1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_NAMEI_H #define _LINUX_NAMEI_H #include <linux/fs.h> #include <linux/kernel.h> #include <linux/path.h> #include <linux/fcntl.h> #include <linux/errno.h> enum { MAX_NESTED_LINKS = 8 }; #define MAXSYMLINKS 40 /* * Type of the last component on LOOKUP_PARENT */ enum {LAST_NORM, LAST_ROOT, LAST_DOT, LAST_DOTDOT}; /* pathwalk mode */ #define LOOKUP_FOLLOW 0x0001 /* follow links at the end */ #define LOOKUP_DIRECTORY 0x0002 /* require a directory */ #define LOOKUP_AUTOMOUNT 0x0004 /* force terminal automount */ #define LOOKUP_EMPTY 0x4000 /* accept empty path [user_... only] */ #define LOOKUP_DOWN 0x8000 /* follow mounts in the starting point */ #define LOOKUP_MOUNTPOINT 0x0080 /* follow mounts in the end */ #define LOOKUP_REVAL 0x0020 /* tell ->d_revalidate() to trust no cache */ #define LOOKUP_RCU 0x0040 /* RCU pathwalk mode; semi-internal */ /* These tell filesystem methods that we are dealing with the final component... */ #define LOOKUP_OPEN 0x0100 /* ... in open */ #define LOOKUP_CREATE 0x0200 /* ... in object creation */ #define LOOKUP_EXCL 0x0400 /* ... in exclusive creation */ #define LOOKUP_RENAME_TARGET 0x0800 /* ... in destination of rename() */ /* internal use only */ #define LOOKUP_PARENT 0x0010 #define LOOKUP_JUMPED 0x1000 #define LOOKUP_ROOT 0x2000 #define LOOKUP_ROOT_GRABBED 0x0008 /* Scoping flags for lookup. */ #define LOOKUP_NO_SYMLINKS 0x010000 /* No symlink crossing. */ #define LOOKUP_NO_MAGICLINKS 0x020000 /* No nd_jump_link() crossing. */ #define LOOKUP_NO_XDEV 0x040000 /* No mountpoint crossing. */ #define LOOKUP_BENEATH 0x080000 /* No escaping from starting point. */ #define LOOKUP_IN_ROOT 0x100000 /* Treat dirfd as fs root. */ /* LOOKUP_* flags which do scope-related checks based on the dirfd. */ #define LOOKUP_IS_SCOPED (LOOKUP_BENEATH | LOOKUP_IN_ROOT) extern int path_pts(struct path *path); extern int user_path_at_empty(int, const char __user *, unsigned, struct path *, int *empty); static inline int user_path_at(int dfd, const char __user *name, unsigned flags, struct path *path) { return user_path_at_empty(dfd, name, flags, path, NULL); } extern int kern_path(const char *, unsigned, struct path *); extern struct dentry *kern_path_create(int, const char *, struct path *, unsigned int); extern struct dentry *user_path_create(int, const char __user *, struct path *, unsigned int); extern void done_path_create(struct path *, struct dentry *); extern struct dentry *kern_path_locked(const char *, struct path *); extern struct dentry *try_lookup_one_len(const char *, struct dentry *, int); extern struct dentry *lookup_one_len(const char *, struct dentry *, int); extern struct dentry *lookup_one_len_unlocked(const char *, struct dentry *, int); extern struct dentry *lookup_positive_unlocked(const char *, struct dentry *, int); extern int follow_down_one(struct path *); extern int follow_down(struct path *); extern int follow_up(struct path *); extern struct dentry *lock_rename(struct dentry *, struct dentry *); extern void unlock_rename(struct dentry *, struct dentry *); extern int __must_check nd_jump_link(struct path *path); static inline void nd_terminate_link(void *name, size_t len, size_t maxlen) { ((char *) name)[min(len, maxlen)] = '\0'; } /** * retry_estale - determine whether the caller should retry an operation * @error: the error that would currently be returned * @flags: flags being used for next lookup attempt * * Check to see if the error code was -ESTALE, and then determine whether * to retry the call based on whether "flags" already has LOOKUP_REVAL set. * * Returns true if the caller should try the operation again. */ static inline bool retry_estale(const long error, const unsigned int flags) { return error == -ESTALE && !(flags & LOOKUP_REVAL); } #endif /* _LINUX_NAMEI_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM percpu #if !defined(_TRACE_PERCPU_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_PERCPU_H #include <linux/tracepoint.h> TRACE_EVENT(percpu_alloc_percpu, TP_PROTO(bool reserved, bool is_atomic, size_t size, size_t align, void *base_addr, int off, void __percpu *ptr), TP_ARGS(reserved, is_atomic, size, align, base_addr, off, ptr), TP_STRUCT__entry( __field( bool, reserved ) __field( bool, is_atomic ) __field( size_t, size ) __field( size_t, align ) __field( void *, base_addr ) __field( int, off ) __field( void __percpu *, ptr ) ), TP_fast_assign( __entry->reserved = reserved; __entry->is_atomic = is_atomic; __entry->size = size; __entry->align = align; __entry->base_addr = base_addr; __entry->off = off; __entry->ptr = ptr; ), TP_printk("reserved=%d is_atomic=%d size=%zu align=%zu base_addr=%p off=%d ptr=%p", __entry->reserved, __entry->is_atomic, __entry->size, __entry->align, __entry->base_addr, __entry->off, __entry->ptr) ); TRACE_EVENT(percpu_free_percpu, TP_PROTO(void *base_addr, int off, void __percpu *ptr), TP_ARGS(base_addr, off, ptr), TP_STRUCT__entry( __field( void *, base_addr ) __field( int, off ) __field( void __percpu *, ptr ) ), TP_fast_assign( __entry->base_addr = base_addr; __entry->off = off; __entry->ptr = ptr; ), TP_printk("base_addr=%p off=%d ptr=%p", __entry->base_addr, __entry->off, __entry->ptr) ); TRACE_EVENT(percpu_alloc_percpu_fail, TP_PROTO(bool reserved, bool is_atomic, size_t size, size_t align), TP_ARGS(reserved, is_atomic, size, align), TP_STRUCT__entry( __field( bool, reserved ) __field( bool, is_atomic ) __field( size_t, size ) __field( size_t, align ) ), TP_fast_assign( __entry->reserved = reserved; __entry->is_atomic = is_atomic; __entry->size = size; __entry->align = align; ), TP_printk("reserved=%d is_atomic=%d size=%zu align=%zu", __entry->reserved, __entry->is_atomic, __entry->size, __entry->align) ); TRACE_EVENT(percpu_create_chunk, TP_PROTO(void *base_addr), TP_ARGS(base_addr), TP_STRUCT__entry( __field( void *, base_addr ) ), TP_fast_assign( __entry->base_addr = base_addr; ), TP_printk("base_addr=%p", __entry->base_addr) ); TRACE_EVENT(percpu_destroy_chunk, TP_PROTO(void *base_addr), TP_ARGS(base_addr), TP_STRUCT__entry( __field( void *, base_addr ) ), TP_fast_assign( __entry->base_addr = base_addr; ), TP_printk("base_addr=%p", __entry->base_addr) ); #endif /* _TRACE_PERCPU_H */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_PREEMPT_H #define __LINUX_PREEMPT_H /* * include/linux/preempt.h - macros for accessing and manipulating * preempt_count (used for kernel preemption, interrupt count, etc.) */ #include <linux/linkage.h> #include <linux/list.h> /* * We put the hardirq and softirq counter into the preemption * counter. The bitmask has the following meaning: * * - bits 0-7 are the preemption count (max preemption depth: 256) * - bits 8-15 are the softirq count (max # of softirqs: 256) * * The hardirq count could in theory be the same as the number of * interrupts in the system, but we run all interrupt handlers with * interrupts disabled, so we cannot have nesting interrupts. Though * there are a few palaeontologic drivers which reenable interrupts in * the handler, so we need more than one bit here. * * PREEMPT_MASK: 0x000000ff * SOFTIRQ_MASK: 0x0000ff00 * HARDIRQ_MASK: 0x000f0000 * NMI_MASK: 0x00f00000 * PREEMPT_NEED_RESCHED: 0x80000000 */ #define PREEMPT_BITS 8 #define SOFTIRQ_BITS 8 #define HARDIRQ_BITS 4 #define NMI_BITS 4 #define PREEMPT_SHIFT 0 #define SOFTIRQ_SHIFT (PREEMPT_SHIFT + PREEMPT_BITS) #define HARDIRQ_SHIFT (SOFTIRQ_SHIFT + SOFTIRQ_BITS) #define NMI_SHIFT (HARDIRQ_SHIFT + HARDIRQ_BITS) #define __IRQ_MASK(x) ((1UL << (x))-1) #define PREEMPT_MASK (__IRQ_MASK(PREEMPT_BITS) << PREEMPT_SHIFT) #define SOFTIRQ_MASK (__IRQ_MASK(SOFTIRQ_BITS) << SOFTIRQ_SHIFT) #define HARDIRQ_MASK (__IRQ_MASK(HARDIRQ_BITS) << HARDIRQ_SHIFT) #define NMI_MASK (__IRQ_MASK(NMI_BITS) << NMI_SHIFT) #define PREEMPT_OFFSET (1UL << PREEMPT_SHIFT) #define SOFTIRQ_OFFSET (1UL << SOFTIRQ_SHIFT) #define HARDIRQ_OFFSET (1UL << HARDIRQ_SHIFT) #define NMI_OFFSET (1UL << NMI_SHIFT) #define SOFTIRQ_DISABLE_OFFSET (2 * SOFTIRQ_OFFSET) #define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED) /* * Disable preemption until the scheduler is running -- use an unconditional * value so that it also works on !PREEMPT_COUNT kernels. * * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count(). */ #define INIT_PREEMPT_COUNT PREEMPT_OFFSET /* * Initial preempt_count value; reflects the preempt_count schedule invariant * which states that during context switches: * * preempt_count() == 2*PREEMPT_DISABLE_OFFSET * * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels. * Note: See finish_task_switch(). */ #define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED) /* preempt_count() and related functions, depends on PREEMPT_NEED_RESCHED */ #include <asm/preempt.h> #define hardirq_count() (preempt_count() & HARDIRQ_MASK) #define softirq_count() (preempt_count() & SOFTIRQ_MASK) #define irq_count() (preempt_count() & (HARDIRQ_MASK | SOFTIRQ_MASK \ | NMI_MASK)) /* * Are we doing bottom half or hardware interrupt processing? * * in_irq() - We're in (hard) IRQ context * in_softirq() - We have BH disabled, or are processing softirqs * in_interrupt() - We're in NMI,IRQ,SoftIRQ context or have BH disabled * in_serving_softirq() - We're in softirq context * in_nmi() - We're in NMI context * in_task() - We're in task context * * Note: due to the BH disabled confusion: in_softirq(),in_interrupt() really * should not be used in new code. */ #define in_irq() (hardirq_count()) #define in_softirq() (softirq_count()) #define in_interrupt() (irq_count()) #define in_serving_softirq() (softirq_count() & SOFTIRQ_OFFSET) #define in_nmi() (preempt_count() & NMI_MASK) #define in_task() (!(preempt_count() & \ (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET))) /* * The preempt_count offset after preempt_disable(); */ #if defined(CONFIG_PREEMPT_COUNT) # define PREEMPT_DISABLE_OFFSET PREEMPT_OFFSET #else # define PREEMPT_DISABLE_OFFSET 0 #endif /* * The preempt_count offset after spin_lock() */ #define PREEMPT_LOCK_OFFSET PREEMPT_DISABLE_OFFSET /* * The preempt_count offset needed for things like: * * spin_lock_bh() * * Which need to disable both preemption (CONFIG_PREEMPT_COUNT) and * softirqs, such that unlock sequences of: * * spin_unlock(); * local_bh_enable(); * * Work as expected. */ #define SOFTIRQ_LOCK_OFFSET (SOFTIRQ_DISABLE_OFFSET + PREEMPT_LOCK_OFFSET) /* * Are we running in atomic context? WARNING: this macro cannot * always detect atomic context; in particular, it cannot know about * held spinlocks in non-preemptible kernels. Thus it should not be * used in the general case to determine whether sleeping is possible. * Do not use in_atomic() in driver code. */ #define in_atomic() (preempt_count() != 0) /* * Check whether we were atomic before we did preempt_disable(): * (used by the scheduler) */ #define in_atomic_preempt_off() (preempt_count() != PREEMPT_DISABLE_OFFSET) #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE) extern void preempt_count_add(int val); extern void preempt_count_sub(int val); #define preempt_count_dec_and_test() \ ({ preempt_count_sub(1); should_resched(0); }) #else #define preempt_count_add(val) __preempt_count_add(val) #define preempt_count_sub(val) __preempt_count_sub(val) #define preempt_count_dec_and_test() __preempt_count_dec_and_test() #endif #define __preempt_count_inc() __preempt_count_add(1) #define __preempt_count_dec() __preempt_count_sub(1) #define preempt_count_inc() preempt_count_add(1) #define preempt_count_dec() preempt_count_sub(1) #ifdef CONFIG_PREEMPT_COUNT #define preempt_disable() \ do { \ preempt_count_inc(); \ barrier(); \ } while (0) #define sched_preempt_enable_no_resched() \ do { \ barrier(); \ preempt_count_dec(); \ } while (0) #define preempt_enable_no_resched() sched_preempt_enable_no_resched() #define preemptible() (preempt_count() == 0 && !irqs_disabled()) #ifdef CONFIG_PREEMPTION #define preempt_enable() \ do { \ barrier(); \ if (unlikely(preempt_count_dec_and_test())) \ __preempt_schedule(); \ } while (0) #define preempt_enable_notrace() \ do { \ barrier(); \ if (unlikely(__preempt_count_dec_and_test())) \ __preempt_schedule_notrace(); \ } while (0) #define preempt_check_resched() \ do { \ if (should_resched(0)) \ __preempt_schedule(); \ } while (0) #else /* !CONFIG_PREEMPTION */ #define preempt_enable() \ do { \ barrier(); \ preempt_count_dec(); \ } while (0) #define preempt_enable_notrace() \ do { \ barrier(); \ __preempt_count_dec(); \ } while (0) #define preempt_check_resched() do { } while (0) #endif /* CONFIG_PREEMPTION */ #define preempt_disable_notrace() \ do { \ __preempt_count_inc(); \ barrier(); \ } while (0) #define preempt_enable_no_resched_notrace() \ do { \ barrier(); \ __preempt_count_dec(); \ } while (0) #else /* !CONFIG_PREEMPT_COUNT */ /* * Even if we don't have any preemption, we need preempt disable/enable * to be barriers, so that we don't have things like get_user/put_user * that can cause faults and scheduling migrate into our preempt-protected * region. */ #define preempt_disable() barrier() #define sched_preempt_enable_no_resched() barrier() #define preempt_enable_no_resched() barrier() #define preempt_enable() barrier() #define preempt_check_resched() do { } while (0) #define preempt_disable_notrace() barrier() #define preempt_enable_no_resched_notrace() barrier() #define preempt_enable_notrace() barrier() #define preemptible() 0 #endif /* CONFIG_PREEMPT_COUNT */ #ifdef MODULE /* * Modules have no business playing preemption tricks. */ #undef sched_preempt_enable_no_resched #undef preempt_enable_no_resched #undef preempt_enable_no_resched_notrace #undef preempt_check_resched #endif #define preempt_set_need_resched() \ do { \ set_preempt_need_resched(); \ } while (0) #define preempt_fold_need_resched() \ do { \ if (tif_need_resched()) \ set_preempt_need_resched(); \ } while (0) #ifdef CONFIG_PREEMPT_NOTIFIERS struct preempt_notifier; /** * preempt_ops - notifiers called when a task is preempted and rescheduled * @sched_in: we're about to be rescheduled: * notifier: struct preempt_notifier for the task being scheduled * cpu: cpu we're scheduled on * @sched_out: we've just been preempted * notifier: struct preempt_notifier for the task being preempted * next: the task that's kicking us out * * Please note that sched_in and out are called under different * contexts. sched_out is called with rq lock held and irq disabled * while sched_in is called without rq lock and irq enabled. This * difference is intentional and depended upon by its users. */ struct preempt_ops { void (*sched_in)(struct preempt_notifier *notifier, int cpu); void (*sched_out)(struct preempt_notifier *notifier, struct task_struct *next); }; /** * preempt_notifier - key for installing preemption notifiers * @link: internal use * @ops: defines the notifier functions to be called * * Usually used in conjunction with container_of(). */ struct preempt_notifier { struct hlist_node link; struct preempt_ops *ops; }; void preempt_notifier_inc(void); void preempt_notifier_dec(void); void preempt_notifier_register(struct preempt_notifier *notifier); void preempt_notifier_unregister(struct preempt_notifier *notifier); static inline void preempt_notifier_init(struct preempt_notifier *notifier, struct preempt_ops *ops) { INIT_HLIST_NODE(&notifier->link); notifier->ops = ops; } #endif /** * migrate_disable - Prevent migration of the current task * * Maps to preempt_disable() which also disables preemption. Use * migrate_disable() to annotate that the intent is to prevent migration, * but not necessarily preemption. * * Can be invoked nested like preempt_disable() and needs the corresponding * number of migrate_enable() invocations. */ static __always_inline void migrate_disable(void) { preempt_disable(); } /** * migrate_enable - Allow migration of the current task * * Counterpart to migrate_disable(). * * As migrate_disable() can be invoked nested, only the outermost invocation * reenables migration. * * Currently mapped to preempt_enable(). */ static __always_inline void migrate_enable(void) { preempt_enable(); } #endif /* __LINUX_PREEMPT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Checksumming functions for IPv6 * * Authors: Jorge Cwik, <jorge@laser.satlink.net> * Arnt Gulbrandsen, <agulbra@nvg.unit.no> * Borrows very liberally from tcp.c and ip.c, see those * files for more names. */ /* * Fixes: * * Ralf Baechle : generic ipv6 checksum * <ralf@waldorf-gmbh.de> */ #ifndef _CHECKSUM_IPV6_H #define _CHECKSUM_IPV6_H #include <asm/types.h> #include <asm/byteorder.h> #include <net/ip.h> #include <asm/checksum.h> #include <linux/in6.h> #include <linux/tcp.h> #include <linux/ipv6.h> #ifndef _HAVE_ARCH_IPV6_CSUM __sum16 csum_ipv6_magic(const struct in6_addr *saddr, const struct in6_addr *daddr, __u32 len, __u8 proto, __wsum csum); #endif static inline __wsum ip6_compute_pseudo(struct sk_buff *skb, int proto) { return ~csum_unfold(csum_ipv6_magic(&ipv6_hdr(skb)->saddr, &ipv6_hdr(skb)->daddr, skb->len, proto, 0)); } static inline __wsum ip6_gro_compute_pseudo(struct sk_buff *skb, int proto) { const struct ipv6hdr *iph = skb_gro_network_header(skb); return ~csum_unfold(csum_ipv6_magic(&iph->saddr, &iph->daddr, skb_gro_len(skb), proto, 0)); } static __inline__ __sum16 tcp_v6_check(int len, const struct in6_addr *saddr, const struct in6_addr *daddr, __wsum base) { return csum_ipv6_magic(saddr, daddr, len, IPPROTO_TCP, base); } static inline void __tcp_v6_send_check(struct sk_buff *skb, const struct in6_addr *saddr, const struct in6_addr *daddr) { struct tcphdr *th = tcp_hdr(skb); if (skb->ip_summed == CHECKSUM_PARTIAL) { th->check = ~tcp_v6_check(skb->len, saddr, daddr, 0); skb->csum_start = skb_transport_header(skb) - skb->head; skb->csum_offset = offsetof(struct tcphdr, check); } else { th->check = tcp_v6_check(skb->len, saddr, daddr, csum_partial(th, th->doff << 2, skb->csum)); } } static inline void tcp_v6_gso_csum_prep(struct sk_buff *skb) { struct ipv6hdr *ipv6h = ipv6_hdr(skb); struct tcphdr *th = tcp_hdr(skb); ipv6h->payload_len = 0; th->check = ~tcp_v6_check(0, &ipv6h->saddr, &ipv6h->daddr, 0); } static inline __sum16 udp_v6_check(int len, const struct in6_addr *saddr, const struct in6_addr *daddr, __wsum base) { return csum_ipv6_magic(saddr, daddr, len, IPPROTO_UDP, base); } void udp6_set_csum(bool nocheck, struct sk_buff *skb, const struct in6_addr *saddr, const struct in6_addr *daddr, int len); int udp6_csum_init(struct sk_buff *skb, struct udphdr *uh, int proto); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef LINUX_MM_INLINE_H #define LINUX_MM_INLINE_H #include <linux/huge_mm.h> #include <linux/swap.h> /** * page_is_file_lru - should the page be on a file LRU or anon LRU? * @page: the page to test * * Returns 1 if @page is a regular filesystem backed page cache page or a lazily * freed anonymous page (e.g. via MADV_FREE). Returns 0 if @page is a normal * anonymous page, a tmpfs page or otherwise ram or swap backed page. Used by * functions that manipulate the LRU lists, to sort a page onto the right LRU * list. * * We would like to get this info without a page flag, but the state * needs to survive until the page is last deleted from the LRU, which * could be as far down as __page_cache_release. */ static inline int page_is_file_lru(struct page *page) { return !PageSwapBacked(page); } static __always_inline void __update_lru_size(struct lruvec *lruvec, enum lru_list lru, enum zone_type zid, int nr_pages) { struct pglist_data *pgdat = lruvec_pgdat(lruvec); __mod_lruvec_state(lruvec, NR_LRU_BASE + lru, nr_pages); __mod_zone_page_state(&pgdat->node_zones[zid], NR_ZONE_LRU_BASE + lru, nr_pages); } static __always_inline void update_lru_size(struct lruvec *lruvec, enum lru_list lru, enum zone_type zid, int nr_pages) { __update_lru_size(lruvec, lru, zid, nr_pages); #ifdef CONFIG_MEMCG mem_cgroup_update_lru_size(lruvec, lru, zid, nr_pages); #endif } static __always_inline void add_page_to_lru_list(struct page *page, struct lruvec *lruvec, enum lru_list lru) { update_lru_size(lruvec, lru, page_zonenum(page), thp_nr_pages(page)); list_add(&page->lru, &lruvec->lists[lru]); } static __always_inline void add_page_to_lru_list_tail(struct page *page, struct lruvec *lruvec, enum lru_list lru) { update_lru_size(lruvec, lru, page_zonenum(page), thp_nr_pages(page)); list_add_tail(&page->lru, &lruvec->lists[lru]); } static __always_inline void del_page_from_lru_list(struct page *page, struct lruvec *lruvec, enum lru_list lru) { list_del(&page->lru); update_lru_size(lruvec, lru, page_zonenum(page), -thp_nr_pages(page)); } /** * page_lru_base_type - which LRU list type should a page be on? * @page: the page to test * * Used for LRU list index arithmetic. * * Returns the base LRU type - file or anon - @page should be on. */ static inline enum lru_list page_lru_base_type(struct page *page) { if (page_is_file_lru(page)) return LRU_INACTIVE_FILE; return LRU_INACTIVE_ANON; } /** * page_off_lru - which LRU list was page on? clearing its lru flags. * @page: the page to test * * Returns the LRU list a page was on, as an index into the array of LRU * lists; and clears its Unevictable or Active flags, ready for freeing. */ static __always_inline enum lru_list page_off_lru(struct page *page) { enum lru_list lru; if (PageUnevictable(page)) { __ClearPageUnevictable(page); lru = LRU_UNEVICTABLE; } else { lru = page_lru_base_type(page); if (PageActive(page)) { __ClearPageActive(page); lru += LRU_ACTIVE; } } return lru; } /** * page_lru - which LRU list should a page be on? * @page: the page to test * * Returns the LRU list a page should be on, as an index * into the array of LRU lists. */ static __always_inline enum lru_list page_lru(struct page *page) { enum lru_list lru; if (PageUnevictable(page)) lru = LRU_UNEVICTABLE; else { lru = page_lru_base_type(page); if (PageActive(page)) lru += LRU_ACTIVE; } return lru; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_MIN_HEAP_H #define _LINUX_MIN_HEAP_H #include <linux/bug.h> #include <linux/string.h> #include <linux/types.h> /** * struct min_heap - Data structure to hold a min-heap. * @data: Start of array holding the heap elements. * @nr: Number of elements currently in the heap. * @size: Maximum number of elements that can be held in current storage. */ struct min_heap { void *data; int nr; int size; }; /** * struct min_heap_callbacks - Data/functions to customise the min_heap. * @elem_size: The nr of each element in bytes. * @less: Partial order function for this heap. * @swp: Swap elements function. */ struct min_heap_callbacks { int elem_size; bool (*less)(const void *lhs, const void *rhs); void (*swp)(void *lhs, void *rhs); }; /* Sift the element at pos down the heap. */ static __always_inline void min_heapify(struct min_heap *heap, int pos, const struct min_heap_callbacks *func) { void *left, *right, *parent, *smallest; void *data = heap->data; for (;;) { if (pos * 2 + 1 >= heap->nr) break; left = data + ((pos * 2 + 1) * func->elem_size); parent = data + (pos * func->elem_size); smallest = parent; if (func->less(left, smallest)) smallest = left; if (pos * 2 + 2 < heap->nr) { right = data + ((pos * 2 + 2) * func->elem_size); if (func->less(right, smallest)) smallest = right; } if (smallest == parent) break; func->swp(smallest, parent); if (smallest == left) pos = (pos * 2) + 1; else pos = (pos * 2) + 2; } } /* Floyd's approach to heapification that is O(nr). */ static __always_inline void min_heapify_all(struct min_heap *heap, const struct min_heap_callbacks *func) { int i; for (i = heap->nr / 2; i >= 0; i--) min_heapify(heap, i, func); } /* Remove minimum element from the heap, O(log2(nr)). */ static __always_inline void min_heap_pop(struct min_heap *heap, const struct min_heap_callbacks *func) { void *data = heap->data; if (WARN_ONCE(heap->nr <= 0, "Popping an empty heap")) return; /* Place last element at the root (position 0) and then sift down. */ heap->nr--; memcpy(data, data + (heap->nr * func->elem_size), func->elem_size); min_heapify(heap, 0, func); } /* * Remove the minimum element and then push the given element. The * implementation performs 1 sift (O(log2(nr))) and is therefore more * efficient than a pop followed by a push that does 2. */ static __always_inline void min_heap_pop_push(struct min_heap *heap, const void *element, const struct min_heap_callbacks *func) { memcpy(heap->data, element, func->elem_size); min_heapify(heap, 0, func); } /* Push an element on to the heap, O(log2(nr)). */ static __always_inline void min_heap_push(struct min_heap *heap, const void *element, const struct min_heap_callbacks *func) { void *data = heap->data; void *child, *parent; int pos; if (WARN_ONCE(heap->nr >= heap->size, "Pushing on a full heap")) return; /* Place at the end of data. */ pos = heap->nr; memcpy(data + (pos * func->elem_size), element, func->elem_size); heap->nr++; /* Sift child at pos up. */ for (; pos > 0; pos = (pos - 1) / 2) { child = data + (pos * func->elem_size); parent = data + ((pos - 1) / 2) * func->elem_size; if (func->less(parent, child)) break; func->swp(parent, child); } } #endif /* _LINUX_MIN_HEAP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __INCLUDE_LINUX_OOM_H #define __INCLUDE_LINUX_OOM_H #include <linux/sched/signal.h> #include <linux/types.h> #include <linux/nodemask.h> #include <uapi/linux/oom.h> #include <linux/sched/coredump.h> /* MMF_* */ #include <linux/mm.h> /* VM_FAULT* */ struct zonelist; struct notifier_block; struct mem_cgroup; struct task_struct; enum oom_constraint { CONSTRAINT_NONE, CONSTRAINT_CPUSET, CONSTRAINT_MEMORY_POLICY, CONSTRAINT_MEMCG, }; /* * Details of the page allocation that triggered the oom killer that are used to * determine what should be killed. */ struct oom_control { /* Used to determine cpuset */ struct zonelist *zonelist; /* Used to determine mempolicy */ nodemask_t *nodemask; /* Memory cgroup in which oom is invoked, or NULL for global oom */ struct mem_cgroup *memcg; /* Used to determine cpuset and node locality requirement */ const gfp_t gfp_mask; /* * order == -1 means the oom kill is required by sysrq, otherwise only * for display purposes. */ const int order; /* Used by oom implementation, do not set */ unsigned long totalpages; struct task_struct *chosen; long chosen_points; /* Used to print the constraint info. */ enum oom_constraint constraint; }; extern struct mutex oom_lock; extern struct mutex oom_adj_mutex; static inline void set_current_oom_origin(void) { current->signal->oom_flag_origin = true; } static inline void clear_current_oom_origin(void) { current->signal->oom_flag_origin = false; } static inline bool oom_task_origin(const struct task_struct *p) { return p->signal->oom_flag_origin; } static inline bool tsk_is_oom_victim(struct task_struct * tsk) { return tsk->signal->oom_mm; } /* * Use this helper if tsk->mm != mm and the victim mm needs a special * handling. This is guaranteed to stay true after once set. */ static inline bool mm_is_oom_victim(struct mm_struct *mm) { return test_bit(MMF_OOM_VICTIM, &mm->flags); } /* * Checks whether a page fault on the given mm is still reliable. * This is no longer true if the oom reaper started to reap the * address space which is reflected by MMF_UNSTABLE flag set in * the mm. At that moment any !shared mapping would lose the content * and could cause a memory corruption (zero pages instead of the * original content). * * User should call this before establishing a page table entry for * a !shared mapping and under the proper page table lock. * * Return 0 when the PF is safe VM_FAULT_SIGBUS otherwise. */ static inline vm_fault_t check_stable_address_space(struct mm_struct *mm) { if (unlikely(test_bit(MMF_UNSTABLE, &mm->flags))) return VM_FAULT_SIGBUS; return 0; } bool __oom_reap_task_mm(struct mm_struct *mm); long oom_badness(struct task_struct *p, unsigned long totalpages); extern bool out_of_memory(struct oom_control *oc); extern void exit_oom_victim(void); extern int register_oom_notifier(struct notifier_block *nb); extern int unregister_oom_notifier(struct notifier_block *nb); extern bool oom_killer_disable(signed long timeout); extern void oom_killer_enable(void); extern struct task_struct *find_lock_task_mm(struct task_struct *p); /* sysctls */ extern int sysctl_oom_dump_tasks; extern int sysctl_oom_kill_allocating_task; extern int sysctl_panic_on_oom; #endif /* _INCLUDE_LINUX_OOM_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 /* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright (C) 1999-2002 Vojtech Pavlik */ #ifndef _SERIO_H #define _SERIO_H #include <linux/types.h> #include <linux/interrupt.h> #include <linux/list.h> #include <linux/spinlock.h> #include <linux/mutex.h> #include <linux/device.h> #include <linux/mod_devicetable.h> #include <uapi/linux/serio.h> extern struct bus_type serio_bus; struct serio { void *port_data; char name[32]; char phys[32]; char firmware_id[128]; bool manual_bind; struct serio_device_id id; /* Protects critical sections from port's interrupt handler */ spinlock_t lock; int (*write)(struct serio *, unsigned char); int (*open)(struct serio *); void (*close)(struct serio *); int (*start)(struct serio *); void (*stop)(struct serio *); struct serio *parent; /* Entry in parent->children list */ struct list_head child_node; struct list_head children; /* Level of nesting in serio hierarchy */ unsigned int depth; /* * serio->drv is accessed from interrupt handlers; when modifying * caller should acquire serio->drv_mutex and serio->lock. */ struct serio_driver *drv; /* Protects serio->drv so attributes can pin current driver */ struct mutex drv_mutex; struct device dev; struct list_head node; /* * For use by PS/2 layer when several ports share hardware and * may get indigestion when exposed to concurrent access (i8042). */ struct mutex *ps2_cmd_mutex; }; #define to_serio_port(d) container_of(d, struct serio, dev) struct serio_driver { const char *description; const struct serio_device_id *id_table; bool manual_bind; void (*write_wakeup)(struct serio *); irqreturn_t (*interrupt)(struct serio *, unsigned char, unsigned int); int (*connect)(struct serio *, struct serio_driver *drv); int (*reconnect)(struct serio *); int (*fast_reconnect)(struct serio *); void (*disconnect)(struct serio *); void (*cleanup)(struct serio *); struct device_driver driver; }; #define to_serio_driver(d) container_of(d, struct serio_driver, driver) int serio_open(struct serio *serio, struct serio_driver *drv); void serio_close(struct serio *serio); void serio_rescan(struct serio *serio); void serio_reconnect(struct serio *serio); irqreturn_t serio_interrupt(struct serio *serio, unsigned char data, unsigned int flags); void __serio_register_port(struct serio *serio, struct module *owner); /* use a define to avoid include chaining to get THIS_MODULE */ #define serio_register_port(serio) \ __serio_register_port(serio, THIS_MODULE) void serio_unregister_port(struct serio *serio); void serio_unregister_child_port(struct serio *serio); int __must_check __serio_register_driver(struct serio_driver *drv, struct module *owner, const char *mod_name); /* use a define to avoid include chaining to get THIS_MODULE & friends */ #define serio_register_driver(drv) \ __serio_register_driver(drv, THIS_MODULE, KBUILD_MODNAME) void serio_unregister_driver(struct serio_driver *drv); /** * module_serio_driver() - Helper macro for registering a serio driver * @__serio_driver: serio_driver struct * * Helper macro for serio drivers which do not do anything special in * module init/exit. This eliminates a lot of boilerplate. Each module * may only use this macro once, and calling it replaces module_init() * and module_exit(). */ #define module_serio_driver(__serio_driver) \ module_driver(__serio_driver, serio_register_driver, \ serio_unregister_driver) static inline int serio_write(struct serio *serio, unsigned char data) { if (serio->write) return serio->write(serio, data); else return -1; } static inline void serio_drv_write_wakeup(struct serio *serio) { if (serio->drv && serio->drv->write_wakeup) serio->drv->write_wakeup(serio); } /* * Use the following functions to manipulate serio's per-port * driver-specific data. */ static inline void *serio_get_drvdata(struct serio *serio) { return dev_get_drvdata(&serio->dev); } static inline void serio_set_drvdata(struct serio *serio, void *data) { dev_set_drvdata(&serio->dev, data); } /* * Use the following functions to protect critical sections in * driver code from port's interrupt handler */ static inline void serio_pause_rx(struct serio *serio) { spin_lock_irq(&serio->lock); } static inline void serio_continue_rx(struct serio *serio) { spin_unlock_irq(&serio->lock); } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_TLB_H #define _ASM_X86_TLB_H #define tlb_start_vma(tlb, vma) do { } while (0) #define tlb_end_vma(tlb, vma) do { } while (0) #define __tlb_remove_tlb_entry(tlb, ptep, address) do { } while (0) #define tlb_flush tlb_flush static inline void tlb_flush(struct mmu_gather *tlb); #include <asm-generic/tlb.h> static inline void tlb_flush(struct mmu_gather *tlb) { unsigned long start = 0UL, end = TLB_FLUSH_ALL; unsigned int stride_shift = tlb_get_unmap_shift(tlb); if (!tlb->fullmm && !tlb->need_flush_all) { start = tlb->start; end = tlb->end; } flush_tlb_mm_range(tlb->mm, start, end, stride_shift, tlb->freed_tables); } /* * While x86 architecture in general requires an IPI to perform TLB * shootdown, enablement code for several hypervisors overrides * .flush_tlb_others hook in pv_mmu_ops and implements it by issuing * a hypercall. To keep software pagetable walkers safe in this case we * switch to RCU based table free (MMU_GATHER_RCU_TABLE_FREE). See the comment * below 'ifdef CONFIG_MMU_GATHER_RCU_TABLE_FREE' in include/asm-generic/tlb.h * for more details. */ static inline void __tlb_remove_table(void *table) { free_page_and_swap_cache(table); } #endif /* _ASM_X86_TLB_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM cgroup #if !defined(_TRACE_CGROUP_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_CGROUP_H #include <linux/cgroup.h> #include <linux/tracepoint.h> DECLARE_EVENT_CLASS(cgroup_root, TP_PROTO(struct cgroup_root *root), TP_ARGS(root), TP_STRUCT__entry( __field( int, root ) __field( u16, ss_mask ) __string( name, root->name ) ), TP_fast_assign( __entry->root = root->hierarchy_id; __entry->ss_mask = root->subsys_mask; __assign_str(name, root->name); ), TP_printk("root=%d ss_mask=%#x name=%s", __entry->root, __entry->ss_mask, __get_str(name)) ); DEFINE_EVENT(cgroup_root, cgroup_setup_root, TP_PROTO(struct cgroup_root *root), TP_ARGS(root) ); DEFINE_EVENT(cgroup_root, cgroup_destroy_root, TP_PROTO(struct cgroup_root *root), TP_ARGS(root) ); DEFINE_EVENT(cgroup_root, cgroup_remount, TP_PROTO(struct cgroup_root *root), TP_ARGS(root) ); DECLARE_EVENT_CLASS(cgroup, TP_PROTO(struct cgroup *cgrp, const char *path), TP_ARGS(cgrp, path), TP_STRUCT__entry( __field( int, root ) __field( int, id ) __field( int, level ) __string( path, path ) ), TP_fast_assign( __entry->root = cgrp->root->hierarchy_id; __entry->id = cgroup_id(cgrp); __entry->level = cgrp->level; __assign_str(path, path); ), TP_printk("root=%d id=%d level=%d path=%s", __entry->root, __entry->id, __entry->level, __get_str(path)) ); DEFINE_EVENT(cgroup, cgroup_mkdir, TP_PROTO(struct cgroup *cgrp, const char *path), TP_ARGS(cgrp, path) ); DEFINE_EVENT(cgroup, cgroup_rmdir, TP_PROTO(struct cgroup *cgrp, const char *path), TP_ARGS(cgrp, path) ); DEFINE_EVENT(cgroup, cgroup_release, TP_PROTO(struct cgroup *cgrp, const char *path), TP_ARGS(cgrp, path) ); DEFINE_EVENT(cgroup, cgroup_rename, TP_PROTO(struct cgroup *cgrp, const char *path), TP_ARGS(cgrp, path) ); DEFINE_EVENT(cgroup, cgroup_freeze, TP_PROTO(struct cgroup *cgrp, const char *path), TP_ARGS(cgrp, path) ); DEFINE_EVENT(cgroup, cgroup_unfreeze, TP_PROTO(struct cgroup *cgrp, const char *path), TP_ARGS(cgrp, path) ); DECLARE_EVENT_CLASS(cgroup_migrate, TP_PROTO(struct cgroup *dst_cgrp, const char *path, struct task_struct *task, bool threadgroup), TP_ARGS(dst_cgrp, path, task, threadgroup), TP_STRUCT__entry( __field( int, dst_root ) __field( int, dst_id ) __field( int, dst_level ) __field( int, pid ) __string( dst_path, path ) __string( comm, task->comm ) ), TP_fast_assign( __entry->dst_root = dst_cgrp->root->hierarchy_id; __entry->dst_id = cgroup_id(dst_cgrp); __entry->dst_level = dst_cgrp->level; __assign_str(dst_path, path); __entry->pid = task->pid; __assign_str(comm, task->comm); ), TP_printk("dst_root=%d dst_id=%d dst_level=%d dst_path=%s pid=%d comm=%s", __entry->dst_root, __entry->dst_id, __entry->dst_level, __get_str(dst_path), __entry->pid, __get_str(comm)) ); DEFINE_EVENT(cgroup_migrate, cgroup_attach_task, TP_PROTO(struct cgroup *dst_cgrp, const char *path, struct task_struct *task, bool threadgroup), TP_ARGS(dst_cgrp, path, task, threadgroup) ); DEFINE_EVENT(cgroup_migrate, cgroup_transfer_tasks, TP_PROTO(struct cgroup *dst_cgrp, const char *path, struct task_struct *task, bool threadgroup), TP_ARGS(dst_cgrp, path, task, threadgroup) ); DECLARE_EVENT_CLASS(cgroup_event, TP_PROTO(struct cgroup *cgrp, const char *path, int val), TP_ARGS(cgrp, path, val), TP_STRUCT__entry( __field( int, root ) __field( int, id ) __field( int, level ) __string( path, path ) __field( int, val ) ), TP_fast_assign( __entry->root = cgrp->root->hierarchy_id; __entry->id = cgroup_id(cgrp); __entry->level = cgrp->level; __assign_str(path, path); __entry->val = val; ), TP_printk("root=%d id=%d level=%d path=%s val=%d", __entry->root, __entry->id, __entry->level, __get_str(path), __entry->val) ); DEFINE_EVENT(cgroup_event, cgroup_notify_populated, TP_PROTO(struct cgroup *cgrp, const char *path, int val), TP_ARGS(cgrp, path, val) ); DEFINE_EVENT(cgroup_event, cgroup_notify_frozen, TP_PROTO(struct cgroup *cgrp, const char *path, int val), TP_ARGS(cgrp, path, val) ); #endif /* _TRACE_CGROUP_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM random #if !defined(_TRACE_RANDOM_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_RANDOM_H #include <linux/writeback.h> #include <linux/tracepoint.h> TRACE_EVENT(add_device_randomness, TP_PROTO(int bytes, unsigned long IP), TP_ARGS(bytes, IP), TP_STRUCT__entry( __field( int, bytes ) __field(unsigned long, IP ) ), TP_fast_assign( __entry->bytes = bytes; __entry->IP = IP; ), TP_printk("bytes %d caller %pS", __entry->bytes, (void *)__entry->IP) ); DECLARE_EVENT_CLASS(random__mix_pool_bytes, TP_PROTO(const char *pool_name, int bytes, unsigned long IP), TP_ARGS(pool_name, bytes, IP), TP_STRUCT__entry( __field( const char *, pool_name ) __field( int, bytes ) __field(unsigned long, IP ) ), TP_fast_assign( __entry->pool_name = pool_name; __entry->bytes = bytes; __entry->IP = IP; ), TP_printk("%s pool: bytes %d caller %pS", __entry->pool_name, __entry->bytes, (void *)__entry->IP) ); DEFINE_EVENT(random__mix_pool_bytes, mix_pool_bytes, TP_PROTO(const char *pool_name, int bytes, unsigned long IP), TP_ARGS(pool_name, bytes, IP) ); DEFINE_EVENT(random__mix_pool_bytes, mix_pool_bytes_nolock, TP_PROTO(const char *pool_name, int bytes, unsigned long IP), TP_ARGS(pool_name, bytes, IP) ); TRACE_EVENT(credit_entropy_bits, TP_PROTO(const char *pool_name, int bits, int entropy_count, unsigned long IP), TP_ARGS(pool_name, bits, entropy_count, IP), TP_STRUCT__entry( __field( const char *, pool_name ) __field( int, bits ) __field( int, entropy_count ) __field(unsigned long, IP ) ), TP_fast_assign( __entry->pool_name = pool_name; __entry->bits = bits; __entry->entropy_count = entropy_count; __entry->IP = IP; ), TP_printk("%s pool: bits %d entropy_count %d caller %pS", __entry->pool_name, __entry->bits, __entry->entropy_count, (void *)__entry->IP) ); TRACE_EVENT(push_to_pool, TP_PROTO(const char *pool_name, int pool_bits, int input_bits), TP_ARGS(pool_name, pool_bits, input_bits), TP_STRUCT__entry( __field( const char *, pool_name ) __field( int, pool_bits ) __field( int, input_bits ) ), TP_fast_assign( __entry->pool_name = pool_name; __entry->pool_bits = pool_bits; __entry->input_bits = input_bits; ), TP_printk("%s: pool_bits %d input_pool_bits %d", __entry->pool_name, __entry->pool_bits, __entry->input_bits) ); TRACE_EVENT(debit_entropy, TP_PROTO(const char *pool_name, int debit_bits), TP_ARGS(pool_name, debit_bits), TP_STRUCT__entry( __field( const char *, pool_name ) __field( int, debit_bits ) ), TP_fast_assign( __entry->pool_name = pool_name; __entry->debit_bits = debit_bits; ), TP_printk("%s: debit_bits %d", __entry->pool_name, __entry->debit_bits) ); TRACE_EVENT(add_input_randomness, TP_PROTO(int input_bits), TP_ARGS(input_bits), TP_STRUCT__entry( __field( int, input_bits ) ), TP_fast_assign( __entry->input_bits = input_bits; ), TP_printk("input_pool_bits %d", __entry->input_bits) ); TRACE_EVENT(add_disk_randomness, TP_PROTO(dev_t dev, int input_bits), TP_ARGS(dev, input_bits), TP_STRUCT__entry( __field( dev_t, dev ) __field( int, input_bits ) ), TP_fast_assign( __entry->dev = dev; __entry->input_bits = input_bits; ), TP_printk("dev %d,%d input_pool_bits %d", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->input_bits) ); TRACE_EVENT(xfer_secondary_pool, TP_PROTO(const char *pool_name, int xfer_bits, int request_bits, int pool_entropy, int input_entropy), TP_ARGS(pool_name, xfer_bits, request_bits, pool_entropy, input_entropy), TP_STRUCT__entry( __field( const char *, pool_name ) __field( int, xfer_bits ) __field( int, request_bits ) __field( int, pool_entropy ) __field( int, input_entropy ) ), TP_fast_assign( __entry->pool_name = pool_name; __entry->xfer_bits = xfer_bits; __entry->request_bits = request_bits; __entry->pool_entropy = pool_entropy; __entry->input_entropy = input_entropy; ), TP_printk("pool %s xfer_bits %d request_bits %d pool_entropy %d " "input_entropy %d", __entry->pool_name, __entry->xfer_bits, __entry->request_bits, __entry->pool_entropy, __entry->input_entropy) ); DECLARE_EVENT_CLASS(random__get_random_bytes, TP_PROTO(int nbytes, unsigned long IP), TP_ARGS(nbytes, IP), TP_STRUCT__entry( __field( int, nbytes ) __field(unsigned long, IP ) ), TP_fast_assign( __entry->nbytes = nbytes; __entry->IP = IP; ), TP_printk("nbytes %d caller %pS", __entry->nbytes, (void *)__entry->IP) ); DEFINE_EVENT(random__get_random_bytes, get_random_bytes, TP_PROTO(int nbytes, unsigned long IP), TP_ARGS(nbytes, IP) ); DEFINE_EVENT(random__get_random_bytes, get_random_bytes_arch, TP_PROTO(int nbytes, unsigned long IP), TP_ARGS(nbytes, IP) ); DECLARE_EVENT_CLASS(random__extract_entropy, TP_PROTO(const char *pool_name, int nbytes, int entropy_count, unsigned long IP), TP_ARGS(pool_name, nbytes, entropy_count, IP), TP_STRUCT__entry( __field( const char *, pool_name ) __field( int, nbytes ) __field( int, entropy_count ) __field(unsigned long, IP ) ), TP_fast_assign( __entry->pool_name = pool_name; __entry->nbytes = nbytes; __entry->entropy_count = entropy_count; __entry->IP = IP; ), TP_printk("%s pool: nbytes %d entropy_count %d caller %pS", __entry->pool_name, __entry->nbytes, __entry->entropy_count, (void *)__entry->IP) ); DEFINE_EVENT(random__extract_entropy, extract_entropy, TP_PROTO(const char *pool_name, int nbytes, int entropy_count, unsigned long IP), TP_ARGS(pool_name, nbytes, entropy_count, IP) ); DEFINE_EVENT(random__extract_entropy, extract_entropy_user, TP_PROTO(const char *pool_name, int nbytes, int entropy_count, unsigned long IP), TP_ARGS(pool_name, nbytes, entropy_count, IP) ); TRACE_EVENT(random_read, TP_PROTO(int got_bits, int need_bits, int pool_left, int input_left), TP_ARGS(got_bits, need_bits, pool_left, input_left), TP_STRUCT__entry( __field( int, got_bits ) __field( int, need_bits ) __field( int, pool_left ) __field( int, input_left ) ), TP_fast_assign( __entry->got_bits = got_bits; __entry->need_bits = need_bits; __entry->pool_left = pool_left; __entry->input_left = input_left; ), TP_printk("got_bits %d still_needed_bits %d " "blocking_pool_entropy_left %d input_entropy_left %d", __entry->got_bits, __entry->got_bits, __entry->pool_left, __entry->input_left) ); TRACE_EVENT(urandom_read, TP_PROTO(int got_bits, int pool_left, int input_left), TP_ARGS(got_bits, pool_left, input_left), TP_STRUCT__entry( __field( int, got_bits ) __field( int, pool_left ) __field( int, input_left ) ), TP_fast_assign( __entry->got_bits = got_bits; __entry->pool_left = pool_left; __entry->input_left = input_left; ), TP_printk("got_bits %d nonblocking_pool_entropy_left %d " "input_entropy_left %d", __entry->got_bits, __entry->pool_left, __entry->input_left) ); TRACE_EVENT(prandom_u32, TP_PROTO(unsigned int ret), TP_ARGS(ret), TP_STRUCT__entry( __field( unsigned int, ret) ), TP_fast_assign( __entry->ret = ret; ), TP_printk("ret=%u" , __entry->ret) ); #endif /* _TRACE_RANDOM_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SWAP_H #define _LINUX_SWAP_H #include <linux/spinlock.h> #include <linux/linkage.h> #include <linux/mmzone.h> #include <linux/list.h> #include <linux/memcontrol.h> #include <linux/sched.h> #include <linux/node.h> #include <linux/fs.h> #include <linux/atomic.h> #include <linux/page-flags.h> #include <asm/page.h> struct notifier_block; struct bio; struct pagevec; #define SWAP_FLAG_PREFER 0x8000 /* set if swap priority specified */ #define SWAP_FLAG_PRIO_MASK 0x7fff #define SWAP_FLAG_PRIO_SHIFT 0 #define SWAP_FLAG_DISCARD 0x10000 /* enable discard for swap */ #define SWAP_FLAG_DISCARD_ONCE 0x20000 /* discard swap area at swapon-time */ #define SWAP_FLAG_DISCARD_PAGES 0x40000 /* discard page-clusters after use */ #define SWAP_FLAGS_VALID (SWAP_FLAG_PRIO_MASK | SWAP_FLAG_PREFER | \ SWAP_FLAG_DISCARD | SWAP_FLAG_DISCARD_ONCE | \ SWAP_FLAG_DISCARD_PAGES) #define SWAP_BATCH 64 static inline int current_is_kswapd(void) { return current->flags & PF_KSWAPD; } /* * MAX_SWAPFILES defines the maximum number of swaptypes: things which can * be swapped to. The swap type and the offset into that swap type are * encoded into pte's and into pgoff_t's in the swapcache. Using five bits * for the type means that the maximum number of swapcache pages is 27 bits * on 32-bit-pgoff_t architectures. And that assumes that the architecture packs * the type/offset into the pte as 5/27 as well. */ #define MAX_SWAPFILES_SHIFT 5 /* * Use some of the swap files numbers for other purposes. This * is a convenient way to hook into the VM to trigger special * actions on faults. */ /* * Unaddressable device memory support. See include/linux/hmm.h and * Documentation/vm/hmm.rst. Short description is we need struct pages for * device memory that is unaddressable (inaccessible) by CPU, so that we can * migrate part of a process memory to device memory. * * When a page is migrated from CPU to device, we set the CPU page table entry * to a special SWP_DEVICE_* entry. */ #ifdef CONFIG_DEVICE_PRIVATE #define SWP_DEVICE_NUM 2 #define SWP_DEVICE_WRITE (MAX_SWAPFILES+SWP_HWPOISON_NUM+SWP_MIGRATION_NUM) #define SWP_DEVICE_READ (MAX_SWAPFILES+SWP_HWPOISON_NUM+SWP_MIGRATION_NUM+1) #else #define SWP_DEVICE_NUM 0 #endif /* * NUMA node memory migration support */ #ifdef CONFIG_MIGRATION #define SWP_MIGRATION_NUM 2 #define SWP_MIGRATION_READ (MAX_SWAPFILES + SWP_HWPOISON_NUM) #define SWP_MIGRATION_WRITE (MAX_SWAPFILES + SWP_HWPOISON_NUM + 1) #else #define SWP_MIGRATION_NUM 0 #endif /* * Handling of hardware poisoned pages with memory corruption. */ #ifdef CONFIG_MEMORY_FAILURE #define SWP_HWPOISON_NUM 1 #define SWP_HWPOISON MAX_SWAPFILES #else #define SWP_HWPOISON_NUM 0 #endif #define MAX_SWAPFILES \ ((1 << MAX_SWAPFILES_SHIFT) - SWP_DEVICE_NUM - \ SWP_MIGRATION_NUM - SWP_HWPOISON_NUM) /* * Magic header for a swap area. The first part of the union is * what the swap magic looks like for the old (limited to 128MB) * swap area format, the second part of the union adds - in the * old reserved area - some extra information. Note that the first * kilobyte is reserved for boot loader or disk label stuff... * * Having the magic at the end of the PAGE_SIZE makes detecting swap * areas somewhat tricky on machines that support multiple page sizes. * For 2.5 we'll probably want to move the magic to just beyond the * bootbits... */ union swap_header { struct { char reserved[PAGE_SIZE - 10]; char magic[10]; /* SWAP-SPACE or SWAPSPACE2 */ } magic; struct { char bootbits[1024]; /* Space for disklabel etc. */ __u32 version; __u32 last_page; __u32 nr_badpages; unsigned char sws_uuid[16]; unsigned char sws_volume[16]; __u32 padding[117]; __u32 badpages[1]; } info; }; /* * current->reclaim_state points to one of these when a task is running * memory reclaim */ struct reclaim_state { unsigned long reclaimed_slab; }; #ifdef __KERNEL__ struct address_space; struct sysinfo; struct writeback_control; struct zone; /* * A swap extent maps a range of a swapfile's PAGE_SIZE pages onto a range of * disk blocks. A list of swap extents maps the entire swapfile. (Where the * term `swapfile' refers to either a blockdevice or an IS_REG file. Apart * from setup, they're handled identically. * * We always assume that blocks are of size PAGE_SIZE. */ struct swap_extent { struct rb_node rb_node; pgoff_t start_page; pgoff_t nr_pages; sector_t start_block; }; /* * Max bad pages in the new format.. */ #define MAX_SWAP_BADPAGES \ ((offsetof(union swap_header, magic.magic) - \ offsetof(union swap_header, info.badpages)) / sizeof(int)) enum { SWP_USED = (1 << 0), /* is slot in swap_info[] used? */ SWP_WRITEOK = (1 << 1), /* ok to write to this swap? */ SWP_DISCARDABLE = (1 << 2), /* blkdev support discard */ SWP_DISCARDING = (1 << 3), /* now discarding a free cluster */ SWP_SOLIDSTATE = (1 << 4), /* blkdev seeks are cheap */ SWP_CONTINUED = (1 << 5), /* swap_map has count continuation */ SWP_BLKDEV = (1 << 6), /* its a block device */ SWP_ACTIVATED = (1 << 7), /* set after swap_activate success */ SWP_FS_OPS = (1 << 8), /* swapfile operations go through fs */ SWP_AREA_DISCARD = (1 << 9), /* single-time swap area discards */ SWP_PAGE_DISCARD = (1 << 10), /* freed swap page-cluster discards */ SWP_STABLE_WRITES = (1 << 11), /* no overwrite PG_writeback pages */ SWP_SYNCHRONOUS_IO = (1 << 12), /* synchronous IO is efficient */ SWP_VALID = (1 << 13), /* swap is valid to be operated on? */ /* add others here before... */ SWP_SCANNING = (1 << 14), /* refcount in scan_swap_map */ }; #define SWAP_CLUSTER_MAX 32UL #define COMPACT_CLUSTER_MAX SWAP_CLUSTER_MAX /* Bit flag in swap_map */ #define SWAP_HAS_CACHE 0x40 /* Flag page is cached, in first swap_map */ #define COUNT_CONTINUED 0x80 /* Flag swap_map continuation for full count */ /* Special value in first swap_map */ #define SWAP_MAP_MAX 0x3e /* Max count */ #define SWAP_MAP_BAD 0x3f /* Note page is bad */ #define SWAP_MAP_SHMEM 0xbf /* Owned by shmem/tmpfs */ /* Special value in each swap_map continuation */ #define SWAP_CONT_MAX 0x7f /* Max count */ /* * We use this to track usage of a cluster. A cluster is a block of swap disk * space with SWAPFILE_CLUSTER pages long and naturally aligns in disk. All * free clusters are organized into a list. We fetch an entry from the list to * get a free cluster. * * The data field stores next cluster if the cluster is free or cluster usage * counter otherwise. The flags field determines if a cluster is free. This is * protected by swap_info_struct.lock. */ struct swap_cluster_info { spinlock_t lock; /* * Protect swap_cluster_info fields * and swap_info_struct->swap_map * elements correspond to the swap * cluster */ unsigned int data:24; unsigned int flags:8; }; #define CLUSTER_FLAG_FREE 1 /* This cluster is free */ #define CLUSTER_FLAG_NEXT_NULL 2 /* This cluster has no next cluster */ #define CLUSTER_FLAG_HUGE 4 /* This cluster is backing a transparent huge page */ /* * We assign a cluster to each CPU, so each CPU can allocate swap entry from * its own cluster and swapout sequentially. The purpose is to optimize swapout * throughput. */ struct percpu_cluster { struct swap_cluster_info index; /* Current cluster index */ unsigned int next; /* Likely next allocation offset */ }; struct swap_cluster_list { struct swap_cluster_info head; struct swap_cluster_info tail; }; /* * The in-memory structure used to track swap areas. */ struct swap_info_struct { unsigned long flags; /* SWP_USED etc: see above */ signed short prio; /* swap priority of this type */ struct plist_node list; /* entry in swap_active_head */ signed char type; /* strange name for an index */ unsigned int max; /* extent of the swap_map */ unsigned char *swap_map; /* vmalloc'ed array of usage counts */ struct swap_cluster_info *cluster_info; /* cluster info. Only for SSD */ struct swap_cluster_list free_clusters; /* free clusters list */ unsigned int lowest_bit; /* index of first free in swap_map */ unsigned int highest_bit; /* index of last free in swap_map */ unsigned int pages; /* total of usable pages of swap */ unsigned int inuse_pages; /* number of those currently in use */ unsigned int cluster_next; /* likely index for next allocation */ unsigned int cluster_nr; /* countdown to next cluster search */ unsigned int __percpu *cluster_next_cpu; /*percpu index for next allocation */ struct percpu_cluster __percpu *percpu_cluster; /* per cpu's swap location */ struct rb_root swap_extent_root;/* root of the swap extent rbtree */ struct block_device *bdev; /* swap device or bdev of swap file */ struct file *swap_file; /* seldom referenced */ unsigned int old_block_size; /* seldom referenced */ #ifdef CONFIG_FRONTSWAP unsigned long *frontswap_map; /* frontswap in-use, one bit per page */ atomic_t frontswap_pages; /* frontswap pages in-use counter */ #endif spinlock_t lock; /* * protect map scan related fields like * swap_map, lowest_bit, highest_bit, * inuse_pages, cluster_next, * cluster_nr, lowest_alloc, * highest_alloc, free/discard cluster * list. other fields are only changed * at swapon/swapoff, so are protected * by swap_lock. changing flags need * hold this lock and swap_lock. If * both locks need hold, hold swap_lock * first. */ spinlock_t cont_lock; /* * protect swap count continuation page * list. */ struct work_struct discard_work; /* discard worker */ struct swap_cluster_list discard_clusters; /* discard clusters list */ struct plist_node avail_lists[]; /* * entries in swap_avail_heads, one * entry per node. * Must be last as the number of the * array is nr_node_ids, which is not * a fixed value so have to allocate * dynamically. * And it has to be an array so that * plist_for_each_* can work. */ }; #ifdef CONFIG_64BIT #define SWAP_RA_ORDER_CEILING 5 #else /* Avoid stack overflow, because we need to save part of page table */ #define SWAP_RA_ORDER_CEILING 3 #define SWAP_RA_PTE_CACHE_SIZE (1 << SWAP_RA_ORDER_CEILING) #endif struct vma_swap_readahead { unsigned short win; unsigned short offset; unsigned short nr_pte; #ifdef CONFIG_64BIT pte_t *ptes; #else pte_t ptes[SWAP_RA_PTE_CACHE_SIZE]; #endif }; /* linux/mm/workingset.c */ void workingset_age_nonresident(struct lruvec *lruvec, unsigned long nr_pages); void *workingset_eviction(struct page *page, struct mem_cgroup *target_memcg); void workingset_refault(struct page *page, void *shadow); void workingset_activation(struct page *page); /* Only track the nodes of mappings with shadow entries */ void workingset_update_node(struct xa_node *node); #define mapping_set_update(xas, mapping) do { \ if (!dax_mapping(mapping) && !shmem_mapping(mapping)) \ xas_set_update(xas, workingset_update_node); \ } while (0) /* linux/mm/page_alloc.c */ extern unsigned long totalreserve_pages; extern unsigned long nr_free_buffer_pages(void); /* Definition of global_zone_page_state not available yet */ #define nr_free_pages() global_zone_page_state(NR_FREE_PAGES) /* linux/mm/swap.c */ extern void lru_note_cost(struct lruvec *lruvec, bool file, unsigned int nr_pages); extern void lru_note_cost_page(struct page *); extern void lru_cache_add(struct page *); extern void lru_add_page_tail(struct page *page, struct page *page_tail, struct lruvec *lruvec, struct list_head *head); extern void mark_page_accessed(struct page *); extern void lru_add_drain(void); extern void lru_add_drain_cpu(int cpu); extern void lru_add_drain_cpu_zone(struct zone *zone); extern void lru_add_drain_all(void); extern void rotate_reclaimable_page(struct page *page); extern void deactivate_file_page(struct page *page); extern void deactivate_page(struct page *page); extern void mark_page_lazyfree(struct page *page); extern void swap_setup(void); extern void lru_cache_add_inactive_or_unevictable(struct page *page, struct vm_area_struct *vma); /* linux/mm/vmscan.c */ extern unsigned long zone_reclaimable_pages(struct zone *zone); extern unsigned long try_to_free_pages(struct zonelist *zonelist, int order, gfp_t gfp_mask, nodemask_t *mask); extern int __isolate_lru_page(struct page *page, isolate_mode_t mode); extern unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, unsigned long nr_pages, gfp_t gfp_mask, bool may_swap); extern unsigned long mem_cgroup_shrink_node(struct mem_cgroup *mem, gfp_t gfp_mask, bool noswap, pg_data_t *pgdat, unsigned long *nr_scanned); extern unsigned long shrink_all_memory(unsigned long nr_pages); extern int vm_swappiness; extern int remove_mapping(struct address_space *mapping, struct page *page); extern unsigned long reclaim_pages(struct list_head *page_list); #ifdef CONFIG_NUMA extern int node_reclaim_mode; extern int sysctl_min_unmapped_ratio; extern int sysctl_min_slab_ratio; #else #define node_reclaim_mode 0 #endif extern void check_move_unevictable_pages(struct pagevec *pvec); extern int kswapd_run(int nid); extern void kswapd_stop(int nid); #ifdef CONFIG_SWAP #include <linux/blk_types.h> /* for bio_end_io_t */ /* linux/mm/page_io.c */ extern int swap_readpage(struct page *page, bool do_poll); extern int swap_writepage(struct page *page, struct writeback_control *wbc); extern void end_swap_bio_write(struct bio *bio); extern int __swap_writepage(struct page *page, struct writeback_control *wbc, bio_end_io_t end_write_func); extern int swap_set_page_dirty(struct page *page); int add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, unsigned long nr_pages, sector_t start_block); int generic_swapfile_activate(struct swap_info_struct *, struct file *, sector_t *); /* linux/mm/swap_state.c */ /* One swap address space for each 64M swap space */ #define SWAP_ADDRESS_SPACE_SHIFT 14 #define SWAP_ADDRESS_SPACE_PAGES (1 << SWAP_ADDRESS_SPACE_SHIFT) extern struct address_space *swapper_spaces[]; #define swap_address_space(entry) \ (&swapper_spaces[swp_type(entry)][swp_offset(entry) \ >> SWAP_ADDRESS_SPACE_SHIFT]) extern unsigned long total_swapcache_pages(void); extern void show_swap_cache_info(void); extern int add_to_swap(struct page *page); extern void *get_shadow_from_swap_cache(swp_entry_t entry); extern int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp, void **shadowp); extern void __delete_from_swap_cache(struct page *page, swp_entry_t entry, void *shadow); extern void delete_from_swap_cache(struct page *); extern void clear_shadow_from_swap_cache(int type, unsigned long begin, unsigned long end); extern void free_page_and_swap_cache(struct page *); extern void free_pages_and_swap_cache(struct page **, int); extern struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma, unsigned long addr); struct page *find_get_incore_page(struct address_space *mapping, pgoff_t index); extern struct page *read_swap_cache_async(swp_entry_t, gfp_t, struct vm_area_struct *vma, unsigned long addr, bool do_poll); extern struct page *__read_swap_cache_async(swp_entry_t, gfp_t, struct vm_area_struct *vma, unsigned long addr, bool *new_page_allocated); extern struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t flag, struct vm_fault *vmf); extern struct page *swapin_readahead(swp_entry_t entry, gfp_t flag, struct vm_fault *vmf); /* linux/mm/swapfile.c */ extern atomic_long_t nr_swap_pages; extern long total_swap_pages; extern atomic_t nr_rotate_swap; extern bool has_usable_swap(void); /* Swap 50% full? Release swapcache more aggressively.. */ static inline bool vm_swap_full(void) { return atomic_long_read(&nr_swap_pages) * 2 < total_swap_pages; } static inline long get_nr_swap_pages(void) { return atomic_long_read(&nr_swap_pages); } extern void si_swapinfo(struct sysinfo *); extern swp_entry_t get_swap_page(struct page *page); extern void put_swap_page(struct page *page, swp_entry_t entry); extern swp_entry_t get_swap_page_of_type(int); extern int get_swap_pages(int n, swp_entry_t swp_entries[], int entry_size); extern int add_swap_count_continuation(swp_entry_t, gfp_t); extern void swap_shmem_alloc(swp_entry_t); extern int swap_duplicate(swp_entry_t); extern int swapcache_prepare(swp_entry_t); extern void swap_free(swp_entry_t); extern void swapcache_free_entries(swp_entry_t *entries, int n); extern int free_swap_and_cache(swp_entry_t); int swap_type_of(dev_t device, sector_t offset); int find_first_swap(dev_t *device); extern unsigned int count_swap_pages(int, int); extern sector_t map_swap_page(struct page *, struct block_device **); extern sector_t swapdev_block(int, pgoff_t); extern int page_swapcount(struct page *); extern int __swap_count(swp_entry_t entry); extern int __swp_swapcount(swp_entry_t entry); extern int swp_swapcount(swp_entry_t entry); extern struct swap_info_struct *page_swap_info(struct page *); extern struct swap_info_struct *swp_swap_info(swp_entry_t entry); extern bool reuse_swap_page(struct page *, int *); extern int try_to_free_swap(struct page *); struct backing_dev_info; extern int init_swap_address_space(unsigned int type, unsigned long nr_pages); extern void exit_swap_address_space(unsigned int type); extern struct swap_info_struct *get_swap_device(swp_entry_t entry); sector_t swap_page_sector(struct page *page); static inline void put_swap_device(struct swap_info_struct *si) { rcu_read_unlock(); } #else /* CONFIG_SWAP */ static inline int swap_readpage(struct page *page, bool do_poll) { return 0; } static inline struct swap_info_struct *swp_swap_info(swp_entry_t entry) { return NULL; } #define swap_address_space(entry) (NULL) #define get_nr_swap_pages() 0L #define total_swap_pages 0L #define total_swapcache_pages() 0UL #define vm_swap_full() 0 #define si_swapinfo(val) \ do { (val)->freeswap = (val)->totalswap = 0; } while (0) /* only sparc can not include linux/pagemap.h in this file * so leave put_page and release_pages undeclared... */ #define free_page_and_swap_cache(page) \ put_page(page) #define free_pages_and_swap_cache(pages, nr) \ release_pages((pages), (nr)); static inline void show_swap_cache_info(void) { } #define free_swap_and_cache(e) ({(is_migration_entry(e) || is_device_private_entry(e));}) #define swapcache_prepare(e) ({(is_migration_entry(e) || is_device_private_entry(e));}) static inline int add_swap_count_continuation(swp_entry_t swp, gfp_t gfp_mask) { return 0; } static inline void swap_shmem_alloc(swp_entry_t swp) { } static inline int swap_duplicate(swp_entry_t swp) { return 0; } static inline void swap_free(swp_entry_t swp) { } static inline void put_swap_page(struct page *page, swp_entry_t swp) { } static inline struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask, struct vm_fault *vmf) { return NULL; } static inline struct page *swapin_readahead(swp_entry_t swp, gfp_t gfp_mask, struct vm_fault *vmf) { return NULL; } static inline int swap_writepage(struct page *p, struct writeback_control *wbc) { return 0; } static inline struct page *lookup_swap_cache(swp_entry_t swp, struct vm_area_struct *vma, unsigned long addr) { return NULL; } static inline struct page *find_get_incore_page(struct address_space *mapping, pgoff_t index) { return find_get_page(mapping, index); } static inline int add_to_swap(struct page *page) { return 0; } static inline void *get_shadow_from_swap_cache(swp_entry_t entry) { return NULL; } static inline int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask, void **shadowp) { return -1; } static inline void __delete_from_swap_cache(struct page *page, swp_entry_t entry, void *shadow) { } static inline void delete_from_swap_cache(struct page *page) { } static inline void clear_shadow_from_swap_cache(int type, unsigned long begin, unsigned long end) { } static inline int page_swapcount(struct page *page) { return 0; } static inline int __swap_count(swp_entry_t entry) { return 0; } static inline int __swp_swapcount(swp_entry_t entry) { return 0; } static inline int swp_swapcount(swp_entry_t entry) { return 0; } #define reuse_swap_page(page, total_map_swapcount) \ (page_trans_huge_mapcount(page, total_map_swapcount) == 1) static inline int try_to_free_swap(struct page *page) { return 0; } static inline swp_entry_t get_swap_page(struct page *page) { swp_entry_t entry; entry.val = 0; return entry; } #endif /* CONFIG_SWAP */ #ifdef CONFIG_THP_SWAP extern int split_swap_cluster(swp_entry_t entry); #else static inline int split_swap_cluster(swp_entry_t entry) { return 0; } #endif #ifdef CONFIG_MEMCG static inline int mem_cgroup_swappiness(struct mem_cgroup *memcg) { /* Cgroup2 doesn't have per-cgroup swappiness */ if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) return vm_swappiness; /* root ? */ if (mem_cgroup_disabled() || mem_cgroup_is_root(memcg)) return vm_swappiness; return memcg->swappiness; } #else static inline int mem_cgroup_swappiness(struct mem_cgroup *mem) { return vm_swappiness; } #endif #if defined(CONFIG_SWAP) && defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP) extern void cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask); #else static inline void cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask) { } #endif #ifdef CONFIG_MEMCG_SWAP extern void mem_cgroup_swapout(struct page *page, swp_entry_t entry); extern int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry); extern void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages); extern long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg); extern bool mem_cgroup_swap_full(struct page *page); #else static inline void mem_cgroup_swapout(struct page *page, swp_entry_t entry) { } static inline int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry) { return 0; } static inline void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) { } static inline long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) { return get_nr_swap_pages(); } static inline bool mem_cgroup_swap_full(struct page *page) { return vm_swap_full(); } #endif #endif /* __KERNEL__*/ #endif /* _LINUX_SWAP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 /* SPDX-License-Identifier: GPL-2.0 */ /* * Definitions for the UDP-Lite (RFC 3828) code. */ #ifndef _UDPLITE_H #define _UDPLITE_H #include <net/ip6_checksum.h> /* UDP-Lite socket options */ #define UDPLITE_SEND_CSCOV 10 /* sender partial coverage (as sent) */ #define UDPLITE_RECV_CSCOV 11 /* receiver partial coverage (threshold ) */ extern struct proto udplite_prot; extern struct udp_table udplite_table; /* * Checksum computation is all in software, hence simpler getfrag. */ static __inline__ int udplite_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb) { struct msghdr *msg = from; return copy_from_iter_full(to, len, &msg->msg_iter) ? 0 : -EFAULT; } /* Designate sk as UDP-Lite socket */ static inline int udplite_sk_init(struct sock *sk) { udp_init_sock(sk); udp_sk(sk)->pcflag = UDPLITE_BIT; return 0; } /* * Checksumming routines */ static inline int udplite_checksum_init(struct sk_buff *skb, struct udphdr *uh) { u16 cscov; /* In UDPv4 a zero checksum means that the transmitter generated no * checksum. UDP-Lite (like IPv6) mandates checksums, hence packets * with a zero checksum field are illegal. */ if (uh->check == 0) { net_dbg_ratelimited("UDPLite: zeroed checksum field\n"); return 1; } cscov = ntohs(uh->len); if (cscov == 0) /* Indicates that full coverage is required. */ ; else if (cscov < 8 || cscov > skb->len) { /* * Coverage length violates RFC 3828: log and discard silently. */ net_dbg_ratelimited("UDPLite: bad csum coverage %d/%d\n", cscov, skb->len); return 1; } else if (cscov < skb->len) { UDP_SKB_CB(skb)->partial_cov = 1; UDP_SKB_CB(skb)->cscov = cscov; if (skb->ip_summed == CHECKSUM_COMPLETE) skb->ip_summed = CHECKSUM_NONE; skb->csum_valid = 0; } return 0; } /* Slow-path computation of checksum. Socket is locked. */ static inline __wsum udplite_csum_outgoing(struct sock *sk, struct sk_buff *skb) { const struct udp_sock *up = udp_sk(skb->sk); int cscov = up->len; __wsum csum = 0; if (up->pcflag & UDPLITE_SEND_CC) { /* * Sender has set `partial coverage' option on UDP-Lite socket. * The special case "up->pcslen == 0" signifies full coverage. */ if (up->pcslen < up->len) { if (0 < up->pcslen) cscov = up->pcslen; udp_hdr(skb)->len = htons(up->pcslen); } /* * NOTE: Causes for the error case `up->pcslen > up->len': * (i) Application error (will not be penalized). * (ii) Payload too big for send buffer: data is split * into several packets, each with its own header. * In this case (e.g. last segment), coverage may * exceed packet length. * Since packets with coverage length > packet length are * illegal, we fall back to the defaults here. */ } skb->ip_summed = CHECKSUM_NONE; /* no HW support for checksumming */ skb_queue_walk(&sk->sk_write_queue, skb) { const int off = skb_transport_offset(skb); const int len = skb->len - off; csum = skb_checksum(skb, off, (cscov > len)? len : cscov, csum); if ((cscov -= len) <= 0) break; } return csum; } /* Fast-path computation of checksum. Socket may not be locked. */ static inline __wsum udplite_csum(struct sk_buff *skb) { const struct udp_sock *up = udp_sk(skb->sk); const int off = skb_transport_offset(skb); int len = skb->len - off; if ((up->pcflag & UDPLITE_SEND_CC) && up->pcslen < len) { if (0 < up->pcslen) len = up->pcslen; udp_hdr(skb)->len = htons(up->pcslen); } skb->ip_summed = CHECKSUM_NONE; /* no HW support for checksumming */ return skb_checksum(skb, off, len, 0); } void udplite4_register(void); int udplite_get_port(struct sock *sk, unsigned short snum, int (*scmp)(const struct sock *, const struct sock *)); #endif /* _UDPLITE_H */
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_PERCPU_COUNTER_H #define _LINUX_PERCPU_COUNTER_H /* * A simple "approximate counter" for use in ext2 and ext3 superblocks. * * WARNING: these things are HUGE. 4 kbytes per counter on 32-way P4. */ #include <linux/spinlock.h> #include <linux/smp.h> #include <linux/list.h> #include <linux/threads.h> #include <linux/percpu.h> #include <linux/types.h> #include <linux/gfp.h> #ifdef CONFIG_SMP struct percpu_counter { raw_spinlock_t lock; s64 count; #ifdef CONFIG_HOTPLUG_CPU struct list_head list; /* All percpu_counters are on a list */ #endif s32 __percpu *counters; }; extern int percpu_counter_batch; int __percpu_counter_init(struct percpu_counter *fbc, s64 amount, gfp_t gfp, struct lock_class_key *key); #define percpu_counter_init(fbc, value, gfp) \ ({ \ static struct lock_class_key __key; \ \ __percpu_counter_init(fbc, value, gfp, &__key); \ }) void percpu_counter_destroy(struct percpu_counter *fbc); void percpu_counter_set(struct percpu_counter *fbc, s64 amount); void percpu_counter_add_batch(struct percpu_counter *fbc, s64 amount, s32 batch); s64 __percpu_counter_sum(struct percpu_counter *fbc); int __percpu_counter_compare(struct percpu_counter *fbc, s64 rhs, s32 batch); void percpu_counter_sync(struct percpu_counter *fbc); static inline int percpu_counter_compare(struct percpu_counter *fbc, s64 rhs) { return __percpu_counter_compare(fbc, rhs, percpu_counter_batch); } static inline void percpu_counter_add(struct percpu_counter *fbc, s64 amount) { percpu_counter_add_batch(fbc, amount, percpu_counter_batch); } static inline s64 percpu_counter_sum_positive(struct percpu_counter *fbc) { s64 ret = __percpu_counter_sum(fbc); return ret < 0 ? 0 : ret; } static inline s64 percpu_counter_sum(struct percpu_counter *fbc) { return __percpu_counter_sum(fbc); } static inline s64 percpu_counter_read(struct percpu_counter *fbc) { return fbc->count; } /* * It is possible for the percpu_counter_read() to return a small negative * number for some counter which should never be negative. * */ static inline s64 percpu_counter_read_positive(struct percpu_counter *fbc) { /* Prevent reloads of fbc->count */ s64 ret = READ_ONCE(fbc->count); if (ret >= 0) return ret; return 0; } static inline bool percpu_counter_initialized(struct percpu_counter *fbc) { return (fbc->counters != NULL); } #else /* !CONFIG_SMP */ struct percpu_counter { s64 count; }; static inline int percpu_counter_init(struct percpu_counter *fbc, s64 amount, gfp_t gfp) { fbc->count = amount; return 0; } static inline void percpu_counter_destroy(struct percpu_counter *fbc) { } static inline void percpu_counter_set(struct percpu_counter *fbc, s64 amount) { fbc->count = amount; } static inline int percpu_counter_compare(struct percpu_counter *fbc, s64 rhs) { if (fbc->count > rhs) return 1; else if (fbc->count < rhs) return -1; else return 0; } static inline int __percpu_counter_compare(struct percpu_counter *fbc, s64 rhs, s32 batch) { return percpu_counter_compare(fbc, rhs); } static inline void percpu_counter_add(struct percpu_counter *fbc, s64 amount) { preempt_disable(); fbc->count += amount; preempt_enable(); } static inline void percpu_counter_add_batch(struct percpu_counter *fbc, s64 amount, s32 batch) { percpu_counter_add(fbc, amount); } static inline s64 percpu_counter_read(struct percpu_counter *fbc) { return fbc->count; } /* * percpu_counter is intended to track positive numbers. In the UP case the * number should never be negative. */ static inline s64 percpu_counter_read_positive(struct percpu_counter *fbc) { return fbc->count; } static inline s64 percpu_counter_sum_positive(struct percpu_counter *fbc) { return percpu_counter_read_positive(fbc); } static inline s64 percpu_counter_sum(struct percpu_counter *fbc) { return percpu_counter_read(fbc); } static inline bool percpu_counter_initialized(struct percpu_counter *fbc) { return true; } static inline void percpu_counter_sync(struct percpu_counter *fbc) { } #endif /* CONFIG_SMP */ static inline void percpu_counter_inc(struct percpu_counter *fbc) { percpu_counter_add(fbc, 1); } static inline void percpu_counter_dec(struct percpu_counter *fbc) { percpu_counter_add(fbc, -1); } static inline void percpu_counter_sub(struct percpu_counter *fbc, s64 amount) { percpu_counter_add(fbc, -amount); } #endif /* _LINUX_PERCPU_COUNTER_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 /* SPDX-License-Identifier: GPL-2.0 */ /* rwsem.h: R/W semaphores, public interface * * Written by David Howells (dhowells@redhat.com). * Derived from asm-i386/semaphore.h */ #ifndef _LINUX_RWSEM_H #define _LINUX_RWSEM_H #include <linux/linkage.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/list.h> #include <linux/spinlock.h> #include <linux/atomic.h> #include <linux/err.h> #ifdef CONFIG_RWSEM_SPIN_ON_OWNER #include <linux/osq_lock.h> #endif /* * For an uncontended rwsem, count and owner are the only fields a task * needs to touch when acquiring the rwsem. So they are put next to each * other to increase the chance that they will share the same cacheline. * * In a contended rwsem, the owner is likely the most frequently accessed * field in the structure as the optimistic waiter that holds the osq lock * will spin on owner. For an embedded rwsem, other hot fields in the * containing structure should be moved further away from the rwsem to * reduce the chance that they will share the same cacheline causing * cacheline bouncing problem. */ struct rw_semaphore { atomic_long_t count; /* * Write owner or one of the read owners as well flags regarding * the current state of the rwsem. Can be used as a speculative * check to see if the write owner is running on the cpu. */ atomic_long_t owner; #ifdef CONFIG_RWSEM_SPIN_ON_OWNER struct optimistic_spin_queue osq; /* spinner MCS lock */ #endif raw_spinlock_t wait_lock; struct list_head wait_list; #ifdef CONFIG_DEBUG_RWSEMS void *magic; #endif #ifdef CONFIG_DEBUG_LOCK_ALLOC struct lockdep_map dep_map; #endif }; /* In all implementations count != 0 means locked */ static inline int rwsem_is_locked(struct rw_semaphore *sem) { return atomic_long_read(&sem->count) != 0; } #define RWSEM_UNLOCKED_VALUE 0L #define __RWSEM_COUNT_INIT(name) .count = ATOMIC_LONG_INIT(RWSEM_UNLOCKED_VALUE) /* Common initializer macros and functions */ #ifdef CONFIG_DEBUG_LOCK_ALLOC # define __RWSEM_DEP_MAP_INIT(lockname) \ .dep_map = { \ .name = #lockname, \ .wait_type_inner = LD_WAIT_SLEEP, \ }, #else # define __RWSEM_DEP_MAP_INIT(lockname) #endif #ifdef CONFIG_DEBUG_RWSEMS # define __RWSEM_DEBUG_INIT(lockname) .magic = &lockname, #else # define __RWSEM_DEBUG_INIT(lockname) #endif #ifdef CONFIG_RWSEM_SPIN_ON_OWNER #define __RWSEM_OPT_INIT(lockname) .osq = OSQ_LOCK_UNLOCKED, #else #define __RWSEM_OPT_INIT(lockname) #endif #define __RWSEM_INITIALIZER(name) \ { __RWSEM_COUNT_INIT(name), \ .owner = ATOMIC_LONG_INIT(0), \ __RWSEM_OPT_INIT(name) \ .wait_lock = __RAW_SPIN_LOCK_UNLOCKED(name.wait_lock),\ .wait_list = LIST_HEAD_INIT((name).wait_list), \ __RWSEM_DEBUG_INIT(name) \ __RWSEM_DEP_MAP_INIT(name) } #define DECLARE_RWSEM(name) \ struct rw_semaphore name = __RWSEM_INITIALIZER(name) extern void __init_rwsem(struct rw_semaphore *sem, const char *name, struct lock_class_key *key); #define init_rwsem(sem) \ do { \ static struct lock_class_key __key; \ \ __init_rwsem((sem), #sem, &__key); \ } while (0) /* * This is the same regardless of which rwsem implementation that is being used. * It is just a heuristic meant to be called by somebody alreadying holding the * rwsem to see if somebody from an incompatible type is wanting access to the * lock. */ static inline int rwsem_is_contended(struct rw_semaphore *sem) { return !list_empty(&sem->wait_list); } /* * lock for reading */ extern void down_read(struct rw_semaphore *sem); extern int __must_check down_read_interruptible(struct rw_semaphore *sem); extern int __must_check down_read_killable(struct rw_semaphore *sem); /* * trylock for reading -- returns 1 if successful, 0 if contention */ extern int down_read_trylock(struct rw_semaphore *sem); /* * lock for writing */ extern void down_write(struct rw_semaphore *sem); extern int __must_check down_write_killable(struct rw_semaphore *sem); /* * trylock for writing -- returns 1 if successful, 0 if contention */ extern int down_write_trylock(struct rw_semaphore *sem); /* * release a read lock */ extern void up_read(struct rw_semaphore *sem); /* * release a write lock */ extern void up_write(struct rw_semaphore *sem); /* * downgrade write lock to read lock */ extern void downgrade_write(struct rw_semaphore *sem); #ifdef CONFIG_DEBUG_LOCK_ALLOC /* * nested locking. NOTE: rwsems are not allowed to recurse * (which occurs if the same task tries to acquire the same * lock instance multiple times), but multiple locks of the * same lock class might be taken, if the order of the locks * is always the same. This ordering rule can be expressed * to lockdep via the _nested() APIs, but enumerating the * subclasses that are used. (If the nesting relationship is * static then another method for expressing nested locking is * the explicit definition of lock class keys and the use of * lockdep_set_class() at lock initialization time. * See Documentation/locking/lockdep-design.rst for more details.) */ extern void down_read_nested(struct rw_semaphore *sem, int subclass); extern int __must_check down_read_killable_nested(struct rw_semaphore *sem, int subclass); extern void down_write_nested(struct rw_semaphore *sem, int subclass); extern int down_write_killable_nested(struct rw_semaphore *sem, int subclass); extern void _down_write_nest_lock(struct rw_semaphore *sem, struct lockdep_map *nest_lock); # define down_write_nest_lock(sem, nest_lock) \ do { \ typecheck(struct lockdep_map *, &(nest_lock)->dep_map); \ _down_write_nest_lock(sem, &(nest_lock)->dep_map); \ } while (0); /* * Take/release a lock when not the owner will release it. * * [ This API should be avoided as much as possible - the * proper abstraction for this case is completions. ] */ extern void down_read_non_owner(struct rw_semaphore *sem); extern void up_read_non_owner(struct rw_semaphore *sem); #else # define down_read_nested(sem, subclass) down_read(sem) # define down_read_killable_nested(sem, subclass) down_read_killable(sem) # define down_write_nest_lock(sem, nest_lock) down_write(sem) # define down_write_nested(sem, subclass) down_write(sem) # define down_write_killable_nested(sem, subclass) down_write_killable(sem) # define down_read_non_owner(sem) down_read(sem) # define up_read_non_owner(sem) up_read(sem) #endif #endif /* _LINUX_RWSEM_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 /* SPDX-License-Identifier: GPL-2.0-or-later */ #ifndef _LINUX_KPROBES_H #define _LINUX_KPROBES_H /* * Kernel Probes (KProbes) * include/linux/kprobes.h * * Copyright (C) IBM Corporation, 2002, 2004 * * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel * Probes initial implementation ( includes suggestions from * Rusty Russell). * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes * interface to access function arguments. * 2005-May Hien Nguyen <hien@us.ibm.com> and Jim Keniston * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi * <prasanna@in.ibm.com> added function-return probes. */ #include <linux/compiler.h> #include <linux/linkage.h> #include <linux/list.h> #include <linux/notifier.h> #include <linux/smp.h> #include <linux/bug.h> #include <linux/percpu.h> #include <linux/spinlock.h> #include <linux/rcupdate.h> #include <linux/mutex.h> #include <linux/ftrace.h> #include <asm/kprobes.h> #ifdef CONFIG_KPROBES /* kprobe_status settings */ #define KPROBE_HIT_ACTIVE 0x00000001 #define KPROBE_HIT_SS 0x00000002 #define KPROBE_REENTER 0x00000004 #define KPROBE_HIT_SSDONE 0x00000008 #else /* CONFIG_KPROBES */ #include <asm-generic/kprobes.h> typedef int kprobe_opcode_t; struct arch_specific_insn { int dummy; }; #endif /* CONFIG_KPROBES */ struct kprobe; struct pt_regs; struct kretprobe; struct kretprobe_instance; typedef int (*kprobe_pre_handler_t) (struct kprobe *, struct pt_regs *); typedef void (*kprobe_post_handler_t) (struct kprobe *, struct pt_regs *, unsigned long flags); typedef int (*kprobe_fault_handler_t) (struct kprobe *, struct pt_regs *, int trapnr); typedef int (*kretprobe_handler_t) (struct kretprobe_instance *, struct pt_regs *); struct kprobe { struct hlist_node hlist; /* list of kprobes for multi-handler support */ struct list_head list; /*count the number of times this probe was temporarily disarmed */ unsigned long nmissed; /* location of the probe point */ kprobe_opcode_t *addr; /* Allow user to indicate symbol name of the probe point */ const char *symbol_name; /* Offset into the symbol */ unsigned int offset; /* Called before addr is executed. */ kprobe_pre_handler_t pre_handler; /* Called after addr is executed, unless... */ kprobe_post_handler_t post_handler; /* * ... called if executing addr causes a fault (eg. page fault). * Return 1 if it handled fault, otherwise kernel will see it. */ kprobe_fault_handler_t fault_handler; /* Saved opcode (which has been replaced with breakpoint) */ kprobe_opcode_t opcode; /* copy of the original instruction */ struct arch_specific_insn ainsn; /* * Indicates various status flags. * Protected by kprobe_mutex after this kprobe is registered. */ u32 flags; }; /* Kprobe status flags */ #define KPROBE_FLAG_GONE 1 /* breakpoint has already gone */ #define KPROBE_FLAG_DISABLED 2 /* probe is temporarily disabled */ #define KPROBE_FLAG_OPTIMIZED 4 /* * probe is really optimized. * NOTE: * this flag is only for optimized_kprobe. */ #define KPROBE_FLAG_FTRACE 8 /* probe is using ftrace */ /* Has this kprobe gone ? */ static inline int kprobe_gone(struct kprobe *p) { return p->flags & KPROBE_FLAG_GONE; } /* Is this kprobe disabled ? */ static inline int kprobe_disabled(struct kprobe *p) { return p->flags & (KPROBE_FLAG_DISABLED | KPROBE_FLAG_GONE); } /* Is this kprobe really running optimized path ? */ static inline int kprobe_optimized(struct kprobe *p) { return p->flags & KPROBE_FLAG_OPTIMIZED; } /* Is this kprobe uses ftrace ? */ static inline int kprobe_ftrace(struct kprobe *p) { return p->flags & KPROBE_FLAG_FTRACE; } /* * Function-return probe - * Note: * User needs to provide a handler function, and initialize maxactive. * maxactive - The maximum number of instances of the probed function that * can be active concurrently. * nmissed - tracks the number of times the probed function's return was * ignored, due to maxactive being too low. * */ struct kretprobe { struct kprobe kp; kretprobe_handler_t handler; kretprobe_handler_t entry_handler; int maxactive; int nmissed; size_t data_size; struct hlist_head free_instances; raw_spinlock_t lock; }; #define KRETPROBE_MAX_DATA_SIZE 4096 struct kretprobe_instance { union { struct hlist_node hlist; struct rcu_head rcu; }; struct kretprobe *rp; kprobe_opcode_t *ret_addr; struct task_struct *task; void *fp; char data[]; }; struct kretprobe_blackpoint { const char *name; void *addr; }; struct kprobe_blacklist_entry { struct list_head list; unsigned long start_addr; unsigned long end_addr; }; #ifdef CONFIG_KPROBES DECLARE_PER_CPU(struct kprobe *, current_kprobe); DECLARE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); /* * For #ifdef avoidance: */ static inline int kprobes_built_in(void) { return 1; } extern void kprobe_busy_begin(void); extern void kprobe_busy_end(void); #ifdef CONFIG_KRETPROBES extern void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs); extern int arch_trampoline_kprobe(struct kprobe *p); /* If the trampoline handler called from a kprobe, use this version */ unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs, void *trampoline_address, void *frame_pointer); static nokprobe_inline unsigned long kretprobe_trampoline_handler(struct pt_regs *regs, void *trampoline_address, void *frame_pointer) { unsigned long ret; /* * Set a dummy kprobe for avoiding kretprobe recursion. * Since kretprobe never runs in kprobe handler, no kprobe must * be running at this point. */ kprobe_busy_begin(); ret = __kretprobe_trampoline_handler(regs, trampoline_address, frame_pointer); kprobe_busy_end(); return ret; } #else /* CONFIG_KRETPROBES */ static inline void arch_prepare_kretprobe(struct kretprobe *rp, struct pt_regs *regs) { } static inline int arch_trampoline_kprobe(struct kprobe *p) { return 0; } #endif /* CONFIG_KRETPROBES */ extern struct kretprobe_blackpoint kretprobe_blacklist[]; #ifdef CONFIG_KPROBES_SANITY_TEST extern int init_test_probes(void); #else static inline int init_test_probes(void) { return 0; } #endif /* CONFIG_KPROBES_SANITY_TEST */ extern int arch_prepare_kprobe(struct kprobe *p); extern void arch_arm_kprobe(struct kprobe *p); extern void arch_disarm_kprobe(struct kprobe *p); extern int arch_init_kprobes(void); extern void kprobes_inc_nmissed_count(struct kprobe *p); extern bool arch_within_kprobe_blacklist(unsigned long addr); extern int arch_populate_kprobe_blacklist(void); extern bool arch_kprobe_on_func_entry(unsigned long offset); extern int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset); extern bool within_kprobe_blacklist(unsigned long addr); extern int kprobe_add_ksym_blacklist(unsigned long entry); extern int kprobe_add_area_blacklist(unsigned long start, unsigned long end); struct kprobe_insn_cache { struct mutex mutex; void *(*alloc)(void); /* allocate insn page */ void (*free)(void *); /* free insn page */ const char *sym; /* symbol for insn pages */ struct list_head pages; /* list of kprobe_insn_page */ size_t insn_size; /* size of instruction slot */ int nr_garbage; }; #ifdef __ARCH_WANT_KPROBES_INSN_SLOT extern kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c); extern void __free_insn_slot(struct kprobe_insn_cache *c, kprobe_opcode_t *slot, int dirty); /* sleep-less address checking routine */ extern bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr); #define DEFINE_INSN_CACHE_OPS(__name) \ extern struct kprobe_insn_cache kprobe_##__name##_slots; \ \ static inline kprobe_opcode_t *get_##__name##_slot(void) \ { \ return __get_insn_slot(&kprobe_##__name##_slots); \ } \ \ static inline void free_##__name##_slot(kprobe_opcode_t *slot, int dirty)\ { \ __free_insn_slot(&kprobe_##__name##_slots, slot, dirty); \ } \ \ static inline bool is_kprobe_##__name##_slot(unsigned long addr) \ { \ return __is_insn_slot_addr(&kprobe_##__name##_slots, addr); \ } #define KPROBE_INSN_PAGE_SYM "kprobe_insn_page" #define KPROBE_OPTINSN_PAGE_SYM "kprobe_optinsn_page" int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum, unsigned long *value, char *type, char *sym); #else /* __ARCH_WANT_KPROBES_INSN_SLOT */ #define DEFINE_INSN_CACHE_OPS(__name) \ static inline bool is_kprobe_##__name##_slot(unsigned long addr) \ { \ return 0; \ } #endif DEFINE_INSN_CACHE_OPS(insn); #ifdef CONFIG_OPTPROBES /* * Internal structure for direct jump optimized probe */ struct optimized_kprobe { struct kprobe kp; struct list_head list; /* list for optimizing queue */ struct arch_optimized_insn optinsn; }; /* Architecture dependent functions for direct jump optimization */ extern int arch_prepared_optinsn(struct arch_optimized_insn *optinsn); extern int arch_check_optimized_kprobe(struct optimized_kprobe *op); extern int arch_prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *orig); extern void arch_remove_optimized_kprobe(struct optimized_kprobe *op); extern void arch_optimize_kprobes(struct list_head *oplist); extern void arch_unoptimize_kprobes(struct list_head *oplist, struct list_head *done_list); extern void arch_unoptimize_kprobe(struct optimized_kprobe *op); extern int arch_within_optimized_kprobe(struct optimized_kprobe *op, unsigned long addr); extern void opt_pre_handler(struct kprobe *p, struct pt_regs *regs); DEFINE_INSN_CACHE_OPS(optinsn); #ifdef CONFIG_SYSCTL extern int sysctl_kprobes_optimization; extern int proc_kprobes_optimization_handler(struct ctl_table *table, int write, void *buffer, size_t *length, loff_t *ppos); #endif extern void wait_for_kprobe_optimizer(void); #else static inline void wait_for_kprobe_optimizer(void) { } #endif /* CONFIG_OPTPROBES */ #ifdef CONFIG_KPROBES_ON_FTRACE extern void kprobe_ftrace_handler(unsigned long ip, unsigned long parent_ip, struct ftrace_ops *ops, struct pt_regs *regs); extern int arch_prepare_kprobe_ftrace(struct kprobe *p); #endif int arch_check_ftrace_location(struct kprobe *p); /* Get the kprobe at this addr (if any) - called with preemption disabled */ struct kprobe *get_kprobe(void *addr); /* kprobe_running() will just return the current_kprobe on this CPU */ static inline struct kprobe *kprobe_running(void) { return (__this_cpu_read(current_kprobe)); } static inline void reset_current_kprobe(void) { __this_cpu_write(current_kprobe, NULL); } static inline struct kprobe_ctlblk *get_kprobe_ctlblk(void) { return this_cpu_ptr(&kprobe_ctlblk); } kprobe_opcode_t *kprobe_lookup_name(const char *name, unsigned int offset); int register_kprobe(struct kprobe *p); void unregister_kprobe(struct kprobe *p); int register_kprobes(struct kprobe **kps, int num); void unregister_kprobes(struct kprobe **kps, int num); unsigned long arch_deref_entry_point(void *); int register_kretprobe(struct kretprobe *rp); void unregister_kretprobe(struct kretprobe *rp); int register_kretprobes(struct kretprobe **rps, int num); void unregister_kretprobes(struct kretprobe **rps, int num); void kprobe_flush_task(struct task_struct *tk); void kprobe_free_init_mem(void); int disable_kprobe(struct kprobe *kp); int enable_kprobe(struct kprobe *kp); void dump_kprobe(struct kprobe *kp); void *alloc_insn_page(void); void free_insn_page(void *page); int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type, char *sym); int arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value, char *type, char *sym); #else /* !CONFIG_KPROBES: */ static inline int kprobes_built_in(void) { return 0; } static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr) { return 0; } static inline struct kprobe *get_kprobe(void *addr) { return NULL; } static inline struct kprobe *kprobe_running(void) { return NULL; } static inline int register_kprobe(struct kprobe *p) { return -ENOSYS; } static inline int register_kprobes(struct kprobe **kps, int num) { return -ENOSYS; } static inline void unregister_kprobe(struct kprobe *p) { } static inline void unregister_kprobes(struct kprobe **kps, int num) { } static inline int register_kretprobe(struct kretprobe *rp) { return -ENOSYS; } static inline int register_kretprobes(struct kretprobe **rps, int num) { return -ENOSYS; } static inline void unregister_kretprobe(struct kretprobe *rp) { } static inline void unregister_kretprobes(struct kretprobe **rps, int num) { } static inline void kprobe_flush_task(struct task_struct *tk) { } static inline void kprobe_free_init_mem(void) { } static inline int disable_kprobe(struct kprobe *kp) { return -ENOSYS; } static inline int enable_kprobe(struct kprobe *kp) { return -ENOSYS; } static inline bool within_kprobe_blacklist(unsigned long addr) { return true; } static inline int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type, char *sym) { return -ERANGE; } #endif /* CONFIG_KPROBES */ static inline int disable_kretprobe(struct kretprobe *rp) { return disable_kprobe(&rp->kp); } static inline int enable_kretprobe(struct kretprobe *rp) { return enable_kprobe(&rp->kp); } #ifndef CONFIG_KPROBES static inline bool is_kprobe_insn_slot(unsigned long addr) { return false; } #endif #ifndef CONFIG_OPTPROBES static inline bool is_kprobe_optinsn_slot(unsigned long addr) { return false; } #endif /* Returns true if kprobes handled the fault */ static nokprobe_inline bool kprobe_page_fault(struct pt_regs *regs, unsigned int trap) { if (!kprobes_built_in()) return false; if (user_mode(regs)) return false; /* * To be potentially processing a kprobe fault and to be allowed * to call kprobe_running(), we have to be non-preemptible. */ if (preemptible()) return false; if (!kprobe_running()) return false; return kprobe_fault_handler(regs, trap); } #endif /* _LINUX_KPROBES_H */
