1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _KERNEL_EVENTS_INTERNAL_H #define _KERNEL_EVENTS_INTERNAL_H #include <linux/hardirq.h> #include <linux/uaccess.h> #include <linux/refcount.h> /* Buffer handling */ #define RING_BUFFER_WRITABLE 0x01 struct perf_buffer { refcount_t refcount; struct rcu_head rcu_head; #ifdef CONFIG_PERF_USE_VMALLOC struct work_struct work; int page_order; /* allocation order */ #endif int nr_pages; /* nr of data pages */ int overwrite; /* can overwrite itself */ int paused; /* can write into ring buffer */ atomic_t poll; /* POLL_ for wakeups */ local_t head; /* write position */ unsigned int nest; /* nested writers */ local_t events; /* event limit */ local_t wakeup; /* wakeup stamp */ local_t lost; /* nr records lost */ long watermark; /* wakeup watermark */ long aux_watermark; /* poll crap */ spinlock_t event_lock; struct list_head event_list; atomic_t mmap_count; unsigned long mmap_locked; struct user_struct *mmap_user; /* AUX area */ long aux_head; unsigned int aux_nest; long aux_wakeup; /* last aux_watermark boundary crossed by aux_head */ unsigned long aux_pgoff; int aux_nr_pages; int aux_overwrite; atomic_t aux_mmap_count; unsigned long aux_mmap_locked; void (*free_aux)(void *); refcount_t aux_refcount; int aux_in_sampling; void **aux_pages; void *aux_priv; struct perf_event_mmap_page *user_page; void *data_pages[]; }; extern void rb_free(struct perf_buffer *rb); static inline void rb_free_rcu(struct rcu_head *rcu_head) { struct perf_buffer *rb; rb = container_of(rcu_head, struct perf_buffer, rcu_head); rb_free(rb); } static inline void rb_toggle_paused(struct perf_buffer *rb, bool pause) { if (!pause && rb->nr_pages) rb->paused = 0; else rb->paused = 1; } extern struct perf_buffer * rb_alloc(int nr_pages, long watermark, int cpu, int flags); extern void perf_event_wakeup(struct perf_event *event); extern int rb_alloc_aux(struct perf_buffer *rb, struct perf_event *event, pgoff_t pgoff, int nr_pages, long watermark, int flags); extern void rb_free_aux(struct perf_buffer *rb); extern struct perf_buffer *ring_buffer_get(struct perf_event *event); extern void ring_buffer_put(struct perf_buffer *rb); static inline bool rb_has_aux(struct perf_buffer *rb) { return !!rb->aux_nr_pages; } void perf_event_aux_event(struct perf_event *event, unsigned long head, unsigned long size, u64 flags); extern struct page * perf_mmap_to_page(struct perf_buffer *rb, unsigned long pgoff); #ifdef CONFIG_PERF_USE_VMALLOC /* * Back perf_mmap() with vmalloc memory. * * Required for architectures that have d-cache aliasing issues. */ static inline int page_order(struct perf_buffer *rb) { return rb->page_order; } #else static inline int page_order(struct perf_buffer *rb) { return 0; } #endif static inline unsigned long perf_data_size(struct perf_buffer *rb) { return rb->nr_pages << (PAGE_SHIFT + page_order(rb)); } static inline unsigned long perf_aux_size(struct perf_buffer *rb) { return rb->aux_nr_pages << PAGE_SHIFT; } #define __DEFINE_OUTPUT_COPY_BODY(advance_buf, memcpy_func, ...) \ { \ unsigned long size, written; \ \ do { \ size = min(handle->size, len); \ written = memcpy_func(__VA_ARGS__); \ written = size - written; \ \ len -= written; \ handle->addr += written; \ if (advance_buf) \ buf += written; \ handle->size -= written; \ if (!handle->size) { \ struct perf_buffer *rb = handle->rb; \ \ handle->page++; \ handle->page &= rb->nr_pages - 1; \ handle->addr = rb->data_pages[handle->page]; \ handle->size = PAGE_SIZE << page_order(rb); \ } \ } while (len && written == size); \ \ return len; \ } #define DEFINE_OUTPUT_COPY(func_name, memcpy_func) \ static inline unsigned long \ func_name(struct perf_output_handle *handle, \ const void *buf, unsigned long len) \ __DEFINE_OUTPUT_COPY_BODY(true, memcpy_func, handle->addr, buf, size) static inline unsigned long __output_custom(struct perf_output_handle *handle, perf_copy_f copy_func, const void *buf, unsigned long len) { unsigned long orig_len = len; __DEFINE_OUTPUT_COPY_BODY(false, copy_func, handle->addr, buf, orig_len - len, size) } static inline unsigned long memcpy_common(void *dst, const void *src, unsigned long n) { memcpy(dst, src, n); return 0; } DEFINE_OUTPUT_COPY(__output_copy, memcpy_common) static inline unsigned long memcpy_skip(void *dst, const void *src, unsigned long n) { return 0; } DEFINE_OUTPUT_COPY(__output_skip, memcpy_skip) #ifndef arch_perf_out_copy_user #define arch_perf_out_copy_user arch_perf_out_copy_user static inline unsigned long arch_perf_out_copy_user(void *dst, const void *src, unsigned long n) { unsigned long ret; pagefault_disable(); ret = __copy_from_user_inatomic(dst, src, n); pagefault_enable(); return ret; } #endif DEFINE_OUTPUT_COPY(__output_copy_user, arch_perf_out_copy_user) static inline int get_recursion_context(int *recursion) { unsigned int pc = preempt_count(); unsigned char rctx = 0; rctx += !!(pc & (NMI_MASK)); rctx += !!(pc & (NMI_MASK | HARDIRQ_MASK)); rctx += !!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)); if (recursion[rctx]) return -1; recursion[rctx]++; barrier(); return rctx; } static inline void put_recursion_context(int *recursion, int rctx) { barrier(); recursion[rctx]--; } #ifdef CONFIG_HAVE_PERF_USER_STACK_DUMP static inline bool arch_perf_have_user_stack_dump(void) { return true; } #define perf_user_stack_pointer(regs) user_stack_pointer(regs) #else static inline bool arch_perf_have_user_stack_dump(void) { return false; } #define perf_user_stack_pointer(regs) 0 #endif /* CONFIG_HAVE_PERF_USER_STACK_DUMP */ #endif /* _KERNEL_EVENTS_INTERNAL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_STRINGHASH_H #define __LINUX_STRINGHASH_H #include <linux/compiler.h> /* For __pure */ #include <linux/types.h> /* For u32, u64 */ #include <linux/hash.h> /* * Routines for hashing strings of bytes to a 32-bit hash value. * * These hash functions are NOT GUARANTEED STABLE between kernel * versions, architectures, or even repeated boots of the same kernel. * (E.g. they may depend on boot-time hardware detection or be * deliberately randomized.) * * They are also not intended to be secure against collisions caused by * malicious inputs; much slower hash functions are required for that. * * They are optimized for pathname components, meaning short strings. * Even if a majority of files have longer names, the dynamic profile of * pathname components skews short due to short directory names. * (E.g. /usr/lib/libsesquipedalianism.so.3.141.) */ /* * Version 1: one byte at a time. Example of use: * * unsigned long hash = init_name_hash; * while (*p) * hash = partial_name_hash(tolower(*p++), hash); * hash = end_name_hash(hash); * * Although this is designed for bytes, fs/hfsplus/unicode.c * abuses it to hash 16-bit values. */ /* Hash courtesy of the R5 hash in reiserfs modulo sign bits */ #define init_name_hash(salt) (unsigned