORT_CMP_LT(a, b) (USHRT_MAX / 2 < (unsigned short)((a) - (b))) /* Exported common interfaces */ void call_rcu(struct rcu_head *head, rcu_callback_t func); void rcu_barrier_tasks(void); void rcu_barrier_tasks_rude(void); void synchronize_rcu(void); #ifdef CONFIG_PREEMPT_RCU void __rcu_read_lock(void); void __rcu_read_unlock(void); /* * Defined as a macro as it is a very low level header included from * areas that don't even know about current. This gives the rcu_read_lock() * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other * types of kernel builds, the rcu_read_lock() nesting depth is unknowable. */ #define rcu_preempt_depth() (current->rcu_read_lock_nesting) #else /* #ifdef CONFIG_PREEMPT_RCU */ #ifdef CONFIG_TINY_RCU #define rcu_read_unlock_strict() do { } while (0) #else void rcu_read_unlock_strict(void); #endif static inline void __rcu_read_lock(void) { preempt_disable(); } static inline void __rcu_read_unlock(void) { preempt_enable(); rcu_read_unlock_strict(); } static inline int rcu_preempt_depth(void) { return 0; } #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ /* Internal to kernel */ void rcu_init(void); extern int rcu_scheduler_active __read_mostly; void rcu_sched_clock_irq(int user); void rcu_report_dead(unsigned int cpu); void rcutree_migrate_callbacks(int cpu); #ifdef CONFIG_TASKS_RCU_GENERIC void rcu_init_tasks_generic(void); #else static inline void rcu_init_tasks_generic(void) { } #endif #ifdef CONFIG_RCU_STALL_COMMON void rcu_sysrq_start(void); void rcu_sysrq_end(void); #else /* #ifdef CONFIG_RCU_STALL_COMMON */ static inline void rcu_sysrq_start(void) { } static inline void rcu_sysrq_end(void) { } #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */ #ifdef CONFIG_NO_HZ_FULL void rcu_user_enter(void); void rcu_user_exit(void); #else static inline void rcu_user_enter(void) { } static inline void rcu_user_exit(void) { } #endif /* CONFIG_NO_HZ_FULL */ #ifdef CONFIG_RCU_NOCB_CPU void rcu_init_nohz(void); void rcu_nocb_flush_deferred_wakeup(void); #else /* #ifdef CONFIG_RCU_NOCB_CPU */ static inline void rcu_init_nohz(void) { } static inline void rcu_nocb_flush_deferred_wakeup(void) { } #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ /** * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers * @a: Code that RCU needs to pay attention to. * * RCU read-side critical sections are forbidden in the inner idle loop, * that is, between the rcu_idle_enter() and the rcu_idle_exit() -- RCU * will happily ignore any such read-side critical sections. However, * things like powertop need tracepoints in the inner idle loop. * * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU()) * will tell RCU that it needs to pay attention, invoke its argument * (in this example, calling the do_something_with_RCU() function), * and then tell RCU to go back to ignoring this CPU. It is permissible * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is * on the order of a million or so, even on 32-bit systems). It is * not legal to block within RCU_NONIDLE(), nor is it permissible to * transfer control either into or out of RCU_NONIDLE()'s statement. */ #define RCU_NONIDLE(a) \ do { \ rcu_irq_enter_irqson(); \ do { a; } while (0); \ rcu_irq_exit_irqson(); \ } while (0) /* * Note a quasi-voluntary context switch for RCU-tasks's benefit. * This is a macro rather than an inline function to avoid #include hell. */ #ifdef CONFIG_TASKS_RCU_GENERIC # ifdef CONFIG_TASKS_RCU # define rcu_tasks_classic_qs(t, preempt) \ do { \ if (!(preempt) && READ_ONCE((t)->rcu_tasks_holdout)) \ WRITE_ONCE((t)->rcu_tasks_holdout, false); \ } while (0) void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func); void synchronize_rcu_tasks(void); # else # define rcu_tasks_classic_qs(t, preempt) do { } while (0) # define call_rcu_tasks call_rcu # define synchronize_rcu_tasks synchronize_rcu # endif # ifdef CONFIG_TASKS_TRACE_RCU # define rcu_tasks_trace_qs(t) \ do { \ if (!likely(READ_ONCE((t)->trc_reader_checked)) && \ !unlikely(READ_ONCE((t)->trc_reader_nesting))) { \ smp_store_release(&(t)->trc_reader_checked, true); \ smp_mb(); /* Readers partitioned by store. */ \ } \ } while (0) # else # define rcu_tasks_trace_qs(t) do { } while (0) # endif #define rcu_tasks_qs(t, preempt) \ do { \ rcu_tasks_classic_qs((t), (preempt)); \ rcu_tasks_trace_qs((t)); \ } while (0) # ifdef CONFIG_TASKS_RUDE_RCU void call_rcu_tasks_rude(struct rcu_head *head, rcu_callback_t func); void synchronize_rcu_tasks_rude(void); # endif #define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t, false) void exit_tasks_rcu_start(void); void exit_tasks_rcu_finish(void); #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */ #define rcu_tasks_qs(t, preempt) do { } while (0) #define rcu_note_voluntary_context_switch(t) do { } while (0) #define call_rcu_tasks call_rcu #define synchronize_rcu_tasks synchronize_rcu static inline void exit_tasks_rcu_start(void) { } static inline void exit_tasks_rcu_finish(void) { } #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */ /** * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU * * This macro resembles cond_resched(), except that it is defined to * report potential quiescent states to RCU-tasks even if the cond_resched() * machinery were to be shut off, as some advocate for PREEMPTION kernels. */ #define cond_resched_tasks_rcu_qs() \ do { \ rcu_tasks_qs(current, false); \ cond_resched(); \ } while (0) /* * Infrastructure to implement the synchronize_() primitives in * TREE_RCU and rcu_barrier_() primitives in TINY_RCU. */ #if defined(CONFIG_TREE_RCU) #include <linux/rcutree.h> #elif defined(CONFIG_TINY_RCU) #include <linux/rcutiny.h> #else #error "Unknown RCU implementation specified to kernel configuration" #endif /* * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls * are needed for dynamic initialization and destruction of rcu_head * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for * dynamic initialization and destruction of statically allocated rcu_head * structures. However, rcu_head structures allocated dynamically in the * heap don't need any initialization. */ #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD void init_rcu_head(struct rcu_head *head); void destroy_rcu_head(struct rcu_head *head); void init_rcu_head_on_stack(struct rcu_head *head); void destroy_rcu_head_on_stack(struct rcu_head *head); #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ static inline void init_rcu_head(struct rcu_head *head) { } static inline void destroy_rcu_head(struct rcu_head *head) { } static inline void init_rcu_head_on_stack(struct rcu_head *head) { } static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { } #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) bool rcu_lockdep_current_cpu_online(void); #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ static inline bool rcu_lockdep_current_cpu_online(void) { return true; } #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ #ifdef CONFIG_DEBUG_LOCK_ALLOC static inline void rcu_lock_acquire(struct lockdep_map *map) { lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_); } static inline void rcu_lock_release(struct lockdep_map *map) { lock_release(map, _THIS_IP_); } extern struct lockdep_map rcu_lock_map; extern struct lockdep_map rcu_bh_lock_map; extern struct lockdep_map rcu_sched_lock_map; extern struct lockdep_map rcu_callback_map; int debug_lockdep_rcu_enabled(void); int rcu_read_lock_held(void); int rcu_read_lock_bh_held(void); int rcu_read_lock_sched_held(void); int rcu_read_lock_any_held(void); #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ # define rcu_lock_acquire(a) do { } while (0) # define rcu_lock_release(a) do { } while (0) static inline int rcu_read_lock_held(void) { return 1; } static inline int rcu_read_lock_bh_held(void) { return 1; } static inline int rcu_read_lock_sched_held(void) { return !preemptible(); } static inline int rcu_read_lock_any_held(void) { return !preemptible(); } #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ #ifdef CONFIG_PROVE_RCU /** * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met * @c: condition to check * @s: informative message */ #define RCU_LOCKDEP_WARN(c, s) \ do { \ static bool __section(".data.unlikely") __warned; \ if ((c) && debug_lockdep_rcu_enabled() && !__warned) { \ __warned = true; \ lockdep_rcu_suspicious(__FILE__, __LINE__, s); \ } \ } while (0) #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU) static inline void rcu_preempt_sleep_check(void) { RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map), "Illegal context switch in RCU read-side critical section"); } #else /* #ifdef CONFIG_PROVE_RCU */ static inline void rcu_preempt_sleep_check(void) { } #endif /* #else #ifdef CONFIG_PROVE_RCU */ #define rcu_sleep_check() \ do { \ rcu_preempt_sleep_check(); \ RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \ "Illegal context switch in RCU-bh read-side critical section"); \ RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \ "Illegal context switch in RCU-sched read-side critical section"); \ } while (0) #else /* #ifdef CONFIG_PROVE_RCU */ #define RCU_LOCKDEP_WARN(c, s) do { } while (0) #define rcu_sleep_check() do { } while (0) #endif /* #else #ifdef CONFIG_PROVE_RCU */ /* * Helper functions for rcu_dereference_check(), rcu_dereference_protected() * and rcu_assign_pointer(). Some of these could be folded into their * callers, but they are left separate in order to ease introduction of * multiple pointers markings to match different RCU implementations * (e.g., __srcu), should this make sense in the future. */ #ifdef __CHECKER__ #define rcu_check_sparse(p, space) \ ((void)(((typeof(*p) space *)p) == p)) #else /* #ifdef __CHECKER__ */ #define rcu_check_sparse(p, space) #endif /* #else #ifdef __CHECKER__ */ #define __rcu_access_pointer(p, space) \ ({ \ typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \ rcu_check_sparse(p, space); \ ((typeof(*p) __force __kernel *)(_________p1)); \ }) #define __rcu_dereference_check(p, c, space) \ ({ \ /* Dependency order vs. p above. */ \ typeof(*p) *________p1 = (typeof(*p) *__force)READ_ONCE(p); \ RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \ rcu_check_sparse(p, space); \ ((typeof(*p) __force __kernel *)(________p1)); \ }) #define __rcu_dereference_protected(p, c, space) \ ({ \ RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \ rcu_check_sparse(p, space); \ ((typeof(*p) __force __kernel *)(p)); \ }) #define rcu_dereference_raw(p) \ ({ \ /* Dependency order vs. p above. */ \ typeof(p) ________p1 = READ_ONCE(p); \ ((typeof(*p) __force __kernel *)(________p1)); \ }) /** * RCU_INITIALIZER() - statically initialize an RCU-protected global variable * @v: The value to statically initialize with. */ #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v) /** * rcu_assign_pointer() - assign to RCU-protected pointer * @p: pointer to assign to * @v: value to assign (publish) * * Assigns the specified value to the specified RCU-protected * pointer, ensuring that any concurrent RCU readers will see * any prior initialization. * * Inserts memory barriers on architectures that require them * (which is most of them), and also prevents the compiler from * reordering the code that initializes the structure after the pointer * assignment. More importantly, this call documents which pointers * will be dereferenced by RCU read-side code. * * In some special cases, you may use RCU_INIT_POINTER() instead * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due * to the fact that it does not constrain either the CPU or the compiler. * That said, using RCU_INIT_POINTER() when you should have used * rcu_assign_pointer() is a very bad thing that results in * impossible-to-diagnose memory corruption. So please be careful. * See the RCU_INIT_POINTER() comment header for details. * * Note that rcu_assign_pointer() evaluates each of its arguments only * once, appearances notwithstanding. One of the "extra" evaluations * is in typeof() and the other visible only to sparse (__CHECKER__), * neither of which actually execute the argument. As with most cpp * macros, this execute-arguments-only-once property is important, so * please be careful when making changes to rcu_assign_pointer() and the * other macros that it invokes. */ #define rcu_assign_pointer(p, v) \ do { \ uintptr_t _r_a_p__v = (uintptr_t)(v); \ rcu_check_sparse(p, __rcu); \ \ if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL) \ WRITE_ONCE((p), (typeof(p))(_r_a_p__v)); \ else \ smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \ } while (0) /** * rcu_replace_pointer() - replace an RCU pointer, returning its old value * @rcu_ptr: RCU pointer, whose old value is returned * @ptr: regular pointer * @c: the lockdep conditions under which the dereference will take place * * Perform a replacement, where @rcu_ptr is an RCU-annotated * pointer and @c is the lockdep argument that is passed to the * rcu_dereference_protected() call used to read that pointer. The old * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr. */ #define rcu_replace_pointer(rcu_ptr, ptr, c) \ ({ \ typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c)); \ rcu_assign_pointer((rcu_ptr), (ptr)); \ __tmp; \ }) /** * rcu_access_pointer() - fetch RCU pointer with no dereferencing * @p: The pointer to read * * Return the value of the specified RCU-protected pointer, but omit the * lockdep checks for being in an RCU read-side critical section. This is * useful when the value of this pointer is accessed, but the pointer is * not dereferenced, for example, when testing an RCU-protected pointer * against NULL. Although rcu_access_pointer() may also be used in cases * where update-side locks prevent the value of the pointer from changing, * you should instead use rcu_dereference_protected() for this use case. * * It is also permissible to use rcu_access_pointer() when read-side * access to the pointer was removed at least one grace period ago, as * is the case in the context of the RCU callback that is freeing up * the data, or after a synchronize_rcu() returns. This can be useful * when tearing down multi-linked structures after a grace period * has elapsed. */ #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu) /** * rcu_dereference_check() - rcu_dereference with debug checking * @p: The pointer to read, prior to dereferencing * @c: The conditions under which the dereference will take place * * Do an rcu_dereference(), but check that the conditions under which the * dereference will take place are correct. Typically the conditions * indicate the various locking conditions that should be held at that * point. The check should return true if the conditions are satisfied. * An implicit check for being in an RCU read-side critical section * (rcu_read_lock()) is included. * * For example: * * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock)); * * could be used to indicate to lockdep that foo->bar may only be dereferenced * if either rcu_read_lock() is held, or that the lock required to replace * the bar struct at foo->bar is held. * * Note that the list of conditions may also include indications of when a lock * need not be held, for example during initialisation or destruction of the * target struct: * * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) || * atomic_read(&foo->usage) == 0); * * Inserts memory barriers on architectures that require them * (currently only the Alpha), prevents the compiler from refetching * (and from merging fetches), and, more importantly, documents exactly * which pointers are protected by RCU and checks that the pointer is * annotated as __rcu. */ #define rcu_dereference_check(p, c) \ __rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu) /** * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking * @p: The pointer to read, prior to dereferencing * @c: The conditions under which the dereference will take place * * This is the RCU-bh counterpart to rcu_dereference_check(). */ #define rcu_dereference_bh_check(p, c) \ __rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu) /** * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking * @p: The pointer to read, prior to dereferencing * @c: The conditions under which the dereference will take place * * This is the RCU-sched counterpart to rcu_dereference_check(). */ #define rcu_dereference_sched_check(p, c) \ __rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \ __rcu) /* * The tracing infrastructure traces RCU (we want that), but unfortunately * some of the RCU checks causes tracing to lock up the system. * * The no-tracing version of rcu_dereference_raw() must not call * rcu_read_lock_held(). */ #define rcu_dereference_raw_check(p) __rcu_dereference_check((p), 1, __rcu) /** * rcu_dereference_protected() - fetch RCU pointer when updates prevented * @p: The pointer to read, prior to dereferencing * @c: The conditions under which the dereference will take place * * Return the value of the specified RCU-protected pointer, but omit * the READ_ONCE(). This is useful in cases where update-side locks * prevent the value of the pointer from changing. Please note that this * primitive does *not* prevent the compiler from repeating this reference * or combining it with other references, so it should not be used without * protection of appropriate locks. * * This function is only for update-side use. Using this function * when protected only by rcu_read_lock() will result in infrequent * but very ugly failures. */ #define rcu_dereference_protected(p, c) \ __rcu_dereference_protected((p), (c), __rcu) /** * rcu_dereference() - fetch RCU-protected pointer for dereferencing * @p: The pointer to read, prior to dereferencing * * This is a simple wrapper around rcu_dereference_check(). */ #define rcu_dereference(p) rcu_dereference_check(p, 0) /** * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing * @p: The pointer to read, prior to dereferencing * * Makes rcu_dereference_check() do the dirty work. */ #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0) /** * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing * @p: The pointer to read, prior to dereferencing * * Makes rcu_dereference_check() do the dirty work. */ #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0) /** * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism * @p: The pointer to hand off * * This is simply an identity function, but it documents where a pointer * is handed off from RCU to some other synchronization mechanism, for * example, reference counting or locking. In C11, it would map to * kill_dependency(). It could be used as follows:: * * rcu_read_lock(); * p = rcu_dereference(gp); * long_lived = is_long_lived(p); * if (long_lived) { * if (!atomic_inc_not_zero(p->refcnt)) * long_lived = false; * else * p = rcu_pointer_handoff(p); * } * rcu_read_unlock(); */ #define rcu_pointer_handoff(p) (p) /** * rcu_read_lock() - mark the beginning of an RCU read-side critical section * * When synchronize_rcu() is invoked on one CPU while other CPUs * are within RCU read-side critical sections, then the * synchronize_rcu() is guaranteed to block until after all the other * CPUs exit their critical sections. Similarly, if call_rcu() is invoked * on one CPU while other CPUs are within RCU read-side critical * sections, invocation of the corresponding RCU callback is deferred * until after the all the other CPUs exit their critical sections. * * Note, however, that RCU callbacks are permitted to run concurrently * with new RCU read-side critical sections. One way that this can happen * is via the following sequence of events: (1) CPU 0 enters an RCU * read-side critical section, (2) CPU 1 invokes call_rcu() to register * an RCU callback, (3) CPU 0 exits the RCU read-side critical section, * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU * callback is invoked. This is legal, because the RCU read-side critical * section that was running concurrently with the call_rcu() (and which * therefore might be referencing something that the corresponding RCU * callback would free up) has completed before the corresponding * RCU callback is invoked. * * RCU read-side critical sections may be nested. Any deferred actions * will be deferred until the outermost RCU read-side critical section * completes. * * You can avoid reading and understanding the next paragraph by * following this rule: don't put anything in an rcu_read_lock() RCU * read-side critical section that would block in a !PREEMPTION kernel. * But if you want the full story, read on! * * In non-preemptible RCU implementations (pure TREE_RCU and TINY_RCU), * it is illegal to block while in an RCU read-side critical section. * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION * kernel builds, RCU read-side critical sections may be preempted, * but explicit blocking is illegal. Finally, in