1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 // SPDX-License-Identifier: GPL-2.0 /* * IA-32 Huge TLB Page Support for Kernel. * * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com> */ #include <linux/init.h> #include <linux/fs.h> #include <linux/mm.h> #include <linux/sched/mm.h> #include <linux/hugetlb.h> #include <linux/pagemap.h> #include <linux/err.h> #include <linux/sysctl.h> #include <linux/compat.h> #include <asm/mman.h> #include <asm/tlb.h> #include <asm/tlbflush.h> #include <asm/elf.h> #if 0 /* This is just for testing */ struct page * follow_huge_addr(struct mm_struct *mm, unsigned long address, int write) { unsigned long start = address; int length = 1; int nr; struct page *page; struct vm_area_struct *vma; vma = find_vma(mm, addr); if (!vma || !is_vm_hugetlb_page(vma)) return ERR_PTR(-EINVAL); pte = huge_pte_offset(mm, address, vma_mmu_pagesize(vma)); /* hugetlb should be locked, and hence, prefaulted */ WARN_ON(!pte || pte_none(*pte)); page = &pte_page(*pte)[vpfn % (HPAGE_SIZE/PAGE_SIZE)]; WARN_ON(!PageHead(page)); return page; } int pmd_huge(pmd_t pmd) { return 0; } int pud_huge(pud_t pud) { return 0; } #else /* * pmd_huge() returns 1 if @pmd is hugetlb related entry, that is normal * hugetlb entry or non-present (migration or hwpoisoned) hugetlb entry. * Otherwise, returns 0. */ int pmd_huge(pmd_t pmd) { return !pmd_none(pmd) && (pmd_val(pmd) & (_PAGE_PRESENT|_PAGE_PSE)) != _PAGE_PRESENT; } int pud_huge(pud_t pud) { return !!(pud_val(pud) & _PAGE_PSE); } #endif #ifdef CONFIG_HUGETLB_PAGE static unsigned long hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags) { struct hstate *h = hstate_file(file); struct vm_unmapped_area_info info; info.flags = 0; info.length = len; info.low_limit = get_mmap_base(1); /* * If hint address is above DEFAULT_MAP_WINDOW, look for unmapped area * in the full address space. */ info.high_limit = in_32bit_syscall() ? task_size_32bit() : task_size_64bit(addr > DEFAULT_MAP_WINDOW); info.align_mask = PAGE_MASK & ~huge_page_mask(h); info.align_offset = 0; return vm_unmapped_area(&info); } static unsigned long hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags) { struct hstate *h = hstate_file(file); struct vm_unmapped_area_info info; info.flags = VM_UNMAPPED_AREA_TOPDOWN; info.length = len; info.low_limit = PAGE_SIZE; info.high_limit = get_mmap_base(0); /* * If hint address is above DEFAULT_MAP_WINDOW, look for unmapped area * in the full address space. */ if (addr > DEFAULT_MAP_WINDOW && !in_32bit_syscall()) info.high_limit += TASK_SIZE_MAX - DEFAULT_MAP_WINDOW; info.align_mask = PAGE_MASK & ~huge_page_mask(h); info.align_offset = 0; addr = vm_unmapped_area(&info); /* * A failed mmap() very likely causes application failure, * so fall back to the bottom-up function here. This scenario * can happen with large stack limits and large mmap() * allocations. */ if (addr & ~PAGE_MASK) { VM_BUG_ON(addr != -ENOMEM); info.flags = 0; info.low_limit = TASK_UNMAPPED_BASE; info.high_limit = TASK_SIZE_LOW; addr = vm_unmapped_area(&info); } return addr; } unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags) { struct hstate *h = hstate_file(file); struct mm_struct *mm = current->mm; struct vm_area_struct *vma; if (len & ~huge_page_mask(h)) return -EINVAL; if (len > TASK_SIZE) return -ENOMEM; /* No address checking. See comment at mmap_address_hint_valid() */ if (flags & MAP_FIXED) { if (prepare_hugepage_range(file, addr, len)) return -EINVAL; return addr; } if (addr) { addr &= huge_page_mask(h); if (!mmap_address_hint_valid(addr, len)) goto get_unmapped_area; vma = find_vma(mm, addr); if (!vma || addr + len <= vm_start_gap(vma)) return addr; } get_unmapped_area: if (mm->get_unmapped_area == arch_get_unmapped_area) return hugetlb_get_unmapped_area_bottomup(file, addr, len, pgoff, flags); else return hugetlb_get_unmapped_area_topdown(file, addr, len, pgoff, flags); } #endif /* CONFIG_HUGETLB_PAGE */ #ifdef CONFIG_X86_64 bool __init arch_hugetlb_valid_size(unsigned long size) { if (size == PMD_SIZE) return true; else if (size == PUD_SIZE && boot_cpu_has(X86_FEATURE_GBPAGES)) return true; else return false; } #ifdef CONFIG_CONTIG_ALLOC static __init int gigantic_pages_init(void) { /* With compaction or CMA we can allocate gigantic pages at runtime */ if (boot_cpu_has(X86_FEATURE_GBPAGES)) hugetlb_add_hstate(PUD_SHIFT - PAGE_SHIFT); return 0; } arch_initcall(gigantic_pages_init); #endif #endif
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_PGTABLE_H #define _ASM_X86_PGTABLE_H #include <linux/mem_encrypt.h> #include <asm/page.h> #include <asm/pgtable_types.h> /* * Macro to mark a page protection value as UC- */ #define pgprot_noncached(prot) \ ((boot_cpu_data.x86 > 3) \ ? (__pgprot(pgprot_val(prot) | \ cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS))) \ : (prot)) /* * Macros to add or remove encryption attribute */ #define pgprot_encrypted(prot) __pgprot(__sme_set(pgprot_val(prot))) #define pgprot_decrypted(prot) __pgprot(__sme_clr(pgprot_val(prot))) #ifndef __ASSEMBLY__ #include <asm/x86_init.h> #include <asm/fpu/xstate.h> #include <asm/fpu/api.h> #include <asm-generic/pgtable_uffd.h> extern pgd_t early_top_pgt[PTRS_PER_PGD]; bool __init __early_make_pgtable(unsigned long address, pmdval_t pmd); void ptdump_walk_pgd_level(struct seq_file *m, struct mm_struct *mm); void ptdump_walk_pgd_level_debugfs(struct seq_file *m, struct mm_struct *mm, bool user); void ptdump_walk_pgd_level_checkwx(void); void ptdump_walk_user_pgd_level_checkwx(void); #ifdef CONFIG_DEBUG_WX #define debug_checkwx() ptdump_walk_pgd_level_checkwx() #define debug_checkwx_user() ptdump_walk_user_pgd_level_checkwx() #else #define debug_checkwx() do { } while (0) #define debug_checkwx_user() do { } while (0) #endif /* * ZERO_PAGE is a global shared page that is always zero: used * for zero-mapped memory areas etc.. */ extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)] __visible; #define ZERO_PAGE(vaddr) ((void)(vaddr),virt_to_page(empty_zero_page)) extern spinlock_t pgd_lock; extern struct list_head pgd_list; extern struct mm_struct *pgd_page_get_mm(struct page *page); extern pmdval_t early_pmd_flags; #ifdef CONFIG_PARAVIRT_XXL #include <asm/paravirt.h> #else /* !CONFIG_PARAVIRT_XXL */ #define set_pte(ptep, pte) native_set_pte(ptep, pte) #define set_pte_atomic(ptep, pte) \ native_set_pte_atomic(ptep, pte) #define set_pmd(pmdp, pmd) native_set_pmd(pmdp, pmd) #ifndef __PAGETABLE_P4D_FOLDED #define set_pgd(pgdp, pgd) native_set_pgd(pgdp, pgd) #define pgd_clear(pgd) (pgtable_l5_enabled() ? native_pgd_clear(pgd) : 0) #endif #ifndef set_p4d # define set_p4d(p4dp, p4d) native_set_p4d(p4dp, p4d) #endif #ifndef __PAGETABLE_PUD_FOLDED #define p4d_clear(p4d) native_p4d_clear(p4d) #endif #ifndef set_pud # define set_pud(pudp, pud) native_set_pud(pudp, pud) #endif #ifndef __PAGETABLE_PUD_FOLDED #define pud_clear(pud) native_pud_clear(pud) #endif #define pte_clear(mm, addr, ptep) native_pte_clear(mm, addr, ptep) #define pmd_clear(pmd) native_pmd_clear(pmd) #define pgd_val(x) native_pgd_val(x) #define __pgd(x) native_make_pgd(x) #ifndef __PAGETABLE_P4D_FOLDED #define p4d_val(x) native_p4d_val(x) #define __p4d(x) native_make_p4d(x) #endif #ifndef __PAGETABLE_PUD_FOLDED #define pud_val(x) native_pud_val(x) #define __pud(x) native_make_pud(x) #endif #ifndef __PAGETABLE_PMD_FOLDED #define pmd_val(x) native_pmd_val(x) #define __pmd(x) native_make_pmd(x) #endif #define pte_val(x) native_pte_val(x) #define __pte(x) native_make_pte(x) #define arch_end_context_switch(prev) do {} while(0) #endif /* CONFIG_PARAVIRT_XXL */ /* * The following only work if pte_present() is true. * Undefined behaviour if not.. */ static inline int pte_dirty(pte_t pte) { return pte_flags(pte) & _PAGE_DIRTY; } static inline u32 read_pkru(void) { if (boot_cpu_has(X86_FEATURE_OSPKE)) return rdpkru(); return 0; } static inline void write_pkru(u32 pkru) { struct pkru_state *pk; if (!boot_cpu_has(X86_FEATURE_OSPKE)) return; pk = get_xsave_addr(&current->thread.fpu.state.xsave, XFEATURE_PKRU); /* * The PKRU value in xstate needs to be in sync with the value that is * written to the CPU. The FPU restore on return to userland would * otherwise load the previous value again. */ fpregs_lock(); if (pk) pk->pkru = pkru; __write_pkru(pkru); fpregs_unlock(); } static inline int pte_young(pte_t pte) { return pte_flags(pte) & _PAGE_ACCESSED; } static inline int pmd_dirty(pmd_t pmd) { return pmd_flags(pmd) & _PAGE_DIRTY; } static inline int pmd_young(pmd_t pmd) { return pmd_flags(pmd) & _PAGE_ACCESSED; } static inline int pud_dirty(pud_t pud) { return pud_flags(pud) & _PAGE_DIRTY; } static inline int pud_young(pud_t pud) { return pud_flags(pud) & _PAGE_ACCESSED; } static inline int pte_write(pte_t pte) { return pte_flags(pte) & _PAGE_RW; } static inline int pte_huge(pte_t pte) { return pte_flags(pte) & _PAGE_PSE; } static inline int pte_global(pte_t pte) { return pte_flags(pte) & _PAGE_GLOBAL; } static inline int pte_exec(pte_t pte) { return !(pte_flags(pte) & _PAGE_NX); } static inline int pte_special(pte_t pte) { return pte_flags(pte) & _PAGE_SPECIAL; } /* Entries that were set to PROT_NONE are inverted */ static inline u64 protnone_mask(u64 val); static inline unsigned long pte_pfn(pte_t pte) { phys_addr_t pfn = pte_val(pte); pfn ^= protnone_mask(pfn); return (pfn & PTE_PFN_MASK) >> PAGE_SHIFT; } static inline unsigned long pmd_pfn(pmd_t pmd) { phys_addr_t pfn = pmd_val(pmd); pfn ^= protnone_mask(pfn); return (pfn & pmd_pfn_mask(pmd)) >> PAGE_SHIFT; } static inline unsigned long pud_pfn(pud_t pud) { phys_addr_t pfn = pud_val(pud); pfn ^= protnone_mask(pfn); return (pfn & pud_pfn_mask(pud)) >> PAGE_SHIFT; } static inline unsigned long p4d_pfn(p4d_t p4d) { return (p4d_val(p4d) & p4d_pfn_mask(p4d)) >> PAGE_SHIFT; } static inline unsigned long pgd_pfn(pgd_t pgd) { return (pgd_val(pgd) & PTE_PFN_MASK) >> PAGE_SHIFT; } #define p4d_leaf p4d_large static inline int p4d_large(p4d_t p4d) { /* No 512 GiB pages yet */ return 0; } #define pte_page(pte) pfn_to_page(pte_pfn(pte)) #define pmd_leaf pmd_large static inline int pmd_large(pmd_t pte) { return pmd_flags(pte) & _PAGE_PSE; } #ifdef CONFIG_TRANSPARENT_HUGEPAGE /* NOTE: when predicate huge page, consider also pmd_devmap, or use pmd_large */ static inline int pmd_trans_huge(pmd_t pmd) { return (pmd_val(pmd) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE; } #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD static inline int pud_trans_huge(pud_t pud) { return (pud_val(pud) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE; } #endif #define has_transparent_hugepage has_transparent_hugepage static inline int has_transparent_hugepage(void) { return boot_cpu_has(X86_FEATURE_PSE); } #ifdef CONFIG_ARCH_HAS_PTE_DEVMAP static inline int pmd_devmap(pmd_t pmd) { return !!(pmd_val(pmd) & _PAGE_DEVMAP); } #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD static inline int pud_devmap(pud_t pud) { return !!(pud_val(pud) & _PAGE_DEVMAP); } #else static inline int pud_devmap(pud_t pud) { return 0; } #endif static inline int pgd_devmap(pgd_t pgd) { return 0; } #endif #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ static inline pte_t pte_set_flags(pte_t pte, pteval_t set) { pteval_t v = native_pte_val(pte); return native_make_pte(v | set); } static inline pte_t pte_clear_flags(pte_t pte, pteval_t clear) { pteval_t v = native_pte_val(pte); return native_make_pte(v & ~clear); } #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP static inline int pte_uffd_wp(pte_t pte) { return pte_flags(pte) & _PAGE_UFFD_WP; } static inline pte_t pte_mkuffd_wp(pte_t pte) { return pte_set_flags(pte, _PAGE_UFFD_WP); } static inline pte_t pte_clear_uffd_wp(pte_t pte) { return pte_clear_flags(pte, _PAGE_UFFD_WP); } #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */ static inline pte_t pte_mkclean(pte_t pte) { return pte_clear_flags(pte, _PAGE_DIRTY); } static inline pte_t pte_mkold(pte_t pte) { return pte_clear_flags(pte, _PAGE_ACCESSED); } static inline pte_t pte_wrprotect(pte_t pte) { return pte_clear_flags(pte, _PAGE_RW); } static inline pte_t pte_mkexec(pte_t pte) { return pte_clear_flags(pte, _PAGE_NX); } static inline pte_t pte_mkdirty(pte_t pte) { return pte_set_flags(pte, _PAGE_DIRTY | _PAGE_SOFT_DIRTY); } static inline pte_t pte_mkyoung(pte_t pte) { return pte_set_flags(pte, _PAGE_ACCESSED); } static inline pte_t pte_mkwrite(pte_t pte) { return pte_set_flags(pte, _PAGE_RW); } static inline pte_t pte_mkhuge(pte_t pte) { return pte_set_flags(pte, _PAGE_PSE); } static inline pte_t pte_clrhuge(pte_t pte) { return pte_clear_flags(pte, _PAGE_PSE); } static inline pte_t pte_mkglobal(pte_t pte) { return pte_set_flags(pte, _PAGE_GLOBAL); } static inline pte_t pte_clrglobal(pte_t pte) { return pte_clear_flags(pte, _PAGE_GLOBAL); } static inline pte_t pte_mkspecial(pte_t pte) { return pte_set_flags(pte, _PAGE_SPECIAL); } static inline pte_t pte_mkdevmap(pte_t pte) { return pte_set_flags(pte, _PAGE_SPECIAL|_PAGE_DEVMAP); } static inline pmd_t pmd_set_flags(pmd_t pmd, pmdval_t set) { pmdval_t v = native_pmd_val(pmd); return native_make_pmd(v | set); } static inline pmd_t pmd_clear_flags(pmd_t pmd, pmdval_t clear) { pmdval_t v = native_pmd_val(pmd); return native_make_pmd(v & ~clear); } #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP static inline int pmd_uffd_wp(pmd_t pmd) { return pmd_flags(pmd) & _PAGE_UFFD_WP; } static inline pmd_t pmd_mkuffd_wp(pmd_t pmd) { return pmd_set_flags(pmd, _PAGE_UFFD_WP); } static inline pmd_t pmd_clear_uffd_wp(pmd_t pmd) { return pmd_clear_flags(pmd, _PAGE_UFFD_WP); } #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */ static inline pmd_t pmd_mkold(pmd_t pmd) { return pmd_clear_flags(pmd, _PAGE_ACCESSED); } static inline pmd_t pmd_mkclean(pmd_t pmd) { return pmd_clear_flags(pmd, _PAGE_DIRTY); } static inline pmd_t pmd_wrprotect(pmd_t pmd) { return pmd_clear_flags(pmd, _PAGE_RW); } static inline pmd_t pmd_mkdirty(pmd_t pmd) { return pmd_set_flags(pmd, _PAGE_DIRTY | _PAGE_SOFT_DIRTY); } static inline pmd_t pmd_mkdevmap(pmd_t pmd) { return pmd_set_flags(pmd, _PAGE_DEVMAP); } static inline pmd_t pmd_mkhuge(pmd_t pmd) { return pmd_set_flags(pmd, _PAGE_PSE); } static inline pmd_t pmd_mkyoung(pmd_t pmd) { return pmd_set_flags(pmd, _PAGE_ACCESSED); } static inline pmd_t pmd_mkwrite(pmd_t pmd) { return pmd_set_flags(pmd, _PAGE_RW); } static inline pud_t pud_set_flags(pud_t pud, pudval_t set) { pudval_t v = native_pud_val(pud); return native_make_pud(v | set); } static inline pud_t pud_clear_flags(pud_t pud, pudval_t clear) { pudval_t v = native_pud_val(pud); return native_make_pud(v & ~clear); } static inline pud_t pud_mkold(pud_t pud) { return pud_clear_flags(pud, _PAGE_ACCESSED); } static inline pud_t pud_mkclean(pud_t pud) { return pud_clear_flags(pud, _PAGE_DIRTY); } static inline pud_t pud_wrprotect(pud_t pud) { return pud_clear_flags(pud, _PAGE_RW); } static inline pud_t pud_mkdirty(pud_t pud) { return pud_set_flags(pud, _PAGE_DIRTY | _PAGE_SOFT_DIRTY); } static inline pud_t pud_mkdevmap(pud_t pud) { return pud_set_flags(pud, _PAGE_DEVMAP); } static inline pud_t pud_mkhuge(pud_t pud) { return pud_set_flags(pud, _PAGE_PSE); } static inline pud_t pud_mkyoung(pud_t pud) { return pud_set_flags(pud, _PAGE_ACCESSED); } static inline pud_t pud_mkwrite(pud_t pud) { return pud_set_flags(pud, _PAGE_RW); } #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY static inline int pte_soft_dirty(pte_t pte) { return pte_flags(pte) & _PAGE_SOFT_DIRTY; } static inline int pmd_soft_dirty(pmd_t pmd) { return pmd_flags(pmd) & _PAGE_SOFT_DIRTY; } static inline int pud_soft_dirty(pud_t pud) { return pud_flags(pud) & _PAGE_SOFT_DIRTY; } static inline pte_t pte_mksoft_dirty(pte_t pte) { return pte_set_flags(pte, _PAGE_SOFT_DIRTY); } static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) { return pmd_set_flags(pmd, _PAGE_SOFT_DIRTY); } static inline pud_t pud_mksoft_dirty(pud_t pud) { return pud_set_flags(pud, _PAGE_SOFT_DIRTY); } static inline pte_t pte_clear_soft_dirty(pte_t pte) { return pte_clear_flags(pte, _PAGE_SOFT_DIRTY); } static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd) { return pmd_clear_flags(pmd, _PAGE_SOFT_DIRTY); } static inline pud_t pud_clear_soft_dirty(pud_t pud) { return pud_clear_flags(pud, _PAGE_SOFT_DIRTY); } #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */ /* * Mask out unsupported bits in a present pgprot. Non-present pgprots * can use those bits for other purposes, so leave them be. */ static inline pgprotval_t massage_pgprot(pgprot_t pgprot) { pgprotval_t protval = pgprot_val(pgprot); if (protval & _PAGE_PRESENT) protval &= __supported_pte_mask; return protval; } static inline pgprotval_t check_pgprot(pgprot_t pgprot) { pgprotval_t massaged_val = massage_pgprot(pgprot); /* mmdebug.h can not be included here because of dependencies */ #ifdef CONFIG_DEBUG_VM WARN_ONCE(pgprot_val(pgprot) != massaged_val, "attempted to set unsupported pgprot: %016llx " "bits: %016llx supported: %016llx\n", (u64)pgprot_val(pgprot), (u64)pgprot_val(pgprot) ^ massaged_val, (u64)__supported_pte_mask); #endif return massaged_val; } static inline pte_t pfn_pte(unsigned long page_nr, pgprot_t pgprot) { phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT; pfn ^= protnone_mask(pgprot_val(pgprot)); pfn &= PTE_PFN_MASK; return __pte(pfn | check_pgprot(pgprot)); } static inline pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot) { phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT; pfn ^= protnone_mask(pgprot_val(pgprot)); pfn &= PHYSICAL_PMD_PAGE_MASK; return __pmd(pfn | check_pgprot(pgprot)); } static inline pud_t pfn_pud(unsigned long page_nr, pgprot_t pgprot) { phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT; pfn ^= protnone_mask(pgprot_val(pgprot)); pfn &= PHYSICAL_PUD_PAGE_MASK; return __pud(pfn | check_pgprot(pgprot)); } static inline pmd_t pmd_mkinvalid(pmd_t pmd) { return pfn_pmd(pmd_pfn(pmd), __pgprot(pmd_flags(pmd) & ~(_PAGE_PRESENT|_PAGE_PROTNONE))); } static inline u64 flip_protnone_guard(u64 oldval, u64 val, u64 mask); static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) { pteval_t val = pte_val(pte), oldval = val; /* * Chop off the NX bit (if present), and add the NX portion of * the newprot (if present): */ val &= _PAGE_CHG_MASK; val |= check_pgprot(newprot) & ~_PAGE_CHG_MASK; val = flip_protnone_guard(oldval, val, PTE_PFN_MASK); return __pte(val); } static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) { pmdval_t val = pmd_val(pmd), oldval = val; val &= _HPAGE_CHG_MASK; val |= check_pgprot(newprot) & ~_HPAGE_CHG_MASK; val = flip_protnone_guard(oldval, val, PHYSICAL_PMD_PAGE_MASK); return __pmd(val); } /* * mprotect needs to preserve PAT and encryption bits when updating * vm_page_prot */ #define pgprot_modify pgprot_modify static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot) { pgprotval_t preservebits = pgprot_val(oldprot) & _PAGE_CHG_MASK; pgprotval_t addbits = pgprot_val(newprot) & ~_PAGE_CHG_MASK; return __pgprot(preservebits | addbits); } #define pte_pgprot(x) __pgprot(pte_flags(x)) #define pmd_pgprot(x) __pgprot(pmd_flags(x)) #define pud_pgprot(x) __pgprot(pud_flags(x)) #define p4d_pgprot(x) __pgprot(p4d_flags(x)) #define canon_pgprot(p) __pgprot(massage_pgprot(p)) static inline pgprot_t arch_filter_pgprot(pgprot_t prot) { return canon_pgprot(prot); } static inline int is_new_memtype_allowed(u64 paddr, unsigned long size, enum page_cache_mode pcm, enum page_cache_mode new_pcm) { /* * PAT type is always WB for untracked ranges, so no need to check. */ if (x86_platform.is_untracked_pat_range(paddr, paddr + size)) return 1; /* * Certain new memtypes are not allowed with certain * requested memtype: * - request is uncached, return cannot be write-back * - request is write-combine, return cannot be write-back * - request is write-through, return cannot be write-back * - request is write-through, return cannot be write-combine */ if ((pcm == _PAGE_CACHE_MODE_UC_MINUS && new_pcm == _PAGE_CACHE_MODE_WB) || (pcm == _PAGE_CACHE_MODE_WC && new_pcm == _PAGE_CACHE_MODE_WB) || (pcm == _PAGE_CACHE_MODE_WT && new_pcm == _PAGE_CACHE_MODE_WB) || (pcm == _PAGE_CACHE_MODE_WT && new_pcm == _PAGE_CACHE_MODE_WC)) { return 0; } return 1; } pmd_t *populate_extra_pmd(unsigned long vaddr); pte_t *populate_extra_pte(unsigned long vaddr); #ifdef CONFIG_PAGE_TABLE_ISOLATION pgd_t __pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd); /* * Take a PGD location (pgdp) and a pgd value that needs to be set there. * Populates the user and returns the resulting PGD that must be set in * the kernel copy of the page tables. */ static inline pgd_t pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd) { if (!static_cpu_has(X86_FEATURE_PTI)) return pgd; return __pti_set_user_pgtbl(pgdp, pgd); } #else /* CONFIG_PAGE_TABLE_ISOLATION */ static inline pgd_t pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd) { return pgd; } #endif /* CONFIG_PAGE_TABLE_ISOLATION */ #endif /* __ASSEMBLY__ */ #ifdef CONFIG_X86_32 # include <asm/pgtable_32.h> #else # include <asm/pgtable_64.h> #endif #ifndef __ASSEMBLY__ #include <linux/mm_types.h> #include <linux/mmdebug.h> #include <linux/log2.h> #include <asm/fixmap.h> static inline int pte_none(pte_t pte) { return !(pte.pte & ~(_PAGE_KNL_ERRATUM_MASK)); } #define __HAVE_ARCH_PTE_SAME static inline int pte_same(pte_t a, pte_t b) { return a.pte == b.pte; } static inline int pte_present(pte_t a) { return pte_flags(a) & (_PAGE_PRESENT | _PAGE_PROTNONE); } #ifdef CONFIG_ARCH_HAS_PTE_DEVMAP static inline int pte_devmap(pte_t a) { return (pte_flags(a) & _PAGE_DEVMAP) == _PAGE_DEVMAP; } #endif #define pte_accessible pte_accessible static inline bool pte_accessible(struct mm_struct *mm, pte_t a) { if (pte_flags(a) & _PAGE_PRESENT) return true; if ((pte_flags(a) & _PAGE_PROTNONE) && mm_tlb_flush_pending(mm)) return true; return false; } static inline int pmd_present(pmd_t pmd) { /* * Checking for _PAGE_PSE is needed too because * split_huge_page will temporarily clear the present bit (but * the _PAGE_PSE flag will remain set at all times while the * _PAGE_PRESENT bit is clear). */ return pmd_flags(pmd) & (_PAGE_PRESENT | _PAGE_PROTNONE | _PAGE_PSE); } #ifdef CONFIG_NUMA_BALANCING /* * These work without NUMA balancing but the kernel does not care. See the * comment in include/linux/pgtable.h */ static inline int pte_protnone(pte_t pte) { return (pte_flags(pte) & (_PAGE_PROTNONE | _PAGE_PRESENT)) == _PAGE_PROTNONE; } static inline int pmd_protnone(pmd_t pmd) { return (pmd_flags(pmd) & (_PAGE_PROTNONE | _PAGE_PRESENT)) == _PAGE_PROTNONE; } #endif /* CONFIG_NUMA_BALANCING */ static inline int pmd_none(pmd_t pmd) { /* Only check low word on 32-bit platforms, since it might be out of sync with upper half. */ unsigned long val = native_pmd_val(pmd); return (val & ~_PAGE_KNL_ERRATUM_MASK) == 0; } static inline unsigned long pmd_page_vaddr(pmd_t pmd) { return (unsigned long)__va(pmd_val(pmd) & pmd_pfn_mask(pmd)); } /* * Currently stuck as a macro due to indirect forward reference to * linux/mmzone.h's __section_mem_map_addr() definition: */ #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd)) /* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. * * (Currently stuck as a macro because of indirect forward reference * to linux/mm.h:page_to_nid()) */ #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) static inline int pmd_bad(pmd_t pmd) { return (pmd_flags(pmd) & ~_PAGE_USER) != _KERNPG_TABLE; } static inline unsigned long pages_to_mb(unsigned long npg) { return npg >> (20 - PAGE_SHIFT); } #if CONFIG_PGTABLE_LEVELS > 2 static inline int pud_none(pud_t pud) { return (native_pud_val(pud) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0; } static inline int pud_present(pud_t pud) { return pud_flags(pud) & _PAGE_PRESENT; } static inline unsigned long pud_page_vaddr(pud_t pud) { return (unsigned long)__va(pud_val(pud) & pud_pfn_mask(pud)); } /* * Currently stuck as a macro due to indirect forward reference to * linux/mmzone.h's __section_mem_map_addr() definition: */ #define pud_page(pud) pfn_to_page(pud_pfn(pud)) #define pud_leaf pud_large static inline int pud_large(pud_t pud) { return (pud_val(pud) & (_PAGE_PSE | _PAGE_PRESENT)) == (_PAGE_PSE | _PAGE_PRESENT); } static inline int pud_bad(pud_t pud) { return (pud_flags(pud) & ~(_KERNPG_TABLE | _PAGE_USER)) != 0; } #else #define pud_leaf pud_large static inline int pud_large(pud_t pud) { return 0; } #endif /* CONFIG_PGTABLE_LEVELS > 2 */ #if CONFIG_PGTABLE_LEVELS > 3 static inline int p4d_none(p4d_t p4d) { return (native_p4d_val(p4d) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0; } static inline int p4d_present(p4d_t p4d) { return p4d_flags(p4d) & _PAGE_PRESENT; } static inline unsigned long p4d_page_vaddr(p4d_t p4d) { return (unsigned long)__va(p4d_val(p4d) & p4d_pfn_mask(p4d)); } /* * Currently stuck as a macro due to indirect forward reference to * linux/mmzone.h's __section_mem_map_addr() definition: */ #define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d)) static inline int p4d_bad(p4d_t p4d) { unsigned long ignore_flags = _KERNPG_TABLE | _PAGE_USER; if (IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION)) ignore_flags |= _PAGE_NX; return (p4d_flags(p4d) & ~ignore_flags) != 0; } #endif /* CONFIG_PGTABLE_LEVELS > 3 */ static inline unsigned long p4d_index(unsigned long address) { return (address >> P4D_SHIFT) & (PTRS_PER_P4D - 1); } #if CONFIG_PGTABLE_LEVELS > 4 static inline int pgd_present(pgd_t pgd) { if (!pgtable_l5_enabled()) return 1; return pgd_flags(pgd) & _PAGE_PRESENT; } static inline unsigned long pgd_page_vaddr(pgd_t pgd) { return (unsigned long)__va((unsigned long)pgd_val(pgd) & PTE_PFN_MASK); } /* * Currently stuck as a macro due to indirect forward reference to * linux/mmzone.h's __section_mem_map_addr() definition: */ #define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd)) /* to find an entry in a page-table-directory. */ static inline p4d_t *p4d_offset(pgd_t *pgd, unsigned long address) { if (!pgtable_l5_enabled()) return (p4d_t *)pgd; return (p4d_t *)pgd_page_vaddr(*pgd) + p4d_index(address); } static inline int pgd_bad(pgd_t pgd) { unsigned long ignore_flags = _PAGE_USER; if (!pgtable_l5_enabled()) return 0; if (IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION)) ignore_flags |= _PAGE_NX; return (pgd_flags(pgd) & ~ignore_flags) != _KERNPG_TABLE; } static inline int pgd_none(pgd_t pgd) { if (!pgtable_l5_enabled()) return 0; /* * There is no need to do a workaround for the KNL stray * A/D bit erratum here. PGDs only point to page tables * except on 32-bit non-PAE which is not supported on * KNL. */ return !native_pgd_val(pgd); } #endif /* CONFIG_PGTABLE_LEVELS > 4 */ #endif /* __ASSEMBLY__ */ #define KERNEL_PGD_BOUNDARY pgd_index(PAGE_OFFSET) #define KERNEL_PGD_PTRS (PTRS_PER_PGD - KERNEL_PGD_BOUNDARY) #ifndef __ASSEMBLY__ extern int direct_gbpages; void init_mem_mapping(void); void early_alloc_pgt_buf(void); extern void memblock_find_dma_reserve(void); void __init poking_init(void); unsigned long init_memory_mapping(unsigned long start, unsigned long end, pgprot_t prot); #ifdef CONFIG_X86_64 extern pgd_t trampoline_pgd_entry; #endif /* local pte updates need not use xchg for locking */ static inline pte_t native_local_ptep_get_and_clear(pte_t *ptep) { pte_t res = *ptep; /* Pure native function needs no input for mm, addr */ native_pte_clear(NULL, 0, ptep); return res; } static inline pmd_t native_local_pmdp_get_and_clear(pmd_t *pmdp) { pmd_t res = *pmdp; native_pmd_clear(pmdp); return res; } static inline pud_t native_local_pudp_get_and_clear(pud_t *pudp) { pud_t res = *pudp; native_pud_clear(pudp); return res; } static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pte) { set_pte(ptep, pte); } static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp, pmd_t pmd) { set_pmd(pmdp, pmd); } static inline void set_pud_at(struct mm_struct *mm, unsigned long addr, pud_t *pudp, pud_t pud) { native_set_pud(pudp, pud); } /* * We only update the dirty/accessed state if we set * the dirty bit by hand in the kernel, since the hardware * will do the accessed bit for us, and we don't want to * race with other CPU's that might be updating the dirty * bit at the same time. */ struct vm_area_struct; #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address, pte_t *ptep, pte_t entry, int dirty); #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG extern int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep); #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH extern int ptep_clear_flush_young(struct vm_area_struct *vma, unsigned long address, pte_t *ptep); #define __HAVE_ARCH_PTEP_GET_AND_CLEAR static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { pte_t pte = native_ptep_get_and_clear(ptep); return pte; } #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, unsigned long addr, pte_t *ptep, int full) { pte_t pte; if (full) { /* * Full address destruction in progress; paravirt does not * care about updates and native needs no locking */ pte = native_local_ptep_get_and_clear(ptep); } else { pte = ptep_get_and_clear(mm, addr, ptep); } return pte; } #define __HAVE_ARCH_PTEP_SET_WRPROTECT static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { clear_bit(_PAGE_BIT_RW, (unsigned long *)&ptep->pte); } #define flush_tlb_fix_spurious_fault(vma, address) do { } while (0) #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot)) #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS extern int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp, pmd_t entry, int dirty); extern int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address, pud_t *pudp, pud_t entry, int dirty); #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG extern int pmdp_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pmd_t *pmdp); extern int pudp_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pud_t *pudp); #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH extern int pmdp_clear_flush_young(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp); #define pmd_write pmd_write static inline int pmd_write(pmd_t pmd) { return pmd_flags(pmd) & _PAGE_RW; } #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp) { return native_pmdp_get_and_clear(pmdp); } #define __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm, unsigned long addr, pud_t *pudp) { return native_pudp_get_and_clear(pudp); } #define __HAVE_ARCH_PMDP_SET_WRPROTECT static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp) { clear_bit(_PAGE_BIT_RW, (unsigned long *)pmdp); } #define pud_write pud_write static inline int pud_write(pud_t pud) { return pud_flags(pud) & _PAGE_RW; } #ifndef pmdp_establish #define pmdp_establish pmdp_establish static inline pmd_t pmdp_establish(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp, pmd_t pmd) { if (IS_ENABLED(CONFIG_SMP)) { return xchg(pmdp, pmd); } else { pmd_t old = *pmdp; WRITE_ONCE(*pmdp, pmd); return old; } } #endif /* * Page table pages are page-aligned. The lower half of the top * level is used for userspace and the top half for the kernel. * * Returns true for parts of the PGD that map userspace and * false for the parts that map the kernel. */ static inline bool pgdp_maps_userspace(void *__ptr) { unsigned long ptr = (unsigned long)__ptr; return (((ptr & ~PAGE_MASK) / sizeof(pgd_t)) < PGD_KERNEL_START); } #define pgd_leaf pgd_large static inline int pgd_large(pgd_t pgd) { return 0; } #ifdef CONFIG_PAGE_TABLE_ISOLATION /* * All top-level PAGE_TABLE_ISOLATION page tables are order-1 pages * (8k-aligned and 8k in size). The kernel one is at the beginning 4k and * the user one is in the last 4k. To switch between them, you * just need to flip the 12th bit in their addresses. */ #define PTI_PGTABLE_SWITCH_BIT PAGE_SHIFT /* * This generates better code than the inline assembly in * __set_bit(). */ static inline void *ptr_set_bit(void *ptr, int bit) { unsigned long __ptr = (unsigned long)ptr; __ptr |= BIT(bit); return (void *)__ptr; } static inline void *ptr_clear_bit(void *ptr, int bit) { unsigned long __ptr = (unsigned long)ptr; __ptr &= ~BIT(bit); return (void *)__ptr; } static inline pgd_t *kernel_to_user_pgdp(pgd_t *pgdp) { return ptr_set_bit(pgdp, PTI_PGTABLE_SWITCH_BIT); } static inline pgd_t *user_to_kernel_pgdp(pgd_t *pgdp) { return ptr_clear_bit(pgdp, PTI_PGTABLE_SWITCH_BIT); } static inline p4d_t *kernel_to_user_p4dp(p4d_t *p4dp) { return ptr_set_bit(p4dp, PTI_PGTABLE_SWITCH_BIT); } static inline p4d_t *user_to_kernel_p4dp(p4d_t *p4dp) { return ptr_clear_bit(p4dp, PTI_PGTABLE_SWITCH_BIT); } #endif /* CONFIG_PAGE_TABLE_ISOLATION */ /* * clone_pgd_range(pgd_t *dst, pgd_t *src, int count); * * dst - pointer to pgd range anwhere on a pgd page * src - "" * count - the number of pgds to copy. * * dst and src can be on the same page, but the range must not overlap, * and must not cross a page boundary. */ static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count) { memcpy(dst, src, count * sizeof(pgd_t)); #ifdef CONFIG_PAGE_TABLE_ISOLATION if (!static_cpu_has(X86_FEATURE_PTI)) return; /* Clone the user space pgd as well */ memcpy(kernel_to_user_pgdp(dst), kernel_to_user_pgdp(src), count * sizeof(pgd_t)); #endif } #define PTE_SHIFT ilog2(PTRS_PER_PTE) static inline int page_level_shift(enum pg_level level) { return (PAGE_SHIFT - PTE_SHIFT) + level * PTE_SHIFT; } static inline unsigned long page_level_size(enum pg_level level) { return 1UL << page_level_shift(level); } static inline unsigned long page_level_mask(enum pg_level level) { return ~(page_level_size(level) - 1); } /* * The x86 doesn't have any external MMU info: the kernel page * tables contain all the necessary information. */ static inline void update_mmu_cache(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) { } static inline void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr, pmd_t *pmd) { } static inline void update_mmu_cache_pud(struct vm_area_struct *vma, unsigned long addr, pud_t *pud) { } #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY static inline pte_t pte_swp_mksoft_dirty(pte_t pte) { return pte_set_flags(pte, _PAGE_SWP_SOFT_DIRTY); } static inline int pte_swp_soft_dirty(pte_t pte) { return pte_flags(pte) & _PAGE_SWP_SOFT_DIRTY; } static inline pte_t pte_swp_clear_soft_dirty(pte_t pte) { return pte_clear_flags(pte, _PAGE_SWP_SOFT_DIRTY); } #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) { return pmd_set_flags(pmd, _PAGE_SWP_SOFT_DIRTY); } static inline int pmd_swp_soft_dirty(pmd_t pmd) { return pmd_flags(pmd) & _PAGE_SWP_SOFT_DIRTY; } static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) { return pmd_clear_flags(pmd, _PAGE_SWP_SOFT_DIRTY); } #endif #endif #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP static inline pte_t pte_swp_mkuffd_wp(pte_t pte) { return pte_set_flags(pte, _PAGE_SWP_UFFD_WP); } static inline int pte_swp_uffd_wp(pte_t pte) { return pte_flags(pte) & _PAGE_SWP_UFFD_WP; } static inline pte_t pte_swp_clear_uffd_wp(pte_t pte) { return pte_clear_flags(pte, _PAGE_SWP_UFFD_WP); } static inline pmd_t pmd_swp_mkuffd_wp(pmd_t pmd) { return pmd_set_flags(pmd, _PAGE_SWP_UFFD_WP); } static inline int pmd_swp_uffd_wp(pmd_t pmd) { return pmd_flags(pmd) & _PAGE_SWP_UFFD_WP; } static inline pmd_t pmd_swp_clear_uffd_wp(pmd_t pmd) { return pmd_clear_flags(pmd, _PAGE_SWP_UFFD_WP); } #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */ #define PKRU_AD_BIT 0x1u #define PKRU_WD_BIT 0x2u #define PKRU_BITS_PER_PKEY 2 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS extern u32 init_pkru_value; #else #define init_pkru_value 0 #endif static inline bool __pkru_allows_read(u32 pkru, u16 pkey) { int pkru_pkey_bits = pkey * PKRU_BITS_PER_PKEY; return !(pkru & (PKRU_AD_BIT << pkru_pkey_bits)); } static inline bool __pkru_allows_write(u32 pkru, u16 pkey) { int pkru_pkey_bits = pkey * PKRU_BITS_PER_PKEY; /* * Access-disable disables writes too so we need to check * both bits here. */ return !(pkru & ((PKRU_AD_BIT|PKRU_WD_BIT) << pkru_pkey_bits)); } static inline u16 pte_flags_pkey(unsigned long pte_flags) { #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS /* ifdef to avoid doing 59-bit shift on 32-bit values */ return (pte_flags & _PAGE_PKEY_MASK) >> _PAGE_BIT_PKEY_BIT0; #else return 0; #endif } static inline bool __pkru_allows_pkey(u16 pkey, bool write) { u32 pkru = read_pkru(); if (!__pkru_allows_read(pkru, pkey)) return false; if (write && !__pkru_allows_write(pkru, pkey)) return false; return true; } /* * 'pteval' can come from a PTE, PMD or PUD. We only check * _PAGE_PRESENT, _PAGE_USER, and _PAGE_RW in here which are the * same value on all 3 types. */ static inline bool __pte_access_permitted(unsigned long pteval, bool write) { unsigned long need_pte_bits = _PAGE_PRESENT|_PAGE_USER; if (write) need_pte_bits |= _PAGE_RW; if ((pteval & need_pte_bits) != need_pte_bits) return 0; return __pkru_allows_pkey(pte_flags_pkey(pteval), write); } #define pte_access_permitted pte_access_permitted static inline bool pte_access_permitted(pte_t pte, bool write) { return __pte_access_permitted(pte_val(pte), write); } #define pmd_access_permitted pmd_access_permitted static inline bool pmd_access_permitted(pmd_t pmd, bool write) { return __pte_access_permitted(pmd_val(pmd), write); } #define pud_access_permitted pud_access_permitted static inline bool pud_access_permitted(pud_t pud, bool write) { return __pte_access_permitted(pud_val(pud), write); } #define __HAVE_ARCH_PFN_MODIFY_ALLOWED 1 extern bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot); static inline bool arch_has_pfn_modify_check(void) { return boot_cpu_has_bug(X86_BUG_L1TF); } #define arch_faults_on_old_pte arch_faults_on_old_pte static inline bool arch_faults_on_old_pte(void) { return false; } #endif /* __ASSEMBLY__ */ #endif /* _ASM_X86_PGTABLE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 /* SPDX-License-Identifier: GPL-2.0 */ /* Rewritten and vastly simplified by Rusty Russell for in-kernel * module loader: * Copyright 2002 Rusty Russell <rusty@rustcorp.com.au> IBM Corporation */ #ifndef _LINUX_KALLSYMS_H #define _LINUX_KALLSYMS_H #include <linux/errno.h> #include <linux/kernel.h> #include <linux/stddef.h> #include <linux/mm.h> #include <linux/module.h> #include <asm/sections.h> #define KSYM_NAME_LEN 128 #define KSYM_SYMBOL_LEN (sizeof("%s+%#lx/%#lx [%s]") + (KSYM_NAME_LEN - 1) + \ 2*(BITS_PER_LONG*3/10) + (MODULE_NAME_LEN - 1) + 1) struct cred; struct module; static inline int is_kernel_inittext(unsigned long addr) { if (addr >= (unsigned long)_sinittext && addr <= (unsigned long)_einittext) return 1; return 0; } static inline int is_kernel_text(unsigned long addr) { if ((addr >= (unsigned long)_stext && addr <= (unsigned long)_etext) || arch_is_kernel_text(addr)) return 1; return in_gate_area_no_mm(addr); } static inline int is_kernel(unsigned long addr) { if (addr >= (unsigned long)_stext && addr <= (unsigned long)_end) return 1; return in_gate_area_no_mm(addr); } static inline int is_ksym_addr(unsigned long addr) { if (IS_ENABLED(CONFIG_KALLSYMS_ALL)) return is_kernel(addr); return is_kernel_text(addr) || is_kernel_inittext(addr); } static inline void *dereference_symbol_descriptor(void *ptr) { #ifdef HAVE_DEREFERENCE_FUNCTION_DESCRIPTOR struct module *mod; ptr = dereference_kernel_function_descriptor(ptr); if (is_ksym_addr((unsigned long)ptr)) return ptr; preempt_disable(); mod = __module_address((unsigned long)ptr); preempt_enable(); if (mod) ptr = dereference_module_function_descriptor(mod, ptr); #endif return ptr; } #ifdef CONFIG_KALLSYMS /* Lookup the address for a symbol. Returns 0 if not found. */ unsigned long kallsyms_lookup_name(const char *name); /* Call a function on each kallsyms symbol in the core kernel */ int kallsyms_on_each_symbol(int (*fn)(void *, const char *, struct module *, unsigned long), void *data); extern int kallsyms_lookup_size_offset(unsigned long addr, unsigned long *symbolsize, unsigned long *offset); /* Lookup an address. modname is set to NULL if it's in the kernel. */ const char *kallsyms_lookup(unsigned long addr, unsigned long *symbolsize, unsigned long *offset, char **modname, char *namebuf); /* Look up a kernel symbol and return it in a text buffer. */ extern int sprint_symbol(char *buffer, unsigned long address); extern int sprint_symbol_no_offset(char *buffer, unsigned long address); extern int sprint_backtrace(char *buffer, unsigned long address); int lookup_symbol_name(unsigned long addr, char *symname); int lookup_symbol_attrs(unsigned long addr, unsigned long *size, unsigned long *offset, char *modname, char *name); /* How and when do we show kallsyms values? */ extern bool kallsyms_show_value(const struct cred *cred); #else /* !CONFIG_KALLSYMS */ static inline unsigned long kallsyms_lookup_name(const char *name) { return 0; } static inline int kallsyms_on_each_symbol(int (*fn)(void *, const char *, struct module *, unsigned long), void *data) { return 0; } static inline int kallsyms_lookup_size_offset(unsigned long addr, unsigned long *symbolsize, unsigned long *offset) { return 0; } static inline const char *kallsyms_lookup(unsigned long addr, unsigned long *symbolsize, unsigned long *offset, char **modname, char *namebuf) { return NULL; } static inline int sprint_symbol(char *buffer, unsigned long addr) { *buffer = '\0'; return 0; } static inline int sprint_symbol_no_offset(char *buffer, unsigned long addr) { *buffer = '\0'; return 0; } static inline int sprint_backtrace(char *buffer, unsigned long addr) { *buffer = '\0'; return 0; } static inline int lookup_symbol_name(unsigned long addr, char *symname) { return -ERANGE; } static inline int lookup_symbol_attrs(unsigned long addr, unsigned long *size, unsigned long *offset, char *modname, char *name) { return -ERANGE; } static inline bool kallsyms_show_value(const struct cred *cred) { return false; } #endif /*CONFIG_KALLSYMS*/ static inline void print_ip_sym(const char *loglvl, unsigned long ip) { printk("%s[<%px>] %pS\n", loglvl, (void *) ip, (void *) ip); } #endif /*_LINUX_KALLSYMS_H*/
