1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Linux INET6 implementation * * Authors: * Pedro Roque <roque@di.fc.ul.pt> */ #ifndef _IP6_FIB_H #define _IP6_FIB_H #include <linux/ipv6_route.h> #include <linux/rtnetlink.h> #include <linux/spinlock.h> #include <linux/notifier.h> #include <net/dst.h> #include <net/flow.h> #include <net/ip_fib.h> #include <net/netlink.h> #include <net/inetpeer.h> #include <net/fib_notifier.h> #include <linux/indirect_call_wrapper.h> #ifdef CONFIG_IPV6_MULTIPLE_TABLES #define FIB6_TABLE_HASHSZ 256 #else #define FIB6_TABLE_HASHSZ 1 #endif #define RT6_DEBUG 2 #if RT6_DEBUG >= 3 #define RT6_TRACE(x...) pr_debug(x) #else #define RT6_TRACE(x...) do { ; } while (0) #endif struct rt6_info; struct fib6_info; struct fib6_config { u32 fc_table; u32 fc_metric; int fc_dst_len; int fc_src_len; int fc_ifindex; u32 fc_flags; u32 fc_protocol; u16 fc_type; /* only 8 bits are used */ u16 fc_delete_all_nh : 1, fc_ignore_dev_down:1, __unused : 14; u32 fc_nh_id; struct in6_addr fc_dst; struct in6_addr fc_src; struct in6_addr fc_prefsrc; struct in6_addr fc_gateway; unsigned long fc_expires; struct nlattr *fc_mx; int fc_mx_len; int fc_mp_len; struct nlattr *fc_mp; struct nl_info fc_nlinfo; struct nlattr *fc_encap; u16 fc_encap_type; bool fc_is_fdb; }; struct fib6_node { struct fib6_node __rcu *parent; struct fib6_node __rcu *left; struct fib6_node __rcu *right; #ifdef CONFIG_IPV6_SUBTREES struct fib6_node __rcu *subtree; #endif struct fib6_info __rcu *leaf; __u16 fn_bit; /* bit key */ __u16 fn_flags; int fn_sernum; struct fib6_info __rcu *rr_ptr; struct rcu_head rcu; }; struct fib6_gc_args { int timeout; int more; }; #ifndef CONFIG_IPV6_SUBTREES #define FIB6_SUBTREE(fn) NULL static inline bool fib6_routes_require_src(const struct net *net) { return false; } static inline void fib6_routes_require_src_inc(struct net *net) {} static inline void fib6_routes_require_src_dec(struct net *net) {} #else static inline bool fib6_routes_require_src(const struct net *net) { return net->ipv6.fib6_routes_require_src > 0; } static inline void fib6_routes_require_src_inc(struct net *net) { net->ipv6.fib6_routes_require_src++; } static inline void fib6_routes_require_src_dec(struct net *net) { net->ipv6.fib6_routes_require_src--; } #define FIB6_SUBTREE(fn) (rcu_dereference_protected((fn)->subtree, 1)) #endif /* * routing information * */ struct rt6key { struct in6_addr addr; int plen; }; struct fib6_table; struct rt6_exception_bucket { struct hlist_head chain; int depth; }; struct rt6_exception { struct hlist_node hlist; struct rt6_info *rt6i; unsigned long stamp; struct rcu_head rcu; }; #define FIB6_EXCEPTION_BUCKET_SIZE_SHIFT 10 #define FIB6_EXCEPTION_BUCKET_SIZE (1 << FIB6_EXCEPTION_BUCKET_SIZE_SHIFT) #define FIB6_MAX_DEPTH 5 struct fib6_nh { struct fib_nh_common nh_common; #ifdef CONFIG_IPV6_ROUTER_PREF unsigned long last_probe; #endif struct rt6_info * __percpu *rt6i_pcpu; struct rt6_exception_bucket __rcu *rt6i_exception_bucket; }; struct fib6_info { struct fib6_table *fib6_table; struct fib6_info __rcu *fib6_next; struct fib6_node __rcu *fib6_node; /* Multipath routes: * siblings is a list of fib6_info that have the same metric/weight, * destination, but not the same gateway. nsiblings is just a cache * to speed up lookup. */ union { struct list_head fib6_siblings; struct list_head nh_list; }; unsigned int fib6_nsiblings; refcount_t fib6_ref; unsigned long expires; struct dst_metrics *fib6_metrics; #define fib6_pmtu fib6_metrics->metrics[RTAX_MTU-1] struct rt6key fib6_dst; u32 fib6_flags; struct rt6key fib6_src; struct rt6key fib6_prefsrc; u32 fib6_metric; u8 fib6_protocol; u8 fib6_type; u8 should_flush:1, dst_nocount:1, dst_nopolicy:1, fib6_destroying:1, offload:1, trap:1, unused:2; struct rcu_head rcu; struct nexthop *nh; struct fib6_nh fib6_nh[]; }; struct rt6_info { struct dst_entry dst; struct fib6_info __rcu *from; int sernum; struct rt6key rt6i_dst; struct rt6key rt6i_src; struct in6_addr rt6i_gateway; struct inet6_dev *rt6i_idev; u32 rt6i_flags; struct list_head rt6i_uncached; struct uncached_list *rt6i_uncached_list; /* more non-fragment space at head required */ unsigned short rt6i_nfheader_len; }; struct fib6_result { struct fib6_nh *nh; struct fib6_info *f6i; u32 fib6_flags; u8 fib6_type; struct rt6_info *rt6; }; #define for_each_fib6_node_rt_rcu(fn) \ for (rt = rcu_dereference((fn)->leaf); rt; \ rt = rcu_dereference(rt->fib6_next)) #define for_each_fib6_walker_rt(w) \ for (rt = (w)->leaf; rt; \ rt = rcu_dereference_protected(rt->fib6_next, 1)) static inline struct inet6_dev *ip6_dst_idev(struct dst_entry *dst) { return ((struct rt6_info *)dst)->rt6i_idev; } static inline bool fib6_requires_src(const struct fib6_info *rt) { return rt->fib6_src.plen > 0; } static inline void fib6_clean_expires(struct fib6_info *f6i) { f6i->fib6_flags &= ~RTF_EXPIRES; f6i->expires = 0; } static inline void fib6_set_expires(struct fib6_info *f6i, unsigned long expires) { f6i->expires = expires; f6i->fib6_flags |= RTF_EXPIRES; } static inline bool fib6_check_expired(const struct fib6_info *f6i) { if (f6i->fib6_flags & RTF_EXPIRES) return time_after(jiffies, f6i->expires); return false; } /* Function to safely get fn->sernum for passed in rt * and store result in passed in cookie. * Return true if we can get cookie safely * Return false if not */ static inline bool fib6_get_cookie_safe(const struct fib6_info *f6i, u32 *cookie) { struct fib6_node *fn; bool status = false; fn = rcu_dereference(f6i->fib6_node); if (fn) { *cookie = fn->fn_sernum; /* pairs with smp_wmb() in fib6_update_sernum_upto_root() */ smp_rmb(); status = true; } return status; } static inline u32 rt6_get_cookie(const struct rt6_info *rt) { struct fib6_info *from; u32 cookie = 0; if (rt->sernum) return rt->sernum; rcu_read_lock(); from = rcu_dereference(rt->from); if (from) fib6_get_cookie_safe(from, &cookie); rcu_read_unlock(); return cookie; } static inline void ip6_rt_put(struct rt6_info *rt) { /* dst_release() accepts a NULL parameter. * We rely on dst being first structure in struct rt6_info */ BUILD_BUG_ON(offsetof(struct rt6_info, dst) != 0); dst_release(&rt->dst); } struct fib6_info *fib6_info_alloc(gfp_t gfp_flags, bool with_fib6_nh); void fib6_info_destroy_rcu(struct rcu_head *head); static inline void fib6_info_hold(struct fib6_info *f6i) { refcount_inc(&f6i->fib6_ref); } static inline bool fib6_info_hold_safe(struct fib6_info *f6i) { return refcount_inc_not_zero(&f6i->fib6_ref); } static inline void fib6_info_release(struct fib6_info *f6i) { if (f6i && refcount_dec_and_test(&f6i->fib6_ref)) call_rcu(&f6i->rcu, fib6_info_destroy_rcu); } static inline void fib6_info_hw_flags_set(struct fib6_info *f6i, bool offload, bool trap) { f6i->offload = offload; f6i->trap = trap; } enum fib6_walk_state { #ifdef CONFIG_IPV6_SUBTREES FWS_S, #endif FWS_L, FWS_R, FWS_C, FWS_U }; struct fib6_walker { struct list_head lh; struct fib6_node *root, *node; struct fib6_info *leaf; enum fib6_walk_state state; unsigned int skip; unsigned int count; unsigned int skip_in_node; int (*func)(struct fib6_walker *); void *args; }; struct rt6_statistics { __u32 fib_nodes; /* all fib6 nodes */ __u32 fib_route_nodes; /* intermediate nodes */ __u32 fib_rt_entries; /* rt entries in fib table */ __u32 fib_rt_cache; /* cached rt entries in exception table */ __u32 fib_discarded_routes; /* total number of routes delete */ /* The following stats are not protected by any lock */ atomic_t fib_rt_alloc; /* total number of routes alloced */ atomic_t fib_rt_uncache; /* rt entries in uncached list */ }; #define RTN_TL_ROOT 0x0001 #define RTN_ROOT 0x0002 /* tree root node */ #define RTN_RTINFO 0x0004 /* node with valid routing info */ /* * priority levels (or metrics) * */ struct fib6_table { struct hlist_node tb6_hlist; u32 tb6_id; spinlock_t tb6_lock; struct fib6_node tb6_root; struct inet_peer_base tb6_peers; unsigned int flags; unsigned int fib_seq; #define RT6_TABLE_HAS_DFLT_ROUTER BIT(0) }; #define RT6_TABLE_UNSPEC RT_TABLE_UNSPEC #define RT6_TABLE_MAIN RT_TABLE_MAIN #define RT6_TABLE_DFLT RT6_TABLE_MAIN #define RT6_TABLE_INFO RT6_TABLE_MAIN #define RT6_TABLE_PREFIX RT6_TABLE_MAIN #ifdef CONFIG_IPV6_MULTIPLE_TABLES #define FIB6_TABLE_MIN 1 #define FIB6_TABLE_MAX RT_TABLE_MAX #define RT6_TABLE_LOCAL RT_TABLE_LOCAL #else #define FIB6_TABLE_MIN RT_TABLE_MAIN #define FIB6_TABLE_MAX FIB6_TABLE_MIN #define RT6_TABLE_LOCAL RT6_TABLE_MAIN #endif typedef struct rt6_info *(*pol_lookup_t)(struct net *, struct fib6_table *, struct flowi6 *, const struct sk_buff *, int); struct fib6_entry_notifier_info { struct fib_notifier_info info; /* must be first */ struct fib6_info *rt; unsigned int nsiblings; }; /* * exported functions */ struct fib6_table *fib6_get_table(struct net *net, u32 id); struct fib6_table *fib6_new_table(struct net *net, u32 id); struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6, const struct sk_buff *skb, int flags, pol_lookup_t lookup); /* called with rcu lock held; can return error pointer * caller needs to select path */ int fib6_lookup(struct net *net, int oif, struct flowi6 *fl6, struct fib6_result *res, int flags); /* called with rcu lock held; caller needs to select path */ int fib6_table_lookup(struct net *net, struct fib6_table *table, int oif, struct flowi6 *fl6, struct fib6_result *res, int strict); void fib6_select_path(const struct net *net, struct fib6_result *res, struct flowi6 *fl6, int oif, bool have_oif_match, const struct sk_buff *skb, int strict); struct fib6_node *fib6_node_lookup(struct fib6_node *root, const struct in6_addr *daddr, const struct in6_addr *saddr); struct fib6_node *fib6_locate(struct fib6_node *root, const struct in6_addr *daddr, int dst_len, const struct in6_addr *saddr, int src_len, bool exact_match); void fib6_clean_all(struct net *net, int (*func)(struct fib6_info *, void *arg), void *arg); void fib6_clean_all_skip_notify(struct net *net, int (*func)(struct fib6_info *, void *arg), void *arg); int fib6_add(struct fib6_node *root, struct fib6_info *rt, struct nl_info *info, struct netlink_ext_ack *extack); int fib6_del(struct fib6_info *rt, struct nl_info *info); static inline void rt6_get_prefsrc(const struct rt6_info *rt, struct in6_addr *addr) { const struct fib6_info *from; rcu_read_lock(); from = rcu_dereference(rt->from); if (from) { *addr = from->fib6_prefsrc.addr; } else { struct in6_addr in6_zero = {}; *addr = in6_zero; } rcu_read_unlock(); } int fib6_nh_init(struct net *net, struct fib6_nh *fib6_nh, struct fib6_config *cfg, gfp_t gfp_flags, struct netlink_ext_ack *extack); void fib6_nh_release(struct fib6_nh *fib6_nh); void fib6_nh_release_dsts(struct fib6_nh *fib6_nh); int call_fib6_entry_notifiers(struct net *net, enum fib_event_type event_type, struct fib6_info *rt, struct netlink_ext_ack *extack); int call_fib6_multipath_entry_notifiers(struct net *net, enum fib_event_type event_type, struct fib6_info *rt, unsigned int nsiblings, struct netlink_ext_ack *extack); int call_fib6_entry_notifiers_replace(struct net *net, struct fib6_info *rt); void fib6_rt_update(struct net *net, struct fib6_info *rt, struct nl_info *info); void inet6_rt_notify(int event, struct fib6_info *rt, struct nl_info *info, unsigned int flags); void fib6_run_gc(unsigned long expires, struct net *net, bool force); void fib6_gc_cleanup(void); int fib6_init(void); struct ipv6_route_iter { struct seq_net_private p; struct fib6_walker w; loff_t skip; struct fib6_table *tbl; int sernum; }; extern const struct seq_operations ipv6_route_seq_ops; int call_fib6_notifier(struct notifier_block *nb, enum fib_event_type event_type, struct fib_notifier_info *info); int call_fib6_notifiers(struct net *net, enum fib_event_type event_type, struct fib_notifier_info *info); int __net_init fib6_notifier_init(struct net *net); void __net_exit fib6_notifier_exit(struct net *net); unsigned int fib6_tables_seq_read(struct net *net); int fib6_tables_dump(struct net *net, struct notifier_block *nb, struct netlink_ext_ack *extack); void fib6_update_sernum(struct net *net, struct fib6_info *rt); void fib6_update_sernum_upto_root(struct net *net, struct fib6_info *rt); void fib6_update_sernum_stub(struct net *net, struct fib6_info *f6i); void fib6_metric_set(struct fib6_info *f6i, int metric, u32 val); static inline bool fib6_metric_locked(struct fib6_info *f6i, int metric) { return !!(f6i->fib6_metrics->metrics[RTAX_LOCK - 1] & (1 << metric)); } #if IS_BUILTIN(CONFIG_IPV6) && defined(CONFIG_BPF_SYSCALL) struct bpf_iter__ipv6_route { __bpf_md_ptr(struct bpf_iter_meta *, meta); __bpf_md_ptr(struct fib6_info *, rt); }; #endif INDIRECT_CALLABLE_DECLARE(struct rt6_info *ip6_pol_route_output(struct net *net, struct fib6_table *table, struct flowi6 *fl6, const struct sk_buff *skb, int flags)); INDIRECT_CALLABLE_DECLARE(struct rt6_info *ip6_pol_route_input(struct net *net, struct fib6_table *table, struct flowi6 *fl6, const struct sk_buff *skb, int flags)); INDIRECT_CALLABLE_DECLARE(struct rt6_info *__ip6_route_redirect(struct net *net, struct fib6_table *table, struct flowi6 *fl6, const struct sk_buff *skb, int flags)); INDIRECT_CALLABLE_DECLARE(struct rt6_info *ip6_pol_route_lookup(struct net *net, struct fib6_table *table, struct flowi6 *fl6, const struct sk_buff *skb, int flags)); static inline struct rt6_info *pol_lookup_func(pol_lookup_t lookup, struct net *net, struct fib6_table *table, struct flowi6 *fl6, const struct sk_buff *skb, int flags) { return INDIRECT_CALL_4(lookup, ip6_pol_route_output, ip6_pol_route_input, ip6_pol_route_lookup, __ip6_route_redirect, net, table, fl6, skb, flags); } #ifdef CONFIG_IPV6_MULTIPLE_TABLES static inline bool fib6_has_custom_rules(const struct net *net) { return net->ipv6.fib6_has_custom_rules; } int fib6_rules_init(void); void fib6_rules_cleanup(void); bool fib6_rule_default(const struct fib_rule *rule); int fib6_rules_dump(struct net *net, struct notifier_block *nb, struct netlink_ext_ack *extack); unsigned int fib6_rules_seq_read(struct net *net); static inline bool fib6_rules_early_flow_dissect(struct net *net, struct sk_buff *skb, struct flowi6 *fl6, struct flow_keys *flkeys) { unsigned int flag = FLOW_DISSECTOR_F_STOP_AT_ENCAP; if (!net->ipv6.fib6_rules_require_fldissect) return false; skb_flow_dissect_flow_keys(skb, flkeys, flag); fl6->fl6_sport = flkeys->ports.src; fl6->fl6_dport = flkeys->ports.dst; fl6->flowi6_proto = flkeys->basic.ip_proto; return true; } #else static inline bool fib6_has_custom_rules(const struct net *net) { return false; } static inline int fib6_rules_init(void) { return 0; } static inline void fib6_rules_cleanup(void) { return ; } static inline bool fib6_rule_default(const struct fib_rule *rule) { return true; } static inline int fib6_rules_dump(struct net *net, struct notifier_block *nb, struct netlink_ext_ack *extack) { return 0; } static inline unsigned int fib6_rules_seq_read(struct net *net) { return 0; } static inline bool fib6_rules_early_flow_dissect(struct net *net, struct sk_buff *skb, struct flowi6 *fl6, struct flow_keys *flkeys) { return false; } #endif #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 #undef TRACE_SYSTEM #define TRACE_SYSTEM neigh #if !defined(_TRACE_NEIGH_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_NEIGH_H #include <linux/skbuff.h> #include <linux/netdevice.h> #include <linux/tracepoint.h> #include <net/neighbour.h> #define neigh_state_str(state) \ __print_symbolic(state, \ { NUD_INCOMPLETE, "incomplete" }, \ { NUD_REACHABLE, "reachable" }, \ { NUD_STALE, "stale" }, \ { NUD_DELAY, "delay" }, \ { NUD_PROBE, "probe" }, \ { NUD_FAILED, "failed" }, \ { NUD_NOARP, "noarp" }, \ { NUD_PERMANENT, "permanent"}) TRACE_EVENT(neigh_create, TP_PROTO(struct neigh_table *tbl, struct net_device *dev, const void *pkey, const struct neighbour *n, bool exempt_from_gc), TP_ARGS(tbl, dev, pkey, n, exempt_from_gc), TP_STRUCT__entry( __field(u32, family) __dynamic_array(char, dev, IFNAMSIZ ) __field(int, entries) __field(u8, created) __field(u8, gc_exempt) __array(u8, primary_key4, 4) __array(u8, primary_key6, 16) ), TP_fast_assign( struct in6_addr *pin6; __be32 *p32; __entry->family = tbl->family; __assign_str(dev, (dev ? dev->name : "NULL")); __entry->entries = atomic_read(&tbl->gc_entries); __entry->created = n != NULL; __entry->gc_exempt = exempt_from_gc; pin6 = (struct in6_addr *)__entry->primary_key6; p32 = (__be32 *)__entry->primary_key4; if (tbl->family == AF_INET) *p32 = *(__be32 *)pkey; else *p32 = 0; #if IS_ENABLED(CONFIG_IPV6) if (tbl->family == AF_INET6) { pin6 = (struct in6_addr *)__entry->primary_key6; *pin6 = *(struct in6_addr *)pkey; } #endif ), TP_printk("family %d dev %s entries %d primary_key4 %pI4 primary_key6 %pI6c created %d gc_exempt %d", __entry->family, __get_str(dev), __entry->entries, __entry->primary_key4, __entry->primary_key6, __entry->created, __entry->gc_exempt) ); TRACE_EVENT(neigh_update, TP_PROTO(struct neighbour *n, const u8 *lladdr, u8 new, u32 flags, u32 nlmsg_pid), TP_ARGS(n, lladdr, new, flags, nlmsg_pid), TP_STRUCT__entry( __field(u32, family) __string(dev, (n->dev ? n->dev->name : "NULL")) __array(u8, lladdr, MAX_ADDR_LEN) __field(u8, lladdr_len) __field(u8, flags) __field(u8, nud_state) __field(u8, type) __field(u8, dead) __field(int, refcnt) __array(__u8, primary_key4, 4) __array(__u8, primary_key6, 16) __field(unsigned long, confirmed) __field(unsigned long, updated) __field(unsigned long, used) __array(u8, new_lladdr, MAX_ADDR_LEN) __field(u8, new_state) __field(u32, update_flags) __field(u32, pid) ), TP_fast_assign( int lladdr_len = (n->dev ? n->dev->addr_len : MAX_ADDR_LEN); struct in6_addr *pin6; __be32 *p32; __entry->family = n->tbl->family; __assign_str(dev, (n->dev ? n->dev->name : "NULL")); __entry->lladdr_len = lladdr_len; memcpy(__entry->lladdr, n->ha, lladdr_len); __entry->flags = n->flags; __entry->nud_state = n->nud_state; __entry->type = n->type; __entry->dead = n->dead; __entry->refcnt = refcount_read(&n->refcnt); pin6 = (struct in6_addr *)__entry->primary_key6; p32 = (__be32 *)__entry->primary_key4; if (n->tbl->family == AF_INET) *p32 = *(__be32 *)n->primary_key; else *p32 = 0; #if IS_ENABLED(CONFIG_IPV6) if (n->tbl->family == AF_INET6) { pin6 = (struct in6_addr *)__entry->primary_key6; *pin6 = *(struct in6_addr *)n->primary_key; } else #endif { ipv6_addr_set_v4mapped(*p32, pin6); } __entry->confirmed = n->confirmed; __entry->updated = n->updated; __entry->used = n->used; if (lladdr) memcpy(__entry->new_lladdr, lladdr, lladdr_len); __entry->new_state = new; __entry->update_flags = flags; __entry->pid = nlmsg_pid; ), TP_printk("family %d dev %s lladdr %s flags %02x nud_state %s type %02x " "dead %d refcnt %d primary_key4 %pI4 primary_key6 %pI6c " "confirmed %lu updated %lu used %lu new_lladdr %s " "new_state %s update_flags %02x pid %d", __entry->family, __get_str(dev), __print_hex_str(__entry->lladdr, __entry->lladdr_len), __entry->flags, neigh_state_str(__entry->nud_state), __entry->type, __entry->dead, __entry->refcnt, __entry->primary_key4, __entry->primary_key6, __entry->confirmed, __entry->updated, __entry->used, __print_hex_str(__entry->new_lladdr, __entry->lladdr_len), neigh_state_str(__entry->new_state), __entry->update_flags, __entry->pid) ); DECLARE_EVENT_CLASS(neigh__update, TP_PROTO(struct neighbour *n, int err), TP_ARGS(n, err), TP_STRUCT__entry( __field(u32, family) __string(dev, (n->dev ? n->dev->name : "NULL")) __array(u8, lladdr, MAX_ADDR_LEN) __field(u8, lladdr_len) __field(u8, flags) __field(u8, nud_state) __field(u8, type) __field(u8, dead) __field(int, refcnt) __array(__u8, primary_key4, 4) __array(__u8, primary_key6, 16) __field(unsigned long, confirmed) __field(unsigned long, updated) __field(unsigned long, used) __field(u32, err) ), TP_fast_assign( int lladdr_len = (n->dev ? n->dev->addr_len : MAX_ADDR_LEN); struct in6_addr *pin6; __be32 *p32; __entry->family = n->tbl->family; __assign_str(dev, (n->dev ? n->dev->name : "NULL")); __entry->lladdr_len = lladdr_len; memcpy(__entry->lladdr, n->ha, lladdr_len); __entry->flags = n->flags; __entry->nud_state = n->nud_state; __entry->type = n->type; __entry->dead = n->dead; __entry->refcnt = refcount_read(&n->refcnt); pin6 = (struct in6_addr *)__entry->primary_key6; p32 = (__be32 *)__entry->primary_key4; if (n->tbl->family == AF_INET) *p32 = *(__be32 *)n->primary_key; else *p32 = 0; #if IS_ENABLED(CONFIG_IPV6) if (n->tbl->family == AF_INET6) { pin6 = (struct in6_addr *)__entry->primary_key6; *pin6 = *(struct in6_addr *)n->primary_key; } else #endif { ipv6_addr_set_v4mapped(*p32, pin6); } __entry->confirmed = n->confirmed; __entry->updated = n->updated; __entry->used = n->used; __entry->err = err; ), TP_printk("family %d dev %s lladdr %s flags %02x nud_state %s type %02x " "dead %d refcnt %d primary_key4 %pI4 primary_key6 %pI6c " "confirmed %lu updated %lu used %lu err %d", __entry->family, __get_str(dev), __print_hex_str(__entry->lladdr, __entry->lladdr_len), __entry->flags, neigh_state_str(__entry->nud_state), __entry->type, __entry->dead, __entry->refcnt, __entry->primary_key4, __entry->primary_key6, __entry->confirmed, __entry->updated, __entry->used, __entry->err) ); DEFINE_EVENT(neigh__update, neigh_update_done, TP_PROTO(struct neighbour *neigh, int err), TP_ARGS(neigh, err) ); DEFINE_EVENT(neigh__update, neigh_timer_handler, TP_PROTO(struct neighbour *neigh, int err), TP_ARGS(neigh, err) ); DEFINE_EVENT(neigh__update, neigh_event_send_done, TP_PROTO(struct neighbour *neigh, int err), TP_ARGS(neigh, err) ); DEFINE_EVENT(neigh__update, neigh_event_send_dead, TP_PROTO(struct neighbour *neigh, int err), TP_ARGS(neigh, err) ); DEFINE_EVENT(neigh__update, neigh_cleanup_and_release, TP_PROTO(struct neighbour *neigh, int rc), TP_ARGS(neigh, rc) ); #endif /* _TRACE_NEIGH_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 /* SPDX-License-Identifier: GPL-2.0 */ /* * Filesystem access notification for Linux * * Copyright (C) 2008 Red Hat, Inc., Eric Paris <eparis@redhat.com> */ #ifndef __LINUX_FSNOTIFY_BACKEND_H #define __LINUX_FSNOTIFY_BACKEND_H #ifdef __KERNEL__ #include <linux/idr.h> /* inotify uses this */ #include <linux/fs.h> /* struct inode */ #include <linux/list.h> #include <linux/path.h> /* struct path */ #include <linux/spinlock.h> #include <linux/types.h> #include <linux/atomic.h> #include <linux/user_namespace.h> #include <linux/refcount.h> /* * IN_* from inotfy.h lines up EXACTLY with FS_*, this is so we can easily * convert between them. dnotify only needs conversion at watch creation * so no perf loss there. fanotify isn't defined yet, so it can use the * wholes if it needs more events. */ #define FS_ACCESS 0x00000001 /* File was accessed */ #define FS_MODIFY 0x00000002 /* File was modified */ #define FS_ATTRIB 0x00000004 /* Metadata changed */ #define FS_CLOSE_WRITE 0x00000008 /* Writtable file was closed */ #define FS_CLOSE_NOWRITE 0x00000010 /* Unwrittable file closed */ #define FS_OPEN 0x00000020 /* File was opened */ #define FS_MOVED_FROM 0x00000040 /* File was moved from X */ #define FS_MOVED_TO 0x00000080 /* File was moved to Y */ #define FS_CREATE 0x00000100 /* Subfile was created */ #define FS_DELETE 0x00000200 /* Subfile was deleted */ #define FS_DELETE_SELF 0x00000400 /* Self was deleted */ #define FS_MOVE_SELF 0x00000800 /* Self was moved */ #define FS_OPEN_EXEC 0x00001000 /* File was opened for exec */ #define FS_UNMOUNT 0x00002000 /* inode on umount fs */ #define FS_Q_OVERFLOW 0x00004000 /* Event queued overflowed */ #define FS_IN_IGNORED 0x00008000 /* last inotify event here */ #define FS_OPEN_PERM 0x00010000 /* open event in an permission hook */ #define FS_ACCESS_PERM 0x00020000 /* access event in a permissions hook */ #define FS_OPEN_EXEC_PERM 0x00040000 /* open/exec event in a permission hook */ #define FS_EXCL_UNLINK 0x04000000 /* do not send events if object is unlinked */ /* * Set on inode mark that cares about things that happen to its children. * Always set for dnotify and inotify. * Set on inode/sb/mount marks that care about parent/name info. */ #define FS_EVENT_ON_CHILD 0x08000000 #define FS_DN_RENAME 0x10000000 /* file renamed */ #define FS_DN_MULTISHOT 0x20000000 /* dnotify multishot */ #define FS_ISDIR 0x40000000 /* event occurred against dir */ #define FS_IN_ONESHOT 0x80000000 /* only send event once */ #define FS_MOVE (FS_MOVED_FROM | FS_MOVED_TO) /* * Directory entry modification events - reported only to directory * where entry is modified and not to a watching parent. * The watching parent may get an FS_ATTRIB|FS_EVENT_ON_CHILD event * when a directory entry inside a child subdir changes. */ #define ALL_FSNOTIFY_DIRENT_EVENTS (FS_CREATE | FS_DELETE | FS_MOVE) #define ALL_FSNOTIFY_PERM_EVENTS (FS_OPEN_PERM | FS_ACCESS_PERM | \ FS_OPEN_EXEC_PERM) /* * This is a list of all events that may get sent to a parent that is watching * with flag FS_EVENT_ON_CHILD based on fs event on a child of that directory. */ #define FS_EVENTS_POSS_ON_CHILD (ALL_FSNOTIFY_PERM_EVENTS | \ FS_ACCESS | FS_MODIFY | FS_ATTRIB | \ FS_CLOSE_WRITE | FS_CLOSE_NOWRITE | \ FS_OPEN | FS_OPEN_EXEC) /* * This is a list of all events that may get sent with the parent inode as the * @to_tell argument of fsnotify(). * It may include events that can be sent to an inode/sb/mount mark, but cannot * be sent to a parent watching children. */ #define FS_EVENTS_POSS_TO_PARENT (FS_EVENTS_POSS_ON_CHILD) /* Events that can be reported to backends */ #define ALL_FSNOTIFY_EVENTS (ALL_FSNOTIFY_DIRENT_EVENTS | \ FS_EVENTS_POSS_ON_CHILD | \ FS_DELETE_SELF | FS_MOVE_SELF | FS_DN_RENAME | \ FS_UNMOUNT | FS_Q_OVERFLOW | FS_IN_IGNORED) /* Extra flags that may be reported with event or control handling of events */ #define ALL_FSNOTIFY_FLAGS (FS_EXCL_UNLINK | FS_ISDIR | FS_IN_ONESHOT | \ FS_DN_MULTISHOT | FS_EVENT_ON_CHILD) #define ALL_FSNOTIFY_BITS (ALL_FSNOTIFY_EVENTS | ALL_FSNOTIFY_FLAGS) struct fsnotify_group; struct fsnotify_event; struct fsnotify_mark; struct fsnotify_event_private_data; struct fsnotify_fname; struct fsnotify_iter_info; struct mem_cgroup; /* * Each group much define these ops. The fsnotify infrastructure will call * these operations for each relevant group. * * handle_event - main call for a group to handle an fs event * @group: group to notify * @mask: event type and flags * @data: object that event happened on * @data_type: type of object for fanotify_data_XXX() accessors * @dir: optional directory associated with event - * if @file_name is not NULL, this is the directory that * @file_name is relative to * @file_name: optional file name associated with event * @cookie: inotify rename cookie * @iter_info: array of marks from this group that are interested in the event * * handle_inode_event - simple variant of handle_event() for groups that only * have inode marks and don't have ignore mask * @mark: mark to notify * @mask: event type and flags * @inode: inode that event happened on * @dir: optional directory associated with event - * if @file_name is not NULL, this is the directory that * @file_name is relative to. * @file_name: optional file name associated with event * @cookie: inotify rename cookie * * free_group_priv - called when a group refcnt hits 0 to clean up the private union * freeing_mark - called when a mark is being destroyed for some reason. The group * MUST be holding a reference on each mark and that reference must be * dropped in this function. inotify uses this function to send * userspace messages that marks have been removed. */ struct fsnotify_ops { int (*handle_event)(struct fsnotify_group *group, u32 mask, const void *data, int data_type, struct inode *dir, const struct qstr *file_name, u32 cookie, struct fsnotify_iter_info *iter_info); int (*handle_inode_event)(struct fsnotify_mark *mark, u32 mask, struct inode *inode, struct inode *dir, const struct qstr *file_name, u32 cookie); void (*free_group_priv)(struct fsnotify_group *group); void (*freeing_mark)(struct fsnotify_mark *mark, struct fsnotify_group *group); void (*free_event)(struct fsnotify_event *event); /* called on final put+free to free memory */ void (*free_mark)(struct fsnotify_mark *mark); }; /* * all of the information about the original object we want to now send to * a group. If you want to carry more info from the accessing task to the * listener this structure is where you need to be adding fields. */ struct fsnotify_event { struct list_head list; unsigned long objectid; /* identifier for queue merges */ }; /* * A group is a "thing" that wants to receive notification about filesystem * events. The mask holds the subset of event types this group cares about. * refcnt on a group is up to the implementor and at any moment if it goes 0 * everything will be cleaned up. */ struct fsnotify_group { const struct fsnotify_ops *ops; /* how this group handles things */ /* * How the refcnt is used is up to each group. When the refcnt hits 0 * fsnotify will clean up all of the resources associated with this group. * As an example, the dnotify group will always have a refcnt=1 and that * will never change. Inotify, on the other hand, has a group per * inotify_init() and the refcnt will hit 0 only when that fd has been * closed. */ refcount_t refcnt; /* things with interest in this group */ /* needed to send notification to userspace */ spinlock_t notification_lock; /* protect the notification_list */ struct list_head notification_list; /* list of event_holder this group needs to send to userspace */ wait_queue_head_t notification_waitq; /* read() on the notification file blocks on this waitq */ unsigned int q_len; /* events on the queue */ unsigned int max_events; /* maximum events allowed on the list */ /* * Valid fsnotify group priorities. Events are send in order from highest * priority to lowest priority. We default to the lowest priority. */ #define FS_PRIO_0 0 /* normal notifiers, no permissions */ #define FS_PRIO_1 1 /* fanotify content based access control */ #define FS_PRIO_2 2 /* fanotify pre-content access */ unsigned int priority; bool shutdown; /* group is being shut down, don't queue more events */ /* stores all fastpath marks assoc with this group so they can be cleaned on unregister */ struct mutex mark_mutex; /* protect marks_list */ atomic_t num_marks; /* 1 for each mark and 1 for not being * past the point of no return when freeing * a group */ atomic_t user_waits; /* Number of tasks waiting for user * response */ struct list_head marks_list; /* all inode marks for this group */ struct fasync_struct *fsn_fa; /* async notification */ struct fsnotify_event *overflow_event; /* Event we queue when the * notification list is too * full */ struct mem_cgroup *memcg; /* memcg to charge allocations */ /* groups can define private fields here or use the void *private */ union { void *private; #ifdef CONFIG_INOTIFY_USER struct inotify_group_private_data { spinlock_t idr_lock; struct idr idr; struct ucounts *ucounts; } inotify_data; #endif #ifdef CONFIG_FANOTIFY struct fanotify_group_private_data { /* allows a group to block waiting for a userspace response */ struct list_head access_list; wait_queue_head_t access_waitq; int flags; /* flags from fanotify_init() */ int f_flags; /* event_f_flags from fanotify_init() */ unsigned int max_marks; struct user_struct *user; } fanotify_data; #endif /* CONFIG_FANOTIFY */ }; }; /* When calling fsnotify tell it if the data is a path or inode */ enum fsnotify_data_type { FSNOTIFY_EVENT_NONE, FSNOTIFY_EVENT_PATH, FSNOTIFY_EVENT_INODE, }; static inline struct inode *fsnotify_data_inode(const void *data, int data_type) { switch (data_type) { case FSNOTIFY_EVENT_INODE: return (struct inode *)data; case FSNOTIFY_EVENT_PATH: return d_inode(((const struct path *)data)->dentry); default: return NULL; } } static inline const struct path *fsnotify_data_path(const void *data, int data_type) { switch (data_type) { case FSNOTIFY_EVENT_PATH: return data; default: return NULL; } } enum fsnotify_obj_type { FSNOTIFY_OBJ_TYPE_INODE, FSNOTIFY_OBJ_TYPE_PARENT, FSNOTIFY_OBJ_TYPE_VFSMOUNT, FSNOTIFY_OBJ_TYPE_SB, FSNOTIFY_OBJ_TYPE_COUNT, FSNOTIFY_OBJ_TYPE_DETACHED = FSNOTIFY_OBJ_TYPE_COUNT }; #define FSNOTIFY_OBJ_TYPE_INODE_FL (1U << FSNOTIFY_OBJ_TYPE_INODE) #define FSNOTIFY_OBJ_TYPE_PARENT_FL (1U << FSNOTIFY_OBJ_TYPE_PARENT) #define FSNOTIFY_OBJ_TYPE_VFSMOUNT_FL (1U << FSNOTIFY_OBJ_TYPE_VFSMOUNT) #define FSNOTIFY_OBJ_TYPE_SB_FL (1U << FSNOTIFY_OBJ_TYPE_SB) #define FSNOTIFY_OBJ_ALL_TYPES_MASK ((1U << FSNOTIFY_OBJ_TYPE_COUNT) - 1) static inline bool fsnotify_valid_obj_type(unsigned int type) { return (type < FSNOTIFY_OBJ_TYPE_COUNT); } struct fsnotify_iter_info { struct fsnotify_mark *marks[FSNOTIFY_OBJ_TYPE_COUNT]; unsigned int report_mask; int srcu_idx; }; static inline bool fsnotify_iter_should_report_type( struct fsnotify_iter_info *iter_info, int type) { return (iter_info->report_mask & (1U << type)); } static inline void fsnotify_iter_set_report_type( struct fsnotify_iter_info *iter_info, int type) { iter_info->report_mask |= (1U << type); } static inline void fsnotify_iter_set_report_type_mark( struct fsnotify_iter_info *iter_info, int type, struct fsnotify_mark *mark) { iter_info->marks[type] = mark; iter_info->report_mask |= (1U << type); } #define FSNOTIFY_ITER_FUNCS(name, NAME) \ static inline struct fsnotify_mark *fsnotify_iter_##name##_mark( \ struct fsnotify_iter_info *iter_info) \ { \ return (iter_info->report_mask & FSNOTIFY_OBJ_TYPE_##NAME##_FL) ? \ iter_info->marks[FSNOTIFY_OBJ_TYPE_##NAME] : NULL; \ } FSNOTIFY_ITER_FUNCS(inode, INODE) FSNOTIFY_ITER_FUNCS(parent, PARENT) FSNOTIFY_ITER_FUNCS(vfsmount, VFSMOUNT) FSNOTIFY_ITER_FUNCS(sb, SB) #define fsnotify_foreach_obj_type(type) \ for (type = 0; type < FSNOTIFY_OBJ_TYPE_COUNT; type++) /* * fsnotify_connp_t is what we embed in objects which connector can be attached * to. fsnotify_connp_t * is how we refer from connector back to object. */ struct fsnotify_mark_connector; typedef struct fsnotify_mark_connector __rcu *fsnotify_connp_t; /* * Inode/vfsmount/sb point to this structure which tracks all marks attached to * the inode/vfsmount/sb. The reference to inode/vfsmount/sb is held by this * structure. We destroy this structure when there are no more marks attached * to it. The structure is protected by fsnotify_mark_srcu. */ struct fsnotify_mark_connector { spinlock_t lock; unsigned short type; /* Type of object [lock] */ #define FSNOTIFY_CONN_FLAG_HAS_FSID 0x01 unsigned short flags; /* flags [lock] */ __kernel_fsid_t fsid; /* fsid of filesystem containing object */ union { /* Object pointer [lock] */ fsnotify_connp_t *obj; /* Used listing heads to free after srcu period expires */ struct fsnotify_mark_connector *destroy_next; }; struct hlist_head list; }; /* * A mark is simply an object attached to an in core inode which allows an * fsnotify listener to indicate they are either no longer interested in events * of a type matching mask or only interested in those events. * * These are flushed when an inode is evicted from core and may be flushed * when the inode is modified (as seen by fsnotify_access). Some fsnotify * users (such as dnotify) will flush these when the open fd is closed and not * at inode eviction or modification. * * Text in brackets is showing the lock(s) protecting modifications of a * particular entry. obj_lock means either inode->i_lock or * mnt->mnt_root->d_lock depending on the mark type. */ struct fsnotify_mark { /* Mask this mark is for [mark->lock, group->mark_mutex] */ __u32 mask; /* We hold one for presence in g_list. Also one ref for each 'thing' * in kernel that found and may be using this mark. */ refcount_t refcnt; /* Group this mark is for. Set on mark creation, stable until last ref * is dropped */ struct fsnotify_group *group; /* List of marks by group->marks_list. Also reused for queueing * mark into destroy_list when it's waiting for the end of SRCU period * before it can be freed. [group->mark_mutex] */ struct list_head g_list; /* Protects inode / mnt pointers, flags, masks */ spinlock_t lock; /* List of marks for inode / vfsmount [connector->lock, mark ref] */ struct hlist_node obj_list; /* Head of list of marks for an object [mark ref] */ struct fsnotify_mark_connector *connector; /* Events types to ignore [mark->lock, group->mark_mutex] */ __u32 ignored_mask; #define FSNOTIFY_MARK_FLAG_IGNORED_SURV_MODIFY 0x01 #define FSNOTIFY_MARK_FLAG_ALIVE 0x02 #define FSNOTIFY_MARK_FLAG_ATTACHED 0x04 unsigned int flags; /* flags [mark->lock] */ }; #ifdef CONFIG_FSNOTIFY /* called from the vfs helpers */ /* main fsnotify call to send events */ extern int fsnotify(__u32 mask, const void *data, int data_type, struct inode *dir, const struct qstr *name, struct inode *inode, u32 cookie); extern int __fsnotify_parent(struct dentry *dentry, __u32 mask, const void *data, int data_type); extern void __fsnotify_inode_delete(struct inode *inode); extern void __fsnotify_vfsmount_delete(struct vfsmount *mnt); extern void fsnotify_sb_delete(struct super_block *sb); extern u32 fsnotify_get_cookie(void); static inline __u32 fsnotify_parent_needed_mask(__u32 mask) { /* FS_EVENT_ON_CHILD is set on marks that want parent/name info */ if (!(mask & FS_EVENT_ON_CHILD)) return 0; /* * This object might be watched by a mark that cares about parent/name * info, does it care about the specific set of events that can be * reported with parent/name info? */ return mask & FS_EVENTS_POSS_TO_PARENT; } static inline int fsnotify_inode_watches_children(struct inode *inode) { /* FS_EVENT_ON_CHILD is set if the inode may care */ if (!(inode->i_fsnotify_mask & FS_EVENT_ON_CHILD)) return 0; /* this inode might care about child events, does it care about the * specific set of events that can happen on a child? */ return inode->i_fsnotify_mask & FS_EVENTS_POSS_ON_CHILD; } /* * Update the dentry with a flag indicating the interest of its parent to receive * filesystem events when those events happens to this dentry->d_inode. */ static inline void fsnotify_update_flags(struct dentry *dentry) { assert_spin_locked(&dentry->d_lock); /* * Serialisation of setting PARENT_WATCHED on the dentries is provided * by d_lock. If inotify_inode_watched changes after we have taken * d_lock, the following __fsnotify_update_child_dentry_flags call will * find our entry, so it will spin until we complete here, and update * us with the new state. */ if (fsnotify_inode_watches_children(dentry->d_parent->d_inode)) dentry->d_flags |= DCACHE_FSNOTIFY_PARENT_WATCHED; else dentry->d_flags &= ~DCACHE_FSNOTIFY_PARENT_WATCHED; } /* called from fsnotify listeners, such as fanotify or dnotify */ /* create a new group */ extern struct fsnotify_group *fsnotify_alloc_group(const struct fsnotify_ops *ops); /* get reference to a group */ extern void fsnotify_get_group(struct fsnotify_group *group); /* drop reference on a group from fsnotify_alloc_group */ extern void fsnotify_put_group(struct fsnotify_group *group); /* group destruction begins, stop queuing new events */ extern void fsnotify_group_stop_queueing(struct fsnotify_group *group); /* destroy group */ extern void fsnotify_destroy_group(struct fsnotify_group *group); /* fasync handler function */ extern int fsnotify_fasync(int fd, struct file *file, int on); /* Free event from memory */ extern void fsnotify_destroy_event(struct fsnotify_group *group, struct fsnotify_event *event); /* attach the event to the group notification queue */ extern int fsnotify_add_event(struct fsnotify_group *group, struct fsnotify_event *event, int (*merge)(struct list_head *, struct fsnotify_event *)); /* Queue overflow event to a notification group */ static inline void fsnotify_queue_overflow(struct fsnotify_group *group) { fsnotify_add_event(group, group->overflow_event, NULL); } /* true if the group notification queue is empty */ extern bool fsnotify_notify_queue_is_empty(struct fsnotify_group *group); /* return, but do not dequeue the first event on the notification queue */ extern struct fsnotify_event *fsnotify_peek_first_event(struct fsnotify_group *group); /* return AND dequeue the first event on the notification queue */ extern struct fsnotify_event *fsnotify_remove_first_event(struct fsnotify_group *group); /* Remove event queued in the notification list */ extern void fsnotify_remove_queued_event(struct fsnotify_group *group, struct fsnotify_event *event); /* functions used to manipulate the marks attached to inodes */ /* Get mask of events for a list of marks */ extern __u32 fsnotify_conn_mask(struct fsnotify_mark_connector *conn); /* Calculate mask of events for a list of marks */ extern void fsnotify_recalc_mask(struct fsnotify_mark_connector *conn); extern void fsnotify_init_mark(struct fsnotify_mark *mark, struct fsnotify_group *group); /* Find mark belonging to given group in the list of marks */ extern struct fsnotify_mark *fsnotify_find_mark(fsnotify_connp_t *connp, struct fsnotify_group *group); /* Get cached fsid of filesystem containing object */ extern int fsnotify_get_conn_fsid(const struct fsnotify_mark_connector *conn, __kernel_fsid_t *fsid); /* attach the mark to the object */ extern int fsnotify_add_mark(struct fsnotify_mark *mark, fsnotify_connp_t *connp, unsigned int type, int allow_dups, __kernel_fsid_t *fsid); extern int fsnotify_add_mark_locked(struct fsnotify_mark *mark, fsnotify_connp_t *connp, unsigned int type, int allow_dups, __kernel_fsid_t *fsid); /* attach the mark to the inode */ static inline int fsnotify_add_inode_mark(struct fsnotify_mark *mark, struct inode *inode, int allow_dups) { return fsnotify_add_mark(mark, &inode->i_fsnotify_marks, FSNOTIFY_OBJ_TYPE_INODE, allow_dups, NULL); } static inline int fsnotify_add_inode_mark_locked(struct fsnotify_mark *mark, struct inode *inode, int allow_dups) { return fsnotify_add_mark_locked(mark, &inode->i_fsnotify_marks, FSNOTIFY_OBJ_TYPE_INODE, allow_dups, NULL); } /* given a group and a mark, flag mark to be freed when all references are dropped */ extern void fsnotify_destroy_mark(struct fsnotify_mark *mark, struct fsnotify_group *group); /* detach mark from inode / mount list, group list, drop inode reference */ extern void fsnotify_detach_mark(struct fsnotify_mark *mark); /* free mark */ extern void fsnotify_free_mark(struct fsnotify_mark *mark); /* Wait until all marks queued for destruction are destroyed */ extern void fsnotify_wait_marks_destroyed(void); /* run all the marks in a group, and clear all of the marks attached to given object type */ extern void fsnotify_clear_marks_by_group(struct fsnotify_group *group, unsigned int type); /* run all the marks in a group, and clear all of the vfsmount marks */ static inline void fsnotify_clear_vfsmount_marks_by_group(struct fsnotify_group *group) { fsnotify_clear_marks_by_group(group, FSNOTIFY_OBJ_TYPE_VFSMOUNT_FL); } /* run all the marks in a group, and clear all of the inode marks */ static inline void fsnotify_clear_inode_marks_by_group(struct fsnotify_group *group) { fsnotify_clear_marks_by_group(group, FSNOTIFY_OBJ_TYPE_INODE_FL); } /* run all the marks in a group, and clear all of the sn marks */ static inline void fsnotify_clear_sb_marks_by_group(struct fsnotify_group *group) { fsnotify_clear_marks_by_group(group, FSNOTIFY_OBJ_TYPE_SB_FL); } extern void fsnotify_get_mark(struct fsnotify_mark *mark); extern void fsnotify_put_mark(struct fsnotify_mark *mark); extern void fsnotify_finish_user_wait(struct fsnotify_iter_info *iter_info); extern bool fsnotify_prepare_user_wait(struct fsnotify_iter_info *iter_info); static inline void fsnotify_init_event(struct fsnotify_event *event, unsigned long objectid) { INIT_LIST_HEAD(&event->list); event->objectid = objectid; } #else static inline int fsnotify(__u32 mask, const void *data, int data_type, struct inode *dir, const struct qstr *name, struct inode *inode, u32 cookie) { return 0; } static inline int __fsnotify_parent(struct dentry *dentry, __u32 mask, const void *data, int data_type) { return 0; } static inline void __fsnotify_inode_delete(struct inode *inode) {} static inline void __fsnotify_vfsmount_delete(struct vfsmount *mnt) {} static inline void fsnotify_sb_delete(struct super_block *sb) {} static inline void fsnotify_update_flags(struct dentry *dentry) {} static inline u32 fsnotify_get_cookie(void) { return 0; } static inline void fsnotify_unmount_inodes(struct super_block *sb) {} #endif /* CONFIG_FSNOTIFY */ #endif /* __KERNEL __ */ #endif /* __LINUX_FSNOTIFY_BACKEND_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_PID_H #define _LINUX_PID_H #include <linux/rculist.h> #include <linux/wait.h> #include <linux/refcount.h> enum pid_type { PIDTYPE_PID, PIDTYPE_TGID, PIDTYPE_PGID, PIDTYPE_SID, PIDTYPE_MAX, }; /* * What is struct pid? * * A struct pid is the kernel's internal notion of a process identifier. * It refers to individual tasks, process groups, and sessions. While * there are processes attached to it the struct pid lives in a hash * table, so it and then the processes that it refers to can be found * quickly from the numeric pid value. The attached processes may be * quickly accessed by following pointers from struct pid. * * Storing pid_t values in the kernel and referring to them later has a * problem. The process originally with that pid may have exited and the * pid allocator wrapped, and another process could have come along * and been assigned that pid. * * Referring to user space processes by holding a reference to struct * task_struct has a problem. When the user space process exits * the now useless task_struct is still kept. A task_struct plus a * stack consumes around 10K of low kernel memory. More precisely * this is THREAD_SIZE + sizeof(struct task_struct). By comparison * a struct pid is about 64 bytes. * * Holding a reference to struct pid solves both of these problems. * It is small so holding a reference does not consume a lot of * resources, and since a new struct pid is allocated when the numeric pid * value is reused (when pids wrap around) we don't mistakenly refer to new * processes. */ /* * struct upid is used to get the id of the struct pid, as it is * seen in particular namespace. Later the struct pid is found with * find_pid_ns() using the int nr and struct pid_namespace *ns. */ struct upid { int nr; struct pid_namespace *ns; }; struct pid { refcount_t count; unsigned int level; spinlock_t lock; /* lists of tasks that use this pid */ struct hlist_head tasks[PIDTYPE_MAX]; struct hlist_head inodes; /* wait queue for pidfd notifications */ wait_queue_head_t wait_pidfd; struct rcu_head rcu; struct upid numbers[1]; }; extern struct pid init_struct_pid; extern const struct file_operations pidfd_fops; struct file; extern struct pid *pidfd_pid(const struct file *file); struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags); static inline struct pid *get_pid(struct pid *pid) { if (pid) refcount_inc(&pid->count); return pid; } extern void put_pid(struct pid *pid); extern struct task_struct *pid_task(struct pid *pid, enum