long)(salt) /* partial hash update function. Assume roughly 4 bits per character */ static inline unsigned long partial_name_hash(unsigned long c, unsigned long prevhash) { return (prevhash + (c << 4) + (c >> 4)) * 11; } /* * Finally: cut down the number of bits to a int value (and try to avoid * losing bits). This also has the property (wanted by the dcache) * that the msbits make a good hash table index. */ static inline unsigned int end_name_hash(unsigned long hash) { return hash_long(hash, 32); } /* * Version 2: One word (32 or 64 bits) at a time. * If CONFIG_DCACHE_WORD_ACCESS is defined (meaning <asm/word-at-a-time.h> * exists, which describes major Linux platforms like x86 and ARM), then * this computes a different hash function much faster. * * If not set, this falls back to a wrapper around the preceding. */ extern unsigned int __pure full_name_hash(const void *salt, const char *, unsigned int); /* * A hash_len is a u64 with the hash of a string in the low * half and the length in the high half. */ #define hashlen_hash(hashlen) ((u32)(hashlen)) #define hashlen_len(hashlen) ((u32)((hashlen) >> 32)) #define hashlen_create(hash, len) ((u64)(len)<<32 | (u32)(hash)) /* Return the "hash_len" (hash and length) of a null-terminated string */ extern u64 __pure hashlen_string(const void *salt, const char *name); #endif /* __LINUX_STRINGHASH_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 /* SPDX-License-Identifier: GPL-2.0 */ /* * Block data types and constants. Directly include this file only to * break include dependency loop. */ #ifndef __LINUX_BLK_TYPES_H #define __LINUX_BLK_TYPES_H #include <linux/types.h> #include <linux/bvec.h> #include <linux/ktime.h> struct bio_set; struct bio; struct bio_integrity_payload; struct page; struct io_context; struct cgroup_subsys_state; typedef void (bio_end_io_t) (struct bio *); struct bio_crypt_ctx; struct block_device { dev_t bd_dev; int bd_openers; struct inode * bd_inode; /* will die */ struct super_block * bd_super; struct mutex bd_mutex; /* open/close mutex */ void * bd_claiming; void * bd_holder; int bd_holders; bool bd_write_holder; #ifdef CONFIG_SYSFS struct list_head bd_holder_disks; #endif struct block_device * bd_contains; u8 bd_partno; struct hd_struct * bd_part; /* number of times partitions within this device have been opened. */ unsigned bd_part_count; spinlock_t bd_size_lock; /* for bd_inode->i_size updates */ struct gendisk * bd_disk; struct backing_dev_info *bd_bdi; /* The counter of freeze processes */ int bd_fsfreeze_count; /* Mutex for freeze */ struct mutex bd_fsfreeze_mutex; } __randomize_layout; /* * Block error status values. See block/blk-core:blk_errors for the details. * Alpha cannot write a byte atomically, so we need to use 32-bit value. */ #if defined(CONFIG_ALPHA) && !defined(__alpha_bwx__) typedef u32 __bitwise blk_status_t; #else typedef u8 __bitwise blk_status_t; #endif #define BLK_STS_OK 0 #define BLK_STS_NOTSUPP ((__force blk_status_t)1) #define BLK_STS_TIMEOUT ((__force blk_status_t)2) #define BLK_STS_NOSPC ((__force blk_status_t)3) #define BLK_STS_TRANSPORT ((__force blk_status_t)4) #define BLK_STS_TARGET ((__force blk_status_t)5) #define BLK_STS_NEXUS ((__force blk_status_t)6) #define BLK_STS_MEDIUM ((__force blk_status_t)7) #define BLK_STS_PROTECTION ((__force blk_status_t)8) #define BLK_STS_RESOURCE ((__force blk_status_t)9) #define BLK_STS_IOERR ((__force blk_status_t)10) /* hack for device mapper, don't use elsewhere: */ #define BLK_STS_DM_REQUEUE ((__force blk_status_t)11) #define BLK_STS_AGAIN ((__force blk_status_t)12) /* * BLK_STS_DEV_RESOURCE is returned from the driver to the block layer if * device related resources are unavailable, but the driver can guarantee * that the queue will be rerun in the future once resources become * available again. This is typically the case for device specific * resources that are consumed for IO. If the driver fails allocating these * resources, we know that inflight (or pending) IO will free these * resource upon completion. * * This is different from BLK_STS_RESOURCE in that it explicitly references * a device specific resource. For resources of wider scope, allocation * failure can happen without having pending IO. This means that we can't * rely on request completions freeing these resources, as IO may not be in * flight. Examples of that are kernel memory allocations, DMA mappings, or * any other system wide resources. */ #define BLK_STS_DEV_RESOURCE ((__force blk_status_t)13) /* * BLK_STS_ZONE_RESOURCE is returned from the driver to the block layer if zone * related resources are unavailable, but the driver can guarantee the queue * will be rerun in the future once the resources become available again. * * This is different from BLK_STS_DEV_RESOURCE in that it explicitly references * a zone specific resource and IO to a different zone on the same device could * still be served. Examples of that are zones that are write-locked, but a read * to the same zone could be served. */ #define BLK_STS_ZONE_RESOURCE ((__force blk_status_t)14) /* * BLK_STS_ZONE_OPEN_RESOURCE is returned from the driver in the completion * path if the device returns a status indicating that too many zone resources * are currently open. The same command should be successful if resubmitted * after the number of open zones decreases below the device's limits, which is * reported in the request_queue's max_open_zones. */ #define BLK_STS_ZONE_OPEN_RESOURCE ((__force blk_status_t)15) /* * BLK_STS_ZONE_ACTIVE_RESOURCE is returned from the driver in the completion * path if the device returns a status indicating that too many zone resources * are currently active. The same command should be successful if resubmitted * after the number of active zones decreases below the device's limits, which * is reported in the request_queue's max_active_zones. */ #define BLK_STS_ZONE_ACTIVE_RESOURCE ((__force blk_status_t)16) /** * blk_path_error - returns true if error may be path related * @error: status the request was completed with * * Description: * This classifies block error status into non-retryable errors and ones * that may be successful if retried on a failover path. * * Return: * %false - retrying failover path will not help * %true - may succeed if retried */ static inline bool blk_path_error(blk_status_t error) { switch (error) { case BLK_STS_NOTSUPP: case BLK_STS_NOSPC: case BLK_STS_TARGET: case BLK_STS_NEXUS: case BLK_STS_MEDIUM: case BLK_STS_PROTECTION: return false; } /* Anything else could be a path failure, so should be retried */ return true; } /* * From most significant bit: * 1 bit: reserved for other usage, see below * 12 bits: original size of bio * 51 bits: issue time of bio */ #define BIO_ISSUE_RES_BITS 1 #define BIO_ISSUE_SIZE_BITS 12 #define BIO_ISSUE_RES_SHIFT (64 - BIO_ISSUE_RES_BITS) #define BIO_ISSUE_SIZE_SHIFT (BIO_ISSUE_RES_SHIFT - BIO_ISSUE_SIZE_BITS) #define BIO_ISSUE_TIME_MASK ((1ULL << BIO_ISSUE_SIZE_SHIFT) - 1) #define BIO_ISSUE_SIZE_MASK \ (((1ULL << BIO_ISSUE_SIZE_BITS) - 1) << BIO_ISSUE_SIZE_SHIFT) #define BIO_ISSUE_RES_MASK (~((1ULL << BIO_ISSUE_RES_SHIFT) - 1)) /* Reserved bit for blk-throtl */ #define BIO_ISSUE_THROTL_SKIP_LATENCY (1ULL << 63) struct bio_issue { u64 value; }; static inline u64 __bio_issue_time(u64 time) { return time & BIO_ISSUE_TIME_MASK; } static inline u64 bio_issue_time(struct bio_issue *issue) { return __bio_issue_time(issue->value); } static inline sector_t bio_issue_size(struct bio_issue *issue) { return ((issue->value & BIO_ISSUE_SIZE_MASK) >> BIO_ISSUE_SIZE_SHIFT); } static inline void bio_issue_init(struct bio_issue *issue, sector_t size) { size &= (1ULL << BIO_ISSUE_SIZE_BITS) - 1; issue->value = ((issue->value & BIO_ISSUE_RES_MASK) | (ktime_get_ns() & BIO_ISSUE_TIME_MASK) | ((u64)size << BIO_ISSUE_SIZE_SHIFT)); } /* * main unit of I/O for the block layer and lower layers (ie drivers and * stacking drivers) */ struct bio { struct bio *bi_next; /* request queue link */ struct gendisk *bi_disk; unsigned int bi_opf; /* bottom bits req flags, * top bits REQ_OP. Use * accessors. */ unsigned short bi_flags; /* status, etc and bvec pool number */ unsigned short bi_ioprio; unsigned short bi_write_hint; blk_status_t bi_status; u8 bi_partno; atomic_t __bi_remaining; struct bvec_iter bi_iter; bio_end_io_t *bi_end_io; void *bi_private; #ifdef CONFIG_BLK_CGROUP /* * Represents the association of the css and request_queue for the bio. * If a bio goes direct to device, it will not have a blkg as it will * not have a request_queue associated with it. The reference is put * on release of the bio. */ struct blkcg_gq *bi_blkg; struct bio_issue bi_issue; #ifdef CONFIG_BLK_CGROUP_IOCOST u64 bi_iocost_cost; #endif #endif #ifdef CONFIG_BLK_INLINE_ENCRYPTION struct bio_crypt_ctx *bi_crypt_context; #endif union { #if defined(CONFIG_BLK_DEV_INTEGRITY) struct bio_integrity_payload *bi_integrity; /* data integrity */ #endif }; unsigned short bi_vcnt; /* how many bio_vec's */ /* * Everything starting with bi_max_vecs will be preserved by bio_reset() */ unsigned short bi_max_vecs; /* max bvl_vecs we can hold */ atomic_t __bi_cnt; /* pin count */ struct bio_vec *bi_io_vec; /* the actual vec list */ struct bio_set *bi_pool; /* * We can inline a number of vecs at the end of the bio, to avoid * double allocations for a small number of bio_vecs. This member * MUST obviously be kept at the very end of the bio. */ struct bio_vec bi_inline_vecs[]; }; #define BIO_RESET_BYTES offsetof(struct bio, bi_max_vecs) /* * bio flags */ enum { BIO_NO_PAGE_REF, /* don't put release vec pages */ BIO_CLONED, /* doesn't own data */ BIO_BOUNCED, /* bio is a bounce bio */ BIO_WORKINGSET, /* contains userspace workingset pages */ BIO_QUIET, /* Make BIO Quiet */ BIO_CHAIN, /* chained bio, ->bi_remaining in effect */ BIO_REFFED, /* bio has elevated ->bi_cnt */ BIO_THROTTLED, /* This bio has already been subjected to * throttling rules. Don't do it again. */ BIO_TRACE_COMPLETION, /* bio_endio() should trace the final completion * of this bio. */ BIO_CGROUP_ACCT, /* has been accounted to a cgroup */ BIO_TRACKED, /* set if bio goes through the rq_qos path */ BIO_FLAG_LAST }; /* See BVEC_POOL_OFFSET below before adding new flags */ /* * We support 6 different bvec pools, the last one is magic in that it * is backed by a mempool. */ #define BVEC_POOL_NR 6 #define BVEC_POOL_MAX (BVEC_POOL_NR - 1) /* * Top 3 bits of bio flags indicate the pool the bvecs came from. We add * 1 to the actual index so that 0 indicates that there are no bvecs to be * freed. */ #define BVEC_POOL_BITS (3) #define BVEC_POOL_OFFSET (16 - BVEC_POOL_BITS) #define BVEC_POOL_IDX(bio) ((bio)->bi_flags >> BVEC_POOL_OFFSET) #if (1<< BVEC_POOL_BITS) < (BVEC_POOL_NR+1) # error "BVEC_POOL_BITS is too small" #endif /* * Flags starting here get preserved by bio_reset() - this includes * only BVEC_POOL_IDX() */ #define BIO_RESET_BITS BVEC_POOL_OFFSET typedef __u32 __bitwise blk_mq_req_flags_t; /* * Operations and flags common to the bio and request structures. * We use 8 bits for encoding the operation, and the remaining 24 for flags. * * The least significant bit of the operation number indicates the data * transfer direction: * * - if the least significant bit is set transfers are TO the device * - if the least significant bit is not set transfers are FROM the device * * If a operation does not transfer data the least significant bit has no * meaning. */ #define REQ_OP_BITS 8 #define REQ_OP_MASK ((1 << REQ_OP_BITS) - 1) #define REQ_FLAG_BITS 24 enum req_opf { /* read sectors from the device */ REQ_OP_READ = 0, /* write sectors to the device */ REQ_OP_WRITE = 1, /* flush the volatile write cache */ REQ_OP_FLUSH = 2, /* discard sectors */ REQ_OP_DISCARD = 3, /* securely erase sectors */ REQ_OP_SECURE_ERASE = 5, /* write the same sector many times */ REQ_OP_WRITE_SAME = 7, /* write the zero filled sector many times */ REQ_OP_WRITE_ZEROES = 9, /* Open a zone */ REQ_OP_ZONE_OPEN = 10, /* Close a zone */ REQ_OP_ZONE_CLOSE = 11, /* Transition a zone to full */ REQ_OP_ZONE_FINISH = 12, /* write data at the current zone write pointer */ REQ_OP_ZONE_APPEND = 13, /* reset a zone write pointer */ REQ_OP_ZONE_RESET = 15, /* reset all the zone present on the device */ REQ_OP_ZONE_RESET_ALL = 17, /* SCSI passthrough using struct scsi_request */ REQ_OP_SCSI_IN = 32, REQ_OP_SCSI_OUT = 33, /* Driver private requests */ REQ_OP_DRV_IN = 34, REQ_OP_DRV_OUT = 35, REQ_OP_LAST, }; enum req_flag_bits { __REQ_FAILFAST_DEV = /* no driver retries of device errors */ REQ_OP_BITS, __REQ_FAILFAST_TRANSPORT, /* no driver retries of transport errors */ __REQ_FAILFAST_DRIVER, /* no driver retries of driver errors */ __REQ_SYNC, /* request is sync (sync write or read) */ __REQ_META, /* metadata io request */ __REQ_PRIO, /* boost priority in cfq */ __REQ_NOMERGE, /* don't touch this for merging */ __REQ_IDLE, /* anticipate more IO after this one */ __REQ_INTEGRITY, /* I/O includes block integrity payload */ __REQ_FUA, /* forced unit access */ __REQ_PREFLUSH, /* request for cache flush */ __REQ_RAHEAD, /* read ahead, can fail anytime */ __REQ_BACKGROUND, /* background IO */ __REQ_NOWAIT, /* Don't wait if request will block */ /* * When a shared kthread needs to issue a bio for a cgroup, doing * so synchronously can lead to priority inversions as the kthread * can be trapped waiting for that cgroup. CGROUP_PUNT flag makes * submit_bio() punt the actual issuing to a dedicated per-blkcg * work item to avoid such priority inversions. */ __REQ_CGROUP_PUNT, /* command specific flags for REQ_OP_WRITE_ZEROES: */ __REQ_NOUNMAP, /* do not free blocks when zeroing */ __REQ_HIPRI, /* for driver use */ __REQ_DRV, __REQ_SWAP, /* swapping request. */ __REQ_NR_BITS, /* stops here */ }; #define REQ_FAILFAST_DEV (1ULL << __REQ_FAILFAST_DEV) #define REQ_FAILFAST_TRANSPORT (1ULL << __REQ_FAILFAST_TRANSPORT) #define REQ_FAILFAST_DRIVER (1ULL << __REQ_FAILFAST_DRIVER) #define REQ_SYNC (1ULL << __REQ_SYNC) #define REQ_META (1ULL << __REQ_META) #define REQ_PRIO (1ULL << __REQ_PRIO) #define REQ_NOMERGE (1ULL << __REQ_NOMERGE) #define REQ_IDLE (1ULL << __REQ_IDLE) #define REQ_INTEGRITY (1ULL << __REQ_INTEGRITY) #define REQ_FUA (1ULL << __REQ_FUA) #define REQ_PREFLUSH (1ULL << __REQ_PREFLUSH) #define REQ_RAHEAD (1ULL << __REQ_RAHEAD) #define REQ_BACKGROUND (1ULL << __REQ_BACKGROUND) #define REQ_NOWAIT (1ULL << __REQ_NOWAIT) #define REQ_CGROUP_PUNT (1ULL << __REQ_CGROUP_PUNT) #define REQ_NOUNMAP (1ULL << __REQ_NOUNMAP) #define REQ_HIPRI (1ULL << __REQ_HIPRI) #define REQ_DRV (1ULL << __REQ_DRV) #define REQ_SWAP (1ULL << __REQ_SWAP) #define REQ_FAILFAST_MASK \ (REQ_FAILFAST_DEV | REQ_FAILFAST_TRANSPORT | REQ_FAILFAST_DRIVER) #define REQ_NOMERGE_FLAGS \ (REQ_NOMERGE | REQ_PREFLUSH | REQ_FUA) enum stat_group { STAT_READ, STAT_WRITE, STAT_DISCARD, STAT_FLUSH, NR_STAT_GROUPS }; #define bio_op(bio) \ ((bio)->bi_opf & REQ_OP_MASK) #define req_op(req) \ ((req)->cmd_flags & REQ_OP_MASK) /* obsolete, don't use in new code */ static inline void bio_set_op_attrs(struct bio *bio, unsigned op, unsigned op_flags) { bio->bi_opf = op | op_flags; } static inline bool op_is_write(unsigned int op) { return (op & 1); } /* * Check if the bio or request is one that needs special treatment in the * flush state machine. */ static inline bool op_is_flush(unsigned int op) { return op & (REQ_FUA | REQ_PREFLUSH); } /* * Reads are always treated as synchronous, as are requests with the FUA or * PREFLUSH flag. Other operations may be marked as synchronous using the * REQ_SYNC flag. */ static inline bool op_is_sync(unsigned int op) { return (op & REQ_OP_MASK) == REQ_OP_READ || (op & (REQ_SYNC | REQ_FUA | REQ_PREFLUSH)); } static inline bool op_is_discard(unsigned int op) { return (op & REQ_OP_MASK) == REQ_OP_DISCARD; } /* * Check if a bio or request operation is a zone management operation, with * the exception of REQ_OP_ZONE_RESET_ALL which is treated as a special case * due to its different handling in the block layer and device response in * case of command failure. */ static inline bool op_is_zone_mgmt(enum req_opf op) { switch (op & REQ_OP_MASK) { case REQ_OP_ZONE_RESET: case REQ_OP_ZONE_OPEN: case REQ_OP_ZONE_CLOSE: case REQ_OP_ZONE_FINISH: return true; default: return false; } } static inline int op_stat_group(unsigned int op) { if (op_is_discard(op)) return STAT_DISCARD; return op_is_write(op); } typedef unsigned int blk_qc_t; #define BLK_QC_T_NONE -1U #define BLK_QC_T_SHIFT 16 #define BLK_QC_T_INTERNAL (1U << 31) static inline bool blk_qc_t_valid(blk_qc_t cookie) { return cookie != BLK_QC_T_NONE; } static inline unsigned int blk_qc_t_to_queue_num(blk_qc_t cookie) { return (cookie & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT; } static inline unsigned int blk_qc_t_to_tag(blk_qc_t cookie) { return cookie & ((1u << BLK_QC_T_SHIFT) - 1); } static inline bool blk_qc_t_is_internal(blk_qc_t cookie) { return (cookie & BLK_QC_T_INTERNAL) != 0; } struct blk_rq_stat { u64 mean; u64 min; u64 max; u32 nr_samples; u64 batch; }; #endif /* __LINUX_BLK_TYPES_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 // SPDX-License-Identifier: GPL-2.0 /* * kobject.h - generic kernel object infrastructure. * * Copyright (c) 2002-2003 Patrick Mochel * Copyright (c) 2002-2003 Open Source Development Labs * Copyright (c) 2006-2008 Greg Kroah-Hartman <greg@kroah.com> * Copyright (c) 2006-2008 Novell Inc. * * Please read Documentation/core-api/kobject.rst before using the kobject * interface, ESPECIALLY the parts about reference counts and object * destructors. */ #ifndef _KOBJECT_H_ #define _KOBJECT_H_ #include <linux/types.h> #include <linux/list.h> #include <linux/sysfs.h> #include <linux/compiler.h> #include <linux/spinlock.h> #include <linux/kref.h> #include <linux/kobject_ns.h> #include <linux/kernel.h> #include <linux/wait.h> #include <linux/atomic.h> #include <linux/workqueue.h> #include <linux/uidgid.h> #define UEVENT_HELPER_PATH_LEN 256 #define UEVENT_NUM_ENVP 64 /* number of env pointers */ #define UEVENT_BUFFER_SIZE 2048 /* buffer for the variables */ #ifdef CONFIG_UEVENT_HELPER /* path to the userspace helper executed on an event */ extern char uevent_helper[]; #endif /* counter to tag the uevent, read only except for the kobject core */ extern u64 uevent_seqnum; /* * The actions here must match the index to the string array * in lib/kobject_uevent.c * * Do not add new actions here without checking with the driver-core * maintainers. Action strings are not meant to express subsystem * or device specific properties. In most cases you want to send a * kobject_uevent_env(kobj, KOBJ_CHANGE, env) with additional event * specific variables added to the event environment. */ enum kobject_action { KOBJ_ADD, KOBJ_REMOVE, KOBJ_CHANGE, KOBJ_MOVE, KOBJ_ONLINE, KOBJ_OFFLINE, KOBJ_BIND, KOBJ_UNBIND, }; struct kobject { const char *name; struct list_head entry; struct kobject *parent; struct kset *kset; struct kobj_type *ktype; struct kernfs_node *sd; /* sysfs directory entry */ struct kref kref; #ifdef CONFIG_DEBUG_KOBJECT_RELEASE struct delayed_work release; #endif unsigned int state_initialized:1; unsigned int state_in_sysfs:1; unsigned int state_add_uevent_sent:1; unsigned int state_remove_uevent_sent:1; unsigned int uevent_suppress:1; }; extern __printf(2, 3) int kobject_set_name(struct kobject *kobj, const char *name, ...); extern __printf(2, 0) int kobject_set_name_vargs(struct kobject *kobj, const char *fmt, va_list vargs); static inline const char *kobject_name(const struct kobject *kobj) { return kobj->name; } extern void kobject_init(struct kobject *kobj, struct kobj_type *ktype); extern __printf(3, 4) __must_check int kobject_add(struct kobject *kobj, struct kobject *parent, const char *fmt, ...); extern __printf(4, 5) __must_check int kobject_init_and_add(struct kobject *kobj, struct kobj_type *ktype, struct kobject *parent, const char *fmt, ...); extern void kobject_del(struct kobject *kobj); extern struct kobject * __must_check kobject_create(void); extern struct kobject * __must_check kobject_create_and_add(const char *name, struct kobject *parent); extern int __must_check kobject_rename(struct kobject *, const char *new_name); extern int __must_check kobject_move(struct kobject *, struct kobject *); extern struct kobject *kobject_get(struct kobject *kobj); extern struct kobject * __must_check kobject_get_unless_zero( struct kobject *kobj); extern void kobject_put(struct kobject *kobj); extern const void *kobject_namespace(struct kobject *kobj); extern void kobject_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid); extern char *kobject_get_path(struct kobject *kobj, gfp_t flag); /** * kobject_has_children - Returns whether a kobject has children. * @kobj: the object to test * * This will return whether a kobject has other kobjects as children. * * It does NOT account for the presence of attribute files, only sub * directories. It also assumes there is no concurrent addition or * removal of such children, and thus relies on external locking. */ static inline bool kobject_has_children(struct kobject *kobj) { WARN_ON_ONCE(kref_read(&kobj->kref) == 0); return kobj->sd && kobj->sd->dir.subdirs; } struct kobj_type { void (*release)(struct kobject *kobj); const struct sysfs_ops *sysfs_ops; struct attribute **default_attrs; /* use default_groups instead */ const struct attribute_group **default_groups; const struct kobj_ns_type_operations *(*child_ns_type)(struct kobject *kobj); const void *(*namespace)(struct kobject *kobj); void (*get_ownership)(struct kobject *kobj, kuid_t *uid, kgid_t *gid); }; struct kobj_uevent_env { char *argv[3]; char *envp[UEVENT_NUM_ENVP]; int envp_idx; char buf[UEVENT_BUFFER_SIZE]; int buflen; }; struct kset_uevent_ops { int (* const filter)(struct kset *kset, struct kobject *kobj); const char *(* const name)(struct kset *kset, struct kobject *kobj); int (* const uevent)(struct kset *kset, struct kobject *kobj, struct kobj_uevent_env *env); }; struct kobj_attribute { struct attribute attr; ssize_t (*show)(struct kobject *kobj, struct kobj_attribute *attr, char *buf); ssize_t (*store)(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count); }; extern const struct sysfs_ops kobj_sysfs_ops; struct sock; /** * struct kset - a set of kobjects of a specific type, belonging to a specific subsystem. * * A kset defines a group of kobjects. They can be individually * different "types" but overall these kobjects all want to be grouped * together and operated on in the same manner. ksets are used to * define the attribute callbacks and other common events that happen to * a kobject. * * @list: the list of all kobjects for this kset * @list_lock: a lock for iterating over the kobjects * @kobj: the embedded kobject for this kset (recursion, isn't it fun...) * @uevent_ops: the set of uevent operations for this kset. These are * called whenever a kobject has something happen to it so that the kset * can add new environment variables, or filter out the uevents if so * desired. */ struct kset { struct list_head list; spinlock_t list_lock; struct kobject kobj; const struct kset_uevent_ops *uevent_ops; } __randomize_layout; extern void kset_init(struct kset *kset); extern int __must_check kset_register(struct kset *kset); extern void kset_unregister(struct kset *kset); extern struct kset * __must_check kset_create_and_add(const char *name, const struct kset_uevent_ops *u, struct kobject *parent_kobj); static inline struct kset *to_kset(struct kobject *kobj) { return kobj ? container_of(kobj, struct kset, kobj) : NULL; } static inline struct kset *kset_get(struct kset *k) { return k ? to_kset(kobject_get(&k->kobj)) : NULL; } static inline void kset_put(struct kset *k) { kobject_put(&k->kobj); } static inline struct kobj_type *get_ktype(struct kobject *kobj) { return kobj->ktype; } extern struct kobject *kset_find_obj(struct kset *, const char *); /* The global /sys/kernel/ kobject for people to chain off of */ extern struct kobject *kernel_kobj; /* The global /sys/kernel/mm/ kobject for people to chain off of */ extern struct kobject *mm_kobj; /* The global /sys/hypervisor/ kobject for people to chain off of */ extern struct kobject *hypervisor_kobj; /* The global /sys/power/ kobject for people to chain off of */ extern struct kobject *power_kobj; /* The global /sys/firmware/ kobject for people to chain off of */ extern struct kobject *firmware_kobj; int kobject_uevent(struct kobject *kobj, enum kobject_action action); int kobject_uevent_env(struct kobject *kobj, enum kobject_action action, char *envp[]); int kobject_synth_uevent(struct kobject *kobj, const char *buf, size_t count); __printf(2, 3) int add_uevent_var(struct kobj_uevent_env *env, const char *format, ...); #endif /* _KOBJECT_H_ */
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 // SPDX-License-Identifier: GPL-2.0-only /* * linux/fs/namespace.c * * (C) Copyright Al Viro 2000, 2001 * * Based on code from fs/super.c, copyright Linus Torvalds and others. * Heavily rewritten. */ #include <linux/syscalls.h> #include <linux/export.h> #include <linux/capability.h> #include <linux/mnt_namespace.h> #include <linux/user_namespace.h> #include <linux/namei.h> #include <linux/security.h> #include <linux/cred.h> #include <linux/idr.h> #include <linux/init.h> /* init_rootfs */ #include <linux/fs_struct.h> /* get_fs_root et.al. */ #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ #include <linux/file.h> #include <linux/uaccess.h> #include <linux/proc_ns.h> #include <linux/magic.h> #include <linux/memblock.h> #include <linux/task_work.h> #include <linux/sched/task.h> #include <uapi/linux/mount.h> #include <linux/fs_context.h> #include <linux/shmem_fs.h> #include "pnode.h" #include "internal.h" /* Maximum number of mounts in a mount namespace */ unsigned int sysctl_mount_max __read_mostly = 100000; static unsigned int m_hash_mask __read_mostly; static unsigned int m_hash_shift __read_mostly; static unsigned int mp_hash_mask __read_mostly; static unsigned int mp_hash_shift __read_mostly; static __initdata unsigned long mhash_entries; static int __init set_mhash_entries(char *str) { if (!str) return 0; mhash_entries = simple_strtoul(str, &str, 0); return 1; } __setup("mhash_entries=", set_mhash_entries); static __initdata unsigned long mphash_entries; static int __init set_mphash_entries(char *str) { if (!str) return 0; mphash_entries = simple_strtoul(str, &str, 0); return 1; } __setup("mphash_entries=", set_mphash_entries); static u64 event; static DEFINE_IDA(mnt_id_ida); static DEFINE_IDA(mnt_group_ida); static struct hlist_head *mount_hashtable __read_mostly; static struct hlist_head *mountpoint_hashtable __read_mostly; static struct kmem_cache *mnt_cache __read_mostly; static DECLARE_RWSEM(namespace_sem); static HLIST_HEAD(unmounted); /* protected by namespace_sem */ static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */ /* /sys/fs */ struct kobject *fs_kobj; EXPORT_SYMBOL_GPL(fs_kobj); /* * vfsmount lock may be taken for read to prevent changes to the * vfsmount hash, ie. during mountpoint lookups or walking back * up the tree. * * It should be taken for write in all cases where the vfsmount * tree or hash is modified or when a vfsmount structure is modified. */ __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock); static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry) { unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); tmp += ((unsigned long)dentry / L1_CACHE_BYTES); tmp = tmp + (tmp >> m_hash_shift); return &mount_hashtable[tmp & m_hash_mask]; } static inline struct hlist_head *mp_hash(struct dentry *dentry) { unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES); tmp = tmp + (tmp >> mp_hash_shift); return &mountpoint_hashtable[tmp & mp_hash_mask]; } static int mnt_alloc_id(struct mount *mnt) { int res = ida_alloc(&mnt_id_ida, GFP_KERNEL); if (res < 0) return res; mnt->mnt_id = res; return 0; } static void mnt_free_id(struct mount *mnt) { ida_free(&mnt_id_ida, mnt->mnt_id); } /* * Allocate a new peer group ID */ static int mnt_alloc_group_id(struct mount *mnt) { int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL); if (res < 0) return res; mnt->mnt_group_id = res; return 0; } /* * Release a peer group ID */ void mnt_release_group_id(struct mount *mnt) { ida_free(&mnt_group_ida, mnt->mnt_group_id); mnt->mnt_group_id = 0; } /* * vfsmount lock must be held for read */ static inline void mnt_add_count(struct mount *mnt, int n) { #ifdef CONFIG_SMP this_cpu_add(mnt->mnt_pcp->mnt_count, n); #else preempt_disable(); mnt->mnt_count += n; preempt_enable(); #endif } /* * vfsmount lock must be held for write */ int mnt_get_count(struct mount *mnt) { #ifdef CONFIG_SMP int count = 0; int cpu; for_each_possible_cpu(cpu) { count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; } return count; #else return mnt->mnt_count; #endif } static struct mount *alloc_vfsmnt(const char *name) { struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); if (mnt) { int err; err = mnt_alloc_id(mnt); if (err) goto out_free_cache; if (name) { mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL); if (!mnt->mnt_devname) goto out_free_id; } #ifdef CONFIG_SMP mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); if (!mnt->mnt_pcp) goto out_free_devname; this_cpu_add(mnt->mnt_pcp->mnt_count, 1); #else mnt->mnt_count = 1; mnt->mnt_writers = 0; #endif INIT_HLIST_NODE(&mnt->mnt_hash); INIT_LIST_HEAD(&mnt->mnt_child); INIT_LIST_HEAD(&mnt->mnt_mounts); INIT_LIST_HEAD(&mnt->mnt_list); INIT_LIST_HEAD(&mnt->mnt_expire); INIT_LIST_HEAD(&mnt->mnt_share); INIT_LIST_HEAD(&mnt->mnt_slave_list); INIT_LIST_HEAD(&mnt->mnt_slave); INIT_HLIST_NODE(&mnt->mnt_mp_list); INIT_LIST_HEAD(&mnt->mnt_umounting); INIT_HLIST_HEAD(&mnt->mnt_stuck_children); } return mnt; #ifdef CONFIG_SMP out_free_devname: kfree_const(mnt->mnt_devname); #endif out_free_id: mnt_free_id(mnt); out_free_cache: kmem_cache_free(mnt_cache, mnt); return NULL; } /* * Most r/o checks on a fs are for operations that take * discrete amounts of time, like a write() or unlink(). * We must keep track of when those operations start * (for permission checks) and when they end, so that * we can determine when writes are able to occur to * a filesystem. */ /* * __mnt_is_readonly: check whether a mount is read-only * @mnt: the mount to check for its write status * * This shouldn't be used directly ouside of the VFS. * It does not guarantee that the filesystem will stay * r/w, just that it is right *now*. This can not and * should not be used in place of IS_RDONLY(inode). * mnt_want/drop_write() will _keep_ the filesystem * r/w. */ bool __mnt_is_readonly(struct vfsmount *mnt) { return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb); } EXPORT_SYMBOL_GPL(__mnt_is_readonly); static inline void mnt_inc_writers(struct mount *mnt) { #ifdef CONFIG_SMP this_cpu_inc(mnt->mnt_pcp->mnt_writers); #else mnt->mnt_writers++; #endif } static inline void mnt_dec_writers(struct mount *mnt) { #ifdef CONFIG_SMP this_cpu_dec(mnt->mnt_pcp->mnt_writers); #else mnt->mnt_writers--; #endif } static unsigned int mnt_get_writers(struct mount *mnt) { #ifdef CONFIG_SMP unsigned int count = 0; int cpu; for_each_possible_cpu(cpu) { count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; } return count; #else return mnt->mnt_writers; #endif } static int mnt_is_readonly(struct vfsmount *mnt) { if (mnt->mnt_sb->s_readonly_remount) return 1; /* Order wrt setting s_flags/s_readonly_remount in do_remount() */ smp_rmb(); return __mnt_is_readonly(mnt); } /* * Most r/o & frozen checks on a fs are for operations that take discrete * amounts of time, like a write() or unlink(). We must keep track of when * those operations start (for permission checks) and when they end, so that we * can determine when writes are able to occur to a filesystem. */ /** * __mnt_want_write - get write access to a mount without freeze protection * @m: the mount on which to take a write * * This tells the low-level filesystem that a write is about to be performed to * it, and makes sure that writes are allowed (mnt it read-write) before * returning success. This operation does not protect against filesystem being * frozen. When the write operation is finished, __mnt_drop_write() must be * called. This is effectively a refcount. */ int __mnt_want_write(struct vfsmount *m) { struct mount *mnt = real_mount(m); int ret = 0; preempt_disable(); mnt_inc_writers(mnt); /* * The store to mnt_inc_writers must be visible before we pass * MNT_WRITE_HOLD loop below, so that the slowpath can see our * incremented count after it has set MNT_WRITE_HOLD. */ smp_mb(); while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) cpu_relax(); /* * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will * be set to match its requirements. So we must not load that until * MNT_WRITE_HOLD is cleared. */ smp_rmb(); if (mnt_is_readonly(m)) { mnt_dec_writers(mnt); ret = -EROFS; } preempt_enable(); return ret; } /** * mnt_want_write - get write access to a mount * @m: the mount on which to take a write * * This tells the low-level filesystem that a write is about to be performed to * it, and makes sure that writes are allowed (mount is read-write, filesystem * is not frozen) before returning success. When the write operation is * finished, mnt_drop_write() must be called. This is effectively a refcount. */ int mnt_want_write(struct vfsmount *m) { int ret; sb_start_write(m->mnt_sb); ret = __mnt_want_write(m); if (ret) sb_end_write(m->mnt_sb); return ret; } EXPORT_SYMBOL_GPL(mnt_want_write); /** * mnt_clone_write - get write access to a mount * @mnt: the mount on which to take a write * * This is effectively like mnt_want_write, except * it must only be used to take an extra write reference * on a mountpoint that we already know has a write reference * on it. This allows some optimisation. * * After finished, mnt_drop_write must be called as usual to * drop the reference. */ int mnt_clone_write(struct vfsmount *mnt) { /* superblock may be r/o */ if (__mnt_is_readonly(mnt)) return -EROFS; preempt_disable(); mnt_inc_writers(real_mount(mnt)); preempt_enable(); return 0; } EXPORT_SYMBOL_GPL(mnt_clone_write); /** * __mnt_want_write_file - get write access to a file's mount * @file: the file who's mount on which to take a write * * This is like __mnt_want_write, but it takes a file and can * do some optimisations if the file is open for write already */ int __mnt_want_write_file(struct file *file) { if (!