preemptible RCU * implementations in real-time (with -rt patchset) kernel builds, RCU * read-side critical sections may be preempted and they may also block, but * only when acquiring spinlocks that are subject to priority inheritance. */ static __always_inline void rcu_read_lock(void) { __rcu_read_lock(); __acquire(RCU); rcu_lock_acquire(&rcu_lock_map); RCU_LOCKDEP_WARN(!rcu_is_watching(), "rcu_read_lock() used illegally while idle"); } /* * So where is rcu_write_lock()? It does not exist, as there is no * way for writers to lock out RCU readers. This is a feature, not * a bug -- this property is what provides RCU's performance benefits. * Of course, writers must coordinate with each other. The normal * spinlock primitives work well for this, but any other technique may be * used as well. RCU does not care how the writers keep out of each * others' way, as long as they do so. */ /** * rcu_read_unlock() - marks the end of an RCU read-side critical section. * * In most situations, rcu_read_unlock() is immune from deadlock. * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock() * is responsible for deboosting, which it does via rt_mutex_unlock(). * Unfortunately, this function acquires the scheduler's runqueue and * priority-inheritance spinlocks. This means that deadlock could result * if the caller of rcu_read_unlock() already holds one of these locks or * any lock that is ever acquired while holding them. * * That said, RCU readers are never priority boosted unless they were * preempted. Therefore, one way to avoid deadlock is to make sure * that preemption never happens within any RCU read-side critical * section whose outermost rcu_read_unlock() is called with one of * rt_mutex_unlock()'s locks held. Such preemption can be avoided in * a number of ways, for example, by invoking preempt_disable() before * critical section's outermost rcu_read_lock(). * * Given that the set of locks acquired by rt_mutex_unlock() might change * at any time, a somewhat more future-proofed approach is to make sure * that that preemption never happens within any RCU read-side critical * section whose outermost rcu_read_unlock() is called with irqs disabled. * This approach relies on the fact that rt_mutex_unlock() currently only * acquires irq-disabled locks. * * The second of these two approaches is best in most situations, * however, the first approach can also be useful, at least to those * developers willing to keep abreast of the set of locks acquired by * rt_mutex_unlock(). * * See rcu_read_lock() for more information. */ static inline void rcu_read_unlock(void) { RCU_LOCKDEP_WARN(!rcu_is_watching(), "rcu_read_unlock() used illegally while idle"); __release(RCU); __rcu_read_unlock(); rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */ } /** * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section * * This is equivalent of rcu_read_lock(), but also disables softirqs. * Note that anything else that disables softirqs can also serve as * an RCU read-side critical section. * * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh() * must occur in the same context, for example, it is illegal to invoke * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh() * was invoked from some other task. */ static inline void rcu_read_lock_bh(void) { local_bh_disable(); __acquire(RCU_BH); rcu_lock_acquire(&rcu_bh_lock_map); RCU_LOCKDEP_WARN(!rcu_is_watching(), "rcu_read_lock_bh() used illegally while idle"); } /** * rcu_read_unlock_bh() - marks the end of a softirq-only RCU critical section * * See rcu_read_lock_bh() for more information. */ static inline void rcu_read_unlock_bh(void) { RCU_LOCKDEP_WARN(!rcu_is_watching(), "rcu_read_unlock_bh() used illegally while idle"); rcu_lock_release(&rcu_bh_lock_map); __release(RCU_BH); local_bh_enable(); } /** * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section * * This is equivalent of rcu_read_lock(), but disables preemption. * Read-side critical sections can also be introduced by anything else * that disables preemption, including local_irq_disable() and friends. * * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched() * must occur in the same context, for example, it is illegal to invoke * rcu_read_unlock_sched() from process context if the matching * rcu_read_lock_sched() was invoked from an NMI handler. */ static inline void rcu_read_lock_sched(void) { preempt_disable(); __acquire(RCU_SCHED); rcu_lock_acquire(&rcu_sched_lock_map); RCU_LOCKDEP_WARN(!rcu_is_watching(), "rcu_read_lock_sched() used illegally while idle"); } /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ static inline notrace void rcu_read_lock_sched_notrace(void) { preempt_disable_notrace(); __acquire(RCU_SCHED); } /** * rcu_read_unlock_sched() - marks the end of a RCU-classic critical section * * See rcu_read_lock_sched() for more information. */ static inline void rcu_read_unlock_sched(void) { RCU_LOCKDEP_WARN(!rcu_is_watching(), "rcu_read_unlock_sched() used illegally while idle"); rcu_lock_release(&rcu_sched_lock_map); __release(RCU_SCHED); preempt_enable(); } /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ static inline notrace void rcu_read_unlock_sched_notrace(void) { __release(RCU_SCHED); preempt_enable_notrace(); } /** * RCU_INIT_POINTER() - initialize an RCU protected pointer * @p: The pointer to be initialized. * @v: The value to initialized the pointer to. * * Initialize an RCU-protected pointer in special cases where readers * do not need ordering constraints on the CPU or the compiler. These * special cases are: * * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer *or* * 2. The caller has taken whatever steps are required to prevent * RCU readers from concurrently accessing this pointer *or* * 3. The referenced data structure has already been exposed to * readers either at compile time or via rcu_assign_pointer() *and* * * a. You have not made *any* reader-visible changes to * this structure since then *or* * b. It is OK for readers accessing this structure from its * new location to see the old state of the structure. (For * example, the changes were to statistical counters or to * other state where exact synchronization is not required.) * * Failure to follow these rules governing use of RCU_INIT_POINTER() will * result in impossible-to-diagnose memory corruption. As in the structures * will look OK in crash dumps, but any concurrent RCU readers might * see pre-initialized values of the referenced data structure. So * please be very careful how you use RCU_INIT_POINTER()!!! * * If you are creating an RCU-protected linked structure that is accessed * by a single external-to-structure RCU-protected pointer, then you may * use RCU_INIT_POINTER() to initialize the internal RCU-protected * pointers, but you must use rcu_assign_pointer() to initialize the * external-to-structure pointer *after* you have completely initialized * the reader-accessible portions of the linked structure. * * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no * ordering guarantees for either the CPU or the compiler. */ #define RCU_INIT_POINTER(p, v) \ do { \ rcu_check_sparse(p, __rcu); \ WRITE_ONCE(p, RCU_INITIALIZER(v)); \ } while (0) /** * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer * @p: The pointer to be initialized. * @v: The value to initialized the pointer to. * * GCC-style initialization for an RCU-protected pointer in a structure field. */ #define RCU_POINTER_INITIALIZER(p, v) \ .p = RCU_INITIALIZER(v) /* * Does the specified offset indicate that the corresponding rcu_head * structure can be handled by kvfree_rcu()? */ #define __is_kvfree_rcu_offset(offset) ((offset) < 4096) /* * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain. */ #define __kvfree_rcu(head, offset) \ do { \ BUILD_BUG_ON(!__is_kvfree_rcu_offset(offset)); \ kvfree_call_rcu(head, (rcu_callback_t)(unsigned long)(offset)); \ } while (0) /** * kfree_rcu() - kfree an object after a grace period. * @ptr: pointer to kfree * @rhf: the name of the struct rcu_head within the type of @ptr. * * Many rcu callbacks functions just call kfree() on the base structure. * These functions are trivial, but their size adds up, and furthermore * when they are used in a kernel module, that module must invoke the * high-latency rcu_barrier() function at module-unload time. * * The kfree_rcu() function handles this issue. Rather than encoding a * function address in the embedded rcu_head structure, kfree_rcu() instead * encodes the offset of the rcu_head structure within the base structure. * Because the functions are not allowed in the low-order 4096 bytes of * kernel virtual memory, offsets up to 4095 bytes can be accommodated. * If the offset is larger than 4095 bytes, a compile-time error will * be generated in __kvfree_rcu(). If this error is triggered, you can * either fall back to use of call_rcu() or rearrange the structure to * position the rcu_head structure into the first 4096 bytes. * * Note that the allowable offset might decrease in the future, for example, * to allow something like kmem_cache_free_rcu(). * * The BUILD_BUG_ON check must not involve any function calls, hence the * checks are done in macros here. */ #define kfree_rcu(ptr, rhf) \ do { \ typeof (ptr) ___p = (ptr); \ \ if (___p) \ __kvfree_rcu(&((___p)->rhf), offsetof(typeof(*(ptr)), rhf)); \ } while (0) /** * kvfree_rcu() - kvfree an object after a grace period. * * This macro consists of one or two arguments and it is * based on whether an object is head-less or not. If it * has a head then a semantic stays the same as it used * to be before: * * kvfree_rcu(ptr, rhf); * * where @ptr is a pointer to kvfree(), @rhf is the name * of the rcu_head structure within the type of @ptr. * * When it comes to head-less variant, only one argument * is passed and that is just a pointer which has to be * freed after a grace period. Therefore the semantic is * * kvfree_rcu(ptr); * * where @ptr is a pointer to kvfree(). * * Please note, head-less way of freeing is permitted to * use from a context that has to follow might_sleep() * annotation. Otherwise, please switch and embed the * rcu_head structure within the type of @ptr. */ #define kvfree_rcu(...) KVFREE_GET_MACRO(__VA_ARGS__, \ kvfree_rcu_arg_2, kvfree_rcu_arg_1)(__VA_ARGS__) #define KVFREE_GET_MACRO(_1, _2, NAME, ...) NAME #define kvfree_rcu_arg_2(ptr, rhf) kfree_rcu(ptr, rhf) #define kvfree_rcu_arg_1(ptr) \ do { \ typeof(ptr) ___p = (ptr); \ \ if (___p) \ kvfree_call_rcu(NULL, (rcu_callback_t) (___p)); \ } while (0) /* * Place this after a lock-acquisition primitive to guarantee that * an UNLOCK+LOCK pair acts as a full barrier. This guarantee applies * if the UNLOCK and LOCK are executed by the same CPU or if the * UNLOCK and LOCK operate on the same lock variable. */ #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE #define smp_mb__after_unlock_lock() smp_mb() /* Full ordering for lock. */ #else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */ #define smp_mb__after_unlock_lock() do { } while (0) #endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */ /* Has the specified rcu_head structure been handed to call_rcu()? */ /** * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu() * @rhp: The rcu_head structure to initialize. * * If you intend to invoke rcu_head_after_call_rcu() to test whether a * given rcu_head structure has already been passed to call_rcu(), then * you must also invoke this rcu_head_init() function on it just after * allocating that structure. Calls to this function must not race with * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation. */ static inline void rcu_head_init(struct rcu_head *rhp) { rhp->func = (rcu_callback_t)~0L; } /** * rcu_head_after_call_rcu() - Has this rcu_head been passed to call_rcu()? * @rhp: The rcu_head structure to test. * @f: The function passed to call_rcu() along with @rhp. * * Returns @true if the @rhp has been passed to call_rcu() with @func, * and @false otherwise. Emits a warning in any other case, including * the case where @rhp has already been invoked after a grace period. * Calls to this function must not race with callback invocation. One way * to avoid such races is to enclose the call to rcu_head_after_call_rcu() * in an RCU read-side critical section that includes a read-side fetch * of the pointer to the structure containing @rhp. */ static inline bool rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f) { rcu_callback_t func = READ_ONCE(rhp->func); if (func == f) return true; WARN_ON_ONCE(func != (rcu_callback_t)~0L); return false; } /* kernel/ksysfs.c definitions */ extern int rcu_expedited; extern int rcu_normal; #endif /* __LINUX_RCUPDATE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM skb #if !defined(_TRACE_SKB_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_SKB_H #include <linux/skbuff.h> #include <linux/netdevice.h> #include <linux/tracepoint.h> /* * Tracepoint for free an sk_buff: */ TRACE_EVENT(kfree_skb, TP_PROTO(struct sk_buff *skb, void *location), TP_ARGS(skb, location), TP_STRUCT__entry( __field( void *, skbaddr ) __field( void *, location ) __field( unsigned short, protocol ) ), TP_fast_assign( __entry->skbaddr = skb; __entry->location = location; __entry->protocol = ntohs(skb->protocol); ), TP_printk("skbaddr=%p protocol=%u location=%p", __entry->skbaddr, __entry->protocol, __entry->location) ); TRACE_EVENT(consume_skb, TP_PROTO(struct sk_buff *skb), TP_ARGS(skb), TP_STRUCT__entry( __field( void *, skbaddr ) ), TP_fast_assign( __entry->skbaddr = skb; ), TP_printk("skbaddr=%p", __entry->skbaddr) ); TRACE_EVENT(skb_copy_datagram_iovec, TP_PROTO(const struct sk_buff *skb, int len), TP_ARGS(skb, len), TP_STRUCT__entry( __field( const void *, skbaddr ) __field( int, len ) ), TP_fast_assign( __entry->skbaddr = skb; __entry->len = len; ), TP_printk("skbaddr=%p len=%d", __entry->skbaddr, __entry->len) ); #endif /* _TRACE_SKB_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 // SPDX-License-Identifier: GPL-2.0+ /* * linux/fs/jbd2/revoke.c * * Written by Stephen C. Tweedie <sct@redhat.com>, 2000 * * Copyright 2000 Red Hat corp --- All Rights Reserved * * Journal revoke routines for the generic filesystem journaling code; * part of the ext2fs journaling system. * * Revoke is the mechanism used to prevent old log records for deleted * metadata from being replayed on top of newer data using the same * blocks. The revoke mechanism is used in two separate places: * * + Commit: during commit we write the entire list of the current * transaction's revoked blocks to the journal * * + Recovery: during recovery we record the transaction ID of all * revoked blocks. If there are multiple revoke records in the log * for a single block, only the last one counts, and if there is a log * entry for a block beyond the last revoke, then that log entry still * gets replayed. * * We can get interactions between revokes and new log data within a * single transaction: * * Block is revoked and then journaled: * The desired end result is the journaling of the new block, so we * cancel the revoke before the transaction commits. * * Block is journaled and then revoked: * The revoke must take precedence over the write of the block, so we * need either to cancel the journal entry or to write the revoke * later in the log than the log block. In this case, we choose the * latter: journaling a block cancels any revoke record for that block * in the current transaction, so any revoke for that block in the * transaction must have happened after the block was journaled and so * the revoke must take precedence. * * Block is revoked and then written as data: * The data write is allowed to succeed, but the revoke is _not_ * cancelled. We still need to prevent old log records from * overwriting the new data. We don't even need to clear the revoke * bit here. * * We cache revoke status of a buffer in the current transaction in b_states * bits. As the name says, revokevalid flag indicates that the cached revoke * status of a buffer is valid and we can rely on the cached status. * * Revoke information on buffers is a tri-state value: * * RevokeValid clear: no cached revoke status, need to look it up * RevokeValid set, Revoked clear: * buffer has not been revoked, and cancel_revoke * need do nothing. * RevokeValid set, Revoked set: * buffer has been revoked. * * Locking rules: * We keep two hash tables of revoke records. One hashtable belongs to the * running transaction (is pointed to by journal->j_revoke), the other one * belongs to the committing transaction. Accesses to the second hash table * happen only from the kjournald and no other thread touches this table. Also * journal_switch_revoke_table() which switches which hashtable belongs to the * running and which to the committing transaction is called only from * kjournald. Therefore we need no locks when accessing the hashtable belonging * to the committing transaction. * * All users operating on the hash table belonging to the running transaction * have a handle to the transaction. Therefore they are safe from kjournald * switching hash tables under them. For operations on the lists of entries in * the hash table j_revoke_lock is used. * * Finally, also replay code uses the hash tables but at this moment no one else * can touch them (filesystem isn't mounted yet) and hence no locking is * needed. */ #ifndef __KERNEL__ #include "jfs_user.h" #else #include <linux/time.h> #include <linux/fs.h> #include <linux/jbd2.h> #include <linux/errno.h> #include <linux/slab.h> #include <linux/list.h> #include <linux/init.h> #include <linux/bio.h> #include <linux/log2.h> #include <linux/hash.h> #endif static struct kmem_cache *jbd2_revoke_record_cache; static struct kmem_cache *jbd2_revoke_table_cache; /* Each revoke record represents one single revoked block. During journal replay, this involves recording the transaction ID of the last transaction to revoke this block. */ struct jbd2_revoke_record_s { struct list_head hash; tid_t sequence; /* Used for recovery only */ unsigned long long blocknr; }; /* The revoke table is just a simple hash table of revoke records. */ struct jbd2_revoke_table_s { /* It is conceivable that we might want a larger hash table * for recovery. Must be a power of two. */ int hash_size; int hash_shift; struct list_head *hash_table; }; #ifdef __KERNEL__ static void write_one_revoke_record(transaction_t *, struct list_head *, struct buffer_head **, int *, struct jbd2_revoke_record_s *); static void flush_descriptor(journal_t *, struct buffer_head *, int); #endif /* Utility functions to maintain the revoke table */ static inline int hash(journal_t *journal, unsigned long long block) { return hash_64(block, journal->j_revoke->hash_shift); } static int insert_revoke_hash(journal_t *journal, unsigned long long blocknr, tid_t seq) { struct list_head *hash_list; struct jbd2_revoke_record_s *record; gfp_t gfp_mask = GFP_NOFS; if (journal_oom_retry) gfp_mask |= __GFP_NOFAIL; record = kmem_cache_alloc(jbd2_revoke_record_cache, gfp_mask); if (!record) return -ENOMEM; record->sequence = seq; record->blocknr = blocknr; hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)]; spin_lock(&journal->j_revoke_lock); list_add(&record->hash, hash_list); spin_unlock(&journal->j_revoke_lock); return 0; } /* Find a revoke record in the journal's hash table. */ static struct jbd2_revoke_record_s *find_revoke_record(journal_t *journal, unsigned long long blocknr) { struct list_head *hash_list; struct jbd2_revoke_record_s *record; hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)]; spin_lock(&journal->j_revoke_lock); record = (struct jbd2_revoke_record_s *) hash_list->next; while (&(record->hash) != hash_list) { if (record->blocknr == blocknr) { spin_unlock(&journal->j_revoke_lock); return record; } record = (struct jbd2_revoke_record_s *) record->hash.next; } spin_unlock(&journal->j_revoke_lock); return NULL; } void jbd2_journal_destroy_revoke_record_cache(void) { kmem_cache_destroy(jbd2_revoke_record_cache); jbd2_revoke_record_cache = NULL; } void jbd2_journal_destroy_revoke_table_cache(void) { kmem_cache_destroy(jbd2_revoke_table_cache); jbd2_revoke_table_cache = NULL; } int __init jbd2_journal_init_revoke_record_cache(void) { J_ASSERT(!jbd2_revoke_record_cache); jbd2_revoke_record_cache = KMEM_CACHE(jbd2_revoke_record_s, SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY); if (!jbd2_revoke_record_cache) { pr_emerg("JBD2: failed to create revoke_record cache\n"); return -ENOMEM; } return 0; } int __init jbd2_journal_init_revoke_table_cache(void) { J_ASSERT(!jbd2_revoke_table_cache); jbd2_revoke_table_cache = KMEM_CACHE(jbd2_revoke_table_s, SLAB_TEMPORARY); if (!jbd2_revoke_table_cache) { pr_emerg("JBD2: failed to create revoke_table cache\n"); return -ENOMEM; } return 0; } static struct jbd2_revoke_table_s *jbd2_journal_init_revoke_table(int