1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 // SPDX-License-Identifier: GPL-2.0 // Generated by scripts/atomic/gen-atomic-fallback.sh // DO NOT MODIFY THIS FILE DIRECTLY #ifndef _LINUX_ATOMIC_FALLBACK_H #define _LINUX_ATOMIC_FALLBACK_H #include <linux/compiler.h> #ifndef arch_xchg_relaxed #define arch_xchg_relaxed arch_xchg #define arch_xchg_acquire arch_xchg #define arch_xchg_release arch_xchg #else /* arch_xchg_relaxed */ #ifndef arch_xchg_acquire #define arch_xchg_acquire(...) \ __atomic_op_acquire(arch_xchg, __VA_ARGS__) #endif #ifndef arch_xchg_release #define arch_xchg_release(...) \ __atomic_op_release(arch_xchg, __VA_ARGS__) #endif #ifndef arch_xchg #define arch_xchg(...) \ __atomic_op_fence(arch_xchg, __VA_ARGS__) #endif #endif /* arch_xchg_relaxed */ #ifndef arch_cmpxchg_relaxed #define arch_cmpxchg_relaxed arch_cmpxchg #define arch_cmpxchg_acquire arch_cmpxchg #define arch_cmpxchg_release arch_cmpxchg #else /* arch_cmpxchg_relaxed */ #ifndef arch_cmpxchg_acquire #define arch_cmpxchg_acquire(...) \ __atomic_op_acquire(arch_cmpxchg, __VA_ARGS__) #endif #ifndef arch_cmpxchg_release #define arch_cmpxchg_release(...) \ __atomic_op_release(arch_cmpxchg, __VA_ARGS__) #endif #ifndef arch_cmpxchg #define arch_cmpxchg(...) \ __atomic_op_fence(arch_cmpxchg, __VA_ARGS__) #endif #endif /* arch_cmpxchg_relaxed */ #ifndef arch_cmpxchg64_relaxed #define arch_cmpxchg64_relaxed arch_cmpxchg64 #define arch_cmpxchg64_acquire arch_cmpxchg64 #define arch_cmpxchg64_release arch_cmpxchg64 #else /* arch_cmpxchg64_relaxed */ #ifndef arch_cmpxchg64_acquire #define arch_cmpxchg64_acquire(...) \ __atomic_op_acquire(arch_cmpxchg64, __VA_ARGS__) #endif #ifndef arch_cmpxchg64_release #define arch_cmpxchg64_release(...) \ __atomic_op_release(arch_cmpxchg64, __VA_ARGS__) #endif #ifndef arch_cmpxchg64 #define arch_cmpxchg64(...) \ __atomic_op_fence(arch_cmpxchg64, __VA_ARGS__) #endif #endif /* arch_cmpxchg64_relaxed */ #ifndef arch_atomic_read_acquire static __always_inline int arch_atomic_read_acquire(const atomic_t *v) { return smp_load_acquire(&(v)->counter); } #define arch_atomic_read_acquire arch_atomic_read_acquire #endif #ifndef arch_atomic_set_release static __always_inline void arch_atomic_set_release(atomic_t *v, int i) { smp_store_release(&(v)->counter, i); } #define arch_atomic_set_release arch_atomic_set_release #endif #ifndef arch_atomic_add_return_relaxed #define arch_atomic_add_return_acquire arch_atomic_add_return #define arch_atomic_add_return_release arch_atomic_add_return #define arch_atomic_add_return_relaxed arch_atomic_add_return #else /* arch_atomic_add_return_relaxed */ #ifndef arch_atomic_add_return_acquire static __always_inline int arch_atomic_add_return_acquire(int i, atomic_t *v) { int ret = arch_atomic_add_return_relaxed(i, v); __atomic_acquire_fence(); return ret; } #define arch_atomic_add_return_acquire arch_atomic_add_return_acquire #endif #ifndef arch_atomic_add_return_release static __always_inline int arch_atomic_add_return_release(int i, atomic_t *v) { __atomic_release_fence(); return arch_atomic_add_return_relaxed(i, v); } #define arch_atomic_add_return_release arch_atomic_add_return_release #endif #ifndef arch_atomic_add_return static __always_inline int arch_atomic_add_return(int i, atomic_t *v) { int ret; __atomic_pre_full_fence(); ret = arch_atomic_add_return_relaxed(i, v); __atomic_post_full_fence(); return ret; } #define arch_atomic_add_return arch_atomic_add_return #endif #endif /* arch_atomic_add_return_relaxed */ #ifndef arch_atomic_fetch_add_relaxed #define arch_atomic_fetch_add_acquire arch_atomic_fetch_add #define arch_atomic_fetch_add_release arch_atomic_fetch_add #define arch_atomic_fetch_add_relaxed arch_atomic_fetch_add #else /* arch_atomic_fetch_add_relaxed */ #ifndef arch_atomic_fetch_add_acquire static __always_inline int arch_atomic_fetch_add_acquire(int i, atomic_t *v) { int ret = arch_atomic_fetch_add_relaxed(i, v); __atomic_acquire_fence(); return ret; } #define arch_atomic_fetch_add_acquire arch_atomic_fetch_add_acquire #endif #ifndef arch_atomic_fetch_add_release static __always_inline int arch_atomic_fetch_add_release(int i, atomic_t *v) { __atomic_release_fence(); return arch_atomic_fetch_add_relaxed(i, v); } #define arch_atomic_fetch_add_release arch_atomic_fetch_add_release #endif #ifndef arch_atomic_fetch_add static __always_inline int arch_atomic_fetch_add(int i, atomic_t *v) { int ret; __atomic_pre_full_fence(); ret = arch_atomic_fetch_add_relaxed(i, v); __atomic_post_full_fence(); return ret; } #define arch_atomic_fetch_add arch_atomic_fetch_add #endif #endif /* arch_atomic_fetch_add_relaxed */ #ifndef arch_atomic_sub_return_relaxed #define arch_atomic_sub_return_acquire arch_atomic_sub_return #define arch_atomic_sub_return_release arch_atomic_sub_return #define arch_atomic_sub_return_relaxed arch_atomic_sub_return #else /* arch_atomic_sub_return_relaxed */ #ifndef arch_atomic_sub_return_acquire static __always_inline int arch_atomic_sub_return_acquire(int i, atomic_t *v) { int ret = arch_atomic_sub_return_relaxed(i, v); __atomic_acquire_fence(); return ret; } #define arch_atomic_sub_return_acquire arch_atomic_sub_return_acquire #endif #ifndef arch_atomic_sub_return_release static __always_inline int arch_atomic_sub_return_release(int i, atomic_t *v) { __atomic_release_fence(); return arch_atomic_sub_return_relaxed(i, v); } #define arch_atomic_sub_return_release arch_atomic_sub_return_release #endif #ifndef arch_atomic_sub_return static __always_inline int arch_atomic_sub_return(int i, atomic_t *v) { int ret; __atomic_pre_full_fence(); ret = arch_atomic_sub_return_relaxed(i, v); __atomic_post_full_fence(); return ret; } #define arch_atomic_sub_return arch_atomic_sub_return #endif #endif /* arch_atomic_sub_return_relaxed */ #ifndef arch_atomic_fetch_sub_relaxed #define arch_atomic_fetch_sub_acquire arch_atomic_fetch_sub #define arch_atomic_fetch_sub_release arch_atomic_fetch_sub #define arch_atomic_fetch_sub_relaxed arch_atomic_fetch_sub #else /* arch_atomic_fetch_sub_relaxed */ #ifndef arch_atomic_fetch_sub_acquire static __always_inline int arch_atomic_fetch_sub_acquire(int i, atomic_t *v) { int ret = arch_atomic_fetch_sub_relaxed(i, v); __atomic_acquire_fence(); return ret; } #define arch_atomic_fetch_sub_acquire arch_atomic_fetch_sub_acquire #endif #ifndef arch_atomic_fetch_sub_release static __always_inline int arch_atomic_fetch_sub_release(int i, atomic_t *v) { __atomic_release_fence(); return arch_atomic_fetch_sub_relaxed(i, v); } #define arch_atomic_fetch_sub_release arch_atomic_fetch_sub_release #endif #ifndef arch_atomic_fetch_sub static __always_inline int arch_atomic_fetch_sub(int i, atomic_t *v) { int ret; __atomic_pre_full_fence(); ret = arch_atomic_fetch_sub_relaxed(i, v); __atomic_post_full_fence(); return ret; } #define arch_atomic_fetch_sub arch_atomic_fetch_sub #endif #endif /* arch_atomic_fetch_sub_relaxed */ #ifndef arch_atomic_inc static __always_inline void arch_atomic_inc(atomic_t *v) { arch_atomic_add(1, v); } #define arch_atomic_inc arch_atomic_inc #endif #ifndef arch_atomic_inc_return_relaxed #ifdef arch_atomic_inc_return #define arch_atomic_inc_return_acquire arch_atomic_inc_return #define arch_atomic_inc_return_release arch_atomic_inc_return #define arch_atomic_inc_return_relaxed arch_atomic_inc_return #endif /* arch_atomic_inc_return */ #ifndef arch_atomic_inc_return static __always_inline int arch_atomic_inc_return(atomic_t *v) { return arch_atomic_add_return(1, v); } #define arch_atomic_inc_return arch_atomic_inc_return #endif #ifndef arch_atomic_inc_return_acquire static __always_inline int arch_atomic_inc_return_acquire(atomic_t *v) { return arch_atomic_add_return_acquire(1, v); } #define arch_atomic_inc_return_acquire arch_atomic_inc_return_acquire #endif #ifndef arch_atomic_inc_return_release static __always_inline int arch_atomic_inc_return_release(atomic_t *v) { return arch_atomic_add_return_release(1, v); } #define arch_atomic_inc_return_release arch_atomic_inc_return_release #endif #ifndef arch_atomic_inc_return_relaxed static __always_inline int arch_atomic_inc_return_relaxed(atomic_t *v) { return arch_atomic_add_return_relaxed(1, v); } #define arch_atomic_inc_return_relaxed arch_atomic_inc_return_relaxed #endif #else /* arch_atomic_inc_return_relaxed */ #ifndef arch_atomic_inc_return_acquire static __always_inline int arch_atomic_inc_return_acquire(atomic_t *v) { int ret = arch_atomic_inc_return_relaxed(v); __atomic_acquire_fence(); return ret; } #define arch_atomic_inc_return_acquire arch_atomic_inc_return_acquire #endif #ifndef arch_atomic_inc_return_release static __always_inline int arch_atomic_inc_return_release(atomic_t *v) { __atomic_release_fence(); return arch_atomic_inc_return_relaxed(v); } #define arch_atomic_inc_return_release arch_atomic_inc_return_release #endif #ifndef arch_atomic_inc_return static __always_inline int arch_atomic_inc_return(atomic_t *v) { int ret; __atomic_pre_full_fence(); ret = arch_atomic_inc_return_relaxed(v); __atomic_post_full_fence(); return ret; } #define arch_atomic_inc_return arch_atomic_inc_return #endif #endif /* arch_atomic_inc_return_relaxed */ #ifndef arch_atomic_fetch_inc_relaxed #ifdef arch_atomic_fetch_inc #define arch_atomic_fetch_inc_acquire arch_atomic_fetch_inc #define arch_atomic_fetch_inc_release arch_atomic_fetch_inc #define arch_atomic_fetch_inc_relaxed arch_atomic_fetch_inc #endif /* arch_atomic_fetch_inc */ #ifndef arch_atomic_fetch_inc static __always_inline int arch_atomic_fetch_inc(atomic_t *v) { return arch_atomic_fetch_add(1, v); } #define arch_atomic_fetch_inc arch_atomic_fetch_inc #endif #ifndef arch_atomic_fetch_inc_acquire static __always_inline int arch_atomic_fetch_inc_acquire(atomic_t *v) { return arch_atomic_fetch_add_acquire(1, v); } #define arch_atomic_fetch_inc_acquire arch_atomic_fetch_inc_acquire #endif #ifndef arch_atomic_fetch_inc_release static __always_inline int arch_atomic_fetch_inc_release(atomic_t *v) { return arch_atomic_fetch_add_release(1, v); } #define arch_atomic_fetch_inc_release arch_atomic_fetch_inc_release #endif #ifndef arch_atomic_fetch_inc_relaxed static __always_inline int arch_atomic_fetch_inc_relaxed(atomic_t *v) { return arch_atomic_fetch_add_relaxed(1, v); } #define arch_atomic_fetch_inc_relaxed arch_atomic_fetch_inc_relaxed #endif #else /* arch_atomic_fetch_inc_relaxed */ #ifndef arch_atomic_fetch_inc_acquire static __always_inline int arch_atomic_fetch_inc_acquire(atomic_t *v) { int ret = arch_atomic_fetch_inc_relaxed(v); __atomic_acquire_fence(); return ret; } #define arch_atomic_fetch_inc_acquire arch_atomic_fetch_inc_acquire #endif #ifndef arch_atomic_fetch_inc_release static __always_inline int arch_atomic_fetch_inc_release(atomic_t *v) { __atomic_release_fence(); return arch_atomic_fetch_inc_relaxed(v); } #define arch_atomic_fetch_inc_release arch_atomic_fetch_inc_release #endif #ifndef arch_atomic_fetch_inc static __always_inline int arch_atomic_fetch_inc(atomic_t *v) { int ret; __atomic_pre_full_fence(); ret = arch_atomic_fetch_inc_relaxed(v); __atomic_post_full_fence(); return ret; } #define arch_atomic_fetch_inc arch_atomic_fetch_inc #endif #endif /* arch_atomic_fetch_inc_relaxed */ #ifndef arch_atomic_dec static __always_inline void arch_atomic_dec(atomic_t *v) { arch_atomic_sub(1, v); } #define arch_atomic_dec arch_atomic_dec #endif #ifndef arch_atomic_dec_return_relaxed #ifdef arch_atomic_dec_return #define arch_atomic_dec_return_acquire arch_atomic_dec_return #define arch_atomic_dec_return_release arch_atomic_dec_return #define arch_atomic_dec_return_relaxed arch_atomic_dec_return #endif /* arch_atomic_dec_return */ #ifndef arch_atomic_dec_return static __always_inline int arch_atomic_dec_return(atomic_t *v) { return arch_atomic_sub_return(1, v); } #define arch_atomic_dec_return arch_atomic_dec_return #endif #ifndef arch_atomic_dec_return_acquire static __always_inline int arch_atomic_dec_return_acquire(atomic_t *v) { return arch_atomic_sub_return_acquire(1, v); } #define arch_atomic_dec_return_acquire arch_atomic_dec_return_acquire #endif #ifndef arch_atomic_dec_return_release static __always_inline int arch_atomic_dec_return_release(atomic_t *v) { return arch_atomic_sub_return_release(1, v); } #define arch_atomic_dec_return_release arch_atomic_dec_return_release #endif #ifndef arch_atomic_dec_return_relaxed static __always_inline int arch_atomic_dec_return_relaxed(atomic_t *v) { return arch_atomic_sub_return_relaxed(1, v); } #define arch_atomic_dec_return_relaxed arch_atomic_dec_return_relaxed #endif #else /* arch_atomic_dec_return_relaxed */ #ifndef arch_atomic_dec_return_acquire static __always_inline int arch_atomic_dec_return_acquire(atomic_t *v) { int ret = arch_atomic_dec_return_relaxed(v); __atomic_acquire_fence(); return ret; } #define arch_atomic_dec_return_acquire arch_atomic_dec_return_acquire #endif #ifndef arch_atomic_dec_return_release static __always_inline int arch_atomic_dec_return_release(atomic_t *v) { __atomic_release_fence(); return arch_atomic_dec_return_relaxed(v); } #define arch_atomic_dec_return_release arch_atomic_dec_return_release #endif #ifndef arch_atomic_dec_return static __always_inline int arch_atomic_dec_return(atomic_t *v) { int ret; __atomic_pre_full_fence(); ret = arch_atomic_dec_return_relaxed(v); __atomic_post_full_fence(); return ret; } #define arch_atomic_dec_return arch_atomic_dec_return #endif #endif /* arch_atomic_dec_return_relaxed */ #ifndef arch_atomic_fetch_dec_relaxed #ifdef arch_atomic_fetch_dec #define arch_atomic_fetch_dec_acquire arch_atomic_fetch_dec #define arch_atomic_fetch_dec_release arch_atomic_fetch_dec #define arch_atomic_fetch_dec_relaxed arch_atomic_fetch_dec #endif /* arch_atomic_fetch_dec */ #ifndef arch_atomic_fetch_dec static __always_inline int arch_atomic_fetch_dec(atomic_t *v) { return arch_atomic_fetch_sub(1, v); } #define arch_atomic_fetch_dec arch_atomic_fetch_dec #endif #ifndef arch_atomic_fetch_dec_acquire static __always_inline int arch_atomic_fetch_dec_acquire(atomic_t *v) { return arch_atomic_fetch_sub_acquire(1, v); } #define arch_atomic_fetch_dec_acquire arch_atomic_fetch_dec_acquire #endif #ifndef arch_atomic_fetch_dec_release static __always_inline int arch_atomic_fetch_dec_release(atomic_t *v) { return arch_atomic_fetch_sub_release(1, v); } #define arch_atomic_fetch_dec_release arch_atomic_fetch_dec_release #endif #ifndef arch_atomic_fetch_dec_relaxed static __always_inline int arch_atomic_fetch_dec_relaxed(atomic_t *v) { return arch_atomic_fetch_sub_relaxed(1, v); } #define arch_atomic_fetch_dec_relaxed arch_atomic_fetch_dec_relaxed #endif #else /* arch_atomic_fetch_dec_relaxed */ #ifndef arch_atomic_fetch_dec_acquire static __always_inline int arch_atomic_fetch_dec_acquire(atomic_t *v) { int ret = arch_atomic_fetch_dec_relaxed(v); __atomic_acquire_fence(); return ret; } #define arch_atomic_fetch_dec_acquire arch_atomic_fetch_dec_acquire #endif #ifndef arch_atomic_fetch_dec_release static __always_inline int arch_atomic_fetch_dec_release(atomic_t *v) { __atomic_release_fence(); return arch_atomic_fetch_dec_relaxed(v); } #define arch_atomic_fetch_dec_release arch_atomic_fetch_dec_release #endif #ifndef arch_atomic_fetch_dec static __always_inline int arch_atomic_fetch_dec(atomic_t *v) { int ret; __atomic_pre_full_fence(); ret = arch_atomic_fetch_dec_relaxed(v); __atomic_post_full_fence(); return ret; } #define arch_atomic_fetch_dec arch_atomic_fetch_dec #endif #endif /* arch_atomic_fetch_dec_relaxed */ #ifndef arch_atomic_fetch_and_relaxed #define arch_atomic_fetch_and_acquire arch_atomic_fetch_and #define arch_atomic_fetch_and_release arch_atomic_fetch_and #define arch_atomic_fetch_and_relaxed arch_atomic_fetch_and #else /* arch_atomic_fetch_and_relaxed */ #ifndef arch_atomic_fetch_and_acquire static __always_inline int arch_atomic_fetch_and_acquire(int i, atomic_t *v) { int ret = arch_atomic_fetch_and_relaxed(i, v); __atomic_acquire_fence(); return ret; } #define arch_atomic_fetch_and_acquire arch_atomic_fetch_and_acquire #endif #ifndef arch_atomic_fetch_and_release static __always_inline int arch_atomic_fetch_and_release(int i, atomic_t *v) { __atomic_release_fence(); return arch_atomic_fetch_and_relaxed(i, v); } #define arch_atomic_fetch_and_release arch_atomic_fetch_and_release #endif #ifndef arch_atomic_fetch_and static __always_inline int arch_atomic_fetch_and(int i, atomic_t *v) { int ret; __atomic_pre_full_fence(); ret = arch_atomic_fetch_and_relaxed(i, v); __atomic_post_full_fence(); return ret; } #define arch_atomic_fetch_and arch_atomic_fetch_and #endif #endif /* arch_atomic_fetch_and_relaxed */ #ifndef arch_atomic_andnot static __always_inline void arch_atomic_andnot(int i, atomic_t *v) { arch_atomic_and(~i, v); } #define arch_atomic_andnot arch_atomic_andnot #endif #ifndef arch_atomic_fetch_andnot_relaxed #ifdef arch_atomic_fetch_andnot #define arch_atomic_fetch_andnot_acquire arch_atomic_fetch_andnot #define arch_atomic_fetch_andnot_release arch_atomic_fetch_andnot #define arch_atomic_fetch_andnot_relaxed arch_atomic_fetch_andnot #endif /* arch_atomic_fetch_andnot */ #ifndef arch_atomic_fetch_andnot static __always_inline int arch_atomic_fetch_andnot(int i, atomic_t *v) { return arch_atomic_fetch_and(~i, v); } #define arch_atomic_fetch_andnot arch_atomic_fetch_andnot #endif #ifndef arch_atomic_fetch_andnot_acquire static __always_inline int arch_atomic_fetch_andnot_acquire(int i, atomic_t *v) { return arch_atomic_fetch_and_acquire(~i, v); } #define arch_atomic_fetch_andnot_acquire arch_atomic_fetch_andnot_acquire #endif #ifndef arch_atomic_fetch_andnot_release static __always_inline int arch_atomic_fetch_andnot_release(int i, atomic_t *v) { return arch_atomic_fetch_and_release(~i, v); } #define arch_atomic_fetch_andnot_release arch_atomic_fetch_andnot_release #endif #ifndef arch_atomic_fetch_andnot_relaxed static __always_inline int arch_atomic_fetch_andnot_relaxed(int i, atomic_t *v) { return arch_atomic_fetch_and_relaxed(~i, v); } #define arch_atomic_fetch_andnot_relaxed arch_atomic_fetch_andnot_relaxed #endif #else /* arch_atomic_fetch_andnot_relaxed */ #ifndef arch_atomic_fetch_andnot_acquire static __always_inline int arch_atomic_fetch_andnot_acquire(int i, atomic_t *v) { int ret = arch_atomic_fetch_andnot_relaxed(i, v); __atomic_acquire_fence(); return ret; } #define arch_atomic_fetch_andnot_acquire arch_atomic_fetch_andnot_acquire #endif #ifndef arch_atomic_fetch_andnot_release static __always_inline int arch_atomic_fetch_andnot_release(int i, atomic_t *v) { __atomic_release_fence(); return arch_atomic_fetch_andnot_relaxed(i, v); } #define arch_atomic_fetch_andnot_release arch_atomic_fetch_andnot_release #endif #ifndef arch_atomic_fetch_andnot static __always_inline int arch_atomic_fetch_andnot(int i, atomic_t *v) { int ret; __atomic_pre_full_fence(); ret = arch_atomic_fetch_andnot_relaxed(i, v); __atomic_post_full_fence(); return ret; } #define arch_atomic_fetch_andnot arch_atomic_fetch_andnot #endif #endif /* arch_atomic_fetch_andnot_relaxed */ #ifndef arch_atomic_fetch_or_relaxed #define arch_atomic_fetch_or_acquire arch_atomic_fetch_or #define arch_atomic_fetch_or_release arch_atomic_fetch_or #define arch_atomic_fetch_or_relaxed arch_atomic_fetch_or #else /* arch_atomic_fetch_or_relaxed */ #ifndef arch_atomic_fetch_or_acquire static __always_inline int arch_atomic_fetch_or_acquire(int i, atomic_t *v) { int ret = arch_atomic_fetch_or_relaxed(i, v); __atomic_acquire_fence(); return ret; } #define arch_atomic_fetch_or_acquire arch_atomic_fetch_or_acquire #endif #ifndef arch_atomic_fetch_or_release static __always_inline int arch_atomic_fetch_or_release(int i, atomic_t *v) { __atomic_release_fence(); return arch_atomic_fetch_or_relaxed(i, v); } #define arch_atomic_fetch_or_release arch_atomic_fetch_or_release #endif #ifndef arch_atomic_fetch_or static __always_inline int arch_atomic_fetch_or(int i, atomic_t *v) { int ret; __atomic_pre_full_fence(); ret = arch_atomic_fetch_or_relaxed(i, v); __atomic_post_full_fence(); return ret; } #define arch_atomic_fetch_or arch_atomic_fetch_or #endif #endif /* arch_atomic_fetch_or_relaxed */ #ifndef arch_atomic_fetch_xor_relaxed #define arch_atomic_fetch_xor_acquire arch_atomic_fetch_xor #define arch_atomic_fetch_xor_release arch_atomic_fetch_xor #define arch_atomic_fetch_xor_relaxed arch_atomic_fetch_xor #else /* arch_atomic_fetch_xor_relaxed */ #ifndef arch_atomic_fetch_xor_acquire static __always_inline int arch_atomic_fetch_xor_acquire(int i, atomic_t *v) { int ret = arch_atomic_fetch_xor_relaxed(i, v); __atomic_acquire_fence(); return ret; } #define arch_atomic_fetch_xor_acquire arch_atomic_fetch_xor_acquire #endif #ifndef arch_atomic_fetch_xor_release static __always_inline int arch_atomic_fetch_xor_release(int i, atomic_t *v) { __atomic_release_fence(); return arch_atomic_fetch_xor_relaxed(i, v); } #define arch_atomic_fetch_xor_release arch_atomic_fetch_xor_release #endif #ifndef arch_atomic_fetch_xor static __always_inline int arch_atomic_fetch_xor(int i, atomic_t *v) { int ret; __atomic_pre_full_fence(); ret = arch_atomic_fetch_xor_relaxed(i, v); __atomic_post_full_fence(); return ret; } #define arch_atomic_fetch_xor arch_atomic_fetch_xor #endif #endif /* arch_atomic_fetch_xor_relaxed */ #ifndef arch_atomic_xchg_relaxed #define arch_atomic_xchg_acquire arch_atomic_xchg #define arch_atomic_xchg_release arch_atomic_xchg #define arch_atomic_xchg_relaxed arch_atomic_xchg #else /* arch_atomic_xchg_relaxed */ #ifndef arch_atomic_xchg_acquire static __always_inline int arch_atomic_xchg_acquire(atomic_t *v, int i) { int ret = arch_atomic_xchg_relaxed(v, i); __atomic_acquire_fence(); return ret; } #define arch_atomic_xchg_acquire arch_atomic_xchg_acquire #endif #ifndef arch_atomic_xchg_release static __always_inline int arch_atomic_xchg_release(atomic_t *v, int i) { __atomic_release_fence(); return arch_atomic_xchg_relaxed(v, i); } #define arch_atomic_xchg_release arch_atomic_xchg_release #endif #ifndef arch_atomic_xchg static __always_inline int arch_atomic_xchg(atomic_t *v, int i) { int ret; __atomic_pre_full_fence(); ret = arch_atomic_xchg_relaxed(v, i); __atomic_post_full_fence(); return ret; } #define arch_atomic_xchg arch_atomic_xchg #endif #endif /* arch_atomic_xchg_relaxed */ #ifndef arch_atomic_cmpxchg_relaxed #define arch_atomic_cmpxchg_acquire arch_atomic_cmpxchg #define arch_atomic_cmpxchg_release arch_atomic_cmpxchg #define arch_atomic_cmpxchg_relaxed arch_atomic_cmpxchg #else /* arch_atomic_cmpxchg_relaxed */ #ifndef arch_atomic_cmpxchg_acquire static __always_inline int arch_atomic_cmpxchg_acquire(atomic_t *v, int old, int new) { int ret = arch_atomic_cmpxchg_relaxed(v, old, new); __atomic_acquire_fence(); return ret; } #define arch_atomic_cmpxchg_acquire arch_atomic_cmpxchg_acquire #endif #ifndef arch_atomic_cmpxchg_release static __always_inline int arch_atomic_cmpxchg_release(atomic_t *v, int old, int new) { __atomic_release_fence(); return arch_atomic_cmpxchg_relaxed(v, old, new); } #define arch_atomic_cmpxchg_release arch_atomic_cmpxchg_release #endif #ifndef arch_atomic_cmpxchg static __always_inline int arch_atomic_cmpxchg(atomic_t *v, int old, int new) { int ret; __atomic_pre_full_fence(); ret = arch_atomic_cmpxchg_relaxed(v, old, new); __atomic_post_full_fence(); return ret; } #define arch_atomic_cmpxchg arch_atomic_cmpxchg #endif #endif /* arch_atomic_cmpxchg_relaxed */ #ifndef arch_atomic_try_cmpxchg_relaxed #ifdef arch_atomic_try_cmpxchg #define arch_atomic_try_cmpxchg_acquire arch_atomic_try_cmpxchg #define arch_atomic_try_cmpxchg_release arch_atomic_try_cmpxchg #define arch_atomic_try_cmpxchg_relaxed arch_atomic_try_cmpxchg #endif /* arch_atomic_try_cmpxchg */ #ifndef arch_atomic_try_cmpxchg static __always_inline bool arch_atomic_try_cmpxchg(atomic_t *v, int *old, int new) { int r, o = *old; r = arch_atomic_cmpxchg(v, o, new); if (unlikely(r != o)) *old = r; return likely(r == o); } #define arch_atomic_try_cmpxchg arch_atomic_try_cmpxchg #endif #ifndef arch_atomic_try_cmpxchg_acquire static __always_inline bool arch_atomic_try_cmpxchg_acquire(atomic_t *v, int *old, int new) { int r, o = *old; r = arch_atomic_cmpxchg_acquire(v, o, new); if (unlikely(r != o)) *old = r; return likely(r == o); } #define arch_atomic_try_cmpxchg_acquire arch_atomic_try_cmpxchg_acquire #endif #ifndef arch_atomic_try_cmpxchg_release static __always_inline bool arch_atomic_try_cmpxchg_release(atomic_t *v, int *old, int new) { int r, o = *old; r = arch_atomic_cmpxchg_release(v, o, new); if (unlikely(r != o)) *old = r; return likely(r == o); } #define arch_atomic_try_cmpxchg_release arch_atomic_try_cmpxchg_release #endif #ifndef arch_atomic_try_cmpxchg_relaxed static __always_inline bool arch_atomic_try_cmpxchg_relaxed(atomic_t *v, int *old, int new) { int r, o = *old; r = arch_atomic_cmpxchg_relaxed(v, o, new); if (unlikely(r != o)) *old = r; return likely(r == o); } #define arch_atomic_try_cmpxchg_relaxed arch_atomic_try_cmpxchg_relaxed #endif #else /* arch_atomic_try_cmpxchg_relaxed */ #ifndef arch_atomic_try_cmpxchg_acquire static __always_inline bool arch_atomic_try_cmpxchg_acquire(atomic_t *v, int *old, int new) { bool ret = arch_atomic_try_cmpxchg_relaxed(v, old, new); __atomic_acquire_fence(); return ret; } #define arch_atomic_try_cmpxchg_acquire arch_atomic_try_cmpxchg_acquire #endif #ifndef arch_atomic_try_cmpxchg_release static __always_inline bool arch_atomic_try_cmpxchg_release(atomic_t *v, int *old, int new) { __atomic_release_fence(); return arch_atomic_try_cmpxchg_relaxed(v, old, new); } #define arch_atomic_try_cmpxchg_release arch_atomic_try_cmpxchg_release #endif #ifndef arch_atomic_try_cmpxchg static __always_inline bool arch_atomic_try_cmpxchg(atomic_t *v, int *old, int new) { bool ret; __atomic_pre_full_fence(); ret = arch_atomic_try_cmpxchg_relaxed(v, old, new); __atomic_post_full_fence(); return ret; } #define arch_atomic_try_cmpxchg arch_atomic_try_cmpxchg #endif #endif /* arch_atomic_try_cmpxchg_relaxed */ #ifndef arch_atomic_sub_and_test /** * arch_atomic_sub_and_test - subtract value from variable and test result * @i: integer value to subtract * @v: pointer of type atomic_t * * Atomically subtracts @i from @v and returns * true if the result is zero, or false for all * other cases. */ static __always_inline bool arch_atomic_sub_and_test(int i, atomic_t *v) { return arch_atomic_sub_return(i, v) == 0; } #define arch_atomic_sub_and_test arch_atomic_sub_and_test #endif #ifndef arch_atomic_dec_and_test /** * arch_atomic_dec_and_test - decrement and test * @v: pointer of type atomic_t * * Atomically decrements @v by 1 and * returns true if the result is 0, or false for all other * cases. */ static __always_inline bool arch_atomic_dec_and_test(atomic_t *v) { return arch_atomic_dec_return(v) == 0; } #define arch_atomic_dec_and_test arch_atomic_dec_and_test #endif #ifndef arch_atomic_inc_and_test /** * arch_atomic_inc_and_test - increment and test * @v: pointer of type atomic_t * * Atomically increments @v by 1 * and returns true if the result is zero, or false for all * other cases. */ static __always_inline bool arch_atomic_inc_and_test(atomic_t *v) { return arch_atomic_inc_return(v) == 0; } #define arch_atomic_inc_and_test arch_atomic_inc_and_test #endif #ifndef arch_atomic_add_negative /** * arch_atomic_add_negative - add and test if negative * @i: integer value to add * @v: pointer of type atomic_t * * Atomically adds @i to @v and returns true * if the result is negative, or false when * result is greater than or equal to zero. */ static __always_inline bool arch_atomic_add_negative(int i, atomic_t *v) { return arch_atomic_add_return(i, v) < 0; } #define arch_atomic_add_negative arch_atomic_add_negative #endif #ifndef arch_atomic_fetch_add_unless /** * arch_atomic_fetch_add_unless - add unless the number is already a given value * @v: pointer of type atomic_t * @a: the amount to add to v... * @u: ...unless v is equal to u. * * Atomically adds @a to @v, so long as @v was not already @u. * Returns original value of @v */ static __always_inline int arch_atomic_fetch_add_unless(atomic_t *v, int a, int u) { int c = arch_atomic_read(v); do { if (unlikely(c == u)) break; } while (!arch_atomic_try_cmpxchg(v, &c, c + a)); return c; } #define arch_atomic_fetch_add_unless arch_atomic_fetch_add_unless #endif #ifndef arch_atomic_add_unless /** * arch_atomic_add_unless - add unless the number is already a given value * @v: pointer of type atomic_t * @a: the amount to add to v... * @u: ...unless v is equal to u. * * Atomically adds @a to @v, if @v was not already @u. * Returns true if the addition was done. */ static __always_inline bool arch_atomic_add_unless(atomic_t *v, int a, int u) { return arch_atomic_fetch_add_unless(v, a, u) != u; } #define arch_atomic_add_unless arch_atomic_add_unless #endif #ifndef arch_atomic_inc_not_zero /** * arch_atomic_inc_not_zero - increment unless the number is zero * @v: pointer of type atomic_t * * Atomically increments @v by 1, if @v is non-zero. * Returns true if the increment was done. */ static __always_inline bool arch_atomic_inc_not_zero(atomic_t *v) { return arch_atomic_add_unless(v, 1, 0); } #define arch_atomic_inc_not_zero arch_atomic_inc_not_zero #endif #ifndef arch_atomic_inc_unless_negative static __always_inline bool arch_atomic_inc_unless_negative(atomic_t *v) { int c = arch_atomic_read(v); do { if (unlikely(c < 0)) return false; } while (!arch_atomic_try_cmpxchg(v, &c, c + 1)); return true; } #define arch_atomic_inc_unless_negative arch_atomic_inc_unless_negative #endif #ifndef arch_atomic_dec_unless_positive static __always_inline bool arch_atomic_dec_unless_positive(atomic_t *v) { int c = arch_atomic_read(v); do { if (unlikely(c > 0)) return false; } while (!arch_atomic_try_cmpxchg(v, &c, c - 1)); return true; } #define arch_atomic_dec_unless_positive arch_atomic_dec_unless_positive #endif #ifndef arch_atomic_dec_if_positive static __always_inline int arch_atomic_dec_if_positive(atomic_t *v) { int dec, c = arch_atomic_read(v); do { dec = c - 1; if (unlikely(dec < 0)) break; } while (!arch_atomic_try_cmpxchg(v, &c, dec)); return dec; } #define arch_atomic_dec_if_positive arch_atomic_dec_if_positive #endif #ifdef CONFIG_GENERIC_ATOMIC64 #include <asm-generic/atomic64.h> #endif #ifndef arch_atomic64_read_acquire static __always_inline s64 arch_atomic64_read_acquire(const atomic64_t *v) { return smp_load_acquire(&(v)->counter); } #define arch_atomic64_read_acquire arch_atomic64_read_acquire #endif #ifndef arch_atomic64_set_release static __always_inline void arch_atomic64_set_release(atomic64_t *v, s64 i) { smp_store_release(&(v)->counter, i); } #define arch_atomic64_set_release arch_atomic64_set_release #endif #ifndef arch_atomic64_add_return_relaxed #define arch_atomic64_add_return_acquire arch_atomic64_add_return #define arch_atomic64_add_return_release arch_atomic64_add_return #define arch_atomic64_add_return_relaxed arch_atomic64_add_return #else /* arch_atomic64_add_return_relaxed */ #ifndef arch_atomic64_add_return_acquire static __always_inline s64 arch_atomic64_add_return_acquire(s64 i, atomic64_t *v) { s64 ret = arch_atomic64_add_return_relaxed(i, v); __atomic_acquire_fence(); return ret; } #define arch_atomic64_add_return_acquire arch_atomic64_add_return_acquire #endif #ifndef arch_atomic64_add_return_release static __always_inline s64 arch_atomic64_add_return_release(s64 i, atomic64_t *v) { __atomic_release_fence(); return arch_atomic64_add_return_relaxed(i, v); } #define arch_atomic64_add_return_release arch_atomic64_add_return_release #endif #ifndef arch_atomic64_add_return static __always_inline s64 arch_atomic64_add_return(s64 i, atomic64_t *v) { s64 ret; __atomic_pre_full_fence(); ret = arch_atomic64_add_return_relaxed(i, v); __atomic_post_full_fence(); return ret; } #define arch_atomic64_add_return arch_atomic64_add_return #endif #endif /* arch_atomic64_add_return_relaxed */ #ifndef arch_atomic64_fetch_add_relaxed #define arch_atomic64_fetch_add_acquire arch_atomic64_fetch_add #define arch_atomic64_fetch_add_release arch_atomic64_fetch_add #define arch_atomic64_fetch_add_relaxed arch_atomic64_fetch_add #else /* arch_atomic64_fetch_add_relaxed */ #ifndef arch_atomic64_fetch_add_acquire static __always_inline s64 arch_atomic64_fetch_add_acquire(s64 i, atomic64_t *v) { s64 ret = arch_atomic64_fetch_add_relaxed(i, v); __atomic_acquire_fence(); return ret; } #define arch_atomic64_fetch_add_acquire arch_atomic64_fetch_add_acquire #endif #ifndef arch_atomic64_fetch_add_release static __always_inline s64 arch_atomic64_fetch_add_release(s64 i, atomic64_t *v) { __atomic_release_fence(); return arch_atomic64_fetch_add_relaxed(i, v); } #define arch_atomic64_fetch_add_release arch_atomic64_fetch_add_release #endif #ifndef arch_atomic64_fetch_add static __always_inline s64 arch_atomic64_fetch_add(s64 i, atomic64_t *v) { s64 ret; __atomic_pre_full_fence(); ret = arch_atomic64_fetch_add_relaxed(i, v); __atomic_post_full_fence(); return ret; } #define arch_atomic64_fetch_add arch_atomic64_fetch_add #endif #endif /* arch_atomic64_fetch_add_relaxed */ #ifndef arch_atomic64_sub_return_relaxed #define arch_atomic64_sub_return_acquire arch_atomic64_sub_return #define arch_atomic64_sub_return_release arch_atomic64_sub_return #define arch_atomic64_sub_return_relaxed arch_atomic64_sub_return #else /* arch_atomic64_sub_return_relaxed */ #ifndef arch_atomic64_sub_return_acquire static __always_inline s64 arch_atomic64_sub_return_acquire(s64 i, atomic64_t *v) { s64 ret = arch_atomic64_sub_return_relaxed(i, v); __atomic_acquire_fence(); return ret; } #define arch_atomic64_sub_return_acquire arch_atomic64_sub_return_acquire #endif #ifndef arch_atomic64_sub_return_release static __always_inline s64 arch_atomic64_sub_return_release(s64 i, atomic64_t *v) { __atomic_release_fence(); return arch_atomic64_sub_return_relaxed(i, v); } #define arch_atomic64_sub_return_release arch_atomic64_sub_return_release #endif #ifndef arch_atomic64_sub_return static __always_inline s64 arch_atomic64_sub_return(s64 i, atomic64_t *v) { s64 ret; __atomic_pre_full_fence(); ret = arch_atomic64_sub_return_relaxed(i, v); __atomic_post_full_fence(); return ret; } #define arch_atomic64_sub_return arch_atomic64_sub_return #endif #endif /* arch_atomic64_sub_return_relaxed */ #ifndef arch_atomic64_fetch_sub_relaxed #define arch_atomic64_fetch_sub_acquire arch_atomic64_fetch_sub #define arch_atomic64_fetch_sub_release arch_atomic64_fetch_sub #define arch_atomic64_fetch_sub_relaxed arch_atomic64_fetch_sub #else /* arch_atomic64_fetch_sub_relaxed */ #ifndef arch_atomic64_fetch_sub_acquire static __always_inline s64 arch_atomic64_fetch_sub_acquire(s64 i, atomic64_t *v) { s64 ret = arch_atomic64_fetch_sub_relaxed(i, v); __atomic_acquire_fence(); return ret; } #define arch_atomic64_fetch_sub_acquire arch_atomic64_fetch_sub_acquire #endif #ifndef arch_atomic64_fetch_sub_release static __always_inline s64 arch_atomic64_fetch_sub_release(s64 i, atomic64_t *v) { __atomic_release_fence(); return arch_atomic64_fetch_sub_relaxed(i, v); } #define arch_atomic64_fetch_sub_release arch_atomic64_fetch_sub_release #endif #ifndef arch_atomic64_fetch_sub static __always_inline s64 arch_atomic64_fetch_sub(s64 i, atomic64_t *v) { s64 ret; __atomic_pre_full_fence(); ret = arch_atomic64_fetch_sub_relaxed(i, v); __atomic_post_full_fence(); return ret; } #define arch_atomic64_fetch_sub arch_atomic64_fetch_sub #endif #endif /* arch_atomic64_fetch_sub_relaxed */ #ifndef arch_atomic64_inc static __always_inline void arch_atomic64_inc(atomic64_t *v) { arch_atomic64_add(1, v); } #define arch_atomic64_inc arch_atomic64_inc #endif #ifndef arch_atomic64_inc_return_relaxed #ifdef arch_atomic64_inc_return #define arch_atomic64_inc_return_acquire arch_atomic64_inc_return #define arch_atomic64_inc_return_release arch_atomic64_inc_return #define arch_atomic64_inc_return_relaxed arch_atomic64_inc_return #endif /* arch_atomic64_inc_return */ #ifndef arch_atomic64_inc_return static __always_inline s64 arch_atomic64_inc_return(atomic64_t *v) { return arch_atomic64_add_return(1, v); } #define arch_atomic64_inc_return arch_atomic64_inc_return #endif #ifndef arch_atomic64_inc_return_acquire static __always_inline s64 arch_atomic64_inc_return_acquire(atomic64_t *v) { return arch_atomic64_add_return_acquire(1, v); } #define arch_atomic64_inc_return_acquire arch_atomic64_inc_return_acquire #endif #ifndef arch_atomic64_inc_return_release static __always_inline s64 arch_atomic64_inc_return_release(atomic64_t *v) { return arch_atomic64_add_return_release(1, v); } #define arch_atomic64_inc_return_release arch_atomic64_inc_return_release #endif #ifndef arch_atomic64_inc_return_relaxed static __always_inline s64 arch_atomic64_inc_return_relaxed(atomic64_t *v) { return arch_atomic64_add_return_relaxed(1, v); } #define arch_atomic64_inc_return_relaxed arch_atomic64_inc_return_relaxed #endif #else /* arch_atomic64_inc_return_relaxed */ #ifndef arch_atomic64_inc_return_acquire static __always_inline s64 arch_atomic64_inc_return_acquire(atomic64_t *v) { s64 ret = arch_atomic64_inc_return_relaxed(v); __atomic_acquire_fence(); return ret; } #define arch_atomic64_inc_return_acquire arch_atomic64_inc_return_acquire #endif #ifndef arch_atomic64_inc_return_release static __always_inline s64 arch_atomic64_inc_return_release(atomic64_t *v) { __atomic_release_fence(); return arch_atomic64_inc_return_relaxed(v); } #define arch_atomic64_inc_return_release arch_atomic64_inc_return_release #endif #ifndef arch_atomic64_inc_return static __always_inline s64 arch_atomic64_inc_return(atomic64_t *v) { s64 ret; __atomic_pre_full_fence(); ret = arch_atomic64_inc_return_relaxed(v); __atomic_post_full_fence(); return ret; } #define arch_atomic64_inc_return arch_atomic64_inc_return #endif #endif /* arch_atomic64_inc_return_relaxed */ #ifndef arch_atomic64_fetch_inc_relaxed #ifdef arch_atomic64_fetch_inc #define arch_atomic64_fetch_inc_acquire arch_atomic64_fetch_inc #define arch_atomic64_fetch_inc_release arch_atomic64_fetch_inc #define arch_atomic64_fetch_inc_relaxed arch_atomic64_fetch_inc #endif /* arch_atomic64_fetch_inc */ #ifndef arch_atomic64_fetch_inc static __always_inline s64 arch_atomic64_fetch_inc(atomic64_t *v) { return arch_atomic64_fetch_add(1, v); } #define arch_atomic64_fetch_inc arch_atomic64_fetch_inc #endif #ifndef arch_atomic64_fetch_inc_acquire static __always_inline s64 arch_atomic64_fetch_inc_acquire(atomic64_t *v) { return arch_atomic64_fetch_add_acquire(1, v); } #define arch_atomic64_fetch_inc_acquire arch_atomic64_fetch_inc_acquire #endif #ifndef arch_atomic64_fetch_inc_release static __always_inline s64 arch_atomic64_fetch_inc_release(atomic64_t *v) { return arch_atomic64_fetch_add_release(1, v); } #define arch_atomic64_fetch_inc_release arch_atomic64_fetch_inc_release #endif #ifndef arch_atomic64_fetch_inc_relaxed static __always_inline s64 arch_atomic64_fetch_inc_relaxed(atomic64_t *v) { return arch_atomic64_fetch_add_relaxed(1, v); } #define arch_atomic64_fetch_inc_relaxed arch_atomic64_fetch_inc_relaxed #endif #else /* arch_atomic64_fetch_inc_relaxed */ #ifndef arch_atomic64_fetch_inc_acquire static __always_inline s64 arch_atomic64_fetch_inc_acquire(atomic64_t *v) { s64 ret = arch_atomic64_fetch_inc_relaxed(v); __atomic_acquire_fence(); return ret; } #define arch_atomic64_fetch_inc_acquire arch_atomic64_fetch_inc_acquire #endif #ifndef arch_atomic64_fetch_inc_release static __always_inline s64 arch_atomic64_fetch_inc_release(atomic64_t *v) { __atomic_release_fence(); return arch_atomic64_fetch_inc_relaxed(v); } #define arch_atomic64_fetch_inc_release arch_atomic64_fetch_inc_release #endif #ifndef arch_atomic64_fetch_inc static __always_inline s64 arch_atomic64_fetch_inc(atomic64_t *v) { s64 ret; __atomic_pre_full_fence(); ret = arch_atomic64_fetch_inc_relaxed(v); __atomic_post_full_fence(); return ret; } #define arch_atomic64_fetch_inc arch_atomic64_fetch_inc #endif #endif /* arch_atomic64_fetch_inc_relaxed */ #ifndef arch_atomic64_dec static __always_inline void arch_atomic64_dec(atomic64_t *v) { arch_atomic64_sub(1, v); } #define arch_atomic64_dec arch_atomic64_dec #endif #ifndef arch_atomic64_dec_return_relaxed #ifdef arch_atomic64_dec_return #define arch_atomic64_dec_return_acquire arch_atomic64_dec_return #define arch_atomic64_dec_return_release arch_atomic64_dec_return #define arch_atomic64_dec_return_relaxed arch_atomic64_dec_return #endif /* arch_atomic64_dec_return */ #ifndef arch_atomic64_dec_return static __always_inline s64 arch_atomic64_dec_return(atomic64_t *v) { return arch_atomic64_sub_return(1, v); } #define arch_atomic64_dec_return arch_atomic64_dec_return #endif #ifndef arch_atomic64_dec_return_acquire static __always_inline s64 arch_atomic64_dec_return_acquire(atomic64_t *v) { return arch_atomic64_sub_return_acquire(1, v); } #define arch_atomic64_dec_return_acquire arch_atomic64_dec_return_acquire #endif #ifndef arch_atomic64_dec_return_release static __always_inline s64 arch_atomic64_dec_return_release(atomic64_t *v) { return arch_atomic64_sub_return_release(1, v); } #define arch_atomic64_dec_return_release arch_atomic64_dec_return_release #endif #ifndef arch_atomic64_dec_return_relaxed static __always_inline s64 arch_atomic64_dec_return_relaxed(atomic64_t *v) { return arch_atomic64_sub_return_relaxed(1, v); } #define arch_atomic64_dec_return_relaxed arch_atomic64_dec_return_relaxed #endif #else /* arch_atomic64_dec_return_relaxed */ #ifndef arch_atomic64_dec_return_acquire static __always_inline s64 arch_atomic64_dec_return_acquire(atomic64_t *v) { s64 ret = arch_atomic64_dec_return_relaxed(v); __atomic_acquire_fence(); return ret; } #define arch_atomic64_dec_return_acquire arch_atomic64_dec_return_acquire #endif #ifndef arch_atomic64_dec_return_release static __always_inline s64 arch_atomic64_dec_return_release(atomic64_t *v) { __atomic_release_fence(); return arch_atomic64_dec_return_relaxed(v); } #define arch_atomic64_dec_return_release arch_atomic64_dec_return_release #endif #ifndef arch_atomic64_dec_return static __always_inline s64 arch_atomic64_dec_return(atomic64_t *v) { s64 ret; __atomic_pre_full_fence(); ret = arch_atomic64_dec_return_relaxed(v); __atomic_post_full_fence(); return ret; } #define arch_atomic64_dec_return arch_atomic64_dec_return #endif #endif /* arch_atomic64_dec_return_relaxed */ #ifndef arch_atomic64_fetch_dec_relaxed #ifdef arch_atomic64_fetch_dec #define arch_atomic64_fetch_dec_acquire arch_atomic64_fetch_dec #define arch_atomic64_fetch_dec_release arch_atomic64_fetch_dec #define arch_atomic64_fetch_dec_relaxed arch_atomic64_fetch_dec #endif /* arch_atomic64_fetch_dec */ #ifndef arch_atomic64_fetch_dec static __always_inline s64 arch_atomic64_fetch_dec(atomic64_t *v) { return arch_atomic64_fetch_sub(1, v); } #define arch_atomic64_fetch_dec arch_atomic64_fetch_dec #endif #ifndef arch_atomic64_fetch_dec_acquire static __always_inline s64 arch_atomic64_fetch_dec_acquire(atomic64_t *v) { return arch_atomic64_fetch_sub_acquire(1, v); } #define arch_atomic64_fetch_dec_acquire arch_atomic64_fetch_dec_acquire #endif #ifndef arch_atomic64_fetch_dec_release static __always_inline s64 arch_atomic64_fetch_dec_release(atomic64_t *v) { return arch_atomic64_fetch_sub_release(1, v); } #define arch_atomic64_fetch_dec_release arch_atomic64_fetch_dec_release #endif #ifndef arch_atomic64_fetch_dec_relaxed static __always_inline s64 arch_atomic64_fetch_dec_relaxed(atomic64_t *v) { return arch_atomic64_fetch_sub_relaxed(1, v); } #define arch_atomic64_fetch_dec_relaxed arch_atomic64_fetch_dec_relaxed #endif #else /* arch_atomic64_fetch_dec_relaxed */ #ifndef arch_atomic64_fetch_dec_acquire static __always_inline s64 arch_atomic64_fetch_dec_acquire(atomic64_t *v) { s64 ret = arch_atomic64_fetch_dec_relaxed(v); __atomic_acquire_fence(); return ret; } #define arch_atomic64_fetch_dec_acquire arch_atomic64_fetch_dec_acquire #endif #ifndef arch_atomic64_fetch_dec_release static __always_inline s64 arch_atomic64_fetch_dec_release(atomic64_t *v) { __atomic_release_fence(); return arch_atomic64_fetch_dec_relaxed(v); } #define arch_atomic64_fetch_dec_release arch_atomic64_fetch_dec_release #endif #ifndef arch_atomic64_fetch_dec static __always_inline s64 arch_atomic64_fetch_dec(atomic64_t *v) { s64 ret; __atomic_pre_full_fence(); ret = arch_atomic64_fetch_dec_relaxed(v); __atomic_post_full_fence(); return ret; } #define arch_atomic64_fetch_dec arch_atomic64_fetch_dec #endif #endif /* arch_atomic64_fetch_dec_relaxed */ #ifndef arch_atomic64_fetch_and_relaxed #define arch_atomic64_fetch_and_acquire arch_atomic64_fetch_and #define arch_atomic64_fetch_and_release arch_atomic64_fetch_and #define arch_atomic64_fetch_and_relaxed arch_atomic64_fetch_and #else /* arch_atomic64_fetch_and_relaxed */ #ifndef arch_atomic64_fetch_and_acquire static __always_inline s64 arch_atomic64_fetch_and_acquire(s64 i, atomic64_t *v) { s64 ret = arch_atomic64_fetch_and_relaxed(i, v); __atomic_acquire_fence(); return ret; } #define arch_atomic64_fetch_and_acquire arch_atomic64_fetch_and_acquire #endif #ifndef arch_atomic64_fetch_and_release static __always_inline s64 arch_atomic64_fetch_and_release(s64 i, atomic64_t *v) { __atomic_release_fence(); return arch_atomic64_fetch_and_relaxed(i, v); } #define arch_atomic64_fetch_and_release arch_atomic64_fetch_and_release #endif #ifndef arch_atomic64_fetch_and static __always_inline s64 arch_atomic64_fetch_and(s64 i, atomic64_t *v) { s64 ret; __atomic_pre_full_fence(); ret = arch_atomic64_fetch_and_relaxed(i, v); __atomic_post_full_fence(); return ret; } #define arch_atomic64_fetch_and arch_atomic64_fetch_and #endif #endif /* arch_atomic64_fetch_and_relaxed */ #ifndef arch_atomic64_andnot static __always_inline void arch_atomic64_andnot(s64 i, atomic64_t *v) { arch_atomic64_and(~i, v); } #define arch_atomic64_andnot arch_atomic64_andnot #endif #ifndef arch_atomic64_fetch_andnot_relaxed #ifdef arch_atomic64_fetch_andnot #define arch_atomic64_fetch_andnot_acquire arch_atomic64_fetch_andnot #define arch_atomic64_fetch_andnot_release arch_atomic64_fetch_andnot #define arch_atomic64_fetch_andnot_relaxed arch_atomic64_fetch_andnot #endif /* arch_atomic64_fetch_andnot */ #ifndef arch_atomic64_fetch_andnot static __always_inline s64 arch_atomic64_fetch_andnot(s64 i, atomic64_t *v) { return arch_atomic64_fetch_and(~i, v); } #define arch_atomic64_fetch_andnot arch_atomic64_fetch_andnot #endif #ifndef arch_atomic64_fetch_andnot_acquire static __always_inline s64 arch_atomic64_fetch_andnot_acquire(s64 i, atomic64_t *v) { return arch_atomic64_fetch_and_acquire(~i, v); } #define arch_atomic64_fetch_andnot_acquire arch_atomic64_fetch_andnot_acquire #endif #ifndef arch_atomic64_fetch_andnot_release static __always_inline s64 arch_atomic64_fetch_andnot_release(s64 i, atomic64_t *v) { return arch_atomic64_fetch_and_release(~i, v); } #define arch_atomic64_fetch_andnot_release arch_atomic64_fetch_andnot_release #endif #ifndef