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_PTRACE_H #define _ASM_X86_PTRACE_H #include <asm/segment.h> #include <asm/page_types.h> #include <uapi/asm/ptrace.h> #ifndef __ASSEMBLY__ #ifdef __i386__ struct pt_regs { /* * NB: 32-bit x86 CPUs are inconsistent as what happens in the * following cases (where %seg represents a segment register): * * - pushl %seg: some do a 16-bit write and leave the high * bits alone * - movl %seg, [mem]: some do a 16-bit write despite the movl * - IDT entry: some (e.g. 486) will leave the high bits of CS * and (if applicable) SS undefined. * * Fortunately, x86-32 doesn't read the high bits on POP or IRET, * so we can just treat all of the segment registers as 16-bit * values. */ unsigned long bx; unsigned long cx; unsigned long dx; unsigned long si; unsigned long di; unsigned long bp; unsigned long ax; unsigned short ds; unsigned short __dsh; unsigned short es; unsigned short __esh; unsigned short fs; unsigned short __fsh; /* On interrupt, gs and __gsh store the vector number. */ unsigned short gs; unsigned short __gsh; /* On interrupt, this is the error code. */ unsigned long orig_ax; unsigned long ip; unsigned short cs; unsigned short __csh; unsigned long flags; unsigned long sp; unsigned short ss; unsigned short __ssh; }; #else /* __i386__ */ struct pt_regs { /* * C ABI says these regs are callee-preserved. They aren't saved on kernel entry * unless syscall needs a complete, fully filled "struct pt_regs". */ unsigned long r15; unsigned long r14; unsigned long r13; unsigned long r12; unsigned long bp; unsigned long bx; /* These regs are callee-clobbered. Always saved on kernel entry. */ unsigned long r11; unsigned long r10; unsigned long r9; unsigned long r8; unsigned long ax; unsigned long cx; unsigned long dx; unsigned long si; unsigned long di; /* * On syscall entry, this is syscall#. On CPU exception, this is error code. * On hw interrupt, it's IRQ number: */ unsigned long orig_ax; /* Return frame for iretq */ unsigned long ip; unsigned long cs; unsigned long flags; unsigned long sp; unsigned long ss; /* top of stack page */ }; #endif /* !__i386__ */ #ifdef CONFIG_PARAVIRT #include <asm/paravirt_types.h> #endif #include <asm/proto.h> struct cpuinfo_x86; struct task_struct; extern unsigned long profile_pc(struct pt_regs *regs); extern unsigned long convert_ip_to_linear(struct task_struct *child, struct pt_regs *regs); extern void send_sigtrap(struct pt_regs *regs, int error_code, int si_code); static inline unsigned long regs_return_value(struct pt_regs *regs) { return regs->ax; } static inline void regs_set_return_value(struct pt_regs *regs, unsigned long rc) { regs->ax = rc; } /* * user_mode(regs) determines whether a register set came from user * mode. On x86_32, this is true if V8086 mode was enabled OR if the * register set was from protected mode with RPL-3 CS value. This * tricky test checks that with one comparison. * * On x86_64, vm86 mode is mercifully nonexistent, and we don't need * the extra check. */ static __always_inline int user_mode(struct pt_regs *regs) { #ifdef CONFIG_X86_32 return ((regs->cs & SEGMENT_RPL_MASK) | (regs->flags & X86_VM_MASK)) >= USER_RPL; #else return !!(regs->cs & 3); #endif } static inline int v8086_mode(struct pt_regs *regs) { #ifdef CONFIG_X86_32 return (regs->flags & X86_VM_MASK); #else return 0; /* No V86 mode support in long mode */ #endif } static inline bool user_64bit_mode(struct pt_regs *regs) { #ifdef CONFIG_X86_64 #ifndef CONFIG_PARAVIRT_XXL /* * On non-paravirt systems, this is the only long mode CPL 3 * selector. We do not allow long mode selectors in the LDT. */ return regs->cs == __USER_CS; #else /* Headers are too twisted for this to go in paravirt.h. */ return regs->cs == __USER_CS || regs->cs == pv_info.extra_user_64bit_cs; #endif #else /* !CONFIG_X86_64 */ return false; #endif } /* * Determine whether the register set came from any context that is running in * 64-bit mode. */ static inline bool any_64bit_mode(struct pt_regs *regs) { #ifdef CONFIG_X86_64 return !user_mode(regs) || user_64bit_mode(regs); #else return false; #endif } #ifdef CONFIG_X86_64 #define current_user_stack_pointer() current_pt_regs()->sp #define compat_user_stack_pointer() current_pt_regs()->sp static inline bool ip_within_syscall_gap(struct pt_regs *regs) { bool ret = (regs->ip >= (unsigned long)entry_SYSCALL_64 && regs->ip < (unsigned long)entry_SYSCALL_64_safe_stack); #ifdef CONFIG_IA32_EMULATION ret = ret || (regs->ip >= (unsigned long)entry_SYSCALL_compat && regs->ip < (unsigned long)entry_SYSCALL_compat_safe_stack); #endif return ret; } #endif static inline unsigned long kernel_stack_pointer(struct pt_regs *regs) { return regs->sp; } static inline unsigned long instruction_pointer(struct pt_regs *regs) { return regs->ip; } static inline void instruction_pointer_set(struct pt_regs *regs, unsigned long val) { regs->ip = val; } static inline unsigned long frame_pointer(struct pt_regs *regs) { return regs->bp; } static inline unsigned long user_stack_pointer(struct pt_regs *regs) { return regs->sp; } static inline void user_stack_pointer_set(struct pt_regs *regs, unsigned long val) { regs->sp = val; } static __always_inline bool regs_irqs_disabled(struct pt_regs *regs) { return !(regs->flags & X86_EFLAGS_IF); } /* Query offset/name of register from its name/offset */ extern int regs_query_register_offset(const char *name); extern const char *regs_query_register_name(unsigned int offset); #define MAX_REG_OFFSET (offsetof(struct pt_regs, ss)) /** * regs_get_register() - get register value from its offset * @regs: pt_regs from which register value is gotten. * @offset: offset number of the register. * * regs_get_register returns the value of a register. The @offset is the * offset of the register in struct pt_regs address which specified by @regs. * If @offset is bigger than MAX_REG_OFFSET, this returns 0. */ static inline unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset) { if (unlikely(offset > MAX_REG_OFFSET)) return 0; #ifdef CONFIG_X86_32 /* The selector fields are 16-bit. */ if (offset == offsetof(struct pt_regs, cs) || offset == offsetof(struct pt_regs, ss) || offset == offsetof(struct pt_regs, ds) || offset == offsetof(struct pt_regs, es) || offset == offsetof(struct pt_regs, fs) || offset == offsetof(struct pt_regs, gs)) { return *(u16 *)((unsigned long)regs + offset); } #endif return *(unsigned long *)((unsigned long)regs + offset); } /** * regs_within_kernel_stack() - check the address in the stack * @regs: pt_regs which contains kernel stack pointer. * @addr: address which is checked. * * regs_within_kernel_stack() checks @addr is within the kernel stack page(s). * If @addr is within the kernel stack, it returns true. If not, returns false. */ static inline int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr) { return ((addr & ~(THREAD_SIZE - 1)) == (regs->sp & ~(THREAD_SIZE - 1))); } /** * regs_get_kernel_stack_nth_addr() - get the address of the Nth entry on stack * @regs: pt_regs which contains kernel stack pointer. * @n: stack entry number. * * regs_get_kernel_stack_nth() returns the address of the @n th entry of the * kernel stack which is specified by @regs. If the @n th entry is NOT in * the kernel stack, this returns NULL. */ static inline unsigned long *regs_get_kernel_stack_nth_addr(struct pt_regs *regs, unsigned int n) { unsigned long *addr = (unsigned long *)regs->sp; addr += n; if (regs_within_kernel_stack(regs, (unsigned long)addr)) return addr; else return NULL; } /* To avoid include hell, we can't include uaccess.h */ extern long copy_from_kernel_nofault(void *dst, const void *src, size_t size); /** * regs_get_kernel_stack_nth() - get Nth entry of the stack * @regs: pt_regs which contains kernel stack pointer. * @n: stack entry number. * * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which * is specified by @regs. If the @n th entry is NOT in the kernel stack * this returns 0. */ static inline unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n) { unsigned long *addr; unsigned long val; long ret; addr = regs_get_kernel_stack_nth_addr(regs, n); if (addr) { ret = copy_from_kernel_nofault(&val, addr, sizeof(val)); if (!ret) return val; } return 0; } /** * regs_get_kernel_argument() - get Nth function argument in kernel * @regs: pt_regs of that context * @n: function argument number (start from 0) * * regs_get_argument() returns @n th argument of the function call. * Note that this chooses most probably assignment, in some case * it can be incorrect. * This is expected to be called from kprobes or ftrace with regs * where the top of stack is the return address. */ static inline unsigned long regs_get_kernel_argument(struct pt_regs *regs, unsigned int n) { static const unsigned int argument_offs[] = { #ifdef __i386__ offsetof(struct pt_regs, ax), offsetof(struct pt_regs, dx), offsetof(struct pt_regs, cx), #define NR_REG_ARGUMENTS 3 #else offsetof(struct pt_regs, di), offsetof(struct pt_regs, si), offsetof(struct pt_regs, dx), offsetof(struct pt_regs, cx), offsetof(struct pt_regs, r8), offsetof(struct pt_regs, r9), #define NR_REG_ARGUMENTS 6 #endif }; if (n >= NR_REG_ARGUMENTS) { n -= NR_REG_ARGUMENTS - 1; return regs_get_kernel_stack_nth(regs, n); } else return regs_get_register(regs, argument_offs[n]); } #define arch_has_single_step() (1) #ifdef CONFIG_X86_DEBUGCTLMSR #define arch_has_block_step() (1) #else #define arch_has_block_step() (boot_cpu_data.x86 >= 6) #endif #define ARCH_HAS_USER_SINGLE_STEP_REPORT struct user_desc; extern int do_get_thread_area(struct task_struct *p, int idx, struct user_desc __user *info); extern int do_set_thread_area(struct task_struct *p, int idx, struct user_desc __user *info, int can_allocate); #ifdef CONFIG_X86_64 # define do_set_thread_area_64(p, s, t) do_arch_prctl_64(p, s, t) #else # define do_set_thread_area_64(p, s, t) (0) #endif #endif /* !__ASSEMBLY__ */ #endif /* _ASM_X86_PTRACE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Copyright (C) 2001 Momchil Velikov * Portions Copyright (C) 2001 Christoph Hellwig * Copyright (C) 2006 Nick Piggin * Copyright (C) 2012 Konstantin Khlebnikov */ #ifndef _LINUX_RADIX_TREE_H #define _LINUX_RADIX_TREE_H #include <linux/bitops.h> #include <linux/kernel.h> #include <linux/list.h> #include <linux/percpu.h> #include <linux/preempt.h> #include <linux/rcupdate.h> #include <linux/spinlock.h> #include <linux/types.h> #include <linux/xarray.h> #include <linux/local_lock.h> /* Keep unconverted code working */ #define radix_tree_root xarray #define radix_tree_node xa_node struct radix_tree_preload { local_lock_t lock; unsigned nr; /* nodes->parent points to next preallocated node */ struct radix_tree_node *nodes; }; DECLARE_PER_CPU(struct radix_tree_preload, radix_tree_preloads); /* * The bottom two bits of the slot determine how the remaining bits in the * slot are interpreted: * * 00 - data pointer * 10 - internal entry * x1 - value entry * * The internal entry may be a pointer to the next level in the tree, a * sibling entry, or an indicator that the entry in this slot has been moved * to another location in the tree and the lookup should be restarted. While * NULL fits the 'data pointer' pattern, it means that there is no entry in * the tree for this index (no matter what level of the tree it is found at). * This means that storing a NULL entry in the tree is the same as deleting * the entry from the tree. */ #define RADIX_TREE_ENTRY_MASK 3UL #define RADIX_TREE_INTERNAL_NODE 2UL static inline bool radix_tree_is_internal_node(void *ptr) { return ((unsigned long)ptr & RADIX_TREE_ENTRY_MASK) == RADIX_TREE_INTERNAL_NODE; } /*** radix-tree API starts here ***/ #define RADIX_TREE_MAP_SHIFT XA_CHUNK_SHIFT #define RADIX_TREE_MAP_SIZE (1UL << RADIX_TREE_MAP_SHIFT) #define RADIX_TREE_MAP_MASK (RADIX_TREE_MAP_SIZE-1) #define RADIX_TREE_MAX_TAGS XA_MAX_MARKS #define RADIX_TREE_TAG_LONGS XA_MARK_LONGS #define RADIX_TREE_INDEX_BITS (8 /* CHAR_BIT */ * sizeof(unsigned long)) #define RADIX_TREE_MAX_PATH (DIV_ROUND_UP(RADIX_TREE_INDEX_BITS, \ RADIX_TREE_MAP_SHIFT)) /* The IDR tag is stored in the low bits of xa_flags */ #define ROOT_IS_IDR ((__force gfp_t)4) /* The top bits of xa_flags are used to store the root tags */ #define ROOT_TAG_SHIFT (__GFP_BITS_SHIFT) #define RADIX_TREE_INIT(name, mask) XARRAY_INIT(name, mask) #define RADIX_TREE(name, mask) \ struct radix_tree_root name = RADIX_TREE_INIT(name, mask) #define INIT_RADIX_TREE(root, mask) xa_init_flags(root, mask) static inline bool radix_tree_empty(const struct radix_tree_root *root) { return root->xa_head == NULL; } /** * struct radix_tree_iter - radix tree iterator state * * @index: index of current slot * @next_index: one beyond the last index for this chunk * @tags: bit-mask for tag-iterating * @node: node that contains current slot * * This radix tree iterator works in terms of "chunks" of slots. A chunk is a * subinterval of slots contained within one radix tree leaf node. It is * described by a pointer to its first slot and a struct radix_tree_iter * which holds the chunk's position in the tree and its size. For tagged * iteration radix_tree_iter also holds the slots' bit-mask for one chosen * radix tree tag. */ struct radix_tree_iter { unsigned long index; unsigned long next_index; unsigned long tags; struct radix_tree_node *node; }; /** * Radix-tree synchronization * * The radix-tree API requires that users provide all synchronisation (with * specific exceptions, noted below). * * Synchronization of access to the data items being stored in the tree, and * management of their lifetimes must be completely managed by API users. * * For API usage, in general, * - any function _modifying_ the tree or tags (inserting or deleting * items, setting or clearing tags) must exclude other modifications, and * exclude any functions reading the tree. * - any function _reading_ the tree or tags (looking up items or tags, * gang lookups) must exclude modifications to the tree, but may occur * concurrently with other readers. * * The notable exceptions to this rule are the following functions: * __radix_tree_lookup * radix_tree_lookup * radix_tree_lookup_slot * radix_tree_tag_get * radix_tree_gang_lookup * radix_tree_gang_lookup_tag * radix_tree_gang_lookup_tag_slot * radix_tree_tagged * * The first 7 functions are able to be called locklessly, using RCU. The * caller must ensure calls to these functions are made within rcu_read_lock() * regions. Other readers (lock-free or otherwise) and modifications may be * running concurrently. * * It is still required that the caller manage the synchronization and lifetimes * of the items. So if RCU lock-free lookups are used, typically this would mean * that the items have their own locks, or are amenable to lock-free access; and * that the items are freed by RCU (or only freed after having been deleted from * the radix tree *and* a synchronize_rcu() grace period). * * (Note, rcu_assign_pointer and rcu_dereference are not needed to control * access to data items when inserting into or looking up from the radix tree) * * Note that the value returned by radix_tree_tag_get() may not be relied upon * if only the RCU read lock is held. Functions to set/clear tags and to * delete nodes running concurrently with it may affect its result such that * two consecutive reads in the same locked section may return different * values. If reliability is required, modification functions must also be * excluded from concurrency. * * radix_tree_tagged is able to be called without locking or RCU. */ /** * radix_tree_deref_slot - dereference a slot * @slot: slot pointer, returned by radix_tree_lookup_slot * * For use with radix_tree_lookup_slot(). Caller must hold tree at least read * locked across slot lookup and dereference. Not required if write lock is * held (ie. items cannot be concurrently inserted). * * radix_tree_deref_retry must be used to confirm validity of the pointer if * only the read lock is held. * * Return: entry stored in that slot. */ static inline void *radix_tree_deref_slot(void __rcu **slot) { return rcu_dereference(*slot); } /** * radix_tree_deref_slot_protected - dereference a slot with tree lock held * @slot: slot pointer, returned by radix_tree_lookup_slot * * Similar to radix_tree_deref_slot. The caller does not hold the RCU read * lock but it must hold the tree lock to prevent parallel updates. * * Return: entry stored in that slot. */ static inline void *radix_tree_deref_slot_protected(void __rcu **slot, spinlock_t *treelock) { return rcu_dereference_protected(*slot, lockdep_is_held(treelock)); } /** * radix_tree_deref_retry - check radix_tree_deref_slot * @arg: pointer returned by radix_tree_deref_slot * Returns: 0 if retry is not required, otherwise retry is required * * radix_tree_deref_retry must be used with radix_tree_deref_slot. */ static inline int radix_tree_deref_retry(void *arg) { return unlikely(radix_tree_is_internal_node(arg)); } /** * radix_tree_exception - radix_tree_deref_slot returned either exception? * @arg: value returned by radix_tree_deref_slot * Returns: 0 if well-aligned pointer, non-0 if either kind of exception. */ static inline int radix_tree_exception(void *arg) { return unlikely((unsigned long)arg & RADIX_TREE_ENTRY_MASK); } int radix_tree_insert(struct radix_tree_root *, unsigned long index, void *); void *__radix_tree_lookup(const struct radix_tree_root *, unsigned long index, struct radix_tree_node **nodep, void __rcu ***slotp); void *radix_tree_lookup(const struct radix_tree_root *, unsigned long); void __rcu **radix_tree_lookup_slot(const struct radix_tree_root *, unsigned long index); void __radix_tree_replace(struct radix_tree_root *, struct radix_tree_node *, void __rcu **slot, void *entry); void radix_tree_iter_replace(struct radix_tree_root *, const struct radix_tree_iter *, void __rcu **slot, void *entry); void radix_tree_replace_slot(struct radix_tree_root *, void __rcu **slot, void *entry); void radix_tree_iter_delete(struct radix_tree_root *, struct radix_tree_iter *iter, void __rcu **slot); void *radix_tree_delete_item(struct radix_tree_root *, unsigned long, void *); void *radix_tree_delete(struct radix_tree_root *, unsigned long); unsigned int radix_tree_gang_lookup(const struct radix_tree_root *, void **results, unsigned long first_index, unsigned int max_items); int radix_tree_preload(gfp_t gfp_mask); int radix_tree_maybe_preload(gfp_t gfp_mask); void radix_tree_init(void); void *radix_tree_tag_set(struct radix_tree_root *, unsigned long index, unsigned int tag); void *radix_tree_tag_clear(struct radix_tree_root *, unsigned long index, unsigned int tag); int radix_tree_tag_get(const struct radix_tree_root *, unsigned long index, unsigned int tag); void radix_tree_iter_tag_clear(struct radix_tree_root *, const struct radix_tree_iter *iter, unsigned int tag); unsigned int radix_tree_gang_lookup_tag(const struct radix_tree_root *, void **results, unsigned long first_index, unsigned int max_items, unsigned int tag); unsigned int radix_tree_gang_lookup_tag_slot(const struct radix_tree_root *, void __rcu ***results, unsigned long first_index, unsigned int max_items, unsigned int tag); int radix_tree_tagged(const struct radix_tree_root *, unsigned int tag); static inline void radix_tree_preload_end(void) { local_unlock(&radix_tree_preloads.lock); } void __rcu **idr_get_free(struct radix_tree_root *root, struct radix_tree_iter *iter, gfp_t gfp, unsigned long max); enum { RADIX_TREE_ITER_TAG_MASK = 0x0f, /* tag index in lower nybble */ RADIX_TREE_ITER_TAGGED = 0x10, /* lookup tagged slots */ RADIX_TREE_ITER_CONTIG = 0x20, /* stop at first hole */ }; /** * radix_tree_iter_init - initialize radix tree iterator * * @iter: pointer to iterator state * @start: iteration starting index * Returns: NULL */ static __always_inline void __rcu ** radix_tree_iter_init(struct radix_tree_iter *iter, unsigned long start) { /* * Leave iter->tags uninitialized. radix_tree_next_chunk() will fill it * in the case of a successful tagged chunk lookup. If the lookup was * unsuccessful or non-tagged then nobody cares about ->tags. * * Set index to zero to bypass next_index overflow protection. * See the comment in radix_tree_next_chunk() for details. */ iter->index = 0; iter->next_index = start; return NULL; } /** * radix_tree_next_chunk - find next chunk of slots for iteration * * @root: radix tree root * @iter: iterator state * @flags: RADIX_TREE_ITER_* flags and tag index * Returns: pointer to chunk first slot, or NULL if there no more left * * This function looks up the next chunk in the radix tree starting from * @iter->next_index. It returns a pointer to the chunk's first slot. * Also it fills @iter with data about chunk: position in the tree (index), * its end (next_index), and constructs a bit mask for tagged iterating (tags). */ void __rcu **radix_tree_next_chunk(const struct radix_tree_root *, struct radix_tree_iter *iter, unsigned flags); /** * radix_tree_iter_lookup - look up an index in the radix tree * @root: radix tree root * @iter: iterator state * @index: key to look up * * If @index is present in the radix tree, this function returns the slot * containing it and updates @iter to describe the entry. If @index is not * present, it returns NULL. */ static inline void __rcu ** radix_tree_iter_lookup(const struct radix_tree_root *root, struct radix_tree_iter *iter, unsigned long index) { radix_tree_iter_init(iter, index); return radix_tree_next_chunk(root, iter, RADIX_TREE_ITER_CONTIG); } /** * radix_tree_iter_retry - retry this chunk of the iteration * @iter: iterator state * * If we iterate over a tree protected only by the RCU lock, a race * against deletion or creation may result in seeing a slot for which * radix_tree_deref_retry() returns true. If so, call this function * and continue the iteration. */ static inline __must_check void __rcu **radix_tree_iter_retry(struct radix_tree_iter *iter) { iter->next_index = iter->index; iter->tags = 0; return NULL; } static inline unsigned long __radix_tree_iter_add(struct radix_tree_iter *iter, unsigned long slots) { return iter->index + slots; } /** * radix_tree_iter_resume - resume iterating when the chunk may be invalid * @slot: pointer to current slot * @iter: iterator state * Returns: New slot pointer * * If the iterator needs to release then reacquire a lock, the chunk may * have been invalidated by an insertion or deletion. Call this function * before releasing the lock to continue the iteration from the next index. */ void __rcu **__must_check radix_tree_iter_resume(void __rcu **slot, struct radix_tree_iter *iter); /** * radix_tree_chunk_size - get current chunk size * * @iter: pointer to radix tree iterator * Returns: current chunk size */ static __always_inline long radix_tree_chunk_size(struct radix_tree_iter *iter) { return iter->next_index - iter->index; } /** * radix_tree_next_slot - find next slot in chunk * * @slot: pointer to current slot * @iter: pointer to iterator state * @flags: RADIX_TREE_ITER_*, should be constant * Returns: pointer to next slot, or NULL if there no more left * * This function updates @iter->index in the case of a successful lookup. * For tagged lookup it also eats @iter->tags. * * There are several cases where 'slot' can be passed in as NULL to this * function. These cases result from the use of radix_tree_iter_resume() or * radix_tree_iter_retry(). In these cases we don't end up dereferencing * 'slot' because either: * a) we are doing tagged iteration and iter->tags has been set to 0, or * b) we are doing non-tagged iteration, and iter->index and iter->next_index * have been set up so that radix_tree_chunk_size() returns 1 or 0. */ static __always_inline void __rcu **radix_tree_next_slot(void __rcu **slot, struct radix_tree_iter *iter, unsigned flags) { if (flags & RADIX_TREE_ITER_TAGGED) { iter->tags >>= 1; if (unlikely(!iter->tags)) return NULL; if (likely(iter->tags & 1ul)) { iter->index = __radix_tree_iter_add(iter, 1); slot++; goto found; } if (!(flags & RADIX_TREE_ITER_CONTIG)) { unsigned offset = __ffs(iter->tags); iter->tags >>= offset++; iter->index = __radix_tree_iter_add(iter, offset); slot += offset; goto found; } } else { long count = radix_tree_chunk_size(iter); while (--count > 0) { slot++; iter->index = __radix_tree_iter_add(iter, 1); if (likely(*slot)) goto found; if (flags & RADIX_TREE_ITER_CONTIG) { /* forbid switching to the next chunk */ iter->next_index = 0; break; } } } return NULL; found: return slot; } /** * radix_tree_for_each_slot - iterate over non-empty slots * * @slot: the void** variable for pointer to slot * @root: the struct radix_tree_root pointer * @iter: the struct radix_tree_iter pointer * @start: iteration starting index * * @slot points to radix tree slot, @iter->index contains its index. */ #define radix_tree_for_each_slot(slot, root, iter, start) \ for (slot = radix_tree_iter_init(iter, start) ; \ slot || (slot = radix_tree_next_chunk(root, iter, 0)) ; \ slot = radix_tree_next_slot(slot, iter, 0)) /** * radix_tree_for_each_tagged - iterate over tagged slots * * @slot: the void** variable for pointer to slot * @root: the struct radix_tree_root pointer * @iter: the struct radix_tree_iter pointer * @start: iteration starting index * @tag: tag index * * @slot points to radix tree slot, @iter->index contains its index. */ #define radix_tree_for_each_tagged(slot, root, iter, start, tag) \ for (slot = radix_tree_iter_init(iter, start) ; \ slot || (slot = radix_tree_next_chunk(root, iter, \ RADIX_TREE_ITER_TAGGED | tag)) ; \ slot = radix_tree_next_slot(slot, iter, \ RADIX_TREE_ITER_TAGGED | tag)) #endif /* _LINUX_RADIX_TREE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __CFG80211_RDEV_OPS #define __CFG80211_RDEV_OPS #include <linux/rtnetlink.h> #include <net/cfg80211.h> #include "core.h" #include "trace.h" static inline int rdev_suspend(struct cfg80211_registered_device *rdev, struct cfg80211_wowlan *wowlan) { int ret; trace_rdev_suspend(&rdev->wiphy, wowlan); ret = rdev->ops->suspend(&rdev->wiphy, wowlan); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_resume(struct cfg80211_registered_device *rdev) { int ret; trace_rdev_resume(&rdev->wiphy); ret = rdev->ops->resume(&rdev->wiphy); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline void rdev_set_wakeup(struct cfg80211_registered_device *rdev, bool enabled) { trace_rdev_set_wakeup(&rdev->wiphy, enabled); rdev->ops->set_wakeup(&rdev->wiphy, enabled); trace_rdev_return_void(&rdev->wiphy); } static inline struct wireless_dev *rdev_add_virtual_intf(struct cfg80211_registered_device *rdev, char *name, unsigned char name_assign_type, enum nl80211_iftype type, struct vif_params *params) { struct wireless_dev *ret; trace_rdev_add_virtual_intf(&rdev->wiphy, name, type); ret = rdev->ops->add_virtual_intf(&rdev->wiphy, name, name_assign_type, type, params); trace_rdev_return_wdev(&rdev->wiphy, ret); return ret; } static inline int rdev_del_virtual_intf(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev) { int ret; trace_rdev_del_virtual_intf(&rdev->wiphy, wdev); ret = rdev->ops->del_virtual_intf(&rdev->wiphy, wdev); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_change_virtual_intf(struct cfg80211_registered_device *rdev, struct net_device *dev, enum nl80211_iftype type, struct vif_params *params) { int ret; trace_rdev_change_virtual_intf(&rdev->wiphy, dev, type); ret = rdev->ops->change_virtual_intf(&rdev->wiphy, dev, type, params); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_add_key(struct cfg80211_registered_device *rdev, struct net_device *netdev, u8 key_index, bool pairwise, const u8 *mac_addr, struct key_params *params) { int ret; trace_rdev_add_key(&rdev->wiphy, netdev, key_index, pairwise, mac_addr, params->mode); ret = rdev->ops->add_key(&rdev->wiphy, netdev, key_index, pairwise, mac_addr, params); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_get_key(struct cfg80211_registered_device *rdev, struct net_device *netdev, u8 key_index, bool pairwise, const u8 *mac_addr, void *cookie, void (*callback)(void *cookie, struct key_params*)) { int ret; trace_rdev_get_key(&rdev->wiphy, netdev, key_index, pairwise, mac_addr); ret = rdev->ops->get_key(&rdev->wiphy, netdev, key_index, pairwise, mac_addr, cookie, callback); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_del_key(struct cfg80211_registered_device *rdev, struct net_device *netdev, u8 key_index, bool pairwise, const u8 *mac_addr) { int ret; trace_rdev_del_key(&rdev->wiphy, netdev, key_index, pairwise, mac_addr); ret = rdev->ops->del_key(&rdev->wiphy, netdev, key_index, pairwise, mac_addr); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_default_key(struct cfg80211_registered_device *rdev, struct net_device *netdev, u8 key_index, bool unicast, bool multicast) { int ret; trace_rdev_set_default_key(&rdev->wiphy, netdev, key_index, unicast, multicast); ret = rdev->ops->set_default_key(&rdev->wiphy, netdev, key_index, unicast, multicast); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_default_mgmt_key(struct cfg80211_registered_device *rdev, struct net_device *netdev, u8 key_index) { int ret; trace_rdev_set_default_mgmt_key(&rdev->wiphy, netdev, key_index); ret = rdev->ops->set_default_mgmt_key(&rdev->wiphy, netdev, key_index); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_default_beacon_key(struct cfg80211_registered_device *rdev, struct net_device *netdev, u8 key_index) { int ret; trace_rdev_set_default_beacon_key(&rdev->wiphy, netdev, key_index); ret = rdev->ops->set_default_beacon_key(&rdev->wiphy, netdev, key_index); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_start_ap(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_ap_settings *settings) { int ret; trace_rdev_start_ap(&rdev->wiphy, dev, settings); ret = rdev->ops->start_ap(&rdev->wiphy, dev, settings); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_change_beacon(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_beacon_data *info) { int ret; trace_rdev_change_beacon(&rdev->wiphy, dev, info); ret = rdev->ops->change_beacon(&rdev->wiphy, dev, info); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_stop_ap(struct cfg80211_registered_device *rdev, struct net_device *dev) { int ret; trace_rdev_stop_ap(&rdev->wiphy, dev); ret = rdev->ops->stop_ap(&rdev->wiphy, dev); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_add_station(struct cfg80211_registered_device *rdev, struct net_device *dev, u8 *mac, struct station_parameters *params) { int ret; trace_rdev_add_station(&rdev->wiphy, dev, mac, params); ret = rdev->ops->add_station(&rdev->wiphy, dev, mac, params); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_del_station(struct cfg80211_registered_device *rdev, struct net_device *dev, struct station_del_parameters *params) { int ret; trace_rdev_del_station(&rdev->wiphy, dev, params); ret = rdev->ops->del_station(&rdev->wiphy, dev, params); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_change_station(struct cfg80211_registered_device *rdev, struct net_device *dev, u8 *mac, struct station_parameters *params) { int ret; trace_rdev_change_station(&rdev->wiphy, dev, mac, params); ret = rdev->ops->change_station(&rdev->wiphy, dev, mac, params); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_get_station(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *mac, struct station_info *sinfo) { int ret; trace_rdev_get_station(&rdev->wiphy, dev, mac); ret = rdev->ops->get_station(&rdev->wiphy, dev, mac, sinfo); trace_rdev_return_int_station_info(&rdev->wiphy, ret, sinfo); return ret; } static inline int rdev_dump_station(struct cfg80211_registered_device *rdev, struct net_device *dev, int idx, u8 *mac, struct station_info *sinfo) { int ret; trace_rdev_dump_station(&rdev->wiphy, dev, idx, mac); ret = rdev->ops->dump_station(&rdev->wiphy, dev, idx, mac, sinfo); trace_rdev_return_int_station_info(&rdev->wiphy, ret, sinfo); return ret; } static inline int rdev_add_mpath(struct cfg80211_registered_device *rdev, struct net_device *dev, u8 *dst, u8 *next_hop) { int ret; trace_rdev_add_mpath(&rdev->wiphy, dev, dst, next_hop); ret = rdev->ops->add_mpath(&rdev->wiphy, dev, dst, next_hop); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_del_mpath(struct cfg80211_registered_device *rdev, struct net_device *dev, u8 *dst) { int ret; trace_rdev_del_mpath(&rdev->wiphy, dev, dst); ret = rdev->ops->del_mpath(&rdev->wiphy, dev, dst); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_change_mpath(struct cfg80211_registered_device *rdev, struct net_device *dev, u8 *dst, u8 *next_hop) { int ret; trace_rdev_change_mpath(&rdev->wiphy, dev, dst, next_hop); ret = rdev->ops->change_mpath(&rdev->wiphy, dev, dst, next_hop); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_get_mpath(struct cfg80211_registered_device *rdev, struct net_device *dev, u8 *dst, u8 *next_hop, struct mpath_info *pinfo) { int ret; trace_rdev_get_mpath(&rdev->wiphy, dev, dst, next_hop); ret = rdev->ops->get_mpath(&rdev->wiphy, dev, dst, next_hop, pinfo); trace_rdev_return_int_mpath_info(&rdev->wiphy, ret, pinfo); return ret; } static inline int rdev_get_mpp(struct cfg80211_registered_device *rdev, struct net_device *dev, u8 *dst, u8 *mpp, struct mpath_info *pinfo) { int ret; trace_rdev_get_mpp(&rdev->wiphy, dev, dst, mpp); ret = rdev->ops->get_mpp(&rdev->wiphy, dev, dst, mpp, pinfo); trace_rdev_return_int_mpath_info(&rdev->wiphy, ret, pinfo); return ret; } static inline int rdev_dump_mpath(struct cfg80211_registered_device *rdev, struct net_device *dev, int idx, u8 *dst, u8 *next_hop, struct mpath_info *pinfo) { int ret; trace_rdev_dump_mpath(&rdev->wiphy, dev, idx, dst, next_hop); ret = rdev->ops->dump_mpath(&rdev->wiphy, dev, idx, dst, next_hop, pinfo); trace_rdev_return_int_mpath_info(&rdev->wiphy, ret, pinfo); return ret; } static inline int rdev_dump_mpp(struct cfg80211_registered_device *rdev, struct net_device *dev, int idx, u8 *dst, u8 *mpp, struct mpath_info *pinfo) { int ret; trace_rdev_dump_mpp(&rdev->wiphy, dev, idx, dst, mpp); ret = rdev->ops->dump_mpp(&rdev->wiphy, dev, idx, dst, mpp, pinfo); trace_rdev_return_int_mpath_info(&rdev->wiphy, ret, pinfo); return ret; } static inline int rdev_get_mesh_config(struct cfg80211_registered_device *rdev, struct net_device *dev, struct mesh_config *conf) { int ret; trace_rdev_get_mesh_config(&rdev->wiphy, dev); ret = rdev->ops->get_mesh_config(&rdev->wiphy, dev, conf); trace_rdev_return_int_mesh_config(&rdev->wiphy, ret, conf); return ret; } static inline int rdev_update_mesh_config(struct cfg80211_registered_device *rdev, struct net_device *dev, u32 mask, const struct mesh_config *nconf) { int ret; trace_rdev_update_mesh_config(&rdev->wiphy, dev, mask, nconf); ret = rdev->ops->update_mesh_config(&rdev->wiphy, dev, mask, nconf); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_join_mesh(struct cfg80211_registered_device *rdev, struct net_device *dev, const struct mesh_config *conf, const struct mesh_setup *setup) { int ret; trace_rdev_join_mesh(&rdev->wiphy, dev, conf, setup); ret = rdev->ops->join_mesh(&rdev->wiphy, dev, conf, setup); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_leave_mesh(struct cfg80211_registered_device *rdev, struct net_device *dev) { int ret; trace_rdev_leave_mesh(&rdev->wiphy, dev); ret = rdev->ops->leave_mesh(&rdev->wiphy, dev); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_join_ocb(struct cfg80211_registered_device *rdev, struct net_device *dev, struct ocb_setup *setup) { int ret; trace_rdev_join_ocb(&rdev->wiphy, dev, setup); ret = rdev->ops->join_ocb(&rdev->wiphy, dev, setup); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_leave_ocb(struct cfg80211_registered_device *rdev, struct net_device *dev) { int ret; trace_rdev_leave_ocb(&rdev->wiphy, dev); ret = rdev->ops->leave_ocb(&rdev->wiphy, dev); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_change_bss(struct cfg80211_registered_device *rdev, struct net_device *dev, struct bss_parameters *params) { int ret; trace_rdev_change_bss(&rdev->wiphy, dev, params); ret = rdev->ops->change_bss(&rdev->wiphy, dev, params); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_txq_params(struct cfg80211_registered_device *rdev, struct net_device *dev, struct ieee80211_txq_params *params) { int ret; trace_rdev_set_txq_params(&rdev->wiphy, dev, params); ret = rdev->ops->set_txq_params(&rdev->wiphy, dev, params); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_libertas_set_mesh_channel(struct cfg80211_registered_device *rdev, struct net_device *dev, struct ieee80211_channel *chan) { int ret; trace_rdev_libertas_set_mesh_channel(&rdev->wiphy, dev, chan); ret = rdev->ops->libertas_set_mesh_channel(&rdev->wiphy, dev, chan); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_monitor_channel(struct cfg80211_registered_device *rdev, struct cfg80211_chan_def *chandef) { int ret; trace_rdev_set_monitor_channel(&rdev->wiphy, chandef); ret = rdev->ops->set_monitor_channel(&rdev->wiphy, chandef); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_scan(struct cfg80211_registered_device *rdev, struct cfg80211_scan_request *request) { int ret; trace_rdev_scan(&rdev->wiphy, request); ret = rdev->ops->scan(&rdev->wiphy, request); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline void rdev_abort_scan(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev) { trace_rdev_abort_scan(&rdev->wiphy, wdev); rdev->ops->abort_scan(&rdev->wiphy, wdev); trace_rdev_return_void(&rdev->wiphy); } static inline int rdev_auth(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_auth_request *req) { int ret; trace_rdev_auth(&rdev->wiphy, dev, req); ret = rdev->ops->auth(&rdev->wiphy, dev, req); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_assoc(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_assoc_request *req) { int ret; trace_rdev_assoc(&rdev->wiphy, dev, req); ret = rdev->ops->assoc(&rdev->wiphy, dev, req); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_deauth(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_deauth_request *req) { int ret; trace_rdev_deauth(&rdev->wiphy, dev, req); ret = rdev->ops->deauth(&rdev->wiphy, dev, req); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_disassoc(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_disassoc_request *req) { int ret; trace_rdev_disassoc(&rdev->wiphy, dev, req); ret = rdev->ops->disassoc(&rdev->wiphy, dev, req); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_connect(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_connect_params *sme) { int ret; trace_rdev_connect(&rdev->wiphy, dev, sme); ret = rdev->ops->connect(&rdev->wiphy, dev, sme); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_update_connect_params(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_connect_params *sme, u32 changed) { int ret; trace_rdev_update_connect_params(&rdev->wiphy, dev, sme, changed); ret = rdev->ops->update_connect_params(&rdev->wiphy, dev, sme, changed); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_disconnect(struct cfg80211_registered_device *rdev, struct net_device *dev, u16 reason_code) { int ret; trace_rdev_disconnect(&rdev->wiphy, dev, reason_code); ret = rdev->ops->disconnect(&rdev->wiphy, dev, reason_code); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_join_ibss(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_ibss_params *params) { int ret; trace_rdev_join_ibss(&rdev->wiphy, dev, params); ret = rdev->ops->join_ibss(&rdev->wiphy, dev, params); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_leave_ibss(struct cfg80211_registered_device *rdev, struct net_device *dev) { int ret; trace_rdev_leave_ibss(&rdev->wiphy, dev); ret = rdev->ops->leave_ibss(&rdev->wiphy, dev); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_wiphy_params(struct cfg80211_registered_device *rdev, u32 changed) { int ret; if (!rdev->ops->set_wiphy_params) return -EOPNOTSUPP; trace_rdev_set_wiphy_params(&rdev->wiphy, changed); ret = rdev->ops->set_wiphy_params(&rdev->wiphy, changed); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_tx_power(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, enum nl80211_tx_power_setting type, int mbm) { int ret; trace_rdev_set_tx_power(&rdev->wiphy, wdev, type, mbm); ret = rdev->ops->set_tx_power(&rdev->wiphy, wdev, type, mbm); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_get_tx_power(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, int *dbm) { int ret; trace_rdev_get_tx_power(&rdev->wiphy, wdev); ret = rdev->ops->get_tx_power(&rdev->wiphy, wdev, dbm); trace_rdev_return_int_int(&rdev->wiphy, ret, *dbm); return ret; } static inline int rdev_set_wds_peer(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *addr) { int ret; trace_rdev_set_wds_peer(&rdev->wiphy, dev, addr); ret = rdev->ops->set_wds_peer(&rdev->wiphy, dev, addr); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_multicast_to_unicast(struct cfg80211_registered_device *rdev, struct net_device *dev, const bool enabled) { int ret; trace_rdev_set_multicast_to_unicast(&rdev->wiphy, dev, enabled); ret = rdev->ops->set_multicast_to_unicast(&rdev->wiphy, dev, enabled); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_get_txq_stats(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct cfg80211_txq_stats *txqstats) { int ret; trace_rdev_get_txq_stats(&rdev->wiphy, wdev); ret = rdev->ops->get_txq_stats(&rdev->wiphy, wdev, txqstats); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline void rdev_rfkill_poll(struct cfg80211_registered_device *rdev) { trace_rdev_rfkill_poll(&rdev->wiphy); rdev->ops->rfkill_poll(&rdev->wiphy); trace_rdev_return_void(&rdev->wiphy); } #ifdef CONFIG_NL80211_TESTMODE static inline int rdev_testmode_cmd(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, void *data, int len) { int ret; trace_rdev_testmode_cmd(&rdev->wiphy, wdev); ret = rdev->ops->testmode_cmd(&rdev->wiphy, wdev, data, len); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_testmode_dump(struct cfg80211_registered_device *rdev, struct sk_buff *skb, struct netlink_callback *cb, void *data, int len) { int ret; trace_rdev_testmode_dump(&rdev->wiphy); ret = rdev->ops->testmode_dump(&rdev->wiphy, skb, cb, data, len); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } #endif static inline int rdev_set_bitrate_mask(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *peer, const struct cfg80211_bitrate_mask *mask) { int ret; trace_rdev_set_bitrate_mask(&rdev->wiphy, dev, peer, mask); ret = rdev->ops->set_bitrate_mask(&rdev->wiphy, dev, peer, mask); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_dump_survey(struct cfg80211_registered_device *rdev, struct net_device *netdev, int idx, struct survey_info *info) { int ret; trace_rdev_dump_survey(&rdev->wiphy, netdev, idx); ret = rdev->ops->dump_survey(&rdev->wiphy, netdev, idx, info); if (ret < 0) trace_rdev_return_int(&rdev->wiphy, ret); else trace_rdev_return_int_survey_info(&rdev->wiphy, ret, info); return ret; } static inline int rdev_set_pmksa(struct cfg80211_registered_device *rdev, struct net_device *netdev, struct cfg80211_pmksa *pmksa) { int ret; trace_rdev_set_pmksa(&rdev->wiphy, netdev, pmksa); ret = rdev->ops->set_pmksa(&rdev->wiphy, netdev, pmksa); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_del_pmksa(struct cfg80211_registered_device *rdev, struct net_device *netdev, struct cfg80211_pmksa *pmksa) { int ret; trace_rdev_del_pmksa(&rdev->wiphy, netdev, pmksa); ret = rdev->ops->del_pmksa(&rdev->wiphy, netdev, pmksa); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_flush_pmksa(struct cfg80211_registered_device *rdev, struct net_device *netdev) { int ret; trace_rdev_flush_pmksa(&rdev->wiphy, netdev); ret = rdev->ops->flush_pmksa(&rdev->wiphy, netdev); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_remain_on_channel(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct ieee80211_channel *chan, unsigned int duration, u64 *cookie) { int ret; trace_rdev_remain_on_channel(&rdev->wiphy, wdev, chan, duration); ret = rdev->ops->remain_on_channel(&rdev->wiphy, wdev, chan, duration, cookie); trace_rdev_return_int_cookie(&rdev->wiphy, ret, *cookie); return ret; } static inline int rdev_cancel_remain_on_channel(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, u64 cookie) { int ret; trace_rdev_cancel_remain_on_channel(&rdev->wiphy, wdev, cookie); ret = rdev->ops->cancel_remain_on_channel(&rdev->wiphy, wdev, cookie); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_mgmt_tx(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct cfg80211_mgmt_tx_params *params, u64 *cookie) { int ret; trace_rdev_mgmt_tx(&rdev->wiphy, wdev, params); ret = rdev->ops->mgmt_tx(&rdev->wiphy, wdev, params, cookie); trace_rdev_return_int_cookie(&rdev->wiphy, ret, *cookie); return ret; } static inline int rdev_tx_control_port(struct cfg80211_registered_device *rdev, struct net_device *dev, const void *buf, size_t len, const u8 *dest, __be16 proto, const bool noencrypt, u64 *cookie) { int ret; trace_rdev_tx_control_port(&rdev->wiphy, dev, buf, len, dest, proto, noencrypt); ret = rdev->ops->tx_control_port(&rdev->wiphy, dev, buf, len, dest, proto, noencrypt, cookie); if (cookie) trace_rdev_return_int_cookie(&rdev->wiphy, ret, *cookie); else trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_mgmt_tx_cancel_wait(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, u64 cookie) { int ret; trace_rdev_mgmt_tx_cancel_wait(&rdev->wiphy, wdev, cookie); ret = rdev->ops->mgmt_tx_cancel_wait(&rdev->wiphy, wdev, cookie); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_power_mgmt(struct cfg80211_registered_device *rdev, struct net_device *dev, bool enabled, int timeout) { int ret; trace_rdev_set_power_mgmt(&rdev->wiphy, dev, enabled, timeout); ret = rdev->ops->set_power_mgmt(&rdev->wiphy, dev, enabled, timeout); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_cqm_rssi_config(struct cfg80211_registered_device *rdev, struct net_device *dev, s32 rssi_thold, u32 rssi_hyst) { int ret; trace_rdev_set_cqm_rssi_config(&rdev->wiphy, dev, rssi_thold, rssi_hyst); ret = rdev->ops->set_cqm_rssi_config(&rdev->wiphy, dev, rssi_thold, rssi_hyst); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_cqm_rssi_range_config(struct cfg80211_registered_device *rdev, struct net_device *dev, s32 low, s32 high) { int ret; trace_rdev_set_cqm_rssi_range_config(&rdev->wiphy, dev, low, high); ret = rdev->ops->set_cqm_rssi_range_config(&rdev->wiphy, dev, low, high); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_cqm_txe_config(struct cfg80211_registered_device *rdev, struct net_device *dev, u32 rate, u32 pkts, u32 intvl) { int ret; trace_rdev_set_cqm_txe_config(&rdev->wiphy, dev, rate, pkts, intvl); ret = rdev->ops->set_cqm_txe_config(&rdev->wiphy, dev, rate, pkts, intvl); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline void rdev_update_mgmt_frame_registrations(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct mgmt_frame_regs *upd) { might_sleep(); trace_rdev_update_mgmt_frame_registrations(&rdev->wiphy, wdev, upd); if (rdev->ops->update_mgmt_frame_registrations) rdev->ops->update_mgmt_frame_registrations(&rdev->wiphy, wdev, upd); trace_rdev_return_void(&rdev->wiphy); } static inline int rdev_set_antenna(struct cfg80211_registered_device *rdev, u32 tx_ant, u32 rx_ant) { int ret; trace_rdev_set_antenna(&rdev->wiphy, tx_ant, rx_ant); ret = rdev->ops->set_antenna(&rdev->wiphy, tx_ant, rx_ant); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_get_antenna(struct cfg80211_registered_device *rdev, u32 *tx_ant, u32 *rx_ant) { int ret; trace_rdev_get_antenna(&rdev->wiphy); ret = rdev->ops->get_antenna(&rdev->wiphy, tx_ant, rx_ant); if (ret) trace_rdev_return_int(&rdev->wiphy, ret); else trace_rdev_return_int_tx_rx(&rdev->wiphy, ret, *tx_ant, *rx_ant); return ret; } static inline int rdev_sched_scan_start(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_sched_scan_request *request) { int ret; trace_rdev_sched_scan_start(&rdev->wiphy, dev, request->reqid); ret = rdev->ops->sched_scan_start(&rdev->wiphy, dev, request); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_sched_scan_stop(struct cfg80211_registered_device *rdev, struct net_device *dev, u64 reqid) { int ret; trace_rdev_sched_scan_stop(&rdev->wiphy, dev, reqid); ret = rdev->ops->sched_scan_stop(&rdev->wiphy, dev, reqid); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_rekey_data(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_gtk_rekey_data *data) { int ret; trace_rdev_set_rekey_data(&rdev->wiphy, dev); ret = rdev->ops->set_rekey_data(&rdev->wiphy, dev, data); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_tdls_mgmt(struct cfg80211_registered_device *rdev, struct net_device *dev, u8 *peer, u8 action_code, u8 dialog_token, u16 status_code, u32 peer_capability, bool initiator, const u8 *buf, size_t len) { int ret; trace_rdev_tdls_mgmt(&rdev->wiphy, dev, peer, action_code, dialog_token, status_code, peer_capability, initiator, buf, len); ret = rdev->ops->tdls_mgmt(&rdev->wiphy, dev, peer, action_code, dialog_token, status_code, peer_capability, initiator, buf, len); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_tdls_oper(struct cfg80211_registered_device *rdev, struct net_device *dev, u8 *peer, enum nl80211_tdls_operation oper) { int ret; trace_rdev_tdls_oper(&rdev->wiphy, dev, peer, oper); ret = rdev->ops->tdls_oper(&rdev->wiphy, dev, peer, oper); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_probe_client(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *peer, u64 *cookie) { int ret; trace_rdev_probe_client(&rdev->wiphy, dev, peer); ret = rdev->ops->probe_client(&rdev->wiphy, dev, peer, cookie); trace_rdev_return_int_cookie(&rdev->wiphy, ret, *cookie); return ret; } static inline int rdev_set_noack_map(struct cfg80211_registered_device *rdev, struct net_device *dev, u16 noack_map) { int ret; trace_rdev_set_noack_map(&rdev->wiphy, dev, noack_map); ret = rdev->ops->set_noack_map(&rdev->wiphy, dev, noack_map); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_get_channel(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct cfg80211_chan_def *chandef) { int ret; trace_rdev_get_channel(&rdev->wiphy, wdev); ret = rdev->ops->get_channel(&rdev->wiphy, wdev, chandef); trace_rdev_return_chandef(&rdev->wiphy, ret, chandef); return ret; } static inline int rdev_start_p2p_device(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev) { int ret; trace_rdev_start_p2p_device(&rdev->wiphy, wdev); ret = rdev->ops->start_p2p_device(&rdev->wiphy, wdev); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline void rdev_stop_p2p_device(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev) { trace_rdev_stop_p2p_device(&rdev->wiphy, wdev); rdev->ops->stop_p2p_device(&rdev->wiphy, wdev); trace_rdev_return_void(&rdev->wiphy); } static inline int rdev_start_nan(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct cfg80211_nan_conf *conf) { int ret; trace_rdev_start_nan(&rdev->wiphy, wdev, conf); ret = rdev->ops->start_nan(&rdev->wiphy, wdev, conf); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline void rdev_stop_nan(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev) { trace_rdev_stop_nan(&rdev->wiphy, wdev); rdev->ops->stop_nan(&rdev->wiphy, wdev); trace_rdev_return_void(&rdev->wiphy); } static inline int rdev_add_nan_func(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct cfg80211_nan_func *nan_func) { int ret; trace_rdev_add_nan_func(&rdev->wiphy, wdev, nan_func); ret = rdev->ops->add_nan_func(&rdev->wiphy, wdev, nan_func); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline void rdev_del_nan_func(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, u64 cookie) { trace_rdev_del_nan_func(&rdev->wiphy, wdev, cookie); rdev->ops->del_nan_func(&rdev->wiphy, wdev, cookie); trace_rdev_return_void(&rdev->wiphy); } static inline int rdev_nan_change_conf(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct cfg80211_nan_conf *conf, u32 changes) { int ret; trace_rdev_nan_change_conf(&rdev->wiphy, wdev, conf, changes); if (rdev->ops->nan_change_conf) ret = rdev->ops->nan_change_conf(&rdev->wiphy, wdev, conf, changes); else ret = -ENOTSUPP; trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_mac_acl(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_acl_data *params) { int ret; trace_rdev_set_mac_acl(&rdev->wiphy, dev, params); ret = rdev->ops->set_mac_acl(&rdev->wiphy, dev, params); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_update_ft_ies(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_update_ft_ies_params *ftie) { int ret; trace_rdev_update_ft_ies(&rdev->wiphy, dev, ftie); ret = rdev->ops->update_ft_ies(&rdev->wiphy, dev, ftie); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_crit_proto_start(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, enum nl80211_crit_proto_id protocol, u16 duration) { int ret; trace_rdev_crit_proto_start(&rdev->wiphy, wdev, protocol, duration); ret = rdev->ops->crit_proto_start(&rdev->wiphy, wdev, protocol, duration); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline void rdev_crit_proto_stop(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev) { trace_rdev_crit_proto_stop(&rdev->wiphy, wdev); rdev->ops->crit_proto_stop(&rdev->wiphy, wdev); trace_rdev_return_void(&rdev->wiphy); } static inline int rdev_channel_switch(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_csa_settings *params) { int ret; trace_rdev_channel_switch(&rdev->wiphy, dev, params); ret = rdev->ops->channel_switch(&rdev->wiphy, dev, params); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_qos_map(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_qos_map *qos_map) { int ret = -EOPNOTSUPP; if (rdev->ops->set_qos_map) { trace_rdev_set_qos_map(&rdev->wiphy, dev, qos_map); ret = rdev->ops->set_qos_map(&rdev->wiphy, dev, qos_map); trace_rdev_return_int(&rdev->wiphy, ret); } return ret; } static inline int rdev_set_ap_chanwidth(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_chan_def *chandef) { int ret; trace_rdev_set_ap_chanwidth(&rdev->wiphy, dev, chandef); ret = rdev->ops->set_ap_chanwidth(&rdev->wiphy, dev, chandef); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_add_tx_ts(struct cfg80211_registered_device *rdev, struct net_device *dev, u8 tsid, const u8 *peer, u8 user_prio, u16 admitted_time) { int ret = -EOPNOTSUPP; trace_rdev_add_tx_ts(&rdev->wiphy, dev, tsid, peer, user_prio, admitted_time); if (rdev->ops->add_tx_ts) ret = rdev->ops->add_tx_ts(&rdev->wiphy, dev, tsid, peer, user_prio, admitted_time); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_del_tx_ts(struct cfg80211_registered_device *rdev, struct net_device *dev, u8 tsid, const u8 *peer) { int ret = -EOPNOTSUPP; trace_rdev_del_tx_ts(&rdev->wiphy, dev, tsid, peer); if (rdev->ops->del_tx_ts) ret = rdev->ops->del_tx_ts(&rdev->wiphy, dev, tsid, peer); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_tdls_channel_switch(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *addr, u8 oper_class, struct cfg80211_chan_def *chandef) { int ret; trace_rdev_tdls_channel_switch(&rdev->wiphy, dev, addr, oper_class, chandef); ret = rdev->ops->tdls_channel_switch(&rdev->wiphy, dev, addr, oper_class, chandef); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline void rdev_tdls_cancel_channel_switch(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *addr) { trace_rdev_tdls_cancel_channel_switch(&rdev->wiphy, dev, addr); rdev->ops->tdls_cancel_channel_switch(&rdev->wiphy, dev, addr); trace_rdev_return_void(&rdev->wiphy); } static inline int rdev_start_radar_detection(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_chan_def *chandef, u32 cac_time_ms) { int ret = -ENOTSUPP; trace_rdev_start_radar_detection(&rdev->wiphy, dev, chandef, cac_time_ms); if (rdev->ops->start_radar_detection) ret = rdev->ops->start_radar_detection(&rdev->wiphy, dev, chandef, cac_time_ms); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline void rdev_end_cac(struct cfg80211_registered_device *rdev, struct net_device *dev) { trace_rdev_end_cac(&rdev->wiphy, dev); if (rdev->ops->end_cac) rdev->ops->end_cac(&rdev->wiphy, dev); trace_rdev_return_void(&rdev->wiphy); } static inline int rdev_set_mcast_rate(struct cfg80211_registered_device *rdev, struct net_device *dev, int mcast_rate[NUM_NL80211_BANDS]) { int ret = -ENOTSUPP; trace_rdev_set_mcast_rate(&rdev->wiphy, dev, mcast_rate); if (rdev->ops->set_mcast_rate) ret = rdev->ops->set_mcast_rate(&rdev->wiphy, dev, mcast_rate); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_coalesce(struct cfg80211_registered_device *rdev, struct cfg80211_coalesce *coalesce) { int ret = -ENOTSUPP; trace_rdev_set_coalesce(&rdev->wiphy, coalesce); if (rdev->ops->set_coalesce) ret = rdev->ops->set_coalesce(&rdev->wiphy, coalesce); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_pmk(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_pmk_conf *pmk_conf) { int ret = -EOPNOTSUPP; trace_rdev_set_pmk(&rdev->wiphy, dev, pmk_conf); if (rdev->ops->set_pmk) ret = rdev->ops->set_pmk(&rdev->wiphy, dev, pmk_conf); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_del_pmk(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *aa) { int ret = -EOPNOTSUPP; trace_rdev_del_pmk(&rdev->wiphy, dev, aa); if (rdev->ops->del_pmk) ret = rdev->ops->del_pmk(&rdev->wiphy, dev, aa); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_external_auth(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_external_auth_params *params) { int ret = -EOPNOTSUPP; trace_rdev_external_auth(&rdev->wiphy, dev, params); if (rdev->ops->external_auth) ret = rdev->ops->external_auth(&rdev->wiphy, dev, params); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_get_ftm_responder_stats(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_ftm_responder_stats *ftm_stats) { int ret = -EOPNOTSUPP; trace_rdev_get_ftm_responder_stats(&rdev->wiphy, dev, ftm_stats); if (rdev->ops->get_ftm_responder_stats) ret = rdev->ops->get_ftm_responder_stats(&rdev->wiphy, dev, ftm_stats); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_start_pmsr(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct cfg80211_pmsr_request *request) { int ret = -EOPNOTSUPP; trace_rdev_start_pmsr(&rdev->wiphy, wdev, request->cookie); if (rdev->ops->start_pmsr) ret = rdev->ops->start_pmsr(&rdev->wiphy, wdev, request); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline void rdev_abort_pmsr(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct cfg80211_pmsr_request *request) { trace_rdev_abort_pmsr(&rdev->wiphy, wdev, request->cookie); if (rdev->ops->abort_pmsr) rdev->ops->abort_pmsr(&rdev->wiphy, wdev, request); trace_rdev_return_void(&rdev->wiphy); } static inline int rdev_update_owe_info(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_update_owe_info *oweinfo) { int ret = -EOPNOTSUPP; trace_rdev_update_owe_info(&rdev->wiphy, dev, oweinfo); if (rdev->ops->update_owe_info) ret = rdev->ops->update_owe_info(&rdev->wiphy, dev, oweinfo); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_probe_mesh_link(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *dest, const void *buf, size_t len) { int ret; trace_rdev_probe_mesh_link(&rdev->wiphy, dev, dest, buf, len); ret = rdev->ops->probe_mesh_link(&rdev->wiphy, dev, buf, len); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_tid_config(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_tid_config *tid_conf) { int ret; trace_rdev_set_tid_config(&rdev->wiphy, dev, tid_conf); ret = rdev->ops->set_tid_config(&rdev->wiphy, dev, tid_conf); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_reset_tid_config(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *peer, u8 tids) { int ret; trace_rdev_reset_tid_config(&rdev->wiphy, dev, peer, tids); ret = rdev->ops->reset_tid_config(&rdev->wiphy, dev, peer, tids); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } #endif /* __CFG80211_RDEV_OPS */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 /* BlueZ - Bluetooth protocol stack for Linux Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved. Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2 as published by the Free Software Foundation; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS SOFTWARE IS DISCLAIMED. */ #ifndef __HCI_CORE_H #define __HCI_CORE_H #include <linux/idr.h> #include <linux/leds.h> #include <linux/rculist.h> #include <net/bluetooth/hci.h> #include <net/bluetooth/hci_sock.h> /* HCI priority */ #define HCI_PRIO_MAX 7 /* HCI Core structures */ struct inquiry_data { bdaddr_t bdaddr; __u8 pscan_rep_mode; __u8 pscan_period_mode; __u8 pscan_mode; __u8 dev_class[3]; __le16 clock_offset; __s8 rssi; __u8 ssp_mode; }; struct inquiry_entry { struct list_head all; /* inq_cache.all */ struct list_head list; /* unknown or resolve */ enum { NAME_NOT_KNOWN, NAME_NEEDED, NAME_PENDING, NAME_KNOWN, } name_state; __u32 timestamp; struct inquiry_data data; }; struct discovery_state { int type; enum { DISCOVERY_STOPPED, DISCOVERY_STARTING, DISCOVERY_FINDING, DISCOVERY_RESOLVING, DISCOVERY_STOPPING, } state; struct list_head all; /* All devices found during inquiry */ struct list_head unknown; /* Name state not known */ struct list_head resolve; /* Name needs to be resolved */ __u32 timestamp; bdaddr_t last_adv_addr; u8 last_adv_addr_type; s8 last_adv_rssi; u32 last_adv_flags; u8 last_adv_data[HCI_MAX_AD_LENGTH]; u8 last_adv_data_len; bool report_invalid_rssi; bool result_filtering; bool limited; s8 rssi; u16 uuid_count; u8 (*uuids)[16]; unsigned long scan_start; unsigned long scan_duration; }; #define SUSPEND_NOTIFIER_TIMEOUT msecs_to_jiffies(2000) /* 2 seconds */ enum suspend_tasks { SUSPEND_PAUSE_DISCOVERY, SUSPEND_UNPAUSE_DISCOVERY, SUSPEND_PAUSE_ADVERTISING, SUSPEND_UNPAUSE_ADVERTISING, SUSPEND_SCAN_DISABLE, SUSPEND_SCAN_ENABLE, SUSPEND_DISCONNECTING, SUSPEND_POWERING_DOWN, SUSPEND_PREPARE_NOTIFIER, __SUSPEND_NUM_TASKS }; enum suspended_state { BT_RUNNING = 0, BT_SUSPEND_DISCONNECT, BT_SUSPEND_CONFIGURE_WAKE, }; struct hci_conn_hash { struct list_head list; unsigned int acl_num; unsigned int amp_num; unsigned int sco_num; unsigned int le_num; unsigned int le_num_slave; }; struct bdaddr_list { struct list_head list; bdaddr_t bdaddr; u8 bdaddr_type; }; struct bdaddr_list_with_irk { struct list_head list; bdaddr_t bdaddr; u8 bdaddr_type; u8 peer_irk[16]; u8 local_irk[16]; }; struct bdaddr_list_with_flags { struct list_head list; bdaddr_t bdaddr; u8 bdaddr_type; u32 current_flags; }; enum hci_conn_flags { HCI_CONN_FLAG_REMOTE_WAKEUP, HCI_CONN_FLAG_MAX }; #define hci_conn_test_flag(nr, flags) ((flags) & (1U << nr)) /* Make sure number of flags doesn't exceed sizeof(current_flags) */ static_assert(HCI_CONN_FLAG_MAX < 32); struct bt_uuid { struct list_head list; u8 uuid[16]; u8 size; u8 svc_hint; }; struct blocked_key { struct list_head list; struct rcu_head rcu; u8 type; u8 val[16]; }; struct smp_csrk { bdaddr_t bdaddr; u8 bdaddr_type; u8 type; u8 val[16]; }; struct smp_ltk { struct list_head list; struct rcu_head rcu; bdaddr_t bdaddr; u8 bdaddr_type; u8 authenticated; u8 type; u8 enc_size; __le16 ediv; __le64 rand; u8 val[16]; }; struct smp_irk { struct list_head list; struct rcu_head rcu; bdaddr_t rpa; bdaddr_t bdaddr; u8 addr_type; u8 val[16]; }; struct link_key { struct list_head list; struct rcu_head rcu; bdaddr_t bdaddr; u8 type; u8 val[HCI_LINK_KEY_SIZE]; u8 pin_len; }; struct oob_data { struct list_head list; bdaddr_t bdaddr; u8 bdaddr_type; u8 present; u8 hash192[16]; u8 rand192[16]; u8 hash256[16]; u8 rand256[16]; }; struct adv_info { struct list_head list; bool pending; __u8 instance; __u32 flags; __u16 timeout; __u16 remaining_time; __u16 duration; __u16 adv_data_len; __u8 adv_data[HCI_MAX_EXT_AD_LENGTH]; __u16 scan_rsp_len; __u8 scan_rsp_data[HCI_MAX_EXT_AD_LENGTH]; __s8 tx_power; bdaddr_t random_addr; bool rpa_expired; struct delayed_work rpa_expired_cb; }; #define HCI_MAX_ADV_INSTANCES 5 #define HCI_DEFAULT_ADV_DURATION 2 struct adv_pattern { struct list_head list; __u8 ad_type; __u8 offset; __u8 length; __u8 value[HCI_MAX_AD_LENGTH]; }; struct adv_monitor { struct list_head patterns; bool active; __u16 handle; }; #define HCI_MIN_ADV_MONITOR_HANDLE 1 #define HCI_MAX_ADV_MONITOR_NUM_HANDLES 32 #define HCI_MAX_ADV_MONITOR_NUM_PATTERNS 16 #define HCI_MAX_SHORT_NAME_LENGTH 10 /* Min encryption key size to match with SMP */ #define HCI_MIN_ENC_KEY_SIZE 7 /* Default LE RPA expiry time, 15 minutes */ #define HCI_DEFAULT_RPA_TIMEOUT (15 * 60) /* Default min/max age of connection information (1s/3s) */ #define DEFAULT_CONN_INFO_MIN_AGE 1000 #define DEFAULT_CONN_INFO_MAX_AGE 3000 /* Default authenticated payload timeout 30s */ #define DEFAULT_AUTH_PAYLOAD_TIMEOUT 0x0bb8 struct amp_assoc { __u16 len; __u16 offset; __u16 rem_len; __u16 len_so_far; __u8 data[HCI_MAX_AMP_ASSOC_SIZE]; }; #define HCI_MAX_PAGES 3 struct hci_dev { struct list_head list; struct mutex lock; char name[8]; unsigned long flags; __u16 id; __u8 bus; __u8 dev_type; bdaddr_t bdaddr; bdaddr_t setup_addr; bdaddr_t public_addr; bdaddr_t random_addr; bdaddr_t static_addr; __u8 adv_addr_type; __u8 dev_name[HCI_MAX_NAME_LENGTH]; __u8 short_name[HCI_MAX_SHORT_NAME_LENGTH]; __u8 eir[HCI_MAX_EIR_LENGTH]; __u16 appearance; __u8 dev_class[3]; __u8 major_class; __u8 minor_class; __u8 max_page; __u8 features[HCI_MAX_PAGES][8]; __u8 le_features[8]; __u8 le_white_list_size; __u8 le_resolv_list_size; __u8 le_num_of_adv_sets; __u8 le_states[8]; __u8 commands[64]; __u8 hci_ver; __u16 hci_rev; __u8 lmp_ver; __u16 manufacturer; __u16 lmp_subver; __u16 voice_setting; __u8 num_iac; __u8 stored_max_keys; __u8 stored_num_keys; __u8 io_capability; __s8 inq_tx_power; __u8 err_data_reporting; __u16 page_scan_interval; __u16 page_scan_window; __u8 page_scan_type; __u8 le_adv_channel_map; __u16 le_adv_min_interval; __u16 le_adv_max_interval; __u8 le_scan_type; __u16 le_scan_interval; __u16 le_scan_window; __u16 le_scan_int_suspend; __u16 le_scan_window_suspend; __u16 le_scan_int_discovery; __u16 le_scan_window_discovery; __u16 le_scan_int_adv_monitor; __u16 le_scan_window_adv_monitor; __u16 le_scan_int_connect; __u16 le_scan_window_connect; __u16 le_conn_min_interval; __u16 le_conn_max_interval; __u16 le_conn_latency; __u16 le_supv_timeout; __u16 le_def_tx_len; __u16 le_def_tx_time; __u16 le_max_tx_len; __u16 le_max_tx_time; __u16 le_max_rx_len; __u16 le_max_rx_time; __u8 le_max_key_size; __u8 le_min_key_size; __u16 discov_interleaved_timeout; __u16 conn_info_min_age; __u16 conn_info_max_age; __u16 auth_payload_timeout; __u8 min_enc_key_size; __u8 max_enc_key_size; __u8 pairing_opts; __u8 ssp_debug_mode; __u8 hw_error_code; __u32 clock; __u16 devid_source; __u16 devid_vendor; __u16 devid_product; __u16 devid_version; __u8 def_page_scan_type; __u16 def_page_scan_int; __u16 def_page_scan_window; __u8 def_inq_scan_type; __u16 def_inq_scan_int; __u16 def_inq_scan_window; __u16 def_br_lsto; __u16 def_page_timeout; __u16 def_multi_adv_rotation_duration; __u16 def_le_autoconnect_timeout; __u16 pkt_type; __u16 esco_type; __u16 link_policy; __u16 link_mode; __u32 idle_timeout; __u16 sniff_min_interval; __u16 sniff_max_interval; __u8 amp_status; __u32 amp_total_bw; __u32 amp_max_bw; __u32 amp_min_latency; __u32 amp_max_pdu; __u8 amp_type; __u16 amp_pal_cap; __u16 amp_assoc_size; __u32 amp_max_flush_to; __u32 amp_be_flush_to; struct amp_assoc loc_assoc; __u8 flow_ctl_mode; unsigned int auto_accept_delay; unsigned long quirks; atomic_t cmd_cnt; unsigned int acl_cnt; unsigned int sco_cnt; unsigned int le_cnt; unsigned int acl_mtu; unsigned int sco_mtu; unsigned int le_mtu; unsigned int acl_pkts; unsigned int sco_pkts; unsigned int le_pkts; __u16 block_len; __u16 block_mtu; __u16 num_blocks; __u16 block_cnt; unsigned long acl_last_tx; unsigned long sco_last_tx; unsigned long le_last_tx; __u8 le_tx_def_phys; __u8 le_rx_def_phys; struct workqueue_struct *workqueue; struct workqueue_struct *req_workqueue; struct work_struct power_on; struct delayed_work power_off; struct work_struct error_reset; __u16 discov_timeout; struct delayed_work discov_off; struct delayed_work service_cache; struct delayed_work cmd_timer; struct work_struct rx_work; struct work_struct cmd_work; struct work_struct tx_work; struct work_struct discov_update; struct work_struct bg_scan_update; struct work_struct scan_update; struct work_struct connectable_update; struct work_struct discoverable_update; struct delayed_work le_scan_disable; struct delayed_work le_scan_restart; struct sk_buff_head rx_q; struct sk_buff_head raw_q; struct sk_buff_head cmd_q; struct sk_buff *sent_cmd; struct mutex req_lock; wait_queue_head_t req_wait_q; __u32 req_status; __u32 req_result; struct sk_buff *req_skb; void *smp_data; void *smp_bredr_data; struct discovery_state discovery; int discovery_old_state; bool discovery_paused; int advertising_old_state; bool advertising_paused; struct notifier_block suspend_notifier; struct work_struct suspend_prepare; enum suspended_state suspend_state_next; enum suspended_state suspend_state; bool scanning_paused; bool suspended; u8 wake_reason; bdaddr_t wake_addr; u8 wake_addr_type; wait_queue_head_t suspend_wait_q; DECLARE_BITMAP(suspend_tasks, __SUSPEND_NUM_TASKS); struct hci_conn_hash conn_hash; struct list_head mgmt_pending; struct list_head blacklist; struct list_head whitelist; struct list_head uuids; struct list_head link_keys; struct list_head long_term_keys; struct list_head identity_resolving_keys; struct list_head remote_oob_data; struct list_head le_white_list; struct list_head le_resolv_list; struct list_head le_conn_params; struct list_head pend_le_conns; struct list_head pend_le_reports; struct list_head blocked_keys; struct hci_dev_stats stat; atomic_t promisc; const char *hw_info; const char *fw_info; struct dentry *debugfs; struct device dev; struct rfkill *rfkill; DECLARE_BITMAP(dev_flags, __HCI_NUM_FLAGS); __s8 adv_tx_power; __u8 adv_data[HCI_MAX_EXT_AD_LENGTH]; __u8 adv_data_len; __u8 scan_rsp_data[HCI_MAX_EXT_AD_LENGTH]; __u8 scan_rsp_data_len; struct list_head adv_instances; unsigned int adv_instance_cnt; __u8 cur_adv_instance; __u16 adv_instance_timeout; struct delayed_work adv_instance_expire; struct idr adv_monitors_idr; unsigned int adv_monitors_cnt; __u8 irk[16]; __u32 rpa_timeout; struct delayed_work rpa_expired; bdaddr_t rpa; #if IS_ENABLED(CONFIG_BT_LEDS) struct led_trigger *power_led; #endif #if IS_ENABLED(CONFIG_BT_MSFTEXT) __u16 msft_opcode; void *msft_data; #endif int (*open)(struct hci_dev *hdev); int (*close)(struct hci_dev *hdev); int (*flush)(struct hci_dev *hdev); int (*setup)(struct hci_dev *hdev); int (*shutdown)(struct hci_dev *hdev); int (*send)(struct hci_dev *hdev, struct sk_buff *skb); void (*notify)(struct hci_dev *hdev, unsigned int evt); void (*hw_error)(struct hci_dev *hdev, u8 code); int (*post_init)(struct hci_dev *hdev); int (*set_diag)(struct hci_dev *hdev, bool enable); int (*set_bdaddr)(struct hci_dev *hdev, const bdaddr_t *bdaddr); void (*cmd_timeout)(struct hci_dev *hdev); bool (*prevent_wake)(struct hci_dev *hdev); }; #define HCI_PHY_HANDLE(handle) (handle & 0xff) enum conn_reasons { CONN_REASON_PAIR_DEVICE, CONN_REASON_L2CAP_CHAN, CONN_REASON_SCO_CONNECT, }; struct hci_conn { struct list_head list; atomic_t refcnt; bdaddr_t dst; __u8 dst_type; bdaddr_t src; __u8 src_type; bdaddr_t init_addr; __u8 init_addr_type; bdaddr_t resp_addr; __u8 resp_addr_type; __u16 handle; __u16 state; __u8 mode; __u8 type; __u8 role; bool out; __u8 attempt; __u8 dev_class[3]; __u8 features[HCI_MAX_PAGES][8]; __u16 pkt_type; __u16 link_policy; __u8 key_type; __u8 auth_type; __u8 sec_level; __u8 pending_sec_level; __u8 pin_length; __u8 enc_key_size; __u8 io_capability; __u32 passkey_notify; __u8 passkey_entered; __u16 disc_timeout; __u16 conn_timeout; __u16 setting; __u16 auth_payload_timeout; __u16 le_conn_min_interval; __u16 le_conn_max_interval; __u16 le_conn_interval; __u16 le_conn_latency; __u16 le_supv_timeout; __u8 le_adv_data[HCI_MAX_AD_LENGTH]; __u8 le_adv_data_len; __u8 le_tx_phy; __u8 le_rx_phy; __s8 rssi; __s8 tx_power; __s8 max_tx_power; unsigned long flags; enum conn_reasons conn_reason; __u32 clock; __u16 clock_accuracy; unsigned long conn_info_timestamp; __u8 remote_cap; __u8 remote_auth; __u8 remote_id; unsigned int sent; struct sk_buff_head data_q; struct list_head chan_list; struct delayed_work disc_work; struct delayed_work auto_accept_work; struct delayed_work idle_work; struct delayed_work le_conn_timeout; struct work_struct le_scan_cleanup; struct device dev; struct dentry *debugfs; struct hci_dev *hdev; void *l2cap_data; void *sco_data; struct amp_mgr *amp_mgr; struct hci_conn *link; void (*connect_cfm_cb) (struct hci_conn *conn, u8 status); void (*security_cfm_cb) (struct hci_conn *conn, u8 status); void (*disconn_cfm_cb) (struct hci_conn *conn, u8 reason); }; struct hci_chan { struct list_head list; __u16 handle; struct hci_conn *conn; struct sk_buff_head data_q; unsigned int sent; __u8 state; bool amp; }; struct hci_conn_params { struct list_head list; struct list_head action; bdaddr_t addr; u8 addr_type; u16 conn_min_interval; u16 conn_max_interval; u16 conn_latency; u16 supervision_timeout; enum { HCI_AUTO_CONN_DISABLED, HCI_AUTO_CONN_REPORT, HCI_AUTO_CONN_DIRECT, HCI_AUTO_CONN_ALWAYS, HCI_AUTO_CONN_LINK_LOSS, HCI_AUTO_CONN_EXPLICIT, } auto_connect; struct hci_conn *conn; bool explicit_connect; u32 current_flags; }; extern struct list_head hci_dev_list; extern struct list_head hci_cb_list; extern rwlock_t hci_dev_list_lock; extern struct mutex hci_cb_list_lock; #define hci_dev_set_flag(hdev, nr) set_bit((nr), (hdev)->dev_flags) #define hci_dev_clear_flag(hdev, nr) clear_bit((nr), (hdev)->dev_flags) #define hci_dev_change_flag(hdev, nr) change_bit((nr), (hdev)->dev_flags) #define hci_dev_test_flag(hdev, nr) test_bit((nr), (hdev)->dev_flags) #define hci_dev_test_and_set_flag(hdev, nr) test_and_set_bit((nr), (hdev)->dev_flags) #define hci_dev_test_and_clear_flag(hdev, nr) test_and_clear_bit((nr), (hdev)->dev_flags) #define hci_dev_test_and_change_flag(hdev, nr) test_and_change_bit((nr), (hdev)->dev_flags) #define hci_dev_clear_volatile_flags(hdev) \ do { \ hci_dev_clear_flag(hdev, HCI_LE_SCAN); \ hci_dev_clear_flag(hdev, HCI_LE_ADV); \ hci_dev_clear_flag(hdev, HCI_LL_RPA_RESOLUTION);\ hci_dev_clear_flag(hdev, HCI_PERIODIC_INQ); \ } while (0) /* ----- HCI interface to upper protocols ----- */ int l2cap_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr); int l2cap_disconn_ind(struct hci_conn *hcon); void l2cap_recv_acldata(struct hci_conn *hcon, struct sk_buff *skb, u16 flags); #if IS_ENABLED(CONFIG_BT_BREDR) int sco_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr, __u8 *flags); void sco_recv_scodata(struct hci_conn *hcon, struct sk_buff *skb); #else static inline int sco_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr, __u8 *flags) { return 0; } static inline void sco_recv_scodata(struct hci_conn *hcon, struct sk_buff *skb) { } #endif /* ----- Inquiry cache ----- */ #define INQUIRY_CACHE_AGE_MAX (HZ*30) /* 30 seconds */ #define INQUIRY_ENTRY_AGE_MAX (HZ*60) /* 60 seconds */ static inline void discovery_init(struct hci_dev *hdev) { hdev->discovery.state = DISCOVERY_STOPPED; INIT_LIST_HEAD(&hdev->discovery.all); INIT_LIST_HEAD(&hdev->discovery.unknown); INIT_LIST_HEAD(&hdev->discovery.resolve); hdev->discovery.report_invalid_rssi = true; hdev->discovery.rssi = HCI_RSSI_INVALID; } static inline void hci_discovery_filter_clear(struct hci_dev *hdev) { hdev->discovery.result_filtering = false; hdev->discovery.report_invalid_rssi = true; hdev->discovery.rssi = HCI_RSSI_INVALID; hdev->discovery.uuid_count = 0; kfree(hdev->discovery.uuids); hdev->discovery.uuids = NULL; hdev->discovery.scan_start = 0; hdev->discovery.scan_duration = 0; } bool hci_discovery_active(struct hci_dev *hdev); void hci_discovery_set_state(struct hci_dev *hdev, int state); static inline int inquiry_cache_empty(struct hci_dev *hdev) { return list_empty(&hdev->discovery.all); } static inline long inquiry_cache_age(struct hci_dev *hdev) { struct discovery_state *c = &hdev->discovery; return jiffies - c->timestamp; } static inline long inquiry_entry_age(struct inquiry_entry *e) { return jiffies - e->timestamp; } struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev, bdaddr_t *bdaddr); struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev, bdaddr_t *bdaddr); struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev, bdaddr_t *bdaddr, int state); void hci_inquiry_cache_update_resolve(struct hci_dev *hdev, struct inquiry_entry *ie); u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data, bool name_known); void hci_inquiry_cache_flush(struct hci_dev *hdev); /* ----- HCI Connections ----- */ enum { HCI_CONN_AUTH_PEND, HCI_CONN_REAUTH_PEND, HCI_CONN_ENCRYPT_PEND, HCI_CONN_RSWITCH_PEND, HCI_CONN_MODE_CHANGE_PEND, HCI_CONN_SCO_SETUP_PEND, HCI_CONN_MGMT_CONNECTED, HCI_CONN_SSP_ENABLED, HCI_CONN_SC_ENABLED, HCI_CONN_AES_CCM, HCI_CONN_POWER_SAVE, HCI_CONN_FLUSH_KEY, HCI_CONN_ENCRYPT, HCI_CONN_AUTH, HCI_CONN_SECURE, HCI_CONN_FIPS, HCI_CONN_STK_ENCRYPT, HCI_CONN_AUTH_INITIATOR, HCI_CONN_DROP, HCI_CONN_PARAM_REMOVAL_PEND, HCI_CONN_NEW_LINK_KEY, HCI_CONN_SCANNING, HCI_CONN_AUTH_FAILURE, }; static inline bool hci_conn_ssp_enabled(struct hci_conn *conn) { struct hci_dev *hdev = conn->hdev; return hci_dev_test_flag(hdev, HCI_SSP_ENABLED) && test_bit(HCI_CONN_SSP_ENABLED, &conn->flags); } static inline bool hci_conn_sc_enabled(struct hci_conn *conn) { struct hci_dev *hdev = conn->hdev; return hci_dev_test_flag(hdev, HCI_SC_ENABLED) && test_bit(HCI_CONN_SC_ENABLED, &conn->flags); } static inline void hci_conn_hash_add(struct hci_dev *hdev, struct hci_conn *c) { struct hci_conn_hash *h = &hdev->conn_hash; list_add_rcu(&c->list, &h->list); switch (c->type) { case ACL_LINK: h->acl_num++; break; case AMP_LINK: h->amp_num++; break; case LE_LINK: h->le_num++; if (c->role == HCI_ROLE_SLAVE) h->le_num_slave++; break; case SCO_LINK: case ESCO_LINK: h->sco_num++; break; } } static inline void hci_conn_hash_del(struct hci_dev *hdev, struct hci_conn *c) { struct hci_conn_hash *h = &hdev->conn_hash; list_del_rcu(&c->list); synchronize_rcu(); switch (c->type) { case ACL_LINK: h->acl_num--; break; case AMP_LINK: h->amp_num--; break; case LE_LINK: h->le_num--; if (c->role == HCI_ROLE_SLAVE) h->le_num_slave--; break; case SCO_LINK: case ESCO_LINK: h->sco_num--; break; } } static inline unsigned int hci_conn_num(struct hci_dev *hdev, __u8 type) { struct hci_conn_hash *h = &hdev->conn_hash; switch (type) { case ACL_LINK: return h->acl_num; case AMP_LINK: return h->amp_num; case LE_LINK: return h->le_num; case SCO_LINK: case ESCO_LINK: return h->sco_num; default: return 0; } } static inline unsigned int hci_conn_count(struct hci_dev *hdev) { struct hci_conn_hash *c = &hdev->conn_hash; return c->acl_num + c->amp_num + c->sco_num + c->le_num; } static inline __u8 hci_conn_lookup_type(struct hci_dev *hdev, __u16 handle) { struct hci_conn_hash *h = &hdev->conn_hash; struct hci_conn *c; __u8 type = INVALID_LINK; rcu_read_lock(); list_for_each_entry_rcu(c, &h->list, list) { if (c->handle == handle) { type = c->type; break; } } rcu_read_unlock(); return type; } static inline struct hci_conn *hci_conn_hash_lookup_handle(struct hci_dev *hdev, __u16 handle) { struct hci_conn_hash *h = &hdev->conn_hash; struct hci_conn *c; rcu_read_lock(); list_for_each_entry_rcu(c, &h->list, list) { if (c->handle == handle) { rcu_read_unlock(); return c; } } rcu_read_unlock(); return NULL; } static inline struct hci_conn *hci_conn_hash_lookup_ba(struct hci_dev *hdev, __u8 type, bdaddr_t *ba) { struct hci_conn_hash *h = &hdev->conn_hash; struct hci_conn *c; rcu_read_lock(); list_for_each_entry_rcu(c, &h->list, list) { if (c->type == type && !bacmp(&c->dst, ba)) { rcu_read_unlock(); return c; } } rcu_read_unlock(); return NULL; } static inline struct hci_conn *hci_conn_hash_lookup_le(struct hci_dev *hdev, bdaddr_t *ba, __u8 ba_type) { struct hci_conn_hash *h = &hdev->conn_hash; struct hci_conn *c; rcu_read_lock(); list_for_each_entry_rcu(c, &h->list, list) { if (c->type != LE_LINK) continue; if (ba_type == c->dst_type && !bacmp(&c->dst, ba)) { rcu_read_unlock(); return c; } } rcu_read_unlock(); return NULL; } static inline struct hci_conn *hci_conn_hash_lookup_state(struct hci_dev *hdev, __u8 type, __u16 state) { struct hci_conn_hash *h = &hdev->conn_hash; struct hci_conn *c; rcu_read_lock(); list_for_each_entry_rcu(c, &h->list, list) { if (c->type == type && c->state == state) { rcu_read_unlock(); return c; } } rcu_read_unlock(); return NULL; } static inline struct hci_conn *hci_lookup_le_connect(struct hci_dev *hdev) { struct hci_conn_hash *h = &hdev->conn_hash; struct hci_conn *c; rcu_read_lock(); list_for_each_entry_rcu(c, &h->list, list) { if (c->type == LE_LINK && c->state == BT_CONNECT && !test_bit(HCI_CONN_SCANNING, &c->flags)) { rcu_read_unlock(); return c; } } rcu_read_unlock(); return NULL; } int hci_disconnect(struct hci_conn *conn, __u8 reason); bool hci_setup_sync(struct hci_conn *conn, __u16 handle); void hci_sco_setup(struct hci_conn *conn, __u8 status); struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst, u8 role); int hci_conn_del(struct hci_conn *conn); void hci_conn_hash_flush(struct hci_dev *hdev); void hci_conn_check_pending(struct hci_dev *hdev); struct hci_chan *hci_chan_create(struct hci_conn *conn); void hci_chan_del(struct hci_chan *chan); void hci_chan_list_flush(struct hci_conn *conn); struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle); struct hci_conn *hci_connect_le_scan(struct hci_dev *hdev, bdaddr_t *dst, u8 dst_type, u8 sec_level, u16 conn_timeout, enum conn_reasons conn_reason); struct hci_conn *hci_connect_le(struct hci_dev *hdev, bdaddr_t *dst, u8 dst_type, u8 sec_level, u16 conn_timeout, u8 role, bdaddr_t *direct_rpa); struct hci_conn *hci_connect_acl(struct hci_dev *hdev, bdaddr_t *dst, u8 sec_level, u8 auth_type, enum conn_reasons conn_reason); struct hci_conn *hci_connect_sco(struct hci_dev *hdev, int type, bdaddr_t *dst, __u16 setting); int hci_conn_check_link_mode(struct hci_conn *conn); int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level); int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type, bool initiator); int hci_conn_switch_role(struct hci_conn *conn, __u8 role); void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active); void hci_le_conn_failed(struct hci_conn *conn, u8 