1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_BARRIER_H #define _ASM_X86_BARRIER_H #include <asm/alternative.h> #include <asm/nops.h> /* * Force strict CPU ordering. * And yes, this might be required on UP too when we're talking * to devices. */ #ifdef CONFIG_X86_32 #define mb() asm volatile(ALTERNATIVE("lock; addl $0,-4(%%esp)", "mfence", \ X86_FEATURE_XMM2) ::: "memory", "cc") #define rmb() asm volatile(ALTERNATIVE("lock; addl $0,-4(%%esp)", "lfence", \ X86_FEATURE_XMM2) ::: "memory", "cc") #define wmb() asm volatile(ALTERNATIVE("lock; addl $0,-4(%%esp)", "sfence", \ X86_FEATURE_XMM2) ::: "memory", "cc") #else #define mb() asm volatile("mfence":::"memory") #define rmb() asm volatile("lfence":::"memory") #define wmb() asm volatile("sfence" ::: "memory") #endif /** * array_index_mask_nospec() - generate a mask that is ~0UL when the * bounds check succeeds and 0 otherwise * @index: array element index * @size: number of elements in array * * Returns: * 0 - (index < size) */ static inline unsigned long array_index_mask_nospec(unsigned long index, unsigned long size) { unsigned long mask; asm volatile ("cmp %1,%2; sbb %0,%0;" :"=r" (mask) :"g"(size),"r" (index) :"cc"); return mask; } /* Override the default implementation from linux/nospec.h. */ #define array_index_mask_nospec array_index_mask_nospec /* Prevent speculative execution past this barrier. */ #define barrier_nospec() alternative("", "lfence", X86_FEATURE_LFENCE_RDTSC) #define dma_rmb() barrier() #define dma_wmb() barrier() #ifdef CONFIG_X86_32 #define __smp_mb() asm volatile("lock; addl $0,-4(%%esp)" ::: "memory", "cc") #else #define __smp_mb() asm volatile("lock; addl $0,-4(%%rsp)" ::: "memory", "cc") #endif #define __smp_rmb() dma_rmb() #define __smp_wmb() barrier() #define __smp_store_mb(var, value) do { (void)xchg(&var, value); } while (0) #define __smp_store_release(p, v) \ do { \ compiletime_assert_atomic_type(*p); \ barrier(); \ WRITE_ONCE(*p, v); \ } while (0) #define __smp_load_acquire(p) \ ({ \ typeof(*p) ___p1 = READ_ONCE(*p); \ compiletime_assert_atomic_type(*p); \ barrier(); \ ___p1; \ }) /* Atomic operations are already serializing on x86 */ #define __smp_mb__before_atomic() do { } while (0) #define __smp_mb__after_atomic() do { } while (0) #include <asm-generic/barrier.h> /* * Make previous memory operations globally visible before * a WRMSR. * * MFENCE makes writes visible, but only affects load/store * instructions. WRMSR is unfortunately not a load/store * instruction and is unaffected by MFENCE. The LFENCE ensures * that the WRMSR is not reordered. * * Most WRMSRs are full serializing instructions themselves and * do not require this barrier. This is only required for the * IA32_TSC_DEADLINE and X2APIC MSRs. */ static inline void weak_wrmsr_fence(void) { asm volatile("mfence; lfence" : : : "memory"); } #endif /* _ASM_X86_BARRIER_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __NET_FRAG_H__ #define __NET_FRAG_H__ #include <linux/rhashtable-types.h> #include <linux/completion.h> /* Per netns frag queues directory */ struct fqdir { /* sysctls */ long high_thresh; long low_thresh; int timeout; int max_dist; struct inet_frags *f; struct net *net; bool dead; struct rhashtable rhashtable ____cacheline_aligned_in_smp; /* Keep atomic mem on separate cachelines in structs that include it */ atomic_long_t mem ____cacheline_aligned_in_smp; struct work_struct destroy_work; }; /** * fragment queue flags * * @INET_FRAG_FIRST_IN: first fragment has arrived * @INET_FRAG_LAST_IN: final fragment has arrived * @INET_FRAG_COMPLETE: frag queue has been processed and is due for destruction * @INET_FRAG_HASH_DEAD: inet_frag_kill() has not removed fq from rhashtable */ enum { INET_FRAG_FIRST_IN = BIT(0), INET_FRAG_LAST_IN = BIT(1), INET_FRAG_COMPLETE = BIT(2), INET_FRAG_HASH_DEAD = BIT(3), }; struct frag_v4_compare_key { __be32 saddr; __be32 daddr; u32 user; u32 vif; __be16 id; u16 protocol; }; struct frag_v6_compare_key { struct in6_addr saddr; struct in6_addr daddr; u32 user; __be32 id; u32 iif; }; /** * struct inet_frag_queue - fragment queue * * @node: rhash node * @key: keys identifying this frag. * @timer: queue expiration timer * @lock: spinlock protecting this frag * @refcnt: reference count of the queue * @rb_fragments: received fragments rb-tree root * @fragments_tail: received fragments tail * @last_run_head: the head of the last "run". see ip_fragment.c * @stamp: timestamp of the last received fragment * @len: total length of the original datagram * @meat: length of received fragments so far * @flags: fragment queue flags * @max_size: maximum received fragment size * @fqdir: pointer to struct fqdir * @rcu: rcu head for freeing deferall */ struct inet_frag_queue { struct rhash_head node; union { struct frag_v4_compare_key v4; struct frag_v6_compare_key v6; } key; struct timer_list timer; spinlock_t lock; refcount_t refcnt; struct rb_root rb_fragments; struct sk_buff *fragments_tail; struct sk_buff *last_run_head; ktime_t stamp; int len; int meat; __u8 flags; u16 max_size; struct fqdir *fqdir; struct rcu_head rcu; }; struct inet_frags { unsigned int qsize; void (*constructor)(struct inet_frag_queue *q, const void *arg); void (*destructor)(struct inet_frag_queue *); void (*frag_expire)(struct timer_list *t); struct kmem_cache *frags_cachep; const char *frags_cache_name; struct rhashtable_params rhash_params; refcount_t refcnt; struct completion completion; }; int inet_frags_init(struct inet_frags *); void inet_frags_fini(struct inet_frags *); int fqdir_init(struct fqdir **fqdirp, struct inet_frags *f, struct net *net); static inline void fqdir_pre_exit(struct fqdir *fqdir) { fqdir->high_thresh = 0; /* prevent creation of new frags */ fqdir->dead = true; } void fqdir_exit(struct fqdir *fqdir); void inet_frag_kill(struct inet_frag_queue *q); void inet_frag_destroy(struct inet_frag_queue *q); struct inet_frag_queue *inet_frag_find(struct fqdir *fqdir, void *key); /* Free all skbs in the queue; return the sum of their truesizes. */ unsigned int inet_frag_rbtree_purge(struct rb_root *root); static inline void inet_frag_put(struct inet_frag_queue *q) { if (refcount_dec_and_test(&q->refcnt)) inet_frag_destroy(q); } /* Memory Tracking Functions. */ static inline long frag_mem_limit(const struct fqdir *fqdir) { return atomic_long_read(&fqdir->mem); } static inline void sub_frag_mem_limit(struct fqdir *fqdir, long val) { atomic_long_sub(val, &fqdir->mem); } static inline void add_frag_mem_limit(struct fqdir *fqdir, long val) { atomic_long_add(val, &fqdir->mem); } /* RFC 3168 support : * We want to check ECN values of all fragments, do detect invalid combinations. * In ipq->ecn, we store the OR value of each ip4_frag_ecn() fragment value. */ #define IPFRAG_ECN_NOT_ECT 0x01 /* one frag had ECN_NOT_ECT */ #define IPFRAG_ECN_ECT_1 0x02 /* one frag had ECN_ECT_1 */ #define IPFRAG_ECN_ECT_0 0x04 /* one frag had ECN_ECT_0 */ #define IPFRAG_ECN_CE 0x08 /* one frag had ECN_CE */ extern const u8 ip_frag_ecn_table[16]; /* Return values of inet_frag_queue_insert() */ #define IPFRAG_OK 0 #define IPFRAG_DUP 1 #define IPFRAG_OVERLAP 2 int inet_frag_queue_insert(struct inet_frag_queue *q, struct sk_buff *skb, int offset, int end); void *inet_frag_reasm_prepare(struct inet_frag_queue *q, struct sk_buff *skb, struct sk_buff *parent); void inet_frag_reasm_finish(struct inet_frag_queue *q, struct sk_buff *head, void *reasm_data, bool try_coalesce); struct sk_buff *inet_frag_pull_head(struct inet_frag_queue *q); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _XFRM_HASH_H #define _XFRM_HASH_H #include <linux/xfrm.h> #include <linux/socket.h> #include <linux/jhash.h> static inline unsigned int __xfrm4_addr_hash(const xfrm_address_t *addr) { return ntohl(addr->a4); } static inline unsigned int __xfrm6_addr_hash(const xfrm_address_t *addr) { return jhash2((__force u32 *)addr->a6, 4, 0); } static inline unsigned int __xfrm4_daddr_saddr_hash(const xfrm_address_t *daddr, const xfrm_address_t *saddr) { u32 sum = (__force u32)daddr->a4 + (__force u32)saddr->a4; return ntohl((__force __be32)sum); } static inline unsigned int __xfrm6_daddr_saddr_hash(const xfrm_address_t *daddr, const xfrm_address_t *saddr) { return __xfrm6_addr_hash(daddr) ^ __xfrm6_addr_hash(saddr); } static inline u32 __bits2mask32(__u8 bits) { u32 mask32 = 0xffffffff; if (bits == 0) mask32 = 0; else if (bits < 32) mask32 <<= (32 - bits); return mask32; } static inline unsigned int __xfrm4_dpref_spref_hash(const xfrm_address_t *daddr, const xfrm_address_t *saddr, __u8 dbits, __u8 sbits) { return jhash_2words(ntohl(daddr->a4) & __bits2mask32(dbits), ntohl(saddr->a4) & __bits2mask32(sbits), 0); } static inline unsigned int __xfrm6_pref_hash(const xfrm_address_t *addr, __u8 prefixlen) { unsigned int pdw; unsigned int pbi; u32 initval = 0; pdw = prefixlen >> 5; /* num of whole u32 in prefix */ pbi = prefixlen & 0x1f; /* num of bits in incomplete u32 in prefix */ if (pbi) { __be32 mask; mask = htonl((0xffffffff) << (32 - pbi)); initval = (__force u32)(addr->a6[pdw] & mask); } return jhash2((__force u32 *)addr->a6, pdw, initval); } static inline unsigned int __xfrm6_dpref_spref_hash(const xfrm_address_t *daddr, const xfrm_address_t *saddr, __u8 dbits, __u8 sbits) { return __xfrm6_pref_hash(daddr, dbits) ^ __xfrm6_pref_hash(saddr, sbits); } static inline unsigned int __xfrm_dst_hash(const xfrm_address_t *daddr, const xfrm_address_t *saddr, u32 reqid, unsigned short family, unsigned int hmask) { unsigned int h = family ^ reqid; switch (family) { case AF_INET: h ^= __xfrm4_daddr_saddr_hash(daddr, saddr); break; case AF_INET6: h ^= __xfrm6_daddr_saddr_hash(daddr, saddr); break; } return (h ^ (h >> 16)) & hmask; } static inline unsigned int __xfrm_src_hash(const xfrm_address_t *daddr, const xfrm_address_t *saddr, unsigned short family, unsigned int hmask) { unsigned int h = family; switch (family) { case AF_INET: h ^= __xfrm4_daddr_saddr_hash(daddr, saddr); break; case AF_INET6: h ^= __xfrm6_daddr_saddr_hash(daddr, saddr); break; } return (h ^ (h >> 16)) & hmask; } static inline unsigned int __xfrm_spi_hash(const xfrm_address_t *daddr, __be32 spi, u8 proto, unsigned short family, unsigned int hmask) { unsigned int h = (__force u32)spi ^ proto; switch (family) { case AF_INET: h ^= __xfrm4_addr_hash(daddr); break; case AF_INET6: h ^= __xfrm6_addr_hash(daddr); break; } return (h ^ (h >> 10) ^ (h >> 20)) & hmask; } static inline unsigned int __idx_hash(u32 index, unsigned int hmask) { return (index ^ (index >> 8)) & hmask; } static inline unsigned int __sel_hash(const struct xfrm_selector *sel, unsigned short family, unsigned int hmask, u8 dbits, u8 sbits) { const xfrm_address_t *daddr = &sel->daddr; const xfrm_address_t *saddr = &sel->saddr; unsigned int h = 0; switch (family) { case AF_INET: if (sel->prefixlen_d < dbits || sel->prefixlen_s < sbits) return hmask + 1; h = __xfrm4_dpref_spref_hash(daddr, saddr, dbits, sbits); break; case AF_INET6: if (sel->prefixlen_d < dbits || sel->prefixlen_s < sbits) return hmask + 1; h = __xfrm6_dpref_spref_hash(daddr, saddr, dbits, sbits); break; } h ^= (h >> 16); return h & hmask; } static inline unsigned int __addr_hash(const xfrm_address_t *daddr, const xfrm_address_t *saddr, unsigned short family, unsigned int hmask, u8 dbits, u8 sbits) { unsigned int h = 0; switch (family) { case AF_INET: h = __xfrm4_dpref_spref_hash(daddr, saddr, dbits, sbits); break; case AF_INET6: h = __xfrm6_dpref_spref_hash(daddr, saddr, dbits, sbits); break; } h ^= (h >> 16); return h & hmask; } struct hlist_head *xfrm_hash_alloc(unsigned int sz); void xfrm_hash_free(struct hlist_head *n, unsigned int sz); #endif /* _XFRM_HASH_H */
1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 // SPDX-License-Identifier: GPL-2.0 /* * preemptoff and irqoff tracepoints * * Copyright (C) Joel Fernandes (Google) <joel@joelfernandes.org> */ #include <linux/kallsyms.h> #include <linux/uaccess.h> #include <linux/module.h> #include <linux/ftrace.h> #include <linux/kprobes.h> #include "trace.h" #define CREATE_TRACE_POINTS #include <trace/events/preemptirq.h> #ifdef CONFIG_TRACE_IRQFLAGS /* Per-cpu variable to prevent redundant calls when IRQs already off */ static DEFINE_PER_CPU(int, tracing_irq_cpu); /* * Like trace_hardirqs_on() but without the lockdep invocation. This is * used in the low level entry code where the ordering vs. RCU is important * and lockdep uses a staged approach which splits the lockdep hardirq * tracking into a RCU on and a RCU off section. */ void trace_hardirqs_on_prepare(void) { if (this_cpu_read(tracing_irq_cpu)) { if (!in_nmi()) trace_irq_enable(CALLER_ADDR0, CALLER_ADDR1); tracer_hardirqs_on(CALLER_ADDR0, CALLER_ADDR1); this_cpu_write(tracing_irq_cpu, 0); } } EXPORT_SYMBOL(trace_hardirqs_on_prepare); NOKPROBE_SYMBOL(trace_hardirqs_on_prepare); void trace_hardirqs_on(void) { if (this_cpu_read(tracing_irq_cpu)) { if (!in_nmi()) trace_irq_enable_rcuidle(CALLER_ADDR0, CALLER_ADDR1); tracer_hardirqs_on(CALLER_ADDR0, CALLER_ADDR1); this_cpu_write(tracing_irq_cpu, 0); } lockdep_hardirqs_on_prepare(CALLER_ADDR0); lockdep_hardirqs_on(CALLER_ADDR0); } EXPORT_SYMBOL(trace_hardirqs_on); NOKPROBE_SYMBOL(trace_hardirqs_on); /* * Like trace_hardirqs_off() but without the lockdep invocation. This is * used in the low level entry code where the ordering vs. RCU is important * and lockdep uses a staged approach which splits the lockdep hardirq * tracking into a RCU on and a RCU off section. */ void trace_hardirqs_off_finish(void) { if (!this_cpu_read(tracing_irq_cpu)) { this_cpu_write(tracing_irq_cpu, 1); tracer_hardirqs_off(CALLER_ADDR0, CALLER_ADDR1); if (!in_nmi()) trace_irq_disable(CALLER_ADDR0, CALLER_ADDR1); } } EXPORT_SYMBOL(trace_hardirqs_off_finish); NOKPROBE_SYMBOL(trace_hardirqs_off_finish); void trace_hardirqs_off(void) { lockdep_hardirqs_off(CALLER_ADDR0); if (!this_cpu_read(tracing_irq_cpu)) { this_cpu_write(tracing_irq_cpu, 1); tracer_hardirqs_off(CALLER_ADDR0, CALLER_ADDR1); if (!in_nmi()) trace_irq_disable_rcuidle(CALLER_ADDR0, CALLER_ADDR1); } } EXPORT_SYMBOL(trace_hardirqs_off); NOKPROBE_SYMBOL(trace_hardirqs_off); __visible void trace_hardirqs_on_caller(unsigned long caller_addr) { if (this_cpu_read(tracing_irq_cpu)) { if (!in_nmi()) trace_irq_enable_rcuidle(CALLER_ADDR0, caller_addr); tracer_hardirqs_on(CALLER_ADDR0, caller_addr); this_cpu_write(tracing_irq_cpu, 0); } lockdep_hardirqs_on_prepare(CALLER_ADDR0); lockdep_hardirqs_on(CALLER_ADDR0); } EXPORT_SYMBOL(trace_hardirqs_on_caller); NOKPROBE_SYMBOL(trace_hardirqs_on_caller); __visible void trace_hardirqs_off_caller(unsigned long caller_addr) { lockdep_hardirqs_off(CALLER_ADDR0); if (!this_cpu_read(tracing_irq_cpu)) { this_cpu_write(tracing_irq_cpu, 1); tracer_hardirqs_off(CALLER_ADDR0, caller_addr); if (!in_nmi()) trace_irq_disable_rcuidle(CALLER_ADDR0, caller_addr); } } EXPORT_SYMBOL(trace_hardirqs_off_caller); NOKPROBE_SYMBOL(trace_hardirqs_off_caller); #endif /* CONFIG_TRACE_IRQFLAGS */ #ifdef CONFIG_TRACE_PREEMPT_TOGGLE void trace_preempt_on(unsigned long a0, unsigned long a1) { if (!in_nmi()) trace_preempt_enable_rcuidle(a0, a1); tracer_preempt_on(a0, a1); } void trace_preempt_off(unsigned long a0, unsigned long a1) { if (!in_nmi()) trace_preempt_disable_rcuidle(a0, a1); tracer_preempt_off(a0, a1); } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _NDISC_H #define _NDISC_H #include <net/ipv6_stubs.h> /* * ICMP codes for neighbour discovery messages */ #define NDISC_ROUTER_SOLICITATION 133 #define NDISC_ROUTER_ADVERTISEMENT 134 #define NDISC_NEIGHBOUR_SOLICITATION 135 #define NDISC_NEIGHBOUR_ADVERTISEMENT 136 #define NDISC_REDIRECT 137 /* * Router type: cross-layer information from link-layer to * IPv6 layer reported by certain link types (e.g., RFC4214). */ #define NDISC_NODETYPE_UNSPEC 0 /* unspecified (default) */ #define NDISC_NODETYPE_HOST 1 /* host or unauthorized router */ #define NDISC_NODETYPE_NODEFAULT 2 /* non-default router */ #define NDISC_NODETYPE_DEFAULT 3 /* default router */ /* * ndisc options */ enum { __ND_OPT_PREFIX_INFO_END = 0, ND_OPT_SOURCE_LL_ADDR = 1, /* RFC2461 */ ND_OPT_TARGET_LL_ADDR = 2, /* RFC2461 */ ND_OPT_PREFIX_INFO = 3, /* RFC2461 */ ND_OPT_REDIRECT_HDR = 4, /* RFC2461 */ ND_OPT_MTU = 5, /* RFC2461 */ ND_OPT_NONCE = 14, /* RFC7527 */ __ND_OPT_ARRAY_MAX, ND_OPT_ROUTE_INFO = 24, /* RFC4191 */ ND_OPT_RDNSS = 25, /* RFC5006 */ ND_OPT_DNSSL = 31, /* RFC6106 */ ND_OPT_6CO = 34, /* RFC6775 */ ND_OPT_CAPTIVE_PORTAL = 37, /* RFC7710 */ ND_OPT_PREF64 = 38, /* RFC8781 */ __ND_OPT_MAX }; #define MAX_RTR_SOLICITATION_DELAY HZ #define ND_REACHABLE_TIME (30*HZ) #define ND_RETRANS_TIMER HZ #include <linux/compiler.h> #include <linux/icmpv6.h> #include <linux/in6.h> #include <linux/types.h> #include <linux/if_arp.h> #include <linux/netdevice.h> #include <linux/hash.h> #include <net/neighbour.h> /* Set to 3 to get tracing... */ #define ND_DEBUG 1 #define ND_PRINTK(val, level, fmt, ...) \ do { \ if (val <= ND_DEBUG) \ net_##level##_ratelimited(fmt, ##__VA_ARGS__); \ } while (0) struct ctl_table; struct inet6_dev; struct net_device; struct net_proto_family; struct sk_buff; struct prefix_info; extern struct neigh_table nd_tbl; struct nd_msg { struct icmp6hdr icmph; struct in6_addr target; __u8 opt[]; }; struct rs_msg { struct icmp6hdr icmph; __u8 opt[]; }; struct ra_msg { struct icmp6hdr icmph; __be32 reachable_time; __be32 retrans_timer; }; struct rd_msg { struct icmp6hdr icmph; struct in6_addr target; struct in6_addr dest; __u8 opt[]; }; struct nd_opt_hdr { __u8 nd_opt_type; __u8 nd_opt_len; } __packed; /* ND options */ struct ndisc_options { struct nd_opt_hdr *nd_opt_array[__ND_OPT_ARRAY_MAX]; #ifdef CONFIG_IPV6_ROUTE_INFO struct nd_opt_hdr *nd_opts_ri; struct nd_opt_hdr *nd_opts_ri_end; #endif struct nd_opt_hdr *nd_useropts; struct nd_opt_hdr *nd_useropts_end; #if IS_ENABLED(CONFIG_IEEE802154_6LOWPAN) struct nd_opt_hdr *nd_802154_opt_array[ND_OPT_TARGET_LL_ADDR + 1]; #endif }; #define nd_opts_src_lladdr nd_opt_array[ND_OPT_SOURCE_LL_ADDR] #define nd_opts_tgt_lladdr nd_opt_array[ND_OPT_TARGET_LL_ADDR] #define nd_opts_pi nd_opt_array[ND_OPT_PREFIX_INFO] #define nd_opts_pi_end nd_opt_array[__ND_OPT_PREFIX_INFO_END] #define nd_opts_rh nd_opt_array[ND_OPT_REDIRECT_HDR] #define nd_opts_mtu nd_opt_array[ND_OPT_MTU] #define nd_opts_nonce nd_opt_array[ND_OPT_NONCE] #define nd_802154_opts_src_lladdr nd_802154_opt_array[ND_OPT_SOURCE_LL_ADDR] #define nd_802154_opts_tgt_lladdr nd_802154_opt_array[ND_OPT_TARGET_LL_ADDR] #define NDISC_OPT_SPACE(len) (((len)+2+7)&~7) struct ndisc_options *ndisc_parse_options(const struct net_device *dev, u8 *opt, int opt_len, struct ndisc_options *ndopts); void __ndisc_fill_addr_option(struct sk_buff *skb, int type, void *data, int data_len, int pad); #define NDISC_OPS_REDIRECT_DATA_SPACE 2 /* * This structure defines the hooks for IPv6 neighbour discovery. * The following hooks can be defined; unless noted otherwise, they are * optional and can be filled with a null pointer. * * int (*is_useropt)(u8 nd_opt_type): * This function is called when IPv6 decide RA userspace options. if * this function returns 1 then the option given by nd_opt_type will * be handled as userspace option additional to the IPv6 options. * * int (*parse_options)(const struct net_device *dev, * struct nd_opt_hdr *nd_opt, * struct ndisc_options *ndopts): * This function is called while parsing ndisc ops and put each position * as pointer into ndopts. If this function return unequal 0, then this * function took care about the ndisc option, if 0 then the IPv6 ndisc * option parser will take care about that option. * * void (*update)(const struct net_device *dev, struct neighbour *n, * u32 flags, u8 icmp6_type, * const struct ndisc_options *ndopts): * This function is called when IPv6 ndisc updates the neighbour cache * entry. Additional options which can be updated may be previously * parsed by parse_opts callback and accessible over ndopts parameter. * * int (*opt_addr_space)(const struct net_device *dev, u8 icmp6_type, * struct neighbour *neigh, u8 *ha_buf, * u8 **ha): * This function is called when the necessary option space will be * calculated before allocating a skb. The parameters neigh, ha_buf * abd ha are available on NDISC_REDIRECT messages only. * * void (*fill_addr_option)(const struct net_device *dev, * struct sk_buff *skb, u8 icmp6_type, * const u8 *ha): * This function is called when the skb will finally fill the option * fields inside skb. NOTE: this callback should fill the option * fields to the skb which are previously indicated by opt_space * parameter. That means the decision to add such option should * not lost between these two callbacks, e.g. protected by interface * up state. * * void (*prefix_rcv_add_addr)(struct net *net, struct net_device *dev, * const struct prefix_info *pinfo, * struct inet6_dev *in6_dev, * struct in6_addr *addr, * int addr_type, u32 addr_flags, * bool sllao, bool tokenized, * __u32 valid_lft, u32 prefered_lft, * bool dev_addr_generated): * This function is called when a RA messages is received with valid * PIO option fields and an IPv6 address will be added to the interface * for autoconfiguration. The parameter dev_addr_generated reports about * if the address was based on dev->dev_addr or not. This can be used * to add a second address if link-layer operates with two link layer * addresses. E.g. 802.15.4 6LoWPAN. */ struct ndisc_ops { int (*is_useropt)(u8 nd_opt_type); int (*parse_options)(const struct net_device *dev, struct nd_opt_hdr *nd_opt, struct ndisc_options *ndopts); void (*update)(const struct net_device *dev, struct neighbour *n, u32 flags, u8 icmp6_type, const struct ndisc_options *ndopts); int (*opt_addr_space)(const struct net_device *dev, u8 icmp6_type, struct neighbour *neigh, u8 *ha_buf, u8 **ha); void (*fill_addr_option)(const struct net_device *dev, struct sk_buff *skb, u8 icmp6_type, const u8 *ha); void (*prefix_rcv_add_addr)(struct net *net, struct net_device *dev, const struct prefix_info *pinfo, struct inet6_dev *in6_dev, struct in6_addr *addr, int addr_type, u32 addr_flags, bool sllao, bool tokenized, __u32 valid_lft, u32 prefered_lft, bool dev_addr_generated); }; #if IS_ENABLED(CONFIG_IPV6) static inline int ndisc_ops_is_useropt(const struct net_device *dev, u8 nd_opt_type) { if (dev->ndisc_ops && dev->ndisc_ops->is_useropt) return dev->ndisc_ops->is_useropt(nd_opt_type); else return 0; } static inline int ndisc_ops_parse_options(const struct net_device *dev, struct nd_opt_hdr *nd_opt, struct ndisc_options *ndopts) { if (dev->ndisc_ops && dev->ndisc_ops->parse_options) return dev->ndisc_ops->parse_options(dev, nd_opt, ndopts); else return 0; } static inline void ndisc_ops_update(const struct net_device *dev, struct neighbour *n, u32 flags, u8 icmp6_type, const struct ndisc_options *ndopts) { if (dev->ndisc_ops && dev->ndisc_ops->update) dev->ndisc_ops->update(dev, n, flags, icmp6_type, ndopts); } static inline int ndisc_ops_opt_addr_space(const struct net_device *dev, u8 icmp6_type) { if (dev->ndisc_ops && dev->ndisc_ops->opt_addr_space && icmp6_type != NDISC_REDIRECT) return dev->ndisc_ops->opt_addr_space(dev, icmp6_type, NULL, NULL, NULL); else return 0; } static inline int ndisc_ops_redirect_opt_addr_space(const struct net_device *dev, struct neighbour *neigh, u8 *ha_buf, u8 **ha) { if (dev->ndisc_ops && dev->ndisc_ops->opt_addr_space) return dev->ndisc_ops->opt_addr_space(dev, NDISC_REDIRECT, neigh, ha_buf, ha); else return 0; } static inline void ndisc_ops_fill_addr_option(const struct net_device *dev, struct sk_buff *skb, u8 icmp6_type) { if (dev->ndisc_ops && dev->ndisc_ops->fill_addr_option && icmp6_type != NDISC_REDIRECT) dev->ndisc_ops->fill_addr_option(dev, skb, icmp6_type, NULL); } static inline void ndisc_ops_fill_redirect_addr_option(const struct net_device *dev, struct sk_buff *skb, const u8 *ha) { if (dev->ndisc_ops && dev->ndisc_ops->fill_addr_option) dev->ndisc_ops->fill_addr_option(dev, skb, NDISC_REDIRECT, ha); } static inline void ndisc_ops_prefix_rcv_add_addr(struct net *net, struct net_device *dev, const struct prefix_info *pinfo, struct inet6_dev *in6_dev, struct in6_addr *addr, int addr_type, u32 addr_flags, bool sllao, bool tokenized, __u32 valid_lft, u32 prefered_lft, bool dev_addr_generated) { if (dev->ndisc_ops && dev->ndisc_ops->prefix_rcv_add_addr) dev->ndisc_ops->prefix_rcv_add_addr(net, dev, pinfo, in6_dev, addr, addr_type, addr_flags, sllao, tokenized, valid_lft, prefered_lft, dev_addr_generated); } #endif /* * Return the padding between the option length and the start of the * link addr. Currently only IP-over-InfiniBand needs this, although * if RFC 3831 IPv6-over-Fibre Channel is ever implemented it may * also need a pad of 2. */ static inline int ndisc_addr_option_pad(unsigned short type) { switch (type) { case ARPHRD_INFINIBAND: return 2; default: return 0; } } static inline int __ndisc_opt_addr_space(unsigned char addr_len, int pad) { return NDISC_OPT_SPACE(addr_len + pad); } #if IS_ENABLED(CONFIG_IPV6) static inline int ndisc_opt_addr_space(struct net_device *dev, u8 icmp6_type) { return __ndisc_opt_addr_space(dev->addr_len, ndisc_addr_option_pad(dev->type)) + ndisc_ops_opt_addr_space(dev, icmp6_type); } static inline int ndisc_redirect_opt_addr_space(struct net_device *dev, struct neighbour *neigh, u8 *ops_data_buf, u8 **ops_data) { return __ndisc_opt_addr_space(dev->addr_len, ndisc_addr_option_pad(dev->type)) + ndisc_ops_redirect_opt_addr_space(dev, neigh, ops_data_buf, ops_data); } #endif static inline u8 *__ndisc_opt_addr_data(struct nd_opt_hdr *p, unsigned char addr_len, int prepad) { u8 *lladdr = (u8 *)(p + 1); int lladdrlen = p->nd_opt_len << 3; if (lladdrlen != __ndisc_opt_addr_space(addr_len, prepad)) return NULL; return lladdr + prepad; } static inline u8 *ndisc_opt_addr_data(struct nd_opt_hdr *p, struct net_device *dev) { return __ndisc_opt_addr_data(p, dev->addr_len, ndisc_addr_option_pad(dev->type)); } static inline u32 ndisc_hashfn(const void *pkey, const struct net_device *dev, __u32 *hash_rnd) { const u32 *p32 = pkey; return (((p32[0] ^ hash32_ptr(dev)) * hash_rnd[0]) + (p32[1] * hash_rnd[1]) + (p32[2] * hash_rnd[2]) + (p32[3] * hash_rnd[3])); } static inline struct neighbour *__ipv6_neigh_lookup_noref(struct net_device *dev, const void *pkey) { return ___neigh_lookup_noref(&nd_tbl, neigh_key_eq128, ndisc_hashfn, pkey, dev); } static inline struct neighbour *__ipv6_neigh_lookup_noref_stub(struct net_device *dev, const void *pkey) { return ___neigh_lookup_noref(ipv6_stub->nd_tbl, neigh_key_eq128, ndisc_hashfn, pkey, dev); } static inline struct neighbour *__ipv6_neigh_lookup(struct net_device *dev, const void *pkey) { struct neighbour *n; rcu_read_lock_bh(); n = __ipv6_neigh_lookup_noref(dev, pkey); if (n && !refcount_inc_not_zero(&n->refcnt)) n = NULL; rcu_read_unlock_bh(); return n; } static inline void __ipv6_confirm_neigh(struct net_device *dev, const void *pkey) { struct neighbour *n; rcu_read_lock_bh(); n = __ipv6_neigh_lookup_noref(dev, pkey); if (n) { unsigned long now = jiffies; /* avoid dirtying neighbour */ if (READ_ONCE(n->confirmed) != now) WRITE_ONCE(n->confirmed, now); } rcu_read_unlock_bh(); } static inline void __ipv6_confirm_neigh_stub(struct net_device *dev, const void *pkey) { struct neighbour *n; rcu_read_lock_bh(); n = __ipv6_neigh_lookup_noref_stub(dev, pkey); if (n) { unsigned long now = jiffies; /* avoid dirtying neighbour */ if (READ_ONCE(n->confirmed) != now) WRITE_ONCE(n->confirmed, now); } rcu_read_unlock_bh(); } /* uses ipv6_stub and is meant for use outside of IPv6 core */ static inline struct neighbour *ip_neigh_gw6(struct net_device *dev, const void *addr) { struct neighbour *neigh; neigh = __ipv6_neigh_lookup_noref_stub(dev, addr); if (unlikely(!neigh)) neigh = __neigh_create(ipv6_stub->nd_tbl, addr, dev, false); return neigh; } int ndisc_init(void); int ndisc_late_init(void); void ndisc_late_cleanup(void); void ndisc_cleanup(void); int ndisc_rcv(struct sk_buff *skb); void ndisc_send_ns(struct net_device *dev, const struct in6_addr *solicit, const struct in6_addr *daddr, const struct in6_addr *saddr, u64 nonce); void ndisc_send_rs(struct net_device *dev, const struct in6_addr *saddr, const struct in6_addr *daddr); void ndisc_send_na(struct net_device *dev, const struct in6_addr *daddr, const struct in6_addr *solicited_addr, bool router, bool solicited, bool override, bool inc_opt); void ndisc_send_redirect(struct sk_buff *skb, const struct in6_addr *target); int ndisc_mc_map(const struct in6_addr *addr, char *buf, struct net_device *dev, int dir); void ndisc_update(const struct net_device *dev, struct neighbour *neigh, const u8 *lladdr, u8 new, u32 flags, u8 icmp6_type, struct ndisc_options *ndopts); /* * IGMP */ int igmp6_init(void); int igmp6_late_init(void); void igmp6_cleanup(void); void igmp6_late_cleanup(void); int igmp6_event_query(struct sk_buff *skb); int igmp6_event_report(struct sk_buff *skb); #ifdef CONFIG_SYSCTL int ndisc_ifinfo_sysctl_change(struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *ppos); int ndisc_ifinfo_sysctl_strategy(struct ctl_table *ctl, void __user *oldval, size_t __user *oldlenp, void __user *newval, size_t newlen); #endif void inet6_ifinfo_notify(int event, struct inet6_dev *idev); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_MM_TYPES_H #define _LINUX_MM_TYPES_H #include <linux/mm_types_task.h> #include <linux/auxvec.h> #include <linux/list.h> #include <linux/spinlock.h> #include <linux/rbtree.h> #include <linux/rwsem.h> #include <linux/completion.h> #include <linux/cpumask.h> #include <linux/uprobes.h> #include <linux/page-flags-layout.h> #include <linux/workqueue.h> #include <linux/seqlock.h> #include <asm/mmu.h> #ifndef AT_VECTOR_SIZE_ARCH #define AT_VECTOR_SIZE_ARCH 0 #endif #define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1)) #define INIT_PASID 0 struct address_space; struct mem_cgroup; /* * Each physical page in the system has a struct page associated with * it to keep track of whatever it is we are using the page for at the * moment. Note that we have no way to track which tasks are using * a page, though if it is a pagecache page, rmap structures can tell us * who is mapping it. * * If you allocate the page using alloc_pages(), you can use some of the * space in struct page for your own purposes. The five words in the main * union are available, except for bit 0 of the first word which must be * kept clear. Many users use this word to store a pointer to an object * which is guaranteed to be aligned. If you use the same storage as * page->mapping, you must restore it to NULL before freeing the page. * * If your page will not be mapped to userspace, you can also use the four * bytes in the mapcount union, but you must call page_mapcount_reset() * before freeing it. * * If you want to use the refcount field, it must be used in such a way * that other CPUs temporarily incrementing and then decrementing the * refcount does not cause problems. On receiving the page from * alloc_pages(), the refcount will be positive. * * If you allocate pages of order > 0, you can use some of the fields * in each subpage, but you may need to restore some of their values * afterwards. * * SLUB uses cmpxchg_double() to atomically update its freelist and * counters. That requires that freelist & counters be adjacent and * double-word aligned. We align all struct pages to double-word * boundaries, and ensure that 'freelist' is aligned within the * struct. */ #ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE #define _struct_page_alignment __aligned(2 * sizeof(unsigned long)) #else #define _struct_page_alignment #endif struct page { unsigned long flags; /* Atomic flags, some possibly * updated asynchronously */ /* * Five words (20/40 bytes) are available in this union. * WARNING: bit 0 of the first word is used for PageTail(). That * means the other users of this union MUST NOT use the bit to * avoid collision and false-positive PageTail(). */ union { struct { /* Page cache and anonymous pages */ /** * @lru: Pageout list, eg. active_list protected by * pgdat->lru_lock. Sometimes used as a generic list * by the page owner. */ struct list_head lru; /* See page-flags.h for PAGE_MAPPING_FLAGS */ struct address_space *mapping; pgoff_t index; /* Our offset within mapping. */ /** * @private: Mapping-private opaque data. * Usually used for buffer_heads if PagePrivate. * Used for swp_entry_t if PageSwapCache. * Indicates order in the buddy system if PageBuddy. */ unsigned long private; }; struct { /* page_pool used by netstack */ /** * @dma_addr: might require a 64-bit value on * 32-bit architectures. */ unsigned long dma_addr[2]; }; struct { /* slab, slob and slub */ union { struct list_head slab_list; struct { /* Partial pages */ struct page *next; #ifdef CONFIG_64BIT int pages; /* Nr of pages left */ int pobjects; /* Approximate count */ #else short int pages; short int pobjects; #endif }; }; struct kmem_cache *slab_cache; /* not slob */ /* Double-word boundary */ void *freelist; /* first free object */ union { void *s_mem; /* slab: first object */ unsigned long counters; /* SLUB */ struct { /* SLUB */ unsigned inuse:16; unsigned objects:15; unsigned frozen:1; }; }; }; struct { /* Tail pages of compound page */ unsigned long compound_head; /* Bit zero is set */ /* First tail page only */ unsigned char compound_dtor; unsigned char compound_order; atomic_t compound_mapcount; unsigned int compound_nr; /* 1 << compound_order */ }; struct { /* Second tail page of compound page */ unsigned long _compound_pad_1; /* compound_head */ atomic_t hpage_pinned_refcount; /* For both global and memcg */ struct list_head deferred_list; }; struct { /* Page table pages */ unsigned long _pt_pad_1; /* compound_head */ pgtable_t pmd_huge_pte; /* protected by page->ptl */ unsigned long _pt_pad_2; /* mapping */ union { struct mm_struct *pt_mm; /* x86 pgds only */ atomic_t pt_frag_refcount; /* powerpc */ }; #if ALLOC_SPLIT_PTLOCKS spinlock_t *ptl; #else spinlock_t ptl; #endif }; struct { /* ZONE_DEVICE pages */ /** @pgmap: Points to the hosting device page map. */ struct dev_pagemap *pgmap; void *zone_device_data; /* * ZONE_DEVICE private pages are counted as being * mapped so the next 3 words hold the mapping, index, * and private fields from the source anonymous or * page cache page while the page is migrated to device * private memory. * ZONE_DEVICE MEMORY_DEVICE_FS_DAX pages also * use the mapping, index, and private fields when * pmem backed DAX files are mapped. */ }; /** @rcu_head: You can use this to free a page by RCU. */ struct rcu_head rcu_head; }; union { /* This union is 4 bytes in size. */ /* * If the page can be mapped to userspace, encodes the number * of times this page is referenced by a page table. */ atomic_t _mapcount; /* * If the page is neither PageSlab nor mappable to userspace, * the value stored here may help determine what this page * is used for. See page-flags.h for a list of page types * which are currently stored here. */ unsigned int page_type; unsigned int active; /* SLAB */ int units; /* SLOB */ }; /* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */ atomic_t _refcount; #ifdef CONFIG_MEMCG union { struct mem_cgroup *mem_cgroup; struct obj_cgroup **obj_cgroups; }; #endif /* * On machines where all RAM is mapped into kernel address space, * we can simply calculate the virtual address. On machines with * highmem some memory is mapped into kernel virtual memory * dynamically, so we need a place to store that address. * Note that this field could be 16 bits on x86 ... ;) * * Architectures with slow multiplication can define * WANT_PAGE_VIRTUAL in asm/page.h */ #if defined(WANT_PAGE_VIRTUAL) void *virtual; /* Kernel virtual address (NULL if not kmapped, ie. highmem) */ #endif /* WANT_PAGE_VIRTUAL */ #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS int _last_cpupid; #endif } _struct_page_alignment; static inline atomic_t *compound_mapcount_ptr(struct page *page) { return &page[1].compound_mapcount; } static inline atomic_t *compound_pincount_ptr(struct page *page) { return &page[2].hpage_pinned_refcount; } /* * Used for sizing the vmemmap region on some architectures */ #define STRUCT_PAGE_MAX_SHIFT (order_base_2(sizeof(struct page))) #define PAGE_FRAG_CACHE_MAX_SIZE __ALIGN_MASK(32768, ~PAGE_MASK) #define PAGE_FRAG_CACHE_MAX_ORDER get_order(PAGE_FRAG_CACHE_MAX_SIZE) #define page_private(page) ((page)->private) static inline void set_page_private(struct page *page, unsigned long private) { page->private = private; } struct page_frag_cache { void * va; #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) __u16 offset; __u16 size; #else __u32 offset; #endif /* we maintain a pagecount bias, so that we dont dirty cache line * containing page->_refcount every time we allocate a fragment. */ unsigned int pagecnt_bias; bool pfmemalloc; }; typedef unsigned long vm_flags_t; /* * A region containing a mapping of a non-memory backed file under NOMMU * conditions. These are held in a global tree and are pinned by the VMAs that * map parts of them. */ struct vm_region { struct rb_node vm_rb; /* link in global region tree */ vm_flags_t vm_flags; /* VMA vm_flags */ unsigned long vm_start; /* start address of region */ unsigned long vm_end; /* region initialised to here */ unsigned long vm_top; /* region allocated to here */ unsigned long vm_pgoff; /* the offset in vm_file corresponding to vm_start */ struct file *vm_file; /* the backing file or NULL */ int vm_usage; /* region usage count (access under nommu_region_sem) */ bool vm_icache_flushed : 1; /* true if the icache has been flushed for * this region */ }; #ifdef CONFIG_USERFAULTFD #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, }) struct vm_userfaultfd_ctx { struct userfaultfd_ctx *ctx; }; #else /* CONFIG_USERFAULTFD */ #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {}) struct vm_userfaultfd_ctx {}; #endif /* CONFIG_USERFAULTFD */ /* * This struct describes a virtual memory area. There is one of these * per VM-area/task. A VM area is any part of the process virtual memory * space that has a special rule for the page-fault handlers (ie a shared * library, the executable area etc). */ struct vm_area_struct { /* The first cache line has the info for VMA tree walking. */ unsigned long vm_start; /* Our start address within vm_mm. */ unsigned long vm_end; /* The first byte after our end address within vm_mm. */ /* linked list of VM areas per task, sorted by address */ struct vm_area_struct *vm_next, *vm_prev; struct rb_node vm_rb; /* * Largest free memory gap in bytes to the left of this VMA. * Either between this VMA and vma->vm_prev, or between one of the * VMAs below us in the VMA rbtree and its ->vm_prev. This helps * get_unmapped_area find a free area of the right size. */ unsigned long rb_subtree_gap; /* Second cache line starts here. */ struct mm_struct *vm_mm; /* The address space we belong to. */ /* * Access permissions of this VMA. * See vmf_insert_mixed_prot() for discussion. */ pgprot_t vm_page_prot; unsigned long vm_flags; /* Flags, see mm.h. */ /* * For areas with an address space and backing store, * linkage into the address_space->i_mmap interval tree. */ struct { struct rb_node rb; unsigned long rb_subtree_last; } shared; /* * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma * list, after a COW of one of the file pages. A MAP_SHARED vma * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack * or brk vma (with NULL file) can only be in an anon_vma list. */ struct list_head anon_vma_chain; /* Serialized by mmap_lock & * page_table_lock */ struct anon_vma *anon_vma; /* Serialized by page_table_lock */ /* Function pointers to deal with this struct. */ const struct vm_operations_struct *vm_ops; /* Information about our backing store: */ unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE units */ struct file * vm_file; /* File we map to (can be NULL). */ void * vm_private_data; /* was vm_pte (shared mem) */ #ifdef CONFIG_SWAP atomic_long_t swap_readahead_info; #endif #ifndef CONFIG_MMU struct vm_region *vm_region; /* NOMMU mapping region */ #endif #ifdef CONFIG_NUMA struct mempolicy *vm_policy; /* NUMA policy for the VMA */ #endif struct vm_userfaultfd_ctx vm_userfaultfd_ctx; } __randomize_layout; struct core_thread { struct task_struct *task; struct core_thread *next; }; struct core_state { atomic_t nr_threads; struct core_thread dumper; struct completion startup; }; struct kioctx_table; struct mm_struct { struct { struct vm_area_struct *mmap; /* list of VMAs */ struct rb_root mm_rb; u64 vmacache_seqnum; /* per-thread vmacache */ #ifdef CONFIG_MMU unsigned long (*get_unmapped_area) (struct file *filp, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags); #endif unsigned long mmap_base; /* base of mmap area */ unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */ #ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES /* Base adresses for compatible mmap() */ unsigned long mmap_compat_base; unsigned long mmap_compat_legacy_base; #endif unsigned long task_size; /* size of task vm space */ unsigned long highest_vm_end; /* highest vma end address */ pgd_t * pgd; #ifdef CONFIG_MEMBARRIER /** * @membarrier_state: Flags controlling membarrier behavior. * * This field is close to @pgd to hopefully fit in the same * cache-line, which needs to be touched by switch_mm(). */ atomic_t membarrier_state; #endif /** * @mm_users: The number of users including userspace. * * Use mmget()/mmget_not_zero()/mmput() to modify. When this * drops to 0 (i.e. when the task exits and there are no other * temporary reference holders), we also release a reference on * @mm_count (which may then free the &struct mm_struct if * @mm_count also drops to 0). */ atomic_t mm_users; /** * @mm_count: The number of references to &struct mm_struct * (@mm_users count as 1). * * Use mmgrab()/mmdrop() to modify. When this drops to 0, the * &struct mm_struct is freed. */ atomic_t mm_count; /** * @has_pinned: Whether this mm has pinned any pages. This can * be either replaced in the future by @pinned_vm when it * becomes stable, or grow into a counter on its own. We're * aggresive on this bit now - even if the pinned pages were * unpinned later on, we'll still keep this bit set for the * lifecycle of this mm just for simplicity. */ atomic_t has_pinned; #ifdef CONFIG_MMU atomic_long_t pgtables_bytes; /* PTE page table pages */ #endif int map_count; /* number of VMAs */ spinlock_t page_table_lock; /* Protects page tables and some * counters */ /* * With some kernel config, the current mmap_lock's offset * inside 'mm_struct' is at 0x120, which is very optimal, as * its two hot fields 'count' and 'owner' sit in 2 different * cachelines, and when mmap_lock is highly contended, both * of the 2 fields will be accessed frequently, current layout * will help to reduce cache bouncing. * * So please be careful with adding new fields before * mmap_lock, which can easily push the 2 fields into one * cacheline. */ struct rw_semaphore mmap_lock; struct list_head mmlist; /* List of maybe swapped mm's. These * are globally strung together off * init_mm.mmlist, and are protected * by mmlist_lock */ unsigned long hiwater_rss; /* High-watermark of RSS usage */ unsigned long hiwater_vm; /* High-water virtual memory usage */ unsigned long total_vm; /* Total pages mapped */ unsigned long locked_vm; /* Pages that have PG_mlocked set */ atomic64_t pinned_vm; /* Refcount permanently increased */ unsigned long data_vm; /* VM_WRITE & ~VM_SHARED & ~VM_STACK */ unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE & ~VM_STACK */ unsigned long stack_vm; /* VM_STACK */ unsigned long def_flags; /** * @write_protect_seq: Locked when any thread is write * protecting pages mapped by this mm to enforce a later COW, * for instance during page table copying for fork(). */ seqcount_t write_protect_seq; spinlock_t arg_lock; /* protect the below fields */ unsigned long start_code, end_code, start_data, end_data; unsigned long start_brk, brk, start_stack; unsigned long arg_start, arg_end, env_start, env_end; unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */ /* * Special counters, in some configurations protected by the * page_table_lock, in other configurations by being atomic. */ struct mm_rss_stat rss_stat; struct linux_binfmt *binfmt; /* Architecture-specific MM context */ mm_context_t context; unsigned long flags; /* Must use atomic bitops to access */ struct core_state *core_state; /* coredumping