arch_atomic64_fetch_andnot_relaxed static __always_inline s64 arch_atomic64_fetch_andnot_relaxed(s64 i, atomic64_t *v) { return arch_atomic64_fetch_and_relaxed(~i, v); } #define arch_atomic64_fetch_andnot_relaxed arch_atomic64_fetch_andnot_relaxed #endif #else /* arch_atomic64_fetch_andnot_relaxed */ #ifndef arch_atomic64_fetch_andnot_acquire static __always_inline s64 arch_atomic64_fetch_andnot_acquire(s64 i, atomic64_t *v) { s64 ret = arch_atomic64_fetch_andnot_relaxed(i, v); __atomic_acquire_fence(); return ret; } #define arch_atomic64_fetch_andnot_acquire arch_atomic64_fetch_andnot_acquire #endif #ifndef arch_atomic64_fetch_andnot_release static __always_inline s64 arch_atomic64_fetch_andnot_release(s64 i, atomic64_t *v) { __atomic_release_fence(); return arch_atomic64_fetch_andnot_relaxed(i, v); } #define arch_atomic64_fetch_andnot_release arch_atomic64_fetch_andnot_release #endif #ifndef arch_atomic64_fetch_andnot static __always_inline s64 arch_atomic64_fetch_andnot(s64 i, atomic64_t *v) { s64 ret; __atomic_pre_full_fence(); ret = arch_atomic64_fetch_andnot_relaxed(i, v); __atomic_post_full_fence(); return ret; } #define arch_atomic64_fetch_andnot arch_atomic64_fetch_andnot #endif #endif /* arch_atomic64_fetch_andnot_relaxed */ #ifndef arch_atomic64_fetch_or_relaxed #define arch_atomic64_fetch_or_acquire arch_atomic64_fetch_or #define arch_atomic64_fetch_or_release arch_atomic64_fetch_or #define arch_atomic64_fetch_or_relaxed arch_atomic64_fetch_or #else /* arch_atomic64_fetch_or_relaxed */ #ifndef arch_atomic64_fetch_or_acquire static __always_inline s64 arch_atomic64_fetch_or_acquire(s64 i, atomic64_t *v) { s64 ret = arch_atomic64_fetch_or_relaxed(i, v); __atomic_acquire_fence(); return ret; } #define arch_atomic64_fetch_or_acquire arch_atomic64_fetch_or_acquire #endif #ifndef arch_atomic64_fetch_or_release static __always_inline s64 arch_atomic64_fetch_or_release(s64 i, atomic64_t *v) { __atomic_release_fence(); return arch_atomic64_fetch_or_relaxed(i, v); } #define arch_atomic64_fetch_or_release arch_atomic64_fetch_or_release #endif #ifndef arch_atomic64_fetch_or static __always_inline s64 arch_atomic64_fetch_or(s64 i, atomic64_t *v) { s64 ret; __atomic_pre_full_fence(); ret = arch_atomic64_fetch_or_relaxed(i, v); __atomic_post_full_fence(); return ret; } #define arch_atomic64_fetch_or arch_atomic64_fetch_or #endif #endif /* arch_atomic64_fetch_or_relaxed */ #ifndef arch_atomic64_fetch_xor_relaxed #define arch_atomic64_fetch_xor_acquire arch_atomic64_fetch_xor #define arch_atomic64_fetch_xor_release arch_atomic64_fetch_xor #define arch_atomic64_fetch_xor_relaxed arch_atomic64_fetch_xor #else /* arch_atomic64_fetch_xor_relaxed */ #ifndef arch_atomic64_fetch_xor_acquire static __always_inline s64 arch_atomic64_fetch_xor_acquire(s64 i, atomic64_t *v) { s64 ret = arch_atomic64_fetch_xor_relaxed(i, v); __atomic_acquire_fence(); return ret; } #define arch_atomic64_fetch_xor_acquire arch_atomic64_fetch_xor_acquire #endif #ifndef arch_atomic64_fetch_xor_release static __always_inline s64 arch_atomic64_fetch_xor_release(s64 i, atomic64_t *v) { __atomic_release_fence(); return arch_atomic64_fetch_xor_relaxed(i, v); } #define arch_atomic64_fetch_xor_release arch_atomic64_fetch_xor_release #endif #ifndef arch_atomic64_fetch_xor static __always_inline s64 arch_atomic64_fetch_xor(s64 i, atomic64_t *v) { s64 ret; __atomic_pre_full_fence(); ret = arch_atomic64_fetch_xor_relaxed(i, v); __atomic_post_full_fence(); return ret; } #define arch_atomic64_fetch_xor arch_atomic64_fetch_xor #endif #endif /* arch_atomic64_fetch_xor_relaxed */ #ifndef arch_atomic64_xchg_relaxed #define arch_atomic64_xchg_acquire arch_atomic64_xchg #define arch_atomic64_xchg_release arch_atomic64_xchg #define arch_atomic64_xchg_relaxed arch_atomic64_xchg #else /* arch_atomic64_xchg_relaxed */ #ifndef arch_atomic64_xchg_acquire static __always_inline s64 arch_atomic64_xchg_acquire(atomic64_t *v, s64 i) { s64 ret = arch_atomic64_xchg_relaxed(v, i); __atomic_acquire_fence(); return ret; } #define arch_atomic64_xchg_acquire arch_atomic64_xchg_acquire #endif #ifndef arch_atomic64_xchg_release static __always_inline s64 arch_atomic64_xchg_release(atomic64_t *v, s64 i) { __atomic_release_fence(); return arch_atomic64_xchg_relaxed(v, i); } #define arch_atomic64_xchg_release arch_atomic64_xchg_release #endif #ifndef arch_atomic64_xchg static __always_inline s64 arch_atomic64_xchg(atomic64_t *v, s64 i) { s64 ret; __atomic_pre_full_fence(); ret = arch_atomic64_xchg_relaxed(v, i); __atomic_post_full_fence(); return ret; } #define arch_atomic64_xchg arch_atomic64_xchg #endif #endif /* arch_atomic64_xchg_relaxed */ #ifndef arch_atomic64_cmpxchg_relaxed #define arch_atomic64_cmpxchg_acquire arch_atomic64_cmpxchg #define arch_atomic64_cmpxchg_release arch_atomic64_cmpxchg #define arch_atomic64_cmpxchg_relaxed arch_atomic64_cmpxchg #else /* arch_atomic64_cmpxchg_relaxed */ #ifndef arch_atomic64_cmpxchg_acquire static __always_inline s64 arch_atomic64_cmpxchg_acquire(atomic64_t *v, s64 old, s64 new) { s64 ret = arch_atomic64_cmpxchg_relaxed(v, old, new); __atomic_acquire_fence(); return ret; } #define arch_atomic64_cmpxchg_acquire arch_atomic64_cmpxchg_acquire #endif #ifndef arch_atomic64_cmpxchg_release static __always_inline s64 arch_atomic64_cmpxchg_release(atomic64_t *v, s64 old, s64 new) { __atomic_release_fence(); return arch_atomic64_cmpxchg_relaxed(v, old, new); } #define arch_atomic64_cmpxchg_release arch_atomic64_cmpxchg_release #endif #ifndef arch_atomic64_cmpxchg static __always_inline s64 arch_atomic64_cmpxchg(atomic64_t *v, s64 old, s64 new) { s64 ret; __atomic_pre_full_fence(); ret = arch_atomic64_cmpxchg_relaxed(v, old, new); __atomic_post_full_fence(); return ret; } #define arch_atomic64_cmpxchg arch_atomic64_cmpxchg #endif #endif /* arch_atomic64_cmpxchg_relaxed */ #ifndef arch_atomic64_try_cmpxchg_relaxed #ifdef arch_atomic64_try_cmpxchg #define arch_atomic64_try_cmpxchg_acquire arch_atomic64_try_cmpxchg #define arch_atomic64_try_cmpxchg_release arch_atomic64_try_cmpxchg #define arch_atomic64_try_cmpxchg_relaxed arch_atomic64_try_cmpxchg #endif /* arch_atomic64_try_cmpxchg */ #ifndef arch_atomic64_try_cmpxchg static __always_inline bool arch_atomic64_try_cmpxchg(atomic64_t *v, s64 *old, s64 new) { s64 r, o = *old; r = arch_atomic64_cmpxchg(v, o, new); if (unlikely(r != o)) *old = r; return likely(r == o); } #define arch_atomic64_try_cmpxchg arch_atomic64_try_cmpxchg #endif #ifndef arch_atomic64_try_cmpxchg_acquire static __always_inline bool arch_atomic64_try_cmpxchg_acquire(atomic64_t *v, s64 *old, s64 new) { s64 r, o = *old; r = arch_atomic64_cmpxchg_acquire(v, o, new); if (unlikely(r != o)) *old = r; return likely(r == o); } #define arch_atomic64_try_cmpxchg_acquire arch_atomic64_try_cmpxchg_acquire #endif #ifndef arch_atomic64_try_cmpxchg_release static __always_inline bool arch_atomic64_try_cmpxchg_release(atomic64_t *v, s64 *old, s64 new) { s64 r, o = *old; r = arch_atomic64_cmpxchg_release(v, o, new); if (unlikely(r != o)) *old = r; return likely(r == o); } #define arch_atomic64_try_cmpxchg_release arch_atomic64_try_cmpxchg_release #endif #ifndef arch_atomic64_try_cmpxchg_relaxed static __always_inline bool arch_atomic64_try_cmpxchg_relaxed(atomic64_t *v, s64 *old, s64 new) { s64 r, o = *old; r = arch_atomic64_cmpxchg_relaxed(v, o, new); if (unlikely(r != o)) *old = r; return likely(r == o); } #define arch_atomic64_try_cmpxchg_relaxed arch_atomic64_try_cmpxchg_relaxed #endif #else /* arch_atomic64_try_cmpxchg_relaxed */ #ifndef arch_atomic64_try_cmpxchg_acquire static __always_inline bool arch_atomic64_try_cmpxchg_acquire(atomic64_t *v, s64 *old, s64 new) { bool ret = arch_atomic64_try_cmpxchg_relaxed(v, old, new); __atomic_acquire_fence(); return ret; } #define arch_atomic64_try_cmpxchg_acquire arch_atomic64_try_cmpxchg_acquire #endif #ifndef arch_atomic64_try_cmpxchg_release static __always_inline bool arch_atomic64_try_cmpxchg_release(atomic64_t *v, s64 *old, s64 new) { __atomic_release_fence(); return arch_atomic64_try_cmpxchg_relaxed(v, old, new); } #define arch_atomic64_try_cmpxchg_release arch_atomic64_try_cmpxchg_release #endif #ifndef arch_atomic64_try_cmpxchg static __always_inline bool arch_atomic64_try_cmpxchg(atomic64_t *v, s64 *old, s64 new) { bool ret; __atomic_pre_full_fence(); ret = arch_atomic64_try_cmpxchg_relaxed(v, old, new); __atomic_post_full_fence(); return ret; } #define arch_atomic64_try_cmpxchg arch_atomic64_try_cmpxchg #endif #endif /* arch_atomic64_try_cmpxchg_relaxed */ #ifndef arch_atomic64_sub_and_test /** * arch_atomic64_sub_and_test - subtract value from variable and test result * @i: integer value to subtract * @v: pointer of type atomic64_t * * Atomically subtracts @i from @v and returns * true if the result is zero, or false for all * other cases. */ static __always_inline bool arch_atomic64_sub_and_test(s64 i, atomic64_t *v) { return arch_atomic64_sub_return(i, v) == 0; } #define arch_atomic64_sub_and_test arch_atomic64_sub_and_test #endif #ifndef arch_atomic64_dec_and_test /** * arch_atomic64_dec_and_test - decrement and test * @v: pointer of type atomic64_t * * Atomically decrements @v by 1 and * returns true if the result is 0, or false for all other * cases. */ static __always_inline bool arch_atomic64_dec_and_test(atomic64_t *v) { return arch_atomic64_dec_return(v) == 0; } #define arch_atomic64_dec_and_test arch_atomic64_dec_and_test #endif #ifndef arch_atomic64_inc_and_test /** * arch_atomic64_inc_and_test - increment and test * @v: pointer of type atomic64_t * * Atomically increments @v by 1 * and returns true if the result is zero, or false for all * other cases. */ static __always_inline bool arch_atomic64_inc_and_test(atomic64_t *v) { return arch_atomic64_inc_return(v) == 0; } #define arch_atomic64_inc_and_test arch_atomic64_inc_and_test #endif #ifndef arch_atomic64_add_negative /** * arch_atomic64_add_negative - add and test if negative * @i: integer value to add * @v: pointer of type atomic64_t * * Atomically adds @i to @v and returns true * if the result is negative, or false when * result is greater than or equal to zero. */ static __always_inline bool arch_atomic64_add_negative(s64 i, atomic64_t *v) { return arch_atomic64_add_return(i, v) < 0; } #define arch_atomic64_add_negative arch_atomic64_add_negative #endif #ifndef arch_atomic64_fetch_add_unless /** * arch_atomic64_fetch_add_unless - add unless the number is already a given value * @v: pointer of type atomic64_t * @a: the amount to add to v... * @u: ...unless v is equal to u. * * Atomically adds @a to @v, so long as @v was not already @u. * Returns original value of @v */ static __always_inline s64 arch_atomic64_fetch_add_unless(atomic64_t *v, s64 a, s64 u) { s64 c = arch_atomic64_read(v); do { if (unlikely(c == u)) break; } while (!arch_atomic64_try_cmpxchg(v, &c, c + a)); return c; } #define arch_atomic64_fetch_add_unless arch_atomic64_fetch_add_unless #endif #ifndef arch_atomic64_add_unless /** * arch_atomic64_add_unless - add unless the number is already a given value * @v: pointer of type atomic64_t * @a: the amount to add to v... * @u: ...unless v is equal to u. * * Atomically adds @a to @v, if @v was not already @u. * Returns true if the addition was done. */ static __always_inline bool arch_atomic64_add_unless(atomic64_t *v, s64 a, s64 u) { return arch_atomic64_fetch_add_unless(v, a, u) != u; } #define arch_atomic64_add_unless arch_atomic64_add_unless #endif #ifndef arch_atomic64_inc_not_zero /** * arch_atomic64_inc_not_zero - increment unless the number is zero * @v: pointer of type atomic64_t * * Atomically increments @v by 1, if @v is non-zero. * Returns true if the increment was done. */ static __always_inline bool arch_atomic64_inc_not_zero(atomic64_t *v) { return arch_atomic64_add_unless(v, 1, 0); } #define arch_atomic64_inc_not_zero arch_atomic64_inc_not_zero #endif #ifndef arch_atomic64_inc_unless_negative static __always_inline bool arch_atomic64_inc_unless_negative(atomic64_t *v) { s64 c = arch_atomic64_read(v); do { if (unlikely(c < 0)) return false; } while (!arch_atomic64_try_cmpxchg(v, &c, c + 1)); return true; } #define arch_atomic64_inc_unless_negative arch_atomic64_inc_unless_negative #endif #ifndef arch_atomic64_dec_unless_positive static __always_inline bool arch_atomic64_dec_unless_positive(atomic64_t *v) { s64 c = arch_atomic64_read(v); do { if (unlikely(c > 0)) return false; } while (!arch_atomic64_try_cmpxchg(v, &c, c - 1)); return true; } #define arch_atomic64_dec_unless_positive arch_atomic64_dec_unless_positive #endif #ifndef arch_atomic64_dec_if_positive static __always_inline s64 arch_atomic64_dec_if_positive(atomic64_t *v) { s64 dec, c = arch_atomic64_read(v); do { dec = c - 1; if (unlikely(dec < 0)) break; } while (!arch_atomic64_try_cmpxchg(v, &c, dec)); return dec; } #define arch_atomic64_dec_if_positive arch_atomic64_dec_if_positive #endif #endif /* _LINUX_ATOMIC_FALLBACK_H */ // 90cd26cfd69d2250303d654955a0cc12620fb91b
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 /* SPDX-License-Identifier: GPL-2.0-only */ #ifndef _ASM_X86_APIC_H #define _ASM_X86_APIC_H #include <linux/cpumask.h> #include <asm/alternative.h> #include <asm/cpufeature.h> #include <asm/apicdef.h> #include <linux/atomic.h> #include <asm/fixmap.h> #include <asm/mpspec.h> #include <asm/msr.h> #include <asm/hardirq.h> #define ARCH_APICTIMER_STOPS_ON_C3 1 /* * Debugging macros */ #define APIC_QUIET 0 #define APIC_VERBOSE 1 #define APIC_DEBUG 2 /* Macros for apic_extnmi which controls external NMI masking */ #define APIC_EXTNMI_BSP 0 /* Default */ #define APIC_EXTNMI_ALL 1 #define APIC_EXTNMI_NONE 2 /* * Define the default level of output to be very little * This can be turned up by using apic=verbose for more * information and apic=debug for _lots_ of information. * apic_verbosity is defined in apic.c */ #define apic_printk(v, s, a...) do { \ if ((v) <= apic_verbosity) \ printk(s, ##a); \ } while (0) #if defined(CONFIG_X86_LOCAL_APIC) && defined(CONFIG_X86_32) extern void generic_apic_probe(void); #else static inline void generic_apic_probe(void) { } #endif #ifdef CONFIG_X86_LOCAL_APIC extern int apic_verbosity; extern int local_apic_timer_c2_ok; extern int disable_apic; extern unsigned int lapic_timer_period; extern enum apic_intr_mode_id apic_intr_mode; enum apic_intr_mode_id { APIC_PIC, APIC_VIRTUAL_WIRE, APIC_VIRTUAL_WIRE_NO_CONFIG, APIC_SYMMETRIC_IO, APIC_SYMMETRIC_IO_NO_ROUTING }; #ifdef CONFIG_SMP extern void __inquire_remote_apic(int apicid); #else /* CONFIG_SMP */ static inline void __inquire_remote_apic(int apicid) { } #endif /* CONFIG_SMP */ static inline void default_inquire_remote_apic(int apicid) { if (apic_verbosity >= APIC_DEBUG) __inquire_remote_apic(apicid); } /* * With 82489DX we can't rely on apic feature bit * retrieved via cpuid but still have to deal with * such an apic chip so we assume that SMP configuration * is found from MP table (64bit case uses ACPI mostly * which set smp presence flag as well so we are safe * to use this helper too). */ static inline bool apic_from_smp_config(void) { return smp_found_config && !disable_apic; } /* * Basic functions accessing APICs. */ #ifdef CONFIG_PARAVIRT #include <asm/paravirt.h> #endif extern int setup_profiling_timer(unsigned int); static inline void native_apic_mem_write(u32 reg, u32 v) { volatile u32 *addr = (volatile u32 *)(APIC_BASE + reg); alternative_io("movl %0, %P1", "xchgl %0, %P1", X86_BUG_11AP, ASM_OUTPUT2("=r" (v), "=m" (*addr)), ASM_OUTPUT2("0" (v), "m" (*addr))); } static inline u32 native_apic_mem_read(u32 reg) { return *((volatile u32 *)(APIC_BASE + reg)); } extern void native_apic_wait_icr_idle(void); extern u32 native_safe_apic_wait_icr_idle(void); extern void native_apic_icr_write(u32 low, u32 id); extern u64 native_apic_icr_read(void); static inline bool apic_is_x2apic_enabled(void) { u64 msr; if (rdmsrl_safe(MSR_IA32_APICBASE, &msr)) return false; return msr & X2APIC_ENABLE; } extern void enable_IR_x2apic(void); extern int get_physical_broadcast(void); extern int lapic_get_maxlvt(void); extern void clear_local_APIC(void); extern void disconnect_bsp_APIC(int virt_wire_setup); extern void disable_local_APIC(void); extern void apic_soft_disable(void); extern void lapic_shutdown(void); extern void sync_Arb_IDs(void); extern void init_bsp_APIC(void); extern void apic_intr_mode_select(void); extern void apic_intr_mode_init(void); extern void init_apic_mappings(void); void register_lapic_address(unsigned long address); extern void setup_boot_APIC_clock(void); extern void setup_secondary_APIC_clock(void); extern void lapic_update_tsc_freq(void); #ifdef CONFIG_X86_64 static inline int apic_force_enable(unsigned long addr) { return -1; } #else extern int apic_force_enable(unsigned long addr); #endif extern void apic_ap_setup(void); /* * On 32bit this is mach-xxx local */ #ifdef CONFIG_X86_64 extern int apic_is_clustered_box(void); #else static inline int apic_is_clustered_box(void) { return 0; } #endif extern int setup_APIC_eilvt(u8 lvt_off, u8 vector, u8 msg_type, u8 mask); extern void lapic_assign_system_vectors(void); extern void lapic_assign_legacy_vector(unsigned int isairq, bool replace); extern void lapic_update_legacy_vectors(void); extern void lapic_online(void); extern void lapic_offline(void); extern bool apic_needs_pit(void); extern void apic_send_IPI_allbutself(unsigned int vector); #else /* !CONFIG_X86_LOCAL_APIC */ static inline void lapic_shutdown(void) { } #define local_apic_timer_c2_ok 1 static inline void init_apic_mappings(void) { } static inline void disable_local_APIC(void) { } # define setup_boot_APIC_clock x86_init_noop # define setup_secondary_APIC_clock x86_init_noop static inline void lapic_update_tsc_freq(void) { } static inline void init_bsp_APIC(void) { } static inline void apic_intr_mode_select(void) { } static inline void apic_intr_mode_init(void) { } static inline void lapic_assign_system_vectors(void) { } static inline void lapic_assign_legacy_vector(unsigned int i, bool r) { } static inline bool apic_needs_pit(void) { return true; } #endif /* !CONFIG_X86_LOCAL_APIC */ #ifdef CONFIG_X86_X2APIC static inline void native_apic_msr_write(u32 reg, u32 v) { if (reg == APIC_DFR || reg == APIC_ID || reg == APIC_LDR || reg == APIC_LVR) return; wrmsr(APIC_BASE_MSR + (reg >> 4), v, 0); } static inline void native_apic_msr_eoi_write(u32 reg, u32 v) { __wrmsr(APIC_BASE_MSR + (APIC_EOI >> 4), APIC_EOI_ACK, 0); } static inline u32 native_apic_msr_read(u32 reg) { u64 msr; if (reg == APIC_DFR) return -1; rdmsrl(APIC_BASE_MSR + (reg >> 4), msr); return (u32)msr; } static inline void native_x2apic_wait_icr_idle(void) { /* no need to wait for icr idle in x2apic */ return; } static inline u32 native_safe_x2apic_wait_icr_idle(void) { /* no need to wait for icr idle in x2apic */ return 0; } static inline void native_x2apic_icr_write(u32 low, u32 id) { wrmsrl(APIC_BASE_MSR + (APIC_ICR >> 4), ((__u64) id) << 32 | low); } static inline u64 native_x2apic_icr_read(void) { unsigned long val; rdmsrl(APIC_BASE_MSR + (APIC_ICR >> 4), val); return val; } extern int x2apic_mode; extern int x2apic_phys; extern void __init x2apic_set_max_apicid(u32 apicid); extern void __init check_x2apic(void); extern void x2apic_setup(void); static inline int x2apic_enabled(void) { return boot_cpu_has(X86_FEATURE_X2APIC) && apic_is_x2apic_enabled(); } #define x2apic_supported() (boot_cpu_has(X86_FEATURE_X2APIC)) #else /* !CONFIG_X86_X2APIC */ static inline void check_x2apic(void) { } static inline void x2apic_setup(void) { } static inline int x2apic_enabled(void) { return 0; } #define x2apic_mode (0) #define x2apic_supported() (0) #endif /* !CONFIG_X86_X2APIC */ struct irq_data; /* * Copyright 2004 James Cleverdon, IBM. * * Generic APIC sub-arch data struct. * * Hacked for x86-64 by James Cleverdon from i386 architecture code by * Martin Bligh, Andi Kleen, James Bottomley, John Stultz, and * James Cleverdon. */ struct apic { /* Hotpath functions first */ void (*eoi_write)(u32 reg, u32 v); void (*native_eoi_write)(u32 reg, u32 v); void (*write)(u32 reg, u32 v); u32 (*read)(u32 reg); /* IPI related functions */ void (*wait_icr_idle)(void); u32 (*safe_wait_icr_idle)(void); void (*send_IPI)(int cpu, int vector); void (*send_IPI_mask)(const struct cpumask *mask, int vector); void (*send_IPI_mask_allbutself)(const struct cpumask *msk, int vec); void (*send_IPI_allbutself)(int vector); void (*send_IPI_all)(int vector); void (*send_IPI_self)(int vector); /* dest_logical is used by the IPI functions */ u32 dest_logical; u32 disable_esr; u32 irq_delivery_mode; u32 irq_dest_mode; u32 (*calc_dest_apicid)(unsigned int cpu); /* ICR related functions */ u64 (*icr_read)(void); void (*icr_write)(u32 low, u32 high); /* Probe, setup and smpboot functions */ int (*probe)(void); int (*acpi_madt_oem_check)(char *oem_id, char *oem_table_id); int (*apic_id_valid)(u32 apicid); int (*apic_id_registered)(void); bool (*check_apicid_used)(physid_mask_t *map, int apicid); void (*init_apic_ldr)(void); void (*ioapic_phys_id_map)(physid_mask_t *phys_map, physid_mask_t *retmap); void (*setup_apic_routing)(void); int (*cpu_present_to_apicid)(int mps_cpu); void (*apicid_to_cpu_present)(int phys_apicid, physid_mask_t *retmap); int (*check_phys_apicid_present)(int phys_apicid); int (*phys_pkg_id)(int cpuid_apic, int index_msb); u32 (*get_apic_id)(unsigned long x); u32 (*set_apic_id)(unsigned int id); /* wakeup_secondary_cpu */ int (*wakeup_secondary_cpu)(int apicid, unsigned long start_eip); void (*inquire_remote_apic)(int apicid); #ifdef CONFIG_X86_32 /* * Called very early during boot from get_smp_config(). It should * return the logical apicid. x86_[bios]_cpu_to_apicid is * initialized before this function is called. * * If logical apicid can't be determined that early, the function * may return BAD_APICID. Logical apicid will be configured after * init_apic_ldr() while bringing up CPUs. Note that NUMA affinity * won't be applied properly during early boot in this case. */ int (*x86_32_early_logical_apicid)(int cpu); #endif char *name; }; /* * Pointer to the local APIC driver in use on this system (there's * always just one such driver in use - the kernel decides via an * early probing process which one it picks - and then sticks to it): */ extern struct apic *apic; /* * APIC drivers are probed based on how they are listed in the .apicdrivers * section. So the order is important and enforced by the ordering * of different apic driver files in the Makefile. * * For the files having two apic drivers, we use apic_drivers() * to enforce the order with in them. */ #define apic_driver(sym) \ static const struct apic *__apicdrivers_##sym __used \ __aligned(sizeof(struct apic *)) \ __section(".apicdrivers") = { &sym } #define apic_drivers(sym1, sym2) \ static struct apic *__apicdrivers_##sym1##sym2[2] __used \ __aligned(sizeof(struct apic *)) \ __section(".apicdrivers") = { &sym1, &sym2 } extern struct apic *__apicdrivers[], *__apicdrivers_end[]; /* * APIC functionality to boot other CPUs - only used on SMP: */ #ifdef CONFIG_SMP extern int wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip); extern int lapic_can_unplug_cpu(void); #endif #ifdef CONFIG_X86_LOCAL_APIC static inline u32 apic_read(u32 reg) { return apic->read(reg); } static inline void apic_write(u32 reg, u32 val) { apic->write(reg, val); } static inline void apic_eoi(void) { apic->eoi_write(APIC_EOI, APIC_EOI_ACK); } static inline u64 apic_icr_read(void) { return apic->icr_read(); } static inline void apic_icr_write(u32 low, u32 high) { apic->icr_write(low, high); } static inline void apic_wait_icr_idle(void) { apic->wait_icr_idle(); } static inline u32 safe_apic_wait_icr_idle(void) { return apic->safe_wait_icr_idle(); } extern void __init apic_set_eoi_write(void (*eoi_write)(u32 reg, u32 v)); #else /* CONFIG_X86_LOCAL_APIC */ static inline u32 apic_read(u32 reg) { return 0; } static inline void apic_write(u32 reg, u32 val) { } static inline void apic_eoi(void) { } static inline u64 apic_icr_read(void) { return 0; } static inline void apic_icr_write(u32 low, u32 high) { } static inline void apic_wait_icr_idle(void) { } static inline u32 safe_apic_wait_icr_idle(void) { return 0; } static inline void apic_set_eoi_write(void (*eoi_write)(u32 reg, u32 v)) {} #endif /* CONFIG_X86_LOCAL_APIC */ extern void apic_ack_irq(struct irq_data *data); static inline void ack_APIC_irq(void) { /* * ack_APIC_irq() actually gets compiled as a single instruction * ... yummie. */ apic_eoi(); } static inline bool lapic_vector_set_in_irr(unsigned int vector) { u32 irr = apic_read(APIC_IRR + (vector / 32 * 0x10)); return !!(irr & (1U << (vector % 32))); } static inline unsigned default_get_apic_id(unsigned long x) { unsigned int ver = GET_APIC_VERSION(apic_read(APIC_LVR)); if (APIC_XAPIC(ver) || boot_cpu_has(X86_FEATURE_EXTD_APICID)) return (x >> 24) & 0xFF; else return (x >> 24) & 0x0F; } /* * Warm reset vector position: */ #define TRAMPOLINE_PHYS_LOW 0x467 #define TRAMPOLINE_PHYS_HIGH 0x469 extern void generic_bigsmp_probe(void); #ifdef CONFIG_X86_LOCAL_APIC #include <asm/smp.h> #define APIC_DFR_VALUE (APIC_DFR_FLAT) DECLARE_EARLY_PER_CPU_READ_MOSTLY(u16, x86_bios_cpu_apicid); extern struct apic apic_noop; static inline unsigned int read_apic_id(void) { unsigned int reg = apic_read(APIC_ID); return apic->get_apic_id(reg); } extern int default_apic_id_valid(u32 apicid); extern int default_acpi_madt_oem_check(char *, char *); extern void default_setup_apic_routing(void); extern u32 apic_default_calc_apicid(unsigned int cpu); extern u32 apic_flat_calc_apicid(unsigned int cpu); extern bool default_check_apicid_used(physid_mask_t *map, int apicid); extern void default_ioapic_phys_id_map(physid_mask_t *phys_map, physid_mask_t *retmap); extern int default_cpu_present_to_apicid(int mps_cpu); extern int default_check_phys_apicid_present(int phys_apicid); #endif /* CONFIG_X86_LOCAL_APIC */ #ifdef CONFIG_SMP bool apic_id_is_primary_thread(unsigned int id); void apic_smt_update(void); #else static inline bool apic_id_is_primary_thread(unsigned int id) { return false; } static inline void apic_smt_update(void) { } #endif struct msi_msg; #ifdef CONFIG_PCI_MSI void x86_vector_msi_compose_msg(struct irq_data *data, struct msi_msg *msg); #else # define x86_vector_msi_compose_msg NULL #endif extern void ioapic_zap_locks(void); #endif /* _ASM_X86_APIC_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _NET_XFRM_H #define _NET_XFRM_H #include <linux/compiler.h> #include <linux/xfrm.h> #include <linux/spinlock.h> #include <linux/list.h> #include <linux/skbuff.h> #include <linux/socket.h> #include <linux/pfkeyv2.h> #include <linux/ipsec.h> #include <linux/in6.h> #include <linux/mutex.h> #include <linux/audit.h> #include <linux/slab.h> #include <linux/refcount.h> #include <linux/sockptr.h> #include <net/sock.h> #include <net/dst.h> #include <net/ip.h> #include <net/route.h> #include <net/ipv6.h> #include <net/ip6_fib.h> #include <net/flow.h> #include <net/gro_cells.h> #include <linux/interrupt.h> #ifdef CONFIG_XFRM_STATISTICS #include <net/snmp.h> #endif #define XFRM_PROTO_ESP 50 #define XFRM_PROTO_AH 51 #define XFRM_PROTO_COMP 108 #define XFRM_PROTO_IPIP 4 #define XFRM_PROTO_IPV6 41 #define XFRM_PROTO_ROUTING IPPROTO_ROUTING #define XFRM_PROTO_DSTOPTS IPPROTO_DSTOPTS #define XFRM_ALIGN4(len) (((len) + 3) & ~3) #define XFRM_ALIGN8(len) (((len) + 7) & ~7) #define MODULE_ALIAS_XFRM_MODE(family, encap) \ MODULE_ALIAS("xfrm-mode-" __stringify(family) "-" __stringify(encap)) #define MODULE_ALIAS_XFRM_TYPE(family, proto) \ MODULE_ALIAS("xfrm-type-" __stringify(family) "-" __stringify(proto)) #define MODULE_ALIAS_XFRM_OFFLOAD_TYPE(family, proto) \ MODULE_ALIAS("xfrm-offload-" __stringify(family) "-" __stringify(proto)) #ifdef CONFIG_XFRM_STATISTICS #define XFRM_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.xfrm_statistics, field) #else #define XFRM_INC_STATS(net, field) ((void)(net)) #endif /* Organization of SPD aka "XFRM rules" ------------------------------------ Basic objects: - policy rule, struct xfrm_policy (=SPD entry) - bundle of transformations, struct dst_entry == struct xfrm_dst (=SA bundle) - instance of a transformer, struct xfrm_state (=SA) - template to clone xfrm_state, struct xfrm_tmpl SPD is plain linear list of xfrm_policy rules, ordered by priority. (To be compatible with existing pfkeyv2 implementations, many rules with priority of 0x7fffffff are allowed to exist and such rules are ordered in an unpredictable way, thanks to bsd folks.) Lookup is plain linear search until the first match with selector. If "action" is "block", then we prohibit the flow, otherwise: if "xfrms_nr" is zero, the flow passes untransformed. Otherwise, policy entry has list of up to XFRM_MAX_DEPTH transformations, described by templates xfrm_tmpl. Each template is resolved to a complete xfrm_state (see below) and we pack bundle of transformations to a dst_entry returned to requestor. dst -. xfrm .-> xfrm_state #1 |---. child .-> dst -. xfrm .-> xfrm_state #2 |---. child .-> dst -. xfrm .-> xfrm_state #3 |---. child .-> NULL Bundles are cached at xrfm_policy struct (field ->bundles). Resolution of xrfm_tmpl ----------------------- Template contains: 1. ->mode Mode: transport or tunnel 2. ->id.proto Protocol: AH/ESP/IPCOMP 3. ->id.daddr Remote tunnel endpoint, ignored for transport mode. Q: allow to resolve security gateway? 4. ->id.spi If not zero, static SPI. 5. ->saddr Local tunnel endpoint, ignored for transport mode. 6. ->algos List of allowed algos. Plain bitmask now. Q: ealgos, aalgos, calgos. What a mess... 7. ->share Sharing mode. Q: how to implement private sharing mode? To add struct sock* to flow id? Having this template we search through SAD searching for entries with appropriate mode/proto/algo, permitted by selector. If no appropriate entry found, it is requested from key manager. PROBLEMS: Q: How to find all the bundles referring to a physical path for PMTU discovery? Seems, dst should contain list of all parents... and enter to infinite locking hierarchy disaster. No! It is easier, we will not search for them, let them find us. We add genid to each dst plus pointer to genid of raw IP route, pmtu disc will update pmtu on raw IP route and increase its genid. dst_check() will see this for top level and trigger resyncing metrics. Plus, it will be made via sk->sk_dst_cache. Solved. */ struct xfrm_state_walk { struct list_head all; u8 state; u8 dying; u8 proto; u32 seq; struct xfrm_address_filter *filter; }; struct xfrm_state_offload { struct net_device *dev; struct net_device *real_dev; unsigned long offload_handle; unsigned int num_exthdrs; u8 flags; }; struct xfrm_mode { u8 encap; u8 family; u8 flags; }; /* Flags for xfrm_mode. */ enum { XFRM_MODE_FLAG_TUNNEL = 1, }; /* Full description of state of transformer. */ struct xfrm_state { possible_net_t xs_net; union { struct hlist_node gclist; struct hlist_node bydst; }; struct hlist_node bysrc; struct hlist_node byspi; refcount_t refcnt; spinlock_t lock; struct xfrm_id id; struct xfrm_selector sel; struct xfrm_mark mark; u32 if_id; u32 tfcpad; u32 genid; /* Key manager bits */ struct xfrm_state_walk km; /* Parameters of this state. */ struct { u32 reqid; u8 mode; u8 replay_window; u8 aalgo, ealgo, calgo; u8 flags; u16 family; xfrm_address_t saddr; int header_len; int trailer_len; u32 extra_flags; struct xfrm_mark smark; } props; struct xfrm_lifetime_cfg lft; /* Data for transformer */ struct xfrm_algo_auth *aalg; struct xfrm_algo *ealg; struct xfrm_algo *calg; struct xfrm_algo_aead *aead; const char *geniv; /* Data for encapsulator */ struct xfrm_encap_tmpl *encap; struct sock __rcu *encap_sk; /* Data for care-of address */ xfrm_address_t *coaddr; /* IPComp needs an IPIP tunnel for handling uncompressed packets */ struct xfrm_state *tunnel; /* If a tunnel, number of users + 1 */ atomic_t tunnel_users; /* State for replay detection */ struct xfrm_replay_state replay; struct xfrm_replay_state_esn *replay_esn; /* Replay detection state at the time we sent the last notification */ struct xfrm_replay_state preplay; struct xfrm_replay_state_esn *preplay_esn; /* The functions for replay detection. */ const struct xfrm_replay *repl; /* internal flag that only holds state for delayed aevent at the * moment */ u32 xflags; /* Replay detection notification settings */ u32 replay_maxage; u32 replay_maxdiff; /* Replay detection notification timer */ struct timer_list rtimer; /* Statistics */ struct xfrm_stats stats; struct xfrm_lifetime_cur curlft; struct hrtimer mtimer; struct xfrm_state_offload xso; /* used to fix curlft->add_time when changing date */ long saved_tmo; /* Last used time */ time64_t lastused; struct page_frag xfrag; /* Reference to data common to all the instances of this * transformer. */ const struct xfrm_type *type; struct xfrm_mode inner_mode; struct xfrm_mode inner_mode_iaf; struct xfrm_mode outer_mode; const struct xfrm_type_offload *type_offload; /* Security context */ struct xfrm_sec_ctx *security; /* Private data of this transformer, format is opaque, * interpreted by xfrm_type methods. */ void *data; }; static inline struct net *xs_net(struct xfrm_state *x) { return read_pnet(&x->xs_net); } /* xflags - make enum if more show up */ #define XFRM_TIME_DEFER 1 #define XFRM_SOFT_EXPIRE 2 enum { XFRM_STATE_VOID, XFRM_STATE_ACQ, XFRM_STATE_VALID, XFRM_STATE_ERROR, XFRM_STATE_EXPIRED, XFRM_STATE_DEAD }; /* callback structure passed from either netlink or pfkey */ struct km_event { union { u32 hard; u32 proto; u32 byid; u32 aevent; u32 type; } data; u32 seq; u32 portid; u32 event; struct net *net; }; struct xfrm_replay { void (*advance)(struct xfrm_state *x, __be32 net_seq); int (*check)(struct xfrm_state *x, struct sk_buff *skb, __be32 net_seq); int (*recheck)(struct xfrm_state *x, struct sk_buff *skb, __be32 net_seq); void (*notify)(struct xfrm_state *x, int event); int (*overflow)(struct xfrm_state *x, struct sk_buff *skb); }; struct xfrm_if_cb { struct xfrm_if *(*decode_session)(struct sk_buff *skb, unsigned short family); }; void xfrm_if_register_cb(const struct xfrm_if_cb *ifcb); void xfrm_if_unregister_cb(void); struct net_device; struct xfrm_type; struct xfrm_dst; struct xfrm_policy_afinfo { struct dst_ops *dst_ops; struct dst_entry *(*dst_lookup)(struct net *net, int tos, int oif, const xfrm_address_t *saddr, const xfrm_address_t *daddr, u32 mark); int (*get_saddr)(struct net *net, int oif, xfrm_address_t *saddr, xfrm_address_t *daddr, u32 mark); int (*fill_dst)(struct xfrm_dst *xdst, struct net_device *dev, const struct flowi *fl); struct dst_entry *(*blackhole_route)(struct net *net, struct dst_entry *orig); }; int xfrm_policy_register_afinfo(const struct xfrm_policy_afinfo *afinfo, int family); void xfrm_policy_unregister_afinfo(const struct xfrm_policy_afinfo *afinfo); void km_policy_notify(struct xfrm_policy *xp, int dir, const struct km_event *c); void km_state_notify(struct xfrm_state *x, const struct km_event *c); struct xfrm_tmpl; int km_query(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *pol); void km_state_expired(struct xfrm_state *x, int hard, u32 portid); int __xfrm_state_delete(struct xfrm_state *x); struct xfrm_state_afinfo { u8 family; u8 proto; const struct xfrm_type_offload *type_offload_esp; const struct xfrm_type *type_esp; const struct xfrm_type *type_ipip; const struct xfrm_type *type_ipip6; const struct xfrm_type *type_comp; const struct xfrm_type *type_ah; const struct xfrm_type *type_routing; const struct xfrm_type *type_dstopts; int (*output)(struct net *net, struct sock *sk, struct sk_buff *skb); int (*transport_finish)(struct sk_buff *skb, int async); void (*local_error)(struct sk_buff *skb, u32 mtu); }; int xfrm_state_register_afinfo(struct xfrm_state_afinfo *afinfo); int xfrm_state_unregister_afinfo(struct xfrm_state_afinfo *afinfo); struct xfrm_state_afinfo *xfrm_state_get_afinfo(unsigned int family); struct xfrm_state_afinfo *xfrm_state_afinfo_get_rcu(unsigned int family); struct xfrm_input_afinfo { u8 family; bool is_ipip; int (*callback)(struct sk_buff *skb, u8 protocol, int err); }; int xfrm_input_register_afinfo(const struct xfrm_input_afinfo *afinfo); int xfrm_input_unregister_afinfo(const struct xfrm_input_afinfo *afinfo); void xfrm_flush_gc(void); void xfrm_state_delete_tunnel(struct xfrm_state *x); struct xfrm_type { char *description; struct module *owner; u8 proto; u8 flags; #define XFRM_TYPE_NON_FRAGMENT 1 #define XFRM_TYPE_REPLAY_PROT 2 #define XFRM_TYPE_LOCAL_COADDR 4 #define XFRM_TYPE_REMOTE_COADDR 8 int (*init_state)(struct xfrm_state *x); void (*destructor)(struct xfrm_state *); int (*input)(struct xfrm_state *, struct sk_buff *skb); int (*output)(struct xfrm_state *, struct sk_buff *pskb); int (*reject)(struct xfrm_state *, struct sk_buff *, const struct flowi *); int (*hdr_offset)(struct xfrm_state *, struct sk_buff *, u8 **); }; int xfrm_register_type(const struct xfrm_type *type, unsigned short family); void xfrm_unregister_type(const struct xfrm_type *type, unsigned short family); struct xfrm_type_offload { char *description; struct module *owner; u8 proto; void (*encap)(struct xfrm_state *, struct sk_buff *pskb); int (*input_tail)(struct xfrm_state *x, struct sk_buff *skb); int (*xmit)(struct xfrm_state *, struct sk_buff *pskb, netdev_features_t features); }; int xfrm_register_type_offload(const struct xfrm_type_offload *type, unsigned short family); void xfrm_unregister_type_offload(const struct xfrm_type_offload *type, unsigned short family); static inline int xfrm_af2proto(unsigned int family) { switch(family) { case AF_INET: return IPPROTO_IPIP; case AF_INET6: return IPPROTO_IPV6; default: return 0; } } static inline const struct xfrm_mode *xfrm_ip2inner_mode(struct xfrm_state *x, int ipproto) { if ((ipproto == IPPROTO_IPIP && x->props.family == AF_INET) || (ipproto == IPPROTO_IPV6 && x->props.family == AF_INET6)) return &x->inner_mode; else return &x->inner_mode_iaf; } struct xfrm_tmpl { /* id in template is interpreted as: * daddr - destination of tunnel, may be zero for transport mode. * spi - zero to acquire spi. Not zero if spi is static, then * daddr must be fixed too. * proto - AH/ESP/IPCOMP */ struct xfrm_id id; /* Source address of tunnel. Ignored, if it is not a tunnel. */ xfrm_address_t saddr; unsigned short encap_family; u32 reqid; /* Mode: transport, tunnel etc. */ u8 mode; /* Sharing mode: unique, this session only, this user only etc. */ u8 share; /* May skip this transfomration if no SA is found */ u8 optional; /* Skip aalgos/ealgos/calgos checks. */ u8 allalgs; /* Bit mask of algos allowed for acquisition */ u32 aalgos; u32 ealgos; u32 calgos; }; #define XFRM_MAX_DEPTH 6 #define XFRM_MAX_OFFLOAD_DEPTH 1 struct xfrm_policy_walk_entry { struct list_head all; u8 dead; }; struct xfrm_policy_walk { struct xfrm_policy_walk_entry walk; u8 type; u32 seq; }; struct xfrm_policy_queue { struct sk_buff_head hold_queue; struct timer_list hold_timer; unsigned long timeout; }; struct xfrm_policy { possible_net_t xp_net; struct hlist_node bydst; struct hlist_node byidx; /* This lock only affects elements except for entry. */ rwlock_t lock; refcount_t refcnt; u32 pos; struct timer_list timer; atomic_t genid; u32 priority; u32 index; u32 if_id; struct xfrm_mark mark; struct xfrm_selector selector; struct xfrm_lifetime_cfg lft; struct xfrm_lifetime_cur curlft; struct xfrm_policy_walk_entry walk; struct xfrm_policy_queue polq; bool bydst_reinsert; u8 type; u8 action; u8 flags; u8 xfrm_nr; u16 family; struct xfrm_sec_ctx *security; struct xfrm_tmpl xfrm_vec[XFRM_MAX_DEPTH]; struct hlist_node bydst_inexact_list; struct rcu_head rcu; }; static inline struct net *xp_net(const struct xfrm_policy *xp) { return read_pnet(&xp->xp_net); } struct xfrm_kmaddress { xfrm_address_t local; xfrm_address_t remote; u32 reserved; u16 family; }; struct xfrm_migrate { xfrm_address_t old_daddr; xfrm_address_t old_saddr; xfrm_address_t new_daddr; xfrm_address_t new_saddr; u8 proto; u8 mode; u16 reserved; u32 reqid; u16 old_family; u16 new_family; }; #define XFRM_KM_TIMEOUT 30 /* what happened */ #define XFRM_REPLAY_UPDATE XFRM_AE_CR #define XFRM_REPLAY_TIMEOUT XFRM_AE_CE /* default aevent timeout in units of 100ms */ #define XFRM_AE_ETIME 10 /* Async Event timer multiplier */ #define XFRM_AE_ETH_M 10 /* default seq threshold size */ #define XFRM_AE_SEQT_SIZE 2 struct xfrm_mgr { struct list_head list; int (*notify)(struct xfrm_state *x, const struct km_event *c); int (*acquire)(struct xfrm_state *x, struct xfrm_tmpl *, struct xfrm_policy *xp); struct xfrm_policy *(*compile_policy)(struct sock *sk, int opt, u8 *data, int len, int *dir); int (*new_mapping)(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport); int (*notify_policy)(struct xfrm_policy *x, int dir, const struct km_event *c); int (*report)(struct net *net, u8 proto, struct xfrm_selector *sel, xfrm_address_t *addr); int (*migrate)(const struct xfrm_selector *sel, u8 dir, u8 type, const struct xfrm_migrate *m, int num_bundles, const struct xfrm_kmaddress *k, const struct xfrm_encap_tmpl *encap); bool (*is_alive)(const struct km_event *c); }; int xfrm_register_km(struct xfrm_mgr *km); int xfrm_unregister_km(struct xfrm_mgr *km); struct xfrm_tunnel_skb_cb { union { struct inet_skb_parm h4; struct inet6_skb_parm h6; } header; union { struct ip_tunnel *ip4; struct ip6_tnl *ip6; } tunnel; }; #define XFRM_TUNNEL_SKB_CB(__skb) ((struct xfrm_tunnel_skb_cb *)&((__skb)->cb[0])) /* * This structure is used for the duration where packets are being * transformed by IPsec. As soon as the packet leaves IPsec the * area beyond the generic IP part may be overwritten. */ struct xfrm_skb_cb { struct xfrm_tunnel_skb_cb header; /* Sequence number for replay protection. */ union { struct { __u32 low; __u32 hi; } output; struct { __be32 low; __be32 hi; } input; } seq; }; #define XFRM_SKB_CB(__skb) ((struct xfrm_skb_cb *)&((__skb)->cb[0])) /* * This structure is used by the afinfo prepare_input/prepare_output functions * to transmit header information to the mode input/output functions. */ struct xfrm_mode_skb_cb { struct xfrm_tunnel_skb_cb header; /* Copied from header for IPv4, always set to zero and DF for IPv6. */ __be16 id; __be16 frag_off; /* IP header length (excluding options or extension headers). */ u8 ihl; /* TOS for IPv4, class for IPv6. */ u8 tos; /* TTL for IPv4, hop limitfor IPv6. */ u8 ttl; /* Protocol for IPv4, NH for IPv6. */ u8 protocol; /* Option length for IPv4, zero for IPv6. */ u8 optlen; /* Used by IPv6 only, zero for IPv4. */ u8 flow_lbl[3]; }; #define XFRM_MODE_SKB_CB(__skb) ((struct xfrm_mode_skb_cb *)&((__skb)->cb[0])) /* * This structure is used by the input processing to locate the SPI and * related information. */ struct xfrm_spi_skb_cb { struct xfrm_tunnel_skb_cb header; unsigned int daddroff; unsigned int family; __be32 seq; }; #define XFRM_SPI_SKB_CB(__skb) ((struct xfrm_spi_skb_cb *)&((__skb)->cb[0])) #ifdef CONFIG_AUDITSYSCALL static inline struct audit_buffer *xfrm_audit_start(const char *op) { struct audit_buffer *audit_buf = NULL; if (audit_enabled == AUDIT_OFF) return NULL; audit_buf = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_MAC_IPSEC_EVENT); if (audit_buf == NULL) return NULL; audit_log_format(audit_buf, "op=%s", op); return audit_buf; } static inline void xfrm_audit_helper_usrinfo(bool task_valid, struct audit_buffer *audit_buf) { const unsigned int auid = from_kuid(&init_user_ns, task_valid ? audit_get_loginuid(current) : INVALID_UID); const unsigned int ses = task_valid ? audit_get_sessionid(current) : AUDIT_SID_UNSET; audit_log_format(audit_buf, " auid=%u ses=%u", auid, ses); audit_log_task_context(audit_buf); } void xfrm_audit_policy_add(struct xfrm_policy *xp, int result, bool task_valid); void xfrm_audit_policy_delete(struct xfrm_policy *xp, int result, bool task_valid); void xfrm_audit_state_add(struct xfrm_state *x, int result, bool task_valid); void xfrm_audit_state_delete(struct xfrm_state *x, int result, bool task_valid); void xfrm_audit_state_replay_overflow(struct xfrm_state *x, struct sk_buff *skb); void xfrm_audit_state_replay(struct xfrm_state *x, struct sk_buff *skb, __be32 net_seq); void xfrm_audit_state_notfound_simple(struct sk_buff *skb, u16 family); void xfrm_audit_state_notfound(struct sk_buff *skb, u16 family, __be32 net_spi, __be32 net_seq); void xfrm_audit_state_icvfail(struct xfrm_state *x, struct sk_buff *skb, u8 proto); #else static inline void xfrm_audit_policy_add(struct xfrm_policy *xp, int result, bool task_valid) { } static inline void xfrm_audit_policy_delete(struct xfrm_policy *xp, int result, bool task_valid) { } static inline void xfrm_audit_state_add(struct xfrm_state *x, int result, bool task_valid) { } static inline void xfrm_audit_state_delete(struct xfrm_state *x, int result, bool task_valid) { } static inline void xfrm_audit_state_replay_overflow(struct xfrm_state *x, struct sk_buff *skb) { } static inline void xfrm_audit_state_replay(struct xfrm_state *x, struct sk_buff *skb, __be32 net_seq) { } static inline void xfrm_audit_state_notfound_simple(struct sk_buff *skb, u16 family) { } static inline void xfrm_audit_state_notfound(struct sk_buff *skb, u16 family, __be32 net_spi, __be32 net_seq) { } static inline void xfrm_audit_state_icvfail(struct xfrm_state *x, struct sk_buff *skb, u8 proto) { } #endif /* CONFIG_AUDITSYSCALL */ static inline void xfrm_pol_hold(struct xfrm_policy *policy) { if (likely(policy != NULL)) refcount_inc(&policy->refcnt); } void xfrm_policy_destroy(struct xfrm_policy *policy); static inline void xfrm_pol_put(struct xfrm_policy *policy) { if (refcount_dec_and_test(&policy->refcnt)) xfrm_policy_destroy(policy); } static inline void xfrm_pols_put(struct xfrm_policy **pols, int npols) { int i; for (i = npols - 1; i >= 0; --i) xfrm_pol_put(pols[i]); } void __xfrm_state_destroy(struct xfrm_state *, bool); static inline void __xfrm_state_put(struct xfrm_state *x) { refcount_dec(&x->refcnt); } static inline void xfrm_state_put(struct xfrm_state *x) { if (refcount_dec_and_test(&x->refcnt)) __xfrm_state_destroy(x, false); } static inline void xfrm_state_put_sync(struct xfrm_state *x) { if (refcount_dec_and_test(&x->refcnt)) __xfrm_state_destroy(x, true); } static inline void xfrm_state_hold(struct xfrm_state *x) { refcount_inc(&x->refcnt); } static inline bool addr_match(const void *token1, const void *token2, unsigned int prefixlen) { const __be32 *a1 = token1; const __be32 *a2 = token2; unsigned int pdw; unsigned int pbi; pdw = prefixlen >> 5; /* num of whole u32 in prefix */ pbi = prefixlen & 0x1f; /* num of bits in incomplete u32 in prefix */ if (pdw) if (memcmp(a1, a2, pdw << 2)) return false; if (pbi) { __be32 mask; mask = htonl((0xffffffff) << (32 - pbi)); if ((a1[pdw] ^ a2[pdw]) & mask) return false; } return true; } static inline bool addr4_match(__be32 a1, __be32 a2, u8 prefixlen) { /* C99 6.5.7 (3): u32 << 32 is undefined behaviour */ if (sizeof(long) == 4 && prefixlen == 0) return true; return !