pid_type); static inline bool pid_has_task(struct pid *pid, enum pid_type type) { return !hlist_empty(&pid->tasks[type]); } extern struct task_struct *get_pid_task(struct pid *pid, enum pid_type); extern struct pid *get_task_pid(struct task_struct *task, enum pid_type type); /* * these helpers must be called with the tasklist_lock write-held. */ extern void attach_pid(struct task_struct *task, enum pid_type); extern void detach_pid(struct task_struct *task, enum pid_type); extern void change_pid(struct task_struct *task, enum pid_type, struct pid *pid); extern void exchange_tids(struct task_struct *task, struct task_struct *old); extern void transfer_pid(struct task_struct *old, struct task_struct *new, enum pid_type); struct pid_namespace; extern struct pid_namespace init_pid_ns; extern int pid_max; extern int pid_max_min, pid_max_max; /* * look up a PID in the hash table. Must be called with the tasklist_lock * or rcu_read_lock() held. * * find_pid_ns() finds the pid in the namespace specified * find_vpid() finds the pid by its virtual id, i.e. in the current namespace * * see also find_task_by_vpid() set in include/linux/sched.h */ extern struct pid *find_pid_ns(int nr, struct pid_namespace *ns); extern struct pid *find_vpid(int nr); /* * Lookup a PID in the hash table, and return with it's count elevated. */ extern struct pid *find_get_pid(int nr); extern struct pid *find_ge_pid(int nr, struct pid_namespace *); extern struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid, size_t set_tid_size); extern void free_pid(struct pid *pid); extern void disable_pid_allocation(struct pid_namespace *ns); /* * ns_of_pid() returns the pid namespace in which the specified pid was * allocated. * * NOTE: * ns_of_pid() is expected to be called for a process (task) that has * an attached 'struct pid' (see attach_pid(), detach_pid()) i.e @pid * is expected to be non-NULL. If @pid is NULL, caller should handle * the resulting NULL pid-ns. */ static inline struct pid_namespace *ns_of_pid(struct pid *pid) { struct pid_namespace *ns = NULL; if (pid) ns = pid->numbers[pid->level].ns; return ns; } /* * is_child_reaper returns true if the pid is the init process * of the current namespace. As this one could be checked before * pid_ns->child_reaper is assigned in copy_process, we check * with the pid number. */ static inline bool is_child_reaper(struct pid *pid) { return pid->numbers[pid->level].nr == 1; } /* * the helpers to get the pid's id seen from different namespaces * * pid_nr() : global id, i.e. the id seen from the init namespace; * pid_vnr() : virtual id, i.e. the id seen from the pid namespace of * current. * pid_nr_ns() : id seen from the ns specified. * * see also task_xid_nr() etc in include/linux/sched.h */ static inline pid_t pid_nr(struct pid *pid) { pid_t nr = 0; if (pid) nr = pid->numbers[0].nr; return nr; } pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns); pid_t pid_vnr(struct pid *pid); #define do_each_pid_task(pid, type, task) \ do { \ if ((pid) != NULL) \ hlist_for_each_entry_rcu((task), \ &(pid)->tasks[type], pid_links[type]) { /* * Both old and new leaders may be attached to * the same pid in the middle of de_thread(). */ #define while_each_pid_task(pid, type, task) \ if (type == PIDTYPE_PID) \ break; \ } \ } while (0) #define do_each_pid_thread(pid, type, task) \ do_each_pid_task(pid, type, task) { \ struct task_struct *tg___ = task; \ for_each_thread(tg___, task) { #define while_each_pid_thread(pid, type, task) \ } \ task = tg___; \ } while_each_pid_task(pid, type, task) #endif /* _LINUX_PID_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_JIFFIES_H #define _LINUX_JIFFIES_H #include <linux/cache.h> #include <linux/limits.h> #include <linux/math64.h> #include <linux/minmax.h> #include <linux/types.h> #include <linux/time.h> #include <linux/timex.h> #include <vdso/jiffies.h> #include <asm/param.h> /* for HZ */ #include <generated/timeconst.h> /* * The following defines establish the engineering parameters of the PLL * model. The HZ variable establishes the timer interrupt frequency, 100 Hz * for the SunOS kernel, 256 Hz for the Ultrix kernel and 1024 Hz for the * OSF/1 kernel. The SHIFT_HZ define expresses the same value as the * nearest power of two in order to avoid hardware multiply operations. */ #if HZ >= 12 && HZ < 24 # define SHIFT_HZ 4 #elif HZ >= 24 && HZ < 48 # define SHIFT_HZ 5 #elif HZ >= 48 && HZ < 96 # define SHIFT_HZ 6 #elif HZ >= 96 && HZ < 192 # define SHIFT_HZ 7 #elif HZ >= 192 && HZ < 384 # define SHIFT_HZ 8 #elif HZ >= 384 && HZ < 768 # define SHIFT_HZ 9 #elif HZ >= 768 && HZ < 1536 # define SHIFT_HZ 10 #elif HZ >= 1536 && HZ < 3072 # define SHIFT_HZ 11 #elif HZ >= 3072 && HZ < 6144 # define SHIFT_HZ 12 #elif HZ >= 6144 && HZ < 12288 # define SHIFT_HZ 13 #else # error Invalid value of HZ. #endif /* Suppose we want to divide two numbers NOM and DEN: NOM/DEN, then we can * improve accuracy by shifting LSH bits, hence calculating: * (NOM << LSH) / DEN * This however means trouble for large NOM, because (NOM << LSH) may no * longer fit in 32 bits. The following way of calculating this gives us * some slack, under the following conditions: * - (NOM / DEN) fits in (32 - LSH) bits. * - (NOM % DEN) fits in (32 - LSH) bits. */ #define SH_DIV(NOM,DEN,LSH) ( (((NOM) / (DEN)) << (LSH)) \ + ((((NOM) % (DEN)) << (LSH)) + (DEN) / 2) / (DEN)) /* LATCH is used in the interval timer and ftape setup. */ #define LATCH ((CLOCK_TICK_RATE + HZ/2) / HZ) /* For divider */ extern int register_refined_jiffies(long clock_tick_rate); /* TICK_USEC is the time between ticks in usec assuming SHIFTED_HZ */ #define TICK_USEC ((USEC_PER_SEC + HZ/2) / HZ) /* USER_TICK_USEC is the time between ticks in usec assuming fake USER_HZ */ #define USER_TICK_USEC ((1000000UL + USER_HZ/2) / USER_HZ) #ifndef __jiffy_arch_data #define __jiffy_arch_data #endif /* * The 64-bit value is not atomic - you MUST NOT read it * without sampling the sequence number in jiffies_lock. * get_jiffies_64() will do this for you as appropriate. */ extern u64 __cacheline_aligned_in_smp jiffies_64; extern unsigned long volatile __cacheline_aligned_in_smp __jiffy_arch_data jiffies; #if (BITS_PER_LONG < 64) u64 get_jiffies_64(void); #else static inline u64 get_jiffies_64(void) { return (u64)jiffies; } #endif /* * These inlines deal with timer wrapping correctly. You are * strongly encouraged to use them * 1. Because people otherwise forget * 2. Because if the timer wrap changes in future you won't have to * alter your driver code. * * time_after(a,b) returns true if the time a is after time b. * * Do this with "<0" and ">=0" to only test the sign of the result. A * good compiler would generate better code (and a really good compiler * wouldn't care). Gcc is currently neither. */ #define time_after(a,b) \ (typecheck(unsigned long, a) && \ typecheck(unsigned long, b) && \ ((long)((b) - (a)) < 0)) #define time_before(a,b) time_after(b,a) #define time_after_eq(a,b) \ (typecheck(unsigned long, a) && \ typecheck(unsigned long, b) && \ ((long)((a) - (b)) >= 0)) #define time_before_eq(a,b) time_after_eq(b,a) /* * Calculate whether a is in the range of [b, c]. */ #define time_in_range(a,b,c) \ (time_after_eq(a,b) && \ time_before_eq(a,c)) /* * Calculate whether a is in the range of [b, c). */ #define time_in_range_open(a,b,c) \ (time_after_eq(a,b) && \ time_before(a,c)) /* Same as above, but does so with platform independent 64bit types. * These must be used when utilizing jiffies_64 (i.e. return value of * get_jiffies_64() */ #define time_after64(a,b) \ (typecheck(__u64, a) && \ typecheck(__u64, b) && \ ((__s64)((b) - (a)) < 0)) #define time_before64(a,b) time_after64(b,a) #define time_after_eq64(a,b) \ (typecheck(__u64, a) && \ typecheck(__u64, b) && \ ((__s64)((a) - (b)) >= 0)) #define time_before_eq64(a,b) time_after_eq64(b,a) #define time_in_range64(a, b, c) \ (time_after_eq64(a, b) && \ time_before_eq64(a, c)) /* * These four macros compare jiffies and 'a' for convenience. */ /* time_is_before_jiffies(a) return true if a is before jiffies */ #define time_is_before_jiffies(a) time_after(jiffies, a) #define time_is_before_jiffies64(a) time_after64(get_jiffies_64(), a) /* time_is_after_jiffies(a) return true if a is after jiffies */ #define time_is_after_jiffies(a) time_before(jiffies, a) #define time_is_after_jiffies64(a) time_before64(get_jiffies_64(), a) /* time_is_before_eq_jiffies(a) return true if a is before or equal to jiffies*/ #define time_is_before_eq_jiffies(a) time_after_eq(jiffies, a) #define time_is_before_eq_jiffies64(a) time_after_eq64(get_jiffies_64(), a) /* time_is_after_eq_jiffies(a) return true if a is after or equal to jiffies*/ #define time_is_after_eq_jiffies(a) time_before_eq(jiffies, a) #define time_is_after_eq_jiffies64(a) time_before_eq64(get_jiffies_64(), a) /* * Have the 32 bit jiffies value wrap 5 minutes after boot * so jiffies wrap bugs show up earlier. */ #define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-300*HZ)) /* * Change timeval to jiffies, trying to avoid the * most obvious overflows.. * * And some not so obvious. * * Note that we don't want to return LONG_MAX, because * for various timeout reasons we often end up having * to wait "jiffies+1" in order to guarantee that we wait * at _least_ "jiffies" - so "jiffies+1" had better still * be positive. */ #define MAX_JIFFY_OFFSET ((LONG_MAX >> 1)-1) extern unsigned long preset_lpj; /* * We want to do realistic conversions of time so we need to use the same * values the update wall clock code uses as the jiffies size. This value * is: TICK_NSEC (which is defined in timex.h). This * is a constant and is in nanoseconds. We will use scaled math * with a set of scales defined here as SEC_JIFFIE_SC, USEC_JIFFIE_SC and * NSEC_JIFFIE_SC. Note that these defines contain nothing but * constants and so are computed at compile time. SHIFT_HZ (computed in * timex.h) adjusts the scaling for different HZ values. * Scaled math??? What is that? * * Scaled math is a way to do integer math on values that would, * otherwise, either overflow, underflow, or cause undesired div * instructions to appear in the execution path. In short, we "scale" * up the operands so they take more bits (more precision, less * underflow), do the desired operation and then "scale" the result back * by the same amount. If we do the scaling by shifting we avoid the * costly mpy and the dastardly div instructions. * Suppose, for example, we want to convert from seconds to jiffies * where jiffies is defined in nanoseconds as NSEC_PER_JIFFIE. The * simple math is: jiff = (sec * NSEC_PER_SEC) / NSEC_PER_JIFFIE; We * observe that (NSEC_PER_SEC / NSEC_PER_JIFFIE) is a constant which we * might calculate at compile time, however, the result will only have * about 3-4 bits of precision (less for smaller values of HZ). * * So, we scale as follows: * jiff = (sec) * (NSEC_PER_SEC / NSEC_PER_JIFFIE); * jiff = ((sec) * ((NSEC_PER_SEC * SCALE)/ NSEC_PER_JIFFIE)) / SCALE; * Then we make SCALE a power of two so: * jiff = ((sec) * ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) >> SCALE; * Now we define: * #define SEC_CONV = ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) * jiff = (sec * SEC_CONV) >> SCALE; * * Often the math we use will expand beyond 32-bits so we tell C how to * do this and pass the 64-bit result of the mpy through the ">> SCALE" * which should take the result back to 32-bits. We want this expansion * to capture as much precision as possible. At the same time we don't * want to overflow so we pick the SCALE to avoid this. In this file, * that means using a different scale for each range of HZ values (as * defined in timex.h). * * For those who want to know, gcc will give a 64-bit result from a "*" * operator if the result is a long long AND at least one of the * operands is cast to long long (usually just prior to the "*" so as * not to confuse it into thinking it really has a 64-bit operand, * which, buy the way, it can do, but it takes more code and at least 2 * mpys). * We also need to be aware that one second in nanoseconds is only a * couple of bits away from overflowing a 32-bit word, so we MUST use * 64-bits to get the full range time in nanoseconds. */ /* * Here are the scales we will use. One for seconds, nanoseconds and * microseconds. * * Within the limits of cpp we do a rough cut at the SEC_JIFFIE_SC and * check if the sign bit is set. If not, we bump the shift count by 1. * (Gets an extra bit of precision where we can use it.) * We know it is set for HZ = 1024 and HZ = 100 not for 1000. * Haven't tested others. * Limits of cpp (for #if expressions) only long (no long long), but * then we only need the most signicant bit. */ #define SEC_JIFFIE_SC (31 - SHIFT_HZ) #if !((((NSEC_PER_SEC << 2) / TICK_NSEC) << (SEC_JIFFIE_SC - 2)) & 0x80000000) #undef SEC_JIFFIE_SC #define SEC_JIFFIE_SC (32 - SHIFT_HZ) #endif #define NSEC_JIFFIE_SC (SEC_JIFFIE_SC + 29) #define SEC_CONVERSION ((unsigned long)((((u64)NSEC_PER_SEC << SEC_JIFFIE_SC) +\ TICK_NSEC -1) / (u64)TICK_NSEC)) #define NSEC_CONVERSION ((unsigned long)((((u64)1 << NSEC_JIFFIE_SC) +\ TICK_NSEC -1) / (u64)TICK_NSEC)) /* * The maximum jiffie value is (MAX_INT >> 1). Here we translate that * into seconds. The 64-bit case will overflow if we are not careful, * so use the messy SH_DIV macro to do it. Still all constants. */ #if BITS_PER_LONG < 64 # define MAX_SEC_IN_JIFFIES \ (long)((u64)((u64)MAX_JIFFY_OFFSET * TICK_NSEC) / NSEC_PER_SEC) #else /* take care of overflow on 64 bits machines */ # define MAX_SEC_IN_JIFFIES \ (SH_DIV((MAX_JIFFY_OFFSET >> SEC_JIFFIE_SC) * TICK_NSEC, NSEC_PER_SEC, 1) - 1) #endif /* * Convert various time units to each other: */ extern unsigned int jiffies_to_msecs(const unsigned long j); extern unsigned int jiffies_to_usecs(const unsigned long j); static inline u64 jiffies_to_nsecs(const unsigned long j) { return (u64)jiffies_to_usecs(j) * NSEC_PER_USEC; } extern u64 jiffies64_to_nsecs(u64 j); extern u64 jiffies64_to_msecs(u64 j); extern unsigned long __msecs_to_jiffies(const unsigned int m); #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ) /* * HZ is equal to or smaller than 1000, and 1000 is a nice round * multiple of HZ, divide with the factor between them, but round * upwards: */ static inline unsigned long _msecs_to_jiffies(const unsigned int m) { return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ); } #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC) /* * HZ is larger than 1000, and HZ is a nice round multiple of 1000 - * simply multiply with the factor between them. * * But first make sure the multiplication result cannot overflow: */ static inline unsigned long _msecs_to_jiffies(const unsigned int m) { if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET)) return MAX_JIFFY_OFFSET; return m * (HZ / MSEC_PER_SEC); } #else /* * Generic case - multiply, round and divide. But first check that if * we are doing a net multiplication, that we wouldn't overflow: */ static inline unsigned long _msecs_to_jiffies(const unsigned int m) { if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET)) return MAX_JIFFY_OFFSET; return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32) >> MSEC_TO_HZ_SHR32; } #endif /** * msecs_to_jiffies: - convert milliseconds to jiffies * @m: time in milliseconds * * conversion is done as follows: * * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET) * * - 'too large' values [that would result in larger than * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too. * * - all other values are converted to jiffies by either multiplying * the input value by a factor or dividing it with a factor and * handling any 32-bit overflows. * for the details see __msecs_to_jiffies() * * msecs_to_jiffies() checks for the passed in value being a constant * via __builtin_constant_p() allowing gcc to eliminate most of the * code, __msecs_to_jiffies() is called if the value passed does not * allow constant folding and the actual conversion must be done at * runtime. * the HZ range specific helpers _msecs_to_jiffies() are called both * directly here and from __msecs_to_jiffies() in the case where * constant folding is not possible. */ static __always_inline unsigned long msecs_to_jiffies(const unsigned int m) { if (__builtin_constant_p(m)) { if ((int)m < 0) return MAX_JIFFY_OFFSET; return _msecs_to_jiffies(m); } else { return __msecs_to_jiffies(m); } } extern unsigned long __usecs_to_jiffies(const unsigned int u); #if !(USEC_PER_SEC % HZ) static inline unsigned long _usecs_to_jiffies(const unsigned int u) { return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ); } #else static inline unsigned long _usecs_to_jiffies(const unsigned int u) { return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32) >> USEC_TO_HZ_SHR32; } #endif /** * usecs_to_jiffies: - convert microseconds to jiffies * @u: time in microseconds * * conversion is done as follows: * * - 'too large' values [that would result in larger than * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too. * * - all other values are converted to jiffies by either multiplying * the input value by a factor or dividing it with a factor and * handling any 32-bit overflows as for msecs_to_jiffies. * * usecs_to_jiffies() checks for the passed in value being a constant * via __builtin_constant_p() allowing gcc to eliminate most of the * code, __usecs_to_jiffies() is called if the value passed does not * allow constant folding and the actual conversion must be done at * runtime. * the HZ range specific helpers _usecs_to_jiffies() are called both * directly here and from __msecs_to_jiffies() in the case where * constant folding is not possible. */ static __always_inline unsigned long usecs_to_jiffies(const unsigned int u) { if (__builtin_constant_p(u)) { if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET)) return MAX_JIFFY_OFFSET; return _usecs_to_jiffies(u); } else { return __usecs_to_jiffies(u); } } extern unsigned long timespec64_to_jiffies(const struct timespec64 *value); extern void jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value); extern clock_t jiffies_to_clock_t(unsigned long x); static inline clock_t jiffies_delta_to_clock_t(long delta) { return jiffies_to_clock_t(max(0L, delta)); } static inline unsigned int jiffies_delta_to_msecs(long delta) { return jiffies_to_msecs(max(0L, delta)); } extern unsigned long clock_t_to_jiffies(unsigned long x); extern u64 jiffies_64_to_clock_t(u64 x); extern u64 nsec_to_clock_t(u64 x); extern u64 nsecs_to_jiffies64(u64 n); extern unsigned long nsecs_to_jiffies(u64 n); #define TIMESTAMP_SIZE 30 #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 /* SPDX-License-Identifier: GPL-2.0 */ /* * A security identifier table (sidtab) is a lookup table * of security context structures indexed by SID value. * * Original author: Stephen Smalley, <sds@tycho.nsa.gov> * Author: Ondrej Mosnacek, <omosnacek@gmail.com> * * Copyright (C) 2018 Red Hat, Inc. */ #ifndef _SS_SIDTAB_H_ #define _SS_SIDTAB_H_ #include <linux/spinlock_types.h> #include <linux/log2.h> #include <linux/hashtable.h> #include "context.h" struct sidtab_entry { u32 sid; u32 hash; struct context context; #if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0 struct sidtab_str_cache __rcu *cache; #endif struct hlist_node list; }; union sidtab_entry_inner { struct sidtab_node_inner *ptr_inner; struct sidtab_node_leaf *ptr_leaf; }; /* align node size to page boundary */ #define SIDTAB_NODE_ALLOC_SHIFT PAGE_SHIFT #define SIDTAB_NODE_ALLOC_SIZE PAGE_SIZE #define size_to_shift(size) ((size) == 1 ? 1 : (const_ilog2((size) - 1) + 1)) #define SIDTAB_INNER_SHIFT \ (SIDTAB_NODE_ALLOC_SHIFT - size_to_shift(sizeof(union sidtab_entry_inner))) #define SIDTAB_INNER_ENTRIES ((size_t)1 << SIDTAB_INNER_SHIFT) #define SIDTAB_LEAF_ENTRIES \ (SIDTAB_NODE_ALLOC_SIZE / sizeof(struct sidtab_entry)) #define SIDTAB_MAX_BITS 32 #define SIDTAB_MAX U32_MAX /* ensure enough tree levels for SIDTAB_MAX entries */ #define SIDTAB_MAX_LEVEL \ DIV_ROUND_UP(SIDTAB_MAX_BITS - size_to_shift(SIDTAB_LEAF_ENTRIES), \ SIDTAB_INNER_SHIFT) struct sidtab_node_leaf { struct sidtab_entry entries[SIDTAB_LEAF_ENTRIES]; }; struct sidtab_node_inner { union sidtab_entry_inner entries[SIDTAB_INNER_ENTRIES]; }; struct sidtab_isid_entry { int set; struct sidtab_entry entry; }; struct sidtab_convert_params { int (*func)(struct context *oldc, struct context *newc, void *args); void *args; struct sidtab *target; }; #define SIDTAB_HASH_BITS CONFIG_SECURITY_SELINUX_SIDTAB_HASH_BITS #define SIDTAB_HASH_BUCKETS (1 << SIDTAB_HASH_BITS) struct sidtab { /* * lock-free read access only for as many items as a prior read of * 'count' */ union sidtab_entry_inner roots[SIDTAB_MAX_LEVEL + 1]; /* * access atomically via {READ|WRITE}_ONCE(); only increment under * spinlock */ u32 count; /* access only under spinlock */ struct sidtab_convert_params *convert; bool frozen; spinlock_t lock; #if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0 /* SID -> context string cache */ u32 cache_free_slots; struct list_head cache_lru_list; spinlock_t cache_lock; #endif /* index == SID - 1 (no entry for SECSID_NULL) */ struct sidtab_isid_entry isids[SECINITSID_NUM]; /* Hash table for fast reverse context-to-sid lookups. */ DECLARE_HASHTABLE(context_to_sid, SIDTAB_HASH_BITS); }; int sidtab_init(struct sidtab *s); int sidtab_set_initial(struct sidtab *s, u32 sid, struct context *context); struct sidtab_entry *sidtab_search_entry(struct sidtab *s, u32 sid); struct sidtab_entry *sidtab_search_entry_force(struct sidtab *s, u32 sid); static inline struct context *sidtab_search(struct sidtab *s, u32 sid) { struct sidtab_entry *entry = sidtab_search_entry(s, sid); return entry ? &entry->context : NULL; } static inline struct context *sidtab_search_force(struct sidtab *s, u32 sid) { struct sidtab_entry *entry = sidtab_search_entry_force(s, sid); return entry ? &entry->context : NULL; } int sidtab_convert(struct sidtab *s, struct sidtab_convert_params *params); void sidtab_cancel_convert(struct sidtab *s); void sidtab_freeze_begin(struct sidtab *s, unsigned long *flags) __acquires(&s->lock); void sidtab_freeze_end(struct sidtab *s, unsigned long *flags) __releases(&s->lock); int sidtab_context_to_sid(struct sidtab *s, struct context *context, u32 *sid); void sidtab_destroy(struct sidtab *s); int sidtab_hash_stats(struct sidtab *sidtab, char *page); #if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0 void sidtab_sid2str_put(struct sidtab *s, struct sidtab_entry *entry, const char *str, u32 str_len); int sidtab_sid2str_get(struct sidtab *s, struct sidtab_entry *entry, char **out, u32 *out_len); #else static inline void sidtab_sid2str_put(struct sidtab *s, struct sidtab_entry *entry, const char *str, u32 str_len) { } static inline int sidtab_sid2str_get(struct sidtab *s, struct sidtab_entry *entry, char **out, u32 *out_len) { return -ENOENT; } #endif /* CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0 */ #endif /* _SS_SIDTAB_H_ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * NET Generic infrastructure for Network protocols. * * Definitions for request_sock * * Authors: Arnaldo Carvalho de Melo <acme@conectiva.com.br> * * From code originally in include/net/tcp.h */ #ifndef _REQUEST_SOCK_H #define _REQUEST_SOCK_H #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/types.h> #include <linux/bug.h> #include <linux/refcount.h> #include <net/sock.h> struct request_sock; struct sk_buff; struct dst_entry; struct proto; struct request_sock_ops { int family; unsigned int obj_size; struct kmem_cache *slab; char *slab_name; int (*rtx_syn_ack)(const struct sock *sk, struct request_sock *req); void (*send_ack)(const struct sock *sk, struct sk_buff *skb, struct request_sock *req); void (*send_reset)(const struct sock *sk, struct sk_buff *skb); void (*destructor)(struct request_sock *req); void (*syn_ack_timeout)(const struct request_sock *req); }; int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req); struct saved_syn { u32 mac_hdrlen; u32 network_hdrlen; u32 tcp_hdrlen; u8 data[]; }; /* struct request_sock - mini sock to represent a connection request */ struct request_sock { struct sock_common __req_common; #define rsk_refcnt __req_common.skc_refcnt #define rsk_hash __req_common.skc_hash #define rsk_listener __req_common.skc_listener #define rsk_window_clamp __req_common.skc_window_clamp #define rsk_rcv_wnd __req_common.skc_rcv_wnd struct request_sock *dl_next; u16 mss; u8 num_retrans; /* number of retransmits */ u8 syncookie:1; /* syncookie: encode tcpopts in timestamp */ u8 num_timeout:7; /* number of timeouts */ u32 ts_recent; struct timer_list rsk_timer; const struct request_sock_ops *rsk_ops; struct sock *sk; struct saved_syn *saved_syn; u32 secid; u32 peer_secid; }; static inline struct request_sock *inet_reqsk(const struct sock *sk) { return (struct request_sock *)sk; } static inline struct sock *req_to_sk(struct request_sock *req) { return (struct sock *)req; } static inline struct request_sock * reqsk_alloc(const struct request_sock_ops *ops, struct sock *sk_listener, bool attach_listener) { struct request_sock *req; req = kmem_cache_alloc(ops->slab, GFP_ATOMIC | __GFP_NOWARN); if (!req) return NULL; req->rsk_listener = NULL; if (attach_listener) { if (unlikely(!refcount_inc_not_zero(&sk_listener->sk_refcnt))) { kmem_cache_free(ops->slab, req); return NULL; } req->rsk_listener = sk_listener; } req->rsk_ops = ops; req_to_sk(req)->sk_prot = sk_listener->sk_prot; sk_node_init(&req_to_sk(req)->sk_node); sk_tx_queue_clear(req_to_sk(req)); req->saved_syn = NULL; req->num_timeout = 0; req->num_retrans = 0; req->sk = NULL; refcount_set(&req->rsk_refcnt, 0); return req; } static inline void __reqsk_free(struct request_sock *req) { req->rsk_ops->destructor(req); if (req->rsk_listener) sock_put(req->rsk_listener); kfree(req->saved_syn); kmem_cache_free(req->rsk_ops->slab, req); } static inline void reqsk_free(struct request_sock *req) { WARN_ON_ONCE(refcount_read(&req->rsk_refcnt) != 0); __reqsk_free(req); } static inline void reqsk_put(struct request_sock *req) { if (refcount_dec_and_test(&req->rsk_refcnt)) reqsk_free(req); } /* * For a TCP Fast Open listener - * lock - protects the access to all the reqsk, which is co-owned by * the listener and the child socket. * qlen - pending TFO requests (still in TCP_SYN_RECV). * max_qlen - max TFO reqs allowed before TFO is disabled. * * XXX (TFO) - ideally these fields can be made as part of "listen_sock" * structure above. But there is some implementation difficulty due to * listen_sock being part of request_sock_queue hence will be freed when * a listener is stopped. But TFO related fields may continue to be * accessed even after a listener is closed, until its sk_refcnt drops * to 0 implying no more outstanding TFO reqs. One solution is to keep * listen_opt around until sk_refcnt drops to 0. But there is some other * complexity that needs to be resolved. E.g., a listener can be disabled * temporarily through shutdown()->tcp_disconnect(), and re-enabled later. */ struct fastopen_queue { struct request_sock *rskq_rst_head; /* Keep track of past TFO */ struct request_sock *rskq_rst_tail; /* requests that caused RST. * This is part of the defense * against spoofing attack. */ spinlock_t lock; int qlen; /* # of pending (TCP_SYN_RECV) reqs */ int max_qlen; /* != 0 iff TFO is currently enabled */ struct tcp_fastopen_context __rcu *ctx; /* cipher context for cookie */ }; /** struct request_sock_queue - queue of request_socks * * @rskq_accept_head - FIFO head of established children * @rskq_accept_tail - FIFO tail of established children * @rskq_defer_accept - User waits for some data after accept() * */ struct request_sock_queue { spinlock_t rskq_lock; u8 rskq_defer_accept; u32 synflood_warned; atomic_t qlen; atomic_t young; struct request_sock *rskq_accept_head; struct request_sock *rskq_accept_tail; struct fastopen_queue fastopenq; /* Check max_qlen != 0 to determine * if TFO is enabled. */ }; void reqsk_queue_alloc(struct request_sock_queue *queue); void reqsk_fastopen_remove(struct sock *sk, struct request_sock *req, bool reset); static inline bool reqsk_queue_empty(const struct request_sock_queue *queue) { return READ_ONCE(queue->rskq_accept_head) == NULL; } static inline struct request_sock *reqsk_queue_remove(struct request_sock_queue *queue, struct sock *parent) { struct request_sock *req; spin_lock_bh(&queue->rskq_lock); req = queue->rskq_accept_head; if (req) { sk_acceptq_removed(parent); WRITE_ONCE(queue->rskq_accept_head, req->dl_next); if (queue->rskq_accept_head == NULL) queue->rskq_accept_tail = NULL; } spin_unlock_bh(&queue->rskq_lock); return req; } static inline void reqsk_queue_removed(struct request_sock_queue *queue, const struct request_sock *req) { if (req->num_timeout == 0) atomic_dec(&queue->young); atomic_dec(&queue->qlen); } static inline void reqsk_queue_added(struct request_sock_queue *queue) { atomic_inc(&queue->young); atomic_inc(&queue->qlen); } static inline int reqsk_queue_len(const struct request_sock_queue *queue) { return atomic_read(&queue->qlen); } static inline int reqsk_queue_len_young(const struct request_sock_queue *queue) { return atomic_read(&queue->young); } #endif /* _REQUEST_SOCK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_TLB_H #define _ASM_X86_TLB_H #define tlb_start_vma(tlb, vma) do { } while (0) #define tlb_end_vma(tlb, vma) do { } while (0) #define __tlb_remove_tlb_entry(tlb, ptep, address) do { } while (0) #define tlb_flush tlb_flush static inline void tlb_flush(struct mmu_gather *tlb); #include <asm-generic/tlb.h> static inline void tlb_flush(struct mmu_gather *tlb) { unsigned long start = 0UL, end = TLB_FLUSH_ALL; unsigned int stride_shift = tlb_get_unmap_shift(tlb); if (!tlb->fullmm && !tlb->need_flush_all) { start = tlb->start; end = tlb->end; } flush_tlb_mm_range(tlb->mm, start, end, stride_shift, tlb->freed_tables); } /* * While x86 architecture in general requires an IPI to perform TLB * shootdown, enablement code for several hypervisors overrides * .flush_tlb_others hook in pv_mmu_ops and implements it by issuing * a hypercall. To keep software pagetable walkers safe in this case we * switch to RCU based table free (MMU_GATHER_RCU_TABLE_FREE). See the comment * below 'ifdef CONFIG_MMU_GATHER_RCU_TABLE_FREE' in include/asm-generic/tlb.h * for more details. */ static inline void __tlb_remove_table(void *table) { free_page_and_swap_cache(table); } #endif /* _ASM_X86_TLB_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM 9p #if !defined(_TRACE_9P_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_9P_H #include <linux/tracepoint.h> #define P9_MSG_T \ EM( P9_TLERROR, "P9_TLERROR" ) \ EM( P9_RLERROR, "P9_RLERROR" ) \ EM( P9_TSTATFS, "P9_TSTATFS" ) \ EM( P9_RSTATFS, "P9_RSTATFS" ) \ EM( P9_TLOPEN, "P9_TLOPEN" ) \ EM( P9_RLOPEN, "P9_RLOPEN" ) \ EM( P9_TLCREATE, "P9_TLCREATE" ) \ EM( P9_RLCREATE, "P9_RLCREATE" ) \ EM( P9_TSYMLINK, "P9_TSYMLINK" ) \ EM( P9_RSYMLINK, "P9_RSYMLINK" ) \ EM( P9_TMKNOD, "P9_TMKNOD" ) \ EM( P9_RMKNOD, "P9_RMKNOD" ) \ EM( P9_TRENAME, "P9_TRENAME" ) \ EM( P9_RRENAME, "P9_RRENAME" ) \ EM( P9_TREADLINK, "P9_TREADLINK" ) \ EM( P9_RREADLINK, "P9_RREADLINK" ) \ EM( P9_TGETATTR, "P9_TGETATTR" ) \ EM( P9_RGETATTR, "P9_RGETATTR" ) \ EM( P9_TSETATTR, "P9_TSETATTR" ) \ EM( P9_RSETATTR, "P9_RSETATTR" ) \ EM( P9_TXATTRWALK, "P9_TXATTRWALK" ) \ EM( P9_RXATTRWALK, "P9_RXATTRWALK" ) \ EM( P9_TXATTRCREATE, "P9_TXATTRCREATE" ) \ EM( P9_RXATTRCREATE, "P9_RXATTRCREATE" ) \ EM( P9_TREADDIR, "P9_TREADDIR" ) \ EM( P9_RREADDIR, "P9_RREADDIR" ) \ EM( P9_TFSYNC, "P9_TFSYNC" ) \ EM( P9_RFSYNC, "P9_RFSYNC" ) \ EM( P9_TLOCK, "P9_TLOCK" ) \ EM( P9_RLOCK, "P9_RLOCK" ) \ EM( P9_TGETLOCK, "P9_TGETLOCK" ) \ EM( P9_RGETLOCK, "P9_RGETLOCK" ) \ EM( P9_TLINK, "P9_TLINK" ) \ EM( P9_RLINK, "P9_RLINK" ) \ EM( P9_TMKDIR, "P9_TMKDIR" ) \ EM( P9_RMKDIR, "P9_RMKDIR" ) \ EM( P9_TRENAMEAT, "P9_TRENAMEAT" ) \ EM( P9_RRENAMEAT, "P9_RRENAMEAT" ) \ EM( P9_TUNLINKAT, "P9_TUNLINKAT" ) \ EM( P9_RUNLINKAT, "P9_RUNLINKAT" ) \ EM( P9_TVERSION, "P9_TVERSION" ) \ EM( P9_RVERSION, "P9_RVERSION" ) \ EM( P9_TAUTH, "P9_TAUTH" ) \ EM( P9_RAUTH, "P9_RAUTH" ) \ EM( P9_TATTACH, "P9_TATTACH" ) \ EM( P9_RATTACH, "P9_RATTACH" ) \ EM( P9_TERROR, "P9_TERROR" ) \ EM( P9_RERROR, "P9_RERROR" ) \ EM( P9_TFLUSH, "P9_TFLUSH" ) \ EM( P9_RFLUSH, "P9_RFLUSH" ) \ EM( P9_TWALK, "P9_TWALK" ) \ EM( P9_RWALK, "P9_RWALK" ) \ EM( P9_TOPEN, "P9_TOPEN" ) \ EM( P9_ROPEN, "P9_ROPEN" ) \ EM( P9_TCREATE, "P9_TCREATE" ) \ EM( P9_RCREATE, "P9_RCREATE" ) \ EM( P9_TREAD, "P9_TREAD" ) \ EM( P9_RREAD, "P9_RREAD" ) \ EM( P9_TWRITE, "P9_TWRITE" ) \ EM( P9_RWRITE, "P9_RWRITE" ) \ EM( P9_TCLUNK, "P9_TCLUNK" ) \ EM( P9_RCLUNK, "P9_RCLUNK" ) \ EM( P9_TREMOVE, "P9_TREMOVE" ) \ EM( P9_RREMOVE, "P9_RREMOVE" ) \ EM( P9_TSTAT, "P9_TSTAT" ) \ EM( P9_RSTAT, "P9_RSTAT" ) \ EM( P9_TWSTAT, "P9_TWSTAT" ) \ EMe(P9_RWSTAT, "P9_RWSTAT" ) /* Define EM() to export the enums to userspace via TRACE_DEFINE_ENUM() */ #undef EM #undef EMe #define EM(a, b) TRACE_DEFINE_ENUM(a); #define EMe(a, b) TRACE_DEFINE_ENUM(a); P9_MSG_T /* * Now redefine the EM() and EMe() macros to map the enums to the strings * that will be printed in the output. */ #undef EM #undef EMe #define EM(a, b) { a, b }, #define EMe(a, b) { a, b } #define show_9p_op(type) \ __print_symbolic(type, P9_MSG_T) TRACE_EVENT(9p_client_req, TP_PROTO(struct p9_client *clnt, int8_t type, int tag), TP_ARGS(clnt, type, tag), TP_STRUCT__entry( __field( void *, clnt ) __field( __u8, type ) __field( __u32, tag ) ), TP_fast_assign( __entry->clnt = clnt; __entry->type = type; __entry->tag = tag; ), TP_printk("client %lu request %s tag %d", (long)__entry->clnt, show_9p_op(__entry->type), __entry->tag) ); TRACE_EVENT(9p_client_res, TP_PROTO(struct p9_client *clnt, int8_t type, int tag, int err), TP_ARGS(clnt, type, tag, err), TP_STRUCT__entry( __field( void *, clnt ) __field( __u8, type ) __field( __u32, tag ) __field( __u32, err ) ), TP_fast_assign( __entry->clnt = clnt; __entry->type = type; __entry->tag = tag; __entry->err = err; ), TP_printk("client %lu response %s tag %d err %d", (long)__entry->clnt, show_9p_op(__entry->type), __entry->tag, __entry->err) ); /* dump 32 bytes of protocol data */ #define P9_PROTO_DUMP_SZ 32 TRACE_EVENT(9p_protocol_dump, TP_PROTO(struct p9_client *clnt, struct p9_fcall *pdu), TP_ARGS(clnt, pdu), TP_STRUCT__entry( __field( void *, clnt ) __field( __u8, type ) __field( __u16, tag ) __array( unsigned char, line, P9_PROTO_DUMP_SZ ) ), TP_fast_assign( __entry->clnt = clnt; __entry->type = pdu->id; __entry->tag = pdu->tag; memcpy(__entry->line, pdu->sdata, P9_PROTO_DUMP_SZ); ), TP_printk("clnt %lu %s(tag = %d)\n%.3x: %16ph\n%.3x: %16ph\n", (unsigned long)__entry->clnt, show_9p_op(__entry->type), __entry->tag, 0, __entry->line, 16, __entry->line + 16) ); #endif /* _TRACE_9P_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Descending-priority-sorted double-linked list * * (C) 2002-2003 Intel Corp * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>. * * 2001-2005 (c) MontaVista Software, Inc. * Daniel Walker <dwalker@mvista.com> * * (C) 2005 Thomas Gleixner <tglx@linutronix.de> * * Simplifications of the original code by * Oleg Nesterov <oleg@tv-sign.ru> * * Based on simple lists (include/linux/list.h). * * This is a priority-sorted list of nodes; each node has a * priority from INT_MIN (highest) to INT_MAX (lowest). * * Addition is O(K), removal is O(1), change of priority of a node is * O(K) and K is the number of RT priority levels used in the system. * (1 <= K <= 99) * * This list is really a list of lists: * * - The tier 1 list is the prio_list, different priority nodes. * * - The tier 2 list is the node_list, serialized nodes. * * Simple ASCII art explanation: * * pl:prio_list (only for plist_node) * nl:node_list * HEAD| NODE(S) * | * ||------------------------------------| * ||->|pl|<->|pl|<--------------->|pl|<-| * | |10| |21| |21| |21| |40| (prio) * | | | | | | | | | | | * | | | | | | | | | | | * |->|nl|<->|nl|<->|nl|<->|nl|<->|nl|<->|nl|<-| * |-------------------------------------------| * * The nodes on the prio_list list are sorted by priority to simplify * the insertion of new nodes. There are no nodes with duplicate * priorites on the list. * * The nodes on the node_list are ordered by priority and can contain * entries which have the same priority. Those entries are ordered * FIFO * * Addition means: look for the prio_list node in the prio_list * for the priority of the node and insert it before the node_list * entry of the next prio_list node. If it is the first node of * that priority, add it to the prio_list in the right position and * insert it into the serialized node_list list * * Removal means remove it from the node_list and remove it from * the prio_list if the node_list list_head is non empty. In case * of removal from the prio_list it must be checked whether other * entries of the same priority are on the list or not. If there * is another entry of the same priority then this entry has to * replace the removed entry on the prio_list. If the entry which * is removed is the only entry of this priority then a simple * remove from both list is sufficient. * * INT_MIN is the highest priority, 0 is the medium highest, INT_MAX * is lowest priority. * * No locking is done, up to the caller. */ #ifndef _LINUX_PLIST_H_ #define _LINUX_PLIST_H_ #include <linux/kernel.h> #include <linux/list.h> struct plist_head { struct list_head node_list; }; struct plist_node { int prio; struct list_head prio_list; struct list_head node_list; }; /** * PLIST_HEAD_INIT - static struct plist_head initializer * @head: struct plist_head variable name */ #define PLIST_HEAD_INIT(head) \ { \ .node_list = LIST_HEAD_INIT((head).node_list) \ } /** * PLIST_HEAD - declare and init plist_head * @head: name for struct plist_head variable */ #define PLIST_HEAD(head) \ struct plist_head head = PLIST_HEAD_INIT(head) /** * PLIST_NODE_INIT - static struct plist_node initializer * @node: struct plist_node variable name * @__prio: initial node priority */ #define PLIST_NODE_INIT(node, __prio) \ { \ .prio = (__prio), \ .prio_list = LIST_HEAD_INIT((node).prio_list), \ .node_list = LIST_HEAD_INIT((node).node_list), \ } /** * plist_head_init - dynamic struct plist_head initializer * @head: &struct plist_head pointer */ static inline void plist_head_init(struct plist_head *head) { INIT_LIST_HEAD(&head->node_list); } /** * plist_node_init - Dynamic struct plist_node initializer * @node: &struct plist_node pointer * @prio: initial node priority */ static inline void plist_node_init(struct plist_node *node, int prio) { node->prio = prio; INIT_LIST_HEAD(&node->prio_list); INIT_LIST_HEAD(&node->node_list); } extern void plist_add(struct plist_node *node, struct plist_head *head); extern void plist_del(struct plist_node *node, struct plist_head *head); extern void plist_requeue(struct plist_node *node, struct plist_head *head); /** * plist_for_each - iterate over the plist * @pos: the type * to use as a loop counter * @head: the head for your list */ #define plist_for_each(pos, head) \ list_for_each_entry(pos, &(head)->node_list, node_list) /** * plist_for_each_continue - continue iteration over the plist * @pos: the type * to use as a loop cursor * @head: the head for your list * * Continue to iterate over plist, continuing after the current position. */ #define plist_for_each_continue(pos, head) \ list_for_each_entry_continue(pos, &(head)->node_list, node_list) /** * plist_for_each_safe - iterate safely over a plist of given type * @pos: the type * to use as a loop counter * @n: another type * to use as temporary storage * @head: the head for your list * * Iterate over a plist of given type, safe against removal of list entry. */ #define plist_for_each_safe(pos, n, head) \ list_for_each_entry_safe(pos, n, &(head)->node_list, node_list) /** * plist_for_each_entry - iterate over list of given type * @pos: the type * to use as a loop counter * @head: the head for your list * @mem: the name of the list_head within the struct */ #define plist_for_each_entry(pos, head, mem) \ list_for_each_entry(pos, &(head)->node_list, mem.node_list) /** * plist_for_each_entry_continue - continue iteration over list of given type * @pos: the type * to use as a loop cursor * @head: the head for your list * @m: the name of the list_head within the struct * * Continue to iterate over list of given type, continuing after * the current position. */ #define plist_for_each_entry_continue(pos, head, m) \ list_for_each_entry_continue(pos, &(head)->node_list, m.node_list) /** * plist_for_each_entry_safe - iterate safely over list of given type * @pos: the type * to use as a loop counter * @n: another type * to use as temporary storage * @head: the head for your list * @m: the name of the list_head within the struct * * Iterate over list of given type, safe against removal of list entry. */ #define plist_for_each_entry_safe(pos, n, head, m) \ list_for_each_entry_safe(pos, n, &(head)->node_list, m.node_list) /** * plist_head_empty - return !0 if a plist_head is empty * @head: &struct plist_head pointer */ static inline int plist_head_empty(const struct plist_head *head) { return list_empty(&head->node_list); } /** * plist_node_empty - return !0 if plist_node is not on a list * @node: &struct plist_node pointer */ static inline int plist_node_empty(const struct plist_node *node) { return list_empty(&node->node_list); } /* All functions below assume the plist_head is not empty. */ /** * plist_first_entry - get the struct for the first entry * @head: the &struct plist_head pointer * @type: the type of the struct this is embedded in * @member: the name of the list_head within the struct */ #ifdef CONFIG_DEBUG_PLIST # define plist_first_entry(head, type, member) \ ({ \ WARN_ON(plist_head_empty(head)); \ container_of(plist_first(head), type, member); \ }) #else # define plist_first_entry(head, type, member) \ container_of(plist_first(head), type, member) #endif /** * plist_last_entry - get the struct for the last entry * @head: the &struct plist_head pointer * @type: the type of the struct this is embedded in * @member: the name of the list_head within the struct */ #ifdef CONFIG_DEBUG_PLIST # define plist_last_entry(head, type, member) \ ({ \ WARN_ON(plist_head_empty(head)); \ container_of(plist_last(head), type, member); \ }) #else # define plist_last_entry(head, type, member) \ container_of(plist_last(head), type, member) #endif /** * plist_next - get the next entry in list * @pos: the type * to cursor */ #define plist_next(pos) \ list_next_entry(pos, node_list) /** * plist_prev - get the prev entry in list * @pos: the type * to cursor */ #define plist_prev(pos) \ list_prev_entry(pos, node_list) /** * plist_first - return the first node (and thus, highest priority) * @head: the &struct plist_head pointer * * Assumes the plist is _not_ empty. */ static inline struct plist_node *plist_first(const struct plist_head *head) { return list_entry(head->node_list.next, struct plist_node, node_list); } /** * plist_last - return the last node (and thus, lowest priority) * @head: the &struct plist_head pointer * * Assumes the plist is _not_ empty. */ static inline struct plist_node *plist_last(const struct plist_head *head) { return list_entry(head->node_list.prev, struct plist_node, node_list); } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 #ifndef _CRYPTO_GCM_H #define _CRYPTO_GCM_H #include <linux/errno.h> #define GCM_AES_IV_SIZE 12 #define GCM_RFC4106_IV_SIZE 8 #define GCM_RFC4543_IV_SIZE 8 /* * validate authentication tag for GCM */ static inline int crypto_gcm_check_authsize(unsigned int authsize) { switch (authsize) { case 4: case 8: case 12: case 13: case 14: case 15: case 16: break; default: return -EINVAL; } return 0; } /* * validate authentication tag for RFC4106 */ static inline int crypto_rfc4106_check_authsize(unsigned int authsize) { switch (authsize) { case 8: case 12: case 16: break; default: return -EINVAL; } return 0; } /* * validate assoclen for RFC4106/RFC4543 */ static inline int crypto_ipsec_check_assoclen(unsigned int assoclen) { switch (assoclen) { case 16: case 20: break; default: return -EINVAL; } return 0; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_CPUMASK_H #define __LINUX_CPUMASK_H /* * Cpumasks provide a bitmap suitable for representing the * set of CPU's in a system, one bit position per CPU number. In general, * only nr_cpu_ids (<= NR_CPUS) bits are valid. */ #include <linux/kernel.h> #include <linux/threads.h> #include <linux/bitmap.h> #include <linux/atomic.h> #include <linux/bug.h> /* Don't assign or return these: may not be this big! */ typedef struct cpumask { DECLARE_BITMAP(bits, NR_CPUS); } cpumask_t; /** * cpumask_bits - get the bits in a cpumask * @maskp: the struct cpumask * * * You should only assume nr_cpu_ids bits of this mask are valid. This is * a macro so it's const-correct. */ #define cpumask_bits(maskp) ((maskp)->bits) /** * cpumask_pr_args - printf args to output a cpumask * @maskp: cpumask to be printed * * Can be used to provide arguments for '%*pb[l]' when printing a cpumask. */ #define cpumask_pr_args(maskp) nr_cpu_ids, cpumask_bits(maskp) #if NR_CPUS == 1 #define nr_cpu_ids 1U #else extern unsigned int nr_cpu_ids; #endif #ifdef CONFIG_CPUMASK_OFFSTACK /* Assuming NR_CPUS is huge, a runtime limit is more efficient. Also, * not all bits may be allocated. */ #define nr_cpumask_bits nr_cpu_ids #else #define nr_cpumask_bits ((unsigned int)NR_CPUS) #endif /* * The following particular system cpumasks and operations manage * possible, present, active and online cpus. * * cpu_possible_mask- has bit 'cpu' set iff cpu is populatable * cpu_present_mask - has bit 'cpu' set iff cpu is populated * cpu_online_mask - has bit 'cpu' set iff cpu available to scheduler * cpu_active_mask - has bit 'cpu' set iff cpu available to migration * * If !CONFIG_HOTPLUG_CPU, present == possible, and active == online. * * The cpu_possible_mask is fixed at boot time, as the set of CPU id's * that it is possible might ever be plugged in at anytime during the * life of that system boot. The cpu_present_mask is dynamic(*), * representing which CPUs are currently plugged in. And * cpu_online_mask is the dynamic subset of cpu_present_mask, * indicating those CPUs available for scheduling. * * If HOTPLUG is enabled, then cpu_possible_mask is forced to have * all NR_CPUS bits set, otherwise it is just the set of CPUs that * ACPI reports present at boot. * * If HOTPLUG is enabled, then cpu_present_mask varies dynamically, * depending on what ACPI reports as currently plugged in, otherwise * cpu_present_mask is just a copy of cpu_possible_mask. * * (*) Well, cpu_present_mask is dynamic in the hotplug case. If not * hotplug, it's a copy of cpu_possible_mask, hence fixed at boot. * * Subtleties: * 1) UP arch's (NR_CPUS == 1, CONFIG_SMP not defined) hardcode * assumption that their single CPU is online. The UP * cpu_{online,possible,present}_masks are placebos. Changing them * will have no useful affect on the following num_*_cpus() * and cpu_*() macros in the UP case. This ugliness is a UP * optimization - don't waste any instructions or memory references * asking if you're online or how many CPUs there are if there is * only one CPU. */ extern struct cpumask __cpu_possible_mask; extern struct cpumask __cpu_online_mask; extern struct cpumask __cpu_present_mask; extern struct cpumask __cpu_active_mask; #define cpu_possible_mask ((const struct cpumask *)&__cpu_possible_mask) #define cpu_online_mask ((const struct cpumask *)&__cpu_online_mask) #define cpu_present_mask ((const struct cpumask *)&__cpu_present_mask) #define cpu_active_mask ((const struct cpumask *)&__cpu_active_mask) extern atomic_t __num_online_cpus; #if NR_CPUS > 1 /** * num_online_cpus() - Read the number of online CPUs * * Despite the fact that __num_online_cpus is of type atomic_t, this * interface gives only a momentary snapshot and is not protected against * concurrent CPU hotplug operations unless invoked from a cpuhp_lock held * region. */ static inline unsigned int num_online_cpus(void) { return atomic_read(&__num_online_cpus); } #define num_possible_cpus() cpumask_weight(cpu_possible_mask) #define num_present_cpus() cpumask_weight(cpu_present_mask) #define num_active_cpus() cpumask_weight(cpu_active_mask) #define cpu_online(cpu) cpumask_test_cpu((cpu), cpu_online_mask) #define cpu_possible(cpu) cpumask_test_cpu((cpu), cpu_possible_mask) #define cpu_present(cpu) cpumask_test_cpu((cpu), cpu_present_mask) #define cpu_active(cpu) cpumask_test_cpu((cpu), cpu_active_mask) #else #define num_online_cpus() 1U #define num_possible_cpus() 1U #define num_present_cpus() 1U #define num_active_cpus() 1U #define cpu_online(cpu) ((cpu) == 0) #define cpu_possible(cpu) ((cpu) == 0) #define cpu_present(cpu) ((cpu) == 0) #define cpu_active(cpu) ((cpu) == 0) #endif extern cpumask_t cpus_booted_once_mask; static inline void cpu_max_bits_warn(unsigned int cpu, unsigned int bits) { #ifdef CONFIG_DEBUG_PER_CPU_MAPS WARN_ON_ONCE(cpu >= bits); #endif /* CONFIG_DEBUG_PER_CPU_MAPS */ } /* verify cpu argument to cpumask_* operators */ static inline unsigned int cpumask_check(unsigned int cpu) { cpu_max_bits_warn(cpu, nr_cpumask_bits); return cpu; } #if NR_CPUS == 1 /* Uniprocessor. Assume all masks are "1". */ static inline unsigned int cpumask_first(const struct cpumask *srcp) { return 0; } static inline unsigned int cpumask_last(const struct cpumask *srcp) { return 0; } /* Valid inputs for n are -1 and 0. */ static inline unsigned int cpumask_next(int n, const struct cpumask *srcp) { return n+1; } static inline unsigned int cpumask_next_zero(int n, const struct cpumask *srcp) { return n+1; } static inline unsigned int cpumask_next_and(int n, const struct cpumask *srcp, const struct cpumask *andp) { return n+1; } static inline unsigned int cpumask_next_wrap(int n, const struct cpumask *mask, int start, bool wrap) { /* cpu0 unless stop condition, wrap and at cpu0, then nr_cpumask_bits */ return (wrap && n == 0); } /* cpu must be a valid cpu, ie 0, so there's no other choice. */ static inline unsigned int cpumask_any_but(const struct cpumask *mask, unsigned int cpu) { return 1; } static inline unsigned int cpumask_local_spread(unsigned int i, int node) { return 0; } static inline int cpumask_any_and_distribute(const struct cpumask *src1p, const struct cpumask *src2p) { return cpumask_next_and(-1, src1p, src2p); } #define for_each_cpu(cpu, mask) \ for ((cpu) = 0; (cpu) < 1; (cpu)++, (void)mask) #define for_each_cpu_not(cpu, mask) \ for ((cpu) = 0; (cpu) < 1; (cpu)++, (void)mask) #define for_each_cpu_wrap(cpu, mask, start) \ for ((cpu) = 0; (cpu) < 1; (cpu)++, (void)mask, (void)(start)) #define for_each_cpu_and(cpu, mask1, mask2) \ for ((cpu) = 0; (cpu) < 1; (cpu)++, (void)mask1, (void)mask2) #else /** * cpumask_first - get the first cpu in a cpumask * @srcp: the cpumask pointer * * Returns >= nr_cpu_ids if no cpus set. */ static inline unsigned int cpumask_first(const struct cpumask *srcp) { return find_first_bit(cpumask_bits(srcp), nr_cpumask_bits); } /** * cpumask_last - get the last CPU in a cpumask * @srcp: - the cpumask pointer * * Returns >= nr_cpumask_bits if no CPUs set. */ static inline unsigned int cpumask_last(const struct cpumask *srcp) { return find_last_bit(cpumask_bits(srcp), nr_cpumask_bits); } unsigned int cpumask_next(int n, const struct cpumask *srcp); /** * cpumask_next_zero - get the next unset cpu in a cpumask * @n: the cpu prior to the place to search (ie. return will be > @n) * @srcp: the cpumask pointer * * Returns >= nr_cpu_ids if no further cpus unset. */ static inline unsigned int cpumask_next_zero(int n, const struct cpumask *srcp) { /* -1 is a legal arg here. */ if (n != -1) cpumask_check(n); return find_next_zero_bit(cpumask_bits(srcp), nr_cpumask_bits, n+1); } int cpumask_next_and(int n, const struct cpumask *, const struct cpumask *); int cpumask_any_but(const struct cpumask *mask, unsigned int cpu); unsigned int cpumask_local_spread(unsigned int i, int node); int cpumask_any_and_distribute(const struct cpumask *src1p, const struct cpumask *src2p); /** * for_each_cpu - iterate over every cpu in a mask * @cpu: the (optionally unsigned) integer iterator * @mask: the cpumask pointer * * After the loop, cpu is >= nr_cpu_ids. */ #define for_each_cpu(cpu, mask) \ for ((cpu) = -1; \ (cpu) = cpumask_next((cpu), (mask)), \ (cpu) < nr_cpu_ids;) /** * for_each_cpu_not - iterate over every cpu in a complemented mask * @cpu: the (optionally unsigned) integer iterator * @mask: the cpumask pointer * * After the loop, cpu is >= nr_cpu_ids. */ #define for_each_cpu_not(cpu, mask) \ for ((cpu) = -1; \ (cpu) = cpumask_next_zero((cpu), (mask)), \ (cpu) < nr_cpu_ids;) extern int cpumask_next_wrap(int n, const struct cpumask *mask, int start, bool wrap); /** * for_each_cpu_wrap - iterate over every cpu in a mask, starting at a specified location * @cpu: the (optionally unsigned) integer iterator * @mask: the cpumask poiter * @start: the start location * * The implementation does not assume any bit in @mask is set (including @start). * * After the loop, cpu is >= nr_cpu_ids. */ #define for_each_cpu_wrap(cpu, mask, start) \ for ((cpu) = cpumask_next_wrap((start)-1, (mask), (start), false); \ (cpu) < nr_cpumask_bits; \ (cpu) = cpumask_next_wrap((cpu), (mask), (start), true)) /** * for_each_cpu_and - iterate over every cpu in both masks * @cpu: the (optionally unsigned) integer iterator * @mask1: the first cpumask pointer * @mask2: the second cpumask pointer * * This saves a temporary CPU mask in many places. It is equivalent to: * struct cpumask tmp; * cpumask_and(&tmp, &mask1, &mask2); * for_each_cpu(cpu, &tmp) * ... * * After the loop, cpu is >= nr_cpu_ids. */ #define for_each_cpu_and(cpu, mask1, mask2) \ for ((cpu) = -1; \ (cpu) = cpumask_next_and((cpu), (mask1), (mask2)), \ (cpu) < nr_cpu_ids;) #endif /* SMP */ #define CPU_BITS_NONE \ { \ [0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \ } #define CPU_BITS_CPU0 \ { \ [0] = 1UL \ } /** * cpumask_set_cpu - set a cpu in a cpumask * @cpu: cpu number (< nr_cpu_ids) * @dstp: the cpumask pointer */ static inline void cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp) { set_bit(cpumask_check(cpu), cpumask_bits(dstp)); } static inline void __cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp) { __set_bit(cpumask_check(cpu), cpumask_bits(dstp)); } /** * cpumask_clear_cpu - clear a cpu in a cpumask * @cpu: cpu number (< nr_cpu_ids) * @dstp: the cpumask pointer */ static inline void cpumask_clear_cpu(int cpu, struct cpumask *dstp) { clear_bit(cpumask_check(cpu), cpumask_bits(dstp)); } static inline void __cpumask_clear_cpu(int cpu, struct cpumask *dstp) { __clear_bit(cpumask_check(cpu), cpumask_bits(dstp)); } /** * cpumask_test_cpu - test for a cpu in a cpumask * @cpu: cpu number (< nr_cpu_ids) * @cpumask: the cpumask pointer * * Returns 1 if @cpu is set in @cpumask, else returns 0 */ static inline int cpumask_test_cpu(int cpu, const struct cpumask *cpumask) { return test_bit(cpumask_check(cpu), cpumask_bits((cpumask))); } /** * cpumask_test_and_set_cpu - atomically test and set a cpu in a cpumask * @cpu: cpu number (< nr_cpu_ids) * @cpumask: the cpumask pointer * * Returns 1 if @cpu is set in old bitmap of @cpumask, else returns 0 * * test_and_set_bit wrapper for cpumasks. */ static inline int cpumask_test_and_set_cpu(int cpu, struct cpumask *cpumask) { return test_and_set_bit(cpumask_check(cpu), cpumask_bits(cpumask)); } /** * cpumask_test_and_clear_cpu - atomically test and clear a cpu in a cpumask * @cpu: cpu number (< nr_cpu_ids) * @cpumask: the cpumask pointer * * Returns 1 if @cpu is set in old bitmap of @cpumask, else returns 0 * * test_and_clear_bit wrapper for cpumasks. */ static inline int cpumask_test_and_clear_cpu(int cpu, struct cpumask *cpumask) { return test_and_clear_bit(cpumask_check(cpu), cpumask_bits(cpumask)); } /** * cpumask_setall - set all cpus (< nr_cpu_ids) in a cpumask * @dstp: the cpumask pointer */ static inline void cpumask_setall(struct cpumask *dstp) { bitmap_fill(cpumask_bits(dstp), nr_cpumask_bits); } /** * cpumask_clear - clear all cpus (< nr_cpu_ids) in a cpumask * @dstp: the cpumask pointer */ static inline void cpumask_clear(struct cpumask *dstp) { bitmap_zero(cpumask_bits(dstp), nr_cpumask_bits); } /** * cpumask_and - *dstp = *src1p & *src2p * @dstp: the cpumask result * @src1p: the first input * @src2p: the second input * * If *@dstp is empty, returns 0, else returns 1 */ static inline int cpumask_and(struct cpumask *dstp, const struct cpumask *src1p, const struct cpumask *src2p) { return bitmap_and(cpumask_bits(dstp), cpumask_bits(src1p), cpumask_bits(src2p), nr_cpumask_bits); } /** * cpumask_or - *dstp = *src1p | *src2p * @dstp: the cpumask result * @src1p: the first input * @src2p: the second input */ static inline void cpumask_or(struct cpumask *dstp, const struct cpumask *src1p, const struct cpumask *src2p) { bitmap_or(cpumask_bits(dstp), cpumask_bits(src1p), cpumask_bits(src2p), nr_cpumask_bits); } /** * cpumask_xor - *dstp = *src1p ^ *src2p * @dstp: the cpumask result * @src1p: the first input * @src2p: the second input */ static inline void cpumask_xor(struct cpumask *dstp, const struct cpumask *src1p, const struct cpumask *src2p) { bitmap_xor(cpumask_bits(dstp), cpumask_bits(src1p), cpumask_bits(src2p), nr_cpumask_bits); } /** * cpumask_andnot - *dstp = *src1p & ~*src2p * @dstp: the cpumask result * @src1p: the first input * @src2p: the second input * * If *@dstp is empty, returns 0, else returns 1 */ static inline int cpumask_andnot(struct cpumask *dstp, const struct cpumask *src1p, const struct cpumask *src2p) { return bitmap_andnot(cpumask_bits(dstp), cpumask_bits(src1p), cpumask_bits(src2p), nr_cpumask_bits); } /** * cpumask_complement - *dstp = ~*srcp * @dstp: the cpumask result * @srcp: the input to invert */ static inline void cpumask_complement(struct cpumask *dstp, const struct cpumask *srcp) { bitmap_complement(cpumask_bits(dstp), cpumask_bits(srcp), nr_cpumask_bits); } /** * cpumask_equal - *src1p == *src2p * @src1p: the first input * @src2p: the second input */ static inline bool cpumask_equal(const struct cpumask *src1p, const struct cpumask *src2p) { return bitmap_equal(cpumask_bits(src1p), cpumask_bits(src2p), nr_cpumask_bits); } /** * cpumask_or_equal - *src1p | *src2p == *src3p * @src1p: the first input * @src2p: the second input * @src3p: the third input */ static inline bool cpumask_or_equal(const struct cpumask *src1p, const struct cpumask *src2p, const struct cpumask *src3p) { return bitmap_or_equal(cpumask_bits(src1p), cpumask_bits(src2p), cpumask_bits(src3p), nr_cpumask_bits); } /** * cpumask_intersects - (*src1p & *src2p) != 0 * @src1p: the first input * @src2p: the second input */ static inline bool cpumask_intersects(const struct cpumask *src1p, const struct cpumask *src2p) { return bitmap_intersects(cpumask_bits(src1p), cpumask_bits(src2p), nr_cpumask_bits); } /** * cpumask_subset - (*src1p & ~*src2p) == 0 * @src1p: the first input * @src2p: the second input * * Returns 1 if *@src1p is a subset of *@src2p, else returns 0 */ static inline int cpumask_subset(const struct cpumask *src1p, const struct cpumask *src2p) { return bitmap_subset(cpumask_bits(src1p), cpumask_bits(src2p), nr_cpumask_bits); } /** * cpumask_empty - *srcp == 0 * @srcp: the cpumask to that all cpus < nr_cpu_ids are clear. */ static inline bool cpumask_empty(const struct cpumask *srcp) { return bitmap_empty(cpumask_bits(srcp), nr_cpumask_bits); } /** * cpumask_full - *srcp == 0xFFFFFFFF... * @srcp: the cpumask to that all cpus < nr_cpu_ids are set. */ static inline bool cpumask_full(const struct cpumask *srcp) { return bitmap_full(cpumask_bits(srcp), nr_cpumask_bits); } /** * cpumask_weight - Count of bits in *srcp * @srcp: the cpumask to count bits (< nr_cpu_ids) in. */ static inline unsigned int cpumask_weight(const struct cpumask *srcp) { return bitmap_weight(cpumask_bits(srcp), nr_cpumask_bits); } /** * cpumask_shift_right - *dstp = *srcp >> n * @dstp: the cpumask result * @srcp: the input to shift * @n: the number of bits to shift by */ static inline void cpumask_shift_right(struct cpumask *dstp, const struct cpumask *srcp, int n) { bitmap_shift_right(cpumask_bits(dstp), cpumask_bits(srcp), n, nr_cpumask_bits); } /** * cpumask_shift_left - *dstp = *srcp << n * @dstp: the cpumask result * @srcp: the input to shift * @n: the number of bits to shift by */ static inline void cpumask_shift_left(struct cpumask *dstp, const struct cpumask *srcp, int n) { bitmap_shift_left(cpumask_bits(dstp), cpumask_bits(srcp), n, nr_cpumask_bits); } /** * cpumask_copy - *dstp = *srcp * @dstp: the result * @srcp: the input cpumask */ static inline void cpumask_copy(struct cpumask *dstp, const struct cpumask *srcp) { bitmap_copy(cpumask_bits(dstp), cpumask_bits(srcp), nr_cpumask_bits); } /** * cpumask_any - pick a "random" cpu from *srcp * @srcp: the input cpumask * * Returns >= nr_cpu_ids if no cpus set. */ #define cpumask_any(srcp) cpumask_first(srcp) /** * cpumask_first_and - return the first cpu from *srcp1 & *srcp2 * @src1p: the first input * @src2p: the second input * * Returns >= nr_cpu_ids if no cpus set in both. See also cpumask_next_and(). */ #define cpumask_first_and(src1p, src2p) cpumask_next_and(-1, (src1p), (src2p)) /** * cpumask_any_and - pick a "random" cpu from *mask1 & *mask2 * @mask1: the first input cpumask * @mask2: the second input cpumask * * Returns >= nr_cpu_ids if no cpus set. */ #define cpumask_any_and(mask1, mask2) cpumask_first_and((mask1), (mask2)) /** * cpumask_of - the cpumask containing just a given cpu * @cpu: the cpu (<= nr_cpu_ids) */ #define cpumask_of(cpu) (get_cpu_mask(cpu)) /** * cpumask_parse_user - extract a cpumask from a user string * @buf: the buffer to extract from * @len: the length of the buffer * @dstp: the cpumask to set. * * Returns -errno, or 0 for success. */ static inline int cpumask_parse_user(const char __user *buf, int len, struct cpumask *dstp) { return bitmap_parse_user(buf, len, cpumask_bits(dstp), nr_cpumask_bits); } /** * cpumask_parselist_user - extract a cpumask from a user string * @buf: the buffer to extract from * @len: the length of the buffer * @dstp: the cpumask to set. * * Returns -errno, or 0 for success. */ static inline int cpumask_parselist_user(const char __user *buf, int len, struct cpumask *dstp) { return bitmap_parselist_user(buf, len, cpumask_bits(dstp), nr_cpumask_bits); } /** * cpumask_parse - extract a cpumask from a string * @buf: the buffer to extract from * @dstp: the cpumask to set. * * Returns -errno, or 0 for success. */ static inline int cpumask_parse(const char *buf, struct cpumask *dstp) { return bitmap_parse(buf, UINT_MAX, cpumask_bits(dstp), nr_cpumask_bits); } /** * cpulist_parse - extract a cpumask from a user string of ranges * @buf: the buffer to extract from * @dstp: the cpumask to set. * * Returns -errno, or 0 for success. */ static inline int cpulist_parse(const char *buf, struct cpumask *dstp) { return bitmap_parselist(buf, cpumask_bits(dstp), nr_cpumask_bits); } /** * cpumask_size - size to allocate for a 'struct cpumask' in bytes */ static inline unsigned int cpumask_size(void) { return BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long); } /* * cpumask_var_t: struct cpumask for stack usage. * * Oh, the wicked games we play! In order to make kernel coding a * little more difficult, we typedef cpumask_var_t to an array or a * pointer: doing &mask on an array is a noop, so it still works. * * ie. * cpumask_var_t tmpmask; * if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL)) * return -ENOMEM; * * ... use 'tmpmask' like a normal struct cpumask * ... * * free_cpumask_var(tmpmask); * * * However, one notable exception is there. alloc_cpumask_var() allocates * only nr_cpumask_bits bits (in the other hand, real cpumask_t always has * NR_CPUS bits). Therefore you don't have to dereference cpumask_var_t. * * cpumask_var_t tmpmask; * if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL)) * return -ENOMEM; * * var = *tmpmask; * * This code makes NR_CPUS length memcopy and brings to a memory corruption. * cpumask_copy() provide safe copy functionality. * * Note that there is another evil here: If you define a cpumask_var_t * as a percpu variable then the way to obtain the address of the cpumask * structure differently influences what this_cpu_* operation needs to be * used. Please use this_cpu_cpumask_var_t in those cases. The direct use * of this_cpu_ptr() or this_cpu_read() will lead to failures when the * other type of cpumask_var_t implementation is configured. * * Please also note that __cpumask_var_read_mostly can be used to declare * a cpumask_var_t variable itself (not its content) as read mostly. */ #ifdef CONFIG_CPUMASK_OFFSTACK typedef struct cpumask *cpumask_var_t; #define this_cpu_cpumask_var_ptr(x) this_cpu_read(x) #define __cpumask_var_read_mostly __read_mostly bool alloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node); bool alloc_cpumask_var(cpumask_var_t *mask, gfp_t flags); bool zalloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node); bool zalloc_cpumask_var(cpumask_var_t *mask, gfp_t flags); void alloc_bootmem_cpumask_var(cpumask_var_t *mask); void free_cpumask_var(cpumask_var_t mask); void free_bootmem_cpumask_var(cpumask_var_t mask); static inline bool cpumask_available(cpumask_var_t mask) { return mask != NULL; } #else typedef struct cpumask cpumask_var_t[1]; #define this_cpu_cpumask_var_ptr(x) this_cpu_ptr(x) #define __cpumask_var_read_mostly static inline bool alloc_cpumask_var(cpumask_var_t *mask, gfp_t flags) { return true; } static inline bool alloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node) { return true; } static inline bool zalloc_cpumask_var(cpumask_var_t *mask, gfp_t flags) { cpumask_clear(*mask); return true; } static inline bool zalloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node) { cpumask_clear(*mask); return true; } static inline void alloc_bootmem_cpumask_var(cpumask_var_t *mask) { } static inline void free_cpumask_var(cpumask_var_t mask) { } static inline void free_bootmem_cpumask_var(cpumask_var_t mask) { } static inline bool cpumask_available(cpumask_var_t mask) { return true; } #endif /* CONFIG_CPUMASK_OFFSTACK */ /* It's common to want to use cpu_all_mask in struct member initializers, * so it has to refer to an address rather than a pointer. */ extern const DECLARE_BITMAP(cpu_all_bits, NR_CPUS); #define cpu_all_mask to_cpumask(cpu_all_bits) /* First bits of cpu_bit_bitmap are in fact unset. */ #define cpu_none_mask to_cpumask(cpu_bit_bitmap[0]) #define for_each_possible_cpu(cpu) for_each_cpu((cpu), cpu_possible_mask) #define for_each_online_cpu(cpu) for_each_cpu((cpu), cpu_online_mask) #define for_each_present_cpu(cpu) for_each_cpu((cpu), cpu_present_mask) /* Wrappers for arch boot code to manipulate normally-constant masks */ void init_cpu_present(const struct cpumask *src); void init_cpu_possible(const struct cpumask *src); void init_cpu_online(const struct cpumask *src); static inline void reset_cpu_possible_mask(void) { bitmap_zero(cpumask_bits(&__cpu_possible_mask), NR_CPUS); } static inline void set_cpu_possible(unsigned int cpu, bool possible) { if (possible) cpumask_set_cpu(cpu, &__cpu_possible_mask); else cpumask_clear_cpu(cpu, &__cpu_possible_mask); } static inline void set_cpu_present(unsigned int cpu, bool present) { if (present) cpumask_set_cpu(cpu, &__cpu_present_mask); else cpumask_clear_cpu(cpu, &__cpu_present_mask); } void set_cpu_online(unsigned int cpu, bool online); static inline void set_cpu_active(unsigned int cpu, bool active) { if (active) cpumask_set_cpu(cpu, &__cpu_active_mask); else cpumask_clear_cpu(cpu, &__cpu_active_mask); } /** * to_cpumask - convert an NR_CPUS bitmap to a struct cpumask * * @bitmap: the bitmap * * There are a few places where cpumask_var_t isn't appropriate and * static cpumasks must be used (eg. very early boot), yet we don't * expose the definition of 'struct cpumask'. * * This does the conversion, and can be used as a constant initializer. */ #define to_cpumask(bitmap) \ ((struct cpumask *)(1 ? (bitmap) \ : (void *)sizeof(__check_is_bitmap(bitmap)))) static inline int __check_is_bitmap(const unsigned long *bitmap) { return 1; } /* * Special-case data structure for "single bit set only" constant CPU masks. * * We pre-generate all the 64 (or 32) possible bit positions, with enough * padding to the left and the right, and return the constant pointer * appropriately offset. */ extern const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)]; static inline const struct cpumask *get_cpu_mask(unsigned int cpu) { const unsigned long *p = cpu_bit_bitmap[1 + cpu % BITS_PER_LONG]; p -= cpu / BITS_PER_LONG; return to_cpumask(p); } #define cpu_is_offline(cpu) unlikely(!cpu_online(cpu)) #if NR_CPUS <= BITS_PER_LONG #define CPU_BITS_ALL \ { \ [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ } #else /* NR_CPUS > BITS_PER_LONG */ #define CPU_BITS_ALL \ { \ [0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \ [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ } #endif /* NR_CPUS > BITS_PER_LONG */ /** * cpumap_print_to_pagebuf - copies the cpumask into the buffer either * as comma-separated list of cpus or hex values of cpumask * @list: indicates whether the cpumap must be list * @mask: the cpumask to copy * @buf: the buffer to copy into * * Returns the length of the (null-terminated) @buf string, zero if * nothing is copied. */ static inline ssize_t cpumap_print_to_pagebuf(bool list, char *buf, const struct cpumask *mask) { return bitmap_print_to_pagebuf(list, buf, cpumask_bits(mask), nr_cpu_ids); } #if NR_CPUS <= BITS_PER_LONG #define CPU_MASK_ALL \ (cpumask_t) { { \ [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ } } #else #define CPU_MASK_ALL \ (cpumask_t) { { \ [0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \ [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ } } #endif /* NR_CPUS > BITS_PER_LONG */ #define CPU_MASK_NONE \ (cpumask_t) { { \ [0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \ } } #define CPU_MASK_CPU0 \ (cpumask_t) { { \ [0] = 1UL \ } } #endif /* __LINUX_CPUMASK_H */
1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 #ifdef CONFIG_PREEMPTIRQ_TRACEPOINTS #undef TRACE_SYSTEM #define TRACE_SYSTEM preemptirq #if !defined(_TRACE_PREEMPTIRQ_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_PREEMPTIRQ_H #include <linux/ktime.h> #include <linux/tracepoint.h> #include <linux/string.h> #include <asm/sections.h> DECLARE_EVENT_CLASS(preemptirq_template, TP_PROTO(unsigned long ip, unsigned long parent_ip), TP_ARGS(ip, parent_ip), TP_STRUCT__entry( __field(s32, caller_offs) __field(s32, parent_offs) ), TP_fast_assign( __entry->caller_offs = (s32)(ip - (unsigned long)_stext); __entry->parent_offs = (s32)(parent_ip - (unsigned long)_stext); ), TP_printk("caller=%pS parent=%pS", (void *)((unsigned long)(_stext) + __entry->caller_offs), (void *)((unsigned long)(_stext) + __entry->parent_offs)) ); #ifdef CONFIG_TRACE_IRQFLAGS DEFINE_EVENT(preemptirq_template, irq_disable, TP_PROTO(unsigned long ip, unsigned long parent_ip), TP_ARGS(ip, parent_ip)); DEFINE_EVENT(preemptirq_template, irq_enable, TP_PROTO(unsigned long ip, unsigned long parent_ip), TP_ARGS(ip, parent_ip)); #else #define trace_irq_enable(...) #define trace_irq_disable(...) #define trace_irq_enable_rcuidle(...) #define trace_irq_disable_rcuidle(...) #endif #ifdef CONFIG_TRACE_PREEMPT_TOGGLE DEFINE_EVENT(preemptirq_template, preempt_disable, TP_PROTO(unsigned long ip, unsigned long parent_ip), TP_ARGS(ip, parent_ip)); DEFINE_EVENT(preemptirq_template, preempt_enable, TP_PROTO(unsigned long ip, unsigned long parent_ip), TP_ARGS(ip, parent_ip)); #else #define trace_preempt_enable(...) #define trace_preempt_disable(...) #define trace_preempt_enable_rcuidle(...) #define trace_preempt_disable_rcuidle(...) #endif #endif /* _TRACE_PREEMPTIRQ_H */ #include <trace/define_trace.h> #else /* !CONFIG_PREEMPTIRQ_TRACEPOINTS */ #define trace_irq_enable(...) #define trace_irq_disable(...) #define trace_irq_enable_rcuidle(...) #define trace_irq_disable_rcuidle(...) #define trace_preempt_enable(...) #define trace_preempt_disable(...) #define trace_preempt_enable_rcuidle(...) #define trace_preempt_disable_rcuidle(...) #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Definitions for the 'struct sk_buff' memory handlers. * * Authors: * Alan Cox, <gw4pts@gw4pts.ampr.org> * Florian La Roche, <rzsfl@rz.uni-sb.de> */ #ifndef _LINUX_SKBUFF_H #define _LINUX_SKBUFF_H #include <linux/kernel.h> #include <linux/compiler.h> #include <linux/time.h> #include <linux/bug.h> #include <linux/bvec.h> #include <linux/cache.h> #include <linux/rbtree.h> #include <linux/socket.h> #include <linux/refcount.h> #include <linux/atomic.h> #include <asm/types.h> #include <linux/spinlock.h> #include <linux/net.h> #include <linux/textsearch.h> #include <net/checksum.h> #include <linux/rcupdate.h> #include <linux/hrtimer.h> #include <linux/dma-mapping.h> #include <linux/netdev_features.h> #include <linux/sched.h> #include <linux/sched/clock.h> #include <net/flow_dissector.h> #include <linux/splice.h> #include <linux/in6.h> #include <linux/if_packet.h> #include <net/flow.h> #if IS_ENABLED(CONFIG_NF_CONNTRACK) #include <linux/netfilter/nf_conntrack_common.h> #endif /* The interface for checksum offload between the stack and networking drivers * is as follows... * * A. IP checksum related features * * Drivers advertise checksum offload capabilities in the features of a device. * From the stack's point of view these are capabilities offered by the driver. * A driver typically only advertises features that it is capable of offloading * to its device. * * The checksum related features are: * * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one * IP (one's complement) checksum for any combination * of protocols or protocol layering. The checksum is * computed and set in a packet per the CHECKSUM_PARTIAL * interface (see below). * * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain * TCP or UDP packets over IPv4. These are specifically * unencapsulated packets of the form IPv4|TCP or * IPv4|UDP where the Protocol field in the IPv4 header * is TCP or UDP. The IPv4 header may contain IP options. * This feature cannot be set in features for a device * with NETIF_F_HW_CSUM also set. This feature is being * DEPRECATED (see below). * * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain * TCP or UDP packets over IPv6. These are specifically * unencapsulated packets of the form IPv6|TCP or * IPv6|UDP where the Next Header field in the IPv6 * header is either TCP or UDP. IPv6 extension headers * are not supported with this feature. This feature * cannot be set in features for a device with * NETIF_F_HW_CSUM also set. This feature is being * DEPRECATED (see below). * * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload. * This flag is only used to disable the RX checksum * feature for a device. The stack will accept receive * checksum indication in packets received on a device * regardless of whether NETIF_F_RXCSUM is set. * * B. Checksumming of received packets by device. Indication of checksum * verification is set in skb->ip_summed. Possible values are: * * CHECKSUM_NONE: * * Device did not checksum this packet e.g. due to lack of capabilities. * The packet contains full (though not verified) checksum in packet but * not in skb->csum. Thus, skb->csum is undefined in this case. * * CHECKSUM_UNNECESSARY: * * The hardware you're dealing with doesn't calculate the full checksum * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY * if their checksums are okay. skb->csum is still undefined in this case * though. A driver or device must never modify the checksum field in the * packet even if checksum is verified. * * CHECKSUM_UNNECESSARY is applicable to following protocols: * TCP: IPv6 and IPv4. * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a * zero UDP checksum for either IPv4 or IPv6, the networking stack * may perform further validation in this case. * GRE: only if the checksum is present in the header. * SCTP: indicates the CRC in SCTP header has been validated. * FCOE: indicates the CRC in FC frame has been validated. * * skb->csum_level indicates the number of consecutive checksums found in * the packet minus one that have been verified as CHECKSUM_UNNECESSARY. * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet * and a device is able to verify the checksums for UDP (possibly zero), * GRE (checksum flag is set) and TCP, skb->csum_level would be set to * two. If the device were only able to verify the UDP checksum and not * GRE, either because it doesn't support GRE checksum or because GRE * checksum is bad, skb->csum_level would be set to zero (TCP checksum is * not considered in this case). * * CHECKSUM_COMPLETE: * * This is the most generic way. The device supplied checksum of the _whole_ * packet as seen by netif_rx() and fills in skb->csum. This means the * hardware doesn't need to parse L3/L4 headers to implement this. * * Notes: * - Even if device supports only some protocols, but is able to produce * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols. * * CHECKSUM_PARTIAL: * * A checksum is set up to be offloaded to a device as described in the * output description for CHECKSUM_PARTIAL. This may occur on a packet * received directly from another Linux OS, e.g., a virtualized Linux kernel * on the same host, or it may be set in the input path in GRO or remote * checksum offload. For the purposes of checksum verification, the checksum * referred to by skb->csum_start + skb->csum_offset and any preceding * checksums in the packet are considered verified. Any checksums in the * packet that are after the checksum being offloaded are not considered to * be verified. * * C. Checksumming on transmit for non-GSO. The stack requests checksum offload * in the skb->ip_summed for a packet. Values are: * * CHECKSUM_PARTIAL: * * The driver is required to checksum the packet as seen by hard_start_xmit() * from skb->csum_start up to the end, and to record/write the checksum at * offset skb->csum_start + skb->csum_offset. A driver may verify that the * csum_start and csum_offset values are valid values given the length and * offset of the packet, but it should not attempt to validate that the * checksum refers to a legitimate transport layer checksum -- it is the * purview of the stack to validate that csum_start and csum_offset are set * correctly. * * When the stack requests checksum offload for a packet, the driver MUST * ensure that the checksum is set correctly. A driver can either offload the * checksum calculation to the device, or call skb_checksum_help (in the case * that the device does not support offload for a particular checksum). * * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate * checksum offload capability. * skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based * on network device checksumming capabilities: if a packet does not match * them, skb_checksum_help or skb_crc32c_help (depending on the value of * csum_not_inet, see item D.) is called to resolve the checksum. * * CHECKSUM_NONE: * * The skb was already checksummed by the protocol, or a checksum is not * required. * * CHECKSUM_UNNECESSARY: * * This has the same meaning as CHECKSUM_NONE for checksum offload on * output. * * CHECKSUM_COMPLETE: * Not used in checksum output. If a driver observes a packet with this value * set in skbuff, it should treat the packet as if CHECKSUM_NONE were set. * * D. Non-IP checksum (CRC) offloads * * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of * offloading the SCTP CRC in a packet. To perform this offload the stack * will set csum_start and csum_offset accordingly, set ip_summed to * CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in * the skbuff that the CHECKSUM_PARTIAL refers to CRC32c. * A driver that supports both IP checksum offload and SCTP CRC32c offload * must verify which offload is configured for a packet by testing the * value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve * CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1. * * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of * offloading the FCOE CRC in a packet. To perform this offload the stack * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset * accordingly. Note that there is no indication in the skbuff that the * CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports * both IP checksum offload and FCOE CRC offload must verify which offload * is configured for a packet, presumably by inspecting packet headers. * * E. Checksumming on output with GSO. * * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as * part of the GSO operation is implied. If a checksum is being offloaded * with GSO then ip_summed is CHECKSUM_PARTIAL, and both csum_start and * csum_offset are set to refer to the outermost checksum being offloaded * (two offloaded checksums are possible with UDP encapsulation). */ /* Don't change this without changing skb_csum_unnecessary! */ #define CHECKSUM_NONE 0 #define CHECKSUM_UNNECESSARY 1 #define CHECKSUM_COMPLETE 2 #define CHECKSUM_PARTIAL 3 /* Maximum value in skb->csum_level */ #define SKB_MAX_CSUM_LEVEL 3 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) #define SKB_WITH_OVERHEAD(X) \ ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) #define SKB_MAX_ORDER(X, ORDER) \ SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) /* return minimum truesize of one skb containing X bytes of data */ #define SKB_TRUESIZE(X) ((X) + \ SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) struct ahash_request; struct net_device; struct scatterlist; struct pipe_inode_info; struct iov_iter; struct napi_struct; struct bpf_prog; union bpf_attr; struct skb_ext; #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) struct nf_bridge_info { enum { BRNF_PROTO_UNCHANGED, BRNF_PROTO_8021Q, BRNF_PROTO_PPPOE } orig_proto:8; u8 pkt_otherhost:1; u8 in_prerouting:1; u8 bridged_dnat:1; __u16 frag_max_size; struct net_device *physindev; /* always valid & non-NULL from FORWARD on, for physdev match */ struct net_device *physoutdev; union { /* prerouting: detect dnat in orig/reply direction */ __be32 ipv4_daddr; struct in6_addr ipv6_daddr; /* after prerouting + nat detected: store original source * mac since neigh resolution overwrites it, only used while * skb is out in neigh layer. */ char neigh_header[8]; }; }; #endif #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) /* Chain in tc_skb_ext will be used to share the tc chain with * ovs recirc_id. It will be set to the current chain by tc * and read by ovs to recirc_id. */ struct tc_skb_ext { __u32 chain; __u16 mru; }; #endif struct sk_buff_head { /* These two members must be first. */ struct sk_buff *next; struct sk_buff *prev; __u32 qlen; spinlock_t lock; }; struct sk_buff; /* To allow 64K frame to be packed as single skb without frag_list we * require 64K/PAGE_SIZE pages plus 1 additional page to allow for * buffers which do not start on a page boundary. * * Since GRO uses frags we allocate at least 16 regardless of page * size. */ #if (65536/PAGE_SIZE + 1) < 16 #define MAX_SKB_FRAGS 16UL #else #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) #endif extern int sysctl_max_skb_frags; /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to * segment using its current segmentation instead. */ #define GSO_BY_FRAGS 0xFFFF typedef struct bio_vec skb_frag_t; /** * skb_frag_size() - Returns the size of a skb fragment * @frag: skb fragment */ static inline unsigned int skb_frag_size(const skb_frag_t *frag) { return frag->bv_len; } /** * skb_frag_size_set() - Sets the size of a skb fragment * @frag: skb fragment * @size: size of fragment */ static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) { frag->bv_len = size; } /** * skb_frag_size_add() - Increments the size of a skb fragment by @delta * @frag: skb fragment * @delta: value to add */ static inline void skb_frag_size_add(skb_frag_t *frag, int delta) { frag->bv_len += delta; } /** * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta * @frag: skb fragment * @delta: value to subtract */ static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) { frag->bv_len -= delta; } /** * skb_frag_must_loop - Test if %p is a high memory page * @p: fragment's page */ static inline bool skb_frag_must_loop(struct page *p) { #if defined(CONFIG_HIGHMEM) if (PageHighMem(p)) return true; #endif return false; } /** * skb_frag_foreach_page - loop over pages in a fragment * * @f: skb frag to operate on * @f_off: offset from start of f->bv_page * @f_len: length from f_off to loop over * @p: (temp var) current page * @p_off: (temp var) offset from start of current page, * non-zero only on first page. * @p_len: (temp var) length in current page, * < PAGE_SIZE only on first and last page. * @copied: (temp var) length so far, excluding current p_len. * * A fragment can hold a compound page, in which case per-page * operations, notably kmap_atomic, must be called for each * regular page. */ #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \ for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \ p_off = (f_off) & (PAGE_SIZE - 1), \ p_len = skb_frag_must_loop(p) ? \ min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \ copied = 0; \ copied < f_len; \ copied += p_len, p++, p_off = 0, \ p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \ #define HAVE_HW_TIME_STAMP /** * struct skb_shared_hwtstamps - hardware time stamps * @hwtstamp: hardware time stamp transformed into duration * since arbitrary point in time * * Software time stamps generated by ktime_get_real() are stored in * skb->tstamp. * * hwtstamps can only be compared against other hwtstamps from * the same device. * * This structure is attached to packets as part of the * &skb_shared_info. Use skb_hwtstamps() to get a pointer. */ struct skb_shared_hwtstamps { ktime_t hwtstamp; }; /* Definitions for tx_flags in struct skb_shared_info */ enum { /* generate hardware time stamp */ SKBTX_HW_TSTAMP = 1 << 0, /* generate software time stamp when queueing packet to NIC */ SKBTX_SW_TSTAMP = 1 << 1, /* device driver is going to provide hardware time stamp */ SKBTX_IN_PROGRESS = 1 << 2, /* device driver supports TX zero-copy buffers */ SKBTX_DEV_ZEROCOPY = 1 << 3, /* generate wifi status information (where possible) */ SKBTX_WIFI_STATUS = 1 << 4, /* This indicates at least one fragment might be overwritten * (as in vmsplice(), sendfile() ...) * If we need to compute a TX checksum, we'll need to copy * all frags to avoid possible bad checksum */ SKBTX_SHARED_FRAG = 1 << 5, /* generate software time stamp when entering packet scheduling */ SKBTX_SCHED_TSTAMP = 1 << 6, }; #define SKBTX_ZEROCOPY_FRAG (SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG) #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ SKBTX_SCHED_TSTAMP) #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP) /* * The callback notifies userspace to release buffers when skb DMA is done in * lower device, the skb last reference should be 0 when calling this. * The zerocopy_success argument is true if zero copy transmit occurred, * false on data copy or out of memory error caused by data copy attempt. * The ctx field is used to track device context. * The desc field is used to track userspace buffer index. */ struct ubuf_info { void (*callback)(struct ubuf_info *, bool zerocopy_success); union { struct { unsigned long desc; void *ctx; }; struct { u32 id; u16 len; u16 zerocopy:1; u32 bytelen; }; }; refcount_t refcnt; struct mmpin { struct user_struct *user; unsigned int num_pg; } mmp; }; #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg)) int mm_account_pinned_pages(struct mmpin *mmp, size_t size); void mm_unaccount_pinned_pages(struct mmpin *mmp); struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size); struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size, struct ubuf_info *uarg); static inline void sock_zerocopy_get(struct ubuf_info *uarg) { refcount_inc(&uarg->refcnt); } void sock_zerocopy_put(struct ubuf_info *uarg); void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref); void sock_zerocopy_callback(struct ubuf_info *uarg, bool success); int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len); int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, struct msghdr *msg, int len, struct ubuf_info *uarg); /* This data is invariant across clones and lives at * the end of the header data, ie. at skb->end. */ struct skb_shared_info { __u8 __unused; __u8 meta_len; __u8 nr_frags; __u8 tx_flags; unsigned short gso_size; /* Warning: this field is not always filled in (UFO)! */ unsigned short gso_segs; struct sk_buff *frag_list; struct skb_shared_hwtstamps hwtstamps; unsigned int gso_type; u32 tskey; /* * Warning : all fields before dataref are cleared in __alloc_skb() */ atomic_t dataref; /* Intermediate layers must ensure that destructor_arg * remains valid until skb destructor */ void * destructor_arg; /* must be last field, see pskb_expand_head() */ skb_frag_t frags[MAX_SKB_FRAGS]; }; /* We divide dataref into two halves. The higher 16 bits hold references * to the payload part of skb->data. The lower 16 bits hold references to * the entire skb->data. A clone of a headerless skb holds the length of * the header in skb->hdr_len. * * All users must obey the rule that the skb->data reference count must be * greater than or equal to the payload reference count. * * Holding a reference to the payload part means that the user does not * care about modifications to the header part of skb->data. */ #define SKB_DATAREF_SHIFT 16 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) enum { SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ }; enum { SKB_GSO_TCPV4 = 1 << 0, /* This indicates the skb is from an untrusted source. */ SKB_GSO_DODGY = 1 << 1, /* This indicates the tcp segment has CWR set. */ SKB_GSO_TCP_ECN = 1 << 2, SKB_GSO_TCP_FIXEDID = 1 << 3, SKB_GSO_TCPV6 = 1 << 4, SKB_GSO_FCOE = 1 << 5, SKB_GSO_GRE = 1 << 6, SKB_GSO_GRE_CSUM = 1 << 7, SKB_GSO_IPXIP4 = 1 << 8, SKB_GSO_IPXIP6 = 1 << 9, SKB_GSO_UDP_TUNNEL = 1 << 10, SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11, SKB_GSO_PARTIAL = 1 << 12, SKB_GSO_TUNNEL_REMCSUM = 1 << 13, SKB_GSO_SCTP = 1 << 14, SKB_GSO_ESP = 1 << 15, SKB_GSO_UDP = 1 << 16, SKB_GSO_UDP_L4 = 1 << 17, SKB_GSO_FRAGLIST = 1 << 18, }; #if BITS_PER_LONG > 32 #define NET_SKBUFF_DATA_USES_OFFSET 1 #endif #ifdef NET_SKBUFF_DATA_USES_OFFSET typedef unsigned int sk_buff_data_t; #else typedef unsigned char *sk_buff_data_t; #endif /** * struct sk_buff - socket buffer * @next: Next buffer in list * @prev: Previous buffer in list * @tstamp: Time we arrived/left * @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point * for retransmit timer * @rbnode: RB tree node, alternative to next/prev for netem/tcp * @list: queue head * @sk: Socket we are owned by * @ip_defrag_offset: (aka @sk) alternate use of @sk, used in * fragmentation management * @dev: Device we arrived on/are leaving by * @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL * @cb: Control buffer. Free for use by every layer. Put private vars here * @_skb_refdst: destination entry (with norefcount bit) * @sp: the security path, used for xfrm * @len: Length of actual data * @data_len: Data length * @mac_len: Length of link layer header * @hdr_len: writable header length of cloned skb * @csum: Checksum (must include start/offset pair) * @csum_start: Offset from skb->head where checksumming should start * @csum_offset: Offset from csum_start where checksum should be stored * @priority: Packet queueing priority * @ignore_df: allow local fragmentation * @cloned: Head may be cloned (check refcnt to be sure) * @ip_summed: Driver fed us an IP checksum * @nohdr: Payload reference only, must not modify header * @pkt_type: Packet class * @fclone: skbuff clone status * @ipvs_property: skbuff is owned by ipvs * @inner_protocol_type: whether the inner protocol is * ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO * @remcsum_offload: remote checksum offload is enabled * @offload_fwd_mark: Packet was L2-forwarded in hardware * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware * @tc_skip_classify: do not classify packet. set by IFB device * @tc_at_ingress: used within tc_classify to distinguish in/egress * @redirected: packet was redirected by packet classifier * @from_ingress: packet was redirected from the ingress path * @peeked: this packet has been seen already, so stats have been * done for it, don't do them again * @nf_trace: netfilter packet trace flag * @protocol: Packet protocol from driver * @destructor: Destruct function * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue) * @_nfct: Associated connection, if any (with nfctinfo bits) * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c * @skb_iif: ifindex of device we arrived on * @tc_index: Traffic control index * @hash: the packet hash * @queue_mapping: Queue mapping for multiqueue devices * @head_frag: skb was allocated from page fragments, * not allocated by kmalloc() or vmalloc(). * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves * @active_extensions: active extensions (skb_ext_id types) * @ndisc_nodetype: router type (from link layer) * @ooo_okay: allow the mapping of a socket to a queue to be changed * @l4_hash: indicate hash is a canonical 4-tuple hash over transport * ports. * @sw_hash: indicates hash was computed in software stack * @wifi_acked_valid: wifi_acked was set * @wifi_acked: whether frame was acked on wifi or not * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS * @encapsulation: indicates the inner headers in the skbuff are valid * @encap_hdr_csum: software checksum is needed * @csum_valid: checksum is already valid * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL * @csum_complete_sw: checksum was completed by software * @csum_level: indicates the number of consecutive checksums found in * the packet minus one that have been verified as * CHECKSUM_UNNECESSARY (max 3) * @dst_pending_confirm: need to confirm neighbour * @decrypted: Decrypted SKB * @napi_id: id of the NAPI struct this skb came from * @sender_cpu: (aka @napi_id) source CPU in XPS * @secmark: security marking * @mark: Generic packet mark * @reserved_tailroom: (aka @mark) number of bytes of free space available * at the tail of an sk_buff * @vlan_present: VLAN tag is present * @vlan_proto: vlan encapsulation protocol * @vlan_tci: vlan tag control information * @inner_protocol: Protocol (encapsulation) * @inner_ipproto: (aka @inner_protocol) stores ipproto when * skb->inner_protocol_type == ENCAP_TYPE_IPPROTO; * @inner_transport_header: Inner transport layer header (encapsulation) * @inner_network_header: Network layer header (encapsulation) * @inner_mac_header: Link layer header (encapsulation) * @transport_header: Transport layer header * @network_header: Network layer header * @mac_header: Link layer header * @tail: Tail pointer * @end: End pointer * @head: Head of buffer * @data: Data head pointer * @truesize: Buffer size * @users: User count - see {datagram,tcp}.c * @extensions: allocated extensions, valid if active_extensions is nonzero */ struct sk_buff { union { struct { /* These two members must be first. */ struct sk_buff *next; struct sk_buff *prev; union { struct net_device *dev; /* Some protocols might use this space to store information, * while device pointer would be NULL. * UDP receive path is one user. */ unsigned long dev_scratch; }; }; struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */ struct list_head list; }; union { struct sock *sk; int ip_defrag_offset; }; union { ktime_t tstamp; u64 skb_mstamp_ns; /* earliest departure time */ }; /* * This is the control buffer. It is free to use for every * layer. Please put your private variables there. If you * want to keep them across layers you have to do a skb_clone() * first. This is owned by whoever has the skb queued ATM. */ char cb[48] __aligned(8); union { struct { unsigned long _skb_refdst; void (*destructor)(struct sk_buff *skb); }; struct list_head tcp_tsorted_anchor; }; #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) unsigned long _nfct; #endif unsigned int len, data_len; __u16 mac_len, hdr_len; /* Following fields are _not_ copied in __copy_skb_header() * Note that queue_mapping is here mostly to fill a hole. */ __u16 queue_mapping; /* if you move cloned around you also must adapt those constants */ #ifdef __BIG_ENDIAN_BITFIELD #define CLONED_MASK (1 << 7) #else #define CLONED_MASK 1 #endif #define CLONED_OFFSET() offsetof(struct sk_buff, __cloned_offset) /* private: */ __u8 __cloned_offset[0]; /* public: */ __u8 cloned:1, nohdr:1, fclone:2, peeked:1, head_frag:1, pfmemalloc:1; #ifdef CONFIG_SKB_EXTENSIONS __u8 active_extensions; #endif /* fields enclosed in headers_start/headers_end are copied * using a single memcpy() in __copy_skb_header() */ /* private: */ __u32 headers_start[0]; /* public: */ /* if you move pkt_type around you also must adapt those constants */ #ifdef __BIG_ENDIAN_BITFIELD #define PKT_TYPE_MAX (7 << 5) #else #define PKT_TYPE_MAX 7 #endif #define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset) /* private: */ __u8 __pkt_type_offset[0]; /* public: */ __u8 pkt_type:3; __u8 ignore_df:1; __u8 nf_trace:1; __u8 ip_summed:2; __u8 ooo_okay:1; __u8 l4_hash:1; __u8 sw_hash:1; __u8 wifi_acked_valid:1; __u8 wifi_acked:1; __u8 no_fcs:1; /* Indicates the inner headers are valid in the skbuff. */ __u8 encapsulation:1; __u8 encap_hdr_csum:1; __u8 csum_valid:1; #ifdef __BIG_ENDIAN_BITFIELD #define PKT_VLAN_PRESENT_BIT 7 #else #define PKT_VLAN_PRESENT_BIT 0 #endif #define PKT_VLAN_PRESENT_OFFSET() offsetof(struct sk_buff, __pkt_vlan_present_offset) /* private: */ __u8 __pkt_vlan_present_offset[0]; /* public: */ __u8 vlan_present:1; __u8 csum_complete_sw:1; __u8 csum_level:2; __u8 csum_not_inet:1; __u8 dst_pending_confirm:1; #ifdef CONFIG_IPV6_NDISC_NODETYPE __u8 ndisc_nodetype:2; #endif __u8 ipvs_property:1; __u8 inner_protocol_type:1; __u8 remcsum_offload:1; #ifdef CONFIG_NET_SWITCHDEV __u8 offload_fwd_mark:1; __u8 offload_l3_fwd_mark:1; #endif #ifdef CONFIG_NET_CLS_ACT __u8 tc_skip_classify:1; __u8 tc_at_ingress:1; #endif #ifdef CONFIG_NET_REDIRECT __u8 redirected:1; __u8 from_ingress:1; #endif #ifdef CONFIG_TLS_DEVICE __u8 decrypted:1; #endif #ifdef CONFIG_NET_SCHED __u16 tc_index; /* traffic control index */ #endif union { __wsum csum; struct { __u16 csum_start; __u16 csum_offset; }; }; __u32 priority; int skb_iif; __u32 hash; __be16 vlan_proto; __u16 vlan_tci; #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS) union { unsigned int napi_id; unsigned int sender_cpu; }; #endif #ifdef CONFIG_NETWORK_SECMARK __u32 secmark; #endif union { __u32 mark; __u32 reserved_tailroom; }; union { __be16 inner_protocol; __u8 inner_ipproto; }; __u16 inner_transport_header; __u16 inner_network_header; __u16 inner_mac_header; __be16 protocol; __u16 transport_header; __u16 network_header; __u16 mac_header; /* private: */ __u32 headers_end[0]; /* public: */ /* These elements must be at the end, see alloc_skb() for details. */ sk_buff_data_t tail; sk_buff_data_t end; unsigned char *head, *data; unsigned int truesize; refcount_t users; #ifdef CONFIG_SKB_EXTENSIONS /* only useable after checking ->active_extensions != 0 */ struct skb_ext *extensions; #endif }; #ifdef __KERNEL__ /* * Handling routines are only of interest to the kernel */ #define SKB_ALLOC_FCLONE 0x01 #define SKB_ALLOC_RX 0x02 #define SKB_ALLOC_NAPI 0x04 /** * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves * @skb: buffer */ static inline bool skb_pfmemalloc(const struct sk_buff *skb) { return unlikely(skb->pfmemalloc); } /* * skb might have a dst pointer attached, refcounted or not. * _skb_refdst low order bit is set if refcount was _not_ taken */ #define SKB_DST_NOREF 1UL #define SKB_DST_PTRMASK ~(SKB_DST_NOREF) /** * skb_dst - returns skb dst_entry * @skb: buffer * * Returns skb dst_entry, regardless of reference taken or not. */ static inline struct dst_entry *skb_dst(const struct sk_buff *skb) { /* If refdst was not refcounted, check we still are in a * rcu_read_lock section */ WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && !rcu_read_lock_held() && !rcu_read_lock_bh_held()); return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); } /** * skb_dst_set - sets skb dst * @skb: buffer * @dst: dst entry * * Sets skb dst, assuming a reference was taken on dst and should * be released by skb_dst_drop() */ static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) { skb->_skb_refdst = (unsigned long)dst; } /** * skb_dst_set_noref - sets skb dst, hopefully, without taking reference * @skb: buffer * @dst: dst entry * * Sets skb dst, assuming a reference was not taken on dst. * If dst entry is cached, we do not take reference and dst_release * will be avoided by refdst_drop. If dst entry is not cached, we take * reference, so that last dst_release can destroy the dst immediately. */ static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) { WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; } /** * skb_dst_is_noref - Test if skb dst isn't refcounted * @skb: buffer */ static inline bool skb_dst_is_noref(const struct sk_buff *skb) { return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); } /** * skb_rtable - Returns the skb &rtable * @skb: buffer */ static inline struct rtable *skb_rtable(const struct sk_buff *skb) { return (struct rtable *)skb_dst(skb); } /* For mangling skb->pkt_type from user space side from applications * such as nft, tc, etc, we only allow a conservative subset of * possible pkt_types to be set. */ static inline bool skb_pkt_type_ok(u32 ptype) { return ptype <= PACKET_OTHERHOST; } /** * skb_napi_id - Returns the skb's NAPI id * @skb: buffer */ static inline unsigned int skb_napi_id(const struct sk_buff *skb) { #ifdef CONFIG_NET_RX_BUSY_POLL return skb->napi_id; #else return 0; #endif } /** * skb_unref - decrement the skb's reference count * @skb: buffer * * Returns true if we can free the skb. */ static inline bool skb_unref(struct sk_buff *skb) { if (unlikely(!skb)) return false; if (likely(refcount_read(&skb->users) == 1)) smp_rmb(); else if (likely(!refcount_dec_and_test(&skb->users))) return false; return true; } void skb_release_head_state(struct sk_buff *skb); void kfree_skb(struct sk_buff *skb); void kfree_skb_list(struct sk_buff *segs); void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt); void skb_tx_error(struct sk_buff *skb); #ifdef CONFIG_TRACEPOINTS void consume_skb(struct sk_buff *skb); #else static inline void consume_skb(struct sk_buff *skb) { return kfree_skb(skb); } #endif void __consume_stateless_skb(struct sk_buff *skb); void __kfree_skb(struct sk_buff *skb); extern struct kmem_cache *skbuff_head_cache; void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, bool *fragstolen, int *delta_truesize); struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, int node); struct sk_buff *__build_skb(void *data, unsigned int frag_size); struct sk_buff *build_skb(void *data, unsigned int frag_size); struct sk_buff *build_skb_around(struct sk_buff *skb, void *data, unsigned int frag_size); /** * alloc_skb - allocate a network buffer * @size: size to allocate * @priority: allocation mask * * This function is a convenient wrapper around __alloc_skb(). */ static inline struct sk_buff *alloc_skb(unsigned int size, gfp_t priority) { return __alloc_skb(size, priority, 0, NUMA_NO_NODE); } struct sk_buff *alloc_skb_with_frags(unsigned long header_len, unsigned long data_len, int max_page_order, int *errcode, gfp_t gfp_mask); struct sk_buff *alloc_skb_for_msg(struct sk_buff *first); /* Layout of fast clones : [skb1][skb2][fclone_ref] */ struct sk_buff_fclones { struct sk_buff skb1; struct sk_buff skb2; refcount_t fclone_ref; }; /** * skb_fclone_busy - check if fclone is busy * @sk: socket * @skb: buffer * * Returns true if skb is a fast clone, and its clone is not freed. * Some drivers call skb_orphan() in their ndo_start_xmit(), * so we also check that this didnt happen. */ static inline bool skb_fclone_busy(const struct sock *sk, const struct sk_buff *skb) { const struct sk_buff_fclones *fclones; fclones = container_of(skb, struct sk_buff_fclones, skb1); return skb->fclone == SKB_FCLONE_ORIG && refcount_read(&fclones->fclone_ref) > 1 && fclones->skb2.sk == sk; } /** * alloc_skb_fclone - allocate a network buffer from fclone cache * @size: size to allocate * @priority: allocation mask * * This function is a convenient wrapper around __alloc_skb(). */ static inline struct sk_buff *alloc_skb_fclone(unsigned int size, gfp_t priority) { return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); } struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); void skb_headers_offset_update(struct sk_buff *skb, int off); int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); void skb_copy_header(struct sk_buff *new, const struct sk_buff *old); struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, gfp_t gfp_mask, bool fclone); static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, gfp_t gfp_mask) { return __pskb_copy_fclone(skb, headroom, gfp_mask, false); } int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom); struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, int newtailroom, gfp_t priority); int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, int offset, int len); int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len); int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error); /** * skb_pad - zero pad the tail of an skb * @skb: buffer to pad * @pad: space to pad * * Ensure that a buffer is followed by a padding area that is zero * filled. Used by network drivers which may DMA or transfer data * beyond the buffer end onto the wire. * * May return error in out of memory cases. The skb is freed on error. */ static inline int skb_pad(struct sk_buff *skb, int pad) { return __skb_pad(skb, pad, true); } #define dev_kfree_skb(a) consume_skb(a) int skb_append_pagefrags(struct sk_buff *skb, struct page *page, int offset, size_t size); struct skb_seq_state { __u32 lower_offset; __u32 upper_offset; __u32 frag_idx; __u32 stepped_offset; struct sk_buff *root_skb; struct sk_buff *cur_skb; __u8 *frag_data; }; void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, unsigned int to, struct skb_seq_state *st); unsigned int skb_seq_read(unsigned int consumed, const u8 **data, struct skb_seq_state *st); void skb_abort_seq_read(struct skb_seq_state *st); unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, unsigned int to, struct ts_config *config); /* * Packet hash types specify the type of hash in skb_set_hash. * * Hash types refer to the protocol layer addresses which are used to * construct a packet's hash. The hashes are used to differentiate or identify * flows of the protocol layer for the hash type. Hash types are either * layer-2 (L2), layer-3 (L3), or layer-4 (L4). * * Properties of hashes: * * 1) Two packets in different flows have different hash values * 2) Two packets in the same flow should have the same hash value * * A hash at a higher layer is considered to be more specific. A driver should * set the most specific hash possible. * * A driver cannot indicate a more specific hash than the layer at which a hash * was computed. For instance an L3 hash cannot be set as an L4 hash. * * A driver may indicate a hash level which is less specific than the * actual layer the hash was computed on. For instance, a hash computed * at L4 may be considered an L3 hash. This should only be done if the * driver can't unambiguously determine that the HW computed the hash at * the higher layer. Note that the "should" in the second property above * permits this. */ enum pkt_hash_types { PKT_HASH_TYPE_NONE, /* Undefined type */ PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ }; static inline void skb_clear_hash(struct sk_buff *skb) { skb->hash = 0; skb->sw_hash = 0; skb->l4_hash = 0; } static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) { if (!skb->l4_hash) skb_clear_hash(skb); } static inline void __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4) { skb->l4_hash = is_l4; skb->sw_hash = is_sw; skb->hash = hash; } static inline void skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) { /* Used by drivers to set hash from HW */ __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4); } static inline void __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4) { __skb_set_hash(skb, hash, true, is_l4); } void __skb_get_hash(struct sk_buff *skb); u32 __skb_get_hash_symmetric(const struct sk_buff *skb); u32 skb_get_poff(const struct sk_buff *skb); u32 __skb_get_poff(const struct sk_buff *skb, void *data, const struct flow_keys_basic *keys, int hlen); __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, void *data, int hlen_proto); static inline __be32 skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto) { return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0); } void skb_flow_dissector_init(struct flow_dissector *flow_dissector, const struct flow_dissector_key *key, unsigned int key_count); struct bpf_flow_dissector; bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx, __be16 proto, int nhoff, int hlen, unsigned int flags); bool __skb_flow_dissect(const struct net *net, const struct sk_buff *skb, struct flow_dissector *flow_dissector, void *target_container, void *data, __be16 proto, int nhoff, int hlen, unsigned int flags); static inline bool skb_flow_dissect(const struct sk_buff *skb, struct flow_dissector *flow_dissector, void *target_container, unsigned int flags) { return __skb_flow_dissect(NULL, skb, flow_dissector, target_container, NULL, 0, 0, 0, flags); } static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb, struct flow_keys *flow, unsigned int flags) { memset(flow, 0, sizeof(*flow)); return __skb_flow_dissect(NULL, skb, &flow_keys_dissector, flow, NULL, 0, 0, 0, flags); } static inline bool skb_flow_dissect_flow_keys_basic(const struct net *net, const struct sk_buff *skb, struct flow_keys_basic *flow, void *data, __be16 proto, int nhoff, int hlen, unsigned int flags) { memset(flow, 0, sizeof(*flow)); return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow, data, proto, nhoff, hlen, flags); } void skb_flow_dissect_meta(const struct sk_buff *skb, struct flow_dissector *flow_dissector, void *target_container); /* Gets a skb connection tracking info, ctinfo map should be a * map of mapsize to translate enum ip_conntrack_info states * to user states. */ void skb_flow_dissect_ct(const struct sk_buff *skb, struct flow_dissector *flow_dissector, void *target_container, u16 *ctinfo_map, size_t mapsize); void skb_flow_dissect_tunnel_info(const struct sk_buff *skb, struct flow_dissector *flow_dissector, void *target_container); void skb_flow_dissect_hash(const struct sk_buff *skb, struct flow_dissector *flow_dissector, void *target_container); static inline __u32 skb_get_hash(struct sk_buff *skb) { if (!skb->l4_hash && !skb->sw_hash) __skb_get_hash(skb); return skb->hash; } static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6) { if (!skb->l4_hash && !skb->sw_hash) { struct flow_keys keys; __u32 hash = __get_hash_from_flowi6(fl6, &keys); __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); } return skb->hash; } __u32 skb_get_hash_perturb(const struct sk_buff *skb, const siphash_key_t *perturb); static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) { return skb->hash; } static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) { to->hash = from->hash; to->sw_hash = from->sw_hash; to->l4_hash = from->l4_hash; }; static inline void skb_copy_decrypted(struct sk_buff *to, const struct sk_buff *from) { #ifdef CONFIG_TLS_DEVICE to->decrypted = from->decrypted; #endif } #ifdef NET_SKBUFF_DATA_USES_OFFSET static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) { return skb->head + skb->end; } static inline unsigned int skb_end_offset(const struct sk_buff *skb) { return skb->end; } #else static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) { return skb->end; } static inline unsigned int skb_end_offset(const struct sk_buff *skb) { return skb->end - skb->head; } #endif /* Internal */ #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) { return &skb_shinfo(skb)->hwtstamps; } static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb) { bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY; return is_zcopy ? skb_uarg(skb) : NULL; } static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg, bool *have_ref) { if (skb && uarg && !skb_zcopy(skb)) { if (unlikely(have_ref && *have_ref)) *have_ref = false; else sock_zerocopy_get(uarg); skb_shinfo(skb)->destructor_arg = uarg; skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG; } } static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val) { skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL); skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG; } static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb) { return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL; } static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb) { return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL); } /* Release a reference on a zerocopy structure */ static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy) { struct ubuf_info *uarg = skb_zcopy(skb); if (uarg) { if (skb_zcopy_is_nouarg(skb)) { /* no notification callback */ } else if (uarg->callback == sock_zerocopy_callback) { uarg->zerocopy = uarg->zerocopy && zerocopy; sock_zerocopy_put(uarg); } else { uarg->callback(uarg, zerocopy); } skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG; } } /* Abort a zerocopy operation and revert zckey on error in send syscall */ static inline void skb_zcopy_abort(struct sk_buff *skb) { struct ubuf_info *uarg = skb_zcopy(skb); if (uarg) { sock_zerocopy_put_abort(uarg, false); skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG; } } static inline void skb_mark_not_on_list(struct sk_buff *skb) { skb->next = NULL; } /* Iterate through singly-linked GSO fragments of an skb. */ #define skb_list_walk_safe(first, skb, next_skb) \ for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb); \ (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL) static inline void skb_list_del_init(struct sk_buff *skb) { __list_del_entry(&skb->list); skb_mark_not_on_list(skb); } /** * skb_queue_empty - check if a queue is empty * @list: queue head * * Returns true if the queue is empty, false otherwise. */ static inline int skb_queue_empty(const struct sk_buff_head *list) { return list->next == (const struct sk_buff *) list; } /** * skb_queue_empty_lockless - check if a queue is empty * @list: queue head * * Returns true if the queue is empty, false otherwise. * This variant can be used in lockless contexts. */ static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list) { return READ_ONCE(list->next) == (const struct sk_buff *) list; } /** * skb_queue_is_last - check if skb is the last entry in the queue * @list: queue head * @skb: buffer * * Returns true if @skb is the last buffer on the list. */ static inline bool skb_queue_is_last(const struct sk_buff_head *list, const struct sk_buff *skb) { return skb->next == (const struct sk_buff *) list; } /** * skb_queue_is_first - check if skb is the first entry in the queue * @list: queue head * @skb: buffer * * Returns true if @skb is the first buffer on the list. */ static inline bool skb_queue_is_first(const struct sk_buff_head *list, const struct sk_buff *skb) { return skb->prev == (const struct sk_buff *) list; } /** * skb_queue_next - return the next packet in the queue * @list: queue head * @skb: current buffer * * Return the next packet in @list after @skb. It is only valid to * call this if skb_queue_is_last() evaluates to false. */ static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, const struct sk_buff *skb) { /* This BUG_ON may seem severe, but if we just return then we * are going to dereference garbage. */ BUG_ON(skb_queue_is_last(list, skb)); return skb->next; } /** * skb_queue_prev - return the prev packet in the queue * @list: queue head * @skb: current buffer * * Return the prev packet in @list before @skb. It is only valid to * call this if skb_queue_is_first() evaluates to false. */ static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, const struct sk_buff *skb) { /* This BUG_ON may seem severe, but if we just return then we * are going to dereference garbage. */ BUG_ON(skb_queue_is_first(list, skb)); return skb->prev; } /** * skb_get - reference buffer * @skb: buffer to reference * * Makes another reference to a socket buffer and returns a pointer * to the buffer. */ static inline struct sk_buff *skb_get(struct sk_buff *skb) { refcount_inc(&skb->users); return skb; } /* * If users == 1, we are the only owner and can avoid redundant atomic changes. */ /** * skb_cloned - is the buffer a clone * @skb: buffer to check * * Returns true if the buffer was generated with skb_clone() and is * one of multiple shared copies of the buffer. Cloned buffers are * shared data so must not be written to under normal circumstances. */ static inline int skb_cloned(const struct sk_buff *skb) { return skb->cloned && (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; } static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) { might_sleep_if(gfpflags_allow_blocking(pri)); if (skb_cloned(skb)) return pskb_expand_head(skb, 0, 0, pri); return 0; } /** * skb_header_cloned - is the header a clone * @skb: buffer to check * * Returns true if modifying the header part of the buffer requires * the data to be copied. */ static inline int skb_header_cloned(const struct sk_buff *skb) { int dataref; if (!skb->cloned) return 0; dataref = atomic_read(&skb_shinfo(skb)->dataref); dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); return dataref != 1; } static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri) { might_sleep_if(gfpflags_allow_blocking(pri)); if (skb_header_cloned(skb)) return pskb_expand_head(skb, 0, 0, pri); return 0; } /** * __skb_header_release - release reference to header * @skb: buffer to operate on */ static inline void __skb_header_release(struct sk_buff *skb) { skb->nohdr = 1; atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); } /** * skb_shared - is the buffer shared * @skb: buffer to check * * Returns true if more than one person has a reference to this * buffer. */ static inline int skb_shared(const struct sk_buff *skb) { return refcount_read(&skb->users) != 1; } /** * skb_share_check - check if buffer is shared and if so clone it * @skb: buffer to check * @pri: priority for memory allocation * * If the buffer is shared the buffer is cloned and the old copy * drops a reference. A new clone with a single reference is returned. * If the buffer is not shared the original buffer is returned. When * being called from interrupt status or with spinlocks held pri must * be GFP_ATOMIC. * * NULL is returned on a memory allocation failure. */ static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) { might_sleep_if(gfpflags_allow_blocking(pri)); if (skb_shared(skb)) { struct sk_buff *nskb = skb_clone(skb, pri); if (likely(nskb)) consume_skb(skb); else kfree_skb(skb); skb = nskb; } return skb; } /* * Copy shared buffers into a new sk_buff. We effectively do COW on * packets to handle cases where we have a local reader and forward * and a couple of other messy ones. The normal one is tcpdumping * a packet thats being forwarded. */ /** * skb_unshare - make a copy of a shared buffer * @skb: buffer to check * @pri: priority for memory allocation * * If the socket buffer is a clone then this function creates a new * copy of the data, drops a reference count on the old copy and returns * the new copy with the reference count at 1. If the buffer is not a clone * the original buffer is returned. When called with a spinlock held or * from interrupt state @pri must be %GFP_ATOMIC * * %NULL is returned on a memory allocation failure. */ static inline struct sk_buff *skb_unshare(struct sk_buff *skb, gfp_t pri) { might_sleep_if(gfpflags_allow_blocking(pri)); if (skb_cloned(skb)) { struct sk_buff *nskb = skb_copy(skb, pri); /* Free our shared copy */ if (likely(nskb)) consume_skb(skb); else kfree_skb(skb); skb = nskb; } return skb; } /** * skb_peek - peek at the head of an &sk_buff_head * @list_: list to peek at * * Peek an &sk_buff. Unlike most other operations you _MUST_ * be careful with this one. A peek leaves the buffer on the * list and someone else may run off with it. You must hold * the appropriate locks or have a private queue to do this. * * Returns %NULL for an empty list or a pointer to the head element. * The reference count is not incremented and the reference is therefore * volatile. Use with caution. */ static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) { struct sk_buff *skb = list_->next; if (skb == (struct sk_buff *)list_) skb = NULL; return skb; } /** * __skb_peek - peek at the head of a non-empty &sk_buff_head * @list_: list to peek at * * Like skb_peek(), but the caller knows that the list is not empty. */ static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_) { return list_->next; } /** * skb_peek_next - peek skb following the given one from a queue * @skb: skb to start from * @list_: list to peek at * * Returns %NULL when the end of the list is met or a pointer to the * next element. The reference count is not incremented and the * reference is therefore volatile. Use with caution. */ static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, const struct sk_buff_head *list_) { struct sk_buff *next = skb->next; if (next == (struct sk_buff *)list_) next = NULL; return next; } /** * skb_peek_tail - peek at the tail of an &sk_buff_head * @list_: list to peek at * * Peek an &sk_buff. Unlike most other operations you _MUST_ * be careful with this one. A peek leaves the buffer on the * list and someone else may run off with it. You must hold * the appropriate locks or have a private queue to do this. * * Returns %NULL for an empty list or a pointer to the tail element. * The reference count is not incremented and the reference is therefore * volatile. Use with caution. */ static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) { struct sk_buff *skb = READ_ONCE(list_->prev); if (skb == (struct sk_buff *)list_) skb = NULL; return skb; } /** * skb_queue_len - get queue length * @list_: list to measure * * Return the length of an &sk_buff queue. */ static inline __u32 skb_queue_len(const struct sk_buff_head *list_) { return list_->qlen; } /** * skb_queue_len_lockless - get queue length * @list_: list to measure * * Return the length of an &sk_buff queue. * This variant can be used in lockless contexts. */ static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_) { return READ_ONCE(list_->qlen); } /** * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head * @list: queue to initialize * * This initializes only the list and queue length aspects of * an sk_buff_head object. This allows to initialize the list * aspects of an sk_buff_head without reinitializing things like * the spinlock. It can also be used for on-stack sk_buff_head * objects where the spinlock is known to not be used. */ static inline void __skb_queue_head_init(struct sk_buff_head *list) { list->prev = list->next = (struct sk_buff *)list; list->qlen = 0; } /* * This function creates a split out lock class for each invocation; * this is needed for now since a whole lot of users of the skb-queue * infrastructure in drivers have different locking usage (in hardirq) * than the networking core (in softirq only). In the long run either the * network layer or drivers should need annotation to consolidate the * main types of usage into 3 classes. */ static inline void skb_queue_head_init(struct sk_buff_head *list) { spin_lock_init(&list->lock); __skb_queue_head_init(list); } static inline void skb_queue_head_init_class(struct sk_buff_head *list, struct lock_class_key *class) { skb_queue_head_init(list); lockdep_set_class(&list->lock, class); } /* * Insert an sk_buff on a list. * * The "__skb_xxxx()" functions are the non-atomic ones that * can only be called with interrupts disabled. */ static inline void __skb_insert(struct sk_buff *newsk, struct sk_buff *prev, struct sk_buff *next, struct sk_buff_head *list) { /* See skb_queue_empty_lockless() and skb_peek_tail() * for the opposite READ_ONCE() */ WRITE_ONCE(newsk->next, next); WRITE_ONCE(newsk->prev, prev); WRITE_ONCE(next->prev, newsk); WRITE_ONCE(prev->next, newsk); WRITE_ONCE(list->qlen, list->qlen + 1); } static inline void __skb_queue_splice(const struct sk_buff_head *list, struct sk_buff *prev, struct sk_buff *next) { struct sk_buff *first = list->next; struct sk_buff *last = list->prev; WRITE_ONCE(first->prev, prev); WRITE_ONCE(prev->next, first); WRITE_ONCE(last->next, next); WRITE_ONCE(next->prev, last); } /** * skb_queue_splice - join two skb lists, this is designed for stacks * @list: the new list to add * @head: the place to add it in the first list */ static inline void skb_queue_splice(const struct sk_buff_head *list, struct sk_buff_head *head) { if (!skb_queue_empty(list)) { __skb_queue_splice(list, (struct sk_buff *) head, head->next); head->qlen += list->qlen; } } /** * skb_queue_splice_init - join two skb lists and reinitialise the emptied list * @list: the new list to add * @head: the place to add it in the first list * * The list at @list is reinitialised */ static inline void skb_queue_splice_init(struct sk_buff_head *list, struct sk_buff_head *head) { if (!skb_queue_empty(list)) { __skb_queue_splice(list, (struct sk_buff *) head, head->next); head->qlen += list->qlen; __skb_queue_head_init(list); } } /** * skb_queue_splice_tail - join two skb lists, each list being a queue * @list: the new list to add * @head: the place to add it in the first list */ static inline void skb_queue_splice_tail(const struct sk_buff_head *list, struct sk_buff_head *head) { if (!skb_queue_empty(list)) { __skb_queue_splice(list, head->prev, (struct sk_buff *) head); head->qlen += list->qlen; } } /** * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list * @list: the new list to add * @head: the place to add it in the first list * * Each of the lists is a queue. * The list at @list is reinitialised */ static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, struct sk_buff_head *head) { if (!skb_queue_empty(list)) { __skb_queue_splice(list, head->prev, (struct sk_buff *) head); head->qlen += list->qlen; __skb_queue_head_init(list); } } /** * __skb_queue_after - queue a buffer at the list head * @list: list to use * @prev: place after this buffer * @newsk: buffer to queue * * Queue a buffer int the middle of a list. This function takes no locks * and you must therefore hold required locks before calling it. * * A buffer cannot be placed on two lists at the same time. */ static inline void __skb_queue_after(struct sk_buff_head *list, struct sk_buff *prev, struct sk_buff *newsk) { __skb_insert(newsk, prev, prev->next, list); } void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list); static inline void __skb_queue_before(struct sk_buff_head *list, struct sk_buff *next, struct sk_buff *newsk) { __skb_insert(newsk, next->prev, next, list); } /** * __skb_queue_head - queue a buffer at the list head * @list: list to use * @newsk: buffer to queue * * Queue a buffer at the start of a list. This function takes no locks * and you must therefore hold required locks before calling it. * * A buffer cannot be placed on two lists at the same time. */ static inline void __skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) { __skb_queue_after(list, (struct sk_buff *)list, newsk); } void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); /** * __skb_queue_tail - queue a buffer at the list tail * @list: list to use * @newsk: buffer to queue * * Queue a buffer at the end of a list. This function takes no locks * and you must therefore hold required locks before calling it. * * A buffer cannot be placed on two lists at the same time. */ static inline void __skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) { __skb_queue_before(list, (struct sk_buff *)list, newsk); } void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); /* * remove sk_buff from list. _Must_ be called atomically, and with * the list known.. */ void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) { struct sk_buff *next, *prev; WRITE_ONCE(list->qlen, list->qlen - 1); next = skb->next; prev = skb->prev; skb->next = skb->prev = NULL; WRITE_ONCE(next->prev, prev); WRITE_ONCE(prev->next, next); } /** * __skb_dequeue - remove from the head of the queue * @list: list to dequeue from * * Remove the head of the list. This function does not take any locks * so must be used with appropriate locks held only. The head item is * returned or %NULL if the list is empty. */ static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) { struct sk_buff *skb = skb_peek(list); if (skb) __skb_unlink(skb, list); return skb; } struct sk_buff *skb_dequeue(struct sk_buff_head *list); /** * __skb_dequeue_tail - remove from the tail of the queue * @list: list to dequeue from * * Remove the tail of the list. This function does not take any locks * so must be used with appropriate locks held only. The tail item is * returned or %NULL if the list is empty. */ static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) { struct sk_buff *skb = skb_peek_tail(list); if (skb) __skb_unlink(skb, list); return skb; } struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); static inline bool skb_is_nonlinear(const struct sk_buff *skb) { return skb->data_len; } static inline unsigned int skb_headlen(const struct sk_buff *skb) { return skb->len - skb->data_len; } static inline unsigned int __skb_pagelen(const struct sk_buff *skb) { unsigned int i, len = 0; for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--) len += skb_frag_size(&skb_shinfo(skb)->frags[i]); return len; } static inline unsigned int skb_pagelen(const struct sk_buff *skb) { return skb_headlen(skb) + __skb_pagelen(skb); } /** * __skb_fill_page_desc - initialise a paged fragment in an skb * @skb: buffer containing fragment to be initialised * @i: paged fragment index to initialise * @page: the page to use for this fragment * @off: the offset to the data with @page * @size: the length of the data * * Initialises the @i'th fragment of @skb to point to &size bytes at * offset @off within @page. * * Does not take any additional reference on the fragment. */ static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, struct page *page, int off, int size) { skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; /* * Propagate page pfmemalloc to the skb if we can. The problem is * that not all callers have unique ownership of the page but rely * on page_is_pfmemalloc doing the right thing(tm). */ frag->bv_page = page; frag->bv_offset = off; skb_frag_size_set(frag, size); page = compound_head(page); if (page_is_pfmemalloc(page)) skb->pfmemalloc = true; } /** * skb_fill_page_desc - initialise a paged fragment in an skb * @skb: buffer containing fragment to be initialised * @i: paged fragment index to initialise * @page: the page to use for this fragment * @off: the offset to the data with @page * @size: the length of the data * * As per __skb_fill_page_desc() -- initialises the @i'th fragment of * @skb to point to @size bytes at offset @off within @page. In * addition updates @skb such that @i is the last fragment. * * Does not take any additional reference on the fragment. */ static inline void skb_fill_page_desc(struct sk_buff *skb, int i, struct page *page, int off, int size) { __skb_fill_page_desc(skb, i, page, off, size); skb_shinfo(skb)->nr_frags = i + 1; } void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, int size, unsigned int truesize); void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, unsigned int truesize); #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) #ifdef NET_SKBUFF_DATA_USES_OFFSET static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) { return skb->head + skb->tail; } static inline void skb_reset_tail_pointer(struct sk_buff *skb) { skb->tail = skb->data - skb->head; } static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) { skb_reset_tail_pointer(skb); skb->tail += offset; } #else /* NET_SKBUFF_DATA_USES_OFFSET */ static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) { return skb->tail; } static inline void skb_reset_tail_pointer(struct sk_buff *skb) { skb->tail = skb->data; } static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) { skb->tail = skb->data + offset; } #endif /* NET_SKBUFF_DATA_USES_OFFSET */ /* * Add data to an sk_buff */ void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); void *skb_put(struct sk_buff *skb, unsigned int len); static inline void *__skb_put(struct sk_buff *skb, unsigned int len) { void *tmp = skb_tail_pointer(skb); SKB_LINEAR_ASSERT(skb); skb->tail += len; skb->len += len; return tmp; } static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len) { void *tmp = __skb_put(skb, len); memset(tmp, 0, len); return tmp; } static inline void *__skb_put_data(struct sk_buff *skb, const void *data, unsigned int len) { void *tmp = __skb_put(skb, len); memcpy(tmp, data, len); return tmp; } static inline void __skb_put_u8(struct sk_buff *skb, u8 val) { *(u8 *)__skb_put(skb, 1) = val; } static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len) { void *tmp = skb_put(skb, len); memset(tmp, 0, len); return tmp; } static inline void *skb_put_data(struct sk_buff *skb, const void *data, unsigned int len) { void *tmp = skb_put(skb, len); memcpy(tmp, data, len); return tmp; } static inline void skb_put_u8(struct sk_buff *skb, u8 val) { *(u8 *)skb_put(skb, 1) = val; } void *skb_push(struct sk_buff *skb, unsigned int len); static inline void *__skb_push(struct sk_buff *skb, unsigned int len) { skb->data -= len; skb->len += len; return skb->data; } void *skb_pull(struct sk_buff *skb, unsigned int len); static inline void *__skb_pull(struct sk_buff *skb, unsigned int len) { skb->len -= len; BUG_ON(skb->len < skb->data_len); return skb->data += len; } static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len) { return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); } void *__pskb_pull_tail(struct sk_buff *skb, int delta); static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len) { if (len > skb_headlen(skb) && !