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 /* SPDX-License-Identifier: GPL-2.0 */ /* * Runtime locking correctness validator * * Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra * * see Documentation/locking/lockdep-design.rst for more details. */ #ifndef __LINUX_LOCKDEP_H #define __LINUX_LOCKDEP_H #include <linux/lockdep_types.h> #include <linux/smp.h> #include <asm/percpu.h> struct task_struct; /* for sysctl */ extern int prove_locking; extern int lock_stat; #ifdef CONFIG_LOCKDEP #include <linux/linkage.h> #include <linux/list.h> #include <linux/debug_locks.h> #include <linux/stacktrace.h> static inline void lockdep_copy_map(struct lockdep_map *to, struct lockdep_map *from) { int i; *to = *from; /* * Since the class cache can be modified concurrently we could observe * half pointers (64bit arch using 32bit copy insns). Therefore clear * the caches and take the performance hit. * * XXX it doesn't work well with lockdep_set_class_and_subclass(), since * that relies on cache abuse. */ for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++) to->class_cache[i] = NULL; } /* * Every lock has a list of other locks that were taken after it. * We only grow the list, never remove from it: */ struct lock_list { struct list_head entry; struct lock_class *class; struct lock_class *links_to; const struct lock_trace *trace; u16 distance; /* bitmap of different dependencies from head to this */ u8 dep; /* used by BFS to record whether "prev -> this" only has -(*R)-> */ u8 only_xr; /* * The parent field is used to implement breadth-first search, and the * bit 0 is reused to indicate if the lock has been accessed in BFS. */ struct lock_list *parent; }; /** * struct lock_chain - lock dependency chain record * * @irq_context: the same as irq_context in held_lock below * @depth: the number of held locks in this chain * @base: the index in chain_hlocks for this chain * @entry: the collided lock chains in lock_chain hash list * @chain_key: the hash key of this lock_chain */ struct lock_chain { /* see BUILD_BUG_ON()s in add_chain_cache() */ unsigned int irq_context : 2, depth : 6, base : 24; /* 4 byte hole */ struct hlist_node entry; u64 chain_key; }; #define MAX_LOCKDEP_KEYS_BITS 13 #define MAX_LOCKDEP_KEYS (1UL << MAX_LOCKDEP_KEYS_BITS) #define INITIAL_CHAIN_KEY -1 struct held_lock { /* * One-way hash of the dependency chain up to this point. We * hash the hashes step by step as the dependency chain grows. * * We use it for dependency-caching and we skip detection * passes and dependency-updates if there is a cache-hit, so * it is absolutely critical for 100% coverage of the validator * to have a unique key value for every unique dependency path * that can occur in the system, to make a unique hash value * as likely as possible - hence the 64-bit width. * * The task struct holds the current hash value (initialized * with zero), here we store the previous hash value: */ u64 prev_chain_key; unsigned long acquire_ip; struct lockdep_map *instance; struct lockdep_map *nest_lock; #ifdef CONFIG_LOCK_STAT u64 waittime_stamp; u64 holdtime_stamp; #endif /* * class_idx is zero-indexed; it points to the element in * lock_classes this held lock instance belongs to. class_idx is in * the range from 0 to (MAX_LOCKDEP_KEYS-1) inclusive. */ unsigned int class_idx:MAX_LOCKDEP_KEYS_BITS; /* * The lock-stack is unified in that the lock chains of interrupt * contexts nest ontop of process context chains, but we 'separate' * the hashes by starting with 0 if we cross into an interrupt * context, and we also keep do not add cross-context lock * dependencies - the lock usage graph walking covers that area * anyway, and we'd just unnecessarily increase the number of * dependencies otherwise. [Note: hardirq and softirq contexts * are separated from each other too.] * * The following field is used to detect when we cross into an * interrupt context: */ unsigned int irq_context:2; /* bit 0 - soft, bit 1 - hard */ unsigned int trylock:1; /* 16 bits */ unsigned int read:2; /* see lock_acquire() comment */ unsigned int check:1; /* see lock_acquire() comment */ unsigned int hardirqs_off:1; unsigned int references:12; /* 32 bits */ unsigned int pin_count; }; /* * Initialization, self-test and debugging-output methods: */ extern void lockdep_init(void); extern void lockdep_reset(void); extern void lockdep_reset_lock(struct lockdep_map *lock); extern void lockdep_free_key_range(void *start, unsigned long size); extern asmlinkage void lockdep_sys_exit(void); extern void lockdep_set_selftest_task(struct task_struct *task); extern void lockdep_init_task(struct task_struct *task); /* * Split the recrursion counter in two to readily detect 'off' vs recursion. */ #define LOCKDEP_RECURSION_BITS 16 #define LOCKDEP_OFF (1U << LOCKDEP_RECURSION_BITS) #define LOCKDEP_RECURSION_MASK (LOCKDEP_OFF - 1) /* * lockdep_{off,on}() are macros to avoid tracing and kprobes; not inlines due * to header dependencies. */ #define lockdep_off() \ do { \ current->lockdep_recursion += LOCKDEP_OFF; \ } while (0) #define lockdep_on() \ do { \ current->lockdep_recursion -= LOCKDEP_OFF; \ } while (0) extern void lockdep_register_key(struct lock_class_key *key); extern void lockdep_unregister_key(struct lock_class_key *key); /* * These methods are used by specific locking variants (spinlocks, * rwlocks, mutexes and rwsems) to pass init/acquire/release events * to lockdep: */ extern void lockdep_init_map_type(struct lockdep_map *lock, const char *name, struct lock_class_key *key, int subclass, u8 inner, u8 outer, u8 lock_type); static inline void lockdep_init_map_waits(struct lockdep_map *lock, const char *name, struct lock_class_key *key, int subclass, u8 inner, u8 outer) { lockdep_init_map_type(lock, name, key, subclass, inner, LD_WAIT_INV, LD_LOCK_NORMAL); } static inline void lockdep_init_map_wait(struct lockdep_map *lock, const char *name, struct lock_class_key *key, int subclass, u8 inner) { lockdep_init_map_waits(lock, name, key, subclass, inner, LD_WAIT_INV); } static inline void lockdep_init_map(struct lockdep_map *lock, const char *name, struct lock_class_key *key, int subclass) { lockdep_init_map_wait(lock, name, key, subclass, LD_WAIT_INV); } /* * Reinitialize a lock key - for cases where there is special locking or * special initialization of locks so that the validator gets the scope * of dependencies wrong: they are either too broad (they need a class-split) * or they are too narrow (they suffer from a false class-split): */ #define lockdep_set_class(lock, key) \ lockdep_init_map_waits(&(lock)->dep_map, #key, key, 0, \ (lock)->dep_map.wait_type_inner, \ (lock)->dep_map.wait_type_outer) #define lockdep_set_class_and_name(lock, key, name) \ lockdep_init_map_waits(&(lock)->dep_map, name, key, 0, \ (lock)->dep_map.wait_type_inner, \ (lock)->dep_map.wait_type_outer) #define lockdep_set_class_and_subclass(lock, key, sub) \ lockdep_init_map_waits(&(lock)->dep_map, #key, key, sub,\ (lock)->dep_map.wait_type_inner, \ (lock)->dep_map.wait_type_outer) #define lockdep_set_subclass(lock, sub) \ lockdep_init_map_waits(&(lock)->dep_map, #lock, (lock)->dep_map.key, sub,\ (lock)->dep_map.wait_type_inner, \ (lock)->dep_map.wait_type_outer) #define lockdep_set_novalidate_class(lock) \ lockdep_set_class_and_name(lock, &__lockdep_no_validate__, #lock) /* * Compare locking classes */ #define lockdep_match_class(lock, key) lockdep_match_key(&(lock)->dep_map, key) static inline int lockdep_match_key(struct lockdep_map *lock, struct lock_class_key *key) { return lock->key == key; } /* * Acquire a lock. * * Values for "read": * * 0: exclusive (write) acquire * 1: read-acquire (no recursion allowed) * 2: read-acquire with same-instance recursion allowed * * Values for check: * * 0: simple checks (freeing, held-at-exit-time, etc.) * 1: full validation */ extern void lock_acquire(struct lockdep_map *lock, unsigned int subclass, int trylock, int read, int check, struct lockdep_map *nest_lock, unsigned long ip); extern void lock_release(struct lockdep_map *lock, unsigned long ip); /* * Same "read" as for lock_acquire(), except -1 means any. */ extern int lock_is_held_type(const struct lockdep_map *lock, int read); static inline int lock_is_held(const struct lockdep_map *lock) { return lock_is_held_type(lock, -1); } #define lockdep_is_held(lock) lock_is_held(&(lock)->dep_map) #define lockdep_is_held_type(lock, r) lock_is_held_type(&(lock)->dep_map, (r)) extern void lock_set_class(struct lockdep_map *lock, const char *name, struct lock_class_key *key, unsigned int subclass, unsigned long ip); static inline void lock_set_subclass(struct lockdep_map *lock, unsigned int subclass, unsigned long ip) { lock_set_class(lock, lock->name, lock->key, subclass, ip); } extern void lock_downgrade(struct lockdep_map *lock, unsigned long ip); #define NIL_COOKIE (struct pin_cookie){ .val = 0U, } extern struct pin_cookie lock_pin_lock(struct lockdep_map *lock); extern void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie); extern void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie); #define lockdep_depth(tsk) (debug_locks ? (tsk)->lockdep_depth : 0) #define lockdep_assert_held(l) do { \ WARN_ON(debug_locks && !lockdep_is_held(l)); \ } while (0) #define lockdep_assert_held_write(l) do { \ WARN_ON(debug_locks && !lockdep_is_held_type(l, 0)); \ } while (0) #define lockdep_assert_held_read(l) do { \ WARN_ON(debug_locks && !lockdep_is_held_type(l, 1)); \ } while (0) #define lockdep_assert_held_once(l) do { \ WARN_ON_ONCE(debug_locks && !lockdep_is_held(l)); \ } while (0) #define lockdep_recursing(tsk) ((tsk)->lockdep_recursion) #define lockdep_pin_lock(l) lock_pin_lock(&(l)->dep_map) #define lockdep_repin_lock(l,c) lock_repin_lock(&(l)->dep_map, (c)) #define lockdep_unpin_lock(l,c) lock_unpin_lock(&(l)->dep_map, (c)) #else /* !CONFIG_LOCKDEP */ static inline void lockdep_init_task(struct task_struct *task) { } static inline void lockdep_off(void) { } static inline void lockdep_on(void) { } static inline void lockdep_set_selftest_task(struct task_struct *task) { } # define lock_acquire(l, s, t, r, c, n, i) do { } while (0) # define lock_release(l, i) do { } while (0) # define lock_downgrade(l, i) do { } while (0) # define lock_set_class(l, n, k, s, i) do { } while (0) # define lock_set_subclass(l, s, i) do { } while (0) # define lockdep_init() do { } while (0) # define lockdep_init_map_type(lock, name, key, sub, inner, outer, type) \ do { (void)(name); (void)(key); } while (0) # define lockdep_init_map_waits(lock, name, key, sub, inner, outer) \ do { (void)(name); (void)(key); } while (0) # define lockdep_init_map_wait(lock, name, key, sub, inner) \ do { (void)(name); (void)(key); } while (0) # define lockdep_init_map(lock, name, key, sub) \ do { (void)(name); (void)(key); } while (0) # define lockdep_set_class(lock, key) do { (void)(key); } while (0) # define lockdep_set_class_and_name(lock, key, name) \ do { (void)(key); (void)(name); } while (0) #define lockdep_set_class_and_subclass(lock, key, sub) \ do { (void)(key); } while (0) #define lockdep_set_subclass(lock, sub) do { } while (0) #define lockdep_set_novalidate_class(lock) do { } while (0) /* * We don't define lockdep_match_class() and lockdep_match_key() for !LOCKDEP * case since the result is not well defined and the caller should rather * #ifdef the call himself. */ # define lockdep_reset() do { debug_locks = 1; } while (0) # define lockdep_free_key_range(start, size) do { } while (0) # define lockdep_sys_exit() do { } while (0) static inline void lockdep_register_key(struct lock_class_key *key) { } static inline void lockdep_unregister_key(struct lock_class_key *key) { } #define lockdep_depth(tsk) (0) #define lockdep_is_held_type(l, r) (1) #define lockdep_assert_held(l) do { (void)(l); } while (0) #define lockdep_assert_held_write(l) do { (void)(l); } while (0) #define lockdep_assert_held_read(l) do { (void)(l); } while (0) #define lockdep_assert_held_once(l) do { (void)(l); } while (0) #define lockdep_recursing(tsk) (0) #define NIL_COOKIE (struct pin_cookie){ } #define lockdep_pin_lock(l) ({ struct pin_cookie cookie = { }; cookie; }) #define lockdep_repin_lock(l, c) do { (void)(l); (void)(c); } while (0) #define lockdep_unpin_lock(l, c) do { (void)(l); (void)(c); } while (0) #endif /* !LOCKDEP */ enum xhlock_context_t { XHLOCK_HARD, XHLOCK_SOFT, XHLOCK_CTX_NR, }; #define lockdep_init_map_crosslock(m, n, k, s) do {} while (0) /* * To initialize a lockdep_map statically use this macro. * Note that _name must not be NULL. */ #define STATIC_LOCKDEP_MAP_INIT(_name, _key) \ { .name = (_name), .key = (void *)(_key), } static inline void lockdep_invariant_state(bool force) {} static inline void lockdep_free_task(struct task_struct *task) {} #ifdef CONFIG_LOCK_STAT extern void lock_contended(struct lockdep_map *lock, unsigned long ip); extern void lock_acquired(struct lockdep_map *lock, unsigned long ip); #define LOCK_CONTENDED(_lock, try, lock) \ do { \ if (!try(_lock)) { \ lock_contended(&(_lock)->dep_map, _RET_IP_); \ lock(_lock); \ } \ lock_acquired(&(_lock)->dep_map, _RET_IP_); \ } while (0) #define LOCK_CONTENDED_RETURN(_lock, try, lock) \ ({ \ int ____err = 0; \ if (!try(_lock)) { \ lock_contended(&(_lock)->dep_map, _RET_IP_); \ ____err = lock(_lock); \ } \ if (!____err) \ lock_acquired(&(_lock)->dep_map, _RET_IP_); \ ____err; \ }) #else /* CONFIG_LOCK_STAT */ #define lock_contended(lockdep_map, ip) do {} while (0) #define lock_acquired(lockdep_map, ip) do {} while (0) #define LOCK_CONTENDED(_lock, try, lock) \ lock(_lock) #define LOCK_CONTENDED_RETURN(_lock, try, lock) \ lock(_lock) #endif /* CONFIG_LOCK_STAT */ #ifdef CONFIG_LOCKDEP /* * On lockdep we dont want the hand-coded irq-enable of * _raw_*_lock_flags() code, because lockdep assumes * that interrupts are not re-enabled during lock-acquire: */ #define LOCK_CONTENDED_FLAGS(_lock, try, lock, lockfl, flags) \ LOCK_CONTENDED((_lock), (try), (lock)) #else /* CONFIG_LOCKDEP */ #define LOCK_CONTENDED_FLAGS(_lock, try, lock, lockfl, flags) \ lockfl((_lock), (flags)) #endif /* CONFIG_LOCKDEP */ #ifdef CONFIG_PROVE_LOCKING extern void print_irqtrace_events(struct task_struct *curr); #else static inline void print_irqtrace_events(struct task_struct *curr) { } #endif /* Variable used to make lockdep treat read_lock() as recursive in selftests */ #ifdef CONFIG_DEBUG_LOCKING_API_SELFTESTS extern unsigned int force_read_lock_recursive; #else /* CONFIG_DEBUG_LOCKING_API_SELFTESTS */ #define force_read_lock_recursive 0 #endif /* CONFIG_DEBUG_LOCKING_API_SELFTESTS */ #ifdef CONFIG_LOCKDEP extern bool read_lock_is_recursive(void); #else /* CONFIG_LOCKDEP */ /* If !LOCKDEP, the value is meaningless */ #define read_lock_is_recursive() 0 #endif /* * For trivial one-depth nesting of a lock-class, the following * global define can be used. (Subsystems with multiple levels * of nesting should define their own lock-nesting subclasses.) */ #define SINGLE_DEPTH_NESTING 1 /* * Map the dependency ops to NOP or to real lockdep ops, depending * on the per lock-class debug mode: */ #define lock_acquire_exclusive(l, s, t, n, i) lock_acquire(l, s, t, 0, 1, n, i) #define lock_acquire_shared(l, s, t, n, i) lock_acquire(l, s, t, 1, 1, n, i) #define lock_acquire_shared_recursive(l, s, t, n, i) lock_acquire(l, s, t, 2, 1, n, i) #define spin_acquire(l, s, t, i) lock_acquire_exclusive(l, s, t, NULL, i) #define spin_acquire_nest(l, s, t, n, i) lock_acquire_exclusive(l, s, t, n, i) #define spin_release(l, i) lock_release(l, i) #define rwlock_acquire(l, s, t, i) lock_acquire_exclusive(l, s, t, NULL, i) #define rwlock_acquire_read(l, s, t, i) \ do { \ if (read_lock_is_recursive()) \ lock_acquire_shared_recursive(l, s, t, NULL, i); \ else \ lock_acquire_shared(l, s, t, NULL, i); \ } while (0) #define rwlock_release(l, i) lock_release(l, i) #define seqcount_acquire(l, s, t, i) lock_acquire_exclusive(l, s, t, NULL, i) #define seqcount_acquire_read(l, s, t, i) lock_acquire_shared_recursive(l, s, t, NULL, i) #define seqcount_release(l, i) lock_release(l, i) #define mutex_acquire(l, s, t, i) lock_acquire_exclusive(l, s, t, NULL, i) #define mutex_acquire_nest(l, s, t, n, i) lock_acquire_exclusive(l, s, t, n, i) #define mutex_release(l, i) lock_release(l, i) #define rwsem_acquire(l, s, t, i) lock_acquire_exclusive(l, s, t, NULL, i) #define rwsem_acquire_nest(l, s, t, n, i) lock_acquire_exclusive(l, s, t, n, i) #define rwsem_acquire_read(l, s, t, i) lock_acquire_shared(l, s, t, NULL, i) #define rwsem_release(l, i) lock_release(l, i) #define lock_map_acquire(l) lock_acquire_exclusive(l, 0, 0, NULL, _THIS_IP_) #define lock_map_acquire_read(l) lock_acquire_shared_recursive(l, 0, 0, NULL, _THIS_IP_) #define lock_map_acquire_tryread(l) lock_acquire_shared_recursive(l, 0, 1, NULL, _THIS_IP_) #define lock_map_release(l) lock_release(l, _THIS_IP_) #ifdef CONFIG_PROVE_LOCKING # define might_lock(lock) \ do { \ typecheck(struct lockdep_map *, &(lock)->dep_map); \ lock_acquire(&(lock)->dep_map, 0, 0, 0, 1, NULL, _THIS_IP_); \ lock_release(&(lock)->dep_map, _THIS_IP_); \ } while (0) # define might_lock_read(lock) \ do { \ typecheck(struct lockdep_map *, &(lock)->dep_map); \ lock_acquire(&(lock)->dep_map, 0, 0, 1, 1, NULL, _THIS_IP_); \ lock_release(&(lock)->dep_map, _THIS_IP_); \ } while (0) # define might_lock_nested(lock, subclass) \ do { \ typecheck(struct lockdep_map *, &(lock)->dep_map); \ lock_acquire(&(lock)->dep_map, subclass, 0, 1, 1, NULL, \ _THIS_IP_); \ lock_release(&(lock)->dep_map, _THIS_IP_); \ } while (0) DECLARE_PER_CPU(int, hardirqs_enabled); DECLARE_PER_CPU(int, hardirq_context); DECLARE_PER_CPU(unsigned int, lockdep_recursion); #define __lockdep_enabled (debug_locks && !this_cpu_read(lockdep_recursion)) #define lockdep_assert_irqs_enabled() \ do { \ WARN_ON_ONCE(__lockdep_enabled && !this_cpu_read(hardirqs_enabled)); \ } while (0) #define lockdep_assert_irqs_disabled() \ do { \ WARN_ON_ONCE(__lockdep_enabled && this_cpu_read(hardirqs_enabled)); \ } while (0) #define lockdep_assert_in_irq() \ do { \ WARN_ON_ONCE(__lockdep_enabled && !this_cpu_read(hardirq_context)); \ } while (0) #define lockdep_assert_preemption_enabled() \ do { \ WARN_ON_ONCE(IS_ENABLED(CONFIG_PREEMPT_COUNT) && \ __lockdep_enabled && \ (preempt_count() != 0 || \ !this_cpu_read(hardirqs_enabled))); \ } while (0) #define lockdep_assert_preemption_disabled() \ do { \ WARN_ON_ONCE(IS_ENABLED(CONFIG_PREEMPT_COUNT) && \ __lockdep_enabled && \ (preempt_count() == 0 && \ this_cpu_read(hardirqs_enabled))); \ } while (0) #else # define might_lock(lock) do { } while (0) # define might_lock_read(lock) do { } while (0) # define might_lock_nested(lock, subclass) do { } while (0) # define lockdep_assert_irqs_enabled() do { } while (0) # define lockdep_assert_irqs_disabled() do { } while (0) # define lockdep_assert_in_irq() do { } while (0) # define lockdep_assert_preemption_enabled() do { } while (0) # define lockdep_assert_preemption_disabled() do { } while (0) #endif #ifdef CONFIG_PROVE_RAW_LOCK_NESTING # define lockdep_assert_RT_in_threaded_ctx() do { \ WARN_ONCE(debug_locks && !current->lockdep_recursion && \ lockdep_hardirq_context() && \ !(current->hardirq_threaded || current->irq_config), \ "Not in threaded context on PREEMPT_RT as expected\n"); \ } while (0) #else # define lockdep_assert_RT_in_threaded_ctx() do { } while (0) #endif #ifdef CONFIG_LOCKDEP void lockdep_rcu_suspicious(const char *file, const int line, const char *s); #else static inline void lockdep_rcu_suspicious(const char *file, const int line, const char *s) { } #endif #endif /* __LINUX_LOCKDEP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 /* SPDX-License-Identifier: GPL-2.0 */ /* * This header file contains public constants and structures used by * the SCSI initiator code. */ #ifndef _SCSI_SCSI_H #define _SCSI_SCSI_H #include <linux/types.h> #include <linux/scatterlist.h> #include <linux/kernel.h> #include <scsi/scsi_common.h> #include <scsi/scsi_proto.h> struct scsi_cmnd; enum scsi_timeouts { SCSI_DEFAULT_EH_TIMEOUT = 10 * HZ, }; /* * DIX-capable adapters effectively support infinite chaining for the * protection information scatterlist */ #define SCSI_MAX_PROT_SG_SEGMENTS 0xFFFF /* * Special value for scanning to specify scanning or rescanning of all * possible channels, (target) ids, or luns on a given shost. */ #define SCAN_WILD_CARD ~0 /** scsi_status_is_good - check the status return. * * @status: the status passed up from the driver (including host and * driver components) * * This returns true for known good conditions that may be treated as * command completed normally */ static inline int scsi_status_is_good(int status) { /* * FIXME: bit0 is listed as reserved in SCSI-2, but is * significant in SCSI-3. For now, we follow the SCSI-2 * behaviour and ignore reserved bits. */ status &= 0xfe; return ((status == SAM_STAT_GOOD) || (status == SAM_STAT_CONDITION_MET) || /* Next two "intermediate" statuses are obsolete in SAM-4 */ (status == SAM_STAT_INTERMEDIATE) || (status == SAM_STAT_INTERMEDIATE_CONDITION_MET) || /* FIXME: this is obsolete in SAM-3 */ (status == SAM_STAT_COMMAND_TERMINATED)); } /* * standard mode-select header prepended to all mode-select commands */ struct ccs_modesel_head { __u8 _r1; /* reserved */ __u8 medium; /* device-specific medium type */ __u8 _r2; /* reserved */ __u8 block_desc_length; /* block descriptor length */ __u8 density; /* device-specific density code */ __u8 number_blocks_hi; /* number of blocks in this block desc */ __u8 number_blocks_med; __u8 number_blocks_lo; __u8 _r3; __u8 block_length_hi; /* block length for blocks in this desc */ __u8 block_length_med; __u8 block_length_lo; }; /* * The Well Known LUNS (SAM-3) in our int representation of a LUN */ #define SCSI_W_LUN_BASE 0xc100 #define SCSI_W_LUN_REPORT_LUNS (SCSI_W_LUN_BASE + 1) #define SCSI_W_LUN_ACCESS_CONTROL (SCSI_W_LUN_BASE + 2) #define SCSI_W_LUN_TARGET_LOG_PAGE (SCSI_W_LUN_BASE + 3) static inline int scsi_is_wlun(u64 lun) { return (lun & 0xff00) == SCSI_W_LUN_BASE; } /* * MESSAGE CODES */ #define COMMAND_COMPLETE 0x00 #define EXTENDED_MESSAGE 0x01 #define EXTENDED_MODIFY_DATA_POINTER 0x00 #define EXTENDED_SDTR 0x01 #define EXTENDED_EXTENDED_IDENTIFY 0x02 /* SCSI-I only */ #define EXTENDED_WDTR 0x03 #define EXTENDED_PPR 0x04 #define EXTENDED_MODIFY_BIDI_DATA_PTR 0x05 #define SAVE_POINTERS 0x02 #define RESTORE_POINTERS 0x03 #define DISCONNECT 0x04 #define INITIATOR_ERROR 0x05 #define ABORT_TASK_SET 0x06 #define MESSAGE_REJECT 0x07 #define NOP 0x08 #define MSG_PARITY_ERROR 0x09 #define LINKED_CMD_COMPLETE 0x0a #define LINKED_FLG_CMD_COMPLETE 0x0b #define TARGET_RESET 0x0c #define ABORT_TASK 0x0d #define CLEAR_TASK_SET 0x0e #define INITIATE_RECOVERY 0x0f /* SCSI-II only */ #define RELEASE_RECOVERY 0x10 /* SCSI-II only */ #define CLEAR_ACA 0x16 #define LOGICAL_UNIT_RESET 0x17 #define SIMPLE_QUEUE_TAG 0x20 #define HEAD_OF_QUEUE_TAG 0x21 #define ORDERED_QUEUE_TAG 0x22 #define IGNORE_WIDE_RESIDUE 0x23 #define ACA 0x24 #define QAS_REQUEST 0x55 /* Old SCSI2 names, don't use in new code */ #define BUS_DEVICE_RESET TARGET_RESET #define ABORT ABORT_TASK_SET /* * Host byte codes */ #define DID_OK 0x00 /* NO error */ #define DID_NO_CONNECT 0x01 /* Couldn't connect before timeout period */ #define DID_BUS_BUSY 0x02 /* BUS stayed busy through time out period */ #define DID_TIME_OUT 0x03 /* TIMED OUT for other reason */ #define DID_BAD_TARGET 0x04 /* BAD target. */ #define DID_ABORT 0x05 /* Told to abort for some other reason */ #define DID_PARITY 0x06 /* Parity error */ #define DID_ERROR 0x07 /* Internal error */ #define DID_RESET 0x08 /* Reset by somebody. */ #define DID_BAD_INTR 0x09 /* Got an interrupt we weren't expecting. */ #define DID_PASSTHROUGH 0x0a /* Force command past mid-layer */ #define DID_SOFT_ERROR 0x0b /* The low level driver just wish a retry */ #define DID_IMM_RETRY 0x0c /* Retry without decrementing retry count */ #define DID_REQUEUE 0x0d /* Requeue command (no immediate retry) also * without decrementing the retry count */ #define DID_TRANSPORT_DISRUPTED 0x0e /* Transport error disrupted execution * and the driver blocked the port to * recover the link. Transport class will * retry or fail IO */ #define DID_TRANSPORT_FAILFAST 0x0f /* Transport class fastfailed the io */ #define DID_TARGET_FAILURE 0x10 /* Permanent target failure, do not retry on * other paths */ #define DID_NEXUS_FAILURE 0x11 /* Permanent nexus failure, retry on other * paths might yield different results */ #define DID_ALLOC_FAILURE 0x12 /* Space allocation on the device failed */ #define DID_MEDIUM_ERROR 0x13 /* Medium error */ #define DRIVER_OK 0x00 /* Driver status */ /* * These indicate the error that occurred, and what is available. */ #define DRIVER_BUSY 0x01 #define DRIVER_SOFT 0x02 #define DRIVER_MEDIA 0x03 #define DRIVER_ERROR 0x04 #define DRIVER_INVALID 0x05 #define DRIVER_TIMEOUT 0x06 #define DRIVER_HARD 0x07 #define DRIVER_SENSE 0x08 /* * Internal return values. */ #define NEEDS_RETRY 0x2001 #define SUCCESS 0x2002 #define FAILED 0x2003 #define QUEUED 0x2004 #define SOFT_ERROR 0x2005 #define ADD_TO_MLQUEUE 0x2006 #define TIMEOUT_ERROR 0x2007 #define SCSI_RETURN_NOT_HANDLED 0x2008 #define FAST_IO_FAIL 0x2009 /* * Midlevel queue return values. */ #define SCSI_MLQUEUE_HOST_BUSY 0x1055 #define SCSI_MLQUEUE_DEVICE_BUSY 0x1056 #define SCSI_MLQUEUE_EH_RETRY 0x1057 #define SCSI_MLQUEUE_TARGET_BUSY 0x1058 /* * Use these to separate status msg and our bytes * * These are set by: * * status byte = set from target device * msg_byte = return status from host adapter itself. * host_byte = set by low-level driver to indicate status. * driver_byte = set by mid-level. */ #define status_byte(result) (((result) >> 1) & 0x7f) #define msg_byte(result) (((result) >> 8) & 0xff) #define host_byte(result) (((result) >> 16) & 0xff) #define driver_byte(result) (((result) >> 24) & 0xff) #define sense_class(sense) (((sense) >> 4) & 0x7) #define sense_error(sense) ((sense) & 0xf) #define sense_valid(sense) ((sense) & 0x80) /* * default timeouts */ #define FORMAT_UNIT_TIMEOUT (2 * 60 * 60 * HZ) #define START_STOP_TIMEOUT (60 * HZ) #define MOVE_MEDIUM_TIMEOUT (5 * 60 * HZ) #define READ_ELEMENT_STATUS_TIMEOUT (5 * 60 * HZ) #define READ_DEFECT_DATA_TIMEOUT (60 * HZ ) #define IDENTIFY_BASE 0x80 #define IDENTIFY(can_disconnect, lun) (IDENTIFY_BASE |\ ((can_disconnect) ? 0x40 : 0) |\ ((lun) & 0x07)) /* * struct scsi_device::scsi_level values. For SCSI devices other than those * prior to SCSI-2 (i.e. over 12 years old) this value is (resp[2] + 1) * where "resp" is a byte array of the response to an INQUIRY. The scsi_level * variable is visible to the user via sysfs. */ #define SCSI_UNKNOWN 0 #define SCSI_1 1 #define SCSI_1_CCS 2 #define SCSI_2 3 #define SCSI_3 4 /* SPC */ #define SCSI_SPC_2 5 #define SCSI_SPC_3 6 /* * INQ PERIPHERAL QUALIFIERS */ #define SCSI_INQ_PQ_CON 0x00 #define SCSI_INQ_PQ_NOT_CON 0x01 #define SCSI_INQ_PQ_NOT_CAP 0x03 /* * Here are some scsi specific ioctl commands which are sometimes useful. * * Note that include/linux/cdrom.h also defines IOCTL 0x5300 - 0x5395 */ /* Used to obtain PUN and LUN info. Conflicts with CDROMAUDIOBUFSIZ */ #define SCSI_IOCTL_GET_IDLUN 0x5382 /* 0x5383 and 0x5384 were used for SCSI_IOCTL_TAGGED_{ENABLE,DISABLE} */ /* Used to obtain the host number of a device. */ #define SCSI_IOCTL_PROBE_HOST 0x5385 /* Used to obtain the bus number for a device */ #define SCSI_IOCTL_GET_BUS_NUMBER 0x5386 /* Used to obtain the PCI location of a device */ #define SCSI_IOCTL_GET_PCI 0x5387 #endif /* _SCSI_SCSI_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 // SPDX-License-Identifier: GPL-2.0 /* File: fs/ext4/acl.h (C) 2001 Andreas Gruenbacher, <a.gruenbacher@computer.org> */ #include <linux/posix_acl_xattr.h> #define EXT4_ACL_VERSION 0x0001 typedef struct { __le16 e_tag; __le16 e_perm; __le32 e_id; } ext4_acl_entry; typedef struct { __le16 e_tag; __le16 e_perm; } ext4_acl_entry_short; typedef struct { __le32 a_version; } ext4_acl_header; static inline size_t ext4_acl_size(int count) { if (count <= 4) { return sizeof(ext4_acl_header) + count * sizeof(ext4_acl_entry_short); } else { return sizeof(ext4_acl_header) + 4 * sizeof(ext4_acl_entry_short) + (count - 4) * sizeof(ext4_acl_entry); } } static inline int ext4_acl_count(size_t size) { ssize_t s; size -= sizeof(ext4_acl_header); s = size - 4 * sizeof(ext4_acl_entry_short); if (s < 0) { if (size % sizeof(ext4_acl_entry_short)) return -1; return size / sizeof(ext4_acl_entry_short); } else { if (s % sizeof(ext4_acl_entry)) return -1; return s / sizeof(ext4_acl_entry) + 4; } } #ifdef CONFIG_EXT4_FS_POSIX_ACL /* acl.c */ struct posix_acl *ext4_get_acl(struct inode *inode, int type); int ext4_set_acl(struct inode *inode, struct posix_acl *acl, int type); extern int ext4_init_acl(handle_t *, struct inode *, struct inode *); #else /* CONFIG_EXT4_FS_POSIX_ACL */ #include <linux/sched.h> #define ext4_get_acl NULL #define ext4_set_acl NULL static inline int ext4_init_acl(handle_t *handle, struct inode *inode, struct inode *dir) { return 0; } #endif /* CONFIG_EXT4_FS_POSIX_ACL */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 /* SPDX-License-Identifier: GPL-2.0 */ /* * INETPEER - A storage for permanent information about peers * * Authors: Andrey V. Savochkin <saw@msu.ru> */ #ifndef _NET_INETPEER_H #define _NET_INETPEER_H #include <linux/types.h> #include <linux/init.h> #include <linux/jiffies.h> #include <linux/spinlock.h> #include <linux/rtnetlink.h> #include <net/ipv6.h> #include <linux/atomic.h> /* IPv4 address key for cache lookups */ struct ipv4_addr_key { __be32 addr; int vif; }; #define INETPEER_MAXKEYSZ (sizeof(struct in6_addr) / sizeof(u32)) struct inetpeer_addr { union { struct ipv4_addr_key a4; struct in6_addr a6; u32 key[INETPEER_MAXKEYSZ]; }; __u16 family; }; struct inet_peer { struct rb_node rb_node; struct inetpeer_addr daddr; u32 metrics[RTAX_MAX]; u32 rate_tokens; /* rate limiting for ICMP */ u32 n_redirects; unsigned long rate_last; /* * Once inet_peer is queued for deletion (refcnt == 0), following field * is not available: rid * We can share memory with rcu_head to help keep inet_peer small. */ union { struct { atomic_t rid; /* Frag reception counter */ }; struct rcu_head rcu; }; /* following fields might be frequently dirtied */ __u32 dtime; /* the time of last use of not referenced entries */ refcount_t refcnt; }; struct inet_peer_base { struct rb_root rb_root; seqlock_t lock; int total; }; void inet_peer_base_init(struct inet_peer_base *); void inet_initpeers(void) __init; #define INETPEER_METRICS_NEW (~(u32) 0) static inline void inetpeer_set_addr_v4(struct inetpeer_addr *iaddr, __be32 ip) { iaddr->a4.addr = ip; iaddr->a4.vif = 0; iaddr->family = AF_INET; } static inline __be32 inetpeer_get_addr_v4(struct inetpeer_addr *iaddr) { return iaddr->a4.addr; } static inline void inetpeer_set_addr_v6(struct inetpeer_addr *iaddr, struct in6_addr *in6) { iaddr->a6 = *in6; iaddr->family = AF_INET6; } static inline struct in6_addr *inetpeer_get_addr_v6(struct inetpeer_addr *iaddr) { return &iaddr->a6; } /* can be called with or without local BH being disabled */ struct inet_peer *inet_getpeer(struct inet_peer_base *base, const struct inetpeer_addr *daddr, int create); static inline struct inet_peer *inet_getpeer_v4(struct inet_peer_base *base, __be32 v4daddr, int vif, int create) { struct inetpeer_addr daddr; daddr.a4.addr = v4daddr; daddr.a4.vif = vif; daddr.family = AF_INET; return inet_getpeer(base, &daddr, create); } static inline struct inet_peer *inet_getpeer_v6(struct inet_peer_base *base, const struct in6_addr *v6daddr, int create) { struct inetpeer_addr daddr; daddr.a6 = *v6daddr; daddr.family = AF_INET6; return inet_getpeer(base, &daddr, create); } static inline int inetpeer_addr_cmp(const struct inetpeer_addr *a, const struct inetpeer_addr *b) { int i, n; if (a->family == AF_INET) n = sizeof(a->a4) / sizeof(u32); else n = sizeof(a->a6) / sizeof(u32); for (i = 0; i < n; i++) { if (a->key[i] == b->key[i]) continue; if (a->key[i] < b->key[i]) return -1; return 1; } return 0; } /* can be called from BH context or outside */ void inet_putpeer(struct inet_peer *p); bool inet_peer_xrlim_allow(struct inet_peer *peer, int timeout); void inetpeer_invalidate_tree(struct inet_peer_base *); #endif /* _NET_INETPEER_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 /* BlueZ - Bluetooth protocol stack for Linux Copyright (C) 2000-2001 Qualcomm Incorporated Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2 as published by the Free Software Foundation; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS SOFTWARE IS DISCLAIMED. */ #ifndef __BLUETOOTH_H #define __BLUETOOTH_H #include <linux/poll.h> #include <net/sock.h> #include <linux/seq_file.h> #define BT_SUBSYS_VERSION 2 #define BT_SUBSYS_REVISION 22 #ifndef AF_BLUETOOTH #define AF_BLUETOOTH 31 #define PF_BLUETOOTH AF_BLUETOOTH #endif /* Bluetooth versions */ #define BLUETOOTH_VER_1_1 1 #define BLUETOOTH_VER_1_2 2 #define BLUETOOTH_VER_2_0 3 #define BLUETOOTH_VER_2_1 4 #define BLUETOOTH_VER_4_0 6 /* Reserv for core and drivers use */ #define BT_SKB_RESERVE 8 #define BTPROTO_L2CAP 0 #define BTPROTO_HCI 1 #define BTPROTO_SCO 2 #define BTPROTO_RFCOMM 3 #define BTPROTO_BNEP 4 #define BTPROTO_CMTP 5 #define BTPROTO_HIDP 6 #define BTPROTO_AVDTP 7 #define SOL_HCI 0 #define SOL_L2CAP 6 #define SOL_SCO 17 #define SOL_RFCOMM 18 #define BT_SECURITY 4 struct bt_security { __u8 level; __u8 key_size; }; #define BT_SECURITY_SDP 0 #define BT_SECURITY_LOW 1 #define BT_SECURITY_MEDIUM 2 #define BT_SECURITY_HIGH 3 #define BT_SECURITY_FIPS 4 #define BT_DEFER_SETUP 7 #define BT_FLUSHABLE 8 #define BT_FLUSHABLE_OFF 0 #define BT_FLUSHABLE_ON 1 #define BT_POWER 9 struct bt_power { __u8 force_active; }; #define BT_POWER_FORCE_ACTIVE_OFF 0 #define BT_POWER_FORCE_ACTIVE_ON 1 #define BT_CHANNEL_POLICY 10 /* BR/EDR only (default policy) * AMP controllers cannot be used. * Channel move requests from the remote device are denied. * If the L2CAP channel is currently using AMP, move the channel to BR/EDR. */ #define BT_CHANNEL_POLICY_BREDR_ONLY 0 /* BR/EDR Preferred * Allow use of AMP controllers. * If the L2CAP channel is currently on AMP, move it to BR/EDR. * Channel move requests from the remote device are allowed. */ #define BT_CHANNEL_POLICY_BREDR_PREFERRED 1 /* AMP Preferred * Allow use of AMP controllers * If the L2CAP channel is currently on BR/EDR and AMP controller * resources are available, initiate a channel move to AMP. * Channel move requests from the remote device are allowed. * If the L2CAP socket has not been connected yet, try to create * and configure the channel directly on an AMP controller rather * than BR/EDR. */ #define BT_CHANNEL_POLICY_AMP_PREFERRED 2 #define BT_VOICE 11 struct bt_voice { __u16 setting; }; #define BT_VOICE_TRANSPARENT 0x0003 #define BT_VOICE_CVSD_16BIT 0x0060 #define BT_SNDMTU 12 #define BT_RCVMTU 13 #define BT_PHY 14 #define BT_PHY_BR_1M_1SLOT 0x00000001 #define BT_PHY_BR_1M_3SLOT 0x00000002 #define BT_PHY_BR_1M_5SLOT 0x00000004 #define BT_PHY_EDR_2M_1SLOT 0x00000008 #define BT_PHY_EDR_2M_3SLOT 0x00000010 #define BT_PHY_EDR_2M_5SLOT 0x00000020 #define BT_PHY_EDR_3M_1SLOT 0x00000040 #define BT_PHY_EDR_3M_3SLOT 0x00000080 #define BT_PHY_EDR_3M_5SLOT 0x00000100 #define BT_PHY_LE_1M_TX 0x00000200 #define BT_PHY_LE_1M_RX 0x00000400 #define BT_PHY_LE_2M_TX 0x00000800 #define BT_PHY_LE_2M_RX 0x00001000 #define BT_PHY_LE_CODED_TX 0x00002000 #define BT_PHY_LE_CODED_RX 0x00004000 #define BT_MODE 15 #define BT_MODE_BASIC 0x00 #define BT_MODE_ERTM 0x01 #define BT_MODE_STREAMING 0x02 #define BT_MODE_LE_FLOWCTL 0x03 #define BT_MODE_EXT_FLOWCTL 0x04 #define BT_PKT_STATUS 16 #define BT_SCM_PKT_STATUS 0x03 __printf(1, 2) void bt_info(const char *fmt, ...); __printf(1, 2) void bt_warn(const char *fmt, ...); __printf(1, 2) void bt_err(const char *fmt, ...); #if IS_ENABLED(CONFIG_BT_FEATURE_DEBUG) void bt_dbg_set(bool enable); bool bt_dbg_get(void); __printf(1, 2) void bt_dbg(const char *fmt, ...); #endif __printf(1, 2) void bt_warn_ratelimited(const char *fmt, ...); __printf(1, 2) void bt_err_ratelimited(const char *fmt, ...); #define BT_INFO(fmt, ...) bt_info(fmt "\n", ##__VA_ARGS__) #define BT_WARN(fmt, ...) bt_warn(fmt "\n", ##__VA_ARGS__) #define BT_ERR(fmt, ...) bt_err(fmt "\n", ##__VA_ARGS__) #if IS_ENABLED(CONFIG_BT_FEATURE_DEBUG) #define BT_DBG(fmt, ...) bt_dbg(fmt "\n", ##__VA_ARGS__) #else #define BT_DBG(fmt, ...) pr_debug(fmt "\n", ##__VA_ARGS__) #endif #define bt_dev_info(hdev, fmt, ...) \ BT_INFO("%s: " fmt, (hdev)->name, ##__VA_ARGS__) #define bt_dev_warn(hdev, fmt, ...) \ BT_WARN("%s: " fmt, (hdev)->name, ##__VA_ARGS__) #define bt_dev_err(hdev, fmt, ...) \ BT_ERR("%s: " fmt, (hdev)->name, ##__VA_ARGS__) #define bt_dev_dbg(hdev, fmt, ...) \ BT_DBG("%s: " fmt, (hdev)->name, ##__VA_ARGS__) #define bt_dev_warn_ratelimited(hdev, fmt, ...) \ bt_warn_ratelimited("%s: " fmt, (hdev)->name, ##__VA_ARGS__) #define bt_dev_err_ratelimited(hdev, fmt, ...) \ bt_err_ratelimited("%s: " fmt, (hdev)->name, ##__VA_ARGS__) /* Connection and socket states */ enum { BT_CONNECTED = 1, /* Equal to TCP_ESTABLISHED to make net code happy */ BT_OPEN, BT_BOUND, BT_LISTEN, BT_CONNECT, BT_CONNECT2, BT_CONFIG, BT_DISCONN, BT_CLOSED }; /* If unused will be removed by compiler */ static inline const char *state_to_string(int state) { switch (state) { case BT_CONNECTED: return "BT_CONNECTED"; case BT_OPEN: return "BT_OPEN"; case BT_BOUND: return "BT_BOUND"; case BT_LISTEN: return "BT_LISTEN"; case BT_CONNECT: return "BT_CONNECT"; case BT_CONNECT2: return "BT_CONNECT2"; case BT_CONFIG: return "BT_CONFIG"; case BT_DISCONN: return "BT_DISCONN"; case BT_CLOSED: return "BT_CLOSED"; } return "invalid state"; } /* BD Address */ typedef struct { __u8 b[6]; } __packed bdaddr_t; /* BD Address type */ #define BDADDR_BREDR 0x00 #define BDADDR_LE_PUBLIC 0x01 #define BDADDR_LE_RANDOM 0x02 static inline bool bdaddr_type_is_valid(u8 type) { switch (type) { case BDADDR_BREDR: case BDADDR_LE_PUBLIC: case BDADDR_LE_RANDOM: return true; } return false; } static inline bool bdaddr_type_is_le(u8 type) { switch (type) { case BDADDR_LE_PUBLIC: case BDADDR_LE_RANDOM: return true; } return false; } #define BDADDR_ANY (&(bdaddr_t) {{0, 0, 0, 0, 0, 0}}) #define BDADDR_NONE (&(bdaddr_t) {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff}}) /* Copy, swap, convert BD Address */ static inline int bacmp(const bdaddr_t *ba1, const bdaddr_t *ba2) { return memcmp(ba1, ba2, sizeof(bdaddr_t)); } static inline void bacpy(bdaddr_t *dst, const bdaddr_t *src) { memcpy(dst, src, sizeof(bdaddr_t)); } void baswap(bdaddr_t *dst, const bdaddr_t *src); /* Common socket structures and functions */ #define bt_sk(__sk) ((struct bt_sock *) __sk) struct bt_sock { struct sock sk; struct list_head accept_q; struct sock *parent; unsigned long flags; void (*skb_msg_name)(struct sk_buff *, void *, int *); void (*skb_put_cmsg)(struct sk_buff *, struct msghdr *, struct sock *); }; enum { BT_SK_DEFER_SETUP, BT_SK_SUSPEND, }; struct bt_sock_list { struct hlist_head head; rwlock_t lock; #ifdef CONFIG_PROC_FS int (* custom_seq_show)(struct seq_file *, void *); #endif }; int bt_sock_register(int proto, const struct net_proto_family *ops); void bt_sock_unregister(int proto); void bt_sock_link(struct bt_sock_list *l, struct sock *s); void bt_sock_unlink(struct bt_sock_list *l, struct sock *s); int bt_sock_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, int flags); int bt_sock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, int flags); __poll_t bt_sock_poll(struct file *file, struct socket *sock, poll_table *wait); int bt_sock_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg); int bt_sock_wait_state(struct sock *sk, int state, unsigned long timeo); int bt_sock_wait_ready(struct sock *sk, unsigned long flags); void bt_accept_enqueue(struct sock *parent, struct sock *sk, bool bh); void bt_accept_unlink(struct sock *sk); struct sock *bt_accept_dequeue(struct sock *parent, struct socket *newsock); /* Skb helpers */ struct l2cap_ctrl { u8 sframe:1, poll:1, final:1, fcs:1, sar:2, super:2; u16 reqseq; u16 txseq; u8 retries; __le16 psm; bdaddr_t bdaddr; struct l2cap_chan *chan; }; struct sco_ctrl { u8 pkt_status; }; struct hci_dev; typedef void (*hci_req_complete_t)(struct hci_dev *hdev, u8 status, u16 opcode); typedef void (*hci_req_complete_skb_t)(struct hci_dev *hdev, u8 status, u16 opcode, struct sk_buff *skb); #define HCI_REQ_START BIT(0) #define HCI_REQ_SKB BIT(1) struct hci_ctrl { u16 opcode; u8 req_flags; u8 req_event; union { hci_req_complete_t req_complete; hci_req_complete_skb_t req_complete_skb; }; }; struct bt_skb_cb { u8 pkt_type; u8 force_active; u16 expect; u8 incoming:1; union { struct l2cap_ctrl l2cap; struct sco_ctrl sco; struct hci_ctrl hci; }; }; #define bt_cb(skb) ((struct bt_skb_cb *)((skb)->cb)) #define hci_skb_pkt_type(skb) bt_cb((skb))->pkt_type #define hci_skb_expect(skb) bt_cb((skb))->expect #define hci_skb_opcode(skb) bt_cb((skb))->hci.opcode static inline struct sk_buff *bt_skb_alloc(unsigned int len, gfp_t how) { struct sk_buff *skb; skb = alloc_skb(len + BT_SKB_RESERVE, how); if (skb) skb_reserve(skb, BT_SKB_RESERVE); return skb; } static inline struct sk_buff *bt_skb_send_alloc(struct sock *sk, unsigned long len, int nb, int *err) { struct sk_buff *skb; skb = sock_alloc_send_skb(sk, len + BT_SKB_RESERVE, nb, err); if (skb) skb_reserve(skb, BT_SKB_RESERVE); if (!skb && *err) return NULL; *err = sock_error(sk); if (*err) goto out; if (sk->sk_shutdown) { *err = -ECONNRESET; goto out; } return skb; out: kfree_skb(skb); return NULL; } int bt_to_errno(u16 code); void hci_sock_set_flag(struct sock *sk, int nr); void hci_sock_clear_flag(struct sock *sk, int nr); int hci_sock_test_flag(struct sock *sk, int nr); unsigned short hci_sock_get_channel(struct sock *sk); u32 hci_sock_get_cookie(struct sock *sk); int hci_sock_init(void); void hci_sock_cleanup(void); int bt_sysfs_init(void); void bt_sysfs_cleanup(void); int bt_procfs_init(struct net *net, const char *name, struct bt_sock_list *sk_list, int (*seq_show)(struct seq_file *, void *)); void bt_procfs_cleanup(struct net *net, const char *name); extern struct dentry *bt_debugfs; int l2cap_init(void); void l2cap_exit(void); #if IS_ENABLED(CONFIG_BT_BREDR) int sco_init(void); void sco_exit(void); #else static inline int sco_init(void) { return 0; } static inline void sco_exit(void) { } #endif int mgmt_init(void); void mgmt_exit(void); void bt_sock_reclassify_lock(struct sock *sk, int proto); #endif /* __BLUETOOTH_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _SCSI_SCSI_CMND_H #define _SCSI_SCSI_CMND_H #include <linux/dma-mapping.h> #include <linux/blkdev.h> #include <linux/t10-pi.h> #include <linux/list.h> #include <linux/types.h> #include <linux/timer.h> #include <linux/scatterlist.h> #include <scsi/scsi_device.h> #include <scsi/scsi_request.h> struct Scsi_Host; struct scsi_driver; /* * MAX_COMMAND_SIZE is: * The longest fixed-length SCSI CDB as per the SCSI standard. * fixed-length means: commands that their size can be determined * by their opcode and the CDB does not carry a length specifier, (unlike * the VARIABLE_LENGTH_CMD(0x7f) command). This is actually not exactly * true and the SCSI standard also defines extended commands and * vendor specific commands that can be bigger than 16 bytes. The kernel * will support these using the same infrastructure used for VARLEN CDB's. * So in effect MAX_COMMAND_SIZE means the maximum size command scsi-ml * supports without specifying a cmd_len by ULD's */ #define MAX_COMMAND_SIZE 16 #if (MAX_COMMAND_SIZE > BLK_MAX_CDB) # error MAX_COMMAND_SIZE can not be bigger than BLK_MAX_CDB #endif struct scsi_data_buffer { struct sg_table table; unsigned length; }; /* embedded in scsi_cmnd */ struct scsi_pointer { char *ptr; /* data pointer */ int this_residual; /* left in this buffer */ struct scatterlist *buffer; /* which buffer */ int buffers_residual; /* how many buffers left */ dma_addr_t dma_handle; volatile int Status; volatile int Message; volatile int have_data_in; volatile int sent_command; volatile int phase; }; /* for scmd->flags */ #define SCMD_TAGGED (1 << 0) #define SCMD_UNCHECKED_ISA_DMA (1 << 1) #define SCMD_INITIALIZED (1 << 2) #define SCMD_LAST (1 << 3) /* flags preserved across unprep / reprep */ #define SCMD_PRESERVED_FLAGS (SCMD_UNCHECKED_ISA_DMA | SCMD_INITIALIZED) /* for scmd->state */ #define SCMD_STATE_COMPLETE 0 #define SCMD_STATE_INFLIGHT 1 struct scsi_cmnd { struct scsi_request req; struct scsi_device *device; struct list_head eh_entry; /* entry for the host eh_cmd_q */ struct delayed_work abort_work; struct rcu_head rcu; int eh_eflags; /* Used by error handlr */ /* * This is set to jiffies as it was when the command was first * allocated. It is used to time how long the command has * been outstanding */ unsigned long jiffies_at_alloc; int retries; int allowed; unsigned char prot_op; unsigned char prot_type; unsigned char prot_flags; unsigned short cmd_len; enum dma_data_direction sc_data_direction; /* These elements define the operation we are about to perform */ unsigned char *cmnd; /* These elements define the operation we ultimately want to perform */ struct scsi_data_buffer sdb; struct scsi_data_buffer *prot_sdb; unsigned underflow; /* Return error if less than this amount is transferred */ unsigned transfersize; /* How much we are guaranteed to transfer with each SCSI transfer (ie, between disconnect / reconnects. Probably == sector size */ struct request *request; /* The command we are working on */ unsigned char *sense_buffer; /* obtained by REQUEST SENSE when * CHECK CONDITION is received on original * command (auto-sense). Length must be * SCSI_SENSE_BUFFERSIZE bytes. */ /* Low-level done function - can be used by low-level driver to point * to completion function. Not used by mid/upper level code. */ void (*scsi_done) (struct scsi_cmnd *); /* * The following fields can be written to by the host specific code. * Everything else should be left alone. */ struct scsi_pointer SCp; /* Scratchpad used by some host adapters */ unsigned char *host_scribble; /* The host adapter is allowed to * call scsi_malloc and get some memory * and hang it here. The host adapter * is also expected to call scsi_free * to release this memory. (The memory * obtained by scsi_malloc is guaranteed * to be at an address < 16Mb). */ int result; /* Status code from lower level driver */ int flags; /* Command flags */ unsigned long state; /* Command completion state */ unsigned char tag; /* SCSI-II queued command tag */ unsigned int extra_len; /* length of alignment and padding */ }; /* * Return the driver private allocation behind the command. * Only works if cmd_size is set in the host template. */ static inline void *scsi_cmd_priv(struct scsi_cmnd *cmd) { return cmd + 1; } /* make sure not to use it with passthrough commands */ static inline struct scsi_driver *scsi_cmd_to_driver(struct scsi_cmnd *cmd) { return *(struct scsi_driver **)cmd->request->rq_disk->private_data; } extern void scsi_finish_command(struct scsi_cmnd *cmd); extern void *scsi_kmap_atomic_sg(struct scatterlist *sg, int sg_count, size_t *offset, size_t *len); extern void scsi_kunmap_atomic_sg(void *virt); blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd); void scsi_free_sgtables(struct scsi_cmnd *cmd); #ifdef CONFIG_SCSI_DMA extern int scsi_dma_map(struct scsi_cmnd *cmd); extern void scsi_dma_unmap(struct scsi_cmnd *cmd); #else /* !CONFIG_SCSI_DMA */ static inline int scsi_dma_map(struct scsi_cmnd *cmd) { return -ENOSYS; } static inline void scsi_dma_unmap(struct scsi_cmnd *cmd) { } #endif /* !CONFIG_SCSI_DMA */ static inline unsigned scsi_sg_count(struct scsi_cmnd *cmd) { return cmd->sdb.table.nents; } static inline struct scatterlist *scsi_sglist(struct scsi_cmnd *cmd) { return cmd->sdb.table.sgl; } static inline unsigned scsi_bufflen(struct scsi_cmnd *cmd) { return cmd->sdb.length; } static inline void scsi_set_resid(struct scsi_cmnd *cmd, unsigned int resid) { cmd->req.resid_len = resid; } static inline unsigned int scsi_get_resid(struct scsi_cmnd *cmd) { return cmd->req.resid_len; } #define scsi_for_each_sg(cmd, sg, nseg, __i) \ for_each_sg(scsi_sglist(cmd), sg, nseg, __i) static inline int scsi_sg_copy_from_buffer(struct scsi_cmnd *cmd, void *buf, int buflen) { return sg_copy_from_buffer(scsi_sglist(cmd), scsi_sg_count(cmd), buf, buflen); } static inline int scsi_sg_copy_to_buffer(struct scsi_cmnd *cmd, void *buf, int buflen) { return sg_copy_to_buffer(scsi_sglist(cmd), scsi_sg_count(cmd), buf, buflen); } /* * The operations below are hints that tell the controller driver how * to handle I/Os with DIF or similar types of protection information. */ enum scsi_prot_operations { /* Normal I/O */ SCSI_PROT_NORMAL = 0, /* OS-HBA: Protected, HBA-Target: Unprotected */ SCSI_PROT_READ_INSERT, SCSI_PROT_WRITE_STRIP, /* OS-HBA: Unprotected, HBA-Target: Protected */ SCSI_PROT_READ_STRIP, SCSI_PROT_WRITE_INSERT, /* OS-HBA: Protected, HBA-Target: Protected */ SCSI_PROT_READ_PASS, SCSI_PROT_WRITE_PASS, }; static inline void scsi_set_prot_op(struct scsi_cmnd *scmd, unsigned char op) { scmd->prot_op = op; } static inline unsigned char scsi_get_prot_op(struct scsi_cmnd *scmd) { return scmd->prot_op; } enum scsi_prot_flags { SCSI_PROT_TRANSFER_PI = 1 << 0, SCSI_PROT_GUARD_CHECK = 1 << 1, SCSI_PROT_REF_CHECK = 1 << 2, SCSI_PROT_REF_INCREMENT = 1 << 3, SCSI_PROT_IP_CHECKSUM = 1 << 4, }; /* * The controller usually does not know anything about the target it * is communicating with. However, when DIX is enabled the controller * must be know target type so it can verify the protection * information passed along with the I/O. */ enum scsi_prot_target_type { SCSI_PROT_DIF_TYPE0 = 0, SCSI_PROT_DIF_TYPE1, SCSI_PROT_DIF_TYPE2, SCSI_PROT_DIF_TYPE3, }; static inline void scsi_set_prot_type(struct scsi_cmnd *scmd, unsigned char type) { scmd->prot_type = type; } static inline unsigned char scsi_get_prot_type(struct scsi_cmnd *scmd) { return scmd->prot_type; } static inline sector_t scsi_get_lba(struct scsi_cmnd *scmd) { return blk_rq_pos(scmd->request); } static inline unsigned int scsi_prot_interval(struct scsi_cmnd *scmd) { return scmd->device->sector_size; } static inline unsigned scsi_prot_sg_count(struct scsi_cmnd *cmd) { return cmd->prot_sdb ? cmd->prot_sdb->table.nents : 0; } static inline struct scatterlist *scsi_prot_sglist(struct scsi_cmnd *cmd) { return cmd->prot_sdb ? cmd->prot_sdb->table.sgl : NULL; } static inline struct scsi_data_buffer *scsi_prot(struct scsi_cmnd *cmd) { return cmd->prot_sdb; } #define scsi_for_each_prot_sg(cmd, sg, nseg, __i) \ for_each_sg(scsi_prot_sglist(cmd), sg, nseg, __i) static inline void set_msg_byte(struct scsi_cmnd *cmd, char status) { cmd->result = (cmd->result & 0xffff00ff) | (status << 8); } static inline void set_host_byte(struct scsi_cmnd *cmd, char status) { cmd->result = (cmd->result & 0xff00ffff) | (status << 16); } static inline void set_driver_byte(struct scsi_cmnd *cmd, char status) { cmd->result = (cmd->result & 0x00ffffff) | (status << 24); } static inline unsigned scsi_transfer_length(struct scsi_cmnd *scmd) { unsigned int xfer_len = scmd->sdb.length; unsigned int prot_interval = scsi_prot_interval(scmd); if (scmd->prot_flags & SCSI_PROT_TRANSFER_PI) xfer_len += (xfer_len >> ilog2(prot_interval)) * 8; return xfer_len; } #endif /* _SCSI_SCSI_CMND_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * acpi.h - ACPI Interface * * Copyright (C) 2001 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> */ #ifndef _LINUX_ACPI_H #define _LINUX_ACPI_H #include <linux/errno.h> #include <linux/ioport.h> /* for struct resource */ #include <linux/irqdomain.h> #include <linux/resource_ext.h> #include <linux/device.h> #include <linux/property.h> #include <linux/uuid.h> #ifndef _LINUX #define _LINUX #endif #include <acpi/acpi.h> #ifdef CONFIG_ACPI #include <linux/list.h> #include <linux/mod_devicetable.h> #include <linux/dynamic_debug.h> #include <linux/module.h> #include <linux/mutex.h> #include <acpi/acpi_bus.h> #include <acpi/acpi_drivers.h> #include <acpi/acpi_numa.h> #include <acpi/acpi_io.h> #include <asm/acpi.h> static inline acpi_handle acpi_device_handle(struct acpi_device *adev) { return adev ? adev->handle : NULL; } #define ACPI_COMPANION(dev) to_acpi_device_node((dev)->fwnode) #define ACPI_COMPANION_SET(dev, adev) set_primary_fwnode(dev, (adev) ? \ acpi_fwnode_handle(adev) : NULL) #define ACPI_HANDLE(dev) acpi_device_handle(ACPI_COMPANION(dev)) #define ACPI_HANDLE_FWNODE(fwnode) \ acpi_device_handle(to_acpi_device_node(fwnode)) static inline struct fwnode_handle *acpi_alloc_fwnode_static(void) { struct fwnode_handle *fwnode; fwnode = kzalloc(sizeof(struct fwnode_handle), GFP_KERNEL); if (!fwnode) return NULL; fwnode->ops = &acpi_static_fwnode_ops; return fwnode; } static inline void acpi_free_fwnode_static(struct fwnode_handle *fwnode) { if (WARN_ON(!is_acpi_static_node(fwnode))) return; kfree(fwnode); } /** * ACPI_DEVICE_CLASS - macro used to describe an ACPI device with * the PCI-defined class-code information * * @_cls : the class, subclass, prog-if triple for this device * @_msk : the class mask for this device * * This macro is used to create a struct acpi_device_id that matches a * specific PCI class. The .id and .driver_data fields will be left * initialized with the default value. */ #define ACPI_DEVICE_CLASS(_cls, _msk) .cls = (_cls), .cls_msk = (_msk), static inline bool has_acpi_companion(struct device *dev) { return is_acpi_device_node(dev->fwnode); } static inline void acpi_preset_companion(struct device *dev, struct acpi_device *parent, u64 addr) { ACPI_COMPANION_SET(dev, acpi_find_child_device(parent, addr, false)); } static inline const char *acpi_dev_name(struct acpi_device *adev) { return dev_name(&adev->dev); } struct device *acpi_get_first_physical_node(struct acpi_device *adev); enum acpi_irq_model_id { ACPI_IRQ_MODEL_PIC = 0, ACPI_IRQ_MODEL_IOAPIC, ACPI_IRQ_MODEL_IOSAPIC, ACPI_IRQ_MODEL_PLATFORM, ACPI_IRQ_MODEL_GIC, ACPI_IRQ_MODEL_COUNT }; extern enum acpi_irq_model_id acpi_irq_model; enum acpi_interrupt_id { ACPI_INTERRUPT_PMI = 1, ACPI_INTERRUPT_INIT, ACPI_INTERRUPT_CPEI, ACPI_INTERRUPT_COUNT }; #define ACPI_SPACE_MEM 0 enum acpi_address_range_id { ACPI_ADDRESS_RANGE_MEMORY = 1, ACPI_ADDRESS_RANGE_RESERVED = 2, ACPI_ADDRESS_RANGE_ACPI = 3, ACPI_ADDRESS_RANGE_NVS = 4, ACPI_ADDRESS_RANGE_COUNT }; /* Table Handlers */ union acpi_subtable_headers { struct acpi_subtable_header common; struct acpi_hmat_structure hmat; }; typedef int (*acpi_tbl_table_handler)(struct acpi_table_header *table); typedef int (*acpi_tbl_entry_handler)(union acpi_subtable_headers *header, const unsigned long end); /* Debugger support */ struct acpi_debugger_ops { int (*create_thread)(acpi_osd_exec_callback function, void *context); ssize_t (*write_log)(const char *msg); ssize_t (*read_cmd)(char *buffer, size_t length); int (*wait_command_ready)(bool single_step, char *buffer, size_t length); int (*notify_command_complete)(void); }; struct acpi_debugger { const struct acpi_debugger_ops *ops; struct module *owner; struct mutex lock; }; #ifdef CONFIG_ACPI_DEBUGGER int __init acpi_debugger_init(void); int acpi_register_debugger(struct module *owner, const struct acpi_debugger_ops *ops); void acpi_unregister_debugger(const struct acpi_debugger_ops *ops); int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context); ssize_t acpi_debugger_write_log(const char *msg); ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length); int acpi_debugger_wait_command_ready(void); int acpi_debugger_notify_command_complete(void); #else static inline int acpi_debugger_init(void) { return -ENODEV; } static inline int acpi_register_debugger(struct module *owner, const struct acpi_debugger_ops *ops) { return -ENODEV; } static inline void acpi_unregister_debugger(const struct acpi_debugger_ops *ops) { } static inline int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context) { return -ENODEV; } static inline int acpi_debugger_write_log(const char *msg) { return -ENODEV; } static inline int acpi_debugger_read_cmd(char *buffer, u32 buffer_length) { return -ENODEV; } static inline int acpi_debugger_wait_command_ready(void) { return -ENODEV; } static inline int acpi_debugger_notify_command_complete(void) { return -ENODEV; } #endif #define BAD_MADT_ENTRY(entry, end) ( \ (!entry) || (unsigned long)entry + sizeof(*entry) > end || \ ((struct acpi_subtable_header *)entry)->length < sizeof(*entry)) struct acpi_subtable_proc { int id; acpi_tbl_entry_handler handler; int count; }; void __iomem *__acpi_map_table(unsigned long phys, unsigned long size); void __acpi_unmap_table(void __iomem *map, unsigned long size); int early_acpi_boot_init(void); int acpi_boot_init (void); void acpi_boot_table_prepare (void); void acpi_boot_table_init (void); int acpi_mps_check (void); int acpi_numa_init (void); int acpi_locate_initial_tables (void); void acpi_reserve_initial_tables (void); void acpi_table_init_complete (void); int acpi_table_init (void); int acpi_table_parse(char *id, acpi_tbl_table_handler handler); int __init acpi_table_parse_entries(char *id, unsigned long table_size, int entry_id, acpi_tbl_entry_handler handler, unsigned int max_entries); int __init acpi_table_parse_entries_array(char *id, unsigned long table_size, struct acpi_subtable_proc *proc, int proc_num, unsigned int max_entries); int acpi_table_parse_madt(enum acpi_madt_type id, acpi_tbl_entry_handler handler, unsigned int max_entries); int acpi_parse_mcfg (struct acpi_table_header *header); void acpi_table_print_madt_entry (struct acpi_subtable_header *madt); /* the following numa functions are architecture-dependent */ void acpi_numa_slit_init (struct acpi_table_slit *slit); #if defined(CONFIG_X86) || defined(CONFIG_IA64) void acpi_numa_processor_affinity_init (struct acpi_srat_cpu_affinity *pa); #else static inline void acpi_numa_processor_affinity_init(struct acpi_srat_cpu_affinity *pa) { } #endif void acpi_numa_x2apic_affinity_init(struct acpi_srat_x2apic_cpu_affinity *pa); #ifdef CONFIG_ARM64 void acpi_numa_gicc_affinity_init(struct acpi_srat_gicc_affinity *pa); #else static inline void acpi_numa_gicc_affinity_init(struct acpi_srat_gicc_affinity *pa) { } #endif int acpi_numa_memory_affinity_init (struct acpi_srat_mem_affinity *ma); #ifndef PHYS_CPUID_INVALID typedef u32 phys_cpuid_t; #define PHYS_CPUID_INVALID (phys_cpuid_t)(-1) #endif static inline bool invalid_logical_cpuid(u32 cpuid) { return (int)cpuid < 0; } static inline bool invalid_phys_cpuid(phys_cpuid_t phys_id) { return phys_id == PHYS_CPUID_INVALID; } /* Validate the processor object's proc_id */ bool acpi_duplicate_processor_id(int proc_id); /* Processor _CTS control */ struct acpi_processor_power; #ifdef CONFIG_ACPI_PROCESSOR_CSTATE bool acpi_processor_claim_cst_control(void); int acpi_processor_evaluate_cst(acpi_handle handle, u32 cpu, struct acpi_processor_power *info); #else static inline bool acpi_processor_claim_cst_control(void) { return false; } static inline int acpi_processor_evaluate_cst(acpi_handle handle, u32 cpu, struct acpi_processor_power *info) { return -ENODEV; } #endif #ifdef CONFIG_ACPI_HOTPLUG_CPU /* Arch dependent functions for cpu hotplug support */ int acpi_map_cpu(acpi_handle handle, phys_cpuid_t physid, u32 acpi_id, int *pcpu); int acpi_unmap_cpu(int cpu); #endif /* CONFIG_ACPI_HOTPLUG_CPU */ #ifdef CONFIG_ACPI_HOTPLUG_IOAPIC int acpi_get_ioapic_id(acpi_handle handle, u32 gsi_base, u64 *phys_addr); #endif int acpi_register_ioapic(acpi_handle handle, u64 phys_addr, u32 gsi_base); int acpi_unregister_ioapic(acpi_handle handle, u32 gsi_base); int acpi_ioapic_registered(acpi_handle handle, u32 gsi_base); void acpi_irq_stats_init(void); extern u32 acpi_irq_handled; extern u32 acpi_irq_not_handled; extern unsigned int acpi_sci_irq; extern bool acpi_no_s5; #define INVALID_ACPI_IRQ ((unsigned)-1) static inline bool acpi_sci_irq_valid(void) { return acpi_sci_irq != INVALID_ACPI_IRQ; } extern int sbf_port; extern unsigned long acpi_realmode_flags; int acpi_register_gsi (struct device *dev, u32 gsi, int triggering, int polarity); int acpi_gsi_to_irq (u32 gsi, unsigned int *irq); int acpi_isa_irq_to_gsi (unsigned isa_irq, u32 *gsi); void acpi_set_irq_model(enum acpi_irq_model_id model, struct fwnode_handle *fwnode); struct irq_domain *acpi_irq_create_hierarchy(unsigned int flags, unsigned int size, struct fwnode_handle *fwnode, const struct irq_domain_ops *ops, void *host_data); #ifdef CONFIG_X86_IO_APIC extern int acpi_get_override_irq(u32 gsi, int *trigger, int *polarity); #else static inline int acpi_get_override_irq(u32 gsi, int *trigger, int *polarity) { return -1; } #endif /* * This function undoes the effect of one call to acpi_register_gsi(). * If this matches the last registration, any IRQ resources for gsi * are freed. */ void acpi_unregister_gsi (u32 gsi); struct pci_dev; int acpi_pci_irq_enable (struct pci_dev *dev); void acpi_penalize_isa_irq(int irq, int active); bool acpi_isa_irq_available(int irq); #ifdef CONFIG_PCI void acpi_penalize_sci_irq(int irq, int trigger, int polarity); #else static inline void acpi_penalize_sci_irq(int irq, int trigger, int polarity) { } #endif void acpi_pci_irq_disable (struct pci_dev *dev); extern int ec_read(u8 addr, u8 *val); extern int ec_write(u8 addr, u8 val); extern int ec_transaction(u8 command, const u8 *wdata, unsigned wdata_len, u8 *rdata, unsigned rdata_len); extern acpi_handle ec_get_handle(void); extern bool acpi_is_pnp_device(struct acpi_device *); #if defined(CONFIG_ACPI_WMI) || defined(CONFIG_ACPI_WMI_MODULE) typedef void (*wmi_notify_handler) (u32 value, void *context); extern acpi_status wmi_evaluate_method(const char *guid, u8 instance, u32 method_id, const struct acpi_buffer *in, struct acpi_buffer *out); extern acpi_status wmi_query_block(const char *guid, u8 instance, struct acpi_buffer *out); extern acpi_status wmi_set_block(const char *guid, u8 instance, const struct acpi_buffer *in); extern acpi_status wmi_install_notify_handler(const char *guid, wmi_notify_handler handler, void *data); extern acpi_status wmi_remove_notify_handler(const char *guid); extern acpi_status wmi_get_event_data(u32 event, struct acpi_buffer *out); extern bool wmi_has_guid(const char *guid); extern char *wmi_get_acpi_device_uid(const char *guid); #endif /* CONFIG_ACPI_WMI */ #define ACPI_VIDEO_OUTPUT_SWITCHING 0x0001 #define ACPI_VIDEO_DEVICE_POSTING 0x0002 #define ACPI_VIDEO_ROM_AVAILABLE 0x0004 #define ACPI_VIDEO_BACKLIGHT 0x0008 #define ACPI_VIDEO_BACKLIGHT_FORCE_VENDOR 0x0010 #define ACPI_VIDEO_BACKLIGHT_FORCE_VIDEO 0x0020 #define ACPI_VIDEO_OUTPUT_SWITCHING_FORCE_VENDOR 0x0040 #define ACPI_VIDEO_OUTPUT_SWITCHING_FORCE_VIDEO 0x0080 #define ACPI_VIDEO_BACKLIGHT_DMI_VENDOR 0x0100 #define ACPI_VIDEO_BACKLIGHT_DMI_VIDEO 0x0200 #define ACPI_VIDEO_OUTPUT_SWITCHING_DMI_VENDOR 0x0400 #define ACPI_VIDEO_OUTPUT_SWITCHING_DMI_VIDEO 0x0800 extern char acpi_video_backlight_string[]; extern long acpi_is_video_device(acpi_handle handle); extern int acpi_blacklisted(void); extern void acpi_osi_setup(char *str); extern bool acpi_osi_is_win8(void); #ifdef CONFIG_ACPI_NUMA int acpi_map_pxm_to_node(int pxm); int acpi_get_node(acpi_handle handle); /** * pxm_to_online_node - Map proximity ID to online node * @pxm: ACPI proximity ID * * This is similar to pxm_to_node(), but always returns an online * node. When the mapped node from a given proximity ID is offline, it * looks up the node distance table and returns the nearest online node. * * ACPI device drivers, which are called after the NUMA initialization has * completed in the kernel, can call this interface to obtain their device * NUMA topology from ACPI tables. Such drivers do not have to deal with * offline nodes. A node may be offline when SRAT memory entry does not exist, * or NUMA is disabled, ex. "numa=off" on x86. */ static inline int pxm_to_online_node(int pxm) { int node = pxm_to_node(pxm); return numa_map_to_online_node(node); } #else static inline int pxm_to_online_node(int pxm) { return 0; } static inline int acpi_map_pxm_to_node(int pxm) { return 0; } static inline int acpi_get_node(acpi_handle handle) { return 0; } #endif extern int acpi_paddr_to_node(u64 start_addr, u64 size); extern int pnpacpi_disabled; #define PXM_INVAL (-1) bool acpi_dev_resource_memory(struct acpi_resource *ares, struct resource *res); bool acpi_dev_resource_io(struct acpi_resource *ares, struct resource *res); bool acpi_dev_resource_address_space(struct acpi_resource *ares, struct resource_win *win); bool acpi_dev_resource_ext_address_space(struct acpi_resource *ares, struct resource_win *win); unsigned long acpi_dev_irq_flags(u8 triggering, u8 polarity, u8 shareable); unsigned int acpi_dev_get_irq_type(int triggering, int polarity); bool acpi_dev_resource_interrupt(struct acpi_resource *ares, int index, struct resource *res); void acpi_dev_free_resource_list(struct list_head *list); int acpi_dev_get_resources(struct acpi_device *adev, struct list_head *list, int (*preproc)(struct acpi_resource *, void *), void *preproc_data); int acpi_dev_get_dma_resources(struct acpi_device *adev, struct list_head *list); int acpi_dev_filter_resource_type(struct acpi_resource *ares, unsigned long types); static inline int acpi_dev_filter_resource_type_cb(struct acpi_resource *ares, void *arg) { return acpi_dev_filter_resource_type(ares, (unsigned long)arg); } struct acpi_device *acpi_resource_consumer(struct resource *res); int acpi_check_resource_conflict(const struct resource *res); int acpi_check_region(resource_size_t start, resource_size_t n, const char *name); acpi_status acpi_release_memory(acpi_handle handle, struct resource *res, u32 level); int acpi_resources_are_enforced(void); #ifdef CONFIG_HIBERNATION void __init acpi_no_s4_hw_signature(void); #endif #ifdef CONFIG_PM_SLEEP void __init acpi_old_suspend_ordering(void); void __init acpi_nvs_nosave(void); void __init acpi_nvs_nosave_s3(void); void __init acpi_sleep_no_blacklist(void); #endif /* CONFIG_PM_SLEEP */ int acpi_register_wakeup_handler( int wake_irq, bool (*wakeup)(void *context), void *context); void acpi_unregister_wakeup_handler( bool (*wakeup)(void *context), void *context); struct acpi_osc_context { char *uuid_str; /* UUID string */ int rev; struct acpi_buffer cap; /* list of DWORD capabilities */ struct acpi_buffer ret; /* free by caller if success */ }; acpi_status acpi_run_osc(acpi_handle handle, struct acpi_osc_context *context); /* Indexes into _OSC Capabilities Buffer (DWORDs 2 & 3 are device-specific) */ #define OSC_QUERY_DWORD 0 /* DWORD 1 */ #define OSC_SUPPORT_DWORD 1 /* DWORD 2 */ #define OSC_CONTROL_DWORD 2 /* DWORD 3 */ /* _OSC Capabilities DWORD 1: Query/Control and Error Returns (generic) */ #define OSC_QUERY_ENABLE 0x00000001 /* input */ #define OSC_REQUEST_ERROR 0x00000002 /* return */ #define OSC_INVALID_UUID_ERROR 0x00000004 /* return */ #define OSC_INVALID_REVISION_ERROR 0x00000008 /* return */ #define OSC_CAPABILITIES_MASK_ERROR 0x00000010 /* return */ /* Platform-Wide Capabilities _OSC: Capabilities DWORD 2: Support Field */ #define OSC_SB_PAD_SUPPORT 0x00000001 #define OSC_SB_PPC_OST_SUPPORT 0x00000002 #define OSC_SB_PR3_SUPPORT 0x00000004 #define OSC_SB_HOTPLUG_OST_SUPPORT 0x00000008 #define OSC_SB_APEI_SUPPORT 0x00000010 #define OSC_SB_CPC_SUPPORT 0x00000020 #define OSC_SB_CPCV2_SUPPORT 0x00000040 #define OSC_SB_PCLPI_SUPPORT 0x00000080 #define OSC_SB_OSLPI_SUPPORT 0x00000100 #define OSC_SB_CPC_DIVERSE_HIGH_SUPPORT 0x00001000 #define OSC_SB_GENERIC_INITIATOR_SUPPORT 0x00002000 extern bool osc_sb_apei_support_acked; extern bool osc_pc_lpi_support_confirmed; /* PCI Host Bridge _OSC: Capabilities DWORD 2: Support Field */ #define OSC_PCI_EXT_CONFIG_SUPPORT 0x00000001 #define OSC_PCI_ASPM_SUPPORT 0x00000002 #define OSC_PCI_CLOCK_PM_SUPPORT 0x00000004 #define OSC_PCI_SEGMENT_GROUPS_SUPPORT 0x00000008 #define OSC_PCI_MSI_SUPPORT 0x00000010 #define OSC_PCI_EDR_SUPPORT 0x00000080 #define OSC_PCI_HPX_TYPE_3_SUPPORT 0x00000100 #define OSC_PCI_SUPPORT_MASKS 0x0000019f /* PCI Host Bridge _OSC: Capabilities DWORD 3: Control Field */ #define OSC_PCI_EXPRESS_NATIVE_HP_CONTROL 0x00000001 #define OSC_PCI_SHPC_NATIVE_HP_CONTROL 0x00000002 #define OSC_PCI_EXPRESS_PME_CONTROL 0x00000004 #define OSC_PCI_EXPRESS_AER_CONTROL 0x00000008 #define OSC_PCI_EXPRESS_CAPABILITY_CONTROL 0x00000010 #define OSC_PCI_EXPRESS_LTR_CONTROL 0x00000020 #define OSC_PCI_EXPRESS_DPC_CONTROL 0x00000080 #define OSC_PCI_CONTROL_MASKS 0x000000bf #define ACPI_GSB_ACCESS_ATTRIB_QUICK 0x00000002 #define ACPI_GSB_ACCESS_ATTRIB_SEND_RCV 0x00000004 #define ACPI_GSB_ACCESS_ATTRIB_BYTE 0x00000006 #define ACPI_GSB_ACCESS_ATTRIB_WORD 0x00000008 #define ACPI_GSB_ACCESS_ATTRIB_BLOCK 0x0000000A #define ACPI_GSB_ACCESS_ATTRIB_MULTIBYTE 0x0000000B #define ACPI_GSB_ACCESS_ATTRIB_WORD_CALL 0x0000000C #define ACPI_GSB_ACCESS_ATTRIB_BLOCK_CALL 0x0000000D #define ACPI_GSB_ACCESS_ATTRIB_RAW_BYTES 0x0000000E #define ACPI_GSB_ACCESS_ATTRIB_RAW_PROCESS 0x0000000F extern acpi_status acpi_pci_osc_control_set(acpi_handle handle, u32 *mask, u32 req); /* Enable _OST when all relevant hotplug operations are enabled */ #if defined(CONFIG_ACPI_HOTPLUG_CPU) && \ defined(CONFIG_ACPI_HOTPLUG_MEMORY) && \ defined(CONFIG_ACPI_CONTAINER) #define ACPI_HOTPLUG_OST #endif /* _OST Source Event Code (OSPM Action) */ #define ACPI_OST_EC_OSPM_SHUTDOWN 0x100 #define ACPI_OST_EC_OSPM_EJECT 0x103 #define ACPI_OST_EC_OSPM_INSERTION 0x200 /* _OST General Processing Status Code */ #define ACPI_OST_SC_SUCCESS 0x0 #define ACPI_OST_SC_NON_SPECIFIC_FAILURE 0x1 #define ACPI_OST_SC_UNRECOGNIZED_NOTIFY 0x2 /* _OST OS Shutdown Processing (0x100) Status Code */ #define ACPI_OST_SC_OS_SHUTDOWN_DENIED 0x80 #define ACPI_OST_SC_OS_SHUTDOWN_IN_PROGRESS 0x81 #define ACPI_OST_SC_OS_SHUTDOWN_COMPLETED 0x82 #define ACPI_OST_SC_OS_SHUTDOWN_NOT_SUPPORTED 0x83 /* _OST Ejection Request (0x3, 0x103) Status Code */ #define ACPI_OST_SC_EJECT_NOT_SUPPORTED 0x80 #define ACPI_OST_SC_DEVICE_IN_USE 0x81 #define ACPI_OST_SC_DEVICE_BUSY 0x82 #define ACPI_OST_SC_EJECT_DEPENDENCY_BUSY 0x83 #define ACPI_OST_SC_EJECT_IN_PROGRESS 0x84 /* _OST Insertion Request (0x200) Status Code */ #define ACPI_OST_SC_INSERT_IN_PROGRESS 0x80 #define ACPI_OST_SC_DRIVER_LOAD_FAILURE 0x81 #define ACPI_OST_SC_INSERT_NOT_SUPPORTED 0x82 enum acpi_predicate { all_versions, less_than_or_equal, equal, greater_than_or_equal, }; /* Table must be terminted by a NULL entry */ struct acpi_platform_list { char oem_id[ACPI_OEM_ID_SIZE+1]; char oem_table_id[ACPI_OEM_TABLE_ID_SIZE+1]; u32 oem_revision; char *table; enum acpi_predicate pred; char *reason; u32 data; }; int acpi_match_platform_list(const struct acpi_platform_list *plat); extern void acpi_early_init(void); extern void acpi_subsystem_init(void); extern void arch_post_acpi_subsys_init(void); extern int acpi_nvs_register(__u64 start, __u64 size); extern int acpi_nvs_for_each_region(int (*func)(__u64, __u64, void *), void *data); const struct acpi_device_id *acpi_match_device(const struct acpi_device_id *ids, const struct device *dev); const void *acpi_device_get_match_data(const struct device *dev); extern bool acpi_driver_match_device(struct device *dev, const struct device_driver *drv); int acpi_device_uevent_modalias(struct device *, struct kobj_uevent_env *); int acpi_device_modalias(struct device *, char *, int); void acpi_walk_dep_device_list(acpi_handle handle); struct platform_device *acpi_create_platform_device(struct acpi_device *, struct property_entry *); #define ACPI_PTR(_ptr) (_ptr) static inline void acpi_device_set_enumerated(struct acpi_device *adev) { adev->flags.visited = true; } static inline void acpi_device_clear_enumerated(struct acpi_device *adev) { adev->flags.visited = false; } enum acpi_reconfig_event { ACPI_RECONFIG_DEVICE_ADD = 0, ACPI_RECONFIG_DEVICE_REMOVE, }; int acpi_reconfig_notifier_register(struct notifier_block *nb); int acpi_reconfig_notifier_unregister(struct notifier_block *nb); #ifdef CONFIG_ACPI_GTDT int acpi_gtdt_init(struct acpi_table_header *table, int *platform_timer_count); int acpi_gtdt_map_ppi(int type); bool acpi_gtdt_c3stop(int type); int acpi_arch_timer_mem_init(struct arch_timer_mem *timer_mem, int *timer_count); #endif #ifndef ACPI_HAVE_ARCH_SET_ROOT_POINTER static inline void acpi_arch_set_root_pointer(u64 addr) { } #endif #ifndef ACPI_HAVE_ARCH_GET_ROOT_POINTER static inline u64 acpi_arch_get_root_pointer(void) { return 0; } #endif #else /* !CONFIG_ACPI */ #define acpi_disabled 1 #define ACPI_COMPANION(dev) (NULL) #define ACPI_COMPANION_SET(dev, adev) do { } while (0) #define ACPI_HANDLE(dev) (NULL) #define ACPI_HANDLE_FWNODE(fwnode) (NULL) #define ACPI_DEVICE_CLASS(_cls, _msk) .cls = (0), .cls_msk = (0), #include <acpi/acpi_numa.h> struct fwnode_handle; static inline bool acpi_dev_found(const char *hid) { return false; } static inline bool acpi_dev_present(const char *hid, const char *uid, s64 hrv) { return false; } struct acpi_device; static inline bool acpi_dev_hid_uid_match(struct acpi_device *adev, const char *hid2, const char *uid2) { return false; } static inline struct acpi_device * acpi_dev_get_first_match_dev(const char *hid, const char *uid, s64 hrv) { return NULL; } static inline void acpi_dev_put(struct acpi_device *adev) {} static inline bool is_acpi_node(struct fwnode_handle *fwnode) { return false; } static inline bool is_acpi_device_node(struct fwnode_handle *fwnode) { return false; } static inline struct acpi_device *to_acpi_device_node(struct fwnode_handle *fwnode) { return NULL; } static inline bool is_acpi_data_node(struct fwnode_handle *fwnode) { return false; } static inline struct acpi_data_node *to_acpi_data_node(struct fwnode_handle *fwnode) { return NULL; } static inline bool acpi_data_node_match(struct fwnode_handle *fwnode, const char *name) { return false; } static inline struct fwnode_handle *acpi_fwnode_handle(struct acpi_device *adev) { return NULL; } static inline bool has_acpi_companion(struct device *dev) { return false; } static inline void acpi_preset_companion(struct device *dev, struct acpi_device *parent, u64 addr) { } static inline const char *acpi_dev_name(struct acpi_device *adev) { return NULL; } static inline struct device *acpi_get_first_physical_node(struct acpi_device *adev) { return NULL; } static inline void acpi_early_init(void) { } static inline void acpi_subsystem_init(void) { } static inline int early_acpi_boot_init(void) { return 0; } static inline int acpi_boot_init(void) { return 0; } static inline void acpi_boot_table_prepare(void) { } static inline void acpi_boot_table_init(void) { } static inline int acpi_mps_check(void) { return 0; } static inline int acpi_check_resource_conflict(struct resource *res) { return 0; } static inline int acpi_check_region(resource_size_t start, resource_size_t n, const char *name) { return 0; } struct acpi_table_header; static inline int acpi_table_parse(char *id, int (*handler)(struct acpi_table_header *)) { return -ENODEV; } static inline int acpi_nvs_register(__u64 start, __u64 size) { return 0; } static inline int acpi_nvs_for_each_region(int (*func)(__u64, __u64, void *), void *data) { return 0; } struct acpi_device_id; static inline const struct acpi_device_id *acpi_match_device( const struct acpi_device_id *ids, const struct device *dev) { return NULL; } static inline const void *acpi_device_get_match_data(const struct device *dev) { return NULL; } static inline bool acpi_driver_match_device(struct device *dev, const struct device_driver *drv) { return false; } static inline union acpi_object *acpi_evaluate_dsm(acpi_handle handle, const guid_t *guid, u64 rev, u64 func, union acpi_object *argv4) { return NULL; } static inline int acpi_device_uevent_modalias(struct device *dev, struct kobj_uevent_env *env) { return -ENODEV; } static inline int acpi_device_modalias(struct device *dev, char *buf, int size) { return -ENODEV; } static inline struct platform_device * acpi_create_platform_device(struct acpi_device *adev, struct property_entry *properties) { return NULL; } static inline bool acpi_dma_supported(struct acpi_device *adev) { return false; } static inline enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev) { return DEV_DMA_NOT_SUPPORTED; } static inline int acpi_dma_get_range(struct device *dev, u64 *dma_addr, u64 *offset, u64 *size) { return -ENODEV; } static inline int acpi_dma_configure(struct device *dev, enum dev_dma_attr attr) { return 0; } static inline int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr, const u32 *input_id) { return 0; } #define ACPI_PTR(_ptr) (NULL) static inline void acpi_device_set_enumerated(struct acpi_device *adev) { } static inline void acpi_device_clear_enumerated(struct acpi_device *adev) { } static inline int acpi_reconfig_notifier_register(struct notifier_block *nb) { return -EINVAL; } static inline int acpi_reconfig_notifier_unregister(struct notifier_block *nb) { return -EINVAL; } static inline struct acpi_device *acpi_resource_consumer(struct resource *res) { return NULL; } static inline int acpi_register_wakeup_handler(int wake_irq, bool (*wakeup)(void *context), void *context) { return -ENXIO; } static inline void acpi_unregister_wakeup_handler( bool (*wakeup)(void *context), void *context) { } #endif /* !CONFIG_ACPI */ #ifdef CONFIG_ACPI_HOTPLUG_IOAPIC int acpi_ioapic_add(acpi_handle root); #else static inline int acpi_ioapic_add(acpi_handle root) { return 0; } #endif #ifdef CONFIG_ACPI void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state, u32 pm1a_ctrl, u32 pm1b_ctrl)); acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control, u32 pm1b_control); void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state, u32 val_a, u32 val_b)); acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a, u32 val_b); #ifndef CONFIG_IA64 void arch_reserve_mem_area(acpi_physical_address addr, size_t size); #else static inline void arch_reserve_mem_area(acpi_physical_address addr, size_t size) { } #endif /* CONFIG_X86 */ #else #define acpi_os_set_prepare_sleep(func, pm1a_ctrl, pm1b_ctrl) do { } while (0) #endif #if defined(CONFIG_ACPI) && defined(CONFIG_PM) int acpi_dev_suspend(struct device *dev, bool wakeup); int acpi_dev_resume(struct device *dev); int acpi_subsys_runtime_suspend(struct device *dev); int acpi_subsys_runtime_resume(struct device *dev); int acpi_dev_pm_attach(struct device *dev, bool power_on); #else static inline int acpi_subsys_runtime_suspend(struct device *dev) { return 0; } static inline int acpi_subsys_runtime_resume(struct device *dev) { return 0; } static inline int acpi_dev_pm_attach(struct device *dev, bool power_on) { return 0; } #endif #if defined(CONFIG_ACPI) && defined(CONFIG_PM_SLEEP) int acpi_subsys_prepare(struct device *dev); void acpi_subsys_complete(struct device *dev); int acpi_subsys_suspend_late(struct device *dev); int acpi_subsys_suspend_noirq(struct device *dev); int acpi_subsys_suspend(struct device *dev); int acpi_subsys_freeze(struct device *dev); int acpi_subsys_poweroff(struct device *dev); void acpi_ec_mark_gpe_for_wake(void); void acpi_ec_set_gpe_wake_mask(u8 action); #else static inline int acpi_subsys_prepare(struct device *dev) { return 0; } static inline void acpi_subsys_complete(struct device *dev) {} static inline int acpi_subsys_suspend_late(struct device *dev) { return 0; } static inline int acpi_subsys_suspend_noirq(struct device *dev) { return 0; } static inline int acpi_subsys_suspend(struct device *dev) { return 0; } static inline int acpi_subsys_freeze(struct device *dev) { return 0; } static inline int acpi_subsys_poweroff(struct device *dev) { return 0; } static inline void acpi_ec_mark_gpe_for_wake(void) {} static inline void acpi_ec_set_gpe_wake_mask(u8 action) {} #endif #ifdef CONFIG_ACPI __printf(3, 4) void acpi_handle_printk(const char *level, acpi_handle handle, const char *fmt, ...); #else /* !CONFIG_ACPI */ static inline __printf(3, 4) void acpi_handle_printk(const char *level, void *handle, const char *fmt, ...) {} #endif /* !CONFIG_ACPI */ #if defined(CONFIG_ACPI) && defined(CONFIG_DYNAMIC_DEBUG) __printf(3, 4) void __acpi_handle_debug(struct _ddebug *descriptor, acpi_handle handle, const char *fmt, ...); #endif /* * acpi_handle_<level>: Print message with ACPI prefix and object path * * These interfaces acquire the global namespace mutex to obtain an object * path. In interrupt context, it shows the object path as <n/a>. */ #define acpi_handle_emerg(handle, fmt, ...) \ acpi_handle_printk(KERN_EMERG, handle, fmt, ##__VA_ARGS__) #define acpi_handle_alert(handle, fmt, ...) \ acpi_handle_printk(KERN_ALERT, handle, fmt, ##__VA_ARGS__) #define acpi_handle_crit(handle, fmt, ...) \ acpi_handle_printk(KERN_CRIT, handle, fmt, ##__VA_ARGS__) #define acpi_handle_err(handle, fmt, ...) \ acpi_handle_printk(KERN_ERR, handle, fmt, ##__VA_ARGS__) #define acpi_handle_warn(handle, fmt, ...) \ acpi_handle_printk(KERN_WARNING, handle, fmt, ##__VA_ARGS__) #define acpi_handle_notice(handle, fmt, ...) \ acpi_handle_printk(KERN_NOTICE, handle, fmt, ##__VA_ARGS__) #define acpi_handle_info(handle, fmt, ...) \ acpi_handle_printk(KERN_INFO, handle, fmt, ##__VA_ARGS__) #if defined(DEBUG) #define acpi_handle_debug(handle, fmt, ...) \ acpi_handle_printk(KERN_DEBUG, handle, fmt, ##__VA_ARGS__) #else #if defined(CONFIG_DYNAMIC_DEBUG) #define acpi_handle_debug(handle, fmt, ...) \ _dynamic_func_call(fmt, __acpi_handle_debug, \ handle, pr_fmt(fmt), ##__VA_ARGS__) #else #define acpi_handle_debug(handle, fmt, ...) \ ({ \ if (0) \ acpi_handle_printk(KERN_DEBUG, handle, fmt, ##__VA_ARGS__); \ 0; \ }) #endif #endif #if defined(CONFIG_ACPI) && defined(CONFIG_GPIOLIB) bool acpi_gpio_get_irq_resource(struct acpi_resource *ares, struct acpi_resource_gpio **agpio); int acpi_dev_gpio_irq_get_by(struct acpi_device *adev, const char *name, int index); #else static inline bool acpi_gpio_get_irq_resource(struct acpi_resource *ares, struct acpi_resource_gpio **agpio) { return false; } static inline int acpi_dev_gpio_irq_get_by(struct acpi_device *adev, const char *name, int index) { return -ENXIO; } #endif static inline int acpi_dev_gpio_irq_get(struct acpi_device *adev, int index) { return acpi_dev_gpio_irq_get_by(adev, NULL, index); } /* Device properties */ #ifdef CONFIG_ACPI int acpi_dev_get_property(const struct acpi_device *adev, const char *name, acpi_object_type type, const union acpi_object **obj); int __acpi_node_get_property_reference(const struct fwnode_handle *fwnode, const char *name, size_t index, size_t num_args, struct fwnode_reference_args *args); static inline int acpi_node_get_property_reference( const struct fwnode_handle *fwnode, const char *name, size_t index, struct fwnode_reference_args *args) { return __acpi_node_get_property_reference(fwnode, name, index, NR_FWNODE_REFERENCE_ARGS, args); } static inline bool acpi_dev_has_props(const struct acpi_device *adev) { return !list_empty(&adev->data.properties); } struct acpi_device_properties * acpi_data_add_props(struct acpi_device_data *data, const guid_t *guid, const union acpi_object *properties); int acpi_node_prop_get(const struct fwnode_handle *fwnode, const char *propname, void **valptr); int acpi_dev_prop_read_single(struct acpi_device *adev, const char *propname, enum dev_prop_type proptype, void *val); int acpi_node_prop_read(const struct fwnode_handle *fwnode, const char *propname, enum dev_prop_type proptype, void *val, size_t nval); int acpi_dev_prop_read(const struct acpi_device *adev, const char *propname, enum dev_prop_type proptype, void *val, size_t nval); struct fwnode_handle *acpi_get_next_subnode(const struct fwnode_handle *fwnode, struct fwnode_handle *child); struct fwnode_handle *acpi_node_get_parent(const struct fwnode_handle *fwnode); struct acpi_probe_entry; typedef bool (*acpi_probe_entry_validate_subtbl)(struct acpi_subtable_header *, struct acpi_probe_entry *); #define ACPI_TABLE_ID_LEN 5 /** * struct acpi_probe_entry - boot-time probing entry * @id: ACPI table name * @type: Optional subtable type to match * (if @id contains subtables) * @subtable_valid: Optional callback to check the validity of * the subtable * @probe_table: Callback to the driver being probed when table * match is successful * @probe_subtbl: Callback to the driver being probed when table and * subtable match (and optional callback is successful) * @driver_data: Sideband data provided back to the driver */ struct acpi_probe_entry { __u8 id[ACPI_TABLE_ID_LEN]; __u8 type; acpi_probe_entry_validate_subtbl subtable_valid; union { acpi_tbl_table_handler probe_table; acpi_tbl_entry_handler probe_subtbl; }; kernel_ulong_t driver_data; }; #define ACPI_DECLARE_PROBE_ENTRY(table, name, table_id, subtable, \ valid, data, fn) \ static const struct acpi_probe_entry __acpi_probe_##name \ __used __section("__" #table "_acpi_probe_table") = { \ .id = table_id, \ .type = subtable, \ .subtable_valid = valid, \ .probe_table = fn, \ .driver_data = data, \ } #define ACPI_DECLARE_SUBTABLE_PROBE_ENTRY(table, name, table_id, \ subtable, valid, data, fn) \ static const struct acpi_probe_entry __acpi_probe_##name \ __used __section("__" #table "_acpi_probe_table") = { \ .id = table_id, \ .type = subtable, \ .subtable_valid = valid, \ .probe_subtbl = fn, \ .driver_data = data, \ } #define ACPI_PROBE_TABLE(name) __##name##_acpi_probe_table #define ACPI_PROBE_TABLE_END(name) __##name##_acpi_probe_table_end int __acpi_probe_device_table(struct acpi_probe_entry *start, int nr); #define acpi_probe_device_table(t) \ ({ \ extern struct acpi_probe_entry ACPI_PROBE_TABLE(t), \ ACPI_PROBE_TABLE_END(t); \ __acpi_probe_device_table(&ACPI_PROBE_TABLE(t), \ (&ACPI_PROBE_TABLE_END(t) - \ &ACPI_PROBE_TABLE(t))); \ }) #else static inline int acpi_dev_get_property(struct acpi_device *adev, const char *name, acpi_object_type type, const union acpi_object **obj) { return -ENXIO; } static inline int __acpi_node_get_property_reference(const struct fwnode_handle *fwnode, const char *name, size_t index, size_t num_args, struct fwnode_reference_args *args) { return -ENXIO; } static inline int acpi_node_get_property_reference(const struct fwnode_handle *fwnode, const char *name, size_t index, struct fwnode_reference_args *args) { return -ENXIO; } static inline int acpi_node_prop_get(const struct fwnode_handle *fwnode, const char *propname, void **valptr) { return -ENXIO; } static inline int acpi_dev_prop_read_single(const struct acpi_device *adev, const char *propname, enum dev_prop_type proptype, void *val) { return -ENXIO; } static inline int acpi_node_prop_read(const struct fwnode_handle *fwnode, const char *propname, enum dev_prop_type proptype, void *val, size_t nval) { return -ENXIO; } static inline int acpi_dev_prop_read(const struct acpi_device *adev, const char *propname, enum dev_prop_type proptype, void *val, size_t nval) { return -ENXIO; } static inline struct fwnode_handle * acpi_get_next_subnode(const struct fwnode_handle *fwnode, struct fwnode_handle *child) { return NULL; } static inline struct fwnode_handle * acpi_node_get_parent(const struct fwnode_handle *fwnode) { return NULL; } static inline struct fwnode_handle * acpi_graph_get_next_endpoint(const struct fwnode_handle *fwnode, struct fwnode_handle *prev) { return ERR_PTR(-ENXIO); } static inline int acpi_graph_get_remote_endpoint(const struct fwnode_handle *fwnode, struct fwnode_handle **remote, struct fwnode_handle **port, struct fwnode_handle **endpoint) { return -ENXIO; } #define ACPI_DECLARE_PROBE_ENTRY(table, name, table_id, subtable, valid, data, fn) \ static const void * __acpi_table_##name[] \ __attribute__((unused)) \ = { (void *) table_id, \ (void *) subtable, \ (void *) valid, \ (void *) fn, \ (void *) data } #define acpi_probe_device_table(t) ({ int __r = 0; __r;}) #endif #ifdef CONFIG_ACPI_TABLE_UPGRADE void acpi_table_upgrade(void); #else static inline void acpi_table_upgrade(void) { } #endif #if defined(CONFIG_ACPI) && defined(CONFIG_ACPI_WATCHDOG) extern bool acpi_has_watchdog(void); #else static inline bool acpi_has_watchdog(void) { return false; } #endif #ifdef CONFIG_ACPI_SPCR_TABLE extern bool qdf2400_e44_present; int acpi_parse_spcr(bool enable_earlycon, bool enable_console); #else static inline int acpi_parse_spcr(bool enable_earlycon, bool enable_console) { return 0; } #endif #if IS_ENABLED(CONFIG_ACPI_GENERIC_GSI) int acpi_irq_get(acpi_handle handle, unsigned int index, struct resource *res); #else static inline int acpi_irq_get(acpi_handle handle, unsigned int index, struct resource *res) { return -EINVAL; } #endif #ifdef CONFIG_ACPI_LPIT int lpit_read_residency_count_address(u64 *address); #else static inline int lpit_read_residency_count_address(u64 *address) { return -EINVAL; } #endif #ifdef CONFIG_ACPI_PPTT int acpi_pptt_cpu_is_thread(unsigned int cpu); int find_acpi_cpu_topology(unsigned int cpu, int level); int find_acpi_cpu_topology_package(unsigned int cpu); int find_acpi_cpu_topology_hetero_id(unsigned int cpu); int find_acpi_cpu_cache_topology(unsigned int cpu, int level); #else static inline int acpi_pptt_cpu_is_thread(unsigned int cpu) { return -EINVAL; } static inline int find_acpi_cpu_topology(unsigned int cpu, int level) { return -EINVAL; } static inline int find_acpi_cpu_topology_package(unsigned int cpu) { return -EINVAL; } static inline int find_acpi_cpu_topology_hetero_id(unsigned int cpu) { return -EINVAL; } static inline int find_acpi_cpu_cache_topology(unsigned int cpu, int level) { return -EINVAL; } #endif #ifdef CONFIG_ACPI extern int acpi_platform_notify(struct device *dev, enum kobject_action action); #else static inline int acpi_platform_notify(struct device *dev, enum kobject_action action) { return 0; } #endif #endif /*_LINUX_ACPI_H*/