status); /* * hci_conn_get() and hci_conn_put() are used to control the life-time of an * "hci_conn" object. They do not guarantee that the hci_conn object is running, * working or anything else. They just guarantee that the object is available * and can be dereferenced. So you can use its locks, local variables and any * other constant data. * Before accessing runtime data, you _must_ lock the object and then check that * it is still running. As soon as you release the locks, the connection might * get dropped, though. * * On the other hand, hci_conn_hold() and hci_conn_drop() are used to control * how long the underlying connection is held. So every channel that runs on the * hci_conn object calls this to prevent the connection from disappearing. As * long as you hold a device, you must also guarantee that you have a valid * reference to the device via hci_conn_get() (or the initial reference from * hci_conn_add()). * The hold()/drop() ref-count is known to drop below 0 sometimes, which doesn't * break because nobody cares for that. But this means, we cannot use * _get()/_drop() in it, but require the caller to have a valid ref (FIXME). */ static inline struct hci_conn *hci_conn_get(struct hci_conn *conn) { get_device(&conn->dev); return conn; } static inline void hci_conn_put(struct hci_conn *conn) { put_device(&conn->dev); } static inline void hci_conn_hold(struct hci_conn *conn) { BT_DBG("hcon %p orig refcnt %d", conn, atomic_read(&conn->refcnt)); atomic_inc(&conn->refcnt); cancel_delayed_work(&conn->disc_work); } static inline void hci_conn_drop(struct hci_conn *conn) { BT_DBG("hcon %p orig refcnt %d", conn, atomic_read(&conn->refcnt)); if (atomic_dec_and_test(&conn->refcnt)) { unsigned long timeo; switch (conn->type) { case ACL_LINK: case LE_LINK: cancel_delayed_work(&conn->idle_work); if (conn->state == BT_CONNECTED) { timeo = conn->disc_timeout; if (!conn->out) timeo *= 2; } else { timeo = 0; } break; case AMP_LINK: timeo = conn->disc_timeout; break; default: timeo = 0; break; } cancel_delayed_work(&conn->disc_work); queue_delayed_work(conn->hdev->workqueue, &conn->disc_work, timeo); } } /* ----- HCI Devices ----- */ static inline void hci_dev_put(struct hci_dev *d) { BT_DBG("%s orig refcnt %d", d->name, kref_read(&d->dev.kobj.kref)); put_device(&d->dev); } static inline struct hci_dev *hci_dev_hold(struct hci_dev *d) { BT_DBG("%s orig refcnt %d", d->name, kref_read(&d->dev.kobj.kref)); get_device(&d->dev); return d; } #define hci_dev_lock(d) mutex_lock(&d->lock) #define hci_dev_unlock(d) mutex_unlock(&d->lock) #define to_hci_dev(d) container_of(d, struct hci_dev, dev) #define to_hci_conn(c) container_of(c, struct hci_conn, dev) static inline void *hci_get_drvdata(struct hci_dev *hdev) { return dev_get_drvdata(&hdev->dev); } static inline void hci_set_drvdata(struct hci_dev *hdev, void *data) { dev_set_drvdata(&hdev->dev, data); } struct hci_dev *hci_dev_get(int index); struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src, u8 src_type); struct hci_dev *hci_alloc_dev(void); void hci_free_dev(struct hci_dev *hdev); int hci_register_dev(struct hci_dev *hdev); void hci_unregister_dev(struct hci_dev *hdev); void hci_cleanup_dev(struct hci_dev *hdev); int hci_suspend_dev(struct hci_dev *hdev); int hci_resume_dev(struct hci_dev *hdev); int hci_reset_dev(struct hci_dev *hdev); int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb); int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb); __printf(2, 3) void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...); __printf(2, 3) void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...); static inline void hci_set_msft_opcode(struct hci_dev *hdev, __u16 opcode) { #if IS_ENABLED(CONFIG_BT_MSFTEXT) hdev->msft_opcode = opcode; #endif } int hci_dev_open(__u16 dev); int hci_dev_close(__u16 dev); int hci_dev_do_close(struct hci_dev *hdev); int hci_dev_reset(__u16 dev); int hci_dev_reset_stat(__u16 dev); int hci_dev_cmd(unsigned int cmd, void __user *arg); int hci_get_dev_list(void __user *arg); int hci_get_dev_info(void __user *arg); int hci_get_conn_list(void __user *arg); int hci_get_conn_info(struct hci_dev *hdev, void __user *arg); int hci_get_auth_info(struct hci_dev *hdev, void __user *arg); int hci_inquiry(void __user *arg); struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *list, bdaddr_t *bdaddr, u8 type); struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk( struct list_head *list, bdaddr_t *bdaddr, u8 type); struct bdaddr_list_with_flags * hci_bdaddr_list_lookup_with_flags(struct list_head *list, bdaddr_t *bdaddr, u8 type); int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type); int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr, u8 type, u8 *peer_irk, u8 *local_irk); int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr, u8 type, u32 flags); int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type); int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr, u8 type); int hci_bdaddr_list_del_with_flags(struct list_head *list, bdaddr_t *bdaddr, u8 type); void hci_bdaddr_list_clear(struct list_head *list); struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type); struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type); void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type); void hci_conn_params_clear_disabled(struct hci_dev *hdev); struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list, bdaddr_t *addr, u8 addr_type); void hci_uuids_clear(struct hci_dev *hdev); void hci_link_keys_clear(struct hci_dev *hdev); struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr); struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn, bdaddr_t *bdaddr, u8 *val, u8 type, u8 pin_len, bool *persistent); struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type, u8 type, u8 authenticated, u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand); struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type, u8 role); int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type); void hci_smp_ltks_clear(struct hci_dev *hdev); int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr); struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa); struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type); struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type, u8 val[16], bdaddr_t *rpa); void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type); bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16]); void hci_blocked_keys_clear(struct hci_dev *hdev); void hci_smp_irks_clear(struct hci_dev *hdev); bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type); void hci_remote_oob_data_clear(struct hci_dev *hdev); struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type); int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type, u8 *hash192, u8 *rand192, u8 *hash256, u8 *rand256); int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type); void hci_adv_instances_clear(struct hci_dev *hdev); struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance); struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance); int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags, u16 adv_data_len, u8 *adv_data, u16 scan_rsp_len, u8 *scan_rsp_data, u16 timeout, u16 duration); int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance); void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired); void hci_adv_monitors_clear(struct hci_dev *hdev); void hci_free_adv_monitor(struct adv_monitor *monitor); int hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor); int hci_remove_adv_monitor(struct hci_dev *hdev, u16 handle); bool hci_is_adv_monitoring(struct hci_dev *hdev); void hci_event_packet(struct hci_dev *hdev, struct sk_buff *skb); void hci_init_sysfs(struct hci_dev *hdev); void hci_conn_init_sysfs(struct hci_conn *conn); void hci_conn_add_sysfs(struct hci_conn *conn); void hci_conn_del_sysfs(struct hci_conn *conn); #define SET_HCIDEV_DEV(hdev, pdev) ((hdev)->dev.parent = (pdev)) /* ----- LMP capabilities ----- */ #define lmp_encrypt_capable(dev) ((dev)->features[0][0] & LMP_ENCRYPT) #define lmp_rswitch_capable(dev) ((dev)->features[0][0] & LMP_RSWITCH) #define lmp_hold_capable(dev) ((dev)->features[0][0] & LMP_HOLD) #define lmp_sniff_capable(dev) ((dev)->features[0][0] & LMP_SNIFF) #define lmp_park_capable(dev) ((dev)->features[0][1] & LMP_PARK) #define lmp_inq_rssi_capable(dev) ((dev)->features[0][3] & LMP_RSSI_INQ) #define lmp_esco_capable(dev) ((dev)->features[0][3] & LMP_ESCO) #define lmp_bredr_capable(dev) (!((dev)->features[0][4] & LMP_NO_BREDR)) #define lmp_le_capable(dev) ((dev)->features[0][4] & LMP_LE) #define lmp_sniffsubr_capable(dev) ((dev)->features[0][5] & LMP_SNIFF_SUBR) #define lmp_pause_enc_capable(dev) ((dev)->features[0][5] & LMP_PAUSE_ENC) #define lmp_ext_inq_capable(dev) ((dev)->features[0][6] & LMP_EXT_INQ) #define lmp_le_br_capable(dev) (!!((dev)->features[0][6] & LMP_SIMUL_LE_BR)) #define lmp_ssp_capable(dev) ((dev)->features[0][6] & LMP_SIMPLE_PAIR) #define lmp_no_flush_capable(dev) ((dev)->features[0][6] & LMP_NO_FLUSH) #define lmp_lsto_capable(dev) ((dev)->features[0][7] & LMP_LSTO) #define lmp_inq_tx_pwr_capable(dev) ((dev)->features[0][7] & LMP_INQ_TX_PWR) #define lmp_ext_feat_capable(dev) ((dev)->features[0][7] & LMP_EXTFEATURES) #define lmp_transp_capable(dev) ((dev)->features[0][2] & LMP_TRANSPARENT) #define lmp_edr_2m_capable(dev) ((dev)->features[0][3] & LMP_EDR_2M) #define lmp_edr_3m_capable(dev) ((dev)->features[0][3] & LMP_EDR_3M) #define lmp_edr_3slot_capable(dev) ((dev)->features[0][4] & LMP_EDR_3SLOT) #define lmp_edr_5slot_capable(dev) ((dev)->features[0][5] & LMP_EDR_5SLOT) /* ----- Extended LMP capabilities ----- */ #define lmp_csb_master_capable(dev) ((dev)->features[2][0] & LMP_CSB_MASTER) #define lmp_csb_slave_capable(dev) ((dev)->features[2][0] & LMP_CSB_SLAVE) #define lmp_sync_train_capable(dev) ((dev)->features[2][0] & LMP_SYNC_TRAIN) #define lmp_sync_scan_capable(dev) ((dev)->features[2][0] & LMP_SYNC_SCAN) #define lmp_sc_capable(dev) ((dev)->features[2][1] & LMP_SC) #define lmp_ping_capable(dev) ((dev)->features[2][1] & LMP_PING) /* ----- Host capabilities ----- */ #define lmp_host_ssp_capable(dev) ((dev)->features[1][0] & LMP_HOST_SSP) #define lmp_host_sc_capable(dev) ((dev)->features[1][0] & LMP_HOST_SC) #define lmp_host_le_capable(dev) (!!((dev)->features[1][0] & LMP_HOST_LE)) #define lmp_host_le_br_capable(dev) (!!((dev)->features[1][0] & LMP_HOST_LE_BREDR)) #define hdev_is_powered(dev) (test_bit(HCI_UP, &(dev)->flags) && \ !hci_dev_test_flag(dev, HCI_AUTO_OFF)) #define bredr_sc_enabled(dev) (lmp_sc_capable(dev) && \ hci_dev_test_flag(dev, HCI_SC_ENABLED)) #define scan_1m(dev) (((dev)->le_tx_def_phys & HCI_LE_SET_PHY_1M) || \ ((dev)->le_rx_def_phys & HCI_LE_SET_PHY_1M)) #define scan_2m(dev) (((dev)->le_tx_def_phys & HCI_LE_SET_PHY_2M) || \ ((dev)->le_rx_def_phys & HCI_LE_SET_PHY_2M)) #define scan_coded(dev) (((dev)->le_tx_def_phys & HCI_LE_SET_PHY_CODED) || \ ((dev)->le_rx_def_phys & HCI_LE_SET_PHY_CODED)) /* Use LL Privacy based address resolution if supported */ #define use_ll_privacy(dev) ((dev)->le_features[0] & HCI_LE_LL_PRIVACY) /* Use ext scanning if set ext scan param and ext scan enable is supported */ #define use_ext_scan(dev) (((dev)->commands[37] & 0x20) && \ ((dev)->commands[37] & 0x40)) /* Use ext create connection if command is supported */ #define use_ext_conn(dev) ((dev)->commands[37] & 0x80) /* Extended advertising support */ #define ext_adv_capable(dev) (((dev)->le_features[1] & HCI_LE_EXT_ADV)) /* ----- HCI protocols ----- */ #define HCI_PROTO_DEFER 0x01 static inline int hci_proto_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr, __u8 type, __u8 *flags) { switch (type) { case ACL_LINK: return l2cap_connect_ind(hdev, bdaddr); case SCO_LINK: case ESCO_LINK: return sco_connect_ind(hdev, bdaddr, flags); default: BT_ERR("unknown link type %d", type); return -EINVAL; } } static inline int hci_proto_disconn_ind(struct hci_conn *conn) { if (conn->type != ACL_LINK && conn->type != LE_LINK) return HCI_ERROR_REMOTE_USER_TERM; return l2cap_disconn_ind(conn); } /* ----- HCI callbacks ----- */ struct hci_cb { struct list_head list; char *name; void (*connect_cfm) (struct hci_conn *conn, __u8 status); void (*disconn_cfm) (struct hci_conn *conn, __u8 status); void (*security_cfm) (struct hci_conn *conn, __u8 status, __u8 encrypt); void (*key_change_cfm) (struct hci_conn *conn, __u8 status); void (*role_switch_cfm) (struct hci_conn *conn, __u8 status, __u8 role); }; static inline void hci_connect_cfm(struct hci_conn *conn, __u8 status) { struct hci_cb *cb; mutex_lock(&hci_cb_list_lock); list_for_each_entry(cb, &hci_cb_list, list) { if (cb->connect_cfm) cb->connect_cfm(conn, status); } mutex_unlock(&hci_cb_list_lock); if (conn->connect_cfm_cb) conn->connect_cfm_cb(conn, status); } static inline void hci_disconn_cfm(struct hci_conn *conn, __u8 reason) { struct hci_cb *cb; mutex_lock(&hci_cb_list_lock); list_for_each_entry(cb, &hci_cb_list, list) { if (cb->disconn_cfm) cb->disconn_cfm(conn, reason); } mutex_unlock(&hci_cb_list_lock); if (conn->disconn_cfm_cb) conn->disconn_cfm_cb(conn, reason); } static inline void hci_auth_cfm(struct hci_conn *conn, __u8 status) { struct hci_cb *cb; __u8 encrypt; if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) return; encrypt = test_bit(HCI_CONN_ENCRYPT, &conn->flags) ? 0x01 : 0x00; mutex_lock(&hci_cb_list_lock); list_for_each_entry(cb, &hci_cb_list, list) { if (cb->security_cfm) cb->security_cfm(conn, status, encrypt); } mutex_unlock(&hci_cb_list_lock); if (conn->security_cfm_cb) conn->security_cfm_cb(conn, status); } static inline void hci_encrypt_cfm(struct hci_conn *conn, __u8 status) { struct hci_cb *cb; __u8 encrypt; if (conn->state == BT_CONFIG) { if (!status) conn->state = BT_CONNECTED; hci_connect_cfm(conn, status); hci_conn_drop(conn); return; } if (!test_bit(HCI_CONN_ENCRYPT, &conn->flags)) encrypt = 0x00; else if (test_bit(HCI_CONN_AES_CCM, &conn->flags)) encrypt = 0x02; else encrypt = 0x01; if (!status) { if (conn->sec_level == BT_SECURITY_SDP) conn->sec_level = BT_SECURITY_LOW; if (conn->pending_sec_level > conn->sec_level) conn->sec_level = conn->pending_sec_level; } mutex_lock(&hci_cb_list_lock); list_for_each_entry(cb, &hci_cb_list, list) { if (cb->security_cfm) cb->security_cfm(conn, status, encrypt); } mutex_unlock(&hci_cb_list_lock); if (conn->security_cfm_cb) conn->security_cfm_cb(conn, status); } static inline void hci_key_change_cfm(struct hci_conn *conn, __u8 status) { struct hci_cb *cb; mutex_lock(&hci_cb_list_lock); list_for_each_entry(cb, &hci_cb_list, list) { if (cb->key_change_cfm) cb->key_change_cfm(conn, status); } mutex_unlock(&hci_cb_list_lock); } static inline void hci_role_switch_cfm(struct hci_conn *conn, __u8 status, __u8 role) { struct hci_cb *cb; mutex_lock(&hci_cb_list_lock); list_for_each_entry(cb, &hci_cb_list, list) { if (cb->role_switch_cfm) cb->role_switch_cfm(conn, status, role); } mutex_unlock(&hci_cb_list_lock); } static inline void *eir_get_data(u8 *eir, size_t eir_len, u8 type, size_t *data_len) { size_t parsed = 0; if (eir_len < 2) return NULL; while (parsed < eir_len - 1) { u8 field_len = eir[0]; if (field_len == 0) break; parsed += field_len + 1; if (parsed > eir_len) break; if (eir[1] != type) { eir += field_len + 1; continue; } /* Zero length data */ if (field_len == 1) return NULL; if (data_len) *data_len = field_len - 1; return &eir[2]; } return NULL; } static inline bool hci_bdaddr_is_rpa(bdaddr_t *bdaddr, u8 addr_type) { if (addr_type != ADDR_LE_DEV_RANDOM) return false; if ((bdaddr->b[5] & 0xc0) == 0x40) return true; return false; } static inline bool hci_is_identity_address(bdaddr_t *addr, u8 addr_type) { if (addr_type == ADDR_LE_DEV_PUBLIC) return true; /* Check for Random Static address type */ if ((addr->b[5] & 0xc0) == 0xc0) return true; return false; } static inline struct smp_irk *hci_get_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type) { if (!hci_bdaddr_is_rpa(bdaddr, addr_type)) return NULL; return hci_find_irk_by_rpa(hdev, bdaddr); } static inline int hci_check_conn_params(u16 min, u16 max, u16 latency, u16 to_multiplier) { u16 max_latency; if (min > max || min < 6 || max > 3200) return -EINVAL; if (to_multiplier < 10 || to_multiplier > 3200) return -EINVAL; if (max >= to_multiplier * 8) return -EINVAL; max_latency = (to_multiplier * 4 / max) - 1; if (latency > 499 || latency > max_latency) return -EINVAL; return 0; } int hci_register_cb(struct hci_cb *hcb); int hci_unregister_cb(struct hci_cb *hcb); struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, const void *param, u32 timeout); struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen, const void *param, u8 event, u32 timeout); int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen, const void *param); int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen, const void *param); void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags); void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb); void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode); struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, const void *param, u32 timeout); u32 hci_conn_get_phy(struct hci_conn *conn); /* ----- HCI Sockets ----- */ void hci_send_to_sock(struct hci_dev *hdev, struct sk_buff *skb); void hci_send_to_channel(unsigned short channel, struct sk_buff *skb, int flag, struct sock *skip_sk); void hci_send_to_monitor(struct hci_dev *hdev, struct sk_buff *skb); void hci_send_monitor_ctrl_event(struct hci_dev *hdev, u16 event, void *data, u16 data_len, ktime_t tstamp, int flag, struct sock *skip_sk); void hci_sock_dev_event(struct hci_dev *hdev, int event); #define HCI_MGMT_VAR_LEN BIT(0) #define HCI_MGMT_NO_HDEV BIT(1) #define HCI_MGMT_UNTRUSTED BIT(2) #define HCI_MGMT_UNCONFIGURED BIT(3) #define HCI_MGMT_HDEV_OPTIONAL BIT(4) struct hci_mgmt_handler { int (*func) (struct sock *sk, struct hci_dev *hdev, void *data, u16 data_len); size_t data_len; unsigned long flags; }; struct hci_mgmt_chan { struct list_head list; unsigned short channel; size_t handler_count; const struct hci_mgmt_handler *handlers; void (*hdev_init) (struct sock *sk, struct hci_dev *hdev); }; int hci_mgmt_chan_register(struct hci_mgmt_chan *c); void hci_mgmt_chan_unregister(struct hci_mgmt_chan *c); /* Management interface */ #define DISCOV_TYPE_BREDR (BIT(BDADDR_BREDR)) #define DISCOV_TYPE_LE (BIT(BDADDR_LE_PUBLIC) | \ BIT(BDADDR_LE_RANDOM)) #define DISCOV_TYPE_INTERLEAVED (BIT(BDADDR_BREDR) | \ BIT(BDADDR_LE_PUBLIC) | \ BIT(BDADDR_LE_RANDOM)) /* These LE scan and inquiry parameters were chosen according to LE General * Discovery Procedure specification. */ #define DISCOV_LE_SCAN_WIN 0x12 #define DISCOV_LE_SCAN_INT 0x12 #define DISCOV_LE_TIMEOUT 10240 /* msec */ #define DISCOV_INTERLEAVED_TIMEOUT 5120 /* msec */ #define DISCOV_INTERLEAVED_INQUIRY_LEN 0x04 #define DISCOV_BREDR_INQUIRY_LEN 0x08 #define DISCOV_LE_RESTART_DELAY msecs_to_jiffies(200) /* msec */ #define DISCOV_LE_FAST_ADV_INT_MIN 100 /* msec */ #define DISCOV_LE_FAST_ADV_INT_MAX 150 /* msec */ void mgmt_fill_version_info(void *ver); int mgmt_new_settings(struct hci_dev *hdev); void mgmt_index_added(struct hci_dev *hdev); void mgmt_index_removed(struct hci_dev *hdev); void mgmt_set_powered_failed(struct hci_dev *hdev, int err); void mgmt_power_on(struct hci_dev *hdev, int err); void __mgmt_power_off(struct hci_dev *hdev); void mgmt_new_link_key(struct hci_dev *hdev, struct link_key *key, bool persistent); void mgmt_device_connected(struct hci_dev *hdev, struct hci_conn *conn, u32 flags, u8 *name, u8 name_len); void mgmt_device_disconnected(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type, u8 reason, bool mgmt_connected); void mgmt_disconnect_failed(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type, u8 status); void mgmt_connect_failed(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type, u8 status); void mgmt_pin_code_request(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 secure); void mgmt_pin_code_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 status); void mgmt_pin_code_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 status); int mgmt_user_confirm_request(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type, u32 value, u8 confirm_hint); int mgmt_user_confirm_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type, u8 status); int mgmt_user_confirm_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type, u8 status); int mgmt_user_passkey_request(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type); int mgmt_user_passkey_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type, u8 status); int mgmt_user_passkey_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type, u8 status); int mgmt_user_passkey_notify(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type, u32 passkey, u8 entered); void mgmt_auth_failed(struct hci_conn *conn, u8 status); void mgmt_auth_enable_complete(struct hci_dev *hdev, u8 status); void mgmt_ssp_enable_complete(struct hci_dev *hdev, u8 enable, u8 status); void mgmt_set_class_of_dev_complete(struct hci_dev *hdev, u8 *dev_class, u8 status); void mgmt_set_local_name_complete(struct hci_dev *hdev, u8 *name, u8 status); void mgmt_start_discovery_complete(struct hci_dev *hdev, u8 status); void mgmt_stop_discovery_complete(struct hci_dev *hdev, u8 status); void mgmt_device_found(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type, u8 *dev_class, s8 rssi, u32 flags, u8 *eir, u16 eir_len, u8 *scan_rsp, u8 scan_rsp_len); void mgmt_remote_name(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type, s8 rssi, u8 *name, u8 name_len); void mgmt_discovering(struct hci_dev *hdev, u8 discovering); void mgmt_suspending(struct hci_dev *hdev, u8 state); void mgmt_resuming(struct hci_dev *hdev, u8 reason, bdaddr_t *bdaddr, u8 addr_type); bool mgmt_powering_down(struct hci_dev *hdev); void mgmt_new_ltk(struct hci_dev *hdev, struct smp_ltk *key, bool persistent); void mgmt_new_irk(struct hci_dev *hdev, struct smp_irk *irk, bool persistent); void mgmt_new_csrk(struct hci_dev *hdev, struct smp_csrk *csrk, bool persistent); void mgmt_new_conn_param(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type, u8 store_hint, u16 min_interval, u16 max_interval, u16 latency, u16 timeout); void mgmt_smp_complete(struct hci_conn *conn, bool complete); bool mgmt_get_connectable(struct hci_dev *hdev); void mgmt_set_connectable_complete(struct hci_dev *hdev, u8 status); void mgmt_set_discoverable_complete(struct hci_dev *hdev, u8 status); u8 mgmt_get_adv_discov_flags(struct hci_dev *hdev); void mgmt_advertising_added(struct sock *sk, struct hci_dev *hdev, u8 instance); void mgmt_advertising_removed(struct sock *sk, struct hci_dev *hdev, u8 instance); int mgmt_phy_configuration_changed(struct hci_dev *hdev, struct sock *skip); u8 hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max, u16 latency, u16 to_multiplier); void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __le64 rand, __u8 ltk[16], __u8 key_size); void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 *bdaddr_type); #define SCO_AIRMODE_MASK 0x0003 #define SCO_AIRMODE_CVSD 0x0000 #define SCO_AIRMODE_TRANSP 0x0003 #endif /* __HCI_CORE_H */
1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 // SPDX-License-Identifier: GPL-2.0 /* * fs/ext4/extents_status.h * * Written by Yongqiang Yang <xiaoqiangnk@gmail.com> * Modified by * Allison Henderson <achender@linux.vnet.ibm.com> * Zheng Liu <wenqing.lz@taobao.com> * */ #ifndef _EXT4_EXTENTS_STATUS_H #define _EXT4_EXTENTS_STATUS_H /* * Turn on ES_DEBUG__ to get lots of info about extent status operations. */ #ifdef ES_DEBUG__ #define es_debug(fmt, ...) printk(fmt, ##__VA_ARGS__) #else #define es_debug(fmt, ...) no_printk(fmt, ##__VA_ARGS__) #endif /* * With ES_AGGRESSIVE_TEST defined, the result of es caching will be * checked with old map_block's result. */ #define ES_AGGRESSIVE_TEST__ /* * These flags live in the high bits of extent_status.es_pblk */ enum { ES_WRITTEN_B, ES_UNWRITTEN_B, ES_DELAYED_B, ES_HOLE_B, ES_REFERENCED_B, ES_FLAGS }; #define ES_SHIFT (sizeof(ext4_fsblk_t)*8 - ES_FLAGS) #define ES_MASK (~((ext4_fsblk_t)0) << ES_SHIFT) #define EXTENT_STATUS_WRITTEN (1 << ES_WRITTEN_B) #define EXTENT_STATUS_UNWRITTEN (1 << ES_UNWRITTEN_B) #define EXTENT_STATUS_DELAYED (1 << ES_DELAYED_B) #define EXTENT_STATUS_HOLE (1 << ES_HOLE_B) #define EXTENT_STATUS_REFERENCED (1 << ES_REFERENCED_B) #define ES_TYPE_MASK ((ext4_fsblk_t)(EXTENT_STATUS_WRITTEN | \ EXTENT_STATUS_UNWRITTEN | \ EXTENT_STATUS_DELAYED | \ EXTENT_STATUS_HOLE) << ES_SHIFT) struct ext4_sb_info; struct ext4_extent; struct extent_status { struct rb_node rb_node; ext4_lblk_t es_lblk; /* first logical block extent covers */ ext4_lblk_t es_len; /* length of extent in block */ ext4_fsblk_t es_pblk; /* first physical block */ }; struct ext4_es_tree { struct rb_root root; struct extent_status *cache_es; /* recently accessed extent */ }; struct ext4_es_stats { unsigned long es_stats_shrunk; struct percpu_counter es_stats_cache_hits; struct percpu_counter es_stats_cache_misses; u64 es_stats_scan_time; u64 es_stats_max_scan_time; struct percpu_counter es_stats_all_cnt; struct percpu_counter es_stats_shk_cnt; }; /* * Pending cluster reservations for bigalloc file systems * * A cluster with a pending reservation is a logical cluster shared by at * least one extent in the extents status tree with delayed and unwritten * status and at least one other written or unwritten extent. The * reservation is said to be pending because a cluster reservation would * have to be taken in the event all blocks in the cluster shared with * written or unwritten extents were deleted while the delayed and * unwritten blocks remained. * * The set of pending cluster reservations is an auxiliary data structure * used with the extents status tree to implement reserved cluster/block * accounting for bigalloc file systems. The set is kept in memory and * records all pending cluster reservations. * * Its primary function is to avoid the need to read extents from the * disk when invalidating pages as a result of a truncate, punch hole, or * collapse range operation. Page invalidation requires a decrease in the * reserved cluster count if it results in the removal of all delayed * and unwritten extents (blocks) from a cluster that is not shared with a * written or unwritten extent, and no decrease otherwise. Determining * whether the cluster is shared can be done by searching for a pending * reservation on it. * * Secondarily, it provides a potentially faster method for determining * whether the reserved cluster count should be increased when a physical * cluster is deallocated as a result of a truncate, punch hole, or * collapse range operation. The necessary information is also present * in the extents status tree, but might be more rapidly accessed in * the pending reservation set in many cases due to smaller size. * * The pending cluster reservation set is implemented as a red-black tree * with the goal of minimizing per page search time overhead. */ struct pending_reservation { struct rb_node rb_node; ext4_lblk_t lclu; }; struct ext4_pending_tree { struct rb_root root; }; extern int __init ext4_init_es(void); extern void ext4_exit_es(void); extern void ext4_es_init_tree(struct ext4_es_tree *tree); extern int ext4_es_insert_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len, ext4_fsblk_t pblk, unsigned int status); extern void ext4_es_cache_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len, ext4_fsblk_t pblk, unsigned int status); extern int ext4_es_remove_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len); extern void ext4_es_find_extent_range(struct inode *inode, int (*match_fn)(struct extent_status *es), ext4_lblk_t lblk, ext4_lblk_t end, struct extent_status *es); extern int ext4_es_lookup_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t *next_lblk, struct extent_status *es); extern bool ext4_es_scan_range(struct inode *inode, int (*matching_fn)(struct extent_status *es), ext4_lblk_t lblk, ext4_lblk_t end); extern bool ext4_es_scan_clu(struct inode *inode, int (*matching_fn)(struct extent_status *es), ext4_lblk_t lblk); static inline unsigned int ext4_es_status(struct extent_status *es) { return es->es_pblk >> ES_SHIFT; } static inline unsigned int ext4_es_type(struct extent_status *es) { return (es->es_pblk & ES_TYPE_MASK) >> ES_SHIFT; } static inline int ext4_es_is_written(struct extent_status *es) { return (ext4_es_type(es) & EXTENT_STATUS_WRITTEN) != 0; } static inline int ext4_es_is_unwritten(struct extent_status *es) { return (ext4_es_type(es) & EXTENT_STATUS_UNWRITTEN) != 0; } static inline int ext4_es_is_delayed(struct extent_status *es) { return (ext4_es_type(es) & EXTENT_STATUS_DELAYED) != 0; } static inline int ext4_es_is_hole(struct extent_status *es) { return (ext4_es_type(es) & EXTENT_STATUS_HOLE) != 0; } static inline int ext4_es_is_mapped(struct extent_status *es) { return (ext4_es_is_written(es) || ext4_es_is_unwritten(es)); } static inline int ext4_es_is_delonly(struct extent_status *es) { return (ext4_es_is_delayed(es) && !ext4_es_is_unwritten(es)); } static inline void ext4_es_set_referenced(struct extent_status *es) { es->es_pblk |= ((ext4_fsblk_t)EXTENT_STATUS_REFERENCED) << ES_SHIFT; } static inline void ext4_es_clear_referenced(struct extent_status *es) { es->es_pblk &= ~(((ext4_fsblk_t)EXTENT_STATUS_REFERENCED) << ES_SHIFT); } static inline int ext4_es_is_referenced(struct extent_status *es) { return (ext4_es_status(es) & EXTENT_STATUS_REFERENCED) != 0; } static inline ext4_fsblk_t ext4_es_pblock(struct extent_status *es) { return es->es_pblk & ~ES_MASK; } static inline ext4_fsblk_t ext4_es_show_pblock(struct extent_status *es) { ext4_fsblk_t pblock = ext4_es_pblock(es); return pblock == ~ES_MASK ? 0 : pblock; } static inline void ext4_es_store_pblock(struct extent_status *es, ext4_fsblk_t pb) { ext4_fsblk_t block; block = (pb & ~ES_MASK) | (es->es_pblk & ES_MASK); es->es_pblk = block; } static inline void ext4_es_store_status(struct extent_status *es, unsigned int status) { es->es_pblk = (((ext4_fsblk_t)status << ES_SHIFT) & ES_MASK) | (es->es_pblk & ~ES_MASK); } static inline void ext4_es_store_pblock_status(struct extent_status *es, ext4_fsblk_t pb, unsigned int status) { es->es_pblk = (((ext4_fsblk_t)status << ES_SHIFT) & ES_MASK) | (pb & ~ES_MASK); } extern int ext4_es_register_shrinker(struct ext4_sb_info *sbi); extern void ext4_es_unregister_shrinker(struct ext4_sb_info *sbi); extern int ext4_seq_es_shrinker_info_show(struct seq_file *seq, void *v); extern int __init ext4_init_pending(void); extern void ext4_exit_pending(void); extern void ext4_init_pending_tree(struct ext4_pending_tree *tree); extern void ext4_remove_pending(struct inode *inode, ext4_lblk_t lblk); extern bool ext4_is_pending(struct inode *inode, ext4_lblk_t lblk); extern int ext4_es_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk, bool allocated); extern unsigned int ext4_es_delayed_clu(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len); extern void ext4_clear_inode_es(struct inode *inode); #endif /* _EXT4_EXTENTS_STATUS_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_DESC_H #define _ASM_X86_DESC_H #include <asm/desc_defs.h> #include <asm/ldt.h> #include <asm/mmu.h> #include <asm/fixmap.h> #include <asm/irq_vectors.h> #include <asm/cpu_entry_area.h> #include <linux/smp.h> #include <linux/percpu.h> static inline void fill_ldt(struct desc_struct *desc, const struct user_desc *info) { desc->limit0 = info->limit & 0x0ffff; desc->base0 = (info->base_addr & 0x0000ffff); desc->base1 = (info->base_addr & 0x00ff0000) >> 16; desc->type = (info->read_exec_only ^ 1) << 1; desc->type |= info->contents << 2; /* Set the ACCESS bit so it can be mapped RO */ desc->type |= 1; desc->s = 1; desc->dpl = 0x3; desc->p = info->seg_not_present ^ 1; desc->limit1 = (info->limit & 0xf0000) >> 16; desc->avl = info->useable; desc->d = info->seg_32bit; desc->g = info->limit_in_pages; desc->base2 = (info->base_addr & 0xff000000) >> 24; /* * Don't allow setting of the lm bit. It would confuse * user_64bit_mode and would get overridden by sysret anyway. */ desc->l = 0; } struct gdt_page { struct desc_struct gdt[GDT_ENTRIES]; } __attribute__((aligned(PAGE_SIZE))); DECLARE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page); /* Provide the original GDT */ static inline struct desc_struct *get_cpu_gdt_rw(unsigned int cpu) { return per_cpu(gdt_page, cpu).gdt; } /* Provide the current original GDT */ static inline struct desc_struct *get_current_gdt_rw(void) { return this_cpu_ptr(&gdt_page)->gdt; } /* Provide the fixmap address of the remapped GDT */ static inline struct desc_struct *get_cpu_gdt_ro(int cpu) { return (struct desc_struct *)&get_cpu_entry_area(cpu)->gdt; } /* Provide the current read-only GDT */ static inline struct desc_struct *get_current_gdt_ro(void) { return get_cpu_gdt_ro(smp_processor_id()); } /* Provide the physical address of the GDT page. */ static inline phys_addr_t get_cpu_gdt_paddr(unsigned int cpu) { return per_cpu_ptr_to_phys(get_cpu_gdt_rw(cpu)); } static inline void pack_gate(gate_desc *gate, unsigned type, unsigned long func, unsigned dpl, unsigned ist, unsigned seg) { gate->offset_low = (u16) func; gate->bits.p = 1; gate->bits.dpl = dpl; gate->bits.zero = 0; gate->bits.type = type; gate->offset_middle = (u16) (func >> 16); #ifdef CONFIG_X86_64 gate->segment = __KERNEL_CS; gate->bits.ist = ist; gate->reserved = 0; gate->offset_high = (u32) (func >> 32); #else gate->segment = seg; gate->bits.ist = 0; #endif } static inline int desc_empty(const void *ptr) { const u32 *desc = ptr; return !(desc[0] | desc[1]); } #ifdef CONFIG_PARAVIRT_XXL #include <asm/paravirt.h> #else #define load_TR_desc() native_load_tr_desc() #define load_gdt(dtr) native_load_gdt(dtr) #define load_idt(dtr) native_load_idt(dtr) #define load_tr(tr) asm volatile("ltr %0"::"m" (tr)) #define load_ldt(ldt) asm volatile("lldt %0"::"m" (ldt)) #define store_gdt(dtr) native_store_gdt(dtr) #define store_tr(tr) (tr = native_store_tr()) #define load_TLS(t, cpu) native_load_tls(t, cpu) #define set_ldt native_set_ldt #define write_ldt_entry(dt, entry, desc) native_write_ldt_entry(dt, entry, desc) #define write_gdt_entry(dt, entry, desc, type) native_write_gdt_entry(dt, entry, desc, type) #define write_idt_entry(dt, entry, g) native_write_idt_entry(dt, entry, g) static inline void paravirt_alloc_ldt(struct desc_struct *ldt, unsigned entries) { } static inline void paravirt_free_ldt(struct desc_struct *ldt, unsigned entries) { } #endif /* CONFIG_PARAVIRT_XXL */ #define store_ldt(ldt) asm("sldt %0" : "=m"(ldt)) static inline void native_write_idt_entry(gate_desc *idt, int entry, const gate_desc *gate) { memcpy(&idt[entry], gate, sizeof(*gate)); } static inline void native_write_ldt_entry(struct desc_struct *ldt, int entry, const void *desc) { memcpy(&ldt[entry], desc, 8); } static inline void native_write_gdt_entry(struct desc_struct *gdt, int entry, const void *desc, int type) { unsigned int size; switch (type) { case DESC_TSS: size = sizeof(tss_desc); break; case DESC_LDT: size = sizeof(ldt_desc); break; default: size = sizeof(*gdt); break; } memcpy(&gdt[entry], desc, size); } static inline void set_tssldt_descriptor(void *d, unsigned long addr, unsigned type, unsigned size) { struct ldttss_desc *desc = d; memset(desc, 0, sizeof(*desc)); desc->limit0 = (u16) size; desc->base0 = (u16) addr; desc->base1 = (addr >> 16) & 0xFF; desc->type = type; desc->p = 1; desc->limit1 = (size >> 16) & 0xF; desc->base2 = (addr >> 24) & 0xFF; #ifdef CONFIG_X86_64 desc->base3 = (u32) (addr >> 32); #endif } static inline void __set_tss_desc(unsigned cpu, unsigned int entry, struct x86_hw_tss *addr) { struct desc_struct *d = get_cpu_gdt_rw(cpu); tss_desc tss; set_tssldt_descriptor(&tss, (unsigned long)addr, DESC_TSS, __KERNEL_TSS_LIMIT); write_gdt_entry(d, entry, &tss, DESC_TSS); } #define set_tss_desc(cpu, addr) __set_tss_desc(cpu, GDT_ENTRY_TSS, addr) static inline void native_set_ldt(const void *addr, unsigned int entries) { if (likely(entries == 0)) asm volatile("lldt %w0"::"q" (0)); else { unsigned cpu = smp_processor_id(); ldt_desc ldt; set_tssldt_descriptor(&ldt, (unsigned long)addr, DESC_LDT, entries * LDT_ENTRY_SIZE - 1); write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_LDT, &ldt, DESC_LDT); asm volatile("lldt %w0"::"q" (GDT_ENTRY_LDT*8)); } } static inline void native_load_gdt(const struct desc_ptr *dtr) { asm volatile("lgdt %0"::"m" (*dtr)); } static __always_inline void native_load_idt(const struct desc_ptr *dtr) { asm volatile("lidt %0"::"m" (*dtr)); } static inline void native_store_gdt(struct desc_ptr *dtr) { asm volatile("sgdt %0":"=m" (*dtr)); } static inline void store_idt(struct desc_ptr *dtr) { asm volatile("sidt %0":"=m" (*dtr)); } /* * The LTR instruction marks the TSS GDT entry as busy. On 64-bit, the GDT is * a read-only remapping. To prevent a page fault, the GDT is switched to the * original writeable version when needed. */ #ifdef CONFIG_X86_64 static inline void native_load_tr_desc(void) { struct desc_ptr gdt; int cpu = raw_smp_processor_id(); bool restore = 0; struct desc_struct *fixmap_gdt; native_store_gdt(&gdt); fixmap_gdt = get_cpu_gdt_ro(cpu); /* * If the current GDT is the read-only fixmap, swap to the original * writeable version. Swap back at the end. */ if (gdt.address == (unsigned long)fixmap_gdt) { load_direct_gdt(cpu); restore = 1; } asm volatile("ltr %w0"::"q" (GDT_ENTRY_TSS*8)); if (restore) load_fixmap_gdt(cpu); } #else static inline void native_load_tr_desc(void) { asm volatile("ltr %w0"::"q" (GDT_ENTRY_TSS*8)); } #endif static inline unsigned long native_store_tr(void) { unsigned long tr; asm volatile("str %0":"=r" (tr)); return tr; } static inline void native_load_tls(struct thread_struct *t, unsigned int cpu) { struct desc_struct *gdt = get_cpu_gdt_rw(cpu); unsigned int i; for (i = 0; i < GDT_ENTRY_TLS_ENTRIES; i++) gdt[GDT_ENTRY_TLS_MIN + i] = t->tls_array[i]; } DECLARE_PER_CPU(bool, __tss_limit_invalid); static inline void force_reload_TR(void) { struct desc_struct *d = get_current_gdt_rw(); tss_desc tss; memcpy(&tss, &d[GDT_ENTRY_TSS], sizeof(tss_desc)); /* * LTR requires an available TSS, and the TSS is currently * busy. Make it be available so that LTR will work. */ tss.type = DESC_TSS; write_gdt_entry(d, GDT_ENTRY_TSS, &tss, DESC_TSS); load_TR_desc(); this_cpu_write(__tss_limit_invalid, false); } /* * Call this if you need the TSS limit to be correct, which should be the case * if and only if you have TIF_IO_BITMAP set or you're switching to a task * with TIF_IO_BITMAP set. */ static inline void refresh_tss_limit(void) { DEBUG_LOCKS_WARN_ON(preemptible()); if (unlikely(this_cpu_read(__tss_limit_invalid))) force_reload_TR(); } /* * If you do something evil that corrupts the cached TSS limit (I'm looking * at you, VMX exits), call this function. * * The optimization here is that the TSS limit only matters for Linux if the * IO bitmap is in use. If the TSS limit gets forced to its minimum value, * everything works except that IO bitmap will be ignored and all CPL 3 IO * instructions will #GP, which is exactly what we want for normal tasks. */ static inline void invalidate_tss_limit(void) { DEBUG_LOCKS_WARN_ON(preemptible()); if (unlikely(test_thread_flag(TIF_IO_BITMAP))) force_reload_TR(); else this_cpu_write(__tss_limit_invalid, true); } /* This intentionally ignores lm, since 32-bit apps don't have that field. */ #define LDT_empty(info) \ ((info)->base_addr == 0 && \ (info)->limit == 0 && \ (info)->contents == 0 && \ (info)->read_exec_only == 1 && \ (info)->seg_32bit == 0 && \ (info)->limit_in_pages == 0 && \ (info)->seg_not_present == 1 && \ (info)->useable == 0) /* Lots of programs expect an all-zero user_desc to mean "no segment at all". */ static inline bool LDT_zero(const struct user_desc *info) { return (info->base_addr == 0 && info->limit == 0 && info->contents == 0 && info->read_exec_only == 0 && info->seg_32bit == 0 && info->limit_in_pages == 0 && info->seg_not_present == 0 && info->useable == 0); } static inline void clear_LDT(void) { set_ldt(NULL, 0); } static inline unsigned long get_desc_base(const struct desc_struct *desc) { return (unsigned)(desc->base0 | ((desc->base1) << 16) | ((desc->base2) << 24)); } static inline void set_desc_base(struct desc_struct *desc, unsigned long base) { desc->base0 = base & 0xffff; desc->base1 = (base >> 16) & 0xff; desc->base2 = (base >> 24) & 0xff; } static inline unsigned long get_desc_limit(const struct desc_struct *desc) { return desc->limit0 | (desc->limit1 << 16); } static inline void set_desc_limit(struct desc_struct *desc, unsigned long limit) { desc->limit0 = limit & 0xffff; desc->limit1 = (limit >> 16) & 0xf; } void alloc_intr_gate(unsigned int n, const void *addr); static inline void init_idt_data(struct idt_data *data, unsigned int n, const void *addr) { BUG_ON(n > 0xFF); memset(data, 0, sizeof(*data)); data->vector = n; data->addr = addr; data->segment = __KERNEL_CS; data->bits.type = GATE_INTERRUPT; data->bits.p = 1; } static inline void idt_init_desc(gate_desc *gate, const struct idt_data *d) { unsigned long addr = (unsigned long) d->addr; gate->offset_low = (u16) addr; gate->segment = (u16) d->segment; gate->bits = d->bits; gate->offset_middle = (u16) (addr >> 16); #ifdef CONFIG_X86_64 gate->offset_high = (u32) (addr >> 32); gate->reserved = 0; #endif } extern unsigned long system_vectors[]; extern void load_current_idt(void); extern void idt_setup_early_handler(void); extern void idt_setup_early_traps(void); extern void idt_setup_traps(void); extern void idt_setup_apic_and_irq_gates(void); extern bool idt_is_f00f_address(unsigned long address); #ifdef CONFIG_X86_64 extern void idt_setup_early_pf(void); extern void idt_setup_ist_traps(void); #else static inline void idt_setup_early_pf(void) { } static inline void idt_setup_ist_traps(void) { } #endif extern void idt_invalidate(void *addr); #endif /* _ASM_X86_DESC_H */