__pskb_pull_tail(skb, len - skb_headlen(skb))) return NULL; skb->len -= len; return skb->data += len; } static inline void *pskb_pull(struct sk_buff *skb, unsigned int len) { return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); } static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len) { if (likely(len <= skb_headlen(skb))) return true; if (unlikely(len > skb->len)) return false; return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; } void skb_condense(struct sk_buff *skb); /** * skb_headroom - bytes at buffer head * @skb: buffer to check * * Return the number of bytes of free space at the head of an &sk_buff. */ static inline unsigned int skb_headroom(const struct sk_buff *skb) { return skb->data - skb->head; } /** * skb_tailroom - bytes at buffer end * @skb: buffer to check * * Return the number of bytes of free space at the tail of an sk_buff */ static inline int skb_tailroom(const struct sk_buff *skb) { return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; } /** * skb_availroom - bytes at buffer end * @skb: buffer to check * * Return the number of bytes of free space at the tail of an sk_buff * allocated by sk_stream_alloc() */ static inline int skb_availroom(const struct sk_buff *skb) { if (skb_is_nonlinear(skb)) return 0; return skb->end - skb->tail - skb->reserved_tailroom; } /** * skb_reserve - adjust headroom * @skb: buffer to alter * @len: bytes to move * * Increase the headroom of an empty &sk_buff by reducing the tail * room. This is only allowed for an empty buffer. */ static inline void skb_reserve(struct sk_buff *skb, int len) { skb->data += len; skb->tail += len; } /** * skb_tailroom_reserve - adjust reserved_tailroom * @skb: buffer to alter * @mtu: maximum amount of headlen permitted * @needed_tailroom: minimum amount of reserved_tailroom * * Set reserved_tailroom so that headlen can be as large as possible but * not larger than mtu and tailroom cannot be smaller than * needed_tailroom. * The required headroom should already have been reserved before using * this function. */ static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu, unsigned int needed_tailroom) { SKB_LINEAR_ASSERT(skb); if (mtu < skb_tailroom(skb) - needed_tailroom) /* use at most mtu */ skb->reserved_tailroom = skb_tailroom(skb) - mtu; else /* use up to all available space */ skb->reserved_tailroom = needed_tailroom; } #define ENCAP_TYPE_ETHER 0 #define ENCAP_TYPE_IPPROTO 1 static inline void skb_set_inner_protocol(struct sk_buff *skb, __be16 protocol) { skb->inner_protocol = protocol; skb->inner_protocol_type = ENCAP_TYPE_ETHER; } static inline void skb_set_inner_ipproto(struct sk_buff *skb, __u8 ipproto) { skb->inner_ipproto = ipproto; skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; } static inline void skb_reset_inner_headers(struct sk_buff *skb) { skb->inner_mac_header = skb->mac_header; skb->inner_network_header = skb->network_header; skb->inner_transport_header = skb->transport_header; } static inline void skb_reset_mac_len(struct sk_buff *skb) { skb->mac_len = skb->network_header - skb->mac_header; } static inline unsigned char *skb_inner_transport_header(const struct sk_buff *skb) { return skb->head + skb->inner_transport_header; } static inline int skb_inner_transport_offset(const struct sk_buff *skb) { return skb_inner_transport_header(skb) - skb->data; } static inline void skb_reset_inner_transport_header(struct sk_buff *skb) { skb->inner_transport_header = skb->data - skb->head; } static inline void skb_set_inner_transport_header(struct sk_buff *skb, const int offset) { skb_reset_inner_transport_header(skb); skb->inner_transport_header += offset; } static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) { return skb->head + skb->inner_network_header; } static inline void skb_reset_inner_network_header(struct sk_buff *skb) { skb->inner_network_header = skb->data - skb->head; } static inline void skb_set_inner_network_header(struct sk_buff *skb, const int offset) { skb_reset_inner_network_header(skb); skb->inner_network_header += offset; } static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) { return skb->head + skb->inner_mac_header; } static inline void skb_reset_inner_mac_header(struct sk_buff *skb) { skb->inner_mac_header = skb->data - skb->head; } static inline void skb_set_inner_mac_header(struct sk_buff *skb, const int offset) { skb_reset_inner_mac_header(skb); skb->inner_mac_header += offset; } static inline bool skb_transport_header_was_set(const struct sk_buff *skb) { return skb->transport_header != (typeof(skb->transport_header))~0U; } static inline unsigned char *skb_transport_header(const struct sk_buff *skb) { return skb->head + skb->transport_header; } static inline void skb_reset_transport_header(struct sk_buff *skb) { skb->transport_header = skb->data - skb->head; } static inline void skb_set_transport_header(struct sk_buff *skb, const int offset) { skb_reset_transport_header(skb); skb->transport_header += offset; } static inline unsigned char *skb_network_header(const struct sk_buff *skb) { return skb->head + skb->network_header; } static inline void skb_reset_network_header(struct sk_buff *skb) { skb->network_header = skb->data - skb->head; } static inline void skb_set_network_header(struct sk_buff *skb, const int offset) { skb_reset_network_header(skb); skb->network_header += offset; } static inline unsigned char *skb_mac_header(const struct sk_buff *skb) { return skb->head + skb->mac_header; } static inline int skb_mac_offset(const struct sk_buff *skb) { return skb_mac_header(skb) - skb->data; } static inline u32 skb_mac_header_len(const struct sk_buff *skb) { return skb->network_header - skb->mac_header; } static inline int skb_mac_header_was_set(const struct sk_buff *skb) { return skb->mac_header != (typeof(skb->mac_header))~0U; } static inline void skb_unset_mac_header(struct sk_buff *skb) { skb->mac_header = (typeof(skb->mac_header))~0U; } static inline void skb_reset_mac_header(struct sk_buff *skb) { skb->mac_header = skb->data - skb->head; } static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) { skb_reset_mac_header(skb); skb->mac_header += offset; } static inline void skb_pop_mac_header(struct sk_buff *skb) { skb->mac_header = skb->network_header; } static inline void skb_probe_transport_header(struct sk_buff *skb) { struct flow_keys_basic keys; if (skb_transport_header_was_set(skb)) return; if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys, NULL, 0, 0, 0, 0)) skb_set_transport_header(skb, keys.control.thoff); } static inline void skb_mac_header_rebuild(struct sk_buff *skb) { if (skb_mac_header_was_set(skb)) { const unsigned char *old_mac = skb_mac_header(skb); skb_set_mac_header(skb, -skb->mac_len); memmove(skb_mac_header(skb), old_mac, skb->mac_len); } } static inline int skb_checksum_start_offset(const struct sk_buff *skb) { return skb->csum_start - skb_headroom(skb); } static inline unsigned char *skb_checksum_start(const struct sk_buff *skb) { return skb->head + skb->csum_start; } static inline int skb_transport_offset(const struct sk_buff *skb) { return skb_transport_header(skb) - skb->data; } static inline u32 skb_network_header_len(const struct sk_buff *skb) { return skb->transport_header - skb->network_header; } static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) { return skb->inner_transport_header - skb->inner_network_header; } static inline int skb_network_offset(const struct sk_buff *skb) { return skb_network_header(skb) - skb->data; } static inline int skb_inner_network_offset(const struct sk_buff *skb) { return skb_inner_network_header(skb) - skb->data; } static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) { return pskb_may_pull(skb, skb_network_offset(skb) + len); } /* * CPUs often take a performance hit when accessing unaligned memory * locations. The actual performance hit varies, it can be small if the * hardware handles it or large if we have to take an exception and fix it * in software. * * Since an ethernet header is 14 bytes network drivers often end up with * the IP header at an unaligned offset. The IP header can be aligned by * shifting the start of the packet by 2 bytes. Drivers should do this * with: * * skb_reserve(skb, NET_IP_ALIGN); * * The downside to this alignment of the IP header is that the DMA is now * unaligned. On some architectures the cost of an unaligned DMA is high * and this cost outweighs the gains made by aligning the IP header. * * Since this trade off varies between architectures, we allow NET_IP_ALIGN * to be overridden. */ #ifndef NET_IP_ALIGN #define NET_IP_ALIGN 2 #endif /* * The networking layer reserves some headroom in skb data (via * dev_alloc_skb). This is used to avoid having to reallocate skb data when * the header has to grow. In the default case, if the header has to grow * 32 bytes or less we avoid the reallocation. * * Unfortunately this headroom changes the DMA alignment of the resulting * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive * on some architectures. An architecture can override this value, * perhaps setting it to a cacheline in size (since that will maintain * cacheline alignment of the DMA). It must be a power of 2. * * Various parts of the networking layer expect at least 32 bytes of * headroom, you should not reduce this. * * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) * to reduce average number of cache lines per packet. * get_rps_cpu() for example only access one 64 bytes aligned block : * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) */ #ifndef NET_SKB_PAD #define NET_SKB_PAD max(32, L1_CACHE_BYTES) #endif int ___pskb_trim(struct sk_buff *skb, unsigned int len); static inline void __skb_set_length(struct sk_buff *skb, unsigned int len) { if (WARN_ON(skb_is_nonlinear(skb))) return; skb->len = len; skb_set_tail_pointer(skb, len); } static inline void __skb_trim(struct sk_buff *skb, unsigned int len) { __skb_set_length(skb, len); } void skb_trim(struct sk_buff *skb, unsigned int len); static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) { if (skb->data_len) return ___pskb_trim(skb, len); __skb_trim(skb, len); return 0; } static inline int pskb_trim(struct sk_buff *skb, unsigned int len) { return (len < skb->len) ? __pskb_trim(skb, len) : 0; } /** * pskb_trim_unique - remove end from a paged unique (not cloned) buffer * @skb: buffer to alter * @len: new length * * This is identical to pskb_trim except that the caller knows that * the skb is not cloned so we should never get an error due to out- * of-memory. */ static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) { int err = pskb_trim(skb, len); BUG_ON(err); } static inline int __skb_grow(struct sk_buff *skb, unsigned int len) { unsigned int diff = len - skb->len; if (skb_tailroom(skb) < diff) { int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb), GFP_ATOMIC); if (ret) return ret; } __skb_set_length(skb, len); return 0; } /** * skb_orphan - orphan a buffer * @skb: buffer to orphan * * If a buffer currently has an owner then we call the owner's * destructor function and make the @skb unowned. The buffer continues * to exist but is no longer charged to its former owner. */ static inline void skb_orphan(struct sk_buff *skb) { if (skb->destructor) { skb->destructor(skb); skb->destructor = NULL; skb->sk = NULL; } else { BUG_ON(skb->sk); } } /** * skb_orphan_frags - orphan the frags contained in a buffer * @skb: buffer to orphan frags from * @gfp_mask: allocation mask for replacement pages * * For each frag in the SKB which needs a destructor (i.e. has an * owner) create a copy of that frag and release the original * page by calling the destructor. */ static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) { if (likely(!skb_zcopy(skb))) return 0; if (!skb_zcopy_is_nouarg(skb) && skb_uarg(skb)->callback == sock_zerocopy_callback) return 0; return skb_copy_ubufs(skb, gfp_mask); } /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */ static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask) { if (likely(!skb_zcopy(skb))) return 0; return skb_copy_ubufs(skb, gfp_mask); } /** * __skb_queue_purge - empty a list * @list: list to empty * * Delete all buffers on an &sk_buff list. Each buffer is removed from * the list and one reference dropped. This function does not take the * list lock and the caller must hold the relevant locks to use it. */ static inline void __skb_queue_purge(struct sk_buff_head *list) { struct sk_buff *skb; while ((skb = __skb_dequeue(list)) != NULL) kfree_skb(skb); } void skb_queue_purge(struct sk_buff_head *list); unsigned int skb_rbtree_purge(struct rb_root *root); void *netdev_alloc_frag(unsigned int fragsz); struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, gfp_t gfp_mask); /** * netdev_alloc_skb - allocate an skbuff for rx on a specific device * @dev: network device to receive on * @length: length to allocate * * Allocate a new &sk_buff and assign it a usage count of one. The * buffer has unspecified headroom built in. Users should allocate * the headroom they think they need without accounting for the * built in space. The built in space is used for optimisations. * * %NULL is returned if there is no free memory. Although this function * allocates memory it can be called from an interrupt. */ static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, unsigned int length) { return __netdev_alloc_skb(dev, length, GFP_ATOMIC); } /* legacy helper around __netdev_alloc_skb() */ static inline struct sk_buff *__dev_alloc_skb(unsigned int length, gfp_t gfp_mask) { return __netdev_alloc_skb(NULL, length, gfp_mask); } /* legacy helper around netdev_alloc_skb() */ static inline struct sk_buff *dev_alloc_skb(unsigned int length) { return netdev_alloc_skb(NULL, length); } static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, unsigned int length, gfp_t gfp) { struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); if (NET_IP_ALIGN && skb) skb_reserve(skb, NET_IP_ALIGN); return skb; } static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, unsigned int length) { return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); } static inline void skb_free_frag(void *addr) { page_frag_free(addr); } void *napi_alloc_frag(unsigned int fragsz); struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int length, gfp_t gfp_mask); static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int length) { return __napi_alloc_skb(napi, length, GFP_ATOMIC); } void napi_consume_skb(struct sk_buff *skb, int budget); void __kfree_skb_flush(void); void __kfree_skb_defer(struct sk_buff *skb); /** * __dev_alloc_pages - allocate page for network Rx * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx * @order: size of the allocation * * Allocate a new page. * * %NULL is returned if there is no free memory. */ static inline struct page *__dev_alloc_pages(gfp_t gfp_mask, unsigned int order) { /* This piece of code contains several assumptions. * 1. This is for device Rx, therefor a cold page is preferred. * 2. The expectation is the user wants a compound page. * 3. If requesting a order 0 page it will not be compound * due to the check to see if order has a value in prep_new_page * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to * code in gfp_to_alloc_flags that should be enforcing this. */ gfp_mask |= __GFP_COMP | __GFP_MEMALLOC; return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); } static inline struct page *dev_alloc_pages(unsigned int order) { return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order); } /** * __dev_alloc_page - allocate a page for network Rx * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx * * Allocate a new page. * * %NULL is returned if there is no free memory. */ static inline struct page *__dev_alloc_page(gfp_t gfp_mask) { return __dev_alloc_pages(gfp_mask, 0); } static inline struct page *dev_alloc_page(void) { return dev_alloc_pages(0); } /** * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page * @page: The page that was allocated from skb_alloc_page * @skb: The skb that may need pfmemalloc set */ static inline void skb_propagate_pfmemalloc(struct page *page, struct sk_buff *skb) { if (page_is_pfmemalloc(page)) skb->pfmemalloc = true; } /** * skb_frag_off() - Returns the offset of a skb fragment * @frag: the paged fragment */ static inline unsigned int skb_frag_off(const skb_frag_t *frag) { return frag->bv_offset; } /** * skb_frag_off_add() - Increments the offset of a skb fragment by @delta * @frag: skb fragment * @delta: value to add */ static inline void skb_frag_off_add(skb_frag_t *frag, int delta) { frag->bv_offset += delta; } /** * skb_frag_off_set() - Sets the offset of a skb fragment * @frag: skb fragment * @offset: offset of fragment */ static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset) { frag->bv_offset = offset; } /** * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment * @fragto: skb fragment where offset is set * @fragfrom: skb fragment offset is copied from */ static inline void skb_frag_off_copy(skb_frag_t *fragto, const skb_frag_t *fragfrom) { fragto->bv_offset = fragfrom->bv_offset; } /** * skb_frag_page - retrieve the page referred to by a paged fragment * @frag: the paged fragment * * Returns the &struct page associated with @frag. */ static inline struct page *skb_frag_page(const skb_frag_t *frag) { return frag->bv_page; } /** * __skb_frag_ref - take an addition reference on a paged fragment. * @frag: the paged fragment * * Takes an additional reference on the paged fragment @frag. */ static inline void __skb_frag_ref(skb_frag_t *frag) { get_page(skb_frag_page(frag)); } /** * skb_frag_ref - take an addition reference on a paged fragment of an skb. * @skb: the buffer * @f: the fragment offset. * * Takes an additional reference on the @f'th paged fragment of @skb. */ static inline void skb_frag_ref(struct sk_buff *skb, int f) { __skb_frag_ref(&skb_shinfo(skb)->frags[f]); } /** * __skb_frag_unref - release a reference on a paged fragment. * @frag: the paged fragment * * Releases a reference on the paged fragment @frag. */ static inline void __skb_frag_unref(skb_frag_t *frag) { put_page(skb_frag_page(frag)); } /** * skb_frag_unref - release a reference on a paged fragment of an skb. * @skb: the buffer * @f: the fragment offset * * Releases a reference on the @f'th paged fragment of @skb. */ static inline void skb_frag_unref(struct sk_buff *skb, int f) { __skb_frag_unref(&skb_shinfo(skb)->frags[f]); } /** * skb_frag_address - gets the address of the data contained in a paged fragment * @frag: the paged fragment buffer * * Returns the address of the data within @frag. The page must already * be mapped. */ static inline void *skb_frag_address(const skb_frag_t *frag) { return page_address(skb_frag_page(frag)) + skb_frag_off(frag); } /** * skb_frag_address_safe - gets the address of the data contained in a paged fragment * @frag: the paged fragment buffer * * Returns the address of the data within @frag. Checks that the page * is mapped and returns %NULL otherwise. */ static inline void *skb_frag_address_safe(const skb_frag_t *frag) { void *ptr = page_address(skb_frag_page(frag)); if (unlikely(!ptr)) return NULL; return ptr + skb_frag_off(frag); } /** * skb_frag_page_copy() - sets the page in a fragment from another fragment * @fragto: skb fragment where page is set * @fragfrom: skb fragment page is copied from */ static inline void skb_frag_page_copy(skb_frag_t *fragto, const skb_frag_t *fragfrom) { fragto->bv_page = fragfrom->bv_page; } /** * __skb_frag_set_page - sets the page contained in a paged fragment * @frag: the paged fragment * @page: the page to set * * Sets the fragment @frag to contain @page. */ static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) { frag->bv_page = page; } /** * skb_frag_set_page - sets the page contained in a paged fragment of an skb * @skb: the buffer * @f: the fragment offset * @page: the page to set * * Sets the @f'th fragment of @skb to contain @page. */ static inline void skb_frag_set_page(struct sk_buff *skb, int f, struct page *page) { __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); } bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); /** * skb_frag_dma_map - maps a paged fragment via the DMA API * @dev: the device to map the fragment to * @frag: the paged fragment to map * @offset: the offset within the fragment (starting at the * fragment's own offset) * @size: the number of bytes to map * @dir: the direction of the mapping (``PCI_DMA_*``) * * Maps the page associated with @frag to @device. */ static inline dma_addr_t skb_frag_dma_map(struct device *dev, const skb_frag_t *frag, size_t offset, size_t size, enum dma_data_direction dir) { return dma_map_page(dev, skb_frag_page(frag), skb_frag_off(frag) + offset, size, dir); } static inline struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask) { return __pskb_copy(skb, skb_headroom(skb), gfp_mask); } static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, gfp_t gfp_mask) { return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); } /** * skb_clone_writable - is the header of a clone writable * @skb: buffer to check * @len: length up to which to write * * Returns true if modifying the header part of the cloned buffer * does not requires the data to be copied. */ static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) { return !skb_header_cloned(skb) && skb_headroom(skb) + len <= skb->hdr_len; } static inline int skb_try_make_writable(struct sk_buff *skb, unsigned int write_len) { return skb_cloned(skb) && !skb_clone_writable(skb, write_len) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC); } static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, int cloned) { int delta = 0; if (headroom > skb_headroom(skb)) delta = headroom - skb_headroom(skb); if (delta || cloned) return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, GFP_ATOMIC); return 0; } /** * skb_cow - copy header of skb when it is required * @skb: buffer to cow * @headroom: needed headroom * * If the skb passed lacks sufficient headroom or its data part * is shared, data is reallocated. If reallocation fails, an error * is returned and original skb is not changed. * * The result is skb with writable area skb->head...skb->tail * and at least @headroom of space at head. */ static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) { return __skb_cow(skb, headroom, skb_cloned(skb)); } /** * skb_cow_head - skb_cow but only making the head writable * @skb: buffer to cow * @headroom: needed headroom * * This function is identical to skb_cow except that we replace the * skb_cloned check by skb_header_cloned. It should be used when * you only need to push on some header and do not need to modify * the data. */ static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) { return __skb_cow(skb, headroom, skb_header_cloned(skb)); } /** * skb_padto - pad an skbuff up to a minimal size * @skb: buffer to pad * @len: minimal length * * Pads up a buffer to ensure the trailing bytes exist and are * blanked. If the buffer already contains sufficient data it * is untouched. Otherwise it is extended. Returns zero on * success. The skb is freed on error. */ static inline int skb_padto(struct sk_buff *skb, unsigned int len) { unsigned int size = skb->len; if (likely(size >= len)) return 0; return skb_pad(skb, len - size); } /** * __skb_put_padto - increase size and pad an skbuff up to a minimal size * @skb: buffer to pad * @len: minimal length * @free_on_error: free buffer on error * * Pads up a buffer to ensure the trailing bytes exist and are * blanked. If the buffer already contains sufficient data it * is untouched. Otherwise it is extended. Returns zero on * success. The skb is freed on error if @free_on_error is true. */ static inline int __must_check __skb_put_padto(struct sk_buff *skb, unsigned int len, bool free_on_error) { unsigned int size = skb->len; if (unlikely(size < len)) { len -= size; if (__skb_pad(skb, len, free_on_error)) return -ENOMEM; __skb_put(skb, len); } return 0; } /** * skb_put_padto - increase size and pad an skbuff up to a minimal size * @skb: buffer to pad * @len: minimal length * * Pads up a buffer to ensure the trailing bytes exist and are * blanked. If the buffer already contains sufficient data it * is untouched. Otherwise it is extended. Returns zero on * success. The skb is freed on error. */ static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len) { return __skb_put_padto(skb, len, true); } static inline int skb_add_data(struct sk_buff *skb, struct iov_iter *from, int copy) { const int off = skb->len; if (skb->ip_summed == CHECKSUM_NONE) { __wsum csum = 0; if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy, &csum, from)) { skb->csum = csum_block_add(skb->csum, csum, off); return 0; } } else if (copy_from_iter_full(skb_put(skb, copy), copy, from)) return 0; __skb_trim(skb, off); return -EFAULT; } static inline bool skb_can_coalesce(struct sk_buff *skb, int i, const struct page *page, int off) { if (skb_zcopy(skb)) return false; if (i) { const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1]; return page == skb_frag_page(frag) && off == skb_frag_off(frag) + skb_frag_size(frag); } return false; } static inline int __skb_linearize(struct sk_buff *skb) { return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; } /** * skb_linearize - convert paged skb to linear one * @skb: buffer to linarize * * If there is no free memory -ENOMEM is returned, otherwise zero * is returned and the old skb data released. */ static inline int skb_linearize(struct sk_buff *skb) { return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; } /** * skb_has_shared_frag - can any frag be overwritten * @skb: buffer to test * * Return true if the skb has at least one frag that might be modified * by an external entity (as in vmsplice()/sendfile()) */ static inline bool skb_has_shared_frag(const struct sk_buff *skb) { return skb_is_nonlinear(skb) && skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; } /** * skb_linearize_cow - make sure skb is linear and writable * @skb: buffer to process * * If there is no free memory -ENOMEM is returned, otherwise zero * is returned and the old skb data released. */ static inline int skb_linearize_cow(struct sk_buff *skb) { return skb_is_nonlinear(skb) || skb_cloned(skb) ? __skb_linearize(skb) : 0; } static __always_inline void __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len, unsigned int off) { if (skb->ip_summed == CHECKSUM_COMPLETE) skb->csum = csum_block_sub(skb->csum, csum_partial(start, len, 0), off); else if (skb->ip_summed == CHECKSUM_PARTIAL && skb_checksum_start_offset(skb) < 0) skb->ip_summed = CHECKSUM_NONE; } /** * skb_postpull_rcsum - update checksum for received skb after pull * @skb: buffer to update * @start: start of data before pull * @len: length of data pulled * * After doing a pull on a received packet, you need to call this to * update the CHECKSUM_COMPLETE checksum, or set ip_summed to * CHECKSUM_NONE so that it can be recomputed from scratch. */ static inline void skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len) { __skb_postpull_rcsum(skb, start, len, 0); } static __always_inline void __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len, unsigned int off) { if (skb->ip_summed == CHECKSUM_COMPLETE) skb->csum = csum_block_add(skb->csum, csum_partial(start, len, 0), off); } /** * skb_postpush_rcsum - update checksum for received skb after push * @skb: buffer to update * @start: start of data after push * @len: length of data pushed * * After doing a push on a received packet, you need to call this to * update the CHECKSUM_COMPLETE checksum. */ static inline void skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len) { __skb_postpush_rcsum(skb, start, len, 0); } void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); /** * skb_push_rcsum - push skb and update receive checksum * @skb: buffer to update * @len: length of data pulled * * This function performs an skb_push on the packet and updates * the CHECKSUM_COMPLETE checksum. It should be used on * receive path processing instead of skb_push unless you know * that the checksum difference is zero (e.g., a valid IP header) * or you are setting ip_summed to CHECKSUM_NONE. */ static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len) { skb_push(skb, len); skb_postpush_rcsum(skb, skb->data, len); return skb->data; } int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len); /** * pskb_trim_rcsum - trim received skb and update checksum * @skb: buffer to trim * @len: new length * * This is exactly the same as pskb_trim except that it ensures the * checksum of received packets are still valid after the operation. * It can change skb pointers. */ static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) { if (likely(len >= skb->len)) return 0; return pskb_trim_rcsum_slow(skb, len); } static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len) { if (skb->ip_summed == CHECKSUM_COMPLETE) skb->ip_summed = CHECKSUM_NONE; __skb_trim(skb, len); return 0; } static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len) { if (skb->ip_summed == CHECKSUM_COMPLETE) skb->ip_summed = CHECKSUM_NONE; return __skb_grow(skb, len); } #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode) #define skb_rb_first(root) rb_to_skb(rb_first(root)) #define skb_rb_last(root) rb_to_skb(rb_last(root)) #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode)) #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode)) #define skb_queue_walk(queue, skb) \ for (skb = (queue)->next; \ skb != (struct sk_buff *)(queue); \ skb = skb->next) #define skb_queue_walk_safe(queue, skb, tmp) \ for (skb = (queue)->next, tmp = skb->next; \ skb != (struct sk_buff *)(queue); \ skb = tmp, tmp = skb->next) #define skb_queue_walk_from(queue, skb) \ for (; skb != (struct sk_buff *)(queue); \ skb = skb->next) #define skb_rbtree_walk(skb, root) \ for (skb = skb_rb_first(root); skb != NULL; \ skb = skb_rb_next(skb)) #define skb_rbtree_walk_from(skb) \ for (; skb != NULL; \ skb = skb_rb_next(skb)) #define skb_rbtree_walk_from_safe(skb, tmp) \ for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \ skb = tmp) #define skb_queue_walk_from_safe(queue, skb, tmp) \ for (tmp = skb->next; \ skb != (struct sk_buff *)(queue); \ skb = tmp, tmp = skb->next) #define skb_queue_reverse_walk(queue, skb) \ for (skb = (queue)->prev; \ skb != (struct sk_buff *)(queue); \ skb = skb->prev) #define skb_queue_reverse_walk_safe(queue, skb, tmp) \ for (skb = (queue)->prev, tmp = skb->prev; \ skb != (struct sk_buff *)(queue); \ skb = tmp, tmp = skb->prev) #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ for (tmp = skb->prev; \ skb != (struct sk_buff *)(queue); \ skb = tmp, tmp = skb->prev) static inline bool skb_has_frag_list(const struct sk_buff *skb) { return skb_shinfo(skb)->frag_list != NULL; } static inline void skb_frag_list_init(struct sk_buff *skb) { skb_shinfo(skb)->frag_list = NULL; } #define skb_walk_frags(skb, iter) \ for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue, int *err, long *timeo_p, const struct sk_buff *skb); struct sk_buff *__skb_try_recv_from_queue(struct sock *sk, struct sk_buff_head *queue, unsigned int flags, int *off, int *err, struct sk_buff **last); struct sk_buff *__skb_try_recv_datagram(struct sock *sk, struct sk_buff_head *queue, unsigned int flags, int *off, int *err, struct sk_buff **last); struct sk_buff *__skb_recv_datagram(struct sock *sk, struct sk_buff_head *sk_queue, unsigned int flags, int *off, int *err); struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock, int *err); __poll_t datagram_poll(struct file *file, struct socket *sock, struct poll_table_struct *wait); int skb_copy_datagram_iter(const struct sk_buff *from, int offset, struct iov_iter *to, int size); static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, struct msghdr *msg, int size) { return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size); } int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, struct msghdr *msg); int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset, struct iov_iter *to, int len, struct ahash_request *hash); int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, struct iov_iter *from, int len); int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); void skb_free_datagram(struct sock *sk, struct sk_buff *skb); void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len); static inline void skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb) { __skb_free_datagram_locked(sk, skb, 0); } int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, int len); int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, struct pipe_inode_info *pipe, unsigned int len, unsigned int flags); int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, int len); void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); unsigned int skb_zerocopy_headlen(const struct sk_buff *from); int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen); void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); void skb_scrub_packet(struct sk_buff *skb, bool xnet); bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu); bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len); struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features, unsigned int offset); struct sk_buff *skb_vlan_untag(struct sk_buff *skb); int skb_ensure_writable(struct sk_buff *skb, int write_len); int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci); int skb_vlan_pop(struct sk_buff *skb); int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); int skb_eth_pop(struct sk_buff *skb); int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, const unsigned char *src); int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, int mac_len, bool ethernet); int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, bool ethernet); int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse); int skb_mpls_dec_ttl(struct sk_buff *skb); struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy, gfp_t gfp); static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) { return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT; } static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) { return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; } struct skb_checksum_ops { __wsum (*update)(const void *mem, int len, __wsum wsum); __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); }; extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly; __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, __wsum csum, const struct skb_checksum_ops *ops); __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, __wsum csum); static inline void * __must_check __skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *data, int hlen, void *buffer) { if (hlen - offset >= len) return data + offset; if (!skb || skb_copy_bits(skb, offset, buffer, len) < 0) return NULL; return buffer; } static inline void * __must_check skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer) { return __skb_header_pointer(skb, offset, len, skb->data, skb_headlen(skb), buffer); } /** * skb_needs_linearize - check if we need to linearize a given skb * depending on the given device features. * @skb: socket buffer to check * @features: net device features * * Returns true if either: * 1. skb has frag_list and the device doesn't support FRAGLIST, or * 2. skb is fragmented and the device does not support SG. */ static inline bool skb_needs_linearize(struct sk_buff *skb, netdev_features_t features) { return skb_is_nonlinear(skb) && ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); } static inline void skb_copy_from_linear_data(const struct sk_buff *skb, void *to, const unsigned int len) { memcpy(to, skb->data, len); } static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, const int offset, void *to, const unsigned int len) { memcpy(to, skb->data + offset, len); } static inline void skb_copy_to_linear_data(struct sk_buff *skb, const void *from, const unsigned int len) { memcpy(skb->data, from, len); } static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, const int offset, const void *from, const unsigned int len) { memcpy(skb->data + offset, from, len); } void skb_init(void); static inline ktime_t skb_get_ktime(const struct sk_buff *skb) { return skb->tstamp; } /** * skb_get_timestamp - get timestamp from a skb * @skb: skb to get stamp from * @stamp: pointer to struct __kernel_old_timeval to store stamp in * * Timestamps are stored in the skb as offsets to a base timestamp. * This function converts the offset back to a struct timeval and stores * it in stamp. */ static inline void skb_get_timestamp(const struct sk_buff *skb, struct __kernel_old_timeval *stamp) { *stamp = ns_to_kernel_old_timeval(skb->tstamp); } static inline void skb_get_new_timestamp(const struct sk_buff *skb, struct __kernel_sock_timeval *stamp) { struct timespec64 ts = ktime_to_timespec64(skb->tstamp); stamp->tv_sec = ts.tv_sec; stamp->tv_usec = ts.tv_nsec / 1000; } static inline void skb_get_timestampns(const struct sk_buff *skb, struct __kernel_old_timespec *stamp) { struct timespec64 ts = ktime_to_timespec64(skb->tstamp); stamp->tv_sec = ts.tv_sec; stamp->tv_nsec = ts.tv_nsec; } static inline void skb_get_new_timestampns(const struct sk_buff *skb, struct __kernel_timespec *stamp) { struct timespec64 ts = ktime_to_timespec64(skb->tstamp); stamp->tv_sec = ts.tv_sec; stamp->tv_nsec = ts.tv_nsec; } static inline void __net_timestamp(struct sk_buff *skb) { skb->tstamp = ktime_get_real(); } static inline ktime_t net_timedelta(ktime_t t) { return ktime_sub(ktime_get_real(), t); } static inline ktime_t net_invalid_timestamp(void) { return 0; } static inline u8 skb_metadata_len(const struct sk_buff *skb) { return skb_shinfo(skb)->meta_len; } static inline void *skb_metadata_end(const struct sk_buff *skb) { return skb_mac_header(skb); } static inline bool __skb_metadata_differs(const struct sk_buff *skb_a, const struct sk_buff *skb_b, u8 meta_len) { const void *a = skb_metadata_end(skb_a); const void *b = skb_metadata_end(skb_b); /* Using more efficient varaiant than plain call to memcmp(). */ #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 u64 diffs = 0; switch (meta_len) { #define __it(x, op) (x -= sizeof(u##op)) #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op)) case 32: diffs |= __it_diff(a, b, 64); fallthrough; case 24: diffs |= __it_diff(a, b, 64); fallthrough; case 16: diffs |= __it_diff(a, b, 64); fallthrough; case 8: diffs |= __it_diff(a, b, 64); break; case 28: diffs |= __it_diff(a, b, 64); fallthrough; case 20: diffs |= __it_diff(a, b, 64); fallthrough; case 12: diffs |= __it_diff(a, b, 64); fallthrough; case 4: diffs |= __it_diff(a, b, 32); break; } return diffs; #else return memcmp(a - meta_len, b - meta_len, meta_len); #endif } static inline bool skb_metadata_differs(const struct sk_buff *skb_a, const struct sk_buff *skb_b) { u8 len_a = skb_metadata_len(skb_a); u8 len_b = skb_metadata_len(skb_b); if (!(len_a | len_b)) return false; return len_a != len_b ? true : __skb_metadata_differs(skb_a, skb_b, len_a); } static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len) { skb_shinfo(skb)->meta_len = meta_len; } static inline void skb_metadata_clear(struct sk_buff *skb) { skb_metadata_set(skb, 0); } struct sk_buff *skb_clone_sk(struct sk_buff *skb); #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING void skb_clone_tx_timestamp(struct sk_buff *skb); bool skb_defer_rx_timestamp(struct sk_buff *skb); #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ static inline void skb_clone_tx_timestamp(struct sk_buff *skb) { } static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) { return false; } #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ /** * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps * * PHY drivers may accept clones of transmitted packets for * timestamping via their phy_driver.txtstamp method. These drivers * must call this function to return the skb back to the stack with a * timestamp. * * @skb: clone of the original outgoing packet * @hwtstamps: hardware time stamps * */ void skb_complete_tx_timestamp(struct sk_buff *skb, struct skb_shared_hwtstamps *hwtstamps); void __skb_tstamp_tx(struct sk_buff *orig_skb, struct skb_shared_hwtstamps *hwtstamps, struct sock *sk, int tstype); /** * skb_tstamp_tx - queue clone of skb with send time stamps * @orig_skb: the original outgoing packet * @hwtstamps: hardware time stamps, may be NULL if not available * * If the skb has a socket associated, then this function clones the * skb (thus sharing the actual data and optional structures), stores * the optional hardware time stamping information (if non NULL) or * generates a software time stamp (otherwise), then queues the clone * to the error queue of the socket. Errors are silently ignored. */ void skb_tstamp_tx(struct sk_buff *orig_skb, struct skb_shared_hwtstamps *hwtstamps); /** * skb_tx_timestamp() - Driver hook for transmit timestamping * * Ethernet MAC Drivers should call this function in their hard_xmit() * function immediately before giving the sk_buff to the MAC hardware. * * Specifically, one should make absolutely sure that this function is * called before TX completion of this packet can trigger. Otherwise * the packet could potentially already be freed. * * @skb: A socket buffer. */ static inline void skb_tx_timestamp(struct sk_buff *skb) { skb_clone_tx_timestamp(skb); if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP) skb_tstamp_tx(skb, NULL); } /** * skb_complete_wifi_ack - deliver skb with wifi status * * @skb: the original outgoing packet * @acked: ack status * */ void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); __sum16 __skb_checksum_complete(struct sk_buff *skb); static inline int skb_csum_unnecessary(const struct sk_buff *skb) { return ((skb->ip_summed == CHECKSUM_UNNECESSARY) || skb->csum_valid || (skb->ip_summed == CHECKSUM_PARTIAL && skb_checksum_start_offset(skb) >= 0)); } /** * skb_checksum_complete - Calculate checksum of an entire packet * @skb: packet to process * * This function calculates the checksum over the entire packet plus * the value of skb->csum. The latter can be used to supply the * checksum of a pseudo header as used by TCP/UDP. It returns the * checksum. * * For protocols that contain complete checksums such as ICMP/TCP/UDP, * this function can be used to verify that checksum on received * packets. In that case the function should return zero if the * checksum is correct. In particular, this function will return zero * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the * hardware has already verified the correctness of the checksum. */ static inline __sum16 skb_checksum_complete(struct sk_buff *skb) { return skb_csum_unnecessary(skb) ? 0 : __skb_checksum_complete(skb); } static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) { if (skb->ip_summed == CHECKSUM_UNNECESSARY) { if (skb->csum_level == 0) skb->ip_summed = CHECKSUM_NONE; else skb->csum_level--; } } static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) { if (skb->ip_summed == CHECKSUM_UNNECESSARY) { if (skb->csum_level < SKB_MAX_CSUM_LEVEL) skb->csum_level++; } else if (skb->ip_summed == CHECKSUM_NONE) { skb->ip_summed = CHECKSUM_UNNECESSARY; skb->csum_level = 0; } } static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb) { if (skb->ip_summed == CHECKSUM_UNNECESSARY) { skb->ip_summed = CHECKSUM_NONE; skb->csum_level = 0; } } /* Check if we need to perform checksum complete validation. * * Returns true if checksum complete is needed, false otherwise * (either checksum is unnecessary or zero checksum is allowed). */ static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, bool zero_okay, __sum16 check) { if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { skb->csum_valid = 1; __skb_decr_checksum_unnecessary(skb); return false; } return true; } /* For small packets <= CHECKSUM_BREAK perform checksum complete directly * in checksum_init. */ #define CHECKSUM_BREAK 76 /* Unset checksum-complete * * Unset checksum complete can be done when packet is being modified * (uncompressed for instance) and checksum-complete value is * invalidated. */ static inline void skb_checksum_complete_unset(struct sk_buff *skb) { if (skb->ip_summed == CHECKSUM_COMPLETE) skb->ip_summed = CHECKSUM_NONE; } /* Validate (init) checksum based on checksum complete. * * Return values: * 0: checksum is validated or try to in skb_checksum_complete. In the latter * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo * checksum is stored in skb->csum for use in __skb_checksum_complete * non-zero: value of invalid checksum * */ static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, bool complete, __wsum psum) { if (skb->ip_summed == CHECKSUM_COMPLETE) { if (!csum_fold(csum_add(psum, skb->csum))) { skb->csum_valid = 1; return 0; } } skb->csum = psum; if (complete || skb->len <= CHECKSUM_BREAK) { __sum16 csum; csum = __skb_checksum_complete(skb); skb->csum_valid = !csum; return csum; } return 0; } static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) { return 0; } /* Perform checksum validate (init). Note that this is a macro since we only * want to calculate the pseudo header which is an input function if necessary. * First we try to validate without any computation (checksum unnecessary) and * then calculate based on checksum complete calling the function to compute * pseudo header. * * Return values: * 0: checksum is validated or try to in skb_checksum_complete * non-zero: value of invalid checksum */ #define __skb_checksum_validate(skb, proto, complete, \ zero_okay, check, compute_pseudo) \ ({ \ __sum16 __ret = 0; \ skb->csum_valid = 0; \ if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ __ret = __skb_checksum_validate_complete(skb, \ complete, compute_pseudo(skb, proto)); \ __ret; \ }) #define skb_checksum_init(skb, proto, compute_pseudo) \ __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) #define skb_checksum_validate(skb, proto, compute_pseudo) \ __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) #define skb_checksum_validate_zero_check(skb, proto, check, \ compute_pseudo) \ __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo) #define skb_checksum_simple_validate(skb) \ __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) static inline bool __skb_checksum_convert_check(struct sk_buff *skb) { return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid); } static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo) { skb->csum = ~pseudo; skb->ip_summed = CHECKSUM_COMPLETE; } #define skb_checksum_try_convert(skb, proto, compute_pseudo) \ do { \ if (__skb_checksum_convert_check(skb)) \ __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \ } while (0) static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr, u16 start, u16 offset) { skb->ip_summed = CHECKSUM_PARTIAL; skb->csum_start = ((unsigned char *)ptr + start) - skb->head; skb->csum_offset = offset - start; } /* Update skbuf and packet to reflect the remote checksum offload operation. * When called, ptr indicates the starting point for skb->csum when * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete * here, skb_postpull_rcsum is done so skb->csum start is ptr. */ static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr, int start, int offset, bool nopartial) { __wsum delta; if (!nopartial) { skb_remcsum_adjust_partial(skb, ptr, start, offset); return; } if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) { __skb_checksum_complete(skb); skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data); } delta = remcsum_adjust(ptr, skb->csum, start, offset); /* Adjust skb->csum since we changed the packet */ skb->csum = csum_add(skb->csum, delta); } static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb) { #if IS_ENABLED(CONFIG_NF_CONNTRACK) return (void *)(skb->_nfct & NFCT_PTRMASK); #else return NULL; #endif } static inline unsigned long skb_get_nfct(const struct sk_buff *skb) { #if IS_ENABLED(CONFIG_NF_CONNTRACK) return skb->_nfct; #else return 0UL; #endif } static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct) { #if IS_ENABLED(CONFIG_NF_CONNTRACK) skb->_nfct = nfct; #endif } #ifdef CONFIG_SKB_EXTENSIONS enum skb_ext_id { #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) SKB_EXT_BRIDGE_NF, #endif #ifdef CONFIG_XFRM SKB_EXT_SEC_PATH, #endif #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) TC_SKB_EXT, #endif #if IS_ENABLED(CONFIG_MPTCP) SKB_EXT_MPTCP, #endif #if IS_ENABLED(CONFIG_KCOV) SKB_EXT_KCOV_HANDLE, #endif SKB_EXT_NUM, /* must be last */ }; /** * struct skb_ext - sk_buff extensions * @refcnt: 1 on allocation, deallocated on 0 * @offset: offset to add to @data to obtain extension address * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units * @data: start of extension data, variable sized * * Note: offsets/lengths are stored in chunks of 8 bytes, this allows * to use 'u8' types while allowing up to 2kb worth of extension data. */ struct skb_ext { refcount_t refcnt; u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */ u8 chunks; /* same */ char data[] __aligned(8); }; struct skb_ext *__skb_ext_alloc(gfp_t flags); void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, struct skb_ext *ext); void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id); void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id); void __skb_ext_put(struct skb_ext *ext); static inline void skb_ext_put(struct sk_buff *skb) { if (skb->active_extensions) __skb_ext_put(skb->extensions); } static inline void __skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src) { dst->active_extensions = src->active_extensions; if (src->active_extensions) { struct skb_ext *ext = src->extensions; refcount_inc(&ext->refcnt); dst->extensions = ext; } } static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src) { skb_ext_put(dst); __skb_ext_copy(dst, src); } static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i) { return !!ext->offset[i]; } static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id) { return skb->active_extensions & (1 << id); } static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) { if (skb_ext_exist(skb, id)) __skb_ext_del(skb, id); } static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id) { if (skb_ext_exist(skb, id)) { struct skb_ext *ext = skb->extensions; return (void *)ext + (ext->offset[id] << 3); } return NULL; } static inline void skb_ext_reset(struct sk_buff *skb) { if (unlikely(skb->active_extensions)) { __skb_ext_put(skb->extensions); skb->active_extensions = 0; } } static inline bool skb_has_extensions(struct sk_buff *skb) { return unlikely(skb->active_extensions); } #else static inline void skb_ext_put(struct sk_buff *skb) {} static inline void skb_ext_reset(struct sk_buff *skb) {} static inline void skb_ext_del(struct sk_buff *skb, int unused) {} static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {} static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {} static inline bool skb_has_extensions(struct sk_buff *skb) { return false; } #endif /* CONFIG_SKB_EXTENSIONS */ static inline void nf_reset_ct(struct sk_buff *skb) { #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) nf_conntrack_put(skb_nfct(skb)); skb->_nfct = 0; #endif } static inline void nf_reset_trace(struct sk_buff *skb) { #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) skb->nf_trace = 0; #endif } static inline void ipvs_reset(struct sk_buff *skb) { #if IS_ENABLED(CONFIG_IP_VS) skb->ipvs_property = 0; #endif } /* Note: This doesn't put any conntrack info in dst. */ static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, bool copy) { #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) dst->_nfct = src->_nfct; nf_conntrack_get(skb_nfct(src)); #endif #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) if (copy) dst->nf_trace = src->nf_trace; #endif } static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) { #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) nf_conntrack_put(skb_nfct(dst)); #endif __nf_copy(dst, src, true); } #ifdef CONFIG_NETWORK_SECMARK static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) { to->secmark = from->secmark; } static inline void skb_init_secmark(struct sk_buff *skb) { skb->secmark = 0; } #else static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) { } static inline void skb_init_secmark(struct sk_buff *skb) { } #endif static inline int secpath_exists(const struct sk_buff *skb) { #ifdef CONFIG_XFRM return