hash_size) { int shift = 0; int tmp = hash_size; struct jbd2_revoke_table_s *table; table = kmem_cache_alloc(jbd2_revoke_table_cache, GFP_KERNEL); if (!table) goto out; while((tmp >>= 1UL) != 0UL) shift++; table->hash_size = hash_size; table->hash_shift = shift; table->hash_table = kmalloc_array(hash_size, sizeof(struct list_head), GFP_KERNEL); if (!table->hash_table) { kmem_cache_free(jbd2_revoke_table_cache, table); table = NULL; goto out; } for (tmp = 0; tmp < hash_size; tmp++) INIT_LIST_HEAD(&table->hash_table[tmp]); out: return table; } static void jbd2_journal_destroy_revoke_table(struct jbd2_revoke_table_s *table) { int i; struct list_head *hash_list; for (i = 0; i < table->hash_size; i++) { hash_list = &table->hash_table[i]; J_ASSERT(list_empty(hash_list)); } kfree(table->hash_table); kmem_cache_free(jbd2_revoke_table_cache, table); } /* Initialise the revoke table for a given journal to a given size. */ int jbd2_journal_init_revoke(journal_t *journal, int hash_size) { J_ASSERT(journal->j_revoke_table[0] == NULL); J_ASSERT(is_power_of_2(hash_size)); journal->j_revoke_table[0] = jbd2_journal_init_revoke_table(hash_size); if (!journal->j_revoke_table[0]) goto fail0; journal->j_revoke_table[1] = jbd2_journal_init_revoke_table(hash_size); if (!journal->j_revoke_table[1]) goto fail1; journal->j_revoke = journal->j_revoke_table[1]; spin_lock_init(&journal->j_revoke_lock); return 0; fail1: jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]); journal->j_revoke_table[0] = NULL; fail0: return -ENOMEM; } /* Destroy a journal's revoke table. The table must already be empty! */ void jbd2_journal_destroy_revoke(journal_t *journal) { journal->j_revoke = NULL; if (journal->j_revoke_table[0]) jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]); if (journal->j_revoke_table[1]) jbd2_journal_destroy_revoke_table(journal->j_revoke_table[1]); } #ifdef __KERNEL__ /* * jbd2_journal_revoke: revoke a given buffer_head from the journal. This * prevents the block from being replayed during recovery if we take a * crash after this current transaction commits. Any subsequent * metadata writes of the buffer in this transaction cancel the * revoke. * * Note that this call may block --- it is up to the caller to make * sure that there are no further calls to journal_write_metadata * before the revoke is complete. In ext3, this implies calling the * revoke before clearing the block bitmap when we are deleting * metadata. * * Revoke performs a jbd2_journal_forget on any buffer_head passed in as a * parameter, but does _not_ forget the buffer_head if the bh was only * found implicitly. * * bh_in may not be a journalled buffer - it may have come off * the hash tables without an attached journal_head. * * If bh_in is non-zero, jbd2_journal_revoke() will decrement its b_count * by one. */ int jbd2_journal_revoke(handle_t *handle, unsigned long long blocknr, struct buffer_head *bh_in) { struct buffer_head *bh = NULL; journal_t *journal; struct block_device *bdev; int err; might_sleep(); if (bh_in) BUFFER_TRACE(bh_in, "enter"); journal = handle->h_transaction->t_journal; if (!jbd2_journal_set_features(journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)){ J_ASSERT (!"Cannot set revoke feature!"); return -EINVAL; } bdev = journal->j_fs_dev; bh = bh_in; if (!bh) { bh = __find_get_block(bdev, blocknr, journal->j_blocksize); if (bh) BUFFER_TRACE(bh, "found on hash"); } #ifdef JBD2_EXPENSIVE_CHECKING else { struct buffer_head *bh2; /* If there is a different buffer_head lying around in * memory anywhere... */ bh2 = __find_get_block(bdev, blocknr, journal->j_blocksize); if (bh2) { /* ... and it has RevokeValid status... */ if (bh2 != bh && buffer_revokevalid(bh2)) /* ...then it better be revoked too, * since it's illegal to create a revoke * record against a buffer_head which is * not marked revoked --- that would * risk missing a subsequent revoke * cancel. */ J_ASSERT_BH(bh2, buffer_revoked(bh2)); put_bh(bh2); } } #endif if (WARN_ON_ONCE(handle->h_revoke_credits <= 0)) { if (!bh_in) brelse(bh); return -EIO; } /* We really ought not ever to revoke twice in a row without first having the revoke cancelled: it's illegal to free a block twice without allocating it in between! */ if (bh) { if (!J_EXPECT_BH(bh, !buffer_revoked(bh), "inconsistent data on disk")) { if (!bh_in) brelse(bh); return -EIO; } set_buffer_revoked(bh); set_buffer_revokevalid(bh); if (bh_in) { BUFFER_TRACE(bh_in, "call jbd2_journal_forget"); jbd2_journal_forget(handle, bh_in); } else { BUFFER_TRACE(bh, "call brelse"); __brelse(bh); } } handle->h_revoke_credits--; jbd_debug(2, "insert revoke for block %llu, bh_in=%p\n",blocknr, bh_in); err = insert_revoke_hash(journal, blocknr, handle->h_transaction->t_tid); BUFFER_TRACE(bh_in, "exit"); return err; } /* * Cancel an outstanding revoke. For use only internally by the * journaling code (called from jbd2_journal_get_write_access). * * We trust buffer_revoked() on the buffer if the buffer is already * being journaled: if there is no revoke pending on the buffer, then we * don't do anything here. * * This would break if it were possible for a buffer to be revoked and * discarded, and then reallocated within the same transaction. In such * a case we would have lost the revoked bit, but when we arrived here * the second time we would still have a pending revoke to cancel. So, * do not trust the Revoked bit on buffers unless RevokeValid is also * set. */ int jbd2_journal_cancel_revoke(handle_t *handle, struct journal_head *jh) { struct jbd2_revoke_record_s *record; journal_t *journal = handle->h_transaction->t_journal; int need_cancel; int did_revoke = 0; /* akpm: debug */ struct buffer_head *bh = jh2bh(jh); jbd_debug(4, "journal_head %p, cancelling revoke\n", jh); /* Is the existing Revoke bit valid? If so, we trust it, and * only perform the full cancel if the revoke bit is set. If * not, we can't trust the revoke bit, and we need to do the * full search for a revoke record. */ if (test_set_buffer_revokevalid(bh)) { need_cancel = test_clear_buffer_revoked(bh); } else { need_cancel = 1; clear_buffer_revoked(bh); } if (need_cancel) { record = find_revoke_record(journal, bh->b_blocknr); if (record) { jbd_debug(4, "cancelled existing revoke on " "blocknr %llu\n", (unsigned long long)bh->b_blocknr); spin_lock(&journal->j_revoke_lock); list_del(&record->hash); spin_unlock(&journal->j_revoke_lock); kmem_cache_free(jbd2_revoke_record_cache, record); did_revoke = 1; } } #ifdef JBD2_EXPENSIVE_CHECKING /* There better not be one left behind by now! */ record = find_revoke_record(journal, bh->b_blocknr); J_ASSERT_JH(jh, record == NULL); #endif /* Finally, have we just cleared revoke on an unhashed * buffer_head? If so, we'd better make sure we clear the * revoked status on any hashed alias too, otherwise the revoke * state machine will get very upset later on. */ if (need_cancel) { struct buffer_head *bh2; bh2 = __find_get_block(bh->b_bdev, bh->b_blocknr, bh->b_size); if (bh2) { if (bh2 != bh) clear_buffer_revoked(bh2); __brelse(bh2); } } return did_revoke; } /* * journal_clear_revoked_flag clears revoked flag of buffers in * revoke table to reflect there is no revoked buffers in the next * transaction which is going to be started. */ void jbd2_clear_buffer_revoked_flags(journal_t *journal) { struct jbd2_revoke_table_s *revoke = journal->j_revoke; int i = 0; for (i = 0; i < revoke->hash_size; i++) { struct list_head *hash_list; struct list_head *list_entry; hash_list = &revoke->hash_table[i]; list_for_each(list_entry, hash_list) { struct jbd2_revoke_record_s *record; struct buffer_head *bh; record = (struct jbd2_revoke_record_s *)list_entry; bh = __find_get_block(journal->j_fs_dev, record->blocknr, journal->j_blocksize); if (bh) { clear_buffer_revoked(bh); __brelse(bh); } } } } /* journal_switch_revoke table select j_revoke for next transaction * we do not want to suspend any processing until all revokes are * written -bzzz */ void jbd2_journal_switch_revoke_table(journal_t *journal) { int i; if (journal->j_revoke == journal->j_revoke_table[0]) journal->j_revoke = journal->j_revoke_table[1]; else journal->j_revoke = journal->j_revoke_table[0]; for (i = 0; i < journal->j_revoke->hash_size; i++) INIT_LIST_HEAD(&journal->j_revoke->hash_table[i]); } /* * Write revoke records to the journal for all entries in the current * revoke hash, deleting the entries as we go. */ void jbd2_journal_write_revoke_records(transaction_t *transaction, struct list_head *log_bufs) { journal_t *journal = transaction->t_journal; struct buffer_head *descriptor; struct jbd2_revoke_record_s *record; struct jbd2_revoke_table_s *revoke; struct list_head *hash_list; int i, offset, count; descriptor = NULL; offset = 0; count = 0; /* select revoke table for committing transaction */ revoke = journal->j_revoke == journal->j_revoke_table[0] ? journal->j_revoke_table[1] : journal->j_revoke_table[0]; for (i = 0; i < revoke->hash_size; i++) { hash_list = &revoke->hash_table[i]; while (!list_empty(hash_list)) { record = (struct jbd2_revoke_record_s *) hash_list->next; write_one_revoke_record(transaction, log_bufs, &descriptor, &offset, record); count++; list_del(&record->hash); kmem_cache_free(jbd2_revoke_record_cache, record); } } if (descriptor) flush_descriptor(journal, descriptor, offset); jbd_debug(1, "Wrote %d revoke records\n", count); } /* * Write out one revoke record. We need to create a new descriptor * block if the old one is full or if we have not already created one. */ static void write_one_revoke_record(transaction_t *transaction, struct list_head *log_bufs, struct buffer_head **descriptorp, int *offsetp, struct jbd2_revoke_record_s *record) { journal_t *journal = transaction->t_journal; int csum_size = 0; struct buffer_head *descriptor; int sz, offset; /* If we are already aborting, this all becomes a noop. We still need to go round the loop in jbd2_journal_write_revoke_records in order to free all of the revoke records: only the IO to the journal is omitted. */ if (is_journal_aborted(journal)) return; descriptor = *descriptorp; offset = *offsetp; /* Do we need to leave space at the end for a checksum? */ if (jbd2_journal_has_csum_v2or3(journal)) csum_size = sizeof(struct jbd2_journal_block_tail); if (jbd2_has_feature_64bit(journal)) sz = 8; else sz = 4; /* Make sure we have a descriptor with space left for the record */ if (descriptor) { if (offset + sz > journal->j_blocksize - csum_size) { flush_descriptor(journal, descriptor, offset); descriptor = NULL; } } if (!descriptor) { descriptor = jbd2_journal_get_descriptor_buffer(transaction, JBD2_REVOKE_BLOCK); if (!descriptor) return; /* Record it so that we can wait for IO completion later */ BUFFER_TRACE(descriptor, "file in log_bufs"); jbd2_file_log_bh(log_bufs, descriptor); offset = sizeof(jbd2_journal_revoke_header_t); *descriptorp = descriptor; } if (jbd2_has_feature_64bit(journal)) * ((__be64 *)(&descriptor->b_data[offset])) = cpu_to_be64(record->blocknr); else * ((__be32 *)(&descriptor->b_data[offset])) = cpu_to_be32(record->blocknr); offset += sz; *offsetp = offset; } /* * Flush a revoke descriptor out to the journal. If we are aborting, * this is a noop; otherwise we are generating a buffer which needs to * be waited for during commit, so it has to go onto the appropriate * journal buffer list. */ static void flush_descriptor(journal_t *journal, struct buffer_head *descriptor, int offset) { jbd2_journal_revoke_header_t *header; if (is_journal_aborted(journal)) return; header = (jbd2_journal_revoke_header_t *)descriptor->b_data; header->r_count = cpu_to_be32(offset); jbd2_descriptor_block_csum_set(journal, descriptor); set_buffer_jwrite(descriptor); BUFFER_TRACE(descriptor, "write"); set_buffer_dirty(descriptor); write_dirty_buffer(descriptor, REQ_SYNC); } #endif /* * Revoke support for recovery. * * Recovery needs to be able to: * * record all revoke records, including the tid of the latest instance * of each revoke in the journal * * check whether a given block in a given transaction should be replayed * (ie. has not been revoked by a revoke record in that or a subsequent * transaction) * * empty the revoke table after recovery. */ /* * First, setting revoke records. We create a new revoke record for * every block ever revoked in the log as we scan it for recovery, and * we update the existing records if we find multiple revokes for a * single block. */ int jbd2_journal_set_revoke(journal_t *journal, unsigned long long blocknr, tid_t sequence) { struct jbd2_revoke_record_s *record; record = find_revoke_record(journal, blocknr); if (record) { /* If we have multiple occurrences, only record the * latest sequence number in the hashed record */ if (tid_gt(sequence, record->sequence)) record->sequence = sequence; return 0; } return insert_revoke_hash(journal, blocknr, sequence); } /* * Test revoke records. For a given block referenced in the log, has * that block been revoked? A revoke record with a given transaction * sequence number revokes all blocks in that transaction and earlier * ones, but later transactions still need replayed. */ int jbd2_journal_test_revoke(journal_t *journal, unsigned long long blocknr, tid_t sequence) { struct jbd2_revoke_record_s *record; record = find_revoke_record(journal, blocknr); if (!record) return 0; if (tid_gt(sequence, record->sequence)) return 0; return 1; } /* * Finally, once recovery is over, we need to clear the revoke table so * that it can be reused by the running filesystem. */ void jbd2_journal_clear_revoke(journal_t *journal) { int i; struct list_head *hash_list; struct jbd2_revoke_record_s *record; struct jbd2_revoke_table_s *revoke; revoke = journal->j_revoke; for (i = 0; i < revoke->hash_size; i++) { hash_list = &revoke->hash_table[i]; while (!list_empty(hash_list)) { record = (struct jbd2_revoke_record_s*) hash_list->next; list_del(&record->hash); kmem_cache_free(jbd2_revoke_record_cache, record); } } }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Linux INET6 implementation * * Authors: * Pedro Roque <roque@di.fc.ul.pt> */ #ifndef _NET_IPV6_H #define _NET_IPV6_H #include <linux/ipv6.h> #include <linux/hardirq.h> #include <linux/jhash.h> #include <linux/refcount.h> #include <linux/jump_label_ratelimit.h> #include <net/if_inet6.h> #include <net/ndisc.h> #include <net/flow.h> #include <net/flow_dissector.h> #include <net/snmp.h> #include <net/netns/hash.h> #define SIN6_LEN_RFC2133 24 #define IPV6_MAXPLEN 65535 /* * NextHeader field of IPv6 header */ #define NEXTHDR_HOP 0 /* Hop-by-hop option header. */ #define NEXTHDR_TCP 6 /* TCP segment. */ #define NEXTHDR_UDP 17 /* UDP message. */ #define NEXTHDR_IPV6 41 /* IPv6 in IPv6 */ #define NEXTHDR_ROUTING 43 /* Routing header. */ #define NEXTHDR_FRAGMENT 44 /* Fragmentation/reassembly header. */ #define NEXTHDR_GRE 47 /* GRE header. */ #define NEXTHDR_ESP 50 /* Encapsulating security payload. */ #define NEXTHDR_AUTH 51 /* Authentication header. */ #define NEXTHDR_ICMP 58 /* ICMP for IPv6. */ #define NEXTHDR_NONE 59 /* No next header */ #define NEXTHDR_DEST 60 /* Destination options header. */ #define NEXTHDR_SCTP 132 /* SCTP message. */ #define NEXTHDR_MOBILITY 135 /* Mobility header. */ #define NEXTHDR_MAX 255 #define IPV6_DEFAULT_HOPLIMIT 64 #define IPV6_DEFAULT_MCASTHOPS 1 /* Limits on Hop-by-Hop and Destination options. * * Per RFC8200 there is no limit on the maximum number or lengths of options in * Hop-by-Hop or Destination options other then the packet must fit in an MTU. * We allow configurable limits in order to mitigate potential denial of * service attacks. * * There are three limits that may be set: * - Limit the number of options in a Hop-by-Hop or Destination options * extension header * - Limit the byte length of a Hop-by-Hop or Destination options extension * header * - Disallow unknown options * * The limits are expressed in corresponding sysctls: * * ipv6.sysctl.max_dst_opts_cnt * ipv6.sysctl.max_hbh_opts_cnt * ipv6.sysctl.max_dst_opts_len * ipv6.sysctl.max_hbh_opts_len * * max_*_opts_cnt is the number of TLVs that are allowed for Destination * options or Hop-by-Hop options. If the number is less than zero then unknown * TLVs are disallowed and the number of known options that are allowed is the * absolute value. Setting the value to INT_MAX indicates no limit. * * max_*_opts_len is the length limit in bytes of a Destination or * Hop-by-Hop options extension header. Setting the value to INT_MAX * indicates no length limit. * * If a limit is exceeded when processing an extension header the packet is * silently discarded. */ /* Default limits for Hop-by-Hop and Destination options */ #define IP6_DEFAULT_MAX_DST_OPTS_CNT 8 #define IP6_DEFAULT_MAX_HBH_OPTS_CNT 8 #define IP6_DEFAULT_MAX_DST_OPTS_LEN INT_MAX /* No limit */ #define IP6_DEFAULT_MAX_HBH_OPTS_LEN INT_MAX /* No limit */ /* * Addr type * * type - unicast | multicast * scope - local | site | global * v4 - compat * v4mapped * any * loopback */ #define IPV6_ADDR_ANY 0x0000U #define IPV6_ADDR_UNICAST 0x0001U #define IPV6_ADDR_MULTICAST 0x0002U #define IPV6_ADDR_LOOPBACK 0x0010U #define IPV6_ADDR_LINKLOCAL 0x0020U #define IPV6_ADDR_SITELOCAL 0x0040U #define IPV6_ADDR_COMPATv4 0x0080U #define IPV6_ADDR_SCOPE_MASK 0x00f0U #define IPV6_ADDR_MAPPED 0x1000U /* * Addr scopes */ #define IPV6_ADDR_MC_SCOPE(a) \ ((a)->s6_addr[1] & 0x0f) /* nonstandard */ #define __IPV6_ADDR_SCOPE_INVALID -1 #define IPV6_ADDR_SCOPE_NODELOCAL 0x01 #define IPV6_ADDR_SCOPE_LINKLOCAL 0x02 #define IPV6_ADDR_SCOPE_SITELOCAL 0x05 #define IPV6_ADDR_SCOPE_ORGLOCAL 0x08 #define IPV6_ADDR_SCOPE_GLOBAL 0x0e /* * Addr flags */ #define IPV6_ADDR_MC_FLAG_TRANSIENT(a) \ ((a)->s6_addr[1] & 0x10) #define IPV6_ADDR_MC_FLAG_PREFIX(a) \ ((a)->s6_addr[1] & 0x20) #define IPV6_ADDR_MC_FLAG_RENDEZVOUS(a) \ ((a)->s6_addr[1] & 0x40) /* * fragmentation header */ struct frag_hdr { __u8 nexthdr; __u8 reserved; __be16 frag_off; __be32 identification; }; #define IP6_MF 0x0001 #define IP6_OFFSET 0xFFF8 struct ip6_fraglist_iter { struct ipv6hdr *tmp_hdr; struct sk_buff *frag; int offset; unsigned int hlen; __be32 frag_id; u8 nexthdr; }; int ip6_fraglist_init(struct sk_buff *skb, unsigned int hlen, u8 *prevhdr, u8 nexthdr, __be32 frag_id, struct ip6_fraglist_iter *iter); void ip6_fraglist_prepare(struct sk_buff *skb, struct ip6_fraglist_iter *iter); static inline struct sk_buff *ip6_fraglist_next(struct ip6_fraglist_iter *iter) { struct sk_buff *skb = iter->frag; iter->frag = skb->next; skb_mark_not_on_list(skb); return skb; } struct ip6_frag_state { u8 *prevhdr; unsigned int hlen; unsigned int mtu; unsigned int left; int offset; int ptr; int hroom; int troom; __be32 frag_id; u8 nexthdr; }; void ip6_frag_init(struct sk_buff *skb, unsigned int hlen, unsigned int mtu, unsigned short needed_tailroom, int hdr_room, u8 *prevhdr, u8 nexthdr, __be32 frag_id, struct ip6_frag_state *state); struct sk_buff *ip6_frag_next(struct sk_buff *skb, struct ip6_frag_state *state); #define IP6_REPLY_MARK(net, mark) \ ((net)->ipv6.sysctl.fwmark_reflect ? (mark) : 0) #include <net/sock.h> /* sysctls */ extern int sysctl_mld_max_msf; extern int sysctl_mld_qrv; #define _DEVINC(net, statname, mod, idev, field) \ ({ \ struct inet6_dev *_idev = (idev); \ if (likely(_idev != NULL)) \ mod##SNMP_INC_STATS64((_idev)->stats.statname, (field));\ mod##SNMP_INC_STATS64((net)->mib.statname##_statistics, (field));\ }) /* per device counters are atomic_long_t */ #define _DEVINCATOMIC(net, statname, mod, idev, field) \ ({ \ struct inet6_dev *_idev = (idev); \ if (likely(_idev != NULL)) \ SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \ mod##SNMP_INC_STATS((net)->mib.statname##_statistics, (field));\ }) /* per device and per net counters are atomic_long_t */ #define _DEVINC_ATOMIC_ATOMIC(net, statname, idev, field) \ ({ \ struct inet6_dev *_idev = (idev); \ if (likely(_idev != NULL)) \ SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \ SNMP_INC_STATS_ATOMIC_LONG((net)->mib.statname##_statistics, (field));\ }) #define _DEVADD(net, statname, mod, idev, field, val) \ ({ \ struct inet6_dev *_idev = (idev); \ if (likely(_idev != NULL)) \ mod##SNMP_ADD_STATS((_idev)->stats.statname, (field), (val)); \ mod##SNMP_ADD_STATS((net)->mib.statname##_statistics, (field), (val));\ }) #define _DEVUPD(net, statname, mod, idev, field, val) \ ({ \ struct inet6_dev *_idev = (idev); \ if (likely(_idev != NULL)) \ mod##SNMP_UPD_PO_STATS((_idev)->stats.statname, field, (val)); \ mod##SNMP_UPD_PO_STATS((net)->mib.statname##_statistics, field, (val));\ }) /* MIBs */ #define IP6_INC_STATS(net, idev,field) \ _DEVINC(net, ipv6, , idev, field) #define __IP6_INC_STATS(net, idev,field) \ _DEVINC(net, ipv6, __, idev, field) #define IP6_ADD_STATS(net, idev,field,val) \ _DEVADD(net, ipv6, , idev, field, val) #define __IP6_ADD_STATS(net, idev,field,val) \ _DEVADD(net, ipv6, __, idev, field, val) #define