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef LINUX_MM_INLINE_H #define LINUX_MM_INLINE_H #include <linux/huge_mm.h> #include <linux/swap.h> /** * page_is_file_lru - should the page be on a file LRU or anon LRU? * @page: the page to test * * Returns 1 if @page is a regular filesystem backed page cache page or a lazily * freed anonymous page (e.g. via MADV_FREE). Returns 0 if @page is a normal * anonymous page, a tmpfs page or otherwise ram or swap backed page. Used by * functions that manipulate the LRU lists, to sort a page onto the right LRU * list. * * We would like to get this info without a page flag, but the state * needs to survive until the page is last deleted from the LRU, which * could be as far down as __page_cache_release. */ static inline int page_is_file_lru(struct page *page) { return !PageSwapBacked(page); } static __always_inline void __update_lru_size(struct lruvec *lruvec, enum lru_list lru, enum zone_type zid, int nr_pages) { struct pglist_data *pgdat = lruvec_pgdat(lruvec); __mod_lruvec_state(lruvec, NR_LRU_BASE + lru, nr_pages); __mod_zone_page_state(&pgdat->node_zones[zid], NR_ZONE_LRU_BASE + lru, nr_pages); } static __always_inline void update_lru_size(struct lruvec *lruvec, enum lru_list lru, enum zone_type zid, int nr_pages) { __update_lru_size(lruvec, lru, zid, nr_pages); #ifdef CONFIG_MEMCG mem_cgroup_update_lru_size(lruvec, lru, zid, nr_pages); #endif } static __always_inline void add_page_to_lru_list(struct page *page, struct lruvec *lruvec, enum lru_list lru) { update_lru_size(lruvec, lru, page_zonenum(page), thp_nr_pages(page)); list_add(&page->lru, &lruvec->lists[lru]); } static __always_inline void add_page_to_lru_list_tail(struct page *page, struct lruvec *lruvec, enum lru_list lru) { update_lru_size(lruvec, lru, page_zonenum(page), thp_nr_pages(page)); list_add_tail(&page->lru, &lruvec->lists[lru]); } static __always_inline void del_page_from_lru_list(struct page *page, struct lruvec *lruvec, enum lru_list lru) { list_del(&page->lru); update_lru_size(lruvec, lru, page_zonenum(page), -thp_nr_pages(page)); } /** * page_lru_base_type - which LRU list type should a page be on? * @page: the page to test * * Used for LRU list index arithmetic. * * Returns the base LRU type - file or anon - @page should be on. */ static inline enum lru_list page_lru_base_type(struct page *page) { if (page_is_file_lru(page)) return LRU_INACTIVE_FILE; return LRU_INACTIVE_ANON; } /** * page_off_lru - which LRU list was page on? clearing its lru flags. * @page: the page to test * * Returns the LRU list a page was on, as an index into the array of LRU * lists; and clears its Unevictable or Active flags, ready for freeing. */ static __always_inline enum lru_list page_off_lru(struct page *page) { enum lru_list lru; if (PageUnevictable(page)) { __ClearPageUnevictable(page); lru = LRU_UNEVICTABLE; } else { lru = page_lru_base_type(page); if (PageActive(page)) { __ClearPageActive(page); lru += LRU_ACTIVE; } } return lru; } /** * page_lru - which LRU list should a page be on? * @page: the page to test * * Returns the LRU list a page should be on, as an index * into the array of LRU lists. */ static __always_inline enum lru_list page_lru(struct page *page) { enum lru_list lru; if (PageUnevictable(page)) lru = LRU_UNEVICTABLE; else { lru = page_lru_base_type(page); if (PageActive(page)) lru += LRU_ACTIVE; } return lru; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 /* SPDX-License-Identifier: GPL-2.0 */ /* * Generic RTC interface. * This version contains the part of the user interface to the Real Time Clock * service. It is used with both the legacy mc146818 and also EFI * Struct rtc_time and first 12 ioctl by Paul Gortmaker, 1996 - separated out * from <linux/mc146818rtc.h> to this file for 2.4 kernels. * * Copyright (C) 1999 Hewlett-Packard Co. * Copyright (C) 1999 Stephane Eranian <eranian@hpl.hp.com> */ #ifndef _LINUX_RTC_H_ #define _LINUX_RTC_H_ #include <linux/types.h> #include <linux/interrupt.h> #include <linux/nvmem-provider.h> #include <uapi/linux/rtc.h> extern int rtc_month_days(unsigned int month, unsigned int year); extern int rtc_year_days(unsigned int day, unsigned int month, unsigned int year); extern int rtc_valid_tm(struct rtc_time *tm); extern time64_t rtc_tm_to_time64(struct rtc_time *tm); extern void rtc_time64_to_tm(time64_t time, struct rtc_time *tm); ktime_t rtc_tm_to_ktime(struct rtc_time tm); struct rtc_time rtc_ktime_to_tm(ktime_t kt); /* * rtc_tm_sub - Return the difference in seconds. */ static inline time64_t rtc_tm_sub(struct rtc_time *lhs, struct rtc_time *rhs) { return rtc_tm_to_time64(lhs) - rtc_tm_to_time64(rhs); } #include <linux/device.h> #include <linux/seq_file.h> #include <linux/cdev.h> #include <linux/poll.h> #include <linux/mutex.h> #include <linux/timerqueue.h> #include <linux/workqueue.h> extern struct class *rtc_class; /* * For these RTC methods the device parameter is the physical device * on whatever bus holds the hardware (I2C, Platform, SPI, etc), which * was passed to rtc_device_register(). Its driver_data normally holds * device state, including the rtc_device pointer for the RTC. * * Most of these methods are called with rtc_device.ops_lock held, * through the rtc_*(struct rtc_device *, ...) calls. * * The (current) exceptions are mostly filesystem hooks: * - the proc() hook for procfs */ struct rtc_class_ops { int (*ioctl)(struct device *, unsigned int, unsigned long); int (*read_time)(struct device *, struct rtc_time *); int (*set_time)(struct device *, struct rtc_time *); int (*read_alarm)(struct device *, struct rtc_wkalrm *); int (*set_alarm)(struct device *, struct rtc_wkalrm *); int (*proc)(struct device *, struct seq_file *); int (*alarm_irq_enable)(struct device *, unsigned int enabled); int (*read_offset)(struct device *, long *offset); int (*set_offset)(struct device *, long offset); }; struct rtc_device; struct rtc_timer { struct timerqueue_node node; ktime_t period; void (*func)(struct rtc_device *rtc); struct rtc_device *rtc; int enabled; }; /* flags */ #define RTC_DEV_BUSY 0 struct rtc_device { struct device dev; struct module *owner; int id; const struct rtc_class_ops *ops; struct mutex ops_lock; struct cdev char_dev; unsigned long flags; unsigned long irq_data; spinlock_t irq_lock; wait_queue_head_t irq_queue; struct fasync_struct *async_queue; int irq_freq; int max_user_freq; struct timerqueue_head timerqueue; struct rtc_timer aie_timer; struct rtc_timer uie_rtctimer; struct hrtimer pie_timer; /* sub second exp, so needs hrtimer */ int pie_enabled; struct work_struct irqwork; /* Some hardware can't support UIE mode */ int uie_unsupported; /* Number of nsec it takes to set the RTC clock. This influences when * the set ops are called. An offset: * - of 0.5 s will call RTC set for wall clock time 10.0 s at 9.5 s * - of 1.5 s will call RTC set for wall clock time 10.0 s at 8.5 s * - of -0.5 s will call RTC set for wall clock time 10.0 s at 10.5 s */ long set_offset_nsec; bool registered; /* Old ABI support */ bool nvram_old_abi; struct bin_attribute *nvram; time64_t range_min; timeu64_t range_max; time64_t start_secs; time64_t offset_secs; bool set_start_time; #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL struct work_struct uie_task; struct timer_list uie_timer; /* Those fields are protected by rtc->irq_lock */ unsigned int oldsecs; unsigned int uie_irq_active:1; unsigned int stop_uie_polling:1; unsigned int uie_task_active:1; unsigned int uie_timer_active:1; #endif }; #define to_rtc_device(d) container_of(d, struct rtc_device, dev) #define rtc_lock(d) mutex_lock(&d->ops_lock) #define rtc_unlock(d) mutex_unlock(&d->ops_lock) /* useful timestamps */ #define RTC_TIMESTAMP_BEGIN_0000 -62167219200ULL /* 0000-01-01 00:00:00 */ #define RTC_TIMESTAMP_BEGIN_1900 -2208988800LL /* 1900-01-01 00:00:00 */ #define RTC_TIMESTAMP_BEGIN_2000 946684800LL /* 2000-01-01 00:00:00 */ #define RTC_TIMESTAMP_END_2063 2966371199LL /* 2063-12-31 23:59:59 */ #define RTC_TIMESTAMP_END_2079 3471292799LL /* 2079-12-31 23:59:59 */ #define RTC_TIMESTAMP_END_2099 4102444799LL /* 2099-12-31 23:59:59 */ #define RTC_TIMESTAMP_END_2199 7258118399LL /* 2199-12-31 23:59:59 */ #define RTC_TIMESTAMP_END_9999 253402300799LL /* 9999-12-31 23:59:59 */ extern struct rtc_device *devm_rtc_device_register(struct device *dev, const char *name, const struct rtc_class_ops *ops, struct module *owner); struct rtc_device *devm_rtc_allocate_device(struct device *dev); int __rtc_register_device(struct module *owner, struct rtc_device *rtc); extern int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm); extern int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm); extern int rtc_set_ntp_time(struct timespec64 now, unsigned long *target_nsec); int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm); extern int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alrm); extern int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alrm); extern int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alrm); extern void rtc_update_irq(struct rtc_device *rtc, unsigned long num, unsigned long events); extern struct rtc_device *rtc_class_open(const char *name); extern void rtc_class_close(struct rtc_device *rtc); extern int rtc_irq_set_state(struct rtc_device *rtc, int enabled); extern int rtc_irq_set_freq(struct rtc_device *rtc, int freq); extern int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled); extern int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled); extern int rtc_dev_update_irq_enable_emul(struct rtc_device *rtc, unsigned int enabled); void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode); void rtc_aie_update_irq(struct rtc_device *rtc); void rtc_uie_update_irq(struct rtc_device *rtc); enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer); void rtc_timer_init(struct rtc_timer *timer, void (*f)(struct rtc_device *r), struct rtc_device *rtc); int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer, ktime_t expires, ktime_t period); void rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer); int rtc_read_offset(struct rtc_device *rtc, long *offset); int rtc_set_offset(struct rtc_device *rtc, long offset); void rtc_timer_do_work(struct work_struct *work); static inline bool is_leap_year(unsigned int year) { return (!(year % 4) && (year % 100)) || !(year % 400); } /* Determine if we can call to driver to set the time. Drivers can only be * called to set a second aligned time value, and the field set_offset_nsec * specifies how far away from the second aligned time to call the driver. * * This also computes 'to_set' which is the time we are trying to set, and has * a zero in tv_nsecs, such that: * to_set - set_delay_nsec == now +/- FUZZ * */ static inline bool rtc_tv_nsec_ok(s64 set_offset_nsec, struct timespec64 *to_set, const struct timespec64 *now) { /* Allowed error in tv_nsec, arbitarily set to 5 jiffies in ns. */ const unsigned long TIME_SET_NSEC_FUZZ = TICK_NSEC * 5; struct timespec64 delay = {.tv_sec = 0, .tv_nsec = set_offset_nsec}; *to_set = timespec64_add(*now, delay); if (to_set->tv_nsec < TIME_SET_NSEC_FUZZ) { to_set->tv_nsec = 0; return true; } if (to_set->tv_nsec > NSEC_PER_SEC - TIME_SET_NSEC_FUZZ) { to_set->tv_sec++; to_set->tv_nsec = 0; return true; } return false; } #define rtc_register_device(device) \ __rtc_register_device(THIS_MODULE, device) #ifdef CONFIG_RTC_HCTOSYS_DEVICE extern int rtc_hctosys_ret; #else #define rtc_hctosys_ret -ENODEV #endif #ifdef CONFIG_RTC_NVMEM int rtc_nvmem_register(struct rtc_device *rtc, struct nvmem_config *nvmem_config); void rtc_nvmem_unregister(struct rtc_device *rtc); #else static inline int rtc_nvmem_register(struct rtc_device *rtc, struct nvmem_config *nvmem_config) { return 0; } static inline void rtc_nvmem_unregister(struct rtc_device *rtc) {} #endif #ifdef CONFIG_RTC_INTF_SYSFS int rtc_add_group(struct rtc_device *rtc, const struct attribute_group *grp); int rtc_add_groups(struct rtc_device *rtc, const struct attribute_group **grps); #else static inline int rtc_add_group(struct rtc_device *rtc, const struct attribute_group *grp) { return 0; } static inline int rtc_add_groups(struct rtc_device *rtc, const struct attribute_group **grps) { return 0; } #endif #endif /* _LINUX_RTC_H_ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_PID_H #define _LINUX_PID_H #include <linux/rculist.h> #include <linux/wait.h> #include <linux/refcount.h> enum pid_type { PIDTYPE_PID, PIDTYPE_TGID, PIDTYPE_PGID, PIDTYPE_SID, PIDTYPE_MAX, }; /* * What is struct pid? * * A struct pid is the kernel's internal notion of a process identifier. * It refers to individual tasks, process groups, and sessions. While * there are processes attached to it the struct pid lives in a hash * table, so it and then the processes that it refers to can be found * quickly from the numeric pid value. The attached processes may be * quickly accessed by following pointers from struct pid. * * Storing pid_t values in the kernel and referring to them later has a * problem. The process originally with that pid may have exited and the * pid allocator wrapped, and another process could have come along * and been assigned that pid. * * Referring to user space processes by holding a reference to struct * task_struct has a problem. When the user space process exits * the now useless task_struct is still kept. A task_struct plus a * stack consumes around 10K of low kernel memory. More precisely * this is THREAD_SIZE + sizeof(struct task_struct). By comparison * a struct pid is about 64 bytes. * * Holding a reference to struct pid solves both of these problems. * It is small so holding a reference does not consume a lot of * resources, and since a new struct pid is allocated when the numeric pid * value is reused (when pids wrap around) we don't mistakenly refer to new * processes. */ /* * struct upid is used to get the id of the struct pid, as it is * seen in particular namespace. Later the struct pid is found with * find_pid_ns() using the int nr and struct pid_namespace *ns. */ struct upid { int nr; struct pid_namespace *ns; }; struct pid { refcount_t count; unsigned int level; spinlock_t lock; /* lists of tasks that use this pid */ struct hlist_head tasks[PIDTYPE_MAX]; struct hlist_head inodes; /* wait queue for pidfd notifications */ wait_queue_head_t wait_pidfd; struct rcu_head rcu; struct upid numbers[1]; }; extern struct pid init_struct_pid; extern const struct file_operations pidfd_fops; struct file; extern struct pid *pidfd_pid(const struct file *file); struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags); static inline struct pid *get_pid(struct pid *pid) { if (pid) refcount_inc(&pid->count); return pid; } extern void put_pid(struct pid *pid); extern struct task_struct *pid_task(struct pid *pid, enum pid_type); static inline bool pid_has_task(struct pid *pid, enum pid_type type) { return !hlist_empty(&pid->tasks[type]); } extern struct task_struct *get_pid_task(struct pid *pid, enum pid_type); extern struct pid *get_task_pid(struct task_struct *task, enum pid_type type); /* * these helpers must be called with the tasklist_lock write-held. */ extern void attach_pid(struct task_struct *task, enum pid_type); extern void detach_pid(struct task_struct *task, enum pid_type); extern void change_pid(struct task_struct *task, enum pid_type, struct pid *pid); extern void exchange_tids(struct task_struct *task, struct task_struct *old); extern void transfer_pid(struct task_struct *old, struct task_struct *new, enum pid_type); struct pid_namespace; extern struct pid_namespace init_pid_ns; extern int pid_max; extern int pid_max_min, pid_max_max; /* * look up a PID in the hash table. Must be called with the tasklist_lock * or rcu_read_lock() held. * * find_pid_ns() finds the pid in the namespace specified * find_vpid() finds the pid by its virtual id, i.e. in the current namespace * * see also find_task_by_vpid() set in include/linux/sched.h */ extern struct pid *find_pid_ns(int nr, struct pid_namespace *ns); extern struct pid *find_vpid(int nr); /* * Lookup a PID in the hash table, and return with it's count elevated. */ extern struct pid *find_get_pid(int nr); extern struct pid *find_ge_pid(int nr, struct pid_namespace *); extern struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid, size_t set_tid_size); extern void free_pid(struct pid *pid); extern void disable_pid_allocation(struct pid_namespace *ns); /* * ns_of_pid() returns the pid namespace in which the specified pid was * allocated. * * NOTE: * ns_of_pid() is expected to be called for a process (task) that has * an attached 'struct pid' (see attach_pid(), detach_pid()) i.e @pid * is expected to be non-NULL. If @pid is NULL, caller should handle * the resulting NULL pid-ns. */ static inline struct pid_namespace *ns_of_pid(struct pid *pid) { struct pid_namespace *ns = NULL; if (pid) ns = pid->numbers[pid->level].ns; return ns; } /* * is_child_reaper returns true if the pid is the init process * of the current namespace. As this one could be checked before * pid_ns->child_reaper is assigned in copy_process, we check * with the pid number. */ static inline bool is_child_reaper(struct pid *pid) { return pid->numbers[pid->level].nr == 1; } /* * the helpers to get the pid's id seen from different namespaces * * pid_nr() : global id, i.e. the id seen from the init namespace; * pid_vnr() : virtual id, i.e. the id seen from the pid namespace of * current. * pid_nr_ns() : id seen from the ns specified. * * see also task_xid_nr() etc in include/linux/sched.h */ static inline pid_t pid_nr(struct pid *pid) { pid_t nr = 0; if (pid) nr = pid->numbers[0].nr; return nr; } pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns); pid_t pid_vnr(struct pid *pid); #define do_each_pid_task(pid, type, task) \ do { \ if ((pid) != NULL) \ hlist_for_each_entry_rcu((task), \ &(pid)->tasks[type], pid_links[type]) { /* * Both old and new leaders may be attached to * the same pid in the middle of de_thread(). */ #define while_each_pid_task(pid, type, task) \ if (type == PIDTYPE_PID) \ break; \ } \ } while (0) #define do_each_pid_thread(pid, type, task) \ do_each_pid_task(pid, type, task) { \ struct task_struct *tg___ = task; \ for_each_thread(tg___, task) { #define while_each_pid_thread(pid, type, task) \ } \ task = tg___; \ } while_each_pid_task(pid, type, task) #endif /* _LINUX_PID_H */
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 // SPDX-License-Identifier: GPL-2.0-only /* * linux/kernel/exit.c * * Copyright (C) 1991, 1992 Linus Torvalds */ #include <linux/mm.h> #include <linux/slab.h> #include <linux/sched/autogroup.h> #include <linux/sched/mm.h> #include <linux/sched/stat.h> #include <linux/sched/task.h> #include <linux/sched/task_stack.h> #include <linux/sched/cputime.h> #include <linux/interrupt.h> #include <linux/module.h> #include <linux/capability.h> #include <linux/completion.h> #include <linux/personality.h> #include <linux/tty.h> #include <linux/iocontext.h> #include <linux/key.h> #include <linux/cpu.h> #include <linux/acct.h> #include <linux/tsacct_kern.h> #include <linux/file.h> #include <linux/fdtable.h> #include <linux/freezer.h> #include <linux/binfmts.h> #include <linux/nsproxy.h> #include <linux/pid_namespace.h> #include <linux/ptrace.h> #include <linux/profile.h> #include <linux/mount.h> #include <linux/proc_fs.h> #include <linux/kthread.h> #include <linux/mempolicy.h> #include <linux/taskstats_kern.h> #include <linux/delayacct.h> #include <linux/cgroup.h> #include <linux/syscalls.h> #include <linux/signal.h> #include <linux/posix-timers.h> #include <linux/cn_proc.h> #include <linux/mutex.h> #include <linux/futex.h> #include <linux/pipe_fs_i.h> #include <linux/audit.h> /* for audit_free() */ #include <linux/resource.h> #include <linux/blkdev.h> #include <linux/task_io_accounting_ops.h> #include <linux/tracehook.h> #include <linux/fs_struct.h> #include <linux/init_task.h> #include <linux/perf_event.h> #include <trace/events/sched.h> #include <linux/hw_breakpoint.h> #include <linux/oom.h> #include <linux/writeback.h> #include <linux/shm.h> #include <linux/kcov.h> #include <linux/random.h> #include <linux/rcuwait.h> #include <linux/compat.h> #include <linux/io_uring.h> #include <linux/uaccess.h> #include <asm/unistd.h> #include <asm/mmu_context.h> static void __unhash_process(struct task_struct *p, bool group_dead) { nr_threads--; detach_pid(p, PIDTYPE_PID); if (group_dead) { detach_pid(p, PIDTYPE_TGID); detach_pid(p, PIDTYPE_PGID); detach_pid(p, PIDTYPE_SID); list_del_rcu(&p->tasks); list_del_init(&p->sibling); __this_cpu_dec(process_counts); } list_del_rcu(&p->thread_group); list_del_rcu(&p->thread_node); } /* * This function expects the tasklist_lock write-locked. */ static void __exit_signal(struct task_struct *tsk) { struct signal_struct *sig = tsk->signal; bool group_dead = thread_group_leader(tsk); struct sighand_struct *sighand; struct tty_struct *tty; u64 utime, stime; sighand = rcu_dereference_check(tsk->sighand, lockdep_tasklist_lock_is_held()); spin_lock(&sighand->siglock); #ifdef CONFIG_POSIX_TIMERS posix_cpu_timers_exit(tsk); if (group_dead) posix_cpu_timers_exit_group(tsk); #endif if (group_dead) { tty = sig->tty; sig->tty = NULL; } else { /* * If there is any task waiting for the group exit * then notify it: */ if (sig->notify_count > 0 && !--sig->notify_count) wake_up_process(sig->group_exit_task); if (tsk == sig->curr_target) sig->curr_target = next_thread(tsk); } add_device_randomness((const void*) &tsk->se.sum_exec_runtime, sizeof(unsigned long long)); /* * Accumulate here the counters for all threads as they die. We could * skip the group leader because it is the last user of signal_struct, * but we want to avoid the race with thread_group_cputime() which can * see the empty ->thread_head list. */ task_cputime(tsk, &utime, &stime); write_seqlock(&sig->stats_lock); sig->utime += utime; sig->stime += stime; sig->gtime += task_gtime(tsk); sig->min_flt += tsk->min_flt; sig->maj_flt += tsk->maj_flt; sig->nvcsw += tsk->nvcsw; sig->nivcsw += tsk->nivcsw; sig->inblock += task_io_get_inblock(tsk); sig->oublock += task_io_get_oublock(tsk); task_io_accounting_add(&sig->ioac, &tsk->ioac); sig->sum_sched_runtime += tsk->se.sum_exec_runtime; sig->nr_threads--; __unhash_process(tsk, group_dead); write_sequnlock(&sig->stats_lock); /* * Do this under ->siglock, we can race with another thread * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. */ flush_sigqueue(&tsk->pending); tsk->sighand = NULL; spin_unlock(&sighand->siglock); __cleanup_sighand(sighand); clear_tsk_thread_flag(tsk, TIF_SIGPENDING); if (group_dead) { flush_sigqueue(&sig->shared_pending); tty_kref_put(tty); } } static void delayed_put_task_struct(struct rcu_head *rhp) { struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); perf_event_delayed_put(tsk); trace_sched_process_free(tsk); put_task_struct(tsk); } void put_task_struct_rcu_user(struct task_struct *task) { if (refcount_dec_and_test(&task->rcu_users)) call_rcu(&task->rcu, delayed_put_task_struct); } void release_task(struct task_struct *p) { struct task_struct *leader; struct pid *thread_pid; int zap_leader; repeat: /* don't need to get the RCU readlock here - the process is dead and * can't be modifying its own credentials. But shut RCU-lockdep up */ rcu_read_lock(); atomic_dec(&__task_cred(p)->user->processes); rcu_read_unlock(); cgroup_release(p); write_lock_irq(&tasklist_lock); ptrace_release_task(p); thread_pid = get_pid(p->thread_pid); __exit_signal(p); /* * If we are the last non-leader member of the thread * group, and the leader is zombie, then notify the * group leader's parent process. (if it wants notification.) */ zap_leader = 0; leader = p->group_leader; if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { /* * If we were the last child thread and the leader has * exited already, and the leader's parent ignores SIGCHLD, * then we are the one who should release the leader. */ zap_leader = do_notify_parent(leader, leader->exit_signal); if (zap_leader) leader->exit_state = EXIT_DEAD; } write_unlock_irq(&tasklist_lock); seccomp_filter_release(p); proc_flush_pid(thread_pid); put_pid(thread_pid); release_thread(p); put_task_struct_rcu_user(p); p = leader; if (unlikely(zap_leader)) goto repeat; } int rcuwait_wake_up(struct rcuwait *w) { int ret = 0; struct task_struct *task; rcu_read_lock(); /* * Order condition vs @task, such that everything prior to the load * of @task is visible. This is the condition as to why the user called * rcuwait_wake() in the first place. Pairs with set_current_state() * barrier (A) in rcuwait_wait_event(). * * WAIT WAKE * [S] tsk = current [S] cond = true * MB (A) MB (B) * [L] cond [L] tsk */ smp_mb(); /* (B) */ task = rcu_dereference(w->task); if (task) ret = wake_up_process(task); rcu_read_unlock(); return ret; } EXPORT_SYMBOL_GPL(rcuwait_wake_up); /* * Determine if a process group is "orphaned", according to the POSIX * definition in 2.2.2.52. Orphaned process groups are not to be affected * by terminal-generated stop signals. Newly orphaned process groups are * to receive a SIGHUP and a SIGCONT. * * "I ask you, have you ever known what it is to be an orphan?" */ static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task) { struct task_struct *p; do_each_pid_task(pgrp, PIDTYPE_PGID, p) { if ((p == ignored_task) || (p->exit_state && thread_group_empty(p)) || is_global_init(p->real_parent)) continue; if (task_pgrp(p->real_parent) != pgrp && task_session(p->real_parent) == task_session(p)) return 0; } while_each_pid_task(pgrp, PIDTYPE_PGID, p); return 1; } int is_current_pgrp_orphaned(void) { int retval; read_lock(&tasklist_lock); retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); read_unlock(&tasklist_lock); return retval; } static bool has_stopped_jobs(struct pid *pgrp) { struct task_struct *p; do_each_pid_task(pgrp, PIDTYPE_PGID, p) { if (p->signal->flags & SIGNAL_STOP_STOPPED) return true; } while_each_pid_task(pgrp, PIDTYPE_PGID, p); return false; } /* * Check to see if any process groups have become orphaned as * a result of our exiting, and if they have any stopped jobs, * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) */ static void kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) { struct pid *pgrp = task_pgrp(tsk); struct task_struct *ignored_task = tsk; if (!parent) /* exit: our father is in a different pgrp than * we are and we were the only connection outside. */ parent = tsk->real_parent; else /* reparent: our child is in a different pgrp than * we are, and it was the only connection outside. */ ignored_task = NULL; if (task_pgrp(parent) != pgrp && task_session(parent) == task_session(tsk) && will_become_orphaned_pgrp(pgrp, ignored_task) && has_stopped_jobs(pgrp)) { __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); } } #ifdef CONFIG_MEMCG /* * A task is exiting. If it owned this mm, find a new owner for the mm. */ void mm_update_next_owner(struct mm_struct *mm) { struct task_struct *c, *g, *p = current; retry: /* * If the exiting or execing task is not the owner, it's * someone else's problem. */ if (mm->owner != p) return; /* * The current owner is exiting/execing and there are no other * candidates. Do not leave the mm pointing to a possibly * freed task structure. */ if (atomic_read(&mm->mm_users) <= 1) { WRITE_ONCE(mm->owner, NULL); return; } read_lock(&tasklist_lock); /* * Search in the children */ list_for_each_entry(c, &p->children, sibling) { if (c->mm == mm) goto assign_new_owner; } /* * Search in the siblings */ list_for_each_entry(c, &p->real_parent->children, sibling) { if (c->mm == mm) goto assign_new_owner; } /* * Search through everything else, we should not get here often. */ for_each_process(g) { if (g->flags & PF_KTHREAD) continue; for_each_thread(g, c) { if (c->mm == mm) goto assign_new_owner; if (c->mm) break; } } read_unlock(&tasklist_lock); /* * We found no owner yet mm_users > 1: this implies that we are * most likely racing with swapoff (try_to_unuse()) or /proc or * ptrace or page migration (get_task_mm()). Mark owner as NULL. */ WRITE_ONCE(mm->owner, NULL); return; assign_new_owner: BUG_ON(c == p); get_task_struct(c); /* * The task_lock protects c->mm from changing. * We always want mm->owner->mm == mm */ task_lock(c); /* * Delay read_unlock() till we have the task_lock() * to ensure that c does not slip away underneath us */ read_unlock(&tasklist_lock); if (c->mm != mm) { task_unlock(c); put_task_struct(c); goto retry; } WRITE_ONCE(mm->owner, c); task_unlock(c); put_task_struct(c); } #endif /* CONFIG_MEMCG */ /* * Turn us into a lazy TLB process if we * aren't already.. */ static void exit_mm(void) { struct mm_struct *mm = current->mm; struct core_state *core_state; exit_mm_release(current, mm); if (!mm) return; sync_mm_rss(mm); /* * Serialize with any possible pending coredump. * We must hold mmap_lock around checking core_state * and clearing tsk->mm. The core-inducing thread * will increment ->nr_threads for each thread in the * group with ->mm != NULL. */ mmap_read_lock(mm); core_state = mm->core_state; if (core_state) { struct core_thread self; mmap_read_unlock(mm); self.task = current; if (self.task->flags & PF_SIGNALED) self.next = xchg(&core_state->dumper.next, &self); else self.task = NULL; /* * Implies mb(), the result of xchg() must be visible * to core_state->dumper. */ if (atomic_dec_and_test(&core_state->nr_threads)) complete(&core_state->startup); for (;;) { set_current_state(TASK_UNINTERRUPTIBLE); if (!self.task) /* see coredump_finish() */ break; freezable_schedule(); } __set_current_state(TASK_RUNNING); mmap_read_lock(mm); } mmgrab(mm); BUG_ON(mm != current->active_mm); /* more a memory barrier than a real lock */ task_lock(current); current->mm = NULL; mmap_read_unlock(mm); enter_lazy_tlb(mm, current); task_unlock(current); mm_update_next_owner(mm); mmput(mm); if (test_thread_flag(TIF_MEMDIE)) exit_oom_victim(); } static struct task_struct *find_alive_thread(struct task_struct *p) { struct task_struct *t; for_each_thread(p, t) { if (!(t->flags & PF_EXITING)) return t; } return NULL; } static struct task_struct *find_child_reaper(struct task_struct *father, struct list_head *dead) __releases(&tasklist_lock) __acquires(&tasklist_lock) { struct pid_namespace *pid_ns = task_active_pid_ns(father); struct task_struct *reaper = pid_ns->child_reaper; struct task_struct *p, *n; if (likely(reaper != father)) return reaper; reaper = find_alive_thread(father); if (reaper) { pid_ns->child_reaper = reaper; return reaper; } write_unlock_irq(&tasklist_lock); list_for_each_entry_safe(p, n, dead, ptrace_entry) { list_del_init(&p->ptrace_entry); release_task(p); } zap_pid_ns_processes(pid_ns); write_lock_irq(&tasklist_lock); return father; } /* * When we die, we re-parent all our children, and try to: * 1. give them to another thread in our thread group, if such a member exists * 2. give it to the first ancestor process which prctl'd itself as a * child_subreaper for its children (like a service manager) * 3. give it to the init process (PID 1) in our pid namespace */ static struct task_struct *find_new_reaper(struct task_struct *father, struct task_struct *child_reaper) { struct task_struct *thread, *reaper; thread = find_alive_thread(father); if (thread) return thread; if (father->signal->has_child_subreaper) { unsigned int ns_level = task_pid(father)->level; /* * Find the first ->is_child_subreaper ancestor in our pid_ns. * We can't check reaper != child_reaper to ensure we do not * cross the namespaces, the exiting parent could be injected * by setns() + fork(). * We check pid->level, this is slightly more efficient than * task_active_pid_ns(reaper) != task_active_pid_ns(father). */ for (reaper = father->real_parent; task_pid(reaper)->level == ns_level; reaper = reaper->real_parent) { if (reaper == &init_task) break; if (!reaper->signal->is_child_subreaper) continue; thread = find_alive_thread(reaper); if (thread) return thread; } } return child_reaper; } /* * Any that need to be release_task'd are put on the @dead list. */ static void reparent_leader(struct task_struct *father, struct task_struct *p, struct list_head *dead) { if (unlikely(p->exit_state == EXIT_DEAD)) return; /* We don't want people slaying init. */ p->exit_signal = SIGCHLD; /* If it has exited notify the new parent about this child's death. */ if (!p->ptrace && p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { if (do_notify_parent(p, p->exit_signal)) { p->exit_state = EXIT_DEAD; list_add(&p->ptrace_entry, dead); } } kill_orphaned_pgrp(p, father); } /* * This does two things: * * A. Make init inherit all the child processes * B. Check to see if any process groups have become orphaned * as a result of our exiting, and if they have any stopped * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) */ static void forget_original_parent(struct task_struct *father, struct list_head *dead) { struct task_struct *p, *t, *reaper; if (unlikely(!list_empty(&father->ptraced))) exit_ptrace(father, dead); /* Can drop and reacquire tasklist_lock */ reaper = find_child_reaper(father, dead); if (list_empty(&father->children)) return; reaper = find_new_reaper(father, reaper); list_for_each_entry(p, &father->children, sibling) { for_each_thread(p, t) { RCU_INIT_POINTER(t->real_parent, reaper); BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father)); if (likely(!t->ptrace)) t->parent = t->real_parent; if (t->pdeath_signal) group_send_sig_info(t->pdeath_signal, SEND_SIG_NOINFO, t, PIDTYPE_TGID); } /* * If this is a threaded reparent there is no need to * notify anyone anything has happened. */ if (!same_thread_group(reaper, father)) reparent_leader(father, p, dead); } list_splice_tail_init(&father->children, &reaper->children); } /* * Send signals to all our closest relatives so that they know * to properly mourn us.. */ static void exit_notify(struct task_struct *tsk, int group_dead) { bool autoreap; struct task_struct *p, *n; LIST_HEAD(dead); write_lock_irq(&tasklist_lock); forget_original_parent(tsk, &dead); if (group_dead) kill_orphaned_pgrp(tsk->group_leader, NULL); tsk->exit_state = EXIT_ZOMBIE; if (unlikely(tsk->ptrace)) { int sig = thread_group_leader(tsk) && thread_group_empty(tsk) && !ptrace_reparented(tsk) ? tsk->exit_signal : SIGCHLD; autoreap = do_notify_parent(tsk, sig); } else if (thread_group_leader(tsk)) { autoreap = thread_group_empty(tsk) && do_notify_parent(tsk, tsk->exit_signal); } else { autoreap = true; } if (autoreap) { tsk->exit_state = EXIT_DEAD; list_add(&tsk->ptrace_entry, &dead); } /* mt-exec, de_thread() is waiting for group leader */ if (unlikely(tsk->signal->notify_count < 0)) wake_up_process(tsk->signal->group_exit_task); write_unlock_irq(&tasklist_lock); list_for_each_entry_safe(p, n, &dead, ptrace_entry) { list_del_init(&p->ptrace_entry); release_task(p); } } #ifdef CONFIG_DEBUG_STACK_USAGE static void check_stack_usage(void) { static DEFINE_SPINLOCK(low_water_lock); static int lowest_to_date = THREAD_SIZE; unsigned long free; free = stack_not_used(current); if (free >= lowest_to_date) return; spin_lock(&low_water_lock); if (free < lowest_to_date) { pr_info("%s (%d) used greatest stack depth: %lu bytes left\n", current->comm, task_pid_nr(current), free); lowest_to_date = free; } spin_unlock(&low_water_lock); } #else static inline void check_stack_usage(void) {} #endif void __noreturn do_exit(long code) { struct task_struct *tsk = current; int group_dead; /* * We can get here from a kernel oops, sometimes with preemption off. * Start by checking for critical errors. * Then fix up important state like USER_DS and preemption. * Then do everything else. */ WARN_ON(blk_needs_flush_plug(tsk)); if (unlikely(in_interrupt())) panic("Aiee, killing interrupt handler!"); if (unlikely(!tsk->pid)) panic("Attempted to kill the idle task!"); /* * If do_exit is called because this processes oopsed, it's possible * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before * continuing. Amongst other possible reasons, this is to prevent * mm_release()->clear_child_tid() from writing to a user-controlled * kernel address. */ force_uaccess_begin(); if (unlikely(in_atomic())) { pr_info("note: %s[%d] exited with preempt_count %d\n", current->comm, task_pid_nr(current), preempt_count()); preempt_count_set(PREEMPT_ENABLED); } profile_task_exit(tsk); kcov_task_exit(tsk); ptrace_event(PTRACE_EVENT_EXIT, code); validate_creds_for_do_exit(tsk); /* * We're taking recursive faults here in do_exit. Safest is to just * leave this task alone and wait for reboot. */ if (unlikely(tsk->flags & PF_EXITING)) { pr_alert("Fixing recursive fault but reboot is needed!