skb_ext_exist(skb, SKB_EXT_SEC_PATH); #else return 0; #endif } static inline bool skb_irq_freeable(const struct sk_buff *skb) { return !skb->destructor && !secpath_exists(skb) && !skb_nfct(skb) && !skb->_skb_refdst && !skb_has_frag_list(skb); } static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) { skb->queue_mapping = queue_mapping; } static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) { return skb->queue_mapping; } static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) { to->queue_mapping = from->queue_mapping; } static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) { skb->queue_mapping = rx_queue + 1; } static inline u16 skb_get_rx_queue(const struct sk_buff *skb) { return skb->queue_mapping - 1; } static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) { return skb->queue_mapping != 0; } static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val) { skb->dst_pending_confirm = val; } static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb) { return skb->dst_pending_confirm != 0; } static inline struct sec_path *skb_sec_path(const struct sk_buff *skb) { #ifdef CONFIG_XFRM return skb_ext_find(skb, SKB_EXT_SEC_PATH); #else return NULL; #endif } /* Keeps track of mac header offset relative to skb->head. * It is useful for TSO of Tunneling protocol. e.g. GRE. * For non-tunnel skb it points to skb_mac_header() and for * tunnel skb it points to outer mac header. * Keeps track of level of encapsulation of network headers. */ struct skb_gso_cb { union { int mac_offset; int data_offset; }; int encap_level; __wsum csum; __u16 csum_start; }; #define SKB_GSO_CB_OFFSET 32 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET)) static inline int skb_tnl_header_len(const struct sk_buff *inner_skb) { return (skb_mac_header(inner_skb) - inner_skb->head) - SKB_GSO_CB(inner_skb)->mac_offset; } static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra) { int new_headroom, headroom; int ret; headroom = skb_headroom(skb); ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC); if (ret) return ret; new_headroom = skb_headroom(skb); SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom); return 0; } static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res) { /* Do not update partial checksums if remote checksum is enabled. */ if (skb->remcsum_offload) return; SKB_GSO_CB(skb)->csum = res; SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head; } /* Compute the checksum for a gso segment. First compute the checksum value * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and * then add in skb->csum (checksum from csum_start to end of packet). * skb->csum and csum_start are then updated to reflect the checksum of the * resultant packet starting from the transport header-- the resultant checksum * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo * header. */ static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res) { unsigned char *csum_start = skb_transport_header(skb); int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start; __wsum partial = SKB_GSO_CB(skb)->csum; SKB_GSO_CB(skb)->csum = res; SKB_GSO_CB(skb)->csum_start = csum_start - skb->head; return csum_fold(csum_partial(csum_start, plen, partial)); } static inline bool skb_is_gso(const struct sk_buff *skb) { return skb_shinfo(skb)->gso_size; } /* Note: Should be called only if skb_is_gso(skb) is true */ static inline bool skb_is_gso_v6(const struct sk_buff *skb) { return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; } /* Note: Should be called only if skb_is_gso(skb) is true */ static inline bool skb_is_gso_sctp(const struct sk_buff *skb) { return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP; } /* Note: Should be called only if skb_is_gso(skb) is true */ static inline bool skb_is_gso_tcp(const struct sk_buff *skb) { return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6); } static inline void skb_gso_reset(struct sk_buff *skb) { skb_shinfo(skb)->gso_size = 0; skb_shinfo(skb)->gso_segs = 0; skb_shinfo(skb)->gso_type = 0; } static inline void skb_increase_gso_size(struct skb_shared_info *shinfo, u16 increment) { if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) return; shinfo->gso_size += increment; } static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo, u16 decrement) { if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) return; shinfo->gso_size -= decrement; } void __skb_warn_lro_forwarding(const struct sk_buff *skb); static inline bool skb_warn_if_lro(const struct sk_buff *skb) { /* LRO sets gso_size but not gso_type, whereas if GSO is really * wanted then gso_type will be set. */ const struct skb_shared_info *shinfo = skb_shinfo(skb); if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && unlikely(shinfo->gso_type == 0)) { __skb_warn_lro_forwarding(skb); return true; } return false; } static inline void skb_forward_csum(struct sk_buff *skb) { /* Unfortunately we don't support this one. Any brave souls? */ if (skb->ip_summed == CHECKSUM_COMPLETE) skb->ip_summed = CHECKSUM_NONE; } /** * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE * @skb: skb to check * * fresh skbs have their ip_summed set to CHECKSUM_NONE. * Instead of forcing ip_summed to CHECKSUM_NONE, we can * use this helper, to document places where we make this assertion. */ static inline void skb_checksum_none_assert(const struct sk_buff *skb) { #ifdef DEBUG BUG_ON(skb->ip_summed != CHECKSUM_NONE); #endif } bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); int skb_checksum_setup(struct sk_buff *skb, bool recalculate); struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, unsigned int transport_len, __sum16(*skb_chkf)(struct sk_buff *skb)); /** * skb_head_is_locked - Determine if the skb->head is locked down * @skb: skb to check * * The head on skbs build around a head frag can be removed if they are * not cloned. This function returns true if the skb head is locked down * due to either being allocated via kmalloc, or by being a clone with * multiple references to the head. */ static inline bool skb_head_is_locked(const struct sk_buff *skb) { return !skb->head_frag || skb_cloned(skb); } /* Local Checksum Offload. * Compute outer checksum based on the assumption that the * inner checksum will be offloaded later. * See Documentation/networking/checksum-offloads.rst for * explanation of how this works. * Fill in outer checksum adjustment (e.g. with sum of outer * pseudo-header) before calling. * Also ensure that inner checksum is in linear data area. */ static inline __wsum lco_csum(struct sk_buff *skb) { unsigned char *csum_start = skb_checksum_start(skb); unsigned char *l4_hdr = skb_transport_header(skb); __wsum partial; /* Start with complement of inner checksum adjustment */ partial = ~csum_unfold(*(__force __sum16 *)(csum_start + skb->csum_offset)); /* Add in checksum of our headers (incl. outer checksum * adjustment filled in by caller) and return result. */ return csum_partial(l4_hdr, csum_start - l4_hdr, partial); } static inline bool skb_is_redirected(const struct sk_buff *skb) { #ifdef CONFIG_NET_REDIRECT return skb->redirected; #else return false; #endif } static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress) { #ifdef CONFIG_NET_REDIRECT skb->redirected = 1; skb->from_ingress = from_ingress; if (skb->from_ingress) skb->tstamp = 0; #endif } static inline void skb_reset_redirect(struct sk_buff *skb) { #ifdef CONFIG_NET_REDIRECT skb->redirected = 0; #endif } #if IS_ENABLED(CONFIG_KCOV) && IS_ENABLED(CONFIG_SKB_EXTENSIONS) static inline void skb_set_kcov_handle(struct sk_buff *skb, const u64 kcov_handle) { /* Do not allocate skb extensions only to set kcov_handle to zero * (as it is zero by default). However, if the extensions are * already allocated, update kcov_handle anyway since * skb_set_kcov_handle can be called to zero a previously set * value. */ if (skb_has_extensions(skb) || kcov_handle) { u64 *kcov_handle_ptr = skb_ext_add(skb, SKB_EXT_KCOV_HANDLE); if (kcov_handle_ptr) *kcov_handle_ptr = kcov_handle; } } static inline u64 skb_get_kcov_handle(struct sk_buff *skb) { u64 *kcov_handle = skb_ext_find(skb, SKB_EXT_KCOV_HANDLE); return kcov_handle ? *kcov_handle : 0; } #else static inline void skb_set_kcov_handle(struct sk_buff *skb, const u64 kcov_handle) { } static inline u64 skb_get_kcov_handle(struct sk_buff *skb) { return 0; } #endif /* CONFIG_KCOV && CONFIG_SKB_EXTENSIONS */ #endif /* __KERNEL__ */ #endif /* _LINUX_SKBUFF_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_PART_STAT_H #define _LINUX_PART_STAT_H #include <linux/genhd.h> struct disk_stats { u64 nsecs[NR_STAT_GROUPS]; unsigned long sectors[NR_STAT_GROUPS]; unsigned long ios[NR_STAT_GROUPS]; unsigned long merges[NR_STAT_GROUPS]; unsigned long io_ticks; local_t in_flight[2]; }; /* * Macros to operate on percpu disk statistics: * * {disk|part|all}_stat_{add|sub|inc|dec}() modify the stat counters and should * be called between disk_stat_lock() and disk_stat_unlock(). * * part_stat_read() can be called at any time. */ #define part_stat_lock() preempt_disable() #define part_stat_unlock() preempt_enable() #define part_stat_get_cpu(part, field, cpu) \ (per_cpu_ptr((part)->dkstats, (cpu))->field) #define part_stat_get(part, field) \ part_stat_get_cpu(part, field, smp_processor_id()) #define part_stat_read(part, field) \ ({ \ typeof((part)->dkstats->field) res = 0; \ unsigned int _cpu; \ for_each_possible_cpu(_cpu) \ res += per_cpu_ptr((part)->dkstats, _cpu)->field; \ res; \ }) static inline void part_stat_set_all(struct hd_struct *part, int value) { int i; for_each_possible_cpu(i) memset(per_cpu_ptr(part->dkstats, i), value, sizeof(struct disk_stats)); } #define part_stat_read_accum(part, field) \ (part_stat_read(part, field[STAT_READ]) + \ part_stat_read(part, field[STAT_WRITE]) + \ part_stat_read(part, field[STAT_DISCARD])) #define __part_stat_add(part, field, addnd) \ __this_cpu_add((part)->dkstats->field, addnd) #define part_stat_add(part, field, addnd) do { \ __part_stat_add((part), field, addnd); \ if ((part)->partno) \ __part_stat_add(&part_to_disk((part))->part0, \ field, addnd); \ } while (0) #define part_stat_dec(gendiskp, field) \ part_stat_add(gendiskp, field, -1) #define part_stat_inc(gendiskp, field) \ part_stat_add(gendiskp, field, 1) #define part_stat_sub(gendiskp, field, subnd) \ part_stat_add(gendiskp, field, -subnd) #define part_stat_local_dec(gendiskp, field) \ local_dec(&(part_stat_get(gendiskp, field))) #define part_stat_local_inc(gendiskp, field) \ local_inc(&(part_stat_get(gendiskp, field))) #define part_stat_local_read(gendiskp, field) \ local_read(&(part_stat_get(gendiskp, field))) #define part_stat_local_read_cpu(gendiskp, field, cpu) \ local_read(&(part_stat_get_cpu(gendiskp, field, cpu))) #endif /* _LINUX_PART_STAT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SOCKET_H #define _LINUX_SOCKET_H #include <asm/socket.h> /* arch-dependent defines */ #include <linux/sockios.h> /* the SIOCxxx I/O controls */ #include <linux/uio.h> /* iovec support */ #include <linux/types.h> /* pid_t */ #include <linux/compiler.h> /* __user */ #include <uapi/linux/socket.h> struct file; struct pid; struct cred; struct socket; #define __sockaddr_check_size(size) \ BUILD_BUG_ON(((size) > sizeof(struct __kernel_sockaddr_storage))) #ifdef CONFIG_PROC_FS struct seq_file; extern void socket_seq_show(struct seq_file *seq); #endif typedef __kernel_sa_family_t sa_family_t; /* * 1003.1g requires sa_family_t and that sa_data is char. */ struct sockaddr { sa_family_t sa_family; /* address family, AF_xxx */ char sa_data[14]; /* 14 bytes of protocol address */ }; struct linger { int l_onoff; /* Linger active */ int l_linger; /* How long to linger for */ }; #define sockaddr_storage __kernel_sockaddr_storage /* * As we do 4.4BSD message passing we use a 4.4BSD message passing * system, not 4.3. Thus msg_accrights(len) are now missing. They * belong in an obscure libc emulation or the bin. */ struct msghdr { void *msg_name; /* ptr to socket address structure */ int msg_namelen; /* size of socket address structure */ struct iov_iter msg_iter; /* data */ /* * Ancillary data. msg_control_user is the user buffer used for the * recv* side when msg_control_is_user is set, msg_control is the kernel * buffer used for all other cases. */ union { void *msg_control; void __user *msg_control_user; }; bool msg_control_is_user : 1; __kernel_size_t msg_controllen; /* ancillary data buffer length */ unsigned int msg_flags; /* flags on received message */ struct kiocb *msg_iocb; /* ptr to iocb for async requests */ }; struct user_msghdr { void __user *msg_name; /* ptr to socket address structure */ int msg_namelen; /* size of socket address structure */ struct iovec __user *msg_iov; /* scatter/gather array */ __kernel_size_t msg_iovlen; /* # elements in msg_iov */ void __user *msg_control; /* ancillary data */ __kernel_size_t msg_controllen; /* ancillary data buffer length */ unsigned int msg_flags; /* flags on received message */ }; /* For recvmmsg/sendmmsg */ struct mmsghdr { struct user_msghdr msg_hdr; unsigned int msg_len; }; /* * POSIX 1003.1g - ancillary data object information * Ancillary data consits of a sequence of pairs of * (cmsghdr, cmsg_data[]) */ struct cmsghdr { __kernel_size_t cmsg_len; /* data byte count, including hdr */ int cmsg_level; /* originating protocol */ int cmsg_type; /* protocol-specific type */ }; /* * Ancillary data object information MACROS * Table 5-14 of POSIX 1003.1g */ #define __CMSG_NXTHDR(ctl, len, cmsg) __cmsg_nxthdr((ctl),(len),(cmsg)) #define CMSG_NXTHDR(mhdr, cmsg) cmsg_nxthdr((mhdr), (cmsg)) #define CMSG_ALIGN(len) ( ((len)+sizeof(long)-1) & ~(sizeof(long)-1) ) #define CMSG_DATA(cmsg) \ ((void *)(cmsg) + sizeof(struct cmsghdr)) #define CMSG_USER_DATA(cmsg) \ ((void __user *)(cmsg) + sizeof(struct cmsghdr)) #define CMSG_SPACE(len) (sizeof(struct cmsghdr) + CMSG_ALIGN(len)) #define CMSG_LEN(len) (sizeof(struct cmsghdr) + (len)) #define __CMSG_FIRSTHDR(ctl,len) ((len) >= sizeof(struct cmsghdr) ? \ (struct cmsghdr *)(ctl) : \ (struct cmsghdr *)NULL) #define CMSG_FIRSTHDR(msg) __CMSG_FIRSTHDR((msg)->msg_control, (msg)->msg_controllen) #define CMSG_OK(mhdr, cmsg) ((cmsg)->cmsg_len >= sizeof(struct cmsghdr) && \ (cmsg)->cmsg_len <= (unsigned long) \ ((mhdr)->msg_controllen - \ ((char *)(cmsg) - (char *)(mhdr)->msg_control))) #define for_each_cmsghdr(cmsg, msg) \ for (cmsg = CMSG_FIRSTHDR(msg); \ cmsg; \ cmsg = CMSG_NXTHDR(msg, cmsg)) /* * Get the next cmsg header * * PLEASE, do not touch this function. If you think, that it is * incorrect, grep kernel sources and think about consequences * before trying to improve it. * * Now it always returns valid, not truncated ancillary object * HEADER. But caller still MUST check, that cmsg->cmsg_len is * inside range, given by msg->msg_controllen before using * ancillary object DATA. --ANK (980731) */ static inline struct cmsghdr * __cmsg_nxthdr(void *__ctl, __kernel_size_t __size, struct cmsghdr *__cmsg) { struct cmsghdr * __ptr; __ptr = (struct cmsghdr*)(((unsigned char *) __cmsg) + CMSG_ALIGN(__cmsg->cmsg_len)); if ((unsigned long)((char*)(__ptr+1) - (char *) __ctl) > __size) return (struct cmsghdr *)0; return __ptr; } static inline struct cmsghdr * cmsg_nxthdr (struct msghdr *__msg, struct cmsghdr *__cmsg) { return __cmsg_nxthdr(__msg->msg_control, __msg->msg_controllen, __cmsg); } static inline size_t msg_data_left(struct msghdr *msg) { return iov_iter_count(&msg->msg_iter); } /* "Socket"-level control message types: */ #define SCM_RIGHTS 0x01 /* rw: access rights (array of int) */ #define SCM_CREDENTIALS 0x02 /* rw: struct ucred */ #define SCM_SECURITY 0x03 /* rw: security label */ struct ucred { __u32 pid; __u32 uid; __u32 gid; }; /* Supported address families. */ #define AF_UNSPEC 0 #define AF_UNIX 1 /* Unix domain sockets */ #define AF_LOCAL 1 /* POSIX name for AF_UNIX */ #define AF_INET 2 /* Internet IP Protocol */ #define AF_AX25 3 /* Amateur Radio AX.25 */ #define AF_IPX 4 /* Novell IPX */ #define AF_APPLETALK 5 /* AppleTalk DDP */ #define AF_NETROM 6 /* Amateur Radio NET/ROM */ #define AF_BRIDGE 7 /* Multiprotocol bridge */ #define AF_ATMPVC 8 /* ATM PVCs */ #define AF_X25 9 /* Reserved for X.25 project */ #define AF_INET6 10 /* IP version 6 */ #define AF_ROSE 11 /* Amateur Radio X.25 PLP */ #define AF_DECnet 12 /* Reserved for DECnet project */ #define AF_NETBEUI 13 /* Reserved for 802.2LLC project*/ #define AF_SECURITY 14 /* Security callback pseudo AF */ #define AF_KEY 15 /* PF_KEY key management API */ #define AF_NETLINK 16 #define AF_ROUTE AF_NETLINK /* Alias to emulate 4.4BSD */ #define AF_PACKET 17 /* Packet family */ #define AF_ASH 18 /* Ash */ #define AF_ECONET 19 /* Acorn Econet */ #define AF_ATMSVC 20 /* ATM SVCs */ #define AF_RDS 21 /* RDS sockets */ #define AF_SNA 22 /* Linux SNA Project (nutters!) */ #define AF_IRDA 23 /* IRDA sockets */ #define AF_PPPOX 24 /* PPPoX sockets */ #define AF_WANPIPE 25 /* Wanpipe API Sockets */ #define AF_LLC 26 /* Linux LLC */ #define AF_IB 27 /* Native InfiniBand address */ #define AF_MPLS 28 /* MPLS */ #define AF_CAN 29 /* Controller Area Network */ #define AF_TIPC 30 /* TIPC sockets */ #define AF_BLUETOOTH 31 /* Bluetooth sockets */ #define AF_IUCV 32 /* IUCV sockets */ #define AF_RXRPC 33 /* RxRPC sockets */ #define AF_ISDN 34 /* mISDN sockets */ #define AF_PHONET 35 /* Phonet sockets */ #define AF_IEEE802154 36 /* IEEE802154 sockets */ #define AF_CAIF 37 /* CAIF sockets */ #define AF_ALG 38 /* Algorithm sockets */ #define AF_NFC 39 /* NFC sockets */ #define AF_VSOCK 40 /* vSockets */ #define AF_KCM 41 /* Kernel Connection Multiplexor*/ #define AF_QIPCRTR 42 /* Qualcomm IPC Router */ #define AF_SMC 43 /* smc sockets: reserve number for * PF_SMC protocol family that * reuses AF_INET address family */ #define AF_XDP 44 /* XDP sockets */ #define AF_MAX 45 /* For now.. */ /* Protocol families, same as address families. */ #define PF_UNSPEC AF_UNSPEC #define PF_UNIX AF_UNIX #define PF_LOCAL AF_LOCAL #define PF_INET AF_INET #define PF_AX25 AF_AX25 #define PF_IPX AF_IPX #define PF_APPLETALK AF_APPLETALK #define PF_NETROM AF_NETROM #define PF_BRIDGE AF_BRIDGE #define PF_ATMPVC AF_ATMPVC #define PF_X25 AF_X25 #define PF_INET6 AF_INET6 #define PF_ROSE AF_ROSE #define PF_DECnet AF_DECnet #define PF_NETBEUI AF_NETBEUI #define PF_SECURITY AF_SECURITY #define PF_KEY AF_KEY #define PF_NETLINK AF_NETLINK #define PF_ROUTE AF_ROUTE #define PF_PACKET AF_PACKET #define PF_ASH AF_ASH #define PF_ECONET AF_ECONET #define PF_ATMSVC AF_ATMSVC #define PF_RDS AF_RDS #define PF_SNA AF_SNA #define PF_IRDA AF_IRDA #define PF_PPPOX AF_PPPOX #define PF_WANPIPE AF_WANPIPE #define PF_LLC AF_LLC #define PF_IB AF_IB #define PF_MPLS AF_MPLS #define PF_CAN AF_CAN #define PF_TIPC AF_TIPC #define PF_BLUETOOTH AF_BLUETOOTH #define PF_IUCV AF_IUCV #define PF_RXRPC AF_RXRPC #define PF_ISDN AF_ISDN #define PF_PHONET AF_PHONET #define PF_IEEE802154 AF_IEEE802154 #define PF_CAIF AF_CAIF #define PF_ALG AF_ALG #define PF_NFC AF_NFC #define PF_VSOCK AF_VSOCK #define PF_KCM AF_KCM #define PF_QIPCRTR AF_QIPCRTR #define PF_SMC AF_SMC #define PF_XDP AF_XDP #define PF_MAX AF_MAX /* Maximum queue length specifiable by listen. */ #define SOMAXCONN 4096 /* Flags we can use with send/ and recv. Added those for 1003.1g not all are supported yet */ #define MSG_OOB 1 #define MSG_PEEK 2 #define MSG_DONTROUTE 4 #define MSG_TRYHARD 4 /* Synonym for MSG_DONTROUTE for DECnet */ #define MSG_CTRUNC 8 #define MSG_PROBE 0x10 /* Do not send. Only probe path f.e. for MTU */ #define MSG_TRUNC 0x20 #define MSG_DONTWAIT 0x40 /* Nonblocking io */ #define MSG_EOR 0x80 /* End of record */ #define MSG_WAITALL 0x100 /* Wait for a full request */ #define MSG_FIN 0x200 #define MSG_SYN 0x400 #define MSG_CONFIRM 0x800 /* Confirm path validity */ #define MSG_RST 0x1000 #define MSG_ERRQUEUE 0x2000 /* Fetch message from error queue */ #define MSG_NOSIGNAL 0x4000 /* Do not generate SIGPIPE */ #define MSG_MORE 0x8000 /* Sender will send more */ #define MSG_WAITFORONE 0x10000 /* recvmmsg(): block until 1+ packets avail */ #define MSG_SENDPAGE_NOPOLICY 0x10000 /* sendpage() internal : do no apply policy */ #define MSG_SENDPAGE_NOTLAST 0x20000 /* sendpage() internal : not the last page */ #define MSG_BATCH 0x40000 /* sendmmsg(): more messages coming */ #define MSG_EOF MSG_FIN #define MSG_NO_SHARED_FRAGS 0x80000 /* sendpage() internal : page frags are not shared */ #define MSG_SENDPAGE_DECRYPTED 0x100000 /* sendpage() internal : page may carry * plain text and require encryption */ #define MSG_ZEROCOPY 0x4000000 /* Use user data in kernel path */ #define MSG_FASTOPEN 0x20000000 /* Send data in TCP SYN */ #define MSG_CMSG_CLOEXEC 0x40000000 /* Set close_on_exec for file descriptor received through SCM_RIGHTS */ #if defined(CONFIG_COMPAT) #define MSG_CMSG_COMPAT 0x80000000 /* This message needs 32 bit fixups */ #else #define MSG_CMSG_COMPAT 0 /* We never have 32 bit fixups */ #endif /* Setsockoptions(2) level. Thanks to BSD these must match IPPROTO_xxx */ #define SOL_IP 0 /* #define SOL_ICMP 1 No-no-no! Due to Linux :-) we cannot use SOL_ICMP=1 */ #define SOL_TCP 6 #define SOL_UDP 17 #define SOL_IPV6 41 #define SOL_ICMPV6 58 #define SOL_SCTP 132 #define SOL_UDPLITE 136 /* UDP-Lite (RFC 3828) */ #define SOL_RAW 255 #define SOL_IPX 256 #define SOL_AX25 257 #define SOL_ATALK 258 #define SOL_NETROM 259 #define SOL_ROSE 260 #define SOL_DECNET 261 #define SOL_X25 262 #define SOL_PACKET 263 #define SOL_ATM 264 /* ATM layer (cell level) */ #define SOL_AAL 265 /* ATM Adaption Layer (packet level) */ #define SOL_IRDA 266 #define SOL_NETBEUI 267 #define SOL_LLC 268 #define SOL_DCCP 269 #define SOL_NETLINK 270 #define SOL_TIPC 271 #define SOL_RXRPC 272 #define SOL_PPPOL2TP 273 #define SOL_BLUETOOTH 274 #define SOL_PNPIPE 275 #define SOL_RDS 276 #define SOL_IUCV 277 #define SOL_CAIF 278 #define SOL_ALG 279 #define SOL_NFC 280 #define SOL_KCM 281 #define SOL_TLS 282 #define SOL_XDP 283 /* IPX options */ #define IPX_TYPE 1 extern int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr); extern int put_cmsg(struct msghdr*, int level, int type, int len, void *data); struct timespec64; struct __kernel_timespec; struct old_timespec32; struct scm_timestamping_internal { struct timespec64 ts[3]; }; extern void put_cmsg_scm_timestamping64(struct msghdr *msg, struct scm_timestamping_internal *tss); extern void put_cmsg_scm_timestamping(struct msghdr *msg, struct scm_timestamping_internal *tss); /* The __sys_...msg variants allow MSG_CMSG_COMPAT iff * forbid_cmsg_compat==false */ extern long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, bool forbid_cmsg_compat); extern long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, bool forbid_cmsg_compat); extern int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, unsigned int flags, struct __kernel_timespec __user *timeout, struct old_timespec32 __user *timeout32); extern int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, unsigned int flags, bool forbid_cmsg_compat); extern long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg, unsigned int flags); extern long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg, struct user_msghdr __user *umsg, struct sockaddr __user *uaddr, unsigned int flags); extern int sendmsg_copy_msghdr(struct msghdr *msg, struct user_msghdr __user *umsg, unsigned flags, struct iovec **iov); extern int recvmsg_copy_msghdr(struct msghdr *msg, struct user_msghdr __user *umsg, unsigned flags, struct sockaddr __user **uaddr, struct iovec **iov); extern int __copy_msghdr_from_user(struct msghdr *kmsg, struct user_msghdr __user *umsg, struct sockaddr __user **save_addr, struct iovec __user **uiov, size_t *nsegs); /* helpers which do the actual work for syscalls */ extern int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, struct sockaddr __user *addr, int __user *addr_len); extern int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, struct sockaddr __user *addr, int addr_len); extern int __sys_accept4_file(struct file *file, unsigned file_flags, struct sockaddr __user *upeer_sockaddr, int __user *upeer_addrlen, int flags, unsigned long nofile); extern int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, int __user *upeer_addrlen, int flags); extern int __sys_socket(int family, int type, int protocol); extern int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen); extern int __sys_connect_file(struct file *file, struct sockaddr_storage *addr, int addrlen, int file_flags); extern int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen); extern int __sys_listen(int fd, int backlog); extern int __sys_getsockname(int fd, struct sockaddr __user *usockaddr, int __user *usockaddr_len); extern int __sys_getpeername(int fd, struct sockaddr __user *usockaddr, int __user *usockaddr_len); extern int __sys_socketpair(int family, int type, int protocol, int __user *usockvec); extern int __sys_shutdown(int fd, int how); #endif /* _LINUX_SOCKET_H */
1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 /* SPDX-License-Identifier: GPL-2.0 */ /* * Macros for manipulating and testing page->flags */ #ifndef PAGE_FLAGS_H #define PAGE_FLAGS_H #include <linux/types.h> #include <linux/bug.h> #include <linux/mmdebug.h> #ifndef __GENERATING_BOUNDS_H #include <linux/mm_types.h> #include <generated/bounds.h> #endif /* !__GENERATING_BOUNDS_H */ /* * Various page->flags bits: * * PG_reserved is set for special pages. The "struct page" of such a page * should in general not be touched (e.g. set dirty) except by its owner. * Pages marked as PG_reserved include: * - Pages part of the kernel image (including vDSO) and similar (e.g. BIOS, * initrd, HW tables) * - Pages reserved or allocated early during boot (before the page allocator * was initialized). This includes (depending on the architecture) the * initial vmemmap, initial page tables, crashkernel, elfcorehdr, and much * much more. Once (if ever) freed, PG_reserved is cleared and they will * be given to the page allocator. * - Pages falling into physical memory gaps - not IORESOURCE_SYSRAM. Trying * to read/write these pages might end badly. Don't touch! * - The zero page(s) * - Pages not added to the page allocator when onlining a section because * they were excluded via the online_page_callback() or because they are * PG_hwpoison. * - Pages allocated in the context of kexec/kdump (loaded kernel image, * control pages, vmcoreinfo) * - MMIO/DMA pages. Some architectures don't allow to ioremap pages that are * not marked PG_reserved (as they might be in use by somebody else who does * not respect the caching strategy). * - Pages part of an offline section (struct pages of offline sections should * not be trusted as they will be initialized when first onlined). * - MCA pages on ia64 * - Pages holding CPU notes for POWER Firmware Assisted Dump * - Device memory (e.g. PMEM, DAX, HMM) * Some PG_reserved pages will be excluded from the hibernation image. * PG_reserved does in general not hinder anybody from dumping or swapping * and is no longer required for remap_pfn_range(). ioremap might require it. * Consequently, PG_reserved for a page mapped into user space can indicate * the zero page, the vDSO, MMIO pages or device memory. * * The PG_private bitflag is set on pagecache pages if they contain filesystem * specific data (which is normally at page->private). It can be used by * private allocations for its own usage. * * During initiation of disk I/O, PG_locked is set. This bit is set before I/O * and cleared when writeback _starts_ or when read _completes_. PG_writeback * is set before writeback starts and cleared when it finishes. * * PG_locked also pins a page in pagecache, and blocks truncation of the file * while it is held. * * page_waitqueue(page) is a wait queue of all tasks waiting for the page * to become unlocked. * * PG_swapbacked is set when a page uses swap as a backing storage. This are * usually PageAnon or shmem pages but please note that even anonymous pages * might lose their PG_swapbacked flag when they simply can be dropped (e.g. as * a result of MADV_FREE). * * PG_uptodate tells whether the page's contents is valid. When a read * completes, the page becomes uptodate, unless a disk I/O error happened. * * PG_referenced, PG_reclaim are used for page reclaim for anonymous and * file-backed pagecache (see mm/vmscan.c). * * PG_error is set to indicate that an I/O error occurred on this page. * * PG_arch_1 is an architecture specific page state bit. The generic code * guarantees that this bit is cleared for a page when it first is entered into * the page cache. * * PG_hwpoison indicates that a page got corrupted in hardware and contains * data with incorrect ECC bits that triggered a machine check. Accessing is * not safe since it may cause another machine check. Don't touch! */ /* * Don't use the *_dontuse flags. Use the macros. Otherwise you'll break * locked- and dirty-page accounting. * * The page flags field is split into two parts, the main flags area * which extends from the low bits upwards, and the fields area which * extends from the high bits downwards. * * | FIELD | ... | FLAGS | * N-1 ^ 0 * (NR_PAGEFLAGS) * * The fields area is reserved for fields mapping zone, node (for NUMA) and * SPARSEMEM section (for variants of SPARSEMEM that require section ids like * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP). */ enum pageflags { PG_locked, /* Page is locked. Don't touch. */ PG_referenced, PG_uptodate, PG_dirty, PG_lru, PG_active, PG_workingset, PG_waiters, /* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */ PG_error, PG_slab, PG_owner_priv_1, /* Owner use. If pagecache, fs may use*/ PG_arch_1, PG_reserved, PG_private, /* If pagecache, has fs-private data */ PG_private_2, /* If pagecache, has fs aux data */ PG_writeback, /* Page is under writeback */ PG_head, /* A head page */ PG_mappedtodisk, /* Has blocks allocated on-disk */ PG_reclaim, /* To be reclaimed asap */ PG_swapbacked, /* Page is backed by RAM/swap */ PG_unevictable, /* Page is "unevictable" */ #ifdef CONFIG_MMU PG_mlocked, /* Page is vma mlocked */ #endif #ifdef CONFIG_ARCH_USES_PG_UNCACHED PG_uncached, /* Page has been mapped as uncached */ #endif #ifdef CONFIG_MEMORY_FAILURE PG_hwpoison, /* hardware poisoned page. Don't touch */ #endif #if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT) PG_young, PG_idle, #endif #ifdef CONFIG_64BIT PG_arch_2, #endif __NR_PAGEFLAGS, /* Filesystems */ PG_checked = PG_owner_priv_1, /* SwapBacked */ PG_swapcache = PG_owner_priv_1, /* Swap page: swp_entry_t in private */ /* Two page bits are conscripted by FS-Cache to maintain local caching * state. These bits are set on pages belonging to the netfs's inodes * when those inodes are being locally cached. */ PG_fscache = PG_private_2, /* page backed by cache */ /* XEN */ /* Pinned in Xen as a read-only pagetable page. */ PG_pinned = PG_owner_priv_1, /* Pinned as part of domain save (see xen_mm_pin_all()). */ PG_savepinned = PG_dirty, /* Has a grant mapping of another (foreign) domain's page. */ PG_foreign = PG_owner_priv_1, /* Remapped by swiotlb-xen. */ PG_xen_remapped = PG_owner_priv_1, /* SLOB */ PG_slob_free = PG_private, /* Compound pages. Stored in first tail page's flags */ PG_double_map = PG_workingset, /* non-lru isolated movable page */ PG_isolated = PG_reclaim, /* Only valid for buddy pages. Used to track pages that are reported */ PG_reported = PG_uptodate, }; #ifndef __GENERATING_BOUNDS_H struct page; /* forward declaration */ static inline struct page *compound_head(struct page *page) { unsigned long head = READ_ONCE(page->compound_head); if (unlikely(head & 1)) return (struct page *) (head - 1); return page; } static __always_inline int PageTail(struct page *page) { return READ_ONCE(page->compound_head) & 1; } static __always_inline int PageCompound(struct page *page) { return test_bit(PG_head, &page->flags) || PageTail(page); } #define PAGE_POISON_PATTERN -1l static inline int PagePoisoned(const struct page *page) { return page->flags == PAGE_POISON_PATTERN; } #ifdef CONFIG_DEBUG_VM void page_init_poison(struct page *page, size_t size); #else static inline void page_init_poison(struct page *page, size_t size) { } #endif /* * Page flags policies wrt compound pages * * PF_POISONED_CHECK * check if this struct page poisoned/uninitialized * * PF_ANY: * the page flag is relevant for small, head and tail pages. * * PF_HEAD: * for compound page all operations related to the page flag applied to * head page. * * PF_ONLY_HEAD: * for compound page, callers only ever operate on the head page. * * PF_NO_TAIL: * modifications of the page flag must be done on small or head pages, * checks can be done on tail pages too. * * PF_NO_COMPOUND: * the page flag is not relevant for compound pages. * * PF_SECOND: * the page flag is stored in the first tail page. */ #define PF_POISONED_CHECK(page) ({ \ VM_BUG_ON_PGFLAGS(PagePoisoned(page), page); \ page; }) #define PF_ANY(page, enforce) PF_POISONED_CHECK(page) #define PF_HEAD(page, enforce) PF_POISONED_CHECK(compound_head(page)) #define PF_ONLY_HEAD(page, enforce) ({ \ VM_BUG_ON_PGFLAGS(PageTail(page), page); \ PF_POISONED_CHECK(page); }) #define PF_NO_TAIL(page, enforce) ({ \ VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page); \ PF_POISONED_CHECK(compound_head(page)); }) #define PF_NO_COMPOUND(page, enforce) ({ \ VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page); \ PF_POISONED_CHECK(page); }) #define PF_SECOND(page, enforce) ({ \ VM_BUG_ON_PGFLAGS(!PageHead(page), page); \ PF_POISONED_CHECK(&page[1]); }) /* * Macros to create function definitions for page flags */ #define TESTPAGEFLAG(uname, lname, policy) \ static __always_inline int Page##uname(struct page *page) \ { return test_bit(PG_##lname, &policy(page, 0)->flags); } #define SETPAGEFLAG(uname, lname, policy) \ static __always_inline void SetPage##uname(struct page *page) \ { set_bit(PG_##lname, &policy(page, 1)->flags); } #define CLEARPAGEFLAG(uname, lname, policy) \ static __always_inline void ClearPage##uname(struct page *page) \ { clear_bit(PG_##lname, &policy(page, 1)->flags); } #define __SETPAGEFLAG(uname, lname, policy) \ static __always_inline void __SetPage##uname(struct page *page) \ { __set_bit(PG_##lname, &policy(page, 1)->flags); } #define __CLEARPAGEFLAG(uname, lname, policy) \ static __always_inline void __ClearPage##uname(struct page *page) \ { __clear_bit(PG_##lname, &policy(page, 1)->flags); } #define TESTSETFLAG(uname, lname, policy) \ static __always_inline int TestSetPage##uname(struct page *page) \ { return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); } #define TESTCLEARFLAG(uname, lname, policy) \ static __always_inline int TestClearPage##uname(struct page *page) \ { return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); } #define PAGEFLAG(uname, lname, policy) \ TESTPAGEFLAG(uname, lname, policy) \ SETPAGEFLAG(uname, lname, policy) \ CLEARPAGEFLAG(uname, lname, policy) #define __PAGEFLAG(uname, lname, policy) \ TESTPAGEFLAG(uname, lname, policy) \ __SETPAGEFLAG(uname, lname, policy) \ __CLEARPAGEFLAG(uname, lname, policy) #define TESTSCFLAG(uname, lname, policy) \ TESTSETFLAG(uname, lname, policy) \ TESTCLEARFLAG(uname, lname, policy) #define TESTPAGEFLAG_FALSE(uname) \ static inline int Page##uname(const struct page *page) { return 0; } #define SETPAGEFLAG_NOOP(uname) \ static inline void SetPage##uname(struct page *page) { } #define CLEARPAGEFLAG_NOOP(uname) \ static inline void ClearPage##uname(struct page *page) { } #define __CLEARPAGEFLAG_NOOP(uname) \ static inline void __ClearPage##uname(struct page *page) { } #define TESTSETFLAG_FALSE(uname) \ static inline int TestSetPage##uname(struct page *page) { return 0; } #define TESTCLEARFLAG_FALSE(uname) \ static inline int TestClearPage##uname(struct page *page) { return 0; } #define PAGEFLAG_FALSE(uname) TESTPAGEFLAG_FALSE(uname) \ SETPAGEFLAG_NOOP(uname) CLEARPAGEFLAG_NOOP(uname) #define TESTSCFLAG_FALSE(uname) \ TESTSETFLAG_FALSE(uname) TESTCLEARFLAG_FALSE(uname) __PAGEFLAG(Locked, locked, PF_NO_TAIL) PAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) __CLEARPAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) PAGEFLAG(Error, error, PF_NO_TAIL) TESTCLEARFLAG(Error, error, PF_NO_TAIL) PAGEFLAG(Referenced, referenced, PF_HEAD) TESTCLEARFLAG(Referenced, referenced, PF_HEAD) __SETPAGEFLAG(Referenced, referenced, PF_HEAD) PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD) __CLEARPAGEFLAG(Dirty, dirty, PF_HEAD) PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD) PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD) TESTCLEARFLAG(Active, active, PF_HEAD) PAGEFLAG(Workingset, workingset, PF_HEAD) TESTCLEARFLAG(Workingset, workingset, PF_HEAD) __PAGEFLAG(Slab, slab, PF_NO_TAIL) __PAGEFLAG(SlobFree, slob_free, PF_NO_TAIL) PAGEFLAG(Checked, checked, PF_NO_COMPOUND) /* Used by some filesystems */ /* Xen */ PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND) TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND) PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND); PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND); PAGEFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND) TESTCLEARFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND) PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) __CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) __SETPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) __CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) __SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) /* * Private page markings that may be used by the filesystem that owns the page * for its own purposes. * - PG_private and PG_private_2 cause releasepage() and co to be invoked */ PAGEFLAG(Private, private, PF_ANY) __SETPAGEFLAG(Private, private, PF_ANY) __CLEARPAGEFLAG(Private, private, PF_ANY) PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY) PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY) TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY) /* * Only test-and-set exist for PG_writeback. The unconditional operators are * risky: they bypass page accounting. */ TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL) TESTSCFLAG(Writeback, writeback, PF_NO_TAIL) PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL) /* PG_readahead is only used for reads; PG_reclaim is only for writes */ PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL) TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL) PAGEFLAG(Readahead, reclaim, PF_NO_COMPOUND) TESTCLEARFLAG(Readahead, reclaim, PF_NO_COMPOUND) #ifdef CONFIG_HIGHMEM /* * Must use a macro here due to header dependency issues. page_zone() is not * available at this point. */ #define PageHighMem(__p) is_highmem_idx(page_zonenum(__p)) #else PAGEFLAG_FALSE(HighMem) #endif #ifdef CONFIG_SWAP static __always_inline int PageSwapCache(struct page *page) { #ifdef CONFIG_THP_SWAP page = compound_head(page); #endif return PageSwapBacked(page) && test_bit(PG_swapcache, &page->flags); } SETPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL) CLEARPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL) #else PAGEFLAG_FALSE(SwapCache) #endif PAGEFLAG(Unevictable, unevictable, PF_HEAD) __CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD) TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD) #ifdef CONFIG_MMU PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL) __CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL) TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL) #else PAGEFLAG_FALSE(Mlocked) __CLEARPAGEFLAG_NOOP(Mlocked) TESTSCFLAG_FALSE(Mlocked) #endif #ifdef CONFIG_ARCH_USES_PG_UNCACHED PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND) #else PAGEFLAG_FALSE(Uncached) #endif #ifdef CONFIG_MEMORY_FAILURE PAGEFLAG(HWPoison, hwpoison, PF_ANY) TESTSCFLAG(HWPoison, hwpoison, PF_ANY) #define __PG_HWPOISON (1UL << PG_hwpoison) extern bool take_page_off_buddy(struct page *page); #else PAGEFLAG_FALSE(HWPoison) #define __PG_HWPOISON 0 #endif #if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT) TESTPAGEFLAG(Young, young, PF_ANY) SETPAGEFLAG(Young, young, PF_ANY) TESTCLEARFLAG(Young, young, PF_ANY) PAGEFLAG(Idle, idle, PF_ANY) #endif /* * PageReported() is used to track reported free pages within the Buddy * allocator. We can use the non-atomic version of the test and set * operations as both should be shielded with the zone lock to prevent * any possible races on the setting or clearing of the bit. */ __PAGEFLAG(Reported, reported, PF_NO_COMPOUND) /* * On an anonymous page mapped into a user virtual memory area, * page->mapping points to its anon_vma, not to a struct address_space; * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. * * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON * bit; and then page->mapping points, not to an anon_vma, but to a private * structure which KSM associates with that merged page. See ksm.h. * * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable * page and then page->mapping points a struct address_space. * * Please note that, confusingly, "page_mapping" refers to the inode * address_space which maps the page from disk; whereas "page_mapped" * refers to user virtual address space into which the page is mapped. */ #define PAGE_MAPPING_ANON 0x1 #define PAGE_MAPPING_MOVABLE 0x2 #define PAGE_MAPPING_KSM (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE) #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE) static __always_inline int PageMappingFlags(struct page *page) { return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0; } static __always_inline int PageAnon(struct page *page) { page = compound_head(page); return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; } static __always_inline int __PageMovable(struct page *page) { return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) == PAGE_MAPPING_MOVABLE; } #ifdef CONFIG_KSM /* * A KSM page is one of those write-protected "shared pages" or "merged pages" * which KSM maps into multiple mms, wherever identical anonymous page content * is found in VM_MERGEABLE vmas. It's a PageAnon page, pointing not to any * anon_vma, but to that page's node of the stable tree. */ static __always_inline int PageKsm(struct page *page) { page = compound_head(page); return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) == PAGE_MAPPING_KSM; } #else TESTPAGEFLAG_FALSE(Ksm) #endif u64 stable_page_flags(struct page *page); static inline int PageUptodate(struct page *page) { int ret; page = compound_head(page); ret = test_bit(PG_uptodate, &(page)->flags); /* * Must ensure that the data we read out of the page is loaded * _after_ we've loaded page->flags to check for PageUptodate. * We can skip the barrier if the page is not uptodate, because * we wouldn't be reading anything from it. * * See SetPageUptodate() for the other side of the story. */ if (ret) smp_rmb(); return ret; } static __always_inline void __SetPageUptodate(struct page *page) { VM_BUG_ON_PAGE(PageTail(page), page); smp_wmb(); __set_bit(PG_uptodate, &page->flags); } static __always_inline void SetPageUptodate(struct page *page) { VM_BUG_ON_PAGE(PageTail(page), page); /* * Memory barrier must be issued before setting the PG_uptodate bit, * so that all previous stores issued in order to bring the page * uptodate are actually visible before PageUptodate becomes true. */ smp_wmb(); set_bit(PG_uptodate, &page->flags); } CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL) int test_clear_page_writeback(struct page *page); int __test_set_page_writeback(struct page *page, bool keep_write); #define test_set_page_writeback(page) \ __test_set_page_writeback(page, false) #define test_set_page_writeback_keepwrite(page) \ __test_set_page_writeback(page, true) static inline void set_page_writeback(struct page *page) { test_set_page_writeback(page); } static inline void set_page_writeback_keepwrite(struct page *page) { test_set_page_writeback_keepwrite(page); } __PAGEFLAG(Head, head, PF_ANY) CLEARPAGEFLAG(Head, head, PF_ANY) static __always_inline void set_compound_head(struct page *page, struct page *head) { WRITE_ONCE(page->compound_head, (unsigned long)head + 1); } static __always_inline void clear_compound_head(struct page *page) { WRITE_ONCE(page->compound_head, 0); } #ifdef CONFIG_TRANSPARENT_HUGEPAGE static inline void ClearPageCompound(struct page *page) { BUG_ON(!PageHead(page)); ClearPageHead(page); } #endif #define PG_head_mask ((1UL << PG_head)) #ifdef CONFIG_HUGETLB_PAGE int PageHuge(struct page *page); int PageHeadHuge(struct page *page); bool page_huge_active(struct page *page); #else TESTPAGEFLAG_FALSE(Huge) TESTPAGEFLAG_FALSE(HeadHuge) static inline bool page_huge_active(struct page *page) { return 0; } #endif #ifdef CONFIG_TRANSPARENT_HUGEPAGE /* * PageHuge() only returns true for hugetlbfs pages, but not for * normal or transparent huge pages. * * PageTransHuge() returns true for both transparent huge and * hugetlbfs pages, but not normal pages. PageTransHuge() can only be * called only in the core VM paths where hugetlbfs pages can't exist. */ static inline int PageTransHuge(struct page *page) { VM_BUG_ON_PAGE(PageTail(page), page); return PageHead(page); } /* * PageTransCompound returns true for both transparent huge pages * and hugetlbfs pages, so it should only be called when it's known * that hugetlbfs pages aren't involved. */ static inline int PageTransCompound(struct page *page) { return PageCompound(page); } /* * PageTransCompoundMap is the same as PageTransCompound, but it also * guarantees the primary MMU has the entire compound page mapped * through pmd_trans_huge, which in turn guarantees the secondary MMUs * can also map the entire compound page. This allows the secondary * MMUs to call get_user_pages() only once for each compound page and * to immediately map the entire compound page with a single secondary * MMU fault. If there will be a pmd split later, the secondary MMUs * will get an update through the MMU notifier invalidation through * split_huge_pmd(). * * Unlike PageTransCompound, this is safe to be called only while * split_huge_pmd() cannot run from under us, like if protected by the * MMU notifier, otherwise it may result in page->_mapcount check false * positives. * * We have to treat page cache THP differently since every subpage of it * would get _mapcount inc'ed once it is PMD mapped. But, it may be PTE * mapped in the current process so comparing subpage's _mapcount to * compound_mapcount to filter out PTE mapped case. */ static inline int PageTransCompoundMap(struct page *page) { struct page *head; if (!PageTransCompound(page)) return 0; if (PageAnon(page)) return atomic_read(&page->_mapcount) < 0; head = compound_head(page); /* File THP is PMD mapped and not PTE mapped */ return atomic_read(&page->_mapcount) == atomic_read(compound_mapcount_ptr(head)); } /* * PageTransTail returns true for both transparent huge pages * and hugetlbfs pages, so it should only be called when it's known * that hugetlbfs pages aren't involved. */ static inline int PageTransTail(struct page *page) { return PageTail(page); } /* * PageDoubleMap indicates that the compound page is mapped with PTEs as well * as PMDs. * * This is required for optimization of rmap operations for THP: we can postpone * per small page mapcount accounting (and its overhead from atomic operations) * until the first PMD split. * * For the page PageDoubleMap means ->_mapcount in all sub-pages is offset up * by one. This reference will go away with last compound_mapcount. * * See also __split_huge_pmd_locked() and page_remove_anon_compound_rmap(). */ PAGEFLAG(DoubleMap, double_map, PF_SECOND) TESTSCFLAG(DoubleMap, double_map, PF_SECOND) #else TESTPAGEFLAG_FALSE(TransHuge) TESTPAGEFLAG_FALSE(TransCompound) TESTPAGEFLAG_FALSE(TransCompoundMap) TESTPAGEFLAG_FALSE(TransTail) PAGEFLAG_FALSE(DoubleMap) TESTSCFLAG_FALSE(DoubleMap) #endif /* * For pages that are never mapped to userspace (and aren't PageSlab), * page_type may be used. Because it is initialised to -1, we invert the * sense of the bit, so __SetPageFoo *clears* the bit used for PageFoo, and * __ClearPageFoo *sets* the bit used for PageFoo. We reserve a few high and * low bits so that an underflow or overflow of page_mapcount() won't be * mistaken for a page type value. */ #define PAGE_TYPE_BASE 0xf0000000 /* Reserve 0x0000007f to catch underflows of page_mapcount */ #define PAGE_MAPCOUNT_RESERVE -128 #define PG_buddy 0x00000080 #define PG_offline 0x00000100 #define PG_kmemcg 0x00000200 #define PG_table 0x00000400 #define PG_guard 0x00000800 #define PageType(page, flag) \ ((page->page_type & (PAGE_TYPE_BASE | flag)) == PAGE_TYPE_BASE) static inline int page_has_type(struct page *page) { return (int)page->page_type < PAGE_MAPCOUNT_RESERVE; } #define PAGE_TYPE_OPS(uname, lname) \ static __always_inline int Page##uname(struct page *page) \ { \ return PageType(page, PG_##lname); \ } \ static __always_inline void __SetPage##uname(struct page *page) \ { \ VM_BUG_ON_PAGE(!PageType(page, 0), page); \ page->page_type &= ~PG_##lname; \ } \ static __always_inline void __ClearPage##uname(struct page *page) \ { \ VM_BUG_ON_PAGE(!Page##uname(page), page); \ page->page_type |= PG_##lname; \ } /* * PageBuddy() indicates that the page is free and in the buddy system * (see mm/page_alloc.c). */ PAGE_TYPE_OPS(Buddy, buddy) /* * PageOffline() indicates that the page is logically offline although the * containing section is online. (e.g. inflated in a balloon driver or * not onlined when onlining the section). * The content of these pages is effectively stale. Such pages should not * be touched (read/write/dump/save) except by their owner. * * If a driver wants to allow to offline unmovable PageOffline() pages without * putting them back to the buddy, it can do so via the memory notifier by * decrementing the reference count in MEM_GOING_OFFLINE and incrementing the * reference count in MEM_CANCEL_OFFLINE. When offlining, the PageOffline() * pages (now with a reference count of zero) are treated like free pages, * allowing the containing memory block to get offlined. A driver that * relies on this feature is aware that re-onlining the memory block will * require to re-set the pages PageOffline() and not giving them to the * buddy via online_page_callback_t. */ PAGE_TYPE_OPS(Offline, offline) /* * If kmemcg is enabled, the buddy allocator will set PageKmemcg() on * pages allocated with __GFP_ACCOUNT. It gets cleared on page free. */ PAGE_TYPE_OPS(Kmemcg, kmemcg) /* * Marks pages in use as page tables. */ PAGE_TYPE_OPS(Table, table) /* * Marks guardpages used with debug_pagealloc. */ PAGE_TYPE_OPS(Guard, guard) extern bool is_free_buddy_page(struct page *page); __PAGEFLAG(Isolated, isolated, PF_ANY); /* * If network-based swap is enabled, sl*b must keep track of whether pages * were allocated from pfmemalloc reserves. */ static inline int PageSlabPfmemalloc(struct page *page) { VM_BUG_ON_PAGE(!PageSlab(page), page); return PageActive(page); } static inline void SetPageSlabPfmemalloc(struct page *page) { VM_BUG_ON_PAGE(!PageSlab(page), page); SetPageActive(page); } static inline void __ClearPageSlabPfmemalloc(struct page *page) { VM_BUG_ON_PAGE(!PageSlab(page), page); __ClearPageActive(page); } static inline void ClearPageSlabPfmemalloc(struct page *page) { VM_BUG_ON_PAGE(!PageSlab(page), page); ClearPageActive(page); } #ifdef CONFIG_MMU #define __PG_MLOCKED (1UL << PG_mlocked) #else #define __PG_MLOCKED 0 #endif /* * Flags checked when a page is freed. Pages being freed should not have * these flags set. It they are, there is a problem. */ #define PAGE_FLAGS_CHECK_AT_FREE \ (1UL << PG_lru | 1UL << PG_locked | \ 1UL << PG_private | 1UL << PG_private_2 | \ 1UL << PG_writeback | 1UL << PG_reserved | \ 1UL << PG_slab | 1UL << PG_active | \ 1UL << PG_unevictable | __PG_MLOCKED) /* * Flags checked when a page is prepped for return by the page allocator. * Pages being prepped should not have these flags set. It they are set, * there has been a kernel bug or struct page corruption. * * __PG_HWPOISON is exceptional because it needs to be kept beyond page's * alloc-free cycle to prevent from reusing the page. */ #define PAGE_FLAGS_CHECK_AT_PREP \ (((1UL << NR_PAGEFLAGS) - 1) & ~__PG_HWPOISON) #define PAGE_FLAGS_PRIVATE \ (1UL << PG_private | 1UL << PG_private_2) /** * page_has_private - Determine if page has private stuff * @page: The page to be checked * * Determine if a page has private stuff, indicating that release routines * should be invoked upon it. */ static inline int page_has_private(struct page *page) { return !!