((a1 ^ a2) & htonl(~0UL << (32 - prefixlen))); } static __inline__ __be16 xfrm_flowi_sport(const struct flowi *fl, const union flowi_uli *uli) { __be16 port; switch(fl->flowi_proto) { case IPPROTO_TCP: case IPPROTO_UDP: case IPPROTO_UDPLITE: case IPPROTO_SCTP: port = uli->ports.sport; break; case IPPROTO_ICMP: case IPPROTO_ICMPV6: port = htons(uli->icmpt.type); break; case IPPROTO_MH: port = htons(uli->mht.type); break; case IPPROTO_GRE: port = htons(ntohl(uli->gre_key) >> 16); break; default: port = 0; /*XXX*/ } return port; } static __inline__ __be16 xfrm_flowi_dport(const struct flowi *fl, const union flowi_uli *uli) { __be16 port; switch(fl->flowi_proto) { case IPPROTO_TCP: case IPPROTO_UDP: case IPPROTO_UDPLITE: case IPPROTO_SCTP: port = uli->ports.dport; break; case IPPROTO_ICMP: case IPPROTO_ICMPV6: port = htons(uli->icmpt.code); break; case IPPROTO_GRE: port = htons(ntohl(uli->gre_key) & 0xffff); break; default: port = 0; /*XXX*/ } return port; } bool xfrm_selector_match(const struct xfrm_selector *sel, const struct flowi *fl, unsigned short family); #ifdef CONFIG_SECURITY_NETWORK_XFRM /* If neither has a context --> match * Otherwise, both must have a context and the sids, doi, alg must match */ static inline bool xfrm_sec_ctx_match(struct xfrm_sec_ctx *s1, struct xfrm_sec_ctx *s2) { return ((!s1 && !s2) || (s1 && s2 && (s1->ctx_sid == s2->ctx_sid) && (s1->ctx_doi == s2->ctx_doi) && (s1->ctx_alg == s2->ctx_alg))); } #else static inline bool xfrm_sec_ctx_match(struct xfrm_sec_ctx *s1, struct xfrm_sec_ctx *s2) { return true; } #endif /* A struct encoding bundle of transformations to apply to some set of flow. * * xdst->child points to the next element of bundle. * dst->xfrm points to an instanse of transformer. * * Due to unfortunate limitations of current routing cache, which we * have no time to fix, it mirrors struct rtable and bound to the same * routing key, including saddr,daddr. However, we can have many of * bundles differing by session id. All the bundles grow from a parent * policy rule. */ struct xfrm_dst { union { struct dst_entry dst; struct rtable rt; struct rt6_info rt6; } u; struct dst_entry *route; struct dst_entry *child; struct dst_entry *path; struct xfrm_policy *pols[XFRM_POLICY_TYPE_MAX]; int num_pols, num_xfrms; u32 xfrm_genid; u32 policy_genid; u32 route_mtu_cached; u32 child_mtu_cached; u32 route_cookie; u32 path_cookie; }; static inline struct dst_entry *xfrm_dst_path(const struct dst_entry *dst) { #ifdef CONFIG_XFRM if (dst->xfrm || (dst->flags & DST_XFRM_QUEUE)) { const struct xfrm_dst *xdst = (const struct xfrm_dst *) dst; return xdst->path; } #endif return (struct dst_entry *) dst; } static inline struct dst_entry *xfrm_dst_child(const struct dst_entry *dst) { #ifdef CONFIG_XFRM if (dst->xfrm || (dst->flags & DST_XFRM_QUEUE)) { struct xfrm_dst *xdst = (struct xfrm_dst *) dst; return xdst->child; } #endif return NULL; } #ifdef CONFIG_XFRM static inline void xfrm_dst_set_child(struct xfrm_dst *xdst, struct dst_entry *child) { xdst->child = child; } static inline void xfrm_dst_destroy(struct xfrm_dst *xdst) { xfrm_pols_put(xdst->pols, xdst->num_pols); dst_release(xdst->route); if (likely(xdst->u.dst.xfrm)) xfrm_state_put(xdst->u.dst.xfrm); } #endif void xfrm_dst_ifdown(struct dst_entry *dst, struct net_device *dev); struct xfrm_if_parms { int link; /* ifindex of underlying L2 interface */ u32 if_id; /* interface identifyer */ }; struct xfrm_if { struct xfrm_if __rcu *next; /* next interface in list */ struct net_device *dev; /* virtual device associated with interface */ struct net *net; /* netns for packet i/o */ struct xfrm_if_parms p; /* interface parms */ struct gro_cells gro_cells; }; struct xfrm_offload { /* Output sequence number for replay protection on offloading. */ struct { __u32 low; __u32 hi; } seq; __u32 flags; #define SA_DELETE_REQ 1 #define CRYPTO_DONE 2 #define CRYPTO_NEXT_DONE 4 #define CRYPTO_FALLBACK 8 #define XFRM_GSO_SEGMENT 16 #define XFRM_GRO 32 #define XFRM_ESP_NO_TRAILER 64 #define XFRM_DEV_RESUME 128 #define XFRM_XMIT 256 __u32 status; #define CRYPTO_SUCCESS 1 #define CRYPTO_GENERIC_ERROR 2 #define CRYPTO_TRANSPORT_AH_AUTH_FAILED 4 #define CRYPTO_TRANSPORT_ESP_AUTH_FAILED 8 #define CRYPTO_TUNNEL_AH_AUTH_FAILED 16 #define CRYPTO_TUNNEL_ESP_AUTH_FAILED 32 #define CRYPTO_INVALID_PACKET_SYNTAX 64 #define CRYPTO_INVALID_PROTOCOL 128 __u8 proto; }; struct sec_path { int len; int olen; struct xfrm_state *xvec[XFRM_MAX_DEPTH]; struct xfrm_offload ovec[XFRM_MAX_OFFLOAD_DEPTH]; }; struct sec_path *secpath_set(struct sk_buff *skb); static inline void secpath_reset(struct sk_buff *skb) { #ifdef CONFIG_XFRM skb_ext_del(skb, SKB_EXT_SEC_PATH); #endif } static inline int xfrm_addr_any(const xfrm_address_t *addr, unsigned short family) { switch (family) { case AF_INET: return addr->a4 == 0; case AF_INET6: return ipv6_addr_any(&addr->in6); } return 0; } static inline int __xfrm4_state_addr_cmp(const struct xfrm_tmpl *tmpl, const struct xfrm_state *x) { return (tmpl->saddr.a4 && tmpl->saddr.a4 != x->props.saddr.a4); } static inline int __xfrm6_state_addr_cmp(const struct xfrm_tmpl *tmpl, const struct xfrm_state *x) { return (!ipv6_addr_any((struct in6_addr*)&tmpl->saddr) && !ipv6_addr_equal((struct in6_addr *)&tmpl->saddr, (struct in6_addr*)&x->props.saddr)); } static inline int xfrm_state_addr_cmp(const struct xfrm_tmpl *tmpl, const struct xfrm_state *x, unsigned short family) { switch (family) { case AF_INET: return __xfrm4_state_addr_cmp(tmpl, x); case AF_INET6: return __xfrm6_state_addr_cmp(tmpl, x); } return !0; } #ifdef CONFIG_XFRM int __xfrm_policy_check(struct sock *, int dir, struct sk_buff *skb, unsigned short family); static inline int __xfrm_policy_check2(struct sock *sk, int dir, struct sk_buff *skb, unsigned int family, int reverse) { struct net *net = dev_net(skb->dev); int ndir = dir | (reverse ? XFRM_POLICY_MASK + 1 : 0); if (sk && sk->sk_policy[XFRM_POLICY_IN]) return __xfrm_policy_check(sk, ndir, skb, family); return (!net->xfrm.policy_count[dir] && !secpath_exists(skb)) || (skb_dst(skb) && (skb_dst(skb)->flags & DST_NOPOLICY)) || __xfrm_policy_check(sk, ndir, skb, family); } static inline int xfrm_policy_check(struct sock *sk, int dir, struct sk_buff *skb, unsigned short family) { return __xfrm_policy_check2(sk, dir, skb, family, 0); } static inline int xfrm4_policy_check(struct sock *sk, int dir, struct sk_buff *skb) { return xfrm_policy_check(sk, dir, skb, AF_INET); } static inline int xfrm6_policy_check(struct sock *sk, int dir, struct sk_buff *skb) { return xfrm_policy_check(sk, dir, skb, AF_INET6); } static inline int xfrm4_policy_check_reverse(struct sock *sk, int dir, struct sk_buff *skb) { return __xfrm_policy_check2(sk, dir, skb, AF_INET, 1); } static inline int xfrm6_policy_check_reverse(struct sock *sk, int dir, struct sk_buff *skb) { return __xfrm_policy_check2(sk, dir, skb, AF_INET6, 1); } int __xfrm_decode_session(struct sk_buff *skb, struct flowi *fl, unsigned int family, int reverse); static inline int xfrm_decode_session(struct sk_buff *skb, struct flowi *fl, unsigned int family) { return __xfrm_decode_session(skb, fl, family, 0); } static inline int xfrm_decode_session_reverse(struct sk_buff *skb, struct flowi *fl, unsigned int family) { return __xfrm_decode_session(skb, fl, family, 1); } int __xfrm_route_forward(struct sk_buff *skb, unsigned short family); static inline int xfrm_route_forward(struct sk_buff *skb, unsigned short family) { struct net *net = dev_net(skb->dev); return !net->xfrm.policy_count[XFRM_POLICY_OUT] || (skb_dst(skb)->flags & DST_NOXFRM) || __xfrm_route_forward(skb, family); } static inline int xfrm4_route_forward(struct sk_buff *skb) { return xfrm_route_forward(skb, AF_INET); } static inline int xfrm6_route_forward(struct sk_buff *skb) { return xfrm_route_forward(skb, AF_INET6); } int __xfrm_sk_clone_policy(struct sock *sk, const struct sock *osk); static inline int xfrm_sk_clone_policy(struct sock *sk, const struct sock *osk) { sk->sk_policy[0] = NULL; sk->sk_policy[1] = NULL; if (unlikely(osk->sk_policy[0] || osk->sk_policy[1])) return __xfrm_sk_clone_policy(sk, osk); return 0; } int xfrm_policy_delete(struct xfrm_policy *pol, int dir); static inline void xfrm_sk_free_policy(struct sock *sk) { struct xfrm_policy *pol; pol = rcu_dereference_protected(sk->sk_policy[0], 1); if (unlikely(pol != NULL)) { xfrm_policy_delete(pol, XFRM_POLICY_MAX); sk->sk_policy[0] = NULL; } pol = rcu_dereference_protected(sk->sk_policy[1], 1); if (unlikely(pol != NULL)) { xfrm_policy_delete(pol, XFRM_POLICY_MAX+1); sk->sk_policy[1] = NULL; } } #else static inline void xfrm_sk_free_policy(struct sock *sk) {} static inline int xfrm_sk_clone_policy(struct sock *sk, const struct sock *osk) { return 0; } static inline int xfrm6_route_forward(struct sk_buff *skb) { return 1; } static inline int xfrm4_route_forward(struct sk_buff *skb) { return 1; } static inline int xfrm6_policy_check(struct sock *sk, int dir, struct sk_buff *skb) { return 1; } static inline int xfrm4_policy_check(struct sock *sk, int dir, struct sk_buff *skb) { return 1; } static inline int xfrm_policy_check(struct sock *sk, int dir, struct sk_buff *skb, unsigned short family) { return 1; } static inline int xfrm_decode_session_reverse(struct sk_buff *skb, struct flowi *fl, unsigned int family) { return -ENOSYS; } static inline int xfrm4_policy_check_reverse(struct sock *sk, int dir, struct sk_buff *skb) { return 1; } static inline int xfrm6_policy_check_reverse(struct sock *sk, int dir, struct sk_buff *skb) { return 1; } #endif static __inline__ xfrm_address_t *xfrm_flowi_daddr(const struct flowi *fl, unsigned short family) { switch (family){ case AF_INET: return (xfrm_address_t *)&fl->u.ip4.daddr; case AF_INET6: return (xfrm_address_t *)&fl->u.ip6.daddr; } return NULL; } static __inline__ xfrm_address_t *xfrm_flowi_saddr(const struct flowi *fl, unsigned short family) { switch (family){ case AF_INET: return (xfrm_address_t *)&fl->u.ip4.saddr; case AF_INET6: return (xfrm_address_t *)&fl->u.ip6.saddr; } return NULL; } static __inline__ void xfrm_flowi_addr_get(const struct flowi *fl, xfrm_address_t *saddr, xfrm_address_t *daddr, unsigned short family) { switch(family) { case AF_INET: memcpy(&saddr->a4, &fl->u.ip4.saddr, sizeof(saddr->a4)); memcpy(&daddr->a4, &fl->u.ip4.daddr, sizeof(daddr->a4)); break; case AF_INET6: saddr->in6 = fl->u.ip6.saddr; daddr->in6 = fl->u.ip6.daddr; break; } } static __inline__ int __xfrm4_state_addr_check(const struct xfrm_state *x, const xfrm_address_t *daddr, const xfrm_address_t *saddr) { if (daddr->a4 == x->id.daddr.a4 && (saddr->a4 == x->props.saddr.a4 || !saddr->a4 || !x->props.saddr.a4)) return 1; return 0; } static __inline__ int __xfrm6_state_addr_check(const struct xfrm_state *x, const xfrm_address_t *daddr, const xfrm_address_t *saddr) { if (ipv6_addr_equal((struct in6_addr *)daddr, (struct in6_addr *)&x->id.daddr) && (ipv6_addr_equal((struct in6_addr *)saddr, (struct in6_addr *)&x->props.saddr) || ipv6_addr_any((struct in6_addr *)saddr) || ipv6_addr_any((struct in6_addr *)&x->props.saddr))) return 1; return 0; } static __inline__ int xfrm_state_addr_check(const struct xfrm_state *x, const xfrm_address_t *daddr, const xfrm_address_t *saddr, unsigned short family) { switch (family) { case AF_INET: return __xfrm4_state_addr_check(x, daddr, saddr); case AF_INET6: return __xfrm6_state_addr_check(x, daddr, saddr); } return 0; } static __inline__ int xfrm_state_addr_flow_check(const struct xfrm_state *x, const struct flowi *fl, unsigned short family) { switch (family) { case AF_INET: return __xfrm4_state_addr_check(x, (const xfrm_address_t *)&fl->u.ip4.daddr, (const xfrm_address_t *)&fl->u.ip4.saddr); case AF_INET6: return __xfrm6_state_addr_check(x, (const xfrm_address_t *)&fl->u.ip6.daddr, (const xfrm_address_t *)&fl->u.ip6.saddr); } return 0; } static inline int xfrm_state_kern(const struct xfrm_state *x) { return atomic_read(&x->tunnel_users); } static inline bool xfrm_id_proto_valid(u8 proto) { switch (proto) { case IPPROTO_AH: case IPPROTO_ESP: case IPPROTO_COMP: #if IS_ENABLED(CONFIG_IPV6) case IPPROTO_ROUTING: case IPPROTO_DSTOPTS: #endif return true; default: return false; } } /* IPSEC_PROTO_ANY only matches 3 IPsec protocols, 0 could match all. */ static inline int xfrm_id_proto_match(u8 proto, u8 userproto) { return (!userproto || proto == userproto || (userproto == IPSEC_PROTO_ANY && (proto == IPPROTO_AH || proto == IPPROTO_ESP || proto == IPPROTO_COMP))); } /* * xfrm algorithm information */ struct xfrm_algo_aead_info { char *geniv; u16 icv_truncbits; }; struct xfrm_algo_auth_info { u16 icv_truncbits; u16 icv_fullbits; }; struct xfrm_algo_encr_info { char *geniv; u16 blockbits; u16 defkeybits; }; struct xfrm_algo_comp_info { u16 threshold; }; struct xfrm_algo_desc { char *name; char *compat; u8 available:1; u8 pfkey_supported:1; union { struct xfrm_algo_aead_info aead; struct xfrm_algo_auth_info auth; struct xfrm_algo_encr_info encr; struct xfrm_algo_comp_info comp; } uinfo; struct sadb_alg desc; }; /* XFRM protocol handlers. */ struct xfrm4_protocol { int (*handler)(struct sk_buff *skb); int (*input_handler)(struct sk_buff *skb, int nexthdr, __be32 spi, int encap_type); int (*cb_handler)(struct sk_buff *skb, int err); int (*err_handler)(struct sk_buff *skb, u32 info); struct xfrm4_protocol __rcu *next; int priority; }; struct xfrm6_protocol { int (*handler)(struct sk_buff *skb); int (*input_handler)(struct sk_buff *skb, int nexthdr, __be32 spi, int encap_type); int (*cb_handler)(struct sk_buff *skb, int err); int (*err_handler)(struct sk_buff *skb, struct inet6_skb_parm *opt, u8 type, u8 code, int offset, __be32 info); struct xfrm6_protocol __rcu *next; int priority; }; /* XFRM tunnel handlers. */ struct xfrm_tunnel { int (*handler)(struct sk_buff *skb); int (*cb_handler)(struct sk_buff *skb, int err); int (*err_handler)(struct sk_buff *skb, u32 info); struct xfrm_tunnel __rcu *next; int priority; }; struct xfrm6_tunnel { int (*handler)(struct sk_buff *skb); int (*cb_handler)(struct sk_buff *skb, int err); int (*err_handler)(struct sk_buff *skb, struct inet6_skb_parm *opt, u8 type, u8 code, int offset, __be32 info); struct xfrm6_tunnel __rcu *next; int priority; }; void xfrm_init(void); void xfrm4_init(void); int xfrm_state_init(struct net *net); void xfrm_state_fini(struct net *net); void xfrm4_state_init(void); void xfrm4_protocol_init(void); #ifdef CONFIG_XFRM int xfrm6_init(void); void xfrm6_fini(void); int xfrm6_state_init(void); void xfrm6_state_fini(void); int xfrm6_protocol_init(void); void xfrm6_protocol_fini(void); #else static inline int xfrm6_init(void) { return 0; } static inline void xfrm6_fini(void) { ; } #endif #ifdef CONFIG_XFRM_STATISTICS int xfrm_proc_init(struct net *net); void xfrm_proc_fini(struct net *net); #endif int xfrm_sysctl_init(struct net *net); #ifdef CONFIG_SYSCTL void xfrm_sysctl_fini(struct net *net); #else static inline void xfrm_sysctl_fini(struct net *net) { } #endif void xfrm_state_walk_init(struct xfrm_state_walk *walk, u8 proto, struct xfrm_address_filter *filter); int xfrm_state_walk(struct net *net, struct xfrm_state_walk *walk, int (*func)(struct xfrm_state *, int, void*), void *); void xfrm_state_walk_done(struct xfrm_state_walk *walk, struct net *net); struct xfrm_state *xfrm_state_alloc(struct net *net); void xfrm_state_free(struct xfrm_state *x); struct xfrm_state *xfrm_state_find(const xfrm_address_t *daddr, const xfrm_address_t *saddr, const struct flowi *fl, struct xfrm_tmpl *tmpl, struct xfrm_policy *pol, int *err, unsigned short family, u32 if_id); struct xfrm_state *xfrm_stateonly_find(struct net *net, u32 mark, u32 if_id, xfrm_address_t *daddr, xfrm_address_t *saddr, unsigned short family, u8 mode, u8 proto, u32 reqid); struct xfrm_state *xfrm_state_lookup_byspi(struct net *net, __be32 spi, unsigned short family); int xfrm_state_check_expire(struct xfrm_state *x); void xfrm_state_insert(struct xfrm_state *x); int xfrm_state_add(struct xfrm_state *x); int xfrm_state_update(struct xfrm_state *x); struct xfrm_state *xfrm_state_lookup(struct net *net, u32 mark, const xfrm_address_t *daddr, __be32 spi, u8 proto, unsigned short family); struct xfrm_state *xfrm_state_lookup_byaddr(struct net *net, u32 mark, const xfrm_address_t *daddr, const xfrm_address_t *saddr, u8 proto, unsigned short family); #ifdef CONFIG_XFRM_SUB_POLICY void xfrm_tmpl_sort(struct xfrm_tmpl **dst, struct xfrm_tmpl **src, int n, unsigned short family); void xfrm_state_sort(struct xfrm_state **dst, struct xfrm_state **src, int n, unsigned short family); #else static inline void xfrm_tmpl_sort(struct xfrm_tmpl **d, struct xfrm_tmpl **s, int n, unsigned short family) { } static inline void xfrm_state_sort(struct xfrm_state **d, struct xfrm_state **s, int n, unsigned short family) { } #endif struct xfrmk_sadinfo { u32 sadhcnt; /* current hash bkts */ u32 sadhmcnt; /* max allowed hash bkts */ u32 sadcnt; /* current running count */ }; struct xfrmk_spdinfo { u32 incnt; u32 outcnt; u32 fwdcnt; u32 inscnt; u32 outscnt; u32 fwdscnt; u32 spdhcnt; u32 spdhmcnt; }; struct xfrm_state *xfrm_find_acq_byseq(struct net *net, u32 mark, u32 seq); int xfrm_state_delete(struct xfrm_state *x); int xfrm_state_flush(struct net *net, u8 proto, bool task_valid, bool sync); int xfrm_dev_state_flush(struct net *net, struct net_device *dev, bool task_valid); void xfrm_sad_getinfo(struct net *net, struct xfrmk_sadinfo *si); void xfrm_spd_getinfo(struct net *net, struct xfrmk_spdinfo *si); u32 xfrm_replay_seqhi(struct xfrm_state *x, __be32 net_seq); int xfrm_init_replay(struct xfrm_state *x); u32 __xfrm_state_mtu(struct xfrm_state *x, int mtu); u32 xfrm_state_mtu(struct xfrm_state *x, int mtu); int __xfrm_init_state(struct xfrm_state *x, bool init_replay, bool offload); int xfrm_init_state(struct xfrm_state *x); int xfrm_input(struct sk_buff *skb, int nexthdr, __be32 spi, int encap_type); int xfrm_input_resume(struct sk_buff *skb, int nexthdr); int xfrm_trans_queue_net(struct net *net, struct sk_buff *skb, int (*finish)(struct net *, struct sock *, struct sk_buff *)); int xfrm_trans_queue(struct sk_buff *skb, int (*finish)(struct net *, struct sock *, struct sk_buff *)); int xfrm_output_resume(struct sock *sk, struct sk_buff *skb, int err); int xfrm_output(struct sock *sk, struct sk_buff *skb); #if IS_ENABLED(CONFIG_NET_PKTGEN) int pktgen_xfrm_outer_mode_output(struct xfrm_state *x, struct sk_buff *skb); #endif void xfrm_local_error(struct sk_buff *skb, int mtu); int xfrm4_extract_input(struct xfrm_state *x, struct sk_buff *skb); int xfrm4_rcv_encap(struct sk_buff *skb, int nexthdr, __be32 spi, int encap_type); int xfrm4_transport_finish(struct sk_buff *skb, int async); int xfrm4_rcv(struct sk_buff *skb); int xfrm_parse_spi(struct sk_buff *skb, u8 nexthdr, __be32 *spi, __be32 *seq); static inline int xfrm4_rcv_spi(struct sk_buff *skb, int nexthdr, __be32 spi) { XFRM_TUNNEL_SKB_CB(skb)->tunnel.ip4 = NULL; XFRM_SPI_SKB_CB(skb)->family = AF_INET; XFRM_SPI_SKB_CB(skb)->daddroff = offsetof(struct iphdr, daddr); return xfrm_input(skb, nexthdr, spi, 0); } int xfrm4_output(struct net *net, struct sock *sk, struct sk_buff *skb); int xfrm4_output_finish(struct sock *sk, struct sk_buff *skb); int xfrm4_protocol_register(struct xfrm4_protocol *handler, unsigned char protocol); int xfrm4_protocol_deregister(struct xfrm4_protocol *handler, unsigned char protocol); int xfrm4_tunnel_register(struct xfrm_tunnel *handler, unsigned short family); int xfrm4_tunnel_deregister(struct xfrm_tunnel *handler, unsigned short family); void xfrm4_local_error(struct sk_buff *skb, u32 mtu); int xfrm6_extract_input(struct xfrm_state *x, struct sk_buff *skb); int xfrm6_rcv_spi(struct sk_buff *skb, int nexthdr, __be32 spi, struct ip6_tnl *t); int xfrm6_rcv_encap(struct sk_buff *skb, int nexthdr, __be32 spi, int encap_type); int xfrm6_transport_finish(struct sk_buff *skb, int async); int xfrm6_rcv_tnl(struct sk_buff *skb, struct ip6_tnl *t); int xfrm6_rcv(struct sk_buff *skb); int xfrm6_input_addr(struct sk_buff *skb, xfrm_address_t *daddr, xfrm_address_t *saddr, u8 proto); void xfrm6_local_error(struct sk_buff *skb, u32 mtu); int xfrm6_protocol_register(struct xfrm6_protocol *handler, unsigned char protocol); int xfrm6_protocol_deregister(struct xfrm6_protocol *handler, unsigned char protocol); int xfrm6_tunnel_register(struct xfrm6_tunnel *handler, unsigned short family); int xfrm6_tunnel_deregister(struct xfrm6_tunnel *handler, unsigned short family); __be32 xfrm6_tunnel_alloc_spi(struct net *net, xfrm_address_t *saddr); __be32 xfrm6_tunnel_spi_lookup(struct net *net, const xfrm_address_t *saddr); int xfrm6_output(struct net *net, struct sock *sk, struct sk_buff *skb); int xfrm6_output_finish(struct sock *sk, struct sk_buff *skb); int xfrm6_find_1stfragopt(struct xfrm_state *x, struct sk_buff *skb, u8 **prevhdr); #ifdef CONFIG_XFRM void xfrm6_local_rxpmtu(struct sk_buff *skb, u32 mtu); int xfrm4_udp_encap_rcv(struct sock *sk, struct sk_buff *skb); int xfrm6_udp_encap_rcv(struct sock *sk, struct sk_buff *skb); int xfrm_user_policy(struct sock *sk, int optname, sockptr_t optval, int optlen); #else static inline int xfrm_user_policy(struct sock *sk, int optname, sockptr_t optval, int optlen) { return -ENOPROTOOPT; } #endif struct dst_entry *__xfrm_dst_lookup(struct net *net, int tos, int oif, const xfrm_address_t *saddr, const xfrm_address_t *daddr, int family, u32 mark); struct xfrm_policy *xfrm_policy_alloc(struct net *net, gfp_t gfp); void xfrm_policy_walk_init(struct xfrm_policy_walk *walk, u8 type); int xfrm_policy_walk(struct net *net, struct xfrm_policy_walk *walk, int (*func)(struct xfrm_policy *, int, int, void*), void *); void xfrm_policy_walk_done(struct xfrm_policy_walk *walk, struct net *net); int xfrm_policy_insert(int dir, struct xfrm_policy *policy, int excl); struct xfrm_policy *xfrm_policy_bysel_ctx(struct net *net, const struct xfrm_mark *mark, u32 if_id, u8 type, int dir, struct xfrm_selector *sel, struct xfrm_sec_ctx *ctx, int delete, int *err); struct xfrm_policy *xfrm_policy_byid(struct net *net, const struct xfrm_mark *mark, u32 if_id, u8 type, int dir, u32 id, int delete, int *err); int xfrm_policy_flush(struct net *net, u8 type, bool task_valid); void xfrm_policy_hash_rebuild(struct net *net); u32 xfrm_get_acqseq(void); int verify_spi_info(u8 proto, u32 min, u32 max); int xfrm_alloc_spi(struct xfrm_state *x, u32 minspi, u32 maxspi); struct xfrm_state *xfrm_find_acq(struct net *net, const struct xfrm_mark *mark, u8 mode, u32 reqid, u32 if_id, u8 proto, const xfrm_address_t *daddr, const xfrm_address_t *saddr, int create, unsigned short family); int xfrm_sk_policy_insert(struct sock *sk, int dir, struct xfrm_policy *pol); #ifdef CONFIG_XFRM_MIGRATE int km_migrate(const struct xfrm_selector *sel, u8 dir, u8 type, const struct xfrm_migrate *m, int num_bundles, const struct xfrm_kmaddress *k, const struct xfrm_encap_tmpl *encap); struct xfrm_state *xfrm_migrate_state_find(struct xfrm_migrate *m, struct net *net); struct xfrm_state *xfrm_state_migrate(struct xfrm_state *x, struct xfrm_migrate *m, struct xfrm_encap_tmpl *encap); int xfrm_migrate(const struct xfrm_selector *sel, u8 dir, u8 type, struct xfrm_migrate *m, int num_bundles, struct xfrm_kmaddress *k, struct net *net, struct xfrm_encap_tmpl *encap); #endif int km_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport); void km_policy_expired(struct xfrm_policy *pol, int dir, int hard, u32 portid); int km_report(struct net *net, u8 proto, struct xfrm_selector *sel, xfrm_address_t *addr); void xfrm_input_init(void); int xfrm_parse_spi(struct sk_buff *skb, u8 nexthdr, __be32 *spi, __be32 *seq); void xfrm_probe_algs(void); int xfrm_count_pfkey_auth_supported(void); int xfrm_count_pfkey_enc_supported(void); struct xfrm_algo_desc *xfrm_aalg_get_byidx(unsigned int idx); struct xfrm_algo_desc *xfrm_ealg_get_byidx(unsigned int idx); struct xfrm_algo_desc *xfrm_aalg_get_byid(int alg_id); struct xfrm_algo_desc *xfrm_ealg_get_byid(int alg_id); struct xfrm_algo_desc *xfrm_calg_get_byid(int alg_id); struct xfrm_algo_desc *xfrm_aalg_get_byname(const char *name, int probe); struct xfrm_algo_desc *xfrm_ealg_get_byname(const char *name, int probe); struct xfrm_algo_desc *xfrm_calg_get_byname(const char *name, int probe); struct xfrm_algo_desc *xfrm_aead_get_byname(const char *name, int icv_len, int probe); static inline bool xfrm6_addr_equal(const xfrm_address_t *a, const xfrm_address_t *b) { return ipv6_addr_equal((const struct in6_addr *)a, (const struct in6_addr *)b); } static inline bool xfrm_addr_equal(const xfrm_address_t *a, const xfrm_address_t *b, sa_family_t family) { switch (family) { default: case AF_INET: return ((__force u32)a->a4 ^ (__force u32)b->a4) == 0; case AF_INET6: return xfrm6_addr_equal(a, b); } } static inline int xfrm_policy_id2dir(u32 index) { return index & 7; } #ifdef CONFIG_XFRM static inline int xfrm_aevent_is_on(struct net *net) { struct sock *nlsk; int ret = 0; rcu_read_lock(); nlsk = rcu_dereference(net->xfrm.nlsk); if (nlsk) ret = netlink_has_listeners(nlsk, XFRMNLGRP_AEVENTS); rcu_read_unlock(); return ret; } static inline int xfrm_acquire_is_on(struct net *net) { struct sock *nlsk; int ret = 0; rcu_read_lock(); nlsk = rcu_dereference(net->xfrm.nlsk); if (nlsk) ret = netlink_has_listeners(nlsk, XFRMNLGRP_ACQUIRE); rcu_read_unlock(); return ret; } #endif static inline unsigned int aead_len(struct xfrm_algo_aead *alg) { return sizeof(*alg) + ((alg->alg_key_len + 7) / 8); } static inline unsigned int xfrm_alg_len(const struct xfrm_algo *alg) { return sizeof(*alg) + ((alg->alg_key_len + 7) / 8); } static inline unsigned int xfrm_alg_auth_len(const struct xfrm_algo_auth *alg) { return sizeof(*alg) + ((alg->alg_key_len + 7) / 8); } static inline unsigned int xfrm_replay_state_esn_len(struct xfrm_replay_state_esn *replay_esn) { return sizeof(*replay_esn) + replay_esn->bmp_len * sizeof(__u32); } #ifdef CONFIG_XFRM_MIGRATE static inline int xfrm_replay_clone(struct xfrm_state *x, struct xfrm_state *orig) { x->replay_esn = kmemdup(orig->replay_esn, xfrm_replay_state_esn_len(orig->replay_esn), GFP_KERNEL); if (!x->replay_esn) return -ENOMEM; x->preplay_esn = kmemdup(orig->preplay_esn, xfrm_replay_state_esn_len(orig->preplay_esn), GFP_KERNEL); if (!x->preplay_esn) return -ENOMEM; return 0; } static inline struct xfrm_algo_aead *xfrm_algo_aead_clone(struct xfrm_algo_aead *orig) { return kmemdup(orig, aead_len(orig), GFP_KERNEL); } static inline struct xfrm_algo *xfrm_algo_clone(struct xfrm_algo *orig) { return kmemdup(orig, xfrm_alg_len(orig), GFP_KERNEL); } static inline struct xfrm_algo_auth *xfrm_algo_auth_clone(struct xfrm_algo_auth *orig) { return kmemdup(orig, xfrm_alg_auth_len(orig), GFP_KERNEL); } static inline void xfrm_states_put(struct xfrm_state **states, int n) { int i; for (i = 0; i < n; i++) xfrm_state_put(*(states + i)); } static inline void xfrm_states_delete(struct xfrm_state **states, int n) { int i; for (i = 0; i < n; i++) xfrm_state_delete(*(states + i)); } #endif #ifdef CONFIG_XFRM static inline struct xfrm_state *xfrm_input_state(struct sk_buff *skb) { struct sec_path *sp = skb_sec_path(skb); return sp->xvec[sp->len - 1]; } #endif static inline struct xfrm_offload *xfrm_offload(struct sk_buff *skb) { #ifdef CONFIG_XFRM struct sec_path *sp = skb_sec_path(skb); if (!sp || !sp->olen || sp->len != sp->olen) return NULL; return &sp->ovec[sp->olen - 1]; #else return NULL; #endif } void __init xfrm_dev_init(void); #ifdef CONFIG_XFRM_OFFLOAD void xfrm_dev_resume(struct sk_buff *skb); void xfrm_dev_backlog(struct softnet_data *sd); struct sk_buff *validate_xmit_xfrm(struct sk_buff *skb, netdev_features_t features, bool *again); int xfrm_dev_state_add(struct net *net, struct xfrm_state *x, struct xfrm_user_offload *xuo); bool xfrm_dev_offload_ok(struct sk_buff *skb, struct xfrm_state *x); static inline void xfrm_dev_state_advance_esn(struct xfrm_state *x) { struct xfrm_state_offload *xso = &x->xso; if (xso->dev && xso->dev->xfrmdev_ops->xdo_dev_state_advance_esn) xso->dev->xfrmdev_ops->xdo_dev_state_advance_esn(x); } static inline bool xfrm_dst_offload_ok(struct dst_entry *dst) { struct xfrm_state *x = dst->xfrm; struct xfrm_dst *xdst; if (!x || !x->type_offload) return false; xdst = (struct xfrm_dst *) dst; if (!x->xso.offload_handle && !xdst->child->xfrm) return true; if (x->xso.offload_handle && (x->xso.dev == xfrm_dst_path(dst)->dev) && !xdst->child->xfrm) return true; return false; } static inline void xfrm_dev_state_delete(struct xfrm_state *x) { struct xfrm_state_offload *xso = &x->xso; if (xso->dev) xso->dev->xfrmdev_ops->xdo_dev_state_delete(x); } static inline void xfrm_dev_state_free(struct xfrm_state *x) { struct xfrm_state_offload *xso = &x->xso; struct net_device *dev = xso->dev; if (dev && dev->xfrmdev_ops) { if (dev->xfrmdev_ops->xdo_dev_state_free) dev->xfrmdev_ops->xdo_dev_state_free(x); xso->dev = NULL; dev_put(dev); } } #else static inline void xfrm_dev_resume(struct sk_buff *skb) { } static inline void xfrm_dev_backlog(struct softnet_data *sd) { } static inline struct sk_buff *validate_xmit_xfrm(struct sk_buff *skb, netdev_features_t features, bool *again) { return skb; } static inline int xfrm_dev_state_add(struct net *net, struct xfrm_state *x, struct xfrm_user_offload *xuo) { return 0; } static inline void xfrm_dev_state_delete(struct xfrm_state *x) { } static inline void xfrm_dev_state_free(struct xfrm_state *x) { } static inline bool xfrm_dev_offload_ok(struct sk_buff *skb, struct xfrm_state *x) { return false; } static inline void xfrm_dev_state_advance_esn(struct xfrm_state *x) { } static inline bool xfrm_dst_offload_ok(struct dst_entry *dst) { return false; } #endif static inline int xfrm_mark_get(struct nlattr **attrs, struct xfrm_mark *m) { if (attrs[XFRMA_MARK]) memcpy(m, nla_data(attrs[XFRMA_MARK]), sizeof(struct xfrm_mark)); else m->v = m->m = 0; return m->v & m->m; } static inline int xfrm_mark_put(struct sk_buff *skb, const struct xfrm_mark *m) { int ret = 0; if (m->m | m->v) ret = nla_put(skb, XFRMA_MARK, sizeof(struct xfrm_mark), m); return ret; } static inline __u32 xfrm_smark_get(__u32 mark, struct xfrm_state *x) { struct xfrm_mark *m = &x->props.smark; return (m->v & m->m) | (mark & ~m->m); } static inline int xfrm_if_id_put(struct sk_buff *skb, __u32 if_id) { int ret = 0; if (if_id) ret = nla_put_u32(skb, XFRMA_IF_ID, if_id); return ret; } static inline int xfrm_tunnel_check(struct sk_buff *skb, struct xfrm_state *x, unsigned int family) { bool tunnel = false; switch(family) { case AF_INET: if (XFRM_TUNNEL_SKB_CB(skb)->tunnel.ip4) tunnel = true; break; case AF_INET6: if (XFRM_TUNNEL_SKB_CB(skb)->tunnel.ip6) tunnel = true; break; } if (tunnel && !(x->outer_mode.flags & XFRM_MODE_FLAG_TUNNEL)) return -EINVAL; return 0; } extern const int xfrm_msg_min[XFRM_NR_MSGTYPES]; extern const struct nla_policy xfrma_policy[XFRMA_MAX+1]; struct xfrm_translator { /* Allocate frag_list and put compat translation there */ int (*alloc_compat)(struct sk_buff *skb, const struct nlmsghdr *src); /* Allocate nlmsg with 64-bit translaton of received 32-bit message */ struct nlmsghdr *(*rcv_msg_compat)(const struct nlmsghdr *nlh, int maxtype, const struct nla_policy *policy, struct netlink_ext_ack *extack); /* Translate 32-bit user_policy from sockptr */ int (*xlate_user_policy_sockptr)(u8 **pdata32, int optlen); struct module *owner; }; #if IS_ENABLED(CONFIG_XFRM_USER_COMPAT) extern int xfrm_register_translator(struct xfrm_translator *xtr); extern int xfrm_unregister_translator(struct xfrm_translator *xtr); extern struct xfrm_translator *xfrm_get_translator(void); extern void xfrm_put_translator(struct xfrm_translator *xtr); #else static inline struct xfrm_translator *xfrm_get_translator(void) { return NULL; } static inline void xfrm_put_translator(struct xfrm_translator *xtr) { } #endif #if IS_ENABLED(CONFIG_IPV6) static inline bool xfrm6_local_dontfrag(const struct sock *sk) { int proto; if (!sk || sk->sk_family != AF_INET6) return false; proto = sk->sk_protocol; if (proto == IPPROTO_UDP || proto == IPPROTO_RAW) return inet6_sk(sk)->dontfrag; return false; } #endif #endif /* _NET_XFRM_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _SCSI_SCSI_DEVICE_H #define _SCSI_SCSI_DEVICE_H #include <linux/list.h> #include <linux/spinlock.h> #include <linux/workqueue.h> #include <linux/blkdev.h> #include <scsi/scsi.h> #include <linux/atomic.h> struct device; struct request_queue; struct scsi_cmnd; struct scsi_lun; struct scsi_sense_hdr; typedef __u64 __bitwise blist_flags_t; #define SCSI_SENSE_BUFFERSIZE 96 struct scsi_mode_data { __u32 length; __u16 block_descriptor_length; __u8 medium_type; __u8 device_specific; __u8 header_length; __u8 longlba:1; }; /* * sdev state: If you alter this, you also need to alter scsi_sysfs.c * (for the ascii descriptions) and the state model enforcer: * scsi_lib:scsi_device_set_state(). */ enum scsi_device_state { SDEV_CREATED = 1, /* device created but not added to sysfs * Only internal commands allowed (for inq) */ SDEV_RUNNING, /* device properly configured * All commands allowed */ SDEV_CANCEL, /* beginning to delete device * Only error handler commands allowed */ SDEV_DEL, /* device deleted * no commands allowed */ SDEV_QUIESCE, /* Device quiescent. No block commands * will be accepted, only specials (which * originate in the mid-layer) */ SDEV_OFFLINE, /* Device offlined (by error handling or * user request */ SDEV_TRANSPORT_OFFLINE, /* Offlined by transport class error handler */ SDEV_BLOCK, /* Device blocked by scsi lld. No * scsi commands from user or midlayer * should be issued to the scsi * lld. */ SDEV_CREATED_BLOCK, /* same as above but for created devices */ }; enum scsi_scan_mode { SCSI_SCAN_INITIAL = 0, SCSI_SCAN_RESCAN, SCSI_SCAN_MANUAL, }; enum scsi_device_event { SDEV_EVT_MEDIA_CHANGE = 1, /* media has changed */ SDEV_EVT_INQUIRY_CHANGE_REPORTED, /* 3F 03 UA reported */ SDEV_EVT_CAPACITY_CHANGE_REPORTED, /* 2A 09 UA reported */ SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED, /* 38 07 UA reported */ SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED, /* 2A 01 UA reported */ SDEV_EVT_LUN_CHANGE_REPORTED, /* 3F 0E UA reported */ SDEV_EVT_ALUA_STATE_CHANGE_REPORTED, /* 2A 06 UA reported */ SDEV_EVT_POWER_ON_RESET_OCCURRED, /* 29 00 UA reported */ SDEV_EVT_FIRST = SDEV_EVT_MEDIA_CHANGE, SDEV_EVT_LAST = SDEV_EVT_POWER_ON_RESET_OCCURRED, SDEV_EVT_MAXBITS = SDEV_EVT_LAST + 1 }; struct scsi_event { enum scsi_device_event evt_type; struct list_head node; /* put union of data structures, for non-simple event types, * here */ }; /** * struct scsi_vpd - SCSI Vital Product Data * @rcu: For kfree_rcu(). * @len: Length in bytes of @data. * @data: VPD data as defined in various T10 SCSI standard documents. */ struct scsi_vpd { struct rcu_head rcu; int len; unsigned char data[]; }; struct scsi_device { struct Scsi_Host *host; struct request_queue *request_queue; /* the next two are protected by the host->host_lock */ struct list_head siblings; /* list of all devices on this host */ struct list_head same_target_siblings; /* just the devices sharing same target id */ atomic_t device_busy; /* commands actually active on LLDD */ atomic_t device_blocked; /* Device returned QUEUE_FULL. */ atomic_t restarts; spinlock_t list_lock; struct list_head starved_entry; unsigned short queue_depth; /* How deep of a queue we want */ unsigned short max_queue_depth; /* max queue depth */ unsigned short last_queue_full_depth; /* These two are used by */ unsigned short last_queue_full_count; /* scsi_track_queue_full() */ unsigned long last_queue_full_time; /* last queue full time */ unsigned long queue_ramp_up_period; /* ramp up period in jiffies */ #define SCSI_DEFAULT_RAMP_UP_PERIOD (120 * HZ) unsigned long last_queue_ramp_up; /* last queue ramp up time */ unsigned int id, channel; u64 lun; unsigned int manufacturer; /* Manufacturer of device, for using * vendor-specific cmd's */ unsigned sector_size; /* size in bytes */ void *hostdata; /* available to low-level driver */ unsigned char type; char scsi_level; char inq_periph_qual; /* PQ from INQUIRY data */ struct mutex inquiry_mutex; unsigned char inquiry_len; /* valid bytes in 'inquiry' */ unsigned char * inquiry; /* INQUIRY response data */ const char * vendor; /* [back_compat] point into 'inquiry' ... */ const char * model; /* ... after scan; point to static string */ const char * rev; /* ... "nullnullnullnull" before scan */ #define SCSI_VPD_PG_LEN 255 struct scsi_vpd __rcu *vpd_pg0; struct scsi_vpd __rcu *vpd_pg83; struct scsi_vpd __rcu *vpd_pg80; struct scsi_vpd __rcu *vpd_pg89; unsigned char current_tag; /* current tag */ struct scsi_target *sdev_target; /* used only for single_lun */ blist_flags_t sdev_bflags; /* black/white flags as also found in * scsi_devinfo.[hc]. For now used only to * pass settings from slave_alloc to scsi * core. */ unsigned int eh_timeout; /* Error handling timeout */ unsigned removable:1; unsigned changed:1; /* Data invalid due to media change */ unsigned busy:1; /* Used to prevent races */ unsigned lockable:1; /* Able to prevent media removal */ unsigned locked:1; /* Media removal disabled */ unsigned borken:1; /* Tell the Seagate driver to be * painfully slow on this device */ unsigned disconnect:1; /* can disconnect */ unsigned soft_reset:1; /* Uses soft reset option */ unsigned sdtr:1; /* Device supports SDTR messages */ unsigned wdtr:1; /* Device supports WDTR messages */ unsigned ppr:1; /* Device supports PPR messages */ unsigned tagged_supported:1; /* Supports SCSI-II tagged queuing */ unsigned simple_tags:1; /* simple queue tag messages are enabled */ unsigned was_reset:1; /* There was a bus reset on the bus for * this device */ unsigned expecting_cc_ua:1; /* Expecting a CHECK_CONDITION/UNIT_ATTN * because we did a bus reset. */ unsigned use_10_for_rw:1; /* first try 10-byte read / write */ unsigned use_10_for_ms:1; /* first try 10-byte mode sense/select */ unsigned set_dbd_for_ms:1; /* Set "DBD" field in mode sense */ unsigned no_report_opcodes:1; /* no REPORT SUPPORTED OPERATION CODES */ unsigned no_write_same:1; /* no WRITE SAME command */ unsigned use_16_for_rw:1; /* Use read/write(16) over read/write(10) */ unsigned skip_ms_page_8:1; /* do not use MODE SENSE page 0x08 */ unsigned skip_ms_page_3f:1; /* do not use MODE SENSE page 0x3f */ unsigned skip_vpd_pages:1; /* do not read VPD pages */ unsigned try_vpd_pages:1; /* attempt to read VPD pages */ unsigned use_192_bytes_for_3f:1; /* ask for 192 bytes from page 0x3f */ unsigned no_start_on_add:1; /* do not issue start on add */ unsigned allow_restart:1; /* issue START_UNIT in error handler */ unsigned manage_start_stop:1; /* Let HLD (sd) manage start/stop */ unsigned start_stop_pwr_cond:1; /* Set power cond. in START_STOP_UNIT */ unsigned no_uld_attach:1; /* disable connecting to upper level drivers */ unsigned select_no_atn:1; unsigned fix_capacity:1; /* READ_CAPACITY is too high by 1 */ unsigned guess_capacity:1; /* READ_CAPACITY might be too high by 1 */ unsigned retry_hwerror:1; /* Retry HARDWARE_ERROR */ unsigned last_sector_bug:1; /* do not use multisector accesses on SD_LAST_BUGGY_SECTORS */ unsigned no_read_disc_info:1; /* Avoid READ_DISC_INFO cmds */ unsigned no_read_capacity_16:1; /* Avoid READ_CAPACITY_16 cmds */ unsigned try_rc_10_first:1; /* Try READ_CAPACACITY_10 first */ unsigned security_supported:1; /* Supports Security Protocols */ unsigned is_visible:1; /* is the device visible in sysfs */ unsigned wce_default_on:1; /* Cache is ON by default */ unsigned no_dif:1; /* T10 PI (DIF) should be disabled */ unsigned broken_fua:1; /* Don't set FUA bit */ unsigned lun_in_cdb:1; /* Store LUN bits in CDB[1] */ unsigned unmap_limit_for_ws:1; /* Use the UNMAP limit for WRITE SAME */ unsigned rpm_autosuspend:1; /* Enable runtime autosuspend at device * creation time */ bool offline_already; /* Device offline message logged */ atomic_t disk_events_disable_depth; /* disable depth for disk events */ DECLARE_BITMAP(supported_events, SDEV_EVT_MAXBITS); /* supported events */ DECLARE_BITMAP(pending_events, SDEV_EVT_MAXBITS); /* pending events */ struct list_head event_list; /* asserted events */ struct work_struct event_work; unsigned int max_device_blocked; /* what device_blocked counts down from */ #define SCSI_DEFAULT_DEVICE_BLOCKED 3 atomic_t iorequest_cnt; atomic_t iodone_cnt; atomic_t ioerr_cnt; struct device sdev_gendev, sdev_dev; struct execute_work ew; /* used to get process context on put */ struct work_struct requeue_work; struct scsi_device_handler *handler; void *handler_data; size_t dma_drain_len; void *dma_drain_buf; unsigned char access_state; struct mutex state_mutex; enum scsi_device_state sdev_state; struct task_struct *quiesced_by; unsigned long sdev_data[]; } __attribute__((aligned(sizeof(unsigned long)))); #define to_scsi_device(d) \ container_of(d, struct scsi_device, sdev_gendev) #define class_to_sdev(d) \ container_of(d, struct scsi_device, sdev_dev) #define transport_class_to_sdev(class_dev) \ to_scsi_device(class_dev->parent) #define sdev_dbg(sdev, fmt, a...) \ dev_dbg(&(sdev)->sdev_gendev, fmt, ##a) /* * like scmd_printk, but the device name is passed in * as a string pointer */ __printf(4, 5) void sdev_prefix_printk(const char *, const struct scsi_device *, const char *, const char *, ...); #define sdev_printk(l, sdev, fmt, a...) \ sdev_prefix_printk(l, sdev, NULL, fmt, ##a) __printf(3, 4) void scmd_printk(const char *, const struct scsi_cmnd *, const char *, ...); #define scmd_dbg(scmd, fmt, a...) \ do { \ if ((scmd)->request->rq_disk) \ sdev_dbg((scmd)->device, "[%s] " fmt, \ (scmd)->request->rq_disk->disk_name, ##a);\ else \ sdev_dbg((scmd)->device, fmt, ##a); \ } while (0) enum scsi_target_state { STARGET_CREATED = 1, STARGET_RUNNING, STARGET_REMOVE, STARGET_CREATED_REMOVE, STARGET_DEL, }; /* * scsi_target: representation of a scsi target, for now, this is only * used for single_lun devices. If no one has active IO to the target, * starget_sdev_user is NULL, else it points to the active sdev. */ struct scsi_target { struct scsi_device *starget_sdev_user; struct list_head siblings; struct list_head devices; struct device dev; struct kref reap_ref; /* last put renders target invisible */ unsigned int channel; unsigned int id; /* target id ... replace * scsi_device.id eventually */ unsigned int create:1; /* signal that it needs to be added */ unsigned int single_lun:1; /* Indicates we should only * allow I/O to one of the luns * for the device at a time. */ unsigned int pdt_1f_for_no_lun:1; /* PDT = 0x1f * means no lun present. */ unsigned int no_report_luns:1; /* Don't use * REPORT LUNS for scanning. */ unsigned int expecting_lun_change:1; /* A device has reported * a 3F/0E UA, other devices on * the same target will also. */ /* commands actually active on LLD. */ atomic_t target_busy; atomic_t target_blocked; /* * LLDs should set this in the slave_alloc host template callout. * If set to zero then there is not limit. */ unsigned int can_queue; unsigned int max_target_blocked; #define SCSI_DEFAULT_TARGET_BLOCKED 3 char scsi_level; enum scsi_target_state state; void *hostdata; /* available to low-level driver */ unsigned long starget_data[]; /* for the transport */ /* starget_data must be the last element!!!! */ } __attribute__((aligned(sizeof(unsigned long)))); #define to_scsi_target(d) container_of(d, struct scsi_target, dev) static inline struct scsi_target *scsi_target(struct scsi_device *sdev) { return to_scsi_target(sdev->sdev_gendev.parent); } #define transport_class_to_starget(class_dev) \ to_scsi_target(class_dev->parent) #define starget_printk(prefix, starget, fmt, a...) \ dev_printk(prefix, &(starget)->dev, fmt, ##a) extern struct scsi_device *__scsi_add_device(struct Scsi_Host *, uint, uint, u64, void *hostdata); extern int scsi_add_device(struct Scsi_Host *host, uint channel, uint target, u64 lun); extern int scsi_register_device_handler(struct scsi_device_handler *scsi_dh); extern void scsi_remove_device(struct scsi_device *); extern int scsi_unregister_device_handler(struct scsi_device_handler *scsi_dh); void scsi_attach_vpd(struct scsi_device *sdev); extern struct scsi_device *scsi_device_from_queue(struct request_queue *q); extern int __must_check scsi_device_get(struct scsi_device *); extern void scsi_device_put(struct scsi_device *); extern struct scsi_device *scsi_device_lookup(struct Scsi_Host *, uint, uint, u64); extern struct scsi_device *__scsi_device_lookup(struct Scsi_Host *, uint, uint, u64); extern struct scsi_device *scsi_device_lookup_by_target(struct scsi_target *, u64); extern struct scsi_device *__scsi_device_lookup_by_target(struct scsi_target *, u64); extern void starget_for_each_device(struct scsi_target *, void *, void (*fn)(struct scsi_device *, void *)); extern void __starget_for_each_device(struct scsi_target *, void *, void (*fn)(struct scsi_device *, void *)); /* only exposed to implement shost_for_each_device */ extern struct scsi_device *__scsi_iterate_devices(struct Scsi_Host *, struct scsi_device *); /** * shost_for_each_device - iterate over all devices of a host * @sdev: the &struct scsi_device to use as a cursor * @shost: the &struct scsi_host to iterate over * * Iterator that returns each device attached to @shost. This loop * takes a reference on each device and releases it at the end. If * you break out of the loop, you must call scsi_device_put(sdev). */ #define shost_for_each_device(sdev, shost) \ for ((sdev) = __scsi_iterate_devices((shost), NULL); \ (sdev); \ (sdev) = __scsi_iterate_devices((shost), (sdev))) /** * __shost_for_each_device - iterate over all devices of a host (UNLOCKED) * @sdev: the &struct scsi_device to use as a cursor * @shost: the &struct scsi_host to iterate over * * Iterator that returns each device attached to @shost. It does _not_ * take a reference on the scsi_device, so the whole loop must be * protected by shost->host_lock. * * Note: The only reason to use this is because you need to access the * device list in interrupt context. Otherwise you really want to use * shost_for_each_device instead. */ #define __shost_for_each_device(sdev, shost) \ list_for_each_entry((sdev), &((shost)->__devices), siblings) extern int scsi_change_queue_depth(struct scsi_device *, int); extern int scsi_track_queue_full(struct scsi_device *, int); extern int scsi_set_medium_removal(struct scsi_device *, char); extern int scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, unsigned char *buffer, int len, int timeout, int retries, struct scsi_mode_data *data, struct scsi_sense_hdr *); extern int scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, unsigned char *buffer, int len, int timeout, int retries, struct scsi_mode_data *data, struct scsi_sense_hdr *); extern int scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, struct scsi_sense_hdr *sshdr); extern int scsi_get_vpd_page(struct scsi_device *, u8 page, unsigned char *buf, int