support */ #ifdef CONFIG_AIO spinlock_t ioctx_lock; struct kioctx_table __rcu *ioctx_table; #endif #ifdef CONFIG_MEMCG /* * "owner" points to a task that is regarded as the canonical * user/owner of this mm. All of the following must be true in * order for it to be changed: * * current == mm->owner * current->mm != mm * new_owner->mm == mm * new_owner->alloc_lock is held */ struct task_struct __rcu *owner; #endif struct user_namespace *user_ns; /* store ref to file /proc/<pid>/exe symlink points to */ struct file __rcu *exe_file; #ifdef CONFIG_MMU_NOTIFIER struct mmu_notifier_subscriptions *notifier_subscriptions; #endif #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS pgtable_t pmd_huge_pte; /* protected by page_table_lock */ #endif #ifdef CONFIG_NUMA_BALANCING /* * numa_next_scan is the next time that the PTEs will be marked * pte_numa. NUMA hinting faults will gather statistics and * migrate pages to new nodes if necessary. */ unsigned long numa_next_scan; /* Restart point for scanning and setting pte_numa */ unsigned long numa_scan_offset; /* numa_scan_seq prevents two threads setting pte_numa */ int numa_scan_seq; #endif /* * An operation with batched TLB flushing is going on. Anything * that can move process memory needs to flush the TLB when * moving a PROT_NONE or PROT_NUMA mapped page. */ atomic_t tlb_flush_pending; #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH /* See flush_tlb_batched_pending() */ bool tlb_flush_batched; #endif struct uprobes_state uprobes_state; #ifdef CONFIG_HUGETLB_PAGE atomic_long_t hugetlb_usage; #endif struct work_struct async_put_work; #ifdef CONFIG_IOMMU_SUPPORT u32 pasid; #endif } __randomize_layout; /* * The mm_cpumask needs to be at the end of mm_struct, because it * is dynamically sized based on nr_cpu_ids. */ unsigned long cpu_bitmap[]; }; extern struct mm_struct init_mm; /* Pointer magic because the dynamic array size confuses some compilers. */ static inline void mm_init_cpumask(struct mm_struct *mm) { unsigned long cpu_bitmap = (unsigned long)mm; cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap); cpumask_clear((struct cpumask *)cpu_bitmap); } /* Future-safe accessor for struct mm_struct's cpu_vm_mask. */ static inline cpumask_t *mm_cpumask(struct mm_struct *mm) { return (struct cpumask *)&mm->cpu_bitmap; } struct mmu_gather; extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end); extern void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end); static inline void init_tlb_flush_pending(struct mm_struct *mm) { atomic_set(&mm->tlb_flush_pending, 0); } static inline void inc_tlb_flush_pending(struct mm_struct *mm) { atomic_inc(&mm->tlb_flush_pending); /* * The only time this value is relevant is when there are indeed pages * to flush. And we'll only flush pages after changing them, which * requires the PTL. * * So the ordering here is: * * atomic_inc(&mm->tlb_flush_pending); * spin_lock(&ptl); * ... * set_pte_at(); * spin_unlock(&ptl); * * spin_lock(&ptl) * mm_tlb_flush_pending(); * .... * spin_unlock(&ptl); * * flush_tlb_range(); * atomic_dec(&mm->tlb_flush_pending); * * Where the increment if constrained by the PTL unlock, it thus * ensures that the increment is visible if the PTE modification is * visible. After all, if there is no PTE modification, nobody cares * about TLB flushes either. * * This very much relies on users (mm_tlb_flush_pending() and * mm_tlb_flush_nested()) only caring about _specific_ PTEs (and * therefore specific PTLs), because with SPLIT_PTE_PTLOCKS and RCpc * locks (PPC) the unlock of one doesn't order against the lock of * another PTL. * * The decrement is ordered by the flush_tlb_range(), such that * mm_tlb_flush_pending() will not return false unless all flushes have * completed. */ } static inline void dec_tlb_flush_pending(struct mm_struct *mm) { /* * See inc_tlb_flush_pending(). * * This cannot be smp_mb__before_atomic() because smp_mb() simply does * not order against TLB invalidate completion, which is what we need. * * Therefore we must rely on tlb_flush_*() to guarantee order. */ atomic_dec(&mm->tlb_flush_pending); } static inline bool mm_tlb_flush_pending(struct mm_struct *mm) { /* * Must be called after having acquired the PTL; orders against that * PTLs release and therefore ensures that if we observe the modified * PTE we must also observe the increment from inc_tlb_flush_pending(). * * That is, it only guarantees to return true if there is a flush * pending for _this_ PTL. */ return atomic_read(&mm->tlb_flush_pending); } static inline bool mm_tlb_flush_nested(struct mm_struct *mm) { /* * Similar to mm_tlb_flush_pending(), we must have acquired the PTL * for which there is a TLB flush pending in order to guarantee * we've seen both that PTE modification and the increment. * * (no requirement on actually still holding the PTL, that is irrelevant) */ return atomic_read(&mm->tlb_flush_pending) > 1; } struct vm_fault; /** * typedef vm_fault_t - Return type for page fault handlers. * * Page fault handlers return a bitmask of %VM_FAULT values. */ typedef __bitwise unsigned int vm_fault_t; /** * enum vm_fault_reason - Page fault handlers return a bitmask of * these values to tell the core VM what happened when handling the * fault. Used to decide whether a process gets delivered SIGBUS or * just gets major/minor fault counters bumped up. * * @VM_FAULT_OOM: Out Of Memory * @VM_FAULT_SIGBUS: Bad access * @VM_FAULT_MAJOR: Page read from storage * @VM_FAULT_WRITE: Special case for get_user_pages * @VM_FAULT_HWPOISON: Hit poisoned small page * @VM_FAULT_HWPOISON_LARGE: Hit poisoned large page. Index encoded * in upper bits * @VM_FAULT_SIGSEGV: segmentation fault * @VM_FAULT_NOPAGE: ->fault installed the pte, not return page * @VM_FAULT_LOCKED: ->fault locked the returned page * @VM_FAULT_RETRY: ->fault blocked, must retry * @VM_FAULT_FALLBACK: huge page fault failed, fall back to small * @VM_FAULT_DONE_COW: ->fault has fully handled COW * @VM_FAULT_NEEDDSYNC: ->fault did not modify page tables and needs * fsync() to complete (for synchronous page faults * in DAX) * @VM_FAULT_HINDEX_MASK: mask HINDEX value * */ enum vm_fault_reason { VM_FAULT_OOM = (__force vm_fault_t)0x000001, VM_FAULT_SIGBUS = (__force vm_fault_t)0x000002, VM_FAULT_MAJOR = (__force vm_fault_t)0x000004, VM_FAULT_WRITE = (__force vm_fault_t)0x000008, VM_FAULT_HWPOISON = (__force vm_fault_t)0x000010, VM_FAULT_HWPOISON_LARGE = (__force vm_fault_t)0x000020, VM_FAULT_SIGSEGV = (__force vm_fault_t)0x000040, VM_FAULT_NOPAGE = (__force vm_fault_t)0x000100, VM_FAULT_LOCKED = (__force vm_fault_t)0x000200, VM_FAULT_RETRY = (__force vm_fault_t)0x000400, VM_FAULT_FALLBACK = (__force vm_fault_t)0x000800, VM_FAULT_DONE_COW = (__force vm_fault_t)0x001000, VM_FAULT_NEEDDSYNC = (__force vm_fault_t)0x002000, VM_FAULT_HINDEX_MASK = (__force vm_fault_t)0x0f0000, }; /* Encode hstate index for a hwpoisoned large page */ #define VM_FAULT_SET_HINDEX(x) ((__force vm_fault_t)((x) << 16)) #define VM_FAULT_GET_HINDEX(x) (((__force unsigned int)(x) >> 16) & 0xf) #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | \ VM_FAULT_SIGSEGV | VM_FAULT_HWPOISON | \ VM_FAULT_HWPOISON_LARGE | VM_FAULT_FALLBACK) #define VM_FAULT_RESULT_TRACE \ { VM_FAULT_OOM, "OOM" }, \ { VM_FAULT_SIGBUS, "SIGBUS" }, \ { VM_FAULT_MAJOR, "MAJOR" }, \ { VM_FAULT_WRITE, "WRITE" }, \ { VM_FAULT_HWPOISON, "HWPOISON" }, \ { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \ { VM_FAULT_SIGSEGV, "SIGSEGV" }, \ { VM_FAULT_NOPAGE, "NOPAGE" }, \ { VM_FAULT_LOCKED, "LOCKED" }, \ { VM_FAULT_RETRY, "RETRY" }, \ { VM_FAULT_FALLBACK, "FALLBACK" }, \ { VM_FAULT_DONE_COW, "DONE_COW" }, \ { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" } struct vm_special_mapping { const char *name; /* The name, e.g. "[vdso]". */ /* * If .fault is not provided, this points to a * NULL-terminated array of pages that back the special mapping. * * This must not be NULL unless .fault is provided. */ struct page **pages; /* * If non-NULL, then this is called to resolve page faults * on the special mapping. If used, .pages is not checked. */ vm_fault_t (*fault)(const struct vm_special_mapping *sm, struct vm_area_struct *vma, struct vm_fault *vmf); int (*mremap)(const struct vm_special_mapping *sm, struct vm_area_struct *new_vma); }; enum tlb_flush_reason { TLB_FLUSH_ON_TASK_SWITCH, TLB_REMOTE_SHOOTDOWN, TLB_LOCAL_SHOOTDOWN, TLB_LOCAL_MM_SHOOTDOWN, TLB_REMOTE_SEND_IPI, NR_TLB_FLUSH_REASONS, }; /* * A swap entry has to fit into a "unsigned long", as the entry is hidden * in the "index" field of the swapper address space. */ typedef struct { unsigned long val; } swp_entry_t; #endif /* _LINUX_MM_TYPES_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __ASM_GENERIC_PGALLOC_H #define __ASM_GENERIC_PGALLOC_H #ifdef CONFIG_MMU #define GFP_PGTABLE_KERNEL (GFP_KERNEL | __GFP_ZERO) #define GFP_PGTABLE_USER (GFP_PGTABLE_KERNEL | __GFP_ACCOUNT) /** * __pte_alloc_one_kernel - allocate a page for PTE-level kernel page table * @mm: the mm_struct of the current context * * This function is intended for architectures that need * anything beyond simple page allocation. * * Return: pointer to the allocated memory or %NULL on error */ static inline pte_t *__pte_alloc_one_kernel(struct mm_struct *mm) { return (pte_t *)__get_free_page(GFP_PGTABLE_KERNEL); } #ifndef __HAVE_ARCH_PTE_ALLOC_ONE_KERNEL /** * pte_alloc_one_kernel - allocate a page for PTE-level kernel page table * @mm: the mm_struct of the current context * * Return: pointer to the allocated memory or %NULL on error */ static inline pte_t *pte_alloc_one_kernel(struct mm_struct *mm) { return __pte_alloc_one_kernel(mm); } #endif /** * pte_free_kernel - free PTE-level kernel page table page * @mm: the mm_struct of the current context * @pte: pointer to the memory containing the page table */ static inline void pte_free_kernel(struct mm_struct *mm, pte_t *pte) { free_page((unsigned long)pte); } /** * __pte_alloc_one - allocate a page for PTE-level user page table * @mm: the mm_struct of the current context * @gfp: GFP flags to use for the allocation * * Allocates a page and runs the pgtable_pte_page_ctor(). * * This function is intended for architectures that need * anything beyond simple page allocation or must have custom GFP flags. * * Return: `struct page` initialized as page table or %NULL on error */ static inline pgtable_t __pte_alloc_one(struct mm_struct *mm, gfp_t gfp) { struct page *pte; pte = alloc_page(gfp); if (!pte) return NULL; if (!pgtable_pte_page_ctor(pte)) { __free_page(pte); return NULL; } return pte; } #ifndef __HAVE_ARCH_PTE_ALLOC_ONE /** * pte_alloc_one - allocate a page for PTE-level user page table * @mm: the mm_struct of the current context * * Allocates a page and runs the pgtable_pte_page_ctor(). * * Return: `struct page` initialized as page table or %NULL on error */ static inline pgtable_t pte_alloc_one(struct mm_struct *mm) { return __pte_alloc_one(mm, GFP_PGTABLE_USER); } #endif /* * Should really implement gc for free page table pages. This could be * done with a reference count in struct page. */ /** * pte_free - free PTE-level user page table page * @mm: the mm_struct of the current context * @pte_page: the `struct page` representing the page table */ static inline void pte_free(struct mm_struct *mm, struct page *pte_page) { pgtable_pte_page_dtor(pte_page); __free_page(pte_page); } #if CONFIG_PGTABLE_LEVELS > 2 #ifndef __HAVE_ARCH_PMD_ALLOC_ONE /** * pmd_alloc_one - allocate a page for PMD-level page table * @mm: the mm_struct of the current context * * Allocates a page and runs the pgtable_pmd_page_ctor(). * Allocations use %GFP_PGTABLE_USER in user context and * %GFP_PGTABLE_KERNEL in kernel context. * * Return: pointer to the allocated memory or %NULL on error */ static inline pmd_t *pmd_alloc_one(struct mm_struct *mm, unsigned long addr) { struct page *page; gfp_t gfp = GFP_PGTABLE_USER; if (mm == &init_mm) gfp = GFP_PGTABLE_KERNEL; page = alloc_pages(gfp, 0); if (!page) return NULL; if (!pgtable_pmd_page_ctor(page)) { __free_pages(page, 0); return NULL; } return (pmd_t *)page_address(page); } #endif #ifndef __HAVE_ARCH_PMD_FREE static inline void pmd_free(struct mm_struct *mm, pmd_t *pmd) { BUG_ON((unsigned long)pmd & (PAGE_SIZE-1)); pgtable_pmd_page_dtor(virt_to_page(pmd)); free_page((unsigned long)pmd); } #endif #endif /* CONFIG_PGTABLE_LEVELS > 2 */ #if CONFIG_PGTABLE_LEVELS > 3 #ifndef __HAVE_ARCH_PUD_ALLOC_ONE /** * pud_alloc_one - allocate a page for PUD-level page table * @mm: the mm_struct of the current context * * Allocates a page using %GFP_PGTABLE_USER for user context and * %GFP_PGTABLE_KERNEL for kernel context. * * Return: pointer to the allocated memory or %NULL on error */ static inline pud_t *pud_alloc_one(struct mm_struct *mm, unsigned long addr) { gfp_t gfp = GFP_PGTABLE_USER; if (mm == &init_mm) gfp = GFP_PGTABLE_KERNEL; return (pud_t *)get_zeroed_page(gfp); } #endif static inline void pud_free(struct mm_struct *mm, pud_t *pud) { BUG_ON((unsigned long)pud & (PAGE_SIZE-1)); free_page((unsigned long)pud); } #endif /* CONFIG_PGTABLE_LEVELS > 3 */ #ifndef __HAVE_ARCH_PGD_FREE static inline void pgd_free(struct mm_struct *mm, pgd_t *pgd) { free_page((unsigned long)pgd); } #endif #endif /* CONFIG_MMU */ #endif /* __ASM_GENERIC_PGALLOC_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ADDRCONF_H #define _ADDRCONF_H #define MAX_RTR_SOLICITATIONS -1 /* unlimited */ #define RTR_SOLICITATION_INTERVAL (4*HZ) #define RTR_SOLICITATION_MAX_INTERVAL (3600*HZ) /* 1 hour */ #define TEMP_VALID_LIFETIME (7*86400) #define TEMP_PREFERRED_LIFETIME (86400) #define REGEN_MAX_RETRY (3) #define MAX_DESYNC_FACTOR (600) #define ADDR_CHECK_FREQUENCY (120*HZ) #define IPV6_MAX_ADDRESSES 16 #define ADDRCONF_TIMER_FUZZ_MINUS (HZ > 50 ? HZ / 50 : 1) #define ADDRCONF_TIMER_FUZZ (HZ / 4) #define ADDRCONF_TIMER_FUZZ_MAX (HZ) #define ADDRCONF_NOTIFY_PRIORITY 0 #include <linux/in.h> #include <linux/in6.h> struct prefix_info { __u8 type; __u8 length; __u8 prefix_len; #if defined(__BIG_ENDIAN_BITFIELD) __u8 onlink : 1, autoconf : 1, reserved : 6; #elif defined(__LITTLE_ENDIAN_BITFIELD) __u8 reserved : 6, autoconf : 1, onlink : 1; #else #error "Please fix <asm/byteorder.h>" #endif __be32 valid; __be32 prefered; __be32 reserved2; struct in6_addr prefix; }; #include <linux/ipv6.h> #include <linux/netdevice.h> #include <net/if_inet6.h> #include <net/ipv6.h> struct in6_validator_info { struct in6_addr i6vi_addr; struct inet6_dev *i6vi_dev; struct netlink_ext_ack *extack; }; struct ifa6_config { const struct in6_addr *pfx; unsigned int plen; const struct in6_addr *peer_pfx; u32 rt_priority; u32 ifa_flags; u32 preferred_lft; u32 valid_lft; u16 scope; }; int addrconf_init(void); void addrconf_cleanup(void); int addrconf_add_ifaddr(struct net *net, void __user *arg); int addrconf_del_ifaddr(struct net *net, void __user *arg); int addrconf_set_dstaddr(struct net *net, void __user *arg); int ipv6_chk_addr(struct net *net, const struct in6_addr *addr, const struct net_device *dev, int strict); int ipv6_chk_addr_and_flags(struct net *net, const struct in6_addr *addr, const struct net_device *dev, bool skip_dev_check, int strict, u32 banned_flags); #if defined(CONFIG_IPV6_MIP6) || defined(CONFIG_IPV6_MIP6_MODULE) int ipv6_chk_home_addr(struct net *net, const struct in6_addr *addr); #endif int ipv6_chk_rpl_srh_loop(struct net *net, const struct in6_addr *segs, unsigned char nsegs); bool ipv6_chk_custom_prefix(const struct in6_addr *addr, const unsigned int prefix_len, struct net_device *dev); int ipv6_chk_prefix(const struct in6_addr *addr, struct net_device *dev); struct net_device *ipv6_dev_find(struct net *net, const struct in6_addr *addr, struct net_device *dev); struct inet6_ifaddr *ipv6_get_ifaddr(struct net *net, const struct in6_addr *addr, struct net_device *dev, int strict); int ipv6_dev_get_saddr(struct net *net, const struct net_device *dev, const struct in6_addr *daddr, unsigned int srcprefs, struct in6_addr *saddr); int __ipv6_get_lladdr(struct inet6_dev *idev, struct in6_addr *addr, u32 banned_flags); int ipv6_get_lladdr(struct net_device *dev, struct in6_addr *addr, u32 banned_flags); bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2, bool match_wildcard); bool inet_rcv_saddr_any(const struct sock *sk); void addrconf_join_solict(struct net_device *dev, const struct in6_addr *addr); void addrconf_leave_solict(struct inet6_dev *idev, const struct in6_addr *addr); void addrconf_add_linklocal(struct inet6_dev *idev, const struct in6_addr *addr, u32 flags); int addrconf_prefix_rcv_add_addr(struct net *net, struct net_device *dev, const struct prefix_info *pinfo, struct inet6_dev *in6_dev, const struct in6_addr *addr, int addr_type, u32 addr_flags, bool sllao, bool tokenized, __u32 valid_lft, u32 prefered_lft); static inline void addrconf_addr_eui48_base(u8 *eui, const char *const addr) { memcpy(eui, addr, 3); eui[3] = 0xFF; eui[4] = 0xFE; memcpy(eui + 5, addr + 3, 3); } static inline void addrconf_addr_eui48(u8 *eui, const char *const addr) { addrconf_addr_eui48_base(eui, addr); eui[0] ^= 2; } static inline int addrconf_ifid_eui48(u8 *eui, struct net_device *dev) { if (dev->addr_len != ETH_ALEN) return -1; /* * The zSeries OSA network cards can be shared among various * OS instances, but the OSA cards have only one MAC address. * This leads to duplicate address conflicts in conjunction * with IPv6 if more than one instance uses the same card. * * The driver for these cards can deliver a unique 16-bit * identifier for each instance sharing the same card. It is * placed instead of 0xFFFE in the interface identifier. The * "u" bit of the interface identifier is not inverted in this * case. Hence the resulting interface identifier has local * scope according to RFC2373. */ addrconf_addr_eui48_base(eui, dev->dev_addr); if (dev->dev_id) { eui[3] = (dev->dev_id >> 8) & 0xFF; eui[4] = dev->dev_id & 0xFF; } else { eui[0] ^= 2; } return 0; } static inline unsigned long addrconf_timeout_fixup(u32 timeout, unsigned int unit) { if (timeout == 0xffffffff) return ~0UL; /* * Avoid arithmetic overflow. * Assuming unit is constant and non-zero, this "if" statement * will go away on 64bit archs. */ if (0xfffffffe > LONG_MAX / unit && timeout > LONG_MAX / unit) return LONG_MAX / unit; return timeout; } static inline int addrconf_finite_timeout(unsigned long timeout) { return ~timeout; } /* * IPv6 Address Label subsystem (addrlabel.c) */ int ipv6_addr_label_init(void); void ipv6_addr_label_cleanup(void); int ipv6_addr_label_rtnl_register(void); u32 ipv6_addr_label(struct net *net, const struct in6_addr *addr, int type, int ifindex); /* * multicast prototypes (mcast.c) */ static inline bool ipv6_mc_may_pull(struct sk_buff *skb, unsigned int len) { if (skb_transport_offset(skb) + ipv6_transport_len(skb) < len) return false; return pskb_may_pull(skb, len); } int ipv6_sock_mc_join(struct sock *sk, int ifindex, const struct in6_addr *addr); int ipv6_sock_mc_drop(struct sock *sk, int ifindex, const struct in6_addr *addr); void __ipv6_sock_mc_close(struct sock *sk); void ipv6_sock_mc_close(struct sock *sk); bool inet6_mc_check(struct sock *sk, const struct in6_addr *mc_addr, const struct in6_addr *src_addr); int ipv6_dev_mc_inc(struct net_device *dev, const struct in6_addr *addr); int __ipv6_dev_mc_dec(struct inet6_dev *idev, const struct in6_addr *addr); int ipv6_dev_mc_dec(struct net_device *dev, const struct in6_addr *addr); void ipv6_mc_up(struct inet6_dev *idev); void ipv6_mc_down(struct inet6_dev *idev); void ipv6_mc_unmap(struct inet6_dev *idev); void ipv6_mc_remap(struct inet6_dev *idev); void ipv6_mc_init_dev(struct inet6_dev *idev); void ipv6_mc_destroy_dev(struct inet6_dev *idev); int ipv6_mc_check_mld(struct sk_buff *skb); void addrconf_dad_failure(struct sk_buff *skb, struct inet6_ifaddr *ifp); bool ipv6_chk_mcast_addr(struct net_device *dev, const struct in6_addr *group, const struct in6_addr *src_addr); void ipv6_mc_dad_complete(struct inet6_dev *idev); /* * identify MLD packets for MLD filter exceptions */ static inline bool ipv6_is_mld(struct sk_buff *skb, int nexthdr, int offset) { struct icmp6hdr *hdr; if (nexthdr != IPPROTO_ICMPV6 || !pskb_network_may_pull(skb, offset + sizeof(struct icmp6hdr))) return false; hdr = (struct icmp6hdr *)(skb_network_header(skb) + offset); switch (hdr->icmp6_type) { case ICMPV6_MGM_QUERY: case ICMPV6_MGM_REPORT: case ICMPV6_MGM_REDUCTION: case ICMPV6_MLD2_REPORT: return true; default: break; } return false; } void addrconf_prefix_rcv(struct net_device *dev, u8 *opt, int len, bool sllao); /* * anycast prototypes (anycast.c) */ int ipv6_sock_ac_join(struct sock *sk, int ifindex, const struct in6_addr *addr); int ipv6_sock_ac_drop(struct sock *sk, int ifindex, const struct in6_addr *addr); void __ipv6_sock_ac_close(struct sock *sk); void ipv6_sock_ac_close(struct sock *sk); int __ipv6_dev_ac_inc(struct inet6_dev *idev, const struct in6_addr *addr); int __ipv6_dev_ac_dec(struct inet6_dev *idev, const struct in6_addr *addr); void ipv6_ac_destroy_dev(struct inet6_dev *idev); bool ipv6_chk_acast_addr(struct net *net, struct net_device *dev, const struct in6_addr *addr); bool ipv6_chk_acast_addr_src(struct net *net, struct net_device *dev, const struct in6_addr *addr); int ipv6_anycast_init(void); void ipv6_anycast_cleanup(void); /* Device notifier */ int register_inet6addr_notifier(struct notifier_block *nb); int unregister_inet6addr_notifier(struct notifier_block *nb); int inet6addr_notifier_call_chain(unsigned long val, void *v); int register_inet6addr_validator_notifier(struct notifier_block *nb); int unregister_inet6addr_validator_notifier(struct notifier_block *nb); int inet6addr_validator_notifier_call_chain(unsigned long val, void *v); void inet6_netconf_notify_devconf(struct net *net, int event, int type, int ifindex, struct ipv6_devconf *devconf); /** * __in6_dev_get - get inet6_dev pointer from netdevice * @dev: network device * * Caller must hold rcu_read_lock or RTNL, because this function * does not take a reference on the inet6_dev. */ static inline struct inet6_dev *__in6_dev_get(const struct net_device *dev) { return rcu_dereference_rtnl(dev->ip6_ptr); } /** * __in6_dev_stats_get - get inet6_dev pointer for stats * @dev: network device * @skb: skb for original incoming interface if neeeded * * Caller must hold rcu_read_lock or RTNL, because this function * does not take a reference on the inet6_dev. */ static inline struct inet6_dev *__in6_dev_stats_get(const struct net_device *dev, const struct sk_buff *skb) { if (netif_is_l3_master(dev)) dev = dev_get_by_index_rcu(dev_net(dev), inet6_iif(skb)); return __in6_dev_get(dev); } /** * __in6_dev_get_safely - get inet6_dev pointer from netdevice * @dev: network device * * This is a safer version of __in6_dev_get */ static inline struct inet6_dev *__in6_dev_get_safely(const struct net_device *dev) { if (likely(dev)) return rcu_dereference_rtnl(dev->ip6_ptr); else return NULL; } /** * in6_dev_get - get inet6_dev pointer from netdevice * @dev: network device * * This version can be used in any context, and takes a reference * on the inet6_dev. Callers must use in6_dev_put() later to * release this reference. */ static inline struct inet6_dev *in6_dev_get(const struct net_device *dev) { struct inet6_dev *idev; rcu_read_lock(); idev = rcu_dereference(dev->ip6_ptr); if (idev) refcount_inc(&idev->refcnt); rcu_read_unlock(); return idev; } static inline struct neigh_parms *__in6_dev_nd_parms_get_rcu(const struct net_device *dev) { struct inet6_dev *idev = __in6_dev_get(dev); return idev ? idev->nd_parms : NULL; } void in6_dev_finish_destroy(struct inet6_dev *idev); static inline void in6_dev_put(struct inet6_dev *idev) { if (refcount_dec_and_test(&idev->refcnt)) in6_dev_finish_destroy(idev); } static inline void in6_dev_put_clear(struct inet6_dev **pidev) { struct inet6_dev *idev = *pidev; if (idev) { in6_dev_put(idev); *pidev = NULL; } } static inline void __in6_dev_put(struct inet6_dev *idev) { refcount_dec(&idev->refcnt); } static inline void in6_dev_hold(struct inet6_dev *idev) { refcount_inc(&idev->refcnt); } /* called with rcu_read_lock held */ static inline bool ip6_ignore_linkdown(const struct net_device *dev) { const struct inet6_dev *idev = __in6_dev_get(dev); return !!idev->cnf.ignore_routes_with_linkdown; } void inet6_ifa_finish_destroy(struct inet6_ifaddr *ifp); static inline void in6_ifa_put(struct inet6_ifaddr *ifp) { if (refcount_dec_and_test(&ifp->refcnt)) inet6_ifa_finish_destroy(ifp); } static inline void __in6_ifa_put(struct inet6_ifaddr *ifp) { refcount_dec(&ifp->refcnt); } static inline void in6_ifa_hold(struct inet6_ifaddr *ifp) { refcount_inc(&ifp->refcnt); } /* * compute link-local solicited-node multicast address */ static inline void addrconf_addr_solict_mult(const struct in6_addr *addr, struct in6_addr *solicited) { ipv6_addr_set(solicited, htonl(0xFF020000), 0, htonl(0x1), htonl(0xFF000000) | addr->s6_addr32[3]); } static inline bool ipv6_addr_is_ll_all_nodes(const struct in6_addr *addr) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 __be64 *p = (__force __be64 *)addr; return ((p[0] ^ cpu_to_be64(0xff02000000000000UL)) | (p[1] ^ cpu_to_be64(1))) == 0UL; #else return ((addr->s6_addr32[0] ^ htonl(0xff020000)) | addr->s6_addr32[1] | addr->s6_addr32[2] | (addr->s6_addr32[3] ^ htonl(0x00000001))) == 0; #endif } static inline bool ipv6_addr_is_ll_all_routers(const struct in6_addr *addr) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 __be64 *p = (__force __be64 *)addr; return ((p[0] ^ cpu_to_be64(0xff02000000000000UL)) | (p[1] ^ cpu_to_be64(2))) == 0UL; #else return ((addr->s6_addr32[0] ^ htonl(0xff020000)) | addr->s6_addr32[1] | addr->s6_addr32[2] | (addr->s6_addr32[3] ^ htonl(0x00000002))) == 0; #endif } static inline bool ipv6_addr_is_isatap(const struct in6_addr *addr) { return (addr->s6_addr32[2] | htonl(0x02000000)) == htonl(0x02005EFE); } static inline bool ipv6_addr_is_solict_mult(const struct in6_addr *addr) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 __be64 *p = (__force __be64 *)addr; return ((p[0] ^ cpu_to_be64(0xff02000000000000UL)) | ((p[1] ^ cpu_to_be64(0x00000001ff000000UL)) & cpu_to_be64(0xffffffffff000000UL))) == 0UL; #else return ((addr->s6_addr32[0] ^ htonl(0xff020000)) | addr->s6_addr32[1] | (addr->s6_addr32[2] ^ htonl(0x00000001)) | (addr->s6_addr[12] ^ 0xff)) == 0; #endif } static inline bool ipv6_addr_is_all_snoopers(const struct in6_addr *addr) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 __be64 *p = (__force __be64 *)addr; return ((p[0] ^ cpu_to_be64(0xff02000000000000UL)) | (p[1] ^ cpu_to_be64(0x6a))) == 0UL; #else return ((addr->s6_addr32[0] ^ htonl(0xff020000)) | addr->s6_addr32[1] | addr->s6_addr32[2] | (addr->s6_addr32[3] ^ htonl(0x0000006a))) == 0; #endif } #ifdef CONFIG_PROC_FS int if6_proc_init(void); void if6_proc_exit(void); #endif #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM vmscan #if !defined(_TRACE_VMSCAN_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_VMSCAN_H #include <linux/types.h> #include <linux/tracepoint.h> #include <linux/mm.h> #include <linux/memcontrol.h> #include <trace/events/mmflags.h> #define RECLAIM_WB_ANON 0x0001u #define RECLAIM_WB_FILE 0x0002u #define RECLAIM_WB_MIXED 0x0010u #define RECLAIM_WB_SYNC 0x0004u /* Unused, all reclaim async */ #define RECLAIM_WB_ASYNC 0x0008u #define RECLAIM_WB_LRU (RECLAIM_WB_ANON|RECLAIM_WB_FILE) #define show_reclaim_flags(flags) \ (flags) ? __print_flags(flags, "|", \ {RECLAIM_WB_ANON, "RECLAIM_WB_ANON"}, \ {RECLAIM_WB_FILE, "RECLAIM_WB_FILE"}, \ {RECLAIM_WB_MIXED, "RECLAIM_WB_MIXED"}, \ {RECLAIM_WB_SYNC, "RECLAIM_WB_SYNC"}, \ {RECLAIM_WB_ASYNC, "RECLAIM_WB_ASYNC"} \ ) : "RECLAIM_WB_NONE" #define trace_reclaim_flags(file) ( \ (file ? RECLAIM_WB_FILE : RECLAIM_WB_ANON) | \ (RECLAIM_WB_ASYNC) \ ) TRACE_EVENT(mm_vmscan_kswapd_sleep, TP_PROTO(int nid), TP_ARGS(nid), TP_STRUCT__entry( __field( int, nid ) ), TP_fast_assign( __entry->nid = nid; ), TP_printk("nid=%d", __entry->nid) ); TRACE_EVENT(mm_vmscan_kswapd_wake, TP_PROTO(int nid, int zid, int order), TP_ARGS(nid, zid, order), TP_STRUCT__entry( __field( int, nid ) __field( int, zid ) __field( int, order ) ), TP_fast_assign( __entry->nid = nid; __entry->zid = zid; __entry->order = order; ), TP_printk("nid=%d order=%d", __entry->nid, __entry->order) ); TRACE_EVENT(mm_vmscan_wakeup_kswapd, TP_PROTO(int nid, int zid, int order, gfp_t gfp_flags), TP_ARGS(nid, zid, order, gfp_flags), TP_STRUCT__entry( __field( int, nid ) __field( int, zid ) __field( int, order ) __field( gfp_t, gfp_flags ) ), TP_fast_assign( __entry->nid = nid; __entry->zid = zid; __entry->order = order; __entry->gfp_flags = gfp_flags; ), TP_printk("nid=%d order=%d gfp_flags=%s", __entry->nid, __entry->order, show_gfp_flags(__entry->gfp_flags)) ); DECLARE_EVENT_CLASS(mm_vmscan_direct_reclaim_begin_template, TP_PROTO(int order, gfp_t gfp_flags), TP_ARGS(order, gfp_flags), TP_STRUCT__entry( __field( int, order ) __field( gfp_t, gfp_flags ) ), TP_fast_assign( __entry->order = order; __entry->gfp_flags = gfp_flags; ), TP_printk("order=%d gfp_flags=%s", __entry->order, show_gfp_flags(__entry->gfp_flags)) ); DEFINE_EVENT(mm_vmscan_direct_reclaim_begin_template, mm_vmscan_direct_reclaim_begin, TP_PROTO(int order, gfp_t gfp_flags), TP_ARGS(order, gfp_flags) ); #ifdef CONFIG_MEMCG DEFINE_EVENT(mm_vmscan_direct_reclaim_begin_template, mm_vmscan_memcg_reclaim_begin, TP_PROTO(int order, gfp_t gfp_flags), TP_ARGS(order, gfp_flags) ); DEFINE_EVENT(mm_vmscan_direct_reclaim_begin_template, mm_vmscan_memcg_softlimit_reclaim_begin, TP_PROTO(int order, gfp_t gfp_flags), TP_ARGS(order, gfp_flags) ); #endif /* CONFIG_MEMCG */ DECLARE_EVENT_CLASS(mm_vmscan_direct_reclaim_end_template, TP_PROTO(unsigned long nr_reclaimed), TP_ARGS(nr_reclaimed), TP_STRUCT__entry( __field( unsigned long, nr_reclaimed ) ), TP_fast_assign( __entry->nr_reclaimed = nr_reclaimed; ), TP_printk("nr_reclaimed=%lu", __entry->nr_reclaimed) ); DEFINE_EVENT(mm_vmscan_direct_reclaim_end_template, mm_vmscan_direct_reclaim_end, TP_PROTO(unsigned long nr_reclaimed), TP_ARGS(nr_reclaimed) ); #ifdef CONFIG_MEMCG DEFINE_EVENT(mm_vmscan_direct_reclaim_end_template, mm_vmscan_memcg_reclaim_end, TP_PROTO(unsigned long nr_reclaimed), TP_ARGS(nr_reclaimed) ); DEFINE_EVENT(mm_vmscan_direct_reclaim_end_template, mm_vmscan_memcg_softlimit_reclaim_end, TP_PROTO(unsigned long nr_reclaimed), TP_ARGS(nr_reclaimed) ); #endif /* CONFIG_MEMCG */ TRACE_EVENT(mm_shrink_slab_start, TP_PROTO(struct shrinker *shr, struct shrink_control *sc, long nr_objects_to_shrink, unsigned long cache_items, unsigned long long delta, unsigned long total_scan, int priority), TP_ARGS(shr, sc, nr_objects_to_shrink, cache_items, delta, total_scan, priority), TP_STRUCT__entry( __field(struct shrinker *, shr) __field(void *, shrink) __field(int, nid) __field(long, nr_objects_to_shrink) __field(gfp_t, gfp_flags) __field(unsigned long, cache_items) __field(unsigned long long, delta) __field(unsigned long, total_scan) __field(int, priority) ), TP_fast_assign( __entry->shr = shr; __entry->shrink = shr->scan_objects; __entry->nid = sc->nid; __entry->nr_objects_to_shrink = nr_objects_to_shrink; __entry->gfp_flags = sc->gfp_mask; __entry->cache_items = cache_items; __entry->delta = delta; __entry->total_scan = total_scan; __entry->priority = priority; ), TP_printk("%pS %p: nid: %d objects to shrink %ld gfp_flags %s cache items %ld delta %lld total_scan %ld priority %d", __entry->shrink, __entry->shr, __entry->nid, __entry->nr_objects_to_shrink, show_gfp_flags(__entry->gfp_flags), __entry->cache_items, __entry->delta, __entry->total_scan, __entry->priority) ); TRACE_EVENT(mm_shrink_slab_end, TP_PROTO(struct shrinker *shr, int nid, int shrinker_retval, long unused_scan_cnt, long new_scan_cnt, long total_scan), TP_ARGS(shr, nid, shrinker_retval, unused_scan_cnt, new_scan_cnt, total_scan), TP_STRUCT__entry( __field(struct shrinker *, shr) __field(int, nid) __field(void *, shrink) __field(long, unused_scan) __field(long, new_scan) __field(int, retval) __field(long, total_scan) ), TP_fast_assign( __entry->shr = shr; __entry->nid = nid; __entry->shrink = shr->scan_objects; __entry->unused_scan = unused_scan_cnt; __entry->new_scan = new_scan_cnt; __entry->retval = shrinker_retval; __entry->total_scan = total_scan; ), TP_printk("%pS %p: nid: %d unused scan count %ld new scan count %ld total_scan %ld last shrinker return val %d", __entry->shrink, __entry->shr, __entry->nid, __entry->unused_scan, __entry->new_scan, __entry->total_scan, __entry->retval) ); TRACE_EVENT(mm_vmscan_lru_isolate, TP_PROTO(int highest_zoneidx, int order, unsigned long nr_requested, unsigned long nr_scanned, unsigned long nr_skipped, unsigned long nr_taken, isolate_mode_t isolate_mode, int lru), TP_ARGS(highest_zoneidx, order, nr_requested, nr_scanned, nr_skipped, nr_taken, isolate_mode, lru), TP_STRUCT__entry( __field(int, highest_zoneidx) __field(int, order) __field(unsigned long, nr_requested) __field(unsigned long, nr_scanned) __field(unsigned long, nr_skipped) __field(unsigned long, nr_taken) __field(isolate_mode_t, isolate_mode) __field(int, lru) ), TP_fast_assign( __entry->highest_zoneidx = highest_zoneidx; __entry->order = order; __entry->nr_requested = nr_requested; __entry->nr_scanned = nr_scanned; __entry->nr_skipped = nr_skipped; __entry->nr_taken = nr_taken; __entry->isolate_mode = isolate_mode; __entry->lru = lru; ), /* * classzone is previous name of the highest_zoneidx. * Reason not to change it is the ABI requirement of the tracepoint. */ TP_printk("isolate_mode=%d classzone=%d order=%d nr_requested=%lu nr_scanned=%lu nr_skipped=%lu nr_taken=%lu lru=%s", __entry->isolate_mode, __entry->highest_zoneidx, __entry->order, __entry->nr_requested, __entry->nr_scanned, __entry->nr_skipped, __entry->nr_taken, __print_symbolic(__entry->lru, LRU_NAMES)) ); TRACE_EVENT(mm_vmscan_writepage, TP_PROTO(struct page *page), TP_ARGS(page), TP_STRUCT__entry( __field(unsigned long, pfn) __field(int, reclaim_flags) ), TP_fast_assign( __entry->pfn = page_to_pfn(page); __entry->reclaim_flags = trace_reclaim_flags( page_is_file_lru(page)); ), TP_printk("page=%p pfn=%lu flags=%s", pfn_to_page(__entry->pfn), __entry->pfn, show_reclaim_flags(__entry->reclaim_flags)) ); TRACE_EVENT(mm_vmscan_lru_shrink_inactive, TP_PROTO(int nid, unsigned long nr_scanned, unsigned long nr_reclaimed, struct reclaim_stat *stat, int priority, int file), TP_ARGS(nid, nr_scanned, nr_reclaimed, stat, priority, file), TP_STRUCT__entry( __field(int, nid) __field(unsigned long, nr_scanned) __field(unsigned long, nr_reclaimed) __field(unsigned long, nr_dirty) __field(unsigned long, nr_writeback) __field(unsigned long, nr_congested) __field(unsigned long, nr_immediate) __field(unsigned int, nr_activate0) __field(unsigned int, nr_activate1) __field(unsigned long, nr_ref_keep) __field(unsigned long, nr_unmap_fail) __field(int, priority) __field(int, reclaim_flags) ), TP_fast_assign( __entry->nid = nid; __entry->nr_scanned = nr_scanned; __entry->nr_reclaimed = nr_reclaimed; __entry->nr_dirty = stat->nr_dirty; __entry->nr_writeback = stat->nr_writeback; __entry->nr_congested = stat->nr_congested; __entry->nr_immediate = stat->nr_immediate; __entry->nr_activate0 = stat->nr_activate[0]; __entry->nr_activate1 = stat->nr_activate[1]; __entry->nr_ref_keep = stat->nr_ref_keep; __entry->nr_unmap_fail = stat->nr_unmap_fail; __entry->priority = priority; __entry->reclaim_flags = trace_reclaim_flags(file); ), TP_printk("nid=%d nr_scanned=%ld nr_reclaimed=%ld nr_dirty=%ld nr_writeback=%ld nr_congested=%ld nr_immediate=%ld nr_activate_anon=%d nr_activate_file=%d nr_ref_keep=%ld nr_unmap_fail=%ld priority=%d flags=%s", __entry->nid, __entry->nr_scanned, __entry->nr_reclaimed, __entry->nr_dirty, __entry->nr_writeback, __entry->nr_congested, __entry->nr_immediate, __entry->nr_activate0, __entry->nr_activate1, __entry->nr_ref_keep, __entry->nr_unmap_fail, __entry->priority, show_reclaim_flags(__entry->reclaim_flags)) ); TRACE_EVENT(mm_vmscan_lru_shrink_active, TP_PROTO(int nid, unsigned long nr_taken, unsigned long nr_active, unsigned long nr_deactivated, unsigned long nr_referenced, int priority, int file), TP_ARGS(nid, nr_taken, nr_active, nr_deactivated, nr_referenced, priority, file), TP_STRUCT__entry( __field(int, nid) __field(unsigned long, nr_taken) __field(unsigned long, nr_active) __field(unsigned long, nr_deactivated) __field(unsigned long, nr_referenced) __field(int, priority) __field(int, reclaim_flags) ), TP_fast_assign( __entry->nid = nid; __entry->nr_taken = nr_taken; __entry->nr_active = nr_active; __entry->nr_deactivated = nr_deactivated; __entry->nr_referenced = nr_referenced; __entry->priority = priority; __entry->reclaim_flags = trace_reclaim_flags(file); ), TP_printk("nid=%d nr_taken=%ld nr_active=%ld nr_deactivated=%ld nr_referenced=%ld priority=%d flags=%s", __entry->nid, __entry->nr_taken, __entry->nr_active, __entry->nr_deactivated, __entry->nr_referenced, __entry->priority, show_reclaim_flags(__entry->reclaim_flags)) ); TRACE_EVENT(mm_vmscan_inactive_list_is_low, TP_PROTO(int nid, int reclaim_idx, unsigned long total_inactive, unsigned long inactive, unsigned long total_active, unsigned long active, unsigned long ratio, int file), TP_ARGS(nid, reclaim_idx, total_inactive, inactive, total_active, active, ratio, file), TP_STRUCT__entry( __field(int, nid) __field(int, reclaim_idx) __field(unsigned long, total_inactive) __field(unsigned long, inactive) __field(unsigned long, total_active) __field(unsigned long, active) __field(unsigned long, ratio) __field(int, reclaim_flags) ), TP_fast_assign( __entry->nid = nid; __entry->reclaim_idx = reclaim_idx; __entry->total_inactive = total_inactive; __entry->inactive = inactive; __entry->total_active = total_active; __entry->active = active; __entry->ratio = ratio; __entry->reclaim_flags = trace_reclaim_flags(file) & RECLAIM_WB_LRU; ), TP_printk("nid=%d reclaim_idx=%d total_inactive=%ld inactive=%ld total_active=%ld active=%ld ratio=%ld flags=%s", __entry->nid, __entry->reclaim_idx, __entry->total_inactive, __entry->inactive, __entry->total_active, __entry->active, __entry->ratio, show_reclaim_flags(__entry->reclaim_flags)) ); TRACE_EVENT(mm_vmscan_node_reclaim_begin, TP_PROTO(int nid, int order, gfp_t gfp_flags), TP_ARGS(nid, order, gfp_flags), TP_STRUCT__entry( __field(int, nid) __field(int, order) __field(gfp_t, gfp_flags) ), TP_fast_assign( __entry->nid = nid; __entry->order = order; __entry->gfp_flags = gfp_flags; ), TP_printk("nid=%d order=%d gfp_flags=%s", __entry->nid, __entry->order, show_gfp_flags(__entry->gfp_flags)) ); DEFINE_EVENT(mm_vmscan_direct_reclaim_end_template, mm_vmscan_node_reclaim_end, TP_PROTO(unsigned long nr_reclaimed), TP_ARGS(nr_reclaimed) ); #endif /* _TRACE_VMSCAN_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_SEQLOCK_H #define __LINUX_SEQLOCK_H /* * seqcount_t / seqlock_t - a reader-writer consistency mechanism with * lockless readers (read-only retry loops), and no writer starvation. * * See Documentation/locking/seqlock.rst * * Copyrights: * - Based on x86_64 vsyscall gettimeofday: Keith Owens, Andrea Arcangeli * - Sequence counters with associated locks, (C) 2020 Linutronix GmbH */ #include <linux/compiler.h> #include <linux/kcsan-checks.h> #include <linux/lockdep.h> #include <linux/mutex.h> #include <linux/ww_mutex.h> #include <linux/preempt.h> #include <linux/spinlock.h> #include <asm/processor.h> /* * The seqlock seqcount_t interface does not prescribe a precise sequence of * read begin/retry/end. For readers, typically there is a call to * read_seqcount_begin() and read_seqcount_retry(), however, there are more * esoteric cases which do not follow this pattern. * * As a consequence, we take the following best-effort approach for raw usage * via seqcount_t under KCSAN: upon beginning a seq-reader critical section, * pessimistically mark the next KCSAN_SEQLOCK_REGION_MAX memory accesses as * atomics; if there is a matching read_seqcount_retry() call, no following * memory operations are considered atomic. Usage of the seqlock_t interface * is not affected. */ #define KCSAN_SEQLOCK_REGION_MAX 1000 /* * Sequence counters (seqcount_t) * * This is the raw counting mechanism, without any writer protection. * * Write side critical sections must be serialized and non-preemptible. * * If readers can be invoked from hardirq or softirq contexts, * interrupts or bottom halves must also be respectively disabled before * entering the write section. * * This mechanism can't be used if the protected data contains pointers, * as the writer can invalidate a pointer that a reader is following. * * If the write serialization mechanism is one of the common kernel * locking primitives, use a sequence counter with associated lock * (seqcount_LOCKNAME_t) instead. * * If it's desired to automatically handle the sequence counter writer * serialization and non-preemptibility requirements, use a sequential * lock (seqlock_t) instead. * * See Documentation/locking/seqlock.rst */ typedef struct seqcount { unsigned sequence; #ifdef CONFIG_DEBUG_LOCK_ALLOC struct lockdep_map dep_map; #endif } seqcount_t; static inline void __seqcount_init(seqcount_t *s, const char *name, struct lock_class_key *key) { /* * Make sure we are not reinitializing a held lock: */ lockdep_init_map(&s->dep_map, name, key, 0); s->sequence = 0; } #ifdef CONFIG_DEBUG_LOCK_ALLOC # define SEQCOUNT_DEP_MAP_INIT(lockname) \ .dep_map = { .name = #lockname } /** * seqcount_init() - runtime initializer for seqcount_t * @s: Pointer to the seqcount_t instance */ # define seqcount_init(s) \ do { \ static struct lock_class_key __key; \ __seqcount_init((s), #s, &__key); \ } while (0) static inline void seqcount_lockdep_reader_access(const seqcount_t *s) { seqcount_t *l = (seqcount_t *)s; unsigned long flags; local_irq_save(flags); seqcount_acquire_read(&l->dep_map, 0, 0, _RET_IP_); seqcount_release(&l->dep_map, _RET_IP_); local_irq_restore(flags); } #else # define SEQCOUNT_DEP_MAP_INIT(lockname) # define seqcount_init(s) __seqcount_init(s, NULL, NULL) # define seqcount_lockdep_reader_access(x) #endif /** * SEQCNT_ZERO() - static initializer for seqcount_t * @name: Name of the seqcount_t instance */ #define SEQCNT_ZERO(name) { .sequence = 0, SEQCOUNT_DEP_MAP_INIT(name) } /* * Sequence counters with associated locks (seqcount_LOCKNAME_t) * * A sequence counter which associates the lock used for writer * serialization at initialization time. This enables lockdep to validate * that the write side critical section is properly serialized. * * For associated locks which do not implicitly disable preemption, * preemption protection is enforced in the write side function. * * Lockdep is never used in any for the raw write variants. * * See Documentation/locking/seqlock.rst */ /* * For PREEMPT_RT, seqcount_LOCKNAME_t write side critical sections cannot * disable preemption. It can lead to higher latencies, and the write side * sections will not be able to acquire locks which become sleeping locks * (e.g. spinlock_t). * * To remain preemptible while avoiding a possible livelock caused by the * reader preempting the writer, use a different technique: let the reader * detect if a seqcount_LOCKNAME_t writer is in progress. If that is the * case, acquire then release the associated LOCKNAME writer serialization * lock. This will allow any possibly-preempted writer to make progress * until the end of its writer serialization lock critical section. * * This lock-unlock technique must be implemented for all of PREEMPT_RT * sleeping locks. See Documentation/locking/locktypes.rst */ #if defined(CONFIG_LOCKDEP) || defined(CONFIG_PREEMPT_RT) #define __SEQ_LOCK(expr) expr #else #define __SEQ_LOCK(expr) #endif /* * typedef seqcount_LOCKNAME_t - sequence counter with LOCKNAME associated * @seqcount: The real sequence counter * @lock: Pointer to the associated lock * * A plain sequence counter with external writer synchronization by * LOCKNAME @lock. The lock is associated to the sequence counter in the * static initializer or init function. This enables lockdep to validate * that the write side critical section is properly serialized. * * LOCKNAME: raw_spinlock, spinlock, rwlock, mutex, or ww_mutex. */ /* * seqcount_LOCKNAME_init() - runtime initializer for seqcount_LOCKNAME_t * @s: Pointer to the seqcount_LOCKNAME_t instance * @lock: Pointer to the associated lock */ #define seqcount_LOCKNAME_init(s, _lock, lockname) \ do { \ seqcount_##lockname##_t *____s = (s); \ seqcount_init(&____s->seqcount); \ __SEQ_LOCK(____s->lock = (_lock)); \ } while (0) #define seqcount_raw_spinlock_init(s, lock) seqcount_LOCKNAME_init(s, lock, raw_spinlock) #define seqcount_spinlock_init(s, lock) seqcount_LOCKNAME_init(s, lock, spinlock) #define seqcount_rwlock_init(s, lock) seqcount_LOCKNAME_init(s, lock, rwlock); #define seqcount_mutex_init(s, lock) seqcount_LOCKNAME_init(s, lock, mutex); #define seqcount_ww_mutex_init(s, lock) seqcount_LOCKNAME_init(s, lock, ww_mutex); /* * SEQCOUNT_LOCKNAME() - Instantiate seqcount_LOCKNAME_t and helpers * seqprop_LOCKNAME_*() - Property accessors for seqcount_LOCKNAME_t * * @lockname: "LOCKNAME" part of seqcount_LOCKNAME_t * @locktype: LOCKNAME canonical C data type * @preemptible: preemptibility of above locktype * @lockmember: argument for lockdep_assert_held() * @lockbase: associated lock release function (prefix only) * @lock_acquire: associated lock acquisition function (full call) */ #define SEQCOUNT_LOCKNAME(lockname, locktype, preemptible, lockmember, lockbase, lock_acquire) \ typedef struct seqcount_##lockname { \ seqcount_t seqcount; \ __SEQ_LOCK(locktype *lock); \ } seqcount_##lockname##_t; \ \ static __always_inline seqcount_t * \ __seqprop_##lockname##_ptr(seqcount_##lockname##_t *s) \ { \ return &s->seqcount; \ } \ \ static __always_inline unsigned \ __seqprop_##lockname##_sequence(const seqcount_##lockname##_t *s) \ { \ unsigned seq = READ_ONCE(s->seqcount.sequence); \ \ if (!IS_ENABLED(CONFIG_PREEMPT_RT)) \ return seq; \ \ if (preemptible && unlikely(seq & 1)) { \ __SEQ_LOCK(lock_acquire); \ __SEQ_LOCK(lockbase##_unlock(s->lock)); \ \ /* \ * Re-read the sequence counter since the (possibly \ * preempted) writer made progress. \ */ \ seq = READ_ONCE(s->seqcount.sequence); \ } \ \ return seq; \ } \ \ static __always_inline bool \ __seqprop_##lockname##_preemptible(const seqcount_##lockname##_t *s) \ { \ if (!IS_ENABLED(CONFIG_PREEMPT_RT)) \ return preemptible; \ \ /* PREEMPT_RT relies on the above LOCK+UNLOCK */ \ return false; \ } \ \ static __always_inline void \ __seqprop_##lockname##_assert(const seqcount_##lockname##_t *s) \ { \ __SEQ_LOCK(lockdep_assert_held(lockmember)); \ } /* * __seqprop() for seqcount_t */ static inline seqcount_t *__seqprop_ptr(seqcount_t *s) { return s; } static inline unsigned __seqprop_sequence(const seqcount_t *s) { return READ_ONCE(s->sequence); } static inline bool __seqprop_preemptible(const seqcount_t *s) { return false; } static inline void __seqprop_assert(const seqcount_t *s) { lockdep_assert_preemption_disabled(); } #define __SEQ_RT IS_ENABLED(CONFIG_PREEMPT_RT) SEQCOUNT_LOCKNAME(raw_spinlock, raw_spinlock_t, false, s->lock, raw_spin, raw_spin_lock(s->lock)) SEQCOUNT_LOCKNAME(spinlock, spinlock_t, __SEQ_RT, s->lock, spin, spin_lock(s->lock)) SEQCOUNT_LOCKNAME(rwlock, rwlock_t, __SEQ_RT, s->lock, read, read_lock(s->lock)) SEQCOUNT_LOCKNAME(mutex, struct mutex, true, s->lock, mutex, mutex_lock(s->lock)) SEQCOUNT_LOCKNAME(ww_mutex, struct ww_mutex, true, &s->lock->base, ww_mutex, ww_mutex_lock(s->lock, NULL)) /* * SEQCNT_LOCKNAME_ZERO - static initializer for seqcount_LOCKNAME_t * @name: Name of the seqcount_LOCKNAME_t instance * @lock: Pointer to the associated LOCKNAME */ #define SEQCOUNT_LOCKNAME_ZERO(seq_name, assoc_lock) { \ .seqcount = SEQCNT_ZERO(seq_name.seqcount), \ __SEQ_LOCK(.lock = (assoc_lock)) \ } #define SEQCNT_RAW_SPINLOCK_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock) #define SEQCNT_SPINLOCK_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock) #define SEQCNT_RWLOCK_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock) #define SEQCNT_MUTEX_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock) #define SEQCNT_WW_MUTEX_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock) #define __seqprop_case(s, lockname, prop) \ seqcount_##lockname##_t: __seqprop_##lockname##_##prop((void *)(s)) #define __seqprop(s, prop) _Generic(*(s), \ seqcount_t: __seqprop_##prop((void *)(s)), \ __seqprop_case((s), raw_spinlock, prop), \ __seqprop_case((s), spinlock, prop), \ __seqprop_case((s), rwlock, prop), \ __seqprop_case((s), mutex, prop), \ __seqprop_case((s), ww_mutex, prop)) #define __seqcount_ptr(s) __seqprop(s, ptr) #define __seqcount_sequence(s) __seqprop(s, sequence) #define __seqcount_lock_preemptible(s) __seqprop(s, preemptible) #define __seqcount_assert_lock_held(s) __seqprop(s, assert) /** * __read_seqcount_begin() - begin a seqcount_t read section w/o barrier * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * * __read_seqcount_begin is like read_seqcount_begin, but has no smp_rmb() * barrier. Callers should ensure that smp_rmb() or equivalent ordering is * provided before actually loading any of the variables that are to be * protected in this critical section. * * Use carefully, only in critical code, and comment how the barrier is * provided. * * Return: count to be passed to read_seqcount_retry() */ #define __read_seqcount_begin(s) \ ({ \ unsigned seq; \ \ while ((seq = __seqcount_sequence(s)) & 1) \ cpu_relax(); \ \ kcsan_atomic_next(KCSAN_SEQLOCK_REGION_MAX); \ seq; \ }) /** * raw_read_seqcount_begin() - begin a seqcount_t read section w/o lockdep * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * * Return: count to be passed to read_seqcount_retry() */ #define raw_read_seqcount_begin(s) \ ({ \ unsigned seq = __read_seqcount_begin(s); \ \ smp_rmb(); \ seq; \ }) /** * read_seqcount_begin() - begin a seqcount_t read critical section * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * * Return: count to be passed to read_seqcount_retry() */ #define read_seqcount_begin(s) \ ({ \ seqcount_lockdep_reader_access(__seqcount_ptr(s)); \ raw_read_seqcount_begin(s); \ }) /** * raw_read_seqcount() - read the raw seqcount_t counter value * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * * raw_read_seqcount opens a read critical section of the given * seqcount_t, without any lockdep checking, and without checking or * masking the sequence counter LSB. Calling code is responsible for * handling that. * * Return: count to be passed to read_seqcount_retry() */ #define raw_read_seqcount(s) \ ({ \ unsigned seq = __seqcount_sequence(s); \ \ smp_rmb(); \ kcsan_atomic_next(KCSAN_SEQLOCK_REGION_MAX); \ seq; \ }) /** * raw_seqcount_begin() - begin a seqcount_t read critical section w/o * lockdep and w/o counter stabilization * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * * raw_seqcount_begin opens a read critical section of the given * seqcount_t. Unlike read_seqcount_begin(), this function will not wait * for the count to stabilize. If a writer is active when it begins, it * will fail the read_seqcount_retry() at the end of the read critical * section instead of stabilizing at the beginning of it. * * Use this only in special kernel hot paths where the read section is * small and has a high probability of success through other external * means. It will save a single branching instruction. * * Return: count to be passed to read_seqcount_retry() */ #define raw_seqcount_begin(s) \ ({ \ /* \ * If the counter is odd, let read_seqcount_retry() fail \ * by decrementing the counter. \ */ \ raw_read_seqcount(s) & ~1; \ }) /** * __read_seqcount_retry() - end a seqcount_t read section w/o barrier * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * @start: count, from read_seqcount_begin() * * __read_seqcount_retry is like read_seqcount_retry, but has no smp_rmb() * barrier. Callers should ensure that smp_rmb() or equivalent ordering is * provided before actually loading any of the variables that are to be * protected in this critical section. * * Use carefully, only in critical code, and comment how the barrier is * provided. * * Return: true if a read section retry is required, else false */ #define __read_seqcount_retry(s, start) \ __read_seqcount_t_retry(__seqcount_ptr(s), start) static inline int __read_seqcount_t_retry(const seqcount_t *s, unsigned start) { kcsan_atomic_next(0); return unlikely(READ_ONCE(s->sequence) != start); } /** * read_seqcount_retry() - end a seqcount_t read critical section * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * @start: count, from read_seqcount_begin() * * read_seqcount_retry closes the read critical section of given * seqcount_t. If the critical section was invalid, it must be ignored * (and typically retried). * * Return: true if a read section retry is required, else false */ #define read_seqcount_retry(s, start) \ read_seqcount_t_retry(__seqcount_ptr(s), start) static inline int read_seqcount_t_retry(const seqcount_t *s, unsigned start) { smp_rmb(); return __read_seqcount_t_retry(s, start); } /** * raw_write_seqcount_begin() - start a seqcount_t write section w/o lockdep * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants */ #define raw_write_seqcount_begin(s) \ do { \ if (__seqcount_lock_preemptible(s)) \ preempt_disable(); \ \ raw_write_seqcount_t_begin(__seqcount_ptr(s)); \ } while (0) static inline void raw_write_seqcount_t_begin(seqcount_t *s) { kcsan_nestable_atomic_begin(); s->sequence++; smp_wmb(); } /** * raw_write_seqcount_end() - end a seqcount_t write section w/o lockdep * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants */ #define raw_write_seqcount_end(s) \ do { \ raw_write_seqcount_t_end(__seqcount_ptr(s)); \ \ if (__seqcount_lock_preemptible(s)) \ preempt_enable(); \ } while (0) static inline void raw_write_seqcount_t_end(seqcount_t *s) { smp_wmb(); s->sequence++; kcsan_nestable_atomic_end(); } /** * write_seqcount_begin_nested() - start a seqcount_t write section with * custom lockdep nesting level * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * @subclass: lockdep nesting level * * See Documentation/locking/lockdep-design.rst */ #define write_seqcount_begin_nested(s, subclass) \ do { \ __seqcount_assert_lock_held(s); \ \ if (__seqcount_lock_preemptible(s)) \ preempt_disable(); \ \ write_seqcount_t_begin_nested(__seqcount_ptr(s), subclass); \ } while (0) static inline void write_seqcount_t_begin_nested(seqcount_t *s, int subclass) { raw_write_seqcount_t_begin(s); seqcount_acquire(&s->dep_map, subclass, 0, _RET_IP_); } /** * write_seqcount_begin() - start a seqcount_t write side critical section * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * * write_seqcount_begin opens a write side critical section of the given * seqcount_t. * * Context: seqcount_t write side critical sections must be serialized and * non-preemptible. If readers can be invoked from hardirq or softirq * context, interrupts or bottom halves must be respectively disabled. */ #define write_seqcount_begin(s) \ do { \ __seqcount_assert_lock_held(s); \ \ if (__seqcount_lock_preemptible(s)) \ preempt_disable(); \ \ write_seqcount_t_begin(__seqcount_ptr(s)); \ } while (0) static inline void write_seqcount_t_begin(seqcount_t *s) { write_seqcount_t_begin_nested(s, 0); } /** * write_seqcount_end() - end a seqcount_t write side critical section * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * * The write section must've been opened with write_seqcount_begin(). */ #define write_seqcount_end(s) \ do { \ write_seqcount_t_end(__seqcount_ptr(s)); \ \ if (__seqcount_lock_preemptible(s)) \ preempt_enable(); \ } while (0) static inline void write_seqcount_t_end(seqcount_t *s) { seqcount_release(&s->dep_map, _RET_IP_); raw_write_seqcount_t_end(s); } /** * raw_write_seqcount_barrier() - do a seqcount_t write barrier * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * * This can be used to provide an ordering guarantee instead of the usual * consistency guarantee. It is one wmb cheaper, because it can collapse * the two back-to-back wmb()s. * * Note that writes surrounding the barrier should be declared atomic (e.g. * via WRITE_ONCE): a) to ensure the writes become visible to other threads * atomically, avoiding compiler optimizations; b) to document which writes are * meant to propagate to the reader critical section. This is necessary because * neither writes before and after the barrier are enclosed in a seq-writer * critical section that would ensure readers are aware of ongoing writes:: * * seqcount_t seq; * bool X = true, Y = false; * * void read(void) * { * bool x, y; * * do { * int s = read_seqcount_begin(&seq); * * x = X; y = Y; * * } while (read_seqcount_retry(&seq, s)); * * BUG_ON(!x && !y); * } * * void write(void) * { * WRITE_ONCE(Y, true); * * raw_write_seqcount_barrier(seq); * * WRITE_ONCE(X, false); * } */ #define raw_write_seqcount_barrier(s) \ raw_write_seqcount_t_barrier(__seqcount_ptr(s)) static inline void raw_write_seqcount_t_barrier(seqcount_t *s) { kcsan_nestable_atomic_begin(); s->sequence++; smp_wmb(); s->sequence++; kcsan_nestable_atomic_end(); } /** * write_seqcount_invalidate() - invalidate in-progress seqcount_t read * side operations * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * * After write_seqcount_invalidate, no seqcount_t read side operations * will complete successfully and see data older than this. */ #define write_seqcount_invalidate(s) \ write_seqcount_t_invalidate(__seqcount_ptr(s)) static inline void write_seqcount_t_invalidate(seqcount_t *s) { smp_wmb(); kcsan_nestable_atomic_begin(); s->sequence+=2; kcsan_nestable_atomic_end(); } /* * Latch sequence counters (seqcount_latch_t) * * A sequence counter variant where the counter even/odd value is used to * switch between two copies of protected data. This allows the read path, * typically NMIs, to safely interrupt the write side critical section. * * As the write sections are fully preemptible, no special handling for * PREEMPT_RT is needed. */ typedef struct { seqcount_t seqcount; } seqcount_latch_t; /** * SEQCNT_LATCH_ZERO() - static initializer for seqcount_latch_t * @seq_name: Name of the seqcount_latch_t instance */ #define SEQCNT_LATCH_ZERO(seq_name) { \ .seqcount = SEQCNT_ZERO(seq_name.seqcount), \ } /** * seqcount_latch_init() - runtime initializer for seqcount_latch_t * @s: Pointer to the seqcount_latch_t instance */ #define seqcount_latch_init(s) seqcount_init(&(s)->seqcount) /** * raw_read_seqcount_latch() - pick even/odd latch data copy * @s: Pointer to seqcount_latch_t * * See raw_write_seqcount_latch() for details and a full reader/writer * usage example. * * Return: sequence counter raw value. Use the lowest bit as an index for * picking which data copy to read. The full counter must then be checked * with read_seqcount_latch_retry(). */ static inline unsigned raw_read_seqcount_latch(const seqcount_latch_t *s) { /* * Pairs with the first smp_wmb() in raw_write_seqcount_latch(). * Due to the dependent load, a full smp_rmb() is not needed. */ return READ_ONCE(s->seqcount.sequence); } /** * read_seqcount_latch_retry() - end a seqcount_latch_t read section * @s: Pointer to seqcount_latch_t * @start: count, from raw_read_seqcount_latch() * * Return: true if a read section retry is required, else false */ static inline int read_seqcount_latch_retry(const seqcount_latch_t *s, unsigned start) { return read_seqcount_retry(&s->seqcount, start); } /** * raw_write_seqcount_latch() - redirect latch readers to even/odd copy * @s: Pointer to seqcount_latch_t * * The latch technique is a multiversion concurrency control method that allows * queries during non-atomic modifications. If you can guarantee queries never * interrupt the modification -- e.g. the concurrency is strictly between CPUs * -- you most likely do not need this. * * Where the traditional RCU/lockless data structures rely on atomic * modifications to ensure queries observe either the old or the new state the * latch allows the same for non-atomic updates. The trade-off is doubling the * cost of storage; we have to maintain two copies of the entire data * structure. * * Very simply put: we first modify one copy and then the other. This ensures * there is always one copy in a stable state, ready to give us an answer. * * The basic form is a data structure like:: * * struct latch_struct { * seqcount_latch_t seq; * struct data_struct data[2]; * }; * * Where a modification, which is assumed to be externally serialized, does the * following:: * * void latch_modify(struct latch_struct *latch, ...) * { * smp_wmb(); // Ensure that the last data[1] update is visible * latch->seq.sequence++; * smp_wmb(); // Ensure that the seqcount update is visible * * modify(latch->data[0], ...); * * smp_wmb(); // Ensure that the data[0] update is visible * latch->seq.sequence++; * smp_wmb(); // Ensure that the seqcount update is visible * * modify(latch->data[1], ...); * } * * The query will have a form like:: * * struct entry *latch_query(struct latch_struct *latch, ...) * { * struct entry *entry; * unsigned seq, idx; * * do { * seq = raw_read_seqcount_latch(&latch->seq); * * idx = seq & 0x01; * entry = data_query(latch->data[idx], ...); * * // This includes needed smp_rmb() * } while (read_seqcount_latch_retry(&latch->seq, seq)); * * return entry; * } * * So during the modification, queries are first redirected to data[1]. Then we * modify data[0]. When that is complete, we redirect queries back to data[0] * and we can modify data[1]. * * NOTE: * * The non-requirement for atomic modifications does _NOT_ include * the publishing of new entries in the case where data is a dynamic * data structure. * * An iteration might start in data[0] and get suspended long enough * to miss an entire modification sequence, once it resumes it might * observe the new entry. * * NOTE2: * * When data is a dynamic data structure; one should use regular RCU * patterns to manage the lifetimes of the objects within. */ static inline void raw_write_seqcount_latch(seqcount_latch_t *s) { smp_wmb(); /* prior stores before incrementing "sequence" */ s->seqcount.sequence++; smp_wmb(); /* increment "sequence" before following stores */ } /* * Sequential locks (seqlock_t) * * Sequence counters with an embedded spinlock for writer serialization * and non-preemptibility. * * For more info, see: * - Comments on top of seqcount_t * - Documentation/locking/seqlock.rst */ typedef struct { /* * Make sure that readers don't starve writers on PREEMPT_RT: use * seqcount_spinlock_t instead of seqcount_t. Check __SEQ_LOCK(). */ seqcount_spinlock_t seqcount; spinlock_t lock; } seqlock_t; #define __SEQLOCK_UNLOCKED(lockname) \ { \ .seqcount = SEQCNT_SPINLOCK_ZERO(lockname, &(lockname).lock), \ .lock = __SPIN_LOCK_UNLOCKED(lockname) \ } /** * seqlock_init() - dynamic initializer for seqlock_t * @sl: Pointer to the seqlock_t instance */ #define seqlock_init(sl) \ do { \ spin_lock_init(&(sl)->lock); \ seqcount_spinlock_init(&(sl)->seqcount, &(sl)->lock); \ } while (0) /** * DEFINE_SEQLOCK(sl) - Define a statically allocated seqlock_t * @sl: Name of the seqlock_t instance */ #define DEFINE_SEQLOCK(sl) \ seqlock_t sl = __SEQLOCK_UNLOCKED(sl) /** * read_seqbegin() - start a seqlock_t read side critical section * @sl: Pointer to seqlock_t * * Return: count, to be passed to read_seqretry() */ static inline unsigned read_seqbegin(const seqlock_t *sl) { unsigned ret = read_seqcount_begin(&sl->seqcount); kcsan_atomic_next(0); /* non-raw usage, assume closing read_seqretry() */ kcsan_flat_atomic_begin(); return ret; } /** * read_seqretry() - end a seqlock_t read side section * @sl: Pointer to seqlock_t * @start: count, from read_seqbegin() * * read_seqretry closes the read side critical section of given seqlock_t. * If the critical section was invalid, it must be ignored (and typically * retried). * * Return: true if a read section retry is required, else false */ static inline unsigned read_seqretry(const seqlock_t *sl, unsigned start) { /* * Assume not nested: read_seqretry() may be called multiple times when * completing read critical section. */ kcsan_flat_atomic_end(); return read_seqcount_retry(&sl->seqcount, start); } /* * For all seqlock_t write side functions, use write_seqcount_*t*_begin() * instead of the generic write_seqcount_begin(). This way, no redundant * lockdep_assert_held() checks are added. */ /** * write_seqlock() - start a seqlock_t write side critical section * @sl: Pointer to seqlock_t * * write_seqlock opens a write side critical section for the given * seqlock_t. It also implicitly acquires the spinlock_t embedded inside * that sequential lock. All seqlock_t write side sections are thus * automatically serialized and non-preemptible. * * Context: if the seqlock_t read section, or other write side critical * sections, can be invoked from hardirq or softirq contexts, use the * _irqsave or _bh variants of this function instead. */ static inline void write_seqlock(seqlock_t *sl) { spin_lock(&sl->lock); write_seqcount_t_begin(&sl->seqcount.seqcount); } /** * write_sequnlock() - end a seqlock_t write side critical section * @sl: Pointer to seqlock_t * * write_sequnlock closes the (serialized and non-preemptible) write side * critical section of given seqlock_t. */ static inline void write_sequnlock(seqlock_t *sl) { write_seqcount_t_end(&sl->seqcount.seqcount); spin_unlock(&sl->lock); } /** * write_seqlock_bh() - start a softirqs-disabled seqlock_t write section * @sl: Pointer to seqlock_t * * _bh variant of write_seqlock(). Use only if the read side section, or * other write side sections, can be invoked from softirq contexts. */ static inline void write_seqlock_bh(seqlock_t *sl) { spin_lock_bh(&sl->lock); write_seqcount_t_begin(&sl->seqcount.seqcount); } /** * write_sequnlock_bh() - end a softirqs-disabled seqlock_t write section * @sl: Pointer to seqlock_t * * write_sequnlock_bh closes the serialized, non-preemptible, and * softirqs-disabled, seqlock_t write side critical section opened with * write_seqlock_bh(). */ static inline void write_sequnlock_bh(seqlock_t *sl) { write_seqcount_t_end(&sl->seqcount.seqcount); spin_unlock_bh(&sl->lock); } /** * write_seqlock_irq() - start a non-interruptible seqlock_t write section * @sl: Pointer to seqlock_t * * _irq variant of write_seqlock(). Use only if the read side section, or * other write sections, can be invoked from hardirq contexts. */ static inline void write_seqlock_irq(seqlock_t *sl) { spin_lock_irq(&sl->lock); write_seqcount_t_begin(&sl->seqcount.seqcount); } /** * write_sequnlock_irq() - end a non-interruptible seqlock_t write section * @sl: Pointer to seqlock_t * * write_sequnlock_irq closes the serialized and non-interruptible * seqlock_t write side section opened with write_seqlock_irq(). */ static inline void write_sequnlock_irq(seqlock_t *sl) { write_seqcount_t_end(&sl->seqcount.seqcount); spin_unlock_irq(&sl->lock); } static inline unsigned long __write_seqlock_irqsave(seqlock_t *sl) { unsigned long flags; spin_lock_irqsave(&sl->lock, flags); write_seqcount_t_begin(&sl->seqcount.seqcount); return flags; } /** * write_seqlock_irqsave() - start a non-interruptible seqlock_t write * section * @lock: Pointer to seqlock_t * @flags: Stack-allocated storage for saving caller's local interrupt * state, to be passed to write_sequnlock_irqrestore(). * * _irqsave variant of write_seqlock(). Use it only if the read side * section, or other write sections, can be invoked from hardirq context. */ #define write_seqlock_irqsave(lock, flags) \ do { flags = __write_seqlock_irqsave(lock); } while (0) /** * write_sequnlock_irqrestore() - end non-interruptible seqlock_t write * section * @sl: Pointer to seqlock_t * @flags: Caller's saved interrupt state, from write_seqlock_irqsave() * * write_sequnlock_irqrestore closes the serialized and non-interruptible * seqlock_t write section previously opened with write_seqlock_irqsave(). */ static inline void write_sequnlock_irqrestore(seqlock_t *sl, unsigned long flags) { write_seqcount_t_end(&sl->seqcount.seqcount); spin_unlock_irqrestore(&sl->lock, flags); } /** * read_seqlock_excl() - begin a seqlock_t locking reader section * @sl: Pointer to seqlock_t * * read_seqlock_excl opens a seqlock_t locking reader critical section. A * locking reader exclusively locks out *both* other writers *and* other * locking readers, but it does not update the embedded sequence number. * * Locking readers act like a normal spin_lock()/spin_unlock(). * * Context: if the seqlock_t write section, *or other read sections*, can * be invoked from hardirq or softirq contexts, use the _irqsave or _bh * variant of this function instead. * * The opened read section must be closed with read_sequnlock_excl(). */ static inline void read_seqlock_excl(seqlock_t *sl) { spin_lock(&sl->lock); } /** * read_sequnlock_excl() - end a seqlock_t locking reader critical section * @sl: Pointer to seqlock_t */ static inline void read_sequnlock_excl(seqlock_t *sl) { spin_unlock(&sl->lock); } /** * read_seqlock_excl_bh() - start a seqlock_t locking reader section with * softirqs disabled * @sl: Pointer to seqlock_t * * _bh variant of read_seqlock_excl(). Use this variant only if the * seqlock_t write side section, *or other read sections*, can be invoked * from softirq contexts. */ static inline void read_seqlock_excl_bh(seqlock_t *sl) { spin_lock_bh(&sl->lock); } /** * read_sequnlock_excl_bh() - stop a seqlock_t softirq-disabled locking * reader section * @sl: Pointer to seqlock_t */ static inline void read_sequnlock_excl_bh(seqlock_t *sl) { spin_unlock_bh(&sl->lock); } /** * read_seqlock_excl_irq() - start a non-interruptible seqlock_t locking * reader section * @sl: Pointer to seqlock_t * * _irq variant of read_seqlock_excl(). Use this only if the seqlock_t * write side section, *or other read sections*, can be invoked from a * hardirq context. */ static inline void read_seqlock_excl_irq(seqlock_t *sl) { spin_lock_irq(&sl->lock); } /** * read_sequnlock_excl_irq() - end an interrupts-disabled seqlock_t * locking reader section * @sl: Pointer to seqlock_t */ static inline void read_sequnlock_excl_irq(seqlock_t *sl) { spin_unlock_irq(&sl->lock); } static inline unsigned long __read_seqlock_excl_irqsave(seqlock_t *sl) { unsigned long flags; spin_lock_irqsave(&sl->lock, flags); return flags; } /** * read_seqlock_excl_irqsave() - start a non-interruptible seqlock_t * locking reader section * @lock: Pointer to seqlock_t * @flags: Stack-allocated storage for saving caller's local interrupt * state, to be passed to read_sequnlock_excl_irqrestore(). * * _irqsave variant of read_seqlock_excl(). Use this only if the seqlock_t * write side section, *or other read sections*, can be invoked from a * hardirq context. */ #define read_seqlock_excl_irqsave(lock, flags) \ do { flags = __read_seqlock_excl_irqsave(lock); } while (0) /** * read_sequnlock_excl_irqrestore() - end non-interruptible seqlock_t * locking reader section * @sl: Pointer to seqlock_t * @flags: Caller saved interrupt state, from read_seqlock_excl_irqsave() */ static inline void read_sequnlock_excl_irqrestore(seqlock_t *sl, unsigned long flags) { spin_unlock_irqrestore(&sl->lock, flags); } /** * read_seqbegin_or_lock() - begin a seqlock_t lockless or locking reader * @lock: Pointer to seqlock_t * @seq : Marker and return parameter. If the passed value is even, the * reader will become a *lockless* seqlock_t reader as in read_seqbegin(). * If the passed value is odd, the reader will become a *locking* reader * as in read_seqlock_excl(). In the first call to this function, the * caller *must* initialize and pass an even value to @seq; this way, a * lockless read can be optimistically tried first. * * read_seqbegin_or_lock is an API designed to optimistically try a normal * lockless seqlock_t read section first. If an odd counter is found, the * lockless read trial has failed, and the next read iteration transforms * itself into a full seqlock_t locking reader. * * This is typically used to avoid seqlock_t lockless readers starvation * (too much retry loops) in the case of a sharp spike in write side * activity. * * Context: if the seqlock_t write section, *or other read sections*, can * be invoked from hardirq or softirq contexts, use the _irqsave or _bh * variant of this function instead. * * Check Documentation/locking/seqlock.rst for template example code. * * Return: the encountered sequence counter value, through the @seq * parameter, which is overloaded as a return parameter. This returned * value must be checked with need_seqretry(). If the read section need to * be retried, this returned value must also be passed as the @seq * parameter of the next read_seqbegin_or_lock() iteration. */ static inline void read_seqbegin_or_lock(seqlock_t *lock, int *seq) { if (!(*seq & 1)) /* Even */ *seq = read_seqbegin(lock); else /* Odd */ read_seqlock_excl(lock); } /** * need_seqretry() - validate seqlock_t "locking or lockless" read section * @lock: Pointer to seqlock_t * @seq: sequence count, from read_seqbegin_or_lock() * * Return: true if a read section retry is required, false otherwise */ static inline int need_seqretry(seqlock_t *lock, int seq) { return !(seq & 1) && read_seqretry(lock, seq); } /** * done_seqretry() - end seqlock_t "locking or lockless" reader section * @lock: Pointer to seqlock_t * @seq: count, from read_seqbegin_or_lock() * * done_seqretry finishes the seqlock_t read side critical section started * with read_seqbegin_or_lock() and validated by need_seqretry(). */ static inline void done_seqretry(seqlock_t *lock, int seq) { if (seq & 1) read_sequnlock_excl(lock); } /** * read_seqbegin_or_lock_irqsave() - begin a seqlock_t lockless reader, or * a non-interruptible locking reader * @lock: Pointer to seqlock_t * @seq: Marker and return parameter. Check read_seqbegin_or_lock(). * * This is the _irqsave variant of read_seqbegin_or_lock(). Use it only if * the seqlock_t write section, *or other read sections*, can be invoked * from hardirq context. * * Note: Interrupts will be disabled only for "locking reader" mode. * * Return: * * 1. The saved local interrupts state in case of a locking reader, to * be passed to done_seqretry_irqrestore(). * * 2. The encountered sequence counter value, returned through @seq * overloaded as a return parameter. Check read_seqbegin_or_lock(). */ static inline unsigned long read_seqbegin_or_lock_irqsave(seqlock_t *lock, int *seq) { unsigned long flags = 0; if (!(*seq & 1)) /* Even */ *seq = read_seqbegin(lock); else /* Odd */ read_seqlock_excl_irqsave(lock, flags); return flags; } /** * done_seqretry_irqrestore() - end a seqlock_t lockless reader, or a * non-interruptible locking reader section * @lock: Pointer to seqlock_t * @seq: Count, from read_seqbegin_or_lock_irqsave() * @flags: Caller's saved local interrupt state in case of a locking * reader, also from read_seqbegin_or_lock_irqsave() * * This is the _irqrestore variant of done_seqretry(). The read section * must've been opened with read_seqbegin_or_lock_irqsave(), and validated * by need_seqretry(). */ static inline void done_seqretry_irqrestore(seqlock_t *lock, int seq, unsigned long flags) { if (seq & 1) read_sequnlock_excl_irqrestore(lock, flags); } #endif /* __LINUX_SEQLOCK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SIGNAL_H #define _LINUX_SIGNAL_H #include <linux/bug.h> #include <linux/signal_types.h> #include <linux/string.h> struct task_struct; /* for sysctl */ extern int print_fatal_signals; static inline void copy_siginfo(kernel_siginfo_t *to, const kernel_siginfo_t *from) { memcpy(to, from, sizeof(*to)); } static inline void clear_siginfo(kernel_siginfo_t *info) { memset(info, 0, sizeof(*info)); } #define SI_EXPANSION_SIZE (sizeof(struct siginfo) - sizeof(struct kernel_siginfo)) static inline void copy_siginfo_to_external(siginfo_t *to, const kernel_siginfo_t *from) { memcpy(to, from, sizeof(*from)); memset(((char *)to) + sizeof(struct kernel_siginfo), 0, SI_EXPANSION_SIZE); } int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from); int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from); enum siginfo_layout { SIL_KILL, SIL_TIMER, SIL_POLL, SIL_FAULT, SIL_FAULT_MCEERR, SIL_FAULT_BNDERR, SIL_FAULT_PKUERR, SIL_CHLD, SIL_RT, SIL_SYS, }; enum siginfo_layout siginfo_layout(unsigned sig, int si_code); /* * Define some primitives to manipulate sigset_t. */ #ifndef __HAVE_ARCH_SIG_BITOPS #include <linux/bitops.h> /* We don't use <linux/bitops.h> for these because there is no need to be atomic. */ static inline void sigaddset(sigset_t *set, int _sig) { unsigned long sig = _sig - 1; if (_NSIG_WORDS == 1) set->sig[0] |= 1UL << sig; else set->sig[sig / _NSIG_BPW] |= 1UL << (sig % _NSIG_BPW); } static inline void sigdelset(sigset_t *set, int _sig) { unsigned long sig = _sig - 1; if (_NSIG_WORDS == 1) set->sig[0] &= ~(1UL << sig); else set->sig[sig / _NSIG_BPW] &= ~(1UL << (sig % _NSIG_BPW)); } static inline int sigismember(sigset_t *set, int _sig) { unsigned long sig = _sig - 1; if (_NSIG_WORDS == 1) return 1 & (set->sig[0] >> sig); else return 1 & (set->sig[sig / _NSIG_BPW] >> (sig % _NSIG_BPW)); } #endif /* __HAVE_ARCH_SIG_BITOPS */ static inline int sigisemptyset(sigset_t *set) { switch (_NSIG_WORDS) { case 4: return (set->sig[3] | set->sig[2] | set->sig[1] | set->sig[0]) == 0; case 2: return (set->sig[1] | set->sig[0]) == 0; case 1: return set->sig[0] == 0; default: BUILD_BUG(); return 0; } } static inline int sigequalsets(const sigset_t *set1, const sigset_t *set2) { switch (_NSIG_WORDS) { case 4: return (set1->sig[3] == set2->sig[3]) && (set1->sig[2] == set2->sig[2]) && (set1->sig[1] == set2->sig[1]) && (set1->sig[0] == set2->sig[0]); case 2: return (set1->sig[1] == set2->sig[1]) && (set1->sig[0] == set2->sig[0]); case 1: return set1->sig[0] == set2->sig[0]; } return 0; } #define sigmask(sig) (1UL << ((sig) - 1)) #ifndef __HAVE_ARCH_SIG_SETOPS #include <linux/string.h> #define _SIG_SET_BINOP(name, op) \ static inline void name(sigset_t *r, const sigset_t *a, const sigset_t *b) \ { \ unsigned long a0, a1, a2, a3, b0, b1, b2, b3; \ \ switch (_NSIG_WORDS) { \ case 4: \ a3 = a->sig[3]; a2 = a->sig[2]; \ b3 = b->sig[3]; b2 = b->sig[2]; \ r->sig[3] = op(a3, b3); \ r->sig[2] = op(a2, b2); \ fallthrough; \ case 2: \ a1 = a->sig[1]; b1 = b->sig[1]; \ r->sig[1] = op(a1, b1); \ fallthrough; \ case 1: \ a0 = a->sig[0]; b0 = b->sig[0]; \ r->sig[0] = op(a0, b0); \ break; \ default: \ BUILD_BUG(); \ } \ } #define _sig_or(x,y) ((x) | (y)) _SIG_SET_BINOP(sigorsets, _sig_or) #define _sig_and(x,y) ((x) & (y)) _SIG_SET_BINOP(sigandsets, _sig_and) #define _sig_andn(x,y) ((x) & ~(y)) _SIG_SET_BINOP(sigandnsets, _sig_andn) #undef _SIG_SET_BINOP #undef _sig_or #undef _sig_and #undef _sig_andn #define _SIG_SET_OP(name, op) \ static inline void name(sigset_t *set) \ { \ switch (_NSIG_WORDS) { \ case 4: set->sig[3] = op(set->sig[3]); \ set->sig[2] = op(set->sig[2]); \ fallthrough; \ case 2: set->sig[1] = op(set->sig[1]); \ fallthrough; \ case 1: set->sig[0] = op(set->sig[0]); \ break; \ default: \ BUILD_BUG(); \ } \ } #define _sig_not(x) (~(x)) _SIG_SET_OP(signotset, _sig_not) #undef _SIG_SET_OP #undef _sig_not static inline void sigemptyset(sigset_t *set) { switch (_NSIG_WORDS) { default: memset(set, 0, sizeof(sigset_t)); break; case 2: set->sig[1] = 0; fallthrough; case 1: set->sig[0] = 0; break; } } static inline void sigfillset(sigset_t *set) { switch (_NSIG_WORDS) { default: memset(set, -1, sizeof(sigset_t)); break; case 2: set->sig[1] = -1; fallthrough; case 1: set->sig[0] = -1; break; } } /* Some extensions for manipulating the low 32 signals in particular. */ static inline void sigaddsetmask(sigset_t *set, unsigned long mask) { set->sig[0] |= mask; } static inline void sigdelsetmask(sigset_t *set, unsigned long mask) { set->sig[0] &= ~mask; } static inline int sigtestsetmask(sigset_t *set, unsigned long mask) { return (set->sig[0] & mask) != 0; } static inline void siginitset(sigset_t *set, unsigned long mask) { set->sig[0] = mask; switch (_NSIG_WORDS) { default: memset(&set->sig[1], 0, sizeof(long)*(_NSIG_WORDS-1)); break; case 2: set->sig[1] = 0; break; case 1: ; } } static inline void siginitsetinv(sigset_t *set, unsigned long mask) { set->sig[0] = ~mask; switch (_NSIG_WORDS) { default: memset(&set->sig[1], -1, sizeof(long)*(_NSIG_WORDS-1)); break; case 2: set->sig[1] = -1; break; case 1: ; } } #endif /* __HAVE_ARCH_SIG_SETOPS */ static inline void init_sigpending(struct sigpending *sig) { sigemptyset(&sig->signal); INIT_LIST_HEAD(&sig->list); } extern void flush_sigqueue(struct sigpending *queue); /* Test if 'sig' is valid signal. Use this instead of testing _NSIG directly */ static inline int valid_signal(unsigned long sig) { return sig <= _NSIG ? 1 : 0; } struct timespec; struct pt_regs; enum pid_type; extern int next_signal(struct sigpending *pending, sigset_t *mask); extern int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p, enum pid_type type); extern int group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p, enum pid_type type); extern int __group_send_sig_info(int, struct kernel_siginfo *, struct task_struct *); extern int sigprocmask(int, sigset_t *, sigset_t *); extern void set_current_blocked(sigset_t *); extern void __set_current_blocked(const sigset_t *); extern int show_unhandled_signals; extern bool get_signal(struct ksignal *ksig); extern void signal_setup_done(int failed, struct ksignal *ksig, int stepping); extern void exit_signals(struct task_struct *tsk); extern void kernel_sigaction(int, __sighandler_t); #define SIG_KTHREAD ((__force __sighandler_t)2) #define SIG_KTHREAD_KERNEL ((__force __sighandler_t)3) static inline void allow_signal(int sig) { /* * Kernel threads handle their own signals. Let the signal code * know it'll be handled, so that they don't get converted to * SIGKILL or just silently dropped. */ kernel_sigaction(sig, SIG_KTHREAD); } static inline void allow_kernel_signal(int sig) { /* * Kernel threads handle their own signals. Let the signal code * know signals sent by the kernel will be handled, so that they * don't get silently dropped. */ kernel_sigaction(sig, SIG_KTHREAD_KERNEL); } static inline void disallow_signal(int sig) { kernel_sigaction(sig, SIG_IGN); } extern struct kmem_cache *sighand_cachep; extern bool unhandled_signal(struct task_struct *tsk, int sig); /* * In POSIX a signal is sent either to a specific thread (Linux task) * or to the process as a whole (Linux thread group). How the signal * is sent determines whether it's to one thread or the whole group, * which determines which signal mask(s) are involved in blocking it * from being delivered until later. When the signal is delivered, * either it's caught or ignored by a user handler or it has a default * effect that applies to the whole thread group (POSIX process). * * The possible effects an unblocked signal set to SIG_DFL can have are: * ignore - Nothing Happens * terminate - kill the process, i.e. all threads in the group, * similar to exit_group. The group leader (only) reports * WIFSIGNALED status to its parent. * coredump - write a core dump file describing all threads using * the same mm and then kill all those threads * stop - stop all the threads in the group, i.e. TASK_STOPPED state * * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored. * Other signals when not blocked and set to SIG_DFL behaves as follows. * The job control signals also have other special effects. * * +--------------------+------------------+ * | POSIX signal | default action | * +--------------------+------------------+ * | SIGHUP | terminate | * | SIGINT | terminate | * | SIGQUIT | coredump | * | SIGILL | coredump | * | SIGTRAP | coredump | * | SIGABRT/SIGIOT | coredump | * | SIGBUS | coredump | * | SIGFPE | coredump | * | SIGKILL | terminate(+) | * | SIGUSR1 | terminate | * | SIGSEGV | coredump | * | SIGUSR2 | terminate | * | SIGPIPE | terminate | * | SIGALRM | terminate | * | SIGTERM | terminate | * | SIGCHLD | ignore | * | SIGCONT | ignore(*) | * | SIGSTOP | stop(*)(+) | * | SIGTSTP | stop(*) | * | SIGTTIN | stop(*) | * | SIGTTOU | stop(*) | * | SIGURG | ignore | * | SIGXCPU | coredump | * | SIGXFSZ | coredump | * | SIGVTALRM | terminate | * | SIGPROF | terminate | * | SIGPOLL/SIGIO | terminate | * | SIGSYS/SIGUNUSED | coredump | * | SIGSTKFLT | terminate | * | SIGWINCH | ignore | * | SIGPWR | terminate | * | SIGRTMIN-SIGRTMAX | terminate | * +--------------------+------------------+ * | non-POSIX signal | default action | * +--------------------+------------------+ * | SIGEMT | coredump | * +--------------------+------------------+ * * (+) For SIGKILL and SIGSTOP the action is "always", not just "default". * (*) Special job control effects: * When SIGCONT is sent, it resumes the process (all threads in the group) * from TASK_STOPPED state and also clears any pending/queued stop signals * (any of those marked with "stop(*)"). This happens regardless of blocking, * catching, or ignoring SIGCONT. When any stop signal is sent, it clears * any pending/queued SIGCONT signals; this happens regardless of blocking, * catching, or ignored the stop signal, though (except for SIGSTOP) the * default action of stopping the process may happen later or never. */ #ifdef SIGEMT #define SIGEMT_MASK rt_sigmask(SIGEMT) #else #define SIGEMT_MASK 0 #endif #if SIGRTMIN > BITS_PER_LONG #define rt_sigmask(sig) (1ULL << ((sig)-1)) #else #define rt_sigmask(sig) sigmask(sig) #endif #define siginmask(sig, mask) \ ((sig) > 0 && (sig) < SIGRTMIN && (rt_sigmask(sig) & (mask))) #define SIG_KERNEL_ONLY_MASK (\ rt_sigmask(SIGKILL) | rt_sigmask(SIGSTOP)) #define SIG_KERNEL_STOP_MASK (\ rt_sigmask(SIGSTOP) | rt_sigmask(SIGTSTP) | \ rt_sigmask(SIGTTIN) | rt_sigmask(SIGTTOU) ) #define SIG_KERNEL_COREDUMP_MASK (\ rt_sigmask(SIGQUIT) | rt_sigmask(SIGILL) | \ rt_sigmask(SIGTRAP) | rt_sigmask(SIGABRT) | \ rt_sigmask(SIGFPE) | rt_sigmask(SIGSEGV) | \ rt_sigmask(SIGBUS) | rt_sigmask(SIGSYS) | \ rt_sigmask(SIGXCPU) | rt_sigmask(SIGXFSZ) | \ SIGEMT_MASK ) #define SIG_KERNEL_IGNORE_MASK (\ rt_sigmask(SIGCONT) | rt_sigmask(SIGCHLD) | \ rt_sigmask(SIGWINCH) | rt_sigmask(SIGURG) ) #define SIG_SPECIFIC_SICODES_MASK (\ rt_sigmask(SIGILL) | rt_sigmask(SIGFPE) | \ rt_sigmask(SIGSEGV) | rt_sigmask(SIGBUS) | \ rt_sigmask(SIGTRAP) | rt_sigmask(SIGCHLD) | \ rt_sigmask(SIGPOLL) | rt_sigmask(SIGSYS) | \ SIGEMT_MASK ) #define sig_kernel_only(sig) siginmask(sig, SIG_KERNEL_ONLY_MASK) #define sig_kernel_coredump(sig) siginmask(sig, SIG_KERNEL_COREDUMP_MASK) #define sig_kernel_ignore(sig) siginmask(sig, SIG_KERNEL_IGNORE_MASK) #define sig_kernel_stop(sig) siginmask(sig, SIG_KERNEL_STOP_MASK) #define sig_specific_sicodes(sig) siginmask(sig, SIG_SPECIFIC_SICODES_MASK) #define sig_fatal(t, signr) \ (!siginmask(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \ (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL) void signals_init(void); int restore_altstack(const stack_t __user *); int __save_altstack(stack_t __user *, unsigned long); #define unsafe_save_altstack(uss, sp, label) do { \ stack_t __user *__uss = uss; \ struct task_struct *t = current; \ unsafe_put_user((void __user *)t->sas_ss_sp, &__uss->ss_sp, label); \ unsafe_put_user(t->sas_ss_flags, &__uss->ss_flags, label); \ unsafe_put_user(t->sas_ss_size, &__uss->ss_size, label); \ if (t->sas_ss_flags & SS_AUTODISARM) \ sas_ss_reset(t); \ } while (0); #ifdef CONFIG_PROC_FS struct seq_file; extern void render_sigset_t(struct seq_file *, const char *, sigset_t *); #endif #endif /* _LINUX_SIGNAL_H */