(page->flags & PAGE_FLAGS_PRIVATE); } #undef PF_ANY #undef PF_HEAD #undef PF_ONLY_HEAD #undef PF_NO_TAIL #undef PF_NO_COMPOUND #undef PF_SECOND #endif /* !__GENERATING_BOUNDS_H */ #endif /* PAGE_FLAGS_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 /* SPDX-License-Identifier: GPL-2.0 */ /* File: linux/xattr.h Extended attributes handling. Copyright (C) 2001 by Andreas Gruenbacher <a.gruenbacher@computer.org> Copyright (c) 2001-2002 Silicon Graphics, Inc. All Rights Reserved. Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> */ #ifndef _LINUX_XATTR_H #define _LINUX_XATTR_H #include <linux/slab.h> #include <linux/types.h> #include <linux/spinlock.h> #include <linux/mm.h> #include <uapi/linux/xattr.h> struct inode; struct dentry; /* * struct xattr_handler: When @name is set, match attributes with exactly that * name. When @prefix is set instead, match attributes with that prefix and * with a non-empty suffix. */ struct xattr_handler { const char *name; const char *prefix; int flags; /* fs private flags */ bool (*list)(struct dentry *dentry); int (*get)(const struct xattr_handler *, struct dentry *dentry, struct inode *inode, const char *name, void *buffer, size_t size); int (*set)(const struct xattr_handler *, struct dentry *dentry, struct inode *inode, const char *name, const void *buffer, size_t size, int flags); }; const char *xattr_full_name(const struct xattr_handler *, const char *); struct xattr { const char *name; void *value; size_t value_len; }; ssize_t __vfs_getxattr(struct dentry *, struct inode *, const char *, void *, size_t); ssize_t vfs_getxattr(struct dentry *, const char *, void *, size_t); ssize_t vfs_listxattr(struct dentry *d, char *list, size_t size); int __vfs_setxattr(struct dentry *, struct inode *, const char *, const void *, size_t, int); int __vfs_setxattr_noperm(struct dentry *, const char *, const void *, size_t, int); int __vfs_setxattr_locked(struct dentry *, const char *, const void *, size_t, int, struct inode **); int vfs_setxattr(struct dentry *, const char *, const void *, size_t, int); int __vfs_removexattr(struct dentry *, const char *); int __vfs_removexattr_locked(struct dentry *, const char *, struct inode **); int vfs_removexattr(struct dentry *, const char *); ssize_t generic_listxattr(struct dentry *dentry, char *buffer, size_t buffer_size); ssize_t vfs_getxattr_alloc(struct dentry *dentry, const char *name, char **xattr_value, size_t size, gfp_t flags); int xattr_supported_namespace(struct inode *inode, const char *prefix); static inline const char *xattr_prefix(const struct xattr_handler *handler) { return handler->prefix ?: handler->name; } struct simple_xattrs { struct list_head head; spinlock_t lock; }; struct simple_xattr { struct list_head list; char *name; size_t size; char value[]; }; /* * initialize the simple_xattrs structure */ static inline void simple_xattrs_init(struct simple_xattrs *xattrs) { INIT_LIST_HEAD(&xattrs->head); spin_lock_init(&xattrs->lock); } /* * free all the xattrs */ static inline void simple_xattrs_free(struct simple_xattrs *xattrs) { struct simple_xattr *xattr, *node; list_for_each_entry_safe(xattr, node, &xattrs->head, list) { kfree(xattr->name); kvfree(xattr); } } struct simple_xattr *simple_xattr_alloc(const void *value, size_t size); int simple_xattr_get(struct simple_xattrs *xattrs, const char *name, void *buffer, size_t size); int simple_xattr_set(struct simple_xattrs *xattrs, const char *name, const void *value, size_t size, int flags, ssize_t *removed_size); ssize_t simple_xattr_list(struct inode *inode, struct simple_xattrs *xattrs, char *buffer, size_t size); void simple_xattr_list_add(struct simple_xattrs *xattrs, struct simple_xattr *new_xattr); #endif /* _LINUX_XATTR_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 /* SPDX-License-Identifier: GPL-2.0 */ /* rwsem.h: R/W semaphores, public interface * * Written by David Howells (dhowells@redhat.com). * Derived from asm-i386/semaphore.h */ #ifndef _LINUX_RWSEM_H #define _LINUX_RWSEM_H #include <linux/linkage.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/list.h> #include <linux/spinlock.h> #include <linux/atomic.h> #include <linux/err.h> #ifdef CONFIG_RWSEM_SPIN_ON_OWNER #include <linux/osq_lock.h> #endif /* * For an uncontended rwsem, count and owner are the only fields a task * needs to touch when acquiring the rwsem. So they are put next to each * other to increase the chance that they will share the same cacheline. * * In a contended rwsem, the owner is likely the most frequently accessed * field in the structure as the optimistic waiter that holds the osq lock * will spin on owner. For an embedded rwsem, other hot fields in the * containing structure should be moved further away from the rwsem to * reduce the chance that they will share the same cacheline causing * cacheline bouncing problem. */ struct rw_semaphore { atomic_long_t count; /* * Write owner or one of the read owners as well flags regarding * the current state of the rwsem. Can be used as a speculative * check to see if the write owner is running on the cpu. */ atomic_long_t owner; #ifdef CONFIG_RWSEM_SPIN_ON_OWNER struct optimistic_spin_queue osq; /* spinner MCS lock */ #endif raw_spinlock_t wait_lock; struct list_head wait_list; #ifdef CONFIG_DEBUG_RWSEMS void *magic; #endif #ifdef CONFIG_DEBUG_LOCK_ALLOC struct lockdep_map dep_map; #endif }; /* In all implementations count != 0 means locked */ static inline int rwsem_is_locked(struct rw_semaphore *sem) { return atomic_long_read(&sem->count) != 0; } #define RWSEM_UNLOCKED_VALUE 0L #define __RWSEM_COUNT_INIT(name) .count = ATOMIC_LONG_INIT(RWSEM_UNLOCKED_VALUE) /* Common initializer macros and functions */ #ifdef CONFIG_DEBUG_LOCK_ALLOC # define __RWSEM_DEP_MAP_INIT(lockname) \ .dep_map = { \ .name = #lockname, \ .wait_type_inner = LD_WAIT_SLEEP, \ }, #else # define __RWSEM_DEP_MAP_INIT(lockname) #endif #ifdef CONFIG_DEBUG_RWSEMS # define __RWSEM_DEBUG_INIT(lockname) .magic = &lockname, #else # define __RWSEM_DEBUG_INIT(lockname) #endif #ifdef CONFIG_RWSEM_SPIN_ON_OWNER #define __RWSEM_OPT_INIT(lockname) .osq = OSQ_LOCK_UNLOCKED, #else #define __RWSEM_OPT_INIT(lockname) #endif #define __RWSEM_INITIALIZER(name) \ { __RWSEM_COUNT_INIT(name), \ .owner = ATOMIC_LONG_INIT(0), \ __RWSEM_OPT_INIT(name) \ .wait_lock = __RAW_SPIN_LOCK_UNLOCKED(name.wait_lock),\ .wait_list = LIST_HEAD_INIT((name).wait_list), \ __RWSEM_DEBUG_INIT(name) \ __RWSEM_DEP_MAP_INIT(name) } #define DECLARE_RWSEM(name) \ struct rw_semaphore name = __RWSEM_INITIALIZER(name) extern void __init_rwsem(struct rw_semaphore *sem, const char *name, struct lock_class_key *key); #define init_rwsem(sem) \ do { \ static struct lock_class_key __key; \ \ __init_rwsem((sem), #sem, &__key); \ } while (0) /* * This is the same regardless of which rwsem implementation that is being used. * It is just a heuristic meant to be called by somebody alreadying holding the * rwsem to see if somebody from an incompatible type is wanting access to the * lock. */ static inline int rwsem_is_contended(struct rw_semaphore *sem) { return !list_empty(&sem->wait_list); } /* * lock for reading */ extern void down_read(struct rw_semaphore *sem); extern int __must_check down_read_interruptible(struct rw_semaphore *sem); extern int __must_check down_read_killable(struct rw_semaphore *sem); /* * trylock for reading -- returns 1 if successful, 0 if contention */ extern int down_read_trylock(struct rw_semaphore *sem); /* * lock for writing */ extern void down_write(struct rw_semaphore *sem); extern int __must_check down_write_killable(struct rw_semaphore *sem); /* * trylock for writing -- returns 1 if successful, 0 if contention */ extern int down_write_trylock(struct rw_semaphore *sem); /* * release a read lock */ extern void up_read(struct rw_semaphore *sem); /* * release a write lock */ extern void up_write(struct rw_semaphore *sem); /* * downgrade write lock to read lock */ extern void downgrade_write(struct rw_semaphore *sem); #ifdef CONFIG_DEBUG_LOCK_ALLOC /* * nested locking. NOTE: rwsems are not allowed to recurse * (which occurs if the same task tries to acquire the same * lock instance multiple times), but multiple locks of the * same lock class might be taken, if the order of the locks * is always the same. This ordering rule can be expressed * to lockdep via the _nested() APIs, but enumerating the * subclasses that are used. (If the nesting relationship is * static then another method for expressing nested locking is * the explicit definition of lock class keys and the use of * lockdep_set_class() at lock initialization time. * See Documentation/locking/lockdep-design.rst for more details.) */ extern void down_read_nested(struct rw_semaphore *sem, int subclass); extern int __must_check down_read_killable_nested(struct rw_semaphore *sem, int subclass); extern void down_write_nested(struct rw_semaphore *sem, int subclass); extern int down_write_killable_nested(struct rw_semaphore *sem, int subclass); extern void _down_write_nest_lock(struct rw_semaphore *sem, struct lockdep_map *nest_lock); # define down_write_nest_lock(sem, nest_lock) \ do { \ typecheck(struct lockdep_map *, &(nest_lock)->dep_map); \ _down_write_nest_lock(sem, &(nest_lock)->dep_map); \ } while (0); /* * Take/release a lock when not the owner will release it. * * [ This API should be avoided as much as possible - the * proper abstraction for this case is completions. ] */ extern void down_read_non_owner(struct rw_semaphore *sem); extern void up_read_non_owner(struct rw_semaphore *sem); #else # define down_read_nested(sem, subclass) down_read(sem) # define down_read_killable_nested(sem, subclass) down_read_killable(sem) # define down_write_nest_lock(sem, nest_lock) down_write(sem) # define down_write_nested(sem, subclass) down_write(sem) # define down_write_killable_nested(sem, subclass) down_write_killable(sem) # define down_read_non_owner(sem) down_read(sem) # define up_read_non_owner(sem) up_read(sem) #endif #endif /* _LINUX_RWSEM_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_SPECIAL_INSNS_H #define _ASM_X86_SPECIAL_INSNS_H #ifdef __KERNEL__ #include <asm/nops.h> #include <asm/processor-flags.h> #include <linux/irqflags.h> #include <linux/jump_label.h> /* * The compiler should not reorder volatile asm statements with respect to each * other: they should execute in program order. However GCC 4.9.x and 5.x have * a bug (which was fixed in 8.1, 7.3 and 6.5) where they might reorder * volatile asm. The write functions are not affected since they have memory * clobbers preventing reordering. To prevent reads from being reordered with * respect to writes, use a dummy memory operand. */ #define __FORCE_ORDER "m"(*(unsigned int *)0x1000UL) void native_write_cr0(unsigned long val); static inline unsigned long native_read_cr0(void) { unsigned long val; asm volatile("mov %%cr0,%0\n\t" : "=r" (val) : __FORCE_ORDER); return val; } static __always_inline unsigned long native_read_cr2(void) { unsigned long val; asm volatile("mov %%cr2,%0\n\t" : "=r" (val) : __FORCE_ORDER); return val; } static __always_inline void native_write_cr2(unsigned long val) { asm volatile("mov %0,%%cr2": : "r" (val) : "memory"); } static inline unsigned long __native_read_cr3(void) { unsigned long val; asm volatile("mov %%cr3,%0\n\t" : "=r" (val) : __FORCE_ORDER); return val; } static inline void native_write_cr3(unsigned long val) { asm volatile("mov %0,%%cr3": : "r" (val) : "memory"); } static inline unsigned long native_read_cr4(void) { unsigned long val; #ifdef CONFIG_X86_32 /* * This could fault if CR4 does not exist. Non-existent CR4 * is functionally equivalent to CR4 == 0. Keep it simple and pretend * that CR4 == 0 on CPUs that don't have CR4. */ asm volatile("1: mov %%cr4, %0\n" "2:\n" _ASM_EXTABLE(1b, 2b) : "=r" (val) : "0" (0), __FORCE_ORDER); #else /* CR4 always exists on x86_64. */ asm volatile("mov %%cr4,%0\n\t" : "=r" (val) : __FORCE_ORDER); #endif return val; } void native_write_cr4(unsigned long val); #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS static inline u32 rdpkru(void) { u32 ecx = 0; u32 edx, pkru; /* * "rdpkru" instruction. Places PKRU contents in to EAX, * clears EDX and requires that ecx=0. */ asm volatile(".byte 0x0f,0x01,0xee\n\t" : "=a" (pkru), "=d" (edx) : "c" (ecx)); return pkru; } static inline void wrpkru(u32 pkru) { u32 ecx = 0, edx = 0; /* * "wrpkru" instruction. Loads contents in EAX to PKRU, * requires that ecx = edx = 0. */ asm volatile(".byte 0x0f,0x01,0xef\n\t" : : "a" (pkru), "c"(ecx), "d"(edx)); } static inline void __write_pkru(u32 pkru) { /* * WRPKRU is relatively expensive compared to RDPKRU. * Avoid WRPKRU when it would not change the value. */ if (pkru == rdpkru()) return; wrpkru(pkru); } #else static inline u32 rdpkru(void) { return 0; } static inline void __write_pkru(u32 pkru) { } #endif static inline void native_wbinvd(void) { asm volatile("wbinvd": : :"memory"); } extern asmlinkage void asm_load_gs_index(unsigned int selector); static inline void native_load_gs_index(unsigned int selector) { unsigned long flags; local_irq_save(flags); asm_load_gs_index(selector); local_irq_restore(flags); } static inline unsigned long __read_cr4(void) { return native_read_cr4(); } #ifdef CONFIG_PARAVIRT_XXL #include <asm/paravirt.h> #else static inline unsigned long read_cr0(void) { return native_read_cr0(); } static inline void write_cr0(unsigned long x) { native_write_cr0(x); } static __always_inline unsigned long read_cr2(void) { return native_read_cr2(); } static __always_inline void write_cr2(unsigned long x) { native_write_cr2(x); } /* * Careful! CR3 contains more than just an address. You probably want * read_cr3_pa() instead. */ static inline unsigned long __read_cr3(void) { return __native_read_cr3(); } static inline void write_cr3(unsigned long x) { native_write_cr3(x); } static inline void __write_cr4(unsigned long x) { native_write_cr4(x); } static inline void wbinvd(void) { native_wbinvd(); } #ifdef CONFIG_X86_64 static inline void load_gs_index(unsigned int selector) { native_load_gs_index(selector); } #endif #endif /* CONFIG_PARAVIRT_XXL */ static inline void clflush(volatile void *__p) { asm volatile("clflush %0" : "+m" (*(volatile char __force *)__p)); } static inline void clflushopt(volatile void *__p) { alternative_io(".byte " __stringify(NOP_DS_PREFIX) "; clflush %P0", ".byte 0x66; clflush %P0", X86_FEATURE_CLFLUSHOPT, "+m" (*(volatile char __force *)__p)); } static inline void clwb(volatile void *__p) { volatile struct { char x[64]; } *p = __p; asm volatile(ALTERNATIVE_2( ".byte " __stringify(NOP_DS_PREFIX) "; clflush (%[pax])", ".byte 0x66; clflush (%[pax])", /* clflushopt (%%rax) */ X86_FEATURE_CLFLUSHOPT, ".byte 0x66, 0x0f, 0xae, 0x30", /* clwb (%%rax) */ X86_FEATURE_CLWB) : [p] "+m" (*p) : [pax] "a" (p)); } #define nop() asm volatile ("nop") static inline void serialize(void) { /* Instruction opcode for SERIALIZE; supported in binutils >= 2.35. */ asm volatile(".byte 0xf, 0x1, 0xe8" ::: "memory"); } /* The dst parameter must be 64-bytes aligned */ static inline void movdir64b(void *dst, const void *src) { const struct { char _[64]; } *__src = src; struct { char _[64]; } *__dst = dst; /* * MOVDIR64B %(rdx), rax. * * Both __src and __dst must be memory constraints in order to tell the * compiler that no other memory accesses should be reordered around * this one. * * Also, both must be supplied as lvalues because this tells * the compiler what the object is (its size) the instruction accesses. * I.e., not the pointers but what they point to, thus the deref'ing '*'. */ asm volatile(".byte 0x66, 0x0f, 0x38, 0xf8, 0x02" : "+m" (*__dst) : "m" (*__src), "a" (__dst), "d" (__src)); } /** * enqcmds - Enqueue a command in supervisor (CPL0) mode * @dst: destination, in MMIO space (must be 512-bit aligned) * @src: 512 bits memory operand * * The ENQCMDS instruction allows software to write a 512-bit command to * a 512-bit-aligned special MMIO region that supports the instruction. * A return status is loaded into the ZF flag in the RFLAGS register. * ZF = 0 equates to success, and ZF = 1 indicates retry or error. * * This function issues the ENQCMDS instruction to submit data from * kernel space to MMIO space, in a unit of 512 bits. Order of data access * is not guaranteed, nor is a memory barrier performed afterwards. It * returns 0 on success and -EAGAIN on failure. * * Warning: Do not use this helper unless your driver has checked that the * ENQCMDS instruction is supported on the platform and the device accepts * ENQCMDS. */ static inline int enqcmds(void __iomem *dst, const void *src) { const struct { char _[64]; } *__src = src; struct { char _[64]; } __iomem *__dst = dst; bool zf; /* * ENQCMDS %(rdx), rax * * See movdir64b()'s comment on operand specification. */ asm volatile(".byte 0xf3, 0x0f, 0x38, 0xf8, 0x02, 0x66, 0x90" CC_SET(z) : CC_OUT(z) (zf), "+m" (*__dst) : "m" (*__src), "a" (__dst), "d" (__src)); /* Submission failure is indicated via EFLAGS.ZF=1 */ if (zf) return -EAGAIN; return 0; } #endif /* __KERNEL__ */ #endif /* _ASM_X86_SPECIAL_INSNS_H */
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 // SPDX-License-Identifier: GPL-2.0-only /* * linux/fs/open.c * * Copyright (C) 1991, 1992 Linus Torvalds */ #include <linux/string.h> #include <linux/mm.h> #include <linux/file.h> #include <linux/fdtable.h> #include <linux/fsnotify.h> #include <linux/module.h> #include <linux/tty.h> #include <linux/namei.h> #include <linux/backing-dev.h> #include <linux/capability.h> #include <linux/securebits.h> #include <linux/security.h> #include <linux/mount.h> #include <linux/fcntl.h> #include <linux/slab.h> #include <linux/uaccess.h> #include <linux/fs.h> #include <linux/personality.h> #include <linux/pagemap.h> #include <linux/syscalls.h> #include <linux/rcupdate.h> #include <linux/audit.h> #include <linux/falloc.h> #include <linux/fs_struct.h> #include <linux/ima.h> #include <linux/dnotify.h> #include <linux/compat.h> #include "internal.h" int do_truncate(struct dentry *dentry, loff_t length, unsigned int time_attrs, struct file *filp) { int ret; struct iattr newattrs; /* Not pretty: "inode->i_size" shouldn't really be signed. But it is. */ if (length < 0) return -EINVAL; newattrs.ia_size = length; newattrs.ia_valid = ATTR_SIZE | time_attrs; if (filp) { newattrs.ia_file = filp; newattrs.ia_valid |= ATTR_FILE; } /* Remove suid, sgid, and file capabilities on truncate too */ ret = dentry_needs_remove_privs(dentry); if (ret < 0) return ret; if (ret) newattrs.ia_valid |= ret | ATTR_FORCE; inode_lock(dentry->d_inode); /* Note any delegations or leases have already been broken: */ ret = notify_change(dentry, &newattrs, NULL); inode_unlock(dentry->d_inode); return ret; } long vfs_truncate(const struct path *path, loff_t length) { struct inode *inode; long error; inode = path->dentry->d_inode; /* For directories it's -EISDIR, for other non-regulars - -EINVAL */ if (S_ISDIR(inode->i_mode)) return -EISDIR; if (!S_ISREG(inode->i_mode)) return -EINVAL; error = mnt_want_write(path->mnt); if (error) goto out; error = inode_permission(inode, MAY_WRITE); if (error) goto mnt_drop_write_and_out; error = -EPERM; if (IS_APPEND(inode)) goto mnt_drop_write_and_out; error = get_write_access(inode); if (error) goto mnt_drop_write_and_out; /* * Make sure that there are no leases. get_write_access() protects * against the truncate racing with a lease-granting setlease(). */ error = break_lease(inode, O_WRONLY); if (error) goto put_write_and_out; error = locks_verify_truncate(inode, NULL, length); if (!error) error = security_path_truncate(path); if (!error) error = do_truncate(path->dentry, length, 0, NULL); put_write_and_out: put_write_access(inode); mnt_drop_write_and_out: mnt_drop_write(path->mnt); out: return error; } EXPORT_SYMBOL_GPL(vfs_truncate); long do_sys_truncate(const char __user *pathname, loff_t length) { unsigned int lookup_flags = LOOKUP_FOLLOW; struct path path; int error; if (length < 0) /* sorry, but loff_t says... */ return -EINVAL; retry: error = user_path_at(AT_FDCWD, pathname, lookup_flags, &path); if (!error) { error = vfs_truncate(&path, length); path_put(&path); } if (retry_estale(error, lookup_flags)) { lookup_flags |= LOOKUP_REVAL; goto retry; } return error; } SYSCALL_DEFINE2(truncate, const char __user *, path, long, length) { return do_sys_truncate(path, length); } #ifdef CONFIG_COMPAT COMPAT_SYSCALL_DEFINE2(truncate, const char __user *, path, compat_off_t, length) { return do_sys_truncate(path, length); } #endif long do_sys_ftruncate(unsigned int fd, loff_t length, int small) { struct inode *inode; struct dentry *dentry; struct fd f; int error; error = -EINVAL; if (length < 0) goto out; error = -EBADF; f = fdget(fd); if (!f.file) goto out; /* explicitly opened as large or we are on 64-bit box */ if (f.file->f_flags & O_LARGEFILE) small = 0; dentry = f.file->f_path.dentry; inode = dentry->d_inode; error = -EINVAL; if (!S_ISREG(inode->i_mode) || !(f.file->f_mode & FMODE_WRITE)) goto out_putf; error = -EINVAL; /* Cannot ftruncate over 2^31 bytes without large file support */ if (small && length > MAX_NON_LFS) goto out_putf; error = -EPERM; /* Check IS_APPEND on real upper inode */ if (IS_APPEND(file_inode(f.file))) goto out_putf; sb_start_write(inode->i_sb); error = locks_verify_truncate(inode, f.file, length); if (!error) error = security_path_truncate(&f.file->f_path); if (!error) error = do_truncate(dentry, length, ATTR_MTIME|ATTR_CTIME, f.file); sb_end_write(inode->i_sb); out_putf: fdput(f); out: return error; } SYSCALL_DEFINE2(ftruncate, unsigned int, fd, unsigned long, length) { return do_sys_ftruncate(fd, length, 1); } #ifdef CONFIG_COMPAT COMPAT_SYSCALL_DEFINE2(ftruncate, unsigned int, fd, compat_ulong_t, length) { return do_sys_ftruncate(fd, length, 1); } #endif /* LFS versions of truncate are only needed on 32 bit machines */ #if BITS_PER_LONG == 32 SYSCALL_DEFINE2(truncate64, const char __user *, path, loff_t, length) { return do_sys_truncate(path, length); } SYSCALL_DEFINE2(ftruncate64, unsigned int, fd, loff_t, length) { return do_sys_ftruncate(fd, length, 0); } #endif /* BITS_PER_LONG == 32 */ int vfs_fallocate(struct file *file, int mode, loff_t offset, loff_t len) { struct inode *inode = file_inode(file); long ret; if (offset < 0 || len <= 0) return -EINVAL; /* Return error if mode is not supported */ if (mode & ~FALLOC_FL_SUPPORTED_MASK) return -EOPNOTSUPP; /* Punch hole and zero range are mutually exclusive */ if ((mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE)) == (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE)) return -EOPNOTSUPP; /* Punch hole must have keep size set */ if ((mode & FALLOC_FL_PUNCH_HOLE) && !(mode & FALLOC_FL_KEEP_SIZE)) return -EOPNOTSUPP; /* Collapse range should only be used exclusively. */ if ((mode & FALLOC_FL_COLLAPSE_RANGE) && (mode & ~FALLOC_FL_COLLAPSE_RANGE)) return -EINVAL; /* Insert range should only be used exclusively. */ if ((mode & FALLOC_FL_INSERT_RANGE) && (mode & ~FALLOC_FL_INSERT_RANGE)) return -EINVAL; /* Unshare range should only be used with allocate mode. */ if ((mode & FALLOC_FL_UNSHARE_RANGE) && (mode & ~(FALLOC_FL_UNSHARE_RANGE | FALLOC_FL_KEEP_SIZE))) return -EINVAL; if (!(file->f_mode & FMODE_WRITE)) return -EBADF; /* * We can only allow pure fallocate on append only files */ if ((mode & ~FALLOC_FL_KEEP_SIZE) && IS_APPEND(inode)) return -EPERM; if (IS_IMMUTABLE(inode)) return -EPERM; /* * We cannot allow any fallocate operation on an active swapfile */ if (IS_SWAPFILE(inode)) return -ETXTBSY; /* * Revalidate the write permissions, in case security policy has * changed since the files were opened. */ ret = security_file_permission(file, MAY_WRITE); if (ret) return ret; if (S_ISFIFO(inode->i_mode)) return -ESPIPE; if (S_ISDIR(inode->i_mode)) return -EISDIR; if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) return -ENODEV; /* Check for wrap through zero too */ if (((offset + len) > inode->i_sb->s_maxbytes) || ((offset + len) < 0)) return -EFBIG; if (!file->f_op->fallocate) return -EOPNOTSUPP; file_start_write(file); ret = file->f_op->fallocate(file, mode, offset, len); /* * Create inotify and fanotify events. * * To keep the logic simple always create events if fallocate succeeds. * This implies that events are even created if the file size remains * unchanged, e.g. when using flag FALLOC_FL_KEEP_SIZE. */ if (ret == 0) fsnotify_modify(file); file_end_write(file); return ret; } EXPORT_SYMBOL_GPL(vfs_fallocate); int ksys_fallocate(int fd, int mode, loff_t offset, loff_t len) { struct fd f = fdget(fd); int error = -EBADF; if (f.file) { error = vfs_fallocate(f.file, mode, offset, len); fdput(f); } return error; } SYSCALL_DEFINE4(fallocate, int, fd, int, mode, loff_t, offset, loff_t, len) { return ksys_fallocate(fd, mode, offset, len); } /* * access() needs to use the real uid/gid, not the effective uid/gid. * We do this by temporarily clearing all FS-related capabilities and * switching the fsuid/fsgid around to the real ones. */ static const struct cred *access_override_creds(void) { const struct cred *old_cred; struct cred *override_cred; override_cred = prepare_creds(); if (!override_cred) return NULL; override_cred->fsuid = override_cred->uid; override_cred->fsgid = override_cred->gid; if (!issecure(SECURE_NO_SETUID_FIXUP)) { /* Clear the capabilities if we switch to a non-root user */ kuid_t root_uid = make_kuid(override_cred->user_ns, 0); if (!uid_eq(override_cred->uid, root_uid)) cap_clear(override_cred->cap_effective); else override_cred->cap_effective = override_cred->cap_permitted; } /* * The new set of credentials can *only* be used in * task-synchronous circumstances, and does not need * RCU freeing, unless somebody then takes a separate * reference to it. * * NOTE! This is _only_ true because this credential * is used purely for override_creds() that installs * it as the subjective cred. Other threads will be * accessing ->real_cred, not the subjective cred. * * If somebody _does_ make a copy of this (using the * 'get_current_cred()' function), that will clear the * non_rcu field, because now that other user may be * expecting RCU freeing. But normal thread-synchronous * cred accesses will keep things non-RCY. */ override_cred->non_rcu = 1; old_cred = override_creds(override_cred); /* override_cred() gets its own ref */ put_cred(override_cred); return old_cred; } static long do_faccessat(int dfd, const char __user *filename, int mode, int flags) { struct path path; struct inode *inode; int res; unsigned int lookup_flags = LOOKUP_FOLLOW; const struct cred *old_cred = NULL; if (mode & ~S_IRWXO) /* where's F_OK, X_OK, W_OK, R_OK? */ return -EINVAL; if (flags & ~(AT_EACCESS | AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) return -EINVAL; if (flags & AT_SYMLINK_NOFOLLOW) lookup_flags &= ~LOOKUP_FOLLOW; if (flags & AT_EMPTY_PATH) lookup_flags |= LOOKUP_EMPTY; if (!(flags & AT_EACCESS)) { old_cred = access_override_creds(); if (!old_cred) return -ENOMEM; } retry: res = user_path_at(dfd, filename, lookup_flags, &path); if (res) goto out; inode = d_backing_inode(path.dentry); if ((mode & MAY_EXEC) && S_ISREG(inode->i_mode)) { /* * MAY_EXEC on regular files is denied if the fs is mounted * with the "noexec" flag. */ res = -EACCES; if (path_noexec(&path)) goto out_path_release; } res = inode_permission(inode, mode | MAY_ACCESS); /* SuS v2 requires we report a read only fs too */ if (res || !(mode & S_IWOTH) || special_file(inode->i_mode)) goto out_path_release; /* * This is a rare case where using __mnt_is_readonly() * is OK without a mnt_want/drop_write() pair. Since * no actual write to the fs is performed here, we do * not need to telegraph to that to anyone. * * By doing this, we accept that this access is * inherently racy and know that the fs may change * state before we even see this result. */ if (__mnt_is_readonly(path.mnt)) res = -EROFS; out_path_release: path_put(&path); if (retry_estale(res, lookup_flags)) { lookup_flags |= LOOKUP_REVAL; goto retry; } out: if (old_cred) revert_creds(old_cred); return res; } SYSCALL_DEFINE3(faccessat, int, dfd, const char __user *, filename, int, mode) { return do_faccessat(dfd, filename, mode, 0); } SYSCALL_DEFINE4(faccessat2, int, dfd, const char __user *, filename, int, mode, int, flags) { return do_faccessat(dfd, filename, mode, flags); } SYSCALL_DEFINE2(access, const char __user *, filename, int, mode) { return do_faccessat(AT_FDCWD, filename, mode, 0); } SYSCALL_DEFINE1(chdir, const char __user *, filename) { struct path path; int error; unsigned int lookup_flags = LOOKUP_FOLLOW | LOOKUP_DIRECTORY; retry: error = user_path_at(AT_FDCWD, filename, lookup_flags, &path); if (error) goto out; error = inode_permission(path.dentry->d_inode, MAY_EXEC | MAY_CHDIR); if (error) goto dput_and_out; set_fs_pwd(current->fs, &path); dput_and_out: path_put(&path); if (retry_estale(error, lookup_flags)) { lookup_flags |= LOOKUP_REVAL; goto retry; } out: return error; } SYSCALL_DEFINE1(fchdir, unsigned int, fd) { struct fd f = fdget_raw(fd); int error; error = -EBADF; if (!f.file) goto out; error = -ENOTDIR; if (!d_can_lookup(f.file->f_path.dentry)) goto out_putf; error = inode_permission(file_inode(f.file), MAY_EXEC | MAY_CHDIR); if (!error) set_fs_pwd(current->fs, &f.file->f_path); out_putf: fdput(f); out: return error; } SYSCALL_DEFINE1(chroot, const char __user *, filename) { struct path path; int error; unsigned int lookup_flags = LOOKUP_FOLLOW | LOOKUP_DIRECTORY; retry: error = user_path_at(AT_FDCWD, filename, lookup_flags, &path); if (error) goto out; error = inode_permission(path.dentry->d_inode, MAY_EXEC | MAY_CHDIR); if (error) goto dput_and_out; error = -EPERM; if (!ns_capable(current_user_ns(), CAP_SYS_CHROOT)) goto dput_and_out; error = security_path_chroot(&path); if (error) goto dput_and_out; set_fs_root(current->fs, &path); error = 0; dput_and_out: path_put(&path); if (retry_estale(error, lookup_flags)) { lookup_flags |= LOOKUP_REVAL; goto retry; } out: return error; } int chmod_common(const struct path *path, umode_t mode) { struct inode *inode = path->dentry->d_inode; struct inode *delegated_inode = NULL; struct iattr newattrs; int error; error = mnt_want_write(path->mnt); if (error) return error; retry_deleg: inode_lock(inode); error = security_path_chmod(path, mode); if (error) goto out_unlock; newattrs.ia_mode = (mode & S_IALLUGO) | (inode->i_mode & ~S_IALLUGO); newattrs.ia_valid = ATTR_MODE | ATTR_CTIME; error = notify_change(path->dentry, &newattrs, &delegated_inode); out_unlock: inode_unlock(inode); if (delegated_inode) { error = break_deleg_wait(&delegated_inode); if (!error) goto retry_deleg; } mnt_drop_write(path->mnt); return error; } int vfs_fchmod(struct file *file, umode_t mode) { audit_file(file); return chmod_common(&file->f_path, mode); } SYSCALL_DEFINE2(fchmod, unsigned int, fd, umode_t, mode) { struct fd f = fdget(fd); int err = -EBADF; if (f.file) { err = vfs_fchmod(f.file, mode); fdput(f); } return err; } static int do_fchmodat(int dfd, const char __user *filename, umode_t mode) { struct path path; int error; unsigned int lookup_flags = LOOKUP_FOLLOW; retry: error = user_path_at(dfd, filename, lookup_flags, &path); if (!error) { error = chmod_common(&path, mode); path_put(&path); if (retry_estale(error, lookup_flags)) { lookup_flags |= LOOKUP_REVAL; goto retry; } } return error; } SYSCALL_DEFINE3(fchmodat, int, dfd, const char __user *, filename, umode_t, mode) { return do_fchmodat(dfd, filename, mode); } SYSCALL_DEFINE2(chmod, const char __user *, filename, umode_t, mode) { return do_fchmodat(AT_FDCWD, filename, mode); } int chown_common(const struct path *path, uid_t user, gid_t group) { struct inode *inode = path->dentry->d_inode; struct inode *delegated_inode = NULL; int error; struct iattr newattrs; kuid_t uid; kgid_t gid; uid = make_kuid(current_user_ns(), user); gid = make_kgid(current_user_ns(), group); retry_deleg: newattrs.ia_valid = ATTR_CTIME; if (user != (uid_t) -1) { if (!uid_valid(uid)) return -EINVAL; newattrs.ia_valid |= ATTR_UID; newattrs.ia_uid = uid; } if (group != (gid_t) -1) { if (!gid_valid(gid)) return -EINVAL; newattrs.ia_valid |= ATTR_GID; newattrs.ia_gid = gid; } if (!S_ISDIR(inode->i_mode)) newattrs.ia_valid |= ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_KILL_PRIV; inode_lock(inode); error = security_path_chown(path, uid, gid); if (!error) error = notify_change(path->dentry, &newattrs, &delegated_inode); inode_unlock(inode); if (delegated_inode) { error = break_deleg_wait(&delegated_inode); if (!error) goto retry_deleg; } return error; } int do_fchownat(int dfd, const char __user *filename, uid_t user, gid_t group, int flag) { struct path path; int error = -EINVAL; int lookup_flags; if ((flag & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0) goto out; lookup_flags = (flag & AT_SYMLINK_NOFOLLOW) ? 0 : LOOKUP_FOLLOW; if (flag & AT_EMPTY_PATH) lookup_flags |= LOOKUP_EMPTY; retry: error = user_path_at(dfd, filename, lookup_flags, &path); if (error) goto out; error = mnt_want_write(path.mnt); if (error) goto out_release; error = chown_common(&path, user, group); mnt_drop_write(path.mnt); out_release: path_put(&path); if (retry_estale(error, lookup_flags)) { lookup_flags |= LOOKUP_REVAL; goto retry; } out: return error; } SYSCALL_DEFINE5(fchownat, int, dfd, const char __user *, filename, uid_t, user, gid_t, group, int, flag) { return do_fchownat(dfd, filename, user, group, flag); } SYSCALL_DEFINE3(chown, const char __user *, filename, uid_t, user, gid_t, group) { return do_fchownat(AT_FDCWD, filename, user, group, 0); } SYSCALL_DEFINE3(lchown, const char __user *, filename, uid_t, user, gid_t, group) { return do_fchownat(AT_FDCWD, filename, user, group, AT_SYMLINK_NOFOLLOW); } int vfs_fchown(struct file *file, uid_t user, gid_t group) { int error; error = mnt_want_write_file(file); if (error) return error; audit_file(file); error = chown_common(&file->f_path, user, group); mnt_drop_write_file(file); return error; } int ksys_fchown(unsigned int fd, uid_t user, gid_t group) { struct fd f = fdget(fd); int error = -EBADF; if (f.file) { error = vfs_fchown(f.file, user, group); fdput(f); } return error; } SYSCALL_DEFINE3(fchown, unsigned int, fd, uid_t, user, gid_t, group) { return ksys_fchown(fd, user, group); } static int do_dentry_open(struct file *f, struct inode *inode, int (*open)(struct inode *, struct file *)) { static const struct file_operations empty_fops = {}; int error; path_get(&f->f_path); f->f_inode = inode; f->f_mapping = inode->i_mapping; f->f_wb_err = filemap_sample_wb_err(f->f_mapping); f->f_sb_err = file_sample_sb_err(f); if (unlikely(f->f_flags & O_PATH)) { f->f_mode = FMODE_PATH | FMODE_OPENED; f->f_op = &empty_fops; return 0; } if (f->f_mode & FMODE_WRITE && !special_file(inode->i_mode)) { error = get_write_access(inode); if (unlikely(error)) goto cleanup_file; error = __mnt_want_write(f->f_path.mnt); if (unlikely(error)) { put_write_access(inode); goto cleanup_file; } f->f_mode |= FMODE_WRITER; } /* POSIX.1-2008/SUSv4 Section XSI 2.9.7 */ if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)) f->f_mode |= FMODE_ATOMIC_POS; f->f_op = fops_get(inode->i_fop); if (WARN_ON(!f->f_op)) { error = -ENODEV; goto cleanup_all; } error = security_file_open(f); if (error) goto cleanup_all; error = break_lease(locks_inode(f), f->f_flags); if (error) goto cleanup_all; /* normally all 3 are set; ->open() can clear them if needed */ f->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE; if (!open) open = f->f_op->open; if (open) { error = open(inode, f); if (error) goto cleanup_all; } f->f_mode |= FMODE_OPENED; if ((f->f_mode & (FMODE_READ | FMODE_WRITE)) == FMODE_READ) i_readcount_inc(inode); if ((f->f_mode & FMODE_READ) && likely(f->f_op->read || f->f_op->read_iter)) f->f_mode |= FMODE_CAN_READ; if ((f->f_mode & FMODE_WRITE) && likely(f->f_op->write || f->f_op->write_iter)) f->f_mode |= FMODE_CAN_WRITE; f->f_write_hint = WRITE_LIFE_NOT_SET; f->f_flags &= ~(O_CREAT | O_EXCL | O_NOCTTY | O_TRUNC); file_ra_state_init(&f->f_ra, f->f_mapping->host->i_mapping); /* NB: we're sure to have correct a_ops only after f_op->open */ if (f->f_flags & O_DIRECT) { if (!f->f_mapping->a_ops || !f->f_mapping->a_ops->direct_IO) return -EINVAL; } /* * XXX: Huge page cache doesn't support writing yet. Drop all page * cache for this file before processing writes. */ if ((f->f_mode & FMODE_WRITE) && filemap_nr_thps(inode->i_mapping)) truncate_pagecache(inode, 0); return 0; cleanup_all: if (WARN_ON_ONCE(error > 0)) error = -EINVAL; fops_put(f->f_op); if (f->f_mode & FMODE_WRITER) { put_write_access(inode); __mnt_drop_write(f->f_path.mnt); } cleanup_file: path_put(&f->f_path); f->f_path.mnt = NULL; f->f_path.dentry = NULL; f->f_inode = NULL; return error; } /** * finish_open - finish opening a file * @file: file pointer * @dentry: pointer to dentry * @open: open callback * @opened: state of open * * This can be used to finish opening a file passed to i_op->atomic_open(). * * If the open callback is set to NULL, then the standard f_op->open() * filesystem callback is substituted. * * NB: the dentry reference is _not_ consumed. If, for example, the dentry is * the return value of d_splice_alias(), then the caller needs to perform dput() * on it after finish_open(). * * Returns zero on success or -errno if the open failed. */ int finish_open(struct file *file, struct dentry *dentry, int (*open)(struct inode *, struct file *)) { BUG_ON(file->f_mode & FMODE_OPENED); /* once it's opened, it's opened */ file->f_path.dentry = dentry; return do_dentry_open(file, d_backing_inode(dentry), open); } EXPORT_SYMBOL(finish_open); /** * finish_no_open - finish ->atomic_open() without opening the file * * @file: file pointer * @dentry: dentry or NULL (as returned from ->lookup()) * * This can be used to set the result of a successful lookup in ->atomic_open(). * * NB: unlike finish_open() this function does consume the dentry reference and * the caller need not dput() it. * * Returns "0" which must be the return value of ->atomic_open() after having * called this function. */ int finish_no_open(struct file *file, struct dentry *dentry) { file->f_path.dentry = dentry; return 0; } EXPORT_SYMBOL(finish_no_open); char *file_path(struct file *filp, char *buf, int buflen) { return d_path(&filp->f_path, buf, buflen); } EXPORT_SYMBOL(file_path); /** * vfs_open - open the file at the given path * @path: path to open * @file: newly allocated file with f_flag initialized * @cred: credentials to use */ int vfs_open(const struct path *path, struct file *file) { file->f_path = *path; return do_dentry_open(file, d_backing_inode(path->dentry), NULL); } struct file *dentry_open(const struct path *path, int flags, const struct cred *cred) { int error; struct file *f; validate_creds(cred); /* We must always pass in a valid mount pointer. */ BUG_ON(!path->mnt); f = alloc_empty_file(flags, cred); if (!IS_ERR(f)) { error = vfs_open(path, f); if (error) { fput(f); f = ERR_PTR(error); } } return f; } EXPORT_SYMBOL(dentry_open); struct file *open_with_fake_path(const struct path *path, int flags, struct inode *inode, const struct cred *cred) { struct file *f = alloc_empty_file_noaccount(flags, cred); if (!IS_ERR(f)) { int error; f->f_path = *path; error = do_dentry_open(f, inode, NULL); if (error) { fput(f); f = ERR_PTR(error); } } return f; } EXPORT_SYMBOL(open_with_fake_path); #define WILL_CREATE(flags) (flags & (O_CREAT | __O_TMPFILE)) #define O_PATH_FLAGS (O_DIRECTORY | O_NOFOLLOW | O_PATH | O_CLOEXEC) inline struct open_how build_open_how(int flags, umode_t mode) { struct open_how how = { .flags = flags & VALID_OPEN_FLAGS, .mode = mode & S_IALLUGO, }; /* O_PATH beats everything else. */ if (how.flags & O_PATH) how.flags &= O_PATH_FLAGS; /* Modes should only be set for create-like flags. */ if (!WILL_CREATE(how.flags)) how.mode = 0; return how; } inline int build_open_flags(const struct open_how *how, struct open_flags *op) { u64 flags = how->flags; u64 strip = FMODE_NONOTIFY | O_CLOEXEC; int lookup_flags = 0; int acc_mode = ACC_MODE(flags); BUILD_BUG_ON_MSG(upper_32_bits(VALID_OPEN_FLAGS), "struct open_flags doesn't yet handle flags > 32 bits"); /* * Strip flags that either shouldn't be set by userspace like * FMODE_NONOTIFY or that aren't relevant in determining struct * open_flags like O_CLOEXEC. */ flags &= ~strip; /* * Older syscalls implicitly clear all of the invalid flags or argument * values before calling build_open_flags(), but openat2(2) checks all * of its arguments. */ if (flags & ~VALID_OPEN_FLAGS) return -EINVAL; if (how->resolve & ~VALID_RESOLVE_FLAGS) return -EINVAL; /* Scoping flags are mutually exclusive. */ if ((how->resolve & RESOLVE_BENEATH) && (how->resolve & RESOLVE_IN_ROOT)) return -EINVAL; /* Deal with the mode. */ if (WILL_CREATE(flags)) { if (how->mode & ~S_IALLUGO) return -EINVAL; op->mode = how->mode | S_IFREG; } else { if (how->mode != 0) return -EINVAL; op->mode = 0; } /* * In order to ensure programs get explicit errors when trying to use * O_TMPFILE on old kernels, O_TMPFILE is implemented such that it * looks like (O_DIRECTORY|O_RDWR & ~O_CREAT) to old kernels. But we * have to require userspace to explicitly set it. */ if (flags & __O_TMPFILE) { if ((flags & O_TMPFILE_MASK) != O_TMPFILE) return -EINVAL; if (!