buf_len); extern int scsi_report_opcode(struct scsi_device *sdev, unsigned char *buffer, unsigned int len, unsigned char opcode); extern int scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state); extern struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, gfp_t gfpflags); extern void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt); extern void sdev_evt_send_simple(struct scsi_device *sdev, enum scsi_device_event evt_type, gfp_t gfpflags); extern int scsi_device_quiesce(struct scsi_device *sdev); extern void scsi_device_resume(struct scsi_device *sdev); extern void scsi_target_quiesce(struct scsi_target *); extern void scsi_target_resume(struct scsi_target *); extern void scsi_scan_target(struct device *parent, unsigned int channel, unsigned int id, u64 lun, enum scsi_scan_mode rescan); extern void scsi_target_reap(struct scsi_target *); extern void scsi_target_block(struct device *); extern void scsi_target_unblock(struct device *, enum scsi_device_state); extern void scsi_remove_target(struct device *); extern const char *scsi_device_state_name(enum scsi_device_state); extern int scsi_is_sdev_device(const struct device *); extern int scsi_is_target_device(const struct device *); extern void scsi_sanitize_inquiry_string(unsigned char *s, int len); extern int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, int data_direction, void *buffer, unsigned bufflen, unsigned char *sense, struct scsi_sense_hdr *sshdr, int timeout, int retries, u64 flags, req_flags_t rq_flags, int *resid); /* Make sure any sense buffer is the correct size. */ #define scsi_execute(sdev, cmd, data_direction, buffer, bufflen, sense, \ sshdr, timeout, retries, flags, rq_flags, resid) \ ({ \ BUILD_BUG_ON((sense) != NULL && \ sizeof(sense) != SCSI_SENSE_BUFFERSIZE); \ __scsi_execute(sdev, cmd, data_direction, buffer, bufflen, \ sense, sshdr, timeout, retries, flags, rq_flags, \ resid); \ }) static inline int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd, int data_direction, void *buffer, unsigned bufflen, struct scsi_sense_hdr *sshdr, int timeout, int retries, int *resid) { return scsi_execute(sdev, cmd, data_direction, buffer, bufflen, NULL, sshdr, timeout, retries, 0, 0, resid); } extern void sdev_disable_disk_events(struct scsi_device *sdev); extern void sdev_enable_disk_events(struct scsi_device *sdev); extern int scsi_vpd_lun_id(struct scsi_device *, char *, size_t); extern int scsi_vpd_tpg_id(struct scsi_device *, int *); #ifdef CONFIG_PM extern int scsi_autopm_get_device(struct scsi_device *); extern void scsi_autopm_put_device(struct scsi_device *); #else static inline int scsi_autopm_get_device(struct scsi_device *d) { return 0; } static inline void scsi_autopm_put_device(struct scsi_device *d) {} #endif /* CONFIG_PM */ static inline int __must_check scsi_device_reprobe(struct scsi_device *sdev) { return device_reprobe(&sdev->sdev_gendev); } static inline unsigned int sdev_channel(struct scsi_device *sdev) { return sdev->channel; } static inline unsigned int sdev_id(struct scsi_device *sdev) { return sdev->id; } #define scmd_id(scmd) sdev_id((scmd)->device) #define scmd_channel(scmd) sdev_channel((scmd)->device) /* * checks for positions of the SCSI state machine */ static inline int scsi_device_online(struct scsi_device *sdev) { return (sdev->sdev_state != SDEV_OFFLINE && sdev->sdev_state != SDEV_TRANSPORT_OFFLINE && sdev->sdev_state != SDEV_DEL); } static inline int scsi_device_blocked(struct scsi_device *sdev) { return sdev->sdev_state == SDEV_BLOCK || sdev->sdev_state == SDEV_CREATED_BLOCK; } static inline int scsi_device_created(struct scsi_device *sdev) { return sdev->sdev_state == SDEV_CREATED || sdev->sdev_state == SDEV_CREATED_BLOCK; } int scsi_internal_device_block_nowait(struct scsi_device *sdev); int scsi_internal_device_unblock_nowait(struct scsi_device *sdev, enum scsi_device_state new_state); /* accessor functions for the SCSI parameters */ static inline int scsi_device_sync(struct scsi_device *sdev) { return sdev->sdtr; } static inline int scsi_device_wide(struct scsi_device *sdev) { return sdev->wdtr; } static inline int scsi_device_dt(struct scsi_device *sdev) { return sdev->ppr; } static inline int scsi_device_dt_only(struct scsi_device *sdev) { if (sdev->inquiry_len < 57) return 0; return (sdev->inquiry[56] & 0x0c) == 0x04; } static inline int scsi_device_ius(struct scsi_device *sdev) { if (sdev->inquiry_len < 57) return 0; return sdev->inquiry[56] & 0x01; } static inline int scsi_device_qas(struct scsi_device *sdev) { if (sdev->inquiry_len < 57) return 0; return sdev->inquiry[56] & 0x02; } static inline int scsi_device_enclosure(struct scsi_device *sdev) { return sdev->inquiry ? (sdev->inquiry[6] & (1<<6)) : 1; } static inline int scsi_device_protection(struct scsi_device *sdev) { if (sdev->no_dif) return 0; return sdev->scsi_level > SCSI_2 && sdev->inquiry[5] & (1<<0); } static inline int scsi_device_tpgs(struct scsi_device *sdev) { return sdev->inquiry ? (sdev->inquiry[5] >> 4) & 0x3 : 0; } /** * scsi_device_supports_vpd - test if a device supports VPD pages * @sdev: the &struct scsi_device to test * * If the 'try_vpd_pages' flag is set it takes precedence. * Otherwise we will assume VPD pages are supported if the * SCSI level is at least SPC-3 and 'skip_vpd_pages' is not set. */ static inline int scsi_device_supports_vpd(struct scsi_device *sdev) { /* Attempt VPD inquiry if the device blacklist explicitly calls * for it. */ if (sdev->try_vpd_pages) return 1; /* * Although VPD inquiries can go to SCSI-2 type devices, * some USB ones crash on receiving them, and the pages * we currently ask for are mandatory for SPC-2 and beyond */ if (sdev->scsi_level >= SCSI_SPC_2 && !sdev->skip_vpd_pages) return 1; return 0; } #define MODULE_ALIAS_SCSI_DEVICE(type) \ MODULE_ALIAS("scsi:t-" __stringify(type) "*") #define SCSI_DEVICE_MODALIAS_FMT "scsi:t-0x%02x" #endif /* _SCSI_SCSI_DEVICE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_COMPLETION_H #define __LINUX_COMPLETION_H /* * (C) Copyright 2001 Linus Torvalds * * Atomic wait-for-completion handler data structures. * See kernel/sched/completion.c for details. */ #include <linux/swait.h> /* * struct completion - structure used to maintain state for a "completion" * * This is the opaque structure used to maintain the state for a "completion". * Completions currently use a FIFO to queue threads that have to wait for * the "completion" event. * * See also: complete(), wait_for_completion() (and friends _timeout, * _interruptible, _interruptible_timeout, and _killable), init_completion(), * reinit_completion(), and macros DECLARE_COMPLETION(), * DECLARE_COMPLETION_ONSTACK(). */ struct completion { unsigned int done; struct swait_queue_head wait; }; #define init_completion_map(x, m) __init_completion(x) #define init_completion(x) __init_completion(x) static inline void complete_acquire(struct completion *x) {} static inline void complete_release(struct completion *x) {} #define COMPLETION_INITIALIZER(work) \ { 0, __SWAIT_QUEUE_HEAD_INITIALIZER((work).wait) } #define COMPLETION_INITIALIZER_ONSTACK_MAP(work, map) \ (*({ init_completion_map(&(work), &(map)); &(work); })) #define COMPLETION_INITIALIZER_ONSTACK(work) \ (*({ init_completion(&work); &work; })) /** * DECLARE_COMPLETION - declare and initialize a completion structure * @work: identifier for the completion structure * * This macro declares and initializes a completion structure. Generally used * for static declarations. You should use the _ONSTACK variant for automatic * variables. */ #define DECLARE_COMPLETION(work) \ struct completion work = COMPLETION_INITIALIZER(work) /* * Lockdep needs to run a non-constant initializer for on-stack * completions - so we use the _ONSTACK() variant for those that * are on the kernel stack: */ /** * DECLARE_COMPLETION_ONSTACK - declare and initialize a completion structure * @work: identifier for the completion structure * * This macro declares and initializes a completion structure on the kernel * stack. */ #ifdef CONFIG_LOCKDEP # define DECLARE_COMPLETION_ONSTACK(work) \ struct completion work = COMPLETION_INITIALIZER_ONSTACK(work) # define DECLARE_COMPLETION_ONSTACK_MAP(work, map) \ struct completion work = COMPLETION_INITIALIZER_ONSTACK_MAP(work, map) #else # define DECLARE_COMPLETION_ONSTACK(work) DECLARE_COMPLETION(work) # define DECLARE_COMPLETION_ONSTACK_MAP(work, map) DECLARE_COMPLETION(work) #endif /** * init_completion - Initialize a dynamically allocated completion * @x: pointer to completion structure that is to be initialized * * This inline function will initialize a dynamically created completion * structure. */ static inline void __init_completion(struct completion *x) { x->done = 0; init_swait_queue_head(&x->wait); } /** * reinit_completion - reinitialize a completion structure * @x: pointer to completion structure that is to be reinitialized * * This inline function should be used to reinitialize a completion structure so it can * be reused. This is especially important after complete_all() is used. */ static inline void reinit_completion(struct completion *x) { x->done = 0; } extern void wait_for_completion(struct completion *); extern void wait_for_completion_io(struct completion *); extern int wait_for_completion_interruptible(struct completion *x); extern int wait_for_completion_killable(struct completion *x); extern unsigned long wait_for_completion_timeout(struct completion *x, unsigned long timeout); extern unsigned long wait_for_completion_io_timeout(struct completion *x, unsigned long timeout); extern long wait_for_completion_interruptible_timeout( struct completion *x, unsigned long timeout); extern long wait_for_completion_killable_timeout( struct completion *x, unsigned long timeout); extern bool try_wait_for_completion(struct completion *x); extern bool completion_done(struct completion *x); extern void complete(struct completion *); extern void complete_all(struct completion *); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_MIN_HEAP_H #define _LINUX_MIN_HEAP_H #include <linux/bug.h> #include <linux/string.h> #include <linux/types.h> /** * struct min_heap - Data structure to hold a min-heap. * @data: Start of array holding the heap elements. * @nr: Number of elements currently in the heap. * @size: Maximum number of elements that can be held in current storage. */ struct min_heap { void *data; int nr; int size; }; /** * struct min_heap_callbacks - Data/functions to customise the min_heap. * @elem_size: The nr of each element in bytes. * @less: Partial order function for this heap. * @swp: Swap elements function. */ struct min_heap_callbacks { int elem_size; bool (*less)(const void *lhs, const void *rhs); void (*swp)(void *lhs, void *rhs); }; /* Sift the element at pos down the heap. */ static __always_inline void min_heapify(struct min_heap *heap, int pos, const struct min_heap_callbacks *func) { void *left, *right, *parent, *smallest; void *data = heap->data; for (;;) { if (pos * 2 + 1 >= heap->nr) break; left = data + ((pos * 2 + 1) * func->elem_size); parent = data + (pos * func->elem_size); smallest = parent; if (func->less(left, smallest)) smallest = left; if (pos * 2 + 2 < heap->nr) { right = data + ((pos * 2 + 2) * func->elem_size); if (func->less(right, smallest)) smallest = right; } if (smallest == parent) break; func->swp(smallest, parent); if (smallest == left) pos = (pos * 2) + 1; else pos = (pos * 2) + 2; } } /* Floyd's approach to heapification that is O(nr). */ static __always_inline void min_heapify_all(struct min_heap *heap, const struct min_heap_callbacks *func) { int i; for (i = heap->nr / 2; i >= 0; i--) min_heapify(heap, i, func); } /* Remove minimum element from the heap, O(log2(nr)). */ static __always_inline void min_heap_pop(struct min_heap *heap, const struct min_heap_callbacks *func) { void *data = heap->data; if (WARN_ONCE(heap->nr <= 0, "Popping an empty heap")) return; /* Place last element at the root (position 0) and then sift down. */ heap->nr--; memcpy(data, data + (heap->nr * func->elem_size), func->elem_size); min_heapify(heap, 0, func); } /* * Remove the minimum element and then push the given element. The * implementation performs 1 sift (O(log2(nr))) and is therefore more * efficient than a pop followed by a push that does 2. */ static __always_inline void min_heap_pop_push(struct min_heap *heap, const void *element, const struct min_heap_callbacks *func) { memcpy(heap->data, element, func->elem_size); min_heapify(heap, 0, func); } /* Push an element on to the heap, O(log2(nr)). */ static __always_inline void min_heap_push(struct min_heap *heap, const void *element, const struct min_heap_callbacks *func) { void *data = heap->data; void *child, *parent; int pos; if (WARN_ONCE(heap->nr >= heap->size, "Pushing on a full heap")) return; /* Place at the end of data. */ pos = heap->nr; memcpy(data + (pos * func->elem_size), element, func->elem_size); heap->nr++; /* Sift child at pos up. */ for (; pos > 0; pos = (pos - 1) / 2) { child = data + (pos * func->elem_size); parent = data + ((pos - 1) / 2) * func->elem_size; if (func->less(parent, child)) break; func->swp(parent, child); } } #endif /* _LINUX_MIN_HEAP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 /* SPDX-License-Identifier: GPL-2.0 */ /* * include/linux/prandom.h * * Include file for the fast pseudo-random 32-bit * generation. */ #ifndef _LINUX_PRANDOM_H #define _LINUX_PRANDOM_H #include <linux/types.h> #include <linux/percpu.h> u32 prandom_u32(void); void prandom_bytes(void *buf, size_t nbytes); void prandom_seed(u32 seed); void prandom_reseed_late(void); DECLARE_PER_CPU(unsigned long, net_rand_noise); #define PRANDOM_ADD_NOISE(a, b, c, d) \ prandom_u32_add_noise((unsigned long)(a), (unsigned long)(b), \ (unsigned long)(c), (unsigned long)(d)) #if BITS_PER_LONG == 64 /* * The core SipHash round function. Each line can be executed in * parallel given enough CPU resources. */ #define PRND_SIPROUND(v0, v1, v2, v3) ( \ v0 += v1, v1 = rol64(v1, 13), v2 += v3, v3 = rol64(v3, 16), \ v1 ^= v0, v0 = rol64(v0, 32), v3 ^= v2, \ v0 += v3, v3 = rol64(v3, 21), v2 += v1, v1 = rol64(v1, 17), \ v3 ^= v0, v1 ^= v2, v2 = rol64(v2, 32) \ ) #define PRND_K0 (0x736f6d6570736575 ^ 0x6c7967656e657261) #define PRND_K1 (0x646f72616e646f6d ^ 0x7465646279746573) #elif BITS_PER_LONG == 32 /* * On 32-bit machines, we use HSipHash, a reduced-width version of SipHash. * This is weaker, but 32-bit machines are not used for high-traffic * applications, so there is less output for an attacker to analyze. */ #define PRND_SIPROUND(v0, v1, v2, v3) ( \ v0 += v1, v1 = rol32(v1, 5), v2 += v3, v3 = rol32(v3, 8), \ v1 ^= v0, v0 = rol32(v0, 16), v3 ^= v2, \ v0 += v3, v3 = rol32(v3, 7), v2 += v1, v1 = rol32(v1, 13), \ v3 ^= v0, v1 ^= v2, v2 = rol32(v2, 16) \ ) #define PRND_K0 0x6c796765 #define PRND_K1 0x74656462 #else #error Unsupported BITS_PER_LONG #endif static inline void prandom_u32_add_noise(unsigned long a, unsigned long b, unsigned long c, unsigned long d) { /* * This is not used cryptographically; it's just * a convenient 4-word hash function. (3 xor, 2 add, 2 rol) */ a ^= raw_cpu_read(net_rand_noise); PRND_SIPROUND(a, b, c, d); raw_cpu_write(net_rand_noise, d); } struct rnd_state { __u32 s1, s2, s3, s4; }; u32 prandom_u32_state(struct rnd_state *state); void prandom_bytes_state(struct rnd_state *state, void *buf, size_t nbytes); void prandom_seed_full_state(struct rnd_state __percpu *pcpu_state); #define prandom_init_once(pcpu_state) \ DO_ONCE(prandom_seed_full_state, (pcpu_state)) /** * prandom_u32_max - returns a pseudo-random number in interval [0, ep_ro) * @ep_ro: right open interval endpoint * * Returns a pseudo-random number that is in interval [0, ep_ro). Note * that the result depends on PRNG being well distributed in [0, ~0U] * u32 space. Here we use maximally equidistributed combined Tausworthe * generator, that is, prandom_u32(). This is useful when requesting a * random index of an array containing ep_ro elements, for example. * * Returns: pseudo-random number in interval [0, ep_ro) */ static inline u32 prandom_u32_max(u32 ep_ro) { return (u32)(((u64) prandom_u32() * ep_ro) >> 32); } /* * Handle minimum values for seeds */ static inline u32 __seed(u32 x, u32 m) { return (x < m) ? x + m : x; } /** * prandom_seed_state - set seed for prandom_u32_state(). * @state: pointer to state structure to receive the seed. * @seed: arbitrary 64-bit value to use as a seed. */ static inline void prandom_seed_state(struct rnd_state *state, u64 seed) { u32 i = ((seed >> 32) ^ (seed << 10) ^ seed) & 0xffffffffUL; state->s1 = __seed(i, 2U); state->s2 = __seed(i, 8U); state->s3 = __seed(i, 16U); state->s4 = __seed(i, 128U); PRANDOM_ADD_NOISE(state, i, 0, 0); } /* Pseudo random number generator from numerical recipes. */ static inline u32 next_pseudo_random32(u32 seed) { return seed * 1664525 + 1013904223; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 /* SPDX-License-Identifier: GPL-2.0-only */ /* * IEEE802.15.4-2003 specification * * Copyright (C) 2007, 2008 Siemens AG * * Written by: * Pavel Smolenskiy <pavel.smolenskiy@gmail.com> * Maxim Gorbachyov <maxim.gorbachev@siemens.com> * Maxim Osipov <maxim.osipov@siemens.com> * Dmitry Eremin-Solenikov <dbaryshkov@gmail.com> * Alexander Smirnov <alex.bluesman.smirnov@gmail.com> */ #ifndef LINUX_IEEE802154_H #define LINUX_IEEE802154_H #include <linux/types.h> #include <linux/random.h> #define IEEE802154_MTU 127 #define IEEE802154_ACK_PSDU_LEN 5 #define IEEE802154_MIN_PSDU_LEN 9 #define IEEE802154_FCS_LEN 2 #define IEEE802154_MAX_AUTH_TAG_LEN 16 #define IEEE802154_FC_LEN 2 #define IEEE802154_SEQ_LEN 1 /* General MAC frame format: * 2 bytes: Frame Control * 1 byte: Sequence Number * 20 bytes: Addressing fields * 14 bytes: Auxiliary Security Header */ #define IEEE802154_MAX_HEADER_LEN (2 + 1 + 20 + 14) #define IEEE802154_MIN_HEADER_LEN (IEEE802154_ACK_PSDU_LEN - \ IEEE802154_FCS_LEN) #define IEEE802154_PAN_ID_BROADCAST 0xffff #define IEEE802154_ADDR_SHORT_BROADCAST 0xffff #define IEEE802154_ADDR_SHORT_UNSPEC 0xfffe #define IEEE802154_EXTENDED_ADDR_LEN 8 #define IEEE802154_SHORT_ADDR_LEN 2 #define IEEE802154_PAN_ID_LEN 2 #define IEEE802154_LIFS_PERIOD 40 #define IEEE802154_SIFS_PERIOD 12 #define IEEE802154_MAX_SIFS_FRAME_SIZE 18 #define IEEE802154_MAX_CHANNEL 26 #define IEEE802154_MAX_PAGE 31 #define IEEE802154_FC_TYPE_BEACON 0x0 /* Frame is beacon */ #define IEEE802154_FC_TYPE_DATA 0x1 /* Frame is data */ #define IEEE802154_FC_TYPE_ACK 0x2 /* Frame is acknowledgment */ #define IEEE802154_FC_TYPE_MAC_CMD 0x3 /* Frame is MAC command */ #define IEEE802154_FC_TYPE_SHIFT 0 #define IEEE802154_FC_TYPE_MASK ((1 << 3) - 1) #define IEEE802154_FC_TYPE(x) ((x & IEEE802154_FC_TYPE_MASK) >> IEEE802154_FC_TYPE_SHIFT) #define IEEE802154_FC_SET_TYPE(v, x) do { \ v = (((v) & ~IEEE802154_FC_TYPE_MASK) | \ (((x) << IEEE802154_FC_TYPE_SHIFT) & IEEE802154_FC_TYPE_MASK)); \ } while (0) #define IEEE802154_FC_SECEN_SHIFT 3 #define IEEE802154_FC_SECEN (1 << IEEE802154_FC_SECEN_SHIFT) #define IEEE802154_FC_FRPEND_SHIFT 4 #define IEEE802154_FC_FRPEND (1 << IEEE802154_FC_FRPEND_SHIFT) #define IEEE802154_FC_ACK_REQ_SHIFT 5 #define IEEE802154_FC_ACK_REQ (1 << IEEE802154_FC_ACK_REQ_SHIFT) #define IEEE802154_FC_INTRA_PAN_SHIFT 6 #define IEEE802154_FC_INTRA_PAN (1 << IEEE802154_FC_INTRA_PAN_SHIFT) #define IEEE802154_FC_SAMODE_SHIFT 14 #define IEEE802154_FC_SAMODE_MASK (3 << IEEE802154_FC_SAMODE_SHIFT) #define IEEE802154_FC_DAMODE_SHIFT 10 #define IEEE802154_FC_DAMODE_MASK (3 << IEEE802154_FC_DAMODE_SHIFT) #define IEEE802154_FC_VERSION_SHIFT 12 #define IEEE802154_FC_VERSION_MASK (3 << IEEE802154_FC_VERSION_SHIFT) #define IEEE802154_FC_VERSION(x) ((x & IEEE802154_FC_VERSION_MASK) >> IEEE802154_FC_VERSION_SHIFT) #define IEEE802154_FC_SAMODE(x) \ (((x) & IEEE802154_FC_SAMODE_MASK) >> IEEE802154_FC_SAMODE_SHIFT) #define IEEE802154_FC_DAMODE(x) \ (((x) & IEEE802154_FC_DAMODE_MASK) >> IEEE802154_FC_DAMODE_SHIFT) #define IEEE802154_SCF_SECLEVEL_MASK 7 #define IEEE802154_SCF_SECLEVEL_SHIFT 0 #define IEEE802154_SCF_SECLEVEL(x) (x & IEEE802154_SCF_SECLEVEL_MASK) #define IEEE802154_SCF_KEY_ID_MODE_SHIFT 3 #define IEEE802154_SCF_KEY_ID_MODE_MASK (3 << IEEE802154_SCF_KEY_ID_MODE_SHIFT) #define IEEE802154_SCF_KEY_ID_MODE(x) \ ((x & IEEE802154_SCF_KEY_ID_MODE_MASK) >> IEEE802154_SCF_KEY_ID_MODE_SHIFT) #define IEEE802154_SCF_KEY_IMPLICIT 0 #define IEEE802154_SCF_KEY_INDEX 1 #define IEEE802154_SCF_KEY_SHORT_INDEX 2 #define IEEE802154_SCF_KEY_HW_INDEX 3 #define IEEE802154_SCF_SECLEVEL_NONE 0 #define IEEE802154_SCF_SECLEVEL_MIC32 1 #define IEEE802154_SCF_SECLEVEL_MIC64 2 #define IEEE802154_SCF_SECLEVEL_MIC128 3 #define IEEE802154_SCF_SECLEVEL_ENC 4 #define IEEE802154_SCF_SECLEVEL_ENC_MIC32 5 #define IEEE802154_SCF_SECLEVEL_ENC_MIC64 6 #define IEEE802154_SCF_SECLEVEL_ENC_MIC128 7 /* MAC footer size */ #define IEEE802154_MFR_SIZE 2 /* 2 octets */ /* MAC's Command Frames Identifiers */ #define IEEE802154_CMD_ASSOCIATION_REQ 0x01 #define IEEE802154_CMD_ASSOCIATION_RESP 0x02 #define IEEE802154_CMD_DISASSOCIATION_NOTIFY 0x03 #define IEEE802154_CMD_DATA_REQ 0x04 #define IEEE802154_CMD_PANID_CONFLICT_NOTIFY 0x05 #define IEEE802154_CMD_ORPHAN_NOTIFY 0x06 #define IEEE802154_CMD_BEACON_REQ 0x07 #define IEEE802154_CMD_COORD_REALIGN_NOTIFY 0x08 #define IEEE802154_CMD_GTS_REQ 0x09 /* * The return values of MAC operations */ enum { /* * The requested operation was completed successfully. * For a transmission request, this value indicates * a successful transmission. */ IEEE802154_SUCCESS = 0x0, /* The beacon was lost following a synchronization request. */ IEEE802154_BEACON_LOSS = 0xe0, /* * A transmission could not take place due to activity on the * channel, i.e., the CSMA-CA mechanism has failed. */ IEEE802154_CHNL_ACCESS_FAIL = 0xe1, /* The GTS request has been denied by the PAN coordinator. */ IEEE802154_DENINED = 0xe2, /* The attempt to disable the transceiver has failed. */ IEEE802154_DISABLE_TRX_FAIL = 0xe3, /* * The received frame induces a failed security check according to * the security suite. */ IEEE802154_FAILED_SECURITY_CHECK = 0xe4, /* * The frame resulting from secure processing has a length that is * greater than aMACMaxFrameSize. */ IEEE802154_FRAME_TOO_LONG = 0xe5, /* * The requested GTS transmission failed because the specified GTS * either did not have a transmit GTS direction or was not defined. */ IEEE802154_INVALID_GTS = 0xe6, /* * A request to purge an MSDU from the transaction queue was made using * an MSDU handle that was not found in the transaction table. */ IEEE802154_INVALID_HANDLE = 0xe7, /* A parameter in the primitive is out of the valid range.*/ IEEE802154_INVALID_PARAMETER = 0xe8, /* No acknowledgment was received after aMaxFrameRetries. */ IEEE802154_NO_ACK = 0xe9, /* A scan operation failed to find any network beacons.*/ IEEE802154_NO_BEACON = 0xea, /* No response data were available following a request. */ IEEE802154_NO_DATA = 0xeb, /* The operation failed because a short address was not allocated. */ IEEE802154_NO_SHORT_ADDRESS = 0xec, /* * A receiver enable request was unsuccessful because it could not be * completed within the CAP. */ IEEE802154_OUT_OF_CAP = 0xed, /* * A PAN identifier conflict has been detected and communicated to the * PAN coordinator. */ IEEE802154_PANID_CONFLICT = 0xee, /* A coordinator realignment command has been received. */ IEEE802154_REALIGMENT = 0xef, /* The transaction has expired and its information discarded. */ IEEE802154_TRANSACTION_EXPIRED = 0xf0, /* There is no capacity to store the transaction. */ IEEE802154_TRANSACTION_OVERFLOW = 0xf1, /* * The transceiver was in the transmitter enabled state when the * receiver was requested to be enabled. */ IEEE802154_TX_ACTIVE = 0xf2, /* The appropriate key is not available in the ACL. */ IEEE802154_UNAVAILABLE_KEY = 0xf3, /* * A SET/GET request was issued with the identifier of a PIB attribute * that is not supported. */ IEEE802154_UNSUPPORTED_ATTR = 0xf4, /* * A request to perform a scan operation failed because the MLME was * in the process of performing a previously initiated scan operation. */ IEEE802154_SCAN_IN_PROGRESS = 0xfc, }; /* frame control handling */ #define IEEE802154_FCTL_FTYPE 0x0003 #define IEEE802154_FCTL_ACKREQ 0x0020 #define IEEE802154_FCTL_SECEN 0x0004 #define IEEE802154_FCTL_INTRA_PAN 0x0040 #define IEEE802154_FCTL_DADDR 0x0c00 #define IEEE802154_FCTL_SADDR 0xc000 #define IEEE802154_FTYPE_DATA 0x0001 #define IEEE802154_FCTL_ADDR_NONE 0x0000 #define IEEE802154_FCTL_DADDR_SHORT 0x0800 #define IEEE802154_FCTL_DADDR_EXTENDED 0x0c00 #define IEEE802154_FCTL_SADDR_SHORT 0x8000 #define IEEE802154_FCTL_SADDR_EXTENDED 0xc000 /* * ieee802154_is_data - check if type is IEEE802154_FTYPE_DATA * @fc: frame control bytes in little-endian byteorder */ static inline int ieee802154_is_data(__le16 fc) { return (fc & cpu_to_le16(IEEE802154_FCTL_FTYPE)) == cpu_to_le16(IEEE802154_FTYPE_DATA); } /** * ieee802154_is_secen - check if Security bit is set * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee802154_is_secen(__le16 fc) { return fc & cpu_to_le16(IEEE802154_FCTL_SECEN); } /** * ieee802154_is_ackreq - check if acknowledgment request bit is set * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee802154_is_ackreq(__le16 fc) { return fc & cpu_to_le16(IEEE802154_FCTL_ACKREQ); } /** * ieee802154_is_intra_pan - check if intra pan id communication * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee802154_is_intra_pan(__le16 fc) { return fc & cpu_to_le16(IEEE802154_FCTL_INTRA_PAN); } /* * ieee802154_daddr_mode - get daddr mode from fc * @fc: frame control bytes in little-endian byteorder */ static inline __le16 ieee802154_daddr_mode(__le16 fc) { return fc & cpu_to_le16(IEEE802154_FCTL_DADDR); } /* * ieee802154_saddr_mode - get saddr mode from fc * @fc: frame control bytes in little-endian byteorder */ static inline __le16 ieee802154_saddr_mode(__le16 fc) { return fc & cpu_to_le16(IEEE802154_FCTL_SADDR); } /** * ieee802154_is_valid_psdu_len - check if psdu len is valid * available lengths: * 0-4 Reserved * 5 MPDU (Acknowledgment) * 6-8 Reserved * 9-127 MPDU * * @len: psdu len with (MHR + payload + MFR) */ static inline bool ieee802154_is_valid_psdu_len(u8 len) { return (len == IEEE802154_ACK_PSDU_LEN || (len >= IEEE802154_MIN_PSDU_LEN && len <= IEEE802154_MTU)); } /** * ieee802154_is_valid_extended_unicast_addr - check if extended addr is valid * @addr: extended addr to check */ static inline bool ieee802154_is_valid_extended_unicast_addr(__le64 addr) { /* Bail out if the address is all zero, or if the group * address bit is set. */ return ((addr != cpu_to_le64(0x0000000000000000ULL)) && !(addr & cpu_to_le64(0x0100000000000000ULL))); } /** * ieee802154_is_broadcast_short_addr - check if short addr is broadcast * @addr: short addr to check */ static inline bool ieee802154_is_broadcast_short_addr(__le16 addr) { return (addr == cpu_to_le16(IEEE802154_ADDR_SHORT_BROADCAST)); } /** * ieee802154_is_unspec_short_addr - check if short addr is unspecified * @addr: short addr to check */ static inline bool ieee802154_is_unspec_short_addr(__le16 addr) { return (addr == cpu_to_le16(IEEE802154_ADDR_SHORT_UNSPEC)); } /** * ieee802154_is_valid_src_short_addr - check if source short address is valid * @addr: short addr to check */ static inline bool ieee802154_is_valid_src_short_addr(__le16 addr) { return !(ieee802154_is_broadcast_short_addr(addr) || ieee802154_is_unspec_short_addr(addr)); } /** * ieee802154_random_extended_addr - generates a random extended address * @addr: extended addr pointer to place the random address */ static inline void ieee802154_random_extended_addr(__le64 *addr) { get_random_bytes(addr, IEEE802154_EXTENDED_ADDR_LEN); /* clear the group bit, and set the locally administered bit */ ((u8 *)addr)[IEEE802154_EXTENDED_ADDR_LEN - 1] &= ~0x01; ((u8 *)addr)[IEEE802154_EXTENDED_ADDR_LEN - 1] |= 0x02; } #endif /* LINUX_IEEE802154_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _KERNEL_EVENTS_INTERNAL_H #define _KERNEL_EVENTS_INTERNAL_H #include <linux/hardirq.h> #include <linux/uaccess.h> #include <linux/refcount.h> /* Buffer handling */ #define RING_BUFFER_WRITABLE 0x01 struct perf_buffer { refcount_t refcount; struct rcu_head rcu_head; #ifdef CONFIG_PERF_USE_VMALLOC struct work_struct work; int page_order; /* allocation order */ #endif int nr_pages; /* nr of data pages */ int overwrite; /* can overwrite itself */ int paused; /* can write into ring buffer */ atomic_t poll; /* POLL_ for wakeups */ local_t head; /* write position */ unsigned int nest; /* nested writers */ local_t events; /* event limit */ local_t wakeup; /* wakeup stamp */ local_t lost; /* nr records lost */ long watermark; /* wakeup watermark */ long aux_watermark; /* poll crap */ spinlock_t event_lock; struct list_head event_list; atomic_t mmap_count; unsigned long mmap_locked; struct user_struct *mmap_user; /* AUX area */ long aux_head; unsigned int aux_nest; long aux_wakeup; /* last aux_watermark boundary crossed by aux_head */ unsigned long aux_pgoff; int aux_nr_pages; int aux_overwrite; atomic_t aux_mmap_count; unsigned long aux_mmap_locked; void (*free_aux)(void *); refcount_t aux_refcount; int aux_in_sampling; void **aux_pages; void *aux_priv; struct perf_event_mmap_page *user_page; void *data_pages[]; }; extern void rb_free(struct perf_buffer *rb); static inline void rb_free_rcu(struct rcu_head *rcu_head) { struct perf_buffer *rb; rb = container_of(rcu_head, struct perf_buffer, rcu_head); rb_free(rb); } static inline void rb_toggle_paused(struct perf_buffer *rb, bool pause) { if (!pause && rb->nr_pages) rb->paused = 0; else rb->paused = 1; } extern struct perf_buffer * rb_alloc(int nr_pages, long watermark, int cpu, int flags); extern void perf_event_wakeup(struct perf_event *event); extern int rb_alloc_aux(struct perf_buffer *rb, struct perf_event *event, pgoff_t pgoff, int nr_pages, long watermark, int flags); extern void rb_free_aux(struct perf_buffer *rb); extern struct perf_buffer *ring_buffer_get(struct perf_event *event); extern void ring_buffer_put(struct perf_buffer *rb); static inline bool rb_has_aux(struct perf_buffer *rb) { return !!rb->aux_nr_pages; } void perf_event_aux_event(struct perf_event *event, unsigned long head, unsigned long size, u64 flags); extern struct page * perf_mmap_to_page(struct perf_buffer *rb, unsigned long pgoff); #ifdef CONFIG_PERF_USE_VMALLOC /* * Back perf_mmap() with vmalloc memory. * * Required for architectures that have d-cache aliasing issues. */ static inline int page_order(struct perf_buffer *rb) { return rb->page_order; } #else static inline int page_order(struct perf_buffer *rb) { return 0; } #endif static inline unsigned long perf_data_size(struct perf_buffer *rb) { return rb->nr_pages << (PAGE_SHIFT + page_order(rb)); } static inline unsigned long perf_aux_size(struct perf_buffer *rb) { return rb->aux_nr_pages << PAGE_SHIFT; } #define __DEFINE_OUTPUT_COPY_BODY(advance_buf, memcpy_func, ...) \ { \ unsigned long size, written; \ \ do { \ size = min(handle->size, len); \ written = memcpy_func(__VA_ARGS__); \ written = size - written; \ \ len -= written; \ handle->addr += written; \ if (advance_buf) \ buf += written; \ handle->size -= written; \ if (!handle->size) { \ struct perf_buffer *rb = handle->rb; \ \ handle->page++; \ handle->page &= rb->nr_pages - 1; \ handle->addr = rb->data_pages[handle->page]; \ handle->size = PAGE_SIZE << page_order(rb); \ } \ } while (len && written == size); \ \ return len; \ } #define DEFINE_OUTPUT_COPY(func_name, memcpy_func) \ static inline unsigned long \ func_name(struct perf_output_handle *handle, \ const void *buf, unsigned long len) \ __DEFINE_OUTPUT_COPY_BODY(true, memcpy_func, handle->addr, buf, size) static inline unsigned long __output_custom(struct perf_output_handle *handle, perf_copy_f copy_func, const void *buf, unsigned long len) { unsigned long orig_len = len; __DEFINE_OUTPUT_COPY_BODY(false, copy_func, handle->addr, buf, orig_len - len, size) } static inline unsigned long memcpy_common(void *dst, const void *src, unsigned long n) { memcpy(dst, src, n); return 0; } DEFINE_OUTPUT_COPY(__output_copy, memcpy_common) static inline unsigned long memcpy_skip(void *dst, const void *src, unsigned long n) { return 0; } DEFINE_OUTPUT_COPY(__output_skip, memcpy_skip) #ifndef arch_perf_out_copy_user #define arch_perf_out_copy_user arch_perf_out_copy_user static inline unsigned long arch_perf_out_copy_user(void *dst, const void *src, unsigned long n) { unsigned long ret; pagefault_disable(); ret = __copy_from_user_inatomic(dst, src, n); pagefault_enable(); return ret; } #endif DEFINE_OUTPUT_COPY(__output_copy_user, arch_perf_out_copy_user) static inline int get_recursion_context(int *recursion) { unsigned int pc = preempt_count(); unsigned char rctx = 0; rctx += !!(pc & (NMI_MASK)); rctx += !!(pc & (NMI_MASK | HARDIRQ_MASK)); rctx += !!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)); if (recursion[rctx]) return -1; recursion[rctx]++; barrier(); return rctx; } static inline void put_recursion_context(int *recursion, int rctx) { barrier(); recursion[rctx]--; } #ifdef CONFIG_HAVE_PERF_USER_STACK_DUMP static inline bool arch_perf_have_user_stack_dump(void) { return true; } #define perf_user_stack_pointer(regs) user_stack_pointer(regs) #else static inline bool arch_perf_have_user_stack_dump(void) { return false; } #define perf_user_stack_pointer(regs) 0 #endif /* CONFIG_HAVE_PERF_USER_STACK_DUMP */ #endif /* _KERNEL_EVENTS_INTERNAL_H */
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 // SPDX-License-Identifier: GPL-2.0-or-later /* Provide a way to create a superblock configuration context within the kernel * that allows a superblock to be set up prior to mounting. * * Copyright (C) 2017 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/module.h> #include <linux/fs_context.h> #include <linux/fs_parser.h> #include <linux/fs.h> #include <linux/mount.h> #include <linux/nsproxy.h> #include <linux/slab.h> #include <linux/magic.h> #include <linux/security.h> #include <linux/mnt_namespace.h> #include <linux/pid_namespace.h> #include <linux/user_namespace.h> #include <net/net_namespace.h> #include <asm/sections.h> #include "mount.h" #include "internal.h" enum legacy_fs_param { LEGACY_FS_UNSET_PARAMS, LEGACY_FS_MONOLITHIC_PARAMS, LEGACY_FS_INDIVIDUAL_PARAMS, }; struct legacy_fs_context { char *legacy_data; /* Data page for legacy filesystems */ size_t data_size; enum legacy_fs_param param_type; }; static int legacy_init_fs_context(struct fs_context *fc); static const struct constant_table common_set_sb_flag[] = { { "dirsync", SB_DIRSYNC }, { "lazytime", SB_LAZYTIME }, { "mand", SB_MANDLOCK }, { "ro", SB_RDONLY }, { "sync", SB_SYNCHRONOUS }, { }, }; static const struct constant_table common_clear_sb_flag[] = { { "async", SB_SYNCHRONOUS }, { "nolazytime", SB_LAZYTIME }, { "nomand", SB_MANDLOCK }, { "rw", SB_RDONLY }, { }, }; /* * Check for a common mount option that manipulates s_flags. */ static int vfs_parse_sb_flag(struct fs_context *fc, const char *key) { unsigned int token; token = lookup_constant(common_set_sb_flag, key, 0); if (token) { fc->sb_flags |= token; fc->sb_flags_mask |= token; return 0; } token = lookup_constant(common_clear_sb_flag, key, 0); if (token) { fc->sb_flags &= ~token; fc->sb_flags_mask |= token; return 0; } return -ENOPARAM; } /** * vfs_parse_fs_param - Add a single parameter to a superblock config * @fc: The filesystem context to modify * @param: The parameter * * A single mount option in string form is applied to the filesystem context * being set up. Certain standard options (for example "ro") are translated * into flag bits without going to the filesystem. The active security module * is allowed to observe and poach options. Any other options are passed over * to the filesystem to parse. * * This may be called multiple times for a context. * * Returns 0 on success and a negative error code on failure. In the event of * failure, supplementary error information may have been set. */ int vfs_parse_fs_param(struct fs_context *fc, struct fs_parameter *param) { int ret; if (!param->key) return invalf(fc, "Unnamed parameter\n"); ret = vfs_parse_sb_flag(fc, param->key); if (ret != -ENOPARAM) return ret; ret = security_fs_context_parse_param(fc, param); if (ret != -ENOPARAM) /* Param belongs to the LSM or is disallowed by the LSM; so * don't pass to the FS. */ return ret; if (fc->ops->parse_param) { ret = fc->ops->parse_param(fc, param); if (ret != -ENOPARAM) return ret; } /* If the filesystem doesn't take any arguments, give it the * default handling of source. */ if (strcmp(param->key, "source") == 0) { if (param->type != fs_value_is_string) return invalf(fc, "VFS: Non-string source"); if (fc->source) return invalf(fc, "VFS: Multiple sources"); fc->source = param->string; param->string = NULL; return 0; } return invalf(fc, "%s: Unknown parameter '%s'", fc->fs_type->name, param->key); } EXPORT_SYMBOL(vfs_parse_fs_param); /** * vfs_parse_fs_string - Convenience function to just parse a string. */ int vfs_parse_fs_string(struct fs_context *fc, const char *key, const char *value, size_t v_size) { int ret; struct fs_parameter param = { .key = key, .type = fs_value_is_flag, .size = v_size, }; if (value) { param.string = kmemdup_nul(value, v_size, GFP_KERNEL); if (!param.string) return -ENOMEM; param.type = fs_value_is_string; } ret = vfs_parse_fs_param(fc, &param); kfree(param.string); return ret; } EXPORT_SYMBOL(vfs_parse_fs_string); /** * generic_parse_monolithic - Parse key[=val][,key[=val]]* mount data * @ctx: The superblock configuration to fill in. * @data: The data to parse * * Parse a blob of data that's in key[=val][,key[=val]]* form. This can be * called from the ->monolithic_mount_data() fs_context operation. * * Returns 0 on success or the error returned by the ->parse_option() fs_context * operation on failure. */ int generic_parse_monolithic(struct fs_context *fc, void *data) { char *options = data, *key; int ret = 0; if (!options) return 0; ret = security_sb_eat_lsm_opts(options, &fc->security); if (ret) return ret; while ((key = strsep(&options, ",")) != NULL) { if (*key) { size_t v_len = 0; char *value = strchr(key, '='); if (value) { if (value == key) continue; *value++ = 0; v_len = strlen(value); } ret = vfs_parse_fs_string(fc, key, value, v_len); if (ret < 0) break; } } return ret; } EXPORT_SYMBOL(generic_parse_monolithic); /** * alloc_fs_context - Create a filesystem context. * @fs_type: The filesystem type. * @reference: The dentry from which this one derives (or NULL) * @sb_flags: Filesystem/superblock flags (SB_*) * @sb_flags_mask: Applicable members of @sb_flags * @purpose: The purpose that this configuration shall be used for. * * Open a filesystem and create a mount context. The mount context is * initialised with the supplied flags and, if a submount/automount from * another superblock (referred to by @reference) is supplied, may have * parameters such as namespaces copied across from that superblock. */ static struct fs_context *alloc_fs_context(struct file_system_type *fs_type, struct dentry *reference, unsigned int sb_flags, unsigned int sb_flags_mask, enum fs_context_purpose purpose) { int (*init_fs_context)(struct fs_context *); struct fs_context *fc; int ret = -ENOMEM; fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL); if (!fc) return ERR_PTR(-ENOMEM); fc->purpose = purpose; fc->sb_flags = sb_flags; fc->sb_flags_mask = sb_flags_mask; fc->fs_type = get_filesystem(fs_type); fc->cred = get_current_cred(); fc->net_ns = get_net(current->nsproxy->net_ns); fc->log.prefix = fs_type->name; mutex_init(&fc->uapi_mutex); switch (purpose) { case FS_CONTEXT_FOR_MOUNT: fc->user_ns = get_user_ns(fc->cred->user_ns); break; case FS_CONTEXT_FOR_SUBMOUNT: fc->user_ns = get_user_ns(reference->d_sb->s_user_ns); break; case FS_CONTEXT_FOR_RECONFIGURE: atomic_inc(&reference->d_sb->s_active); fc->user_ns = get_user_ns(reference->d_sb->s_user_ns); fc->root = dget(reference); break; } /* TODO: Make all filesystems support this unconditionally */ init_fs_context = fc->fs_type->init_fs_context; if (!init_fs_context) init_fs_context = legacy_init_fs_context; ret = init_fs_context(fc); if (ret < 0) goto err_fc; fc->need_free = true; return fc; err_fc: put_fs_context(fc); return ERR_PTR(ret); } struct fs_context *fs_context_for_mount(struct file_system_type *fs_type, unsigned int sb_flags) { return alloc_fs_context(fs_type, NULL, sb_flags, 0, FS_CONTEXT_FOR_MOUNT); } EXPORT_SYMBOL(fs_context_for_mount); struct fs_context *fs_context_for_reconfigure(struct dentry *dentry, unsigned int sb_flags, unsigned int sb_flags_mask) { return alloc_fs_context(dentry->d_sb->s_type, dentry, sb_flags, sb_flags_mask, FS_CONTEXT_FOR_RECONFIGURE); } EXPORT_SYMBOL(fs_context_for_reconfigure); struct fs_context *fs_context_for_submount(struct file_system_type *type, struct dentry *reference) { return alloc_fs_context(type, reference, 0, 0, FS_CONTEXT_FOR_SUBMOUNT); } EXPORT_SYMBOL(fs_context_for_submount); void fc_drop_locked(struct fs_context *fc) { struct super_block *sb = fc->root->d_sb; dput(fc->root); fc->root = NULL; deactivate_locked_super(sb); } static void legacy_fs_context_free(struct fs_context *fc); /** * vfs_dup_fc_config: Duplicate a filesystem context. * @src_fc: The context to copy. */ struct fs_context *vfs_dup_fs_context(struct fs_context *src_fc) { struct fs_context *fc; int ret; if (!src_fc->ops->dup) return ERR_PTR(-EOPNOTSUPP); fc = kmemdup(src_fc, sizeof(struct fs_context), GFP_KERNEL); if (!fc) return ERR_PTR(-ENOMEM); mutex_init(&fc->uapi_mutex); fc->fs_private = NULL; fc->s_fs_info = NULL; fc->source = NULL; fc->security = NULL; get_filesystem(fc->fs_type); get_net(fc->net_ns); get_user_ns(fc->user_ns); get_cred(fc->cred); if (fc->log.log) refcount_inc(&fc->log.log->usage); /* Can't call put until we've called ->dup */ ret = fc->ops->dup(fc, src_fc); if (ret < 0) goto err_fc; ret = security_fs_context_dup(fc, src_fc); if (ret < 0) goto err_fc; return fc; err_fc: put_fs_context(fc); return ERR_PTR(ret); } EXPORT_SYMBOL(vfs_dup_fs_context); /** * logfc - Log a message to a filesystem context * @fc: The filesystem context to log to. * @fmt: The format of the buffer. */ void logfc(struct fc_log *log, const char *prefix, char level, const char *fmt, ...) { va_list va; struct va_format vaf = {.fmt = fmt, .va = &va}; va_start(va, fmt); if (!log) { switch (level) { case 'w': printk(KERN_WARNING "%s%s%pV\n", prefix ? prefix : "", prefix ? ": " : "", &vaf); break; case 'e': printk(KERN_ERR "%s%s%pV\n", prefix ? prefix : "", prefix ? ": " : "", &vaf); break; default: printk(KERN_NOTICE "%s%s%pV\n", prefix ? prefix : "", prefix ? ": " : "", &vaf); break; } } else { unsigned int logsize = ARRAY_SIZE(log->buffer); u8 index; char *q = kasprintf(GFP_KERNEL, "%c %s%s%pV\n", level, prefix ? prefix : "", prefix ? ": " : "", &vaf); index = log->head & (logsize - 1); BUILD_BUG_ON(sizeof(log->head) != sizeof(u8) || sizeof(log->tail) != sizeof(u8)); if ((u8)(log->head - log->tail) == logsize) { /* The buffer is full, discard the oldest message */ if (log->need_free & (1 << index)) kfree(log->buffer[index]); log->tail++; } log->buffer[index] = q ? q : "OOM: Can't store error string"; if (q) log->need_free |= 1 << index; else log->need_free &= ~(1 << index); log->head++; } va_end(va); } EXPORT_SYMBOL(logfc); /* * Free a logging structure. */ static void put_fc_log(struct fs_context *fc) { struct fc_log *log = fc->log.log; int i; if (log) { if (refcount_dec_and_test(&log->usage)) { fc->log.log = NULL; for (i = 0; i <= 7; i++) if (log->need_free & (1 << i)) kfree(log->buffer[i]); kfree(log); } } } /** * put_fs_context - Dispose of a superblock configuration context. * @fc: The context to dispose of. */ void put_fs_context(struct fs_context *fc) { struct super_block *sb; if (fc->root) { sb = fc->root->d_sb; dput(fc->root); fc->root = NULL; deactivate_super(sb); } if (fc->need_free && fc->ops && fc->ops->free) fc->ops->free(fc); security_free_mnt_opts(&fc->security); put_net(fc->net_ns); put_user_ns(fc->user_ns); put_cred(fc->cred); put_fc_log(fc); put_filesystem(fc->fs_type); kfree(fc->source); kfree(fc); } EXPORT_SYMBOL(put_fs_context); /* * Free the config for a filesystem that doesn't support fs_context. */ static void legacy_fs_context_free(struct fs_context *fc) { struct legacy_fs_context *ctx = fc->fs_private; if (ctx) { if (ctx->param_type == LEGACY_FS_INDIVIDUAL_PARAMS) kfree(ctx->legacy_data); kfree(ctx); } } /* * Duplicate a legacy config. */ static int legacy_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc) { struct legacy_fs_context *ctx; struct legacy_fs_context *src_ctx = src_fc->fs_private; ctx = kmemdup(src_ctx, sizeof(*src_ctx), GFP_KERNEL); if (!ctx) return -ENOMEM; if (ctx->param_type == LEGACY_FS_INDIVIDUAL_PARAMS) { ctx->legacy_data = kmemdup(src_ctx->legacy_data, src_ctx->data_size, GFP_KERNEL); if (!ctx->legacy_data) { kfree(ctx); return -ENOMEM; } } fc->fs_private = ctx; return 0; } /* * Add a parameter to a legacy config. We build up a comma-separated list of * options. */ static int legacy_parse_param(struct fs_context *fc, struct fs_parameter *param) { struct legacy_fs_context *ctx = fc->fs_private; unsigned int size = ctx->data_size; size_t len = 0; if (strcmp(param->key, "source") == 0) { if (param->type != fs_value_is_string) return invalf(fc, "VFS: Legacy: Non-string source"); if (fc->source) return invalf(fc, "VFS: Legacy: Multiple sources"); fc->source = param->string; param->string = NULL; return 0; } if (ctx->param_type == LEGACY_FS_MONOLITHIC_PARAMS) return invalf(fc, "VFS: Legacy: Can't mix monolithic and individual options"); switch (param->type) { case fs_value_is_string: len = 1 + param->size; fallthrough; case fs_value_is_flag: len += strlen(param->key); break; default: return invalf(fc, "VFS: Legacy: Parameter type for '%s' not supported", param->key); } if (len > PAGE_SIZE - 2 - size) return invalf(fc, "VFS: Legacy: Cumulative options too large"); if (strchr(param->key, ',') || (param->type == fs_value_is_string && memchr(param->string, ',', param->size))) return invalf(fc, "VFS: Legacy: Option '%s' contained comma", param->key); if (!ctx->legacy_data) { ctx->legacy_data = kmalloc(PAGE_SIZE, GFP_KERNEL); if (!ctx->legacy_data) return -ENOMEM; } ctx->legacy_data[size++] = ','; len = strlen(param->key); memcpy(ctx->legacy_data + size, param->key, len); size += len; if (param->type == fs_value_is_string) { ctx->legacy_data[size++] = '='; memcpy(ctx->legacy_data + size, param->string, param->size); size += param->size; } ctx->legacy_data[size] = '\0'; ctx->data_size = size; ctx->param_type = LEGACY_FS_INDIVIDUAL_PARAMS; return 0; } /* * Add monolithic mount data. */ static int legacy_parse_monolithic(struct fs_context *fc, void *data) { struct legacy_fs_context *ctx = fc->fs_private; if (ctx->param_type != LEGACY_FS_UNSET_PARAMS) { pr_warn("VFS: Can't mix monolithic and individual options\n"); return -EINVAL; } ctx->legacy_data = data; ctx->param_type = LEGACY_FS_MONOLITHIC_PARAMS; if (!ctx->legacy_data) return 0; if (fc->fs_type->fs_flags & FS_BINARY_MOUNTDATA) return 0; return security_sb_eat_lsm_opts(ctx->legacy_data, &fc->security); } /* * Get a mountable root with the legacy mount command. */ static int legacy_get_tree(struct fs_context *fc) { struct legacy_fs_context *ctx = fc->fs_private; struct super_block *sb; struct dentry *root; root = fc->fs_type->mount(fc->fs_type, fc->sb_flags, fc->source, ctx->legacy_data); if (IS_ERR(root)) return PTR_ERR(root); sb = root->d_sb; BUG_ON(!sb); fc->root = root; return 0; } /* * Handle remount. */ static int legacy_reconfigure(struct fs_context *fc) { struct legacy_fs_context *ctx = fc->fs_private; struct super_block *sb = fc->root->d_sb; if (!sb->s_op->remount_fs) return 0; return sb->s_op->remount_fs(sb, &fc->sb_flags, ctx ? ctx->legacy_data : NULL); } const struct fs_context_operations legacy_fs_context_ops = { .free = legacy_fs_context_free, .dup = legacy_fs_context_dup, .parse_param = legacy_parse_param, .parse_monolithic = legacy_parse_monolithic, .get_tree = legacy_get_tree, .reconfigure = legacy_reconfigure, }; /* * Initialise a legacy context for a filesystem that doesn't support * fs_context. */ static int legacy_init_fs_context(struct fs_context *fc) { fc->fs_private = kzalloc(sizeof(struct legacy_fs_context), GFP_KERNEL); if (!fc->fs_private) return -ENOMEM; fc->ops = &legacy_fs_context_ops; return 0; } int parse_monolithic_mount_data(struct fs_context *fc, void *data) { int (*monolithic_mount_data)(struct fs_context *, void *); monolithic_mount_data = fc->ops->parse_monolithic; if (!monolithic_mount_data) monolithic_mount_data = generic_parse_monolithic; return monolithic_mount_data(fc, data); } /* * Clean up a context after performing an action on it and put it into a state * from where it can be used to reconfigure a superblock. * * Note that here we do only the parts that can't fail; the rest is in * finish_clean_context() below and in between those fs_context is marked * FS_CONTEXT_AWAITING_RECONF. The reason for splitup is that after * successful mount or remount we need to report success to userland. * Trying to do full reinit (for the sake of possible subsequent remount) * and failing to allocate memory would've put us into a nasty situation. * So here we only discard the old state and reinitialization is left * until we actually try to reconfigure. */ void vfs_clean_context(struct fs_context *fc) { if (fc->need_free && fc->ops && fc->ops->free) fc->ops->free(fc); fc->need_free = false; fc->fs_private = NULL; fc->s_fs_info = NULL; fc->sb_flags = 0; security_free_mnt_opts(&fc->security); kfree(fc->source); fc->source = NULL; fc->purpose = FS_CONTEXT_FOR_RECONFIGURE; fc->phase = FS_CONTEXT_AWAITING_RECONF; } int finish_clean_context(struct fs_context *fc) { int error; if (fc->phase != FS_CONTEXT_AWAITING_RECONF) return 0; if (fc->fs_type->init_fs_context) error = fc->fs_type->init_fs_context(fc); else error = legacy_init_fs_context(fc); if (unlikely(error)) { fc->phase = FS_CONTEXT_FAILED; return error; } fc->need_free = true; fc->phase = FS_CONTEXT_RECONF_PARAMS; return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __KERNEL_PRINTK__ #define __KERNEL_PRINTK__ #include <stdarg.h> #include <linux/init.h> #include <linux/kern_levels.h> #include <linux/linkage.h> #include <linux/cache.h> #include <linux/ratelimit_types.h> extern const char linux_banner[]; extern const char linux_proc_banner[]; extern int oops_in_progress; /* If set, an oops, panic(), BUG() or die() is in progress */ #define PRINTK_MAX_SINGLE_HEADER_LEN 2 static inline int printk_get_level(const char *buffer) { if (buffer[0] == KERN_SOH_ASCII && buffer[1]) { switch (buffer[1]) { case '0' ... '7': case 'c': /* KERN_CONT */ return buffer[1]; } } return 0; } static inline const char *printk_skip_level(const char *buffer) { if (printk_get_level(buffer)) return buffer + 2; return buffer; } static inline const char *printk_skip_headers(const char *buffer) { while (printk_get_level(buffer)) buffer = printk_skip_level(buffer); return buffer; } #define CONSOLE_EXT_LOG_MAX 8192 /* printk's without a loglevel use this.. */ #define MESSAGE_LOGLEVEL_DEFAULT CONFIG_MESSAGE_LOGLEVEL_DEFAULT /* We show everything that is MORE important than this.. */ #define CONSOLE_LOGLEVEL_SILENT 0 /* Mum's the word */ #define CONSOLE_LOGLEVEL_MIN 1 /* Minimum loglevel we let people use */ #define CONSOLE_LOGLEVEL_DEBUG 10 /* issue debug messages */ #define CONSOLE_LOGLEVEL_MOTORMOUTH 15 /* You can't shut this one up */ /* * Default used to be hard-coded at 7, quiet used to be hardcoded at 4, * we're now allowing both to be set from kernel config. */ #define CONSOLE_LOGLEVEL_DEFAULT CONFIG_CONSOLE_LOGLEVEL_DEFAULT #define CONSOLE_LOGLEVEL_QUIET CONFIG_CONSOLE_LOGLEVEL_QUIET extern int console_printk[]; #define console_loglevel (console_printk[0]) #define default_message_loglevel (console_printk[1]) #define minimum_console_loglevel (console_printk[2]) #define default_console_loglevel (console_printk[3]) static inline void console_silent(void) { console_loglevel = CONSOLE_LOGLEVEL_SILENT; } static inline void console_verbose(void) { if (console_loglevel) console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH; } /* strlen("ratelimit") + 1 */ #define DEVKMSG_STR_MAX_SIZE 10 extern char devkmsg_log_str[]; struct ctl_table; extern int suppress_printk; struct va_format { const char *fmt; va_list *va; }; /* * FW_BUG * Add this to a message where you are sure the firmware is buggy or behaves * really stupid or out of spec. Be aware that the responsible BIOS developer * should be able to fix this issue or at least get a concrete idea of the * problem by reading your message without the need of looking at the kernel * code. * * Use it for definite and high priority BIOS bugs. * * FW_WARN * Use it for not that clear (e.g. could the kernel messed up things already?) * and medium priority BIOS bugs. * * FW_INFO * Use this one if you want to tell the user or vendor about something * suspicious, but generally harmless related to the firmware. * * Use it for information or very low priority BIOS bugs. */ #define FW_BUG "[Firmware Bug]: " #define FW_WARN "[Firmware Warn]: " #define FW_INFO "[Firmware Info]: " /* * HW_ERR * Add this to a message for hardware errors, so that user can report * it to hardware vendor instead of LKML or software vendor. */ #define HW_ERR "[Hardware Error]: " /* * DEPRECATED * Add this to a message whenever you want to warn user space about the use * of a deprecated aspect of an API so they can stop using it */ #define DEPRECATED "[Deprecated]: " /* * Dummy printk for disabled debugging statements to use whilst maintaining * gcc's format checking. */ #define no_printk(fmt, ...) \ ({ \ if (0) \ printk(fmt, ##__VA_ARGS__); \ 0; \ }) #ifdef CONFIG_EARLY_PRINTK extern asmlinkage __printf(1, 2) void early_printk(const char *fmt, ...); #else static inline __printf(1, 2) __cold void early_printk(const char *s, ...) { } #endif #ifdef CONFIG_PRINTK_NMI extern void printk_nmi_enter(void); extern void printk_nmi_exit(void); extern void printk_nmi_direct_enter(void); extern void printk_nmi_direct_exit(void); #else static inline void printk_nmi_enter(void) { } static inline void printk_nmi_exit(void) { } static inline void printk_nmi_direct_enter(void) { } static inline void printk_nmi_direct_exit(void) { } #endif /* PRINTK_NMI */ struct dev_printk_info; #ifdef CONFIG_PRINTK asmlinkage __printf(4, 0) int vprintk_emit(int facility, int level, const struct dev_printk_info *dev_info, const char *fmt, va_list args); asmlinkage __printf(1, 0) int vprintk(const char *fmt, va_list args); asmlinkage __printf(1, 2) __cold int printk(const char *fmt, ...); /* * Special printk facility for scheduler/timekeeping use only, _DO_NOT_USE_ ! */ __printf(1, 2) __cold int printk_deferred(const char *fmt, ...); /* * Please don't use printk_ratelimit(), because it shares ratelimiting state * with all other unrelated printk_ratelimit() callsites. Instead use * printk_ratelimited() or plain old __ratelimit(). */ extern int __printk_ratelimit(const char *func); #define printk_ratelimit() __printk_ratelimit(__func__) extern bool printk_timed_ratelimit(unsigned long *caller_jiffies, unsigned int interval_msec); extern int printk_delay_msec; extern int dmesg_restrict; extern int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write, void *buf, size_t *lenp, loff_t *ppos); extern void wake_up_klogd(void); char *log_buf_addr_get(void); u32 log_buf_len_get(void); void log_buf_vmcoreinfo_setup(void); void __init setup_log_buf(int early); __printf(1, 2) void dump_stack_set_arch_desc(const char *fmt, ...); void dump_stack_print_info(const char *log_lvl); void show_regs_print_info(const char *log_lvl); extern asmlinkage void dump_stack(void) __cold; extern void printk_safe_flush(void); extern void printk_safe_flush_on_panic(void); #else static inline __printf(1, 0) int vprintk(const char *s, va_list args) { return 0; } static inline __printf(1, 2) __cold int printk(const char *s, ...) { return 0; } static inline __printf(1, 2) __cold int printk_deferred(const char *s, ...) { return 0; } static inline int printk_ratelimit(void) { return 0; } static inline bool printk_timed_ratelimit(unsigned long *caller_jiffies, unsigned int interval_msec) { return false; } static inline void wake_up_klogd(void) { } static inline char *log_buf_addr_get(void) { return NULL; } static inline u32 log_buf_len_get(void) { return 0; } static inline void log_buf_vmcoreinfo_setup(void) { } static inline void setup_log_buf(int early) { } static inline __printf(1, 2) void dump_stack_set_arch_desc(const char *fmt, ...) { } static inline void dump_stack_print_info(const char *log_lvl) { } static inline void show_regs_print_info(const char *log_lvl) { } static inline void dump_stack(void) { } static inline void printk_safe_flush(void) { } static inline void printk_safe_flush_on_panic(void) { } #endif extern int kptr_restrict; /** * pr_fmt - used by the pr_*() macros to generate the printk format string * @fmt: format string passed from a pr_*() macro * * This macro can be used to generate a unified format string for pr_*() * macros. A common use is to prefix all pr_*() messages in a file with a common * string. For example, defining this at the top of a source file: * * #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt * * would prefix all pr_info, pr_emerg... messages in the file with the module * name. */ #ifndef pr_fmt #define pr_fmt(fmt) fmt #endif /** * pr_emerg - Print an emergency-level message * @fmt: format string * @...: arguments for the format string * * This macro expands to a printk with KERN_EMERG loglevel. It uses pr_fmt() to * generate the format string. */ #define pr_emerg(fmt, ...) \ printk(KERN_EMERG pr_fmt(fmt), ##__VA_ARGS__) /** * pr_alert - Print an alert-level message * @fmt: format string * @...: arguments for the format string * * This macro expands to a printk with KERN_ALERT loglevel. It uses pr_fmt() to * generate the format string. */ #define pr_alert(fmt, ...) \ printk(KERN_ALERT pr_fmt(fmt), ##__VA_ARGS__) /** * pr_crit - Print a critical-level message * @fmt: format string * @...: arguments for the format string * * This macro expands to a printk with KERN_CRIT loglevel. It uses pr_fmt() to * generate the format string. */ #define pr_crit(fmt, ...) \ printk(KERN_CRIT pr_fmt(fmt), ##__VA_ARGS__) /** * pr_err - Print an error-level message * @fmt: format string * @...: arguments for the format string * * This macro expands to a printk with KERN_ERR loglevel. It uses pr_fmt() to * generate the format string. */ #define pr_err(fmt, ...) \ printk(KERN_ERR pr_fmt(fmt), ##__VA_ARGS__) /** * pr_warn - Print a warning-level message * @fmt: format string * @...: arguments for the format string * * This macro expands to a printk with KERN_WARNING loglevel. It uses pr_fmt() * to generate the format string. */ #define pr_warn(fmt, ...) \ printk(KERN_WARNING pr_fmt(fmt), ##__VA_ARGS__) /** * pr_notice - Print a notice-level message * @fmt: format string * @...: arguments for the format string * * This macro expands to a printk with KERN_NOTICE loglevel. It uses pr_fmt() to * generate the format string. */ #define pr_notice(fmt, ...) \ printk(KERN_NOTICE pr_fmt(fmt), ##__VA_ARGS__) /** * pr_info - Print an info-level message * @fmt: format string * @...: arguments for the format string * * This macro expands to a printk with KERN_INFO loglevel. It uses pr_fmt() to * generate the format string. */ #define pr_info(fmt, ...) \ printk(KERN_INFO pr_fmt(fmt), ##__VA_ARGS__) /** * pr_cont - Continues a previous log message in the same line. * @fmt: format string * @...: arguments for the format string * * This macro expands to a printk with KERN_CONT loglevel. It should only be * used when continuing a log message with no newline ('\n') enclosed. Otherwise * it defaults back to KERN_DEFAULT loglevel. */ #define pr_cont(fmt, ...) \ printk(KERN_CONT fmt, ##__VA_ARGS__) /** * pr_devel - Print a debug-level message conditionally * @fmt: format string * @...: arguments for the format string * * This macro expands to a printk with KERN_DEBUG loglevel if DEBUG is * defined. Otherwise it does nothing. * * It uses pr_fmt() to generate the format string. */ #ifdef DEBUG #define pr_devel(fmt, ...) \ printk(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #else #define pr_devel(fmt, ...) \ no_printk(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #endif /* If you are writing a driver, please use dev_dbg instead */ #if defined(CONFIG_DYNAMIC_DEBUG) || \ (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) #include <linux/dynamic_debug.h> /** * pr_debug - Print a debug-level message conditionally * @fmt: format string * @...: arguments for the format string * * This macro expands to dynamic_pr_debug() if CONFIG_DYNAMIC_DEBUG is * set. Otherwise, if DEBUG is defined, it's equivalent to a printk with * KERN_DEBUG loglevel. If DEBUG is not defined it does nothing. * * It uses pr_fmt() to generate the format string (dynamic_pr_debug() uses * pr_fmt() internally). */ #define pr_debug(fmt, ...) \ dynamic_pr_debug(fmt, ##__VA_ARGS__) #elif defined(DEBUG) #define pr_debug(fmt, ...) \ printk(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #else #define pr_debug(fmt, ...) \ no_printk(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #endif /* * Print a one-time message (analogous to WARN_ONCE() et al): */ #ifdef CONFIG_PRINTK #define printk_once(fmt, ...) \ ({ \ static bool __section(".data.once") __print_once; \ bool __ret_print_once = !__print_once; \ \ if (!__print_once) { \ __print_once = true; \ printk(fmt, ##__VA_ARGS__); \ } \ unlikely(__ret_print_once); \ }) #define printk_deferred_once(fmt, ...) \ ({ \ static bool __section(".data.once") __print_once; \ bool __ret_print_once = !__print_once; \ \ if (!__print_once) { \ __print_once = true; \ printk_deferred(fmt, ##__VA_ARGS__); \ } \ unlikely(__ret_print_once); \ }) #else #define printk_once(fmt, ...) \ no_printk(fmt, ##__VA_ARGS__) #define printk_deferred_once(fmt, ...) \ no_printk(fmt, ##__VA_ARGS__) #endif #define pr_emerg_once(fmt, ...) \ printk_once(KERN_EMERG pr_fmt(fmt), ##__VA_ARGS__) #define pr_alert_once(fmt, ...) \ printk_once(KERN_ALERT pr_fmt(fmt), ##__VA_ARGS__) #define pr_crit_once(fmt, ...) \ printk_once(KERN_CRIT pr_fmt(fmt), ##__VA_ARGS__) #define pr_err_once(fmt, ...) \ printk_once(KERN_ERR pr_fmt(fmt), ##__VA_ARGS__) #define pr_warn_once(fmt, ...) \ printk_once(KERN_WARNING pr_fmt(fmt), ##__VA_ARGS__) #define pr_notice_once(fmt, ...) \ printk_once(KERN_NOTICE pr_fmt(fmt), ##__VA_ARGS__) #define pr_info_once(fmt, ...) \ printk_once(KERN_INFO pr_fmt(fmt), ##__VA_ARGS__) /* no pr_cont_once, don't do that... */ #if defined(DEBUG) #define pr_devel_once(fmt, ...) \ printk_once(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #else #define pr_devel_once(fmt, ...) \ no_printk(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #endif /* If you are writing a driver, please use dev_dbg instead */ #if defined(DEBUG) #define pr_debug_once(fmt, ...) \ printk_once(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #else #define pr_debug_once(fmt, ...) \ no_printk(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #endif /* * ratelimited messages with local ratelimit_state, * no local ratelimit_state used in the !PRINTK case */ #ifdef CONFIG_PRINTK #define printk_ratelimited(fmt, ...) \ ({ \ static DEFINE_RATELIMIT_STATE(_rs, \ DEFAULT_RATELIMIT_INTERVAL, \ DEFAULT_RATELIMIT_BURST); \ \ if (__ratelimit(&_rs)) \ printk(fmt, ##__VA_ARGS__); \ }) #else #define printk_ratelimited(fmt, ...) \ no_printk(fmt, ##__VA_ARGS__) #endif #define pr_emerg_ratelimited(fmt, ...) \ printk_ratelimited(KERN_EMERG pr_fmt(fmt), ##__VA_ARGS__) #define pr_alert_ratelimited(fmt, ...) \ printk_ratelimited(KERN_ALERT pr_fmt(fmt), ##__VA_ARGS__) #define pr_crit_ratelimited(fmt, ...) \ printk_ratelimited(KERN_CRIT pr_fmt(fmt), ##__VA_ARGS__) #define pr_err_ratelimited(fmt, ...) \ printk_ratelimited(KERN_ERR pr_fmt(fmt), ##__VA_ARGS__) #define pr_warn_ratelimited(fmt, ...) \ printk_ratelimited(KERN_WARNING pr_fmt(fmt), ##__VA_ARGS__) #define pr_notice_ratelimited(fmt, ...) \ printk_ratelimited(KERN_NOTICE pr_fmt(fmt), ##__VA_ARGS__) #define pr_info_ratelimited(fmt, ...) \ printk_ratelimited(KERN_INFO pr_fmt(fmt), ##__VA_ARGS__) /* no pr_cont_ratelimited, don't do that... */ #if defined(DEBUG) #define pr_devel_ratelimited(fmt, ...) \ printk_ratelimited(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #else #define pr_devel_ratelimited(fmt, ...) \ no_printk(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #endif /* If you are writing a driver, please use dev_dbg instead */ #if defined(CONFIG_DYNAMIC_DEBUG) || \ (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) /* descriptor check is first to prevent flooding with "callbacks suppressed" */ #define pr_debug_ratelimited(fmt, ...) \ do { \ static DEFINE_RATELIMIT_STATE(_rs, \ DEFAULT_RATELIMIT_INTERVAL, \ DEFAULT_RATELIMIT_BURST); \ DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, pr_fmt(fmt)); \ if (DYNAMIC_DEBUG_BRANCH(descriptor) && \ __ratelimit(&_rs)) \ __dynamic_pr_debug(&descriptor, pr_fmt(fmt), ##__VA_ARGS__); \ } while (0) #elif defined(DEBUG) #define pr_debug_ratelimited(fmt, ...) \ printk_ratelimited(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #else #define pr_debug_ratelimited(fmt, ...) \ no_printk(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #endif extern const struct file_operations kmsg_fops; enum { DUMP_PREFIX_NONE, DUMP_PREFIX_ADDRESS, DUMP_PREFIX_OFFSET }; extern int hex_dump_to_buffer(const void *buf, size_t len, int rowsize, int groupsize, char *linebuf, size_t linebuflen, bool ascii); #ifdef CONFIG_PRINTK extern void print_hex_dump(const char *level, const char *prefix_str, int prefix_type, int rowsize, int groupsize, const void *buf, size_t len, bool ascii); #else static inline void print_hex_dump(const char *level, const char *prefix_str, int prefix_type, int rowsize, int groupsize, const void *buf, size_t len, bool ascii) { } static inline void print_hex_dump_bytes(const char *prefix_str, int prefix_type, const void *buf, size_t len) { } #endif #if defined(CONFIG_DYNAMIC_DEBUG) || \ (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) #define print_hex_dump_debug(prefix_str, prefix_type, rowsize, \ groupsize, buf, len, ascii) \ dynamic_hex_dump(prefix_str, prefix_type, rowsize, \ groupsize, buf, len, ascii) #elif defined(DEBUG) #define print_hex_dump_debug(prefix_str, prefix_type, rowsize, \ groupsize, buf, len, ascii) \ print_hex_dump(KERN_DEBUG, prefix_str, prefix_type, rowsize, \ groupsize, buf, len, ascii) #else static inline void print_hex_dump_debug(const char *prefix_str, int prefix_type, int rowsize, int groupsize, const void *buf, size_t len, bool ascii) { } #endif /** * print_hex_dump_bytes - shorthand form of print_hex_dump() with default params * @prefix_str: string to prefix each line with; * caller supplies trailing spaces for alignment if desired * @prefix_type: controls whether prefix of an offset, address, or none * is printed (%DUMP_PREFIX_OFFSET, %DUMP_PREFIX_ADDRESS, %DUMP_PREFIX_NONE) * @buf: data blob to dump * @len: number of bytes in the @buf * * Calls print_hex_dump(), with log level of KERN_DEBUG, * rowsize of 16, groupsize of 1, and ASCII output included. */ #define print_hex_dump_bytes(prefix_str, prefix_type, buf, len) \ print_hex_dump_debug(prefix_str, prefix_type, 16, 1, buf, len, true) #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_VMACACHE_H #define __LINUX_VMACACHE_H #include <linux/sched.h> #include <linux/mm.h> static inline void vmacache_flush(struct task_struct *tsk) { memset(tsk->vmacache.vmas, 0, sizeof(tsk->vmacache.vmas)); } extern void vmacache_update(unsigned long addr, struct vm_area_struct *newvma); extern struct vm_area_struct *vmacache_find(struct mm_struct *mm, unsigned long addr); #ifndef CONFIG_MMU extern struct vm_area_struct *vmacache_find_exact(struct mm_struct *mm, unsigned long start, unsigned long end); #endif static inline void vmacache_invalidate(struct mm_struct *mm) { mm->vmacache_seqnum++; } #endif /* __LINUX_VMACACHE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_PGTABLE_64_H #define _ASM_X86_PGTABLE_64_H #include <linux/const.h> #include <asm/pgtable_64_types.h> #ifndef __ASSEMBLY__ /* * This file contains the functions and defines necessary to modify and use * the x86-64 page table tree. */ #include <asm/processor.h> #include <linux/bitops.h> #include <linux/threads.h> #include <asm/fixmap.h> extern p4d_t level4_kernel_pgt[512]; extern p4d_t level4_ident_pgt[512]; extern pud_t level3_kernel_pgt[512]; extern pud_t level3_ident_pgt[512]; extern pmd_t level2_kernel_pgt[512]; extern pmd_t level2_fixmap_pgt[512]; extern pmd_t level2_ident_pgt[512]; extern pte_t level1_fixmap_pgt[512 * FIXMAP_PMD_NUM]; extern pgd_t init_top_pgt[]; #define swapper_pg_dir init_top_pgt extern void paging_init(void); static inline void sync_initial_page_table(void) { } #define pte_ERROR(e) \ pr_err("%s:%d: bad pte %p(%016lx)\n", \ __FILE__, __LINE__, &(e), pte_val(e)) #define pmd_ERROR(e) \ pr_err("%s:%d: bad pmd %p(%016lx)\n", \ __FILE__, __LINE__, &(e), pmd_val(e)) #define pud_ERROR(e) \ pr_err("%s:%d: bad pud %p(%016lx)\n", \ __FILE__, __LINE__, &(e), pud_val(e)) #if CONFIG_PGTABLE_LEVELS >= 5 #define p4d_ERROR(e) \ pr_err("%s:%d: bad p4d %p(%016lx)\n", \ __FILE__, __LINE__, &(e), p4d_val(e)) #endif #define pgd_ERROR(e) \ pr_err("%s:%d: bad pgd %p(%016lx)\n", \ __FILE__, __LINE__, &(e), pgd_val(e)) struct mm_struct; #define mm_p4d_folded mm_p4d_folded static inline bool mm_p4d_folded(struct mm_struct *mm) { return !pgtable_l5_enabled(); } void set_pte_vaddr_p4d(p4d_t *p4d_page, unsigned long vaddr, pte_t new_pte); void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte); static inline void native_set_pte(pte_t *ptep, pte_t pte) { WRITE_ONCE(*ptep, pte); } static inline void native_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { native_set_pte(ptep, native_make_pte(0)); } static inline void native_set_pte_atomic(pte_t *ptep, pte_t pte) { native_set_pte(ptep, pte); } static inline void native_set_pmd(pmd_t *pmdp, pmd_t pmd) { WRITE_ONCE(*pmdp, pmd); } static inline void native_pmd_clear(pmd_t *pmd) { native_set_pmd(pmd, native_make_pmd(0)); } static inline pte_t native_ptep_get_and_clear(pte_t *xp) { #ifdef CONFIG_SMP return native_make_pte(xchg(&xp->pte, 0)); #else /* native_local_ptep_get_and_clear, but duplicated because of cyclic dependency */ pte_t ret = *xp; native_pte_clear(NULL, 0, xp); return ret; #endif } static inline pmd_t native_pmdp_get_and_clear(pmd_t *xp) { #ifdef CONFIG_SMP return native_make_pmd(xchg(&xp->pmd, 0)); #else /* native_local_pmdp_get_and_clear, but duplicated because of cyclic dependency */ pmd_t ret = *xp; native_pmd_clear(xp); return ret; #endif } static inline void native_set_pud(pud_t *pudp, pud_t pud) { WRITE_ONCE(*pudp, pud); } static inline void native_pud_clear(pud_t *pud) { native_set_pud(pud, native_make_pud(0)); } static inline pud_t native_pudp_get_and_clear(pud_t *xp) { #ifdef CONFIG_SMP return native_make_pud(xchg(&xp->pud, 0)); #else /* native_local_pudp_get_and_clear, * but duplicated because of cyclic dependency */ pud_t ret = *xp; native_pud_clear(xp); return ret; #endif } static inline void native_set_p4d(p4d_t *p4dp, p4d_t p4d) { pgd_t pgd; if (pgtable_l5_enabled() || !IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION)) { WRITE_ONCE(*p4dp, p4d); return; } pgd = native_make_pgd(native_p4d_val(p4d)); pgd = pti_set_user_pgtbl((pgd_t *)p4dp, pgd); WRITE_ONCE(*p4dp, native_make_p4d(native_pgd_val(pgd))); } static inline void native_p4d_clear(p4d_t *p4d) { native_set_p4d(p4d, native_make_p4d(0)); } static inline void native_set_pgd(pgd_t *pgdp, pgd_t pgd) { WRITE_ONCE(*pgdp, pti_set_user_pgtbl(pgdp, pgd)); } static inline void native_pgd_clear(pgd_t *pgd) { native_set_pgd(pgd, native_make_pgd(0)); } /* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. */ /* PGD - Level 4 access */ /* PUD - Level 3 access */ /* PMD - Level 2 access */ /* PTE - Level 1 access */ /* * Encode and de-code a swap entry * * | ... | 11| 10| 9|8|7|6|5| 4| 3|2| 1|0| <- bit number * | ... |SW3|SW2|SW1|G|L|D|A|CD|WT|U| W|P| <- bit names * | TYPE (59-63) | ~OFFSET (9-58) |0|0|X|X| X| X|F|SD|0| <- swp entry * * G (8) is aliased and used as a PROT_NONE indicator for * !present ptes. We need to start storing swap entries above * there. We also need to avoid using A and D because of an * erratum where they can be incorrectly set by hardware on * non-present PTEs. * * SD Bits 1-4 are not used in non-present format and available for * special use described below: * * SD (1) in swp entry is used to store soft dirty bit, which helps us * remember soft dirty over page migration * * F (2) in swp entry is used to record when a pagetable is * writeprotected by userfaultfd WP support. * * Bit 7 in swp entry should be 0 because pmd_present checks not only P, * but also L and G. * * The offset is inverted by a binary not operation to make the high * physical bits set. */ #define SWP_TYPE_BITS 5 #define SWP_OFFSET_FIRST_BIT (_PAGE_BIT_PROTNONE + 1) /* We always extract/encode the offset by shifting it all the way up, and then down again */ #define SWP_OFFSET_SHIFT (SWP_OFFSET_FIRST_BIT+SWP_TYPE_BITS) #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS) /* Extract the high bits for type */ #define __swp_type(x) ((x).val >> (64 - SWP_TYPE_BITS)) /* Shift up (to get rid of type), then down to get value */ #define __swp_offset(x) (~(x).val << SWP_TYPE_BITS >> SWP_OFFSET_SHIFT) /* * Shift the offset up "too far" by TYPE bits, then down again * The offset is inverted by a binary not operation to make the high * physical bits set. */ #define __swp_entry(type, offset) ((swp_entry_t) { \ (~(unsigned long)(offset) << SWP_OFFSET_SHIFT >> SWP_TYPE_BITS) \ | ((unsigned long)(type) << (64-SWP_TYPE_BITS)) }) #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val((pte)) }) #define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val((pmd)) }) #define __swp_entry_to_pte(x) ((pte_t) { .pte = (x).val }) #define __swp_entry_to_pmd(x) ((pmd_t) { .pmd = (x).val }) extern int kern_addr_valid(unsigned long addr); extern void cleanup_highmap(void); #define HAVE_ARCH_UNMAPPED_AREA #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN #define PAGE_AGP PAGE_KERNEL_NOCACHE #define HAVE_PAGE_AGP 1 /* fs/proc/kcore.c */ #define kc_vaddr_to_offset(v) ((v) & __VIRTUAL_MASK) #define kc_offset_to_vaddr(o) ((o) | ~__VIRTUAL_MASK) #define __HAVE_ARCH_PTE_SAME #define vmemmap ((struct page *)VMEMMAP_START) extern void init_extra_mapping_uc(unsigned long phys, unsigned long size); extern void init_extra_mapping_wb(unsigned long phys, unsigned long size); #define gup_fast_permitted gup_fast_permitted static inline bool gup_fast_permitted(unsigned long start, unsigned long end) { if (end >> __VIRTUAL_MASK_SHIFT) return false; return true; } #include <asm/pgtable-invert.h> #endif /* !__ASSEMBLY__ */ #endif /* _ASM_X86_PGTABLE_64_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 /* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright (c) 2016 Qualcomm Atheros, Inc * * Based on net/sched/sch_fq_codel.c */ #ifndef __NET_SCHED_FQ_IMPL_H #define __NET_SCHED_FQ_IMPL_H #include <net/fq.h> /* functions that are embedded into includer */ static void fq_adjust_removal(struct fq *fq, struct fq_flow *flow, struct sk_buff *skb) { struct fq_tin *tin = flow->tin; tin->backlog_bytes -= skb->len; tin->backlog_packets--; flow->backlog -= skb->len; fq->backlog--; fq->memory_usage -= skb->truesize; } static void fq_rejigger_backlog(struct fq *fq, struct fq_flow *flow) { struct fq_flow *i; if (flow->backlog == 0) { list_del_init(&flow->backlogchain); } else { i = flow; list_for_each_entry_continue(i, &fq->backlogs, backlogchain) if (i->backlog < flow->backlog) break; list_move_tail(&flow->backlogchain, &i->backlogchain); } } static struct sk_buff *fq_flow_dequeue(struct fq *fq, struct fq_flow *flow) { struct sk_buff *skb; lockdep_assert_held(&fq->lock); skb = __skb_dequeue(&flow->queue); if (!skb) return NULL; fq_adjust_removal(fq, flow, skb); fq_rejigger_backlog(fq, flow); return skb; } static struct sk_buff *fq_tin_dequeue(struct fq *fq, struct fq_tin *tin, fq_tin_dequeue_t dequeue_func) { struct fq_flow *flow; struct list_head *head; struct sk_buff *skb; lockdep_assert_held(&fq->lock); begin: head = &tin->new_flows; if (list_empty(head)) { head = &tin->old_flows; if (list_empty(head)) return NULL; } flow = list_first_entry(head, struct fq_flow, flowchain); if (flow->deficit <= 0) { flow->deficit += fq->quantum; list_move_tail(&flow->flowchain, &tin->old_flows); goto begin; } skb = dequeue_func(fq, tin, flow); if (!skb) { /* force a pass through old_flows to prevent starvation */ if ((head == &tin->new_flows) && !list_empty(&tin->old_flows)) { list_move_tail(&flow->flowchain, &tin->old_flows); } else { list_del_init(&flow->flowchain); flow->tin = NULL; } goto begin; } flow->deficit -= skb->len; tin->tx_bytes += skb->len; tin->tx_packets++; return skb; } static u32 fq_flow_idx(struct fq *fq, struct sk_buff *skb) { u32 hash = skb_get_hash(skb); return reciprocal_scale(hash, fq->flows_cnt); } static struct fq_flow *fq_flow_classify(struct fq *fq, struct fq_tin *tin, u32 idx, struct sk_buff *skb, fq_flow_get_default_t get_default_func) { struct fq_flow *flow; lockdep_assert_held(&fq->lock); flow = &fq->flows[idx]; if (flow->tin && flow->tin != tin) { flow = get_default_func(fq, tin, idx, skb); tin->collisions++; fq->collisions++; } if (!flow->tin) tin->flows++; return flow; } static void fq_recalc_backlog(struct fq *fq, struct fq_tin *tin, struct fq_flow *flow) { struct fq_flow *i; if (list_empty(&flow->backlogchain)) list_add_tail(&flow->backlogchain, &fq->backlogs); i = flow; list_for_each_entry_continue_reverse(i, &fq->backlogs, backlogchain) if (i->backlog > flow->backlog) break; list_move(&flow->backlogchain, &i->backlogchain); } static void fq_tin_enqueue(struct fq *fq, struct fq_tin *tin, u32 idx, struct sk_buff *skb, fq_skb_free_t free_func, fq_flow_get_default_t get_default_func) { struct fq_flow *flow; bool oom; lockdep_assert_held(&fq->lock); flow = fq_flow_classify(fq, tin, idx, skb, get_default_func); flow->tin = tin; flow->backlog += skb->len; tin->backlog_bytes += skb->len; tin->backlog_packets++; fq->memory_usage += skb->truesize; fq->backlog++; fq_recalc_backlog(fq, tin, flow); if (list_empty(&flow->flowchain)) { flow->deficit = fq->quantum; list_add_tail(&flow->flowchain, &tin->new_flows); } __skb_queue_tail(&flow->queue, skb); oom = (fq->memory_usage > fq->memory_limit); while (fq->backlog > fq->limit || oom) { flow = list_first_entry_or_null(&fq->backlogs, struct fq_flow, backlogchain); if (!flow) return; skb = fq_flow_dequeue(fq, flow); if (!skb) return; free_func(fq, flow->tin, flow, skb); flow->tin->overlimit++; fq->overlimit++; if (oom) { fq->overmemory++; oom = (fq->memory_usage > fq->memory_limit); } } } static void fq_flow_filter(struct fq *fq, struct fq_flow *flow, fq_skb_filter_t filter_func, void *filter_data, fq_skb_free_t free_func) { struct fq_tin *tin = flow->tin; struct sk_buff *skb, *tmp; lockdep_assert_held(&fq->lock); skb_queue_walk_safe(&flow->queue, skb, tmp) { if (!filter_func(fq, tin, flow, skb, filter_data)) continue; __skb_unlink(skb, &flow->queue); fq_adjust_removal(fq, flow, skb); free_func(fq, tin, flow, skb); } fq_rejigger_backlog(fq, flow); } static void fq_tin_filter(struct fq *fq, struct fq_tin *tin, fq_skb_filter_t filter_func, void *filter_data, fq_skb_free_t free_func) { struct fq_flow *flow; lockdep_assert_held(&fq->lock); list_for_each_entry(flow, &tin->new_flows, flowchain) fq_flow_filter(fq, flow, filter_func, filter_data, free_func); list_for_each_entry(flow, &tin->old_flows, flowchain) fq_flow_filter(fq, flow, filter_func, filter_data, free_func); } static void fq_flow_reset(struct fq *fq, struct fq_flow *flow, fq_skb_free_t free_func) { struct sk_buff *skb; while ((skb = fq_flow_dequeue(fq, flow))) free_func(fq, flow->tin, flow, skb); if (!list_empty(&flow->flowchain)) list_del_init(&flow->flowchain); if (!list_empty(&flow->backlogchain)) list_del_init(&flow->backlogchain); flow->tin = NULL; WARN_ON_ONCE(flow->backlog); } static void fq_tin_reset(struct fq *fq, struct fq_tin *tin, fq_skb_free_t free_func) { struct list_head *head; struct fq_flow *flow; for (;;) { head = &tin->new_flows; if (list_empty(head)) { head = &tin->old_flows; if (list_empty(head)) break; } flow = list_first_entry(head, struct fq_flow, flowchain); fq_flow_reset(fq, flow, free_func); } WARN_ON_ONCE(tin->backlog_bytes); WARN_ON_ONCE(tin->backlog_packets); } static void fq_flow_init(struct fq_flow *flow) { INIT_LIST_HEAD(&flow->flowchain); INIT_LIST_HEAD(&flow->backlogchain); __skb_queue_head_init(&flow->queue); } static void fq_tin_init(struct fq_tin *tin) { INIT_LIST_HEAD(&tin->new_flows); INIT_LIST_HEAD(&tin->old_flows); } static int fq_init(struct fq *fq, int flows_cnt) { int i; memset(fq, 0, sizeof(fq[0])); INIT_LIST_HEAD(&fq->backlogs); spin_lock_init(&fq->lock); fq->flows_cnt = max_t(u32, flows_cnt, 1); fq->quantum = 300; fq->limit = 8192; fq->memory_limit = 16 << 20; /* 16 MBytes */ fq->flows = kvcalloc(fq->flows_cnt, sizeof(fq->flows[0]), GFP_KERNEL); if (!fq->flows) return -ENOMEM; for (i = 0; i < fq->flows_cnt; i++) fq_flow_init(&fq->flows[i]); return 0; } static void fq_reset(struct fq *fq, fq_skb_free_t free_func) { int i; for (i = 0; i < fq->flows_cnt; i++) fq_flow_reset(fq, &fq->flows[i], free_func); kvfree(fq->flows); fq->flows = NULL; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Definitions for the Forwarding Information Base. * * Authors: A.N.Kuznetsov, <kuznet@ms2.inr.ac.ru> */ #ifndef _NET_IP_FIB_H #define _NET_IP_FIB_H #include <net/flow.h> #include <linux/seq_file.h> #include <linux/rcupdate.h> #include <net/fib_notifier.h> #include <net/fib_rules.h> #include <net/inetpeer.h> #include <linux/percpu.h> #include <linux/notifier.h> #include <linux/refcount.h> struct fib_config { u8 fc_dst_len; u8 fc_tos; u8 fc_protocol; u8 fc_scope; u8 fc_type; u8 fc_gw_family; /* 2 bytes unused */ u32 fc_table; __be32 fc_dst; union { __be32 fc_gw4; struct in6_addr fc_gw6; }; int fc_oif; u32 fc_flags; u32 fc_priority; __be32 fc_prefsrc; u32 fc_nh_id; struct nlattr *fc_mx; struct rtnexthop *fc_mp; int fc_mx_len; int fc_mp_len; u32 fc_flow; u32 fc_nlflags; struct nl_info fc_nlinfo; struct nlattr *fc_encap; u16 fc_encap_type; }; struct fib_info; struct rtable; struct fib_nh_exception { struct fib_nh_exception __rcu *fnhe_next; int fnhe_genid; __be32 fnhe_daddr; u32 fnhe_pmtu; bool fnhe_mtu_locked; __be32 fnhe_gw; unsigned long fnhe_expires; struct rtable __rcu *fnhe_rth_input; struct rtable __rcu *fnhe_rth_output; unsigned long fnhe_stamp; struct rcu_head rcu; }; struct fnhe_hash_bucket { struct fib_nh_exception __rcu *chain; }; #define FNHE_HASH_SHIFT 11 #define FNHE_HASH_SIZE (1 << FNHE_HASH_SHIFT) #define FNHE_RECLAIM_DEPTH 5 struct fib_nh_common { struct net_device *nhc_dev; int nhc_oif; unsigned char nhc_scope; u8 nhc_family; u8 nhc_gw_family; unsigned char nhc_flags; struct lwtunnel_state *nhc_lwtstate; union { __be32 ipv4; struct in6_addr ipv6; } nhc_gw; int nhc_weight; atomic_t nhc_upper_bound; /* v4 specific, but allows fib6_nh with v4 routes */ struct rtable __rcu * __percpu *nhc_pcpu_rth_output; struct rtable __rcu *nhc_rth_input; struct fnhe_hash_bucket __rcu *nhc_exceptions; }; struct fib_nh { struct fib_nh_common nh_common; struct hlist_node nh_hash; struct fib_info *nh_parent; #ifdef CONFIG_IP_ROUTE_CLASSID __u32 nh_tclassid; #endif __be32 nh_saddr; int nh_saddr_genid; #define fib_nh_family nh_common.nhc_family #define fib_nh_dev nh_common.nhc_dev #define fib_nh_oif nh_common.nhc_oif #define fib_nh_flags nh_common.nhc_flags #define fib_nh_lws nh_common.nhc_lwtstate #define fib_nh_scope nh_common.nhc_scope #define fib_nh_gw_family nh_common.nhc_gw_family #define fib_nh_gw4 nh_common.nhc_gw.ipv4 #define fib_nh_gw6 nh_common.nhc_gw.ipv6 #define fib_nh_weight nh_common.nhc_weight #define fib_nh_upper_bound nh_common.nhc_upper_bound }; /* * This structure contains data shared by many of routes. */ struct nexthop; struct fib_info { struct hlist_node fib_hash; struct hlist_node fib_lhash; struct list_head nh_list; struct net *fib_net; int fib_treeref; refcount_t fib_clntref; unsigned int fib_flags; unsigned char fib_dead; unsigned char fib_protocol; unsigned char fib_scope; unsigned char fib_type; __be32 fib_prefsrc; u32 fib_tb_id; u32 fib_priority; struct dst_metrics *fib_metrics; #define fib_mtu fib_metrics->metrics[RTAX_MTU-1] #define fib_window fib_metrics->metrics[RTAX_WINDOW-1] #define fib_rtt fib_metrics->metrics[RTAX_RTT-1] #define fib_advmss fib_metrics->metrics[RTAX_ADVMSS-1] int fib_nhs; bool fib_nh_is_v6; bool nh_updated; struct nexthop *nh; struct rcu_head rcu; struct fib_nh fib_nh[]; }; #ifdef CONFIG_IP_MULTIPLE_TABLES struct fib_rule; #endif struct fib_table; struct fib_result { __be32 prefix; unsigned char prefixlen; unsigned char nh_sel; unsigned char type; unsigned char scope; u32 tclassid; struct fib_nh_common *nhc; struct fib_info *fi; struct fib_table *table; struct hlist_head *fa_head; }; struct fib_result_nl { __be32 fl_addr; /* To be looked up*/ u32 fl_mark; unsigned char fl_tos; unsigned char fl_scope; unsigned char tb_id_in; unsigned char tb_id; /* Results */ unsigned char prefixlen; unsigned char nh_sel; unsigned char type; unsigned char scope; int err; }; #ifdef CONFIG_IP_MULTIPLE_TABLES #define FIB_TABLE_HASHSZ 256 #else #define FIB_TABLE_HASHSZ 2 #endif __be32 fib_info_update_nhc_saddr(struct net *net, struct fib_nh_common *nhc, unsigned char scope); __be32 fib_result_prefsrc(struct net *net, struct fib_result *res); #define FIB_RES_NHC(res) ((res).nhc) #define FIB_RES_DEV(res) (FIB_RES_NHC(res)->nhc_dev) #define FIB_RES_OIF(res) (FIB_RES_NHC(res)->nhc_oif) struct fib_rt_info { struct fib_info *fi; u32 tb_id; __be32 dst; int dst_len; u8 tos; u8 type; u8 offload:1, trap:1, unused:6; }; struct fib_entry_notifier_info { struct fib_notifier_info info; /* must be first */ u32 dst; int dst_len; struct fib_info *fi; u8 tos; u8 type; u32 tb_id; }; struct fib_nh_notifier_info { struct fib_notifier_info info; /* must be first */ struct fib_nh *fib_nh; }; int call_fib4_notifier(struct notifier_block *nb, enum fib_event_type event_type, struct fib_notifier_info *info); int call_fib4_notifiers(struct net *net, enum fib_event_type event_type, struct fib_notifier_info *info); int __net_init fib4_notifier_init(struct net *net); void __net_exit fib4_notifier_exit(struct net *net); void fib_info_notify_update(struct net *net, struct nl_info *info); int fib_notify(struct net *net, struct notifier_block *nb, struct netlink_ext_ack *extack); struct fib_table { struct hlist_node tb_hlist; u32 tb_id; int tb_num_default; struct rcu_head rcu; unsigned long *tb_data; unsigned long __data[]; }; struct fib_dump_filter { u32 table_id; /* filter_set is an optimization that an entry is set */ bool filter_set; bool dump_routes; bool dump_exceptions; unsigned char protocol; unsigned char rt_type; unsigned int flags; struct net_device *dev; }; int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp, struct fib_result *res, int fib_flags); int fib_table_insert(struct net *, struct fib_table *, struct fib_config *, struct netlink_ext_ack *extack); int fib_table_delete(struct net *, struct fib_table *, struct fib_config *, struct netlink_ext_ack *extack); int fib_table_dump(struct fib_table *table, struct sk_buff *skb, struct netlink_callback *cb, struct fib_dump_filter *filter); int fib_table_flush(struct net *net, struct fib_table *table, bool flush_all); struct fib_table *fib_trie_unmerge(struct fib_table *main_tb); void fib_table_flush_external(struct fib_table *table); void fib_free_table(struct fib_table *tb); #ifndef CONFIG_IP_MULTIPLE_TABLES #define TABLE_LOCAL_INDEX (RT_TABLE_LOCAL & (FIB_TABLE_HASHSZ - 1)) #define TABLE_MAIN_INDEX (RT_TABLE_MAIN & (FIB_TABLE_HASHSZ - 1)) static inline struct fib_table *fib_get_table(struct net *net, u32 id) { struct hlist_node *tb_hlist; struct hlist_head *ptr; ptr = id == RT_TABLE_LOCAL ? &net->ipv4.fib_table_hash[TABLE_LOCAL_INDEX] : &net->ipv4.fib_table_hash[TABLE_MAIN_INDEX]; tb_hlist = rcu_dereference_rtnl(hlist_first_rcu(ptr)); return hlist_entry(tb_hlist, struct fib_table, tb_hlist); } static inline struct fib_table *fib_new_table(struct net *net, u32 id) { return fib_get_table(net, id); } static inline int fib_lookup(struct net *net, const struct flowi4 *flp, struct fib_result *res, unsigned int flags) { struct fib_table *tb; int err = -ENETUNREACH; rcu_read_lock(); tb = fib_get_table(net, RT_TABLE_MAIN); if (tb) err = fib_table_lookup(tb, flp, res, flags | FIB_LOOKUP_NOREF); if (err == -EAGAIN) err = -ENETUNREACH; rcu_read_unlock(); return err; } static inline bool fib4_has_custom_rules(const struct net *net) { return false; } static inline bool fib4_rule_default(const struct fib_rule *rule) { return true; } static inline int fib4_rules_dump(struct net *net, struct notifier_block *nb, struct netlink_ext_ack *extack) { return 0; } static inline unsigned int fib4_rules_seq_read(struct net *net) { return 0; } static inline bool fib4_rules_early_flow_dissect(struct net *net, struct sk_buff *skb, struct flowi4 *fl4, struct flow_keys *flkeys) { return false; } #else /* CONFIG_IP_MULTIPLE_TABLES */ int __net_init fib4_rules_init(struct net *net); void __net_exit fib4_rules_exit(struct net *net); struct fib_table *fib_new_table(struct net *net, u32 id); struct fib_table *fib_get_table(struct net *net, u32 id); int __fib_lookup(struct net *net, struct flowi4 *flp, struct fib_result *res, unsigned int flags); static inline int fib_lookup(struct net *net, struct flowi4 *flp, struct fib_result *res, unsigned int flags) { struct fib_table *tb; int err = -ENETUNREACH; flags |= FIB_LOOKUP_NOREF; if (net->ipv4.fib_has_custom_rules) return __fib_lookup(net, flp, res, flags); rcu_read_lock(); res->tclassid = 0; tb = rcu_dereference_rtnl(net->ipv4.fib_main); if (tb) err = fib_table_lookup(tb, flp, res, flags); if (!err) goto out; tb = rcu_dereference_rtnl(net->ipv4.fib_default); if (tb) err = fib_table_lookup(tb, flp, res, flags); out: if (err == -EAGAIN) err = -ENETUNREACH; rcu_read_unlock(); return err; } static inline bool fib4_has_custom_rules(const struct net *net) { return net->ipv4.fib_has_custom_rules; } bool fib4_rule_default(const struct fib_rule *rule); int fib4_rules_dump(struct net *net, struct notifier_block *nb, struct netlink_ext_ack *extack); unsigned int fib4_rules_seq_read(struct net *net); static inline bool fib4_rules_early_flow_dissect(struct net *net, struct sk_buff *skb, struct flowi4 *fl4, struct flow_keys *flkeys) { unsigned int flag = FLOW_DISSECTOR_F_STOP_AT_ENCAP; if (!net->ipv4.fib_rules_require_fldissect) return false; skb_flow_dissect_flow_keys(skb, flkeys, flag); fl4->fl4_sport = flkeys->ports.src; fl4->fl4_dport = flkeys->ports.dst; fl4->flowi4_proto = flkeys->basic.ip_proto; return true; } #endif /* CONFIG_IP_MULTIPLE_TABLES */ /* Exported by fib_frontend.c */ extern const struct nla_policy rtm_ipv4_policy[]; void ip_fib_init(void); int fib_gw_from_via(struct fib_config *cfg, struct nlattr *nla, struct netlink_ext_ack *extack); __be32 fib_compute_spec_dst(struct sk_buff *skb); bool fib_info_nh_uses_dev(struct fib_info *fi, const struct net_device *dev); int fib_validate_source(struct sk_buff *skb, __be32 src, __be32 dst, u8 tos, int oif, struct net_device *dev, struct in_device *idev, u32 *itag); #ifdef CONFIG_IP_ROUTE_CLASSID static inline int fib_num_tclassid_users(struct net *net) { return atomic_read(&net->ipv4.fib_num_tclassid_users); } #else static inline int fib_num_tclassid_users(struct net *net) { return 0; } #endif int fib_unmerge(struct net *net); static inline bool nhc_l3mdev_matches_dev(const struct fib_nh_common *nhc, const struct net_device *dev) { if (nhc->nhc_dev == dev || l3mdev_master_ifindex_rcu(nhc->nhc_dev) == dev->ifindex) return true; return false; } /* Exported by fib_semantics.c */ int ip_fib_check_default(__be32 gw, struct net_device *dev); int fib_sync_down_dev(struct net_device *dev, unsigned long event, bool force); int fib_sync_down_addr(struct net_device *dev, __be32 local); int fib_sync_up(struct net_device *dev, unsigned char nh_flags); void fib_sync_mtu(struct net_device *dev, u32 orig_mtu); void fib_nhc_update_mtu(struct fib_nh_common *nhc, u32 new, u32 orig); #ifdef CONFIG_IP_ROUTE_MULTIPATH int fib_multipath_hash(const struct net *net, const struct flowi4 *fl4, const struct sk_buff *skb, struct flow_keys *flkeys); #endif int fib_check_nh(struct net *net, struct fib_nh *nh, u32 table, u8 scope, struct netlink_ext_ack *extack); void fib_select_multipath(struct fib_result *res, int hash); void fib_select_path(struct net *net, struct fib_result *res, struct flowi4 *fl4, const struct sk_buff *skb); int fib_nh_init(struct net *net, struct fib_nh *fib_nh, struct fib_config *cfg, int nh_weight, struct netlink_ext_ack *extack); void fib_nh_release(struct net *net, struct fib_nh *fib_nh); int fib_nh_common_init(struct net *net, struct fib_nh_common *nhc, struct nlattr *fc_encap, u16 fc_encap_type, void *cfg, gfp_t gfp_flags, struct netlink_ext_ack *extack); void fib_nh_common_release(struct fib_nh_common *nhc); /* Exported by fib_trie.c */ void fib_alias_hw_flags_set(struct net *net, const struct fib_rt_info *fri); void fib_trie_init(void); struct fib_table *fib_trie_table(u32 id, struct fib_table *alias); bool fib_lookup_good_nhc(const struct fib_nh_common *nhc, int fib_flags, const struct flowi4 *flp); static inline void fib_combine_itag(u32 *itag, const struct fib_result *res) { #ifdef CONFIG_IP_ROUTE_CLASSID struct fib_nh_common *nhc = res->nhc; #ifdef CONFIG_IP_MULTIPLE_TABLES u32 rtag; #endif if (nhc->nhc_family == AF_INET) { struct fib_nh *nh; nh = container_of(nhc, struct fib_nh, nh_common); *itag = nh->nh_tclassid << 16; } else { *itag = 0; } #ifdef CONFIG_IP_MULTIPLE_TABLES rtag = res->tclassid; if (*itag == 0) *itag = (rtag<<16); *itag |= (rtag>>16); #endif #endif } void fib_flush(struct net *net); void free_fib_info(struct fib_info *fi); static inline void fib_info_hold(struct fib_info *fi) { refcount_inc(&fi->fib_clntref); } static inline void fib_info_put(struct fib_info *fi) { if (refcount_dec_and_test(&fi->fib_clntref)) free_fib_info(fi); } #ifdef CONFIG_PROC_FS int __net_init fib_proc_init(struct net *net); void __net_exit fib_proc_exit(struct net *net); #else static inline int fib_proc_init(struct net *net) { return 0; } static inline void fib_proc_exit(struct net *net) { } #endif u32 ip_mtu_from_fib_result(struct fib_result *res, __be32 daddr); int ip_valid_fib_dump_req(struct net *net, const struct nlmsghdr *nlh, struct fib_dump_filter *filter, struct netlink_callback *cb); int fib_nexthop_info(struct sk_buff *skb, const struct fib_nh_common *nh, u8 rt_family, unsigned char *flags, bool skip_oif); int fib_add_nexthop(struct sk_buff *skb, const struct fib_nh_common *nh, int nh_weight, u8 rt_family, u32 nh_tclassid); #endif /* _NET_FIB_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 /* SPDX-License-Identifier: GPL-2.0 */ /* * Internal header to deal with irq_desc->status which will be renamed * to irq_desc->settings. */ enum { _IRQ_DEFAULT_INIT_FLAGS = IRQ_DEFAULT_INIT_FLAGS, _IRQ_PER_CPU = IRQ_PER_CPU, _IRQ_LEVEL = IRQ_LEVEL, _IRQ_NOPROBE = IRQ_NOPROBE, _IRQ_NOREQUEST = IRQ_NOREQUEST, _IRQ_NOTHREAD = IRQ_NOTHREAD, _IRQ_NOAUTOEN = IRQ_NOAUTOEN, _IRQ_MOVE_PCNTXT = IRQ_MOVE_PCNTXT, _IRQ_NO_BALANCING = IRQ_NO_BALANCING, _IRQ_NESTED_THREAD = IRQ_NESTED_THREAD, _IRQ_PER_CPU_DEVID = IRQ_PER_CPU_DEVID, _IRQ_IS_POLLED = IRQ_IS_POLLED, _IRQ_DISABLE_UNLAZY = IRQ_DISABLE_UNLAZY, _IRQ_HIDDEN = IRQ_HIDDEN, _IRQF_MODIFY_MASK = IRQF_MODIFY_MASK, }; #define IRQ_PER_CPU GOT_YOU_MORON #define IRQ_NO_BALANCING GOT_YOU_MORON #define IRQ_LEVEL GOT_YOU_MORON #define IRQ_NOPROBE GOT_YOU_MORON #define IRQ_NOREQUEST GOT_YOU_MORON #define IRQ_NOTHREAD GOT_YOU_MORON #define IRQ_NOAUTOEN GOT_YOU_MORON #define IRQ_NESTED_THREAD GOT_YOU_MORON #define IRQ_PER_CPU_DEVID GOT_YOU_MORON #define IRQ_IS_POLLED GOT_YOU_MORON #define IRQ_DISABLE_UNLAZY GOT_YOU_MORON #define IRQ_HIDDEN GOT_YOU_MORON #undef IRQF_MODIFY_MASK #define IRQF_MODIFY_MASK GOT_YOU_MORON static inline void irq_settings_clr_and_set(struct irq_desc *desc, u32 clr, u32 set) { desc->status_use_accessors &= ~(clr & _IRQF_MODIFY_MASK); desc->status_use_accessors |= (set & _IRQF_MODIFY_MASK); } static inline bool irq_settings_is_per_cpu(struct irq_desc *desc) { return desc->status_use_accessors & _IRQ_PER_CPU; } static inline bool irq_settings_is_per_cpu_devid(struct irq_desc *desc) { return desc->status_use_accessors & _IRQ_PER_CPU_DEVID; } static inline void irq_settings_set_per_cpu(struct irq_desc *desc) { desc->status_use_accessors |= _IRQ_PER_CPU; } static inline void irq_settings_set_no_balancing(struct irq_desc *desc) { desc->status_use_accessors |= _IRQ_NO_BALANCING; } static inline bool irq_settings_has_no_balance_set(struct irq_desc *desc) { return desc->status_use_accessors & _IRQ_NO_BALANCING; } static inline u32 irq_settings_get_trigger_mask(struct irq_desc *desc) { return desc->status_use_accessors & IRQ_TYPE_SENSE_MASK; } static inline void irq_settings_set_trigger_mask(struct irq_desc *desc, u32 mask) { desc->status_use_accessors &= ~IRQ_TYPE_SENSE_MASK; desc->status_use_accessors |= mask & IRQ_TYPE_SENSE_MASK; } static inline bool irq_settings_is_level(struct irq_desc *desc) { return desc->status_use_accessors & _IRQ_LEVEL; } static inline void irq_settings_clr_level(struct irq_desc *desc) { desc->status_use_accessors &= ~_IRQ_LEVEL; } static inline void irq_settings_set_level(struct irq_desc *desc) { desc->status_use_accessors |= _IRQ_LEVEL; } static inline bool irq_settings_can_request(struct irq_desc *desc) { return !