1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 // SPDX-License-Identifier: GPL-2.0 /* * linux/ipc/shm.c * Copyright (C) 1992, 1993 Krishna Balasubramanian * Many improvements/fixes by Bruno Haible. * Replaced `struct shm_desc' by `struct vm_area_struct', July 1994. * Fixed the shm swap deallocation (shm_unuse()), August 1998 Andrea Arcangeli. * * /proc/sysvipc/shm support (c) 1999 Dragos Acostachioaie <dragos@iname.com> * BIGMEM support, Andrea Arcangeli <andrea@suse.de> * SMP thread shm, Jean-Luc Boyard <jean-luc.boyard@siemens.fr> * HIGHMEM support, Ingo Molnar <mingo@redhat.com> * Make shmmax, shmall, shmmni sysctl'able, Christoph Rohland <cr@sap.com> * Shared /dev/zero support, Kanoj Sarcar <kanoj@sgi.com> * Move the mm functionality over to mm/shmem.c, Christoph Rohland <cr@sap.com> * * support for audit of ipc object properties and permission changes * Dustin Kirkland <dustin.kirkland@us.ibm.com> * * namespaces support * OpenVZ, SWsoft Inc. * Pavel Emelianov <xemul@openvz.org> * * Better ipc lock (kern_ipc_perm.lock) handling * Davidlohr Bueso <davidlohr.bueso@hp.com>, June 2013. */ #include <linux/slab.h> #include <linux/mm.h> #include <linux/hugetlb.h> #include <linux/shm.h> #include <linux/init.h> #include <linux/file.h> #include <linux/mman.h> #include <linux/shmem_fs.h> #include <linux/security.h> #include <linux/syscalls.h> #include <linux/audit.h> #include <linux/capability.h> #include <linux/ptrace.h> #include <linux/seq_file.h> #include <linux/rwsem.h> #include <linux/nsproxy.h> #include <linux/mount.h> #include <linux/ipc_namespace.h> #include <linux/rhashtable.h> #include <linux/uaccess.h> #include "util.h" struct shmid_kernel /* private to the kernel */ { struct kern_ipc_perm shm_perm; struct file *shm_file; unsigned long shm_nattch; unsigned long shm_segsz; time64_t shm_atim; time64_t shm_dtim; time64_t shm_ctim; struct pid *shm_cprid; struct pid *shm_lprid; struct user_struct *mlock_user; /* * The task created the shm object, for * task_lock(shp->shm_creator) */ struct task_struct *shm_creator; /* * List by creator. task_lock(->shm_creator) required for read/write. * If list_empty(), then the creator is dead already. */ struct list_head shm_clist; struct ipc_namespace *ns; } __randomize_layout; /* shm_mode upper byte flags */ #define SHM_DEST 01000 /* segment will be destroyed on last detach */ #define SHM_LOCKED 02000 /* segment will not be swapped */ struct shm_file_data { int id; struct ipc_namespace *ns; struct file *file; const struct vm_operations_struct *vm_ops; }; #define shm_file_data(file) (*((struct shm_file_data **)&(file)->private_data)) static const struct file_operations shm_file_operations; static const struct vm_operations_struct shm_vm_ops; #define shm_ids(ns) ((ns)->ids[IPC_SHM_IDS]) #define shm_unlock(shp) \ ipc_unlock(&(shp)->shm_perm) static int newseg(struct ipc_namespace *, struct ipc_params *); static void shm_open(struct vm_area_struct *vma); static void shm_close(struct vm_area_struct *vma); static void shm_destroy(struct ipc_namespace *ns, struct shmid_kernel *shp); #ifdef CONFIG_PROC_FS static int sysvipc_shm_proc_show(struct seq_file *s, void *it); #endif void shm_init_ns(struct ipc_namespace *ns) { ns->shm_ctlmax = SHMMAX; ns->shm_ctlall = SHMALL; ns->shm_ctlmni = SHMMNI; ns->shm_rmid_forced = 0; ns->shm_tot = 0; ipc_init_ids(&shm_ids(ns)); } /* * Called with shm_ids.rwsem (writer) and the shp structure locked. * Only shm_ids.rwsem remains locked on exit. */ static void do_shm_rmid(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp) { struct shmid_kernel *shp; shp = container_of(ipcp, struct shmid_kernel, shm_perm); WARN_ON(ns != shp->ns); if (shp->shm_nattch) { shp->shm_perm.mode |= SHM_DEST; /* Do not find it any more */ ipc_set_key_private(&shm_ids(ns), &shp->shm_perm); shm_unlock(shp); } else shm_destroy(ns, shp); } #ifdef CONFIG_IPC_NS void shm_exit_ns(struct ipc_namespace *ns) { free_ipcs(ns, &shm_ids(ns), do_shm_rmid); idr_destroy(&ns->ids[IPC_SHM_IDS].ipcs_idr); rhashtable_destroy(&ns->ids[IPC_SHM_IDS].key_ht); } #endif static int __init ipc_ns_init(void) { shm_init_ns(&init_ipc_ns); return 0; } pure_initcall(ipc_ns_init); void __init shm_init(void) { ipc_init_proc_interface("sysvipc/shm", #if BITS_PER_LONG <= 32 " key shmid perms size cpid lpid nattch uid gid cuid cgid atime dtime ctime rss swap\n", #else " key shmid perms size cpid lpid nattch uid gid cuid cgid atime dtime ctime rss swap\n", #endif IPC_SHM_IDS, sysvipc_shm_proc_show); } static inline struct shmid_kernel *shm_obtain_object(struct ipc_namespace *ns, int id) { struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&shm_ids(ns), id); if (IS_ERR(ipcp)) return ERR_CAST(ipcp); return container_of(ipcp, struct shmid_kernel, shm_perm); } static inline struct shmid_kernel *shm_obtain_object_check(struct ipc_namespace *ns, int id) { struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&shm_ids(ns), id); if (IS_ERR(ipcp)) return ERR_CAST(ipcp); return container_of(ipcp, struct shmid_kernel, shm_perm); } /* * shm_lock_(check_) routines are called in the paths where the rwsem * is not necessarily held. */ static inline struct shmid_kernel *shm_lock(struct ipc_namespace *ns, int id) { struct kern_ipc_perm *ipcp; rcu_read_lock(); ipcp = ipc_obtain_object_idr(&shm_ids(ns), id); if (IS_ERR(ipcp)) goto err; ipc_lock_object(ipcp); /* * ipc_rmid() may have already freed the ID while ipc_lock_object() * was spinning: here verify that the structure is still valid. * Upon races with RMID, return -EIDRM, thus indicating that * the ID points to a removed identifier. */ if (ipc_valid_object(ipcp)) { /* return a locked ipc object upon success */ return container_of(ipcp, struct shmid_kernel, shm_perm); } ipc_unlock_object(ipcp); ipcp = ERR_PTR(-EIDRM); err: rcu_read_unlock(); /* * Callers of shm_lock() must validate the status of the returned ipc * object pointer and error out as appropriate. */ return ERR_CAST(ipcp); } static inline void shm_lock_by_ptr(struct shmid_kernel *ipcp) { rcu_read_lock(); ipc_lock_object(&ipcp->shm_perm); } static void shm_rcu_free(struct rcu_head *head) { struct kern_ipc_perm *ptr = container_of(head, struct kern_ipc_perm, rcu); struct shmid_kernel *shp = container_of(ptr, struct shmid_kernel, shm_perm); security_shm_free(&shp->shm_perm); kvfree(shp); } /* * It has to be called with shp locked. * It must be called before ipc_rmid() */ static inline void shm_clist_rm(struct shmid_kernel *shp) { struct task_struct *creator; /* ensure that shm_creator does not disappear */ rcu_read_lock(); /* * A concurrent exit_shm may do a list_del_init() as well. * Just do nothing if exit_shm already did the work */ if (!list_empty(&shp->shm_clist)) { /* * shp->shm_creator is guaranteed to be valid *only* * if shp->shm_clist is not empty. */ creator = shp->shm_creator; task_lock(creator); /* * list_del_init() is a nop if the entry was already removed * from the list. */ list_del_init(&shp->shm_clist); task_unlock(creator); } rcu_read_unlock(); } static inline void shm_rmid(struct shmid_kernel *s) { shm_clist_rm(s); ipc_rmid(&shm_ids(s->ns), &s->shm_perm); } static int __shm_open(struct vm_area_struct *vma) { struct file *file = vma->vm_file; struct shm_file_data *sfd = shm_file_data(file); struct shmid_kernel *shp; shp = shm_lock(sfd->ns, sfd->id); if (IS_ERR(shp)) return PTR_ERR(shp); if (shp->shm_file != sfd->file) { /* ID was reused */ shm_unlock(shp); return -EINVAL; } shp->shm_atim = ktime_get_real_seconds(); ipc_update_pid(&shp->shm_lprid, task_tgid(current)); shp->shm_nattch++; shm_unlock(shp); return 0; } /* This is called by fork, once for every shm attach. */ static void shm_open(struct vm_area_struct *vma) { int err = __shm_open(vma); /* * We raced in the idr lookup or with shm_destroy(). * Either way, the ID is busted. */ WARN_ON_ONCE(err); } /* * shm_destroy - free the struct shmid_kernel * * @ns: namespace * @shp: struct to free * * It has to be called with shp and shm_ids.rwsem (writer) locked, * but returns with shp unlocked and freed. */ static void shm_destroy(struct ipc_namespace *ns, struct shmid_kernel *shp) { struct file *shm_file; shm_file = shp->shm_file; shp->shm_file = NULL; ns->shm_tot -= (shp->shm_segsz + PAGE_SIZE - 1) >> PAGE_SHIFT; shm_rmid(shp); shm_unlock(shp); if (!is_file_hugepages(shm_file)) shmem_lock(shm_file, 0, shp->mlock_user); else if (shp->mlock_user) user_shm_unlock(i_size_read(file_inode(shm_file)), shp->mlock_user); fput(shm_file); ipc_update_pid(&shp->shm_cprid, NULL); ipc_update_pid(&shp->shm_lprid, NULL); ipc_rcu_putref(&shp->shm_perm, shm_rcu_free); } /* * shm_may_destroy - identifies whether shm segment should be destroyed now * * Returns true if and only if there are no active users of the segment and * one of the following is true: * * 1) shmctl(id, IPC_RMID, NULL) was called for this shp * * 2) sysctl kernel.shm_rmid_forced is set to 1. */ static bool shm_may_destroy(struct shmid_kernel *shp) { return (shp->shm_nattch == 0) && (shp->ns->shm_rmid_forced || (shp->shm_perm.mode & SHM_DEST)); } /* * remove the attach descriptor vma. * free memory for segment if it is marked destroyed. * The descriptor has already been removed from the current->mm->mmap list * and will later be kfree()d. */ static void shm_close(struct vm_area_struct *vma) { struct file *file = vma->vm_file; struct shm_file_data *sfd = shm_file_data(file); struct shmid_kernel *shp; struct ipc_namespace *ns = sfd->ns; down_write(&shm_ids(ns).rwsem); /* remove from the list of attaches of the shm segment */ shp = shm_lock(ns, sfd->id); /* * We raced in the idr lookup or with shm_destroy(). * Either way, the ID is busted. */ if (WARN_ON_ONCE(IS_ERR(shp))) goto done; /* no-op */ ipc_update_pid(&shp->shm_lprid, task_tgid(current)); shp->shm_dtim = ktime_get_real_seconds(); shp->shm_nattch--; if (shm_may_destroy(shp)) shm_destroy(ns, shp); else shm_unlock(shp); done: up_write(&shm_ids(ns).rwsem); } /* Called with ns->shm_ids(ns).rwsem locked */ static int shm_try_destroy_orphaned(int id, void *p, void *data) { struct ipc_namespace *ns = data; struct kern_ipc_perm *ipcp = p; struct shmid_kernel *shp = container_of(ipcp, struct shmid_kernel, shm_perm); /* * We want to destroy segments without users and with already * exit'ed originating process. * * As shp->* are changed under rwsem, it's safe to skip shp locking. */ if (!list_empty(&shp->shm_clist)) return 0; if (shm_may_destroy(shp)) { shm_lock_by_ptr(shp); shm_destroy(ns, shp); } return 0; } void shm_destroy_orphaned(struct ipc_namespace *ns) { down_write(&shm_ids(ns).rwsem); if (shm_ids(ns).in_use) idr_for_each(&shm_ids(ns).ipcs_idr, &shm_try_destroy_orphaned, ns); up_write(&shm_ids(ns).rwsem); } /* Locking assumes this will only be called with task == current */ void exit_shm(struct task_struct *task) { for (;;) { struct shmid_kernel *shp; struct ipc_namespace *ns; task_lock(task); if (list_empty(&task->sysvshm.shm_clist)) { task_unlock(task); break; } shp = list_first_entry(&task->sysvshm.shm_clist, struct shmid_kernel, shm_clist); /* * 1) Get pointer to the ipc namespace. It is worth to say * that this pointer is guaranteed to be valid because * shp lifetime is always shorter than namespace lifetime * in which shp lives. * We taken task_lock it means that shp won't be freed. */ ns = shp->ns; /* * 2) If kernel.shm_rmid_forced is not set then only keep track of * which shmids are orphaned, so that a later set of the sysctl * can clean them up. */ if (!ns->shm_rmid_forced) goto unlink_continue; /* * 3) get a reference to the namespace. * The refcount could be already 0. If it is 0, then * the shm objects will be free by free_ipc_work(). */ ns = get_ipc_ns_not_zero(ns); if (!ns) { unlink_continue: list_del_init(&shp->shm_clist); task_unlock(task); continue; } /* * 4) get a reference to shp. * This cannot fail: shm_clist_rm() is called before * ipc_rmid(), thus the refcount cannot be 0. */ WARN_ON(!ipc_rcu_getref(&shp->shm_perm)); /* * 5) unlink the shm segment from the list of segments * created by current. * This must be done last. After unlinking, * only the refcounts obtained above prevent IPC_RMID * from destroying the segment or the namespace. */ list_del_init(&shp->shm_clist); task_unlock(task); /* * 6) we have all references * Thus lock & if needed destroy shp. */ down_write(&shm_ids(ns).rwsem); shm_lock_by_ptr(shp); /* * rcu_read_lock was implicitly taken in shm_lock_by_ptr, it's * safe to call ipc_rcu_putref here */ ipc_rcu_putref(&shp->shm_perm, shm_rcu_free); if (ipc_valid_object(&shp->shm_perm)) { if (shm_may_destroy(shp)) shm_destroy(ns, shp); else shm_unlock(shp); } else { /* * Someone else deleted the shp from namespace * idr/kht while we have waited. * Just unlock and continue. */ shm_unlock(shp); } up_write(&shm_ids(ns).rwsem); put_ipc_ns(ns); /* paired with get_ipc_ns_not_zero */ } } static vm_fault_t shm_fault(struct vm_fault *vmf) { struct file *file = vmf->vma->vm_file; struct shm_file_data *sfd = shm_file_data(file); return sfd->vm_ops->fault(vmf); } static int shm_split(struct vm_area_struct *vma, unsigned long addr) { struct file *file = vma->vm_file; struct shm_file_data *sfd = shm_file_data(file); if (sfd->vm_ops->split) return sfd->vm_ops->split(vma, addr); return 0; } static unsigned long shm_pagesize(struct vm_area_struct *vma) { struct file *file = vma->vm_file; struct shm_file_data *sfd = shm_file_data(file); if (sfd->vm_ops->pagesize) return sfd->vm_ops->pagesize(vma); return PAGE_SIZE; } #ifdef CONFIG_NUMA static int shm_set_policy(struct vm_area_struct *vma, struct mempolicy *new) { struct file *file = vma->vm_file; struct shm_file_data *sfd = shm_file_data(file); int err = 0; if (sfd->vm_ops->set_policy) err = sfd->vm_ops->set_policy(vma, new); return err; } static struct mempolicy *shm_get_policy(struct vm_area_struct *vma, unsigned long addr) { struct file *file = vma->vm_file; struct shm_file_data *sfd = shm_file_data(file); struct mempolicy *pol = NULL; if (sfd->vm_ops->get_policy) pol = sfd->vm_ops->get_policy(vma, addr); else if (vma->vm_policy) pol = vma->vm_policy; return pol; } #endif static int shm_mmap(struct file *file, struct vm_area_struct *vma) { struct shm_file_data *sfd = shm_file_data(file); int ret; /* * In case of remap_file_pages() emulation, the file can represent an * IPC ID that was removed, and possibly even reused by another shm * segment already. Propagate this case as an error to caller. */ ret = __shm_open(vma); if (ret) return ret; ret = call_mmap(sfd->file, vma); if (ret) { shm_close(vma); return ret; } sfd->vm_ops = vma->vm_ops; #ifdef CONFIG_MMU WARN_ON(!sfd->vm_ops->fault); #endif vma->vm_ops = &shm_vm_ops; return 0; } static int shm_release(struct inode *ino, struct file *file) { struct shm_file_data *sfd = shm_file_data(file); put_ipc_ns(sfd->ns); fput(sfd->file); shm_file_data(file) = NULL; kfree(sfd); return 0; } static int shm_fsync(struct file *file, loff_t start, loff_t end, int datasync) { struct shm_file_data *sfd = shm_file_data(file); if (!sfd->file->f_op->fsync) return -EINVAL; return sfd->file->f_op->fsync(sfd->file, start, end, datasync); } static long shm_fallocate(struct file *file, int mode, loff_t offset, loff_t len) { struct shm_file_data *sfd = shm_file_data(file); if (!sfd->file->f_op->fallocate) return -EOPNOTSUPP; return sfd->file->f_op->fallocate(file, mode, offset, len); } static unsigned long shm_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags) { struct shm_file_data *sfd = shm_file_data(file); return sfd->file->f_op->get_unmapped_area(sfd->file, addr, len, pgoff, flags); } static const struct file_operations shm_file_operations = { .mmap = shm_mmap, .fsync = shm_fsync, .release = shm_release, .get_unmapped_area = shm_get_unmapped_area, .llseek = noop_llseek, .fallocate = shm_fallocate, }; /* * shm_file_operations_huge is now identical to shm_file_operations, * but we keep it distinct for the sake of is_file_shm_hugepages(). */ static const struct file_operations shm_file_operations_huge = { .mmap = shm_mmap, .fsync = shm_fsync, .release = shm_release, .get_unmapped_area = shm_get_unmapped_area, .llseek = noop_llseek, .fallocate = shm_fallocate, }; bool is_file_shm_hugepages(struct file *file) { return file->f_op == &shm_file_operations_huge; } static const struct vm_operations_struct shm_vm_ops = { .open = shm_open, /* callback for a new vm-area open */ .close = shm_close, /* callback for when the vm-area is released */ .fault = shm_fault, .split = shm_split, .pagesize = shm_pagesize, #if defined(CONFIG_NUMA) .set_policy = shm_set_policy, .get_policy = shm_get_policy, #endif }; /** * newseg - Create a new shared memory segment * @ns: namespace * @params: ptr to the structure that contains key, size and shmflg * * Called with shm_ids.rwsem held as a writer. */ static int newseg(struct ipc_namespace *ns, struct ipc_params *params) { key_t key = params->key; int shmflg = params->flg; size_t size = params->u.size; int error; struct shmid_kernel *shp; size_t numpages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; struct file *file; char name[13]; vm_flags_t acctflag = 0; if (size < SHMMIN || size > ns->shm_ctlmax) return -EINVAL; if (numpages << PAGE_SHIFT < size) return -ENOSPC; if (ns->shm_tot + numpages < ns->shm_tot || ns->shm_tot + numpages > ns->shm_ctlall) return -ENOSPC; shp = kvmalloc(sizeof(*shp), GFP_KERNEL); if (unlikely(!shp)) return -ENOMEM; shp->shm_perm.key = key; shp->shm_perm.mode = (shmflg & S_IRWXUGO); shp->mlock_user = NULL; shp->shm_perm.security = NULL; error = security_shm_alloc(&shp->shm_perm); if (error) { kvfree(shp); return error; } sprintf(name, "SYSV%08x", key); if (shmflg & SHM_HUGETLB) { struct hstate *hs; size_t hugesize; hs = hstate_sizelog((shmflg >> SHM_HUGE_SHIFT) & SHM_HUGE_MASK); if (!hs) { error = -EINVAL; goto no_file; } hugesize = ALIGN(size, huge_page_size(hs)); /* hugetlb_file_setup applies strict accounting */ if (shmflg & SHM_NORESERVE) acctflag = VM_NORESERVE; file = hugetlb_file_setup(name, hugesize, acctflag, &shp->mlock_user, HUGETLB_SHMFS_INODE, (shmflg >> SHM_HUGE_SHIFT) & SHM_HUGE_MASK); } else { /* * Do not allow no accounting for OVERCOMMIT_NEVER, even * if it's asked for. */ if ((shmflg & SHM_NORESERVE) && sysctl_overcommit_memory != OVERCOMMIT_NEVER) acctflag = VM_NORESERVE; file = shmem_kernel_file_setup(name, size, acctflag); } error = PTR_ERR(file); if (IS_ERR(file)) goto no_file; shp->shm_cprid = get_pid(task_tgid(current)); shp->shm_lprid = NULL; shp->shm_atim = shp->shm_dtim = 0; shp->shm_ctim = ktime_get_real_seconds(); shp->shm_segsz = size; shp->shm_nattch = 0; shp->shm_file = file; shp->shm_creator = current; /* ipc_addid() locks shp upon success. */ error = ipc_addid(&shm_ids(ns), &shp->shm_perm, ns->shm_ctlmni); if (error < 0) goto no_id; shp->ns = ns; task_lock(current); list_add(&shp->shm_clist, &current->sysvshm.shm_clist); task_unlock(current); /* * shmid gets reported as "inode#" in /proc/pid/maps. * proc-ps tools use this. Changing this will break them. */ file_inode(file)->i_ino = shp->shm_perm.id; ns->shm_tot += numpages; error = shp->shm_perm.id; ipc_unlock_object(&shp->shm_perm); rcu_read_unlock(); return error; no_id: ipc_update_pid(&shp->shm_cprid, NULL); ipc_update_pid(&shp->shm_lprid, NULL); if (is_file_hugepages(file) && shp->mlock_user) user_shm_unlock(size, shp->mlock_user); fput(file); ipc_rcu_putref(&shp->shm_perm, shm_rcu_free); return error; no_file: call_rcu(&shp->shm_perm.rcu, shm_rcu_free); return error; } /* * Called with shm_ids.rwsem and ipcp locked. */ static int shm_more_checks(struct kern_ipc_perm *ipcp, struct ipc_params *params) { struct shmid_kernel *shp; shp = container_of(ipcp, struct shmid_kernel, shm_perm); if (shp->shm_segsz < params->u.size) return -EINVAL; return 0; } long ksys_shmget(key_t key, size_t size, int shmflg) { struct ipc_namespace *ns; static const struct ipc_ops shm_ops = { .getnew = newseg, .associate = security_shm_associate, .more_checks = shm_more_checks, }; struct ipc_params shm_params; ns = current->nsproxy->ipc_ns; shm_params.key = key; shm_params.flg = shmflg; shm_params.u.size = size; return ipcget(ns, &shm_ids(ns), &shm_ops, &shm_params); } SYSCALL_DEFINE3(shmget, key_t, key, size_t, size, int, shmflg) { return ksys_shmget(key, size, shmflg); } static inline unsigned long copy_shmid_to_user(void __user *buf, struct shmid64_ds *in, int version) { switch (version) { case IPC_64: return copy_to_user(buf, in, sizeof(*in)); case IPC_OLD: { struct shmid_ds out; memset(&out, 0, sizeof(out)); ipc64_perm_to_ipc_perm(&in->shm_perm, &out.shm_perm); out.shm_segsz = in->shm_segsz; out.shm_atime = in->shm_atime; out.shm_dtime = in->shm_dtime; out.shm_ctime = in->shm_ctime; out.shm_cpid = in->shm_cpid; out.shm_lpid = in->shm_lpid; out.shm_nattch = in->shm_nattch; return copy_to_user(buf, &out, sizeof(out)); } default: return -EINVAL; } } static inline unsigned long copy_shmid_from_user(struct shmid64_ds *out, void __user *buf, int version) { switch (version) { case IPC_64: if (copy_from_user(out, buf, sizeof(*out))) return -EFAULT; return 0; case IPC_OLD: { struct shmid_ds tbuf_old; if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old))) return -EFAULT; out->shm_perm.uid = tbuf_old.shm_perm.uid; out->shm_perm.gid = tbuf_old.shm_perm.gid; out->shm_perm.mode = tbuf_old.shm_perm.mode; return 0; } default: return -EINVAL; } } static inline unsigned long copy_shminfo_to_user(void __user *buf, struct shminfo64 *in, int version) { switch (version) { case IPC_64: return copy_to_user(buf, in, sizeof(*in)); case IPC_OLD: { struct shminfo out; if (in->shmmax > INT_MAX) out.shmmax = INT_MAX; else out.shmmax = (int)in->shmmax; out.shmmin = in->shmmin; out.shmmni = in->shmmni; out.shmseg = in->shmseg; out.shmall = in->shmall; return copy_to_user(buf, &out, sizeof(out)); } default: return -EINVAL; } } /* * Calculate and add used RSS and swap pages of a shm. * Called with shm_ids.rwsem held as a reader */ static void shm_add_rss_swap(struct shmid_kernel *shp, unsigned long *rss_add, unsigned long *swp_add) { struct inode *inode; inode = file_inode(shp->shm_file); if (is_file_hugepages(shp->shm_file)) { struct address_space *mapping = inode->i_mapping; struct hstate *h = hstate_file(shp->shm_file); *rss_add += pages_per_huge_page(h) * mapping->nrpages; } else { #ifdef CONFIG_SHMEM struct shmem_inode_info *info = SHMEM_I(inode); spin_lock_irq(&info->lock); *rss_add += inode->i_mapping->nrpages; *swp_add += info->swapped; spin_unlock_irq(&info->lock); #else *rss_add += inode->i_mapping->nrpages; #endif } } /* * Called with shm_ids.rwsem held as a reader */ static void shm_get_stat(struct ipc_namespace *ns, unsigned long *rss, unsigned long *swp) { int next_id; int total, in_use; *rss = 0; *swp = 0; in_use = shm_ids(ns).in_use; for (total = 0, next_id = 0; total < in_use; next_id++) { struct kern_ipc_perm *ipc; struct shmid_kernel *shp; ipc = idr_find(&shm_ids(ns).ipcs_idr, next_id); if (ipc == NULL) continue; shp = container_of(ipc, struct shmid_kernel, shm_perm); shm_add_rss_swap(shp, rss, swp); total++; } } /* * This function handles some shmctl commands which require the rwsem * to be held in write mode. * NOTE: no locks must be held, the rwsem is taken inside this function. */ static int shmctl_down(struct ipc_namespace *ns, int shmid, int cmd, struct shmid64_ds *shmid64) { struct kern_ipc_perm *ipcp; struct shmid_kernel *shp; int err; down_write(&shm_ids(ns).rwsem); rcu_read_lock(); ipcp = ipcctl_obtain_check(ns, &shm_ids(ns), shmid, cmd, &shmid64->shm_perm, 0); if (IS_ERR(ipcp)) { err = PTR_ERR(ipcp); goto out_unlock1; } shp = container_of(ipcp, struct shmid_kernel, shm_perm); err = security_shm_shmctl(&shp->shm_perm, cmd); if (err) goto out_unlock1; switch (cmd) { case IPC_RMID: ipc_lock_object(&shp->shm_perm); /* do_shm_rmid unlocks the ipc object and rcu */ do_shm_rmid(ns, ipcp); goto out_up; case IPC_SET: ipc_lock_object(&shp->shm_perm); err = ipc_update_perm(&shmid64->shm_perm, ipcp); if (err) goto out_unlock0; shp->shm_ctim = ktime_get_real_seconds(); break; default: err = -EINVAL; goto out_unlock1; } out_unlock0: ipc_unlock_object(&shp->shm_perm); out_unlock1: rcu_read_unlock(); out_up: up_write(&shm_ids(ns).rwsem); return err; } static int shmctl_ipc_info(struct ipc_namespace *ns, struct shminfo64 *shminfo) { int err = security_shm_shmctl(NULL, IPC_INFO); if (!err) { memset(shminfo, 0, sizeof(*shminfo)); shminfo->shmmni = shminfo->shmseg = ns->shm_ctlmni; shminfo->shmmax = ns->shm_ctlmax; shminfo->shmall = ns->shm_ctlall; shminfo->shmmin = SHMMIN; down_read(&shm_ids(ns).rwsem); err = ipc_get_maxidx(&shm_ids(ns)); up_read(&shm_ids(ns).rwsem); if (err < 0) err = 0; } return err; } static int shmctl_shm_info(struct ipc_namespace *ns, struct shm_info *shm_info) { int err = security_shm_shmctl(NULL, SHM_INFO); if (!err) { memset(shm_info, 0, sizeof(*shm_info)); down_read(&shm_ids(ns).rwsem); shm_info->used_ids = shm_ids(ns).in_use; shm_get_stat(ns, &shm_info->shm_rss, &shm_info->shm_swp); shm_info->shm_tot = ns->shm_tot; shm_info->swap_attempts = 0; shm_info->swap_successes = 0; err = ipc_get_maxidx(&shm_ids(ns)); up_read(&shm_ids(ns).rwsem); if (err < 0) err = 0; } return err; } static int shmctl_stat(struct ipc_namespace *ns, int shmid, int cmd, struct shmid64_ds *tbuf) { struct shmid_kernel *shp; int err; memset(tbuf, 0, sizeof(*tbuf)); rcu_read_lock(); if (cmd == SHM_STAT || cmd == SHM_STAT_ANY) { shp = shm_obtain_object(ns, shmid); if (IS_ERR(shp)) { err = PTR_ERR(shp); goto out_unlock; } } else { /* IPC_STAT */ shp = shm_obtain_object_check(ns, shmid); if (IS_ERR(shp)) { err = PTR_ERR(shp); goto out_unlock; } } /* * Semantically SHM_STAT_ANY ought to be identical to * that functionality provided by the /proc/sysvipc/ * interface. As such, only audit these calls and * do not do traditional S_IRUGO permission checks on * the ipc object. */ if (cmd == SHM_STAT_ANY) audit_ipc_obj(&shp->shm_perm); else { err = -EACCES; if (ipcperms(ns, &shp->shm_perm, S_IRUGO)) goto out_unlock; } err = security_shm_shmctl(&shp->shm_perm, cmd); if (err) goto out_unlock; ipc_lock_object(&shp->shm_perm); if (!ipc_valid_object(&shp->shm_perm)) { ipc_unlock_object(&shp->shm_perm); err = -EIDRM; goto out_unlock; } kernel_to_ipc64_perm(&shp->shm_perm, &tbuf->shm_perm); tbuf->shm_segsz = shp->shm_segsz; tbuf->shm_atime = shp->shm_atim; tbuf->shm_dtime = shp->shm_dtim; tbuf->shm_ctime = shp->shm_ctim; #ifndef CONFIG_64BIT tbuf->shm_atime_high = shp->shm_atim >> 32; tbuf->shm_dtime_high = shp->shm_dtim >> 32; tbuf->shm_ctime_high = shp->shm_ctim >> 32; #endif tbuf->shm_cpid = pid_vnr(shp->shm_cprid); tbuf->shm_lpid = pid_vnr(shp->shm_lprid); tbuf->shm_nattch = shp->shm_nattch; if (cmd == IPC_STAT) { /* * As defined in SUS: * Return 0 on success */ err = 0; } else { /* * SHM_STAT and SHM_STAT_ANY (both Linux specific) * Return the full id, including the sequence number */ err = shp->shm_perm.id; } ipc_unlock_object(&shp->shm_perm); out_unlock: rcu_read_unlock(); return err; } static int shmctl_do_lock(struct ipc_namespace *ns, int shmid, int cmd) { struct shmid_kernel *shp; struct file *shm_file; int err; rcu_read_lock(); shp = shm_obtain_object_check(ns, shmid); if (IS_ERR(shp)) { err = PTR_ERR(shp); goto out_unlock1; } audit_ipc_obj(&(shp->shm_perm)); err = security_shm_shmctl(&shp->shm_perm, cmd); if (err) goto out_unlock1; ipc_lock_object(&shp->shm_perm); /* check if shm_destroy() is tearing down shp */ if (!ipc_valid_object(&shp->shm_perm)) { err = -EIDRM; goto out_unlock0; } if (!ns_capable(ns->user_ns, CAP_IPC_LOCK)) { kuid_t euid = current_euid(); if (!uid_eq(euid, shp->shm_perm.uid) && !uid_eq(euid, shp->shm_perm.cuid)) { err = -EPERM; goto out_unlock0; } if (cmd == SHM_LOCK && !rlimit(RLIMIT_MEMLOCK)) { err = -EPERM; goto out_unlock0; } } shm_file = shp->shm_file; if (is_file_hugepages(shm_file)) goto out_unlock0; if (cmd == SHM_LOCK) { struct user_struct *user = current_user(); err = shmem_lock(shm_file, 1, user); if (!err && !(shp->shm_perm.mode & SHM_LOCKED)) { shp->shm_perm.mode |= SHM_LOCKED; shp->mlock_user = user; } goto out_unlock0; } /* SHM_UNLOCK */ if (!(shp->shm_perm.mode & SHM_LOCKED)) goto out_unlock0; shmem_lock(shm_file, 0, shp->mlock_user); shp->shm_perm.mode &= ~SHM_LOCKED; shp->mlock_user = NULL; get_file(shm_file); ipc_unlock_object(&shp->shm_perm); rcu_read_unlock(); shmem_unlock_mapping(shm_file->f_mapping); fput(shm_file); return err; out_unlock0: ipc_unlock_object(&shp->shm_perm); out_unlock1: rcu_read_unlock(); return err; } static long ksys_shmctl(int shmid, int cmd, struct shmid_ds __user *buf, int version) { int err; struct ipc_namespace *ns; struct shmid64_ds sem64; if (cmd < 0 || shmid < 0) return -EINVAL; ns = current->nsproxy->ipc_ns; switch (cmd) { case IPC_INFO: { struct shminfo64 shminfo; err = shmctl_ipc_info(ns, &shminfo); if (err < 0) return err; if (copy_shminfo_to_user(buf, &shminfo, version)) err = -EFAULT; return err; } case SHM_INFO: { struct shm_info shm_info; err = shmctl_shm_info(ns, &shm_info); if (err < 0) return err; if (copy_to_user(buf, &shm_info, sizeof(shm_info))) err = -EFAULT; return err; } case SHM_STAT: case SHM_STAT_ANY: case IPC_STAT: { err = shmctl_stat(ns, shmid, cmd, &sem64); if (err < 0) return err; if (copy_shmid_to_user(buf, &sem64, version)) err = -EFAULT; return err; } case IPC_SET: if (copy_shmid_from_user(&sem64, buf, version)) return -EFAULT; fallthrough; case IPC_RMID: return shmctl_down(ns, shmid, cmd, &sem64); case SHM_LOCK: case SHM_UNLOCK: return shmctl_do_lock(ns, shmid, cmd); default: return -EINVAL; } } SYSCALL_DEFINE3(shmctl, int, shmid, int, cmd, struct shmid_ds __user *, buf) { return ksys_shmctl(shmid, cmd, buf, IPC_64); } #ifdef CONFIG_ARCH_WANT_IPC_PARSE_VERSION long ksys_old_shmctl(int shmid, int cmd, struct shmid_ds __user *buf) { int version = ipc_parse_version(&cmd); return ksys_shmctl(shmid, cmd, buf, version); } SYSCALL_DEFINE3(old_shmctl, int, shmid, int, cmd, struct shmid_ds __user *, buf) { return ksys_old_shmctl(shmid, cmd, buf); } #endif #ifdef CONFIG_COMPAT struct compat_shmid_ds { struct compat_ipc_perm shm_perm; int shm_segsz; old_time32_t shm_atime; old_time32_t shm_dtime; old_time32_t shm_ctime; compat_ipc_pid_t shm_cpid; compat_ipc_pid_t shm_lpid; unsigned short shm_nattch; unsigned short shm_unused; compat_uptr_t shm_unused2; compat_uptr_t shm_unused3; }; struct compat_shminfo64 { compat_ulong_t shmmax; compat_ulong_t shmmin; compat_ulong_t shmmni; compat_ulong_t shmseg; compat_ulong_t shmall; compat_ulong_t __unused1; compat_ulong_t __unused2; compat_ulong_t __unused3; compat_ulong_t __unused4; }; struct compat_shm_info { compat_int_t used_ids; compat_ulong_t shm_tot, shm_rss, shm_swp; compat_ulong_t swap_attempts, swap_successes; }; static int copy_compat_shminfo_to_user(void __user *buf, struct shminfo64 *in, int version) { if (in->shmmax > INT_MAX) in->shmmax = INT_MAX; if (version == IPC_64) { struct compat_shminfo64 info; memset(&info, 0, sizeof(info)); info.shmmax = in->shmmax; info.shmmin = in->shmmin; info.shmmni = in->shmmni; info.shmseg = in->shmseg; info.shmall = in->shmall; return copy_to_user(buf, &info, sizeof(info)); } else { struct shminfo info; memset(&info, 0, sizeof(info)); info.shmmax = in->shmmax; info.shmmin = in->shmmin; info.shmmni = in->shmmni; info.shmseg = in->shmseg; info.shmall = in->shmall; return copy_to_user(buf, &info, sizeof(info)); } } static int put_compat_shm_info(struct shm_info *ip, struct compat_shm_info __user *uip) { struct compat_shm_info info; memset(&info, 0, sizeof(info)); info.used_ids = ip->used_ids; info.shm_tot = ip->shm_tot; info.shm_rss = ip->shm_rss; info.shm_swp = ip->shm_swp; info.swap_attempts = ip->swap_attempts; info.swap_successes = ip->swap_successes; return copy_to_user(uip, &info, sizeof(info)); } static int copy_compat_shmid_to_user(void __user *buf, struct shmid64_ds *in, int version) { if (version == IPC_64) { struct compat_shmid64_ds v; memset(&v, 0, sizeof(v)); to_compat_ipc64_perm(&v.shm_perm, &in->shm_perm); v.shm_atime = lower_32_bits(in->shm_atime); v.shm_atime_high = upper_32_bits(in->shm_atime); v.shm_dtime = lower_32_bits(in->shm_dtime); v.shm_dtime_high = upper_32_bits(in->shm_dtime); v.shm_ctime = lower_32_bits(in->shm_ctime); v.shm_ctime_high = upper_32_bits(in->shm_ctime); v.shm_segsz = in->shm_segsz; v.shm_nattch = in->shm_nattch; v.shm_cpid = in->shm_cpid; v.shm_lpid = in->shm_lpid; return copy_to_user(buf, &v, sizeof(v)); } else { struct compat_shmid_ds v; memset(&v, 0, sizeof(v)); to_compat_ipc_perm(&v.shm_perm, &in->shm_perm); v.shm_perm.key = in->shm_perm.key; v.shm_atime = in->shm_atime; v.shm_dtime = in->shm_dtime; v.shm_ctime = in->shm_ctime; v.shm_segsz = in->shm_segsz; v.shm_nattch = in->shm_nattch; v.shm_cpid = in->shm_cpid; v.shm_lpid = in->shm_lpid; return copy_to_user(buf, &v, sizeof(v)); } } static int copy_compat_shmid_from_user(struct shmid64_ds *out, void __user *buf, int version) { memset(out, 0, sizeof(*out)); if (version == IPC_64) { struct compat_shmid64_ds __user *p = buf; return get_compat_ipc64_perm(&out->shm_perm, &p->shm_perm); } else { struct compat_shmid_ds __user *p = buf; return get_compat_ipc_perm(&out->shm_perm, &p->shm_perm); } } static long compat_ksys_shmctl(int shmid, int cmd, void __user *uptr, int version) { struct ipc_namespace *ns; struct shmid64_ds sem64; int err; ns = current->nsproxy->ipc_ns; if (cmd < 0 || shmid < 0) return -EINVAL; switch (cmd) { case IPC_INFO: { struct shminfo64 shminfo; err = shmctl_ipc_info(ns, &shminfo); if (err < 0) return err; if (copy_compat_shminfo_to_user(uptr, &shminfo, version)) err = -EFAULT; return err; } case SHM_INFO: { struct shm_info shm_info; err = shmctl_shm_info(ns, &shm_info); if (err < 0) return err; if (put_compat_shm_info(&shm_info, uptr)) err = -EFAULT; return err; } case IPC_STAT: case SHM_STAT_ANY: case SHM_STAT: err = shmctl_stat(ns, shmid, cmd, &sem64); if (err < 0) return err; if (copy_compat_shmid_to_user(uptr, &sem64, version)) err = -EFAULT; return err; case IPC_SET: if (copy_compat_shmid_from_user(&sem64, uptr, version)) return -EFAULT; fallthrough; case IPC_RMID: return shmctl_down(ns, shmid, cmd, &sem64); case SHM_LOCK: case SHM_UNLOCK: return shmctl_do_lock(ns, shmid, cmd); default: return -EINVAL; } return err; } COMPAT_SYSCALL_DEFINE3(shmctl, int, shmid, int, cmd, void __user *, uptr) { return compat_ksys_shmctl(shmid, cmd, uptr, IPC_64); } #ifdef CONFIG_ARCH_WANT_COMPAT_IPC_PARSE_VERSION long compat_ksys_old_shmctl(int shmid, int cmd, void __user *uptr) { int version = compat_ipc_parse_version(&cmd); return compat_ksys_shmctl(shmid, cmd, uptr, version); } COMPAT_SYSCALL_DEFINE3(old_shmctl, int, shmid, int, cmd, void __user *, uptr) { return compat_ksys_old_shmctl(shmid, cmd, uptr); } #endif #endif /* * Fix shmaddr, allocate descriptor, map shm, add attach descriptor to lists. * * NOTE! Despite the name, this is NOT a direct system call entrypoint. The * "raddr" thing points to kernel space, and there has to be a wrapper around * this. */ long do_shmat(int shmid, char __user *shmaddr, int shmflg, ulong *raddr, unsigned long shmlba) { struct shmid_kernel *shp; unsigned long addr = (unsigned long)shmaddr; unsigned long size; struct file *file, *base; int err; unsigned long flags = MAP_SHARED; unsigned long prot; int acc_mode; struct ipc_namespace *ns; struct shm_file_data *sfd; int f_flags; unsigned long populate = 0; err = -EINVAL; if (shmid < 0) goto out; if (addr) { if (addr & (shmlba - 1)) { if (shmflg & SHM_RND) { addr &= ~(shmlba - 1); /* round down */ /* * Ensure that the round-down is non-nil * when remapping. This can happen for * cases when addr < shmlba. */ if (!addr && (shmflg & SHM_REMAP)) goto out; } else #ifndef __ARCH_FORCE_SHMLBA if (addr & ~PAGE_MASK) #endif goto out; } flags |= MAP_FIXED; } else if ((shmflg & SHM_REMAP)) goto out; if (shmflg & SHM_RDONLY) { prot = PROT_READ; acc_mode = S_IRUGO; f_flags = O_RDONLY; } else { prot = PROT_READ | PROT_WRITE; acc_mode = S_IRUGO | S_IWUGO; f_flags = O_RDWR; } if (shmflg & SHM_EXEC) { prot |= PROT_EXEC; acc_mode |= S_IXUGO; } /* * We cannot rely on the fs check since SYSV IPC does have an * additional creator id... */ ns = current->nsproxy->ipc_ns; rcu_read_lock(); shp = shm_obtain_object_check(ns, shmid); if (IS_ERR(shp)) { err = PTR_ERR(shp); goto out_unlock; } err = -EACCES; if (ipcperms(ns, &shp->shm_perm, acc_mode)) goto out_unlock; err = security_shm_shmat(&shp->shm_perm, shmaddr, shmflg); if (err) goto out_unlock; ipc_lock_object(&shp->shm_perm); /* check if shm_destroy() is tearing down shp */ if (!ipc_valid_object(&shp->shm_perm)) { ipc_unlock_object(&shp->shm_perm); err = -EIDRM; goto out_unlock; } /* * We need to take a reference to the real shm file to prevent the * pointer from becoming stale in cases where the lifetime of the outer * file extends beyond that of the shm segment. It's not usually * possible, but it can happen during remap_file_pages() emulation as * that unmaps the memory, then does ->mmap() via file reference only. * We'll deny the ->mmap() if the shm segment was since removed, but to * detect shm ID reuse we need to compare the file pointers. */ base = get_file(shp->shm_file); shp->shm_nattch++; size = i_size_read(file_inode(base)); ipc_unlock_object(&shp->shm_perm); rcu_read_unlock(); err = -ENOMEM; sfd = kzalloc(sizeof(*sfd), GFP_KERNEL); if (!sfd) { fput(base); goto out_nattch; } file = alloc_file_clone(base, f_flags, is_file_hugepages(base) ? &shm_file_operations_huge : &shm_file_operations); err = PTR_ERR(file); if (IS_ERR(file)) { kfree(sfd); fput(base); goto out_nattch; } sfd->id = shp->shm_perm.id; sfd->ns = get_ipc_ns(ns); sfd->file = base; sfd->vm_ops = NULL; file->private_data = sfd; err = security_mmap_file(file, prot, flags); if (err) goto out_fput; if (mmap_write_lock_killable(current->mm)) { err = -EINTR; goto out_fput; } if (addr && !(shmflg & SHM_REMAP)) { err = -EINVAL; if (addr + size < addr) goto invalid; if (find_vma_intersection(current->mm, addr, addr + size)) goto invalid; } addr = do_mmap(file, addr, size, prot, flags, 0, &populate, NULL); *raddr = addr; err = 0; if (IS_ERR_VALUE(addr)) err = (long)addr; invalid: mmap_write_unlock(current->mm); if (populate) mm_populate(addr, populate); out_fput: fput(file); out_nattch: down_write(&shm_ids(ns).rwsem); shp = shm_lock(ns, shmid); shp->shm_nattch--; if (shm_may_destroy(shp)) shm_destroy(ns, shp); else shm_unlock(shp); up_write(&shm_ids(ns).rwsem); return err; out_unlock: rcu_read_unlock(); out: return err; } SYSCALL_DEFINE3(shmat, int, shmid, char __user *, shmaddr, int, shmflg) { unsigned long ret; long err; err = do_shmat(shmid, shmaddr, shmflg, &ret, SHMLBA); if (err) return err; force_successful_syscall_return(); return (long)ret; } #ifdef CONFIG_COMPAT #ifndef COMPAT_SHMLBA #define COMPAT_SHMLBA SHMLBA #endif COMPAT_SYSCALL_DEFINE3(shmat, int, shmid, compat_uptr_t, shmaddr, int, shmflg) { unsigned long ret; long err; err = do_shmat(shmid, compat_ptr(shmaddr), shmflg, &ret, COMPAT_SHMLBA); if (err) return err; force_successful_syscall_return(); return (long)ret; } #endif /* * detach and kill segment if marked destroyed. * The work is done in shm_close. */ long ksys_shmdt(char __user *shmaddr) { struct mm_struct *mm = current->mm; struct vm_area_struct *vma; unsigned long addr = (unsigned long)shmaddr; int retval = -EINVAL; #ifdef CONFIG_MMU loff_t size = 0; struct file *file; struct vm_area_struct *next; #endif if (addr & ~PAGE_MASK) return retval; if (mmap_write_lock_killable(mm)) return -EINTR; /* * This function tries to be smart and unmap shm segments that * were modified by partial mlock or munmap calls: * - It first determines the size of the shm segment that should be * unmapped: It searches for a vma that is backed by shm and that * started at address shmaddr. It records it's size and then unmaps * it. * - Then it unmaps all shm vmas that started at shmaddr and that * are within the initially determined size and that are from the * same shm segment from which we determined the size. * Errors from do_munmap are ignored: the function only fails if * it's called with invalid parameters or if it's called to unmap * a part of a vma. Both calls in this function are for full vmas, * the parameters are directly copied from the vma itself and always * valid - therefore do_munmap cannot fail. (famous last words?) */ /* * If it had been mremap()'d, the starting address would not * match the usual checks anyway. So assume all vma's are * above the starting address given. */ vma = find_vma(mm, addr); #ifdef CONFIG_MMU while (vma) { next = vma->vm_next; /* * Check if the starting address would match, i.e. it's * a fragment created by mprotect() and/or munmap(), or it * otherwise it starts at this address with no hassles. */ if ((vma->vm_ops == &shm_vm_ops) && (vma->vm_start - addr)/PAGE_SIZE == vma->vm_pgoff) { /* * Record the file of the shm segment being * unmapped. With mremap(), someone could place * page from another segment but with equal offsets * in the range we are unmapping. */ file = vma->vm_file; size = i_size_read(file_inode(vma->vm_file)); do_munmap(mm, vma->vm_start, vma->vm_end - vma->vm_start, NULL); /* * We discovered the size of the shm segment, so * break out of here and fall through to the next * loop that uses the size information to stop * searching for matching vma's. */ retval = 0; vma = next; break; } vma = next; } /* * We need look no further than the maximum address a fragment * could possibly have landed at. Also cast things to loff_t to * prevent overflows and make comparisons vs. equal-width types. */ size = PAGE_ALIGN(size); while (vma && (loff_t)(vma->vm_end - addr) <= size) { next = vma->vm_next; /* finding a matching vma now does not alter retval */ if ((vma->vm_ops == &shm_vm_ops) && ((vma->vm_start - addr)/PAGE_SIZE == vma->vm_pgoff) && (vma->vm_file == file)) do_munmap(mm, vma->vm_start, vma->vm_end - vma->vm_start, NULL); vma = next; } #else /* CONFIG_MMU */ /* under NOMMU conditions, the exact address to be destroyed must be * given */ if (vma && vma->vm_start == addr && vma->vm_ops == &shm_vm_ops) { do_munmap(mm, vma->vm_start, vma->vm_end - vma->vm_start, NULL); retval = 0; } #endif mmap_write_unlock(mm); return retval; } SYSCALL_DEFINE1(shmdt, char __user *, shmaddr) { return ksys_shmdt(shmaddr); } #ifdef CONFIG_PROC_FS static int sysvipc_shm_proc_show(struct seq_file *s, void *it) { struct pid_namespace *pid_ns = ipc_seq_pid_ns(s); struct user_namespace *user_ns = seq_user_ns(s); struct kern_ipc_perm *ipcp = it; struct shmid_kernel *shp; unsigned long rss = 0, swp = 0; shp = container_of(ipcp, struct shmid_kernel, shm_perm); shm_add_rss_swap(shp, &rss, &swp); #if BITS_PER_LONG <= 32 #define SIZE_SPEC "%10lu" #else #define SIZE_SPEC "%21lu" #endif seq_printf(s, "%10d %10d %4o " SIZE_SPEC " %5u %5u " "%5lu %5u %5u %5u %5u %10llu %10llu %10llu " SIZE_SPEC " " SIZE_SPEC "\n", shp->shm_perm.key, shp->shm_perm.id, shp->shm_perm.mode, shp->shm_segsz, pid_nr_ns(shp->shm_cprid, pid_ns), pid_nr_ns(shp->shm_lprid, pid_ns), shp->shm_nattch, from_kuid_munged(user_ns, shp->shm_perm.uid), from_kgid_munged(user_ns, shp->shm_perm.gid), from_kuid_munged(user_ns, shp->shm_perm.cuid), from_kgid_munged(user_ns, shp->shm_perm.cgid), shp->shm_atim, shp->shm_dtim, shp->shm_ctim, rss * PAGE_SIZE, swp * PAGE_SIZE); return 0; } #endif