(acc_mode & MAY_WRITE)) return -EINVAL; } if (flags & O_PATH) { /* O_PATH only permits certain other flags to be set. */ if (flags & ~O_PATH_FLAGS) return -EINVAL; acc_mode = 0; } /* * O_SYNC is implemented as __O_SYNC|O_DSYNC. As many places only * check for O_DSYNC if the need any syncing at all we enforce it's * always set instead of having to deal with possibly weird behaviour * for malicious applications setting only __O_SYNC. */ if (flags & __O_SYNC) flags |= O_DSYNC; op->open_flag = flags; /* O_TRUNC implies we need access checks for write permissions */ if (flags & O_TRUNC) acc_mode |= MAY_WRITE; /* Allow the LSM permission hook to distinguish append access from general write access. */ if (flags & O_APPEND) acc_mode |= MAY_APPEND; op->acc_mode = acc_mode; op->intent = flags & O_PATH ? 0 : LOOKUP_OPEN; if (flags & O_CREAT) { op->intent |= LOOKUP_CREATE; if (flags & O_EXCL) { op->intent |= LOOKUP_EXCL; flags |= O_NOFOLLOW; } } if (flags & O_DIRECTORY) lookup_flags |= LOOKUP_DIRECTORY; if (!(flags & O_NOFOLLOW)) lookup_flags |= LOOKUP_FOLLOW; if (how->resolve & RESOLVE_NO_XDEV) lookup_flags |= LOOKUP_NO_XDEV; if (how->resolve & RESOLVE_NO_MAGICLINKS) lookup_flags |= LOOKUP_NO_MAGICLINKS; if (how->resolve & RESOLVE_NO_SYMLINKS) lookup_flags |= LOOKUP_NO_SYMLINKS; if (how->resolve & RESOLVE_BENEATH) lookup_flags |= LOOKUP_BENEATH; if (how->resolve & RESOLVE_IN_ROOT) lookup_flags |= LOOKUP_IN_ROOT; op->lookup_flags = lookup_flags; return 0; } /** * file_open_name - open file and return file pointer * * @name: struct filename containing path to open * @flags: open flags as per the open(2) second argument * @mode: mode for the new file if O_CREAT is set, else ignored * * This is the helper to open a file from kernelspace if you really * have to. But in generally you should not do this, so please move * along, nothing to see here.. */ struct file *file_open_name(struct filename *name, int flags, umode_t mode) { struct open_flags op; struct open_how how = build_open_how(flags, mode); int err = build_open_flags(&how, &op); if (err) return ERR_PTR(err); return do_filp_open(AT_FDCWD, name, &op); } /** * filp_open - open file and return file pointer * * @filename: path to open * @flags: open flags as per the open(2) second argument * @mode: mode for the new file if O_CREAT is set, else ignored * * This is the helper to open a file from kernelspace if you really * have to. But in generally you should not do this, so please move * along, nothing to see here.. */ struct file *filp_open(const char *filename, int flags, umode_t mode) { struct filename *name = getname_kernel(filename); struct file *file = ERR_CAST(name); if (!IS_ERR(name)) { file = file_open_name(name, flags, mode); putname(name); } return file; } EXPORT_SYMBOL(filp_open); struct file *file_open_root(struct dentry *dentry, struct vfsmount *mnt, const char *filename, int flags, umode_t mode) { struct open_flags op; struct open_how how = build_open_how(flags, mode); int err = build_open_flags(&how, &op); if (err) return ERR_PTR(err); return do_file_open_root(dentry, mnt, filename, &op); } EXPORT_SYMBOL(file_open_root); static long do_sys_openat2(int dfd, const char __user *filename, struct open_how *how) { struct open_flags op; int fd = build_open_flags(how, &op); struct filename *tmp; if (fd) return fd; tmp = getname(filename); if (IS_ERR(tmp)) return PTR_ERR(tmp); fd = get_unused_fd_flags(how->flags); if (fd >= 0) { struct file *f = do_filp_open(dfd, tmp, &op); if (IS_ERR(f)) { put_unused_fd(fd); fd = PTR_ERR(f); } else { fsnotify_open(f); fd_install(fd, f); } } putname(tmp); return fd; } long do_sys_open(int dfd, const char __user *filename, int flags, umode_t mode) { struct open_how how = build_open_how(flags, mode); return do_sys_openat2(dfd, filename, &how); } SYSCALL_DEFINE3(open, const char __user *, filename, int, flags, umode_t, mode) { if (force_o_largefile()) flags |= O_LARGEFILE; return do_sys_open(AT_FDCWD, filename, flags, mode); } SYSCALL_DEFINE4(openat, int, dfd, const char __user *, filename, int, flags, umode_t, mode) { if (force_o_largefile()) flags |= O_LARGEFILE; return do_sys_open(dfd, filename, flags, mode); } SYSCALL_DEFINE4(openat2, int, dfd, const char __user *, filename, struct open_how __user *, how, size_t, usize) { int err; struct open_how tmp; BUILD_BUG_ON(sizeof(struct open_how) < OPEN_HOW_SIZE_VER0); BUILD_BUG_ON(sizeof(struct open_how) != OPEN_HOW_SIZE_LATEST); if (unlikely(usize < OPEN_HOW_SIZE_VER0)) return -EINVAL; err = copy_struct_from_user(&tmp, sizeof(tmp), how, usize); if (err) return err; /* O_LARGEFILE is only allowed for non-O_PATH. */ if (!(tmp.flags & O_PATH) && force_o_largefile()) tmp.flags |= O_LARGEFILE; return do_sys_openat2(dfd, filename, &tmp); } #ifdef CONFIG_COMPAT /* * Exactly like sys_open(), except that it doesn't set the * O_LARGEFILE flag. */ COMPAT_SYSCALL_DEFINE3(open, const char __user *, filename, int, flags, umode_t, mode) { return do_sys_open(AT_FDCWD, filename, flags, mode); } /* * Exactly like sys_openat(), except that it doesn't set the * O_LARGEFILE flag. */ COMPAT_SYSCALL_DEFINE4(openat, int, dfd, const char __user *, filename, int, flags, umode_t, mode) { return do_sys_open(dfd, filename, flags, mode); } #endif #ifndef __alpha__ /* * For backward compatibility? Maybe this should be moved * into arch/i386 instead? */ SYSCALL_DEFINE2(creat, const char __user *, pathname, umode_t, mode) { int flags = O_CREAT | O_WRONLY | O_TRUNC; if (force_o_largefile()) flags |= O_LARGEFILE; return do_sys_open(AT_FDCWD, pathname, flags, mode); } #endif /* * "id" is the POSIX thread ID. We use the * files pointer for this.. */ int filp_close(struct file *filp, fl_owner_t id) { int retval = 0; if (!file_count(filp)) { printk(KERN_ERR "VFS: Close: file count is 0\n"); return 0; } if (filp->f_op->flush) retval = filp->f_op->flush(filp, id); if (likely(!(filp->f_mode & FMODE_PATH))) { dnotify_flush(filp, id); locks_remove_posix(filp, id); } fput(filp); return retval; } EXPORT_SYMBOL(filp_close); /* * Careful here! We test whether the file pointer is NULL before * releasing the fd. This ensures that one clone task can't release * an fd while another clone is opening it. */ SYSCALL_DEFINE1(close, unsigned int, fd) { int retval = __close_fd(current->files, fd); /* can't restart close syscall because file table entry was cleared */ if (unlikely(retval == -ERESTARTSYS || retval == -ERESTARTNOINTR || retval == -ERESTARTNOHAND || retval == -ERESTART_RESTARTBLOCK)) retval = -EINTR; return retval; } /** * close_range() - Close all file descriptors in a given range. * * @fd: starting file descriptor to close * @max_fd: last file descriptor to close * @flags: reserved for future extensions * * This closes a range of file descriptors. All file descriptors * from @fd up to and including @max_fd are closed. * Currently, errors to close a given file descriptor are ignored. */ SYSCALL_DEFINE3(close_range, unsigned int, fd, unsigned int, max_fd, unsigned int, flags) { return __close_range(fd, max_fd, flags); } /* * This routine simulates a hangup on the tty, to arrange that users * are given clean terminals at login time. */ SYSCALL_DEFINE0(vhangup) { if (capable(CAP_SYS_TTY_CONFIG)) { tty_vhangup_self(); return 0; } return -EPERM; } /* * Called when an inode is about to be open. * We use this to disallow opening large files on 32bit systems if * the caller didn't specify O_LARGEFILE. On 64bit systems we force * on this flag in sys_open. */ int generic_file_open(struct inode * inode, struct file * filp) { if (!(filp->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS) return -EOVERFLOW; return 0; } EXPORT_SYMBOL(generic_file_open); /* * This is used by subsystems that don't want seekable * file descriptors. The function is not supposed to ever fail, the only * reason it returns an 'int' and not 'void' is so that it can be plugged * directly into file_operations structure. */ int nonseekable_open(struct inode *inode, struct file *filp) { filp->f_mode &= ~(FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE); return 0; } EXPORT_SYMBOL(nonseekable_open); /* * stream_open is used by subsystems that want stream-like file descriptors. * Such file descriptors are not seekable and don't have notion of position * (file.f_pos is always 0 and ppos passed to .read()/.write() is always NULL). * Contrary to file descriptors of other regular files, .read() and .write() * can run simultaneously. * * stream_open never fails and is marked to return int so that it could be * directly used as file_operations.open . */ int stream_open(struct inode *inode, struct file *filp) { filp->f_mode &= ~(FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE | FMODE_ATOMIC_POS); filp->f_mode |= FMODE_STREAM; return 0; } EXPORT_SYMBOL(stream_open);
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */ /* * This file holds USB constants and structures that are needed for * USB device APIs. These are used by the USB device model, which is * defined in chapter 9 of the USB 2.0 specification and in the * Wireless USB 1.0 (spread around). Linux has several APIs in C that * need these: * * - the master/host side Linux-USB kernel driver API; * - the "usbfs" user space API; and * - the Linux "gadget" slave/device/peripheral side driver API. * * USB 2.0 adds an additional "On The Go" (OTG) mode, which lets systems * act either as a USB master/host or as a USB slave/device. That means * the master and slave side APIs benefit from working well together. * * There's also "Wireless USB", using low power short range radios for * peripheral interconnection but otherwise building on the USB framework. * * Note all descriptors are declared '__attribute__((packed))' so that: * * [a] they never get padded, either internally (USB spec writers * probably handled that) or externally; * * [b] so that accessing bigger-than-a-bytes fields will never * generate bus errors on any platform, even when the location of * its descriptor inside a bundle isn't "naturally aligned", and * * [c] for consistency, removing all doubt even when it appears to * someone that the two other points are non-issues for that * particular descriptor type. */ #ifndef _UAPI__LINUX_USB_CH9_H #define _UAPI__LINUX_USB_CH9_H #include <linux/types.h> /* __u8 etc */ #include <asm/byteorder.h> /* le16_to_cpu */ /*-------------------------------------------------------------------------*/ /* CONTROL REQUEST SUPPORT */ /* * USB directions * * This bit flag is used in endpoint descriptors' bEndpointAddress field. * It's also one of three fields in control requests bRequestType. */ #define USB_DIR_OUT 0 /* to device */ #define USB_DIR_IN 0x80 /* to host */ /* * USB types, the second of three bRequestType fields */ #define USB_TYPE_MASK (0x03 << 5) #define USB_TYPE_STANDARD (0x00 << 5) #define USB_TYPE_CLASS (0x01 << 5) #define USB_TYPE_VENDOR (0x02 << 5) #define USB_TYPE_RESERVED (0x03 << 5) /* * USB recipients, the third of three bRequestType fields */ #define USB_RECIP_MASK 0x1f #define USB_RECIP_DEVICE 0x00 #define USB_RECIP_INTERFACE 0x01 #define USB_RECIP_ENDPOINT 0x02 #define USB_RECIP_OTHER 0x03 /* From Wireless USB 1.0 */ #define USB_RECIP_PORT 0x04 #define USB_RECIP_RPIPE 0x05 /* * Standard requests, for the bRequest field of a SETUP packet. * * These are qualified by the bRequestType field, so that for example * TYPE_CLASS or TYPE_VENDOR specific feature flags could be retrieved * by a GET_STATUS request. */ #define USB_REQ_GET_STATUS 0x00 #define USB_REQ_CLEAR_FEATURE 0x01 #define USB_REQ_SET_FEATURE 0x03 #define USB_REQ_SET_ADDRESS 0x05 #define USB_REQ_GET_DESCRIPTOR 0x06 #define USB_REQ_SET_DESCRIPTOR 0x07 #define USB_REQ_GET_CONFIGURATION 0x08 #define USB_REQ_SET_CONFIGURATION 0x09 #define USB_REQ_GET_INTERFACE 0x0A #define USB_REQ_SET_INTERFACE 0x0B #define USB_REQ_SYNCH_FRAME 0x0C #define USB_REQ_SET_SEL 0x30 #define USB_REQ_SET_ISOCH_DELAY 0x31 #define USB_REQ_SET_ENCRYPTION 0x0D /* Wireless USB */ #define USB_REQ_GET_ENCRYPTION 0x0E #define USB_REQ_RPIPE_ABORT 0x0E #define USB_REQ_SET_HANDSHAKE 0x0F #define USB_REQ_RPIPE_RESET 0x0F #define USB_REQ_GET_HANDSHAKE 0x10 #define USB_REQ_SET_CONNECTION 0x11 #define USB_REQ_SET_SECURITY_DATA 0x12 #define USB_REQ_GET_SECURITY_DATA 0x13 #define USB_REQ_SET_WUSB_DATA 0x14 #define USB_REQ_LOOPBACK_DATA_WRITE 0x15 #define USB_REQ_LOOPBACK_DATA_READ 0x16 #define USB_REQ_SET_INTERFACE_DS 0x17 /* specific requests for USB Power Delivery */ #define USB_REQ_GET_PARTNER_PDO 20 #define USB_REQ_GET_BATTERY_STATUS 21 #define USB_REQ_SET_PDO 22 #define USB_REQ_GET_VDM 23 #define USB_REQ_SEND_VDM 24 /* The Link Power Management (LPM) ECN defines USB_REQ_TEST_AND_SET command, * used by hubs to put ports into a new L1 suspend state, except that it * forgot to define its number ... */ /* * USB feature flags are written using USB_REQ_{CLEAR,SET}_FEATURE, and * are read as a bit array returned by USB_REQ_GET_STATUS. (So there * are at most sixteen features of each type.) Hubs may also support a * new USB_REQ_TEST_AND_SET_FEATURE to put ports into L1 suspend. */ #define USB_DEVICE_SELF_POWERED 0 /* (read only) */ #define USB_DEVICE_REMOTE_WAKEUP 1 /* dev may initiate wakeup */ #define USB_DEVICE_TEST_MODE 2 /* (wired high speed only) */ #define USB_DEVICE_BATTERY 2 /* (wireless) */ #define USB_DEVICE_B_HNP_ENABLE 3 /* (otg) dev may initiate HNP */ #define USB_DEVICE_WUSB_DEVICE 3 /* (wireless)*/ #define USB_DEVICE_A_HNP_SUPPORT 4 /* (otg) RH port supports HNP */ #define USB_DEVICE_A_ALT_HNP_SUPPORT 5 /* (otg) other RH port does */ #define USB_DEVICE_DEBUG_MODE 6 /* (special devices only) */ /* * Test Mode Selectors * See USB 2.0 spec Table 9-7 */ #define USB_TEST_J 1 #define USB_TEST_K 2 #define USB_TEST_SE0_NAK 3 #define USB_TEST_PACKET 4 #define USB_TEST_FORCE_ENABLE 5 /* Status Type */ #define USB_STATUS_TYPE_STANDARD 0 #define USB_STATUS_TYPE_PTM 1 /* * New Feature Selectors as added by USB 3.0 * See USB 3.0 spec Table 9-7 */ #define USB_DEVICE_U1_ENABLE 48 /* dev may initiate U1 transition */ #define USB_DEVICE_U2_ENABLE 49 /* dev may initiate U2 transition */ #define USB_DEVICE_LTM_ENABLE 50 /* dev may send LTM */ #define USB_INTRF_FUNC_SUSPEND 0 /* function suspend */ #define USB_INTR_FUNC_SUSPEND_OPT_MASK 0xFF00 /* * Suspend Options, Table 9-8 USB 3.0 spec */ #define USB_INTRF_FUNC_SUSPEND_LP (1 << (8 + 0)) #define USB_INTRF_FUNC_SUSPEND_RW (1 << (8 + 1)) /* * Interface status, Figure 9-5 USB 3.0 spec */ #define USB_INTRF_STAT_FUNC_RW_CAP 1 #define USB_INTRF_STAT_FUNC_RW 2 #define USB_ENDPOINT_HALT 0 /* IN/OUT will STALL */ /* Bit array elements as returned by the USB_REQ_GET_STATUS request. */ #define USB_DEV_STAT_U1_ENABLED 2 /* transition into U1 state */ #define USB_DEV_STAT_U2_ENABLED 3 /* transition into U2 state */ #define USB_DEV_STAT_LTM_ENABLED 4 /* Latency tolerance messages */ /* * Feature selectors from Table 9-8 USB Power Delivery spec */ #define USB_DEVICE_BATTERY_WAKE_MASK 40 #define USB_DEVICE_OS_IS_PD_AWARE 41 #define USB_DEVICE_POLICY_MODE 42 #define USB_PORT_PR_SWAP 43 #define USB_PORT_GOTO_MIN 44 #define USB_PORT_RETURN_POWER 45 #define USB_PORT_ACCEPT_PD_REQUEST 46 #define USB_PORT_REJECT_PD_REQUEST 47 #define USB_PORT_PORT_PD_RESET 48 #define USB_PORT_C_PORT_PD_CHANGE 49 #define USB_PORT_CABLE_PD_RESET 50 #define USB_DEVICE_CHARGING_POLICY 54 /** * struct usb_ctrlrequest - SETUP data for a USB device control request * @bRequestType: matches the USB bmRequestType field * @bRequest: matches the USB bRequest field * @wValue: matches the USB wValue field (le16 byte order) * @wIndex: matches the USB wIndex field (le16 byte order) * @wLength: matches the USB wLength field (le16 byte order) * * This structure is used to send control requests to a USB device. It matches * the different fields of the USB 2.0 Spec section 9.3, table 9-2. See the * USB spec for a fuller description of the different fields, and what they are * used for. * * Note that the driver for any interface can issue control requests. * For most devices, interfaces don't coordinate with each other, so * such requests may be made at any time. */ struct usb_ctrlrequest { __u8 bRequestType; __u8 bRequest; __le16 wValue; __le16 wIndex; __le16 wLength; } __attribute__ ((packed)); /*-------------------------------------------------------------------------*/ /* * STANDARD DESCRIPTORS ... as returned by GET_DESCRIPTOR, or * (rarely) accepted by SET_DESCRIPTOR. * * Note that all multi-byte values here are encoded in little endian * byte order "on the wire". Within the kernel and when exposed * through the Linux-USB APIs, they are not converted to cpu byte * order; it is the responsibility of the client code to do this. * The single exception is when device and configuration descriptors (but * not other descriptors) are read from character devices * (i.e. /dev/bus/usb/BBB/DDD); * in this case the fields are converted to host endianness by the kernel. */ /* * Descriptor types ... USB 2.0 spec table 9.5 */ #define USB_DT_DEVICE 0x01 #define USB_DT_CONFIG 0x02 #define USB_DT_STRING 0x03 #define USB_DT_INTERFACE 0x04 #define USB_DT_ENDPOINT 0x05 #define USB_DT_DEVICE_QUALIFIER 0x06 #define USB_DT_OTHER_SPEED_CONFIG 0x07 #define USB_DT_INTERFACE_POWER 0x08 /* these are from a minor usb 2.0 revision (ECN) */ #define USB_DT_OTG 0x09 #define USB_DT_DEBUG 0x0a #define USB_DT_INTERFACE_ASSOCIATION 0x0b /* these are from the Wireless USB spec */ #define USB_DT_SECURITY 0x0c #define USB_DT_KEY 0x0d #define USB_DT_ENCRYPTION_TYPE 0x0e #define USB_DT_BOS 0x0f #define USB_DT_DEVICE_CAPABILITY 0x10 #define USB_DT_WIRELESS_ENDPOINT_COMP 0x11 #define USB_DT_WIRE_ADAPTER 0x21 #define USB_DT_RPIPE 0x22 #define USB_DT_CS_RADIO_CONTROL 0x23 /* From the T10 UAS specification */ #define USB_DT_PIPE_USAGE 0x24 /* From the USB 3.0 spec */ #define USB_DT_SS_ENDPOINT_COMP 0x30 /* From the USB 3.1 spec */ #define USB_DT_SSP_ISOC_ENDPOINT_COMP 0x31 /* Conventional codes for class-specific descriptors. The convention is * defined in the USB "Common Class" Spec (3.11). Individual class specs * are authoritative for their usage, not the "common class" writeup. */ #define USB_DT_CS_DEVICE (USB_TYPE_CLASS | USB_DT_DEVICE) #define USB_DT_CS_CONFIG (USB_TYPE_CLASS | USB_DT_CONFIG) #define USB_DT_CS_STRING (USB_TYPE_CLASS | USB_DT_STRING) #define USB_DT_CS_INTERFACE (USB_TYPE_CLASS | USB_DT_INTERFACE) #define USB_DT_CS_ENDPOINT (USB_TYPE_CLASS | USB_DT_ENDPOINT) /* All standard descriptors have these 2 fields at the beginning */ struct usb_descriptor_header { __u8 bLength; __u8 bDescriptorType; } __attribute__ ((packed)); /*-------------------------------------------------------------------------*/ /* USB_DT_DEVICE: Device descriptor */ struct usb_device_descriptor { __u8 bLength; __u8 bDescriptorType; __le16 bcdUSB; __u8 bDeviceClass; __u8 bDeviceSubClass; __u8 bDeviceProtocol; __u8 bMaxPacketSize0; __le16 idVendor; __le16 idProduct; __le16 bcdDevice; __u8 iManufacturer; __u8 iProduct; __u8 iSerialNumber; __u8 bNumConfigurations; } __attribute__ ((packed)); #define USB_DT_DEVICE_SIZE 18 /* * Device and/or Interface Class codes * as found in bDeviceClass or bInterfaceClass * and defined by www.usb.org documents */ #define USB_CLASS_PER_INTERFACE 0 /* for DeviceClass */ #define USB_CLASS_AUDIO 1 #define USB_CLASS_COMM 2 #define USB_CLASS_HID 3 #define USB_CLASS_PHYSICAL 5 #define USB_CLASS_STILL_IMAGE 6 #define USB_CLASS_PRINTER 7 #define USB_CLASS_MASS_STORAGE 8 #define USB_CLASS_HUB 9 #define USB_CLASS_CDC_DATA 0x0a #define USB_CLASS_CSCID 0x0b /* chip+ smart card */ #define USB_CLASS_CONTENT_SEC 0x0d /* content security */ #define USB_CLASS_VIDEO 0x0e #define USB_CLASS_WIRELESS_CONTROLLER 0xe0 #define USB_CLASS_PERSONAL_HEALTHCARE 0x0f #define USB_CLASS_AUDIO_VIDEO 0x10 #define USB_CLASS_BILLBOARD 0x11 #define USB_CLASS_USB_TYPE_C_BRIDGE 0x12 #define USB_CLASS_MISC 0xef #define USB_CLASS_APP_SPEC 0xfe #define USB_CLASS_VENDOR_SPEC 0xff #define USB_SUBCLASS_VENDOR_SPEC 0xff /*-------------------------------------------------------------------------*/ /* USB_DT_CONFIG: Configuration descriptor information. * * USB_DT_OTHER_SPEED_CONFIG is the same descriptor, except that the * descriptor type is different. Highspeed-capable devices can look * different depending on what speed they're currently running. Only * devices with a USB_DT_DEVICE_QUALIFIER have any OTHER_SPEED_CONFIG * descriptors. */ struct usb_config_descriptor { __u8 bLength; __u8 bDescriptorType; __le16 wTotalLength; __u8 bNumInterfaces; __u8 bConfigurationValue; __u8 iConfiguration; __u8 bmAttributes; __u8 bMaxPower; } __attribute__ ((packed)); #define USB_DT_CONFIG_SIZE 9 /* from config descriptor bmAttributes */ #define USB_CONFIG_ATT_ONE (1 << 7) /* must be set */ #define USB_CONFIG_ATT_SELFPOWER (1 << 6) /* self powered */ #define USB_CONFIG_ATT_WAKEUP (1 << 5) /* can wakeup */ #define USB_CONFIG_ATT_BATTERY (1 << 4) /* battery powered */ /*-------------------------------------------------------------------------*/ /* USB String descriptors can contain at most 126 characters. */ #define USB_MAX_STRING_LEN 126 /* USB_DT_STRING: String descriptor */ struct usb_string_descriptor { __u8 bLength; __u8 bDescriptorType; __le16 wData[1]; /* UTF-16LE encoded */ } __attribute__ ((packed)); /* note that "string" zero is special, it holds language codes that * the device supports, not Unicode characters. */ /*-------------------------------------------------------------------------*/ /* USB_DT_INTERFACE: Interface descriptor */ struct usb_interface_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bInterfaceNumber; __u8 bAlternateSetting; __u8 bNumEndpoints; __u8 bInterfaceClass; __u8 bInterfaceSubClass; __u8 bInterfaceProtocol; __u8 iInterface; } __attribute__ ((packed)); #define USB_DT_INTERFACE_SIZE 9 /*-------------------------------------------------------------------------*/ /* USB_DT_ENDPOINT: Endpoint descriptor */ struct usb_endpoint_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bEndpointAddress; __u8 bmAttributes; __le16 wMaxPacketSize; __u8 bInterval; /* NOTE: these two are _only_ in audio endpoints. */ /* use USB_DT_ENDPOINT*_SIZE in bLength, not sizeof. */ __u8 bRefresh; __u8 bSynchAddress; } __attribute__ ((packed)); #define USB_DT_ENDPOINT_SIZE 7 #define USB_DT_ENDPOINT_AUDIO_SIZE 9 /* Audio extension */ /* * Endpoints */ #define USB_ENDPOINT_NUMBER_MASK 0x0f /* in bEndpointAddress */ #define USB_ENDPOINT_DIR_MASK 0x80 #define USB_ENDPOINT_XFERTYPE_MASK 0x03 /* in bmAttributes */ #define USB_ENDPOINT_XFER_CONTROL 0 #define USB_ENDPOINT_XFER_ISOC 1 #define USB_ENDPOINT_XFER_BULK 2 #define USB_ENDPOINT_XFER_INT 3 #define USB_ENDPOINT_MAX_ADJUSTABLE 0x80 #define USB_ENDPOINT_MAXP_MASK 0x07ff #define USB_EP_MAXP_MULT_SHIFT 11 #define USB_EP_MAXP_MULT_MASK (3 << USB_EP_MAXP_MULT_SHIFT) #define USB_EP_MAXP_MULT(m) \ (((m) & USB_EP_MAXP_MULT_MASK) >> USB_EP_MAXP_MULT_SHIFT) /* The USB 3.0 spec redefines bits 5:4 of bmAttributes as interrupt ep type. */ #define USB_ENDPOINT_INTRTYPE 0x30 #define USB_ENDPOINT_INTR_PERIODIC (0 << 4) #define USB_ENDPOINT_INTR_NOTIFICATION (1 << 4) #define USB_ENDPOINT_SYNCTYPE 0x0c #define USB_ENDPOINT_SYNC_NONE (0 << 2) #define USB_ENDPOINT_SYNC_ASYNC (1 << 2) #define USB_ENDPOINT_SYNC_ADAPTIVE (2 << 2) #define USB_ENDPOINT_SYNC_SYNC (3 << 2) #define USB_ENDPOINT_USAGE_MASK 0x30 #define USB_ENDPOINT_USAGE_DATA 0x00 #define USB_ENDPOINT_USAGE_FEEDBACK 0x10 #define USB_ENDPOINT_USAGE_IMPLICIT_FB 0x20 /* Implicit feedback Data endpoint */ /*-------------------------------------------------------------------------*/ /** * usb_endpoint_num - get the endpoint's number * @epd: endpoint to be checked * * Returns @epd's number: 0 to 15. */ static inline int usb_endpoint_num(const struct usb_endpoint_descriptor *epd) { return epd->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK; } /** * usb_endpoint_type - get the endpoint's transfer type * @epd: endpoint to be checked * * Returns one of USB_ENDPOINT_XFER_{CONTROL, ISOC, BULK, INT} according * to @epd's transfer type. */ static inline int usb_endpoint_type(const struct usb_endpoint_descriptor *epd) { return epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK; } /** * usb_endpoint_dir_in - check if the endpoint has IN direction * @epd: endpoint to be checked * * Returns true if the endpoint is of type IN, otherwise it returns false. */ static inline int usb_endpoint_dir_in(const struct usb_endpoint_descriptor *epd) { return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN); } /** * usb_endpoint_dir_out - check if the endpoint has OUT direction * @epd: endpoint to be checked * * Returns true if the endpoint is of type OUT, otherwise it returns false. */ static inline int usb_endpoint_dir_out( const struct usb_endpoint_descriptor *epd) { return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT); } /** * usb_endpoint_xfer_bulk - check if the endpoint has bulk transfer type * @epd: endpoint to be checked * * Returns true if the endpoint is of type bulk, otherwise it returns false. */ static inline int usb_endpoint_xfer_bulk( const struct usb_endpoint_descriptor *epd) { return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_BULK); } /** * usb_endpoint_xfer_control - check if the endpoint has control transfer type * @epd: endpoint to be checked * * Returns true if the endpoint is of type control, otherwise it returns false. */ static inline int usb_endpoint_xfer_control( const struct usb_endpoint_descriptor *epd) { return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_CONTROL); } /** * usb_endpoint_xfer_int - check if the endpoint has interrupt transfer type * @epd: endpoint to be checked * * Returns true if the endpoint is of type interrupt, otherwise it returns * false. */ static inline int usb_endpoint_xfer_int( const struct usb_endpoint_descriptor *epd) { return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_INT); } /** * usb_endpoint_xfer_isoc - check if the endpoint has isochronous transfer type * @epd: endpoint to be checked * * Returns true if the endpoint is of type isochronous, otherwise it returns * false. */ static inline int usb_endpoint_xfer_isoc( const struct usb_endpoint_descriptor *epd) { return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_ISOC); } /** * usb_endpoint_is_bulk_in - check if the endpoint is bulk IN * @epd: endpoint to be checked * * Returns true if the endpoint has bulk transfer type and IN direction, * otherwise it returns false. */ static inline int usb_endpoint_is_bulk_in( const struct usb_endpoint_descriptor *epd) { return usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_in(epd); } /** * usb_endpoint_is_bulk_out - check if the endpoint is bulk OUT * @epd: endpoint to be checked * * Returns true if the endpoint has bulk transfer type and OUT direction, * otherwise it returns false. */ static inline int usb_endpoint_is_bulk_out( const struct usb_endpoint_descriptor *epd) { return usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_out(epd); } /** * usb_endpoint_is_int_in - check if the endpoint is interrupt IN * @epd: endpoint to be checked * * Returns true if the endpoint has interrupt transfer type and IN direction, * otherwise it returns false. */ static inline int usb_endpoint_is_int_in( const struct usb_endpoint_descriptor *epd) { return usb_endpoint_xfer_int(epd) && usb_endpoint_dir_in(epd); } /** * usb_endpoint_is_int_out - check if the endpoint is interrupt OUT * @epd: endpoint to be checked * * Returns true if the endpoint has interrupt transfer type and OUT direction, * otherwise it returns false. */ static inline int usb_endpoint_is_int_out( const struct usb_endpoint_descriptor *epd) { return usb_endpoint_xfer_int(epd) && usb_endpoint_dir_out(epd); } /** * usb_endpoint_is_isoc_in - check if the endpoint is isochronous IN * @epd: endpoint to be checked * * Returns true if the endpoint has isochronous transfer type and IN direction, * otherwise it returns false. */ static inline int usb_endpoint_is_isoc_in( const struct usb_endpoint_descriptor *epd) { return usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_in(epd); } /** * usb_endpoint_is_isoc_out - check if the endpoint is isochronous OUT * @epd: endpoint to be checked * * Returns true if the endpoint has isochronous transfer type and OUT direction, * otherwise it returns false. */ static inline int usb_endpoint_is_isoc_out( const struct usb_endpoint_descriptor *epd) { return usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_out(epd); } /** * usb_endpoint_maxp - get endpoint's max packet size * @epd: endpoint to be checked * * Returns @epd's max packet bits [10:0] */ static inline int usb_endpoint_maxp(const struct usb_endpoint_descriptor *epd) { return __le16_to_cpu(epd->wMaxPacketSize) & USB_ENDPOINT_MAXP_MASK; } /** * usb_endpoint_maxp_mult - get endpoint's transactional opportunities * @epd: endpoint to be checked * * Return @epd's wMaxPacketSize[12:11] + 1 */ static inline int usb_endpoint_maxp_mult(const struct usb_endpoint_descriptor *epd) { int maxp = __le16_to_cpu(epd->wMaxPacketSize); return USB_EP_MAXP_MULT(maxp) + 1; } static inline int usb_endpoint_interrupt_type( const struct usb_endpoint_descriptor *epd) { return epd->bmAttributes & USB_ENDPOINT_INTRTYPE; } /*-------------------------------------------------------------------------*/ /* USB_DT_SSP_ISOC_ENDPOINT_COMP: SuperSpeedPlus Isochronous Endpoint Companion * descriptor */ struct usb_ssp_isoc_ep_comp_descriptor { __u8 bLength; __u8 bDescriptorType; __le16 wReseved; __le32 dwBytesPerInterval; } __attribute__ ((packed)); #define USB_DT_SSP_ISOC_EP_COMP_SIZE 8 /*-------------------------------------------------------------------------*/ /* USB_DT_SS_ENDPOINT_COMP: SuperSpeed Endpoint Companion descriptor */ struct usb_ss_ep_comp_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bMaxBurst; __u8 bmAttributes; __le16 wBytesPerInterval; } __attribute__ ((packed)); #define USB_DT_SS_EP_COMP_SIZE 6 /* Bits 4:0 of bmAttributes if this is a bulk endpoint */ static inline int usb_ss_max_streams(const struct usb_ss_ep_comp_descriptor *comp) { int max_streams; if (!comp) return 0; max_streams = comp->bmAttributes & 0x1f; if (!max_streams) return 0; max_streams = 1 << max_streams; return max_streams; } /* Bits 1:0 of bmAttributes if this is an isoc endpoint */ #define USB_SS_MULT(p) (1 + ((p) & 0x3)) /* Bit 7 of bmAttributes if a SSP isoc endpoint companion descriptor exists */ #define USB_SS_SSP_ISOC_COMP(p) ((p) & (1 << 7)) /*-------------------------------------------------------------------------*/ /* USB_DT_DEVICE_QUALIFIER: Device Qualifier descriptor */ struct usb_qualifier_descriptor { __u8 bLength; __u8 bDescriptorType; __le16 bcdUSB; __u8 bDeviceClass; __u8 bDeviceSubClass; __u8 bDeviceProtocol; __u8 bMaxPacketSize0; __u8 bNumConfigurations; __u8 bRESERVED; } __attribute__ ((packed)); /*-------------------------------------------------------------------------*/ /* USB_DT_OTG (from OTG 1.0a supplement) */ struct usb_otg_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bmAttributes; /* support for HNP, SRP, etc */ } __attribute__ ((packed)); /* USB_DT_OTG (from OTG 2.0 supplement) */ struct usb_otg20_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bmAttributes; /* support for HNP, SRP and ADP, etc */ __le16 bcdOTG; /* OTG and EH supplement release number * in binary-coded decimal(i.e. 2.0 is 0200H) */ } __attribute__ ((packed)); /* from usb_otg_descriptor.bmAttributes */ #define USB_OTG_SRP (1 << 0) #define USB_OTG_HNP (1 << 1) /* swap host/device roles */ #define USB_OTG_ADP (1 << 2) /* support ADP */ #define OTG_STS_SELECTOR 0xF000 /* OTG status selector */ /*-------------------------------------------------------------------------*/ /* USB_DT_DEBUG: for special highspeed devices, replacing serial console */ struct usb_debug_descriptor { __u8 bLength; __u8 bDescriptorType; /* bulk endpoints with 8 byte maxpacket */ __u8 bDebugInEndpoint; __u8 bDebugOutEndpoint; } __attribute__((packed)); /*-------------------------------------------------------------------------*/ /* USB_DT_INTERFACE_ASSOCIATION: groups interfaces */ struct usb_interface_assoc_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bFirstInterface; __u8 bInterfaceCount; __u8 bFunctionClass; __u8 bFunctionSubClass; __u8 bFunctionProtocol; __u8 iFunction; } __attribute__ ((packed)); #define USB_DT_INTERFACE_ASSOCIATION_SIZE 8 /*-------------------------------------------------------------------------*/ /* USB_DT_SECURITY: group of wireless security descriptors, including * encryption types available for setting up a CC/association. */ struct usb_security_descriptor { __u8 bLength; __u8 bDescriptorType; __le16 wTotalLength; __u8 bNumEncryptionTypes; } __attribute__((packed)); /*-------------------------------------------------------------------------*/ /* USB_DT_KEY: used with {GET,SET}_SECURITY_DATA; only public keys * may be retrieved. */ struct usb_key_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 tTKID[3]; __u8 bReserved; __u8 bKeyData[0]; } __attribute__((packed)); /*-------------------------------------------------------------------------*/ /* USB_DT_ENCRYPTION_TYPE: bundled in DT_SECURITY groups */ struct usb_encryption_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bEncryptionType; #define USB_ENC_TYPE_UNSECURE 0 #define USB_ENC_TYPE_WIRED 1 /* non-wireless mode */ #define USB_ENC_TYPE_CCM_1 2 /* aes128/cbc session */ #define USB_ENC_TYPE_RSA_1 3 /* rsa3072/sha1 auth */ __u8 bEncryptionValue; /* use in SET_ENCRYPTION */ __u8 bAuthKeyIndex; } __attribute__((packed)); /*-------------------------------------------------------------------------*/ /* USB_DT_BOS: group of device-level capabilities */ struct usb_bos_descriptor { __u8 bLength; __u8 bDescriptorType; __le16 wTotalLength; __u8 bNumDeviceCaps; } __attribute__((packed)); #define USB_DT_BOS_SIZE 5 /*-------------------------------------------------------------------------*/ /* USB_DT_DEVICE_CAPABILITY: grouped with BOS */ struct usb_dev_cap_header { __u8 bLength; __u8 bDescriptorType; __u8 bDevCapabilityType; } __attribute__((packed)); #define USB_CAP_TYPE_WIRELESS_USB 1 struct usb_wireless_cap_descriptor { /* Ultra Wide Band */ __u8 bLength; __u8 bDescriptorType; __u8 bDevCapabilityType; __u8 bmAttributes; #define USB_WIRELESS_P2P_DRD (1 << 1) #define USB_WIRELESS_BEACON_MASK (3 << 2) #define USB_WIRELESS_BEACON_SELF (1 << 2) #define USB_WIRELESS_BEACON_DIRECTED (2 << 2) #define USB_WIRELESS_BEACON_NONE (3 << 2) __le16 wPHYRates; /* bit rates, Mbps */ #define USB_WIRELESS_PHY_53 (1 << 0) /* always set */ #define USB_WIRELESS_PHY_80 (1 << 1) #define USB_WIRELESS_PHY_107 (1 << 2) /* always set */ #define USB_WIRELESS_PHY_160 (1 << 3) #define USB_WIRELESS_PHY_200 (1 << 4) /* always set */ #define USB_WIRELESS_PHY_320 (1 << 5) #define USB_WIRELESS_PHY_400 (1 << 6) #define USB_WIRELESS_PHY_480 (1 << 7) __u8 bmTFITXPowerInfo; /* TFI power levels */ __u8 bmFFITXPowerInfo; /* FFI power levels */ __le16 bmBandGroup; __u8 bReserved; } __attribute__((packed)); #define USB_DT_USB_WIRELESS_CAP_SIZE 11 /* USB 2.0 Extension descriptor */ #define USB_CAP_TYPE_EXT 2 struct usb_ext_cap_descriptor { /* Link Power Management */ __u8 bLength; __u8 bDescriptorType; __u8 bDevCapabilityType; __le32 bmAttributes; #define USB_LPM_SUPPORT (1 << 1) /* supports LPM */ #define USB_BESL_SUPPORT (1 << 2) /* supports BESL */ #define USB_BESL_BASELINE_VALID (1 << 3) /* Baseline BESL valid*/ #define USB_BESL_DEEP_VALID (1 << 4) /* Deep BESL valid */ #define USB_SET_BESL_BASELINE(p) (((p) & 0xf) << 8) #define USB_SET_BESL_DEEP(p) (((p) & 0xf) << 12) #define USB_GET_BESL_BASELINE(p) (((p) & (0xf << 8)) >> 8) #define USB_GET_BESL_DEEP(p) (((p) & (0xf << 12)) >> 12) } __attribute__((packed)); #define USB_DT_USB_EXT_CAP_SIZE 7 /* * SuperSpeed USB Capability descriptor: Defines the set of SuperSpeed USB * specific device level capabilities */ #define USB_SS_CAP_TYPE 3 struct usb_ss_cap_descriptor { /* Link Power Management */ __u8 bLength; __u8 bDescriptorType; __u8 bDevCapabilityType; __u8 bmAttributes; #define USB_LTM_SUPPORT (1 << 1) /* supports LTM */ __le16 wSpeedSupported; #define USB_LOW_SPEED_OPERATION (1) /* Low speed operation */ #define USB_FULL_SPEED_OPERATION (1 << 1) /* Full speed operation */ #define USB_HIGH_SPEED_OPERATION (1 << 2) /* High speed operation */ #define USB_5GBPS_OPERATION (1 << 3) /* Operation at 5Gbps */ __u8 bFunctionalitySupport; __u8 bU1devExitLat; __le16 bU2DevExitLat; } __attribute__((packed)); #define USB_DT_USB_SS_CAP_SIZE 10 /* * Container ID Capability descriptor: Defines the instance unique ID used to * identify the instance across all operating modes */ #define CONTAINER_ID_TYPE 4 struct usb_ss_container_id_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bDevCapabilityType; __u8 bReserved; __u8 ContainerID[16]; /* 128-bit number */ } __attribute__((packed)); #define USB_DT_USB_SS_CONTN_ID_SIZE 20 /* * SuperSpeed Plus USB Capability descriptor: Defines the set of * SuperSpeed Plus USB specific device level capabilities */ #define USB_SSP_CAP_TYPE 0xa struct usb_ssp_cap_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bDevCapabilityType; __u8 bReserved; __le32 bmAttributes; #define USB_SSP_SUBLINK_SPEED_ATTRIBS (0x1f << 0) /* sublink speed entries */ #define USB_SSP_SUBLINK_SPEED_IDS (0xf << 5) /* speed ID entries */ __le16 wFunctionalitySupport; #define USB_SSP_MIN_SUBLINK_SPEED_ATTRIBUTE_ID (0xf) #define USB_SSP_MIN_RX_LANE_COUNT (0xf << 8) #define USB_SSP_MIN_TX_LANE_COUNT (0xf << 12) __le16 wReserved; __le32 bmSublinkSpeedAttr[1]; /* list of sublink speed attrib entries */ #define USB_SSP_SUBLINK_SPEED_SSID (0xf) /* sublink speed ID */ #define USB_SSP_SUBLINK_SPEED_LSE (0x3 << 4) /* Lanespeed exponent */ #define USB_SSP_SUBLINK_SPEED_ST (0x3 << 6) /* Sublink type */ #define USB_SSP_SUBLINK_SPEED_RSVD (0x3f << 8) /* Reserved */ #define USB_SSP_SUBLINK_SPEED_LP (0x3 << 14) /* Link protocol */ #define USB_SSP_SUBLINK_SPEED_LSM (0xff << 16) /* Lanespeed mantissa */ } __attribute__((packed)); /* * USB Power Delivery Capability Descriptor: * Defines capabilities for PD */ /* Defines the various PD Capabilities of this device */ #define USB_PD_POWER_DELIVERY_CAPABILITY 0x06 /* Provides information on each battery supported by the device */ #define USB_PD_BATTERY_INFO_CAPABILITY 0x07 /* The Consumer characteristics of a Port on the device */ #define USB_PD_PD_CONSUMER_PORT_CAPABILITY 0x08 /* The provider characteristics of a Port on the device */ #define USB_PD_PD_PROVIDER_PORT_CAPABILITY 0x09 struct usb_pd_cap_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bDevCapabilityType; /* set to USB_PD_POWER_DELIVERY_CAPABILITY */ __u8 bReserved; __le32 bmAttributes; #define USB_PD_CAP_BATTERY_CHARGING (1 << 1) /* supports Battery Charging specification */ #define USB_PD_CAP_USB_PD (1 << 2) /* supports USB Power Delivery specification */ #define USB_PD_CAP_PROVIDER (1 << 3) /* can provide power */ #define USB_PD_CAP_CONSUMER (1 << 4) /* can consume power */ #define USB_PD_CAP_CHARGING_POLICY (1 << 5) /* supports CHARGING_POLICY feature */ #define USB_PD_CAP_TYPE_C_CURRENT (1 << 6) /* supports power capabilities defined in the USB Type-C Specification */ #define USB_PD_CAP_PWR_AC (1 << 8) #define USB_PD_CAP_PWR_BAT (1 << 9) #define USB_PD_CAP_PWR_USE_V_BUS (1 << 14) __le16 bmProviderPorts; /* Bit zero refers to the UFP of the device */ __le16 bmConsumerPorts; __le16 bcdBCVersion; __le16 bcdPDVersion; __le16 bcdUSBTypeCVersion; } __attribute__((packed)); struct usb_pd_cap_battery_info_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bDevCapabilityType; /* Index of string descriptor shall contain the user friendly name for this battery */ __u8 iBattery; /* Index of string descriptor shall contain the Serial Number String for this battery */ __u8 iSerial; __u8 iManufacturer; __u8 bBatteryId; /* uniquely identifies this battery in status Messages */ __u8 bReserved; /* * Shall contain the Battery Charge value above which this * battery is considered to be fully charged but not necessarily * “topped off.” */ __le32 dwChargedThreshold; /* in mWh */ /* * Shall contain the minimum charge level of this battery such * that above this threshold, a device can be assured of being * able to power up successfully (see Battery Charging 1.2). */ __le32 dwWeakThreshold; /* in mWh */ __le32 dwBatteryDesignCapacity; /* in mWh */ __le32 dwBatteryLastFullchargeCapacity; /* in mWh */ } __attribute__((packed)); struct usb_pd_cap_consumer_port_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bDevCapabilityType; __u8 bReserved; __u8 bmCapabilities; /* port will oerate under: */ #define USB_PD_CAP_CONSUMER_BC (1 << 0) /* BC */ #define USB_PD_CAP_CONSUMER_PD (1 << 1) /* PD */ #define USB_PD_CAP_CONSUMER_TYPE_C (1 << 2) /* USB Type-C Current */ __le16 wMinVoltage; /* in 50mV units */ __le16 wMaxVoltage; /* in 50mV units */ __u16 wReserved; __le32 dwMaxOperatingPower; /* in 10 mW - operating at steady state */ __le32 dwMaxPeakPower; /* in 10mW units - operating at peak power */ __le32 dwMaxPeakPowerTime; /* in 100ms units - duration of peak */ #define USB_PD_CAP_CONSUMER_UNKNOWN_PEAK_POWER_TIME 0xffff } __attribute__((packed)); struct usb_pd_cap_provider_port_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bDevCapabilityType; __u8 bReserved1; __u8 bmCapabilities; /* port will oerate under: */ #define USB_PD_CAP_PROVIDER_BC (1 << 0) /* BC */ #define USB_PD_CAP_PROVIDER_PD (1 << 1) /* PD */ #define USB_PD_CAP_PROVIDER_TYPE_C (1 << 2) /* USB Type-C Current */ __u8 bNumOfPDObjects; __u8 bReserved2; __le32 wPowerDataObject[]; } __attribute__((packed)); /* * Precision time measurement capability descriptor: advertised by devices and * hubs that support PTM */ #define USB_PTM_CAP_TYPE 0xb struct usb_ptm_cap_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bDevCapabilityType; } __attribute__((packed)); #define USB_DT_USB_PTM_ID_SIZE 3 /* * The size of the descriptor for the Sublink Speed Attribute Count * (SSAC) specified in bmAttributes[4:0]. SSAC is zero-based */ #define USB_DT_USB_SSP_CAP_SIZE(ssac) (12 + (ssac + 1) * 4) /*-------------------------------------------------------------------------*/ /* USB_DT_WIRELESS_ENDPOINT_COMP: companion descriptor associated with * each endpoint descriptor for a wireless device */ struct usb_wireless_ep_comp_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bMaxBurst; __u8 bMaxSequence; __le16 wMaxStreamDelay; __le16 wOverTheAirPacketSize; __u8 bOverTheAirInterval; __u8 bmCompAttributes; #define USB_ENDPOINT_SWITCH_MASK 0x03 /* in bmCompAttributes */ #define USB_ENDPOINT_SWITCH_NO 0 #define USB_ENDPOINT_SWITCH_SWITCH 1 #define USB_ENDPOINT_SWITCH_SCALE 2 } __attribute__((packed)); /*-------------------------------------------------------------------------*/ /* USB_REQ_SET_HANDSHAKE is a four-way handshake used between a wireless * host and a device for connection set up, mutual authentication, and * exchanging short lived session keys. The handshake depends on a CC. */ struct usb_handshake { __u8 bMessageNumber; __u8 bStatus; __u8 tTKID[3]; __u8 bReserved; __u8 CDID[16]; __u8 nonce[16]; __u8 MIC[8]; } __attribute__((packed)); /*-------------------------------------------------------------------------*/ /* USB_REQ_SET_CONNECTION modifies or revokes a connection context (CC). * A CC may also be set up using non-wireless secure channels (including * wired USB!), and some devices may support CCs with multiple hosts. */ struct usb_connection_context { __u8 CHID[16]; /* persistent host id */ __u8 CDID[16]; /* device id (unique w/in host context) */ __u8 CK[16]; /* connection key */ } __attribute__((packed)); /*-------------------------------------------------------------------------*/ /* USB 2.0 defines three speeds, here's how Linux identifies them */ enum usb_device_speed { USB_SPEED_UNKNOWN = 0, /* enumerating */ USB_SPEED_LOW, USB_SPEED_FULL, /* usb 1.1 */ USB_SPEED_HIGH, /* usb 2.0 */ USB_SPEED_WIRELESS, /* wireless (usb 2.5) */ USB_SPEED_SUPER, /* usb 3.0 */ USB_SPEED_SUPER_PLUS, /* usb 3.1 */ }; enum usb_device_state { /* NOTATTACHED isn't in the USB spec, and this state acts * the same as ATTACHED ... but it's clearer this way. */ USB_STATE_NOTATTACHED = 0, /* chapter 9 and authentication (wireless) device states */ USB_STATE_ATTACHED, USB_STATE_POWERED, /* wired */ USB_STATE_RECONNECTING, /* auth */ USB_STATE_UNAUTHENTICATED, /* auth */ USB_STATE_DEFAULT, /* limited function */ USB_STATE_ADDRESS, USB_STATE_CONFIGURED, /* most functions */ USB_STATE_SUSPENDED /* NOTE: there are actually four different SUSPENDED * states, returning to POWERED, DEFAULT, ADDRESS, or * CONFIGURED respectively when SOF tokens flow again. * At this level there's no difference between L1 and L2 * suspend states. (L2 being original USB 1.1 suspend.) */ }; enum usb3_link_state { USB3_LPM_U0 = 0, USB3_LPM_U1, USB3_LPM_U2, USB3_LPM_U3 }; /* * A U1 timeout of 0x0 means the parent hub will reject any transitions to U1. * 0xff means the parent hub will accept transitions to U1, but will not * initiate a transition. * * A U1 timeout of 0x1 to 0x7F also causes the hub to initiate a transition to * U1 after that many microseconds. Timeouts of 0x80 to 0xFE are reserved * values. * * A U2 timeout of 0x0 means the parent hub will reject any transitions to U2. * 0xff means the parent hub will accept transitions to U2, but will not * initiate a transition. * * A U2 timeout of 0x1 to 0xFE also causes the hub to initiate a transition to * U2 after N*256 microseconds. Therefore a U2 timeout value of 0x1 means a U2 * idle timer of 256 microseconds, 0x2 means 512 microseconds, 0xFE means * 65.024ms. */ #define USB3_LPM_DISABLED 0x0 #define USB3_LPM_U1_MAX_TIMEOUT 0x7F #define USB3_LPM_U2_MAX_TIMEOUT 0xFE #define USB3_LPM_DEVICE_INITIATED 0xFF struct usb_set_sel_req { __u8 u1_sel; __u8 u1_pel; __le16 u2_sel; __le16 u2_pel; } __attribute__ ((packed)); /* * The Set System Exit Latency control transfer provides one byte each for * U1 SEL and U1 PEL, so the max exit latency is 0xFF. U2 SEL and U2 PEL each * are two bytes long. */ #define USB3_LPM_MAX_U1_SEL_PEL 0xFF #define USB3_LPM_MAX_U2_SEL_PEL 0xFFFF /*-------------------------------------------------------------------------*/ /* * As per USB compliance update, a device that is actively drawing * more than 100mA from USB must report itself as bus-powered in * the GetStatus(DEVICE) call. * https://compliance.usb.org/index.asp?UpdateFile=Electrical&Format=Standard#34 */ #define USB_SELF_POWER_VBUS_MAX_DRAW 100 #endif /* _UAPI__LINUX_USB_CH9_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __CGROUP_INTERNAL_H #define __CGROUP_INTERNAL_H #include <linux/cgroup.h> #include <linux/kernfs.h> #include <linux/workq