(desc->status_use_accessors & _IRQ_NOREQUEST); } static inline void irq_settings_clr_norequest(struct irq_desc *desc) { desc->status_use_accessors &= ~_IRQ_NOREQUEST; } static inline void irq_settings_set_norequest(struct irq_desc *desc) { desc->status_use_accessors |= _IRQ_NOREQUEST; } static inline bool irq_settings_can_thread(struct irq_desc *desc) { return !(desc->status_use_accessors & _IRQ_NOTHREAD); } static inline void irq_settings_clr_nothread(struct irq_desc *desc) { desc->status_use_accessors &= ~_IRQ_NOTHREAD; } static inline void irq_settings_set_nothread(struct irq_desc *desc) { desc->status_use_accessors |= _IRQ_NOTHREAD; } static inline bool irq_settings_can_probe(struct irq_desc *desc) { return !(desc->status_use_accessors & _IRQ_NOPROBE); } static inline void irq_settings_clr_noprobe(struct irq_desc *desc) { desc->status_use_accessors &= ~_IRQ_NOPROBE; } static inline void irq_settings_set_noprobe(struct irq_desc *desc) { desc->status_use_accessors |= _IRQ_NOPROBE; } static inline bool irq_settings_can_move_pcntxt(struct irq_desc *desc) { return desc->status_use_accessors & _IRQ_MOVE_PCNTXT; } static inline bool irq_settings_can_autoenable(struct irq_desc *desc) { return !(desc->status_use_accessors & _IRQ_NOAUTOEN); } static inline bool irq_settings_is_nested_thread(struct irq_desc *desc) { return desc->status_use_accessors & _IRQ_NESTED_THREAD; } static inline bool irq_settings_is_polled(struct irq_desc *desc) { return desc->status_use_accessors & _IRQ_IS_POLLED; } static inline bool irq_settings_disable_unlazy(struct irq_desc *desc) { return desc->status_use_accessors & _IRQ_DISABLE_UNLAZY; } static inline void irq_settings_clr_disable_unlazy(struct irq_desc *desc) { desc->status_use_accessors &= ~_IRQ_DISABLE_UNLAZY; } static inline bool irq_settings_is_hidden(struct irq_desc *desc) { return desc->status_use_accessors & _IRQ_HIDDEN; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 /* SPDX-License-Identifier: GPL-2.0-only */ /* * Access to user system call parameters and results * * Copyright (C) 2008-2009 Red Hat, Inc. All rights reserved. * * See asm-generic/syscall.h for descriptions of what we must do here. */ #ifndef _ASM_X86_SYSCALL_H #define _ASM_X86_SYSCALL_H #include <uapi/linux/audit.h> #include <linux/sched.h> #include <linux/err.h> #include <asm/thread_info.h> /* for TS_COMPAT */ #include <asm/unistd.h> typedef long (*sys_call_ptr_t)(const struct pt_regs *); extern const sys_call_ptr_t sys_call_table[]; #if defined(CONFIG_X86_32) #define ia32_sys_call_table sys_call_table #endif #if defined(CONFIG_IA32_EMULATION) extern const sys_call_ptr_t ia32_sys_call_table[]; #endif #ifdef CONFIG_X86_X32_ABI extern const sys_call_ptr_t x32_sys_call_table[]; #endif /* * Only the low 32 bits of orig_ax are meaningful, so we return int. * This importantly ignores the high bits on 64-bit, so comparisons * sign-extend the low 32 bits. */ static inline int syscall_get_nr(struct task_struct *task, struct pt_regs *regs) { return regs->orig_ax; } static inline void syscall_rollback(struct task_struct *task, struct pt_regs *regs) { regs->ax = regs->orig_ax; } static inline long syscall_get_error(struct task_struct *task, struct pt_regs *regs) { unsigned long error = regs->ax; #ifdef CONFIG_IA32_EMULATION /* * TS_COMPAT is set for 32-bit syscall entries and then * remains set until we return to user mode. */ if (task->thread_info.status & (TS_COMPAT|TS_I386_REGS_POKED)) /* * Sign-extend the value so (int)-EFOO becomes (long)-EFOO * and will match correctly in comparisons. */ error = (long) (int) error; #endif return IS_ERR_VALUE(error) ? error : 0; } static inline long syscall_get_return_value(struct task_struct *task, struct pt_regs *regs) { return regs->ax; } static inline void syscall_set_return_value(struct task_struct *task, struct pt_regs *regs, int error, long val) { regs->ax = (long) error ?: val; } #ifdef CONFIG_X86_32 static inline void syscall_get_arguments(struct task_struct *task, struct pt_regs *regs, unsigned long *args) { memcpy(args, &regs->bx, 6 * sizeof(args[0])); } static inline void syscall_set_arguments(struct task_struct *task, struct pt_regs *regs, unsigned int i, unsigned int n, const unsigned long *args) { BUG_ON(i + n > 6); memcpy(&regs->bx + i, args, n * sizeof(args[0])); } static inline int syscall_get_arch(struct task_struct *task) { return AUDIT_ARCH_I386; } #else /* CONFIG_X86_64 */ static inline void syscall_get_arguments(struct task_struct *task, struct pt_regs *regs, unsigned long *args) { # ifdef CONFIG_IA32_EMULATION if (task->thread_info.status & TS_COMPAT) { *args++ = regs->bx; *args++ = regs->cx; *args++ = regs->dx; *args++ = regs->si; *args++ = regs->di; *args = regs->bp; } else # endif { *args++ = regs->di; *args++ = regs->si; *args++ = regs->dx; *args++ = regs->r10; *args++ = regs->r8; *args = regs->r9; } } static inline void syscall_set_arguments(struct task_struct *task, struct pt_regs *regs, const unsigned long *args) { # ifdef CONFIG_IA32_EMULATION if (task->thread_info.status & TS_COMPAT) { regs->bx = *args++; regs->cx = *args++; regs->dx = *args++; regs->si = *args++; regs->di = *args++; regs->bp = *args; } else # endif { regs->di = *args++; regs->si = *args++; regs->dx = *args++; regs->r10 = *args++; regs->r8 = *args++; regs->r9 = *args; } } static inline int syscall_get_arch(struct task_struct *task) { /* x32 tasks should be considered AUDIT_ARCH_X86_64. */ return (IS_ENABLED(CONFIG_IA32_EMULATION) && task->thread_info.status & TS_COMPAT) ? AUDIT_ARCH_I386 : AUDIT_ARCH_X86_64; } void do_syscall_64(unsigned long nr, struct pt_regs *regs); void do_int80_syscall_32(struct pt_regs *regs); long do_fast_syscall_32(struct pt_regs *regs); #endif /* CONFIG_X86_32 */ #endif /* _ASM_X86_SYSCALL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SEQ_FILE_H #define _LINUX_SEQ_FILE_H #include <linux/types.h> #include <linux/string.h> #include <linux/bug.h> #include <linux/mutex.h> #include <linux/cpumask.h> #include <linux/nodemask.h> #include <linux/fs.h> #include <linux/cred.h> struct seq_operations; struct seq_file { char *buf; size_t size; size_t from; size_t count; size_t pad_until; loff_t index; loff_t read_pos; struct mutex lock; const struct seq_operations *op; int poll_event; const struct file *file; void *private; }; struct seq_operations { void * (*start) (struct seq_file *m, loff_t *pos); void (*stop) (struct seq_file *m, void *v); void * (*next) (struct seq_file *m, void *v, loff_t *pos); int (*show) (struct seq_file *m, void *v); }; #define SEQ_SKIP 1 /** * seq_has_overflowed - check if the buffer has overflowed * @m: the seq_file handle * * seq_files have a buffer which may overflow. When this happens a larger * buffer is reallocated and all the data will be printed again. * The overflow state is true when m->count == m->size. * * Returns true if the buffer received more than it can hold. */ static inline bool seq_has_overflowed(struct seq_file *m) { return m->count == m->size; } /** * seq_get_buf - get buffer to write arbitrary data to * @m: the seq_file handle * @bufp: the beginning of the buffer is stored here * * Return the number of bytes available in the buffer, or zero if * there's no space. */ static inline size_t seq_get_buf(struct seq_file *m, char **bufp) { BUG_ON(m->count > m->size); if (m->count < m->size) *bufp = m->buf + m->count; else *bufp = NULL; return m->size - m->count; } /** * seq_commit - commit data to the buffer * @m: the seq_file handle * @num: the number of bytes to commit * * Commit @num bytes of data written to a buffer previously acquired * by seq_buf_get. To signal an error condition, or that the data * didn't fit in the available space, pass a negative @num value. */ static inline void seq_commit(struct seq_file *m, int num) { if (num < 0) { m->count = m->size; } else { BUG_ON(m->count + num > m->size); m->count += num; } } /** * seq_setwidth - set padding width * @m: the seq_file handle * @size: the max number of bytes to pad. * * Call seq_setwidth() for setting max width, then call seq_printf() etc. and * finally call seq_pad() to pad the remaining bytes. */ static inline void seq_setwidth(struct seq_file *m, size_t size) { m->pad_until = m->count + size; } void seq_pad(struct seq_file *m, char c); char *mangle_path(char *s, const char *p, const char *esc); int seq_open(struct file *, const struct seq_operations *); ssize_t seq_read(struct file *, char __user *, size_t, loff_t *); ssize_t seq_read_iter(struct kiocb *iocb, struct iov_iter *iter); loff_t seq_lseek(struct file *, loff_t, int); int seq_release(struct inode *, struct file *); int seq_write(struct seq_file *seq, const void *data, size_t len); __printf(2, 0) void seq_vprintf(struct seq_file *m, const char *fmt, va_list args); __printf(2, 3) void seq_printf(struct seq_file *m, const char *fmt, ...); void seq_putc(struct seq_file *m, char c); void seq_puts(struct seq_file *m, const char *s); void seq_put_decimal_ull_width(struct seq_file *m, const char *delimiter, unsigned long long num, unsigned int width); void seq_put_decimal_ull(struct seq_file *m, const char *delimiter, unsigned long long num); void seq_put_decimal_ll(struct seq_file *m, const char *delimiter, long long num); void seq_put_hex_ll(struct seq_file *m, const char *delimiter, unsigned long long v, unsigned int width); void seq_escape(struct seq_file *m, const char *s, const char *esc); void seq_escape_mem_ascii(struct seq_file *m, const char *src, size_t isz); void seq_hex_dump(struct seq_file *m, const char *prefix_str, int prefix_type, int rowsize, int groupsize, const void *buf, size_t len, bool ascii); int seq_path(struct seq_file *, const struct path *, const char *); int seq_file_path(struct seq_file *, struct file *, const char *); int seq_dentry(struct seq_file *, struct dentry *, const char *); int seq_path_root(struct seq_file *m, const struct path *path, const struct path *root, const char *esc); int single_open(struct file *, int (*)(struct seq_file *, void *), void *); int single_open_size(struct file *, int (*)(struct seq_file *, void *), void *, size_t); int single_release(struct inode *, struct file *); void *__seq_open_private(struct file *, const struct seq_operations *, int); int seq_open_private(struct file *, const struct seq_operations *, int); int seq_release_private(struct inode *, struct file *); #define DEFINE_SEQ_ATTRIBUTE(__name) \ static int __name ## _open(struct inode *inode, struct file *file) \ { \ int ret = seq_open(file, &__name ## _sops); \ if (!ret && inode->i_private) { \ struct seq_file *seq_f = file->private_data; \ seq_f->private = inode->i_private; \ } \ return ret; \ } \ \ static const struct file_operations __name ## _fops = { \ .owner = THIS_MODULE, \ .open = __name ## _open, \ .read = seq_read, \ .llseek = seq_lseek, \ .release = seq_release, \ } #define DEFINE_SHOW_ATTRIBUTE(__name) \ static int __name ## _open(struct inode *inode, struct file *file) \ { \ return single_open(file, __name ## _show, inode->i_private); \ } \ \ static const struct file_operations __name ## _fops = { \ .owner = THIS_MODULE, \ .open = __name ## _open, \ .read = seq_read, \ .llseek = seq_lseek, \ .release = single_release, \ } #define DEFINE_PROC_SHOW_ATTRIBUTE(__name) \ static int __name ## _open(struct inode *inode, struct file *file) \ { \ return single_open(file, __name ## _show, PDE_DATA(inode)); \ } \ \ static const struct proc_ops __name ## _proc_ops = { \ .proc_open = __name ## _open, \ .proc_read = seq_read, \ .proc_lseek = seq_lseek, \ .proc_release = single_release, \ } static inline struct user_namespace *seq_user_ns(struct seq_file *seq) { #ifdef CONFIG_USER_NS return seq->file->f_cred->user_ns; #else extern struct user_namespace init_user_ns; return &init_user_ns; #endif } /** * seq_show_options - display mount options with appropriate escapes. * @m: the seq_file handle * @name: the mount option name * @value: the mount option name's value, can be NULL */ static inline void seq_show_option(struct seq_file *m, const char *name, const char *value) { seq_putc(m, ','); seq_escape(m, name, ",= \t\n\\"); if (value) { seq_putc(m, '='); seq_escape(m, value, ", \t\n\\"); } } /** * seq_show_option_n - display mount options with appropriate escapes * where @value must be a specific length. * @m: the seq_file handle * @name: the mount option name * @value: the mount option name's value, cannot be NULL * @length: the length of @value to display * * This is a macro since this uses "length" to define the size of the * stack buffer. */ #define seq_show_option_n(m, name, value, length) { \ char val_buf[length + 1]; \ strncpy(val_buf, value, length); \ val_buf[length] = '\0'; \ seq_show_option(m, name, val_buf); \ } #define SEQ_START_TOKEN ((void *)1) /* * Helpers for iteration over list_head-s in seq_files */ extern struct list_head *seq_list_start(struct list_head *head, loff_t pos); extern struct list_head *seq_list_start_head(struct list_head *head, loff_t pos); extern struct list_head *seq_list_next(void *v, struct list_head *head, loff_t *ppos); /* * Helpers for iteration over hlist_head-s in seq_files */ extern struct hlist_node *seq_hlist_start(struct hlist_head *head, loff_t pos); extern struct hlist_node *seq_hlist_start_head(struct hlist_head *head, loff_t pos); extern struct hlist_node *seq_hlist_next(void *v, struct hlist_head *head, loff_t *ppos); extern struct hlist_node *seq_hlist_start_rcu(struct hlist_head *head, loff_t pos); extern struct hlist_node *seq_hlist_start_head_rcu(struct hlist_head *head, loff_t pos); extern struct hlist_node *seq_hlist_next_rcu(void *v, struct hlist_head *head, loff_t *ppos); /* Helpers for iterating over per-cpu hlist_head-s in seq_files */ extern struct hlist_node *seq_hlist_start_percpu(struct hlist_head __percpu *head, int *cpu, loff_t pos); extern struct hlist_node *seq_hlist_next_percpu(void *v, struct hlist_head __percpu *head, int *cpu, loff_t *pos); void seq_file_init(void); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_CLEANCACHE_H #define _LINUX_CLEANCACHE_H #include <linux/fs.h> #include <linux/exportfs.h> #include <linux/mm.h> #define CLEANCACHE_NO_POOL -1 #define CLEANCACHE_NO_BACKEND -2 #define CLEANCACHE_NO_BACKEND_SHARED -3 #define CLEANCACHE_KEY_MAX 6 /* * cleancache requires every file with a page in cleancache to have a * unique key unless/until the file is removed/truncated. For some * filesystems, the inode number is unique, but for "modern" filesystems * an exportable filehandle is required (see exportfs.h) */ struct cleancache_filekey { union { ino_t ino; __u32 fh[CLEANCACHE_KEY_MAX]; u32 key[CLEANCACHE_KEY_MAX]; } u; }; struct cleancache_ops { int (*init_fs)(size_t); int (*init_shared_fs)(uuid_t *uuid, size_t); int (*get_page)(int, struct cleancache_filekey, pgoff_t, struct page *); void (*put_page)(int, struct cleancache_filekey, pgoff_t, struct page *); void (*invalidate_page)(int, struct cleancache_filekey, pgoff_t); void (*invalidate_inode)(int, struct cleancache_filekey); void (*invalidate_fs)(int); }; extern int cleancache_register_ops(const struct cleancache_ops *ops); extern void __cleancache_init_fs(struct super_block *); extern void __cleancache_init_shared_fs(struct super_block *); extern int __cleancache_get_page(struct page *); extern void __cleancache_put_page(struct page *); extern void __cleancache_invalidate_page(struct address_space *, struct page *); extern void __cleancache_invalidate_inode(struct address_space *); extern void __cleancache_invalidate_fs(struct super_block *); #ifdef CONFIG_CLEANCACHE #define cleancache_enabled (1) static inline bool cleancache_fs_enabled_mapping(struct address_space *mapping) { return mapping->host->i_sb->cleancache_poolid >= 0; } static inline bool cleancache_fs_enabled(struct page *page) { return cleancache_fs_enabled_mapping(page->mapping); } #else #define cleancache_enabled (0) #define cleancache_fs_enabled(_page) (0) #define cleancache_fs_enabled_mapping(_page) (0) #endif /* * The shim layer provided by these inline functions allows the compiler * to reduce all cleancache hooks to nothingness if CONFIG_CLEANCACHE * is disabled, to a single global variable check if CONFIG_CLEANCACHE * is enabled but no cleancache "backend" has dynamically enabled it, * and, for the most frequent cleancache ops, to a single global variable * check plus a superblock element comparison if CONFIG_CLEANCACHE is enabled * and a cleancache backend has dynamically enabled cleancache, but the * filesystem referenced by that cleancache op has not enabled cleancache. * As a result, CONFIG_CLEANCACHE can be enabled by default with essentially * no measurable performance impact. */ static inline void cleancache_init_fs(struct super_block *sb) { if (cleancache_enabled) __cleancache_init_fs(sb); } static inline void cleancache_init_shared_fs(struct super_block *sb) { if (cleancache_enabled) __cleancache_init_shared_fs(sb); } static inline int cleancache_get_page(struct page *page) { if (cleancache_enabled && cleancache_fs_enabled(page)) return __cleancache_get_page(page); return -1; } static inline void cleancache_put_page(struct page *page) { if (cleancache_enabled && cleancache_fs_enabled(page)) __cleancache_put_page(page); } static inline void cleancache_invalidate_page(struct address_space *mapping, struct page *page) { /* careful... page->mapping is NULL sometimes when this is called */ if (cleancache_enabled && cleancache_fs_enabled_mapping(mapping)) __cleancache_invalidate_page(mapping, page); } static inline void cleancache_invalidate_inode(struct address_space *mapping) { if (cleancache_enabled && cleancache_fs_enabled_mapping(mapping)) __cleancache_invalidate_inode(mapping); } static inline void cleancache_invalidate_fs(struct super_block *sb) { if (cleancache_enabled) __cleancache_invalidate_fs(sb); } #endif /* _LINUX_CLEANCACHE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 /* SPDX-License-Identifier: GPL-2.0 */ /* * Internals of the DMA direct mapping implementation. Only for use by the * DMA mapping code and IOMMU drivers. */ #ifndef _LINUX_DMA_DIRECT_H #define _LINUX_DMA_DIRECT_H 1 #include <linux/dma-mapping.h> #include <linux/dma-map-ops.h> #include <linux/memblock.h> /* for min_low_pfn */ #include <linux/mem_encrypt.h> #include <linux/swiotlb.h> extern unsigned int zone_dma_bits; /* * Record the mapping of CPU physical to DMA addresses for a given region. */ struct bus_dma_region { phys_addr_t cpu_start; dma_addr_t dma_start; u64 size; u64 offset; }; static inline dma_addr_t translate_phys_to_dma(struct device *dev, phys_addr_t paddr) { const struct bus_dma_region *m; for (m = dev->dma_range_map; m->size; m++) if (paddr >= m->cpu_start && paddr - m->cpu_start < m->size) return (dma_addr_t)paddr - m->offset; /* make sure dma_capable fails when no translation is available */ return DMA_MAPPING_ERROR; } static inline phys_addr_t translate_dma_to_phys(struct device *dev, dma_addr_t dma_addr) { const struct bus_dma_region *m; for (m = dev->dma_range_map; m->size; m++) if (dma_addr >= m->dma_start && dma_addr - m->dma_start < m->size) return (phys_addr_t)dma_addr + m->offset; return (phys_addr_t)-1; } #ifdef CONFIG_ARCH_HAS_PHYS_TO_DMA #include <asm/dma-direct.h> #ifndef phys_to_dma_unencrypted #define phys_to_dma_unencrypted phys_to_dma #endif #else static inline dma_addr_t phys_to_dma_unencrypted(struct device *dev, phys_addr_t paddr) { if (dev->dma_range_map) return translate_phys_to_dma(dev, paddr); return paddr; } /* * If memory encryption is supported, phys_to_dma will set the memory encryption * bit in the DMA address, and dma_to_phys will clear it. * phys_to_dma_unencrypted is for use on special unencrypted memory like swiotlb * buffers. */ static inline dma_addr_t phys_to_dma(struct device *dev, phys_addr_t paddr) { return __sme_set(phys_to_dma_unencrypted(dev, paddr)); } static inline phys_addr_t dma_to_phys(struct device *dev, dma_addr_t dma_addr) { phys_addr_t paddr; if (dev->dma_range_map) paddr = translate_dma_to_phys(dev, dma_addr); else paddr = dma_addr; return __sme_clr(paddr); } #endif /* !CONFIG_ARCH_HAS_PHYS_TO_DMA */ #ifdef CONFIG_ARCH_HAS_FORCE_DMA_UNENCRYPTED bool force_dma_unencrypted(struct device *dev); #else static inline bool force_dma_unencrypted(struct device *dev) { return false; } #endif /* CONFIG_ARCH_HAS_FORCE_DMA_UNENCRYPTED */ static inline bool dma_capable(struct device *dev, dma_addr_t addr, size_t size, bool is_ram) { dma_addr_t end = addr + size - 1; if (addr == DMA_MAPPING_ERROR) return false; if (is_ram && !IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT) && min(addr, end) < phys_to_dma(dev, PFN_PHYS(min_low_pfn))) return false; return end <= min_not_zero(*dev->dma_mask, dev->bus_dma_limit); } u64 dma_direct_get_required_mask(struct device *dev); void *dma_direct_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs); void dma_direct_free(struct device *dev, size_t size, void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs); struct page *dma_direct_alloc_pages(struct device *dev, size_t size, dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp); void dma_direct_free_pages(struct device *dev, size_t size, struct page *page, dma_addr_t dma_addr, enum dma_data_direction dir); int dma_direct_supported(struct device *dev, u64 mask); dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr, size_t size, enum dma_data_direction dir, unsigned long attrs); #endif /* _LINUX_DMA_DIRECT_H */
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 // SPDX-License-Identifier: GPL-2.0 /* * linux/fs/stat.c * * Copyright (C) 1991, 1992 Linus Torvalds */ #include <linux/export.h> #include <linux/mm.h> #include <linux/errno.h> #include <linux/file.h> #include <linux/highuid.h> #include <linux/fs.h> #include <linux/namei.h> #include <linux/security.h> #include <linux/cred.h> #include <linux/syscalls.h> #include <linux/pagemap.h> #include <linux/compat.h> #include <linux/uaccess.h> #include <asm/unistd.h> #include "internal.h" #include "mount.h" /** * generic_fillattr - Fill in the basic attributes from the inode struct * @inode: Inode to use as the source * @stat: Where to fill in the attributes * * Fill in the basic attributes in the kstat structure from data that's to be * found on the VFS inode structure. This is the default if no getattr inode * operation is supplied. */ void generic_fillattr(struct inode *inode, struct kstat *stat) { stat->dev = inode->i_sb->s_dev; stat->ino = inode->i_ino; stat->mode = inode->i_mode; stat->nlink = inode->i_nlink; stat->uid = inode->i_uid; stat->gid = inode->i_gid; stat->rdev = inode->i_rdev; stat->size = i_size_read(inode); stat->atime = inode->i_atime; stat->mtime = inode->i_mtime; stat->ctime = inode->i_ctime; stat->blksize = i_blocksize(inode); stat->blocks = inode->i_blocks; } EXPORT_SYMBOL(generic_fillattr); /** * vfs_getattr_nosec - getattr without security checks * @path: file to get attributes from * @stat: structure to return attributes in * @request_mask: STATX_xxx flags indicating what the caller wants * @query_flags: Query mode (AT_STATX_SYNC_TYPE) * * Get attributes without calling security_inode_getattr. * * Currently the only caller other than vfs_getattr is internal to the * filehandle lookup code, which uses only the inode number and returns no * attributes to any user. Any other code probably wants vfs_getattr. */ int vfs_getattr_nosec(const struct path *path, struct kstat *stat, u32 request_mask, unsigned int query_flags) { struct inode *inode = d_backing_inode(path->dentry); memset(stat, 0, sizeof(*stat)); stat->result_mask |= STATX_BASIC_STATS; query_flags &= AT_STATX_SYNC_TYPE; /* allow the fs to override these if it really wants to */ /* SB_NOATIME means filesystem supplies dummy atime value */ if (inode->i_sb->s_flags & SB_NOATIME) stat->result_mask &= ~STATX_ATIME; /* * Note: If you add another clause to set an attribute flag, please * update attributes_mask below. */ if (IS_AUTOMOUNT(inode)) stat->attributes |= STATX_ATTR_AUTOMOUNT; if (IS_DAX(inode)) stat->attributes |= STATX_ATTR_DAX; stat->attributes_mask |= (STATX_ATTR_AUTOMOUNT | STATX_ATTR_DAX); if (inode->i_op->getattr) return inode->i_op->getattr(path, stat, request_mask, query_flags); generic_fillattr(inode, stat); return 0; } EXPORT_SYMBOL(vfs_getattr_nosec); /* * vfs_getattr - Get the enhanced basic attributes of a file * @path: The file of interest * @stat: Where to return the statistics * @request_mask: STATX_xxx flags indicating what the caller wants * @query_flags: Query mode (AT_STATX_SYNC_TYPE) * * Ask the filesystem for a file's attributes. The caller must indicate in * request_mask and query_flags to indicate what they want. * * If the file is remote, the filesystem can be forced to update the attributes * from the backing store by passing AT_STATX_FORCE_SYNC in query_flags or can * suppress the update by passing AT_STATX_DONT_SYNC. * * Bits must have been set in request_mask to indicate which attributes the * caller wants retrieving. Any such attribute not requested may be returned * anyway, but the value may be approximate, and, if remote, may not have been * synchronised with the server. * * 0 will be returned on success, and a -ve error code if unsuccessful. */ int vfs_getattr(const struct path *path, struct kstat *stat, u32 request_mask, unsigned int query_flags) { int retval; retval = security_inode_getattr(path); if (retval) return retval; return vfs_getattr_nosec(path, stat, request_mask, query_flags); } EXPORT_SYMBOL(vfs_getattr); /** * vfs_fstat - Get the basic attributes by file descriptor * @fd: The file descriptor referring to the file of interest * @stat: The result structure to fill in. * * This function is a wrapper around vfs_getattr(). The main difference is * that it uses a file descriptor to determine the file location. * * 0 will be returned on success, and a -ve error code if unsuccessful. */ int vfs_fstat(int fd, struct kstat *stat) { struct fd f; int error; f = fdget_raw(fd); if (!f.file) return -EBADF; error = vfs_getattr(&f.file->f_path, stat, STATX_BASIC_STATS, 0); fdput(f); return error; } /** * vfs_statx - Get basic and extra attributes by filename * @dfd: A file descriptor representing the base dir for a relative filename * @filename: The name of the file of interest * @flags: Flags to control the query * @stat: The result structure to fill in. * @request_mask: STATX_xxx flags indicating what the caller wants * * This function is a wrapper around vfs_getattr(). The main difference is * that it uses a filename and base directory to determine the file location. * Additionally, the use of AT_SYMLINK_NOFOLLOW in flags will prevent a symlink * at the given name from being referenced. * * 0 will be returned on success, and a -ve error code if unsuccessful. */ static int vfs_statx(int dfd, const char __user *filename, int flags, struct kstat *stat, u32 request_mask) { struct path path; unsigned lookup_flags = 0; int error; if (flags & ~(AT_SYMLINK_NOFOLLOW | AT_NO_AUTOMOUNT | AT_EMPTY_PATH | AT_STATX_SYNC_TYPE)) return -EINVAL; if (!(flags & AT_SYMLINK_NOFOLLOW)) lookup_flags |= LOOKUP_FOLLOW; if (!(flags & AT_NO_AUTOMOUNT)) lookup_flags |= LOOKUP_AUTOMOUNT; if (flags & AT_EMPTY_PATH) lookup_flags |= LOOKUP_EMPTY; retry: error = user_path_at(dfd, filename, lookup_flags, &path); if (error) goto out; error = vfs_getattr(&path, stat, request_mask, flags); stat->mnt_id = real_mount(path.mnt)->mnt_id; stat->result_mask |= STATX_MNT_ID; if (path.mnt->mnt_root == path.dentry) stat->attributes |= STATX_ATTR_MOUNT_ROOT; stat->attributes_mask |= STATX_ATTR_MOUNT_ROOT; path_put(&path); if (retry_estale(error, lookup_flags)) { lookup_flags |= LOOKUP_REVAL; goto retry; } out: return error; } int vfs_fstatat(int dfd, const char __user *filename, struct kstat *stat, int flags) { return vfs_statx(dfd, filename, flags | AT_NO_AUTOMOUNT, stat, STATX_BASIC_STATS); } #ifdef __ARCH_WANT_OLD_STAT /* * For backward compatibility? Maybe this should be moved * into arch/i386 instead? */ static int cp_old_stat(struct kstat *stat, struct __old_kernel_stat __user * statbuf) { static int warncount = 5; struct __old_kernel_stat tmp; if (warncount > 0) { warncount--; printk(KERN_WARNING "VFS: Warning: %s using old stat() call. Recompile your binary.\n", current->comm); } else if (warncount < 0) { /* it's laughable, but... */ warncount = 0; } memset(&tmp, 0, sizeof(struct __old_kernel_stat)); tmp.st_dev = old_encode_dev(stat->dev); tmp.st_ino = stat->ino; if (sizeof(tmp.st_ino) < sizeof(stat->ino) && tmp.st_ino != stat->ino) return -EOVERFLOW; tmp.st_mode = stat->mode; tmp.st_nlink = stat->nlink; if (tmp.st_nlink != stat->nlink) return -EOVERFLOW; SET_UID(tmp.st_uid, from_kuid_munged(current_user_ns(), stat->uid)); SET_GID(tmp.st_gid, from_kgid_munged(current_user_ns(), stat->gid)); tmp.st_rdev = old_encode_dev(stat->rdev); #if BITS_PER_LONG == 32 if (stat->size > MAX_NON_LFS) return -EOVERFLOW; #endif tmp.st_size = stat->size; tmp.st_atime = stat->atime.tv_sec; tmp.st_mtime = stat->mtime.tv_sec; tmp.st_ctime = stat->ctime.tv_sec; return copy_to_user(statbuf,&tmp,sizeof(tmp)) ? -EFAULT : 0; } SYSCALL_DEFINE2(stat, const char __user *, filename, struct __old_kernel_stat __user *, statbuf) { struct kstat stat; int error; error = vfs_stat(filename, &stat); if (error) return error; return cp_old_stat(&stat, statbuf); } SYSCALL_DEFINE2(lstat, const char __user *, filename, struct __old_kernel_stat __user *, statbuf) { struct kstat stat; int error; error = vfs_lstat(filename, &stat); if (error) return error; return cp_old_stat(&stat, statbuf); } SYSCALL_DEFINE2(fstat, unsigned int, fd, struct __old_kernel_stat __user *, statbuf) { struct kstat stat; int error = vfs_fstat(fd, &stat); if (!error) error = cp_old_stat(&stat, statbuf); return error; } #endif /* __ARCH_WANT_OLD_STAT */ #ifdef __ARCH_WANT_NEW_STAT #if BITS_PER_LONG == 32 # define choose_32_64(a,b) a #else # define choose_32_64(a,b) b #endif #define valid_dev(x) choose_32_64(old_valid_dev(x),true) #define encode_dev(x) choose_32_64(old_encode_dev,new_encode_dev)(x) #ifndef INIT_STRUCT_STAT_PADDING # define INIT_STRUCT_STAT_PADDING(st) memset(&st, 0, sizeof(st)) #endif static int cp_new_stat(struct kstat *stat, struct stat __user *statbuf) { struct stat tmp; if (!valid_dev(stat->dev) || !valid_dev(stat->rdev)) return -EOVERFLOW; #if BITS_PER_LONG == 32 if (stat->size > MAX_NON_LFS) return -EOVERFLOW; #endif INIT_STRUCT_STAT_PADDING(tmp); tmp.st_dev = encode_dev(stat->dev); tmp.st_ino = stat->ino; if (sizeof(tmp.st_ino) < sizeof(stat->ino) && tmp.st_ino != stat->ino) return -EOVERFLOW; tmp.st_mode = stat->mode; tmp.st_nlink = stat->nlink; if (tmp.st_nlink != stat->nlink) return -EOVERFLOW; SET_UID(tmp.st_uid, from_kuid_munged(current_user_ns(), stat->uid)); SET_GID(tmp.st_gid, from_kgid_munged(current_user_ns(), stat->gid)); tmp.st_rdev = encode_dev(stat->rdev); tmp.st_size = stat->size; tmp.st_atime = stat->atime.tv_sec; tmp.st_mtime = stat->mtime.tv_sec; tmp.st_ctime = stat->ctime.tv_sec; #ifdef STAT_HAVE_NSEC tmp.st_atime_nsec = stat->atime.tv_nsec; tmp.st_mtime_nsec = stat->mtime.tv_nsec; tmp.st_ctime_nsec = stat->ctime.tv_nsec; #endif tmp.st_blocks = stat->blocks; tmp.st_blksize = stat->blksize; return copy_to_user(statbuf,&tmp,sizeof(tmp)) ? -EFAULT : 0; } SYSCALL_DEFINE2(newstat, const char __user *, filename, struct stat __user *, statbuf) { struct kstat stat; int error = vfs_stat(filename, &stat); if (error) return error; return cp_new_stat(&stat, statbuf); } SYSCALL_DEFINE2(newlstat, const char __user *, filename, struct stat __user *, statbuf) { struct kstat stat; int error; error = vfs_lstat(filename, &stat); if (error) return error; return cp_new_stat(&stat, statbuf); } #if !defined(__ARCH_WANT_STAT64) || defined(__ARCH_WANT_SYS_NEWFSTATAT) SYSCALL_DEFINE4(newfstatat, int, dfd, const char __user *, filename, struct stat __user *, statbuf, int, flag) { struct kstat stat; int error; error = vfs_fstatat(dfd, filename, &stat, flag); if (error) return error; return cp_new_stat(&stat, statbuf); } #endif SYSCALL_DEFINE2(newfstat, unsigned int, fd, struct stat __user *, statbuf) { struct kstat stat; int error = vfs_fstat(fd, &stat); if (!error) error = cp_new_stat(&stat, statbuf); return error; } #endif static int do_readlinkat(int dfd, const char __user *pathname, char __user *buf, int bufsiz) { struct path path; int error; int empty = 0; unsigned int lookup_flags = LOOKUP_EMPTY; if (bufsiz <= 0) return -EINVAL; retry: error = user_path_at_empty(dfd, pathname, lookup_flags, &path, &empty); if (!error) { struct inode *inode = d_backing_inode(path.dentry); error = empty ? -ENOENT : -EINVAL; /* * AFS mountpoints allow readlink(2) but are not symlinks */ if (d_is_symlink(path.dentry) || inode->i_op->readlink) { error = security_inode_readlink(path.dentry); if (!error) { touch_atime(&path); error = vfs_readlink(path.dentry, buf, bufsiz); } } path_put(&path); if (retry_estale(error, lookup_flags)) { lookup_flags |= LOOKUP_REVAL; goto retry; } } return error; } SYSCALL_DEFINE4(readlinkat, int, dfd, const char __user *, pathname, char __user *, buf, int, bufsiz) { return do_readlinkat(dfd, pathname, buf, bufsiz); } SYSCALL_DEFINE3(readlink, const char __user *, path, char __user *, buf, int, bufsiz) { return do_readlinkat(AT_FDCWD, path, buf, bufsiz); } /* ---------- LFS-64 ----------- */ #if defined(__ARCH_WANT_STAT64) || defined(__ARCH_WANT_COMPAT_STAT64) #ifndef INIT_STRUCT_STAT64_PADDING # define INIT_STRUCT_STAT64_PADDING(st) memset(&st, 0, sizeof(st)) #endif static long cp_new_stat64(struct kstat *stat, struct stat64 __user *statbuf) { struct stat64 tmp; INIT_STRUCT_STAT64_PADDING(tmp); #ifdef CONFIG_MIPS /* mips has weird padding, so we don't get 64 bits there */ tmp.st_dev = new_encode_dev(stat->dev); tmp.st_rdev = new_encode_dev(stat->rdev); #else tmp.st_dev = huge_encode_dev(stat->dev); tmp.st_rdev = huge_encode_dev(stat->rdev); #endif tmp.st_ino = stat->ino; if (sizeof(tmp.st_ino) < sizeof(stat->ino) && tmp.st_ino != stat->ino) return -EOVERFLOW; #ifdef STAT64_HAS_BROKEN_ST_INO tmp.__st_ino = stat->ino; #endif tmp.st_mode = stat->mode; tmp.st_nlink = stat->nlink; tmp.st_uid = from_kuid_munged(current_user_ns(), stat->uid); tmp.st_gid = from_kgid_munged(current_user_ns(), stat->gid); tmp.st_atime = stat->atime.tv_sec; tmp.st_atime_nsec = stat->atime.tv_nsec; tmp.st_mtime = stat->mtime.tv_sec; tmp.st_mtime_nsec = stat->mtime.tv_nsec; tmp.st_ctime = stat->ctime.tv_sec; tmp.st_ctime_nsec = stat->ctime.tv_nsec; tmp.st_size = stat->size; tmp.st_blocks = stat->blocks; tmp.st_blksize = stat->blksize; return copy_to_user(statbuf,&tmp,sizeof(tmp)) ? -EFAULT : 0; } SYSCALL_DEFINE2(stat64, const char __user *, filename, struct stat64 __user *, statbuf) { struct kstat stat; int error = vfs_stat(filename, &stat); if (!error) error = cp_new_stat64(&stat, statbuf); return error; } SYSCALL_DEFINE2(lstat64, const char __user *, filename, struct stat64 __user *, statbuf) { struct kstat stat; int error = vfs_lstat(filename, &stat); if (!error) error = cp_new_stat64(&stat, statbuf); return error; } SYSCALL_DEFINE2(fstat64, unsigned long, fd, struct stat64 __user *, statbuf) { struct kstat stat; int error = vfs_fstat(fd, &stat); if (!error) error = cp_new_stat64(&stat, statbuf); return error; } SYSCALL_DEFINE4(fstatat64, int, dfd, const char __user *, filename, struct stat64 __user *, statbuf, int, flag) { struct kstat stat; int error; error = vfs_fstatat(dfd, filename, &stat, flag); if (error) return error; return cp_new_stat64(&stat, statbuf); } #endif /* __ARCH_WANT_STAT64 || __ARCH_WANT_COMPAT_STAT64 */ static noinline_for_stack int cp_statx(const struct kstat *stat, struct statx __user *buffer) { struct statx tmp; memset(&tmp, 0, sizeof(tmp)); tmp.stx_mask = stat->result_mask; tmp.stx_blksize = stat->blksize; tmp.stx_attributes = stat->attributes; tmp.stx_nlink = stat->nlink; tmp.stx_uid = from_kuid_munged(current_user_ns(), stat->uid); tmp.stx_gid = from_kgid_munged(current_user_ns(), stat->gid); tmp.stx_mode = stat->mode; tmp.stx_ino = stat->ino; tmp.stx_size = stat->size; tmp.stx_blocks = stat->blocks; tmp.stx_attributes_mask = stat->attributes_mask; tmp.stx_atime.tv_sec = stat->atime.tv_sec; tmp.stx_atime.tv_nsec = stat->atime.tv_nsec; tmp.stx_btime.tv_sec = stat->btime.tv_sec; tmp.stx_btime.tv_nsec = stat->btime.tv_nsec; tmp.stx_ctime.tv_sec = stat->ctime.tv_sec; tmp.stx_ctime.tv_nsec = stat->ctime.tv_nsec; tmp.stx_mtime.tv_sec = stat->mtime.tv_sec; tmp.stx_mtime.tv_nsec = stat->mtime.tv_nsec; tmp.stx_rdev_major = MAJOR(stat->rdev); tmp.stx_rdev_minor = MINOR(stat->rdev); tmp.stx_dev_major = MAJOR(stat->dev); tmp.stx_dev_minor = MINOR(stat->dev); tmp.stx_mnt_id = stat->mnt_id; return copy_to_user(buffer, &tmp, sizeof(tmp)) ? -EFAULT : 0; } int do_statx(int dfd, const char __user *filename, unsigned flags, unsigned int mask, struct statx __user *buffer) { struct kstat stat; int error; if (mask & STATX__RESERVED) return -EINVAL; if ((flags & AT_STATX_SYNC_TYPE) == AT_STATX_SYNC_TYPE) return -EINVAL; error = vfs_statx(dfd, filename, flags, &stat, mask); if (error) return error; return cp_statx(&stat, buffer); } /** * sys_statx - System call to get enhanced stats * @dfd: Base directory to pathwalk from *or* fd to stat. * @filename: File to stat or "" with AT_EMPTY_PATH * @flags: AT_* flags to control pathwalk. * @mask: Parts of statx struct actually required. * @buffer: Result buffer. * * Note that fstat() can be emulated by setting dfd to the fd of interest, * supplying "" as the filename and setting AT_EMPTY_PATH in the flags. */ SYSCALL_DEFINE5(statx, int, dfd, const char __user *, filename, unsigned, flags, unsigned int, mask, struct statx __user *, buffer) { return do_statx(dfd, filename, flags, mask, buffer); } #ifdef CONFIG_COMPAT static int cp_compat_stat(struct kstat *stat, struct compat_stat __user *ubuf) { struct compat_stat tmp; if (!old_valid_dev(stat->dev) || !old_valid_dev(stat->rdev)) return -EOVERFLOW; memset(&tmp, 0, sizeof(tmp)); tmp.st_dev = old_encode_dev(stat->dev); tmp.st_ino = stat->ino; if (sizeof(tmp.st_ino) < sizeof(stat->ino) && tmp.st_ino != stat->ino) return -EOVERFLOW; tmp.st_mode = stat->mode; tmp.st_nlink = stat->nlink; if (tmp.st_nlink != stat->nlink) return -EOVERFLOW; SET_UID(tmp.st_uid, from_kuid_munged(current_user_ns(), stat->uid)); SET_GID(tmp.st_gid, from_kgid_munged(current_user_ns(), stat->gid)); tmp.st_rdev = old_encode_dev(stat->rdev); if ((u64) stat->size > MAX_NON_LFS) return -EOVERFLOW; tmp.st_size = stat->size; tmp.st_atime = stat->atime.tv_sec; tmp.st_atime_nsec = stat->atime.tv_nsec; tmp.st_mtime = stat->mtime.tv_sec; tmp.st_mtime_nsec = stat->mtime.tv_nsec; tmp.st_ctime = stat->ctime.tv_sec; tmp.st_ctime_nsec = stat->ctime.tv_nsec; tmp.st_blocks = stat->blocks; tmp.st_blksize = stat->blksize; return copy_to_user(ubuf, &tmp, sizeof(tmp)) ? -EFAULT : 0; } COMPAT_SYSCALL_DEFINE2(newstat, const char __user *, filename, struct compat_stat __user *, statbuf) { struct kstat stat; int error; error = vfs_stat(filename, &stat); if (error) return error; return cp_compat_stat(&stat, statbuf); } COMPAT_SYSCALL_DEFINE2(newlstat, const char __user *, filename, struct compat_stat __user *, statbuf) { struct kstat stat; int error; error = vfs_lstat(filename, &stat); if (error) return error; return cp_compat_stat(&stat, statbuf); } #ifndef __ARCH_WANT_STAT64 COMPAT_SYSCALL_DEFINE4(newfstatat, unsigned int, dfd, const char __user *, filename, struct compat_stat __user *, statbuf, int, flag) { struct kstat stat; int error; error = vfs_fstatat(dfd, filename, &stat, flag); if (error) return error; return cp_compat_stat(&stat, statbuf); } #endif COMPAT_SYSCALL_DEFINE2(newfstat, unsigned int, fd, struct compat_stat __user *, statbuf) { struct kstat stat; int error = vfs_fstat(fd, &stat); if (!error) error = cp_compat_stat(&stat, statbuf); return error; } #endif /* Caller is here responsible for sufficient locking (ie. inode->i_lock) */ void __inode_add_bytes(struct inode *inode, loff_t bytes) { inode->i_blocks += bytes >> 9; bytes &= 511; inode->i_bytes += bytes; if (inode->i_bytes >= 512) { inode->i_blocks++; inode->i_bytes -= 512; } } EXPORT_SYMBOL(__inode_add_bytes); void inode_add_bytes(struct inode *inode, loff_t bytes) { spin_lock(&inode->i_lock); __inode_add_bytes(inode, bytes); spin_unlock(&inode->i_lock); } EXPORT_SYMBOL(inode_add_bytes); void __inode_sub_bytes(struct inode *inode, loff_t bytes) { inode->i_blocks -= bytes >> 9; bytes &= 511; if (inode->i_bytes < bytes) { inode->i_blocks--; inode->i_bytes += 512; } inode->i_bytes -= bytes; } EXPORT_SYMBOL(__inode_sub_bytes); void inode_sub_bytes(struct inode *inode, loff_t bytes) { spin_lock(&inode->i_lock); __inode_sub_bytes(inode, bytes); spin_unlock(&inode->i_lock); } EXPORT_SYMBOL(inode_sub_bytes); loff_t inode_get_bytes(struct inode *inode) { loff_t ret; spin_lock(&inode->i_lock); ret = __inode_get_bytes(inode); spin_unlock(&inode->i_lock); return ret; } EXPORT_SYMBOL(inode_get_bytes); void inode_set_bytes(struct inode *inode, loff_t bytes) { /* Caller is here responsible for sufficient locking * (ie. inode->i_lock) */ inode->i_blocks = bytes >> 9; inode->i_bytes = bytes & 511; } EXPORT_SYMBOL(inode_set_bytes);