IP6_UPD_PO_STATS(net, idev,field,val) \ _DEVUPD(net, ipv6, , idev, field, val) #define __IP6_UPD_PO_STATS(net, idev,field,val) \ _DEVUPD(net, ipv6, __, idev, field, val) #define ICMP6_INC_STATS(net, idev, field) \ _DEVINCATOMIC(net, icmpv6, , idev, field) #define __ICMP6_INC_STATS(net, idev, field) \ _DEVINCATOMIC(net, icmpv6, __, idev, field) #define ICMP6MSGOUT_INC_STATS(net, idev, field) \ _DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field +256) #define ICMP6MSGIN_INC_STATS(net, idev, field) \ _DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field) struct ip6_ra_chain { struct ip6_ra_chain *next; struct sock *sk; int sel; void (*destructor)(struct sock *); }; extern struct ip6_ra_chain *ip6_ra_chain; extern rwlock_t ip6_ra_lock; /* This structure is prepared by protocol, when parsing ancillary data and passed to IPv6. */ struct ipv6_txoptions { refcount_t refcnt; /* Length of this structure */ int tot_len; /* length of extension headers */ __u16 opt_flen; /* after fragment hdr */ __u16 opt_nflen; /* before fragment hdr */ struct ipv6_opt_hdr *hopopt; struct ipv6_opt_hdr *dst0opt; struct ipv6_rt_hdr *srcrt; /* Routing Header */ struct ipv6_opt_hdr *dst1opt; struct rcu_head rcu; /* Option buffer, as read by IPV6_PKTOPTIONS, starts here. */ }; /* flowlabel_reflect sysctl values */ enum flowlabel_reflect { FLOWLABEL_REFLECT_ESTABLISHED = 1, FLOWLABEL_REFLECT_TCP_RESET = 2, FLOWLABEL_REFLECT_ICMPV6_ECHO_REPLIES = 4, }; struct ip6_flowlabel { struct ip6_flowlabel __rcu *next; __be32 label; atomic_t users; struct in6_addr dst; struct ipv6_txoptions *opt; unsigned long linger; struct rcu_head rcu; u8 share; union { struct pid *pid; kuid_t uid; } owner; unsigned long lastuse; unsigned long expires; struct net *fl_net; }; #define IPV6_FLOWINFO_MASK cpu_to_be32(0x0FFFFFFF) #define IPV6_FLOWLABEL_MASK cpu_to_be32(0x000FFFFF) #define IPV6_FLOWLABEL_STATELESS_FLAG cpu_to_be32(0x00080000) #define IPV6_TCLASS_MASK (IPV6_FLOWINFO_MASK & ~IPV6_FLOWLABEL_MASK) #define IPV6_TCLASS_SHIFT 20 struct ipv6_fl_socklist { struct ipv6_fl_socklist __rcu *next; struct ip6_flowlabel *fl; struct rcu_head rcu; }; struct ipcm6_cookie { struct sockcm_cookie sockc; __s16 hlimit; __s16 tclass; __s8 dontfrag; struct ipv6_txoptions *opt; __u16 gso_size; }; static inline void ipcm6_init(struct ipcm6_cookie *ipc6) { *ipc6 = (struct ipcm6_cookie) { .hlimit = -1, .tclass = -1, .dontfrag = -1, }; } static inline void ipcm6_init_sk(struct ipcm6_cookie *ipc6, const struct ipv6_pinfo *np) { *ipc6 = (struct ipcm6_cookie) { .hlimit = -1, .tclass = np->tclass, .dontfrag = np->dontfrag, }; } static inline struct ipv6_txoptions *txopt_get(const struct ipv6_pinfo *np) { struct ipv6_txoptions *opt; rcu_read_lock(); opt = rcu_dereference(np->opt); if (opt) { if (!refcount_inc_not_zero(&opt->refcnt)) opt = NULL; else opt = rcu_pointer_handoff(opt); } rcu_read_unlock(); return opt; } static inline void txopt_put(struct ipv6_txoptions *opt) { if (opt && refcount_dec_and_test(&opt->refcnt)) kfree_rcu(opt, rcu); } struct ip6_flowlabel *__fl6_sock_lookup(struct sock *sk, __be32 label); extern struct static_key_false_deferred ipv6_flowlabel_exclusive; static inline struct ip6_flowlabel *fl6_sock_lookup(struct sock *sk, __be32 label) { if (static_branch_unlikely(&ipv6_flowlabel_exclusive.key)) return __fl6_sock_lookup(sk, label) ? : ERR_PTR(-ENOENT); return NULL; } struct ipv6_txoptions *fl6_merge_options(struct ipv6_txoptions *opt_space, struct ip6_flowlabel *fl, struct ipv6_txoptions *fopt); void fl6_free_socklist(struct sock *sk); int ipv6_flowlabel_opt(struct sock *sk, sockptr_t optval, int optlen); int ipv6_flowlabel_opt_get(struct sock *sk, struct in6_flowlabel_req *freq, int flags); int ip6_flowlabel_init(void); void ip6_flowlabel_cleanup(void); bool ip6_autoflowlabel(struct net *net, const struct ipv6_pinfo *np); static inline void fl6_sock_release(struct ip6_flowlabel *fl) { if (fl) atomic_dec(&fl->users); } void icmpv6_notify(struct sk_buff *skb, u8 type, u8 code, __be32 info); void icmpv6_push_pending_frames(struct sock *sk, struct flowi6 *fl6, struct icmp6hdr *thdr, int len); int ip6_ra_control(struct sock *sk, int sel); int ipv6_parse_hopopts(struct sk_buff *skb); struct ipv6_txoptions *ipv6_dup_options(struct sock *sk, struct ipv6_txoptions *opt); struct ipv6_txoptions *ipv6_renew_options(struct sock *sk, struct ipv6_txoptions *opt, int newtype, struct ipv6_opt_hdr *newopt); struct ipv6_txoptions *ipv6_fixup_options(struct ipv6_txoptions *opt_space, struct ipv6_txoptions *opt); bool ipv6_opt_accepted(const struct sock *sk, const struct sk_buff *skb, const struct inet6_skb_parm *opt); struct ipv6_txoptions *ipv6_update_options(struct sock *sk, struct ipv6_txoptions *opt); static inline bool ipv6_accept_ra(struct inet6_dev *idev) { /* If forwarding is enabled, RA are not accepted unless the special * hybrid mode (accept_ra=2) is enabled. */ return idev->cnf.forwarding ? idev->cnf.accept_ra == 2 : idev->cnf.accept_ra; } #define IPV6_FRAG_HIGH_THRESH (4 * 1024*1024) /* 4194304 */ #define IPV6_FRAG_LOW_THRESH (3 * 1024*1024) /* 3145728 */ #define IPV6_FRAG_TIMEOUT (60 * HZ) /* 60 seconds */ int __ipv6_addr_type(const struct in6_addr *addr); static inline int ipv6_addr_type(const struct in6_addr *addr) { return __ipv6_addr_type(addr) & 0xffff; } static inline int ipv6_addr_scope(const struct in6_addr *addr) { return __ipv6_addr_type(addr) & IPV6_ADDR_SCOPE_MASK; } static inline int __ipv6_addr_src_scope(int type) { return (type == IPV6_ADDR_ANY) ? __IPV6_ADDR_SCOPE_INVALID : (type >> 16); } static inline int ipv6_addr_src_scope(const struct in6_addr *addr) { return __ipv6_addr_src_scope(__ipv6_addr_type(addr)); } static inline bool __ipv6_addr_needs_scope_id(int type) { return type & IPV6_ADDR_LINKLOCAL || (type & IPV6_ADDR_MULTICAST && (type & (IPV6_ADDR_LOOPBACK|IPV6_ADDR_LINKLOCAL))); } static inline __u32 ipv6_iface_scope_id(const struct in6_addr *addr, int iface) { return __ipv6_addr_needs_scope_id(__ipv6_addr_type(addr)) ? iface : 0; } static inline int ipv6_addr_cmp(const struct in6_addr *a1, const struct in6_addr *a2) { return memcmp(a1, a2, sizeof(struct in6_addr)); } static inline bool ipv6_masked_addr_cmp(const struct in6_addr *a1, const struct in6_addr *m, const struct in6_addr *a2) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 const unsigned long *ul1 = (const unsigned long *)a1; const unsigned long *ulm = (const unsigned long *)m; const unsigned long *ul2 = (const unsigned long *)a2; return !!(((ul1[0] ^ ul2[0]) & ulm[0]) | ((ul1[1] ^ ul2[1]) & ulm[1])); #else return !!(((a1->s6_addr32[0] ^ a2->s6_addr32[0]) & m->s6_addr32[0]) | ((a1->s6_addr32[1] ^ a2->s6_addr32[1]) & m->s6_addr32[1]) | ((a1->s6_addr32[2] ^ a2->s6_addr32[2]) & m->s6_addr32[2]) | ((a1->s6_addr32[3] ^ a2->s6_addr32[3]) & m->s6_addr32[3])); #endif } static inline void ipv6_addr_prefix(struct in6_addr *pfx, const struct in6_addr *addr, int plen) { /* caller must guarantee 0 <= plen <= 128 */ int o = plen >> 3, b = plen & 0x7; memset(pfx->s6_addr, 0, sizeof(pfx->s6_addr)); memcpy(pfx->s6_addr, addr, o); if (b != 0) pfx->s6_addr[o] = addr->s6_addr[o] & (0xff00 >> b); } static inline void ipv6_addr_prefix_copy(struct in6_addr *addr, const struct in6_addr *pfx, int plen) { /* caller must guarantee 0 <= plen <= 128 */ int o = plen >> 3, b = plen & 0x7; memcpy(addr->s6_addr, pfx, o); if (b != 0) { addr->s6_addr[o] &= ~(0xff00 >> b); addr->s6_addr[o] |= (pfx->s6_addr[o] & (0xff00 >> b)); } } static inline void __ipv6_addr_set_half(__be32 *addr, __be32 wh, __be32 wl) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 #if defined(__BIG_ENDIAN) if (__builtin_constant_p(wh) && __builtin_constant_p(wl)) { *(__force u64 *)addr = ((__force u64)(wh) << 32 | (__force u64)(wl)); return; } #elif defined(__LITTLE_ENDIAN) if (__builtin_constant_p(wl) && __builtin_constant_p(wh)) { *(__force u64 *)addr = ((__force u64)(wl) << 32 | (__force u64)(wh)); return; } #endif #endif addr[0] = wh; addr[1] = wl; } static inline void ipv6_addr_set(struct in6_addr *addr, __be32 w1, __be32 w2, __be32 w3, __be32 w4) { __ipv6_addr_set_half(&addr->s6_addr32[0], w1, w2); __ipv6_addr_set_half(&addr->s6_addr32[2], w3, w4); } static inline bool ipv6_addr_equal(const struct in6_addr *a1, const struct in6_addr *a2) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 const unsigned long *ul1 = (const unsigned long *)a1; const unsigned long *ul2 = (const unsigned long *)a2; return ((ul1[0] ^ ul2[0]) | (ul1[1] ^ ul2[1])) == 0UL; #else return ((a1->s6_addr32[0] ^ a2->s6_addr32[0]) | (a1->s6_addr32[1] ^ a2->s6_addr32[1]) | (a1->s6_addr32[2] ^ a2->s6_addr32[2]) | (a1->s6_addr32[3] ^ a2->s6_addr32[3])) == 0; #endif } #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 static inline bool __ipv6_prefix_equal64_half(const __be64 *a1, const __be64 *a2, unsigned int len) { if (len && ((*a1 ^ *a2) & cpu_to_be64((~0UL) << (64 - len)))) return false; return true; } static inline bool ipv6_prefix_equal(const struct in6_addr *addr1, const struct in6_addr *addr2, unsigned int prefixlen) { const __be64 *a1 = (const __be64 *)addr1; const __be64 *a2 = (const __be64 *)addr2; if (prefixlen >= 64) { if (a1[0] ^ a2[0]) return false; return __ipv6_prefix_equal64_half(a1 + 1, a2 + 1, prefixlen - 64); } return __ipv6_prefix_equal64_half(a1, a2, prefixlen); } #else static inline bool ipv6_prefix_equal(const struct in6_addr *addr1, const struct in6_addr *addr2, unsigned int prefixlen) { const __be32 *a1 = addr1->s6_addr32; const __be32 *a2 = addr2->s6_addr32; unsigned int pdw, pbi; /* check complete u32 in prefix */ pdw = prefixlen >> 5; if (pdw && memcmp(a1, a2, pdw << 2)) return false; /* check incomplete u32 in prefix */ pbi = prefixlen & 0x1f; if (pbi && ((a1[pdw] ^ a2[pdw]) & htonl((0xffffffff) << (32 - pbi)))) return false; return true; } #endif static inline bool ipv6_addr_any(const struct in6_addr *a) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 const unsigned long *ul = (const unsigned long *)a; return (ul[0] | ul[1]) == 0UL; #else return (a->s6_addr32[0] | a->s6_addr32[1] | a->s6_addr32[2] | a->s6_addr32[3]) == 0; #endif } static inline u32 ipv6_addr_hash(const struct in6_addr *a) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 const unsigned long *ul = (const unsigned long *)a; unsigned long x = ul[0] ^ ul[1]; return (u32)(x ^ (x >> 32)); #else return (__force u32)(a->s6_addr32[0] ^ a->s6_addr32[1] ^ a->s6_addr32[2] ^ a->s6_addr32[3]); #endif } /* more