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_DAX_H #define _LINUX_DAX_H #include <linux/fs.h> #include <linux/mm.h> #include <linux/radix-tree.h> /* Flag for synchronous flush */ #define DAXDEV_F_SYNC (1UL << 0) typedef unsigned long dax_entry_t; struct iomap_ops; struct iomap; struct dax_device; struct dax_operations { /* * direct_access: translate a device-relative * logical-page-offset into an absolute physical pfn. Return the * number of pages available for DAX at that pfn. */ long (*direct_access)(struct dax_device *, pgoff_t, long, void **, pfn_t *); /* * Validate whether this device is usable as an fsdax backing * device. */ bool (*dax_supported)(struct dax_device *, struct block_device *, int, sector_t, sector_t); /* copy_from_iter: required operation for fs-dax direct-i/o */ size_t (*copy_from_iter)(struct dax_device *, pgoff_t, void *, size_t, struct iov_iter *); /* copy_to_iter: required operation for fs-dax direct-i/o */ size_t (*copy_to_iter)(struct dax_device *, pgoff_t, void *, size_t, struct iov_iter *); /* zero_page_range: required operation. Zero page range */ int (*zero_page_range)(struct dax_device *, pgoff_t, size_t); }; extern struct attribute_group dax_attribute_group; #if IS_ENABLED(CONFIG_DAX) struct dax_device *dax_get_by_host(const char *host); struct dax_device *alloc_dax(void *private, const char *host, const struct dax_operations *ops, unsigned long flags); void put_dax(struct dax_device *dax_dev); void kill_dax(struct dax_device *dax_dev); void dax_write_cache(struct dax_device *dax_dev, bool wc); bool dax_write_cache_enabled(struct dax_device *dax_dev); bool __dax_synchronous(struct dax_device *dax_dev); static inline bool dax_synchronous(struct dax_device *dax_dev) { return __dax_synchronous(dax_dev); } void __set_dax_synchronous(struct dax_device *dax_dev); static inline void set_dax_synchronous(struct dax_device *dax_dev) { __set_dax_synchronous(dax_dev); } bool dax_supported(struct dax_device *dax_dev, struct block_device *bdev, int blocksize, sector_t start, sector_t len); /* * Check if given mapping is supported by the file / underlying device. */ static inline bool daxdev_mapping_supported(struct vm_area_struct *vma, struct dax_device *dax_dev) { if (!(vma->vm_flags & VM_SYNC)) return true; if (!IS_DAX(file_inode(vma->vm_file))) return false; return dax_synchronous(dax_dev); } #else static inline struct dax_device *dax_get_by_host(const char *host) { return NULL; } static inline struct dax_device *alloc_dax(void *private, const char *host, const struct dax_operations *ops, unsigned long flags) { /* * Callers should check IS_ENABLED(CONFIG_DAX) to know if this * NULL is an error or expected. */ return NULL; } static inline void put_dax(struct dax_device *dax_dev) { } static inline void kill_dax(struct dax_device *dax_dev) { } static inline void dax_write_cache(struct dax_device *dax_dev, bool wc) { } static inline bool dax_write_cache_enabled(struct dax_device *dax_dev) { return false; } static inline bool dax_synchronous(struct dax_device *dax_dev) { return true; } static inline void set_dax_synchronous(struct dax_device *dax_dev) { } static inline bool dax_supported(struct dax_device *dax_dev, struct block_device *bdev, int blocksize, sector_t start, sector_t len) { return false; } static inline bool daxdev_mapping_supported(struct vm_area_struct *vma, struct dax_device *dax_dev) { return !(vma->vm_flags & VM_SYNC); } #endif struct writeback_control; int bdev_dax_pgoff(struct block_device *, sector_t, size_t, pgoff_t *pgoff); #if IS_ENABLED(CONFIG_FS_DAX) bool __bdev_dax_supported(struct block_device *bdev, int blocksize); static inline bool bdev_dax_supported(struct block_device *bdev, int blocksize) { return __bdev_dax_supported(bdev, blocksize); } bool __generic_fsdax_supported(struct dax_device *dax_dev, struct block_device *bdev, int blocksize, sector_t start, sector_t sectors); static inline bool generic_fsdax_supported(struct dax_device *dax_dev, struct block_device *bdev, int blocksize, sector_t start, sector_t sectors) { return __generic_fsdax_supported(dax_dev, bdev, blocksize, start, sectors); } static inline void fs_put_dax(struct dax_device *dax_dev) { put_dax(dax_dev); } struct dax_device *fs_dax_get_by_bdev(struct block_device *bdev); int dax_writeback_mapping_range(struct address_space *mapping, struct dax_device *dax_dev, struct writeback_control *wbc); struct page *dax_layout_busy_page(struct address_space *mapping); struct page *dax_layout_busy_page_range(struct address_space *mapping, loff_t start, loff_t end); dax_entry_t dax_lock_page(struct page *page); void dax_unlock_page(struct page *page, dax_entry_t cookie); #else static inline bool bdev_dax_supported(struct block_device *bdev, int blocksize) { return false; } static inline bool generic_fsdax_supported(struct dax_device *dax_dev, struct block_device *bdev, int blocksize, sector_t start, sector_t sectors) { return false; } static inline void fs_put_dax(struct dax_device *dax_dev) { } static inline struct dax_device *fs_dax_get_by_bdev(struct block_device *bdev) { return NULL; } static inline struct page *dax_layout_busy_page(struct address_space *mapping) { return NULL; } static inline struct page *dax_layout_busy_page_range(struct address_space *mapping, pgoff_t start, pgoff_t nr_pages) { return NULL; } static inline int dax_writeback_mapping_range(struct address_space *mapping, struct dax_device *dax_dev, struct writeback_control *wbc) { return -EOPNOTSUPP; } static inline dax_entry_t dax_lock_page(struct page *page) { if (IS_DAX(page->mapping->host)) return ~0UL; return 0; } static inline void dax_unlock_page(struct page *page, dax_entry_t cookie) { } #endif #if IS_ENABLED(CONFIG_DAX) int dax_read_lock(void); void dax_read_unlock(int id); #else static inline int dax_read_lock(void) { return 0; } static inline void dax_read_unlock(int id) { } #endif /* CONFIG_DAX */ bool dax_alive(struct dax_device *dax_dev); void *dax_get_private(struct dax_device *dax_dev); long dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, long nr_pages, void **kaddr, pfn_t *pfn); size_t dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff, void *addr, size_t bytes, struct iov_iter *i); size_t dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff, void *addr, size_t bytes, struct iov_iter *i); int dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff, size_t nr_pages); void dax_flush(struct dax_device *dax_dev, void *addr, size_t size); ssize_t dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter, const struct iomap_ops *ops); vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size, pfn_t *pfnp, int *errp, const struct iomap_ops *ops); vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf, enum page_entry_size pe_size, pfn_t pfn); int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index); int dax_invalidate_mapping_entry_sync(struct address_space *mapping, pgoff_t index); s64 dax_iomap_zero(loff_t pos, u64 length, struct iomap *iomap); static inline bool dax_mapping(struct address_space *mapping) { return mapping->host && IS_DAX(mapping->host); } #ifdef CONFIG_DEV_DAX_HMEM_DEVICES void hmem_register_device(int target_nid, struct resource *r); #else static inline void hmem_register_device(int target_nid, struct resource *r) { } #endif #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 /* SPDX-License-Identifier: GPL-2.0 */ /* * workqueue.h --- work queue handling for Linux. */ #ifndef _LINUX_WORKQUEUE_H #define _LINUX_WORKQUEUE_H #include <linux/timer.h> #include <linux/linkage.h> #include <linux/bitops.h> #include <linux/lockdep.h> #include <linux/threads.h> #include <linux/atomic.h> #include <linux/cpumask.h> #include <linux/rcupdate.h> struct workqueue_struct; struct work_struct; typedef void (*work_func_t)(struct work_struct *work); void delayed_work_timer_fn(struct timer_list *t); /* * The first word is the work queue pointer and the flags rolled into * one */ #define work_data_bits(work) ((unsigned long *)(&(work)->data)) enum { WORK_STRUCT_PENDING_BIT = 0, /* work item is pending execution */ WORK_STRUCT_DELAYED_BIT = 1, /* work item is delayed */ WORK_STRUCT_PWQ_BIT = 2, /* data points to pwq */ WORK_STRUCT_LINKED_BIT = 3, /* next work is linked to this one */ #ifdef CONFIG_DEBUG_OBJECTS_WORK WORK_STRUCT_STATIC_BIT = 4, /* static initializer (debugobjects) */ WORK_STRUCT_COLOR_SHIFT = 5, /* color for workqueue flushing */ #else WORK_STRUCT_COLOR_SHIFT = 4, /* color for workqueue flushing */ #endif WORK_STRUCT_COLOR_BITS = 4, WORK_STRUCT_PENDING = 1 << WORK_STRUCT_PENDING_BIT, WORK_STRUCT_DELAYED = 1 << WORK_STRUCT_DELAYED_BIT, WORK_STRUCT_PWQ = 1 << WORK_STRUCT_PWQ_BIT, WORK_STRUCT_LINKED = 1 << WORK_STRUCT_LINKED_BIT, #ifdef CONFIG_DEBUG_OBJECTS_WORK WORK_STRUCT_STATIC = 1 << WORK_STRUCT_STATIC_BIT, #else WORK_STRUCT_STATIC = 0, #endif /* * The last color is no color used for works which don't * participate in workqueue flushing. */ WORK_NR_COLORS = (1 << WORK_STRUCT_COLOR_BITS) - 1, WORK_NO_COLOR = WORK_NR_COLORS, /* not bound to any CPU, prefer the local CPU */ WORK_CPU_UNBOUND = NR_CPUS, /* * Reserve 8 bits off of pwq pointer w/ debugobjects turned off. * This makes pwqs aligned to 256 bytes and allows 15 workqueue * flush colors. */ WORK_STRUCT_FLAG_BITS = WORK_STRUCT_COLOR_SHIFT + WORK_STRUCT_COLOR_BITS, /* data contains off-queue information when !WORK_STRUCT_PWQ */ WORK_OFFQ_FLAG_BASE = WORK_STRUCT_COLOR_SHIFT, __WORK_OFFQ_CANCELING = WORK_OFFQ_FLAG_BASE, WORK_OFFQ_CANCELING = (1 << __WORK_OFFQ_CANCELING), /* * When a work item is off queue, its high bits point to the last * pool it was on. Cap at 31 bits and use the highest number to * indicate that no pool is associated. */ WORK_OFFQ_FLAG_BITS = 1, WORK_OFFQ_POOL_SHIFT = WORK_OFFQ_FLAG_BASE + WORK_OFFQ_FLAG_BITS, WORK_OFFQ_LEFT = BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT, WORK_OFFQ_POOL_BITS = WORK_OFFQ_LEFT <= 31 ? WORK_OFFQ_LEFT : 31, WORK_OFFQ_POOL_NONE = (1LU << WORK_OFFQ_POOL_BITS) - 1, /* convenience constants */ WORK_STRUCT_FLAG_MASK = (1UL << WORK_STRUCT_FLAG_BITS) - 1, WORK_STRUCT_WQ_DATA_MASK = ~WORK_STRUCT_FLAG_MASK, WORK_STRUCT_NO_POOL = (unsigned long)WORK_OFFQ_POOL_NONE << WORK_OFFQ_POOL_SHIFT, /* bit mask for work_busy() return values */ WORK_BUSY_PENDING = 1 << 0, WORK_BUSY_RUNNING = 1 << 1, /* maximum string length for set_worker_desc() */ WORKER_DESC_LEN = 24, }; struct work_struct { atomic_long_t data; struct list_head entry; work_func_t func; #ifdef CONFIG_LOCKDEP struct lockdep_map lockdep_map; #endif }; #define WORK_DATA_INIT() ATOMIC_LONG_INIT((unsigned long)WORK_STRUCT_NO_POOL) #define WORK_DATA_STATIC_INIT() \ ATOMIC_LONG_INIT((unsigned long)(WORK_STRUCT_NO_POOL | WORK_STRUCT_STATIC)) struct delayed_work { struct work_struct work; struct timer_list timer; /* target workqueue and CPU ->timer uses to queue ->work */ struct workqueue_struct *wq; int cpu; }; struct rcu_work { struct work_struct work; struct rcu_head rcu; /* target workqueue ->rcu uses to queue ->work */ struct workqueue_struct *wq; }; /** * struct workqueue_attrs - A struct for workqueue attributes. * * This can be used to change attributes of an unbound workqueue. */ struct workqueue_attrs { /** * @nice: nice level */ int nice; /** * @cpumask: allowed CPUs */ cpumask_var_t cpumask; /** * @no_numa: disable NUMA affinity * * Unlike other fields, ``no_numa`` isn't a property of a worker_pool. It * only modifies how :c:func:`apply_workqueue_attrs` select pools and thus * doesn't participate in pool hash calculations or equality comparisons. */ bool no_numa; }; static inline struct delayed_work *to_delayed_work(struct work_struct *work) { return container_of(work, struct delayed_work, work); } static inline struct rcu_work *to_rcu_work(struct work_struct *work) { return container_of(work, struct rcu_work, work); } struct execute_work { struct work_struct work; }; #ifdef CONFIG_LOCKDEP /* * NB: because we have to copy the lockdep_map, setting _key * here is required, otherwise it could get initialised to the * copy of the lockdep_map! */ #define __WORK_INIT_LOCKDEP_MAP(n, k) \ .lockdep_map = STATIC_LOCKDEP_MAP_INIT(n, k), #else #define __WORK_INIT_LOCKDEP_MAP(n, k) #endif #define __WORK_INITIALIZER(n, f) { \ .data = WORK_DATA_STATIC_INIT(), \ .entry = { &(n).entry, &(n).entry }, \ .func = (f), \ __WORK_INIT_LOCKDEP_MAP(#n, &(n)) \ } #define __DELAYED_WORK_INITIALIZER(n, f, tflags) { \ .work = __WORK_INITIALIZER((n).work, (f)), \ .timer = __TIMER_INITIALIZER(delayed_work_timer_fn,\ (tflags) | TIMER_IRQSAFE), \ } #define DECLARE_WORK(n, f) \ struct work_struct n = __WORK_INITIALIZER(n, f) #define DECLARE_DELAYED_WORK(n, f) \ struct delayed_work n = __DELAYED_WORK_INITIALIZER(n, f, 0) #define DECLARE_DEFERRABLE_WORK(n, f) \ struct delayed_work n = __DELAYED_WORK_INITIALIZER(n, f, TIMER_DEFERRABLE) #ifdef CONFIG_DEBUG_OBJECTS_WORK extern void __init_work(struct work_struct *work, int onstack); extern void destroy_work_on_stack(struct work_struct *work); extern void destroy_delayed_work_on_stack(struct delayed_work *work); static inline unsigned int work_static(struct work_struct *work) { return *work_data_bits(work) & WORK_STRUCT_STATIC; } #else static inline void __init_work(struct work_struct *work, int onstack) { } static inline void destroy_work_on_stack(struct work_struct *work) { } static inline void destroy_delayed_work_on_stack(struct delayed_work *work) { } static inline unsigned int work_static(struct work_struct *work) { return 0; } #endif /* * initialize all of a work item in one go * * NOTE! No point in using "atomic_long_set()": using a direct * assignment of the work data initializer allows the compiler * to generate better code. */ #ifdef CONFIG_LOCKDEP #define __INIT_WORK(_work, _func, _onstack) \ do { \ static struct lock_class_key __key; \ \ __init_work((_work), _onstack); \ (_work)->data = (atomic_long_t) WORK_DATA_INIT(); \ lockdep_init_map(&(_work)->lockdep_map, "(work_completion)"#_work, &__key, 0); \ INIT_LIST_HEAD(&(_work)->entry); \ (_work)->func = (_func); \ } while (0) #else #define __INIT_WORK(_work, _func, _onstack) \ do { \ __init_work((_work), _onstack); \ (_work)->data = (atomic_long_t) WORK_DATA_INIT(); \ INIT_LIST_HEAD(&(_work)->entry); \ (_work)->func = (_func); \ } while (0) #endif #define INIT_WORK(_work, _func) \ __INIT_WORK((_work), (_func), 0) #define INIT_WORK_ONSTACK(_work, _func) \ __INIT_WORK((_work), (_func), 1) #define __INIT_DELAYED_WORK(_work, _func, _tflags) \ do { \ INIT_WORK(&(_work)->work, (_func)); \ __init_timer(&(_work)->timer, \ delayed_work_timer_fn, \ (_tflags) | TIMER_IRQSAFE); \ } while (0) #define __INIT_DELAYED_WORK_ONSTACK(_work, _func, _tflags) \ do { \ INIT_WORK_ONSTACK(&(_work)->work, (_func)); \ __init_timer_on_stack(&(_work)->timer, \ delayed_work_timer_fn, \ (_tflags) | TIMER_IRQSAFE); \ } while (0) #define INIT_DELAYED_WORK(_work, _func) \ __INIT_DELAYED_WORK(_work, _func, 0) #define INIT_DELAYED_WORK_ONSTACK(_work, _func) \ __INIT_DELAYED_WORK_ONSTACK(_work, _func, 0) #define INIT_DEFERRABLE_WORK(_work, _func) \ __INIT_DELAYED_WORK(_work, _func, TIMER_DEFERRABLE) #define INIT_DEFERRABLE_WORK_ONSTACK(_work, _func) \ __INIT_DELAYED_WORK_ONSTACK(_work, _func, TIMER_DEFERRABLE) #define INIT_RCU_WORK(_work, _func) \ INIT_WORK(&(_work)->work, (_func)) #define INIT_RCU_WORK_ONSTACK(_work, _func) \ INIT_WORK_ONSTACK(&(_work)->work, (_func)) /** * work_pending - Find out whether a work item is currently pending * @work: The work item in question */ #define work_pending(work) \ test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) /** * delayed_work_pending - Find out whether a delayable work item is currently * pending * @w: The work item in question */ #define delayed_work_pending(w) \ work_pending(&(w)->work) /* * Workqueue flags and constants. For details, please refer to * Documentation/core-api/workqueue.rst. */ enum { WQ_UNBOUND = 1 << 1, /* not bound to any cpu */ WQ_FREEZABLE = 1 << 2, /* freeze during suspend */ WQ_MEM_RECLAIM = 1 << 3, /* may be used for memory reclaim */ WQ_HIGHPRI = 1 << 4, /* high priority */ WQ_CPU_INTENSIVE = 1 << 5, /* cpu intensive workqueue */ WQ_SYSFS = 1 << 6, /* visible in sysfs, see wq_sysfs_register() */ /* * Per-cpu workqueues are generally preferred because they tend to * show better performance thanks to cache locality. Per-cpu * workqueues exclude the scheduler from choosing the CPU to * execute the worker threads, which has an unfortunate side effect * of increasing power consumption. * * The scheduler considers a CPU idle if it doesn't have any task * to execute and tries to keep idle cores idle to conserve power; * however, for example, a per-cpu work item scheduled from an * interrupt handler on an idle CPU will force the scheduler to * excute the work item on that CPU breaking the idleness, which in * turn may lead to more scheduling choices which are sub-optimal * in terms of power consumption. * * Workqueues marked with WQ_POWER_EFFICIENT are per-cpu by default * but become unbound if workqueue.power_efficient kernel param is * specified. Per-cpu workqueues which are identified to * contribute significantly to power-consumption are identified and * marked with this flag and enabling the power_efficient mode * leads to noticeable power saving at the cost of small * performance disadvantage. * * http://thread.gmane.org/gmane.linux.kernel/1480396 */ WQ_POWER_EFFICIENT = 1 << 7, __WQ_DRAINING = 1 << 16, /* internal: workqueue is draining */ __WQ_ORDERED = 1 << 17, /* internal: workqueue is ordered */ __WQ_LEGACY = 1 << 18, /* internal: create*_workqueue() */ __WQ_ORDERED_EXPLICIT = 1 << 19, /* internal: alloc_ordered_workqueue() */ WQ_MAX_ACTIVE = 512, /* I like 512, better ideas? */ WQ_MAX_UNBOUND_PER_CPU = 4, /* 4 * #cpus for unbound wq */ WQ_DFL_ACTIVE = WQ_MAX_ACTIVE / 2, }; /* unbound wq's aren't per-cpu, scale max_active according to #cpus */ #define WQ_UNBOUND_MAX_ACTIVE \ max_t(int, WQ_MAX_ACTIVE, num_possible_cpus() * WQ_MAX_UNBOUND_PER_CPU) /* * System-wide workqueues which are always present. * * system_wq is the one used by schedule[_delayed]_work[_on](). * Multi-CPU multi-threaded. There are users which expect relatively * short queue flush time. Don't queue works which can run for too * long. * * system_highpri_wq is similar to system_wq but for work items which * require WQ_HIGHPRI. * * system_long_wq is similar to system_wq but may host long running * works. Queue flushing might take relatively long. * * system_unbound_wq is unbound workqueue. Workers are not bound to * any specific CPU, not concurrency managed, and all queued works are * executed immediately as long as max_active limit is not reached and * resources are available. * * system_freezable_wq is equivalent to system_wq except that it's * freezable. * * *_power_efficient_wq are inclined towards saving power and converted * into WQ_UNBOUND variants if 'wq_power_efficient' is enabled; otherwise, * they are same as their non-power-efficient counterparts - e.g. * system_power_efficient_wq is identical to system_wq if * 'wq_power_efficient' is disabled. See WQ_POWER_EFFICIENT for more info. */ extern struct workqueue_struct *system_wq; extern struct workqueue_struct *system_highpri_wq; extern struct workqueue_struct *system_long_wq; extern struct workqueue_struct *system_unbound_wq; extern struct workqueue_struct *system_freezable_wq; extern struct workqueue_struct *system_power_efficient_wq; extern struct workqueue_struct *system_freezable_power_efficient_wq; /** * alloc_workqueue - allocate a workqueue * @fmt: printf format for the name of the workqueue * @flags: WQ_* flags * @max_active: max in-flight work items, 0 for default * remaining args: args for @fmt * * Allocate a workqueue with the specified parameters. For detailed * information on WQ_* flags, please refer to * Documentation/core-api/workqueue.rst. * * RETURNS: * Pointer to the allocated workqueue on success, %NULL on failure. */ struct workqueue_struct *alloc_workqueue(const char *fmt, unsigned int flags, int max_active, ...); /** * alloc_ordered_workqueue - allocate an ordered workqueue * @fmt: printf format for the name of the workqueue * @flags: WQ_* flags (only WQ_FREEZABLE and WQ_MEM_RECLAIM are meaningful) * @args...: args for @fmt * * Allocate an ordered workqueue. An ordered workqueue executes at * most one work item at any given time in the queued order. They are * implemented as unbound workqueues with @max_active of one. * * RETURNS: * Pointer to the allocated workqueue on success, %NULL on failure. */ #define alloc_ordered_workqueue(fmt, flags, args...) \ alloc_workqueue(fmt, WQ_UNBOUND | __WQ_ORDERED | \ __WQ_ORDERED_EXPLICIT | (flags), 1, ##args) #define create_workqueue(name) \ alloc_workqueue("%s", __WQ_LEGACY | WQ_MEM_RECLAIM, 1, (name)) #define create_freezable_workqueue(name) \ alloc_workqueue("%s", __WQ_LEGACY | WQ_FREEZABLE | WQ_UNBOUND | \ WQ_MEM_RECLAIM, 1, (name)) #define create_singlethread_workqueue(name) \ alloc_ordered_workqueue("%s", __WQ_LEGACY | WQ_MEM_RECLAIM, name) extern void destroy_workqueue(struct workqueue_struct *wq); struct workqueue_attrs *alloc_workqueue_attrs(void); void free_workqueue_attrs(struct workqueue_attrs *attrs); int apply_workqueue_attrs(struct workqueue_struct *wq, const struct workqueue_attrs *attrs); int workqueue_set_unbound_cpumask(cpumask_var_t cpumask); extern bool queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work); extern bool queue_work_node(int node, struct workqueue_struct *wq, struct work_struct *work); extern bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, struct delayed_work *work, unsigned long delay); extern bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, struct delayed_work *dwork, unsigned long delay); extern bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork); extern void flush_workqueue(struct workqueue_struct *wq); extern void drain_workqueue(struct workqueue_struct *wq); extern int schedule_on_each_cpu(work_func_t func); int execute_in_process_context(work_func_t fn, struct execute_work *); extern bool flush_work(struct work_struct *work); extern bool cancel_work_sync(struct work_struct *work); extern bool flush_delayed_work(struct delayed_work *dwork); extern bool cancel_delayed_work(struct delayed_work *dwork); extern bool cancel_delayed_work_sync(struct delayed_work *dwork); extern bool flush_rcu_work(struct rcu_work *rwork); extern void workqueue_set_max_active(struct workqueue_struct *wq, int max_active); extern struct work_struct *current_work(void); extern bool current_is_workqueue_rescuer(void); extern bool workqueue_congested(int cpu, struct workqueue_struct *wq); extern unsigned int work_busy(struct work_struct *work); extern __printf(1, 2) void set_worker_desc(const char *fmt, ...); extern void print_worker_info(const char *log_lvl, struct task_struct *task); extern void show_workqueue_state(void); extern void wq_worker_comm(char *buf, size_t size, struct task_struct *task); /** * queue_work - queue work on a workqueue * @wq: workqueue to use * @work: work to queue * * Returns %false if @work was already on a queue, %true otherwise. * * We queue the work to the CPU on which it was submitted, but if the CPU dies * it can be processed by another CPU. * * Memory-ordering properties: If it returns %true, guarantees that all stores * preceding the call to queue_work() in the program order will be visible from * the CPU which will execute @work by the time such work executes, e.g., * * { x is initially 0 } * * CPU0 CPU1 * * WRITE_ONCE(x, 1); [ @work is being executed ] * r0 = queue_work(wq, work); r1 = READ_ONCE(x); * * Forbids: r0 == true && r1 == 0 */ static inline bool queue_work(struct workqueue_struct *wq, struct work_struct *work) { return queue_work_on(WORK_CPU_UNBOUND, wq, work); } /** * queue_delayed_work - queue work on a workqueue after delay * @wq: workqueue to use * @dwork: delayable work to queue * @delay: number of jiffies to wait before queueing * * Equivalent to queue_delayed_work_on() but tries to use the local CPU. */ static inline bool queue_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork, unsigned long delay) { return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay); } /** * mod_delayed_work - modify delay of or queue a delayed work * @wq: workqueue to use * @dwork: work to queue * @delay: number of jiffies to wait before queueing * * mod_delayed_work_on() on local CPU. */ static inline bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork, unsigned long delay) { return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay); } /** * schedule_work_on - put work task on a specific cpu * @cpu: cpu to put the work task on * @work: job to be done * * This puts a job on a specific cpu */ static inline bool schedule_work_on(int cpu, struct work_struct *work) { return queue_work_on(cpu, system_wq, work); } /** * schedule_work - put work task in global workqueue * @work: job to be done * * Returns %false if @work was already on the kernel-global workqueue and * %true otherwise. * * This puts a job in the kernel-global workqueue if it was not already * queued and leaves it in the same position on the kernel-global * workqueue otherwise. * * Shares the same memory-ordering properties of queue_work(), cf. the * DocBook header of queue_work(). */ static inline bool schedule_work(struct work_struct *work) { return queue_work(system_wq, work); } /** * flush_scheduled_work - ensure that any scheduled work has run to completion. * * Forces execution of the kernel-global workqueue and blocks until its * completion. * * Think twice before calling this function! It's very easy to get into * trouble if you don't take great care. Either of the following situations * will lead to deadlock: * * One of the work items currently on the workqueue needs to acquire * a lock held by your code or its caller. * * Your code is running in the context of a work routine. * * They will be detected by lockdep when they occur, but the first might not * occur very often. It depends on what work items are on the workqueue and * what locks they need, which you have no control over. * * In most situations flushing the entire workqueue is overkill; you merely * need to know that a particular work item isn't queued and isn't running. * In such cases you should use cancel_delayed_work_sync() or * cancel_work_sync() instead. */ static inline void flush_scheduled_work(void) { flush_workqueue(system_wq); } /** * schedule_delayed_work_on - queue work in global workqueue on CPU after delay * @cpu: cpu to use * @dwork: job to be done * @delay: number of jiffies to wait * * After waiting for a given time this puts a job in the kernel-global * workqueue on the specified CPU. */ static inline bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay) { return queue_delayed_work_on(cpu, system_wq, dwork, delay); } /** * schedule_delayed_work - put work task in global workqueue after delay * @dwork: job to be done * @delay: number of jiffies to wait or 0 for immediate execution * * After waiting for a given time this puts a job in the kernel-global * workqueue. */ static inline bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay) { return queue_delayed_work(system_wq, dwork, delay); } #ifndef CONFIG_SMP static inline long work_on_cpu(int cpu, long (*fn)(void *), void *arg) { return fn(arg); } static inline long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg) { return fn(arg); } #else long work_on_cpu(int cpu, long (*fn)(void *), void *arg); long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg); #endif /* CONFIG_SMP */ #ifdef CONFIG_FREEZER extern void freeze_workqueues_begin(void); extern bool freeze_workqueues_busy(void); extern void thaw_workqueues(void); #endif /* CONFIG_FREEZER */ #ifdef CONFIG_SYSFS int workqueue_sysfs_register(struct workqueue_struct *wq); #else /* CONFIG_SYSFS */ static inline int workqueue_sysfs_register(struct workqueue_struct *wq) { return 0; } #endif /* CONFIG_SYSFS */ #ifdef CONFIG_WQ_WATCHDOG void wq_watchdog_touch(int cpu); #else /* CONFIG_WQ_WATCHDOG */ static inline void wq_watchdog_touch(int cpu) { } #endif /* CONFIG_WQ_WATCHDOG */ #ifdef CONFIG_SMP int workqueue_prepare_cpu(unsigned int cpu); int workqueue_online_cpu(unsigned int cpu); int workqueue_offline_cpu(unsigned int cpu); #endif void __init workqueue_init_early(void); void __init workqueue_init(void); #endif
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_LIST_BL_H #define _LINUX_LIST_BL_H #include <linux/list.h> #include <linux/bit_spinlock.h> /* * Special version of lists, where head of the list has a lock in the lowest * bit. This is useful for scalable hash tables without increasing memory * footprint overhead. * * For modification operations, the 0 bit of hlist_bl_head->first * pointer must be set. * * With some small modifications, this can easily be adapted to store several * arbitrary bits (not just a single lock bit), if the need arises to store * some fast and compact auxiliary data. */ #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) #define LIST_BL_LOCKMASK 1UL #else #define LIST_BL_LOCKMASK 0UL #endif #ifdef CONFIG_DEBUG_LIST #define LIST_BL_BUG_ON(x) BUG_ON(x) #else #define LIST_BL_BUG_ON(x) #endif struct hlist_bl_head { struct hlist_bl_node *first; }; struct hlist_bl_node { struct hlist_bl_node *next, **pprev; }; #define INIT_HLIST_BL_HEAD(ptr) \ ((ptr)->first = NULL) static inline void INIT_HLIST_BL_NODE(struct hlist_bl_node *h) { h->next = NULL; h->pprev = NULL; } #define hlist_bl_entry(ptr, type, member) container_of(ptr,type,member) static inline bool hlist_bl_unhashed(const struct hlist_bl_node *h) { return !h->pprev; } static inline struct hlist_bl_node *hlist_bl_first(struct hlist_bl_head *h) { return (struct hlist_bl_node *) ((unsigned long)h->first & ~LIST_BL_LOCKMASK); } static inline void hlist_bl_set_first(struct hlist_bl_head *h, struct hlist_bl_node *n) { LIST_BL_BUG_ON((unsigned long)n & LIST_BL_LOCKMASK); LIST_BL_BUG_ON(((unsigned long)h->first & LIST_BL_LOCKMASK) != LIST_BL_LOCKMASK); h->first = (struct hlist_bl_node *)((unsigned long)n | LIST_BL_LOCKMASK); } static inline bool hlist_bl_empty(const struct hlist_bl_head *h) { return !((unsigned long)READ_ONCE(h->first) & ~LIST_BL_LOCKMASK); } static inline void hlist_bl_add_head(struct hlist_bl_node *n, struct hlist_bl_head *h) { struct hlist_bl_node *first = hlist_bl_first(h); n->next = first; if (first) first->pprev = &n->next; n->pprev = &h->first; hlist_bl_set_first(h, n); } static inline void hlist_bl_add_before(struct hlist_bl_node *n, struct hlist_bl_node *next) { struct hlist_bl_node **pprev = next->pprev; n->pprev = pprev; n->next = next; next->pprev = &n->next; /* pprev may be `first`, so be careful not to lose the lock bit */ WRITE_ONCE(*pprev, (struct hlist_bl_node *) ((uintptr_t)n | ((uintptr_t)*pprev & LIST_BL_LOCKMASK))); } static inline void hlist_bl_add_behind(struct hlist_bl_node *n, struct hlist_bl_node *prev) { n->next = prev->next; n->pprev = &prev->next; prev->next = n; if (n->next) n->next->pprev = &n->next; } static inline void __hlist_bl_del(struct hlist_bl_node *n) { struct hlist_bl_node *next = n->next; struct hlist_bl_node **pprev = n->pprev; LIST_BL_BUG_ON((unsigned long)n & LIST_BL_LOCKMASK); /* pprev may be `first`, so be careful not to lose the lock bit */ WRITE_ONCE(*pprev, (struct hlist_bl_node *) ((unsigned long)next | ((unsigned long)*pprev & LIST_BL_LOCKMASK))); if (next) next->pprev = pprev; } static inline void hlist_bl_del(struct hlist_bl_node *n) { __hlist_bl_del(n); n->next = LIST_POISON1; n->pprev = LIST_POISON2; } static inline void hlist_bl_del_init(struct hlist_bl_node *n) { if (!hlist_bl_unhashed(n)) { __hlist_bl_del(n); INIT_HLIST_BL_NODE(n); } } static inline void hlist_bl_lock(struct hlist_bl_head *b) { bit_spin_lock(0, (unsigned long *)b); } static inline void hlist_bl_unlock(struct hlist_bl_head *b) { __bit_spin_unlock(0, (unsigned long *)b); } static inline bool hlist_bl_is_locked(struct hlist_bl_head *b) { return bit_spin_is_locked(0, (unsigned long *)b); } /** * hlist_bl_for_each_entry - iterate over list of given type * @tpos: the type * to use as a loop cursor. * @pos: the &struct hlist_node to use as a loop cursor. * @head: the head for your list. * @member: the name of the hlist_node within the struct. * */ #define hlist_bl_for_each_entry(tpos, pos, head, member) \ for (pos = hlist_bl_first(head); \ pos && \ ({ tpos = hlist_bl_entry(pos, typeof(*tpos), member); 1;}); \ pos = pos->next) /** * hlist_bl_for_each_entry_safe - iterate over list of given type safe against removal of list entry * @tpos: the type * to use as a loop cursor. * @pos: the &struct hlist_node to use as a loop cursor. * @n: another &struct hlist_node to use as temporary storage * @head: the head for your list. * @member: the name of the hlist_node within the struct. */ #define hlist_bl_for_each_entry_safe(tpos, pos, n, head, member) \ for (pos = hlist_bl_first(head); \ pos && ({ n = pos->next; 1; }) && \ ({ tpos = hlist_bl_entry(pos, typeof(*tpos), member); 1;}); \ pos = n) #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 #ifndef _LINUX_GENERIC_RADIX_TREE_H #define _LINUX_GENERIC_RADIX_TREE_H /** * DOC: Generic radix trees/sparse arrays * * Very simple and minimalistic, supporting arbitrary size entries up to * PAGE_SIZE. * * A genradix is defined with the type it will store, like so: * * static GENRADIX(struct foo) foo_genradix; * * The main operations are: * * - genradix_init(radix) - initialize an empty genradix * * - genradix_free(radix) - free all memory owned by the genradix and * reinitialize it * * - genradix_ptr(radix, idx) - gets a pointer to the entry at idx, returning * NULL if that entry does not exist * * - genradix_ptr_alloc(radix, idx, gfp) - gets a pointer to an entry, * allocating it if necessary * * - genradix_for_each(radix, iter, p) - iterate over each entry in a genradix * * The radix tree allocates one page of entries at a time, so entries may exist * that were never explicitly allocated - they will be initialized to all * zeroes. * * Internally, a genradix is just a radix tree of pages, and indexing works in * terms of byte offsets. The wrappers in this header file use sizeof on the * type the radix contains to calculate a byte offset from the index - see * __idx_to_offset. */ #include <asm/page.h> #include <linux/bug.h> #include <linux/kernel.h> #include <linux/log2.h> struct genradix_root; struct __genradix { struct genradix_root *root; }; /* * NOTE: currently, sizeof(_type) must not be larger than PAGE_SIZE: */ #define __GENRADIX_INITIALIZER \ { \ .tree = { \ .root = NULL, \ } \ } /* * We use a 0 size array to stash the type we're storing without taking any * space at runtime - then the various accessor macros can use typeof() to get * to it for casts/sizeof - we also force the alignment so that storing a type * with a ridiculous alignment doesn't blow up the alignment or size of the * genradix. */ #define GENRADIX(_type) \ struct { \ struct __genradix tree; \ _type type[0] __aligned(1); \ } #define DEFINE_GENRADIX(_name, _type) \ GENRADIX(_type) _name = __GENRADIX_INITIALIZER /** * genradix_init - initialize a genradix * @_radix: genradix to initialize * * Does not fail */ #define genradix_init(_radix) \ do { \ *(_radix) = (typeof(*_radix)) __GENRADIX_INITIALIZER; \ } while (0) void __genradix_free(struct __genradix *); /** * genradix_free: free all memory owned by a genradix * @_radix: the genradix to free * * After freeing, @_radix will be reinitialized and empty */ #define genradix_free(_radix) __genradix_free(&(_radix)->tree) static inline size_t __idx_to_offset(size_t idx, size_t obj_size) { if (__builtin_constant_p(obj_size)) BUILD_BUG_ON(obj_size > PAGE_SIZE); else BUG_ON(obj_size > PAGE_SIZE); if (!is_power_of_2(obj_size)) { size_t objs_per_page = PAGE_SIZE / obj_size; return (idx / objs_per_page) * PAGE_SIZE + (idx % objs_per_page) * obj_size; } else { return idx * obj_size; } } #define __genradix_cast(_radix) (typeof((_radix)->type[0]) *) #define __genradix_obj_size(_radix) sizeof((_radix)->type[0]) #define __genradix_idx_to_offset(_radix, _idx) \ __idx_to_offset(_idx, __genradix_obj_size(_radix)) void *__genradix_ptr(struct __genradix *, size_t); /** * genradix_ptr - get a pointer to a genradix entry * @_radix: genradix to access * @_idx: index to fetch * * Returns a pointer to entry at @_idx, or NULL if that entry does not exist. */ #define genradix_ptr(_radix, _idx) \ (__genradix_cast(_radix) \ __genradix_ptr(&(_radix)->tree, \ __genradix_idx_to_offset(_radix, _idx))) void *__genradix_ptr_alloc(struct __genradix *, size_t, gfp_t); /** * genradix_ptr_alloc - get a pointer to a genradix entry, allocating it * if necessary * @_radix: genradix to access * @_idx: index to fetch * @_gfp: gfp mask * * Returns a pointer to entry at @_idx, or NULL on allocation failure */ #define genradix_ptr_alloc(_radix, _idx, _gfp) \ (__genradix_cast(_radix) \ __genradix_ptr_alloc(&(_radix)->tree, \ __genradix_idx_to_offset(_radix, _idx), \ _gfp)) struct genradix_iter { size_t offset; size_t pos; }; /** * genradix_iter_init - initialize a genradix_iter * @_radix: genradix that will be iterated over * @_idx: index to start iterating from */ #define genradix_iter_init(_radix, _idx) \ ((struct genradix_iter) { \ .pos = (_idx), \ .offset = __genradix_idx_to_offset((_radix), (_idx)),\ }) void *__genradix_iter_peek(struct genradix_iter *, struct __genradix *, size_t); /** * genradix_iter_peek - get first entry at or above iterator's current * position * @_iter: a genradix_iter * @_radix: genradix being iterated over * * If no more entries exist at or above @_iter's current position, returns NULL */ #define genradix_iter_peek(_iter, _radix) \ (__genradix_cast(_radix) \ __genradix_iter_peek(_iter, &(_radix)->tree, \ PAGE_SIZE / __genradix_obj_size(_radix))) static inline void __genradix_iter_advance(struct genradix_iter *iter, size_t obj_size) { iter->offset += obj_size; if (!is_power_of_2(obj_size) && (iter->offset & (PAGE_SIZE - 1)) + obj_size > PAGE_SIZE) iter->offset = round_up(iter->offset, PAGE_SIZE); iter->pos++; } #define genradix_iter_advance(_iter, _radix) \ __genradix_iter_advance(_iter, __genradix_obj_size(_radix)) #define genradix_for_each_from(_radix, _iter, _p, _start) \ for (_iter = genradix_iter_init(_radix, _start); \ (_p = genradix_iter_peek(&_iter, _radix)) != NULL; \ genradix_iter_advance(&_iter, _radix)) /** * genradix_for_each - iterate over entry in a genradix * @_radix: genradix to iterate over * @_iter: a genradix_iter to track current position * @_p: pointer to genradix entry type * * On every iteration, @_p will point to the current entry, and @_iter.pos * will be the current entry's index. */ #define genradix_for_each(_radix, _iter, _p) \ genradix_for_each_from(_radix, _iter, _p, 0) int __genradix_prealloc(struct __genradix *, size_t, gfp_t); /** * genradix_prealloc - preallocate entries in a generic radix tree * @_radix: genradix to preallocate * @_nr: number of entries to preallocate * @_gfp: gfp mask * * Returns 0 on success, -ENOMEM on failure */ #define genradix_prealloc(_radix, _nr, _gfp) \ __genradix_prealloc(&(_radix)->tree, \ __genradix_idx_to_offset(_radix, _nr + 1),\ _gfp) #endif /* _LINUX_GENERIC_RADIX_TREE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Definitions for the AF_INET socket handler. * * Version: @(#)sock.h 1.0.4 05/13/93 * * Authors: Ross Biro * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> * Corey Minyard <wf-rch!minyard@relay.EU.net> * Florian La Roche <flla@stud.uni-sb.de> * * Fixes: * Alan Cox : Volatiles in skbuff pointers. See * skbuff comments. May be overdone, * better to prove they can be removed * than the reverse. * Alan Cox : Added a zapped field for tcp to note * a socket is reset and must stay shut up * Alan Cox : New fields for options * Pauline Middelink : identd support * Alan Cox : Eliminate low level recv/recvfrom * David S. Miller : New socket lookup architecture. * Steve Whitehouse: Default routines for sock_ops * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made * protinfo be just a void pointer, as the * protocol specific parts were moved to * respective headers and ipv4/v6, etc now * use private slabcaches for its socks * Pedro Hortas : New flags field for socket options */ #ifndef _SOCK_H #define _SOCK_H #include <linux/hardirq.h> #include <linux/kernel.h> #include <linux/list.h> #include <linux/list_nulls.h> #include <linux/timer.h> #include <linux/cache.h> #include <linux/bitops.h> #include <linux/lockdep.h> #include <linux/netdevice.h> #include <linux/skbuff.h> /* struct sk_buff */ #include <linux/mm.h> #include <linux/security.h> #include <linux/slab.h> #include <linux/uaccess.h> #include <linux/page_counter.h> #include <linux/memcontrol.h> #include <linux/static_key.h> #include <linux/sched.h> #include <linux/wait.h> #include <linux/cgroup-defs.h> #include <linux/rbtree.h> #include <linux/filter.h> #include <linux/rculist_nulls.h> #include <linux/poll.h> #include <linux/sockptr.h> #include <linux/atomic.h> #include <linux/refcount.h> #include <net/dst.h> #include <net/checksum.h> #include <net/tcp_states.h> #include <linux/net_tstamp.h> #include <net/l3mdev.h> /* * This structure really needs to be cleaned up. * Most of it is for TCP, and not used by any of * the other protocols. */ /* Define this to get the SOCK_DBG debugging facility. */ #define SOCK_DEBUGGING #ifdef SOCK_DEBUGGING #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \ printk(KERN_DEBUG msg); } while (0) #else /* Validate arguments and do nothing */ static inline __printf(2, 3) void SOCK_DEBUG(const struct sock *sk, const char *msg, ...) { } #endif /* This is the per-socket lock. The spinlock provides a synchronization * between user contexts and software interrupt processing, whereas the * mini-semaphore synchronizes multiple users amongst themselves. */ typedef struct { spinlock_t slock; int owned; wait_queue_head_t wq; /* * We express the mutex-alike socket_lock semantics * to the lock validator by explicitly managing * the slock as a lock variant (in addition to * the slock itself): */ #ifdef CONFIG_DEBUG_LOCK_ALLOC struct lockdep_map dep_map; #endif } socket_lock_t; struct sock; struct proto; struct net; typedef __u32 __bitwise __portpair; typedef __u64 __bitwise __addrpair; /** * struct sock_common - minimal network layer representation of sockets * @skc_daddr: Foreign IPv4 addr * @skc_rcv_saddr: Bound local IPv4 addr * @skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr * @skc_hash: hash value used with various protocol lookup tables * @skc_u16hashes: two u16 hash values used by UDP lookup tables * @skc_dport: placeholder for inet_dport/tw_dport * @skc_num: placeholder for inet_num/tw_num * @skc_portpair: __u32 union of @skc_dport & @skc_num * @skc_family: network address family * @skc_state: Connection state * @skc_reuse: %SO_REUSEADDR setting * @skc_reuseport: %SO_REUSEPORT setting * @skc_ipv6only: socket is IPV6 only * @skc_net_refcnt: socket is using net ref counting * @skc_bound_dev_if: bound device index if != 0 * @skc_bind_node: bind hash linkage for various protocol lookup tables * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol * @skc_prot: protocol handlers inside a network family * @skc_net: reference to the network namespace of this socket * @skc_v6_daddr: IPV6 destination address * @skc_v6_rcv_saddr: IPV6 source address * @skc_cookie: socket's cookie value * @skc_node: main hash linkage for various protocol lookup tables * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol * @skc_tx_queue_mapping: tx queue number for this connection * @skc_rx_queue_mapping: rx queue number for this connection * @skc_flags: place holder for sk_flags * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings * @skc_listener: connection request listener socket (aka rsk_listener) * [union with @skc_flags] * @skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row * [union with @skc_flags] * @skc_incoming_cpu: record/match cpu processing incoming packets * @skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled) * [union with @skc_incoming_cpu] * @skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number * [union with @skc_incoming_cpu] * @skc_refcnt: reference count * * This is the minimal network layer representation of sockets, the header * for struct sock and struct inet_timewait_sock. */ struct sock_common { /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned * address on 64bit arches : cf INET_MATCH() */ union { __addrpair skc_addrpair; struct { __be32 skc_daddr; __be32 skc_rcv_saddr; }; }; union { unsigned int skc_hash; __u16 skc_u16hashes[2]; }; /* skc_dport && skc_num must be grouped as well */ union { __portpair skc_portpair; struct { __be16 skc_dport; __u16 skc_num; }; }; unsigned short skc_family; volatile unsigned char skc_state; unsigned char skc_reuse:4; unsigned char skc_reuseport:1; unsigned char skc_ipv6only:1; unsigned char skc_net_refcnt:1; int skc_bound_dev_if; union { struct hlist_node skc_bind_node; struct hlist_node skc_portaddr_node; }; struct proto *skc_prot; possible_net_t skc_net; #if IS_ENABLED(CONFIG_IPV6) struct in6_addr skc_v6_daddr; struct in6_addr skc_v6_rcv_saddr; #endif atomic64_t skc_cookie; /* following fields are padding to force * offset(struct sock, sk_refcnt) == 128 on 64bit arches * assuming IPV6 is enabled. We use this padding differently * for different kind of 'sockets' */ union { unsigned long skc_flags; struct sock *skc_listener; /* request_sock */ struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */ }; /* * fields between dontcopy_begin/dontcopy_end * are not copied in sock_copy() */ /* private: */ int skc_dontcopy_begin[0]; /* public: */ union { struct hlist_node skc_node; struct hlist_nulls_node skc_nulls_node; }; unsigned short skc_tx_queue_mapping; #ifdef CONFIG_XPS unsigned short skc_rx_queue_mapping; #endif union { int skc_incoming_cpu; u32 skc_rcv_wnd; u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */ }; refcount_t skc_refcnt; /* private: */ int skc_dontcopy_end[0]; union { u32 skc_rxhash; u32 skc_window_clamp; u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */ }; /* public: */ }; struct bpf_local_storage; /** * struct sock - network layer representation of sockets * @__sk_common: shared layout with inet_timewait_sock * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings * @sk_lock: synchronizer * @sk_kern_sock: True if sock is using kernel lock classes * @sk_rcvbuf: size of receive buffer in bytes * @sk_wq: sock wait queue and async head * @sk_rx_dst: receive input route used by early demux * @sk_dst_cache: destination cache * @sk_dst_pending_confirm: need to confirm neighbour * @sk_policy: flow policy * @sk_rx_skb_cache: cache copy of recently accessed RX skb * @sk_receive_queue: incoming packets * @sk_wmem_alloc: transmit queue bytes committed * @sk_tsq_flags: TCP Small Queues flags * @sk_write_queue: Packet sending queue * @sk_omem_alloc: "o" is "option" or "other" * @sk_wmem_queued: persistent queue size * @sk_forward_alloc: space allocated forward * @sk_napi_id: id of the last napi context to receive data for sk * @sk_ll_usec: usecs to busypoll when there is no data * @sk_allocation: allocation mode * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler) * @sk_pacing_status: Pacing status (requested, handled by sch_fq) * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE) * @sk_sndbuf: size of send buffer in bytes * @__sk_flags_offset: empty field used to determine location of bitfield * @sk_padding: unused element for alignment * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets * @sk_no_check_rx: allow zero checksum in RX packets * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK) * @sk_route_forced_caps: static, forced route capabilities * (set in tcp_init_sock()) * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4) * @sk_gso_max_size: Maximum GSO segment size to build * @sk_gso_max_segs: Maximum number of GSO segments * @sk_pacing_shift: scaling factor for TCP Small Queues * @sk_lingertime: %SO_LINGER l_linger setting * @sk_backlog: always used with the per-socket spinlock held * @sk_callback_lock: used with the callbacks in the end of this struct * @sk_error_queue: rarely used * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, * IPV6_ADDRFORM for instance) * @sk_err: last error * @sk_err_soft: errors that don't cause failure but are the cause of a * persistent failure not just 'timed out' * @sk_drops: raw/udp drops counter * @sk_ack_backlog: current listen backlog * @sk_max_ack_backlog: listen backlog set in listen() * @sk_uid: user id of owner * @sk_priority: %SO_PRIORITY setting * @sk_type: socket type (%SOCK_STREAM, etc) * @sk_protocol: which protocol this socket belongs in this network family * @sk_peer_pid: &struct pid for this socket's peer * @sk_peer_cred: %SO_PEERCRED setting * @sk_rcvlowat: %SO_RCVLOWAT setting * @sk_rcvtimeo: %SO_RCVTIMEO setting * @sk_sndtimeo: %SO_SNDTIMEO setting * @sk_txhash: computed flow hash for use on transmit * @sk_filter: socket filtering instructions * @sk_timer: sock cleanup timer * @sk_stamp: time stamp of last packet received * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only * @sk_tsflags: SO_TIMESTAMPING socket options * @sk_tskey: counter to disambiguate concurrent tstamp requests * @sk_zckey: counter to order MSG_ZEROCOPY notifications * @sk_socket: Identd and reporting IO signals * @sk_user_data: RPC layer private data * @sk_frag: cached page frag * @sk_peek_off: current peek_offset value * @sk_send_head: front of stuff to transmit * @tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head] * @sk_tx_skb_cache: cache copy of recently accessed TX skb * @sk_security: used by security modules * @sk_mark: generic packet mark * @sk_cgrp_data: cgroup data for this cgroup * @sk_memcg: this socket's memory cgroup association * @sk_write_pending: a write to stream socket waits to start * @sk_state_change: callback to indicate change in the state of the sock * @sk_data_ready: callback to indicate there is data to be processed * @sk_write_space: callback to indicate there is bf sending space available * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) * @sk_backlog_rcv: callback to process the backlog * @sk_validate_xmit_skb: ptr to an optional validate function * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 * @sk_reuseport_cb: reuseport group container * @sk_bpf_storage: ptr to cache and control for bpf_sk_storage * @sk_rcu: used during RCU grace period * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME) * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME * @sk_txtime_report_errors: set report errors mode for SO_TXTIME * @sk_txtime_unused: unused txtime flags */ struct sock { /* * Now struct inet_timewait_sock also uses sock_common, so please just * don't add nothing before this first member (__sk_common) --acme */ struct sock_common __sk_common; #define sk_node __sk_common.skc_node #define sk_nulls_node __sk_common.skc_nulls_node #define sk_refcnt __sk_common.skc_refcnt #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping #ifdef CONFIG_XPS #define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping #endif #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin #define sk_dontcopy_end __sk_common.skc_dontcopy_end #define sk_hash __sk_common.skc_hash #define sk_portpair __sk_common.skc_portpair #define sk_num __sk_common.skc_num #define sk_dport __sk_common.skc_dport #define sk_addrpair __sk_common.skc_addrpair #define sk_daddr __sk_common.skc_daddr #define sk_rcv_saddr __sk_common.skc_rcv_saddr #define sk_family __sk_common.skc_family #define sk_state __sk_common.skc_state #define sk_reuse __sk_common.skc_reuse #define sk_reuseport __sk_common.skc_reuseport #define sk_ipv6only __sk_common.skc_ipv6only #define sk_net_refcnt __sk_common.skc_net_refcnt #define sk_bound_dev_if __sk_common.skc_bound_dev_if #define sk_bind_node __sk_common.skc_bind_node #define sk_prot __sk_common.skc_prot #define sk_net __sk_common.skc_net #define sk_v6_daddr __sk_common.skc_v6_daddr #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr #define sk_cookie __sk_common.skc_cookie #define sk_incoming_cpu __sk_common.skc_incoming_cpu #define sk_flags __sk_common.skc_flags #define sk_rxhash __sk_common.skc_rxhash socket_lock_t sk_lock; atomic_t sk_drops; int sk_rcvlowat; struct sk_buff_head sk_error_queue; struct sk_buff *sk_rx_skb_cache; struct sk_buff_head sk_receive_queue; /* * The backlog queue is special, it is always used with * the per-socket spinlock held and requires low latency * access. Therefore we special case it's implementation. * Note : rmem_alloc is in this structure to fill a hole * on 64bit arches, not because its logically part of * backlog. */ struct { atomic_t rmem_alloc; int len; struct sk_buff *head; struct sk_buff *tail; } sk_backlog; #define sk_rmem_alloc sk_backlog.rmem_alloc int sk_forward_alloc; #ifdef CONFIG_NET_RX_BUSY_POLL unsigned int sk_ll_usec; /* ===== mostly read cache line ===== */ unsigned int sk_napi_id; #endif int sk_rcvbuf; struct sk_filter __rcu *sk_filter; union { struct socket_wq __rcu *sk_wq; /* private: */ struct socket_wq *sk_wq_raw; /* public: */ }; #ifdef CONFIG_XFRM struct xfrm_policy __rcu *sk_policy[2]; #endif struct dst_entry *sk_rx_dst; struct dst_entry __rcu *sk_dst_cache; atomic_t sk_omem_alloc; int sk_sndbuf; /* ===== cache line for TX ===== */ int sk_wmem_queued; refcount_t sk_wmem_alloc; unsigned long sk_tsq_flags; union { struct sk_buff *sk_send_head; struct rb_root tcp_rtx_queue; }; struct sk_buff *sk_tx_skb_cache; struct sk_buff_head sk_write_queue; __s32 sk_peek_off; int sk_write_pending; __u32 sk_dst_pending_confirm; u32 sk_pacing_status; /* see enum sk_pacing */ long sk_sndtimeo; struct timer_list sk_timer; __u32 sk_priority; __u32 sk_mark; unsigned long sk_pacing_rate; /* bytes per second */ unsigned long sk_max_pacing_rate; struct page_frag sk_frag; netdev_features_t sk_route_caps; netdev_features_t sk_route_nocaps; netdev_features_t sk_route_forced_caps; int sk_gso_type; unsigned int sk_gso_max_size; gfp_t sk_allocation; __u32 sk_txhash; /* * Because of non atomicity rules, all * changes are protected by socket lock. */ u8 sk_padding : 1, sk_kern_sock : 1, sk_no_check_tx : 1, sk_no_check_rx : 1, sk_userlocks : 4; u8 sk_pacing_shift; u16 sk_type; u16 sk_protocol; u16 sk_gso_max_segs; unsigned long sk_lingertime; struct proto *sk_prot_creator; rwlock_t sk_callback_lock; int sk_err, sk_err_soft; u32 sk_ack_backlog; u32 sk_max_ack_backlog; kuid_t sk_uid; spinlock_t sk_peer_lock; struct pid *sk_peer_pid; const struct cred *sk_peer_cred; long sk_rcvtimeo; ktime_t sk_stamp; #if BITS_PER_LONG==32 seqlock_t sk_stamp_seq; #endif u16 sk_tsflags; u8 sk_shutdown; u32 sk_tskey; atomic_t sk_zckey; u8 sk_clockid; u8 sk_txtime_deadline_mode : 1, sk_txtime_report_errors : 1, sk_txtime_unused : 6; struct socket *sk_socket; void *sk_user_data; #ifdef CONFIG_SECURITY void *sk_security; #endif struct sock_cgroup_data sk_cgrp_data; struct mem_cgroup *sk_memcg; void (*sk_state_change)(struct sock *sk); void (*sk_data_ready)(struct sock *sk); void (*sk_write_space)(struct sock *sk); void (*sk_error_report)(struct sock *sk); int (*sk_backlog_rcv)(struct sock *sk, struct sk_buff *skb); #ifdef CONFIG_SOCK_VALIDATE_XMIT struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk, struct net_device *dev, struct sk_buff *skb); #endif void (*sk_destruct)(struct sock *sk); struct sock_reuseport __rcu *sk_reuseport_cb; #ifdef CONFIG_BPF_SYSCALL struct bpf_local_storage __rcu *sk_bpf_storage; #endif struct rcu_head sk_rcu; }; enum sk_pacing { SK_PACING_NONE = 0, SK_PACING_NEEDED = 1, SK_PACING_FQ = 2, }; /* Pointer stored in sk_user_data might not be suitable for copying * when cloning the socket. For instance, it can point to a reference * counted object. sk_user_data bottom bit is set if pointer must not * be copied. */ #define SK_USER_DATA_NOCOPY 1UL #define SK_USER_DATA_BPF 2UL /* Managed by BPF */ #define SK_USER_DATA_PTRMASK ~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF) /** * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied * @sk: socket */ static inline bool sk_user_data_is_nocopy(const struct sock *sk) { return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY); } #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data))) #define rcu_dereference_sk_user_data(sk) \ ({ \ void *__tmp = rcu_dereference(__sk_user_data((sk))); \ (void *)((uintptr_t)__tmp & SK_USER_DATA_PTRMASK); \ }) #define rcu_assign_sk_user_data(sk, ptr) \ ({ \ uintptr_t __tmp = (uintptr_t)(ptr); \ WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK); \ rcu_assign_pointer(__sk_user_data((sk)), __tmp); \ }) #define rcu_assign_sk_user_data_nocopy(sk, ptr) \ ({ \ uintptr_t __tmp = (uintptr_t)(ptr); \ WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK); \ rcu_assign_pointer(__sk_user_data((sk)), \ __tmp | SK_USER_DATA_NOCOPY); \ }) /* * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK * or not whether his port will be reused by someone else. SK_FORCE_REUSE * on a socket means that the socket will reuse everybody else's port * without looking at the other's sk_reuse value. */ #define SK_NO_REUSE 0 #define SK_CAN_REUSE 1 #define SK_FORCE_REUSE 2 int sk_set_peek_off(struct sock *sk, int val); static inline int sk_peek_offset(struct sock *sk, int flags) { if (unlikely(flags & MSG_PEEK)) { return READ_ONCE(sk->sk_peek_off); } return 0; } static inline void sk_peek_offset_bwd(struct sock *sk, int val) { s32 off = READ_ONCE(sk->sk_peek_off); if (unlikely(off >= 0)) { off = max_t(s32, off - val, 0); WRITE_ONCE(sk->sk_peek_off, off); } } static inline void sk_peek_offset_fwd(struct sock *sk, int val) { sk_peek_offset_bwd(sk, -val); } /* * Hashed lists helper routines */ static inline struct sock *sk_entry(const struct hlist_node *node) { return hlist_entry(node, struct sock, sk_node); } static inline struct sock *__sk_head(const struct hlist_head *head) { return hlist_entry(head->first, struct sock, sk_node); } static inline struct sock *sk_head(const struct hlist_head *head) { return hlist_empty(head) ? NULL : __sk_head(head); } static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head) { return hlist_nulls_entry(head->first, struct sock, sk_nulls_node); } static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head) { return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head); } static inline struct sock *sk_next(const struct sock *sk) { return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node); } static inline struct sock *sk_nulls_next(const struct sock *sk) { return (!is_a_nulls(sk->sk_nulls_node.next)) ? hlist_nulls_entry(sk->sk_nulls_node.next, struct sock, sk_nulls_node) : NULL; } static inline bool sk_unhashed(const struct sock *sk) { return hlist_unhashed(&sk->sk_node); } static inline bool sk_hashed(const struct sock *sk) { return !sk_unhashed(sk); } static inline void sk_node_init(struct hlist_node *node) { node->pprev = NULL; } static inline void sk_nulls_node_init(struct hlist_nulls_node *node) { node->pprev = NULL; } static inline void __sk_del_node(struct sock *sk) { __hlist_del(&sk->sk_node); } /* NB: equivalent to hlist_del_init_rcu */ static inline bool __sk_del_node_init(struct sock *sk) { if (sk_hashed(sk)) { __sk_del_node(sk); sk_node_init(&sk->sk_node); return true; } return false; } /* Grab socket reference count. This operation is valid only when sk is ALREADY grabbed f.e. it is found in hash table or a list and the lookup is made under lock preventing hash table modifications. */ static __always_inline void sock_hold(struct sock *sk) { refcount_inc(&sk->sk_refcnt); } /* Ungrab socket in the context, which assumes that socket refcnt cannot hit zero, f.e. it is true in context of any socketcall. */ static __always_inline void __sock_put(struct sock *sk) { refcount_dec(&sk->sk_refcnt); } static inline bool sk_del_node_init(struct sock *sk) { bool rc = __sk_del_node_init(sk); if (rc) { /* paranoid for a while -acme */ WARN_ON(refcount_read(&sk->sk_refcnt) == 1); __sock_put(sk); } return rc; } #define sk_del_node_init_rcu(sk) sk_del_node_init(sk) static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk) { if (sk_hashed(sk)) { hlist_nulls_del_init_rcu(&sk->sk_nulls_node); return true; } return false; } static inline bool sk_nulls_del_node_init_rcu(struct sock *sk) { bool rc = __sk_nulls_del_node_init_rcu(sk); if (rc) { /* paranoid for a while -acme */ WARN_ON(refcount_read(&sk->sk_refcnt) == 1); __sock_put(sk); } return rc; } static inline void __sk_add_node(struct sock *sk, struct hlist_head *list) { hlist_add_head(&sk->sk_node, list); } static inline void sk_add_node(struct sock *sk, struct hlist_head *list) { sock_hold(sk); __sk_add_node(sk, list); } static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list) { sock_hold(sk); if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && sk->sk_family == AF_INET6) hlist_add_tail_rcu(&sk->sk_node, list); else hlist_add_head_rcu(&sk->sk_node, list); } static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list) { sock_hold(sk); hlist_add_tail_rcu(&sk->sk_node, list); } static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) { hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list); } static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list) { hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list); } static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) { sock_hold(sk); __sk_nulls_add_node_rcu(sk, list); } static inline void __sk_del_bind_node(struct sock *sk) { __hlist_del(&sk->sk_bind_node); } static inline void sk_add_bind_node(struct sock *sk, struct hlist_head *list) { hlist_add_head(&sk->sk_bind_node, list); } #define sk_for_each(__sk, list) \ hlist_for_each_entry(__sk, list, sk_node) #define sk_for_each_rcu(__sk, list) \ hlist_for_each_entry_rcu(__sk, list, sk_node) #define sk_nulls_for_each(__sk, node, list) \ hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node) #define sk_nulls_for_each_rcu(__sk, node, list) \ hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node) #define sk_for_each_from(__sk) \ hlist_for_each_entry_from(__sk, sk_node) #define sk_nulls_for_each_from(__sk, node) \ if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \ hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node) #define sk_for_each_safe(__sk, tmp, list) \ hlist_for_each_entry_safe(__sk, tmp, list, sk_node) #define sk_for_each_bound(__sk, list) \ hlist_for_each_entry(__sk, list, sk_bind_node) /** * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset * @tpos: the type * to use as a loop cursor. * @pos: the &struct hlist_node to use as a loop cursor. * @head: the head for your list. * @offset: offset of hlist_node within the struct. * */ #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \ for (pos = rcu_dereference(hlist_first_rcu(head)); \ pos != NULL && \ ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \ pos = rcu_dereference(hlist_next_rcu(pos))) static inline struct user_namespace *sk_user_ns(struct sock *sk) { /* Careful only use this in a context where these parameters * can not change and must all be valid, such as recvmsg from * userspace. */ return sk->sk_socket->file->f_cred->user_ns; } /* Sock flags */ enum sock_flags { SOCK_DEAD, SOCK_DONE, SOCK_URGINLINE, SOCK_KEEPOPEN, SOCK_LINGER, SOCK_DESTROY, SOCK_BROADCAST, SOCK_TIMESTAMP, SOCK_ZAPPED, SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ SOCK_DBG, /* %SO_DEBUG setting */ SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */ SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ SOCK_MEMALLOC, /* VM depends on this socket for swapping */ SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */ SOCK_FASYNC, /* fasync() active */ SOCK_RXQ_OVFL, SOCK_ZEROCOPY, /* buffers from userspace */ SOCK_WIFI_STATUS, /* push wifi status to userspace */ SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS. * Will use last 4 bytes of packet sent from * user-space instead. */ SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */ SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */ SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */ SOCK_TXTIME, SOCK_XDP, /* XDP is attached */ SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */ }; #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)) static inline void sock_copy_flags(struct sock *nsk, struct sock *osk) { nsk->sk_flags = osk->sk_flags; } static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) { __set_bit(flag, &sk->sk_flags); } static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) { __clear_bit(flag, &sk->sk_flags); } static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit, int valbool) { if (valbool) sock_set_flag(sk, bit); else sock_reset_flag(sk, bit); } static inline bool sock_flag(const struct sock *sk, enum sock_flags flag) { return test_bit(flag, &sk->sk_flags); } #ifdef CONFIG_NET DECLARE_STATIC_KEY_FALSE(memalloc_socks_key); static inline int sk_memalloc_socks(void) { return static_branch_unlikely(&memalloc_socks_key); } void __receive_sock(struct file *file); #else static inline int sk_memalloc_socks(void) { return 0; } static inline void __receive_sock(struct file *file) { } #endif static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask) { return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC); } static inline void sk_acceptq_removed(struct sock *sk) { WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1); } static inline void sk_acceptq_added(struct sock *sk) { WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1); } static inline bool sk_acceptq_is_full(const struct sock *sk) { return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog); } /* * Compute minimal free write space needed to queue new packets. */ static inline int sk_stream_min_wspace(const struct sock *sk) { return READ_ONCE(sk->sk_wmem_queued) >> 1; } static inline int sk_stream_wspace(const struct sock *sk) { return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued); } static inline void sk_wmem_queued_add(struct sock *sk, int val) { WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val); } void sk_stream_write_space(struct sock *sk); /* OOB backlog add */ static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb) { /* dont let skb dst not refcounted, we are going to leave rcu lock */ skb_dst_force(skb); if (!sk->sk_backlog.tail) WRITE_ONCE(sk->sk_backlog.head, skb); else sk->sk_backlog.tail->next = skb; WRITE_ONCE(sk->sk_backlog.tail, skb); skb->next = NULL; } /* * Take into account size of receive queue and backlog queue * Do not take into account this skb truesize, * to allow even a single big packet to come. */ static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit) { unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc); return qsize > limit; } /* The per-socket spinlock must be held here. */ static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb, unsigned int limit) { if (sk_rcvqueues_full(sk, limit)) return -ENOBUFS; /* * If the skb was allocated from pfmemalloc reserves, only * allow SOCK_MEMALLOC sockets to use it as this socket is * helping free memory */ if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) return -ENOMEM; __sk_add_backlog(sk, skb); sk->sk_backlog.len += skb->truesize; return 0; } int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb); static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) { if (sk_memalloc_socks() && skb_pfmemalloc(skb)) return __sk_backlog_rcv(sk, skb); return sk->sk_backlog_rcv(sk, skb); } static inline void sk_incoming_cpu_update(struct sock *sk) { int cpu = raw_smp_processor_id(); if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu)) WRITE_ONCE(sk->sk_incoming_cpu, cpu); } static inline void sock_rps_record_flow_hash(__u32 hash) { #ifdef CONFIG_RPS struct rps_sock_flow_table *sock_flow_table; rcu_read_lock(); sock_flow_table = rcu_dereference(rps_sock_flow_table); rps_record_sock_flow(sock_flow_table, hash); rcu_read_unlock(); #endif } static inline void sock_rps_record_flow(const struct sock *sk) { #ifdef CONFIG_RPS if (static_branch_unlikely(&rfs_needed)) { /* Reading sk->sk_rxhash might incur an expensive cache line * miss. * * TCP_ESTABLISHED does cover almost all states where RFS * might be useful, and is cheaper [1] than testing : * IPv4: inet_sk(sk)->inet_daddr * IPv6: ipv6_addr_any(&sk->sk_v6_daddr) * OR an additional socket flag * [1] : sk_state and sk_prot are in the same cache line. */ if (sk->sk_state == TCP_ESTABLISHED) sock_rps_record_flow_hash(sk->sk_rxhash); } #endif } static inline void sock_rps_save_rxhash(struct sock *sk, const struct sk_buff *skb) { #ifdef CONFIG_RPS if (unlikely(sk->sk_rxhash != skb->hash)) sk->sk_rxhash = skb->hash; #endif } static inline void sock_rps_reset_rxhash(struct sock *sk) { #ifdef CONFIG_RPS sk->sk_rxhash = 0; #endif } #define sk_wait_event(__sk, __timeo, __condition, __wait) \ ({ int __rc; \ release_sock(__sk); \ __rc = __condition; \ if (!__rc) { \ *(__timeo) = wait_woken(__wait, \ TASK_INTERRUPTIBLE, \ *(__timeo)); \ } \ sched_annotate_sleep(); \ lock_sock(__sk); \ __rc = __condition; \ __rc; \ }) int sk_stream_wait_connect(struct sock *sk, long *timeo_p); int sk_stream_wait_memory(struct sock *sk, long *timeo_p); void sk_stream_wait_close(struct sock *sk, long timeo_p); int sk_stream_error(struct sock *sk, int flags, int err); void sk_stream_kill_queues(struct sock *sk); void sk_set_memalloc(struct sock *sk); void sk_clear_memalloc(struct sock *sk); void __sk_flush_backlog(struct sock *sk); static inline bool sk_flush_backlog(struct sock *sk) { if (unlikely(READ_ONCE(sk->sk_backlog.tail))) { __sk_flush_backlog(sk); return true; } return false; } int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb); struct request_sock_ops; struct timewait_sock_ops; struct inet_hashinfo; struct raw_hashinfo; struct smc_hashinfo; struct module; /* * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes * un-modified. Special care is taken when initializing object to zero. */ static inline void sk_prot_clear_nulls(struct sock *sk, int size) { if (offsetof(struct sock, sk_node.next) != 0) memset(sk, 0, offsetof(struct sock, sk_node.next)); memset(&sk->sk_node.pprev, 0, size - offsetof(struct sock, sk_node.pprev)); } /* Networking protocol blocks we attach to sockets. * socket layer -> transport layer interface */ struct proto { void (*close)(struct sock *sk, long timeout); int (*pre_connect)(struct sock *sk, struct sockaddr *uaddr, int addr_len); int (*connect)(struct sock *sk, struct sockaddr *uaddr, int addr_len); int (*disconnect)(struct sock *sk, int flags); struct sock * (*accept)(struct sock *sk, int flags, int *err, bool kern); int (*ioctl)(struct sock *sk, int cmd, unsigned long arg); int (*init)(struct sock *sk); void (*destroy)(struct sock *sk); void (*shutdown)(struct sock *sk, int how); int (*setsockopt)(struct sock *sk, int level, int optname, sockptr_t optval, unsigned int optlen); int (*getsockopt)(struct sock *sk, int level, int optname, char __user *optval, int __user *option); void (*keepalive)(struct sock *sk, int valbool); #ifdef CONFIG_COMPAT int (*compat_ioctl)(struct sock *sk, unsigned int cmd, unsigned long arg); #endif int (*sendmsg)(struct sock *sk, struct msghdr *msg, size_t len); int (*recvmsg)(struct sock *sk, struct msghdr *msg, size_t len, int noblock, int flags, int *addr_len); int (*sendpage)(struct sock *sk, struct page *page, int offset, size_t size, int flags); int (*bind)(struct sock *sk, struct sockaddr *addr, int addr_len); int (*bind_add)(struct sock *sk, struct sockaddr *addr, int addr_len); int (*backlog_rcv) (struct sock *sk, struct sk_buff *skb); void (*release_cb)(struct sock *sk); /* Keeping track of sk's, looking them up, and port selection methods. */ int (*hash)(struct sock *sk); void (*unhash)(struct sock *sk); void (*rehash)(struct sock *sk); int (*get_port)(struct sock *sk, unsigned short snum); /* Keeping track of sockets in use */ #ifdef CONFIG_PROC_FS unsigned int inuse_idx; #endif bool (*stream_memory_free)(const struct sock *sk, int wake); bool (*stream_memory_read)(const struct sock *sk); /* Memory pressure */ void (*enter_memory_pressure)(struct sock *sk); void (*leave_memory_pressure)(struct sock *sk); atomic_long_t *memory_allocated; /* Current allocated memory. */ struct percpu_counter *sockets_allocated; /* Current number of sockets. */ /* * Pressure flag: try to collapse. * Technical note: it is used by multiple contexts non atomically. * All the __sk_mem_schedule() is of this nature: accounting * is strict, actions are advisory and have some latency. */ unsigned long *memory_pressure; long *sysctl_mem; int *sysctl_wmem; int *sysctl_rmem; u32 sysctl_wmem_offset; u32 sysctl_rmem_offset; int max_header; bool no_autobind; struct kmem_cache *slab; unsigned int obj_size; slab_flags_t slab_flags; unsigned int useroffset; /* Usercopy region offset */ unsigned int usersize; /* Usercopy region size */ unsigned int __percpu *orphan_count; struct request_sock_ops *rsk_prot; struct timewait_sock_ops *twsk_prot; union { struct inet_hashinfo *hashinfo; struct udp_table *udp_table; struct raw_hashinfo *raw_hash; struct smc_hashinfo *smc_hash; } h; struct module *owner; char name[32]; struct list_head node; #ifdef SOCK_REFCNT_DEBUG atomic_t socks; #endif int (*diag_destroy)(struct sock *sk, int err); } __randomize_layout; int proto_register(struct proto *prot, int alloc_slab); void proto_unregister(struct proto *prot); int sock_load_diag_module(int family, int protocol); #ifdef SOCK_REFCNT_DEBUG static inline void sk_refcnt_debug_inc(struct sock *sk) { atomic_inc(&sk->sk_prot->socks); } static inline void sk_refcnt_debug_dec(struct sock *sk) { atomic_dec(&sk->sk_prot->socks); printk(KERN_DEBUG "%s socket %p released, %d are still alive\n", sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks)); } static inline void sk_refcnt_debug_release(const struct sock *sk) { if (refcount_read(&sk->sk_refcnt) != 1) printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n", sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt)); } #else /* SOCK_REFCNT_DEBUG */ #define sk_refcnt_debug_inc(sk) do { } while (0) #define sk_refcnt_debug_dec(sk) do { } while (0) #define sk_refcnt_debug_release(sk) do { } while (0) #endif /* SOCK_REFCNT_DEBUG */ static inline bool __sk_stream_memory_free(const struct sock *sk, int wake) { if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf)) return false; return sk->sk_prot->stream_memory_free ? sk->sk_prot->stream_memory_free(sk, wake) : true; } static inline bool sk_stream_memory_free(const struct sock *sk) { return __sk_stream_memory_free(sk, 0); } static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake) { return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) && __sk_stream_memory_free(sk, wake); } static inline bool sk_stream_is_writeable(const struct sock *sk) { return __sk_stream_is_writeable(sk, 0); } static inline int sk_under_cgroup_hierarchy(struct sock *sk, struct cgroup *ancestor) { #ifdef CONFIG_SOCK_CGROUP_DATA return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data), ancestor); #else return -ENOTSUPP; #endif } static inline bool sk_has_memory_pressure(const struct sock *sk) { return sk->sk_prot->memory_pressure != NULL; } static inline bool sk_under_memory_pressure(const struct sock *sk) { if (!sk->sk_prot->memory_pressure) return false; if (mem_cgroup_sockets_enabled && sk->sk_memcg && mem_cgroup_under_socket_pressure(sk->sk_memcg)) return true; return !!*sk->sk_prot->memory_pressure; } static inline long sk_memory_allocated(const struct sock *sk) { return atomic_long_read(sk->sk_prot->memory_allocated); } static inline long sk_memory_allocated_add(struct sock *sk, int amt) { return atomic_long_add_return(amt, sk->sk_prot->memory_allocated); } static inline void sk_memory_allocated_sub(struct sock *sk, int amt) { atomic_long_sub(amt, sk->sk_prot->memory_allocated); } static inline void sk_sockets_allocated_dec(struct sock *sk) { percpu_counter_dec(sk->sk_prot->sockets_allocated); } static inline void sk_sockets_allocated_inc(struct sock *sk) { percpu_counter_inc(sk->sk_prot->sockets_allocated); } static inline u64 sk_sockets_allocated_read_positive(struct sock *sk) { return percpu_counter_read_positive(sk->sk_prot->sockets_allocated); } static inline int proto_sockets_allocated_sum_positive(struct proto *prot) { return percpu_counter_sum_positive(prot->sockets_allocated); } static inline long proto_memory_allocated(struct proto *prot) { return atomic_long_read(prot->memory_allocated); } static inline bool proto_memory_pressure(struct proto *prot) { if (!prot->memory_pressure) return false; return !!*prot->memory_pressure; } #ifdef CONFIG_PROC_FS /* Called with local bh disabled */ void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc); int sock_prot_inuse_get(struct net *net, struct proto *proto); int sock_inuse_get(struct net *net); #else static inline void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc) { } #endif /* With per-bucket locks this operation is not-atomic, so that * this version is not worse. */ static inline int __sk_prot_rehash(struct sock *sk) { sk->sk_prot->unhash(sk); return sk->sk_prot->hash(sk); } /* About 10 seconds */ #define SOCK_DESTROY_TIME (10*HZ) /* Sockets 0-1023 can't be bound to unless you are superuser */ #define PROT_SOCK 1024 #define SHUTDOWN_MASK 3 #define RCV_SHUTDOWN 1 #define SEND_SHUTDOWN 2 #define SOCK_SNDBUF_LOCK 1 #define SOCK_RCVBUF_LOCK 2 #define SOCK_BINDADDR_LOCK 4 #define SOCK_BINDPORT_LOCK 8 struct socket_alloc { struct socket socket; struct inode vfs_inode; }; static inline struct socket *SOCKET_I(struct inode *inode) { return &container_of(inode, struct socket_alloc, vfs_inode)->socket; } static inline struct inode *SOCK_INODE(struct socket *socket) { return &container_of(socket, struct socket_alloc, socket)->vfs_inode; } /* * Functions for memory accounting */ int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind); int __sk_mem_schedule(struct sock *sk, int size, int kind); void __sk_mem_reduce_allocated(struct sock *sk, int amount); void __sk_mem_reclaim(struct sock *sk, int amount); /* We used to have PAGE_SIZE here, but systems with 64KB pages * do not necessarily have 16x time more memory than 4KB ones. */ #define SK_MEM_QUANTUM 4096 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM) #define SK_MEM_SEND 0 #define SK_MEM_RECV 1 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */ static inline long sk_prot_mem_limits(const struct sock *sk, int index) { long val = sk->sk_prot->sysctl_mem[index]; #if PAGE_SIZE > SK_MEM_QUANTUM val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT; #elif PAGE_SIZE < SK_MEM_QUANTUM val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT; #endif return val; } static inline int sk_mem_pages(int amt) { return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT; } static inline bool sk_has_account(struct sock *sk) { /* return true if protocol supports memory accounting */ return !!sk->sk_prot->memory_allocated; } static inline bool sk_wmem_schedule(struct sock *sk, int size) { if (!sk_has_account(sk)) return true; return size <= sk->sk_forward_alloc || __sk_mem_schedule(sk, size, SK_MEM_SEND); } static inline bool sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size) { if (!sk_has_account(sk)) return true; return size <= sk->sk_forward_alloc || __sk_mem_schedule(sk, size, SK_MEM_RECV) || skb_pfmemalloc(skb); } static inline void sk_mem_reclaim(struct sock *sk) { if (!sk_has_account(sk)) return; if (sk->sk_forward_alloc >= SK_MEM_QUANTUM) __sk_mem_reclaim(sk, sk->sk_forward_alloc); } static inline void sk_mem_reclaim_partial(struct sock *sk) { if (!sk_has_account(sk)) return; if (sk->sk_forward_alloc > SK_MEM_QUANTUM) __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1); } static inline void sk_mem_charge(struct sock *sk, int size) { if (!sk_has_account(sk)) return; sk->sk_forward_alloc -= size; } static inline void sk_mem_uncharge(struct sock *sk, int size) { if (!sk_has_account(sk)) return; sk->sk_forward_alloc += size; /* Avoid a possible overflow. * TCP send queues can make this happen, if sk_mem_reclaim() * is not called and more than 2 GBytes are released at once. * * If we reach 2 MBytes, reclaim 1 MBytes right now, there is * no need to hold that much forward allocation anyway. */ if (unlikely(sk->sk_forward_alloc >= 1 << 21)) __sk_mem_reclaim(sk, 1 << 20); } DECLARE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key); static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb) { sk_wmem_queued_add(sk, -skb->truesize); sk_mem_uncharge(sk, skb->truesize); if (static_branch_unlikely(&tcp_tx_skb_cache_key) && !sk->sk_tx_skb_cache && !skb_cloned(skb)) { skb_ext_reset(skb); skb_zcopy_clear(skb, true); sk->sk_tx_skb_cache = skb; return; } __kfree_skb(skb); } static inline void sock_release_ownership(struct sock *sk) { if (sk->sk_lock.owned) { sk->sk_lock.owned = 0; /* The sk_lock has mutex_unlock() semantics: */ mutex_release(&sk->sk_lock.dep_map, _RET_IP_); } } /* * Macro so as to not evaluate some arguments when * lockdep is not enabled. * * Mark both the sk_lock and the sk_lock.slock as a * per-address-family lock class. */ #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \ do { \ sk->sk_lock.owned = 0; \ init_waitqueue_head(&sk->sk_lock.wq); \ spin_lock_init(&(sk)->sk_lock.slock); \ debug_check_no_locks_freed((void *)&(sk)->sk_lock, \ sizeof((sk)->sk_lock)); \ lockdep_set_class_and_name(&(sk)->sk_lock.slock, \ (skey), (sname)); \ lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \ } while (0) #ifdef CONFIG_LOCKDEP static inline bool lockdep_sock_is_held(const struct sock *sk) { return lockdep_is_held(&sk->sk_lock) || lockdep_is_held(&sk->sk_lock.slock); } #endif void lock_sock_nested(struct sock *sk, int subclass); static inline void lock_sock(struct sock *sk) { lock_sock_nested(sk, 0); } void __release_sock(struct sock *sk); void release_sock(struct sock *sk); /* BH context may only use the following locking interface. */ #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) #define bh_lock_sock_nested(__sk) \ spin_lock_nested(&((__sk)->sk_lock.slock), \ SINGLE_DEPTH_NESTING) #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) bool lock_sock_fast(struct sock *sk); /** * unlock_sock_fast - complement of lock_sock_fast * @sk: socket * @slow: slow mode * * fast unlock socket for user context. * If slow mode is on, we call regular release_sock() */ static inline void unlock_sock_fast(struct sock *sk, bool slow) { if (slow) release_sock(sk); else spin_unlock_bh(&sk->sk_lock.slock); } /* Used by processes to "lock" a socket state, so that * interrupts and bottom half handlers won't change it * from under us. It essentially blocks any incoming * packets, so that we won't get any new data or any * packets that change the state of the socket. * * While locked, BH processing will add new packets to * the backlog queue. This queue is processed by the * owner of the socket lock right before it is released. * * Since ~2.3.5 it is also exclusive sleep lock serializing * accesses from user process context. */ static inline void sock_owned_by_me(const struct sock *sk) { #ifdef CONFIG_LOCKDEP WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks); #endif } static inline bool sock_owned_by_user(const struct sock *sk) { sock_owned_by_me(sk); return sk->sk_lock.owned; } static inline bool sock_owned_by_user_nocheck(const struct sock *sk) { return sk->sk_lock.owned; } /* no reclassification while locks are held */ static inline bool sock_allow_reclassification(const struct sock *csk) { struct sock *sk = (struct sock *)csk; return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock); } struct sock *sk_alloc(struct net *net, int family, gfp_t priority, struct proto *prot, int kern); void sk_free(struct sock *sk); void sk_destruct(struct sock *sk); struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority); void sk_free_unlock_clone(struct sock *sk); struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, gfp_t priority); void __sock_wfree(struct sk_buff *skb); void sock_wfree(struct