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _KERNEL_PRINTK_RINGBUFFER_H #define _KERNEL_PRINTK_RINGBUFFER_H #include <linux/atomic.h> #include <linux/dev_printk.h> /* * Meta information about each stored message. * * All fields are set by the printk code except for @seq, which is * set by the ringbuffer code. */ struct printk_info { u64 seq; /* sequence number */ u64 ts_nsec; /* timestamp in nanoseconds */ u16 text_len; /* length of text message */ u8 facility; /* syslog facility */ u8 flags:5; /* internal record flags */ u8 level:3; /* syslog level */ u32 caller_id; /* thread id or processor id */ struct dev_printk_info dev_info; }; /* * A structure providing the buffers, used by writers and readers. * * Writers: * Using prb_rec_init_wr(), a writer sets @text_buf_size before calling * prb_reserve(). On success, prb_reserve() sets @info and @text_buf to * buffers reserved for that writer. * * Readers: * Using prb_rec_init_rd(), a reader sets all fields before calling * prb_read_valid(). Note that the reader provides the @info and @text_buf, * buffers. On success, the struct pointed to by @info will be filled and * the char array pointed to by @text_buf will be filled with text data. */ struct printk_record { struct printk_info *info; char *text_buf; unsigned int text_buf_size; }; /* Specifies the logical position and span of a data block. */ struct prb_data_blk_lpos { unsigned long begin; unsigned long next; }; /* * A descriptor: the complete meta-data for a record. * * @state_var: A bitwise combination of descriptor ID and descriptor state. */ struct prb_desc { atomic_long_t state_var; struct prb_data_blk_lpos text_blk_lpos; }; /* A ringbuffer of "ID + data" elements. */ struct prb_data_ring { unsigned int size_bits; char *data; atomic_long_t head_lpos; atomic_long_t tail_lpos; }; /* A ringbuffer of "struct prb_desc" elements. */ struct prb_desc_ring { unsigned int count_bits; struct prb_desc *descs; struct printk_info *infos; atomic_long_t head_id; atomic_long_t tail_id; }; /* * The high level structure representing the printk ringbuffer. * * @fail: Count of failed prb_reserve() calls where not even a data-less * record was created. */ struct printk_ringbuffer { struct prb_desc_ring desc_ring; struct prb_data_ring text_data_ring; atomic_long_t fail; }; /* * Used by writers as a reserve/commit handle. * * @rb: Ringbuffer where the entry is reserved. * @irqflags: Saved irq flags to restore on entry commit. * @id: ID of the reserved descriptor. * @text_space: Total occupied buffer space in the text data ring, including * ID, alignment padding, and wrapping data blocks. * * This structure is an opaque handle for writers. Its contents are only * to be used by the ringbuffer implementation. */ struct prb_reserved_entry { struct printk_ringbuffer *rb; unsigned long irqflags; unsigned long id; unsigned int text_space; }; /* The possible responses of a descriptor state-query. */ enum desc_state { desc_miss = -1, /* ID mismatch (pseudo state) */ desc_reserved = 0x0, /* reserved, in use by writer */ desc_committed = 0x1, /* committed by writer, could get reopened */ desc_finalized = 0x2, /* committed, no further modification allowed */ desc_reusable = 0x3, /* free, not yet used by any writer */ }; #define _DATA_SIZE(sz_bits) (1UL << (sz_bits)) #define _DESCS_COUNT(ct_bits) (1U << (ct_bits)) #define DESC_SV_BITS (sizeof(unsigned long) * 8) #define DESC_FLAGS_SHIFT (DESC_SV_BITS - 2) #define DESC_FLAGS_MASK (3UL << DESC_FLAGS_SHIFT) #define DESC_STATE(sv) (3UL & (sv >> DESC_FLAGS_SHIFT)) #define DESC_SV(id, state) (((unsigned long)state << DESC_FLAGS_SHIFT) | id) #define DESC_ID_MASK (~DESC_FLAGS_MASK) #define DESC_ID(sv) ((sv) & DESC_ID_MASK) #define FAILED_LPOS 0x1 #define NO_LPOS 0x3 #define FAILED_BLK_LPOS \ { \ .begin = FAILED_LPOS, \ .next = FAILED_LPOS, \ } /* * Descriptor Bootstrap * * The descriptor array is minimally initialized to allow immediate usage * by readers and writers. The requirements that the descriptor array * initialization must satisfy: * * Req1 * The tail must point to an existing (committed or reusable) descriptor. * This is required by the implementation of prb_first_seq(). * * Req2 * Readers must see that the ringbuffer is initially empty. * * Req3 * The first record reserved by a writer is assigned sequence number 0. * * To satisfy Req1, the tail initially points to a descriptor that is * minimally initialized (having no data block, i.e. data-less with the * data block's lpos @begin and @next values set to FAILED_LPOS). * * To satisfy Req2, the initial tail descriptor is initialized to the * reusable state. Readers recognize reusable descriptors as existing * records, but skip over them. * * To satisfy Req3, the last descriptor in the array is used as the initial * head (and tail) descriptor. This allows the first record reserved by a * writer (head + 1) to be the first descriptor in the array. (Only the first * descriptor in the array could have a valid sequence number of 0.) * * The first time a descriptor is reserved, it is assigned a sequence number * with the value of the array index. A "first time reserved" descriptor can * be recognized because it has a sequence number of 0 but does not have an * index of 0. (Only the first descriptor in the array could have a valid * sequence number of 0.) After the first reservation, all future reservations * (recycling) simply involve incrementing the sequence number by the array * count. * * Hack #1 * Only the first descriptor in the array is allowed to have the sequence * number 0. In this case it is not possible to recognize if it is being * reserved the first time (set to index value) or has been reserved * previously (increment by the array count). This is handled by _always_ * incrementing the sequence number by the array count when reserving the * first descriptor in the array. In order to satisfy Req3, the sequence * number of the first descriptor in the array is initialized to minus * the array count. Then, upon the first reservation, it is incremented * to 0, thus satisfying Req3. * * Hack #2 * prb_first_seq() can be called at any time by readers to retrieve the * sequence number of the tail descriptor. However, due to Req2 and Req3, * initially there are no records to report the sequence number of * (sequence numbers are u64 and there is nothing less than 0). To handle * this, the sequence number of the initial tail descriptor is initialized * to 0. Technically this is incorrect, because there is no record with * sequence number 0 (yet) and the tail descriptor is not the first * descriptor in the array. But it allows prb_read_valid() to correctly * report the existence of a record for _any_ given sequence number at all * times. Bootstrapping is complete when the tail is pushed the first * time, thus finally pointing to the first descriptor reserved by a * writer, which has the assigned sequence number 0. */ /* * Initiating Logical Value Overflows * * Both logical position (lpos) and ID values can be mapped to array indexes * but may experience overflows during the lifetime of the system. To ensure * that printk_ringbuffer can handle the overflows for these types, initial * values are chosen that map to the correct initial array indexes, but will * result in overflows soon. * * BLK0_LPOS * The initial @head_lpos and @tail_lpos for data rings. It is at index * 0 and the lpos value is such that it will overflow on the first wrap. * * DESC0_ID * The initial @head_id and @tail_id for the desc ring. It is at the last * index of the descriptor array (see Req3 above) and the ID value is such * that it will overflow on the second wrap. */ #define BLK0_LPOS(sz_bits) (-(_DATA_SIZE(sz_bits))) #define DESC0_ID(ct_bits) DESC_ID(-(_DESCS_COUNT(ct_bits) + 1)) #define DESC0_SV(ct_bits) DESC_SV(DESC0_ID(ct_bits), desc_reusable) /* * Define a ringbuffer with an external text data buffer. The same as * DEFINE_PRINTKRB() but requires specifying an external buffer for the * text data. * * Note: The specified external buffer must be of the size: * 2 ^ (descbits + avgtextbits) */ #define _DEFINE_PRINTKRB(name, descbits, avgtextbits, text_buf) \ static struct prb_desc _##name##_descs[_DESCS_COUNT(descbits)] = { \ /* the initial head and tail */ \ [_DESCS_COUNT(descbits) - 1] = { \ /* reusable */ \ .state_var = ATOMIC_INIT(DESC0_SV(descbits)), \ /* no associated data block */ \ .text_blk_lpos = FAILED_BLK_LPOS, \ }, \ }; \ static struct printk_info _##name##_infos[_DESCS_COUNT(descbits)] = { \ /* this will be the first record reserved by a writer */ \ [0] = { \ /* will be incremented to 0 on the first reservation */ \ .seq = -(u64)_DESCS_COUNT(descbits), \ }, \ /* the initial head and tail */ \ [_DESCS_COUNT(descbits) - 1] = { \ /* reports the first seq value during the bootstrap phase */ \ .seq = 0, \ }, \ }; \ static struct printk_ringbuffer name = { \ .desc_ring = { \ .count_bits = descbits, \ .descs = &_##name##_descs[0], \ .infos = &_##name##_infos[0], \ .head_id = ATOMIC_INIT(DESC0_ID(descbits)), \ .tail_id = ATOMIC_INIT(DESC0_ID(descbits)), \ }, \ .text_data_ring = { \ .size_bits = (avgtextbits) + (descbits), \ .data = text_buf, \ .head_lpos = ATOMIC_LONG_INIT(BLK0_LPOS((avgtextbits) + (descbits))), \ .tail_lpos = ATOMIC_LONG_INIT(BLK0_LPOS((avgtextbits) + (descbits))), \ }, \ .fail = ATOMIC_LONG_INIT(0), \ } /** * DEFINE_PRINTKRB() - Define a ringbuffer. * * @name: The name of the ringbuffer variable. * @descbits: The number of descriptors as a power-of-2 value. * @avgtextbits: The average text data size per record as a power-of-2 value. * * This is a macro for defining a ringbuffer and all internal structures * such that it is ready for immediate use. See _DEFINE_PRINTKRB() for a * variant where the text data buffer can be specified externally. */ #define DEFINE_PRINTKRB(name, descbits, avgtextbits) \ static char _##name##_text[1U << ((avgtextbits) + (descbits))] \ __aligned(__alignof__(unsigned long)); \ _DEFINE_PRINTKRB(name, descbits, avgtextbits, &_##name##_text[0]) /* Writer Interface */ /** * prb_rec_init_wd() - Initialize a buffer for writing records. * * @r: The record to initialize. * @text_buf_size: The needed text buffer size. */ static inline void prb_rec_init_wr(struct printk_record *r, unsigned int text_buf_size) { r->info = NULL; r->text_buf = NULL; r->text_buf_size = text_buf_size; } bool prb_reserve(struct prb_reserved_entry *e, struct printk_ringbuffer *rb, struct printk_record *r); bool prb_reserve_in_last(struct prb_reserved_entry *e, struct printk_ringbuffer *rb, struct printk_record *r, u32 caller_id, unsigned int max_size); void prb_commit(struct prb_reserved_entry *e); void prb_final_commit(struct prb_reserved_entry *e); void prb_init(struct printk_ringbuffer *rb, char *text_buf, unsigned int text_buf_size, struct prb_desc *descs, unsigned int descs_count_bits, struct printk_info *infos); unsigned int prb_record_text_space(struct prb_reserved_entry *e); /* Reader Interface */ /** * prb_rec_init_rd() - Initialize a buffer for reading records. * * @r: The record to initialize. * @info: A buffer to store record meta-data. * @text_buf: A buffer to store text data. * @text_buf_size: The size of @text_buf. * * Initialize all the fields that a reader is interested in. All arguments * (except @r) are optional. Only record data for arguments that are * non-NULL or non-zero will be read. */ static inline void prb_rec_init_rd(struct printk_record *r, struct printk_info *info, char *text_buf, unsigned int text_buf_size) { r->info = info; r->text_buf = text_buf; r->text_buf_size = text_buf_size; } /** * prb_for_each_record() - Iterate over the records of a ringbuffer. * * @from: The sequence number to begin with. * @rb: The ringbuffer to iterate over. * @s: A u64 to store the sequence number on each iteration. * @r: A printk_record to store the record on each iteration. * * This is a macro for conveniently iterating over a ringbuffer. * Note that @s may not be the sequence number of the record on each * iteration. For the sequence number, @r->info->seq should be checked. * * Context: Any context. */ #define prb_for_each_record(from, rb, s, r) \ for ((s) = from; prb_read_valid(rb, s, r); (s) = (r)->info->seq + 1) /** * prb_for_each_info() - Iterate over the meta data of a ringbuffer. * * @from: The sequence number to begin with. * @rb: The ringbuffer to iterate over. * @s: A u64 to store the sequence number on each iteration. * @i: A printk_info to store the record meta data on each iteration. * @lc: An unsigned int to store the text line count of each record. * * This is a macro for conveniently iterating over a ringbuffer. * Note that @s may not be the sequence number of the record on each * iteration. For the sequence number, @r->info->seq should be checked. * * Context: Any context. */ #define prb_for_each_info(from, rb, s, i, lc) \ for ((s) = from; prb_read_valid_info(rb, s, i, lc); (s) = (i)->seq + 1) bool prb_read_valid(struct printk_ringbuffer *rb, u64 seq, struct printk_record *r); bool prb_read_valid_info(struct printk_ringbuffer *rb, u64 seq, struct printk_info *info, unsigned int *line_count); u64 prb_first_valid_seq(struct printk_ringbuffer *rb); u64 prb_next_seq(struct printk_ringbuffer *rb); #endif /* _KERNEL_PRINTK_RINGBUFFER_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 /* SPDX-License-Identifier: GPL-2.0 */ #include <linux/pagemap.h> #include <linux/blkdev.h> #include <linux/genhd.h> #include "../blk.h" /* * add_gd_partition adds a partitions details to the devices partition * description. */ struct parsed_partitions { struct block_device *bdev; char name[BDEVNAME_SIZE]; struct { sector_t from; sector_t size; int flags; bool has_info; struct partition_meta_info info; } *parts; int next; int limit; bool access_beyond_eod; char *pp_buf; }; typedef struct { struct page *v; } Sector; void *read_part_sector(struct parsed_partitions *state, sector_t n, Sector *p); static inline void put_dev_sector(Sector p) { put_page(p.v); } static inline void put_partition(struct parsed_partitions *p, int n, sector_t from, sector_t size) { if (n < p->limit) { char tmp[1 + BDEVNAME_SIZE + 10 + 1]; p->parts[n].from = from; p->parts[n].size = size; snprintf(tmp, sizeof(tmp), " %s%d", p->name, n); strlcat(p->pp_buf, tmp, PAGE_SIZE); } } /* detection routines go here in alphabetical order: */ int adfspart_check_ADFS(struct parsed_partitions *state); int adfspart_check_CUMANA(struct parsed_partitions *state); int adfspart_check_EESOX(struct parsed_partitions *state); int adfspart_check_ICS(struct parsed_partitions *state); int adfspart_check_POWERTEC(struct parsed_partitions *state); int aix_partition(struct parsed_partitions *state); int amiga_partition(struct parsed_partitions *state); int atari_partition(struct parsed_partitions *state); int cmdline_partition(struct parsed_partitions *state); int efi_partition(struct parsed_partitions *state); int ibm_partition(struct parsed_partitions *); int karma_partition(struct parsed_partitions *state); int ldm_partition(struct parsed_partitions *state); int mac_partition(struct parsed_partitions *state); int msdos_partition(struct parsed_partitions *state); int osf_partition(struct parsed_partitions *state); int sgi_partition(struct parsed_partitions *state); int sun_partition(struct parsed_partitions *state); int sysv68_partition(struct parsed_partitions *state); int ultrix_partition(struct parsed_partitions *state);
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_NETLINK_H #define __LINUX_NETLINK_H #include <linux/capability.h> #include <linux/skbuff.h> #include <linux/export.h> #include <net/scm.h> #include <uapi/linux/netlink.h> struct net; static inline struct nlmsghdr *nlmsg_hdr(const struct sk_buff *skb) { return (struct nlmsghdr *)skb->data; } enum netlink_skb_flags { NETLINK_SKB_DST = 0x8, /* Dst set in sendto or sendmsg */ }; struct netlink_skb_parms { struct scm_creds creds; /* Skb credentials */ __u32 portid; __u32 dst_group; __u32 flags; struct sock *sk; bool nsid_is_set; int nsid; }; #define NETLINK_CB(skb) (*(struct netlink_skb_parms*)&((skb)->cb)) #define NETLINK_CREDS(skb) (&NETLINK_CB((skb)).creds) void netlink_table_grab(void); void netlink_table_ungrab(void); #define NL_CFG_F_NONROOT_RECV (1 << 0) #define NL_CFG_F_NONROOT_SEND (1 << 1) /* optional Netlink kernel configuration parameters */ struct netlink_kernel_cfg { unsigned int groups; unsigned int flags; void (*input)(struct sk_buff *skb); struct mutex *cb_mutex; int (*bind)(struct net *net, int group); void (*unbind)(struct net *net, int group); bool (*compare)(struct net *net, struct sock *sk); }; struct sock *__netlink_kernel_create(struct net *net, int unit, struct module *module, struct netlink_kernel_cfg *cfg); static inline struct sock * netlink_kernel_create(struct net *net, int unit, struct netlink_kernel_cfg *cfg) { return __netlink_kernel_create(net, unit, THIS_MODULE, cfg); } /* this can be increased when necessary - don't expose to userland */ #define NETLINK_MAX_COOKIE_LEN 20 /** * struct netlink_ext_ack - netlink extended ACK report struct * @_msg: message string to report - don't access directly, use * %NL_SET_ERR_MSG * @bad_attr: attribute with error * @policy: policy for a bad attribute * @cookie: cookie data to return to userspace (for success) * @cookie_len: actual cookie data length */ struct netlink_ext_ack { const char *_msg; const struct nlattr *bad_attr; const struct nla_policy *policy; u8 cookie[NETLINK_MAX_COOKIE_LEN]; u8 cookie_len; }; /* Always use this macro, this allows later putting the * message into a separate section or such for things * like translation or listing all possible messages. * Currently string formatting is not supported (due * to the lack of an output buffer.) */ #define NL_SET_ERR_MSG(extack, msg) do { \ static const char __msg[] = msg; \ struct netlink_ext_ack *__extack = (extack); \ \ if (__extack) \ __extack->_msg = __msg; \ } while (0) #define NL_SET_ERR_MSG_MOD(extack, msg) \ NL_SET_ERR_MSG((extack), KBUILD_MODNAME ": " msg) #define NL_SET_BAD_ATTR_POLICY(extack, attr, pol) do { \ if ((extack)) { \ (extack)->bad_attr = (attr); \ (extack)->policy = (pol); \ } \ } while (0) #define NL_SET_BAD_ATTR(extack, attr) NL_SET_BAD_ATTR_POLICY(extack, attr, NULL) #define NL_SET_ERR_MSG_ATTR_POL(extack, attr, pol, msg) do { \ static const char __msg[] = msg; \ struct netlink_ext_ack *__extack = (extack); \ \ if (__extack) { \ __extack->_msg = __msg; \ __extack->bad_attr = (attr); \ __extack->policy = (pol); \ } \ } while (0) #define NL_SET_ERR_MSG_ATTR(extack, attr, msg) \ NL_SET_ERR_MSG_ATTR_POL(extack, attr, NULL, msg) static inline void nl_set_extack_cookie_u64(struct netlink_ext_ack *extack, u64 cookie) { u64 __cookie = cookie; if (!extack) return; memcpy(extack->cookie, &__cookie, sizeof(__cookie)); extack->cookie_len = sizeof(__cookie); } static inline void nl_set_extack_cookie_u32(struct netlink_ext_ack *extack, u32 cookie) { u32 __cookie = cookie; if (!extack) return; memcpy(extack->cookie, &__cookie, sizeof(__cookie)); extack->cookie_len = sizeof(__cookie); } void netlink_kernel_release(struct sock *sk); int __netlink_change_ngroups(struct sock *sk, unsigned int groups); int netlink_change_ngroups(struct sock *sk, unsigned int groups); void __netlink_clear_multicast_users(struct sock *sk, unsigned int group); void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err, const struct netlink_ext_ack *extack); int netlink_has_listeners(struct sock *sk, unsigned int group); bool netlink_strict_get_check(struct sk_buff *skb); int netlink_unicast(struct sock *ssk, struct sk_buff *skb, __u32 portid, int nonblock); int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, __u32 portid, __u32 group, gfp_t allocation); int netlink_broadcast_filtered(struct sock *ssk, struct sk_buff *skb, __u32 portid, __u32 group, gfp_t allocation, int (*filter)(struct sock *dsk, struct sk_buff *skb, void *data), void *filter_data); int netlink_set_err(struct sock *ssk, __u32 portid, __u32 group, int code); int netlink_register_notifier(struct notifier_block *nb); int netlink_unregister_notifier(struct notifier_block *nb); /* finegrained unicast helpers: */ struct sock *netlink_getsockbyfilp(struct file *filp); int netlink_attachskb(struct sock *sk, struct sk_buff *skb, long *timeo, struct sock *ssk); void netlink_detachskb(struct sock *sk, struct sk_buff *skb); int netlink_sendskb(struct sock *sk, struct sk_buff *skb); static inline struct sk_buff * netlink_skb_clone(struct sk_buff *skb, gfp_t gfp_mask) { struct sk_buff *nskb; nskb = skb_clone(skb, gfp_mask); if (!nskb) return NULL; /* This is a large skb, set destructor callback to release head */ if (is_vmalloc_addr(skb->head)) nskb->destructor = skb->destructor; return nskb; } /* * skb should fit one page. This choice is good for headerless malloc. * But we should limit to 8K so that userspace does not have to * use enormous buffer sizes on recvmsg() calls just to avoid * MSG_TRUNC when PAGE_SIZE is very large. */ #if PAGE_SIZE < 8192UL #define NLMSG_GOODSIZE SKB_WITH_OVERHEAD(PAGE_SIZE) #else #define NLMSG_GOODSIZE SKB_WITH_OVERHEAD(8192UL) #endif #define NLMSG_DEFAULT_SIZE (NLMSG_GOODSIZE - NLMSG_HDRLEN) struct netlink_callback { struct sk_buff *skb; const struct nlmsghdr *nlh; int (*dump)(struct sk_buff * skb, struct netlink_callback *cb); int (*done)(struct netlink_callback *cb); void *data; /* the module that dump function belong to */ struct module *module; struct netlink_ext_ack *extack; u16 family; u16 answer_flags; u32 min_dump_alloc; unsigned int prev_seq, seq; bool strict_check; union { u8 ctx[48]; /* args is deprecated. Cast a struct over ctx instead * for proper type safety. */ long args[6]; }; }; struct netlink_notify { struct net *net; u32 portid; int protocol; }; struct nlmsghdr * __nlmsg_put(struct sk_buff *skb, u32 portid, u32 seq, int type, int len, int flags); struct netlink_dump_control { int (*start)(struct netlink_callback *); int (*dump)(struct sk_buff *skb, struct netlink_callback *); int (*done)(struct netlink_callback *); void *data; struct module *module; u32 min_dump_alloc; }; int __netlink_dump_start(struct sock *ssk, struct sk_buff *skb, const struct nlmsghdr *nlh, struct netlink_dump_control *control); static inline int netlink_dump_start(struct sock *ssk, struct sk_buff *skb, const struct nlmsghdr *nlh, struct netlink_dump_control *control) { if (!control->module) control->module = THIS_MODULE; return __netlink_dump_start(ssk, skb, nlh, control); } struct netlink_tap { struct net_device *dev; struct module *module; struct list_head list; }; int netlink_add_tap(struct netlink_tap *nt); int netlink_remove_tap(struct netlink_tap *nt); bool __netlink_ns_capable(const struct netlink_skb_parms *nsp, struct user_namespace *ns, int cap); bool netlink_ns_capable(const struct sk_buff *skb, struct user_namespace *ns, int cap); bool netlink_capable(const struct sk_buff *skb, int cap); bool netlink_net_capable(const struct sk_buff *skb, int cap); #endif /* __LINUX_NETLINK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __ASM_GENERIC_PGALLOC_H #define __ASM_GENERIC_PGALLOC_H #ifdef CONFIG_MMU #define GFP_PGTABLE_KERNEL (GFP_KERNEL | __GFP_ZERO) #define GFP_PGTABLE_USER (GFP_PGTABLE_KERNEL | __GFP_ACCOUNT) /** * __pte_alloc_one_kernel - allocate a page for PTE-level kernel page table * @mm: the mm_struct of the current context * * This function is intended for architectures that need * anything beyond simple page allocation. * * Return: pointer to the allocated memory or %NULL on error */ static inline pte_t *__pte_alloc_one_kernel(struct mm_struct *mm) { return (pte_t *)__get_free_page(GFP_PGTABLE_KERNEL); } #ifndef __HAVE_ARCH_PTE_ALLOC_ONE_KERNEL /** * pte_alloc_one_kernel - allocate a page for PTE-level kernel page table * @mm: the mm_struct of the current context * * Return: pointer to the allocated memory or %NULL on error */ static inline pte_t *pte_alloc_one_kernel(struct mm_struct *mm) { return __pte_alloc_one_kernel(mm); } #endif /** * pte_free_kernel - free PTE-level kernel page table page * @mm: the mm_struct of the current context * @pte: pointer to the memory containing the page table */ static inline void pte_free_kernel(struct mm_struct *mm, pte_t *pte) { free_page((unsigned long)pte); } /** * __pte_alloc_one - allocate a page for PTE-level user page table * @mm: the mm_struct of the current context * @gfp: GFP flags to use for the allocation * * Allocates a page and runs the pgtable_pte_page_ctor(). * * This function is intended for architectures that need * anything beyond simple page allocation or must have custom GFP flags. * * Return: `struct page` initialized as page table or %NULL on error */ static inline pgtable_t __pte_alloc_one(struct mm_struct *mm, gfp_t gfp) { struct page *pte; pte = alloc_page(gfp); if (!pte) return NULL; if (!pgtable_pte_page_ctor(pte)) { __free_page(pte); return NULL; } return pte; } #ifndef __HAVE_ARCH_PTE_ALLOC_ONE /** * pte_alloc_one - allocate a page for PTE-level user page table * @mm: the mm_struct of the current context * * Allocates a page and runs the pgtable_pte_page_ctor(). * * Return: `struct page` initialized as page table or %NULL on error */ static inline pgtable_t pte_alloc_one(struct mm_struct *mm) { return __pte_alloc_one(mm, GFP_PGTABLE_USER); } #endif /* * Should really implement gc for free page table pages. This could be * done with a reference count in struct page. */ /** * pte_free - free PTE-level user page table page * @mm: the mm_struct of the current context * @pte_page: the `struct page` representing the page table */ static inline void pte_free(struct mm_struct *mm, struct page *pte_page) { pgtable_pte_page_dtor(pte_page); __free_page(pte_page); } #if CONFIG_PGTABLE_LEVELS > 2 #ifndef __HAVE_ARCH_PMD_ALLOC_ONE /** * pmd_alloc_one - allocate a page for PMD-level page table * @mm: the mm_struct of the current context * * Allocates a page and runs the pgtable_pmd_page_ctor(). * Allocations use %GFP_PGTABLE_USER in user context and * %GFP_PGTABLE_KERNEL in kernel context. * * Return: pointer to the allocated memory or %NULL on error */ static inline pmd_t *pmd_alloc_one(struct mm_struct *mm, unsigned long addr) { struct page *page; gfp_t gfp = GFP_PGTABLE_USER; if (mm == &init_mm) gfp = GFP_PGTABLE_KERNEL; page = alloc_pages(gfp, 0); if (!page) return NULL; if (!pgtable_pmd_page_ctor(page)) { __free_pages(page, 0); return NULL; } return (pmd_t *)page_address(page); } #endif #ifndef __HAVE_ARCH_PMD_FREE static inline void pmd_free(struct mm_struct *mm, pmd_t *pmd) { BUG_ON((unsigned long)pmd & (PAGE_SIZE-1)); pgtable_pmd_page_dtor(virt_to_page(pmd)); free_page((unsigned long)pmd); } #endif #endif /* CONFIG_PGTABLE_LEVELS > 2 */ #if CONFIG_PGTABLE_LEVELS > 3 #ifndef __HAVE_ARCH_PUD_ALLOC_ONE /** * pud_alloc_one - allocate a page for PUD-level page table * @mm: the mm_struct of the current context * * Allocates a page using %GFP_PGTABLE_USER for user context and * %GFP_PGTABLE_KERNEL for kernel context. * * Return: pointer to the allocated memory or %NULL on error */ static inline pud_t *pud_alloc_one(struct mm_struct *mm, unsigned long addr) { gfp_t gfp = GFP_PGTABLE_USER; if (mm == &init_mm) gfp = GFP_PGTABLE_KERNEL; return (pud_t *)get_zeroed_page(gfp); } #endif static inline void pud_free(struct mm_struct *mm, pud_t *pud) { BUG_ON((unsigned long)pud & (PAGE_SIZE-1)); free_page((unsigned long)pud); } #endif /* CONFIG_PGTABLE_LEVELS > 3 */ #ifndef __HAVE_ARCH_PGD_FREE static inline void pgd_free(struct mm_struct *mm, pgd_t *pgd) { free_page((unsigned long)pgd); } #endif #endif /* CONFIG_MMU */ #endif /* __ASM_GENERIC_PGALLOC_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 /* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (C) 2018 Christoph Hellwig. * * DMA operations that map physical memory directly without using an IOMMU. */ #ifndef _KERNEL_DMA_DIRECT_H #define _KERNEL_DMA_DIRECT_H #include <linux/dma-direct.h> int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt, void *cpu_addr, dma_addr_t dma_addr, size_t size, unsigned long attrs); bool dma_direct_can_mmap(struct device *dev); int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma, void *cpu_addr, dma_addr_t dma_addr, size_t size, unsigned long attrs); bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr); int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents, enum dma_data_direction dir, unsigned long attrs); size_t dma_direct_max_mapping_size(struct device *dev); #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ defined(CONFIG_SWIOTLB) void dma_direct_sync_sg_for_device(struct device *dev, struct scatterlist *sgl, int nents, enum dma_data_direction dir); #else static inline void dma_direct_sync_sg_for_device(struct device *dev, struct scatterlist *sgl, int nents, enum dma_data_direction dir) { } #endif #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \ defined(CONFIG_SWIOTLB) void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl, int nents, enum dma_data_direction dir, unsigned long attrs); void dma_direct_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl, int nents, enum dma_data_direction dir); #else static inline void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl, int nents, enum dma_data_direction dir, unsigned long attrs) { } static inline void dma_direct_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl, int nents, enum dma_data_direction dir) { } #endif static inline void dma_direct_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size, enum dma_data_direction dir) { phys_addr_t paddr = dma_to_phys(dev, addr); if (unlikely(is_swiotlb_buffer(paddr))) swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_DEVICE); if (!dev_is_dma_coherent(dev)) arch_sync_dma_for_device(paddr, size, dir); } static inline void dma_direct_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size, enum dma_data_direction dir) { phys_addr_t paddr = dma_to_phys(dev, addr); if (!dev_is_dma_coherent(dev)) { arch_sync_dma_for_cpu(paddr, size, dir); arch_sync_dma_for_cpu_all(); } if (unlikely(is_swiotlb_buffer(paddr))) swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_CPU); if (dir == DMA_FROM_DEVICE) arch_dma_mark_clean(paddr, size); } static inline dma_addr_t dma_direct_map_page(struct device *dev, struct page *page, unsigned long offset, size_t size, enum dma_data_direction dir, unsigned long attrs) { phys_addr_t phys = page_to_phys(page) + offset; dma_addr_t dma_addr = phys_to_dma(dev, phys); if (unlikely(swiotlb_force == SWIOTLB_FORCE)) return swiotlb_map(dev, phys, size, dir, attrs); if (unlikely(!dma_capable(dev, dma_addr, size, true))) { if (swiotlb_force != SWIOTLB_NO_FORCE) return swiotlb_map(dev, phys, size, dir, attrs); dev_WARN_ONCE(dev, 1, "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n", &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit); return DMA_MAPPING_ERROR; } if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) arch_sync_dma_for_device(phys, size, dir); return dma_addr; } static inline void dma_direct_unmap_page(struct device *dev, dma_addr_t addr, size_t size, enum dma_data_direction dir, unsigned long attrs) { phys_addr_t phys = dma_to_phys(dev, addr); if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) dma_direct_sync_single_for_cpu(dev, addr, size, dir); if (unlikely(is_swiotlb_buffer(phys))) swiotlb_tbl_unmap_single(dev, phys, size, size, dir, attrs); } #endif /* _KERNEL_DMA_DIRECT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM exceptions #if !defined(_TRACE_PAGE_FAULT_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_PAGE_FAULT_H #include <linux/tracepoint.h> #include <asm/trace/common.h> extern int trace_pagefault_reg(void); extern void trace_pagefault_unreg(void); DECLARE_EVENT_CLASS(x86_exceptions, TP_PROTO(unsigned long address, struct pt_regs *regs, unsigned long error_code), TP_ARGS(address, regs, error_code), TP_STRUCT__entry( __field( unsigned long, address ) __field( unsigned long, ip ) __field( unsigned long, error_code ) ), TP_fast_assign( __entry->address = address; __entry->ip = regs->ip; __entry->error_code = error_code; ), TP_printk("address=%ps ip=%ps error_code=0x%lx", (void *)__entry->address, (void *)__entry->ip, __entry->error_code) ); #define DEFINE_PAGE_FAULT_EVENT(name) \ DEFINE_EVENT_FN(x86_exceptions, name, \ TP_PROTO(unsigned long address, struct pt_regs *regs, \ unsigned long error_code), \ TP_ARGS(address, regs, error_code), \ trace_pagefault_reg, trace_pagefault_unreg); DEFINE_PAGE_FAULT_EVENT(page_fault_user); DEFINE_PAGE_FAULT_EVENT(page_fault_kernel); #undef TRACE_INCLUDE_PATH #undef TRACE_INCLUDE_FILE #define TRACE_INCLUDE_PATH . #define TRACE_INCLUDE_FILE exceptions #endif /* _TRACE_PAGE_FAULT_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_COMPACTION_H #define _LINUX_COMPACTION_H /* * Determines how hard direct compaction should try to succeed. * Lower value means higher priority, analogically to reclaim priority. */ enum compact_priority { COMPACT_PRIO_SYNC_FULL, MIN_COMPACT_PRIORITY = COMPACT_PRIO_SYNC_FULL, COMPACT_PRIO_SYNC_LIGHT, MIN_COMPACT_COSTLY_PRIORITY = COMPACT_PRIO_SYNC_LIGHT, DEF_COMPACT_PRIORITY = COMPACT_PRIO_SYNC_LIGHT, COMPACT_PRIO_ASYNC, INIT_COMPACT_PRIORITY = COMPACT_PRIO_ASYNC }; /* Return values for compact_zone() and try_to_compact_pages() */ /* When adding new states, please adjust include/trace/events/compaction.h */ enum compact_result { /* For more detailed tracepoint output - internal to compaction */ COMPACT_NOT_SUITABLE_ZONE, /* * compaction didn't start as it was not possible or direct reclaim * was more suitable */ COMPACT_SKIPPED, /* compaction didn't start as it was deferred due to past failures */ COMPACT_DEFERRED, /* For more detailed tracepoint output - internal to compaction */ COMPACT_NO_SUITABLE_PAGE, /* compaction should continue to another pageblock */ COMPACT_CONTINUE, /* * The full zone was compacted scanned but wasn't successfull to compact * suitable pages. */ COMPACT_COMPLETE, /* * direct compaction has scanned part of the zone but wasn't successfull * to compact suitable pages. */ COMPACT_PARTIAL_SKIPPED, /* compaction terminated prematurely due to lock contentions */ COMPACT_CONTENDED, /* * direct compaction terminated after concluding that the allocation * should now succeed */ COMPACT_SUCCESS, }; struct alloc_context; /* in mm/internal.h */ /* * Number of free order-0 pages that should be available above given watermark * to make sure compaction has reasonable chance of not running out of free * pages that it needs to isolate as migration target during its work. */ static inline unsigned long compact_gap(unsigned int order) { /* * Although all the isolations for migration are temporary, compaction * free scanner may have up to 1 << order pages on its list and then * try to split an (order - 1) free page. At that point, a gap of * 1 << order might not be enough, so it's safer to require twice that * amount. Note that the number of pages on the list is also * effectively limited by COMPACT_CLUSTER_MAX, as that's the maximum * that the migrate scanner can have isolated on migrate list, and free * scanner is only invoked when the number of isolated free pages is * lower than that. But it's not worth to complicate the formula here * as a bigger gap for higher orders than strictly necessary can also * improve chances of compaction success. */ return 2UL << order; } #ifdef CONFIG_COMPACTION extern int sysctl_compact_memory; extern unsigned int sysctl_compaction_proactiveness; extern int sysctl_compaction_handler(struct ctl_table *table, int write, void *buffer, size_t *length, loff_t *ppos); extern int sysctl_extfrag_threshold; extern int sysctl_compact_unevictable_allowed; extern unsigned int extfrag_for_order(struct zone *zone, unsigned int order); extern int fragmentation_index(struct zone *zone, unsigned int order); extern enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order, unsigned int alloc_flags, const struct alloc_context *ac, enum compact_priority prio, struct page **page); extern void reset_isolation_suitable(pg_data_t *pgdat); extern enum compact_result compaction_suitable(struct zone *zone, int order, unsigned int alloc_flags, int highest_zoneidx); extern void defer_compaction(struct zone *zone, int order); extern bool compaction_deferred(struct zone *zone, int order); extern void compaction_defer_reset(struct zone *zone, int order, bool alloc_success); extern bool compaction_restarting(struct zone *zone, int order); /* Compaction has made some progress and retrying makes sense */ static inline bool compaction_made_progress(enum compact_result result) { /* * Even though this might sound confusing this in fact tells us * that the compaction successfully isolated and migrated some * pageblocks. */ if (result == COMPACT_SUCCESS) return true; return false; } /* Compaction has failed and it doesn't make much sense to keep retrying. */ static inline bool compaction_failed(enum compact_result result) { /* All zones were scanned completely and still not result. */ if (result == COMPACT_COMPLETE) return true; return false; } /* Compaction needs reclaim to be performed first, so it can continue. */ static inline bool compaction_needs_reclaim(enum compact_result result) { /* * Compaction backed off due to watermark checks for order-0 * so the regular reclaim has to try harder and reclaim something. */ if (result == COMPACT_SKIPPED) return true; return false; } /* * Compaction has backed off for some reason after doing some work or none * at all. It might be throttling or lock contention. Retrying might be still * worthwhile, but with a higher priority if allowed. */ static inline bool compaction_withdrawn(enum compact_result result) { /* * If compaction is deferred for high-order allocations, it is * because sync compaction recently failed. If this is the case * and the caller requested a THP allocation, we do not want * to heavily disrupt the system, so we fail the allocation * instead of entering direct reclaim. */ if (result == COMPACT_DEFERRED) return true; /* * If compaction in async mode encounters contention or blocks higher * priority task we back off early rather than cause stalls. */ if (result == COMPACT_CONTENDED) return true; /* * Page scanners have met but we haven't scanned full zones so this * is a back off in fact. */ if (result == COMPACT_PARTIAL_SKIPPED) return true; return false; } bool compaction_zonelist_suitable(struct alloc_context *ac, int order, int alloc_flags); extern int kcompactd_run(int nid); extern void kcompactd_stop(int nid); extern void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx); #else static inline void reset_isolation_suitable(pg_data_t *pgdat) { } static inline enum compact_result compaction_suitable(struct zone *zone, int order, int alloc_flags, int highest_zoneidx) { return COMPACT_SKIPPED; } static inline void defer_compaction(struct zone *zone, int order) { } static inline bool compaction_deferred(struct zone *zone, int order) { return true; } static inline bool compaction_made_progress(enum compact_result result) { return false; } static inline bool compaction_failed(enum compact_result result) { return false; } static inline bool compaction_needs_reclaim(enum compact_result result) { return false; } static inline bool compaction_withdrawn(enum compact_result result) { return true; } static inline int kcompactd_run(int nid) { return 0; } static inline void kcompactd_stop(int nid) { } static inline void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx) { } #endif /* CONFIG_COMPACTION */ struct node; #if defined(CONFIG_COMPACTION) && defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) extern int compaction_register_node(struct node *node); extern void compaction_unregister_node(struct node *node); #else static inline int compaction_register_node(struct node *node) { return 0; } static inline void compaction_unregister_node(struct node *node) { } #endif /* CONFIG_COMPACTION && CONFIG_SYSFS && CONFIG_NUMA */ #endif /* _LINUX_COMPACTION_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SCHED_MM_H #define _LINUX_SCHED_MM_H #include <linux/kernel.h> #include <linux/atomic.h> #include <linux/sched.h> #include <linux/mm_types.h> #include <linux/gfp.h> #include <linux/sync_core.h> /* * Routines for handling mm_structs */ extern struct mm_struct *mm_alloc(void); /** * mmgrab() - Pin a &struct mm_struct. * @mm: The &struct mm_struct to pin. * * Make sure that @mm will not get freed even after the owning task * exits. This doesn't guarantee that the associated address space * will still exist later on and mmget_not_zero() has to be used before * accessing it. * * This is a preferred way to pin @mm for a longer/unbounded amount * of time. * * Use mmdrop() to release the reference acquired by mmgrab(). * * See also <Documentation/vm/active_mm.rst> for an in-depth explanation * of &mm_struct.mm_count vs &mm_struct.mm_users. */ static inline void mmgrab(struct mm_struct *mm) { atomic_inc(&mm->mm_count); } extern void __mmdrop(struct mm_struct *mm); static inline void mmdrop(struct mm_struct *mm) { /* * The implicit full barrier implied by atomic_dec_and_test() is * required by the membarrier system call before returning to * user-space, after storing to rq->curr. */ if (unlikely(atomic_dec_and_test(&mm->mm_count))) __mmdrop(mm); } /** * mmget() - Pin the address space associated with a &struct mm_struct. * @mm: The address space to pin. * * Make sure that the address space of the given &struct mm_struct doesn't * go away. This does not protect against parts of the address space being * modified or freed, however. * * Never use this function to pin this address space for an * unbounded/indefinite amount of time. * * Use mmput() to release the reference acquired by mmget(). * * See also <Documentation/vm/active_mm.rst> for an in-depth explanation * of &mm_struct.mm_count vs &mm_struct.mm_users. */ static inline void mmget(struct mm_struct *mm) { atomic_inc(&mm->mm_users); } static inline bool mmget_not_zero(struct mm_struct *mm) { return atomic_inc_not_zero(&mm->mm_users); } /* mmput gets rid of the mappings and all user-space */ extern void mmput(struct mm_struct *); #ifdef CONFIG_MMU /* same as above but performs the slow path from the async context. Can * be called from the atomic context as well */ void mmput_async(struct mm_struct *); #endif /* Grab a reference to a task's mm, if it is not already going away */ extern struct mm_struct *get_task_mm(struct task_struct *task); /* * Grab a reference to a task's mm, if it is not already going away * and ptrace_may_access with the mode parameter passed to it * succeeds. */ extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode); /* Remove the current tasks stale references to the old mm_struct on exit() */ extern void exit_mm_release(struct task_struct *, struct mm_struct *); /* Remove the current tasks stale references to the old mm_struct on exec() */ extern void exec_mm_release(struct task_struct *, struct mm_struct *); #ifdef CONFIG_MEMCG extern void mm_update_next_owner(struct mm_struct *mm); #else static inline void mm_update_next_owner(struct mm_struct *mm) { } #endif /* CONFIG_MEMCG */ #ifdef CONFIG_MMU extern void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack); extern unsigned long arch_get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); extern unsigned long arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags); #else static inline void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack) {} #endif static inline bool in_vfork(struct task_struct *tsk) { bool ret; /* * need RCU to access ->real_parent if CLONE_VM was used along with * CLONE_PARENT. * * We check real_parent->mm == tsk->mm because CLONE_VFORK does not * imply CLONE_VM * * CLONE_VFORK can be used with CLONE_PARENT/CLONE_THREAD and thus * ->real_parent is not necessarily the task doing vfork(), so in * theory we can't rely on task_lock() if we want to dereference it. * * And in this case we can't trust the real_parent->mm == tsk->mm * check, it can be false negative. But we do not care, if init or * another oom-unkillable task does this it should blame itself. */ rcu_read_lock(); ret = tsk->vfork_done && rcu_dereference(tsk->real_parent)->mm == tsk->mm; rcu_read_unlock(); return ret; } /* * Applies per-task gfp context to the given allocation flags. * PF_MEMALLOC_NOIO implies GFP_NOIO * PF_MEMALLOC_NOFS implies GFP_NOFS */ static inline gfp_t current_gfp_context(gfp_t flags) { unsigned int pflags = READ_ONCE(current->flags); if (unlikely(pflags & (PF_MEMALLOC_NOIO | PF_MEMALLOC_NOFS))) { /* * NOIO implies both NOIO and NOFS and it is a weaker context * so always make sure it makes precedence */ if (pflags & PF_MEMALLOC_NOIO) flags &= ~(__GFP_IO | __GFP_FS); else if (pflags & PF_MEMALLOC_NOFS) flags &= ~__GFP_FS; } return flags; } #ifdef CONFIG_LOCKDEP extern void __fs_reclaim_acquire(void); extern void __fs_reclaim_release(void); extern void fs_reclaim_acquire(gfp_t gfp_mask); extern void fs_reclaim_release(gfp_t gfp_mask); #else static inline void __fs_reclaim_acquire(void) { } static inline void __fs_reclaim_release(void) { } static inline void fs_reclaim_acquire(gfp_t gfp_mask) { } static inline void fs_reclaim_release(gfp_t gfp_mask) { } #endif /** * memalloc_noio_save - Marks implicit GFP_NOIO allocation scope. * * This functions marks the beginning of the GFP_NOIO allocation scope. * All further allocations will implicitly drop __GFP_IO flag and so * they are safe for the IO critical section from the allocation recursion * point of view. Use memalloc_noio_restore to end the scope with flags * returned by this function. * * This function is safe to be used from any context. */ static inline unsigned int memalloc_noio_save(void) { unsigned int flags = current->flags & PF_MEMALLOC_NOIO; current->flags |= PF_MEMALLOC_NOIO; return flags; } /** * memalloc_noio_restore - Ends the implicit GFP_NOIO scope. * @flags: Flags to restore. * * Ends the implicit GFP_NOIO scope started by memalloc_noio_save function. * Always make sure that the given flags is the return value from the * pairing memalloc_noio_save call. */ static inline void memalloc_noio_restore(unsigned int flags) { current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags; } /** * memalloc_nofs_save - Marks implicit GFP_NOFS allocation scope. * * This functions marks the beginning of the GFP_NOFS allocation scope. * All further allocations will implicitly drop __GFP_FS flag and so * they are safe for the FS critical section from the allocation recursion * point of view. Use memalloc_nofs_restore to end the scope with flags * returned by this function. * * This function is safe to be used from any context. */ static inline unsigned int memalloc_nofs_save(void) { unsigned int flags = current->flags & PF_MEMALLOC_NOFS; current->flags |= PF_MEMALLOC_NOFS; return flags; } /** * memalloc_nofs_restore - Ends the implicit GFP_NOFS scope. * @flags: Flags to restore. * * Ends the implicit GFP_NOFS scope started by memalloc_nofs_save function. * Always make sure that the given flags is the return value from the * pairing memalloc_nofs_save call. */ static inline void memalloc_nofs_restore(unsigned int flags) { current->flags = (current->flags & ~PF_MEMALLOC_NOFS) | flags; } static inline unsigned int memalloc_noreclaim_save(void) { unsigned int flags = current->flags & PF_MEMALLOC; current->flags |= PF_MEMALLOC; return flags; } static inline void memalloc_noreclaim_restore(unsigned int flags) { current->flags = (current->flags & ~PF_MEMALLOC) | flags; } #ifdef CONFIG_CMA static inline unsigned int memalloc_nocma_save(void) { unsigned int flags = current->flags & PF_MEMALLOC_NOCMA; current->flags |= PF_MEMALLOC_NOCMA; return flags; } static inline void memalloc_nocma_restore(unsigned int flags) { current->flags = (current->flags & ~PF_MEMALLOC_NOCMA) | flags; } #else static inline unsigned int memalloc_nocma_save(void) { return 0; } static inline void memalloc_nocma_restore(unsigned int flags) { } #endif #ifdef CONFIG_MEMCG DECLARE_PER_CPU(struct mem_cgroup *, int_active_memcg); /** * set_active_memcg - Starts the remote memcg charging scope. * @memcg: memcg to charge. * * This function marks the beginning of the remote memcg charging scope. All the * __GFP_ACCOUNT allocations till the end of the scope will be charged to the * given memcg. * * NOTE: This function can nest. Users must save the return value and * reset the previous value after their own charging scope is over. */ static inline struct mem_cgroup * set_active_memcg(struct mem_cgroup *memcg) { struct mem_cgroup *old; if (in_interrupt()) { old = this_cpu_read(int_active_memcg); this_cpu_write(int_active_memcg, memcg); } else { old = current->active_memcg; current->active_memcg = memcg; } return old; } #else static inline struct mem_cgroup * set_active_memcg(struct mem_cgroup *memcg) { return NULL; } #endif #ifdef CONFIG_MEMBARRIER enum { MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY = (1U << 0), MEMBARRIER_STATE_PRIVATE_EXPEDITED = (1U << 1), MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY = (1U << 2), MEMBARRIER_STATE_GLOBAL_EXPEDITED = (1U << 3), MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY = (1U << 4), MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE = (1U << 5), MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ_READY = (1U << 6), MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ = (1U << 7), }; enum { MEMBARRIER_FLAG_SYNC_CORE = (1U << 0), MEMBARRIER_FLAG_RSEQ = (1U << 1), }; #ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS #include <asm/membarrier.h> #endif static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm) { if (current->mm != mm) return; if (likely(!