secured version of ipv6_addr_hash() */ static inline u32 __ipv6_addr_jhash(const struct in6_addr *a, const u32 initval) { u32 v = (__force u32)a->s6_addr32[0] ^ (__force u32)a->s6_addr32[1]; return jhash_3words(v, (__force u32)a->s6_addr32[2], (__force u32)a->s6_addr32[3], initval); } static inline bool ipv6_addr_loopback(const struct in6_addr *a) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 const __be64 *be = (const __be64 *)a; return (be[0] | (be[1] ^ cpu_to_be64(1))) == 0UL; #else return (a->s6_addr32[0] | a->s6_addr32[1] | a->s6_addr32[2] | (a->s6_addr32[3] ^ cpu_to_be32(1))) == 0; #endif } /* * Note that we must __force cast these to unsigned long to make sparse happy, * since all of the endian-annotated types are fixed size regardless of arch. */ static inline bool ipv6_addr_v4mapped(const struct in6_addr *a) { return ( #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 *(unsigned long *)a | #else (__force unsigned long)(a->s6_addr32[0] | a->s6_addr32[1]) | #endif (__force unsigned long)(a->s6_addr32[2] ^ cpu_to_be32(0x0000ffff))) == 0UL; } static inline bool ipv6_addr_v4mapped_loopback(const struct in6_addr *a) { return ipv6_addr_v4mapped(a) && ipv4_is_loopback(a->s6_addr32[3]); } static inline u32 ipv6_portaddr_hash(const struct net *net, const struct in6_addr *addr6, unsigned int port) { unsigned int hash, mix = net_hash_mix(net); if (ipv6_addr_any(addr6)) hash = jhash_1word(0, mix); else if (ipv6_addr_v4mapped(addr6)) hash = jhash_1word((__force u32)addr6->s6_addr32[3], mix); else hash = jhash2((__force u32 *)addr6->s6_addr32, 4, mix); return hash ^ port; } /* * Check for a RFC 4843 ORCHID address * (Overlay Routable Cryptographic Hash Identifiers) */ static inline bool ipv6_addr_orchid(const struct in6_addr *a) { return (a->s6_addr32[0] & htonl(0xfffffff0)) == htonl(0x20010010); } static inline bool ipv6_addr_is_multicast(const struct in6_addr *addr) { return (addr->s6_addr32[0] & htonl(0xFF000000)) == htonl(0xFF000000); } static inline void ipv6_addr_set_v4mapped(const __be32 addr, struct in6_addr *v4mapped) { ipv6_addr_set(v4mapped, 0, 0, htonl(0x0000FFFF), addr); } /* * find the first different bit between two addresses * length of address must be a multiple of 32bits */ static inline int __ipv6_addr_diff32(const void *token1, const void *token2, int addrlen) { const __be32 *a1 = token1, *a2 = token2; int i; addrlen >>= 2; for (i = 0; i < addrlen; i++) { __be32 xb = a1[i] ^ a2[i]; if (xb) return i * 32 + 31 - __fls(ntohl(xb)); } /* * we should *never* get to this point since that * would mean the addrs are equal * * However, we do get to it 8) And exacly, when * addresses are equal 8) * * ip route add 1111::/128 via ... * ip route add 1111::/64 via ... * and we are here. * * Ideally, this function should stop comparison * at prefix length. It does not, but it is still OK, * if returned value is greater than prefix length. * --ANK (980803) */ return addrlen << 5; } #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 static inline int __ipv6_addr_diff64(const void *token1, const void *token2, int addrlen) { const __be64 *a1 = token1, *a2 = token2; int i; addrlen >>= 3; for (i = 0; i < addrlen; i++) { __be64 xb = a1[i] ^ a2[i]; if (xb) return i * 64 + 63 - __fls(be64_to_cpu(xb)); } return addrlen << 6; } #endif static inline int __ipv6_addr_diff(const void *token1, const void *token2, int addrlen) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 if (__builtin_constant_p(addrlen) && !(addrlen & 7)) return __ipv6_addr_diff64(token1, token2, addrlen); #endif return __ipv6_addr_diff32(token1, token2, addrlen); } static inline int ipv6_addr_diff(const struct in6_addr *a1, const struct in6_addr *a2) { return __ipv6_addr_diff(a1, a2, sizeof(struct in6_addr)); } __be32 ipv6_select_ident(struct net *net, const struct in6_addr *daddr, const struct in6_addr *saddr); __be32 ipv6_proxy_select_ident(struct net *net, struct sk_buff *skb); int ip6_dst_hoplimit(struct dst_entry *dst); static inline int ip6_sk_dst_hoplimit(struct ipv6_pinfo *np, struct flowi6 *fl6, struct dst_entry *dst) { int hlimit; if (ipv6_addr_is_multicast(&fl6->daddr)) hlimit = np->mcast_hops; else hlimit = np->hop_limit; if (hlimit < 0) hlimit = ip6_dst_hoplimit(dst); return hlimit; } /* copy IPv6 saddr & daddr to flow_keys, possibly using 64bit load/store * Equivalent to : flow->v6addrs.src = iph->saddr; * flow->v6addrs.dst = iph->daddr; */ static inline void iph_to_flow_copy_v6addrs(struct flow_keys *flow, const struct ipv6hdr *iph) { BUILD_BUG_ON(offsetof(typeof(flow->addrs), v6addrs.dst) != offsetof(typeof(flow->addrs), v6addrs.src) + sizeof(flow->addrs.v6addrs.src)); memcpy(&flow->addrs.v6addrs, &iph->saddr, sizeof(flow->addrs.v6addrs)); flow->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; } #if IS_ENABLED(CONFIG_IPV6) static inline bool ipv6_can_nonlocal_bind(struct net *net, struct inet_sock *inet) { return net->ipv6.sysctl.ip_nonlocal_bind || inet->freebind || inet->transparent; } /* Sysctl settings for net ipv6.auto_flowlabels */ #define IP6_AUTO_FLOW_LABEL_OFF 0 #define IP6_AUTO_FLOW_LABEL_OPTOUT 1 #define IP6_AUTO_FLOW_LABEL_OPTIN 2 #define IP6_AUTO_FLOW_LABEL_FORCED 3 #define IP6_AUTO_FLOW_LABEL_MAX IP6_AUTO_FLOW_LABEL_FORCED #define IP6_DEFAULT_AUTO_FLOW_LABELS IP6_AUTO_FLOW_LABEL_OPTOUT static inline __be32 ip6_make_flowlabel(struct net *net, struct sk_buff *skb, __be32 flowlabel, bool autolabel, struct flowi6 *fl6) { u32 hash; /* @flowlabel may include more than a flow label, eg, the traffic class. * Here we want only the flow label value. */ flowlabel &= IPV6_FLOWLABEL_MASK; if (flowlabel || net->ipv6.sysctl.auto_flowlabels == IP6_AUTO_FLOW_LABEL_OFF || (!autolabel && net->ipv6.sysctl.auto_flowlabels != IP6_AUTO_FLOW_LABEL_FORCED)) return flowlabel; hash = skb_get_hash_flowi6(skb, fl6); /* Since this is being sent on the wire obfuscate hash a bit * to minimize possbility that any useful information to an * attacker is leaked. Only lower 20 bits are relevant. */ hash = rol32(hash, 16); flowlabel = (__force __be32)hash & IPV6_FLOWLABEL_MASK; if (net->ipv6.sysctl.flowlabel_state_ranges) flowlabel |= IPV6_FLOWLABEL_STATELESS_FLAG; return flowlabel; } static inline int ip6_default_np_autolabel(struct net *net) { switch (net->ipv6.sysctl.auto_flowlabels) { case IP6_AUTO_FLOW_LABEL_OFF: case IP6_AUTO_FLOW_LABEL_OPTIN: default: return 0; case IP6_AUTO_FLOW_LABEL_OPTOUT: case IP6_AUTO_FLOW_LABEL_FORCED: return 1; } } #else static inline __be32 ip6_make_flowlabel(struct net *net, struct sk_buff *skb, __be32 flowlabel, bool autolabel, struct flowi6 *fl6) { return flowlabel; } static inline int ip6_default_np_autolabel(struct net *net) { return 0; } #endif #if IS_ENABLED(CONFIG_IPV6) static inline int ip6_multipath_hash_policy(const struct net *net) { return net->ipv6.sysctl.multipath_hash_policy; } #else static inline int ip6_multipath_hash_policy(const struct net *net) { return 0; } #endif /* * Header manipulation */ static inline void ip6_flow_hdr(struct ipv6hdr *hdr, unsigned int tclass, __be32 flowlabel) { *(__be32 *)hdr = htonl(0x60000000 | (tclass << 20)) | flowlabel; } static inline __be32 ip6_flowinfo(const struct ipv6hdr *hdr) { return *(__be32 *)hdr & IPV6_FLOWINFO_MASK; } static inline __be32 ip6_flowlabel(const struct ipv6hdr *hdr) { return *(__be32 *)hdr & IPV6_FLOWLABEL_MASK; } static inline u8 ip6_tclass(__be32 flowinfo) { return ntohl(flowinfo & IPV6_TCLASS_MASK) >> IPV6_TCLASS_SHIFT; } static inline __be32 ip6_make_flowinfo(unsigned int tclass, __be32 flowlabel) { return htonl(tclass << IPV6_TCLASS_SHIFT) | flowlabel; } static inline __be32 flowi6_get_flowlabel(const struct flowi6 *fl6) { return fl6->flowlabel & IPV6_FLOWLABEL_MASK; } /* * Prototypes exported by ipv6 */ /* * rcv function (called from netdevice level) */ int ipv6_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev); void ipv6_list_rcv(struct list_head *head, struct packet_type *pt, struct net_device *orig_dev); int ip6_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb); /* * upper-layer output functions */ int ip6_xmit(const struct sock *sk, struct sk_buff *skb, struct flowi6 *fl6, __u32 mark, struct ipv6_txoptions *opt, int tclass, u32 priority); int ip6_find_1stfragopt(struct sk_buff *skb, u8 **nexthdr); int ip6_append_data(struct sock *sk, int getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb), void *from, int length, int transhdrlen, struct ipcm6_cookie *ipc6, struct flowi6 *fl6, struct rt6_info *rt, unsigned int flags); int ip6_push_pending_frames(struct sock *sk); void ip6_flush_pending_frames(struct sock *sk); int ip6_send_skb(struct sk_buff *skb); struct sk_buff *__ip6_make_skb(struct sock *sk, struct sk_buff_head *queue, struct inet_cork_full *cork, struct inet6_cork *v6_cork); struct sk_buff *ip6_make_skb(struct sock *sk, int getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb), void *from, int length, int transhdrlen, struct ipcm6_cookie *ipc6, struct flowi6 *fl6, struct rt6_info *rt, unsigned int flags, struct inet_cork_full *cork); static inline struct sk_buff *ip6_finish_skb(struct sock *sk) { return __ip6_make_skb(sk, &sk->sk_write_queue, &inet_sk(sk)->cork, &inet6_sk(sk)->cork); } int ip6_dst_lookup(struct net *net, struct sock *sk, struct dst_entry **dst, struct flowi6 *fl6); struct dst_entry *ip6_dst_lookup_flow(struct net *net, const struct sock *sk, struct flowi6 *fl6, const struct in6_addr *final_dst); struct dst_entry *ip6_sk_dst_lookup_flow(struct sock *sk, struct flowi6 *fl6, const struct in6_addr *final_dst, bool connected); struct dst_entry *ip6_dst_lookup_tunnel(struct sk_buff *skb, struct net_device *dev, struct net *net, struct socket *sock, struct in6_addr *saddr, const struct ip_tunnel_info *info, u8 protocol, bool use_cache); struct dst_entry *ip6_blackhole_route(struct net *net, struct dst_entry *orig_dst); /* * skb processing functions */ int ip6_output(struct net *net, struct sock *sk, struct sk_buff *skb); int ip6_forward(struct sk_buff *skb); int ip6_input(struct sk_buff *skb); int ip6_mc_input(struct sk_buff *skb); void ip6_protocol_deliver_rcu(struct net *net, struct sk_buff *skb, int nexthdr, bool have_final); int __ip6_local_out(struct net *net, struct sock *sk, struct sk_buff *skb); int ip6_local_out(struct net *net, struct sock *sk, struct sk_buff *skb); /* * Extension header (options) processing */ void ipv6_push_nfrag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt, u8 *proto, stru