sk_buff *skb); struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, gfp_t priority); void skb_orphan_partial(struct sk_buff *skb); void sock_rfree(struct sk_buff *skb); void sock_efree(struct sk_buff *skb); #ifdef CONFIG_INET void sock_edemux(struct sk_buff *skb); void sock_pfree(struct sk_buff *skb); #else #define sock_edemux sock_efree #endif int sock_setsockopt(struct socket *sock, int level, int op, sockptr_t optval, unsigned int optlen); int sock_getsockopt(struct socket *sock, int level, int op, char __user *optval, int __user *optlen); int sock_gettstamp(struct socket *sock, void __user *userstamp, bool timeval, bool time32); struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, int noblock, int *errcode); struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, unsigned long data_len, int noblock, int *errcode, int max_page_order); void *sock_kmalloc(struct sock *sk, int size, gfp_t priority); void sock_kfree_s(struct sock *sk, void *mem, int size); void sock_kzfree_s(struct sock *sk, void *mem, int size); void sk_send_sigurg(struct sock *sk); struct sockcm_cookie { u64 transmit_time; u32 mark; u16 tsflags; }; static inline void sockcm_init(struct sockcm_cookie *sockc, const struct sock *sk) { *sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags }; } int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg, struct sockcm_cookie *sockc); int sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct sockcm_cookie *sockc); /* * Functions to fill in entries in struct proto_ops when a protocol * does not implement a particular function. */ int sock_no_bind(struct socket *, struct sockaddr *, int); int sock_no_connect(struct socket *, struct sockaddr *, int, int); int sock_no_socketpair(struct socket *, struct socket *); int sock_no_accept(struct socket *, struct socket *, int, bool); int sock_no_getname(struct socket *, struct sockaddr *, int); int sock_no_ioctl(struct socket *, unsigned int, unsigned long); int sock_no_listen(struct socket *, int); int sock_no_shutdown(struct socket *, int); int sock_no_sendmsg(struct socket *, struct msghdr *, size_t); int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len); int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int); int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma); ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags); ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page, int offset, size_t size, int flags); /* * Functions to fill in entries in struct proto_ops when a protocol * uses the inet style. */ int sock_common_getsockopt(struct socket *sock, int level, int optname, char __user *optval, int __user *optlen); int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, int flags); int sock_common_setsockopt(struct socket *sock, int level, int optname, sockptr_t optval, unsigned int optlen); void sk_common_release(struct sock *sk); /* * Default socket callbacks and setup code */ /* Initialise core socket variables */ void sock_init_data(struct socket *sock, struct sock *sk); /* * Socket reference counting postulates. * * * Each user of socket SHOULD hold a reference count. * * Each access point to socket (an hash table bucket, reference from a list, * running timer, skb in flight MUST hold a reference count. * * When reference count hits 0, it means it will never increase back. * * When reference count hits 0, it means that no references from * outside exist to this socket and current process on current CPU * is last user and may/should destroy this socket. * * sk_free is called from any context: process, BH, IRQ. When * it is called, socket has no references from outside -> sk_free * may release descendant resources allocated by the socket, but * to the time when it is called, socket is NOT referenced by any * hash tables, lists etc. * * Packets, delivered from outside (from network or from another process) * and enqueued on receive/error queues SHOULD NOT grab reference count, * when they sit in queue. Otherwise, packets will leak to hole, when * socket is looked up by one cpu and unhasing is made by another CPU. * It is true for udp/raw, netlink (leak to receive and error queues), tcp * (leak to backlog). Packet socket does all the processing inside * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets * use separate SMP lock, so that they are prone too. */ /* Ungrab socket and destroy it, if it was the last reference. */ static inline void sock_put(struct sock *sk) { if (refcount_dec_and_test(&sk->sk_refcnt)) sk_free(sk); } /* Generic version of sock_put(), dealing with all sockets * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...) */ void sock_gen_put(struct sock *sk); int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested, unsigned int trim_cap, bool refcounted); static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested) { return __sk_receive_skb(sk, skb, nested, 1, true); } static inline void sk_tx_queue_set(struct sock *sk, int tx_queue) { /* sk_tx_queue_mapping accept only upto a 16-bit value */ if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX)) return; sk->sk_tx_queue_mapping = tx_queue; } #define NO_QUEUE_MAPPING USHRT_MAX static inline void sk_tx_queue_clear(struct sock *sk) { sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING; } static inline int sk_tx_queue_get(const struct sock *sk) { if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING) return sk->sk_tx_queue_mapping; return -1; } static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb) { #ifdef CONFIG_XPS if (skb_rx_queue_recorded(skb)) { u16 rx_queue = skb_get_rx_queue(skb); if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING)) return; sk->sk_rx_queue_mapping = rx_queue; } #endif } static inline void sk_rx_queue_clear(struct sock *sk) { #ifdef CONFIG_XPS sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING; #endif } #ifdef CONFIG_XPS static inline int sk_rx_queue_get(const struct sock *sk) { if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING) return sk->sk_rx_queue_mapping; return -1; } #endif static inline void sk_set_socket(struct sock *sk, struct socket *sock) { sk->sk_socket = sock; } static inline wait_queue_head_t *sk_sleep(struct sock *sk) { BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0); return &rcu_dereference_raw(sk->sk_wq)->wait; } /* Detach socket from process context. * Announce socket dead, detach it from wait queue and inode. * Note that parent inode held reference count on this struct sock, * we do not release it in this function, because protocol * probably wants some additional cleanups or even continuing * to work with this socket (TCP). */ static inline void sock_orphan(struct sock *sk) { write_lock_bh(&sk->sk_callback_lock); sock_set_flag(sk, SOCK_DEAD); sk_set_socket(sk, NULL); sk->sk_wq = NULL; write_unlock_bh(&sk->sk_callback_lock); } static inline void sock_graft(struct sock *sk, struct socket *parent) { WARN_ON(parent->sk); write_lock_bh(&sk->sk_callback_lock); rcu_assign_pointer(sk->sk_wq, &parent->wq); parent->sk = sk; sk_set_socket(sk, parent); sk->sk_uid = SOCK_INODE(parent)->i_uid; security_sock_graft(sk, parent); write_unlock_bh(&sk->sk_callback_lock); } kuid_t sock_i_uid(struct sock *sk); unsigned long sock_i_ino(struct sock *sk); static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk) { return sk ? sk->sk_uid : make_kuid(net->user_ns, 0); } static inline u32 net_tx_rndhash(void) { u32 v = prandom_u32(); return v ?: 1; } static inline void sk_set_txhash(struct sock *sk) { /* This pairs with READ_ONCE() in skb_set_hash_from_sk() */ WRITE_ONCE(sk->sk_txhash, net_tx_rndhash()); } static inline bool sk_rethink_txhash(struct sock *sk) { if (sk->sk_txhash) { sk_set_txhash(sk); return true; } return false; } static inline struct dst_entry * __sk_dst_get(struct sock *sk) { return rcu_dereference_check(sk->sk_dst_cache, lockdep_sock_is_held(sk)); } static inline struct dst_entry * sk_dst_get(struct sock *sk) { struct dst_entry *dst; rcu_read_lock(); dst = rcu_dereference(sk->sk_dst_cache); if (dst && !atomic_inc_not_zero(&dst->__refcnt)) dst = NULL; rcu_read_unlock(); return dst; } static inline void __dst_negative_advice(struct sock *sk) { struct dst_entry *ndst, *dst = __sk_dst_get(sk); if (dst && dst->ops->negative_advice) { ndst = dst->ops->negative_advice(dst); if (ndst != dst) { rcu_assign_pointer(sk->sk_dst_cache, ndst); sk_tx_queue_clear(sk); sk->sk_dst_pending_confirm = 0; } } } static inline void dst_negative_advice(struct sock *sk) { sk_rethink_txhash(sk); __dst_negative_advice(sk); } static inline void __sk_dst_set(struct sock *sk, struct dst_entry *dst) { struct dst_entry *old_dst; sk_tx_queue_clear(sk); sk->sk_dst_pending_confirm = 0; old_dst = rcu_dereference_protected(sk->sk_dst_cache, lockdep_sock_is_held(sk)); rcu_assign_pointer(sk->sk_dst_cache, dst); dst_release(old_dst); } static inline void sk_dst_set(struct sock *sk, struct dst_entry *dst) { struct dst_entry *old_dst; sk_tx_queue_clear(sk); sk->sk_dst_pending_confirm = 0; old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst); dst_release(old_dst); } static inline void __sk_dst_reset(struct sock *sk) { __sk_dst_set(sk, NULL); } static inline void sk_dst_reset(struct sock *sk) { sk_dst_set(sk, NULL); } struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); static inline void sk_dst_confirm(struct sock *sk) { if (!READ_ONCE(sk->sk_dst_pending_confirm)) WRITE_ONCE(sk->sk_dst_pending_confirm, 1); } static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n) { if (skb_get_dst_pending_confirm(skb)) { struct sock *sk = skb->sk; unsigned long now = jiffies; /* avoid dirtying neighbour */ if (READ_ONCE(n->confirmed) != now) WRITE_ONCE(n->confirmed, now); if (sk && READ_ONCE(sk->sk_dst_pending_confirm)) WRITE_ONCE(sk->sk_dst_pending_confirm, 0); } } bool sk_mc_loop(struct sock *sk); static inline bool sk_can_gso(const struct sock *sk) { return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type); } void sk_setup_caps(struct sock *sk, struct dst_entry *dst); static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags) { sk->sk_route_nocaps |= flags; sk->sk_route_caps &= ~flags; } static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb, struct iov_iter *from, char *to, int copy, int offset) { if (skb->ip_summed == CHECKSUM_NONE) { __wsum csum = 0; if (!csum_and_copy_from_iter_full(to, copy, &csum, from)) return -EFAULT; skb->csum = csum_block_add(skb->csum, csum, offset); } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { if (!copy_from_iter_full_nocache(to, copy, from)) return -EFAULT; } else if (!copy_from_iter_full(to, copy, from)) return -EFAULT; return 0; } static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb, struct iov_iter *from, int copy) { int err, offset = skb->len; err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy), copy, offset); if (err) __skb_trim(skb, offset); return err; } static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from, struct sk_buff *skb, struct page *page, int off, int copy) { int err; err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off, copy, skb->len); if (err) return err; skb->len += copy; skb->data_len += copy; skb->truesize += copy; sk_wmem_queued_add(sk, copy); sk_mem_charge(sk, copy); return 0; } /** * sk_wmem_alloc_get - returns write allocations * @sk: socket * * Return: sk_wmem_alloc minus initial offset of one */ static inline int sk_wmem_alloc_get(const struct sock *sk) { return refcount_read(&sk->sk_wmem_alloc) - 1; } /** * sk_rmem_alloc_get - returns read allocations * @sk: socket * * Return: sk_rmem_alloc */ static inline int sk_rmem_alloc_get(const struct sock *sk) { return atomic_read(&sk->sk_rmem_alloc); } /** * sk_has_allocations - check if allocations are outstanding * @sk: socket * * Return: true if socket has write or read allocations */ static inline bool sk_has_allocations(const struct sock *sk) { return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk); } /** * skwq_has_sleeper - check if there are any waiting processes * @wq: struct socket_wq * * Return: true if socket_wq has waiting processes * * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory * barrier call. They were added due to the race found within the tcp code. * * Consider following tcp code paths:: * * CPU1 CPU2 * sys_select receive packet * ... ... * __add_wait_queue update tp->rcv_nxt * ... ... * tp->rcv_nxt check sock_def_readable * ... { * schedule rcu_read_lock(); * wq = rcu_dereference(sk->sk_wq); * if (wq && waitqueue_active(&wq->wait)) * wake_up_interruptible(&wq->wait) * ... * } * * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1 * could then endup calling schedule and sleep forever if there are no more * data on the socket. * */ static inline bool skwq_has_sleeper(struct socket_wq *wq) { return wq && wq_has_sleeper(&wq->wait); } /** * sock_poll_wait - place memory barrier behind the poll_wait call. * @filp: file * @sock: socket to wait on * @p: poll_table * * See the comments in the wq_has_sleeper function. */ static inline void sock_poll_wait(struct file *filp, struct socket *sock, poll_table *p) { if (!poll_does_not_wait(p)) { poll_wait(filp, &sock->wq.wait, p); /* We need to be sure we are in sync with the * socket flags modification. * * This memory barrier is paired in the wq_has_sleeper. */ smp_mb(); } } static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk) { /* This pairs with WRITE_ONCE() in sk_set_txhash() */ u32 txhash = READ_ONCE(sk->sk_txhash); if (txhash) { skb->l4_hash = 1; skb->hash = txhash; } } void skb_set_owner_w(struct sk_buff *skb, struct sock *sk); /* * Queue a received datagram if it will fit. Stream and sequenced * protocols can't normally use this as they need to fit buffers in * and play with them. * * Inlined as it's very short and called for pretty much every * packet ever received. */ static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) { skb_orphan(skb); skb->sk = sk; skb->destructor = sock_rfree; atomic_add(skb->truesize, &sk->sk_rmem_alloc); sk_mem_charge(sk, skb->truesize); } static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk) { if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) { skb_orphan(skb); skb->destructor = sock_efree; skb->sk = sk; return true; } return false; } void sk_reset_timer(struct sock *sk, struct timer_list *timer, unsigned long expires); void sk_stop_timer(struct sock *sk, struct timer_list *timer); void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer); int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue, struct sk_buff *skb, unsigned int flags, void (*destructor)(struct sock *sk, struct sk_buff *skb)); int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb); struct sk_buff *sock_dequeue_err_skb(struct sock *sk); /* * Recover an error report and clear atomically */ static inline int sock_error(struct sock *sk) { int err; /* Avoid an atomic operation for the common case. * This is racy since another cpu/thread can change sk_err under us. */ if (likely(data_race(!sk->sk_err))) return 0; err = xchg(&sk->sk_err, 0); return -err; } static inline unsigned long sock_wspace(struct sock *sk) { int amt = 0; if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc); if (amt < 0) amt = 0; } return amt; } /* Note: * We use sk->sk_wq_raw, from contexts knowing this * pointer is not NULL and cannot disappear/change. */ static inline void sk_set_bit(int nr, struct sock *sk) { if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && !sock_flag(sk, SOCK_FASYNC)) return; set_bit(nr, &sk->sk_wq_raw->flags); } static inline void sk_clear_bit(int nr, struct sock *sk) { if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && !sock_flag(sk, SOCK_FASYNC)) return; clear_bit(nr, &sk->sk_wq_raw->flags); } static inline void sk_wake_async(const struct sock *sk, int how, int band) { if (sock_flag(sk, SOCK_FASYNC)) { rcu_read_lock(); sock_wake_async(rcu_dereference(sk->sk_wq), how, band); rcu_read_unlock(); } } /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak. * Note: for send buffers, TCP works better if we can build two skbs at * minimum. */ #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff))) #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2) #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE static inline void sk_stream_moderate_sndbuf(struct sock *sk) { u32 val; if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) return; val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1); WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF)); } struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, bool force_schedule); /** * sk_page_frag - return an appropriate page_frag * @sk: socket * * Use the per task page_frag instead of the per socket one for * optimization when we know that we're in process context and own * everything that's associated with %current. * * Both direct reclaim and page faults can nest inside other * socket operations and end up recursing into sk_page_frag() * while it's already in use: explicitly avoid task page_frag * usage if the caller is potentially doing any of them. * This assumes that page fault handlers use the GFP_NOFS flags. * * Return: a per task page_frag if context allows that, * otherwise a per socket one. */ static inline struct page_frag *sk_page_frag(struct sock *sk) { if ((sk->sk_allocation & (__GFP_DIRECT_RECLAIM | __GFP_MEMALLOC | __GFP_FS)) == (__GFP_DIRECT_RECLAIM | __GFP_FS)) return &current->task_frag; return &sk->sk_frag; } bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag); /* * Default write policy as shown to user space via poll/select/SIGIO */ static inline bool sock_writeable(const struct sock *sk) { return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1); } static inline gfp_t gfp_any(void) { return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; } static inline long sock_rcvtimeo(const struct sock *sk, bool noblock) { return noblock ? 0 : sk->sk_rcvtimeo; } static inline long sock_sndtimeo(const struct sock *sk, bool noblock) { return noblock ? 0 : sk->sk_sndtimeo; } static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) { int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len); return v ?: 1; } /* Alas, with timeout socket operations are not restartable. * Compare this to poll(). */ static inline int sock_intr_errno(long timeo) { return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; } struct sock_skb_cb { u32 dropcount; }; /* Store sock_skb_cb at the end of skb->cb[] so protocol families * using skb->cb[] would keep using it directly and utilize its * alignement guarantee. */ #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \ sizeof(struct sock_skb_cb))) #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \ SOCK_SKB_CB_OFFSET)) #define sock_skb_cb_check_size(size) \ BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET) static inline void sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb) { SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ? atomic_read(&sk->sk_drops) : 0; } static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb) { int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs); atomic_add(segs, &sk->sk_drops); } static inline ktime_t sock_read_timestamp(struct sock *sk) { #if BITS_PER_LONG==32 unsigned int seq; ktime_t kt; do { seq = read_seqbegin(&sk->sk_stamp_seq); kt = sk->sk_stamp; } while (read_seqretry(&sk->sk_stamp_seq, seq)); return kt; #else return READ_ONCE(sk->sk_stamp); #endif } static inline void sock_write_timestamp(struct sock *sk, ktime_t kt) { #if BITS_PER_LONG==32 write_seqlock(&sk->sk_stamp_seq); sk->sk_stamp = kt; write_sequnlock(&sk->sk_stamp_seq); #else WRITE_ONCE(sk->sk_stamp, kt); #endif } void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb); void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, struct sk_buff *skb); static inline void sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) { ktime_t kt = skb->tstamp; struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb); /* * generate control messages if * - receive time stamping in software requested * - software time stamp available and wanted * - hardware time stamps available and wanted */ if (sock_flag(sk, SOCK_RCVTSTAMP) || (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) || (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) || (hwtstamps->hwtstamp && (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE))) __sock_recv_timestamp(msg, sk, skb); else sock_write_timestamp(sk, kt); if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid) __sock_recv_wifi_status(msg, sk, skb); } void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, struct sk_buff *skb); #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC) static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) { #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \ (1UL << SOCK_RCVTSTAMP)) #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \ SOF_TIMESTAMPING_RAW_HARDWARE) if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY) __sock_recv_ts_and_drops(msg, sk, skb); else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP))) sock_write_timestamp(sk, skb->tstamp); else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP)) sock_write_timestamp(sk, 0); } void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags); /** * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped * @sk: socket sending this packet * @tsflags: timestamping flags to use * @tx_flags: completed with instructions for time stamping * @tskey: filled in with next sk_tskey (not for TCP, which uses seqno) * * Note: callers should take care of initial ``*tx_flags`` value (usually 0) */ static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags, __u8 *tx_flags, __u32 *tskey) { if (unlikely(tsflags)) { __sock_tx_timestamp(tsflags, tx_flags); if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey && tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) *tskey = sk->sk_tskey++; } if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS))) *tx_flags |= SKBTX_WIFI_STATUS; } static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags, __u8 *tx_flags) { _sock_tx_timestamp(sk, tsflags, tx_flags, NULL); } static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags) { _sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags, &skb_shinfo(skb)->tskey); } DECLARE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key); /** * sk_eat_skb - Release a skb if it is no longer needed * @sk: socket to eat this skb from * @skb: socket buffer to eat * * This routine must be called with interrupts disabled or with the socket * locked so that the sk_buff queue operation is ok. */ static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb) { __skb_unlink(skb, &sk->sk_receive_queue); if (static_branch_unlikely(&tcp_rx_skb_cache_key) && !sk->sk_rx_skb_cache) { sk->sk_rx_skb_cache = skb; skb_orphan(skb); return; } __kfree_skb(skb); } static inline struct net *sock_net(const struct sock *sk) { return read_pnet(&sk->sk_net); } static inline void sock_net_set(struct sock *sk, struct net *net) { write_pnet(&sk->sk_net, net); } static inline bool skb_sk_is_prefetched(struct sk_buff *skb) { #ifdef CONFIG_INET return skb->destructor == sock_pfree; #else return false; #endif /* CONFIG_INET */ } /* This helper checks if a socket is a full socket, * ie _not_ a timewait or request socket. */ static inline bool sk_fullsock(const struct sock *sk) { return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV); } static inline bool sk_is_refcounted(struct sock *sk) { /* Only full sockets have sk->sk_flags. */ return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE); } /** * skb_steal_sock - steal a socket from an sk_buff * @skb: sk_buff to steal the socket from * @refcounted: is set to true if the socket is reference-counted */ static inline struct sock * skb_steal_sock(struct sk_buff *skb, bool *refcounted) { if (skb->sk) { struct sock *sk = skb->sk; *refcounted = true; if (skb_sk_is_prefetched(skb)) *refcounted = sk_is_refcounted(sk); skb->destructor = NULL; skb->sk = NULL; return sk; } *refcounted = false; return NULL; } /* Checks if this SKB belongs to an HW offloaded socket * and whether any SW fallbacks are required based on dev. * Check decrypted mark in case skb_orphan() cleared socket. */ static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb, struct net_device *dev) { #ifdef CONFIG_SOCK_VALIDATE_XMIT struct sock *sk = skb->sk; if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) { skb = sk->sk_validate_xmit_skb(sk, dev, skb); #ifdef CONFIG_TLS_DEVICE } else if (unlikely(skb->decrypted)) { pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n"); kfree_skb(skb); skb = NULL; #endif } #endif return skb; } /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV * SYNACK messages can be attached to either ones (depending on SYNCOOKIE) */ static inline bool sk_listener(const struct sock *sk) { return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV); } void sock_enable_timestamp(struct sock *sk, enum sock_flags flag); int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level, int type); bool sk_ns_capable(const struct sock *sk, struct user_namespace *user_ns, int cap); bool sk_capable(const struct sock *sk, int cap); bool sk_net_capable(const struct sock *sk, int cap); void sk_get_meminfo(const struct sock *sk, u32 *meminfo); /* Take into consideration the size of the struct sk_buff overhead in the * determination of these values, since that is non-constant across * platforms. This makes socket queueing behavior and performance * not depend upon such differences. */ #define _SK_MEM_PACKETS 256 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256) #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) extern __u32 sysctl_wmem_max; extern __u32 sysctl_rmem_max; extern int sysctl_tstamp_allow_data; extern int sysctl_optmem_max; extern __u32 sysctl_wmem_default; extern __u32 sysctl_rmem_default; DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key); static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto) { /* Does this proto have per netns sysctl_wmem ? */ if (proto->sysctl_wmem_offset) return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset); return *proto->sysctl_wmem; } static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto) { /* Does this proto have per netns sysctl_rmem ? */ if (proto->sysctl_rmem_offset) return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset); return *proto->sysctl_rmem; } /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10) * Some wifi drivers need to tweak it to get more chunks. * They can use this helper from their ndo_start_xmit() */ static inline void sk_pacing_shift_update(struct sock *sk, int val) { if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val) return; WRITE_ONCE(sk->sk_pacing_shift, val); } /* if a socket is bound to a device, check that the given device * index is either the same or that the socket is bound to an L3 * master device and the given device index is also enslaved to * that L3 master */ static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif) { int mdif; if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif) return true; mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif); if (mdif && mdif == sk->sk_bound_dev_if) return true; return false; } void sock_def_readable(struct sock *sk); int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk); void sock_enable_timestamps(struct sock *sk); void sock_no_linger(struct sock *sk); void sock_set_keepalive(struct sock *sk); void sock_set_priority(struct sock *sk, u32 priority); void sock_set_rcvbuf(struct sock *sk, int val); void sock_set_mark(struct sock *sk, u32 val); void sock_set_reuseaddr(struct sock *sk); void sock_set_reuseport(struct sock *sk); void sock_set_sndtimeo(struct sock *sk, s64 secs); int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len); #endif /* _SOCK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Definitions for the Interfaces handler. * * Version: @(#)dev.h 1.0.10 08/12/93 * * Authors: Ross Biro * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> * Corey Minyard <wf-rch!minyard@relay.EU.net> * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> * Alan Cox, <alan@lxorguk.ukuu.org.uk> * Bjorn Ekwall. <bj0rn@blox.se> * Pekka Riikonen <priikone@poseidon.pspt.fi> * * Moved to /usr/include/linux for NET3 */ #ifndef _LINUX_NETDEVICE_H #define _LINUX_NETDEVICE_H #include <linux/timer.h> #include <linux/bug.h> #include <linux/delay.h> #include <linux/atomic.h> #include <linux/prefetch.h> #include <asm/cache.h> #include <asm/byteorder.h> #include <linux/percpu.h> #include <linux/rculist.h> #include <linux/workqueue.h> #include <linux/dynamic_queue_limits.h> #include <linux/ethtool.h> #include <net/net_namespace.h> #ifdef CONFIG_DCB #include <net/dcbnl.h> #endif #include <net/netprio_cgroup.h> #include <net/xdp.h> #include <linux/netdev_features.h> #include <linux/neighbour.h> #include <uapi/linux/netdevice.h> #include <uapi/linux/if_bonding.h> #include <uapi/linux/pkt_cls.h> #include <linux/hashtable.h> struct netpoll_info; struct device; struct phy_device; struct dsa_port; struct ip_tunnel_parm; struct macsec_context; struct macsec_ops; struct sfp_bus; /* 802.11 specific */ struct wireless_dev; /* 802.15.4 specific */ struct wpan_dev; struct mpls_dev; /* UDP Tunnel offloads */ struct udp_tunnel_info; struct udp_tunnel_nic_info; struct udp_tunnel_nic; struct bpf_prog; struct xdp_buff; void synchronize_net(void); void netdev_set_default_ethtool_ops(struct net_device *dev, const struct ethtool_ops *ops); /* Backlog congestion levels */ #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ #define NET_RX_DROP 1 /* packet dropped */ #define MAX_NEST_DEV 8 /* * Transmit return codes: transmit return codes originate from three different * namespaces: * * - qdisc return codes * - driver transmit return codes * - errno values * * Drivers are allowed to return any one of those in their hard_start_xmit() * function. Real network devices commonly used with qdiscs should only return * the driver transmit return codes though - when qdiscs are used, the actual * transmission happens asynchronously, so the value is not propagated to * higher layers. Virtual network devices transmit synchronously; in this case * the driver transmit return codes are consumed by dev_queue_xmit(), and all * others are propagated to higher layers. */ /* qdisc ->enqueue() return codes. */ #define NET_XMIT_SUCCESS 0x00 #define NET_XMIT_DROP 0x01 /* skb dropped */ #define NET_XMIT_CN 0x02 /* congestion notification */ #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It * indicates that the device will soon be dropping packets, or already drops * some packets of the same priority; prompting us to send less aggressively. */ #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) /* Driver transmit return codes */ #define NETDEV_TX_MASK 0xf0 enum netdev_tx { __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ NETDEV_TX_OK = 0x00, /* driver took care of packet */ NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ }; typedef enum netdev_tx netdev_tx_t; /* * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. */ static inline bool dev_xmit_complete(int rc) { /* * Positive cases with an skb consumed by a driver: * - successful transmission (rc == NETDEV_TX_OK) * - error while transmitting (rc < 0) * - error while queueing to a different device (rc & NET_XMIT_MASK) */ if (likely(rc < NET_XMIT_MASK)) return true; return false; } /* * Compute the worst-case header length according to the protocols * used. */ #if defined(CONFIG_HYPERV_NET) # define LL_MAX_HEADER 128 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) # if defined(CONFIG_MAC80211_MESH) # define LL_MAX_HEADER 128 # else # define LL_MAX_HEADER 96 # endif #else # define LL_MAX_HEADER 32 #endif #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) #define MAX_HEADER LL_MAX_HEADER #else #define MAX_HEADER (LL_MAX_HEADER + 48) #endif /* * Old network device statistics. Fields are native words * (unsigned long) so they can be read and written atomically. */ struct net_device_stats { unsigned long rx_packets; unsigned long tx_packets; unsigned long rx_bytes; unsigned long tx_bytes; unsigned long rx_errors; unsigned long tx_errors; unsigned long rx_dropped; unsigned long tx_dropped; unsigned long multicast; unsigned long collisions; unsigned long rx_length_errors; unsigned long rx_over_errors; unsigned long rx_crc_errors; unsigned long rx_frame_errors; unsigned long rx_fifo_errors; unsigned long rx_missed_errors; unsigned long tx_aborted_errors; unsigned long tx_carrier_errors; unsigned long tx_fifo_errors; unsigned long tx_heartbeat_errors; unsigned long tx_window_errors; unsigned long rx_compressed; unsigned long tx_compressed; }; #include <linux/cache.h> #include <linux/skbuff.h> #ifdef CONFIG_RPS #include <linux/static_key.h> extern struct static_key_false rps_needed; extern struct static_key_false rfs_needed; #endif struct neighbour; struct neigh_parms; struct sk_buff; struct netdev_hw_addr { struct list_head list; unsigned char addr[MAX_ADDR_LEN]; unsigned char type; #define NETDEV_HW_ADDR_T_LAN 1 #define NETDEV_HW_ADDR_T_SAN 2 #define NETDEV_HW_ADDR_T_UNICAST 3 #define NETDEV_HW_ADDR_T_MULTICAST 4 bool global_use; int sync_cnt; int refcount; int synced; struct rcu_head rcu_head; }; struct netdev_hw_addr_list { struct list_head list; int count; }; #define netdev_hw_addr_list_count(l) ((l)->count) #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) #define netdev_hw_addr_list_for_each(ha, l) \ list_for_each_entry(ha, &(l)->list, list) #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) #define netdev_for_each_uc_addr(ha, dev) \ netdev_hw_addr_list_for_each(ha, &(dev)->uc) #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) #define netdev_for_each_mc_addr(ha, dev) \ netdev_hw_addr_list_for_each(ha, &(dev)->mc) struct hh_cache { unsigned int hh_len; seqlock_t hh_lock; /* cached hardware header; allow for machine alignment needs. */ #define HH_DATA_MOD 16 #define HH_DATA_OFF(__len) \ (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) #define HH_DATA_ALIGN(__len) \ (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; }; /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. * Alternative is: * dev->hard_header_len ? (dev->hard_header_len + * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 * * We could use other alignment values, but we must maintain the * relationship HH alignment <= LL alignment. */ #define LL_RESERVED_SPACE(dev) \ ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) struct header_ops { int (*create) (struct sk_buff *skb, struct net_device *dev, unsigned short type, const void *daddr, const void *saddr, unsigned int len); int (*parse)(const struct sk_buff *skb, unsigned char *haddr); int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); void (*cache_update)(struct hh_cache *hh, const struct net_device *dev, const unsigned char *haddr); bool (*validate)(const char *ll_header, unsigned int len); __be16 (*parse_protocol)(const struct sk_buff *skb); }; /* These flag bits are private to the generic network queueing * layer; they may not be explicitly referenced by any other * code. */ enum netdev_state_t { __LINK_STATE_START, __LINK_STATE_PRESENT, __LINK_STATE_NOCARRIER, __LINK_STATE_LINKWATCH_PENDING, __LINK_STATE_DORMANT, __LINK_STATE_TESTING, }; /* * This structure holds boot-time configured netdevice settings. They * are then used in the device probing. */ struct netdev_boot_setup { char name[IFNAMSIZ]; struct ifmap map; }; #define NETDEV_BOOT_SETUP_MAX 8 int __init netdev_boot_setup(char *str); struct gro_list { struct list_head list; int count; }; /* * size of gro hash buckets, must less than bit number of * napi_struct::gro_bitmask */ #define GRO_HASH_BUCKETS 8 /* * Structure for NAPI scheduling similar to tasklet but with weighting */ struct napi_struct { /* The poll_list must only be managed by the entity which * changes the state of the NAPI_STATE_SCHED bit. This means * whoever atomically sets that bit can add this napi_struct * to the per-CPU poll_list, and whoever clears that bit * can remove from the list right before clearing the bit. */ struct list_head poll_list; unsigned long state; int weight; int defer_hard_irqs_count; unsigned long gro_bitmask; int (*poll)(struct napi_struct *, int); #ifdef CONFIG_NETPOLL int poll_owner; #endif struct net_device *dev; struct gro_list gro_hash[GRO_HASH_BUCKETS]; struct sk_buff *skb; struct list_head rx_list; /* Pending GRO_NORMAL skbs */ int rx_count; /* length of rx_list */ struct hrtimer timer; struct list_head dev_list; struct hlist_node napi_hash_node; unsigned int napi_id; }; enum { NAPI_STATE_SCHED, /* Poll is scheduled */ NAPI_STATE_MISSED, /* reschedule a napi */ NAPI_STATE_DISABLE, /* Disable pending */ NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ NAPI_STATE_LISTED, /* NAPI added to system lists */ NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */ NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */ }; enum { NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), NAPIF_STATE_LISTED = BIT(NAPI_STATE_LISTED), NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), }; enum gro_result { GRO_MERGED, GRO_MERGED_FREE, GRO_HELD, GRO_NORMAL, GRO_DROP, GRO_CONSUMED, }; typedef enum gro_result gro_result_t; /* * enum rx_handler_result - Possible return values for rx_handlers. * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it * further. * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in * case skb->dev was changed by rx_handler. * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. * * rx_handlers are functions called from inside __netif_receive_skb(), to do * special processing of the skb, prior to delivery to protocol handlers. * * Currently, a net_device can only have a single rx_handler registered. Trying * to register a second rx_handler will return -EBUSY. * * To register a rx_handler on a net_device, use netdev_rx_handler_register(). * To unregister a rx_handler on a net_device, use * netdev_rx_handler_unregister(). * * Upon return, rx_handler is expected to tell __netif_receive_skb() what to * do with the skb. * * If the rx_handler consumed the skb in some way, it should return * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for * the skb to be delivered in some other way. * * If the rx_handler changed skb->dev, to divert the skb to another * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the * new device will be called if it exists. * * If the rx_handler decides the skb should be ignored, it should return * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that * are registered on exact device (ptype->dev == skb->dev). * * If the rx_handler didn't change skb->dev, but wants the skb to be normally * delivered, it should return RX_HANDLER_PASS. * * A device without a registered rx_handler will behave as if rx_handler * returned RX_HANDLER_PASS. */ enum rx_handler_result { RX_HANDLER_CONSUMED, RX_HANDLER_ANOTHER, RX_HANDLER_EXACT, RX_HANDLER_PASS, }; typedef enum rx_handler_result rx_handler_result_t; typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); void __napi_schedule(struct napi_struct *n); void __napi_schedule_irqoff(struct napi_struct *n); static inline bool napi_disable_pending(struct napi_struct *n) { return test_bit(NAPI_STATE_DISABLE, &n->state); } bool napi_schedule_prep(struct napi_struct *n); /** * napi_schedule - schedule NAPI poll * @n: NAPI context * * Schedule NAPI poll routine to be called if it is not already * running. */ static inline void napi_schedule(struct napi_struct *n) { if (napi_schedule_prep(n)) __napi_schedule(n); } /** * napi_schedule_irqoff - schedule NAPI poll * @n: NAPI context * * Variant of napi_schedule(), assuming hard irqs are masked. */ static inline void napi_schedule_irqoff(struct napi_struct *n) { if (napi_schedule_prep(n)) __napi_schedule_irqoff(n); } /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ static inline bool napi_reschedule(struct napi_struct *napi) { if (napi_schedule_prep(napi)) { __napi_schedule(napi); return true; } return false; } bool napi_complete_done(struct napi_struct *n, int work_done); /** * napi_complete - NAPI processing complete * @n: NAPI context * * Mark NAPI processing as complete. * Consider using napi_complete_done() instead. * Return false if device should avoid rearming interrupts. */ static inline bool napi_complete(struct napi_struct *n) { return napi_complete_done(n, 0); } /** * napi_disable - prevent NAPI from scheduling * @n: NAPI context * * Stop NAPI from being scheduled on this context. * Waits till any outstanding processing completes. */ void napi_disable(struct napi_struct *n); /** * napi_enable - enable NAPI scheduling * @n: NAPI context * * Resume NAPI from being scheduled on this context. * Must be paired with napi_disable. */ static inline void napi_enable(struct napi_struct *n) { BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); smp_mb__before_atomic(); clear_bit(NAPI_STATE_SCHED, &n->state); clear_bit(NAPI_STATE_NPSVC, &n->state); } /** * napi_synchronize - wait until NAPI is not running * @n: NAPI context * * Wait until NAPI is done being scheduled on this context. * Waits till any outstanding processing completes but * does not disable future activations. */ static inline void napi_synchronize(const struct napi_struct *n) { if (IS_ENABLED(CONFIG_SMP)) while (test_bit(NAPI_STATE_SCHED, &n->state)) msleep(1); else barrier(); } /** * napi_if_scheduled_mark_missed - if napi is running, set the * NAPIF_STATE_MISSED * @n: NAPI context * * If napi is running, set the NAPIF_STATE_MISSED, and return true if * NAPI is scheduled. **/ static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n) { unsigned long val, new; do { val = READ_ONCE(n->state); if (val & NAPIF_STATE_DISABLE) return true; if (!