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_UACCESS_64_H #define _ASM_X86_UACCESS_64_H /* * User space memory access functions */ #include <linux/compiler.h> #include <linux/lockdep.h> #include <linux/kasan-checks.h> #include <asm/alternative.h> #include <asm/cpufeatures.h> #include <asm/page.h> /* * Copy To/From Userspace */ /* Handles exceptions in both to and from, but doesn't do access_ok */ __must_check unsigned long copy_user_enhanced_fast_string(void *to, const void *from, unsigned len); __must_check unsigned long copy_user_generic_string(void *to, const void *from, unsigned len); __must_check unsigned long copy_user_generic_unrolled(void *to, const void *from, unsigned len); static __always_inline __must_check unsigned long copy_user_generic(void *to, const void *from, unsigned len) { unsigned ret; /* * If CPU has ERMS feature, use copy_user_enhanced_fast_string. * Otherwise, if CPU has rep_good feature, use copy_user_generic_string. * Otherwise, use copy_user_generic_unrolled. */ alternative_call_2(copy_user_generic_unrolled, copy_user_generic_string, X86_FEATURE_REP_GOOD, copy_user_enhanced_fast_string, X86_FEATURE_ERMS, ASM_OUTPUT2("=a" (ret), "=D" (to), "=S" (from), "=d" (len)), "1" (to), "2" (from), "3" (len) : "memory", "rcx", "r8", "r9", "r10", "r11"); return ret; } static __always_inline __must_check unsigned long raw_copy_from_user(void *dst, const void __user *src, unsigned long size) { return copy_user_generic(dst, (__force void *)src, size); } static __always_inline __must_check unsigned long raw_copy_to_user(void __user *dst, const void *src, unsigned long size) { return copy_user_generic((__force void *)dst, src, size); } static __always_inline __must_check unsigned long raw_copy_in_user(void __user *dst, const void __user *src, unsigned long size) { return copy_user_generic((__force void *)dst, (__force void *)src, size); } extern long __copy_user_nocache(void *dst, const void __user *src, unsigned size, int zerorest); extern long __copy_user_flushcache(void *dst, const void __user *src, unsigned size); extern void memcpy_page_flushcache(char *to, struct page *page, size_t offset, size_t len); static inline int __copy_from_user_inatomic_nocache(void *dst, const void __user *src, unsigned size) { kasan_check_write(dst, size); return __copy_user_nocache(dst, src, size, 0); } static inline int __copy_from_user_flushcache(void *dst, const void __user *src, unsigned size) { kasan_check_write(dst, size); return __copy_user_flushcache(dst, src, size); } #endif /* _ASM_X86_UACCESS_64_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef BLK_MQ_SCHED_H #define BLK_MQ_SCHED_H #include "blk-mq.h" #include "blk-mq-tag.h" void blk_mq_sched_assign_ioc(struct request *rq); void blk_mq_sched_request_inserted(struct request *rq); bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio, unsigned int nr_segs, struct request **merged_request); bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio, unsigned int nr_segs); bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq); void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx); void blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx); void blk_mq_sched_insert_request(struct request *rq, bool at_head, bool run_queue, bool async); void blk_mq_sched_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, struct list_head *list, bool run_queue_async); void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx); int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e); void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e); void blk_mq_sched_free_requests(struct request_queue *q); static inline bool blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio, unsigned int nr_segs) { if (blk_queue_nomerges(q) || !bio_mergeable(bio)) return false; return __blk_mq_sched_bio_merge(q, bio, nr_segs); } static inline bool blk_mq_sched_allow_merge(struct request_queue *q, struct request *rq, struct bio *bio) { struct elevator_queue *e = q->elevator; if (e && e->type->ops.allow_merge) return e->type->ops.allow_merge(q, rq, bio); return true; } static inline void blk_mq_sched_completed_request(struct request *rq, u64 now) { struct elevator_queue *e = rq->q->elevator; if (e && e->type->ops.completed_request) e->type->ops.completed_request(rq, now); } static inline void blk_mq_sched_requeue_request(struct request *rq) { struct request_queue *q = rq->q; struct elevator_queue *e = q->elevator; if ((rq->rq_flags & RQF_ELVPRIV) && e && e->type->ops.requeue_request) e->type->ops.requeue_request(rq); } static inline bool blk_mq_sched_has_work(struct blk_mq_hw_ctx *hctx) { struct elevator_queue *e = hctx->queue->elevator; if (e && e->type->ops.has_work) return e->type->ops.has_work(hctx); return false; } static inline bool blk_mq_sched_needs_restart(struct blk_mq_hw_ctx *hctx) { return test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state); } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM x86_fpu #if !defined(_TRACE_FPU_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_FPU_H #include <linux/tracepoint.h> DECLARE_EVENT_CLASS(x86_fpu, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu), TP_STRUCT__entry( __field(struct fpu *, fpu) __field(bool, load_fpu) __field(u64, xfeatures) __field(u64, xcomp_bv) ), TP_fast_assign( __entry->fpu = fpu; __entry->load_fpu = test_thread_flag(TIF_NEED_FPU_LOAD); if (boot_cpu_has(X86_FEATURE_OSXSAVE)) { __entry->xfeatures = fpu->state.xsave.header.xfeatures; __entry->xcomp_bv = fpu->state.xsave.header.xcomp_bv; } ), TP_printk("x86/fpu: %p load: %d xfeatures: %llx xcomp_bv: %llx", __entry->fpu, __entry->load_fpu, __entry->xfeatures, __entry->xcomp_bv ) ); DEFINE_EVENT(x86_fpu, x86_fpu_before_save, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu) ); DEFINE_EVENT(x86_fpu, x86_fpu_after_save, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu) ); DEFINE_EVENT(x86_fpu, x86_fpu_before_restore, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu) ); DEFINE_EVENT(x86_fpu, x86_fpu_after_restore, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu) ); DEFINE_EVENT(x86_fpu, x86_fpu_regs_activated, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu) ); DEFINE_EVENT(x86_fpu, x86_fpu_regs_deactivated, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu) ); DEFINE_EVENT(x86_fpu, x86_fpu_init_state, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu) ); DEFINE_EVENT(x86_fpu, x86_fpu_dropped, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu) ); DEFINE_EVENT(x86_fpu, x86_fpu_copy_src, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu) ); DEFINE_EVENT(x86_fpu, x86_fpu_copy_dst, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu) ); DEFINE_EVENT(x86_fpu, x86_fpu_xstate_check_failed, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu) ); #undef TRACE_INCLUDE_PATH #define TRACE_INCLUDE_PATH asm/trace/ #undef TRACE_INCLUDE_FILE #define TRACE_INCLUDE_FILE fpu #endif /* _TRACE_FPU_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 /* SPDX-License-Identifier: GPL-2.0 */ /* * descriptor table internals; you almost certainly want file.h instead. */ #ifndef __LINUX_FDTABLE_H #define __LINUX_FDTABLE_H #include <linux/posix_types.h> #include <linux/compiler.h> #include <linux/spinlock.h> #include <linux/rcupdate.h> #include <linux/nospec.h> #include <linux/types.h> #include <linux/init.h> #include <linux/fs.h> #include <linux/atomic.h> /* * The default fd array needs to be at least BITS_PER_LONG, * as this is the granularity returned by copy_fdset(). */ #define NR_OPEN_DEFAULT BITS_PER_LONG #define NR_OPEN_MAX ~0U struct fdtable { unsigned int max_fds; struct file __rcu **fd; /* current fd array */ unsigned long *close_on_exec; unsigned long *open_fds; unsigned long *full_fds_bits; struct rcu_head rcu; }; static inline bool close_on_exec(unsigned int fd, const struct fdtable *fdt) { return test_bit(fd, fdt->close_on_exec); } static inline bool fd_is_open(unsigned int fd, const struct fdtable *fdt) { return test_bit(fd, fdt->open_fds); } /* * Open file table structure */ struct files_struct { /* * read mostly part */ atomic_t count; bool resize_in_progress; wait_queue_head_t resize_wait; struct fdtable __rcu *fdt; struct fdtable fdtab; /* * written part on a separate cache line in SMP */ spinlock_t file_lock ____cacheline_aligned_in_smp; unsigned int next_fd; unsigned long close_on_exec_init[1]; unsigned long open_fds_init[1]; unsigned long full_fds_bits_init[1]; struct file __rcu * fd_array[NR_OPEN_DEFAULT]; }; struct file_operations; struct vfsmount; struct dentry; #define rcu_dereference_check_fdtable(files, fdtfd) \ rcu_dereference_check((fdtfd), lockdep_is_held(&(files)->file_lock)) #define files_fdtable(files) \ rcu_dereference_check_fdtable((files), (files)->fdt) /* * The caller must ensure that fd table isn't shared or hold rcu or file lock */ static inline struct file *__fcheck_files(struct files_struct *files, unsigned int fd) { struct fdtable *fdt = rcu_dereference_raw(files->fdt); if (fd < fdt->max_fds) { fd = array_index_nospec(fd, fdt->max_fds); return rcu_dereference_raw(fdt->fd[fd]); } return NULL; } static inline struct file *fcheck_files(struct files_struct *files, unsigned int fd) { RCU_LOCKDEP_WARN(!rcu_read_lock_held() && !lockdep_is_held(&files->file_lock), "suspicious rcu_dereference_check() usage"); return __fcheck_files(files, fd); } /* * Check whether the specified fd has an open file. */ #define fcheck(fd) fcheck_files(current->files, fd) struct task_struct; struct files_struct *get_files_struct(struct task_struct *); void put_files_struct(struct files_struct *fs); void reset_files_struct(struct files_struct *); int unshare_files(struct files_struct **); struct files_struct *dup_fd(struct files_struct *, unsigned, int *) __latent_entropy; void do_close_on_exec(struct files_struct *); int iterate_fd(struct files_struct *, unsigned, int (*)(const void *, struct file *, unsigned), const void *); extern int __alloc_fd(struct files_struct *files, unsigned start, unsigned end, unsigned flags); extern void __fd_install(struct files_struct *files, unsigned int fd, struct file *file); extern int __close_fd(struct files_struct *files, unsigned int fd); extern int __close_range(unsigned int fd, unsigned int max_fd, unsigned int flags); extern int __close_fd_get_file(unsigned int fd, struct file **res); extern int unshare_fd(unsigned long unshare_flags, unsigned int max_fds, struct files_struct **new_fdp); extern struct kmem_cache *files_cachep; #endif /* __LINUX_FDTABLE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_PAGE_REF_H #define _LINUX_PAGE_REF_H #include <linux/atomic.h> #include <linux/mm_types.h> #include <linux/page-flags.h> #include <linux/tracepoint-defs.h> DECLARE_TRACEPOINT(page_ref_set); DECLARE_TRACEPOINT(page_ref_mod); DECLARE_TRACEPOINT(page_ref_mod_and_test); DECLARE_TRACEPOINT(page_ref_mod_and_return); DECLARE_TRACEPOINT(page_ref_mod_unless); DECLARE_TRACEPOINT(page_ref_freeze); DECLARE_TRACEPOINT(page_ref_unfreeze); #ifdef CONFIG_DEBUG_PAGE_REF /* * Ideally we would want to use the trace_<tracepoint>_enabled() helper * functions. But due to include header file issues, that is not * feasible. Instead we have to open code the static key functions. * * See trace_##name##_enabled(void) in include/linux/tracepoint.h */ #define page_ref_tracepoint_active(t) tracepoint_enabled(t) extern void __page_ref_set(struct page *page, int v); extern void __page_ref_mod(struct page *page, int v); extern void __page_ref_mod_and_test(struct page *page, int v, int ret); extern void __page_ref_mod_and_return(struct page *page, int v, int ret); extern void __page_ref_mod_unless(struct page *page, int v, int u); extern void __page_ref_freeze(struct page *page, int v, int ret); extern void __page_ref_unfreeze(struct page *page, int v); #else #define page_ref_tracepoint_active(t) false static inline void __page_ref_set(struct page *page, int v) { } static inline void __page_ref_mod(struct page *page, int v) { } static inline void __page_ref_mod_and_test(struct page *page, int v, int ret) { } static inline void __page_ref_mod_and_return(struct page *page, int v, int ret) { } static inline void __page_ref_mod_unless(struct page *page, int v, int u) { } static inline void __page_ref_freeze(struct page *page, int v, int ret) { } static inline void __page_ref_unfreeze(struct page *page, int v) { } #endif static inline int page_ref_count(struct page *page) { return atomic_read(&page->_refcount); } static inline int page_count(struct page *page) { return atomic_read(&compound_head(page)->_refcount); } static inline void set_page_count(struct page *page, int v) { atomic_set(&page->_refcount, v); if (page_ref_tracepoint_active(page_ref_set)) __page_ref_set(page, v); } /* * Setup the page count before being freed into the page allocator for * the first time (boot or memory hotplug) */ static inline void init_page_count(struct page *page) { set_page_count(page, 1); } static inline void page_ref_add(struct page *page, int nr) { atomic_add(nr, &page->_refcount); if (page_ref_tracepoint_active(page_ref_mod)) __page_ref_mod(page, nr); } static inline void page_ref_sub(struct page *page, int nr) { atomic_sub(nr, &page->_refcount); if (page_ref_tracepoint_active(page_ref_mod)) __page_ref_mod(page, -nr); } static inline int page_ref_sub_return(struct page *page, int nr) { int ret = atomic_sub_return(nr, &page->_refcount); if (page_ref_tracepoint_active(page_ref_mod_and_return)) __page_ref_mod_and_return(page, -nr, ret); return ret; } static inline void page_ref_inc(struct page *page) { atomic_inc(&page->_refcount); if (page_ref_tracepoint_active(page_ref_mod)) __page_ref_mod(page, 1); } static inline void page_ref_dec(struct page *page) { atomic_dec(&page->_refcount); if (page_ref_tracepoint_active(page_ref_mod)) __page_ref_mod(page, -1); } static inline int page_ref_sub_and_test(struct page *page, int nr) { int ret = atomic_sub_and_test(nr, &page->_refcount); if (page_ref_tracepoint_active(page_ref_mod_and_test)) __page_ref_mod_and_test(page, -nr, ret); return ret; } static inline int page_ref_inc_return(struct page *page) { int ret = atomic_inc_return(&page->_refcount); if (page_ref_tracepoint_active(page_ref_mod_and_return)) __page_ref_mod_and_return(page, 1, ret); return ret; } static inline int page_ref_dec_and_test(struct page *page) { int ret = atomic_dec_and_test(&page->_refcount); if (page_ref_tracepoint_active(page_ref_mod_and_test)) __page_ref_mod_and_test(page, -1, ret); return ret; } static inline int page_ref_dec_return(struct page *page) { int ret = atomic_dec_return(&page->_refcount); if (page_ref_tracepoint_active(page_ref_mod_and_return)) __page_ref_mod_and_return(page, -1, ret); return ret; } static inline int page_ref_add_unless(struct page *page, int nr, int u) { int ret = atomic_add_unless(&page->_refcount, nr, u); if (page_ref_tracepoint_active(page_ref_mod_unless)) __page_ref_mod_unless(page, nr, ret); return ret; } static inline int page_ref_freeze(struct page *page, int count) { int ret = likely(atomic_cmpxchg(&page->_refcount, count, 0) == count); if (page_ref_tracepoint_active(page_ref_freeze)) __page_ref_freeze(page, count, ret); return ret; } static inline void page_ref_unfreeze(struct page *page, int count) { VM_BUG_ON_PAGE(page_count(page) != 0, page); VM_BUG_ON(count == 0); atomic_set_release(&page->_refcount, count); if (page_ref_tracepoint_active(page_ref_unfreeze)) __page_ref_unfreeze(page, count); } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM fib6 #if !defined(_TRACE_FIB6_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_FIB6_H #include <linux/in6.h> #include <net/flow.h> #include <net/ip6_fib.h> #include <linux/tracepoint.h> TRACE_EVENT(fib6_table_lookup, TP_PROTO(const struct net *net, const struct fib6_result *res, struct fib6_table *table, const struct flowi6 *flp), TP_ARGS(net, res, table, flp), TP_STRUCT__entry( __field( u32, tb_id ) __field( int, err ) __field( int, oif ) __field( int, iif ) __field( __u8, tos ) __field( __u8, scope ) __field( __u8, flags ) __array( __u8, src, 16 ) __array( __u8, dst, 16 ) __field( u16, sport ) __field( u16, dport ) __field( u8, proto ) __field( u8, rt_type ) __dynamic_array( char, name, IFNAMSIZ ) __array( __u8, gw, 16 ) ), TP_fast_assign( struct in6_addr *in6; __entry->tb_id = table->tb6_id; __entry->err = ip6_rt_type_to_error(res->fib6_type); __entry->oif = flp->flowi6_oif; __entry->iif = flp->flowi6_iif; __entry->tos = ip6_tclass(flp->flowlabel); __entry->scope = flp->flowi6_scope; __entry->flags = flp->flowi6_flags; in6 = (struct in6_addr *)__entry->src; *in6 = flp->saddr; in6 = (struct in6_addr *)__entry->dst; *in6 = flp->daddr; __entry->proto = flp->flowi6_proto; if (__entry->proto == IPPROTO_TCP || __entry->proto == IPPROTO_UDP) { __entry->sport = ntohs(flp->fl6_sport); __entry->dport = ntohs(flp->fl6_dport); } else { __entry->sport = 0; __entry->dport = 0; } if (res->nh && res->nh->fib_nh_dev) { __assign_str(name, res->nh->fib_nh_dev); } else { __assign_str(name, "-"); } if (res->f6i == net->ipv6.fib6_null_entry) { struct in6_addr in6_zero = {}; in6 = (struct in6_addr *)__entry->gw; *in6 = in6_zero; } else if (res->nh) { in6 = (struct in6_addr *)__entry->gw; *in6 = res->nh->fib_nh_gw6; } ), TP_printk("table %3u oif %d iif %d proto %u %pI6c/%u -> %pI6c/%u tos %d scope %d flags %x ==> dev %s gw %pI6c err %d", __entry->tb_id, __entry->oif, __entry->iif, __entry->proto, __entry->src, __entry->sport, __entry->dst, __entry->dport, __entry->tos, __entry->scope, __entry->flags, __get_str(name), __entry->gw, __entry->err) ); #endif /* _TRACE_FIB6_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_PTRACE_H #define _LINUX_PTRACE_H #include <linux/compiler.h> /* For unlikely. */ #include <linux/sched.h> /* For struct task_struct. */ #include <linux/sched/signal.h> /* For send_sig(), same_thread_group(), etc. */ #include <linux/err.h> /* for IS_ERR_VALUE */ #include <linux/bug.h> /* For BUG_ON. */ #include <linux/pid_namespace.h> /* For task_active_pid_ns. */ #include <uapi/linux/ptrace.h> #include <linux/seccomp.h> /* Add sp to seccomp_data, as seccomp is user API, we don't want to modify it */ struct syscall_info { __u64 sp; struct seccomp_data data; }; extern int ptrace_access_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, unsigned int gup_flags); /* * Ptrace flags * * The owner ship rules for task->ptrace which holds the ptrace * flags is simple. When a task is running it owns it's task->ptrace * flags. When the a task is stopped the ptracer owns task->ptrace. */ #define PT_SEIZED 0x00010000 /* SEIZE used, enable new behavior */ #define PT_PTRACED 0x00000001 #define PT_DTRACE 0x00000002 /* delayed trace (used on m68k, i386) */ #define PT_OPT_FLAG_SHIFT 3 /* PT_TRACE_* event enable flags */ #define PT_EVENT_FLAG(event) (1 << (PT_OPT_FLAG_SHIFT + (event))) #define PT_TRACESYSGOOD PT_EVENT_FLAG(0) #define PT_TRACE_FORK PT_EVENT_FLAG(PTRACE_EVENT_FORK) #define PT_TRACE_VFORK PT_EVENT_FLAG(PTRACE_EVENT_VFORK) #define PT_TRACE_CLONE PT_EVENT_FLAG(PTRACE_EVENT_CLONE) #define PT_TRACE_EXEC PT_EVENT_FLAG(PTRACE_EVENT_EXEC) #define PT_TRACE_VFORK_DONE PT_EVENT_FLAG(PTRACE_EVENT_VFORK_DONE) #define PT_TRACE_EXIT PT_EVENT_FLAG(PTRACE_EVENT_EXIT) #define PT_TRACE_SECCOMP PT_EVENT_FLAG(PTRACE_EVENT_SECCOMP) #define PT_EXITKILL (PTRACE_O_EXITKILL << PT_OPT_FLAG_SHIFT) #define PT_SUSPEND_SECCOMP (PTRACE_O_SUSPEND_SECCOMP << PT_OPT_FLAG_SHIFT) /* single stepping state bits (used on ARM and PA-RISC) */ #define PT_SINGLESTEP_BIT 31 #define PT_SINGLESTEP (1<<PT_SINGLESTEP_BIT) #define PT_BLOCKSTEP_BIT 30 #define PT_BLOCKSTEP (1<<PT_BLOCKSTEP_BIT) extern long arch_ptrace(struct task_struct *child, long request, unsigned long addr, unsigned long data); extern int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len); extern int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len); extern void ptrace_disable(struct task_struct *); extern int ptrace_request(struct task_struct *child, long request, unsigned long addr, unsigned long data); extern void ptrace_notify(int exit_code); extern void __ptrace_link(struct task_struct *child, struct task_struct *new_parent, const struct cred *ptracer_cred); extern void __ptrace_unlink(struct task_struct *child); extern void exit_ptrace(struct task_struct *tracer, struct list_head *dead); #define PTRACE_MODE_READ 0x01 #define PTRACE_MODE_ATTACH 0x02 #define PTRACE_MODE_NOAUDIT 0x04 #define PTRACE_MODE_FSCREDS 0x08 #define PTRACE_MODE_REALCREDS 0x10 /* shorthands for READ/ATTACH and FSCREDS/REALCREDS combinations */ #define PTRACE_MODE_READ_FSCREDS (PTRACE_MODE_READ | PTRACE_MODE_FSCREDS) #define PTRACE_MODE_READ_REALCREDS (PTRACE_MODE_READ | PTRACE_MODE_REALCREDS) #define PTRACE_MODE_ATTACH_FSCREDS (PTRACE_MODE_ATTACH | PTRACE_MODE_FSCREDS) #define PTRACE_MODE_ATTACH_REALCREDS (PTRACE_MODE_ATTACH | PTRACE_MODE_REALCREDS) /** * ptrace_may_access - check whether the caller is permitted to access * a target task. * @task: target task * @mode: selects type of access and caller credentials * * Returns true on success, false on denial. * * One of the flags PTRACE_MODE_FSCREDS and PTRACE_MODE_REALCREDS must * be set in @mode to specify whether the access was requested through * a filesystem syscall (should use effective capabilities and fsuid * of the caller) or through an explicit syscall such as * process_vm_writev or ptrace (and should use the real credentials). */ extern bool ptrace_may_access(struct task_struct *task, unsigned int mode); static inline int ptrace_reparented(struct task_struct *child) { return !same_thread_group(child->real_parent, child->parent); } static inline void ptrace_unlink(struct task_struct *child) { if (unlikely(child->ptrace)) __ptrace_unlink(child); } int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr, unsigned long data); int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr, unsigned long data); /** * ptrace_parent - return the task that is tracing the given task * @task: task to consider * * Returns %NULL if no one is tracing @task, or the &struct task_struct * pointer to its tracer. * * Must called under rcu_read_lock(). The pointer returned might be kept * live only by RCU. During exec, this may be called with task_lock() held * on @task, still held from when check_unsafe_exec() was called. */ static inline struct task_struct *ptrace_parent(struct task_struct *task) { if (unlikely(task->ptrace)) return rcu_dereference(task->parent); return NULL; } /** * ptrace_event_enabled - test whether a ptrace event is enabled * @task: ptracee of interest * @event: %PTRACE_EVENT_* to test * * Test whether @event is enabled for ptracee @task. * * Returns %true if @event is enabled, %false otherwise. */ static inline bool ptrace_event_enabled(struct task_struct *task, int event) { return task->ptrace & PT_EVENT_FLAG(event); } /** * ptrace_event - possibly stop for a ptrace event notification * @event: %PTRACE_EVENT_* value to report * @message: value for %PTRACE_GETEVENTMSG to return * * Check whether @event is enabled and, if so, report @event and @message * to the ptrace parent. * * Called without locks. */ static inline void ptrace_event(int event, unsigned long message) { if (unlikely(ptrace_event_enabled(current, event))) { current->ptrace_message = message; ptrace_notify((event << 8) | SIGTRAP); } else if (event == PTRACE_EVENT_EXEC) { /* legacy EXEC report via SIGTRAP */ if ((current->ptrace & (PT_PTRACED|PT_SEIZED)) == PT_PTRACED) send_sig(SIGTRAP, current, 0); } } /** * ptrace_event_pid - possibly stop for a ptrace event notification * @event: %PTRACE_EVENT_* value to report * @pid: process identifier for %PTRACE_GETEVENTMSG to return * * Check whether @event is enabled and, if so, report @event and @pid * to the ptrace parent. @pid is reported as the pid_t seen from the * the ptrace parent's pid namespace. * * Called without locks. */ static inline void ptrace_event_pid(int event, struct pid *pid) { /* * FIXME: There's a potential race if a ptracer in a different pid * namespace than parent attaches between computing message below and * when we acquire tasklist_lock in ptrace_stop(). If this happens, * the ptracer will get a bogus pid from PTRACE_GETEVENTMSG. */ unsigned long message = 0; struct pid_namespace *ns; rcu_read_lock(); ns = task_active_pid_ns(rcu_dereference(current->parent)); if (ns) message = pid_nr_ns(pid, ns); rcu_read_unlock(); ptrace_event(event, message); } /** * ptrace_init_task - initialize ptrace state for a new child * @child: new child task * @ptrace: true if child should be ptrace'd by parent's tracer * * This is called immediately after adding @child to its parent's children * list. @ptrace is false in the normal case, and true to ptrace @child. * * Called with current's siglock and write_lock_irq(&tasklist_lock) held. */ static inline void ptrace_init_task(struct task_struct *child, bool ptrace) { INIT_LIST_HEAD(&child->ptrace_entry); INIT_LIST_HEAD(&child->ptraced); child->jobctl = 0; child->ptrace = 0; child->parent = child->real_parent; if (unlikely(ptrace) && current->ptrace) { child->ptrace = current->ptrace; __ptrace_link(child, current->parent, current->ptracer_cred); if (child->ptrace & PT_SEIZED) task_set_jobctl_pending(child, JOBCTL_TRAP_STOP); else sigaddset(&child->pending.signal, SIGSTOP); } else child->ptracer_cred = NULL; } /** * ptrace_release_task - final ptrace-related cleanup of a zombie being reaped * @task: task in %EXIT_DEAD state * * Called with write_lock(&tasklist_lock) held. */ static inline void ptrace_release_task(struct task_struct *task) { BUG_ON(!list_empty(&task->ptraced)); ptrace_unlink(task); BUG_ON(!list_empty(&task->ptrace_entry)); } #ifndef force_successful_syscall_return /* * System call handlers that, upon successful completion, need to return a * negative value should call force_successful_syscall_return() right before * returning. On architectures where the syscall convention provides for a * separate error flag (e.g., alpha, ia64, ppc{,64}, sparc{,64}, possibly * others), this macro can be used to ensure that the error flag will not get * set. On architectures which do not support a separate error flag, the macro * is a no-op and the spurious error condition needs to be filtered out by some * other means (e.g., in user-level, by passing an extra argument to the * syscall handler, or something along those lines). */ #define force_successful_syscall_return() do { } while (0) #endif #ifndef is_syscall_success /* * On most systems we can tell if a syscall is a success based on if the retval * is an error value. On some systems like ia64 and powerpc they have different * indicators of success/failure and must define their own. */ #define is_syscall_success(regs) (!IS_ERR_VALUE((unsigned long)(regs_return_value(regs)))) #endif /* * <asm/ptrace.h> should define the following things inside #ifdef __KERNEL__. * * These do-nothing inlines are used when the arch does not * implement single-step. The kerneldoc comments are here * to document the interface for all arch definitions. */ #ifndef arch_has_single_step /** * arch_has_single_step - does this CPU support user-mode single-step? * * If this is defined, then there must be function declarations or * inlines for user_enable_single_step() and user_disable_single_step(). * arch_has_single_step() should evaluate to nonzero iff the machine * supports instruction single-step for user mode. * It can be a constant or it can test a CPU feature bit. */ #define arch_has_single_step() (0) /** * user_enable_single_step - single-step in user-mode task * @task: either current or a task stopped in %TASK_TRACED * * This can only be called when arch_has_single_step() has returned nonzero. * Set @task so that when it returns to user mode, it will trap after the * next single instruction executes. If arch_has_block_step() is defined, * this must clear the effects of user_enable_block_step() too. */ static inline void user_enable_single_step(struct task_struct *task) { BUG(); /* This can never be called. */ } /** * user_disable_single_step - cancel user-mode single-step * @task: either current or a task stopped in %TASK_TRACED * * Clear @task of the effects of user_enable_single_step() and * user_enable_block_step(). This can be called whether or not either * of those was ever called on @task, and even if arch_has_single_step() * returned zero. */ static inline void user_disable_single_step(struct task_struct *task) { } #else extern void user_enable_single_step(struct task_struct *); extern void user_disable_single_step(struct task_struct *); #endif /* arch_has_single_step */ #ifndef arch_has_block_step /** * arch_has_block_step - does this CPU support user-mode block-step? * * If this is defined, then there must be a function declaration or inline * for user_enable_block_step(), and arch_has_single_step() must be defined * too. arch_has_block_step() should evaluate to nonzero iff the machine * supports step-until-branch for user mode. It can be a constant or it * can test a CPU feature bit. */ #define arch_has_block_step() (0) /** * user_enable_block_step - step until branch in user-mode task * @task: either current or a task stopped in %TASK_TRACED * * This can only be called when arch_has_block_step() has returned nonzero, * and will never be called when single-instruction stepping is being used. * Set @task so that when it returns to user mode, it will trap after the * next branch or trap taken. */ static inline void user_enable_block_step(struct task_struct *task) { BUG(); /* This can never be called. */ } #else extern void user_enable_block_step(struct task_struct *); #endif /* arch_has_block_step */ #ifdef ARCH_HAS_USER_SINGLE_STEP_REPORT extern void user_single_step_report(struct pt_regs *regs); #else static inline void user_single_step_report(struct pt_regs *regs) { kernel_siginfo_t info; clear_siginfo(&info); info.si_signo = SIGTRAP; info.si_errno = 0; info.si_code = SI_USER; info.si_pid = 0; info.si_uid = 0; force_sig_info(&info); } #endif #ifndef arch_ptrace_stop_needed /** * arch_ptrace_stop_needed - Decide whether arch_ptrace_stop() should be called * @code: current->exit_code value ptrace will stop with * @info: siginfo_t pointer (or %NULL) for signal ptrace will stop with * * This is called with the siglock held, to decide whether or not it's * necessary to release the siglock and call arch_ptrace_stop() with the * same @code and @info arguments. It can be defined to a constant if * arch_ptrace_stop() is never required, or always is. On machines where * this makes sense, it should be defined to a quick test to optimize out * calling arch_ptrace_stop() when it would be superfluous. For example, * if the thread has not been back to user mode since the last stop, the * thread state might indicate that nothing needs to be done. * * This is guaranteed to be invoked once before a task stops for ptrace and * may include arch-specific operations necessary prior to a ptrace stop. */ #define arch_ptrace_stop_needed(code, info) (0) #endif #ifndef arch_ptrace_stop /** * arch_ptrace_stop - Do machine-specific work before stopping for ptrace * @code: current->exit_code value ptrace will stop with * @info: siginfo_t pointer (or %NULL) for signal ptrace will stop with * * This is called with no locks held when arch_ptrace_stop_needed() has * just returned nonzero. It is allowed to block, e.g. for user memory * access. The arch can have machine-specific work to be done before * ptrace stops. On ia64, register backing store gets written back to user * memory here. Since this can be costly (requires dropping the siglock), * we only do it when the arch requires it for this particular stop, as * indicated by arch_ptrace_stop_needed(). */ #define arch_ptrace_stop(code, info) do { } while (0) #endif #ifndef current_pt_regs #define current_pt_regs() task_pt_regs(current) #endif /* * unlike current_pt_regs(), this one is equal to task_pt_regs(current) * on *all* architectures; the only reason to have a per-arch definition * is optimisation. */ #ifndef signal_pt_regs #define signal_pt_regs() task_pt_regs(current) #endif #ifndef current_user_stack_pointer #define current_user_stack_pointer() user_stack_pointer(current_pt_regs()) #endif extern int task_current_syscall(struct task_struct *target, struct syscall_info *info); extern void sigaction_compat_abi(struct k_sigaction *act, struct k_sigaction *oact); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __SHMEM_FS_H #define __SHMEM_FS_H #include <linux/file.h> #include <linux/swap.h> #include <linux/mempolicy.h> #include <linux/pagemap.h> #include <linux/percpu_counter.h> #include <linux/xattr.h> #include <linux/fs_parser.h> /* inode in-kernel data */ struct shmem_inode_info { spinlock_t lock; unsigned int seals; /* shmem seals */ unsigned long flags; unsigned long alloced; /* data pages alloced to file */ unsigned long swapped; /* subtotal assigned to swap */ struct list_head shrinklist; /* shrinkable hpage inodes */ struct list_head swaplist; /* chain of maybes on swap */ struct shared_policy policy; /* NUMA memory alloc policy */ struct simple_xattrs xattrs; /* list of xattrs */ atomic_t stop_eviction; /* hold when working on inode */ struct inode vfs_inode; }; struct shmem_sb_info { unsigned long max_blocks; /* How many blocks are allowed */ struct percpu_counter used_blocks; /* How many are allocated */ unsigned long max_inodes; /* How many inodes are allowed */ unsigned long free_inodes; /* How many are left for allocation */ spinlock_t stat_lock; /* Serialize shmem_sb_info changes */ umode_t mode; /* Mount mode for root directory */ unsigned char huge; /* Whether to try for hugepages */ kuid_t uid; /* Mount uid for root directory */ kgid_t gid; /* Mount gid for root directory */ bool full_inums; /* If i_ino should be uint or ino_t */ ino_t next_ino; /* The next per-sb inode number to use */ ino_t __percpu *ino_batch; /* The next per-cpu inode number to use */ struct mempolicy *mpol; /* default memory policy for mappings */ spinlock_t shrinklist_lock; /* Protects shrinklist */ struct list_head shrinklist; /* List of shinkable inodes */ unsigned long shrinklist_len; /* Length of shrinklist */ }; static inline struct shmem_inode_info *SHMEM_I(struct inode *inode) { return container_of(inode, struct shmem_inode_info, vfs_inode); } /* * Functions in mm/shmem.c called directly from elsewhere: */ extern const struct fs_parameter_spec shmem_fs_parameters[]; extern int shmem_init(void); extern int shmem_init_fs_context(struct fs_context *fc); extern struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags); extern struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags); extern struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, loff_t size, unsigned long flags); extern int shmem_zero_setup(struct vm_area_struct *); extern unsigned long shmem_get_unmapped_area(struct file *, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags); extern int shmem_lock(struct file *file, int lock, struct user_struct *user); #ifdef CONFIG_SHMEM extern bool shmem_mapping(struct address_space *mapping); #else static inline bool shmem_mapping(struct address_space *mapping) { return false; } #endif /* CONFIG_SHMEM */ extern void shmem_unlock_mapping(struct address_space *mapping); extern struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, pgoff_t index, gfp_t gfp_mask); extern void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end); extern int shmem_unuse(unsigned int type, bool frontswap, unsigned long *fs_pages_to_unuse); extern bool shmem_huge_enabled(struct vm_area_struct *vma); extern unsigned long shmem_swap_usage(struct vm_area_struct *vma); extern unsigned long shmem_partial_swap_usage(struct address_space *mapping, pgoff_t start, pgoff_t end); /* Flag allocation requirements to shmem_getpage */ enum sgp_type { SGP_READ, /* don't exceed i_size, don't allocate page */ SGP_CACHE, /* don't exceed i_size, may allocate page */ SGP_NOHUGE, /* like SGP_CACHE, but no huge pages */ SGP_HUGE, /* like SGP_CACHE, huge pages preferred */ SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */ SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */ }; extern int shmem_getpage(struct inode *inode, pgoff_t index, struct page **pagep, enum sgp_type sgp); static inline struct page *shmem_read_mapping_page( struct address_space *mapping, pgoff_t index) { return shmem_read_mapping_page_gfp(mapping, index, mapping_gfp_mask(mapping)); } static inline bool shmem_file(struct file *file) { if (!IS_ENABLED(CONFIG_SHMEM)) return false; if (!file || !file->f_mapping) return false; return shmem_mapping(file->f_mapping); } extern bool shmem_charge(struct inode *inode, long pages); extern void shmem_uncharge(struct inode *inode, long pages); #ifdef CONFIG_SHMEM extern int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm, pmd_t *dst_pmd, struct vm_area_struct *dst_vma, unsigned long dst_addr, unsigned long src_addr, struct page **pagep); extern int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm, pmd_t *dst_pmd, struct vm_area_struct *dst_vma, unsigned long dst_addr); #else #define shmem_mcopy_atomic_pte(dst_mm, dst_pte, dst_vma, dst_addr, \ src_addr, pagep) ({ BUG(); 0; }) #define shmem_mfill_zeropage_pte(dst_mm, dst_pmd, dst_vma, \ dst_addr) ({ BUG(); 0; }) #endif #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __NET_LWTUNNEL_H #define __NET_LWTUNNEL_H 1 #include <linux/lwtunnel.h> #include <linux/netdevice.h> #include <linux/skbuff.h> #include <linux/types.h> #include <net/route.h> #define LWTUNNEL_HASH_BITS 7 #define LWTUNNEL_HASH_SIZE (1 << LWTUNNEL_HASH_BITS) /* lw tunnel state flags */ #define LWTUNNEL_STATE_OUTPUT_REDIRECT BIT(0) #define LWTUNNEL_STATE_INPUT_REDIRECT BIT(1) #define LWTUNNEL_STATE_XMIT_REDIRECT BIT(2) enum { LWTUNNEL_XMIT_DONE, LWTUNNEL_XMIT_CONTINUE, }; struct lwtunnel_state { __u16 type; __u16 flags; __u16 headroom; atomic_t refcnt; int (*orig_output)(struct net *net, struct sock *sk, struct sk_buff *skb); int (*orig_input)(struct sk_buff *); struct rcu_head rcu; __u8 data[]; }; struct lwtunnel_encap_ops { int (*build_state)(struct net *net, struct nlattr *encap, unsigned int family, const void *cfg, struct lwtunnel_state **ts, struct netlink_ext_ack *extack); void (*destroy_state)(struct lwtunnel_state *lws); int (*output)(struct net *net, struct sock *sk, struct sk_buff *skb); int (*input)(struct sk_buff *skb); int (*fill_encap)(struct sk_buff *skb, struct lwtunnel_state *lwtstate); int (*get_encap_size)(struct lwtunnel_state *lwtstate); int (*cmp_encap)(struct lwtunnel_state *a, struct lwtunnel_state *b); int (*xmit)(struct sk_buff *skb); struct module *owner; }; #ifdef CONFIG_LWTUNNEL void lwtstate_free(struct lwtunnel_state *lws); static inline struct lwtunnel_state * lwtstate_get(struct lwtunnel_state *lws) { if (lws) atomic_inc(&lws->refcnt); return lws; } static inline void lwtstate_put(struct lwtunnel_state *lws) { if (!lws) return; if (atomic_dec_and_test(&lws->refcnt)) lwtstate_free(lws); } static inline bool lwtunnel_output_redirect(struct lwtunnel_state *lwtstate) { if (lwtstate && (lwtstate->flags & LWTUNNEL_STATE_OUTPUT_REDIRECT)) return true; return false; } static inline bool lwtunnel_input_redirect(struct lwtunnel_state *lwtstate) { if (lwtstate && (lwtstate->flags & LWTUNNEL_STATE_INPUT_REDIRECT)) return true; return false; } static inline bool lwtunnel_xmit_redirect(struct lwtunnel_state *lwtstate) { if (lwtstate && (lwtstate->flags & LWTUNNEL_STATE_XMIT_REDIRECT)) return true; return false; } static inline unsigned int lwtunnel_headroom(struct lwtunnel_state *lwtstate, unsigned int mtu) { if ((lwtunnel_xmit_redirect(lwtstate) || lwtunnel_output_redirect(lwtstate)) && lwtstate->headroom < mtu) return lwtstate->headroom; return 0; } int lwtunnel_encap_add_ops(const struct lwtunnel_encap_ops *op, unsigned int num); int lwtunnel_encap_del_ops(const struct lwtunnel_encap_ops *op, unsigned int num); int lwtunnel_valid_encap_type(u16 encap_type, struct netlink_ext_ack *extack); int lwtunnel_valid_encap_type_attr(struct nlattr *attr, int len, struct netlink_ext_ack *extack); int lwtunnel_build_state(struct net *net, u16 encap_type, struct nlattr *encap, unsigned int family, const void *cfg, struct lwtunnel_state **lws, struct netlink_ext_ack *extack); int lwtunnel_fill_encap(struct sk_buff *skb, struct lwtunnel_state *lwtstate, int encap_attr, int encap_type_attr); int lwtunnel_get_encap_size(struct lwtunnel_state *lwtstate); struct lwtunnel_state *lwtunnel_state_alloc(int hdr_len); int lwtunnel_cmp_encap(struct lwtunnel_state *a, struct lwtunnel_state *b); int lwtunnel_output(struct net *net, struct sock *sk, struct sk_buff *skb); int lwtunnel_input(struct sk_buff *skb); int lwtunnel_xmit(struct sk_buff *skb); int bpf_lwt_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len, bool ingress); static inline void lwtunnel_set_redirect(struct dst_entry *dst) { if (lwtunnel_output_redirect(dst->lwtstate)) { dst->lwtstate->orig_output = dst->output; dst->output = lwtunnel_output; } if (lwtunnel_input_redirect(dst->lwtstate)) { dst->lwtstate->orig_input = dst->input; dst->input = lwtunnel_input; } } #else static inline void lwtstate_free(struct lwtunnel_state *lws) { } static inline struct lwtunnel_state * lwtstate_get(struct lwtunnel_state *lws) { return lws; } static inline void lwtstate_put(struct lwtunnel_state *lws) { } static inline bool lwtunnel_output_redirect(struct lwtunnel_state *lwtstate) { return false; } static inline bool lwtunnel_input_redirect(struct lwtunnel_state *lwtstate) { return false; } static inline bool lwtunnel_xmit_redirect(struct lwtunnel_state *lwtstate) { return false; } static inline void lwtunnel_set_redirect(struct dst_entry *dst) { } static inline unsigned int lwtunnel_headroom(struct lwtunnel_state *lwtstate, unsigned int mtu) { return 0; } static inline int lwtunnel_encap_add_ops(const struct lwtunnel_encap_ops *op, unsigned int num) { return -EOPNOTSUPP; } static inline int lwtunnel_encap_del_ops(const struct lwtunnel_encap_ops *op, unsigned int num) { return -EOPNOTSUPP; } static inline int lwtunnel_valid_encap_type(u16 encap_type, struct netlink_ext_ack *extack) { NL_SET_ERR_MSG(extack, "CONFIG_LWTUNNEL is not enabled in this kernel"); return -EOPNOTSUPP; } static inline int lwtunnel_valid_encap_type_attr(struct nlattr *attr, int len, struct netlink_ext_ack *extack) { /* return 0 since we are not walking attr looking for * RTA_ENCAP_TYPE attribute on nexthops. */ return 0; } static inline int lwtunnel_build_state(struct net *net, u16 encap_type, struct nlattr *encap, unsigned int family, const void *cfg, struct lwtunnel_state **lws, struct netlink_ext_ack *extack) { return -EOPNOTSUPP; } static inline int lwtunnel_fill_encap(struct sk_buff *skb, struct lwtunnel_state *lwtstate, int encap_attr, int encap_type_attr) { return 0; } static inline int lwtunnel_get_encap_size(struct lwtunnel_state *lwtstate) { return 0; } static inline struct lwtunnel_state *lwtunnel_state_alloc(int hdr_len) { return NULL; } static inline int lwtunnel_cmp_encap(struct lwtunnel_state *a, struct lwtunnel_state *b) { return 0; } static inline int lwtunnel_output(struct net *net, struct sock *sk, struct sk_buff *skb) { return -EOPNOTSUPP; } static inline int lwtunnel_input(struct sk_buff *skb) { return -EOPNOTSUPP; } static inline int lwtunnel_xmit(struct sk_buff *skb) { return -EOPNOTSUPP; } #endif /* CONFIG_LWTUNNEL */ #define MODULE_ALIAS_RTNL_LWT(encap_type) MODULE_ALIAS("rtnl-lwt-" __stringify(encap_type)) #endif /* __NET_LWTUNNEL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 /* SPDX-License-Identifier: GPL-2.0 */ /* * Percpu refcounts: * (C) 2012 Google, Inc. * Author: Kent Overstreet <koverstreet@google.com> * * This implements a refcount with similar semantics to atomic_t - atomic_inc(), * atomic_dec_and_test() - but percpu. * * There's one important difference between percpu refs and normal atomic_t * refcounts; you have to keep track of your initial refcount, and then when you * start shutting down you call percpu_ref_kill() _before_ dropping the initial * refcount. * * The refcount will have a range of 0 to ((1U << 31) - 1), i.e. one bit less * than an atomic_t - this is because of the way shutdown works, see * percpu_ref_kill()/PERCPU_COUNT_BIAS. * * Before you call percpu_ref_kill(), percpu_ref_put() does not check for the * refcount hitting 0 - it can't, if it was in percpu mode. percpu_ref_kill() * puts the ref back in single atomic_t mode, collecting the per cpu refs and * issuing the appropriate barriers, and then marks the ref as shutting down so * that percpu_ref_put() will check for the ref hitting 0. After it returns, * it's safe to drop the initial ref. * * USAGE: * * See fs/aio.c for some example usage; it's used there for struct kioctx, which * is created when userspaces calls io_setup(), and destroyed when userspace * calls io_destroy() or the process exits. * * In the aio code, kill_ioctx() is called when we wish to destroy a kioctx; it * removes the kioctx from the proccess's table of kioctxs and kills percpu_ref. * After that, there can't be any new users of the kioctx (from lookup_ioctx()) * and it's then safe to drop the initial ref with percpu_ref_put(). * * Note that the free path, free_ioctx(), needs to go through explicit call_rcu() * to synchronize with RCU protected lookup_ioctx(). percpu_ref operations don't * imply RCU grace periods of any kind and if a user wants to combine percpu_ref * with RCU protection, it must be done explicitly. * * Code that does a two stage shutdown like this often needs some kind of * explicit synchronization to ensure the initial refcount can only be dropped * once - percpu_ref_kill() does this for you, it returns true once and false if * someone else already called it. The aio code uses it this way, but it's not * necessary if the code has some other mechanism to synchronize teardown. * around. */ #ifndef _LINUX_PERCPU_REFCOUNT_H #define _LINUX_PERCPU_REFCOUNT_H #include <linux/atomic.h> #include <linux/kernel.h> #include <linux/percpu.h> #include <linux/rcupdate.h> #include <linux/gfp.h> struct percpu_ref; typedef void (percpu_ref_func_t)(struct percpu_ref *); /* flags set in the lower bits of percpu_ref->percpu_count_ptr */ enum { __PERCPU_REF_ATOMIC = 1LU << 0, /* operating in atomic mode */ __PERCPU_REF_DEAD = 1LU << 1, /* (being) killed */ __PERCPU_REF_ATOMIC_DEAD = __PERCPU_REF_ATOMIC | __PERCPU_REF_DEAD, __PERCPU_REF_FLAG_BITS = 2, }; /* @flags for percpu_ref_init() */ enum { /* * Start w/ ref == 1 in atomic mode. Can be switched to percpu * operation using percpu_ref_switch_to_percpu(). If initialized * with this flag, the ref will stay in atomic mode until * percpu_ref_switch_to_percpu() is invoked on it. * Implies ALLOW_REINIT. */ PERCPU_REF_INIT_ATOMIC = 1 << 0, /* * Start dead w/ ref == 0 in atomic mode. Must be revived with * percpu_ref_reinit() before used. Implies INIT_ATOMIC and * ALLOW_REINIT. */ PERCPU_REF_INIT_DEAD = 1 << 1, /* * Allow switching from atomic mode to percpu mode. */ PERCPU_REF_ALLOW_REINIT = 1 << 2, }; struct percpu_ref_data { atomic_long_t count; percpu_ref_func_t *release; percpu_ref_func_t *confirm_switch; bool force_atomic:1; bool allow_reinit:1; struct rcu_head rcu; struct percpu_ref *ref; }; struct percpu_ref { /* * The low bit of the pointer indicates whether the ref is in percpu * mode; if set, then get/put will manipulate the atomic_t. */ unsigned long percpu_count_ptr; /* * 'percpu_ref' is often embedded into user structure, and only * 'percpu_count_ptr' is required in fast path, move other fields * into 'percpu_ref_data', so we can reduce memory footprint in * fast path. */ struct percpu_ref_data *data; }; int __must_check percpu_ref_init(struct percpu_ref *ref, percpu_ref_func_t *release, unsigned int flags, gfp_t gfp); void percpu_ref_exit(struct percpu_ref *ref); void percpu_ref_switch_to_atomic(struct percpu_ref *ref, percpu_ref_func_t *confirm_switch); void percpu_ref_switch_to_atomic_sync(struct percpu_ref *ref); void percpu_ref_switch_to_percpu(struct percpu_ref *ref); void percpu_ref_kill_and_confirm(struct percpu_ref *ref, percpu_ref_func_t *confirm_kill); void percpu_ref_resurrect(struct percpu_ref *ref); void percpu_ref_reinit(struct percpu_ref *ref); bool percpu_ref_is_zero(struct percpu_ref *ref); /** * percpu_ref_kill - drop the initial ref * @ref: percpu_ref to kill * * Must be used to drop the initial ref on a percpu refcount; must be called * precisely once before shutdown. * * Switches @ref into atomic mode before gathering up the percpu counters * and dropping the initial ref. * * There are no implied RCU grace periods between kill and release. */ static inline void percpu_ref_kill(struct percpu_ref *ref) { percpu_ref_kill_and_confirm(ref, NULL); } /* * Internal helper. Don't use outside percpu-refcount proper. The * function doesn't return the pointer and let the caller test it for NULL * because doing so forces the compiler to generate two conditional * branches as it can't assume that @ref->percpu_count is not NULL. */ static inline bool __ref_is_percpu(struct percpu_ref *ref, unsigned long __percpu **percpu_countp) { unsigned long percpu_ptr; /* * The value of @ref->percpu_count_ptr is tested for * !