\n"); futex_exit_recursive(tsk); set_current_state(TASK_UNINTERRUPTIBLE); schedule(); } io_uring_files_cancel(tsk->files); exit_signals(tsk); /* sets PF_EXITING */ /* sync mm's RSS info before statistics gathering */ if (tsk->mm) sync_mm_rss(tsk->mm); acct_update_integrals(tsk); group_dead = atomic_dec_and_test(&tsk->signal->live); if (group_dead) { /* * If the last thread of global init has exited, panic * immediately to get a useable coredump. */ if (unlikely(is_global_init(tsk))) panic("Attempted to kill init! exitcode=0x%08x\n", tsk->signal->group_exit_code ?: (int)code); #ifdef CONFIG_POSIX_TIMERS hrtimer_cancel(&tsk->signal->real_timer); exit_itimers(tsk->signal); #endif if (tsk->mm) setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); } acct_collect(code, group_dead); if (group_dead) tty_audit_exit(); audit_free(tsk); tsk->exit_code = code; taskstats_exit(tsk, group_dead); exit_mm(); if (group_dead) acct_process(); trace_sched_process_exit(tsk); exit_sem(tsk); exit_shm(tsk); exit_files(tsk); exit_fs(tsk); if (group_dead) disassociate_ctty(1); exit_task_namespaces(tsk); exit_task_work(tsk); exit_thread(tsk); /* * Flush inherited counters to the parent - before the parent * gets woken up by child-exit notifications. * * because of cgroup mode, must be called before cgroup_exit() */ perf_event_exit_task(tsk); sched_autogroup_exit_task(tsk); cgroup_exit(tsk); /* * FIXME: do that only when needed, using sched_exit tracepoint */ flush_ptrace_hw_breakpoint(tsk); exit_tasks_rcu_start(); exit_notify(tsk, group_dead); proc_exit_connector(tsk); mpol_put_task_policy(tsk); #ifdef CONFIG_FUTEX if (unlikely(current->pi_state_cache)) kfree(current->pi_state_cache); #endif /* * Make sure we are holding no locks: */ debug_check_no_locks_held(); if (tsk->io_context) exit_io_context(tsk); if (tsk->splice_pipe) free_pipe_info(tsk->splice_pipe); if (tsk->task_frag.page) put_page(tsk->task_frag.page); validate_creds_for_do_exit(tsk); check_stack_usage(); preempt_disable(); if (tsk->nr_dirtied) __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); exit_rcu(); exit_tasks_rcu_finish(); lockdep_free_task(tsk); do_task_dead(); } EXPORT_SYMBOL_GPL(do_exit); void complete_and_exit(struct completion *comp, long code) { if (comp) complete(comp); do_exit(code); } EXPORT_SYMBOL(complete_and_exit); SYSCALL_DEFINE1(exit, int, error_code) { do_exit((error_code&0xff)<<8); } /* * Take down every thread in the group. This is called by fatal signals * as well as by sys_exit_group (below). */ void do_group_exit(int exit_code) { struct signal_struct *sig = current->signal; BUG_ON(exit_code & 0x80); /* core dumps don't get here */ if (signal_group_exit(sig)) exit_code = sig->group_exit_code; else if (!thread_group_empty(current)) { struct sighand_struct *const sighand = current->sighand; spin_lock_irq(&sighand->siglock); if (signal_group_exit(sig)) /* Another thread got here before we took the lock. */ exit_code = sig->group_exit_code; else { sig->group_exit_code = exit_code; sig->flags = SIGNAL_GROUP_EXIT; zap_other_threads(current); } spin_unlock_irq(&sighand->siglock); } do_exit(exit_code); /* NOTREACHED */ } /* * this kills every thread in the thread group. Note that any externally * wait4()-ing process will get the correct exit code - even if this * thread is not the thread group leader. */ SYSCALL_DEFINE1(exit_group, int, error_code) { do_group_exit((error_code & 0xff) << 8); /* NOTREACHED */ return 0; } struct waitid_info { pid_t pid; uid_t uid; int status; int cause; }; struct wait_opts { enum pid_type wo_type; int wo_flags; struct pid *wo_pid; struct waitid_info *wo_info; int wo_stat; struct rusage *wo_rusage; wait_queue_entry_t child_wait; int notask_error; }; static int eligible_pid(struct wait_opts *wo, struct task_struct *p) { return wo->wo_type == PIDTYPE_MAX || task_pid_type(p, wo->wo_type) == wo->wo_pid; } static int eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p) { if (!eligible_pid(wo, p)) return 0; /* * Wait for all children (clone and not) if __WALL is set or * if it is traced by us. */ if (ptrace || (wo->wo_flags & __WALL)) return 1; /* * Otherwise, wait for clone children *only* if __WCLONE is set; * otherwise, wait for non-clone children *only*. * * Note: a "clone" child here is one that reports to its parent * using a signal other than SIGCHLD, or a non-leader thread which * we can only see if it is traced by us. */ if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) return 0; return 1; } /* * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold * read_lock(&tasklist_lock) on entry. If we return zero, we still hold * the lock and this task is uninteresting. If we return nonzero, we have * released the lock and the system call should return. */ static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) { int state, status; pid_t pid = task_pid_vnr(p); uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); struct waitid_info *infop; if (!likely(wo->wo_flags & WEXITED)) return 0; if (unlikely(wo->wo_flags & WNOWAIT)) { status = p->exit_code; get_task_struct(p); read_unlock(&tasklist_lock); sched_annotate_sleep(); if (wo->wo_rusage) getrusage(p, RUSAGE_BOTH, wo->wo_rusage); put_task_struct(p); goto out_info; } /* * Move the task's state to DEAD/TRACE, only one thread can do this. */ state = (ptrace_reparented(p) && thread_group_leader(p)) ? EXIT_TRACE : EXIT_DEAD; if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE) return 0; /* * We own this thread, nobody else can reap it. */ read_unlock(&tasklist_lock); sched_annotate_sleep(); /* * Check thread_group_leader() to exclude the traced sub-threads. */ if (state == EXIT_DEAD && thread_group_leader(p)) { struct signal_struct *sig = p->signal; struct signal_struct *psig = current->signal; unsigned long maxrss; u64 tgutime, tgstime; /* * The resource counters for the group leader are in its * own task_struct. Those for dead threads in the group * are in its signal_struct, as are those for the child * processes it has previously reaped. All these * accumulate in the parent's signal_struct c* fields. * * We don't bother to take a lock here to protect these * p->signal fields because the whole thread group is dead * and nobody can change them. * * psig->stats_lock also protects us from our sub-theads * which can reap other children at the same time. Until * we change k_getrusage()-like users to rely on this lock * we have to take ->siglock as well. * * We use thread_group_cputime_adjusted() to get times for * the thread group, which consolidates times for all threads * in the group including the group leader. */ thread_group_cputime_adjusted(p, &tgutime, &tgstime); spin_lock_irq(&current->sighand->siglock); write_seqlock(&psig->stats_lock); psig->cutime += tgutime + sig->cutime; psig->cstime += tgstime + sig->cstime; psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime; psig->cmin_flt += p->min_flt + sig->min_flt + sig->cmin_flt; psig->cmaj_flt += p->maj_flt + sig->maj_flt + sig->cmaj_flt; psig->cnvcsw += p->nvcsw + sig->nvcsw + sig->cnvcsw; psig->cnivcsw += p->nivcsw + sig->nivcsw + sig->cnivcsw; psig->cinblock += task_io_get_inblock(p) + sig->inblock + sig->cinblock; psig->coublock += task_io_get_oublock(p) + sig->oublock + sig->coublock; maxrss = max(sig->maxrss, sig->cmaxrss); if (psig->cmaxrss < maxrss) psig->cmaxrss = maxrss; task_io_accounting_add(&psig->ioac, &p->ioac); task_io_accounting_add(&psig->ioac, &sig->ioac); write_sequnlock(&psig->stats_lock); spin_unlock_irq(&current->sighand->siglock); } if (wo->wo_rusage) getrusage(p, RUSAGE_BOTH, wo->wo_rusage); status = (p->signal->flags & SIGNAL_GROUP_EXIT) ? p->signal->group_exit_code : p->exit_code; wo->wo_stat = status; if (state == EXIT_TRACE) { write_lock_irq(&tasklist_lock); /* We dropped tasklist, ptracer could die and untrace */ ptrace_unlink(p); /* If parent wants a zombie, don't release it now */ state = EXIT_ZOMBIE; if (do_notify_parent(p, p->exit_signal)) state = EXIT_DEAD; p->exit_state = state; write_unlock_irq(&tasklist_lock); } if (state == EXIT_DEAD) release_task(p); out_info: infop = wo->wo_info; if (infop) { if ((status & 0x7f) == 0) { infop->cause = CLD_EXITED; infop->status = status >> 8; } else { infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; infop->status = status & 0x7f; } infop->pid = pid; infop->uid = uid; } return pid; } static int *task_stopped_code(struct task_struct *p, bool ptrace) { if (ptrace) { if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING)) return &p->exit_code; } else { if (p->signal->flags & SIGNAL_STOP_STOPPED) return &p->signal->group_exit_code; } return NULL; } /** * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED * @wo: wait options * @ptrace: is the wait for ptrace * @p: task to wait for * * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. * * CONTEXT: * read_lock(&tasklist_lock), which is released if return value is * non-zero. Also, grabs and releases @p->sighand->siglock. * * RETURNS: * 0 if wait condition didn't exist and search for other wait conditions * should continue. Non-zero return, -errno on failure and @p's pid on * success, implies that tasklist_lock is released and wait condition * search should terminate. */ static int wait_task_stopped(struct wait_opts *wo, int ptrace, struct task_struct *p) { struct waitid_info *infop; int exit_code, *p_code, why; uid_t uid = 0; /* unneeded, required by compiler */ pid_t pid; /* * Traditionally we see ptrace'd stopped tasks regardless of options. */ if (!ptrace && !(wo->wo_flags & WUNTRACED)) return 0; if (!task_stopped_code(p, ptrace)) return 0; exit_code = 0; spin_lock_irq(&p->sighand->siglock); p_code = task_stopped_code(p, ptrace); if (unlikely(!p_code)) goto unlock_sig; exit_code = *p_code; if (!exit_code) goto unlock_sig; if (!unlikely(wo->wo_flags & WNOWAIT)) *p_code = 0; uid = from_kuid_munged(current_user_ns(), task_uid(p)); unlock_sig: spin_unlock_irq(&p->sighand->siglock); if (!exit_code) return 0; /* * Now we are pretty sure this task is interesting. * Make sure it doesn't get reaped out from under us while we * give up the lock and then examine it below. We don't want to * keep holding onto the tasklist_lock while we call getrusage and * possibly take page faults for user memory. */ get_task_struct(p); pid = task_pid_vnr(p); why = ptrace ? CLD_TRAPPED : CLD_STOPPED; read_unlock(&tasklist_lock); sched_annotate_sleep(); if (wo->wo_rusage) getrusage(p, RUSAGE_BOTH, wo->wo_rusage); put_task_struct(p); if (likely(!(wo->wo_flags & WNOWAIT))) wo->wo_stat = (exit_code << 8) | 0x7f; infop = wo->wo_info; if (infop) { infop->cause = why; infop->status = exit_code; infop->pid = pid; infop->uid = uid; } return pid; } /* * Handle do_wait work for one task in a live, non-stopped state. * read_lock(&tasklist_lock) on entry. If we return zero, we still hold * the lock and this task is uninteresting. If we return nonzero, we have * released the lock and the system call should return. */ static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) { struct waitid_info *infop; pid_t pid; uid_t uid; if (!unlikely(wo->wo_flags & WCONTINUED)) return 0; if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) return 0; spin_lock_irq(&p->sighand->siglock); /* Re-check with the lock held. */ if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { spin_unlock_irq(&p->sighand->siglock); return 0; } if (!unlikely(wo->wo_flags & WNOWAIT)) p->signal->flags &= ~SIGNAL_STOP_CONTINUED; uid = from_kuid_munged(current_user_ns(), task_uid(p)); spin_unlock_irq(&p->sighand->siglock); pid = task_pid_vnr(p); get_task_struct(p); read_unlock(&tasklist_lock); sched_annotate_sleep(); if (wo->wo_rusage) getrusage(p, RUSAGE_BOTH, wo->wo_rusage); put_task_struct(p); infop = wo->wo_info; if (!infop) { wo->wo_stat = 0xffff; } else { infop->cause = CLD_CONTINUED; infop->pid = pid; infop->uid = uid; infop->status = SIGCONT; } return pid; } /* * Consider @p for a wait by @parent. * * -ECHILD should be in ->notask_error before the first call. * Returns nonzero for a final return, when we have unlocked tasklist_lock. * Returns zero if the search for a child should continue; * then ->notask_error is 0 if @p is an eligible child, * or still -ECHILD. */ static int wait_consider_task(struct wait_opts *wo, int ptrace, struct task_struct *p) { /* * We can race with wait_task_zombie() from another thread. * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition * can't confuse the checks below. */ int exit_state = READ_ONCE(p->exit_state); int ret; if (unlikely(exit_state == EXIT_DEAD)) return 0; ret = eligible_child(wo, ptrace, p); if (!ret) return ret; if (unlikely(exit_state == EXIT_TRACE)) { /* * ptrace == 0 means we are the natural parent. In this case * we should clear notask_error, debugger will notify us. */ if (likely(!ptrace)) wo->notask_error = 0; return 0; } if (likely(!ptrace) && unlikely(p->ptrace)) { /* * If it is traced by its real parent's group, just pretend * the caller is ptrace_do_wait() and reap this child if it * is zombie. * * This also hides group stop state from real parent; otherwise * a single stop can be reported twice as group and ptrace stop. * If a ptracer wants to distinguish these two events for its * own children it should create a separate process which takes * the role of real parent. */ if (!ptrace_reparented(p)) ptrace = 1; } /* slay zombie? */ if (exit_state == EXIT_ZOMBIE) { /* we don't reap group leaders with subthreads */ if (!delay_group_leader(p)) { /* * A zombie ptracee is only visible to its ptracer. * Notification and reaping will be cascaded to the * real parent when the ptracer detaches. */ if (unlikely(ptrace) || likely(!p->ptrace)) return wait_task_zombie(wo, p); } /* * Allow access to stopped/continued state via zombie by * falling through. Clearing of notask_error is complex. * * When !@ptrace: * * If WEXITED is set, notask_error should naturally be * cleared. If not, subset of WSTOPPED|WCONTINUED is set, * so, if there are live subthreads, there are events to * wait for. If all subthreads are dead, it's still safe * to clear - this function will be called again in finite * amount time once all the subthreads are released and * will then return without clearing. * * When @ptrace: * * Stopped state is per-task and thus can't change once the * target task dies. Only continued and exited can happen. * Clear notask_error if WCONTINUED | WEXITED. */ if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) wo->notask_error = 0; } else { /* * @p is alive and it's gonna stop, continue or exit, so * there always is something to wait for. */ wo->notask_error = 0; } /* * Wait for stopped. Depending on @ptrace, different stopped state * is used and the two don't interact with each other. */ ret = wait_task_stopped(wo, ptrace, p); if (ret) return ret; /* * Wait for continued. There's only one continued state and the * ptracer can consume it which can confuse the real parent. Don't * use WCONTINUED from ptracer. You don't need or want it. */ return wait_task_continued(wo, p); } /* * Do the work of do_wait() for one thread in the group, @tsk. * * -ECHILD should be in ->notask_error before the first call. * Returns nonzero for a final return, when we have unlocked tasklist_lock. * Returns zero if the search for a child should continue; then * ->notask_error is 0 if there were any eligible children, * or still -ECHILD. */ static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) { struct task_struct *p; list_for_each_entry(p, &tsk->children, sibling) { int ret = wait_consider_task(wo, 0, p); if (ret) return ret; } return 0; } static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) { struct task_struct *p; list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { int ret = wait_consider_task(wo, 1, p); if (ret) return ret; } return 0; } static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) { struct wait_opts *wo = container_of(wait, struct wait_opts, child_wait); struct task_struct *p = key; if (!eligible_pid(wo, p)) return 0; if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) return 0; return default_wake_function(wait, mode, sync, key); } void __wake_up_parent(struct task_struct *p, struct task_struct *parent) { __wake_up_sync_key(&parent->signal->wait_chldexit, TASK_INTERRUPTIBLE, p); } static long do_wait(struct wait_opts *wo) { struct task_struct *tsk; int retval; trace_sched_process_wait(wo->wo_pid); init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); wo->child_wait.private = current; add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait); repeat: /* * If there is nothing that can match our criteria, just get out. * We will clear ->notask_error to zero if we see any child that * might later match our criteria, even if we are not able to reap * it yet. */ wo->notask_error = -ECHILD; if ((wo->wo_type < PIDTYPE_MAX) && (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type))) goto notask; set_current_state(TASK_INTERRUPTIBLE); read_lock(&tasklist_lock); tsk = current; do { retval = do_wait_thread(wo, tsk); if (retval) goto end; retval = ptrace_do_wait(wo, tsk); if (retval) goto end; if (wo->wo_flags & __WNOTHREAD) break; } while_each_thread(current, tsk); read_unlock(&tasklist_lock); notask: retval = wo->notask_error; if (!retval && !(wo->wo_flags & WNOHANG)) { retval = -ERESTARTSYS; if (!signal_pending(current)) { schedule(); goto repeat; } } end: __set_current_state(TASK_RUNNING); remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait); return retval; } static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop, int options, struct rusage *ru) { struct wait_opts wo; struct pid *pid = NULL; enum pid_type type; long ret; unsigned int f_flags = 0; if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED| __WNOTHREAD|__WCLONE|__WALL)) return -EINVAL; if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) return -EINVAL; switch (which) { case P_ALL: type = PIDTYPE_MAX; break; case P_PID: type = PIDTYPE_PID; if (upid <= 0) return -EINVAL; pid = find_get_pid(upid); break; case P_PGID: type = PIDTYPE_PGID; if (upid < 0) return -EINVAL; if (upid) pid = find_get_pid(upid); else pid = get_task_pid(current, PIDTYPE_PGID); break; case P_PIDFD: type = PIDTYPE_PID; if (upid < 0) return -EINVAL; pid = pidfd_get_pid(upid, &f_flags); if (IS_ERR(pid)) return PTR_ERR(pid); break; default: return -EINVAL; } wo.wo_type = type; wo.wo_pid = pid; wo.wo_flags = options; wo.wo_info = infop; wo.wo_rusage = ru; if (f_flags & O_NONBLOCK) wo.wo_flags |= WNOHANG; ret = do_wait(&wo); if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK)) ret = -EAGAIN; put_pid(pid); return ret; } SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, infop, int, options, struct rusage __user *, ru) { struct rusage r; struct waitid_info info = {.status = 0}; long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL); int signo = 0; if (err > 0) { signo = SIGCHLD; err = 0; if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) return -EFAULT; } if (!infop) return err; if (!user_write_access_begin(infop, sizeof(*infop))) return -EFAULT; unsafe_put_user(signo, &infop->si_signo, Efault); unsafe_put_user(0, &infop->si_errno, Efault); unsafe_put_user(info.cause, &infop->si_code, Efault); unsafe_put_user(info.pid, &infop->si_pid, Efault); unsafe_put_user(info.uid, &infop->si_uid, Efault); unsafe_put_user(info.status, &infop->si_status, Efault); user_write_access_end(); return err; Efault: user_write_access_end(); return -EFAULT; } long kernel_wait4(pid_t upid, int __user *stat_addr, int options, struct rusage *ru) { struct wait_opts wo; struct pid *pid = NULL; enum pid_type type; long ret; if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| __WNOTHREAD|__WCLONE|__WALL)) return -EINVAL; /* -INT_MIN is not defined */ if (upid == INT_MIN) return -ESRCH; if (upid == -1) type = PIDTYPE_MAX; else if (upid < 0) { type = PIDTYPE_PGID; pid = find_get_pid(-upid); } else if (upid == 0) { type = PIDTYPE_PGID; pid = get_task_pid(current, PIDTYPE_PGID); } else /* upid > 0 */ { type = PIDTYPE_PID; pid = find_get_pid(upid); } wo.wo_type = type; wo.wo_pid = pid; wo.wo_flags = options | WEXITED; wo.wo_info = NULL; wo.wo_stat = 0; wo.wo_rusage = ru; ret = do_wait(&wo); put_pid(pid); if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr)) ret = -EFAULT; return ret; } int kernel_wait(pid_t pid, int *stat) { struct wait_opts wo = { .wo_type = PIDTYPE_PID, .wo_pid = find_get_pid(pid), .wo_flags = WEXITED, }; int ret; ret = do_wait(&wo); if (ret > 0 && wo.wo_stat) *stat = wo.wo_stat; put_pid(wo.wo_pid); return ret; } SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, int, options, struct rusage __user *, ru) { struct rusage r; long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL); if (err > 0) { if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) return -EFAULT; } return err; } #ifdef __ARCH_WANT_SYS_WAITPID /* * sys_waitpid() remains for compatibility. waitpid() should be * implemented by calling sys_wait4() from libc.a. */ SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) { return kernel_wait4(pid, stat_addr, options, NULL); } #endif #ifdef CONFIG_COMPAT COMPAT_SYSCALL_DEFINE4(wait4, compat_pid_t, pid, compat_uint_t __user *, stat_addr, int, options, struct compat_rusage __user *, ru) { struct rusage r; long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL); if (err > 0) { if (ru && put_compat_rusage(&r, ru)) return -EFAULT; } return err; } COMPAT_SYSCALL_DEFINE5(waitid, int, which, compat_pid_t, pid, struct compat_siginfo __user *, infop, int, options, struct compat_rusage __user *, uru) { struct rusage ru; struct waitid_info info = {.status = 0}; long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL); int signo = 0; if (err > 0) { signo = SIGCHLD; err = 0; if (uru) { /* kernel_waitid() overwrites everything in ru */ if (COMPAT_USE_64BIT_TIME) err = copy_to_user(uru, &ru, sizeof(ru)); else err = put_compat_rusage(&ru, uru); if (err) return -EFAULT; } } if (!infop) return err; if (!user_write_access_begin(infop, sizeof(*infop))) return -EFAULT; unsafe_put_user(signo, &infop->si_signo, Efault); unsafe_put_user(0, &infop->si_errno, Efault); unsafe_put_user(info.cause, &infop->si_code, Efault); unsafe_put_user(info.pid, &infop->si_pid, Efault); unsafe_put_user(info.uid, &infop->si_uid, Efault); unsafe_put_user(info.status, &infop->si_status, Efault); user_write_access_end(); return err; Efault: user_write_access_end(); return -EFAULT; } #endif /** * thread_group_exited - check that a thread group has exited * @pid: tgid of thread group to be checked. * * Test if the thread group represented by tgid has exited (all * threads are zombies, dead or completely gone). * * Return: true if the thread group has exited. false otherwise. */ bool thread_group_exited(struct pid *pid) { struct task_struct *task; bool exited; rcu_read_lock(); task = pid_task(pid, PIDTYPE_PID); exited = !task || (READ_ONCE(task->exit_state) && thread_group_empty(task)); rcu_read_unlock(); return exited; } EXPORT_SYMBOL(thread_group_exited); __weak void abort(void) { BUG(); /* if that doesn't kill us, halt */ panic("Oops failed to kill thread"); } EXPORT_SYMBOL(abort);
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef DRIVERS_PCI_H #define DRIVERS_PCI_H #include <linux/pci.h> /* Number of possible devfns: 0.0 to 1f.7 inclusive */ #define MAX_NR_DEVFNS 256 #define PCI_FIND_CAP_TTL 48 #define PCI_VSEC_ID_INTEL_TBT 0x1234 /* Thunderbolt */ extern const unsigned char pcie_link_speed[]; extern bool pci_early_dump; bool pcie_cap_has_lnkctl(const struct pci_dev *dev); bool pcie_cap_has_rtctl(const struct pci_dev *dev); /* Functions internal to the PCI core code */ int pci_create_sysfs_dev_files(struct pci_dev *pdev); void pci_remove_sysfs_dev_files(struct pci_dev *pdev); #if !defined(CONFIG_DMI) && !defined(CONFIG_ACPI) static inline void pci_create_firmware_label_files(struct pci_dev *pdev) { return; } static inline void pci_remove_firmware_label_files(struct pci_dev *pdev) { return; } #else void pci_create_firmware_label_files(struct pci_dev *pdev); void pci_remove_firmware_label_files(struct pci_dev *pdev); #endif void pci_cleanup_rom(struct pci_dev *dev); enum pci_mmap_api { PCI_MMAP_SYSFS, /* mmap on /sys/bus/pci/devices/<BDF>/resource<N> */ PCI_MMAP_PROCFS /* mmap on /proc/bus/pci/<BDF> */ }; int pci_mmap_fits(struct pci_dev *pdev, int resno, struct vm_area_struct *vmai, enum pci_mmap_api mmap_api); int pci_probe_reset_function(struct pci_dev *dev); int pci_bridge_secondary_bus_reset(struct pci_dev *dev); int pci_bus_error_reset(struct pci_dev *dev); #define PCI_PM_D2_DELAY 200 /* usec; see PCIe r4.0, sec 5.9.1 */ #define PCI_PM_D3HOT_WAIT 10 /* msec */ #define PCI_PM_D3COLD_WAIT 100 /* msec */ /** * struct pci_platform_pm_ops - Firmware PM callbacks * * @bridge_d3: Does the bridge allow entering into D3 * * @is_manageable: returns 'true' if given device is power manageable by the * platform firmware * * @set_state: invokes the platform firmware to set the device's power state * * @get_state: queries the platform firmware for a device's current power state * * @refresh_state: asks the platform to refresh the device's power state data * * @choose_state: returns PCI power state of given device preferred by the * platform; to be used during system-wide transitions from a * sleeping state to the working state and vice versa * * @set_wakeup: enables/disables wakeup capability for the device * * @need_resume: returns 'true' if the given device (which is currently * suspended) needs to be resumed to be configured for system * wakeup. * * If given platform is generally capable of power managing PCI devices, all of * these callbacks are mandatory. */ struct pci_platform_pm_ops { bool (*bridge_d3)(struct pci_dev *dev); bool (*is_manageable)(struct pci_dev *dev); int (*set_state)(struct pci_dev *dev, pci_power_t state); pci_power_t (*get_state)(struct pci_dev *dev); void (*refresh_state)(struct pci_dev *dev); pci_power_t (*choose_state)(struct pci_dev *dev); int (*set_wakeup)(struct pci_dev *dev, bool enable); bool (*need_resume)(struct pci_dev *dev); }; int pci_set_platform_pm(const struct pci_platform_pm_ops *ops); void pci_update_current_state(struct pci_dev *dev, pci_power_t state); void pci_refresh_power_state(struct pci_dev *dev); int pci_power_up(struct pci_dev *dev); void pci_disable_enabled_device(struct pci_dev *dev); int pci_finish_runtime_suspend(struct pci_dev *dev); void pcie_clear_device_status(struct pci_dev *dev); void pcie_clear_root_pme_status(struct pci_dev *dev); bool pci_check_pme_status(struct pci_dev *dev); void pci_pme_wakeup_bus(struct pci_bus *bus); int __pci_pme_wakeup(struct pci_dev *dev, void *ign); void pci_pme_restore(struct pci_dev *dev); bool pci_dev_need_resume(struct pci_dev *dev); void pci_dev_adjust_pme(struct pci_dev *dev); void pci_dev_complete_resume(struct pci_dev *pci_dev); void pci_config_pm_runtime_get(struct pci_dev *dev); void pci_config_pm_runtime_put(struct pci_dev *dev); void pci_pm_init(struct pci_dev *dev); void pci_ea_init(struct pci_dev *dev); void pci_allocate_cap_save_buffers(struct pci_dev *dev); void pci_free_cap_save_buffers(struct pci_dev *dev); bool pci_bridge_d3_possible(struct pci_dev *dev); void pci_bridge_d3_update(struct pci_dev *dev); void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev); static inline void pci_wakeup_event(struct pci_dev *dev) { /* Wait 100 ms before the system can be put into a sleep state. */ pm_wakeup_event(&dev->dev, 100); } static inline bool pci_has_subordinate(struct pci_dev *pci_dev) { return !!(pci_dev->subordinate); } static inline bool pci_power_manageable(struct pci_dev *pci_dev) { /* * Currently we allow normal PCI devices and PCI bridges transition * into D3 if their bridge_d3 is set. */ return !pci_has_subordinate(pci_dev) || pci_dev->bridge_d3; } static inline bool pcie_downstream_port(const struct pci_dev *dev) { int type = pci_pcie_type(dev); return type == PCI_EXP_TYPE_ROOT_PORT || type == PCI_EXP_TYPE_DOWNSTREAM || type == PCI_EXP_TYPE_PCIE_BRIDGE; } int pci_vpd_init(struct pci_dev *dev); void pci_vpd_release(struct pci_dev *dev); void pcie_vpd_create_sysfs_dev_files(struct pci_dev *dev); void pcie_vpd_remove_sysfs_dev_files(struct pci_dev *dev); /* PCI Virtual Channel */ int pci_save_vc_state(struct pci_dev *dev); void pci_restore_vc_state(struct pci_dev *dev); void pci_allocate_vc_save_buffers(struct pci_dev *dev); /* PCI /proc functions */ #ifdef CONFIG_PROC_FS int pci_proc_attach_device(struct pci_dev *dev); int pci_proc_detach_device(struct pci_dev *dev); int pci_proc_detach_bus(struct pci_bus *bus); #else static inline int pci_proc_attach_device(struct pci_dev *dev) { return 0; } static inline int pci_proc_detach_device(struct pci_dev *dev) { return 0; } static inline int pci_proc_detach_bus(struct pci_bus *bus) { return 0; } #endif /* Functions for PCI Hotplug drivers to use */ int pci_hp_add_bridge(struct pci_dev *dev); #ifdef HAVE_PCI_LEGACY void pci_create_legacy_files(struct pci_bus *bus); void pci_remove_legacy_files(struct pci_bus *bus); #else static inline void pci_create_legacy_files(struct pci_bus *bus) { return; } static inline void pci_remove_legacy_files(struct pci_bus *bus) { return; } #endif /* Lock for read/write access to pci device and bus lists */ extern struct rw_semaphore pci_bus_sem; extern struct mutex pci_slot_mutex; extern raw_spinlock_t pci_lock; extern unsigned int pci_pm_d3hot_delay; #ifdef CONFIG_PCI_MSI void pci_no_msi(void); #else static inline void pci_no_msi(void) { } #endif static inline void pci_msi_set_enable(struct pci_dev *dev, int enable) { u16 control; pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &control); control &= ~PCI_MSI_FLAGS_ENABLE; if (enable) control |= PCI_MSI_FLAGS_ENABLE; pci_write_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, control); } static inline void pci_msix_clear_and_set_ctrl(struct pci_dev *dev, u16 clear, u16 set) { u16 ctrl; pci_read_config_word(dev, dev->msix_cap + PCI_MSIX_FLAGS, &ctrl); ctrl &= ~clear; ctrl |= set; pci_write_config_word(dev, dev->msix_cap + PCI_MSIX_FLAGS, ctrl); } void pci_realloc_get_opt(char *); static inline int pci_no_d1d2(struct pci_dev *dev) { unsigned int parent_dstates = 0; if (dev->bus->self) parent_dstates = dev->bus->self->no_d1d2; return (dev->no_d1d2 || parent_dstates); } extern const struct attribute_group *pci_dev_groups[]; extern const struct attribute_group *pcibus_groups[]; extern const struct device_type pci_dev_type; extern const struct attribute_group *pci_bus_groups[]; extern unsigned long pci_hotplug_io_size; extern unsigned long pci_hotplug_mmio_size; extern unsigned long pci_hotplug_mmio_pref_size; extern unsigned long pci_hotplug_bus_size; /** * pci_match_one_device - Tell if a PCI device structure has a matching * PCI device id structure * @id: single PCI device id structure to match * @dev: the PCI device structure to match against * * Returns the matching pci_device_id structure or %NULL if there is no match. */ static inline const struct pci_device_id * pci_match_one_device(const struct pci_device_id *id, const struct pci_dev *dev) { if ((id->vendor == PCI_ANY_ID || id->vendor == dev->vendor) && (id->device == PCI_ANY_ID || id->device == dev->device) && (id->subvendor == PCI_ANY_ID || id->subvendor == dev->subsystem_vendor) && (id->subdevice == PCI_ANY_ID || id->subdevice == dev->subsystem_device) && !((id->class ^ dev->class) & id->class_mask)) return id; return NULL; } /* PCI slot sysfs helper code */ #define to_pci_slot(s) container_of(s, struct pci_slot, kobj) extern struct kset *pci_slots_kset; struct pci_slot_attribute { struct attribute attr; ssize_t (*show)(struct pci_slot *, char *); ssize_t (*store)(struct pci_slot *, const char *, size_t); }; #define to_pci_slot_attr(s) container_of(s, struct pci_slot_attribute, attr) enum pci_bar_type { pci_bar_unknown, /* Standard PCI BAR probe */ pci_bar_io, /* An I/O port BAR */ pci_bar_mem32, /* A 32-bit memory BAR */ pci_bar_mem64, /* A 64-bit memory BAR */ }; struct device *pci_get_host_bridge_device(struct pci_dev *dev); void pci_put_host_bridge_device(struct device *dev); int pci_configure_extended_tags(struct pci_dev *dev, void *ign); bool pci_bus_read_dev_vendor_id(struct pci_bus *bus, int devfn, u32 *pl, int crs_timeout); bool pci_bus_generic_read_dev_vendor_id(struct pci_bus *bus, int devfn, u32 *pl, int crs_timeout); int pci_idt_bus_quirk(struct pci_bus *bus, int devfn, u32 *pl, int crs_timeout); int pci_setup_device(struct pci_dev *dev); int __pci_read_base(struct pci_dev *dev, enum pci_bar_type type, struct resource *res, unsigned int reg); void pci_configure_ari(struct pci_dev *dev); void __pci_bus_size_bridges(struct pci_bus *bus, struct list_head *realloc_head); void __pci_bus_assign_resources(const struct pci_bus *bus, struct list_head *realloc_head, struct list_head *fail_head); bool pci_bus_clip_resource(struct pci_dev *dev, int idx); void pci_reassigndev_resource_alignment(struct pci_dev *dev); void pci_disable_bridge_window(struct pci_dev *dev); struct pci_bus *pci_bus_get(struct pci_bus *bus); void pci_bus_put(struct pci_bus *bus); /* PCIe link information from Link Capabilities 2 */ #define PCIE_LNKCAP2_SLS2SPEED(lnkcap2) \ ((lnkcap2) & PCI_EXP_LNKCAP2_SLS_32_0GB ? PCIE_SPEED_32_0GT : \ (lnkcap2) & PCI_EXP_LNKCAP2_SLS_16_0GB ? PCIE_SPEED_16_0GT : \ (lnkcap2) & PCI_EXP_LNKCAP2_SLS_8_0GB ? PCIE_SPEED_8_0GT : \ (lnkcap2) & PCI_EXP_LNKCAP2_SLS_5_0GB ? PCIE_SPEED_5_0GT : \ (lnkcap2) & PCI_EXP_LNKCAP2_SLS_2_5GB ? PCIE_SPEED_2_5GT : \ PCI_SPEED_UNKNOWN) /* PCIe speed to Mb/s reduced by encoding overhead */ #define PCIE_SPEED2MBS_ENC(speed) \ ((speed) == PCIE_SPEED_32_0GT ? 32000*128/130 : \ (speed) == PCIE_SPEED_16_0GT ? 16000*128/130 : \ (speed) == PCIE_SPEED_8_0GT ? 8000*128/130 : \ (speed) == PCIE_SPEED_5_0GT ? 5000*8/10 : \ (speed) == PCIE_SPEED_2_5GT ? 2500*8/10 : \ 0) const char *pci_speed_string(enum pci_bus_speed speed); enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev); enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev); u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed, enum pcie_link_width *width); void __pcie_print_link_status(struct pci_dev *dev, bool verbose); void pcie_report_downtraining(struct pci_dev *dev); void pcie_update_link_speed(struct pci_bus *bus, u16 link_status); /* Single Root I/O Virtualization */ struct pci_sriov { int pos; /* Capability position */ int nres; /* Number of resources */ u32 cap; /* SR-IOV Capabilities */ u16 ctrl; /* SR-IOV Control */ u16 total_VFs; /* Total VFs associated with the PF */ u16 initial_VFs; /* Initial VFs associated with the PF */ u16 num_VFs; /* Number of VFs available */ u16 offset; /* First VF Routing ID offset */ u16 stride; /* Following VF stride */ u16 vf_device; /* VF device ID */ u32 pgsz; /* Page size for BAR alignment */ u8 link; /* Function Dependency Link */ u8 max_VF_buses; /* Max buses consumed by VFs */ u16 driver_max_VFs; /* Max num VFs driver supports */ struct pci_dev *dev; /* Lowest numbered PF */ struct pci_dev *self; /* This PF */ u32 class; /* VF device */ u8 hdr_type; /* VF header type */ u16 subsystem_vendor; /* VF subsystem vendor */ u16 subsystem_device; /* VF subsystem device */ resource_size_t barsz[PCI_SRIOV_NUM_BARS]; /* VF BAR size */ bool drivers_autoprobe; /* Auto probing of VFs by driver */ }; /** * pci_dev_set_io_state - Set the new error state if possible. * * @dev - pci device to set new error_state * @new - the state we want dev to be in * * Must be called with device_lock held. * * Returns true if state has been changed to the requested state. */ static inline bool pci_dev_set_io_state(struct pci_dev *dev, pci_channel_state_t new) { bool changed = false; device_lock_assert(&dev->dev); switch (new) { case pci_channel_io_perm_failure: switch (dev->error_state) { case pci_channel_io_frozen: case pci_channel_io_normal: case pci_channel_io_perm_failure: changed = true; break; } break; case pci_channel_io_frozen: switch (dev->error_state) { case pci_channel_io_frozen: case pci_channel_io_normal: changed = true; break; } break; case pci_channel_io_normal: switch (dev->error_state) { case pci_channel_io_frozen: case pci_channel_io_normal: changed = true; break; } break; } if (changed) dev->error_state = new; return changed; } static inline int pci_dev_set_disconnected(struct pci_dev *dev, void *unused) { device_lock(&dev->dev); pci_dev_set_io_state(dev, pci_channel_io_perm_failure); device_unlock(&dev->dev); return 0; } static inline bool pci_dev_is_disconnected(const struct pci_dev *dev) { return dev->error_state == pci_channel_io_perm_failure; } /* pci_dev priv_flags */ #define PCI_DEV_ADDED 0 #define PCI_DPC_RECOVERED 1 #define PCI_DPC_RECOVERING 2 static inline void pci_dev_assign_added(struct pci_dev *dev, bool added) { assign_bit(PCI_DEV_ADDED, &dev->priv_flags, added); } static inline bool pci_dev_is_added(const struct pci_dev *dev) { return test_bit(PCI_DEV_ADDED, &dev->priv_flags); } #ifdef CONFIG_PCIEAER #include <linux/aer.h> #define AER_MAX_MULTI_ERR_DEVICES 5 /* Not likely to have more */ struct aer_err_info { struct pci_dev *dev[AER_MAX_MULTI_ERR_DEVICES]; int error_dev_num; unsigned int id:16; unsigned int severity:2; /* 0:NONFATAL | 1:FATAL | 2:COR */ unsigned int __pad1:5; unsigned int multi_error_valid:1; unsigned int first_error:5; unsigned int __pad2:2; unsigned int tlp_header_valid:1; unsigned int status; /* COR/UNCOR Error Status */ unsigned int mask; /* COR/UNCOR Error Mask */ struct aer_header_log_regs tlp; /* TLP Header */ }; int aer_get_device_error_info(struct pci_dev *dev, struct aer_err_info *info); void aer_print_error(struct pci_dev *dev, struct aer_err_info *info); #endif /* CONFIG_PCIEAER */ #ifdef CONFIG_PCIE_DPC void pci_save_dpc_state(struct pci_dev *dev); void pci_restore_dpc_state(struct pci_dev *dev); void pci_dpc_init(struct pci_dev *pdev); void dpc_process_error(struct pci_dev *pdev); pci_ers_result_t dpc_reset_link(struct pci_dev *pdev); bool pci_dpc_recovered(struct pci_dev *pdev); #else static inline void pci_save_dpc_state(struct pci_dev *dev) {} static inline void pci_restore_dpc_state(struct pci_dev *dev) {} static inline void pci_dpc_init(struct pci_dev *pdev) {} static inline bool pci_dpc_recovered(struct pci_dev *pdev) { return false; } #endif #ifdef CONFIG_PCI_ATS /* Address Translation Service */ void pci_ats_init(struct pci_dev *dev); void pci_restore_ats_state(struct pci_dev *dev); #else static inline void pci_ats_init(struct pci_dev *d) { } static inline void pci_restore_ats_state(struct pci_dev *dev) { } #endif /* CONFIG_PCI_ATS */ #ifdef CONFIG_PCI_PRI void pci_pri_init(struct pci_dev *dev); void pci_restore_pri_state(struct pci_dev *pdev); #else static inline void pci_pri_init(struct pci_dev *dev) { } static inline void pci_restore_pri_state(struct pci_dev *pdev) { } #endif #ifdef CONFIG_PCI_PASID void pci_pasid_init(struct pci_dev *dev); void pci_restore_pasid_state(struct pci_dev *pdev); #else static inline void pci_pasid_init(struct pci_dev *dev) { } static inline void pci_restore_pasid_state(struct pci_dev *pdev) { } #endif #ifdef CONFIG_PCI_IOV int pci_iov_init(struct pci_dev *dev); void pci_iov_release(struct pci_dev *dev); void pci_iov_remove(struct pci_dev *dev); void pci_iov_update_resource(struct pci_dev *dev, int resno); resource_size_t pci_sriov_resource_alignment(struct pci_dev *dev, int resno); void pci_restore_iov_state(struct pci_dev *dev); int pci_iov_bus_range(struct pci_bus *bus); extern const struct attribute_group sriov_dev_attr_group; #else static inline int pci_iov_init(struct pci_dev *dev) { return -ENODEV; } static inline void pci_iov_release(struct pci_dev *dev) { } static inline void pci_iov_remove(struct pci_dev *dev) { } static inline void pci_restore_iov_state(struct pci_dev *dev) { } static inline int pci_iov_bus_range(struct pci_bus *bus) { return 0; } #endif /* CONFIG_PCI_IOV */ unsigned long pci_cardbus_resource_alignment(struct resource *); static inline resource_size_t pci_resource_alignment(struct pci_dev *dev, struct resource *res) { #ifdef CONFIG_PCI_IOV int resno = res - dev->resource; if (resno >= PCI_IOV_RESOURCES && resno <= PCI_IOV_RESOURCE_END) return pci_sriov_resource_alignment(dev, resno); #endif if (dev->class >> 8 == PCI_CLASS_BRIDGE_CARDBUS) return pci_cardbus_resource_alignment(res); return resource_alignment(res); } void pci_acs_init(struct pci_dev *dev); #ifdef CONFIG_PCI_QUIRKS int pci_dev_specific_acs_enabled(struct pci_dev *dev, u16 acs_flags); int pci_dev_specific_enable_acs(struct pci_dev *dev); int pci_dev_specific_disable_acs_redir(struct pci_dev *dev); #else static inline int pci_dev_specific_acs_enabled(struct pci_dev *dev, u16 acs_flags) { return -ENOTTY; } static inline int pci_dev_specific_enable_acs(struct pci_dev *dev) { return -ENOTTY; } static inline int pci_dev_specific_disable_acs_redir(struct pci_dev *dev) { return -ENOTTY; } #endif /* PCI error reporting and recovery */ pci_ers_result_t pcie_do_recovery(struct pci_dev *dev, pci_channel_state_t state, pci_ers_result_t (*reset_link)(struct pci_dev *pdev)); bool pcie_wait_for_link(struct pci_dev *pdev, bool active); #ifdef CONFIG_PCIEASPM void pcie_aspm_init_link_state(struct pci_dev *pdev); void pcie_aspm_exit_link_state(struct pci_dev *pdev); void pcie_aspm_pm_state_change(struct pci_dev *pdev); void pcie_aspm_powersave_config_link(struct pci_dev *pdev); #else static inline void pcie_aspm_init_link_state(struct pci_dev *pdev) { } static inline void pcie_aspm_exit_link_state(struct pci_dev *pdev) { } static inline void pcie_aspm_pm_state_change(struct pci_dev *pdev) { } static inline void pcie_aspm_powersave_config_link(struct pci_dev *pdev) { } #endif #ifdef CONFIG_PCIE_ECRC void pcie_set_ecrc_checking(struct pci_dev *dev); void pcie_ecrc_get_policy(char *str); #else static inline void pcie_set_ecrc_checking(struct pci_dev *dev) { } static inline void pcie_ecrc_get_policy(char *str) { } #endif #ifdef CONFIG_PCIE_PTM void pci_ptm_init(struct pci_dev *dev); int pci_enable_ptm(struct pci_dev *dev, u8 *granularity); #else static inline void pci_ptm_init(struct pci_dev *dev) { } static inline int pci_enable_ptm(struct pci_dev *dev, u8 *granularity) { return -EINVAL; } #endif struct pci_dev_reset_methods { u16 vendor; u16 device; int (*reset)(struct pci_dev *dev, int probe); }; #ifdef CONFIG_PCI_QUIRKS int pci_dev_specific_reset(struct pci_dev *dev, int probe); #else static inline int pci_dev_specific_reset(struct pci_dev *dev, int probe) { return -ENOTTY; } #endif #if defined(CONFIG_PCI_QUIRKS) && defined(CONFIG_ARM64) int acpi_get_rc_resources(struct device *dev, const char *hid, u16 segment, struct resource *res); #else static inline int acpi_get_rc_resources(struct device *dev, const char *hid, u16 segment, struct resource *res) { return -ENODEV; } #endif u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar); int pci_rebar_get_current_size(struct pci_dev *pdev, int bar); int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size); static inline u64 pci_rebar_size_to_bytes(int size) { return 1ULL << (size + 20); } struct device_node; #ifdef CONFIG_OF int of_pci_parse_bus_range(struct device_node *node, struct resource *res); int of_get_pci_domain_nr(struct device_node *node); int of_pci_get_max_link_speed(struct device_node *node); void pci_set_of_node(struct pci_dev *dev); void pci_release_of_node(struct pci_dev *dev); void pci_set_bus_of_node(struct pci_bus *bus); void pci_release_bus_of_node(struct pci_bus *bus); int devm_of_pci_bridge_init(struct device *dev, struct pci_host_bridge *bridge); #else static inline int of_pci_parse_bus_range(struct device_node *node, struct resource *res) { return -EINVAL; } static inline int of_get_pci_domain_nr(struct device_node *node) { return -1; } static inline int of_pci_get_max_link_speed(struct device_node *node) { return -EINVAL; } static inline void pci_set_of_node(struct pci_dev *dev) { } static inline void pci_release_of_node(struct pci_dev *dev) { } static inline void pci_set_bus_of_node(struct pci_bus *bus) { } static inline void pci_release_bus_of_node(struct pci_bus *bus) { } static inline int devm_of_pci_bridge_init(struct device *dev, struct pci_host_bridge *bridge) { return 0; } #endif /* CONFIG_OF */ #ifdef CONFIG_PCIEAER void pci_no_aer(void); void pci_aer_init(struct pci_dev *dev); void pci_aer_exit(struct pci_dev *dev); extern const struct attribute_group aer_stats_attr_group; void pci_aer_clear_fatal_status(struct pci_dev *dev); int pci_aer_clear_status(struct pci_dev *dev); int pci_aer_raw_clear_status(struct pci_dev *dev); #else static inline void pci_no_aer(void) { } static inline void pci_aer_init(struct pci_dev *d) { } static inline void pci_aer_exit(struct pci_dev *d) { } static inline void pci_aer_clear_fatal_status(struct pci_dev *dev) { } static inline int pci_aer_clear_status(struct pci_dev *dev) { return -EINVAL; } static inline int pci_aer_raw_clear_status(struct pci_dev *dev) { return -EINVAL; } #endif #ifdef CONFIG_ACPI int pci_acpi_program_hp_params(struct pci_dev *dev); #else static inline int pci_acpi_program_hp_params(struct pci_dev *dev) { return -ENODEV; } #endif #ifdef CONFIG_PCIEASPM extern const struct attribute_group aspm_ctrl_attr_group; #endif #endif /* DRIVERS_PCI_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 /* SPDX-License-Identifier: GPL-2.0-only */ /* * kref.h - library routines for handling generic reference counted objects * * Copyright (C) 2004 Greg Kroah-Hartman <greg@kroah.com> * Copyright (C) 2004 IBM Corp. * * based on kobject.h which was: * Copyright (C) 2002-2003 Patrick Mochel <mochel@osdl.org> * Copyright (C) 2002-2003 Open Source Development Labs */ #ifndef _KREF_H_ #define _KREF_H_ #include <linux/spinlock.h> #include <linux/refcount.h> struct kref { refcount_t refcount; }; #define KREF_INIT(n) { .refcount = REFCOUNT_INIT(n), } /** * kref_init - initialize object. * @kref: object in question. */ static inline void kref_init(struct kref *kref) { refcount_set(&kref->refcount, 1); } static inline unsigned int kref_read(const struct kref *kref) { return refcount_read(&kref->refcount); } /** * kref_get - increment refcount for object. * @kref: object. */ static inline void kref_get(struct kref *kref) { refcount_inc(&kref->refcount); } /** * kref_put - decrement refcount for object. * @kref: object. * @release: pointer to the function that will clean up the object when the * last reference to the object is released. * This pointer is required, and it is not acceptable to pass kfree * in as this function. * * Decrement the refcount, and if 0, call release(). * Return 1 if the object was removed, otherwise return 0. Beware, if this * function returns 0, you still can not count on the kref from remaining in * memory. Only use the return value if you want to see if the kref is now * gone, not present. */ static inline int kref_put(struct kref *kref, void (*release)(struct kref *kref)) { if (refcount_dec_and_test(&kref->refcount)) { release(kref); return 1; } return 0; } static inline int kref_put_mutex(struct kref *kref, void (*release)(struct kref *kref), struct mutex *lock) { if (refcount_dec_and_mutex_lock(&kref->refcount, lock)) { release(kref); return 1; } return 0; } static inline int kref_put_lock(struct kref *kref, void (*release)(struct kref *kref), spinlock_t *lock) { if (refcount_dec_and_lock(&kref->refcount, lock)) { release(kref); return 1; } return 0; } /** * kref_get_unless_zero - Increment refcount for object unless it is zero. * @kref: object. * * Return non-zero if the increment succeeded. Otherwise return 0. * * This function is intended to simplify locking around refcounting for * objects that can be looked up from a lookup structure, and which are * removed from that lookup structure in the object destructor. * Operations on such objects require at least a read lock around * lookup + kref_get, and a write lock around kref_put + remove from lookup * structure. Furthermore, RCU implementations become extremely tricky. * With a lookup followed by a kref_get_unless_zero *with return value check* * locking in the kref_put path can be deferred to the actual removal from * the lookup structure and RCU lookups become trivial. */ static inline int __must_check kref_get_unless_zero(struct kref *kref) { return refcount_inc_not_zero(&kref->refcount); } #endif /* _KREF_H_ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 /* SPDX-License-Identifier: GPL-2.0-only */ /* * kernfs.h - pseudo filesystem decoupled from vfs locking */ #ifndef __LINUX_KERNFS_H #define __LINUX_KERNFS_H #include <linux/kernel.h> #include <linux/err.h> #include <linux/list.h> #include <linux/mutex.h> #include <linux/idr.h> #include <linux/lockdep.h> #include <linux/rbtree.h> #include <linux/atomic.h> #include <linux/uidgid.h> #include <linux/wait.h> struct file; struct dentry; struct iattr; struct seq_file; struct vm_area_struct; struct super_block; struct file_system_type; struct poll_table_struct; struct fs_context; struct kernfs_fs_context; struct kernfs_open_node; struct kernfs_iattrs; enum kernfs_node_type { KERNFS_DIR = 0x0001, KERNFS_FILE = 0x0002, KERNFS_LINK = 0x0004, }; #define KERNFS_TYPE_MASK 0x000f #define KERNFS_FLAG_MASK ~KERNFS_TYPE_MASK #define KERNFS_MAX_USER_XATTRS 128 #define KERNFS_USER_XATTR_SIZE_LIMIT (128 << 10) enum kernfs_node_flag { KERNFS_ACTIVATED = 0x0010, KERNFS_NS = 0x0020, KERNFS_HAS_SEQ_SHOW = 0x0040, KERNFS_HAS_MMAP = 0x0080, KERNFS_LOCKDEP = 0x0100, KERNFS_SUICIDAL = 0x0400, KERNFS_SUICIDED = 0x0800, KERNFS_EMPTY_DIR = 0x1000, KERNFS_HAS_RELEASE = 0x2000, }; /* @flags for kernfs_create_root() */ enum kernfs_root_flag { /* * kernfs_nodes are created in the deactivated state and invisible. * They require explicit kernfs_activate() to become visible. This * can be used to make related nodes become visible atomically * after all nodes are created successfully. */ KERNFS_ROOT_CREATE_DEACTIVATED = 0x0001, /* * For regular files, if the opener has CAP_DAC_OVERRIDE, open(2) * succeeds regardless of the RW permissions. sysfs had an extra * layer of enforcement where open(2) fails with -EACCES regardless * of CAP_DAC_OVERRIDE if the permission doesn't have the * respective read or write access at all (none of S_IRUGO or * S_IWUGO) or the respective operation isn't implemented. The * following flag enables that behavior. */ KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK = 0x0002, /* * The filesystem supports exportfs operation, so userspace can use * fhandle to access nodes of the fs. */ KERNFS_ROOT_SUPPORT_EXPORTOP = 0x0004, /* * Support user xattrs to be written to nodes rooted at this root. */ KERNFS_ROOT_SUPPORT_USER_XATTR = 0x0008, }; /* type-specific structures for kernfs_node union members */ struct kernfs_elem_dir { unsigned long subdirs; /* children rbtree starts here and goes through kn->rb */ struct rb_root children; /* * The kernfs hierarchy this directory belongs to. This fits * better directly in kernfs_node but is here to save space. */ struct kernfs_root *root; }; struct kernfs_elem_symlink { struct kernfs_node *target_kn; }; struct kernfs_elem_attr { const struct kernfs_ops *ops; struct kernfs_open_node *open; loff_t size; struct kernfs_node *notify_next; /* for kernfs_notify() */ }; /* * kernfs_node - the building block of kernfs hierarchy. Each and every * kernfs node is represented by single kernfs_node. Most fields are * private to kernfs and shouldn't be accessed directly by kernfs users. * * As long as s_count reference is held, the kernfs_node itself is * accessible. Dereferencing elem or any other outer entity requires * active reference. */ struct kernfs_node { atomic_t count; atomic_t active; #ifdef CONFIG_DEBUG_LOCK_ALLOC struct lockdep_map dep_map; #endif /* * Use kernfs_get_parent() and kernfs_name/path() instead of * accessing the following two fields directly. If the node is * never moved to a different parent, it is safe to access the * parent directly. */ struct kernfs_node *parent; const char *name; struct rb_node rb; const void *ns; /* namespace tag */ unsigned int hash; /* ns + name hash */ union { struct kernfs_elem_dir dir; struct kernfs_elem_symlink symlink; struct kernfs_elem_attr attr; }; void *priv; /* * 64bit unique ID. On 64bit ino setups, id is the ino. On 32bit, * the low 32bits are ino and upper generation. */ u64 id; unsigned short flags; umode_t mode; struct kernfs_iattrs *iattr; }; /* * kernfs_syscall_ops may be specified on kernfs_create_root() to support * syscalls. These optional callbacks are invoked on the matching syscalls * and can perform any kernfs operations which don't necessarily have to be * the exact operation requested. An active reference is held for each * kernfs_node parameter. */ struct kernfs_syscall_ops { int (*show_options)(struct seq_file *sf, struct kernfs_root *root); int (*mkdir)(struct kernfs_node *parent, const char *name, umode_t mode); int (*rmdir)(struct kernfs_node *kn); int (*rename)(struct kernfs_node *kn, struct kernfs_node *new_parent, const char *new_name); int (*show_path)(struct seq_file *sf, struct kernfs_node *kn, struct kernfs_root *root); }; struct kernfs_root { /* published fields */ struct kernfs_node *kn; unsigned int flags; /* KERNFS_ROOT_* flags */ /* private fields, do not use outside kernfs proper */ struct idr ino_idr; u32 last_id_lowbits; u32 id_highbits; struct kernfs_syscall_ops *syscall_ops; /* list of kernfs_super_info of this root, protected by kernfs_mutex */ struct list_head supers; wait_queue_head_t deactivate_waitq; }; struct kernfs_open_file { /* published fields */ struct kernfs_node *kn; struct file *file; struct seq_file *seq_file; void *priv; /* private fields, do not use outside kernfs proper */ struct mutex mutex; struct mutex prealloc_mutex; int event; struct list_head list; char *prealloc_buf; size_t atomic_write_len; bool mmapped:1; bool released:1; const struct vm_operations_struct *vm_ops; }; struct kernfs_ops { /* * Optional open/release methods. Both are called with * @of->seq_file populated. */ int (*open)(struct kernfs_open_file *of); void (*release)(struct kernfs_open_file *of); /* * Read is handled by either seq_file or raw_read(). * * If seq_show() is present, seq_file path is active. Other seq * operations are optional and if not implemented, the behavior is * equivalent to single_open(). @sf->private points to the * associated kernfs_open_file. * * read() is bounced through kernel buffer and a read larger than * PAGE_SIZE results in partial operation of PAGE_SIZE. */ int (*seq_show)(struct seq_file *sf, void *v); void *(*seq_start)(struct seq_file *sf, loff_t *ppos); void *(*seq_next)(struct seq_file *sf, void *v, loff_t *ppos); void (*seq_stop)(struct seq_file *sf, void *v); ssize_t (*read)(struct kernfs_open_file *of, char *buf, size_t bytes, loff_t off); /* * write() is bounced through kernel buffer. If atomic_write_len * is not set, a write larger than PAGE_SIZE results in partial * operations of PAGE_SIZE chunks. If atomic_write_len is set, * writes upto the specified size are executed atomically but * larger ones are rejected with -E2BIG. */ size_t atomic_write_len; /* * "prealloc" causes a buffer to be allocated at open for * all read/write requests. As ->seq_show uses seq_read() * which does its own allocation, it is incompatible with * ->prealloc. Provide ->read and ->write with ->prealloc. */ bool prealloc; ssize_t (*write)(struct kernfs_open_file *of, char *buf, size_t bytes, loff_t off); __poll_t (*poll)(struct kernfs_open_file *of, struct poll_table_struct *pt); int (*mmap)(struct kernfs_open_file *of, struct vm_area_struct *vma); #ifdef CONFIG_DEBUG_LOCK_ALLOC struct lock_class_key lockdep_key; #endif }; /* * The kernfs superblock creation/mount parameter context. */ struct kernfs_fs_context { struct kernfs_root *root; /* Root of the hierarchy being mounted */ void *ns_tag; /* Namespace tag of the mount (or NULL) */ unsigned long magic; /* File system specific magic number */ /* The following are set/used by kernfs_mount() */ bool new_sb_created; /* Set to T if we allocated a new sb */ }; #ifdef CONFIG_KERNFS static inline enum kernfs_node_type kernfs_type(struct kernfs_node *kn) { return kn->flags & KERNFS_TYPE_MASK; } static inline ino_t kernfs_id_ino(u64 id) { /* id is ino if ino_t is 64bit; otherwise, low 32bits */ if (sizeof(ino_t) >= sizeof(u64)) return id; else return (u32)id; } static inline u32 kernfs_id_gen(u64 id) { /* gen is fixed at 1 if ino_t is 64bit; otherwise, high 32bits */ if (sizeof(ino_t) >= sizeof(u64)) return 1; else return id >> 32; } static inline ino_t kernfs_ino(struct kernfs_node *kn) { return kernfs_id_ino(kn->id); } static inline ino_t kernfs_gen(struct kernfs_node *kn) { return kernfs_id_gen(kn->id); } /** * kernfs_enable_ns - enable namespace under a directory * @kn: directory of interest, should be empty * * This is to be called right after @kn is created to enable namespace * under it. All children of @kn must have non-NULL namespace tags and * only the ones which match the super_block's tag will be visible. */ static inline void kernfs_enable_ns(struct kernfs_node *kn) { WARN_ON_ONCE(kernfs_type(kn) != KERNFS_DIR); WARN_ON_ONCE(!RB_EMPTY_ROOT(&kn->dir.children)); kn->flags |= KERNFS_NS; } /** * kernfs_ns_enabled - test whether namespace is enabled * @kn: the node to test * * Test whether namespace filtering is enabled for the children of @ns. */ static inline bool kernfs_ns_enabled(struct kernfs_node *kn) { return kn->flags & KERNFS_NS; } int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen); int kernfs_path_from_node(struct kernfs_node *root_kn, struct kernfs_node *kn, char *buf, size_t buflen); void pr_cont_kernfs_name(struct kernfs_node *kn); void pr_cont_kernfs_path(struct kernfs_node *kn); struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn); struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent, const char *name, const void *ns); struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent, const char *path, const void *ns); void kernfs_get(struct kernfs_node *kn); void kernfs_put(struct kernfs_node *kn); struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry); struct kernfs_root *kernfs_root_from_sb(struct super_block *sb); struct inode *kernfs_get_inode(struct super_block *sb, struct kernfs_node *kn); struct dentry *kernfs_node_dentry(struct kernfs_node *kn, struct super_block *sb); struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops, unsigned int flags, void *priv); void kernfs_destroy_root(struct kernfs_root *root); struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent, const char *name, umode_t mode, kuid_t uid, kgid_t gid, void *priv, const void *ns); struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent, const char *name); struct kernfs_node *__kernfs_create_file(struct kernfs_node *parent, const char *name, umode_t mode, kuid_t uid, kgid_t gid, loff_t size, const struct kernfs_ops *ops, void *priv, const void *ns, struct lock_class_key *key); struct kernfs_node *kernfs_create_link(struct kernfs_node *parent, const char *name, struct kernfs_node *target); void kernfs_activate(struct kernfs_node *kn); void kernfs_remove(struct kernfs_node *kn); void kernfs_break_active_protection(struct kernfs_node *kn); void kernfs_unbreak_active_protection(struct kernfs_node *kn); bool kernfs_remove_self(struct kernfs_node *kn); int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name, const void *ns); int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent, const char *new_name, const void *new_ns); int kernfs_setattr(struct kernfs_node *kn, const struct iattr *iattr); __poll_t kernfs_generic_poll(struct kernfs_open_file *of, struct poll_table_struct *pt); void kernfs_notify(struct kernfs_node *kn); int kernfs_xattr_get(struct kernfs_node *kn, const char *name, void *value, size_t size); int kernfs_xattr_set(struct kernfs_node *kn, const char *name, const void *value, size_t size, int flags); const void *kernfs_super_ns(struct super_block *sb); int kernfs_get_tree(struct fs_context *fc); void kernfs_free_fs_context(struct fs_context *fc); void kernfs_kill_sb(struct super_block *sb); void kernfs_init(void); struct kernfs_node *kernfs_find_and_get_node_by_id(struct kernfs_root *root, u64 id); #else /* CONFIG_KERNFS */ static inline enum kernfs_node_type kernfs_type(struct kernfs_node *kn) { return 0; } /* whatever */ static inline void kernfs_enable_ns(struct kernfs_node *kn) { } static inline bool kernfs_ns_enabled(struct kernfs_node *kn) { return false; } static inline int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen) { return -ENOSYS; } static inline int kernfs_path_from_node(struct kernfs_node *root_kn, struct kernfs_node *kn, char *buf, size_t buflen) { return -ENOSYS; } static inline void pr_cont_kernfs_name(struct kernfs_node *kn) { } static inline void pr_cont_kernfs_path(struct kernfs_node *kn) { } static inline struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn) { return NULL; } static inline struct kernfs_node * kernfs_find_and_get_ns(struct kernfs_node *parent, const char *name, const void *ns) { return NULL; } static inline struct kernfs_node * kernfs_walk_and_get_ns(struct kernfs_node *parent, const char *path, const void *ns) { return NULL; } static inline void kernfs_get(struct kernfs_node *kn) { } static inline void kernfs_put(struct kernfs_node *kn) { } static inline struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry) { return NULL; } static inline struct kernfs_root *kernfs_root_from_sb(struct super_block *sb) { return NULL; } static inline struct inode * kernfs_get_inode(struct super_block *sb, struct kernfs_node *kn) { return NULL; } static inline struct kernfs_root * kernfs_create_root(struct kernfs_syscall_ops *scops, unsigned int flags, void *priv) { return ERR_PTR(-ENOSYS); } static inline void kernfs_destroy_root(struct kernfs_root *root) { } static inline struct kernfs_node * kernfs_create_dir_ns(struct kernfs_node *parent, const char *name, umode_t mode, kuid_t uid, kgid_t gid, void *priv, const void *ns) { return ERR_PTR(-ENOSYS); } static inline struct kernfs_node * __kernfs_create_file(struct kernfs_node *parent, const char *name, umode_t mode, kuid_t uid, kgid_t gid, loff_t size, const struct kernfs_ops *ops, void *priv, const void *ns, struct lock_class_key *key) { return ERR_PTR(-ENOSYS); } static inline struct kernfs_node * kernfs_create_link(struct kernfs_node *parent, const char *name, struct kernfs_node *target) { return ERR_PTR(-ENOSYS); } static inline void kernfs_activate(struct kernfs_node *kn) { } static inline void kernfs_remove(struct kernfs_node *kn) { } static inline bool kernfs_remove_self(struct kernfs_node *kn) { return false; } static inline int kernfs_remove_by_name_ns(struct kernfs_node *kn, const char *name, const void *ns) { return -ENOSYS; } static inline int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent, const char *new_name, const void *new_ns) { return -ENOSYS; } static inline int kernfs_setattr(struct kernfs_node *kn, const struct iattr *iattr) { return -ENOSYS; } static inline void kernfs_notify(struct kernfs_node *kn) { } static inline int kernfs_xattr_get(struct kernfs_node *kn, const char *name, void *value, size_t size) { return -ENOSYS; } static inline int kernfs_xattr_set(struct kernfs_node *kn, const char *name, const void *value, size_t size, int flags) { return -ENOSYS; } static inline const void *kernfs_super_ns(struct super_block *sb) { return NULL; } static inline int kernfs_get_tree(struct fs_context *fc) { return -ENOSYS; } static inline void kernfs_free_fs_context(struct fs_context *fc) { } static inline void kernfs_kill_sb(struct super_block *sb) { } static inline void kernfs_init(void) { } #endif /* CONFIG_KERNFS */ /** * kernfs_path - build full path of a given node * @kn: kernfs_node of interest * @buf: buffer to copy @kn's name into * @buflen: size of @buf * * If @kn is NULL result will be "(null)". * * Returns the length of the full path. If the full length is equal to or * greater than @buflen, @buf contains the truncated path with the trailing * '\0'. On error, -errno is returned. */ static inline int kernfs_path(struct kernfs_node *kn, char *buf, size_t buflen) { return kernfs_path_from_node(kn, NULL, buf, buflen); } static inline struct kernfs_node * kernfs_find_and_get(struct kernfs_node *kn, const char *name) { return kernfs_find_and_get_ns(kn, name, NULL); } static inline struct kernfs_node * kernfs_walk_and_get(struct kernfs_node *kn, const char *path) { return kernfs_walk_and_get_ns(kn, path, NULL); } static inline struct kernfs_node * kernfs_create_dir(struct kernfs_node *parent, const char *name, umode_t mode, void *priv) { return kernfs_create_dir_ns(parent, name, mode, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, priv, NULL); } static inline struct kernfs_node * kernfs_create_file_ns(struct kernfs_node *parent, const char *name, umode_t mode, kuid_t uid, kgid_t gid, loff_t size, const struct kernfs_ops *ops, void *priv, const void *ns) { struct lock_class_key *key = NULL; #ifdef CONFIG_DEBUG_LOCK_ALLOC key = (struct lock_class_key *)&ops->lockdep_key; #endif return __kernfs_create_file(parent, name, mode, uid, gid, size, ops, priv, ns, key); } static inline struct kernfs_node * kernfs_create_file(struct kernfs_node *parent, const char *name, umode_t mode, loff_t size, const struct kernfs_ops *ops, void *priv) { return kernfs_create_file_ns(parent, name, mode, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, size, ops, priv, NULL); } static inline int kernfs_remove_by_name(struct kernfs_node *parent, const char *name) { return kernfs_remove_by_name_ns(parent, name, NULL); } static inline int kernfs_rename(struct kernfs_node *kn, struct kernfs_node *new_parent, const char *new_name) { return kernfs_rename_ns(kn, new_parent, new_name, NULL); } #endif /* __LINUX_KERNFS_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __FIRMWARE_LOADER_H #define __FIRMWARE_LOADER_H #include <linux/bitops.h> #include <linux/firmware.h> #include <linux/types.h> #include <linux/kref.h> #include <linux/list.h> #include <linux/completion.h> #include <generated/utsrelease.h> /** * enum fw_opt - options to control firmware loading behaviour * * @FW_OPT_UEVENT: Enables the fallback mechanism to send a kobject uevent * when the firmware is not found. Userspace is in charge to load the * firmware using the sysfs loading facility. * @FW_OPT_NOWAIT: Used to describe the firmware request is asynchronous. * @FW_OPT_USERHELPER: Enable the fallback mechanism, in case the direct * filesystem lookup fails at finding the firmware. For details refer to * firmware_fallback_sysfs(). * @FW_OPT_NO_WARN: Quiet, avoid printing warning messages. * @FW_OPT_NOCACHE: Disables firmware caching. Firmware caching is used to * cache the firmware upon suspend, so that upon resume races against the * firmware file lookup on storage is avoided. Used for calls where the * file may be too big, or where the driver takes charge of its own * firmware caching mechanism. * @FW_OPT_NOFALLBACK_SYSFS: Disable the sysfs fallback mechanism. Takes * precedence over &FW_OPT_UEVENT and &FW_OPT_USERHELPER. * @FW_OPT_FALLBACK_PLATFORM: Enable fallback to device fw copy embedded in * the platform's main firmware. If both this fallback and the sysfs * fallback are enabled, then this fallback will be tried first. * @FW_OPT_PARTIAL: Allow partial read of firmware instead of needing to read * entire file. */ enum fw_opt { FW_OPT_UEVENT = BIT(0), FW_OPT_NOWAIT = BIT(1), FW_OPT_USERHELPER = BIT(2), FW_OPT_NO_WARN = BIT(3), FW_OPT_NOCACHE = BIT(4), FW_OPT_NOFALLBACK_SYSFS = BIT(5), FW_OPT_FALLBACK_PLATFORM = BIT(6), FW_OPT_PARTIAL = BIT(7), }; enum fw_status { FW_STATUS_UNKNOWN, FW_STATUS_LOADING, FW_STATUS_DONE, FW_STATUS_ABORTED, }; /* * Concurrent request_firmware() for the same firmware need to be * serialized. struct fw_state is simple state machine which hold the * state of the firmware loading. */ struct fw_state { struct completion completion; enum fw_status status; }; struct fw_priv { struct kref ref; struct list_head list; struct firmware_cache *fwc; struct fw_state fw_st; void *data; size_t size; size_t allocated_size; size_t offset; u32 opt_flags; #ifdef CONFIG_FW_LOADER_PAGED_BUF bool is_paged_buf; struct page **pages; int nr_pages; int page_array_size; #endif #ifdef CONFIG_FW_LOADER_USER_HELPER bool need_uevent; struct list_head pending_list; #endif const char *fw_name; }; extern struct mutex fw_lock; static inline bool __fw_state_check(struct fw_priv *fw_priv, enum fw_status status) { struct fw_state *fw_st = &fw_priv->fw_st; return fw_st->status == status; } static inline int __fw_state_wait_common(struct fw_priv *fw_priv, long timeout) { struct fw_state *fw_st = &fw_priv->fw_st; long ret; ret = wait_for_completion_killable_timeout(&fw_st->completion, timeout); if (ret != 0 && fw_st->status == FW_STATUS_ABORTED) return -ENOENT; if (!ret) return -ETIMEDOUT; return ret < 0 ? ret : 0; } static inline void __fw_state_set(struct fw_priv *fw_priv, enum fw_status status) { struct fw_state *fw_st = &fw_priv->fw_st; WRITE_ONCE(fw_st->status, status); if (status == FW_STATUS_DONE || status == FW_STATUS_ABORTED) { #ifdef CONFIG_FW_LOADER_USER_HELPER /* * Doing this here ensures that the fw_priv is deleted from * the pending list in all abort/done paths. */ list_del_init(&fw_priv->pending_list); #endif complete_all(&fw_st->completion); } } static inline void fw_state_aborted(struct fw_priv *fw_priv) { __fw_state_set(fw_priv, FW_STATUS_ABORTED); } static inline bool fw_state_is_aborted(struct fw_priv *fw_priv) { return __fw_state_check(fw_priv, FW_STATUS_ABORTED); } static inline void fw_state_start(struct fw_priv *fw_priv) { __fw_state_set(fw_priv, FW_STATUS_LOADING); } static inline void fw_state_done(struct fw_priv *fw_priv) { __fw_state_set(fw_priv, FW_STATUS_DONE); } int assign_fw(struct firmware *fw, struct device *device); #ifdef CONFIG_FW_LOADER_PAGED_BUF void fw_free_paged_buf(struct fw_priv *fw_priv); int fw_grow_paged_buf(struct fw_priv *fw_priv, int pages_needed); int fw_map_paged_buf(struct fw_priv *fw_priv); bool fw_is_paged_buf(struct fw_priv *fw_priv); #else static inline void fw_free_paged_buf(struct fw_priv *fw_priv) {} static inline int fw_grow_paged_buf(struct fw_priv *fw_priv, int pages_needed) { return -ENXIO; } static inline int fw_map_paged_buf(struct fw_priv *fw_priv) { return -ENXIO; } static inline bool fw_is_paged_buf(struct fw_priv *fw_priv) { return false; } #endif #endif /* __FIRMWARE_LOADER_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_PGALLOC_H #define _ASM_X86_PGALLOC_H #include <linux/threads.h> #include <linux/mm.h> /* for struct page */ #include <linux/pagemap.h> #define __HAVE_ARCH_PTE_ALLOC_ONE #define __HAVE_ARCH_PGD_FREE #include <asm-generic/pgalloc.h> static inline int __paravirt_pgd_alloc(struct mm_struct *mm) { return 0; } #ifdef CONFIG_PARAVIRT_XXL #include <asm/paravirt.h> #else #define paravirt_pgd_alloc(mm) __paravirt_pgd_alloc(mm) static inline void paravirt_pgd_free(struct mm_struct *mm, pgd_t *pgd) {} static inline void paravirt_alloc_pte(struct mm_struct *mm, unsigned long pfn) {} static inline void paravirt_alloc_pmd(struct mm_struct *mm, unsigned long pfn) {} static inline void paravirt_alloc_pmd_clone(unsigned long pfn, unsigned long clonepfn, unsigned long start, unsigned long count) {} static inline void paravirt_alloc_pud(struct mm_struct *mm, unsigned long pfn) {} static inline void paravirt_alloc_p4d(struct mm_struct *mm, unsigned long pfn) {} static inline void paravirt_release_pte(unsigned long pfn) {} static inline void paravirt_release_pmd(unsigned long pfn) {} static inline void paravirt_release_pud(unsigned long pfn) {} static inline void paravirt_release_p4d(unsigned long pfn) {} #endif /* * Flags to use when allocating a user page table page. */ extern gfp_t __userpte_alloc_gfp; #ifdef CONFIG_PAGE_TABLE_ISOLATION /* * Instead of one PGD, we acquire two PGDs. Being order-1, it is * both 8k in size and 8k-aligned. That lets us just flip bit 12 * in a pointer to swap between the two 4k halves. */ #define PGD_ALLOCATION_ORDER 1 #else #define PGD_ALLOCATION_ORDER 0 #endif /* * Allocate and free page tables. */ extern pgd_t *pgd_alloc(struct mm_struct *); extern void pgd_free(struct mm_struct *mm, pgd_t *pgd); extern pgtable_t pte_alloc_one(struct mm_struct *); extern void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte); static inline void __pte_free_tlb(struct mmu_gather *tlb, struct page *pte, unsigned long address) { ___pte_free_tlb(tlb, pte); } static inline void pmd_populate_kernel(struct mm_struct *mm, pmd_t *pmd, pte_t *pte) { paravirt_alloc_pte(mm, __pa(pte) >> PAGE_SHIFT); set_pmd(pmd, __pmd(__pa(pte) | _PAGE_TABLE)); } static inline void pmd_populate_kernel_safe(struct mm_struct *mm, pmd_t *pmd, pte_t *pte) { paravirt_alloc_pte(mm, __pa(pte) >> PAGE_SHIFT); set_pmd_safe(pmd, __pmd(__pa(pte) | _PAGE_TABLE)); } static inline void pmd_populate(struct mm_struct *mm, pmd_t *pmd, struct page *pte) { unsigned long pfn = page_to_pfn(pte); paravirt_alloc_pte(mm, pfn); set_pmd(pmd, __pmd(((pteval_t)pfn << PAGE_SHIFT) | _PAGE_TABLE)); } #define pmd_pgtable(pmd) pmd_page(pmd) #if CONFIG_PGTABLE_LEVELS > 2 extern void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd); static inline void __pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd, unsigned long address) { ___pmd_free_tlb(tlb, pmd); } #ifdef CONFIG_X86_PAE extern void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd); #else /* !CONFIG_X86_PAE */ static inline void pud_populate(struct mm_struct *mm, pud_t *pud, pmd_t *pmd) { paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT); set_pud(pud, __pud(_PAGE_TABLE | __pa(pmd))); } static inline void pud_populate_safe(struct mm_struct *mm, pud_t *pud, pmd_t *pmd) { paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT); set_pud_safe(pud, __pud(_PAGE_TABLE | __pa(pmd))); } #endif /* CONFIG_X86_PAE */ #if CONFIG_PGTABLE_LEVELS > 3 static inline void p4d_populate(struct mm_struct *mm, p4d_t *p4d, pud_t *pud) { paravirt_alloc_pud(mm, __pa(pud) >> PAGE_SHIFT); set_p4d(p4d, __p4d(_PAGE_TABLE | __pa(pud))); } static inline void p4d_populate_safe(struct mm_struct *mm, p4d_t *p4d, pud_t *pud) { paravirt_alloc_pud(mm, __pa(pud) >> PAGE_SHIFT); set_p4d_safe(p4d, __p4d(_PAGE_TABLE | __pa(pud))); } extern void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud); static inline void __pud_free_tlb(struct mmu_gather *tlb, pud_t *pud, unsigned long address) { ___pud_free_tlb(tlb, pud); } #if CONFIG_PGTABLE_LEVELS > 4 static inline void pgd_populate(struct mm_struct *mm, pgd_t *pgd, p4d_t *p4d) { if (!pgtable_l5_enabled()) return; paravirt_alloc_p4d(mm, __pa(p4d) >> PAGE_SHIFT); set_pgd(pgd, __pgd(_PAGE_TABLE | __pa(p4d))); } static inline void pgd_populate_safe(struct mm_struct *mm, pgd_t *pgd, p4d_t *p4d) { if (!pgtable_l5_enabled()) return; paravirt_alloc_p4d(mm, __pa(p4d) >> PAGE_SHIFT); set_pgd_safe(pgd, __pgd(_PAGE_TABLE | __pa(p4d))); } static inline p4d_t *p4d_alloc_one(struct mm_struct *mm, unsigned long addr) { gfp_t gfp = GFP_KERNEL_ACCOUNT; if (mm == &init_mm) gfp &= ~__GFP_ACCOUNT; return (p4d_t *)get_zeroed_page(gfp); } static inline void p4d_free(struct mm_struct *mm, p4d_t *p4d) { if (!pgtable_l5_enabled()) return; BUG_ON((unsigned long)p4d & (PAGE_SIZE-1)); free_page((unsigned long)p4d); } extern void ___p4d_free_tlb(struct mmu_gather *tlb, p4d_t *p4d); static inline void __p4d_free_tlb(struct mmu_gather *tlb, p4d_t *p4d, unsigned long address) { if (pgtable_l5_enabled()) ___p4d_free_tlb(tlb, p4d); } #endif /* CONFIG_PGTABLE_LEVELS > 4 */ #endif /* CONFIG_PGTABLE_LEVELS > 3 */ #endif /* CONFIG_PGTABLE_LEVELS > 2 */ #endif /* _ASM_X86_PGALLOC_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __NET_FIB_RULES_H #define __NET_FIB_RULES_H #include <linux/types.h> #include <linux/slab.h> #include <linux/netdevice.h> #include <linux/fib_rules.h> #include <linux/refcount.h> #include <net/flow.h> #include <net/rtnetlink.h> #include <net/fib_notifier.h> #include <linux/indirect_call_wrapper.h> struct fib_kuid_range { kuid_t start; kuid_t end; }; struct fib_rule { struct list_head list; int iifindex; int oifindex; u32 mark; u32 mark_mask; u32 flags; u32 table; u8 action; u8 l3mdev; u8 proto; u8 ip_proto; u32 target; __be64 tun_id; struct fib_rule __rcu *ctarget; struct net *fr_net; refcount_t refcnt; u32 pref; int suppress_ifgroup; int suppress_prefixlen; char iifname[IFNAMSIZ]; char oifname[IFNAMSIZ]; struct fib_kuid_range uid_range; struct fib_rule_port_range sport_range; struct fib_rule_port_range dport_range; struct rcu_head rcu; }; struct fib_lookup_arg { void *lookup_ptr; const void *lookup_data; void *result; struct fib_rule *rule; u32 table; int flags; #define FIB_LOOKUP_NOREF 1 #define FIB_LOOKUP_IGNORE_LINKSTATE 2 }; struct fib_rules_ops { int family; struct list_head list; int rule_size; int addr_size; int unresolved_rules; int nr_goto_rules; unsigned int fib_rules_seq; int (*action)(struct fib_rule *, struct flowi *, int, struct fib_lookup_arg *); bool (*suppress)(struct fib_rule *, int, struct fib_lookup_arg *); int (*match)(struct fib_rule *, struct flowi *, int); int (*configure)(struct fib_rule *, struct sk_buff *, struct fib_rule_hdr *, struct nlattr **, struct netlink_ext_ack *); int (*delete)(struct fib_rule *); int (*compare)(struct fib_rule *, struct fib_rule_hdr *, struct nlattr **); int (*fill)(struct fib_rule *, struct sk_buff *, struct fib_rule_hdr *); size_t (*nlmsg_payload)(struct fib_rule *); /* Called after modifications to the rules set, must flush * the route cache if one exists. */ void (*flush_cache)(struct fib_rules_ops *ops); int nlgroup; const struct nla_policy *policy; struct list_head rules_list; struct module *owner; struct net *fro_net; struct rcu_head rcu; }; struct fib_rule_notifier_info { struct fib_notifier_info info; /* must be first */ struct fib_rule *rule; }; #define FRA_GENERIC_POLICY \ [FRA_UNSPEC] = { .strict_start_type = FRA_DPORT_RANGE + 1 }, \ [FRA_IIFNAME] = { .type = NLA_STRING, .len = IFNAMSIZ - 1 }, \ [FRA_OIFNAME] = { .type = NLA_STRING, .len = IFNAMSIZ - 1 }, \ [FRA_PRIORITY] = { .type = NLA_U32 }, \ [FRA_FWMARK] = { .type = NLA_U32 }, \ [FRA_TUN_ID] = { .type = NLA_U64 }, \ [FRA_FWMASK] = { .type = NLA_U32 }, \ [FRA_TABLE] = { .type = NLA_U32 }, \ [FRA_SUPPRESS_PREFIXLEN] = { .type = NLA_U32 }, \ [FRA_SUPPRESS_IFGROUP] = { .type = NLA_U32 }, \ [FRA_GOTO] = { .type = NLA_U32 }, \ [FRA_L3MDEV] = { .type = NLA_U8 }, \ [FRA_UID_RANGE] = { .len = sizeof(struct fib_rule_uid_range) }, \ [FRA_PROTOCOL] = { .type = NLA_U8 }, \ [FRA_IP_PROTO] = { .type = NLA_U8 }, \ [FRA_SPORT_RANGE] = { .len = sizeof(struct fib_rule_port_range) }, \ [FRA_DPORT_RANGE] = { .len = sizeof(struct fib_rule_port_range) } static inline void fib_rule_get(struct fib_rule *rule) { refcount_inc(&rule->refcnt); } static inline void fib_rule_put(struct fib_rule *rule) { if (refcount_dec_and_test(&rule->refcnt)) kfree_rcu(rule, rcu); } #ifdef CONFIG_NET_L3_MASTER_DEV static inline u32 fib_rule_get_table(struct fib_rule *rule, struct fib_lookup_arg *arg) { return rule->l3mdev ? arg->table : rule->table; } #else static inline u32 fib_rule_get_table(struct fib_rule *rule, struct fib_lookup_arg *arg) { return rule->table; } #endif static inline u32 frh_get_table(struct fib_rule_hdr *frh, struct nlattr **nla) { if (nla[FRA_TABLE]) return nla_get_u32(nla[FRA_TABLE]); return frh->table; } static inline bool fib_rule_port_range_set(const struct fib_rule_port_range *range) { return range->start != 0 && range->end != 0; } static inline bool fib_rule_port_inrange(const struct fib_rule_port_range *a, __be16 port) { return ntohs(port) >= a->start && ntohs(port) <= a->end; } static inline bool fib_rule_port_range_valid(const struct fib_rule_port_range *a) { return a->start != 0 && a->end != 0 && a->end < 0xffff && a->start <= a->end; } static inline bool fib_rule_port_range_compare(struct fib_rule_port_range *a, struct fib_rule_port_range *b) { return a->start == b->start && a->end == b->end; } static inline bool fib_rule_requires_fldissect(struct fib_rule *rule) { return rule->iifindex != LOOPBACK_IFINDEX && (rule->ip_proto || fib_rule_port_range_set(&rule->sport_range) || fib_rule_port_range_set(&rule->dport_range)); } struct fib_rules_ops *fib_rules_register(const struct fib_rules_ops *, struct net *); void fib_rules_unregister(struct fib_rules_ops *); int fib_rules_lookup(struct fib_rules_ops *, struct flowi *, int flags, struct fib_lookup_arg *); int fib_default_rule_add(struct fib_rules_ops *, u32 pref, u32 table, u32 flags); bool fib_rule_matchall(const struct fib_rule *rule); int fib_rules_dump(struct net *net, struct notifier_block *nb, int family, struct netlink_ext_ack *extack); unsigned int fib_rules_seq_read(struct net *net, int family); int fib_nl_newrule(struct sk_buff *skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack); int fib_nl_delrule(struct sk_buff *skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack); INDIRECT_CALLABLE_DECLARE(int fib6_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)); INDIRECT_CALLABLE_DECLARE(int fib4_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)); INDIRECT_CALLABLE_DECLARE(int fib6_rule_action(struct fib_rule *rule, struct flowi *flp, int flags, struct fib_lookup_arg *arg)); INDIRECT_CALLABLE_DECLARE(int fib4_rule_action(struct fib_rule *rule, struct flowi *flp, int flags, struct fib_lookup_arg *arg)); INDIRECT_CALLABLE_DECLARE(bool fib6_rule_suppress(struct fib_rule *rule, int flags, struct fib_lookup_arg *arg)); INDIRECT_CALLABLE_DECLARE(bool fib4_rule_suppress(struct fib_rule *rule, int flags, struct fib_lookup_arg *arg)); #endif
1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 // SPDX-License-Identifier: GPL-2.0 /* * Fast batching percpu counters. */ #include <linux/percpu_counter.h> #include <linux/mutex.h> #include <linux/init.h> #include <linux/cpu.h> #include <linux/module.h> #include <linux/debugobjects.h> #ifdef CONFIG_HOTPLUG_CPU static LIST_HEAD(percpu_counters); static DEFINE_SPINLOCK(percpu_counters_lock); #endif #ifdef CONFIG_DEBUG_OBJECTS_PERCPU_COUNTER static const struct debug_obj_descr percpu_counter_debug_descr; static bool percpu_counter_fixup_free(void *addr, enum debug_obj_state state) { struct percpu_counter *fbc = addr; switch (state) { case ODEBUG_STATE_ACTIVE: percpu_counter_destroy(fbc); debug_object_free(fbc, &percpu_counter_debug_descr); return true; default: return false; } } static const struct debug_obj_descr percpu_counter_debug_descr = { .name = "percpu_counter", .fixup_free = percpu_counter_fixup_free, }; static inline void debug_percpu_counter_activate(struct percpu_counter *fbc) { debug_object_init(fbc, &percpu_counter_debug_descr); debug_object_activate(fbc, &percpu_counter_debug_descr); } static inline void debug_percpu_counter_deactivate(struct percpu_counter *fbc) { debug_object_deactivate(fbc, &percpu_counter_debug_descr); debug_object_free(fbc, &percpu_counter_debug_descr); } #else /* CONFIG_DEBUG_OBJECTS_PERCPU_COUNTER */ static inline void debug_percpu_counter_activate(struct percpu_counter *fbc) { } static inline void debug_percpu_counter_deactivate(struct percpu_counter *fbc) { } #endif /* CONFIG_DEBUG_OBJECTS_PERCPU_COUNTER */ void percpu_counter_set(struct percpu_counter *fbc, s64 amount) { int cpu; unsigned long flags; raw_spin_lock_irqsave(&fbc->lock, flags); for_each_possible_cpu(cpu) { s32 *pcount = per_cpu_ptr(fbc->counters, cpu); *pcount = 0; } fbc->count = amount; raw_spin_unlock_irqrestore(&fbc->lock, flags); } EXPORT_SYMBOL(percpu_counter_set); /** * This function is both preempt and irq safe. The former is due to explicit * preemption disable. The latter is guaranteed by the fact that the slow path * is explicitly protected by an irq-safe spinlock whereas the fast patch uses * this_cpu_add which is irq-safe by definition. Hence there is no need muck * with irq state before calling this one */ void percpu_counter_add_batch(struct percpu_counter *fbc, s64 amount, s32 batch) { s64 count; preempt_disable(); count = __this_cpu_read(*fbc->counters) + amount; if (abs(count) >= batch) { unsigned long flags; raw_spin_lock_irqsave(&fbc->lock, flags); fbc->count += count; __this_cpu_sub(*fbc->counters, count - amount); raw_spin_unlock_irqrestore(&fbc->lock, flags); } else { this_cpu_add(*fbc->counters, amount); } preempt_enable(); } EXPORT_SYMBOL(percpu_counter_add_batch); /* * For percpu_counter with a big batch, the devication of its count could * be big, and there is requirement to reduce the deviation, like when the * counter's batch could be runtime decreased to get a better accuracy, * which can be achieved by running this sync function on each CPU. */ void percpu_counter_sync(struct percpu_counter *fbc) { unsigned long flags; s64 count; raw_spin_lock_irqsave(&fbc->lock, flags); count = __this_cpu_read(*fbc->counters); fbc->count += count; __this_cpu_sub(*fbc->counters, count); raw_spin_unlock_irqrestore(&fbc->lock, flags); } EXPORT_SYMBOL(percpu_counter_sync); /* * Add up all the per-cpu counts, return the result. This is a more accurate * but much slower version of percpu_counter_read_positive() */ s64 __percpu_counter_sum(struct percpu_counter *fbc) { s64 ret; int cpu; unsigned long flags; raw_spin_lock_irqsave(&fbc->lock, flags); ret = fbc->count; for_each_online_cpu(cpu) { s32 *pcount = per_cpu_ptr(fbc->counters, cpu); ret += *pcount; } raw_spin_unlock_irqrestore(&fbc->lock, flags); return ret; } EXPORT_SYMBOL(__percpu_counter_sum); int __percpu_counter_init(struct percpu_counter *fbc, s64 amount, gfp_t gfp, struct lock_class_key *key) { unsigned long flags __maybe_unused; raw_spin_lock_init(&fbc->lock); lockdep_set_class(&fbc->lock, key); fbc->count = amount; fbc->counters = alloc_percpu_gfp(s32, gfp); if (!fbc->counters) return -ENOMEM; debug_percpu_counter_activate(fbc); #ifdef CONFIG_HOTPLUG_CPU INIT_LIST_HEAD(&fbc->list); spin_lock_irqsave(&percpu_counters_lock, flags); list_add(&fbc->list, &percpu_counters); spin_unlock_irqrestore(&percpu_counters_lock, flags); #endif return 0; } EXPORT_SYMBOL(__percpu_counter_init); void percpu_counter_destroy(struct percpu_counter *fbc) { unsigned long flags __maybe_unused; if (!fbc->counters) return; debug_percpu_counter_deactivate(fbc); #ifdef CONFIG_HOTPLUG_CPU spin_lock_irqsave(&percpu_counters_lock, flags); list_del(&fbc->list); spin_unlock_irqrestore(&percpu_counters_lock, flags); #endif free_percpu(fbc->counters); fbc->counters = NULL; } EXPORT_SYMBOL(percpu_counter_destroy); int percpu_counter_batch __read_mostly = 32; EXPORT_SYMBOL(percpu_counter_batch); static int compute_batch_value(unsigned int cpu) { int nr = num_online_cpus(); percpu_counter_batch = max(32, nr*2); return 0; } static int percpu_counter_cpu_dead(unsigned int cpu) { #ifdef CONFIG_HOTPLUG_CPU struct percpu_counter *fbc; compute_batch_value(cpu); spin_lock_irq(&percpu_counters_lock); list_for_each_entry(fbc, &percpu_counters, list) { s32 *pcount; raw_spin_lock(&fbc->lock); pcount = per_cpu_ptr(fbc->counters, cpu); fbc->count += *pcount; *pcount = 0; raw_spin_unlock(&fbc->lock); } spin_unlock_irq(&percpu_counters_lock); #endif return 0; } /* * Compare counter against given value. * Return 1 if greater, 0 if equal and -1 if less */ int __percpu_counter_compare(struct percpu_counter *fbc, s64 rhs, s32 batch) { s64 count; count = percpu_counter_read(fbc); /* Check to see if rough count will be sufficient for comparison */ if (abs(count - rhs) > (batch * num_online_cpus())) { if (count > rhs) return 1; else return -1; } /* Need to use precise count */ count = percpu_counter_sum(fbc); if (count > rhs) return 1; else if (count < rhs) return -1; else return 0; } EXPORT_SYMBOL(__percpu_counter_compare); static int __init percpu_counter_startup(void) { int ret; ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "lib/percpu_cnt:online", compute_batch_value, NULL); WARN_ON(ret < 0); ret = cpuhp_setup_state_nocalls(CPUHP_PERCPU_CNT_DEAD, "lib/percpu_cnt:dead", NULL, percpu_counter_cpu_dead); WARN_ON(ret < 0); return 0; } module_init(percpu_counter_startup);