(val & NAPIF_STATE_SCHED)) return false; new = val | NAPIF_STATE_MISSED; } while (cmpxchg(&n->state, val, new) != val); return true; } enum netdev_queue_state_t { __QUEUE_STATE_DRV_XOFF, __QUEUE_STATE_STACK_XOFF, __QUEUE_STATE_FROZEN, }; #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ QUEUE_STATE_FROZEN) #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ QUEUE_STATE_FROZEN) /* * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The * netif_tx_* functions below are used to manipulate this flag. The * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit * queue independently. The netif_xmit_*stopped functions below are called * to check if the queue has been stopped by the driver or stack (either * of the XOFF bits are set in the state). Drivers should not need to call * netif_xmit*stopped functions, they should only be using netif_tx_*. */ struct netdev_queue { /* * read-mostly part */ struct net_device *dev; struct Qdisc __rcu *qdisc; struct Qdisc *qdisc_sleeping; #ifdef CONFIG_SYSFS struct kobject kobj; #endif #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) int numa_node; #endif unsigned long tx_maxrate; /* * Number of TX timeouts for this queue * (/sys/class/net/DEV/Q/trans_timeout) */ unsigned long trans_timeout; /* Subordinate device that the queue has been assigned to */ struct net_device *sb_dev; #ifdef CONFIG_XDP_SOCKETS struct xsk_buff_pool *pool; #endif /* * write-mostly part */ spinlock_t _xmit_lock ____cacheline_aligned_in_smp; int xmit_lock_owner; /* * Time (in jiffies) of last Tx */ unsigned long trans_start; unsigned long state; #ifdef CONFIG_BQL struct dql dql; #endif } ____cacheline_aligned_in_smp; extern int sysctl_fb_tunnels_only_for_init_net; extern int sysctl_devconf_inherit_init_net; /* * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns * == 1 : For initns only * == 2 : For none. */ static inline bool net_has_fallback_tunnels(const struct net *net) { return !IS_ENABLED(CONFIG_SYSCTL) || !sysctl_fb_tunnels_only_for_init_net || (net == &init_net && sysctl_fb_tunnels_only_for_init_net == 1); } static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) { #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) return q->numa_node; #else return NUMA_NO_NODE; #endif } static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) { #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) q->numa_node = node; #endif } #ifdef CONFIG_RPS /* * This structure holds an RPS map which can be of variable length. The * map is an array of CPUs. */ struct rps_map { unsigned int len; struct rcu_head rcu; u16 cpus[]; }; #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) /* * The rps_dev_flow structure contains the mapping of a flow to a CPU, the * tail pointer for that CPU's input queue at the time of last enqueue, and * a hardware filter index. */ struct rps_dev_flow { u16 cpu; u16 filter; unsigned int last_qtail; }; #define RPS_NO_FILTER 0xffff /* * The rps_dev_flow_table structure contains a table of flow mappings. */ struct rps_dev_flow_table { unsigned int mask; struct rcu_head rcu; struct rps_dev_flow flows[]; }; #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ ((_num) * sizeof(struct rps_dev_flow))) /* * The rps_sock_flow_table contains mappings of flows to the last CPU * on which they were processed by the application (set in recvmsg). * Each entry is a 32bit value. Upper part is the high-order bits * of flow hash, lower part is CPU number. * rps_cpu_mask is used to partition the space, depending on number of * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, * meaning we use 32-6=26 bits for the hash. */ struct rps_sock_flow_table { u32 mask; u32 ents[] ____cacheline_aligned_in_smp; }; #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) #define RPS_NO_CPU 0xffff extern u32 rps_cpu_mask; extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, u32 hash) { if (table && hash) { unsigned int index = hash & table->mask; u32 val = hash & ~rps_cpu_mask; /* We only give a hint, preemption can change CPU under us */ val |= raw_smp_processor_id(); if (table->ents[index] != val) table->ents[index] = val; } } #ifdef CONFIG_RFS_ACCEL bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, u16 filter_id); #endif #endif /* CONFIG_RPS */ /* This structure contains an instance of an RX queue. */ struct netdev_rx_queue { #ifdef CONFIG_RPS struct rps_map __rcu *rps_map; struct rps_dev_flow_table __rcu *rps_flow_table; #endif struct kobject kobj; struct net_device *dev; struct xdp_rxq_info xdp_rxq; #ifdef CONFIG_XDP_SOCKETS struct xsk_buff_pool *pool; #endif } ____cacheline_aligned_in_smp; /* * RX queue sysfs structures and functions. */ struct rx_queue_attribute { struct attribute attr; ssize_t (*show)(struct netdev_rx_queue *queue, char *buf); ssize_t (*store)(struct netdev_rx_queue *queue, const char *buf, size_t len); }; #ifdef CONFIG_XPS /* * This structure holds an XPS map which can be of variable length. The * map is an array of queues. */ struct xps_map { unsigned int len; unsigned int alloc_len; struct rcu_head rcu; u16 queues[]; }; #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ - sizeof(struct xps_map)) / sizeof(u16)) /* * This structure holds all XPS maps for device. Maps are indexed by CPU. */ struct xps_dev_maps { struct rcu_head rcu; struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */ }; #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\ (_rxqs * (_tcs) * sizeof(struct xps_map *))) #endif /* CONFIG_XPS */ #define TC_MAX_QUEUE 16 #define TC_BITMASK 15 /* HW offloaded queuing disciplines txq count and offset maps */ struct netdev_tc_txq { u16 count; u16 offset; }; #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) /* * This structure is to hold information about the device * configured to run FCoE protocol stack. */ struct netdev_fcoe_hbainfo { char manufacturer[64]; char serial_number[64]; char hardware_version[64]; char driver_version[64]; char optionrom_version[64]; char firmware_version[64]; char model[256]; char model_description[256]; }; #endif #define MAX_PHYS_ITEM_ID_LEN 32 /* This structure holds a unique identifier to identify some * physical item (port for example) used by a netdevice. */ struct netdev_phys_item_id { unsigned char id[MAX_PHYS_ITEM_ID_LEN]; unsigned char id_len; }; static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, struct netdev_phys_item_id *b) { return a->id_len == b->id_len && memcmp(a->id, b->id, a->id_len) == 0; } typedef u16 (*select_queue_fallback_t)(struct net_device *dev, struct sk_buff *skb, struct net_device *sb_dev); enum tc_setup_type { TC_SETUP_QDISC_MQPRIO, TC_SETUP_CLSU32, TC_SETUP_CLSFLOWER, TC_SETUP_CLSMATCHALL, TC_SETUP_CLSBPF, TC_SETUP_BLOCK, TC_SETUP_QDISC_CBS, TC_SETUP_QDISC_RED, TC_SETUP_QDISC_PRIO, TC_SETUP_QDISC_MQ, TC_SETUP_QDISC_ETF, TC_SETUP_ROOT_QDISC, TC_SETUP_QDISC_GRED, TC_SETUP_QDISC_TAPRIO, TC_SETUP_FT, TC_SETUP_QDISC_ETS, TC_SETUP_QDISC_TBF, TC_SETUP_QDISC_FIFO, }; /* These structures hold the attributes of bpf state that are being passed * to the netdevice through the bpf op. */ enum bpf_netdev_command { /* Set or clear a bpf program used in the earliest stages of packet * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee * is responsible for calling bpf_prog_put on any old progs that are * stored. In case of error, the callee need not release the new prog * reference, but on success it takes ownership and must bpf_prog_put * when it is no longer used. */ XDP_SETUP_PROG, XDP_SETUP_PROG_HW, /* BPF program for offload callbacks, invoked at program load time. */ BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE, XDP_SETUP_XSK_POOL, }; struct bpf_prog_offload_ops; struct netlink_ext_ack; struct xdp_umem; struct xdp_dev_bulk_queue; struct bpf_xdp_link; enum bpf_xdp_mode { XDP_MODE_SKB = 0, XDP_MODE_DRV = 1, XDP_MODE_HW = 2, __MAX_XDP_MODE }; struct bpf_xdp_entity { struct bpf_prog *prog; struct bpf_xdp_link *link; }; struct netdev_bpf { enum bpf_netdev_command command; union { /* XDP_SETUP_PROG */ struct { u32 flags; struct bpf_prog *prog; struct netlink_ext_ack *extack; }; /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */ struct { struct bpf_offloaded_map *offmap; }; /* XDP_SETUP_XSK_POOL */ struct { struct xsk_buff_pool *pool; u16 queue_id; } xsk; }; }; /* Flags for ndo_xsk_wakeup. */ #define XDP_WAKEUP_RX (1 << 0) #define XDP_WAKEUP_TX (1 << 1) #ifdef CONFIG_XFRM_OFFLOAD struct xfrmdev_ops { int (*xdo_dev_state_add) (struct xfrm_state *x); void (*xdo_dev_state_delete) (struct xfrm_state *x); void (*xdo_dev_state_free) (struct xfrm_state *x); bool (*xdo_dev_offload_ok) (struct sk_buff *skb, struct xfrm_state *x); void (*xdo_dev_state_advance_esn) (struct xfrm_state *x); }; #endif struct dev_ifalias { struct rcu_head rcuhead; char ifalias[]; }; struct devlink; struct tlsdev_ops; struct netdev_name_node { struct hlist_node hlist; struct list_head list; struct net_device *dev; const char *name; }; int netdev_name_node_alt_create(struct net_device *dev, const char *name); int netdev_name_node_alt_destroy(struct net_device *dev, const char *name); struct netdev_net_notifier { struct list_head list; struct notifier_block *nb; }; /* * This structure defines the management hooks for network devices. * The following hooks can be defined; unless noted otherwise, they are * optional and can be filled with a null pointer. * * int (*ndo_init)(struct net_device *dev); * This function is called once when a network device is registered. * The network device can use this for any late stage initialization * or semantic validation. It can fail with an error code which will * be propagated back to register_netdev. * * void (*ndo_uninit)(struct net_device *dev); * This function is called when device is unregistered or when registration * fails. It is not called if init fails. * * int (*ndo_open)(struct net_device *dev); * This function is called when a network device transitions to the up * state. * * int (*ndo_stop)(struct net_device *dev); * This function is called when a network device transitions to the down * state. * * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, * struct net_device *dev); * Called when a packet needs to be transmitted. * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop * the queue before that can happen; it's for obsolete devices and weird * corner cases, but the stack really does a non-trivial amount * of useless work if you return NETDEV_TX_BUSY. * Required; cannot be NULL. * * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, * struct net_device *dev * netdev_features_t features); * Called by core transmit path to determine if device is capable of * performing offload operations on a given packet. This is to give * the device an opportunity to implement any restrictions that cannot * be otherwise expressed by feature flags. The check is called with * the set of features that the stack has calculated and it returns * those the driver believes to be appropriate. * * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, * struct net_device *sb_dev); * Called to decide which queue to use when device supports multiple * transmit queues. * * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); * This function is called to allow device receiver to make * changes to configuration when multicast or promiscuous is enabled. * * void (*ndo_set_rx_mode)(struct net_device *dev); * This function is called device changes address list filtering. * If driver handles unicast address filtering, it should set * IFF_UNICAST_FLT in its priv_flags. * * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); * This function is called when the Media Access Control address * needs to be changed. If this interface is not defined, the * MAC address can not be changed. * * int (*ndo_validate_addr)(struct net_device *dev); * Test if Media Access Control address is valid for the device. * * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); * Called when a user requests an ioctl which can't be handled by * the generic interface code. If not defined ioctls return * not supported error code. * * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); * Used to set network devices bus interface parameters. This interface * is retained for legacy reasons; new devices should use the bus * interface (PCI) for low level management. * * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); * Called when a user wants to change the Maximum Transfer Unit * of a device. * * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue); * Callback used when the transmitter has not made any progress * for dev->watchdog ticks. * * void (*ndo_get_stats64)(struct net_device *dev, * struct rtnl_link_stats64 *storage); * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); * Called when a user wants to get the network device usage * statistics. Drivers must do one of the following: * 1. Define @ndo_get_stats64 to fill in a zero-initialised * rtnl_link_stats64 structure passed by the caller. * 2. Define @ndo_get_stats to update a net_device_stats structure * (which should normally be dev->stats) and return a pointer to * it. The structure may be changed asynchronously only if each * field is written atomically. * 3. Update dev->stats asynchronously and atomically, and define * neither operation. * * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) * Return true if this device supports offload stats of this attr_id. * * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, * void *attr_data) * Get statistics for offload operations by attr_id. Write it into the * attr_data pointer. * * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); * If device supports VLAN filtering this function is called when a * VLAN id is registered. * * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); * If device supports VLAN filtering this function is called when a * VLAN id is unregistered. * * void (*ndo_poll_controller)(struct net_device *dev); * * SR-IOV management functions. * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, * u8 qos, __be16 proto); * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, * int max_tx_rate); * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); * int (*ndo_get_vf_config)(struct net_device *dev, * int vf, struct ifla_vf_info *ivf); * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); * int (*ndo_set_vf_port)(struct net_device *dev, int vf, * struct nlattr *port[]); * * Enable or disable the VF ability to query its RSS Redirection Table and * Hash Key. This is needed since on some devices VF share this information * with PF and querying it may introduce a theoretical security risk. * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, * void *type_data); * Called to setup any 'tc' scheduler, classifier or action on @dev. * This is always called from the stack with the rtnl lock held and netif * tx queues stopped. This allows the netdevice to perform queue * management safely. * * Fiber Channel over Ethernet (FCoE) offload functions. * int (*ndo_fcoe_enable)(struct net_device *dev); * Called when the FCoE protocol stack wants to start using LLD for FCoE * so the underlying device can perform whatever needed configuration or * initialization to support acceleration of FCoE traffic. * * int (*ndo_fcoe_disable)(struct net_device *dev); * Called when the FCoE protocol stack wants to stop using LLD for FCoE * so the underlying device can perform whatever needed clean-ups to * stop supporting acceleration of FCoE traffic. * * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, * struct scatterlist *sgl, unsigned int sgc); * Called when the FCoE Initiator wants to initialize an I/O that * is a possible candidate for Direct Data Placement (DDP). The LLD can * perform necessary setup and returns 1 to indicate the device is set up * successfully to perform DDP on this I/O, otherwise this returns 0. * * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); * Called when the FCoE Initiator/Target is done with the DDPed I/O as * indicated by the FC exchange id 'xid', so the underlying device can * clean up and reuse resources for later DDP requests. * * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, * struct scatterlist *sgl, unsigned int sgc); * Called when the FCoE Target wants to initialize an I/O that * is a possible candidate for Direct Data Placement (DDP). The LLD can * perform necessary setup and returns 1 to indicate the device is set up * successfully to perform DDP on this I/O, otherwise this returns 0. * * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, * struct netdev_fcoe_hbainfo *hbainfo); * Called when the FCoE Protocol stack wants information on the underlying * device. This information is utilized by the FCoE protocol stack to * register attributes with Fiber Channel management service as per the * FC-GS Fabric Device Management Information(FDMI) specification. * * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); * Called when the underlying device wants to override default World Wide * Name (WWN) generation mechanism in FCoE protocol stack to pass its own * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE * protocol stack to use. * * RFS acceleration. * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, * u16 rxq_index, u32 flow_id); * Set hardware filter for RFS. rxq_index is the target queue index; * flow_id is a flow ID to be passed to rps_may_expire_flow() later. * Return the filter ID on success, or a negative error code. * * Slave management functions (for bridge, bonding, etc). * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); * Called to make another netdev an underling. * * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); * Called to release previously enslaved netdev. * * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev, * struct sk_buff *skb, * bool all_slaves); * Get the xmit slave of master device. If all_slaves is true, function * assume all the slaves can transmit. * * Feature/offload setting functions. * netdev_features_t (*ndo_fix_features)(struct net_device *dev, * netdev_features_t features); * Adjusts the requested feature flags according to device-specific * constraints, and returns the resulting flags. Must not modify * the device state. * * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); * Called to update device configuration to new features. Passed * feature set might be less than what was returned by ndo_fix_features()). * Must return >0 or -errno if it changed dev->features itself. * * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], * struct net_device *dev, * const unsigned char *addr, u16 vid, u16 flags, * struct netlink_ext_ack *extack); * Adds an FDB entry to dev for addr. * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], * struct net_device *dev, * const unsigned char *addr, u16 vid) * Deletes the FDB entry from dev coresponding to addr. * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, * struct net_device *dev, struct net_device *filter_dev, * int *idx) * Used to add FDB entries to dump requests. Implementers should add * entries to skb and update idx with the number of entries. * * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, * u16 flags, struct netlink_ext_ack *extack) * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, * struct net_device *dev, u32 filter_mask, * int nlflags) * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, * u16 flags); * * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); * Called to change device carrier. Soft-devices (like dummy, team, etc) * which do not represent real hardware may define this to allow their * userspace components to manage their virtual carrier state. Devices * that determine carrier state from physical hardware properties (eg * network cables) or protocol-dependent mechanisms (eg * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. * * int (*ndo_get_phys_port_id)(struct net_device *dev, * struct netdev_phys_item_id *ppid); * Called to get ID of physical port of this device. If driver does * not implement this, it is assumed that the hw is not able to have * multiple net devices on single physical port. * * int (*ndo_get_port_parent_id)(struct net_device *dev, * struct netdev_phys_item_id *ppid) * Called to get the parent ID of the physical port of this device. * * void (*ndo_udp_tunnel_add)(struct net_device *dev, * struct udp_tunnel_info *ti); * Called by UDP tunnel to notify a driver about the UDP port and socket * address family that a UDP tunnel is listnening to. It is called only * when a new port starts listening. The operation is protected by the * RTNL. * * void (*ndo_udp_tunnel_del)(struct net_device *dev, * struct udp_tunnel_info *ti); * Called by UDP tunnel to notify the driver about a UDP port and socket * address family that the UDP tunnel is not listening to anymore. The * operation is protected by the RTNL. * * void* (*ndo_dfwd_add_station)(struct net_device *pdev, * struct net_device *dev) * Called by upper layer devices to accelerate switching or other * station functionality into hardware. 'pdev is the lowerdev * to use for the offload and 'dev' is the net device that will * back the offload. Returns a pointer to the private structure * the upper layer will maintain. * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) * Called by upper layer device to delete the station created * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing * the station and priv is the structure returned by the add * operation. * int (*ndo_set_tx_maxrate)(struct net_device *dev, * int queue_index, u32 maxrate); * Called when a user wants to set a max-rate limitation of specific * TX queue. * int (*ndo_get_iflink)(const struct net_device *dev); * Called to get the iflink value of this device. * void (*ndo_change_proto_down)(struct net_device *dev, * bool proto_down); * This function is used to pass protocol port error state information * to the switch driver. The switch driver can react to the proto_down * by doing a phys down on the associated switch port. * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); * This function is used to get egress tunnel information for given skb. * This is useful for retrieving outer tunnel header parameters while * sampling packet. * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); * This function is used to specify the headroom that the skb must * consider when allocation skb during packet reception. Setting * appropriate rx headroom value allows avoiding skb head copy on * forward. Setting a negative value resets the rx headroom to the * default value. * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf); * This function is used to set or query state related to XDP on the * netdevice and manage BPF offload. See definition of * enum bpf_netdev_command for details. * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp, * u32 flags); * This function is used to submit @n XDP packets for transmit on a * netdevice. Returns number of frames successfully transmitted, frames * that got dropped are freed/returned via xdp_return_frame(). * Returns negative number, means general error invoking ndo, meaning * no frames were xmit'ed and core-caller will free all frames. * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags); * This function is used to wake up the softirq, ksoftirqd or kthread * responsible for sending and/or receiving packets on a specific * queue id bound to an AF_XDP socket. The flags field specifies if * only RX, only Tx, or both should be woken up using the flags * XDP_WAKEUP_RX and XDP_WAKEUP_TX. * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev); * Get devlink port instance associated with a given netdev. * Called with a reference on the netdevice and devlink locks only, * rtnl_lock is not held. * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p, * int cmd); * Add, change, delete or get information on an IPv4 tunnel. * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev); * If a device is paired with a peer device, return the peer instance. * The caller must be under RCU read context. */ struct net_device_ops { int (*ndo_init)(struct net_device *dev); void (*ndo_uninit)(struct net_device *dev); int (*ndo_open)(struct net_device *dev); int (*ndo_stop)(struct net_device *dev); netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, struct net_device *dev); netdev_features_t (*ndo_features_check)(struct sk_buff *skb, struct net_device *dev, netdev_features_t features); u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, struct net_device *sb_dev); void (*ndo_change_rx_flags)(struct net_device *dev, int flags); void (*ndo_set_rx_mode)(struct net_device *dev); int (*ndo_set_mac_address)(struct net_device *dev, void *addr); int (*ndo_validate_addr)(struct net_device *dev); int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); int (*ndo_neigh_setup)(struct net_device *dev, struct neigh_parms *); void (*ndo_tx_timeout) (struct net_device *dev, unsigned int txqueue); void (*ndo_get_stats64)(struct net_device *dev, struct rtnl_link_stats64 *storage); bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, void *attr_data); struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); #ifdef CONFIG_NET_POLL_CONTROLLER void (*ndo_poll_controller)(struct net_device *dev); int (*ndo_netpoll_setup)(struct net_device *dev, struct netpoll_info *info); void (*ndo_netpoll_cleanup)(struct net_device *dev); #endif int (*ndo_set_vf_mac)(struct net_device *dev, int queue, u8 *mac); int (*ndo_set_vf_vlan)(struct net_device *dev, int queue, u16 vlan, u8 qos, __be16 proto); int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, int max_tx_rate); int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); int (*ndo_get_vf_config)(struct net_device *dev, int vf, struct ifla_vf_info *ivf); int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); int (*ndo_get_vf_stats)(struct net_device *dev, int vf, struct ifla_vf_stats *vf_stats); int (*ndo_set_vf_port)(struct net_device *dev, int vf, struct nlattr *port[]); int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); int (*ndo_get_vf_guid)(struct net_device *dev, int vf, struct ifla_vf_guid *node_guid, struct ifla_vf_guid *port_guid); int (*ndo_set_vf_guid)(struct net_device *dev, int vf, u64 guid, int guid_type); int (*ndo_set_vf_rss_query_en)( struct net_device *dev, int vf, bool setting); int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, void *type_data); #if IS_ENABLED(CONFIG_FCOE) int (*ndo_fcoe_enable)(struct net_device *dev); int (*ndo_fcoe_disable)(struct net_device *dev); int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, struct scatterlist *sgl, unsigned int sgc); int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, struct scatterlist *sgl, unsigned int sgc); int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, struct netdev_fcoe_hbainfo *hbainfo); #endif #if IS_ENABLED(CONFIG_LIBFCOE) #define NETDEV_FCOE_WWNN 0 #define NETDEV_FCOE_WWPN 1 int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); #endif #ifdef CONFIG_RFS_ACCEL int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, u16 rxq_index, u32 flow_id); #endif int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev, struct netlink_ext_ack *extack); int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); struct net_device* (*ndo_get_xmit_slave)(struct net_device *dev, struct sk_buff *skb, bool all_slaves); netdev_features_t (*ndo_fix_features)(struct net_device *dev, netdev_features_t features); int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); int (*ndo_neigh_construct)(struct net_device *dev, struct neighbour *n); void (*ndo_neigh_destroy)(struct net_device *dev, struct neighbour *n); int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], struct net_device *dev, const unsigned char *addr, u16 vid, u16 flags, struct netlink_ext_ack *extack); int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], struct net_device *dev, const unsigned char *addr, u16 vid); int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, struct net_device *dev, struct net_device *filter_dev, int *idx); int (*ndo_fdb_get)(struct sk_buff *skb, struct nlattr *tb[], struct net_device *dev, const unsigned char *addr, u16 vid, u32 portid, u32 seq, struct netlink_ext_ack *extack); int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, u16 flags, struct netlink_ext_ack *extack); int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, struct net_device *dev, u32 filter_mask, int nlflags); int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, u16 flags); int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); int (*ndo_get_phys_port_id)(struct net_device *dev, struct netdev_phys_item_id *ppid); int (*ndo_get_port_parent_id)(struct net_device *dev, struct netdev_phys_item_id *ppid); int (*ndo_get_phys_port_name)(struct net_device *dev, char *name, size_t len); void (*ndo_udp_tunnel_add)(struct net_device *dev, struct udp_tunnel_info *ti); void (*ndo_udp_tunnel_del)(struct net_device *dev, struct udp_tunnel_info *ti); void* (*ndo_dfwd_add_station)(struct net_device *pdev, struct net_device *dev); void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv); int (*ndo_set_tx_maxrate)(struct net_device *dev, int queue_index, u32 maxrate); int (*ndo_get_iflink)(const struct net_device *dev); int (*ndo_change_proto_down)(struct net_device *dev, bool proto_down); int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf); int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp, u32 flags); int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags); struct devlink_port * (*ndo_get_devlink_port)(struct net_device *dev); int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p, int cmd); struct net_device * (*ndo_get_peer_dev)(struct net_device *dev); }; /** * enum net_device_priv_flags - &struct net_device priv_flags * * These are the &struct net_device, they are only set internally * by drivers and used in the kernel. These flags are invisible to * userspace; this means that the order of these flags can change * during any kernel release. * * You should have a pretty good reason to be extending these flags. * * @IFF_802_1Q_VLAN: 802.1Q VLAN device * @IFF_EBRIDGE: Ethernet bridging device * @IFF_BONDING: bonding master or slave * @IFF_ISATAP: ISATAP interface (RFC4214) * @IFF_WAN_HDLC: WAN HDLC device * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to * release skb->dst * @IFF_DONT_BRIDGE: disallow bridging this ether dev * @IFF_DISABLE_NETPOLL: disable netpoll at run-time * @IFF_MACVLAN_PORT: device used as macvlan port * @IFF_BRIDGE_PORT: device used as bridge port * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit * @IFF_UNICAST_FLT: Supports unicast filtering * @IFF_TEAM_PORT: device used as team port * @IFF_SUPP_NOFCS: device supports sending custom FCS * @IFF_LIVE_ADDR_CHANGE: device supports hardware address * change when it's running * @IFF_MACVLAN: Macvlan device * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account * underlying stacked devices * @IFF_L3MDEV_MASTER: device is an L3 master device * @IFF_NO_QUEUE: device can run without qdisc attached * @IFF_OPENVSWITCH: device is a Open vSwitch master * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device * @IFF_TEAM: device is a team device * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external * entity (i.e. the master device for bridged veth) * @IFF_MACSEC: device is a MACsec device * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook * @IFF_FAILOVER: device is a failover master device * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running */ enum netdev_priv_flags { IFF_802_1Q_VLAN = 1<<0, IFF_EBRIDGE = 1<<1, IFF_BONDING = 1<<2, IFF_ISATAP = 1<<3, IFF_WAN_HDLC = 1<<4, IFF_XMIT_DST_RELEASE = 1<<5, IFF_DONT_BRIDGE = 1<<6, IFF_DISABLE_NETPOLL = 1<<7, IFF_MACVLAN_PORT = 1<<8, IFF_BRIDGE_PORT = 1<<9, IFF_OVS_DATAPATH = 1<<10, IFF_TX_SKB_SHARING = 1<<11, IFF_UNICAST_FLT = 1<<12, IFF_TEAM_PORT = 1<<13, IFF_SUPP_NOFCS = 1<<14, IFF_LIVE_ADDR_CHANGE = 1<<15, IFF_MACVLAN = 1<<16, IFF_XMIT_DST_RELEASE_PERM = 1<<17, IFF_L3MDEV_MASTER = 1<<18, IFF_NO_QUEUE = 1<<19, IFF_OPENVSWITCH = 1<<20, IFF_L3MDEV_SLAVE = 1<<21, IFF_TEAM = 1<<22, IFF_RXFH_CONFIGURED = 1<<23, IFF_PHONY_HEADROOM = 1<<24, IFF_MACSEC = 1<<25, IFF_NO_RX_HANDLER = 1<<26, IFF_FAILOVER = 1<<27, IFF_FAILOVER_SLAVE = 1<<28, IFF_L3MDEV_RX_HANDLER = 1<<29, IFF_LIVE_RENAME_OK = 1<<30, }; #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN #define IFF_EBRIDGE IFF_EBRIDGE #define IFF_BONDING IFF_BONDING #define IFF_ISATAP IFF_ISATAP #define IFF_WAN_HDLC IFF_WAN_HDLC #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING #define IFF_UNICAST_FLT IFF_UNICAST_FLT #define IFF_TEAM_PORT IFF_TEAM_PORT #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE #define IFF_MACVLAN IFF_MACVLAN #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER #define IFF_NO_QUEUE IFF_NO_QUEUE #define IFF_OPENVSWITCH IFF_OPENVSWITCH #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE #define IFF_TEAM IFF_TEAM #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED #define IFF_MACSEC IFF_MACSEC #define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER #define IFF_FAILOVER IFF_FAILOVER #define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE #define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER #define IFF_LIVE_RENAME_OK IFF_LIVE_RENAME_OK /* Specifies the type of the struct net_device::ml_priv pointer */ enum netdev_ml_priv_type { ML_PRIV_NONE, ML_PRIV_CAN, }; /** * struct net_device - The DEVICE structure. * * Actually, this whole structure is a big mistake. It mixes I/O * data with strictly "high-level" data, and it has to know about * almost every data structure used in the INET module. * * @name: This is the first field of the "visible" part of this structure * (i.e. as seen by users in the "Space.c" file). It is the name * of the interface. * * @name_node: Name hashlist node * @ifalias: SNMP alias * @mem_end: Shared memory end * @mem_start: Shared memory start * @base_addr: Device I/O address * @irq: Device IRQ number * * @state: Generic network queuing layer state, see netdev_state_t * @dev_list: The global list of network devices * @napi_list: List entry used for polling NAPI devices * @unreg_list: List entry when we are unregistering the * device; see the function unregister_netdev * @close_list: List entry used when we are closing the device * @ptype_all: Device-specific packet handlers for all protocols * @ptype_specific: Device-specific, protocol-specific packet handlers * * @adj_list: Directly linked devices, like slaves for bonding * @features: Currently active device features * @hw_features: User-changeable features * * @wanted_features: User-requested features * @vlan_features: Mask of features inheritable by VLAN devices * * @hw_enc_features: Mask of features inherited by encapsulating devices * This field indicates what encapsulation * offloads the hardware is capable of doing, * and drivers will need to set them appropriately. * * @mpls_features: Mask of features inheritable by MPLS * @gso_partial_features: value(s) from NETIF_F_GSO\* * * @ifindex: interface index * @group: The group the device belongs to * * @stats: Statistics struct, which was left as a legacy, use * rtnl_link_stats64 instead * * @rx_dropped: Dropped packets by core network, * do not use this in drivers * @tx_dropped: Dropped packets by core network, * do not use this in drivers * @rx_nohandler: nohandler dropped packets by core network on * inactive devices, do not use this in drivers * @carrier_up_count: Number of times the carrier has been up * @carrier_down_count: Number of times the carrier has been down * * @wireless_handlers: List of functions to handle Wireless Extensions, * instead of ioctl, * see <net/iw_handler.h> for details. * @wireless_data: Instance data managed by the core of wireless extensions * * @netdev_ops: Includes several pointers to callbacks, * if one wants to override the ndo_*() functions * @ethtool_ops: Management operations * @l3mdev_ops: Layer 3 master device operations * @ndisc_ops: Includes callbacks for different IPv6 neighbour * discovery handling. Necessary for e.g. 6LoWPAN. * @xfrmdev_ops: Transformation offload operations * @tlsdev_ops: Transport Layer Security offload operations * @header_ops: Includes callbacks for creating,parsing,caching,etc * of Layer 2 headers. * * @flags: Interface flags (a la BSD) * @priv_flags: Like 'flags' but invisible to userspace, * see if.h for the definitions * @gflags: Global flags ( kept as legacy ) * @padded: How much padding added by alloc_netdev() * @operstate: RFC2863 operstate * @link_mode: Mapping policy to operstate * @if_port: Selectable AUI, TP, ... * @dma: DMA channel * @mtu: Interface MTU value * @min_mtu: Interface Minimum MTU value * @max_mtu: Interface Maximum MTU value * @type: Interface hardware type * @hard_header_len: Maximum hardware header length. * @min_header_len: Minimum hardware header length * * @needed_headroom: Extra headroom the hardware may need, but not in all * cases can this be guaranteed * @needed_tailroom: Extra tailroom the hardware may need, but not in all * cases can this be guaranteed. Some cases also use * LL_MAX_HEADER instead to allocate the skb * * interface address info: * * @perm_addr: Permanent hw address * @addr_assign_type: Hw address assignment type * @addr_len: Hardware address length * @upper_level: Maximum depth level of upper devices. * @lower_level: Maximum depth level of lower devices. * @neigh_priv_len: Used in neigh_alloc() * @dev_id: Used to differentiate devices that share * the same link layer address * @dev_port: Used to differentiate devices that share * the same function * @addr_list_lock: XXX: need comments on this one * @name_assign_type: network interface name assignment type * @uc_promisc: Counter that indicates promiscuous mode * has been enabled due to the need to listen to * additional unicast addresses in a device that * does not implement ndo_set_rx_mode() * @uc: unicast mac addresses * @mc: multicast mac addresses * @dev_addrs: list of device hw addresses * @queues_kset: Group of all Kobjects in the Tx and RX queues * @promiscuity: Number of times the NIC is told to work in * promiscuous mode; if it becomes 0 the NIC will * exit promiscuous mode * @allmulti: Counter, enables or disables allmulticast mode * * @vlan_info: VLAN info * @dsa_ptr: dsa specific data * @tipc_ptr: TIPC specific data * @atalk_ptr: AppleTalk link * @ip_ptr: IPv4 specific data * @dn_ptr: DECnet specific data * @ip6_ptr: IPv6 specific data * @ax25_ptr: AX.25 specific data * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering * @ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network * device struct * @mpls_ptr: mpls_dev struct pointer * * @dev_addr: Hw address (before bcast, * because most packets are unicast) * * @_rx: Array of RX queues * @num_rx_queues: Number of RX queues * allocated at register_netdev() time * @real_num_rx_queues: Number of RX queues currently active in device * @xdp_prog: XDP sockets filter program pointer * @gro_flush_timeout: timeout for GRO layer in NAPI * @napi_defer_hard_irqs: If not zero, provides a counter that would * allow to avoid NIC hard IRQ, on busy queues. * * @rx_handler: handler for received packets * @rx_handler_data: XXX: need comments on this one * @miniq_ingress: ingress/clsact qdisc specific data for * ingress processing * @ingress_queue: XXX: need comments on this one * @nf_hooks_ingress: netfilter hooks executed for ingress packets * @broadcast: hw bcast address * * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, * indexed by RX queue number. Assigned by driver. * This must only be set if the ndo_rx_flow_steer * operation is defined * @index_hlist: Device index hash chain * * @_tx: Array of TX queues * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time * @real_num_tx_queues: Number of TX queues currently active in device * @qdisc: Root qdisc from userspace point of view * @tx_queue_len: Max frames per queue allowed * @tx_global_lock: XXX: need comments on this one * @xdp_bulkq: XDP device bulk queue * @xps_cpus_map: all CPUs map for XPS device * @xps_rxqs_map: all RXQs map for XPS device * * @xps_maps: XXX: need comments on this one * @miniq_egress: clsact qdisc specific data for * egress processing * @qdisc_hash: qdisc hash table * @watchdog_timeo: Represents the timeout that is used by * the watchdog (see dev_watchdog()) * @watchdog_timer: List of timers * * @proto_down_reason: reason a netdev interface is held down * @pcpu_refcnt: Number of references to this device * @todo_list: Delayed register/unregister * @link_watch_list: XXX: need comments on this one * * @reg_state: Register/unregister state machine * @dismantle: Device is going to be freed * @rtnl_link_state: This enum represents the phases of creating * a new link * * @needs_free_netdev: Should unregister perform free_netdev? * @priv_destructor: Called from unregister * @npinfo: XXX: need comments on this one * @nd_net: Network namespace this network device is inside * * @ml_priv: Mid-layer private * @ml_priv_type: Mid-layer private type * @lstats: Loopback statistics * @tstats: Tunnel statistics * @dstats: Dummy statistics * @vstats: Virtual ethernet statistics * * @garp_port: GARP * @mrp_port: MRP * * @dev: Class/net/name entry * @sysfs_groups: Space for optional device, statistics and wireless * sysfs groups * * @sysfs_rx_queue_group: Space for optional per-rx queue attributes * @rtnl_link_ops: Rtnl_link_ops * * @gso_max_size: Maximum size of generic segmentation offload * @gso_max_segs: Maximum number of segments that can be passed to the * NIC for GSO * * @dcbnl_ops: Data Center Bridging netlink ops * @num_tc: Number of traffic classes in the net device * @tc_to_txq: XXX: need comments on this one * @prio_tc_map: XXX: need comments on this one * * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp * * @priomap: XXX: need comments on this one * @phydev: Physical device may attach itself * for hardware timestamping * @sfp_bus: attached &struct sfp_bus structure. * * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount * * @proto_down: protocol port state information can be sent to the * switch driver and used to set the phys state of the * switch port. * * @wol_enabled: Wake-on-LAN is enabled * * @net_notifier_list: List of per-net netdev notifier block * that follow this device when it is moved * to another network namespace. * * @macsec_ops: MACsec offloading ops * * @udp_tunnel_nic_info: static structure describing the UDP tunnel * offload capabilities of the device * @udp_tunnel_nic: UDP tunnel offload state * @xdp_state: stores info on attached XDP BPF programs * * @nested_level: Used as as a parameter of spin_lock_nested() of * dev->addr_list_lock. * @unlink_list: As netif_addr_lock() can be called recursively, * keep a list of interfaces to be deleted. * * FIXME: cleanup struct net_device such that network protocol info * moves out. */ struct net_device { char name[IFNAMSIZ]; struct netdev_name_node *name_node; struct dev_ifalias __rcu *ifalias; /* * I/O specific fields * FIXME: Merge these and struct ifmap into one */ unsigned long mem_end; unsigned long mem_start; unsigned long base_addr; int irq; /* * Some hardware also needs these fields (state,dev_list, * napi_list,unreg_list,close_list) but they are not * part of the usual set specified in Space.c. */ unsigned long state; struct list_head dev_list; struct list_head napi_list; struct list_head unreg_list; struct list_head close_list; struct list_head ptype_all; struct list_head ptype_specific; struct { struct list_head upper; struct list_head lower; } adj_list; netdev_features_t features; netdev_features_t hw_features; netdev_features_t wanted_features; netdev_features_t vlan_features; netdev_features_t hw_enc_features; netdev_features_t mpls_features; netdev_features_t gso_partial_features; int ifindex; int group; struct net_device_stats stats; atomic_long_t rx_dropped; atomic_long_t tx_dropped; atomic_long_t rx_nohandler; /* Stats to monitor link on/off, flapping */ atomic_t carrier_up_count; atomic_t carrier_down_count; #ifdef CONFIG_WIRELESS_EXT const struct iw_handler_def *wireless_handlers; struct iw_public_data *wireless_data; #endif const struct net_device_ops *netdev_ops; const struct ethtool_ops *ethtool_ops; #ifdef CONFIG_NET_L3_MASTER_DEV const struct l3mdev_ops *l3mdev_ops; #endif #if IS_ENABLED(CONFIG_IPV6) const struct ndisc_ops *ndisc_ops; #endif #ifdef CONFIG_XFRM_OFFLOAD const struct xfrmdev_ops *xfrmdev_ops; #endif #if IS_ENABLED(CONFIG_TLS_DEVICE) const struct tlsdev_ops *tlsdev_ops; #endif const struct header_ops *header_ops; unsigned int flags; unsigned int priv_flags; unsigned short gflags; unsigned short padded; unsigned char operstate; unsigned char link_mode; unsigned char if_port; unsigned char dma; /* Note : dev->mtu is often read without holding a lock. * Writers usually hold RTNL. * It is recommended to use READ_ONCE() to annotate the reads, * and to use WRITE_ONCE() to annotate the writes. */ unsigned int mtu; unsigned int min_mtu; unsigned int max_mtu; unsigned short type; unsigned short hard_header_len; unsigned char min_header_len; unsigned char name_assign_type; unsigned short needed_headroom; unsigned short needed_tailroom; /* Interface address info. */ unsigned char perm_addr[MAX_ADDR_LEN]; unsigned char addr_assign_type; unsigned char addr_len; unsigned char upper_level; unsigned char lower_level; unsigned short neigh_priv_len; unsigned short dev_id; unsigned short dev_port; spinlock_t addr_list_lock; struct netdev_hw_addr_list uc; struct netdev_hw_addr_list mc; struct netdev_hw_addr_list dev_addrs; #ifdef CONFIG_SYSFS struct kset *queues_kset; #endif #ifdef CONFIG_LOCKDEP struct list_head unlink_list; #endif unsigned int promiscuity; unsigned int allmulti; bool uc_promisc; #ifdef CONFIG_LOCKDEP unsigned char nested_level; #endif /* Protocol-specific pointers */ #if IS_ENABLED(CONFIG_VLAN_8021Q) struct vlan_info __rcu *vlan_info; #endif #if IS_ENABLED(CONFIG_NET_DSA) struct dsa_port *dsa_ptr; #endif #if IS_ENABLED(CONFIG_TIPC) struct tipc_bearer __rcu *tipc_ptr; #endif #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK) void *atalk_ptr; #endif struct in_device __rcu *ip_ptr; #if IS_ENABLED(CONFIG_DECNET) struct dn_dev __rcu *dn_ptr; #endif struct inet6_dev __rcu *ip6_ptr; #if IS_ENABLED(CONFIG_AX25) void *ax25_ptr; #endif struct wireless_dev *ieee80211_ptr; struct wpan_dev *ieee802154_ptr; #if IS_ENABLED(CONFIG_MPLS_ROUTING) struct mpls_dev __rcu *mpls_ptr; #endif /* * Cache lines mostly used on receive path (including eth_type_trans()) */ /* Interface address info used in eth_type_trans() */ unsigned char *dev_addr; struct netdev_rx_queue *_rx; unsigned int num_rx_queues; unsigned int real_num_rx_queues; struct bpf_prog __rcu *xdp_prog; unsigned long gro_flush_timeout; int napi_defer_hard_irqs; rx_handler_func_t __rcu *rx_handler; void __rcu *rx_handler_data; #ifdef CONFIG_NET_CLS_ACT struct mini_Qdisc __rcu *miniq_ingress; #endif struct netdev_queue __rcu *ingress_queue; #ifdef CONFIG_NETFILTER_INGRESS struct nf_hook_entries __rcu *nf_hooks_ingress; #endif unsigned char broadcast[MAX_ADDR_LEN]; #ifdef CONFIG_RFS_ACCEL struct cpu_rmap *rx_cpu_rmap; #endif struct hlist_node index_hlist; /* * Cache lines mostly used on transmit path */ struct netdev_queue *_tx ____cacheline_aligned_in_smp; unsigned int num_tx_queues; unsigned int