__PERCPU_REF_ATOMIC, which may be set asynchronously, and then * used as a pointer. If the compiler generates a separate fetch * when using it as a pointer, __PERCPU_REF_ATOMIC may be set in * between contaminating the pointer value, meaning that * READ_ONCE() is required when fetching it. * * The dependency ordering from the READ_ONCE() pairs * with smp_store_release() in __percpu_ref_switch_to_percpu(). */ percpu_ptr = READ_ONCE(ref->percpu_count_ptr); /* * Theoretically, the following could test just ATOMIC; however, * then we'd have to mask off DEAD separately as DEAD may be * visible without ATOMIC if we race with percpu_ref_kill(). DEAD * implies ATOMIC anyway. Test them together. */ if (unlikely(percpu_ptr & __PERCPU_REF_ATOMIC_DEAD)) return false; *percpu_countp = (unsigned long __percpu *)percpu_ptr; return true; } /** * percpu_ref_get_many - increment a percpu refcount * @ref: percpu_ref to get * @nr: number of references to get * * Analogous to atomic_long_add(). * * This function is safe to call as long as @ref is between init and exit. */ static inline void percpu_ref_get_many(struct percpu_ref *ref, unsigned long nr) { unsigned long __percpu *percpu_count; rcu_read_lock(); if (__ref_is_percpu(ref, &percpu_count)) this_cpu_add(*percpu_count, nr); else atomic_long_add(nr, &ref->data->count); rcu_read_unlock(); } /** * percpu_ref_get - increment a percpu refcount * @ref: percpu_ref to get * * Analagous to atomic_long_inc(). * * This function is safe to call as long as @ref is between init and exit. */ static inline void percpu_ref_get(struct percpu_ref *ref) { percpu_ref_get_many(ref, 1); } /** * percpu_ref_tryget_many - try to increment a percpu refcount * @ref: percpu_ref to try-get * @nr: number of references to get * * Increment a percpu refcount by @nr unless its count already reached zero. * Returns %true on success; %false on failure. * * This function is safe to call as long as @ref is between init and exit. */ static inline bool percpu_ref_tryget_many(struct percpu_ref *ref, unsigned long nr) { unsigned long __percpu *percpu_count; bool ret; rcu_read_lock(); if (__ref_is_percpu(ref, &percpu_count)) { this_cpu_add(*percpu_count, nr); ret = true; } else { ret = atomic_long_add_unless(&ref->data->count, nr, 0); } rcu_read_unlock(); return ret; } /** * percpu_ref_tryget - try to increment a percpu refcount * @ref: percpu_ref to try-get * * Increment a percpu refcount unless its count already reached zero. * Returns %true on success; %false on failure. * * This function is safe to call as long as @ref is between init and exit. */ static inline bool percpu_ref_tryget(struct percpu_ref *ref) { return percpu_ref_tryget_many(ref, 1); } /** * percpu_ref_tryget_live - try to increment a live percpu refcount * @ref: percpu_ref to try-get * * Increment a percpu refcount unless it has already been killed. Returns * %true on success; %false on failure. * * Completion of percpu_ref_kill() in itself doesn't guarantee that this * function will fail. For such guarantee, percpu_ref_kill_and_confirm() * should be used. After the confirm_kill callback is invoked, it's * guaranteed that no new reference will be given out by * percpu_ref_tryget_live(). * * This function is safe to call as long as @ref is between init and exit. */ static inline bool percpu_ref_tryget_live(struct percpu_ref *ref) { unsigned long __percpu *percpu_count; bool ret = false; rcu_read_lock(); if (__ref_is_percpu(ref, &percpu_count)) { this_cpu_inc(*percpu_count); ret = true; } else if (!(ref->percpu_count_ptr & __PERCPU_REF_DEAD)) { ret = atomic_long_inc_not_zero(&ref->data->count); } rcu_read_unlock(); return ret; } /** * percpu_ref_put_many - decrement a percpu refcount * @ref: percpu_ref to put * @nr: number of references to put * * Decrement the refcount, and if 0, call the release function (which was passed * to percpu_ref_init()) * * This function is safe to call as long as @ref is between init and exit. */ static inline void percpu_ref_put_many(struct percpu_ref *ref, unsigned long nr) { unsigned long __percpu *percpu_count; rcu_read_lock(); if (__ref_is_percpu(ref, &percpu_count)) this_cpu_sub(*percpu_count, nr); else if (unlikely(atomic_long_sub_and_test(nr, &ref->data->count))) ref->data->release(ref); rcu_read_unlock(); } /** * percpu_ref_put - decrement a percpu refcount * @ref: percpu_ref to put * * Decrement the refcount, and if 0, call the release function (which was passed * to percpu_ref_init()) * * This function is safe to call as long as @ref is between init and exit. */ static inline void percpu_ref_put(struct percpu_ref *ref) { percpu_ref_put_many(ref, 1); } /** * percpu_ref_is_dying - test whether a percpu refcount is dying or dead * @ref: percpu_ref to test * * Returns %true if @ref is dying or dead. * * This function is safe to call as long as @ref is between init and exit * and the caller is responsible for synchronizing against state changes. */ static inline bool percpu_ref_is_dying(struct percpu_ref *ref) { return ref->percpu_count_ptr & __PERCPU_REF_DEAD; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 /* SPDX-License-Identifier: GPL-2.0 */ /* * Generic nexthop implementation * * Copyright (c) 2017-19 Cumulus Networks * Copyright (c) 2017-19 David Ahern <dsa@cumulusnetworks.com> */ #ifndef __LINUX_NEXTHOP_H #define __LINUX_NEXTHOP_H #include <linux/netdevice.h> #include <linux/notifier.h> #include <linux/route.h> #include <linux/types.h> #include <net/ip_fib.h> #include <net/ip6_fib.h> #include <net/netlink.h> #define NEXTHOP_VALID_USER_FLAGS RTNH_F_ONLINK struct nexthop; struct nh_config { u32 nh_id; u8 nh_family; u8 nh_protocol; u8 nh_blackhole; u8 nh_fdb; u32 nh_flags; int nh_ifindex; struct net_device *dev; union { __be32 ipv4; struct in6_addr ipv6; } gw; struct nlattr *nh_grp; u16 nh_grp_type; struct nlattr *nh_encap; u16 nh_encap_type; u32 nlflags; struct nl_info nlinfo; }; struct nh_info { struct hlist_node dev_hash; /* entry on netns devhash */ struct nexthop *nh_parent; u8 family; bool reject_nh; bool fdb_nh; union { struct fib_nh_common fib_nhc; struct fib_nh fib_nh; struct fib6_nh fib6_nh; }; }; struct nh_grp_entry { struct nexthop *nh; u8 weight; atomic_t upper_bound; struct list_head nh_list; struct nexthop *nh_parent; /* nexthop of group with this entry */ }; struct nh_group { struct nh_group *spare; /* spare group for removals */ u16 num_nh; bool mpath; bool fdb_nh; bool has_v4; struct nh_grp_entry nh_entries[]; }; struct nexthop { struct rb_node rb_node; /* entry on netns rbtree */ struct list_head fi_list; /* v4 entries using nh */ struct list_head f6i_list; /* v6 entries using nh */ struct list_head fdb_list; /* fdb entries using this nh */ struct list_head grp_list; /* nh group entries using this nh */ struct net *net; u32 id; u8 protocol; /* app managing this nh */ u8 nh_flags; bool is_group; refcount_t refcnt; struct rcu_head rcu; union { struct nh_info __rcu *nh_info; struct nh_group __rcu *nh_grp; }; }; enum nexthop_event_type { NEXTHOP_EVENT_DEL }; int register_nexthop_notifier(struct net *net, struct notifier_block *nb); int unregister_nexthop_notifier(struct net *net, struct notifier_block *nb); /* caller is holding rcu or rtnl; no reference taken to nexthop */ struct nexthop *nexthop_find_by_id(struct net *net, u32 id); void nexthop_free_rcu(struct rcu_head *head); static inline bool nexthop_get(struct nexthop *nh) { return refcount_inc_not_zero(&nh->refcnt); } static inline void nexthop_put(struct nexthop *nh) { if (refcount_dec_and_test(&nh->refcnt)) call_rcu(&nh->rcu, nexthop_free_rcu); } static inline bool nexthop_cmp(const struct nexthop *nh1, const struct nexthop *nh2) { return nh1 == nh2; } static inline bool nexthop_is_fdb(const struct nexthop *nh) { if (nh->is_group) { const struct nh_group *nh_grp; nh_grp = rcu_dereference_rtnl(nh->nh_grp); return nh_grp->fdb_nh; } else { const struct nh_info *nhi; nhi = rcu_dereference_rtnl(nh->nh_info); return nhi->fdb_nh; } } static inline bool nexthop_has_v4(const struct nexthop *nh) { if (nh->is_group) { struct nh_group *nh_grp; nh_grp = rcu_dereference_rtnl(nh->nh_grp); return nh_grp->has_v4; } return false; } static inline bool nexthop_is_multipath(const struct nexthop *nh) { if (nh->is_group) { struct nh_group *nh_grp; nh_grp = rcu_dereference_rtnl(nh->nh_grp); return nh_grp->mpath; } return false; } struct nexthop *nexthop_select_path(struct nexthop *nh, int hash); static inline unsigned int nexthop_num_path(const struct nexthop *nh) { unsigned int rc = 1; if (nh->is_group) { struct nh_group *nh_grp; nh_grp = rcu_dereference_rtnl(nh->nh_grp); if (nh_grp->mpath) rc = nh_grp->num_nh; } return rc; } static inline struct nexthop *nexthop_mpath_select(const struct nh_group *nhg, int nhsel) { /* for_nexthops macros in fib_semantics.c grabs a pointer to * the nexthop before checking nhsel */ if (nhsel >= nhg->num_nh) return NULL; return nhg->nh_entries[nhsel].nh; } static inline int nexthop_mpath_fill_node(struct sk_buff *skb, struct nexthop *nh, u8 rt_family) { struct nh_group *nhg = rtnl_dereference(nh->nh_grp); int i; for (i = 0; i < nhg->num_nh; i++) { struct nexthop *nhe = nhg->nh_entries[i].nh; struct nh_info *nhi = rcu_dereference_rtnl(nhe->nh_info); struct fib_nh_common *nhc = &nhi->fib_nhc; int weight = nhg->nh_entries[i].weight; if (fib_add_nexthop(skb, nhc, weight, rt_family, 0) < 0) return -EMSGSIZE; } return 0; } /* called with rcu lock */ static inline bool nexthop_is_blackhole(const struct nexthop *nh) { const struct nh_info *nhi; if (nh->is_group) { struct nh_group *nh_grp; nh_grp = rcu_dereference_rtnl(nh->nh_grp); if (nh_grp->num_nh > 1) return false; nh = nh_grp->nh_entries[0].nh; } nhi = rcu_dereference_rtnl(nh->nh_info); return nhi->reject_nh; } static inline void nexthop_path_fib_result(struct fib_result *res, int hash) { struct nh_info *nhi; struct nexthop *nh; nh = nexthop_select_path(res->fi->nh, hash); nhi = rcu_dereference(nh->nh_info); res->nhc = &nhi->fib_nhc; } /* called with rcu read lock or rtnl held */ static inline struct fib_nh_common *nexthop_fib_nhc(struct nexthop *nh, int nhsel) { struct nh_info *nhi; BUILD_BUG_ON(offsetof(struct fib_nh, nh_common) != 0); BUILD_BUG_ON(offsetof(struct fib6_nh, nh_common) != 0); if (nh->is_group) { struct nh_group *nh_grp; nh_grp = rcu_dereference_rtnl(nh->nh_grp); if (nh_grp->mpath) { nh = nexthop_mpath_select(nh_grp, nhsel); if (!nh) return NULL; } } nhi = rcu_dereference_rtnl(nh->nh_info); return &nhi->fib_nhc; } /* called from fib_table_lookup with rcu_lock */ static inline struct fib_nh_common *nexthop_get_nhc_lookup(const struct nexthop *nh, int fib_flags, const struct flowi4 *flp, int *nhsel) { struct nh_info *nhi; if (nh->is_group) { struct nh_group *nhg = rcu_dereference(nh->nh_grp); int i; for (i = 0; i < nhg->num_nh; i++) { struct nexthop *nhe = nhg->nh_entries[i].nh; nhi = rcu_dereference(nhe->nh_info); if (fib_lookup_good_nhc(&nhi->fib_nhc, fib_flags, flp)) { *nhsel = i; return &nhi->fib_nhc; } } } else { nhi = rcu_dereference(nh->nh_info); if (fib_lookup_good_nhc(&nhi->fib_nhc, fib_flags, flp)) { *nhsel = 0; return &nhi->fib_nhc; } } return NULL; } static inline bool nexthop_uses_dev(const struct nexthop *nh, const struct net_device *dev) { struct nh_info *nhi; if (nh->is_group) { struct nh_group *nhg = rcu_dereference(nh->nh_grp); int i; for (i = 0; i < nhg->num_nh; i++) { struct nexthop *nhe = nhg->nh_entries[i].nh; nhi = rcu_dereference(nhe->nh_info); if (nhc_l3mdev_matches_dev(&nhi->fib_nhc, dev)) return true; } } else { nhi = rcu_dereference(nh->nh_info); if (nhc_l3mdev_matches_dev(&nhi->fib_nhc, dev)) return true; } return false; } static inline unsigned int fib_info_num_path(const struct fib_info *fi) { if (unlikely(fi->nh)) return nexthop_num_path(fi->nh); return fi->fib_nhs; } int fib_check_nexthop(struct nexthop *nh, u8 scope, struct netlink_ext_ack *extack); static inline struct fib_nh_common *fib_info_nhc(struct fib_info *fi, int nhsel) { if (unlikely(fi->nh)) return nexthop_fib_nhc(fi->nh, nhsel); return &fi->fib_nh[nhsel].nh_common; } /* only used when fib_nh is built into fib_info */ static inline struct fib_nh *fib_info_nh(struct fib_info *fi, int nhsel) { WARN_ON(fi->nh); return &fi->fib_nh[nhsel]; } /* * IPv6 variants */ int fib6_check_nexthop(struct nexthop *nh, struct fib6_config *cfg, struct netlink_ext_ack *extack); /* Caller should either hold rcu_read_lock(), or RTNL. */ static inline struct fib6_nh *nexthop_fib6_nh(struct nexthop *nh) { struct nh_info *nhi; if (nh->is_group) { struct nh_group *nh_grp; nh_grp = rcu_dereference_rtnl(nh->nh_grp); nh = nexthop_mpath_select(nh_grp, 0); if (!nh) return NULL; } nhi = rcu_dereference_rtnl(nh->nh_info); if (nhi->family == AF_INET6) return &nhi->fib6_nh; return NULL; } /* Variant of nexthop_fib6_nh(). * Caller should either hold rcu_read_lock_bh(), or RTNL. */ static inline struct fib6_nh *nexthop_fib6_nh_bh(struct nexthop *nh) { struct nh_info *nhi; if (nh->is_group) { struct nh_group *nh_grp; nh_grp = rcu_dereference_bh_rtnl(nh->nh_grp); nh = nexthop_mpath_select(nh_grp, 0); if (!nh) return NULL; } nhi = rcu_dereference_bh_rtnl(nh->nh_info); if (nhi->family == AF_INET6) return &nhi->fib6_nh; return NULL; } static inline struct net_device *fib6_info_nh_dev(struct fib6_info *f6i) { struct fib6_nh *fib6_nh; fib6_nh = f6i->nh ? nexthop_fib6_nh(f6i->nh) : f6i->fib6_nh; return fib6_nh->fib_nh_dev; } static inline void nexthop_path_fib6_result(struct fib6_result *res, int hash) { struct nexthop *nh = res->f6i->nh; struct nh_info *nhi; nh = nexthop_select_path(nh, hash); nhi = rcu_dereference_rtnl(nh->nh_info); if (nhi->reject_nh) { res->fib6_type = RTN_BLACKHOLE; res->fib6_flags |= RTF_REJECT; res->nh = nexthop_fib6_nh(nh); } else { res->nh = &nhi->fib6_nh; } } int nexthop_for_each_fib6_nh(struct nexthop *nh, int (*cb)(struct fib6_nh *nh, void *arg), void *arg); static inline int nexthop_get_family(struct nexthop *nh) { struct nh_info *nhi = rcu_dereference_rtnl(nh->nh_info); return nhi->family; } static inline struct fib_nh_common *nexthop_fdb_nhc(struct nexthop *nh) { struct nh_info *nhi = rcu_dereference_rtnl(nh->nh_info); return &nhi->fib_nhc; } static inline struct fib_nh_common *nexthop_path_fdb_result(struct nexthop *nh, int hash) { struct nh_info *nhi; struct nexthop *nhp; nhp = nexthop_select_path(nh, hash); if (unlikely(!nhp)) return NULL; nhi = rcu_dereference(nhp->nh_info); return &nhi->fib_nhc; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_PGTABLE_DEFS_H #define _ASM_X86_PGTABLE_DEFS_H #include <linux/const.h> #include <linux/mem_encrypt.h> #include <asm/page_types.h> #define FIRST_USER_ADDRESS 0UL #define _PAGE_BIT_PRESENT 0 /* is present */ #define _PAGE_BIT_RW 1 /* writeable */ #define _PAGE_BIT_USER 2 /* userspace addressable */ #define _PAGE_BIT_PWT 3 /* page write through */ #define _PAGE_BIT_PCD 4 /* page cache disabled */ #define _PAGE_BIT_ACCESSED 5 /* was accessed (raised by CPU) */ #define _PAGE_BIT_DIRTY 6 /* was written to (raised by CPU) */ #define _PAGE_BIT_PSE 7 /* 4 MB (or 2MB) page */ #define _PAGE_BIT_PAT 7 /* on 4KB pages */ #define _PAGE_BIT_GLOBAL 8 /* Global TLB entry PPro+ */ #define _PAGE_BIT_SOFTW1 9 /* available for programmer */ #define _PAGE_BIT_SOFTW2 10 /* " */ #define _PAGE_BIT_SOFTW3 11 /* " */ #define _PAGE_BIT_PAT_LARGE 12 /* On 2MB or 1GB pages */ #define _PAGE_BIT_SOFTW4 58 /* available for programmer */ #define _PAGE_BIT_PKEY_BIT0 59 /* Protection Keys, bit 1/4 */ #define _PAGE_BIT_PKEY_BIT1 60 /* Protection Keys, bit 2/4 */ #define _PAGE_BIT_PKEY_BIT2 61 /* Protection Keys, bit 3/4 */ #define _PAGE_BIT_PKEY_BIT3 62 /* Protection Keys, bit 4/4 */ #define _PAGE_BIT_NX 63 /* No execute: only valid after cpuid check */ #define _PAGE_BIT_SPECIAL _PAGE_BIT_SOFTW1 #define _PAGE_BIT_CPA_TEST _PAGE_BIT_SOFTW1 #define _PAGE_BIT_UFFD_WP _PAGE_BIT_SOFTW2 /* userfaultfd wrprotected */ #define _PAGE_BIT_SOFT_DIRTY _PAGE_BIT_SOFTW3 /* software dirty tracking */ #define _PAGE_BIT_DEVMAP _PAGE_BIT_SOFTW4 /* If _PAGE_BIT_PRESENT is clear, we use these: */ /* - if the user mapped it with PROT_NONE; pte_present gives true */ #define _PAGE_BIT_PROTNONE _PAGE_BIT_GLOBAL #define _PAGE_PRESENT (_AT(pteval_t, 1) << _PAGE_BIT_PRESENT) #define _PAGE_RW (_AT(pteval_t, 1) << _PAGE_BIT_RW) #define _PAGE_USER (_AT(pteval_t, 1) << _PAGE_BIT_USER) #define _PAGE_PWT (_AT(pteval_t, 1) << _PAGE_BIT_PWT) #define _PAGE_PCD (_AT(pteval_t, 1) << _PAGE_BIT_PCD) #define _PAGE_ACCESSED (_AT(pteval_t, 1) << _PAGE_BIT_ACCESSED) #define _PAGE_DIRTY (_AT(pteval_t, 1) << _PAGE_BIT_DIRTY) #define _PAGE_PSE (_AT(pteval_t, 1) << _PAGE_BIT_PSE) #define _PAGE_GLOBAL (_AT(pteval_t, 1) << _PAGE_BIT_GLOBAL) #define _PAGE_SOFTW1 (_AT(pteval_t, 1) << _PAGE_BIT_SOFTW1) #define _PAGE_SOFTW2 (_AT(pteval_t, 1) << _PAGE_BIT_SOFTW2) #define _PAGE_SOFTW3 (_AT(pteval_t, 1) << _PAGE_BIT_SOFTW3) #define _PAGE_PAT (_AT(pteval_t, 1) << _PAGE_BIT_PAT) #define _PAGE_PAT_LARGE (_AT(pteval_t, 1) << _PAGE_BIT_PAT_LARGE) #define _PAGE_SPECIAL (_AT(pteval_t, 1) << _PAGE_BIT_SPECIAL) #define _PAGE_CPA_TEST (_AT(pteval_t, 1) << _PAGE_BIT_CPA_TEST) #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS #define _PAGE_PKEY_BIT0 (_AT(pteval_t, 1) << _PAGE_BIT_PKEY_BIT0) #define _PAGE_PKEY_BIT1 (_AT(pteval_t, 1) << _PAGE_BIT_PKEY_BIT1) #define _PAGE_PKEY_BIT2 (_AT(pteval_t, 1) << _PAGE_BIT_PKEY_BIT2) #define _PAGE_PKEY_BIT3 (_AT(pteval_t, 1) << _PAGE_BIT_PKEY_BIT3) #else #define _PAGE_PKEY_BIT0 (_AT(pteval_t, 0)) #define _PAGE_PKEY_BIT1 (_AT(pteval_t, 0)) #define _PAGE_PKEY_BIT2 (_AT(pteval_t, 0)) #define _PAGE_PKEY_BIT3 (_AT(pteval_t, 0)) #endif #define _PAGE_PKEY_MASK (_PAGE_PKEY_BIT0 | \ _PAGE_PKEY_BIT1 | \ _PAGE_PKEY_BIT2 | \ _PAGE_PKEY_BIT3) #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE) #define _PAGE_KNL_ERRATUM_MASK (_PAGE_DIRTY | _PAGE_ACCESSED) #else #define _PAGE_KNL_ERRATUM_MASK 0 #endif #ifdef CONFIG_MEM_SOFT_DIRTY #define _PAGE_SOFT_DIRTY (_AT(pteval_t, 1) << _PAGE_BIT_SOFT_DIRTY) #else #define _PAGE_SOFT_DIRTY (_AT(pteval_t, 0)) #endif /* * Tracking soft dirty bit when a page goes to a swap is tricky. * We need a bit which can be stored in pte _and_ not conflict * with swap entry format. On x86 bits 1-4 are *not* involved * into swap entry computation, but bit 7 is used for thp migration, * so we borrow bit 1 for soft dirty tracking. * * Please note that this bit must be treated as swap dirty page * mark if and only if the PTE/PMD has present bit clear! */ #ifdef CONFIG_MEM_SOFT_DIRTY #define _PAGE_SWP_SOFT_DIRTY _PAGE_RW #else #define _PAGE_SWP_SOFT_DIRTY (_AT(pteval_t, 0)) #endif #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP #define _PAGE_UFFD_WP (_AT(pteval_t, 1) << _PAGE_BIT_UFFD_WP) #define _PAGE_SWP_UFFD_WP _PAGE_USER #else #define _PAGE_UFFD_WP (_AT(pteval_t, 0)) #define _PAGE_SWP_UFFD_WP (_AT(pteval_t, 0)) #endif #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE) #define _PAGE_NX (_AT(pteval_t, 1) << _PAGE_BIT_NX) #define _PAGE_DEVMAP (_AT(u64, 1) << _PAGE_BIT_DEVMAP) #else #define _PAGE_NX (_AT(pteval_t, 0)) #define _PAGE_DEVMAP (_AT(pteval_t, 0)) #endif #define _PAGE_PROTNONE (_AT(pteval_t, 1) << _PAGE_BIT_PROTNONE) /* * Set of bits not changed in pte_modify. The pte's * protection key is treated like _PAGE_RW, for * instance, and is *not* included in this mask since * pte_modify() does modify it. */ #define _PAGE_CHG_MASK (PTE_PFN_MASK | _PAGE_PCD | _PAGE_PWT | \ _PAGE_SPECIAL | _PAGE_ACCESSED | _PAGE_DIRTY | \ _PAGE_SOFT_DIRTY | _PAGE_DEVMAP | _PAGE_ENC | \ _PAGE_UFFD_WP) #define _HPAGE_CHG_MASK (_PAGE_CHG_MASK | _PAGE_PSE) /* * The cache modes defined here are used to translate between pure SW usage * and the HW defined cache mode bits and/or PAT entries. * * The resulting bits for PWT, PCD and PAT should be chosen in a way * to have the WB mode at index 0 (all bits clear). This is the default * right now and likely would break too much if changed. */ #ifndef __ASSEMBLY__ enum page_cache_mode { _PAGE_CACHE_MODE_WB = 0, _PAGE_CACHE_MODE_WC = 1, _PAGE_CACHE_MODE_UC_MINUS = 2, _PAGE_CACHE_MODE_UC = 3, _PAGE_CACHE_MODE_WT = 4, _PAGE_CACHE_MODE_WP = 5, _PAGE_CACHE_MODE_NUM = 8 }; #endif #define _PAGE_ENC (_AT(pteval_t, sme_me_mask)) #define _PAGE_CACHE_MASK (_PAGE_PWT | _PAGE_PCD | _PAGE_PAT) #define _PAGE_LARGE_CACHE_MASK (_PAGE_PWT | _PAGE_PCD | _PAGE_PAT_LARGE) #define _PAGE_NOCACHE (cachemode2protval(_PAGE_CACHE_MODE_UC)) #define _PAGE_CACHE_WP (cachemode2protval(_PAGE_CACHE_MODE_WP)) #define __PP _PAGE_PRESENT #define __RW _PAGE_RW #define _USR _PAGE_USER #define ___A _PAGE_ACCESSED #define ___D _PAGE_DIRTY #define ___G _PAGE_GLOBAL #define __NX _PAGE_NX #define _ENC _PAGE_ENC #define __WP _PAGE_CACHE_WP #define __NC _PAGE_NOCACHE #define _PSE _PAGE_PSE #define pgprot_val(x) ((x).pgprot) #define __pgprot(x) ((pgprot_t) { (x) } ) #define __pg(x) __pgprot(x) #define _PAGE_PAT_LARGE (_AT(pteval_t, 1) << _PAGE_BIT_PAT_LARGE) #define PAGE_NONE __pg( 0| 0| 0|___A| 0| 0| 0|___G) #define PAGE_SHARED __pg(__PP|__RW|_USR|___A|__NX| 0| 0| 0) #define PAGE_SHARED_EXEC __pg(__PP|__RW|_USR|___A| 0| 0| 0| 0) #define PAGE_COPY_NOEXEC __pg(__PP| 0|_USR|___A|__NX| 0| 0| 0) #define PAGE_COPY_EXEC __pg(__PP| 0|_USR|___A| 0| 0| 0| 0) #define PAGE_COPY __pg(__PP| 0|_USR|___A|__NX| 0| 0| 0) #define PAGE_READONLY __pg(__PP| 0|_USR|___A|__NX| 0| 0| 0) #define PAGE_READONLY_EXEC __pg(__PP| 0|_USR|___A| 0| 0| 0| 0) #define __PAGE_KERNEL (__PP|__RW| 0|___A|__NX|___D| 0|___G) #define __PAGE_KERNEL_EXEC (__PP|__RW| 0|___A| 0|___D| 0|___G) #define _KERNPG_TABLE_NOENC (__PP|__RW| 0|___A| 0|___D| 0| 0) #define _KERNPG_TABLE (__PP|__RW| 0|___A| 0|___D| 0| 0| _ENC) #define _PAGE_TABLE_NOENC (__PP|__RW|_USR|___A| 0|___D| 0| 0) #define _PAGE_TABLE (__PP|__RW|_USR|___A| 0|___D| 0| 0| _ENC) #define __PAGE_KERNEL_RO (__PP| 0| 0|___A|__NX|___D| 0|___G) #define __PAGE_KERNEL_ROX (__PP| 0| 0|___A| 0|___D| 0|___G) #define __PAGE_KERNEL_NOCACHE (__PP|__RW| 0|___A|__NX|___D| 0|___G| __NC) #define __PAGE_KERNEL_VVAR (__PP| 0|_USR|___A|__NX|___D| 0|___G) #define __PAGE_KERNEL_LARGE (__PP|__RW| 0|___A|__NX|___D|_PSE|___G) #define __PAGE_KERNEL_LARGE_EXEC (__PP|__RW| 0|___A| 0|___D|_PSE|___G) #define __PAGE_KERNEL_WP (__PP|__RW| 0|___A|__NX|___D| 0|___G| __WP) #define __PAGE_KERNEL_IO __PAGE_KERNEL #define __PAGE_KERNEL_IO_NOCACHE __PAGE_KERNEL_NOCACHE #ifndef __ASSEMBLY__ #define __PAGE_KERNEL_ENC (__PAGE_KERNEL | _ENC) #define __PAGE_KERNEL_ENC_WP (__PAGE_KERNEL_WP | _ENC) #define __PAGE_KERNEL_NOENC (__PAGE_KERNEL | 0) #define __PAGE_KERNEL_NOENC_WP (__PAGE_KERNEL_WP | 0) #define __pgprot_mask(x) __pgprot((x) & __default_kernel_pte_mask) #define PAGE_KERNEL __pgprot_mask(__PAGE_KERNEL | _ENC) #define PAGE_KERNEL_NOENC __pgprot_mask(__PAGE_KERNEL | 0) #define PAGE_KERNEL_RO __pgprot_mask(__PAGE_KERNEL_RO | _ENC) #define PAGE_KERNEL_EXEC __pgprot_mask(__PAGE_KERNEL_EXEC | _ENC) #define PAGE_KERNEL_EXEC_NOENC __pgprot_mask(__PAGE_KERNEL_EXEC | 0) #define PAGE_KERNEL_ROX __pgprot_mask(__PAGE_KERNEL_ROX | _ENC) #define PAGE_KERNEL_NOCACHE __pgprot_mask(__PAGE_KERNEL_NOCACHE | _ENC) #define PAGE_KERNEL_LARGE __pgprot_mask(__PAGE_KERNEL_LARGE | _ENC) #define PAGE_KERNEL_LARGE_EXEC __pgprot_mask(__PAGE_KERNEL_LARGE_EXEC | _ENC) #define PAGE_KERNEL_VVAR __pgprot_mask(__PAGE_KERNEL_VVAR | _ENC) #define PAGE_KERNEL_IO __pgprot_mask(__PAGE_KERNEL_IO) #define PAGE_KERNEL_IO_NOCACHE __pgprot_mask(__PAGE_KERNEL_IO_NOCACHE) #endif /* __ASSEMBLY__ */ /* xwr */ #define __P000 PAGE_NONE #define __P001 PAGE_READONLY #define __P010 PAGE_COPY #define __P011 PAGE_COPY #define __P100 PAGE_READONLY_EXEC #define __P101 PAGE_READONLY_EXEC #define __P110 PAGE_COPY_EXEC #define __P111 PAGE_COPY_EXEC #define __S000 PAGE_NONE #define __S001 PAGE_READONLY #define __S010 PAGE_SHARED #define __S011 PAGE_SHARED #define __S100 PAGE_READONLY_EXEC #define __S101 PAGE_READONLY_EXEC #define __S110 PAGE_SHARED_EXEC #define __S111 PAGE_SHARED_EXEC /* * early identity mapping pte attrib macros. */ #ifdef CONFIG_X86_64 #define __PAGE_KERNEL_IDENT_LARGE_EXEC __PAGE_KERNEL_LARGE_EXEC #else #define PTE_IDENT_ATTR 0x003 /* PRESENT+RW */ #define PDE_IDENT_ATTR 0x063 /* PRESENT+RW+DIRTY+ACCESSED */ #define PGD_IDENT_ATTR 0x001 /* PRESENT (no other attributes) */ #endif #ifdef CONFIG_X86_32 # include <asm/pgtable_32_types.h> #else # include <asm/pgtable_64_types.h> #endif #ifndef __ASSEMBLY__ #include <linux/types.h> /* Extracts the PFN from a (pte|pmd|pud|pgd)val_t of a 4KB page */ #define PTE_PFN_MASK ((pteval_t)PHYSICAL_PAGE_MASK) /* * Extracts the flags from a (pte|pmd|pud|pgd)val_t * This includes the protection key value. */ #define PTE_FLAGS_MASK (~PTE_PFN_MASK) typedef struct pgprot { pgprotval_t pgprot; } pgprot_t; typedef struct { pgdval_t pgd; } pgd_t; static inline pgprot_t pgprot_nx(pgprot_t prot) { return __pgprot(pgprot_val(prot) | _PAGE_NX); } #define pgprot_nx pgprot_nx #ifdef CONFIG_X86_PAE /* * PHYSICAL_PAGE_MASK might be non-constant when SME is compiled in, so we can't * use it here. */ #define PGD_PAE_PAGE_MASK ((signed long)PAGE_MASK) #define PGD_PAE_PHYS_MASK (((1ULL << __PHYSICAL_MASK_SHIFT)-1) & PGD_PAE_PAGE_MASK) /* * PAE allows Base Address, P, PWT, PCD and AVL bits to be set in PGD entries. * All other bits are Reserved MBZ */ #define PGD_ALLOWED_BITS (PGD_PAE_PHYS_MASK | _PAGE_PRESENT | \ _PAGE_PWT | _PAGE_PCD | \ _PAGE_SOFTW1 | _PAGE_SOFTW2 | _PAGE_SOFTW3) #else /* No need to mask any bits for !PAE */ #define PGD_ALLOWED_BITS (~0ULL) #endif static inline pgd_t native_make_pgd(pgdval_t val) { return (pgd_t) { val & PGD_ALLOWED_BITS }; } static inline pgdval_t native_pgd_val(pgd_t pgd) { return pgd.pgd & PGD_ALLOWED_BITS; } static inline pgdval_t pgd_flags(pgd_t pgd) { return native_pgd_val(pgd) & PTE_FLAGS_MASK; } #if CONFIG_PGTABLE_LEVELS > 4 typedef struct { p4dval_t p4d; } p4d_t; static inline p4d_t native_make_p4d(pudval_t val) { return (p4d_t) { val }; } static inline p4dval_t native_p4d_val(p4d_t p4d) { return p4d.p4d; } #else #include <asm-generic/pgtable-nop4d.h> static inline p4d_t native_make_p4d(pudval_t val) { return (p4d_t) { .pgd = native_make_pgd((pgdval_t)val) }; } static inline p4dval_t native_p4d_val(p4d_t p4d) { return native_pgd_val(p4d.pgd); } #endif #if CONFIG_PGTABLE_LEVELS > 3 typedef struct { pudval_t pud; } pud_t; static inline pud_t native_make_pud(pmdval_t val) { return (pud_t) { val }; } static inline pudval_t native_pud_val(pud_t pud) { return pud.pud; } #else #include <asm-generic/pgtable-nopud.h> static inline pud_t native_make_pud(pudval_t val) { return (pud_t) { .p4d.pgd = native_make_pgd(val) }; } static inline pudval_t native_pud_val(pud_t pud) { return native_pgd_val(pud.p4d.pgd); } #endif #if CONFIG_PGTABLE_LEVELS > 2 typedef struct { pmdval_t pmd; } pmd_t; static inline pmd_t native_make_pmd(pmdval_t val) { return (pmd_t) { val }; } static inline pmdval_t native_pmd_val(pmd_t pmd) { return pmd.pmd; } #else #include <asm-generic/pgtable-nopmd.h> static inline pmd_t native_make_pmd(pmdval_t val) { return (pmd_t) { .pud.p4d.pgd = native_make_pgd(val) }; } static inline pmdval_t native_pmd_val(pmd_t pmd) { return native_pgd_val(pmd.pud.p4d.pgd); } #endif static inline p4dval_t p4d_pfn_mask(p4d_t p4d) { /* No 512 GiB huge pages yet */ return PTE_PFN_MASK; } static inline p4dval_t p4d_flags_mask(p4d_t p4d) { return ~p4d_pfn_mask(p4d); } static inline p4dval_t p4d_flags(p4d_t p4d) { return native_p4d_val(p4d) & p4d_flags_mask(p4d); } static inline pudval_t pud_pfn_mask(pud_t pud) { if (native_pud_val(pud) & _PAGE_PSE) return PHYSICAL_PUD_PAGE_MASK; else return PTE_PFN_MASK; } static inline pudval_t pud_flags_mask(pud_t pud) { return ~pud_pfn_mask(pud); } static inline pudval_t pud_flags(pud_t pud) { return native_pud_val(pud) & pud_flags_mask(pud); } static inline pmdval_t pmd_pfn_mask(pmd_t pmd) { if (native_pmd_val(pmd) & _PAGE_PSE) return PHYSICAL_PMD_PAGE_MASK; else return PTE_PFN_MASK; } static inline pmdval_t pmd_flags_mask(pmd_t pmd) { return ~pmd_pfn_mask(pmd); } static inline pmdval_t pmd_flags(pmd_t pmd) { return native_pmd_val(pmd) & pmd_flags_mask(pmd); } static inline pte_t native_make_pte(pteval_t val) { return (pte_t) { .pte = val }; } static inline pteval_t native_pte_val(pte_t pte) { return pte.pte; } static inline pteval_t pte_flags(pte_t pte) { return native_pte_val(pte) & PTE_FLAGS_MASK; } #define __pte2cm_idx(cb) \ ((((cb) >> (_PAGE_BIT_PAT - 2)) & 4) | \ (((cb) >> (_PAGE_BIT_PCD - 1)) & 2) | \ (((cb) >> _PAGE_BIT_PWT) & 1)) #define __cm_idx2pte(i) \ ((((i) & 4) << (_PAGE_BIT_PAT - 2)) | \ (((i) & 2) << (_PAGE_BIT_PCD - 1)) | \ (((i) & 1) << _PAGE_BIT_PWT)) unsigned long cachemode2protval(enum page_cache_mode pcm); static inline pgprotval_t protval_4k_2_large(pgprotval_t val) { return (val & ~(_PAGE_PAT | _PAGE_PAT_LARGE)) | ((val & _PAGE_PAT) << (_PAGE_BIT_PAT_LARGE - _PAGE_BIT_PAT)); } static inline pgprot_t pgprot_4k_2_large(pgprot_t pgprot) { return __pgprot(protval_4k_2_large(pgprot_val(pgprot))); } static inline pgprotval_t protval_large_2_4k(pgprotval_t val) { return (val & ~(_PAGE_PAT | _PAGE_PAT_LARGE)) | ((val & _PAGE_PAT_LARGE) >> (_PAGE_BIT_PAT_LARGE - _PAGE_BIT_PAT)); } static inline pgprot_t pgprot_large_2_4k(pgprot_t pgprot) { return __pgprot(protval_large_2_4k(pgprot_val(pgprot))); } typedef struct page *pgtable_t; extern pteval_t __supported_pte_mask; extern pteval_t __default_kernel_pte_mask; extern void set_nx(void); extern int nx_enabled; #define pgprot_writecombine pgprot_writecombine extern pgprot_t pgprot_writecombine(pgprot_t prot); #define pgprot_writethrough pgprot_writethrough extern pgprot_t pgprot_writethrough(pgprot_t prot); /* Indicate that x86 has its own track and untrack pfn vma functions */ #define __HAVE_PFNMAP_TRACKING #define __HAVE_PHYS_MEM_ACCESS_PROT struct file; pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size, pgprot_t vma_prot); /* Install a pte for a particular vaddr in kernel space. */ void set_pte_vaddr(unsigned long vaddr, pte_t pte); #ifdef CONFIG_X86_32 extern void native_pagetable_init(void); #else #define native_pagetable_init paging_init #endif struct seq_file; extern void arch_report_meminfo(struct seq_file *m); enum pg_level { PG_LEVEL_NONE, PG_LEVEL_4K, PG_LEVEL_2M, PG_LEVEL_1G, PG_LEVEL_512G, PG_LEVEL_NUM }; #ifdef CONFIG_PROC_FS extern void update_page_count(int level, unsigned long pages); #else static inline void update_page_count(int level, unsigned long pages) { } #endif /* * Helper function that returns the kernel pagetable entry controlling * the virtual address 'address'. NULL means no pagetable entry present. * NOTE: the return type is pte_t but if the pmd is PSE then we return it * as a pte too. */ extern pte_t *lookup_address(unsigned long address, unsigned int *level); extern pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address, unsigned int *level); struct mm_struct; extern pte_t *lookup_address_in_mm(struct mm_struct *mm, unsigned long address, unsigned int *level); extern pmd_t *lookup_pmd_address(unsigned long address); extern phys_addr_t slow_virt_to_phys(void *__address); extern int __init kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address, unsigned numpages, unsigned long page_flags); extern int __init kernel_unmap_pages_in_pgd(pgd_t *pgd, unsigned long address, unsigned long numpages); #endif /* !__ASSEMBLY__ */ #endif /* _ASM_X86_PGTABLE_DEFS_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_CLEANCACHE_H #define _LINUX_CLEANCACHE_H #include <linux/fs.h> #include <linux/exportfs.h> #include <linux/mm.h> #define CLEANCACHE_NO_POOL -1 #define CLEANCACHE_NO_BACKEND -2 #define CLEANCACHE_NO_BACKEND_SHARED -3 #define CLEANCACHE_KEY_MAX 6 /* * cleancache requires every file with a page in cleancache to have a * unique key unless/until the file is removed/truncated. For some * filesystems, the inode number is unique, but for "modern" filesystems * an exportable filehandle is required (see exportfs.h) */ struct cleancache_filekey { union { ino_t ino; __u32 fh[CLEANCACHE_KEY_MAX]; u32 key[CLEANCACHE_KEY_MAX]; } u; }; struct cleancache_ops { int (*init_fs)(size_t); int (*init_shared_fs)(uuid_t *uuid, size_t); int (*get_page)(int, struct cleancache_filekey, pgoff_t, struct page *); void (*put_page)(int, struct cleancache_filekey, pgoff_t, struct page *); void (*invalidate_page)(int, struct cleancache_filekey, pgoff_t); void (*invalidate_inode)(int, struct cleancache_filekey); void (*invalidate_fs)(int); }; extern int cleancache_register_ops(const struct cleancache_ops *ops); extern void __cleancache_init_fs(struct super_block *); extern void __cleancache_init_shared_fs(struct super_block *); extern int __cleancache_get_page(struct page *); extern void __cleancache_put_page(struct page *); extern void __cleancache_invalidate_page(struct address_space *, struct page *); extern void __cleancache_invalidate_inode(struct address_space *); extern void __cleancache_invalidate_fs(struct super_block *); #ifdef CONFIG_CLEANCACHE #define cleancache_enabled (1) static inline bool cleancache_fs_enabled_mapping(struct address_space *mapping) { return mapping->host->i_sb->cleancache_poolid >= 0; } static inline bool cleancache_fs_enabled(struct page *page) { return cleancache_fs_enabled_mapping(page->mapping); } #else #define cleancache_enabled (0) #define cleancache_fs_enabled(_page) (0) #define cleancache_fs_enabled_mapping(_page) (0) #endif /* * The shim layer provided by these inline functions allows the compiler * to reduce all cleancache hooks to nothingness if CONFIG_CLEANCACHE * is disabled, to a single global variable check if CONFIG_CLEANCACHE * is enabled but no cleancache "backend" has dynamically enabled it, * and, for the most frequent cleancache ops, to a single global variable * check plus a superblock element comparison if CONFIG_CLEANCACHE is enabled * and a cleancache backend has dynamically enabled cleancache, but the * filesystem referenced by that cleancache op has not enabled cleancache. * As a result, CONFIG_CLEANCACHE can be enabled by default with essentially * no measurable performance impact. */ static inline void cleancache_init_fs(struct super_block *sb) { if (cleancache_enabled) __cleancache_init_fs(sb); } static inline void cleancache_init_shared_fs(struct super_block *sb) { if (cleancache_enabled) __cleancache_init_shared_fs(sb); } static inline int cleancache_get_page(struct page *page) { if (cleancache_enabled && cleancache_fs_enabled(page)) return __cleancache_get_page(page); return -1; } static inline void cleancache_put_page(struct page *page) { if (cleancache_enabled && cleancache_fs_enabled(page)) __cleancache_put_page(page); } static inline void cleancache_invalidate_page(struct address_space *mapping, struct page *page) { /* careful... page->mapping is NULL sometimes when this is called */ if (cleancache_enabled && cleancache_fs_enabled_mapping(mapping)) __cleancache_invalidate_page(mapping, page); } static inline void cleancache_invalidate_inode(struct address_space *mapping) { if (cleancache_enabled && cleancache_fs_enabled_mapping(mapping)) __cleancache_invalidate_inode(mapping); } static inline void cleancache_invalidate_fs(struct super_block *sb) { if (cleancache_enabled) __cleancache_invalidate_fs(sb); } #endif /* _LINUX_CLEANCACHE_H */
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 /* SPDX-License-Identifier: GPL-2.0 */ /* * This header provides generic wrappers for memory access instrumentation that * the compiler cannot emit for: KASAN, KCSAN. */ #ifndef _LINUX_INSTRUMENTED_H #define _LINUX_INSTRUMENTED_H #include <linux/compiler.h> #include <linux/kasan-checks.h> #include <linux/kcsan-checks.h> #include <linux/types.h> /** * instrument_read - instrument regular read access * * Instrument a regular read access. The instrumentation should be inserted * before the actual read happens. * * @ptr address of access * @size size of access */ static __always_inline void instrument_read(const volatile void *v, size_t size) { kasan_check_read(v, size); kcsan_check_read(v, size); } /** * instrument_write - instrument regular write access * * Instrument a regular write access. The instrumentation should be inserted * before the actual write happens. * * @ptr address of access * @size size of access */ static __always_inline void instrument_write(const volatile void *v, size_t size) { kasan_check_write(v, size); kcsan_check_write(v, size); } /** * instrument_read_write - instrument regular read-write access * * Instrument a regular write access. The instrumentation should be inserted * before the actual write happens. * * @ptr address of access * @size size of access */ static __always_inline void instrument_read_write(const volatile void *v, size_t size) { kasan_check_write(v, size); kcsan_check_read_write(v, size); } /** * instrument_atomic_read - instrument atomic read access * * Instrument an atomic read access. The instrumentation should be inserted * before the actual read happens. * * @ptr address of access * @size size of access */ static __always_inline void instrument_atomic_read(const volatile void *v, size_t size) { kasan_check_read(v, size); kcsan_check_atomic_read(v, size); } /** * instrument_atomic_write - instrument atomic write access * * Instrument an atomic write access. The instrumentation should be inserted * before the actual write happens. * * @ptr address of access * @size size of access */ static __always_inline void instrument_atomic_write(const volatile void *v, size_t size) { kasan_check_write(v, size); kcsan_check_atomic_write(v, size); } /** * instrument_atomic_read_write - instrument atomic read-write access * * Instrument an atomic read-write access. The instrumentation should be * inserted before the actual write happens. * * @ptr address of access * @size size of access */ static __always_inline void instrument_atomic_read_write(const volatile void *v, size_t size) { kasan_check_write(v, size); kcsan_check_atomic_read_write(v, size); } /** * instrument_copy_to_user - instrument reads of copy_to_user * * Instrument reads from kernel memory, that are due to copy_to_user (and * variants). The instrumentation must be inserted before the accesses. * * @to destination address * @from source address * @n number of bytes to copy */ static __always_inline void instrument_copy_to_user(void __user *to, const void *from, unsigned long n) { kasan_check_read(from, n); kcsan_check_read(from, n); } /** * instrument_copy_from_user - instrument writes of copy_from_user * * Instrument writes to kernel memory, that are due to copy_from_user (and * variants). The instrumentation should be inserted before the accesses. * * @to destination address * @from source address * @n number of bytes to copy */ static __always_inline void instrument_copy_from_user(const void *to, const void __user *from, unsigned long n) { kasan_check_write(to, n); kcsan_check_write(to, n); } #endif /* _LINUX_INSTRUMENTED_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Definitions for the ICMP module. * * Version: @(#)icmp.h 1.0.4 05/13/93 * * Authors: Ross Biro * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> */ #ifndef _ICMP_H #define _ICMP_H #include <linux/icmp.h> #include <net/inet_sock.h> #include <net/snmp.h> #include <net/ip.h> struct icmp_err { int errno; unsigned int fatal:1; }; extern const struct icmp_err icmp_err_convert[]; #define ICMP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.icmp_statistics, field) #define __ICMP_INC_STATS(net, field) __SNMP_INC_STATS((net)->mib.icmp_statistics, field) #define ICMPMSGOUT_INC_STATS(net, field) SNMP_INC_STATS_ATOMIC_LONG((net)->mib.icmpmsg_statistics, field+256) #define ICMPMSGIN_INC_STATS(net, field) SNMP_INC_STATS_ATOMIC_LONG((net)->mib.icmpmsg_statistics, field) struct dst_entry; struct net_proto_family; struct sk_buff; struct net; void __icmp_send(struct sk_buff *skb_in, int type, int code, __be32 info, const struct ip_options *opt); static inline void icmp_send(struct sk_buff *skb_in, int type, int code, __be32 info) { __icmp_send(skb_in, type, code, info, &IPCB(skb_in)->opt); } #if IS_ENABLED(CONFIG_NF_NAT) void icmp_ndo_send(struct sk_buff *skb_in, int type, int code, __be32 info); #else static inline void icmp_ndo_send(struct sk_buff *skb_in, int type, int code, __be32 info) { struct ip_options opts = { 0 }; __icmp_send(skb_in, type, code, info, &opts); } #endif int icmp_rcv(struct sk_buff *skb); int icmp_err(struct sk_buff *skb, u32 info); int icmp_init(void); void icmp_out_count(struct net *net, unsigned char type); #endif /* _ICMP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _BLOCK_BLK_PM_H_ #define _BLOCK_BLK_PM_H_ #include <linux/pm_runtime.h> #ifdef CONFIG_PM static inline int blk_pm_resume_queue(const bool pm, struct request_queue *q) { if (!q->dev || !blk_queue_pm_only(q)) return 1; /* Nothing to do */ if (pm && q->rpm_status != RPM_SUSPENDED) return 1; /* Request allowed */ pm_request_resume(q->dev); return 0; } static inline void blk_pm_mark_last_busy(struct request *rq) { if (rq->q->dev && !(rq->rq_flags & RQF_PM)) pm_runtime_mark_last_busy(rq->q->dev); } static inline void blk_pm_requeue_request(struct request *rq) { lockdep_assert_held(&rq->q->queue_lock); if (rq->q->dev && !(rq->rq_flags & RQF_PM)) rq->q->nr_pending--; } static inline void blk_pm_add_request(struct request_queue *q, struct request *rq) { lockdep_assert_held(&q->queue_lock); if (q->dev && !(rq->rq_flags & RQF_PM)) q->nr_pending++; } static inline void blk_pm_put_request(struct request *rq) { lockdep_assert_held(&rq->q->queue_lock); if (rq->q->dev && !(rq->rq_flags & RQF_PM)) --rq->q->nr_pending; } #else static inline int blk_pm_resume_queue(const bool pm, struct request_queue *q) { return 1; } static inline void blk_pm_mark_last_busy(struct request *rq) { } static inline void blk_pm_requeue_request(struct request *rq) { } static inline void blk_pm_add_request(struct request_queue *q, struct request *rq) { } static inline void blk_pm_put_request(struct request *rq) { } #endif #endif /* _BLOCK_BLK_PM_H_ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 /* Copyright (C) 2016 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved. * * This file is provided under a dual BSD/GPLv2 license. * * SipHash: a fast short-input PRF * https://131002.net/siphash/ * * This implementation is specifically for SipHash2-4 for a secure PRF * and HalfSipHash1-3/SipHash1-3 for an insecure PRF only suitable for * hashtables. */ #ifndef _LINUX_SIPHASH_H #define _LINUX_SIPHASH_H #include <linux/types.h> #include <linux/kernel.h> #define SIPHASH_ALIGNMENT __alignof__(u64) typedef struct { u64 key[2]; } siphash_key_t; static inline bool siphash_key_is_zero(const siphash_key_t *key) { return !