(atomic_read(&mm->membarrier_state) & MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE))) return; sync_core_before_usermode(); } extern void membarrier_exec_mmap(struct mm_struct *mm); #else #ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS static inline void membarrier_arch_switch_mm(struct mm_struct *prev, struct mm_struct *next, struct task_struct *tsk) { } #endif static inline void membarrier_exec_mmap(struct mm_struct *mm) { } static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm) { } #endif #endif /* _LINUX_SCHED_MM_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 /* SPDX-License-Identifier: GPL-2.0 */ /* * Resizable, Scalable, Concurrent Hash Table * * Copyright (c) 2015-2016 Herbert Xu <herbert@gondor.apana.org.au> * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch> * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net> * * Code partially derived from nft_hash * Rewritten with rehash code from br_multicast plus single list * pointer as suggested by Josh Triplett * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #ifndef _LINUX_RHASHTABLE_H #define _LINUX_RHASHTABLE_H #include <linux/err.h> #include <linux/errno.h> #include <linux/jhash.h> #include <linux/list_nulls.h> #include <linux/workqueue.h> #include <linux/rculist.h> #include <linux/bit_spinlock.h> #include <linux/rhashtable-types.h> /* * Objects in an rhashtable have an embedded struct rhash_head * which is linked into as hash chain from the hash table - or one * of two or more hash tables when the rhashtable is being resized. * The end of the chain is marked with a special nulls marks which has * the least significant bit set but otherwise stores the address of * the hash bucket. This allows us to be sure we've found the end * of the right list. * The value stored in the hash bucket has BIT(0) used as a lock bit. * This bit must be atomically set before any changes are made to * the chain. To avoid dereferencing this pointer without clearing * the bit first, we use an opaque 'struct rhash_lock_head *' for the * pointer stored in the bucket. This struct needs to be defined so * that rcu_dereference() works on it, but it has no content so a * cast is needed for it to be useful. This ensures it isn't * used by mistake with clearing the lock bit first. */ struct rhash_lock_head {}; /* Maximum chain length before rehash * * The maximum (not average) chain length grows with the size of the hash * table, at a rate of (log N)/(log log N). * * The value of 16 is selected so that even if the hash table grew to * 2^32 you would not expect the maximum chain length to exceed it * unless we are under attack (or extremely unlucky). * * As this limit is only to detect attacks, we don't need to set it to a * lower value as you'd need the chain length to vastly exceed 16 to have * any real effect on the system. */ #define RHT_ELASTICITY 16u /** * struct bucket_table - Table of hash buckets * @size: Number of hash buckets * @nest: Number of bits of first-level nested table. * @rehash: Current bucket being rehashed * @hash_rnd: Random seed to fold into hash * @walkers: List of active walkers * @rcu: RCU structure for freeing the table * @future_tbl: Table under construction during rehashing * @ntbl: Nested table used when out of memory. * @buckets: size * hash buckets */ struct bucket_table { unsigned int size; unsigned int nest; u32 hash_rnd; struct list_head walkers; struct rcu_head rcu; struct bucket_table __rcu *future_tbl; struct lockdep_map dep_map; struct rhash_lock_head __rcu *buckets[] ____cacheline_aligned_in_smp; }; /* * NULLS_MARKER() expects a hash value with the low * bits mostly likely to be significant, and it discards * the msb. * We give it an address, in which the bottom bit is * always 0, and the msb might be significant. * So we shift the address down one bit to align with * expectations and avoid losing a significant bit. * * We never store the NULLS_MARKER in the hash table * itself as we need the lsb for locking. * Instead we store a NULL */ #define RHT_NULLS_MARKER(ptr) \ ((void *)NULLS_MARKER(((unsigned long) (ptr)) >> 1)) #define INIT_RHT_NULLS_HEAD(ptr) \ ((ptr) = NULL) static inline bool rht_is_a_nulls(const struct rhash_head *ptr) { return ((unsigned long) ptr & 1); } static inline void *rht_obj(const struct rhashtable *ht, const struct rhash_head *he) { return (char *)he - ht->p.head_offset; } static inline unsigned int rht_bucket_index(const struct bucket_table *tbl, unsigned int hash) { return hash & (tbl->size - 1); } static inline unsigned int rht_key_get_hash(struct rhashtable *ht, const void *key, const struct rhashtable_params params, unsigned int hash_rnd) { unsigned int hash; /* params must be equal to ht->p if it isn't constant. */ if (!__builtin_constant_p(params.key_len)) hash = ht->p.hashfn(key, ht->key_len, hash_rnd); else if (params.key_len) { unsigned int key_len = params.key_len; if (params.hashfn) hash = params.hashfn(key, key_len, hash_rnd); else if (key_len & (sizeof(u32) - 1)) hash = jhash(key, key_len, hash_rnd); else hash = jhash2(key, key_len / sizeof(u32), hash_rnd); } else { unsigned int key_len = ht->p.key_len; if (params.hashfn) hash = params.hashfn(key, key_len, hash_rnd); else hash = jhash(key, key_len, hash_rnd); } return hash; } static inline unsigned int rht_key_hashfn( struct rhashtable *ht, const struct bucket_table *tbl, const void *key, const struct rhashtable_params params) { unsigned int hash = rht_key_get_hash(ht, key, params, tbl->hash_rnd); return rht_bucket_index(tbl, hash); } static inline unsigned int rht_head_hashfn( struct rhashtable *ht, const struct bucket_table *tbl, const struct rhash_head *he, const struct rhashtable_params params) { const char *ptr = rht_obj(ht, he); return likely(params.obj_hashfn) ? rht_bucket_index(tbl, params.obj_hashfn(ptr, params.key_len ?: ht->p.key_len, tbl->hash_rnd)) : rht_key_hashfn(ht, tbl, ptr + params.key_offset, params); } /** * rht_grow_above_75 - returns true if nelems > 0.75 * table-size * @ht: hash table * @tbl: current table */ static inline bool rht_grow_above_75(const struct rhashtable *ht, const struct bucket_table *tbl) { /* Expand table when exceeding 75% load */ return atomic_read(&ht->nelems) > (tbl->size / 4 * 3) && (!ht->p.max_size || tbl->size < ht->p.max_size); } /** * rht_shrink_below_30 - returns true if nelems < 0.3 * table-size * @ht: hash table * @tbl: current table */ static inline bool rht_shrink_below_30(const struct rhashtable *ht, const struct bucket_table *tbl) { /* Shrink table beneath 30% load */ return atomic_read(&ht->nelems) < (tbl->size * 3 / 10) && tbl->size > ht->p.min_size; } /** * rht_grow_above_100 - returns true if nelems > table-size * @ht: hash table * @tbl: current table */ static inline bool rht_grow_above_100(const struct rhashtable *ht, const struct bucket_table *tbl) { return atomic_read(&ht->nelems) > tbl->size && (!ht->p.max_size || tbl->size < ht->p.max_size); } /** * rht_grow_above_max - returns true if table is above maximum * @ht: hash table * @tbl: current table */ static inline bool rht_grow_above_max(const struct rhashtable *ht, const struct bucket_table *tbl) { return atomic_read(&ht->nelems) >= ht->max_elems; } #ifdef CONFIG_PROVE_LOCKING int lockdep_rht_mutex_is_held(struct rhashtable *ht); int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash); #else static inline int lockdep_rht_mutex_is_held(struct rhashtable *ht) { return 1; } static inline int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash) { return 1; } #endif /* CONFIG_PROVE_LOCKING */ void *rhashtable_insert_slow(struct rhashtable *ht, const void *key, struct rhash_head *obj); void rhashtable_walk_enter(struct rhashtable *ht, struct rhashtable_iter *iter); void rhashtable_walk_exit(struct rhashtable_iter *iter); int rhashtable_walk_start_check(struct rhashtable_iter *iter) __acquires(RCU); static inline void rhashtable_walk_start(struct rhashtable_iter *iter) { (void)rhashtable_walk_start_check(iter); } void *rhashtable_walk_next(struct rhashtable_iter *iter); void *rhashtable_walk_peek(struct rhashtable_iter *iter); void rhashtable_walk_stop(struct rhashtable_iter *iter) __releases(RCU); void rhashtable_free_and_destroy(struct rhashtable *ht, void (*free_fn)(void *ptr, void *arg), void *arg); void rhashtable_destroy(struct rhashtable *ht); struct rhash_lock_head __rcu **rht_bucket_nested( const struct bucket_table *tbl, unsigned int hash); struct rhash_lock_head __rcu **__rht_bucket_nested( const struct bucket_table *tbl, unsigned int hash); struct rhash_lock_head __rcu **rht_bucket_nested_insert( struct rhashtable *ht, struct bucket_table *tbl, unsigned int hash); #define rht_dereference(p, ht) \ rcu_dereference_protected(p, lockdep_rht_mutex_is_held(ht)) #define rht_dereference_rcu(p, ht) \ rcu_dereference_check(p, lockdep_rht_mutex_is_held(ht)) #define rht_dereference_bucket(p, tbl, hash) \ rcu_dereference_protected(p, lockdep_rht_bucket_is_held(tbl, hash)) #define rht_dereference_bucket_rcu(p, tbl, hash) \ rcu_dereference_check(p, lockdep_rht_bucket_is_held(tbl, hash)) #define rht_entry(tpos, pos, member) \ ({ tpos = container_of(pos, typeof(*tpos), member); 1; }) static inline struct rhash_lock_head __rcu *const *rht_bucket( const struct bucket_table *tbl, unsigned int hash) { return unlikely(tbl->nest) ? rht_bucket_nested(tbl, hash) : &tbl->buckets[hash]; } static inline struct rhash_lock_head __rcu **rht_bucket_var( struct bucket_table *tbl, unsigned int hash) { return unlikely(tbl->nest) ? __rht_bucket_nested(tbl, hash) : &tbl->buckets[hash]; } static inline struct rhash_lock_head __rcu **rht_bucket_insert( struct rhashtable *ht, struct bucket_table *tbl, unsigned int hash) { return unlikely(tbl->nest) ? rht_bucket_nested_insert(ht, tbl, hash) : &tbl->buckets[hash]; } /* * We lock a bucket by setting BIT(0) in the pointer - this is always * zero in real pointers. The NULLS mark is never stored in the bucket, * rather we store NULL if the bucket is empty. * bit_spin_locks do not handle contention well, but the whole point * of the hashtable design is to achieve minimum per-bucket contention. * A nested hash table might not have a bucket pointer. In that case * we cannot get a lock. For remove and replace the bucket cannot be * interesting and doesn't need locking. * For insert we allocate the bucket if this is the last bucket_table, * and then take the lock. * Sometimes we unlock a bucket by writing a new pointer there. In that * case we don't need to unlock, but we do need to reset state such as * local_bh. For that we have rht_assign_unlock(). As rcu_assign_pointer() * provides the same release semantics that bit_spin_unlock() provides, * this is safe. * When we write to a bucket without unlocking, we use rht_assign_locked(). */ static inline void rht_lock(struct bucket_table *tbl, struct rhash_lock_head __rcu **bkt) { local_bh_disable(); bit_spin_lock(0, (unsigned long *)bkt); lock_map_acquire(&tbl->dep_map); } static inline void rht_lock_nested(struct bucket_table *tbl, struct rhash_lock_head __rcu **bucket, unsigned int subclass) { local_bh_disable(); bit_spin_lock(0, (unsigned long *)bucket); lock_acquire_exclusive(&tbl->dep_map, subclass, 0, NULL, _THIS_IP_); } static inline void rht_unlock(struct bucket_table *tbl, struct rhash_lock_head __rcu **bkt) { lock_map_release(&tbl->dep_map); bit_spin_unlock(0, (unsigned long *)bkt); local_bh_enable(); } static inline struct rhash_head *__rht_ptr( struct rhash_lock_head *p, struct rhash_lock_head __rcu *const *bkt) { return (struct rhash_head *) ((unsigned long)p & ~BIT(0) ?: (unsigned long)RHT_NULLS_MARKER(bkt)); } /* * Where 'bkt' is a bucket and might be locked: * rht_ptr_rcu() dereferences that pointer and clears the lock bit. * rht_ptr() dereferences in a context where the bucket is locked. * rht_ptr_exclusive() dereferences in a context where exclusive * access is guaranteed, such as when destroying the table. */ static inline struct rhash_head *rht_ptr_rcu( struct rhash_lock_head __rcu *const *bkt) { return __rht_ptr(rcu_dereference(*bkt), bkt); } static inline struct rhash_head *rht_ptr( struct rhash_lock_head __rcu *const *bkt, struct bucket_table *tbl, unsigned int hash) { return __rht_ptr(rht_dereference_bucket(*bkt, tbl, hash), bkt); } static inline struct rhash_head *rht_ptr_exclusive( struct rhash_lock_head __rcu *const *bkt) { return __rht_ptr(rcu_dereference_protected(*bkt, 1), bkt); } static inline void rht_assign_locked(struct rhash_lock_head __rcu **bkt, struct rhash_head *obj) { if (rht_is_a_nulls(obj)) obj = NULL; rcu_assign_pointer(*bkt, (void *)((unsigned long)obj | BIT(0))); } static inline void rht_assign_unlock(struct bucket_table *tbl, struct rhash_lock_head __rcu **bkt, struct rhash_head *obj) { if (rht_is_a_nulls(obj)) obj = NULL; lock_map_release(&tbl->dep_map); rcu_assign_pointer(*bkt, (void *)obj); preempt_enable(); __release(bitlock); local_bh_enable(); } /** * rht_for_each_from - iterate over hash chain from given head * @pos: the &struct rhash_head to use as a loop cursor. * @head: the &struct rhash_head to start from * @tbl: the &struct bucket_table * @hash: the hash value / bucket index */ #define rht_for_each_from(pos, head, tbl, hash) \ for (pos = head; \ !rht_is_a_nulls(pos); \ pos = rht_dereference_bucket((pos)->next, tbl, hash)) /** * rht_for_each - iterate over hash chain * @pos: the &struct rhash_head to use as a loop cursor. * @tbl: the &struct bucket_table * @hash: the hash value / bucket index */ #define rht_for_each(pos, tbl, hash) \ rht_for_each_from(pos, rht_ptr(rht_bucket(tbl, hash), tbl, hash), \ tbl, hash) /** * rht_for_each_entry_from - iterate over hash chain from given head * @tpos: the type * to use as a loop cursor. * @pos: the &struct rhash_head to use as a loop cursor. * @head: the &struct rhash_head to start from * @tbl: the &struct bucket_table * @hash: the hash value / bucket index * @member: name of the &struct rhash_head within the hashable struct. */ #define rht_for_each_entry_from(tpos, pos, head, tbl, hash, member) \ for (pos = head; \ (!rht_is_a_nulls(pos)) && rht_entry(tpos, pos, member); \ pos = rht_dereference_bucket((pos)->next, tbl, hash)) /** * rht_for_each_entry - iterate over hash chain of given type * @tpos: the type * to use as a loop cursor. * @pos: the &struct rhash_head to use as a loop cursor. * @tbl: the &struct bucket_table * @hash: the hash value / bucket index * @member: name of the &struct rhash_head within the hashable struct. */ #define rht_for_each_entry(tpos, pos, tbl, hash, member) \ rht_for_each_entry_from(tpos, pos, \ rht_ptr(rht_bucket(tbl, hash), tbl, hash), \ tbl, hash, member) /** * rht_for_each_entry_safe - safely iterate over hash chain of given type * @tpos: the type * to use as a loop cursor. * @pos: the &struct rhash_head to use as a loop cursor. * @next: the &struct rhash_head to use as next in loop cursor. * @tbl: the &struct bucket_table * @hash: the hash value / bucket index * @member: name of the &struct rhash_head within the hashable struct. * * This hash chain list-traversal primitive allows for the looped code to * remove the loop cursor from the list. */ #define rht_for_each_entry_safe(tpos, pos, next, tbl, hash, member) \ for (pos = rht_ptr(rht_bucket(tbl, hash), tbl, hash), \ next = !rht_is_a_nulls(pos) ? \ rht_dereference_bucket(pos->next, tbl, hash) : NULL; \ (!rht_is_a_nulls(pos)) && rht_entry(tpos, pos, member); \ pos = next, \ next = !rht_is_a_nulls(pos) ? \ rht_dereference_bucket(pos->next, tbl, hash) : NULL) /** * rht_for_each_rcu_from - iterate over rcu hash chain from given head * @pos: the &struct rhash_head to use as a loop cursor. * @head: the &struct rhash_head to start from * @tbl: the &struct bucket_table * @hash: the hash value / bucket index * * This hash chain list-traversal primitive may safely run concurrently with * the _rcu mutation primitives such as rhashtable_insert() as long as the * traversal is guarded by rcu_read_lock(). */ #define rht_for_each_rcu_from(pos, head, tbl, hash) \ for (({barrier(); }), \ pos = head; \ !rht_is_a_nulls(pos); \ pos = rcu_dereference_raw(pos->next)) /** * rht_for_each_rcu - iterate over rcu hash chain * @pos: the &struct rhash_head to use as a loop cursor. * @tbl: the &struct bucket_table * @hash: the hash value / bucket index * * This hash chain list-traversal primitive may safely run concurrently with * the _rcu mutation primitives such as rhashtable_insert() as long as the * traversal is guarded by rcu_read_lock(). */ #define rht_for_each_rcu(pos, tbl, hash) \ for (({barrier(); }), \ pos = rht_ptr_rcu(rht_bucket(tbl, hash)); \ !rht_is_a_nulls(pos); \ pos = rcu_dereference_raw(pos->next)) /** * rht_for_each_entry_rcu_from - iterated over rcu hash chain from given head * @tpos: the type * to use as a loop cursor. * @pos: the &struct rhash_head to use as a loop cursor. * @head: the &struct rhash_head to start from * @tbl: the &struct bucket_table * @hash: the hash value / bucket index * @member: name of the &struct rhash_head within the hashable struct. * * This hash chain list-traversal primitive may safely run concurrently with * the _rcu mutation primitives such as rhashtable_insert() as long as the * traversal is guarded by rcu_read_lock(). */ #define rht_for_each_entry_rcu_from(tpos, pos, head, tbl, hash, member) \ for (({barrier(); }), \ pos = head; \ (!rht_is_a_nulls(pos)) && rht_entry(tpos, pos, member); \ pos = rht_dereference_bucket_rcu(pos->next, tbl, hash)) /** * rht_for_each_entry_rcu - iterate over rcu hash chain of given type * @tpos: the type * to use as a loop cursor. * @pos: the &struct rhash_head to use as a loop cursor. * @tbl: the &struct bucket_table * @hash: the hash value / bucket index * @member: name of the &struct rhash_head within the hashable struct. * * This hash chain list-traversal primitive may safely run concurrently with * the _rcu mutation primitives such as rhashtable_insert() as long as the * traversal is guarded by rcu_read_lock(). */ #define rht_for_each_entry_rcu(tpos, pos, tbl, hash, member) \ rht_for_each_entry_rcu_from(tpos, pos, \ rht_ptr_rcu(rht_bucket(tbl, hash)), \ tbl, hash, member) /** * rhl_for_each_rcu - iterate over rcu hash table list * @pos: the &struct rlist_head to use as a loop cursor. * @list: the head of the list * * This hash chain list-traversal primitive should be used on the * list returned by rhltable_lookup. */ #define rhl_for_each_rcu(pos, list) \ for (pos = list; pos; pos = rcu_dereference_raw(pos->next)) /** * rhl_for_each_entry_rcu - iterate over rcu hash table list of given type * @tpos: the type * to use as a loop cursor. * @pos: the &struct rlist_head to use as a loop cursor. * @list: the head of the list * @member: name of the &struct rlist_head within the hashable struct. * * This hash chain list-traversal primitive should be used on the * list returned by rhltable_lookup. */ #define rhl_for_each_entry_rcu(tpos, pos, list, member) \ for (pos = list; pos && rht_entry(tpos, pos, member); \ pos = rcu_dereference_raw(pos->next)) static inline int rhashtable_compare(struct rhashtable_compare_arg *arg, const void *obj) { struct rhashtable *ht = arg->ht; const char *ptr = obj; return memcmp(ptr + ht->p.key_offset, arg->key, ht->p.key_len); } /* Internal function, do not use. */ static inline struct rhash_head *__rhashtable_lookup( struct rhashtable *ht, const void *key, const struct rhashtable_params params) { struct rhashtable_compare_arg arg = { .ht = ht, .key = key, }; struct rhash_lock_head __rcu *const *bkt; struct bucket_table *tbl; struct rhash_head *he; unsigned int hash; tbl = rht_dereference_rcu(ht->tbl, ht); restart: hash = rht_key_hashfn(ht, tbl, key, params); bkt = rht_bucket(tbl, hash); do { rht_for_each_rcu_from(he, rht_ptr_rcu(bkt), tbl, hash) { if (params.obj_cmpfn ? params.obj_cmpfn(&arg, rht_obj(ht, he)) : rhashtable_compare(&arg, rht_obj(ht, he))) continue; return he; } /* An object might have been moved to a different hash chain, * while we walk along it - better check and retry. */ } while (he != RHT_NULLS_MARKER(bkt)); /* Ensure we see any new tables. */ smp_rmb(); tbl = rht_dereference_rcu(tbl->future_tbl, ht); if (unlikely(tbl)) goto restart; return NULL; } /** * rhashtable_lookup - search hash table * @ht: hash table * @key: the pointer to the key * @params: hash table parameters * * Computes the hash value for the key and traverses the bucket chain looking * for a entry with an identical key. The first matching entry is returned. * * This must only be called under the RCU read lock. * * Returns the first entry on which the compare function returned true. */ static inline void *rhashtable_lookup( struct rhashtable *ht, const void *key, const struct rhashtable_params params) { struct rhash_head *he = __rhashtable_lookup(ht, key, params); return he ? rht_obj(ht, he) : NULL; } /** * rhashtable_lookup_fast - search hash table, without RCU read lock * @ht: hash table * @key: the pointer to the key * @params: hash table parameters * * Computes the hash value for the key and traverses the bucket chain looking * for a entry with an identical key. The first matching entry is returned. * * Only use this function when you have other mechanisms guaranteeing * that the object won't go away after the RCU read lock is released. * * Returns the first entry on which the compare function returned true. */ static inline void *rhashtable_lookup_fast( struct rhashtable *ht, const void *key, const struct rhashtable_params params) { void *obj; rcu_read_lock(); obj = rhashtable_lookup(ht, key, params); rcu_read_unlock(); return obj; } /** * rhltable_lookup - search hash list table * @hlt: hash table * @key: the pointer to the key * @params: hash table parameters * * Computes the hash value for the key and traverses the bucket chain looking * for a entry with an identical key. All matching entries are returned * in a list. * * This must only be called under the RCU read lock. * * Returns the list of entries that match the given key. */ static inline struct rhlist_head *rhltable_lookup( struct rhltable *hlt, const void *key, const struct rhashtable_params params) { struct rhash_head *he = __rhashtable_lookup(&hlt->ht, key, params); return he ? container_of(he, struct rhlist_head, rhead) : NULL; } /* Internal function, please use rhashtable_insert_fast() instead. This * function returns the existing element already in hashes in there is a clash, * otherwise it returns an error via ERR_PTR(). */ static inline void *__rhashtable_insert_fast( struct rhashtable *ht, const void *key, struct rhash_head *obj, const struct rhashtable_params params, bool rhlist) { struct rhashtable_compare_arg arg = { .ht = ht, .key = key, }; struct rhash_lock_head __rcu **bkt; struct rhash_head __rcu **pprev; struct bucket_table *tbl; struct rhash_head *head; unsigned int hash; int elasticity; void *data; rcu_read_lock(); tbl = rht_dereference_rcu(ht->tbl, ht); hash = rht_head_hashfn(ht, tbl, obj, params); elasticity = RHT_ELASTICITY; bkt = rht_bucket_insert(ht, tbl, hash); data = ERR_PTR(-ENOMEM); if (!bkt) goto out; pprev = NULL; rht_lock(tbl, bkt); if (unlikely(rcu_access_pointer(tbl->future_tbl))) { slow_path: rht_unlock(tbl, bkt); rcu_read_unlock(); return rhashtable_insert_slow(ht, key, obj); } rht_for_each_from(head, rht_ptr(bkt, tbl, hash), tbl, hash) { struct rhlist_head *plist; struct rhlist_head *list; elasticity--; if (!key || (params.obj_cmpfn ? params.obj_cmpfn(&arg, rht_obj(ht, head)) : rhashtable_compare(&arg, rht_obj(ht, head)))) { pprev = &head->next; continue; } data = rht_obj(ht, head); if (!rhlist) goto out_unlock; list = container_of(obj, struct rhlist_head, rhead); plist = container_of(head, struct rhlist_head, rhead); RCU_INIT_POINTER(list->next, plist); head = rht_dereference_bucket(head->next, tbl, hash); RCU_INIT_POINTER(list->rhead.next, head); if (pprev) { rcu_assign_pointer(*pprev, obj); rht_unlock(tbl, bkt); } else rht_assign_unlock(tbl, bkt, obj); data = NULL; goto out; } if (elasticity <= 0) goto slow_path; data = ERR_PTR(-E2BIG); if (unlikely(rht_grow_above_max(ht, tbl))) goto out_unlock; if (unlikely(rht_grow_above_100(ht, tbl))) goto slow_path; /* Inserting at head of list makes unlocking free. */ head = rht_ptr(bkt, tbl, hash); RCU_INIT_POINTER(obj->next, head); if (rhlist) { struct rhlist_head *list; list = container_of(obj, struct rhlist_head, rhead); RCU_INIT_POINTER(list->next, NULL); } atomic_inc(&ht->nelems); rht_assign_unlock(tbl, bkt, obj); if (rht_grow_above_75(ht, tbl)) schedule_work(&ht->run_work); data = NULL; out: rcu_read_unlock(); return data; out_unlock: rht_unlock(tbl, bkt); goto out; } /** * rhashtable_insert_fast - insert object into hash table * @ht: hash table * @obj: pointer to hash head inside object * @params: hash table parameters * * Will take the per bucket bitlock to protect against mutual mutations * on the same bucket. Multiple insertions may occur in parallel unless * they map to the same bucket. * * It is safe to call this function from atomic context. * * Will trigger an automatic deferred table resizing if residency in the * table grows beyond 70%. */ static inline int rhashtable_insert_fast( struct rhashtable *ht, struct rhash_head *obj, const struct rhashtable_params params) { void *ret; ret = __rhashtable_insert_fast(ht, NULL, obj, params, false); if (IS_ERR(ret)) return PTR_ERR(ret); return ret == NULL ? 0 : -EEXIST; } /** * rhltable_insert_key - insert object into hash list table * @hlt: hash list table * @key: the pointer to the key * @list: pointer to hash list head inside object * @params: hash table parameters * * Will take the per bucket bitlock to protect against mutual mutations * on the same bucket. Multiple insertions may occur in parallel unless * they map to the same bucket. * * It is safe to call this function from atomic context. * * Will trigger an automatic deferred table resizing if residency in the * table grows beyond 70%. */ static inline int rhltable_insert_key( struct rhltable *hlt, const void *key, struct rhlist_head *list, const struct rhashtable_params params) { return PTR_ERR(__rhashtable_insert_fast(&hlt->ht, key, &list->rhead, params, true)); } /** * rhltable_insert - insert object into hash list table * @hlt: hash list table * @list: pointer to hash list head inside object * @params: hash table parameters * * Will take the per bucket bitlock to protect against mutual mutations * on the same bucket. Multiple insertions may occur in parallel unless * they map to the same bucket. * * It is safe to call this function from atomic context. * * Will trigger an automatic deferred table resizing if residency in the * table grows beyond 70%. */ static inline int rhltable_insert( struct rhltable *hlt, struct rhlist_head *list, const struct rhashtable_params params) { const char *key = rht_obj(&hlt->ht, &list->rhead); key += params.key_offset; return rhltable_insert_key(hlt, key, list, params); } /** * rhashtable_lookup_insert_fast - lookup and insert object into hash table * @ht: hash table * @obj: pointer to hash head inside object * @params: hash table parameters * * This lookup function may only be used for fixed key hash table (key_len * parameter set). It will BUG() if used inappropriately. * * It is safe to call this function from atomic context. * * Will trigger an automatic deferred table resizing if residency in the * table grows beyond 70%. */ static inline int rhashtable_lookup_insert_fast( struct rhashtable *ht, struct rhash_head *obj, const struct rhashtable_params params) { const char *key = rht_obj(ht, obj); void *ret; BUG_ON(ht->p.obj_hashfn); ret = __rhashtable_insert_fast(ht, key + ht->p.key_offset, obj, params, false); if (IS_ERR(ret)) return PTR_ERR(ret); return ret == NULL ? 0 : -EEXIST; } /** * rhashtable_lookup_get_insert_fast - lookup and insert object into hash table * @ht: hash table * @obj: pointer to hash head inside object * @params: hash table parameters * * Just like rhashtable_lookup_insert_fast(), but this function returns the * object if it exists, NULL if it did not and the insertion was successful, * and an ERR_PTR otherwise. */ static inline void *rhashtable_lookup_get_insert_fast( struct rhashtable *ht, struct rhash_head *obj, const struct rhashtable_params params) { const char *key = rht_obj(ht, obj); BUG_ON(ht->p.obj_hashfn); return __rhashtable_insert_fast(ht, key + ht->p.key_offset, obj, params, false); } /** * rhashtable_lookup_insert_key - search and insert object to hash table * with explicit key * @ht: hash table * @key: key * @obj: pointer to hash head inside object * @params: hash table parameters * * Lookups may occur in parallel with hashtable mutations and resizing. * * Will trigger an automatic deferred table resizing if residency in the * table grows beyond 70%. * * Returns zero on success. */ static inline int rhashtable_lookup_insert_key( struct rhashtable *ht, const void *key, struct rhash_head *obj, const struct rhashtable_params params) { void *ret; BUG_ON(!ht->p.obj_hashfn || !key); ret = __rhashtable_insert_fast(ht, key, obj, params, false); if (IS_ERR(ret)) return PTR_ERR(ret); return ret == NULL ? 0 : -EEXIST; } /** * rhashtable_lookup_get_insert_key - lookup and insert object into hash table * @ht: hash table * @key: key * @obj: pointer to hash head inside object * @params: hash table parameters * * Just like rhashtable_lookup_insert_key(), but this function returns the * object if it exists, NULL if it does not and the insertion was successful, * and an ERR_PTR otherwise. */ static inline void *rhashtable_lookup_get_insert_key( struct rhashtable *ht, const void *key, struct rhash_head *obj, const struct rhashtable_params params) { BUG_ON(!ht->p.obj_hashfn || !key); return __rhashtable_insert_fast(ht, key, obj, params, false); } /* Internal function, please use rhashtable_remove_fast() instead */ static inline int __rhashtable_remove_fast_one( struct rhashtable *ht, struct bucket_table *tbl, struct rhash_head *obj, const struct rhashtable_params params, bool rhlist) { struct rhash_lock_head __rcu **bkt; struct rhash_head __rcu **pprev; struct rhash_head *he; unsigned int hash; int err = -ENOENT; hash = rht_head_hashfn(ht, tbl, obj, params); bkt = rht_bucket_var(tbl, hash); if (!bkt) return -ENOENT; pprev = NULL; rht_lock(tbl, bkt); rht_for_each_from(he, rht_ptr(bkt, tbl, hash), tbl, hash) { struct rhlist_head *list; list = container_of(he, struct rhlist_head, rhead); if (he != obj) { struct rhlist_head __rcu **lpprev; pprev = &he->next; if (!rhlist) continue; do { lpprev = &list->next; list = rht_dereference_bucket(list->next, tbl, hash); } while (list && obj != &list->rhead); if (!list) continue; list = rht_dereference_bucket(list->next, tbl, hash); RCU_INIT_POINTER(*lpprev, list); err = 0; break; } obj = rht_dereference_bucket(obj->next, tbl, hash); err = 1; if (rhlist) { list = rht_dereference_bucket(list->next, tbl, hash); if (list) { RCU_INIT_POINTER(list->rhead.next, obj); obj = &list->rhead; err = 0; } } if (pprev) { rcu_assign_pointer(*pprev, obj); rht_unlock(tbl, bkt); } else { rht_assign_unlock(tbl, bkt, obj); } goto unlocked; } rht_unlock(tbl, bkt); unlocked: if (err > 0) { atomic_dec(&ht->nelems); if (unlikely(ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl))) schedule_work(&ht->run_work); err = 0; } return err; } /* Internal function, please use rhashtable_remove_fast() instead */ static inline int __rhashtable_remove_fast( struct rhashtable *ht, struct rhash_head *obj, const struct rhashtable_params params, bool rhlist) { struct bucket_table *tbl; int err; rcu_read_lock(); tbl = rht_dereference_rcu(ht->tbl, ht); /* Because we have already taken (and released) the bucket * lock in old_tbl, if we find that future_tbl is not yet * visible then that guarantees the entry to still be in * the old tbl if it exists. */ while ((err = __rhashtable_remove_fast_one(ht, tbl, obj, params, rhlist)) && (tbl = rht_dereference_rcu(tbl->future_tbl, ht))) ; rcu_read_unlock(); return err; } /** * rhashtable_remove_fast - remove object from hash table * @ht: hash table * @obj: pointer to hash head inside object * @params: hash table parameters * * Since the hash chain is single linked, the removal operation needs to * walk the bucket chain upon removal. The removal operation is thus * considerable slow if the hash table is not correctly sized. * * Will automatically shrink the table if permitted when residency drops * below 30%. * * Returns zero on success, -ENOENT if the entry could not be found. */ static inline int rhashtable_remove_fast( struct rhashtable *ht, struct rhash_head *obj, const struct rhashtable_params params) { return __rhashtable_remove_fast(ht, obj, params, false); } /** * rhltable_remove - remove object from hash list table * @hlt: hash list table * @list: pointer to hash list head inside object * @params: hash table parameters * * Since the hash chain is single linked, the removal operation needs to * walk the bucket chain upon removal. The removal operation is thus * considerable slow if the hash table is not correctly sized. * * Will automatically shrink the table if permitted when residency drops * below 30% * * Returns zero on success, -ENOENT if the entry could not be found. */ static inline int rhltable_remove( struct rhltable *hlt, struct rhlist_head *list, const struct rhashtable_params params) { return __rhashtable_remove_fast(&hlt->ht, &list->rhead, params, true); } /* Internal function, please use rhashtable_replace_fast() instead */ static inline int __rhashtable_replace_fast( struct rhashtable *ht, struct bucket_table *tbl, struct rhash_head *obj_old, struct rhash_head *obj_new, const struct rhashtable_params params) { struct rhash_lock_head __rcu **bkt; struct rhash_head __rcu **pprev; struct rhash_head *he; unsigned int hash; int err = -ENOENT; /* Minimally, the old and new objects must have same hash * (which should mean identifiers are the same). */ hash = rht_head_hashfn(ht, tbl, obj_old, params); if (hash != rht_head_hashfn(ht, tbl, obj_new, params)) return -EINVAL; bkt = rht_bucket_var(tbl, hash); if (!bkt) return -ENOENT; pprev = NULL; rht_lock(tbl, bkt); rht_for_each_from(he, rht_ptr(bkt, tbl, hash), tbl, hash) { if (he != obj_old) { pprev = &he->next; continue; } rcu_assign_pointer(obj_new->next, obj_old->next); if (pprev) { rcu_assign_pointer(*pprev, obj_new); rht_unlock(tbl, bkt); } else { rht_assign_unlock(tbl, bkt, obj_new); } err = 0; goto unlocked; } rht_unlock(tbl, bkt); unlocked: return err; } /** * rhashtable_replace_fast - replace an object in hash table * @ht: hash table * @obj_old: pointer to hash head inside object being replaced * @obj_new: pointer to hash head inside object which is new * @params: hash table parameters * * Replacing an object doesn't affect the number of elements in the hash table * or bucket, so we don't need to worry about shrinking or expanding the * table here. * * Returns zero on success, -ENOENT if the entry could not be found, * -EINVAL if hash is not the same for the old and new objects. */ static inline int rhashtable_replace_fast( struct rhashtable *ht, struct rhash_head *obj_old, struct rhash_head *obj_new, const struct rhashtable_params params) { struct bucket_table *tbl; int err; rcu_read_lock(); tbl = rht_dereference_rcu(ht->tbl, ht); /* Because we have already taken (and released) the bucket * lock in old_tbl, if we find that future_tbl is not yet * visible then that guarantees the entry to still be in * the old tbl if it exists. */ while ((err = __rhashtable_replace_fast(ht, tbl, obj_old, obj_new, params)) && (tbl = rht_dereference_rcu(tbl->future_tbl, ht))) ; rcu_read_unlock(); return err; } /** * rhltable_walk_enter - Initialise an iterator * @hlt: Table to walk over * @iter: Hash table Iterator * * This function prepares a hash table walk. * * Note that if you restart a walk after rhashtable_walk_stop you * may see the same object twice. Also, you may miss objects if * there are removals in between rhashtable_walk_stop and the next * call to rhashtable_walk_start. * * For a completely stable walk you should construct your own data * structure outside the hash table. * * This function may be called from any process context, including * non-preemptable context, but cannot be called from softirq or * hardirq context. * * You must call rhashtable_walk_exit after this function returns. */ static inline void rhltable_walk_enter(struct rhltable *hlt, struct rhashtable_iter *iter) { return rhashtable_walk_enter(&hlt->ht, iter); } /** * rhltable_free_and_destroy - free elements and destroy hash list table * @hlt: the hash list table to destroy * @free_fn: callback to release resources of element * @arg: pointer passed to free_fn * * See documentation for rhashtable_free_and_destroy. */ static inline void rhltable_free_and_destroy(struct rhltable *hlt, void (*free_fn)(void *ptr, void *arg), void *arg) { return rhashtable_free_and_destroy(&hlt->ht, free_fn, arg); } static inline void rhltable_destroy(struct rhltable *hlt) { return rhltable_free_and_destroy(hlt, NULL, NULL); } #endif /* _LINUX_RHASHTABLE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM oom #if !defined(_TRACE_OOM_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_OOM_H #include <linux/tracepoint.h> #include <trace/events/mmflags.h> TRACE_EVENT(oom_score_adj_update, TP_PROTO(struct task_struct *task), TP_ARGS(task), TP_STRUCT__entry( __field( pid_t, pid) __array( char, comm, TASK_COMM_LEN ) __field( short, oom_score_adj) ), TP_fast_assign( __entry->pid = task->pid; memcpy(__entry->comm, task->comm, TASK_COMM_LEN); __entry->oom_score_adj = task->signal->oom_score_adj; ), TP_printk("pid=%d comm=%s oom_score_adj=%hd", __entry->pid, __entry->comm, __entry->oom_score_adj) ); TRACE_EVENT(reclaim_retry_zone, TP_PROTO(struct zoneref *zoneref, int order, unsigned long reclaimable, unsigned long available, unsigned long min_wmark, int no_progress_loops, bool wmark_check), TP_ARGS(zoneref, order, reclaimable, available, min_wmark, no_progress_loops, wmark_check), TP_STRUCT__entry( __field( int, node) __field( int, zone_idx) __field( int, order) __field( unsigned long, reclaimable) __field( unsigned long, available) __field( unsigned long, min_wmark) __field( int, no_progress_loops) __field( bool, wmark_check) ), TP_fast_assign( __entry->node = zone_to_nid(zoneref->zone); __entry->zone_idx = zoneref->zone_idx; __entry->order = order; __entry->reclaimable = reclaimable; __entry->available = available; __entry->min_wmark = min_wmark; __entry->no_progress_loops = no_progress_loops; __entry->wmark_check = wmark_check; ), TP_printk("node=%d zone=%-8s order=%d reclaimable=%lu available=%lu min_wmark=%lu no_progress_loops=%d wmark_check=%d", __entry->node, __print_symbolic(__entry->zone_idx, ZONE_TYPE), __entry->order, __entry->reclaimable, __entry->available, __entry->min_wmark, __entry->no_progress_loops, __entry->wmark_check) ); TRACE_EVENT(mark_victim, TP_PROTO(int pid), TP_ARGS(pid), TP_STRUCT__entry( __field(int, pid) ), TP_fast_assign( __entry->pid = pid; ), TP_printk("pid=%d", __entry->pid) ); TRACE_EVENT(wake_reaper, TP_PROTO(int pid), TP_ARGS(pid), TP_STRUCT__entry( __field(int, pid) ), TP_fast_assign( __entry->pid = pid; ), TP_printk("pid=%d", __entry->pid) ); TRACE_EVENT(start_task_reaping, TP_PROTO(int pid), TP_ARGS(pid), TP_STRUCT__entry( __field(int, pid) ), TP_fast_assign( __entry->pid = pid; ), TP_printk("pid=%d", __entry->pid) ); TRACE_EVENT(finish_task_reaping, TP_PROTO(int pid), TP_ARGS(pid), TP_STRUCT__entry( __field(int, pid) ), TP_fast_assign( __entry->pid = pid; ), TP_printk("pid=%d", __entry->pid) ); TRACE_EVENT(skip_task_reaping, TP_PROTO(int pid), TP_ARGS(pid), TP_STRUCT__entry( __field(int, pid) ), TP_fast_assign( __entry->pid = pid; ), TP_printk("pid=%d", __entry->pid) ); #ifdef CONFIG_COMPACTION TRACE_EVENT(compact_retry, TP_PROTO(int order, enum compact_priority priority, enum compact_result result, int retries, int max_retries, bool ret), TP_ARGS(order, priority, result, retries, max_retries, ret), TP_STRUCT__entry( __field( int, order) __field( int, priority) __field( int, result) __field( int, retries) __field( int, max_retries) __field( bool, ret) ), TP_fast_assign( __entry->order = order; __entry->priority = priority; __entry->result = compact_result_to_feedback(result); __entry->retries = retries; __entry->max_retries = max_retries; __entry->ret = ret; ), TP_printk("order=%d priority=%s compaction_result=%s retries=%d max_retries=%d should_retry=%d", __entry->order, __print_symbolic(__entry->priority, COMPACTION_PRIORITY), __print_symbolic(__entry->result, COMPACTION_FEEDBACK), __entry->retries, __entry->max_retries, __entry->ret) ); #endif /* CONFIG_COMPACTION */ #endif /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM xdp #if !defined(_TRACE_XDP_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_XDP_H #include <linux/netdevice.h> #include <linux/filter.h> #include <linux/tracepoint.h> #include <linux/bpf.h> #define __XDP_ACT_MAP(FN) \ FN(ABORTED) \ FN(DROP) \ FN(PASS) \ FN(TX) \ FN(REDIRECT) #define __XDP_ACT_TP_FN(x) \ TRACE_DEFINE_ENUM(XDP_##x); #define __XDP_ACT_SYM_FN(x) \ { XDP_##x, #x }, #define __XDP_ACT_SYM_TAB \ __XDP_ACT_MAP(__XDP_ACT_SYM_FN) { -1, NULL } __XDP_ACT_MAP(__XDP_ACT_TP_FN) TRACE_EVENT(xdp_exception, TP_PROTO(const struct net_device *dev, const struct bpf_prog *xdp, u32 act), TP_ARGS(dev, xdp, act), TP_STRUCT__entry( __field(int, prog_id) __field(u32, act) __field(int, ifindex) ), TP_fast_assign( __entry->prog_id = xdp->aux->id; __entry->act = act; __entry->ifindex = dev->ifindex; ), TP_printk("prog_id=%d action=%s ifindex=%d", __entry->prog_id, __print_symbolic(__entry->act, __XDP_ACT_SYM_TAB), __entry->ifindex) ); TRACE_EVENT(xdp_bulk_tx, TP_PROTO(const struct net_device *dev, int sent, int drops, int err), TP_ARGS(dev, sent, drops, err), TP_STRUCT__entry( __field(int, ifindex) __field(u32, act) __field(int, drops) __field(int, sent) __field(int, err) ), TP_fast_assign( __entry->ifindex = dev->ifindex; __entry->act = XDP_TX; __entry->drops = drops; __entry->sent = sent; __entry->err = err; ), TP_printk("ifindex=%d action=%s sent=%d drops=%d err=%d", __entry->ifindex, __print_symbolic(__entry->act, __XDP_ACT_SYM_TAB), __entry->sent, __entry->drops, __entry->err) ); #ifndef __DEVMAP_OBJ_TYPE #define __DEVMAP_OBJ_TYPE struct _bpf_dtab_netdev { struct net_device *dev; }; #endif /* __DEVMAP_OBJ_TYPE */ #define devmap_ifindex(tgt, map) \ (((map->map_type == BPF_MAP_TYPE_DEVMAP || \ map->map_type == BPF_MAP_TYPE_DEVMAP_HASH)) ? \ ((struct _bpf_dtab_netdev *)tgt)->dev->ifindex : 0) DECLARE_EVENT_CLASS(xdp_redirect_template, TP_PROTO(const struct net_device *dev, const struct bpf_prog *xdp, const void *tgt, int err, const struct bpf_map *map, u32 index), TP_ARGS(dev, xdp, tgt, err, map, index), TP_STRUCT__entry( __field(int, prog_id) __field(u32, act) __field(int, ifindex) __field(int, err) __field(int, to_ifindex) __field(u32, map_id) __field(int, map_index) ), TP_fast_assign( __entry->prog_id = xdp->aux->id; __entry->act = XDP_REDIRECT; __entry->ifindex = dev->ifindex; __entry->err = err; __entry->to_ifindex = map ? devmap_ifindex(tgt, map) : index; __entry->map_id = map ? map->id : 0; __entry->map_index = map ? index : 0; ), TP_printk("prog_id=%d action=%s ifindex=%d to_ifindex=%d err=%d" " map_id=%d map_index=%d", __entry->prog_id, __print_symbolic(__entry->act, __XDP_ACT_SYM_TAB), __entry->ifindex, __entry->to_ifindex, __entry->err, __entry->map_id, __entry->map_index) ); DEFINE_EVENT(xdp_redirect_template, xdp_redirect, TP_PROTO(const struct net_device *dev, const struct bpf_prog *xdp, const void *tgt, int err, const struct bpf_map *map, u32 index), TP_ARGS(dev, xdp, tgt, err, map, index) ); DEFINE_EVENT(xdp_redirect_template, xdp_redirect_err, TP_PROTO(const struct net_device *dev, const struct bpf_prog *xdp, const void *tgt, int err, const struct bpf_map *map, u32 index), TP_ARGS(dev, xdp, tgt, err, map, index) ); #define _trace_xdp_redirect(dev, xdp, to) \ trace_xdp_redirect(dev, xdp, NULL, 0, NULL, to); #define _trace_xdp_redirect_err(dev, xdp, to, err) \ trace_xdp_redirect_err(dev, xdp, NULL, err, NULL, to); #define _trace_xdp_redirect_map(dev, xdp, to, map, index) \ trace_xdp_redirect(dev, xdp, to, 0, map, index); #define _trace_xdp_redirect_map_err(dev, xdp, to, map, index, err) \ trace_xdp_redirect_err(dev, xdp, to, err, map, index); /* not used anymore, but kept around so as not to break old programs */ DEFINE_EVENT(xdp_redirect_template, xdp_redirect_map, TP_PROTO(const struct net_device *dev, const struct bpf_prog *xdp, const void *tgt, int err, const struct bpf_map *map, u32 index), TP_ARGS(dev, xdp, tgt, err, map, index) ); DEFINE_EVENT(xdp_redirect_template, xdp_redirect_map_err, TP_PROTO(const struct net_device *dev, const struct bpf_prog *xdp, const void *tgt, int err, const struct bpf_map *map, u32 index), TP_ARGS(dev, xdp, tgt, err, map, index) ); TRACE_EVENT(xdp_cpumap_kthread, TP_PROTO(int map_id, unsigned int processed, unsigned int drops, int sched, struct xdp_cpumap_stats *xdp_stats), TP_ARGS(map_id, processed, drops, sched, xdp_stats), TP_STRUCT__entry( __field(int, map_id) __field(u32, act) __field(int, cpu) __field(unsigned int, drops) __field(unsigned int, processed) __field(int, sched) __field(unsigned int, xdp_pass) __field(unsigned int, xdp_drop) __field(unsigned int, xdp_redirect) ), TP_fast_assign( __entry->map_id = map_id; __entry->act = XDP_REDIRECT; __entry->cpu = smp_processor_id(); __entry->drops = drops; __entry->processed = processed; __entry->sched = sched; __entry->xdp_pass = xdp_stats->pass; __entry->xdp_drop = xdp_stats->drop; __entry->xdp_redirect = xdp_stats->redirect; ), TP_printk("kthread" " cpu=%d map_id=%d action=%s" " processed=%u drops=%u" " sched=%d" " xdp_pass=%u xdp_drop=%u xdp_redirect=%u", __entry->cpu, __entry->map_id, __print_symbolic(__entry->act, __XDP_ACT_SYM_TAB), __entry->processed, __entry->dro