1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 /* SPDX-License-Identifier: GPL-2.0 */ /* * descriptor table internals; you almost certainly want file.h instead. */ #ifndef __LINUX_FDTABLE_H #define __LINUX_FDTABLE_H #include <linux/posix_types.h> #include <linux/compiler.h> #include <linux/spinlock.h> #include <linux/rcupdate.h> #include <linux/nospec.h> #include <linux/types.h> #include <linux/init.h> #include <linux/fs.h> #include <linux/atomic.h> /* * The default fd array needs to be at least BITS_PER_LONG, * as this is the granularity returned by copy_fdset(). */ #define NR_OPEN_DEFAULT BITS_PER_LONG #define NR_OPEN_MAX ~0U struct fdtable { unsigned int max_fds; struct file __rcu **fd; /* current fd array */ unsigned long *close_on_exec; unsigned long *open_fds; unsigned long *full_fds_bits; struct rcu_head rcu; }; static inline bool close_on_exec(unsigned int fd, const struct fdtable *fdt) { return test_bit(fd, fdt->close_on_exec); } static inline bool fd_is_open(unsigned int fd, const struct fdtable *fdt) { return test_bit(fd, fdt->open_fds); } /* * Open file table structure */ struct files_struct { /* * read mostly part */ atomic_t count; bool resize_in_progress; wait_queue_head_t resize_wait; struct fdtable __rcu *fdt; struct fdtable fdtab; /* * written part on a separate cache line in SMP */ spinlock_t file_lock ____cacheline_aligned_in_smp; unsigned int next_fd; unsigned long close_on_exec_init[1]; unsigned long open_fds_init[1]; unsigned long full_fds_bits_init[1]; struct file __rcu * fd_array[NR_OPEN_DEFAULT]; }; struct file_operations; struct vfsmount; struct dentry; #define rcu_dereference_check_fdtable(files, fdtfd) \ rcu_dereference_check((fdtfd), lockdep_is_held(&(files)->file_lock)) #define files_fdtable(files) \ rcu_dereference_check_fdtable((files), (files)->fdt) /* * The caller must ensure that fd table isn't shared or hold rcu or file lock */ static inline struct file *__fcheck_files(struct files_struct *files, unsigned int fd) { struct fdtable *fdt = rcu_dereference_raw(files->fdt); if (fd < fdt->max_fds) { fd = array_index_nospec(fd, fdt->max_fds); return rcu_dereference_raw(fdt->fd[fd]); } return NULL; } static inline struct file *fcheck_files(struct files_struct *files, unsigned int fd) { RCU_LOCKDEP_WARN(!rcu_read_lock_held() && !lockdep_is_held(&files->file_lock), "suspicious rcu_dereference_check() usage"); return __fcheck_files(files, fd); } /* * Check whether the specified fd has an open file. */ #define fcheck(fd) fcheck_files(current->files, fd) struct task_struct; struct files_struct *get_files_struct(struct task_struct *); void put_files_struct(struct files_struct *fs); void reset_files_struct(struct files_struct *); int unshare_files(struct files_struct **); struct files_struct *dup_fd(struct files_struct *, unsigned, int *) __latent_entropy; void do_close_on_exec(struct files_struct *); int iterate_fd(struct files_struct *, unsigned, int (*)(const void *, struct file *, unsigned), const void *); extern int __alloc_fd(struct files_struct *files, unsigned start, unsigned end, unsigned flags); extern void __fd_install(struct files_struct *files, unsigned int fd, struct file *file); extern int __close_fd(struct files_struct *files, unsigned int fd); extern int __close_range(unsigned int fd, unsigned int max_fd, unsigned int flags); extern int __close_fd_get_file(unsigned int fd, struct file **res); extern int unshare_fd(unsigned long unshare_flags, unsigned int max_fds, struct files_struct **new_fdp); extern struct kmem_cache *files_cachep; #endif /* __LINUX_FDTABLE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 /* SPDX-License-Identifier: GPL-2.0 */ /* * Because linux/module.h has tracepoints in the header, and ftrace.h * used to include this file, define_trace.h includes linux/module.h * But we do not want the module.h to override the TRACE_SYSTEM macro * variable that define_trace.h is processing, so we only set it * when module events are being processed, which would happen when * CREATE_TRACE_POINTS is defined. */ #ifdef CREATE_TRACE_POINTS #undef TRACE_SYSTEM #define TRACE_SYSTEM module #endif #if !defined(_TRACE_MODULE_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_MODULE_H #include <linux/tracepoint.h> #ifdef CONFIG_MODULES struct module; #define show_module_flags(flags) __print_flags(flags, "", \ { (1UL << TAINT_PROPRIETARY_MODULE), "P" }, \ { (1UL << TAINT_OOT_MODULE), "O" }, \ { (1UL << TAINT_FORCED_MODULE), "F" }, \ { (1UL << TAINT_CRAP), "C" }, \ { (1UL << TAINT_UNSIGNED_MODULE), "E" }) TRACE_EVENT(module_load, TP_PROTO(struct module *mod), TP_ARGS(mod), TP_STRUCT__entry( __field( unsigned int, taints ) __string( name, mod->name ) ), TP_fast_assign( __entry->taints = mod->taints; __assign_str(name, mod->name); ), TP_printk("%s %s", __get_str(name), show_module_flags(__entry->taints)) ); TRACE_EVENT(module_free, TP_PROTO(struct module *mod), TP_ARGS(mod), TP_STRUCT__entry( __string( name, mod->name ) ), TP_fast_assign( __assign_str(name, mod->name); ), TP_printk("%s", __get_str(name)) ); #ifdef CONFIG_MODULE_UNLOAD /* trace_module_get/put are only used if CONFIG_MODULE_UNLOAD is defined */ DECLARE_EVENT_CLASS(module_refcnt, TP_PROTO(struct module *mod, unsigned long ip), TP_ARGS(mod, ip), TP_STRUCT__entry( __field( unsigned long, ip ) __field( int, refcnt ) __string( name, mod->name ) ), TP_fast_assign( __entry->ip = ip; __entry->refcnt = atomic_read(&mod->refcnt); __assign_str(name, mod->name); ), TP_printk("%s call_site=%ps refcnt=%d", __get_str(name), (void *)__entry->ip, __entry->refcnt) ); DEFINE_EVENT(module_refcnt, module_get, TP_PROTO(struct module *mod, unsigned long ip), TP_ARGS(mod, ip) ); DEFINE_EVENT(module_refcnt, module_put, TP_PROTO(struct module *mod, unsigned long ip), TP_ARGS(mod, ip) ); #endif /* CONFIG_MODULE_UNLOAD */ TRACE_EVENT(module_request, TP_PROTO(char *name, bool wait, unsigned long ip), TP_ARGS(name, wait, ip), TP_STRUCT__entry( __field( unsigned long, ip ) __field( bool, wait ) __string( name, name ) ), TP_fast_assign( __entry->ip = ip; __entry->wait = wait; __assign_str(name, name); ), TP_printk("%s wait=%d call_site=%ps", __get_str(name), (int)__entry->wait, (void *)__entry->ip) ); #endif /* CONFIG_MODULES */ #endif /* _TRACE_MODULE_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 /* SPDX-License-Identifier: GPL-2.0 */ /* * Statically sized hash table implementation * (C) 2012 Sasha Levin <levinsasha928@gmail.com> */ #ifndef _LINUX_HASHTABLE_H #define _LINUX_HASHTABLE_H #include <linux/list.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/hash.h> #include <linux/rculist.h> #define DEFINE_HASHTABLE(name, bits) \ struct hlist_head name[1 << (bits)] = \ { [0 ... ((1 << (bits)) - 1)] = HLIST_HEAD_INIT } #define DEFINE_READ_MOSTLY_HASHTABLE(name, bits) \ struct hlist_head name[1 << (bits)] __read_mostly = \ { [0 ... ((1 << (bits)) - 1)] = HLIST_HEAD_INIT } #define DECLARE_HASHTABLE(name, bits) \ struct hlist_head name[1 << (bits)] #define HASH_SIZE(name) (ARRAY_SIZE(name)) #define HASH_BITS(name) ilog2(HASH_SIZE(name)) /* Use hash_32 when possible to allow for fast 32bit hashing in 64bit kernels. */ #define hash_min(val, bits) \ (sizeof(val) <= 4 ? hash_32(val, bits) : hash_long(val, bits)) static inline void __hash_init(struct hlist_head *ht, unsigned int sz) { unsigned int i; for (i = 0; i < sz; i++) INIT_HLIST_HEAD(&ht[i]); } /** * hash_init - initialize a hash table * @hashtable: hashtable to be initialized * * Calculates the size of the hashtable from the given parameter, otherwise * same as hash_init_size. * * This has to be a macro since HASH_BITS() will not work on pointers since * it calculates the size during preprocessing. */ #define hash_init(hashtable) __hash_init(hashtable, HASH_SIZE(hashtable)) /** * hash_add - add an object to a hashtable * @hashtable: hashtable to add to * @node: the &struct hlist_node of the object to be added * @key: the key of the object to be added */ #define hash_add(hashtable, node, key) \ hlist_add_head(node, &hashtable[hash_min(key, HASH_BITS(hashtable))]) /** * hash_add_rcu - add an object to a rcu enabled hashtable * @hashtable: hashtable to add to * @node: the &struct hlist_node of the object to be added * @key: the key of the object to be added */ #define hash_add_rcu(hashtable, node, key) \ hlist_add_head_rcu(node, &hashtable[hash_min(key, HASH_BITS(hashtable))]) /** * hash_hashed - check whether an object is in any hashtable * @node: the &struct hlist_node of the object to be checked */ static inline bool hash_hashed(struct hlist_node *node) { return !hlist_unhashed(node); } static inline bool __hash_empty(struct hlist_head *ht, unsigned int sz) { unsigned int i; for (i = 0; i < sz; i++) if (!hlist_empty(&ht[i])) return false; return true; } /** * hash_empty - check whether a hashtable is empty * @hashtable: hashtable to check * * This has to be a macro since HASH_BITS() will not work on pointers since * it calculates the size during preprocessing. */ #define hash_empty(hashtable) __hash_empty(hashtable, HASH_SIZE(hashtable)) /** * hash_del - remove an object from a hashtable * @node: &struct hlist_node of the object to remove */ static inline void hash_del(struct hlist_node *node) { hlist_del_init(node); } /** * hash_del_rcu - remove an object from a rcu enabled hashtable * @node: &struct hlist_node of the object to remove */ static inline void hash_del_rcu(struct hlist_node *node) { hlist_del_init_rcu(node); } /** * hash_for_each - iterate over a hashtable * @name: hashtable to iterate * @bkt: integer to use as bucket loop cursor * @obj: the type * to use as a loop cursor for each entry * @member: the name of the hlist_node within the struct */ #define hash_for_each(name, bkt, obj, member) \ for ((bkt) = 0, obj = NULL; obj == NULL && (bkt) < HASH_SIZE(name);\ (bkt)++)\ hlist_for_each_entry(obj, &name[bkt], member) /** * hash_for_each_rcu - iterate over a rcu enabled hashtable * @name: hashtable to iterate * @bkt: integer to use as bucket loop cursor * @obj: the type * to use as a loop cursor for each entry * @member: the name of the hlist_node within the struct */ #define hash_for_each_rcu(name, bkt, obj, member) \ for ((bkt) = 0, obj = NULL; obj == NULL && (bkt) < HASH_SIZE(name);\ (bkt)++)\ hlist_for_each_entry_rcu(obj, &name[bkt], member) /** * hash_for_each_safe - iterate over a hashtable safe against removal of * hash entry * @name: hashtable to iterate * @bkt: integer to use as bucket loop cursor * @tmp: a &struct hlist_node used for temporary storage * @obj: the type * to use as a loop cursor for each entry * @member: the name of the hlist_node within the struct */ #define hash_for_each_safe(name, bkt, tmp, obj, member) \ for ((bkt) = 0, obj = NULL; obj == NULL && (bkt) < HASH_SIZE(name);\ (bkt)++)\ hlist_for_each_entry_safe(obj, tmp, &name[bkt], member) /** * hash_for_each_possible - iterate over all possible objects hashing to the * same bucket * @name: hashtable to iterate * @obj: the type * to use as a loop cursor for each entry * @member: the name of the hlist_node within the struct * @key: the key of the objects to iterate over */ #define hash_for_each_possible(name, obj, member, key) \ hlist_for_each_entry(obj, &name[hash_min(key, HASH_BITS(name))], member) /** * hash_for_each_possible_rcu - iterate over all possible objects hashing to the * same bucket in an rcu enabled hashtable * @name: hashtable to iterate * @obj: the type * to use as a loop cursor for each entry * @member: the name of the hlist_node within the struct * @key: the key of the objects to iterate over */ #define hash_for_each_possible_rcu(name, obj, member, key, cond...) \ hlist_for_each_entry_rcu(obj, &name[hash_min(key, HASH_BITS(name))],\ member, ## cond) /** * hash_for_each_possible_rcu_notrace - iterate over all possible objects hashing * to the same bucket in an rcu enabled hashtable in a rcu enabled hashtable * @name: hashtable to iterate * @obj: the type * to use as a loop cursor for each entry * @member: the name of the hlist_node within the struct * @key: the key of the objects to iterate over * * This is the same as hash_for_each_possible_rcu() except that it does * not do any RCU debugging or tracing. */ #define hash_for_each_possible_rcu_notrace(name, obj, member, key) \ hlist_for_each_entry_rcu_notrace(obj, \ &name[hash_min(key, HASH_BITS(name))], member) /** * hash_for_each_possible_safe - iterate over all possible objects hashing to the * same bucket safe against removals * @name: hashtable to iterate * @obj: the type * to use as a loop cursor for each entry * @tmp: a &struct hlist_node used for temporary storage * @member: the name of the hlist_node within the struct * @key: the key of the objects to iterate over */ #define hash_for_each_possible_safe(name, obj, tmp, member, key) \ hlist_for_each_entry_safe(obj, tmp,\ &name[hash_min(key, HASH_BITS(name))], member) #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 /* SPDX-License-Identifier: GPL-2.0 */ /* Freezer declarations */ #ifndef FREEZER_H_INCLUDED #define FREEZER_H_INCLUDED #include <linux/debug_locks.h> #include <linux/sched.h> #include <linux/wait.h> #include <linux/atomic.h> #ifdef CONFIG_FREEZER extern atomic_t system_freezing_cnt; /* nr of freezing conds in effect */ extern bool pm_freezing; /* PM freezing in effect */ extern bool pm_nosig_freezing; /* PM nosig freezing in effect */ /* * Timeout for stopping processes */ extern unsigned int freeze_timeout_msecs; /* * Check if a process has been frozen */ static inline bool frozen(struct task_struct *p) { return p->flags & PF_FROZEN; } extern bool freezing_slow_path(struct task_struct *p); /* * Check if there is a request to freeze a process */ static inline bool freezing(struct task_struct *p) { if (likely(!atomic_read(&system_freezing_cnt))) return false; return freezing_slow_path(p); } /* Takes and releases task alloc lock using task_lock() */ extern void __thaw_task(struct task_struct *t); extern bool __refrigerator(bool check_kthr_stop); extern int freeze_processes(void); extern int freeze_kernel_threads(void); extern void thaw_processes(void); extern void thaw_kernel_threads(void); /* * DO NOT ADD ANY NEW CALLERS OF THIS FUNCTION * If try_to_freeze causes a lockdep warning it means the caller may deadlock */ static inline bool try_to_freeze_unsafe(void) { might_sleep(); if (likely(!freezing(current))) return false; return __refrigerator(false); } static inline bool try_to_freeze(void) { if (!(current->flags & PF_NOFREEZE)) debug_check_no_locks_held(); return try_to_freeze_unsafe(); } extern bool freeze_task(struct task_struct *p); extern bool set_freezable(void); #ifdef CONFIG_CGROUP_FREEZER extern bool cgroup_freezing(struct task_struct *task); #else /* !CONFIG_CGROUP_FREEZER */ static inline bool cgroup_freezing(struct task_struct *task) { return false; } #endif /* !CONFIG_CGROUP_FREEZER */ /* * The PF_FREEZER_SKIP flag should be set by a vfork parent right before it * calls wait_for_completion(&vfork) and reset right after it returns from this * function. Next, the parent should call try_to_freeze() to freeze itself * appropriately in case the child has exited before the freezing of tasks is * complete. However, we don't want kernel threads to be frozen in unexpected * places, so we allow them to block freeze_processes() instead or to set * PF_NOFREEZE if needed. Fortunately, in the ____call_usermodehelper() case the * parent won't really block freeze_processes(), since ____call_usermodehelper() * (the child) does a little before exec/exit and it can't be frozen before * waking up the parent. */ /** * freezer_do_not_count - tell freezer to ignore %current * * Tell freezers to ignore the current task when determining whether the * target frozen state is reached. IOW, the current task will be * considered frozen enough by freezers. * * The caller shouldn't do anything which isn't allowed for a frozen task * until freezer_cont() is called. Usually, freezer[_do_not]_count() pair * wrap a scheduling operation and nothing much else. */ static inline void freezer_do_not_count(void) { current->flags |= PF_FREEZER_SKIP; } /** * freezer_count - tell freezer to stop ignoring %current * * Undo freezer_do_not_count(). It tells freezers that %current should be * considered again and tries to freeze if freezing condition is already in * effect. */ static inline void freezer_count(void) { current->flags &= ~PF_FREEZER_SKIP; /* * If freezing is in progress, the following paired with smp_mb() * in freezer_should_skip() ensures that either we see %true * freezing() or freezer_should_skip() sees !PF_FREEZER_SKIP. */ smp_mb(); try_to_freeze(); } /* DO NOT ADD ANY NEW CALLERS OF THIS FUNCTION */ static inline void freezer_count_unsafe(void) { current->flags &= ~PF_FREEZER_SKIP; smp_mb(); try_to_freeze_unsafe(); } /** * freezer_should_skip - whether to skip a task when determining frozen * state is reached * @p: task in quesion * * This function is used by freezers after establishing %true freezing() to * test whether a task should be skipped when determining the target frozen * state is reached. IOW, if this function returns %true, @p is considered * frozen enough. */ static inline bool freezer_should_skip(struct task_struct *p) { /* * The following smp_mb() paired with the one in freezer_count() * ensures that either freezer_count() sees %true freezing() or we * see cleared %PF_FREEZER_SKIP and return %false. This makes it * impossible for a task to slip frozen state testing after * clearing %PF_FREEZER_SKIP. */ smp_mb(); return p->flags & PF_FREEZER_SKIP; } /* * These functions are intended to be used whenever you want allow a sleeping * task to be frozen. Note that neither return any clear indication of * whether a freeze event happened while in this function. */ /* Like schedule(), but should not block the freezer. */ static inline void freezable_schedule(void) { freezer_do_not_count(); schedule(); freezer_count(); } /* DO NOT ADD ANY NEW CALLERS OF THIS FUNCTION */ static inline void freezable_schedule_unsafe(void) { freezer_do_not_count(); schedule(); freezer_count_unsafe(); } /* * Like schedule_timeout(), but should not block the freezer. Do not * call this with locks held. */ static inline long freezable_schedule_timeout(long timeout) { long __retval; freezer_do_not_count(); __retval = schedule_timeout(timeout); freezer_count(); return __retval; } /* * Like schedule_timeout_interruptible(), but should not block the freezer. Do not * call this with locks held. */ static inline long freezable_schedule_timeout_interruptible(long timeout) { long __retval; freezer_do_not_count(); __retval = schedule_timeout_interruptible(timeout); freezer_count(); return __retval; } /* DO NOT ADD ANY NEW CALLERS OF THIS FUNCTION */ static inline long freezable_schedule_timeout_interruptible_unsafe(long timeout) { long __retval; freezer_do_not_count(); __retval = schedule_timeout_interruptible(timeout); freezer_count_unsafe(); return __retval; } /* Like schedule_timeout_killable(), but should not block the freezer. */ static inline long freezable_schedule_timeout_killable(long timeout) { long __retval; freezer_do_not_count(); __retval = schedule_timeout_killable(timeout); freezer_count(); return __retval; } /* DO NOT ADD ANY NEW CALLERS OF THIS FUNCTION */ static inline long freezable_schedule_timeout_killable_unsafe(long timeout) { long __retval; freezer_do_not_count(); __retval = schedule_timeout_killable(timeout); freezer_count_unsafe(); return __retval; } /* * Like schedule_hrtimeout_range(), but should not block the freezer. Do not * call this with locks held. */ static inline int freezable_schedule_hrtimeout_range(ktime_t *expires, u64 delta, const enum hrtimer_mode mode) { int __retval; freezer_do_not_count(); __retval = schedule_hrtimeout_range(expires, delta, mode); freezer_count(); return __retval; } /* * Freezer-friendly wrappers around wait_event_interruptible(), * wait_event_killable() and wait_event_interruptible_timeout(), originally * defined in <linux/wait.h> */ /* DO NOT ADD ANY NEW CALLERS OF THIS FUNCTION */ #define wait_event_freezekillable_unsafe(wq, condition) \ ({ \ int __retval; \ freezer_do_not_count(); \ __retval = wait_event_killable(wq, (condition)); \ freezer_count_unsafe(); \ __retval; \ }) #else /* !CONFIG_FREEZER */ static inline bool frozen(struct task_struct *p) { return false; } static inline bool freezing(struct task_struct *p) { return false; } static inline void __thaw_task(struct task_struct *t) {} static inline bool __refrigerator(bool check_kthr_stop) { return false; } static inline int freeze_processes(void) { return -ENOSYS; } static inline int freeze_kernel_threads(void) { return -ENOSYS; } static inline void thaw_processes(void) {} static inline void thaw_kernel_threads(void) {} static inline bool try_to_freeze_nowarn(void) { return false; } static inline bool try_to_freeze(void) { return false; } static inline void freezer_do_not_count(void) {} static inline void freezer_count(void) {} static inline int freezer_should_skip(struct task_struct *p) { return 0; } static inline void set_freezable(void) {} #define freezable_schedule() schedule() #define freezable_schedule_unsafe() schedule() #define freezable_schedule_timeout(timeout) schedule_timeout(timeout) #define freezable_schedule_timeout_interruptible(timeout) \ schedule_timeout_interruptible(timeout) #define freezable_schedule_timeout_interruptible_unsafe(timeout) \ schedule_timeout_interruptible(timeout) #define freezable_schedule_timeout_killable(timeout) \ schedule_timeout_killable(timeout) #define freezable_schedule_timeout_killable_unsafe(timeout) \ schedule_timeout_killable(timeout) #define freezable_schedule_hrtimeout_range(expires, delta, mode) \ schedule_hrtimeout_range(expires, delta, mode) #define wait_event_freezekillable_unsafe(wq, condition) \ wait_event_killable(wq, condition) #endif /* !CONFIG_FREEZER */ #endif /* FREEZER_H_INCLUDED */
1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 // SPDX-License-Identifier: GPL-2.0-only /* * Generic hugetlb support. * (C) Nadia Yvette Chambers, April 2004 */ #include <linux/list.h> #include <linux/init.h> #include <linux/mm.h> #include <linux/seq_file.h> #include <linux/sysctl.h> #include <linux/highmem.h> #include <linux/mmu_notifier.h> #include <linux/nodemask.h> #include <linux/pagemap.h> #include <linux/mempolicy.h> #include <linux/compiler.h> #include <linux/cpuset.h> #include <linux/mutex.h> #include <linux/memblock.h> #include <linux/sysfs.h> #include <linux/slab.h> #include <linux/sched/mm.h> #include <linux/mmdebug.h> #include <linux/sched/signal.h> #include <linux/rmap.h> #include <linux/string_helpers.h> #include <linux/swap.h> #include <linux/swapops.h> #include <linux/jhash.h> #include <linux/numa.h> #include <linux/llist.h> #include <linux/cma.h> #include <asm/page.h> #include <asm/pgalloc.h> #include <asm/tlb.h> #include <linux/io.h> #include <linux/hugetlb.h> #include <linux/hugetlb_cgroup.h> #include <linux/node.h> #include <linux/userfaultfd_k.h> #include <linux/page_owner.h> #include "internal.h" int hugetlb_max_hstate __read_mostly; unsigned int default_hstate_idx; struct hstate hstates[HUGE_MAX_HSTATE]; #ifdef CONFIG_CMA static struct cma *hugetlb_cma[MAX_NUMNODES]; #endif static unsigned long hugetlb_cma_size __initdata; /* * Minimum page order among possible hugepage sizes, set to a proper value * at boot time. */ static unsigned int minimum_order __read_mostly = UINT_MAX; __initdata LIST_HEAD(huge_boot_pages); /* for command line parsing */ static struct hstate * __initdata parsed_hstate; static unsigned long __initdata default_hstate_max_huge_pages; static bool __initdata parsed_valid_hugepagesz = true; static bool __initdata parsed_default_hugepagesz; /* * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, * free_huge_pages, and surplus_huge_pages. */ DEFINE_SPINLOCK(hugetlb_lock); /* * Serializes faults on the same logical page. This is used to * prevent spurious OOMs when the hugepage pool is fully utilized. */ static int num_fault_mutexes; struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; static inline bool PageHugeFreed(struct page *head) { return page_private(head + 4) == -1UL; } static inline void SetPageHugeFreed(struct page *head) { set_page_private(head + 4, -1UL); } static inline void ClearPageHugeFreed(struct page *head) { set_page_private(head + 4, 0); } /* Forward declaration */ static int hugetlb_acct_memory(struct hstate *h, long delta); static inline void unlock_or_release_subpool(struct hugepage_subpool *spool) { bool free = (spool->count == 0) && (spool->used_hpages == 0); spin_unlock(&spool->lock); /* If no pages are used, and no other handles to the subpool * remain, give up any reservations based on minimum size and * free the subpool */ if (free) { if (spool->min_hpages != -1) hugetlb_acct_memory(spool->hstate, -spool->min_hpages); kfree(spool); } } struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, long min_hpages) { struct hugepage_subpool *spool; spool = kzalloc(sizeof(*spool), GFP_KERNEL); if (!spool) return NULL; spin_lock_init(&spool->lock); spool->count = 1; spool->max_hpages = max_hpages; spool->hstate = h; spool->min_hpages = min_hpages; if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { kfree(spool); return NULL; } spool->rsv_hpages = min_hpages; return spool; } void hugepage_put_subpool(struct hugepage_subpool *spool) { spin_lock(&spool->lock); BUG_ON(!spool->count); spool->count--; unlock_or_release_subpool(spool); } /* * Subpool accounting for allocating and reserving pages. * Return -ENOMEM if there are not enough resources to satisfy the * request. Otherwise, return the number of pages by which the * global pools must be adjusted (upward). The returned value may * only be different than the passed value (delta) in the case where * a subpool minimum size must be maintained. */ static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, long delta) { long ret = delta; if (!spool) return ret; spin_lock(&spool->lock); if (spool->max_hpages != -1) { /* maximum size accounting */ if ((spool->used_hpages + delta) <= spool->max_hpages) spool->used_hpages += delta; else { ret = -ENOMEM; goto unlock_ret; } } /* minimum size accounting */ if (spool->min_hpages != -1 && spool->rsv_hpages) { if (delta > spool->rsv_hpages) { /* * Asking for more reserves than those already taken on * behalf of subpool. Return difference. */ ret = delta - spool->rsv_hpages; spool->rsv_hpages = 0; } else { ret = 0; /* reserves already accounted for */ spool->rsv_hpages -= delta; } } unlock_ret: spin_unlock(&spool->lock); return ret; } /* * Subpool accounting for freeing and unreserving pages. * Return the number of global page reservations that must be dropped. * The return value may only be different than the passed value (delta) * in the case where a subpool minimum size must be maintained. */ static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, long delta) { long ret = delta; if (!spool) return delta; spin_lock(&spool->lock); if (spool->max_hpages != -1) /* maximum size accounting */ spool->used_hpages -= delta; /* minimum size accounting */ if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { if (spool->rsv_hpages + delta <= spool->min_hpages) ret = 0; else ret = spool->rsv_hpages + delta - spool->min_hpages; spool->rsv_hpages += delta; if (spool->rsv_hpages > spool->min_hpages) spool->rsv_hpages = spool->min_hpages; } /* * If hugetlbfs_put_super couldn't free spool due to an outstanding * quota reference, free it now. */ unlock_or_release_subpool(spool); return ret; } static inline struct hugepage_subpool *subpool_inode(struct inode *inode) { return HUGETLBFS_SB(inode->i_sb)->spool; } static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) { return subpool_inode(file_inode(vma->vm_file)); } /* Helper that removes a struct file_region from the resv_map cache and returns * it for use. */ static struct file_region * get_file_region_entry_from_cache(struct resv_map *resv, long from, long to) { struct file_region *nrg = NULL; VM_BUG_ON(resv->region_cache_count <= 0); resv->region_cache_count--; nrg = list_first_entry(&resv->region_cache, struct file_region, link); list_del(&nrg->link); nrg->from = from; nrg->to = to; return nrg; } static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg, struct file_region *rg) { #ifdef CONFIG_CGROUP_HUGETLB nrg->reservation_counter = rg->reservation_counter; nrg->css = rg->css; if (rg->css) css_get(rg->css); #endif } /* Helper that records hugetlb_cgroup uncharge info. */ static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, struct hstate *h, struct resv_map *resv, struct file_region *nrg) { #ifdef CONFIG_CGROUP_HUGETLB if (h_cg) { nrg->reservation_counter = &h_cg->rsvd_hugepage[hstate_index(h)]; nrg->css = &h_cg->css; /* * The caller will hold exactly one h_cg->css reference for the * whole contiguous reservation region. But this area might be * scattered when there are already some file_regions reside in * it. As a result, many file_regions may share only one css * reference. In order to ensure that one file_region must hold * exactly one h_cg->css reference, we should do css_get for * each file_region and leave the reference held by caller * untouched. */ css_get(&h_cg->css); if (!resv->pages_per_hpage) resv->pages_per_hpage = pages_per_huge_page(h); /* pages_per_hpage should be the same for all entries in * a resv_map. */ VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h)); } else { nrg->reservation_counter = NULL; nrg->css = NULL; } #endif } static void put_uncharge_info(struct file_region *rg) { #ifdef CONFIG_CGROUP_HUGETLB if (rg->css) css_put(rg->css); #endif } static bool has_same_uncharge_info(struct file_region *rg, struct file_region *org) { #ifdef CONFIG_CGROUP_HUGETLB return rg && org && rg->reservation_counter == org->reservation_counter && rg->css == org->css; #else return true; #endif } static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) { struct file_region *nrg = NULL, *prg = NULL; prg = list_prev_entry(rg, link); if (&prg->link != &resv->regions && prg->to == rg->from && has_same_uncharge_info(prg, rg)) { prg->to = rg->to; list_del(&rg->link); put_uncharge_info(rg); kfree(rg); rg = prg; } nrg = list_next_entry(rg, link); if (&nrg->link != &resv->regions && nrg->from == rg->to && has_same_uncharge_info(nrg, rg)) { nrg->from = rg->from; list_del(&rg->link); put_uncharge_info(rg); kfree(rg); } } /* * Must be called with resv->lock held. * * Calling this with regions_needed != NULL will count the number of pages * to be added but will not modify the linked list. And regions_needed will * indicate the number of file_regions needed in the cache to carry out to add * the regions for this range. */ static long add_reservation_in_range(struct resv_map *resv, long f, long t, struct hugetlb_cgroup *h_cg, struct hstate *h, long *regions_needed) { long add = 0; struct list_head *head = &resv->regions; long last_accounted_offset = f; struct file_region *rg = NULL, *trg = NULL, *nrg = NULL; if (regions_needed) *regions_needed = 0; /* In this loop, we essentially handle an entry for the range * [last_accounted_offset, rg->from), at every iteration, with some * bounds checking. */ list_for_each_entry_safe(rg, trg, head, link) { /* Skip irrelevant regions that start before our range. */ if (rg->from < f) { /* If this region ends after the last accounted offset, * then we need to update last_accounted_offset. */ if (rg->to > last_accounted_offset) last_accounted_offset = rg->to; continue; } /* When we find a region that starts beyond our range, we've * finished. */ if (rg->from > t) break; /* Add an entry for last_accounted_offset -> rg->from, and * update last_accounted_offset. */ if (rg->from > last_accounted_offset) { add += rg->from - last_accounted_offset; if (!regions_needed) { nrg = get_file_region_entry_from_cache( resv, last_accounted_offset, rg->from); record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg); list_add(&nrg->link, rg->link.prev); coalesce_file_region(resv, nrg); } else *regions_needed += 1; } last_accounted_offset = rg->to; } /* Handle the case where our range extends beyond * last_accounted_offset. */ if (last_accounted_offset < t) { add += t - last_accounted_offset; if (!regions_needed) { nrg = get_file_region_entry_from_cache( resv, last_accounted_offset, t); record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg); list_add(&nrg->link, rg->link.prev); coalesce_file_region(resv, nrg); } else *regions_needed += 1; } VM_BUG_ON(add < 0); return add; } /* Must be called with resv->lock acquired. Will drop lock to allocate entries. */ static int allocate_file_region_entries(struct resv_map *resv, int regions_needed) __must_hold(&resv->lock) { struct list_head allocated_regions; int to_allocate = 0, i = 0; struct file_region *trg = NULL, *rg = NULL; VM_BUG_ON(regions_needed < 0); INIT_LIST_HEAD(&allocated_regions); /* * Check for sufficient descriptors in the cache to accommodate * the number of in progress add operations plus regions_needed. * * This is a while loop because when we drop the lock, some other call * to region_add or region_del may have consumed some region_entries, * so we keep looping here until we finally have enough entries for * (adds_in_progress + regions_needed). */ while (resv->region_cache_count < (resv->adds_in_progress + regions_needed)) { to_allocate = resv->adds_in_progress + regions_needed - resv->region_cache_count; /* At this point, we should have enough entries in the cache * for all the existings adds_in_progress. We should only be * needing to allocate for regions_needed. */ VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress); spin_unlock(&resv->lock); for (i = 0; i < to_allocate; i++) { trg = kmalloc(sizeof(*trg), GFP_KERNEL); if (!trg) goto out_of_memory; list_add(&trg->link, &allocated_regions); } spin_lock(&resv->lock); list_splice(&allocated_regions, &resv->region_cache); resv->region_cache_count += to_allocate; } return 0; out_of_memory: list_for_each_entry_safe(rg, trg, &allocated_regions, link) { list_del(&rg->link); kfree(rg); } return -ENOMEM; } /* * Add the huge page range represented by [f, t) to the reserve * map. Regions will be taken from the cache to fill in this range. * Sufficient regions should exist in the cache due to the previous * call to region_chg with the same range, but in some cases the cache will not * have sufficient entries due to races with other code doing region_add or * region_del. The extra needed entries will be allocated. * * regions_needed is the out value provided by a previous call to region_chg. * * Return the number of new huge pages added to the map. This number is greater * than or equal to zero. If file_region entries needed to be allocated for * this operation and we were not able to allocate, it returns -ENOMEM. * region_add of regions of length 1 never allocate file_regions and cannot * fail; region_chg will always allocate at least 1 entry and a region_add for * 1 page will only require at most 1 entry. */ static long region_add(struct resv_map *resv, long f, long t, long in_regions_needed, struct hstate *h, struct hugetlb_cgroup *h_cg) { long add = 0, actual_regions_needed = 0; spin_lock(&resv->lock); retry: /* Count how many regions are actually needed to execute this add. */ add_reservation_in_range(resv, f, t, NULL, NULL, &actual_regions_needed); /* * Check for sufficient descriptors in the cache to accommodate * this add operation. Note that actual_regions_needed may be greater * than in_regions_needed, as the resv_map may have been modified since * the region_chg call. In this case, we need to make sure that we * allocate extra entries, such that we have enough for all the * existing adds_in_progress, plus the excess needed for this * operation. */ if (actual_regions_needed > in_regions_needed && resv->region_cache_count < resv->adds_in_progress + (actual_regions_needed - in_regions_needed)) { /* region_add operation of range 1 should never need to * allocate file_region entries. */ VM_BUG_ON(t - f <= 1); if (allocate_file_region_entries( resv, actual_regions_needed - in_regions_needed)) { return -ENOMEM; } goto retry; } add = add_reservation_in_range(resv, f, t, h_cg, h, NULL); resv->adds_in_progress -= in_regions_needed; spin_unlock(&resv->lock); VM_BUG_ON(add < 0); return add; } /* * Examine the existing reserve map and determine how many * huge pages in the specified range [f, t) are NOT currently * represented. This routine is called before a subsequent * call to region_add that will actually modify the reserve * map to add the specified range [f, t). region_chg does * not change the number of huge pages represented by the * map. A number of new file_region structures is added to the cache as a * placeholder, for the subsequent region_add call to use. At least 1 * file_region structure is added. * * out_regions_needed is the number of regions added to the * resv->adds_in_progress. This value needs to be provided to a follow up call * to region_add or region_abort for proper accounting. * * Returns the number of huge pages that need to be added to the existing * reservation map for the range [f, t). This number is greater or equal to * zero. -ENOMEM is returned if a new file_region structure or cache entry * is needed and can not be allocated. */ static long region_chg(struct resv_map *resv, long f, long t, long *out_regions_needed) { long chg = 0; spin_lock(&resv->lock); /* Count how many hugepages in this range are NOT represented. */ chg = add_reservation_in_range(resv, f, t, NULL, NULL, out_regions_needed); if (*out_regions_needed == 0) *out_regions_needed = 1; if (allocate_file_region_entries(resv, *out_regions_needed)) return -ENOMEM; resv->adds_in_progress += *out_regions_needed; spin_unlock(&resv->lock); return chg; } /* * Abort the in progress add operation. The adds_in_progress field * of the resv_map keeps track of the operations in progress between * calls to region_chg and region_add. Operations are sometimes * aborted after the call to region_chg. In such cases, region_abort * is called to decrement the adds_in_progress counter. regions_needed * is the value returned by the region_chg call, it is used to decrement * the adds_in_progress counter. * * NOTE: The range arguments [f, t) are not needed or used in this * routine. They are kept to make reading the calling code easier as * arguments will match the associated region_chg call. */ static void region_abort(struct resv_map *resv, long f, long t, long regions_needed) { spin_lock(&resv->lock); VM_BUG_ON(!resv->region_cache_count); resv->adds_in_progress -= regions_needed; spin_unlock(&resv->lock); } /* * Delete the specified range [f, t) from the reserve map. If the * t parameter is LONG_MAX, this indicates that ALL regions after f * should be deleted. Locate the regions which intersect [f, t) * and either trim, delete or split the existing regions. * * Returns the number of huge pages deleted from the reserve map. * In the normal case, the return value is zero or more. In the * case where a region must be split, a new region descriptor must * be allocated. If the allocation fails, -ENOMEM will be returned. * NOTE: If the parameter t == LONG_MAX, then we will never split * a region and possibly return -ENOMEM. Callers specifying * t == LONG_MAX do not need to check for -ENOMEM error. */ static long region_del(struct resv_map *resv, long f, long t) { struct list_head *head = &resv->regions; struct file_region *rg, *trg; struct file_region *nrg = NULL; long del = 0; retry: spin_lock(&resv->lock); list_for_each_entry_safe(rg, trg, head, link) { /* * Skip regions before the range to be deleted. file_region * ranges are normally of the form [from, to). However, there * may be a "placeholder" entry in the map which is of the form * (from, to) with from == to. Check for placeholder entries * at the beginning of the range to be deleted. */ if (rg->to <= f && (rg->to != rg->from || rg->to != f)) continue; if (rg->from >= t) break; if (f > rg->from && t < rg->to) { /* Must split region */ /* * Check for an entry in the cache before dropping * lock and attempting allocation. */ if (!nrg && resv->region_cache_count > resv->adds_in_progress) { nrg = list_first_entry(&resv->region_cache, struct file_region, link); list_del(&nrg->link); resv->region_cache_count--; } if (!nrg) { spin_unlock(&resv->lock); nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); if (!nrg) return -ENOMEM; goto retry; } del += t - f; hugetlb_cgroup_uncharge_file_region(