(key->key[0] | key->key[1]); } u64 __siphash_aligned(const void *data, size_t len, const siphash_key_t *key); u64 __siphash_unaligned(const void *data, size_t len, const siphash_key_t *key); u64 siphash_1u64(const u64 a, const siphash_key_t *key); u64 siphash_2u64(const u64 a, const u64 b, const siphash_key_t *key); u64 siphash_3u64(const u64 a, const u64 b, const u64 c, const siphash_key_t *key); u64 siphash_4u64(const u64 a, const u64 b, const u64 c, const u64 d, const siphash_key_t *key); u64 siphash_1u32(const u32 a, const siphash_key_t *key); u64 siphash_3u32(const u32 a, const u32 b, const u32 c, const siphash_key_t *key); static inline u64 siphash_2u32(const u32 a, const u32 b, const siphash_key_t *key) { return siphash_1u64((u64)b << 32 | a, key); } static inline u64 siphash_4u32(const u32 a, const u32 b, const u32 c, const u32 d, const siphash_key_t *key) { return siphash_2u64((u64)b << 32 | a, (u64)d << 32 | c, key); } static inline u64 ___siphash_aligned(const __le64 *data, size_t len, const siphash_key_t *key) { if (__builtin_constant_p(len) && len == 4) return siphash_1u32(le32_to_cpup((const __le32 *)data), key); if (__builtin_constant_p(len) && len == 8) return siphash_1u64(le64_to_cpu(data[0]), key); if (__builtin_constant_p(len) && len == 16) return siphash_2u64(le64_to_cpu(data[0]), le64_to_cpu(data[1]), key); if (__builtin_constant_p(len) && len == 24) return siphash_3u64(le64_to_cpu(data[0]), le64_to_cpu(data[1]), le64_to_cpu(data[2]), key); if (__builtin_constant_p(len) && len == 32) return siphash_4u64(le64_to_cpu(data[0]), le64_to_cpu(data[1]), le64_to_cpu(data[2]), le64_to_cpu(data[3]), key); return __siphash_aligned(data, len, key); } /** * siphash - compute 64-bit siphash PRF value * @data: buffer to hash * @size: size of @data * @key: the siphash key */ static inline u64 siphash(const void *data, size_t len, const siphash_key_t *key) { if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || !IS_ALIGNED((unsigned long)data, SIPHASH_ALIGNMENT)) return __siphash_unaligned(data, len, key); return ___siphash_aligned(data, len, key); } #define HSIPHASH_ALIGNMENT __alignof__(unsigned long) typedef struct { unsigned long key[2]; } hsiphash_key_t; u32 __hsiphash_aligned(const void *data, size_t len, const hsiphash_key_t *key); u32 __hsiphash_unaligned(const void *data, size_t len, const hsiphash_key_t *key); u32 hsiphash_1u32(const u32 a, const hsiphash_key_t *key); u32 hsiphash_2u32(const u32 a, const u32 b, const hsiphash_key_t *key); u32 hsiphash_3u32(const u32 a, const u32 b, const u32 c, const hsiphash_key_t *key); u32 hsiphash_4u32(const u32 a, const u32 b, const u32 c, const u32 d, const hsiphash_key_t *key); static inline u32 ___hsiphash_aligned(const __le32 *data, size_t len, const hsiphash_key_t *key) { if (__builtin_constant_p(len) && len == 4) return hsiphash_1u32(le32_to_cpu(data[0]), key); if (__builtin_constant_p(len) && len == 8) return hsiphash_2u32(le32_to_cpu(data[0]), le32_to_cpu(data[1]), key); if (__builtin_constant_p(len) && len == 12) return hsiphash_3u32(le32_to_cpu(data[0]), le32_to_cpu(data[1]), le32_to_cpu(data[2]), key); if (__builtin_constant_p(len) && len == 16) return hsiphash_4u32(le32_to_cpu(data[0]), le32_to_cpu(data[1]), le32_to_cpu(data[2]), le32_to_cpu(data[3]), key); return __hsiphash_aligned(data, len, key); } /** * hsiphash - compute 32-bit hsiphash PRF value * @data: buffer to hash * @size: size of @data * @key: the hsiphash key */ static inline u32 hsiphash(const void *data, size_t len, const hsiphash_key_t *key) { if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || !IS_ALIGNED((unsigned long)data, HSIPHASH_ALIGNMENT)) return __hsiphash_unaligned(data, len, key); return ___hsiphash_aligned(data, len, key); } #endif /* _LINUX_SIPHASH_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM 9p #if !defined(_TRACE_9P_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_9P_H #include <linux/tracepoint.h> #define P9_MSG_T \ EM( P9_TLERROR, "P9_TLERROR" ) \ EM( P9_RLERROR, "P9_RLERROR" ) \ EM( P9_TSTATFS, "P9_TSTATFS" ) \ EM( P9_RSTATFS, "P9_RSTATFS" ) \ EM( P9_TLOPEN, "P9_TLOPEN" ) \ EM( P9_RLOPEN, "P9_RLOPEN" ) \ EM( P9_TLCREATE, "P9_TLCREATE" ) \ EM( P9_RLCREATE, "P9_RLCREATE" ) \ EM( P9_TSYMLINK, "P9_TSYMLINK" ) \ EM( P9_RSYMLINK, "P9_RSYMLINK" ) \ EM( P9_TMKNOD, "P9_TMKNOD" ) \ EM( P9_RMKNOD, "P9_RMKNOD" ) \ EM( P9_TRENAME, "P9_TRENAME" ) \ EM( P9_RRENAME, "P9_RRENAME" ) \ EM( P9_TREADLINK, "P9_TREADLINK" ) \ EM( P9_RREADLINK, "P9_RREADLINK" ) \ EM( P9_TGETATTR, "P9_TGETATTR" ) \ EM( P9_RGETATTR, "P9_RGETATTR" ) \ EM( P9_TSETATTR, "P9_TSETATTR" ) \ EM( P9_RSETATTR, "P9_RSETATTR" ) \ EM( P9_TXATTRWALK, "P9_TXATTRWALK" ) \ EM( P9_RXATTRWALK, "P9_RXATTRWALK" ) \ EM( P9_TXATTRCREATE, "P9_TXATTRCREATE" ) \ EM( P9_RXATTRCREATE, "P9_RXATTRCREATE" ) \ EM( P9_TREADDIR, "P9_TREADDIR" ) \ EM( P9_RREADDIR, "P9_RREADDIR" ) \ EM( P9_TFSYNC, "P9_TFSYNC" ) \ EM( P9_RFSYNC, "P9_RFSYNC" ) \ EM( P9_TLOCK, "P9_TLOCK" ) \ EM( P9_RLOCK, "P9_RLOCK" ) \ EM( P9_TGETLOCK, "P9_TGETLOCK" ) \ EM( P9_RGETLOCK, "P9_RGETLOCK" ) \ EM( P9_TLINK, "P9_TLINK" ) \ EM( P9_RLINK, "P9_RLINK" ) \ EM( P9_TMKDIR, "P9_TMKDIR" ) \ EM( P9_RMKDIR, "P9_RMKDIR" ) \ EM( P9_TRENAMEAT, "P9_TRENAMEAT" ) \ EM( P9_RRENAMEAT, "P9_RRENAMEAT" ) \ EM( P9_TUNLINKAT, "P9_TUNLINKAT" ) \ EM( P9_RUNLINKAT, "P9_RUNLINKAT" ) \ EM( P9_TVERSION, "P9_TVERSION" ) \ EM( P9_RVERSION, "P9_RVERSION" ) \ EM( P9_TAUTH, "P9_TAUTH" ) \ EM( P9_RAUTH, "P9_RAUTH" ) \ EM( P9_TATTACH, "P9_TATTACH" ) \ EM( P9_RATTACH, "P9_RATTACH" ) \ EM( P9_TERROR, "P9_TERROR" ) \ EM( P9_RERROR, "P9_RERROR" ) \ EM( P9_TFLUSH, "P9_TFLUSH" ) \ EM( P9_RFLUSH, "P9_RFLUSH" ) \ EM( P9_TWALK, "P9_TWALK" ) \ EM( P9_RWALK, "P9_RWALK" ) \ EM( P9_TOPEN, "P9_TOPEN" ) \ EM( P9_ROPEN, "P9_ROPEN" ) \ EM( P9_TCREATE, "P9_TCREATE" ) \ EM( P9_RCREATE, "P9_RCREATE" ) \ EM( P9_TREAD, "P9_TREAD" ) \ EM( P9_RREAD, "P9_RREAD" ) \ EM( P9_TWRITE, "P9_TWRITE" ) \ EM( P9_RWRITE, "P9_RWRITE" ) \ EM( P9_TCLUNK, "P9_TCLUNK" ) \ EM( P9_RCLUNK, "P9_RCLUNK" ) \ EM( P9_TREMOVE, "P9_TREMOVE" ) \ EM( P9_RREMOVE, "P9_RREMOVE" ) \ EM( P9_TSTAT, "P9_TSTAT" ) \ EM( P9_RSTAT, "P9_RSTAT" ) \ EM( P9_TWSTAT, "P9_TWSTAT" ) \ EMe(P9_RWSTAT, "P9_RWSTAT" ) /* Define EM() to export the enums to userspace via TRACE_DEFINE_ENUM() */ #undef EM #undef EMe #define EM(a, b) TRACE_DEFINE_ENUM(a); #define EMe(a, b) TRACE_DEFINE_ENUM(a); P9_MSG_T /* * Now redefine the EM() and EMe() macros to map the enums to the strings * that will be printed in the output. */ #undef EM #undef EMe #define EM(a, b) { a, b }, #define EMe(a, b) { a, b } #define show_9p_op(type) \ __print_symbolic(type, P9_MSG_T) TRACE_EVENT(9p_client_req, TP_PROTO(struct p9_client *clnt, int8_t type, int tag), TP_ARGS(clnt, type, tag), TP_STRUCT__entry( __field( void *, clnt ) __field( __u8, type ) __field( __u32, tag ) ), TP_fast_assign( __entry->clnt = clnt; __entry->type = type; __entry->tag = tag; ), TP_printk("client %lu request %s tag %d", (long)__entry->clnt, show_9p_op(__entry->type), __entry->tag) ); TRACE_EVENT(9p_client_res, TP_PROTO(struct p9_client *clnt, int8_t type, int tag, int err), TP_ARGS(clnt, type, tag, err), TP_STRUCT__entry( __field( void *, clnt ) __field( __u8, type ) __field( __u32, tag ) __field( __u32, err ) ), TP_fast_assign( __entry->clnt = clnt; __entry->type = type; __entry->tag = tag; __entry->err = err; ), TP_printk("client %lu response %s tag %d err %d", (long)__entry->clnt, show_9p_op(__entry->type), __entry->tag, __entry->err) ); /* dump 32 bytes of protocol data */ #define P9_PROTO_DUMP_SZ 32 TRACE_EVENT(9p_protocol_dump, TP_PROTO(struct p9_client *clnt, struct p9_fcall *pdu), TP_ARGS(clnt, pdu), TP_STRUCT__entry( __field( void *, clnt ) __field( __u8, type ) __field( __u16, tag ) __array( unsigned char, line, P9_PROTO_DUMP_SZ ) ), TP_fast_assign( __entry->clnt = clnt; __entry->type = pdu->id; __entry->tag = pdu->tag; memcpy(__entry->line, pdu->sdata, P9_PROTO_DUMP_SZ); ), TP_printk("clnt %lu %s(tag = %d)\n%.3x: %16ph\n%.3x: %16ph\n", (unsigned long)__entry->clnt, show_9p_op(__entry->type), __entry->tag, 0, __entry->line, 16, __entry->line + 16) ); #endif /* _TRACE_9P_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * NET Generic infrastructure for INET connection oriented protocols. * * Definitions for inet_connection_sock * * Authors: Many people, see the TCP sources * * From code originally in TCP */ #ifndef _INET_CONNECTION_SOCK_H #define _INET_CONNECTION_SOCK_H #include <linux/compiler.h> #include <linux/string.h> #include <linux/timer.h> #include <linux/poll.h> #include <linux/kernel.h> #include <linux/sockptr.h> #include <net/inet_sock.h> #include <net/request_sock.h> /* Cancel timers, when they are not required. */ #undef INET_CSK_CLEAR_TIMERS struct inet_bind_bucket; struct tcp_congestion_ops; /* * Pointers to address related TCP functions * (i.e. things that depend on the address family) */ struct inet_connection_sock_af_ops { int (*queue_xmit)(struct sock *sk, struct sk_buff *skb, struct flowi *fl); void (*send_check)(struct sock *sk, struct sk_buff *skb); int (*rebuild_header)(struct sock *sk); void (*sk_rx_dst_set)(struct sock *sk, const struct sk_buff *skb); int (*conn_request)(struct sock *sk, struct sk_buff *skb); struct sock *(*syn_recv_sock)(const struct sock *sk, struct sk_buff *skb, struct request_sock *req, struct dst_entry *dst, struct request_sock *req_unhash, bool *own_req); u16 net_header_len; u16 net_frag_header_len; u16 sockaddr_len; int (*setsockopt)(struct sock *sk, int level, int optname, sockptr_t optval, unsigned int optlen); int (*getsockopt)(struct sock *sk, int level, int optname, char __user *optval, int __user *optlen); void (*addr2sockaddr)(struct sock *sk, struct sockaddr *); void (*mtu_reduced)(struct sock *sk); }; /** inet_connection_sock - INET connection oriented sock * * @icsk_accept_queue: FIFO of established children * @icsk_bind_hash: Bind node * @icsk_timeout: Timeout * @icsk_retransmit_timer: Resend (no ack) * @icsk_rto: Retransmit timeout * @icsk_pmtu_cookie Last pmtu seen by socket * @icsk_ca_ops Pluggable congestion control hook * @icsk_af_ops Operations which are AF_INET{4,6} specific * @icsk_ulp_ops Pluggable ULP control hook * @icsk_ulp_data ULP private data * @icsk_clean_acked Clean acked data hook * @icsk_listen_portaddr_node hash to the portaddr listener hashtable * @icsk_ca_state: Congestion control state * @icsk_retransmits: Number of unrecovered [RTO] timeouts * @icsk_pending: Scheduled timer event * @icsk_backoff: Backoff * @icsk_syn_retries: Number of allowed SYN (or equivalent) retries * @icsk_probes_out: unanswered 0 window probes * @icsk_ext_hdr_len: Network protocol overhead (IP/IPv6 options) * @icsk_ack: Delayed ACK control data * @icsk_mtup; MTU probing control data * @icsk_probes_tstamp: Probe timestamp (cleared by non-zero window ack) * @icsk_user_timeout: TCP_USER_TIMEOUT value */ struct inet_connection_sock { /* inet_sock has to be the first member! */ struct inet_sock icsk_inet; struct request_sock_queue icsk_accept_queue; struct inet_bind_bucket *icsk_bind_hash; unsigned long icsk_timeout; struct timer_list icsk_retransmit_timer; struct timer_list icsk_delack_timer; __u32 icsk_rto; __u32 icsk_rto_min; __u32 icsk_delack_max; __u32 icsk_pmtu_cookie; const struct tcp_congestion_ops *icsk_ca_ops; const struct inet_connection_sock_af_ops *icsk_af_ops; const struct tcp_ulp_ops *icsk_ulp_ops; void __rcu *icsk_ulp_data; void (*icsk_clean_acked)(struct sock *sk, u32 acked_seq); struct hlist_node icsk_listen_portaddr_node; unsigned int (*icsk_sync_mss)(struct sock *sk, u32 pmtu); __u8 icsk_ca_state:5, icsk_ca_initialized:1, icsk_ca_setsockopt:1, icsk_ca_dst_locked:1; __u8 icsk_retransmits; __u8 icsk_pending; __u8 icsk_backoff; __u8 icsk_syn_retries; __u8 icsk_probes_out; __u16 icsk_ext_hdr_len; struct { __u8 pending; /* ACK is pending */ __u8 quick; /* Scheduled number of quick acks */ __u8 pingpong; /* The session is interactive */ __u8 retry; /* Number of attempts */ __u32 ato; /* Predicted tick of soft clock */ unsigned long timeout; /* Currently scheduled timeout */ __u32 lrcvtime; /* timestamp of last received data packet */ __u16 last_seg_size; /* Size of last incoming segment */ __u16 rcv_mss; /* MSS used for delayed ACK decisions */ } icsk_ack; struct { int enabled; /* Range of MTUs to search */ int search_high; int search_low; /* Information on the current probe. */ int probe_size; u32 probe_timestamp; } icsk_mtup; u32 icsk_probes_tstamp; u32 icsk_user_timeout; u64 icsk_ca_priv[104 / sizeof(u64)]; #define ICSK_CA_PRIV_SIZE (13 * sizeof(u64)) }; #define ICSK_TIME_RETRANS 1 /* Retransmit timer */ #define ICSK_TIME_DACK 2 /* Delayed ack timer */ #define ICSK_TIME_PROBE0 3 /* Zero window probe timer */ #define ICSK_TIME_EARLY_RETRANS 4 /* Early retransmit timer */ #define ICSK_TIME_LOSS_PROBE 5 /* Tail loss probe timer */ #define ICSK_TIME_REO_TIMEOUT 6 /* Reordering timer */ static inline struct inet_connection_sock *inet_csk(const struct sock *sk) { return (struct inet_connection_sock *)sk; } static inline void *inet_csk_ca(const struct sock *sk) { return (void *)inet_csk(sk)->icsk_ca_priv; } struct sock *inet_csk_clone_lock(const struct sock *sk, const struct request_sock *req, const gfp_t priority); enum inet_csk_ack_state_t { ICSK_ACK_SCHED = 1, ICSK_ACK_TIMER = 2, ICSK_ACK_PUSHED = 4, ICSK_ACK_PUSHED2 = 8, ICSK_ACK_NOW = 16 /* Send the next ACK immediately (once) */ }; void inet_csk_init_xmit_timers(struct sock *sk, void (*retransmit_handler)(struct timer_list *), void (*delack_handler)(struct timer_list *), void (*keepalive_handler)(struct timer_list *)); void inet_csk_clear_xmit_timers(struct sock *sk); static inline void inet_csk_schedule_ack(struct sock *sk) { inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_SCHED; } static inline int inet_csk_ack_scheduled(const struct sock *sk) { return inet_csk(sk)->icsk_ack.pending & ICSK_ACK_SCHED; } static inline void inet_csk_delack_init(struct sock *sk) { memset(&inet_csk(sk)->icsk_ack, 0, sizeof(inet_csk(sk)->icsk_ack)); } void inet_csk_delete_keepalive_timer(struct sock *sk); void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long timeout); static inline void inet_csk_clear_xmit_timer(struct sock *sk, const int what) { struct inet_connection_sock *icsk = inet_csk(sk); if (what == ICSK_TIME_RETRANS || what == ICSK_TIME_PROBE0) { icsk->icsk_pending = 0; #ifdef INET_CSK_CLEAR_TIMERS sk_stop_timer(sk, &icsk->icsk_retransmit_timer); #endif } else if (what == ICSK_TIME_DACK) { icsk->icsk_ack.pending = 0; icsk->icsk_ack.retry = 0; #ifdef INET_CSK_CLEAR_TIMERS sk_stop_timer(sk, &icsk->icsk_delack_timer); #endif } else { pr_debug("inet_csk BUG: unknown timer value\n"); } } /* * Reset the retransmission timer */ static inline void inet_csk_reset_xmit_timer(struct sock *sk, const int what, unsigned long when, const unsigned long max_when) { struct inet_connection_sock *icsk = inet_csk(sk); if (when > max_when) { pr_debug("reset_xmit_timer: sk=%p %d when=0x%lx, caller=%p\n", sk, what, when, (void *)_THIS_IP_); when = max_when; } if (what == ICSK_TIME_RETRANS || what == ICSK_TIME_PROBE0 || what == ICSK_TIME_EARLY_RETRANS || what == ICSK_TIME_LOSS_PROBE || what == ICSK_TIME_REO_TIMEOUT) { icsk->icsk_pending = what; icsk->icsk_timeout = jiffies + when; sk_reset_timer(sk, &icsk->icsk_retransmit_timer, icsk->icsk_timeout); } else if (what == ICSK_TIME_DACK) { icsk->icsk_ack.pending |= ICSK_ACK_TIMER; icsk->icsk_ack.timeout = jiffies + when; sk_reset_timer(sk, &icsk->icsk_delack_timer, icsk->icsk_ack.timeout); } else { pr_debug("inet_csk BUG: unknown timer value\n"); } } static inline unsigned long inet_csk_rto_backoff(const struct inet_connection_sock *icsk, unsigned long max_when) { u64 when = (u64)icsk->icsk_rto << icsk->icsk_backoff; return (unsigned long)min_t(u64, when, max_when); } struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern); int inet_csk_get_port(struct sock *sk, unsigned short snum); struct dst_entry *inet_csk_route_req(const struct sock *sk, struct flowi4 *fl4, const struct request_sock *req); struct dst_entry *inet_csk_route_child_sock(const struct sock *sk, struct sock *newsk, const struct request_sock *req); struct sock *inet_csk_reqsk_queue_add(struct sock *sk, struct request_sock *req, struct sock *child); void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req, unsigned long timeout); struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child, struct request_sock *req, bool own_req); static inline void inet_csk_reqsk_queue_added(struct sock *sk) { reqsk_queue_added(&inet_csk(sk)->icsk_accept_queue); } static inline int inet_csk_reqsk_queue_len(const struct sock *sk) { return reqsk_queue_len(&inet_csk(sk)->icsk_accept_queue); } static inline int inet_csk_reqsk_queue_is_full(const struct sock *sk) { return inet_csk_reqsk_queue_len(sk) >= sk->sk_max_ack_backlog; } bool inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req); void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req); static inline void inet_csk_prepare_for_destroy_sock(struct sock *sk) { /* The below has to be done to allow calling inet_csk_destroy_sock */ sock_set_flag(sk, SOCK_DEAD); this_cpu_inc(*sk->sk_prot->orphan_count); } void inet_csk_destroy_sock(struct sock *sk); void inet_csk_prepare_forced_close(struct sock *sk); /* * LISTEN is a special case for poll.. */ static inline __poll_t inet_csk_listen_poll(const struct sock *sk) { return !reqsk_queue_empty(&inet_csk(sk)->icsk_accept_queue) ? (EPOLLIN | EPOLLRDNORM) : 0; } int inet_csk_listen_start(struct sock *sk, int backlog); void inet_csk_listen_stop(struct sock *sk); void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr); /* update the fast reuse flag when adding a socket */ void inet_csk_update_fastreuse(struct inet_bind_bucket *tb, struct sock *sk); struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu); #define TCP_PINGPONG_THRESH 3 static inline void inet_csk_enter_pingpong_mode(struct sock *sk) { inet_csk(sk)->icsk_ack.pingpong = TCP_PINGPONG_THRESH; } static inline void inet_csk_exit_pingpong_mode(struct sock *sk) { inet_csk(sk)->icsk_ack.pingpong = 0; } static inline bool inet_csk_in_pingpong_mode(struct sock *sk) { return inet_csk(sk)->icsk_ack.pingpong >= TCP_PINGPONG_THRESH; } static inline void inet_csk_inc_pingpong_cnt(struct sock *sk) { struct inet_connection_sock *icsk = inet_csk(sk); if (icsk->icsk_ack.pingpong < U8_MAX) icsk->icsk_ack.pingpong++; } static inline bool inet_csk_has_ulp(struct sock *sk) { return inet_sk(sk)->is_icsk && !!inet_csk(sk)->icsk_ulp_ops; } #endif /* _INET_CONNECTION_SOCK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM writeback #if !defined(_TRACE_WRITEBACK_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_WRITEBACK_H #include <linux/tracepoint.h> #include <linux/backing-dev.h> #include <linux/writeback.h> #define show_inode_state(state) \ __print_flags(state, "|", \ {I_DIRTY_SYNC, "I_DIRTY_SYNC"}, \ {I_DIRTY_DATASYNC, "I_DIRTY_DATASYNC"}, \ {I_DIRTY_PAGES, "I_DIRTY_PAGES"}, \ {I_NEW, "I_NEW"}, \ {I_WILL_FREE, "I_WILL_FREE"}, \ {I_FREEING, "I_FREEING"}, \ {I_CLEAR, "I_CLEAR"}, \ {I_SYNC, "I_SYNC"}, \ {I_DIRTY_TIME, "I_DIRTY_TIME"}, \ {I_REFERENCED, "I_REFERENCED"} \ ) /* enums need to be exported to user space */ #undef EM #undef EMe #define EM(a,b) TRACE_DEFINE_ENUM(a); #define EMe(a,b) TRACE_DEFINE_ENUM(a); #define WB_WORK_REASON \ EM( WB_REASON_BACKGROUND, "background") \ EM( WB_REASON_VMSCAN, "vmscan") \ EM( WB_REASON_SYNC, "sync") \ EM( WB_REASON_PERIODIC, "periodic") \ EM( WB_REASON_LAPTOP_TIMER, "laptop_timer") \ EM( WB_REASON_FS_FREE_SPACE, "fs_free_space") \ EMe(WB_REASON_FORKER_THREAD, "forker_thread") WB_WORK_REASON /* * Now redefine the EM() and EMe() macros to map the enums to the strings * that will be printed in the output. */ #undef EM #undef EMe #define EM(a,b) { a, b }, #define EMe(a,b) { a, b } struct wb_writeback_work; DECLARE_EVENT_CLASS(writeback_page_template, TP_PROTO(struct page *page, struct address_space *mapping), TP_ARGS(page, mapping), TP_STRUCT__entry ( __array(char, name, 32) __field(ino_t, ino) __field(pgoff_t, index) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(mapping ? inode_to_bdi(mapping->host) : NULL), 32); __entry->ino = mapping ? mapping->host->i_ino : 0; __entry->index = page->index; ), TP_printk("bdi %s: ino=%lu index=%lu", __entry->name, (unsigned long)__entry->ino, __entry->index ) ); DEFINE_EVENT(writeback_page_template, writeback_dirty_page, TP_PROTO(struct page *page, struct address_space *mapping), TP_ARGS(page, mapping) ); DEFINE_EVENT(writeback_page_template, wait_on_page_writeback, TP_PROTO(struct page *page, struct address_space *mapping), TP_ARGS(page, mapping) ); DECLARE_EVENT_CLASS(writeback_dirty_inode_template, TP_PROTO(struct inode *inode, int flags), TP_ARGS(inode, flags), TP_STRUCT__entry ( __array(char, name, 32) __field(ino_t, ino) __field(unsigned long, state) __field(unsigned long, flags) ), TP_fast_assign( struct backing_dev_info *bdi = inode_to_bdi(inode); /* may be called for files on pseudo FSes w/ unregistered bdi */ strscpy_pad(__entry->name, bdi_dev_name(bdi), 32); __entry->ino = inode->i_ino; __entry->state = inode->i_state; __entry->flags = flags; ), TP_printk("bdi %s: ino=%lu state=%s flags=%s", __entry->name, (unsigned long)__entry->ino, show_inode_state(__entry->state), show_inode_state(__entry->flags) ) ); DEFINE_EVENT(writeback_dirty_inode_template, writeback_mark_inode_dirty, TP_PROTO(struct inode *inode, int flags), TP_ARGS(inode, flags) ); DEFINE_EVENT(writeback_dirty_inode_template, writeback_dirty_inode_start, TP_PROTO(struct inode *inode, int flags), TP_ARGS(inode, flags) ); DEFINE_EVENT(writeback_dirty_inode_template, writeback_dirty_inode, TP_PROTO(struct inode *inode, int flags), TP_ARGS(inode, flags) ); #ifdef CREATE_TRACE_POINTS #ifdef CONFIG_CGROUP_WRITEBACK static inline ino_t __trace_wb_assign_cgroup(struct bdi_writeback *wb) { return cgroup_ino(wb->memcg_css->cgroup); } static inline ino_t __trace_wbc_assign_cgroup(struct writeback_control *wbc) { if (wbc->wb) return __trace_wb_assign_cgroup(wbc->wb); else return 1; } #else /* CONFIG_CGROUP_WRITEBACK */ static inline ino_t __trace_wb_assign_cgroup(struct bdi_writeback *wb) { return 1; } static inline ino_t __trace_wbc_assign_cgroup(struct writeback_control *wbc) { return 1; } #endif /* CONFIG_CGROUP_WRITEBACK */ #endif /* CREATE_TRACE_POINTS */ #ifdef CONFIG_CGROUP_WRITEBACK TRACE_EVENT(inode_foreign_history, TP_PROTO(struct inode *inode, struct writeback_control *wbc, unsigned int history), TP_ARGS(inode, wbc, history), TP_STRUCT__entry( __array(char, name, 32) __field(ino_t, ino) __field(ino_t, cgroup_ino) __field(unsigned int, history) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(inode_to_bdi(inode)), 32); __entry->ino = inode->i_ino; __entry->cgroup_ino = __trace_wbc_assign_cgroup(wbc); __entry->history = history; ), TP_printk("bdi %s: ino=%lu cgroup_ino=%lu history=0x%x", __entry->name, (unsigned long)__entry->ino, (unsigned long)__entry->cgroup_ino, __entry->history ) ); TRACE_EVENT(inode_switch_wbs, TP_PROTO(struct inode *inode, struct bdi_writeback *old_wb, struct bdi_writeback *new_wb), TP_ARGS(inode, old_wb, new_wb), TP_STRUCT__entry( __array(char, name, 32) __field(ino_t, ino) __field(ino_t, old_cgroup_ino) __field(ino_t, new_cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(old_wb->bdi), 32); __entry->ino = inode->i_ino; __entry->old_cgroup_ino = __trace_wb_assign_cgroup(old_wb); __entry->new_cgroup_ino = __trace_wb_assign_cgroup(new_wb); ), TP_printk("bdi %s: ino=%lu old_cgroup_ino=%lu new_cgroup_ino=%lu", __entry->name, (unsigned long)__entry->ino, (unsigned long)__entry->old_cgroup_ino, (unsigned long)__entry->new_cgroup_ino ) ); TRACE_EVENT(track_foreign_dirty, TP_PROTO(struct page *page, struct bdi_writeback *wb), TP_ARGS(page, wb), TP_STRUCT__entry( __array(char, name, 32) __field(u64, bdi_id) __field(ino_t, ino) __field(unsigned int, memcg_id) __field(ino_t, cgroup_ino) __field(ino_t, page_cgroup_ino) ), TP_fast_assign( struct address_space *mapping = page_mapping(page); struct inode *inode = mapping ? mapping->host : NULL; strscpy_pad(__entry->name, bdi_dev_name(wb->bdi), 32); __entry->bdi_id = wb->bdi->id; __entry->ino = inode ? inode->i_ino : 0; __entry->memcg_id = wb->memcg_css->id; __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); __entry->page_cgroup_ino = cgroup_ino(page->mem_cgroup->css.cgroup); ), TP_printk("bdi %s[%llu]: ino=%lu memcg_id=%u cgroup_ino=%lu page_cgroup_ino=%lu", __entry->name, __entry->bdi_id, (unsigned long)__entry->ino, __entry->memcg_id, (unsigned long)__entry->cgroup_ino, (unsigned long)__entry->page_cgroup_ino ) ); TRACE_EVENT(flush_foreign, TP_PROTO(struct bdi_writeback *wb, unsigned int frn_bdi_id, unsigned int frn_memcg_id), TP_ARGS(wb, frn_bdi_id, frn_memcg_id), TP_STRUCT__entry( __array(char, name, 32) __field(ino_t, cgroup_ino) __field(unsigned int, frn_bdi_id) __field(unsigned int, frn_memcg_id) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(wb->bdi), 32); __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); __entry->frn_bdi_id = frn_bdi_id; __entry->frn_memcg_id = frn_memcg_id; ), TP_printk("bdi %s: cgroup_ino=%lu frn_bdi_id=%u frn_memcg_id=%u", __entry->name, (unsigned long)__entry->cgroup_ino, __entry->frn_bdi_id, __entry->frn_memcg_id ) ); #endif DECLARE_EVENT_CLASS(writeback_write_inode_template, TP_PROTO(struct inode *inode, struct writeback_control *wbc), TP_ARGS(inode, wbc), TP_STRUCT__entry ( __array(char, name, 32) __field(ino_t, ino) __field(int, sync_mode) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(inode_to_bdi(inode)), 32); __entry->ino = inode->i_ino; __entry->sync_mode = wbc->sync_mode; __entry->cgroup_ino = __trace_wbc_assign_cgroup(wbc); ), TP_printk("bdi %s: ino=%lu sync_mode=%d cgroup_ino=%lu", __entry->name, (unsigned long)__entry->ino, __entry->sync_mode, (unsigned long)__entry->cgroup_ino ) ); DEFINE_EVENT(writeback_write_inode_template, writeback_write_inode_start, TP_PROTO(struct inode *inode, struct writeback_control *wbc), TP_ARGS(inode, wbc) ); DEFINE_EVENT(writeback_write_inode_template, writeback_write_inode, TP_PROTO(struct inode *inode, struct writeback_control *wbc), TP_ARGS(inode, wbc) ); DECLARE_EVENT_CLASS(writeback_work_class, TP_PROTO(struct bdi_writeback *wb, struct wb_writeback_work *work), TP_ARGS(wb, work), TP_STRUCT__entry( __array(char, name, 32) __field(long, nr_pages) __field(dev_t, sb_dev) __field(int, sync_mode) __field(int, for_kupdate) __field(int, range_cyclic) __field(int, for_background) __field(int, reason) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(wb->bdi), 32); __entry->nr_pages = work->nr_pages; __entry->sb_dev = work->sb ? work->sb->s_dev : 0; __entry->sync_mode = work->sync_mode; __entry->for_kupdate = work->for_kupdate; __entry->range_cyclic = work->range_cyclic; __entry->for_background = work->for_background; __entry->reason = work->reason; __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); ), TP_printk("bdi %s: sb_dev %d:%d nr_pages=%ld sync_mode=%d " "kupdate=%d range_cyclic=%d background=%d reason=%s cgroup_ino=%lu", __entry->name, MAJOR(__entry->sb_dev), MINOR(__entry->sb_dev), __entry->nr_pages, __entry->sync_mode, __entry->for_kupdate, __entry->range_cyclic, __entry->for_background, __print_symbolic(__entry->reason, WB_WORK_REASON), (unsigned long)__entry->cgroup_ino ) ); #define DEFINE_WRITEBACK_WORK_EVENT(name) \ DEFINE_EVENT(writeback_work_class, name, \ TP_PROTO(struct bdi_writeback *wb, struct wb_writeback_work *work), \ TP_ARGS(wb, work)) DEFINE_WRITEBACK_WORK_EVENT(writeback_queue); DEFINE_WRITEBACK_WORK_EVENT(writeback_exec); DEFINE_WRITEBACK_WORK_EVENT(writeback_start); DEFINE_WRITEBACK_WORK_EVENT(writeback_written); DEFINE_WRITEBACK_WORK_EVENT(writeback_wait); TRACE_EVENT(writeback_pages_written, TP_PROTO(long pages_written), TP_ARGS(pages_written), TP_STRUCT__entry( __field(long, pages) ), TP_fast_assign( __entry->pages = pages_written; ), TP_printk("%ld", __entry->pages) ); DECLARE_EVENT_CLASS(writeback_class, TP_PROTO(struct bdi_writeback *wb), TP_ARGS(wb), TP_STRUCT__entry( __array(char, name, 32) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(wb->bdi), 32); __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); ), TP_printk("bdi %s: cgroup_ino=%lu", __entry->name, (unsigned long)__entry->cgroup_ino ) ); #define DEFINE_WRITEBACK_EVENT(name) \ DEFINE_EVENT(writeback_class, name, \ TP_PROTO(struct bdi_writeback *wb), \ TP_ARGS(wb)) DEFINE_WRITEBACK_EVENT(writeback_wake_background); TRACE_EVENT(writeback_bdi_register, TP_PROTO(struct backing_dev_info *bdi), TP_ARGS(bdi), TP_STRUCT__entry( __array(char, name, 32) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(bdi), 32); ), TP_printk("bdi %s", __entry->name ) ); DECLARE_EVENT_CLASS(wbc_class, TP_PROTO(struct writeback_control *wbc, struct backing_dev_info *bdi), TP_ARGS(wbc, bdi), TP_STRUCT__entry( __array(char, name, 32) __field(long, nr_to_write) __field(long, pages_skipped) __field(int, sync_mode) __field(int, for_kupdate) __field(int, for_background) __field(int, for_reclaim) __field(int, range_cyclic) __field(long, range_start) __field(long, range_end) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(bdi), 32); __entry->nr_to_write = wbc->nr_to_write; __entry->pages_skipped = wbc->pages_skipped; __entry->sync_mode = wbc->sync_mode; __entry->for_kupdate = wbc->for_kupdate; __entry->for_background = wbc->for_background; __entry->for_reclaim = wbc->for_reclaim; __entry->range_cyclic = wbc->range_cyclic; __entry->range_start = (long)wbc->range_start; __entry->range_end = (long)wbc->range_end; __entry->cgroup_ino = __trace_wbc_assign_cgroup(wbc); ), TP_printk("bdi %s: towrt=%ld skip=%ld mode=%d kupd=%d " "bgrd=%d reclm=%d cyclic=%d " "start=0x%lx end=0x%lx cgroup_ino=%lu", __entry->name, __entry->nr_to_write, __entry->pages_skipped, __entry->sync_mode, __entry->for_kupdate, __entry->for_background, __entry->for_reclaim, __entry->range_cyclic, __entry->range_start, __entry->range_end, (unsigned long)__entry->cgroup_ino ) ) #define DEFINE_WBC_EVENT(name) \ DEFINE_EVENT(wbc_class, name, \ TP_PROTO(struct writeback_control *wbc, struct backing_dev_info *bdi), \ TP_ARGS(wbc, bdi)) DEFINE_WBC_EVENT(wbc_writepage); TRACE_EVENT(writeback_queue_io, TP_PROTO(struct bdi_writeback *wb, struct wb_writeback_work *work, unsigned long dirtied_before, int moved), TP_ARGS(wb, work, dirtied_before, moved), TP_STRUCT__entry( __array(char, name, 32) __field(unsigned long, older) __field(long, age) __field(int, moved) __field(int, reason) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(wb->bdi), 32); __entry->older = dirtied_before; __entry->age = (jiffies - dirtied_before) * 1000 / HZ; __entry->moved = moved; __entry->reason = work->reason; __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); ), TP_printk("bdi %s: older=%lu age=%ld enqueue=%d reason=%s cgroup_ino=%lu", __entry->name, __entry->older, /* dirtied_before in jiffies */ __entry->age, /* dirtied_before in relative milliseconds */ __entry->moved, __print_symbolic(__entry->reason, WB_WORK_REASON), (unsigned long)__entry->cgroup_ino ) ); TRACE_EVENT(global_dirty_state, TP_PROTO(unsigned long background_thresh, unsigned long dirty_thresh ), TP_ARGS(background_thresh, dirty_thresh ), TP_STRUCT__entry( __field(unsigned long, nr_dirty) __field(unsigned long, nr_writeback) __field(unsigned long, background_thresh) __field(unsigned long, dirty_thresh) __field(unsigned long, dirty_limit) __field(unsigned long, nr_dirtied) __field(unsigned long, nr_written) ), TP_fast_assign( __entry->nr_dirty = global_node_page_state(NR_FILE_DIRTY); __entry->nr_writeback = global_node_page_state(NR_WRITEBACK); __entry->nr_dirtied = global_node_page_state(NR_DIRTIED); __entry->nr_written = global_node_page_state(NR_WRITTEN); __entry->background_thresh = background_thresh; __entry->dirty_thresh = dirty_thresh; __entry->dirty_limit = global_wb_domain.dirty_limit; ), TP_printk("dirty=%lu writeback=%lu " "bg_thresh=%lu thresh=%lu limit=%lu " "dirtied=%lu written=%lu", __entry->nr_dirty, __entry->nr_writeback, __entry->background_thresh, __entry->dirty_thresh, __entry->dirty_limit, __entry->nr_dirtied, __entry->nr_written ) ); #define KBps(x) ((x) << (PAGE_SHIFT - 10)) TRACE_EVENT(bdi_dirty_ratelimit, TP_PROTO(struct bdi_writeback *wb, unsigned long dirty_rate, unsigned long task_ratelimit), TP_ARGS(wb, dirty_rate, task_ratelimit), TP_STRUCT__entry( __array(char, bdi, 32) __field(unsigned long, write_bw) __field(unsigned long, avg_write_bw) __field(unsigned long, dirty_rate) __field(unsigned long, dirty_ratelimit) __field(unsigned long, task_ratelimit) __field(unsigned long, balanced_dirty_ratelimit) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->bdi, bdi_dev_name(wb->bdi), 32); __entry->write_bw = KBps(wb->write_bandwidth); __entry->avg_write_bw = KBps(wb->avg_write_bandwidth); __entry->dirty_rate = KBps(dirty_rate); __entry->dirty_ratelimit = KBps(wb->dirty_ratelimit); __entry->task_ratelimit = KBps(task_ratelimit); __entry->balanced_dirty_ratelimit = KBps(wb->balanced_dirty_ratelimit); __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); ), TP_printk("bdi %s: " "write_bw=%lu awrite_bw=%lu dirty_rate=%lu " "dirty_ratelimit=%lu task_ratelimit=%lu " "balanced_dirty_ratelimit=%lu cgroup_ino=%lu", __entry->bdi, __entry->write_bw, /* write bandwidth */ __entry->avg_write_bw, /* avg write bandwidth */ __entry->dirty_rate, /* bdi dirty rate */ __entry->dirty_ratelimit, /* base ratelimit */ __entry->task_ratelimit, /* ratelimit with position control */ __entry->balanced_dirty_ratelimit, /* the balanced ratelimit */ (unsigned long)__entry->cgroup_ino ) ); TRACE_EVENT(balance_dirty_pages, TP_PROTO(struct bdi_writeback *wb, unsigned long thresh, unsigned long bg_thresh, unsigned long dirty, unsigned long bdi_thresh, unsigned long bdi_dirty, unsigned long dirty_ratelimit, unsigned long task_ratelimit, unsigned long dirtied, unsigned long period, long pause, unsigned long start_time), TP_ARGS(wb, thresh, bg_thresh, dirty, bdi_thresh, bdi_dirty, dirty_ratelimit, task_ratelimit, dirtied, period, pause, start_time), TP_STRUCT__entry( __array( char, bdi, 32) __field(unsigned long, limit) __field(unsigned long, setpoint) __field(unsigned long, dirty) __field(unsigned long, bdi_setpoint) __field(unsigned long, bdi_dirty) __field(unsigned long, dirty_ratelimit) __field(unsigned long, task_ratelimit) __field(unsigned int, dirtied) __field(unsigned int, dirtied_pause) __field(unsigned long, paused) __field( long, pause) __field(unsigned long, period) __field( long, think) __field(ino_t, cgroup_ino) ), TP_fast_assign( unsigned long freerun = (thresh + bg_thresh) / 2; strscpy_pad(__entry->bdi, bdi_dev_name(wb->bdi), 32); __entry->limit = global_wb_domain.dirty_limit; __entry->setpoint = (global_wb_domain.dirty_limit + freerun) / 2; __entry->dirty = dirty; __entry->bdi_setpoint = __entry->setpoint * bdi_thresh / (thresh + 1); __entry->bdi_dirty = bdi_dirty; __entry->dirty_ratelimit = KBps(dirty_ratelimit); __entry->task_ratelimit = KBps(task_ratelimit); __entry->dirtied = dirtied; __entry->dirtied_pause = current->nr_dirtied_pause; __entry->think = current->dirty_paused_when == 0 ? 0 : (long)(jiffies - current->dirty_paused_when) * 1000/HZ; __entry->period = period * 1000 / HZ; __entry->pause = pause * 1000 / HZ; __entry->paused = (jiffies - start_time) * 1000 / HZ; __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); ), TP_printk("bdi %s: " "limit=%lu setpoint=%lu dirty=%lu " "bdi_setpoint=%lu bdi_dirty=%lu " "dirty_ratelimit=%lu task_ratelimit=%lu " "dirtied=%u dirtied_pause=%u " "paused=%lu pause=%ld period=%lu think=%ld cgroup_ino=%lu", __entry->bdi, __entry->limit, __entry->setpoint, __entry->dirty, __entry->bdi_setpoint, __entry->bdi_dirty, __entry->dirty_ratelimit, __entry->task_ratelimit, __entry->dirtied, __entry->dirtied_pause, __entry->paused, /* ms */ __entry->pause, /* ms */ __entry->period, /* ms */ __entry->think, /* ms */ (unsigned long)__entry->cgroup_ino ) ); TRACE_EVENT(writeback_sb_inodes_requeue, TP_PROTO(struct inode *inode), TP_ARGS(inode), TP_STRUCT__entry( __array(char, name, 32) __field(ino_t, ino) __field(unsigned long, state) __field(unsigned long, dirtied_when) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(inode_to_bdi(inode)), 32); __entry->ino = inode->i_ino; __entry->state = inode->i_state; __entry->dirtied_when = inode->dirtied_when; __entry->cgroup_ino = __trace_wb_assign_cgroup(inode_to_wb(inode)); ), TP_printk("bdi %s: ino=%lu state=%s dirtied_when=%lu age=%lu cgroup_ino=%lu", __entry->name, (unsigned long)__entry->ino, show_inode_state(__entry->state), __entry->dirtied_when, (jiffies - __entry->dirtied_when) / HZ, (unsigned long)__entry->cgroup_ino ) ); DECLARE_EVENT_CLASS(writeback_congest_waited_template, TP_PROTO(unsigned int usec_timeout, unsigned int usec_delayed), TP_ARGS(usec_timeout, usec_delayed), TP_STRUCT__entry( __field( unsigned int, usec_timeout ) __field( unsigned int, usec_delayed ) ), TP_fast_assign( __entry->usec_timeout = usec_timeout; __entry->usec_delayed = usec_delayed; ), TP_printk("usec_timeout=%u usec_delayed=%u", __entry->usec_timeout, __entry->usec_delayed) ); DEFINE_EVENT(writeback_congest_waited_template, writeback_congestion_wait, TP_PROTO(unsigned int usec_timeout, unsigned int usec_delayed), TP_ARGS(usec_timeout, usec_delayed) ); DEFINE_EVENT(writeback_congest_waited_template, writeback_wait_iff_congested, TP_PROTO(unsigned int usec_timeout, unsigned int usec_delayed), TP_ARGS(usec_timeout, usec_delayed) ); DECLARE_EVENT_CLASS(writeback_single_inode_template, TP_PROTO(struct inode *inode, struct writeback_control *wbc, unsigned long nr_to_write ), TP_ARGS(inode, wbc, nr_to_write), TP_STRUCT__entry( __array(char, name, 32) __field(ino_t, ino) __field(unsigned long, state) __field(unsigned long, dirtied_when) __field(unsigned long, writeback_index) __field(long, nr_to_write) __field(unsigned long, wrote) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(inode_to_bdi(inode)), 32); __entry->ino = inode->i_ino; __entry->state = inode->i_state; __entry->dirtied_when = inode->dirtied_when; __entry->writeback_index = inode->i_mapping->writeback_index; __entry->nr_to_write = nr_to_write; __entry->wrote = nr_to_write - wbc->nr_to_write; __entry->cgroup_ino = __trace_wbc_assign_cgroup(wbc); ), TP_printk("bdi %s: ino=%lu state=%s dirtied_when=%lu age=%lu " "index=%lu to_write=%ld wrote=%lu cgroup_ino=%lu", __entry->name, (unsigned long)__entry->ino, show_inode_state(__entry->state), __entry->dirtied_when, (jiffies - __entry->dirtied_when) / HZ, __entry->writeback_index, __entry->nr_to_write, __entry->wrote, (unsigned long)__entry->cgroup_ino ) ); DEFINE_EVENT(writeback_single_inode_template, writeback_single_inode_start, TP_PROTO(struct inode *inode, struct writeback_control *wbc, unsigned long nr_to_write), TP_ARGS(inode, wbc, nr_to_write) ); DEFINE_EVENT(writeback_single_inode_template, writeback_single_inode, TP_PROTO(struct inode *inode, struct writeback_control *wbc, unsigned long nr_to_write), TP_ARGS(inode, wbc, nr_to_write) ); DECLARE_EVENT_CLASS(writeback_inode_template, TP_PROTO(struct inode *inode), TP_ARGS(inode), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field(unsigned long, state ) __field( __u16, mode ) __field(unsigned long, dirtied_when ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->state = inode->i_state; __entry->mode = inode->i_mode; __entry->dirtied_when = inode->dirtied_when; ), TP_printk("dev %d,%d ino %lu dirtied %lu state %s mode 0%o", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long)__entry->ino, __entry->dirtied_when, show_inode_state(__entry->state), __entry->mode) ); DEFINE_EVENT(writeback_inode_template, writeback_lazytime, TP_PROTO(struct inode *inode), TP_ARGS(inode) ); DEFINE_EVENT(writeback_inode_template, writeback_lazytime_iput, TP_PROTO(struct inode *inode), TP_ARGS(inode) ); DEFINE_EVENT(writeback_inode_template, writeback_dirty_inode_enqueue, TP_PROTO(struct inode *inode), TP_ARGS(inode) ); /* * Inode writeback list tracking. */ DEFINE_EVENT(writeback_inode_template, sb_mark_inode_writeback, TP_PROTO(struct inode *inode), TP_ARGS(inode) ); DEFINE_EVENT(writeback_inode_template, sb_clear_inode_writeback, TP_PROTO(struct inode *inode), TP_ARGS(inode) ); #endif /* _TRACE_WRITEBACK_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_MMU_NOTIFIER_H #define _LINUX_MMU_NOTIFIER_H #include <linux/list.h> #include <linux/spinlock.h> #include <linux/mm_types.h> #include <linux/mmap_lock.h> #include <linux/srcu.h> #include <linux/interval_tree.h> struct mmu_notifier_subscriptions; struct mmu_notifier; struct mmu_notifier_range; struct mmu_interval_notifier; /** * enum mmu_notifier_event - reason for the mmu notifier callback * @MMU_NOTIFY_UNMAP: either munmap() that unmap the range or a mremap() that * move the range * * @MMU_NOTIFY_CLEAR: clear page table entry (many reasons for this like * madvise() or replacing a page by another one, ...). * * @MMU_NOTIFY_PROTECTION_VMA: update is due to protection change for the range * ie using the vma access permission (vm_page_prot) to update the whole range * is enough no need to inspect changes to the CPU page table (mprotect() * syscall) * * @MMU_NOTIFY_PROTECTION_PAGE: update is due to change in read/write flag for * pages in the range so to mirror those changes the user must inspect the CPU * page table (from the end callback). * * @MMU_NOTIFY_SOFT_DIRTY: soft dirty accounting (still same page and same * access flags). User should soft dirty the page in the end callback to make * sure that anyone relying on soft dirtyness catch pages that might be written * through non CPU mappings. * * @MMU_NOTIFY_RELEASE: used during mmu_interval_notifier invalidate to signal * that the mm refcount is zero and the range is no longer accessible. * * @MMU_NOTIFY_MIGRATE: used during migrate_vma_collect() invalidate to signal * a device driver to possibly ignore the invalidation if the * migrate_pgmap_owner field matches the driver's device private pgmap owner. */ enum mmu_notifier_event { MMU_NOTIFY_UNMAP = 0, MMU_NOTIFY_CLEAR, MMU_NOTIFY_PROTECTION_VMA, MMU_NOTIFY_PROTECTION_PAGE, MMU_NOTIFY_SOFT_DIRTY, MMU_NOTIFY_RELEASE, MMU_NOTIFY_MIGRATE, }; #define MMU_NOTIFIER_RANGE_BLOCKABLE (1 << 0) struct mmu_notifier_ops { /* * Called either by mmu_notifier_unregister or when the mm is * being destroyed by exit_mmap, always before all pages are * freed. This can run concurrently with other mmu notifier * methods (the ones invoked outside the mm context) and it * should tear down all secondary mmu mappings and freeze the * secondary mmu. If this method isn't implemented you've to * be sure that nothing could possibly write to the pages * through the secondary mmu by the time the last thread with * tsk->mm == mm exits. * * As side note: the pages freed after ->release returns could * be immediately reallocated by the gart at an alias physical * address with a different cache model, so if ->release isn't * implemented because all _software_ driven memory accesses * through the secondary mmu are terminated by the time the * last thread of this mm quits, you've also to be sure that * speculative _hardware_ operations can't allocate dirty * cachelines in the cpu that could not be snooped and made * coherent with the other read and write operations happening * through the gart alias address, so leading to memory * corruption. */ void (*release)(struct mmu_notifier *subscription, struct mm_struct *mm); /* * clear_flush_young is called after the VM is * test-and-clearing the young/accessed bitflag in the * pte. This way the VM will provide proper aging to the * accesses to the page through the secondary MMUs and not * only to the ones through the Linux pte. * Start-end is necessary in case the secondary MMU is mapping the page * at a smaller granularity than the primary MMU. */ int (*clear_flush_young)(struct mmu_notifier *subscription, struct mm_struct *mm, unsigned long start, unsigned long end); /* * clear_young is a lightweight version of clear_flush_young. Like the * latter, it is supposed to test-and-clear the young/accessed bitflag * in the secondary pte, but it may omit flushing the secondary tlb. */ int (*clear_young)(struct mmu_notifier *subscription, struct mm_struct *mm, unsigned long start, unsigned long end); /* * test_young is called to check the young/accessed bitflag in * the secondary pte. This is used to know if the page is * frequently used without actually clearing the flag or tearing * down the secondary mapping on the page. */ int (*test_young)(struct mmu_notifier *subscription, struct mm_struct *mm, unsigned long address); /* * change_pte is called in cases that pte mapping to page is changed: * for example, when ksm remaps pte to point to a new shared page. */ void (*change_pte)(struct mmu_notifier *subscription, struct mm_struct *mm, unsigned long address, pte_t pte); /* * invalidate_range_start() and invalidate_range_end() must be * paired and are called only when the mmap_lock and/or the * locks protecting the reverse maps are held. If the subsystem * can't guarantee that no additional references are taken to * the pages in the range, it has to implement the * invalidate_range() notifier to remove any references taken * after invalidate_range_start(). * * Invalidation of multiple concurrent ranges may be * optionally permitted by the driver. Either way the * establishment of sptes is forbidden in the range passed to * invalidate_range_begin/end for the whole duration of the * invalidate_range_begin/end critical section. * * invalidate_range_start() is called when all pages in the * range are still mapped and have at least a refcount of one. * * invalidate_range_end() is called when all pages in the * range have been unmapped and the pages have been freed by * the VM. * * The VM will remove the page table entries and potentially * the page between invalidate_range_start() and * invalidate_range_end(). If the page must not be freed * because of pending I/O or other circumstances then the * invalidate_range_start() callback (or the initial mapping * by the driver) must make sure that the refcount is kept * elevated. * * If the driver increases the refcount when the pages are * initially mapped into an address space then either * invalidate_range_start() or invalidate_range_end() may * decrease the refcount. If the refcount is decreased on * invalidate_range_start() then the VM can free pages as page * table entries are removed. If the refcount is only * droppped on invalidate_range_end() then the driver itself * will drop the last refcount but it must take care to flush * any secondary tlb before doing the final free on the * page. Pages will no longer be referenced by the linux * address space but may still be referenced by sptes until * the last refcount is dropped. * * If blockable argument is set to false then the callback cannot * sleep and has to return with -EAGAIN if sleeping would be required. * 0 should be returned otherwise. Please note that notifiers that can * fail invalidate_range_start are not allowed to implement * invalidate_range_end, as there is no mechanism for informing the * notifier that its start failed. */ int (*invalidate_range_start)(struct mmu_notifier *subscription, const struct mmu_notifier_range *range); void (*invalidate_range_end)(struct mmu_notifier *subscription, const struct mmu_notifier_range *range); /* * invalidate_range() is either called between * invalidate_range_start() and invalidate_range_end() when the * VM has to free pages that where unmapped, but before the * pages are actually freed, or outside of _start()/_end() when * a (remote) TLB is necessary. * * If invalidate_range() is used to manage a non-CPU TLB with * shared page-tables, it not necessary to implement the * invalidate_range_start()/end() notifiers, as * invalidate_range() alread catches the points in time when an * external TLB range needs to be flushed. For more in depth * discussion on this see Documentation/vm/mmu_notifier.rst * * Note that this function might be called with just a sub-range * of what was passed to invalidate_range_start()/end(), if * called between those functions. */ void (*invalidate_range)(struct mmu_notifier *subscription, struct mm_struct *mm, unsigned long start, unsigned long end); /* * These callbacks are used with the get/put interface to manage the * lifetime of the mmu_notifier memory. alloc_notifier() returns a new * notifier for use with the mm. * * free_notifier() is only called after the mmu_notifier has been * fully put, calls to any ops callback are prevented and no ops * callbacks are currently running. It is called from a SRCU callback * and cannot sleep. */ struct mmu_notifier *(*alloc_notifier)(struct mm_struct *mm); void (*free_notifier)(struct mmu_notifier *subscription); }; /* * The notifier chains are protected by mmap_lock and/or the reverse map * semaphores. Notifier chains are only changed when all reverse maps and * the mmap_lock locks are taken. * * Therefore notifier chains can only be traversed when either * * 1. mmap_lock is held. * 2. One of the reverse map locks is held (i_mmap_rwsem or anon_vma->rwsem). * 3. No other concurrent thread can access the list (release) */ struct mmu_notifier { struct hlist_node hlist; const struct mmu_notifier_ops *ops; struct mm_struct *mm; struct rcu_head rcu; unsigned int users; }; /** * struct mmu_interval_notifier_ops * @invalidate: Upon return the caller must stop using any SPTEs within this * range. This function can sleep. Return false only if sleeping * was required but mmu_notifier_range_blockable(range) is false. */ struct mmu_interval_notifier_ops { bool (*invalidate)(struct mmu_interval_notifier *interval_sub, const struct mmu_notifier_range *range, unsigned long cur_seq); }; struct mmu_interval_notifier { struct interval_tree_node interval_tree; const struct mmu_interval_notifier_ops *ops; struct mm_struct *mm; struct hlist_node deferred_item; unsigned long invalidate_seq; }; #ifdef CONFIG_MMU_NOTIFIER #ifdef CONFIG_LOCKDEP extern struct lockdep_map __mmu_notifier_invalidate_range_start_map; #endif struct mmu_notifier_range { struct vm_area_struct *vma; struct mm_struct *mm; unsigned long start; unsigned long end; unsigned flags; enum mmu_notifier_event event; void *migrate_pgmap_owner; }; static inline int mm_has_notifiers(struct mm_struct *mm) { return unlikely(mm->notifier_subscriptions); } struct mmu_notifier *mmu_notifier_get_locked(const struct mmu_notifier_ops *ops, struct mm_struct *mm); static inline struct mmu_notifier * mmu_notifier_get(const struct mmu_notifier_ops *ops, struct mm_struct *mm) { struct mmu_notifier *ret; mmap_write_lock(mm); ret = mmu_notifier_get_locked(ops, mm); mmap_write_unlock(mm); return ret; } void mmu_notifier_put(struct mmu_notifier *subscription); void mmu_notifier_synchronize(void); extern int mmu_notifier_register(struct mmu_notifier *subscription, struct mm_struct *mm); extern int __mmu_notifier_register(struct mmu_notifier *subscription, struct mm_struct *mm); extern void mmu_notifier_unregister(struct mmu_notifier *subscription, struct mm_struct *mm); unsigned long mmu_interval_read_begin(struct mmu_interval_notifier *interval_sub); int mmu_interval_notifier_insert(struct mmu_interval_notifier *interval_sub, struct mm_struct *mm, unsigned long start, unsigned long length, const struct mmu_interval_notifier_ops *ops); int mmu_interval_notifier_insert_locked( struct mmu_interval_notifier *interval_sub, struct mm_struct *mm, unsigned long start, unsigned long length, const struct mmu_interval_notifier_ops *ops); void mmu_interval_notifier_remove(struct mmu_interval_notifier *interval_sub); /** * mmu_interval_set_seq - Save the invalidation sequence * @interval_sub - The subscription passed to invalidate * @cur_seq - The cur_seq passed to the invalidate() callback * * This must be called unconditionally from the invalidate callback of a * struct mmu_interval_notifier_ops under the same lock that is used to call * mmu_interval_read_retry(). It updates the sequence number for later use by * mmu_interval_read_retry(). The provided cur_seq will always be odd. * * If the caller does not call mmu_interval_read_begin() or * mmu_interval_read_retry() then this call is not required. */ static inline void mmu_interval_set_seq(struct mmu_interval_notifier *interval_sub, unsigned long cur_seq) { WRITE_ONCE(interval_sub->invalidate_seq, cur_seq); } /** * mmu_interval_read_retry - End a read side critical section against a VA range * interval_sub: The subscription * seq: The return of the paired mmu_interval_read_begin() * * This MUST be called under a user provided lock that is also held * unconditionally by op->invalidate() when it calls mmu_interval_set_seq(). * * Each call should be paired with a single mmu_interval_read_begin() and * should be used to conclude the read side. * * Returns true if an invalidation collided with this critical section, and * the caller should retry. */ static inline bool mmu_interval_read_retry(struct mmu_interval_notifier *interval_sub, unsigned long seq) { return interval_sub->invalidate_seq != seq; } /** * mmu_interval_check_retry - Test if a collision has occurred * interval_sub: The subscription * seq: The return of the matching mmu_interval_read_begin() * * This can be used in the critical section between mmu_interval_read_begin() * and mmu_interval_read_retry(). A return of true indicates an invalidation * has collided with this critical region and a future * mmu_interval_read_retry() will return true. * * False is not reliable and only suggests a collision may not have * occured. It can be called many times and does not have to hold the user * provided lock. * * This call can be used as part of loops and other expensive operations to * expedite a retry. */ static inline bool mmu_interval_check_retry(struct mmu_interval_notifier *interval_sub, unsigned long seq) { /* Pairs with the WRITE_ONCE in mmu_interval_set_seq() */ return READ_ONCE(interval_sub->invalidate_seq) != seq; } extern void __mmu_notifier_subscriptions_destroy(struct mm_struct *mm); extern void __mmu_notifier_release(struct mm_struct *mm); extern int __mmu_notifier_clear_flush_young(struct mm_struct *mm, unsigned long start, unsigned long end); extern int __mmu_notifier_clear_young(struct mm_struct *mm, unsigned long start, unsigned long end); extern int __mmu_notifier_test_young(struct mm_struct *mm, unsigned long address); extern void __mmu_notifier_change_pte(struct mm_struct *mm, unsigned long address, pte_t pte); extern int __mmu_notifier_invalidate_range_start(struct mmu_notifier_range *r); extern void __mmu_notifier_invalidate_range_end(struct mmu_notifier_range *r, bool only_end); extern void __mmu_notifier_invalidate_range(struct mm_struct *mm, unsigned long start, unsigned long end); extern bool mmu_notifier_range_update_to_read_only(const struct mmu_notifier_range *range); static inline bool mmu_notifier_range_blockable(const struct mmu_notifier_range *range) { return (range->flags & MMU_NOTIFIER_RANGE_BLOCKABLE); } static inline void mmu_notifier_release(struct mm_struct *mm) { if (mm_has_notifiers(mm)) __mmu_notifier_release(mm); } static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm, unsigned long start, unsigned long end) { if (mm_has_notifiers(mm)) return __mmu_notifier_clear_flush_young(mm, start, end); return 0; } static inline int mmu_notifier_clear_young(struct mm_struct *mm, unsigned long start, unsigned long end) { if (mm_has_notifiers(mm)) return __mmu_notifier_clear_young(mm, start, end); return 0; } static inline int mmu_notifier_test_young(struct mm_struct *mm, unsigned long address) { if (mm_has_notifiers(mm)) return __mmu_notifier_test_young(mm, address); return 0; } static inline void mmu_notifier_change_pte(struct mm_struct *mm, unsigned long address, pte_t pte) { if (mm_has_notifiers(mm)) __mmu_notifier_change_pte(mm, address, pte); } static inline void mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range) { might_sleep(); lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); if (mm_has_notifiers(range->mm)) { range->flags |= MMU_NOTIFIER_RANGE_BLOCKABLE; __mmu_notifier_invalidate_range_start(range); } lock_map_release(&__mmu_notifier_invalidate_range_start_map); } static inline int mmu_notifier_invalidate_range_start_nonblock(struct mmu_notifier_range *range) { int ret = 0; lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); if (mm_has_notifiers(range->mm)) { range->flags &= ~MMU_NOTIFIER_RANGE_BLOCKABLE; ret = __mmu_notifier_invalidate_range_start(range); } lock_map_release(&__mmu_notifier_invalidate_range_start_map); return ret; } static inline void mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range) { if (mmu_notifier_range_blockable(range)) might_sleep(); if (mm_has_notifiers(range->mm)) __mmu_notifier_invalidate_range_end(range, false); } static inline void mmu_notifier_invalidate_range_only_end(struct mmu_notifier_range *range) { if (mm_has_notifiers(range->mm)) __mmu_notifier_invalidate_range_end(range, true); } static inline void mmu_notifier_invalidate_range(struct mm_struct *mm, unsigned long start, unsigned long end) { if (mm_has_notifiers(mm)) __mmu_notifier_invalidate_range(mm, start, end); } static inline void mmu_notifier_subscriptions_init(struct mm_struct *mm) { mm->notifier_subscriptions = NULL; } static inline void mmu_notifier_subscriptions_destroy(struct mm_struct *mm) { if (mm_has_notifiers(mm)) __mmu_notifier_subscriptions_destroy(mm); } static inline void mmu_notifier_range_init(struct mmu_notifier_range *range, enum mmu_notifier_event event, unsigned flags, struct vm_area_struct *vma, struct mm_struct *mm, unsigned long start, unsigned long end) { range->vma = vma; range->event = event; range->mm = mm; range->start = start; range->end = end; range->flags = flags; } static inline void mmu_notifier_range_init_migrate( struct mmu_notifier_range *range, unsigned int flags, struct vm_area_struct *vma, struct mm_struct *mm, unsigned long start, unsigned long end, void *pgmap) { mmu_notifier_range_init(range, MMU_NOTIFY_MIGRATE, flags, vma, mm, start, end); range->migrate_pgmap_owner = pgmap; } #define ptep_clear_flush_young_notify(__vma, __address, __ptep) \ ({ \ int __young; \ struct vm_area_struct *___vma = __vma; \ unsigned long ___address = __address; \ __young = ptep_clear_flush_young(___vma, ___address, __ptep); \ __young |= mmu_notifier_clear_flush_young(___vma->vm_mm, \ ___address, \ ___address + \ PAGE_SIZE); \ __young; \ }) #define pmdp_clear_flush_young_notify(__vma, __address, __pmdp) \ ({ \ int __young; \ struct vm_area_struct *___vma = __vma; \ unsigned long ___address = __address; \ __young = pmdp_clear_flush_young(___vma, ___address, __pmdp); \ __young |= mmu_notifier_clear_flush_young(___vma->vm_mm, \ ___address, \ ___address + \ PMD_SIZE); \ __young; \ }) #define ptep_clear_young_notify(__vma, __address, __ptep) \ ({ \ int __young; \ struct vm_area_struct *___vma = __vma; \ unsigned long ___address = __address; \ __young = ptep_test_and_clear_young(___vma, ___address, __ptep);\ __young |= mmu_notifier_clear_young(___vma->vm_mm, ___address, \ ___address + PAGE_SIZE); \ __young; \ }) #define pmdp_clear_young_notify(__vma, __address, __pmdp) \ ({ \ int __young; \ struct vm_area_struct *___vma = __vma; \ unsigned long ___address = __address; \ __young = pmdp_test_and_clear_young(___vma, ___address, __pmdp);\ __young |= mmu_notifier_clear_young(___vma->vm_mm, ___address, \ ___address + PMD_SIZE); \ __young; \ }) #define ptep_clear_flush_notify(__vma, __address, __ptep) \ ({ \ unsigned long ___addr = __address & PAGE_MASK; \ struct mm_struct *___mm = (__vma)->vm_mm; \ pte_t ___pte; \ \ ___pte = ptep_clear_flush(__vma, __address, __ptep); \ mmu_notifier_invalidate_range(___mm, ___addr, \ ___addr + PAGE_SIZE); \ \ ___pte; \ }) #define pmdp_huge_clear_flush_notify(__vma, __haddr, __pmd) \ ({ \ unsigned long ___haddr = __haddr & HPAGE_PMD_MASK; \ struct mm_struct *___mm = (__vma)->vm_mm; \ pmd_t ___pmd; \ \ ___pmd = pmdp_huge_clear_flush(__vma, __haddr, __pmd); \ mmu_notifier_invalidate_range(___mm, ___haddr, \ ___haddr + HPAGE_PMD_SIZE); \ \ ___pmd; \ }) #define pudp_huge_clear_flush_notify(__vma, __haddr, __pud) \ ({ \ unsigned long ___haddr = __haddr & HPAGE_PUD_MASK; \ struct mm_struct *___mm = (__vma)->vm_mm; \ pud_t ___pud; \ \ ___pud = pudp_huge_clear_flush(__vma, __haddr, __pud); \ mmu_notifier_invalidate_range(___mm, ___haddr, \ ___haddr + HPAGE_PUD_SIZE); \ \ ___pud; \ }) /* * set_pte_at_notify() sets the pte _after_ running the notifier. * This is safe to start by updating the secondary MMUs, because the primary MMU * pte invalidate must have already happened with a ptep_clear_flush() before * set_pte_at_notify() has been invoked. Updating the secondary MMUs first is * required when we change both the protection of the mapping from read-only to * read-write and the pfn (like during copy on write page faults). Otherwise the * old page would remain mapped readonly in the secondary MMUs after the new * page is already writable by some CPU through the primary MMU. */ #define set_pte_at_notify(__mm, __address, __ptep, __pte) \ ({ \ struct mm_struct *___mm = __mm; \ unsigned long ___address = __address; \ pte_t ___pte = __pte; \ \ mmu_notifier_change_pte(___mm, ___address, ___pte); \ set_pte_at(___mm, ___address, __ptep, ___pte); \ }) #else /* CONFIG_MMU_NOTIFIER */ struct mmu_notifier_range { unsigned long start; unsigned long end; }; static inline void _mmu_notifier_range_init(struct mmu_notifier_range *range, unsigned long start, unsigned long end) { range->start = start; range->end = end; } #define mmu_notifier_range_init(range,event,flags,vma,mm,start,end) \ _mmu_notifier_range_init(range, start, end) #define mmu_notifier_range_init_migrate(range, flags, vma, mm, start, end, \ pgmap) \ _mmu_notifier_range_init(range, start, end) static inline bool mmu_notifier_range_blockable(const struct mmu_notifier_range *range) { return true; } static inline int mm_has_notifiers(struct mm_struct *mm) { return 0; } static inline void mmu_notifier_release(struct mm_struct *mm) { } static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm, unsigned long start, unsigned long end) { return 0; } static inline int mmu_notifier_test_young(struct mm_struct *mm, unsigned long address) { return 0; } static inline void mmu_notifier_change_pte(struct mm_struct *mm, unsigned long address, pte_t pte) { } static inline void mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range) { } static inline int mmu_notifier_invalidate_range_start_nonblock(struct mmu_notifier_range *range) { return 0; } static inline void mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range) { } static inline void mmu_notifier_invalidate_range_only_end(struct mmu_notifier_range *range) { } static inline void mmu_notifier_invalidate_range(struct mm_struct *mm, unsigned long start, unsigned long end) { } static inline void mmu_notifier_subscriptions_init(struct mm_struct *mm) { } static inline void mmu_notifier_subscriptions_destroy(struct mm_struct *mm) { } #define mmu_notifier_range_update_to_read_only(r) false #define ptep_clear_flush_young_notify ptep_clear_flush_young #define pmdp_clear_flush_young_notify pmdp_clear_flush_young #define ptep_clear_young_notify ptep_test_and_clear_young #define pmdp_clear_young_notify pmdp_test_and_clear_young #define ptep_clear_flush_notify ptep_clear_flush #define pmdp_huge_clear_flush_notify pmdp_huge_clear_flush #define pudp_huge_clear_flush_notify pudp_huge_clear_flush #define set_pte_at_notify set_pte_at static inline void mmu_notifier_synchronize(void) { } #endif /* CONFIG_MMU_NOTIFIER */ #endif /* _LINUX_MMU_NOTIFIER_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 /* SPDX-License-Identifier: GPL-2.0 */ /* * A security context is a set of security attributes * associated with each subject and object controlled * by the security policy. Security contexts are * externally represented as variable-length strings * that can be interpreted by a user or application * with an understanding of the security policy. * Internally, the security server uses a simple * structure. This structure is private to the * security server and can be changed without affecting * clients of the security server. * * Author : Stephen Smalley, <sds@tycho.nsa.gov> */ #ifndef _SS_CONTEXT_H_ #define _SS_CONTEXT_H_ #include "ebitmap.h" #include "mls_types.h" #include "security.h" /* * A security context consists of an authenticated user * identity, a role, a type and a MLS range. */ struct context { u32 user; u32 role; u32 type; u32 len; /* length of string in bytes */ struct mls_range range; char *str; /* string representation if context cannot be mapped. */ }; static inline void mls_context_init(struct context *c) { memset(&c->range, 0, sizeof(c->range)); } static inline int mls_context_cpy(struct context *dst, struct context *src) { int rc; dst->range.level[0].sens = src->range.level[0].sens; rc = ebitmap_cpy(&dst->range.level[0].cat, &src->range.level[0].cat); if (rc) goto out; dst->range.level[1].sens = src->range.level[1].sens; rc = ebitmap_cpy(&dst->range.level[1].cat, &src->range.level[1].cat); if (rc) ebitmap_destroy(&dst->range.level[0].cat); out: return rc; } /* * Sets both levels in the MLS range of 'dst' to the low level of 'src'. */ static inline int mls_context_cpy_low(struct context *dst, struct context *src) { int rc; dst->range.level[0].sens = src->range.level[0].sens; rc = ebitmap_cpy(&dst->range.level[0].cat, &src->range.level[0].cat); if (rc) goto out; dst->range.level[1].sens = src->range.level[0].sens; rc = ebitmap_cpy(&dst->range.level[1].cat, &src->range.level[0].cat); if (rc) ebitmap_destroy(&dst->range.level[0].cat); out: return rc; } /* * Sets both levels in the MLS range of 'dst' to the high level of 'src'. */ static inline int mls_context_cpy_high(struct context *dst, struct context *src) { int rc; dst->range.level[0].sens = src->range.level[1].sens; rc = ebitmap_cpy(&dst->range.level[0].cat, &src->range.level[1].cat); if (rc) goto out; dst->range.level[1].sens = src->range.level[1].sens; rc = ebitmap_cpy(&dst->range.level[1].cat, &src->range.level[1].cat); if (rc) ebitmap_destroy(&dst->range.level[0].cat); out: return rc; } static inline int mls_context_glblub(struct context *dst, struct context *c1, struct context *c2) { struct mls_range *dr = &dst->range, *r1 = &c1->range, *r2 = &c2->range; int rc = 0; if (r1->level[1].sens < r2->level[0].sens || r2->level[1].sens < r1->level[0].sens) /* These ranges have no common sensitivities */ return -EINVAL; /* Take the greatest of the low */ dr->level[0].sens = max(r1->level[0].sens, r2->level[0].sens); /* Take the least of the high */ dr->level[1].sens = min(r1->level[1].sens, r2->level[1].sens); rc = ebitmap_and(&dr->level[0].cat, &r1->level[0].cat, &r2->level[0].cat); if (rc) goto out; rc = ebitmap_and(&dr->level[1].cat, &r1->level[1].cat, &r2->level[1].cat); if (rc) goto out; out: return rc; } static inline int mls_context_cmp(struct context *c1, struct context *c2) { return ((c1->range.level[0].sens == c2->range.level[0].sens) && ebitmap_cmp(&c1->range.level[0].cat, &c2->range.level[0].cat) && (c1->range.level[1].sens == c2->range.level[1].sens) && ebitmap_cmp(&c1->range.level[1].cat, &c2->range.level[1].cat)); } static inline void mls_context_destroy(struct context *c) { ebitmap_destroy(&c->range.level[0].cat); ebitmap_destroy(&c->range.level[1].cat); mls_context_init(c); } static inline void context_init(struct context *c) { memset(c, 0, sizeof(*c)); } static inline int context_cpy(struct context *dst, struct context *src) { int rc; dst->user = src->user; dst->role = src->role; dst->type = src->type; if (src->str) { dst->str = kstrdup(src->str, GFP_ATOMIC); if (!dst->str) return -ENOMEM; dst->len = src->len; } else { dst->str = NULL; dst->len = 0; } rc = mls_context_cpy(dst, src); if (rc) { kfree(dst->str); return rc; } return 0; } static inline void context_destroy(struct context *c) { c->user = c->role = c->type = 0; kfree(c->str); c->str = NULL; c->len = 0; mls_context_destroy(c); } static inline int context_cmp(struct context *c1, struct context *c2) { if (c1->len && c2->len) return (c1->len == c2->len && !strcmp(c1->str, c2->str)); if (c1->len || c2->len) return 0; return ((c1->user == c2->user) && (c1->role == c2->role) && (c1->type == c2->type) && mls_context_cmp(c1, c2)); } u32 context_compute_hash(const struct context *c); #endif /* _SS_CONTEXT_H_ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef BLK_INTERNAL_H #define BLK_INTERNAL_H #include <linux/idr.h> #include <linux/blk-mq.h> #include <linux/part_stat.h> #include <linux/blk-crypto.h> #include <xen/xen.h> #include "blk-crypto-internal.h" #include "blk-mq.h" #include "blk-mq-sched.h" /* Max future timer expiry for timeouts */ #define BLK_MAX_TIMEOUT (5 * HZ) extern struct dentry *blk_debugfs_root; struct blk_flush_queue { unsigned int flush_pending_idx:1; unsigned int flush_running_idx:1; blk_status_t rq_status; unsigned long flush_pending_since; struct list_head flush_queue[2]; struct list_head flush_data_in_flight; struct request *flush_rq; struct lock_class_key key; spinlock_t mq_flush_lock; }; extern struct kmem_cache *blk_requestq_cachep; extern struct kobj_type blk_queue_ktype; extern struct ida blk_queue_ida; static inline struct blk_flush_queue * blk_get_flush_queue(struct request_queue *q, struct blk_mq_ctx *ctx) { return blk_mq_map_queue(q, REQ_OP_FLUSH, ctx)->fq; } static inline void __blk_get_queue(struct request_queue *q) { kobject_get(&q->kobj); } bool is_flush_rq(struct request *req); struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size, gfp_t flags); void blk_free_flush_queue(struct blk_flush_queue *q); void blk_freeze_queue(struct request_queue *q); static inline bool biovec_phys_mergeable(struct request_queue *q, struct bio_vec *vec1, struct bio_vec *vec2) { unsigned long mask = queue_segment_boundary(q); phys_addr_t addr1 = page_to_phys(vec1->bv_page) + vec1->bv_offset; phys_addr_t addr2 = page_to_phys(vec2->bv_page) + vec2->bv_offset; if (addr1 + vec1->bv_len != addr2) return false; if (xen_domain() && !xen_biovec_phys_mergeable(vec1, vec2->bv_page)) return false; if ((addr1 | mask) != ((addr2 + vec2->bv_len - 1) | mask)) return false; return true; } static inline bool __bvec_gap_to_prev(struct request_queue *q, struct bio_vec *bprv, unsigned int offset) { return (offset & queue_virt_boundary(q)) || ((bprv->bv_offset + bprv->bv_len) & queue_virt_boundary(q)); } /* * Check if adding a bio_vec after bprv with offset would create a gap in * the SG list. Most drivers don't care about this, but some do. */ static inline bool bvec_gap_to_prev(struct request_queue *q, struct bio_vec *bprv, unsigned int offset) { if (!queue_virt_boundary(q)) return false; return __bvec_gap_to_prev(q, bprv, offset); } static inline void blk_rq_bio_prep(struct request *rq, struct bio *bio, unsigned int nr_segs) { rq->nr_phys_segments = nr_segs; rq->__data_len = bio->bi_iter.bi_size; rq->bio = rq->biotail = bio; rq->ioprio = bio_prio(bio); if (bio->bi_disk) rq->rq_disk = bio->bi_disk; } #ifdef CONFIG_BLK_DEV_INTEGRITY void blk_flush_integrity(void); bool __bio_integrity_endio(struct bio *); void bio_integrity_free(struct bio *bio); static inline bool bio_integrity_endio(struct bio *bio) { if (bio_integrity(bio)) return __bio_integrity_endio(bio); return true; } bool blk_integrity_merge_rq(struct request_queue *, struct request *, struct request *); bool blk_integrity_merge_bio(struct request_queue *, struct request *, struct bio *); static inline bool integrity_req_gap_back_merge(struct request *req, struct bio *next) { struct bio_integrity_payload *bip = bio_integrity(req->bio); struct bio_integrity_payload *bip_next = bio_integrity(next); return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1], bip_next->bip_vec[0].bv_offset); } static inline bool integrity_req_gap_front_merge(struct request *req, struct bio *bio) { struct bio_integrity_payload *bip = bio_integrity(bio); struct bio_integrity_payload *bip_next = bio_integrity(req->bio); return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1], bip_next->bip_vec[0].bv_offset); } void blk_integrity_add(struct gendisk *); void blk_integrity_del(struct gendisk *); #else /* CONFIG_BLK_DEV_INTEGRITY */ static inline bool blk_integrity_merge_rq(struct request_queue *rq, struct request *r1, struct request *r2) { return true; } static inline bool blk_integrity_merge_bio(struct request_queue *rq, struct request *r, struct bio *b) { return true; } static inline bool integrity_req_gap_back_merge(struct request *req, struct bio *next) { return false; } static inline bool integrity_req_gap_front_merge(struct request *req, struct bio *bio) { return false; } static inline void blk_flush_integrity(void) { } static inline bool bio_integrity_endio(struct bio *bio) { return true; } static inline void bio_integrity_free(struct bio *bio) { } static inline void blk_integrity_add(struct gendisk *disk) { } static inline void blk_integrity_del(struct gendisk *disk) { } #endif /* CONFIG_BLK_DEV_INTEGRITY */ unsigned long blk_rq_timeout(unsigned long timeout); void blk_add_timer(struct request *req); bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, unsigned int nr_segs, struct request **same_queue_rq); bool blk_bio_list_merge(struct request_queue *q, struct list_head *list, struct bio *bio, unsigned int nr_segs); void blk_account_io_start(struct request *req); void blk_account_io_done(struct request *req, u64 now); /* * Plug flush limits */ #define BLK_MAX_REQUEST_COUNT 32 #define BLK_PLUG_FLUSH_SIZE (128 * 1024) /* * Internal elevator interface */ #define ELV_ON_HASH(rq) ((rq)->rq_flags & RQF_HASHED) void blk_insert_flush(struct request *rq); void elevator_init_mq(struct request_queue *q); int elevator_switch_mq(struct request_queue *q, struct elevator_type *new_e); void __elevator_exit(struct request_queue *, struct elevator_queue *); int elv_register_queue(struct request_queue *q, bool uevent); void elv_unregister_queue(struct request_queue *q); static inline void elevator_exit(struct request_queue *q, struct elevator_queue *e) { lockdep_assert_held(&q->sysfs_lock); blk_mq_sched_free_requests(q); __elevator_exit(q, e); } struct hd_struct *__disk_get_part(struct gendisk *disk, int partno); ssize_t part_size_show(struct device *dev, struct device_attribute *attr, char *buf); ssize_t part_stat_show(struct device *dev, struct device_attribute *attr, char *buf); ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr, char *buf); ssize_t part_fail_show(struct device *dev, struct device_attribute *attr, char *buf); ssize_t part_fail_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count); ssize_t part_timeout_show(struct device *, struct device_attribute *, char *); ssize_t part_timeout_store(struct device *, struct device_attribute *, const char *, size_t); void __blk_queue_split(struct bio **bio, unsigned int *nr_segs); int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs); int blk_attempt_req_merge(struct request_queue *q, struct request *rq, struct request *next); unsigned int blk_recalc_rq_segments(struct request *rq); void blk_rq_set_mixed_merge(struct request *rq); bool blk_rq_merge_ok(struct request *rq, struct bio *bio); enum elv_merge blk_try_merge(struct request *rq, struct bio *bio); int blk_dev_init(void); /* * Contribute to IO statistics IFF: * * a) it's attached to a gendisk, and * b) the queue had IO stats enabled when this request was started */ static inline bool blk_do_io_stat(struct request *rq) { return rq->rq_disk && (rq->rq_flags & RQF_IO_STAT); } static inline void req_set_nomerge(struct request_queue *q, struct request *req) { req->cmd_flags |= REQ_NOMERGE; if (req == q->last_merge) q->last_merge = NULL; } /* * The max size one bio can handle is UINT_MAX becasue bvec_iter.bi_size * is defined as 'unsigned int', meantime it has to aligned to with logical * block size which is the minimum accepted unit by hardware. */ static inline unsigned int bio_allowed_max_sectors(struct request_queue *q) { return round_down(UINT_MAX, queue_logical_block_size(q)) >> 9; } /* * The max bio size which is aligned to q->limits.discard_granularity. This * is a hint to split large discard bio in generic block layer, then if device * driver needs to split the discard bio into smaller ones, their bi_size can * be very probably and easily aligned to discard_granularity of the device's * queue. */ static inline unsigned int bio_aligned_discard_max_sectors( struct request_queue *q) { return round_down(UINT_MAX, q->limits.discard_granularity) >> SECTOR_SHIFT; } /* * Internal io_context interface */ void get_io_context(struct io_context *ioc); struct io_cq *ioc_lookup_icq(struct io_context *ioc, struct request_queue *q); struct io_cq *ioc_create_icq(struct io_context *ioc, struct request_queue *q, gfp_t gfp_mask); void ioc_clear_queue(struct request_queue *q); int create_task_io_context(struct task_struct *task, gfp_t gfp_mask, int node); /* * Internal throttling interface */ #ifdef CONFIG_BLK_DEV_THROTTLING extern int blk_throtl_init(struct request_queue *q); extern void blk_throtl_exit(struct request_queue *q); extern void blk_throtl_register_queue(struct request_queue *q); extern void blk_throtl_charge_bio_split(struct bio *bio); bool blk_throtl_bio(struct bio *bio); #else /* CONFIG_BLK_DEV_THROTTLING */ static inline int blk_throtl_init(struct request_queue *q) { return 0; } static inline void blk_throtl_exit(struct request_queue *q) { } static inline void blk_throtl_register_queue(struct request_queue *q) { } static inline void blk_throtl_charge_bio_split(struct bio *bio) { } static inline bool blk_throtl_bio(struct bio *bio) { return false; } #endif /* CONFIG_BLK_DEV_THROTTLING */ #ifdef CONFIG_BLK_DEV_THROTTLING_LOW extern ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page); extern ssize_t blk_throtl_sample_time_store(struct request_queue *q, const char *page, size_t count); extern void blk_throtl_bio_endio(struct bio *bio); extern void blk_throtl_stat_add(struct request *rq, u64 time); #else static inline void blk_throtl_bio_endio(struct bio *bio) { } static inline void blk_throtl_stat_add(struct request *rq, u64 time) { } #endif #ifdef CONFIG_BOUNCE extern int init_emergency_isa_pool(void); extern void blk_queue_bounce(struct request_queue *q, struct bio **bio); #else static inline int init_emergency_isa_pool(void) { return 0; } static inline void blk_queue_bounce(struct request_queue *q, struct bio **bio) { } #endif /* CONFIG_BOUNCE */ #ifdef CONFIG_BLK_CGROUP_IOLATENCY extern int blk_iolatency_init(struct request_queue *q); #else static inline int blk_iolatency_init(struct request_queue *q) { return 0; } #endif struct bio *blk_next_bio(struct bio *bio, unsigned int nr_pages, gfp_t gfp); #ifdef CONFIG_BLK_DEV_ZONED void blk_queue_free_zone_bitmaps(struct request_queue *q); #else static inline void blk_queue_free_zone_bitmaps(struct request_queue *q) {} #endif struct hd_struct *disk_map_sector_rcu(struct gendisk *disk, sector_t sector); int blk_alloc_devt(struct hd_struct *part, dev_t *devt); void blk_free_devt(dev_t devt); void blk_invalidate_devt(dev_t devt); char *disk_name(struct gendisk *hd, int partno, char *buf); #define ADDPART_FLAG_NONE 0 #define ADDPART_FLAG_RAID 1 #define ADDPART_FLAG_WHOLEDISK 2 void delete_partition(struct hd_struct *part); int bdev_add_partition(struct block_device *bdev, int partno, sector_t start, sector_t length); int bdev_del_partition(struct block_device *bdev, int partno); int bdev_resize_partition(struct block_device *bdev, int partno, sector_t start, sector_t length); int disk_expand_part_tbl(struct gendisk *disk, int target); int hd_ref_init(struct hd_struct *part); /* no need to get/put refcount of part0 */ static inline int hd_struct_try_get(struct hd_struct *part) { if (part->partno) return percpu_ref_tryget_live(&part->ref); return 1; } static inline void hd_struct_put(struct hd_struct *part) { if (part->partno) percpu_ref_put(&part->ref); } static inline void hd_free_part(struct hd_struct *part) { free_percpu(part->dkstats); kfree(part->info); percpu_ref_exit(&part->ref); } /* * Any access of part->nr_sects which is not protected by partition * bd_mutex or gendisk bdev bd_mutex, should be done using this * accessor function. * * Code written along the lines of i_size_read() and i_size_write(). * CONFIG_PREEMPTION case optimizes the case of UP kernel with preemption * on. */ static inline sector_t part_nr_sects_read(struct hd_struct *part) { #if BITS_PER_LONG==32 && defined(CONFIG_SMP) sector_t nr_sects; unsigned seq; do { seq = read_seqcount_begin(&part->nr_sects_seq); nr_sects = part->nr_sects; } while (read_seqcount_retry(&part->nr_sects_seq, seq)); return nr_sects; #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION) sector_t nr_sects; preempt_disable(); nr_sects = part->nr_sects; preempt_enable(); return nr_sects; #else return part->nr_sects; #endif } /* * Should be called with mutex lock held (typically bd_mutex) of partition * to provide mutual exlusion among writers otherwise seqcount might be * left in wrong state leaving the readers spinning infinitely. */ static inline void part_nr_sects_write(struct hd_struct *part, sector_t size) { #if BITS_PER_LONG==32 && defined(CONFIG_SMP) preempt_disable(); write_seqcount_begin(&part->nr_sects_seq); part->nr_sects = size; write_seqcount_end(&part->nr_sects_seq); preempt_enable(); #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION) preempt_disable(); part->nr_sects = size; preempt_enable(); #else part->nr_sects = size; #endif } int bio_add_hw_page(struct request_queue *q, struct bio *bio, struct page *page, unsigned int len, unsigned int offset, unsigned int max_sectors, bool *same_page); #endif /* BLK_INTERNAL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_MMIOTRACE_H #define _LINUX_MMIOTRACE_H #include <linux/types.h> #include <linux/list.h> struct kmmio_probe; struct pt_regs; typedef void (*kmmio_pre_handler_t)(struct kmmio_probe *, struct pt_regs *, unsigned long addr); typedef void (*kmmio_post_handler_t)(struct kmmio_probe *, unsigned long condition, struct pt_regs *); struct kmmio_probe { /* kmmio internal list: */ struct list_head list; /* start location of the probe point: */ unsigned long addr; /* length of the probe region: */ unsigned long len; /* Called before addr is executed: */ kmmio_pre_handler_t pre_handler; /* Called after addr is executed: */ kmmio_post_handler_t post_handler; void *private; }; extern unsigned int kmmio_count; extern int register_kmmio_probe(struct kmmio_probe *p); extern void unregister_kmmio_probe(struct kmmio_probe *p); extern int kmmio_init(void); extern void kmmio_cleanup(void); #ifdef CONFIG_MMIOTRACE /* kmmio is active by some kmmio_probes? */ static inline int is_kmmio_active(void) { return kmmio_count; } /* Called from page fault handler. */ extern int kmmio_handler(struct pt_regs *regs, unsigned long addr); /* Called from ioremap.c */ extern void mmiotrace_ioremap(resource_size_t offset, unsigned long size, void __iomem *addr); extern void mmiotrace_iounmap(volatile void __iomem *addr); /* For anyone to insert markers. Remember trailing newline. */ extern __printf(1, 2) int mmiotrace_printk(const char *fmt, ...); #else /* !CONFIG_MMIOTRACE: */ static inline int is_kmmio_active(void) { return 0; } static inline int kmmio_handler(struct pt_regs *regs, unsigned long addr) { return 0; } static inline void mmiotrace_ioremap(resource_size_t offset, unsigned long size, void __iomem *addr) { } static inline void mmiotrace_iounmap(volatile void __iomem *addr) { } static inline __printf(1, 2) int mmiotrace_printk(const char *fmt, ...) { return 0; } #endif /* CONFIG_MMIOTRACE */ enum mm_io_opcode { MMIO_READ = 0x1, /* struct mmiotrace_rw */ MMIO_WRITE = 0x2, /* struct mmiotrace_rw */ MMIO_PROBE = 0x3, /* struct mmiotrace_map */ MMIO_UNPROBE = 0x4, /* struct mmiotrace_map */ MMIO_UNKNOWN_OP = 0x5, /* struct mmiotrace_rw */ }; struct mmiotrace_rw { resource_size_t phys; /* PCI address of register */ unsigned long value; unsigned long pc; /* optional program counter */ int map_id; unsigned char opcode; /* one of MMIO_{READ,WRITE,UNKNOWN_OP} */ unsigned char width; /* size of register access in bytes */ }; struct mmiotrace_map { resource_size_t phys; /* base address in PCI space */ unsigned long virt; /* base virtual address */ unsigned long len; /* mapping size */ int map_id; unsigned char opcode; /* MMIO_PROBE or MMIO_UNPROBE */ }; /* in kernel/trace/trace_mmiotrace.c */ extern void enable_mmiotrace(void); extern void disable_mmiotrace(void); extern void mmio_trace_rw(struct mmiotrace_rw *rw); extern void mmio_trace_mapping(struct mmiotrace_map *map); extern __printf(1, 0) int mmio_trace_printk(const char *fmt, va_list args); #endif /* _LINUX_MMIOTRACE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 /* SPDX-License-Identifier: GPL-2.0-only */ #ifndef _INPUT_MT_H #define _INPUT_MT_H /* * Input Multitouch Library * * Copyright (c) 2010 Henrik Rydberg */ #include <linux/input.h> #define TRKID_MAX 0xffff #define INPUT_MT_POINTER 0x0001 /* pointer device, e.g. trackpad */ #define INPUT_MT_DIRECT 0x0002 /* direct device, e.g. touchscreen */ #define INPUT_MT_DROP_UNUSED 0x0004 /* drop contacts not seen in frame */ #define INPUT_MT_TRACK 0x0008 /* use in-kernel tracking */ #define INPUT_MT_SEMI_MT 0x0010 /* semi-mt device, finger count handled manually */ /** * struct input_mt_slot - represents the state of an input MT slot * @abs: holds current values of ABS_MT axes for this slot * @frame: last frame at which input_mt_report_slot_state() was called * @key: optional driver designation of this slot */ struct input_mt_slot { int abs[ABS_MT_LAST - ABS_MT_FIRST + 1]; unsigned int frame; unsigned int key; }; /** * struct input_mt - state of tracked contacts * @trkid: stores MT tracking ID for the next contact * @num_slots: number of MT slots the device uses * @slot: MT slot currently being transmitted * @flags: input_mt operation flags * @frame: increases every time input_mt_sync_frame() is called * @red: reduced cost matrix for in-kernel tracking * @slots: array of slots holding current values of tracked contacts */ struct input_mt { int trkid; int num_slots; int slot; unsigned int flags; unsigned int frame; int *red; struct input_mt_slot slots[]; }; static inline void input_mt_set_value(struct input_mt_slot *slot, unsigned code, int value) { slot->abs[code - ABS_MT_FIRST] = value; } static inline int input_mt_get_value(const struct input_mt_slot *slot, unsigned code) { return slot->abs[code - ABS_MT_FIRST]; } static inline bool input_mt_is_active(const struct input_mt_slot *slot) { return input_mt_get_value(slot, ABS_MT_TRACKING_ID) >= 0; } static inline bool input_mt_is_used(const struct input_mt *mt, const struct input_mt_slot *slot) { return slot->frame == mt->frame; } int input_mt_init_slots(struct input_dev *dev, unsigned int num_slots, unsigned int flags); void input_mt_destroy_slots(struct input_dev *dev); static inline int input_mt_new_trkid(struct input_mt *mt) { return mt->trkid++ & TRKID_MAX; } static inline void input_mt_slot(struct input_dev *dev, int slot) { input_event(dev, EV_ABS, ABS_MT_SLOT, slot); } static inline bool input_is_mt_value(int axis) { return axis >= ABS_MT_FIRST && axis <= ABS_MT_LAST; } static inline bool input_is_mt_axis(int axis) { return axis == ABS_MT_SLOT || input_is_mt_value(axis); } bool input_mt_report_slot_state(struct input_dev *dev, unsigned int tool_type, bool active); static inline void input_mt_report_slot_inactive(struct input_dev *dev) { input_mt_report_slot_state(dev, 0, false); } void input_mt_report_finger_count(struct input_dev *dev, int count); void input_mt_report_pointer_emulation(struct input_dev *dev, bool use_count); void input_mt_drop_unused(struct input_dev *dev); void input_mt_sync_frame(struct input_dev *dev); /** * struct input_mt_pos - contact position * @x: horizontal coordinate * @y: vertical coordinate */ struct input_mt_pos { s16 x, y; }; int input_mt_assign_slots(struct input_dev *dev, int *slots, const struct input_mt_pos *pos, int num_pos, int dmax); int input_mt_get_slot_by_key(struct input_dev *dev, int key); #endif
1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241