(file->f_mode & FMODE_WRITER)) return __mnt_want_write(file->f_path.mnt); else return mnt_clone_write(file->f_path.mnt); } /** * mnt_want_write_file - get write access to a file's mount * @file: the file who's mount on which to take a write * * This is like mnt_want_write, but it takes a file and can * do some optimisations if the file is open for write already */ int mnt_want_write_file(struct file *file) { int ret; sb_start_write(file_inode(file)->i_sb); ret = __mnt_want_write_file(file); if (ret) sb_end_write(file_inode(file)->i_sb); return ret; } EXPORT_SYMBOL_GPL(mnt_want_write_file); /** * __mnt_drop_write - give up write access to a mount * @mnt: the mount on which to give up write access * * Tells the low-level filesystem that we are done * performing writes to it. Must be matched with * __mnt_want_write() call above. */ void __mnt_drop_write(struct vfsmount *mnt) { preempt_disable(); mnt_dec_writers(real_mount(mnt)); preempt_enable(); } /** * mnt_drop_write - give up write access to a mount * @mnt: the mount on which to give up write access * * Tells the low-level filesystem that we are done performing writes to it and * also allows filesystem to be frozen again. Must be matched with * mnt_want_write() call above. */ void mnt_drop_write(struct vfsmount *mnt) { __mnt_drop_write(mnt); sb_end_write(mnt->mnt_sb); } EXPORT_SYMBOL_GPL(mnt_drop_write); void __mnt_drop_write_file(struct file *file) { __mnt_drop_write(file->f_path.mnt); } void mnt_drop_write_file(struct file *file) { __mnt_drop_write_file(file); sb_end_write(file_inode(file)->i_sb); } EXPORT_SYMBOL(mnt_drop_write_file); static int mnt_make_readonly(struct mount *mnt) { int ret = 0; lock_mount_hash(); mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; /* * After storing MNT_WRITE_HOLD, we'll read the counters. This store * should be visible before we do. */ smp_mb(); /* * With writers on hold, if this value is zero, then there are * definitely no active writers (although held writers may subsequently * increment the count, they'll have to wait, and decrement it after * seeing MNT_READONLY). * * It is OK to have counter incremented on one CPU and decremented on * another: the sum will add up correctly. The danger would be when we * sum up each counter, if we read a counter before it is incremented, * but then read another CPU's count which it has been subsequently * decremented from -- we would see more decrements than we should. * MNT_WRITE_HOLD protects against this scenario, because * mnt_want_write first increments count, then smp_mb, then spins on * MNT_WRITE_HOLD, so it can't be decremented by another CPU while * we're counting up here. */ if (mnt_get_writers(mnt) > 0) ret = -EBUSY; else mnt->mnt.mnt_flags |= MNT_READONLY; /* * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers * that become unheld will see MNT_READONLY. */ smp_wmb(); mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; unlock_mount_hash(); return ret; } static int __mnt_unmake_readonly(struct mount *mnt) { lock_mount_hash(); mnt->mnt.mnt_flags &= ~MNT_READONLY; unlock_mount_hash(); return 0; } int sb_prepare_remount_readonly(struct super_block *sb) { struct mount *mnt; int err = 0; /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ if (atomic_long_read(&sb->s_remove_count)) return -EBUSY; lock_mount_hash(); list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; smp_mb(); if (mnt_get_writers(mnt) > 0) { err = -EBUSY; break; } } } if (!err && atomic_long_read(&sb->s_remove_count)) err = -EBUSY; if (!err) { sb->s_readonly_remount = 1; smp_wmb(); } list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; } unlock_mount_hash(); return err; } static void free_vfsmnt(struct mount *mnt) { kfree_const(mnt->mnt_devname); #ifdef CONFIG_SMP free_percpu(mnt->mnt_pcp); #endif kmem_cache_free(mnt_cache, mnt); } static void delayed_free_vfsmnt(struct rcu_head *head) { free_vfsmnt(container_of(head, struct mount, mnt_rcu)); } /* call under rcu_read_lock */ int __legitimize_mnt(struct vfsmount *bastard, unsigned seq) { struct mount *mnt; if (read_seqretry(&mount_lock, seq)) return 1; if (bastard == NULL) return 0; mnt = real_mount(bastard); mnt_add_count(mnt, 1); smp_mb(); // see mntput_no_expire() if (likely(!read_seqretry(&mount_lock, seq))) return 0; if (bastard->mnt_flags & MNT_SYNC_UMOUNT) { mnt_add_count(mnt, -1); return 1; } lock_mount_hash(); if (unlikely(bastard->mnt_flags & MNT_DOOMED)) { mnt_add_count(mnt, -1); unlock_mount_hash(); return 1; } unlock_mount_hash(); /* caller will mntput() */ return -1; } /* call under rcu_read_lock */ bool legitimize_mnt(struct vfsmount *bastard, unsigned seq) { int res = __legitimize_mnt(bastard, seq); if (likely(!res)) return true; if (unlikely(res < 0)) { rcu_read_unlock(); mntput(bastard); rcu_read_lock(); } return false; } /* * find the first mount at @dentry on vfsmount @mnt. * call under rcu_read_lock() */ struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) { struct hlist_head *head = m_hash(mnt, dentry); struct mount *p; hlist_for_each_entry_rcu(p, head, mnt_hash) if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) return p; return NULL; } /* * lookup_mnt - Return the first child mount mounted at path * * "First" means first mounted chronologically. If you create the * following mounts: * * mount /dev/sda1 /mnt * mount /dev/sda2 /mnt * mount /dev/sda3 /mnt * * Then lookup_mnt() on the base /mnt dentry in the root mount will * return successively the root dentry and vfsmount of /dev/sda1, then * /dev/sda2, then /dev/sda3, then NULL. * * lookup_mnt takes a reference to the found vfsmount. */ struct vfsmount *lookup_mnt(const struct path *path) { struct mount *child_mnt; struct vfsmount *m; unsigned seq; rcu_read_lock(); do { seq = read_seqbegin(&mount_lock); child_mnt = __lookup_mnt(path->mnt, path->dentry); m = child_mnt ? &child_mnt->mnt : NULL; } while (!legitimize_mnt(m, seq)); rcu_read_unlock(); return m; } static inline void lock_ns_list(struct mnt_namespace *ns) { spin_lock(&ns->ns_lock); } static inline void unlock_ns_list(struct mnt_namespace *ns) { spin_unlock(&ns->ns_lock); } static inline bool mnt_is_cursor(struct mount *mnt) { return mnt->mnt.mnt_flags & MNT_CURSOR; } /* * __is_local_mountpoint - Test to see if dentry is a mountpoint in the * current mount namespace. * * The common case is dentries are not mountpoints at all and that * test is handled inline. For the slow case when we are actually * dealing with a mountpoint of some kind, walk through all of the * mounts in the current mount namespace and test to see if the dentry * is a mountpoint. * * The mount_hashtable is not usable in the context because we * need to identify all mounts that may be in the current mount * namespace not just a mount that happens to have some specified * parent mount. */ bool __is_local_mountpoint(struct dentry *dentry) { struct mnt_namespace *ns = current->nsproxy->mnt_ns; struct mount *mnt; bool is_covered = false; down_read(&namespace_sem); lock_ns_list(ns); list_for_each_entry(mnt, &ns->list, mnt_list) { if (mnt_is_cursor(mnt)) continue; is_covered = (mnt->mnt_mountpoint == dentry); if (is_covered) break; } unlock_ns_list(ns); up_read(&namespace_sem); return is_covered; } static struct mountpoint *lookup_mountpoint(struct dentry *dentry) { struct hlist_head *chain = mp_hash(dentry); struct mountpoint *mp; hlist_for_each_entry(mp, chain, m_hash) { if (mp->m_dentry == dentry) { mp->m_count++; return mp; } } return NULL; } static struct mountpoint *get_mountpoint(struct dentry *dentry) { struct mountpoint *mp, *new = NULL; int ret; if (d_mountpoint(dentry)) { /* might be worth a WARN_ON() */ if (d_unlinked(dentry)) return ERR_PTR(-ENOENT); mountpoint: read_seqlock_excl(&mount_lock); mp = lookup_mountpoint(dentry); read_sequnlock_excl(&mount_lock); if (mp) goto done; } if (!new) new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL); if (!new) return ERR_PTR(-ENOMEM); /* Exactly one processes may set d_mounted */ ret = d_set_mounted(dentry); /* Someone else set d_mounted? */ if (ret == -EBUSY) goto mountpoint; /* The dentry is not available as a mountpoint? */ mp = ERR_PTR(ret); if (ret) goto done; /* Add the new mountpoint to the hash table */ read_seqlock_excl(&mount_lock); new->m_dentry = dget(dentry); new->m_count = 1; hlist_add_head(&new->m_hash, mp_hash(dentry)); INIT_HLIST_HEAD(&new->m_list); read_sequnlock_excl(&mount_lock); mp = new; new = NULL; done: kfree(new); return mp; } /* * vfsmount lock must be held. Additionally, the caller is responsible * for serializing calls for given disposal list. */ static void __put_mountpoint(struct mountpoint *mp, struct list_head *list) { if (!--mp->m_count) { struct dentry *dentry = mp->m_dentry; BUG_ON(!hlist_empty(&mp->m_list)); spin_lock(&dentry->d_lock); dentry->d_flags &= ~DCACHE_MOUNTED; spin_unlock(&dentry->d_lock); dput_to_list(dentry, list); hlist_del(&mp->m_hash); kfree(mp); } } /* called with namespace_lock and vfsmount lock */ static void put_mountpoint(struct mountpoint *mp) { __put_mountpoint(mp, &ex_mountpoints); } static inline int check_mnt(struct mount *mnt) { return mnt->mnt_ns == current->nsproxy->mnt_ns; } /* * vfsmount lock must be held for write */ static void touch_mnt_namespace(struct mnt_namespace *ns) { if (ns) { ns->event = ++event; wake_up_interruptible(&ns->poll); } } /* * vfsmount lock must be held for write */ static void __touch_mnt_namespace(struct mnt_namespace *ns) { if (ns && ns->event != event) { ns->event = event; wake_up_interruptible(&ns->poll); } } /* * vfsmount lock must be held for write */ static struct mountpoint *unhash_mnt(struct mount *mnt) { struct mountpoint *mp; mnt->mnt_parent = mnt; mnt->mnt_mountpoint = mnt->mnt.mnt_root; list_del_init(&mnt->mnt_child); hlist_del_init_rcu(&mnt->mnt_hash); hlist_del_init(&mnt->mnt_mp_list); mp = mnt->mnt_mp; mnt->mnt_mp = NULL; return mp; } /* * vfsmount lock must be held for write */ static void umount_mnt(struct mount *mnt) { put_mountpoint(unhash_mnt(mnt)); } /* * vfsmount lock must be held for write */ void mnt_set_mountpoint(struct mount *mnt, struct mountpoint *mp, struct mount *child_mnt) { mp->m_count++; mnt_add_count(mnt, 1); /* essentially, that's mntget */ child_mnt->mnt_mountpoint = mp->m_dentry; child_mnt->mnt_parent = mnt; child_mnt->mnt_mp = mp; hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list); } static void __attach_mnt(struct mount *mnt, struct mount *parent) { hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mnt->mnt_mountpoint)); list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); } /* * vfsmount lock must be held for write */ static void attach_mnt(struct mount *mnt, struct mount *parent, struct mountpoint *mp) { mnt_set_mountpoint(parent, mp, mnt); __attach_mnt(mnt, parent); } void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt) { struct mountpoint *old_mp = mnt->mnt_mp; struct mount *old_parent = mnt->mnt_parent; list_del_init(&mnt->mnt_child); hlist_del_init(&mnt->mnt_mp_list); hlist_del_init_rcu(&mnt->mnt_hash); attach_mnt(mnt, parent, mp); put_mountpoint(old_mp); mnt_add_count(old_parent, -1); } /* * vfsmount lock must be held for write */ static void commit_tree(struct mount *mnt) { struct mount *parent = mnt->mnt_parent; struct mount *m; LIST_HEAD(head); struct mnt_namespace *n = parent->mnt_ns; BUG_ON(parent == mnt); list_add_tail(&head, &mnt->mnt_list); list_for_each_entry(m, &head, mnt_list) m->mnt_ns = n; list_splice(&head, n->list.prev); n->mounts += n->pending_mounts; n->pending_mounts = 0; __attach_mnt(mnt, parent); touch_mnt_namespace(n); } static struct mount *next_mnt(struct mount *p, struct mount *root) { struct list_head *next = p->mnt_mounts.next; if (next == &p->mnt_mounts) { while (1) { if (p == root) return NULL; next = p->mnt_child.next; if (next != &p->mnt_parent->mnt_mounts) break; p = p->mnt_parent; } } return list_entry(next, struct mount, mnt_child); } static struct mount *skip_mnt_tree(struct mount *p) { struct list_head *prev = p->mnt_mounts.prev; while (prev != &p->mnt_mounts) { p = list_entry(prev, struct mount, mnt_child); prev = p->mnt_mounts.prev; } return p; } /** * vfs_create_mount - Create a mount for a configured superblock * @fc: The configuration context with the superblock attached * * Create a mount to an already configured superblock. If necessary, the * caller should invoke vfs_get_tree() before calling this. * * Note that this does not attach the mount to anything. */ struct vfsmount *vfs_create_mount(struct fs_context *fc) { struct mount *mnt; if (!fc->root) return ERR_PTR(-EINVAL); mnt = alloc_vfsmnt(fc->source ?: "none"); if (!mnt) return ERR_PTR(-ENOMEM); if (fc->sb_flags & SB_KERNMOUNT) mnt->mnt.mnt_flags = MNT_INTERNAL; atomic_inc(&fc->root->d_sb->s_active); mnt->mnt.mnt_sb = fc->root->d_sb; mnt->mnt.mnt_root = dget(fc->root); mnt->mnt_mountpoint = mnt->mnt.mnt_root; mnt->mnt_parent = mnt; lock_mount_hash(); list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts); unlock_mount_hash(); return &mnt->mnt; } EXPORT_SYMBOL(vfs_create_mount); struct vfsmount *fc_mount(struct fs_context *fc) { int err = vfs_get_tree(fc); if (!err) { up_write(&fc->root->d_sb->s_umount); return vfs_create_mount(fc); } return ERR_PTR(err); } EXPORT_SYMBOL(fc_mount); struct vfsmount *vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data) { struct fs_context *fc; struct vfsmount *mnt; int ret = 0; if (!type) return ERR_PTR(-EINVAL); fc = fs_context_for_mount(type, flags); if (IS_ERR(fc)) return ERR_CAST(fc); if (name) ret = vfs_parse_fs_string(fc, "source", name, strlen(name)); if (!ret) ret = parse_monolithic_mount_data(fc, data); if (!ret) mnt = fc_mount(fc); else mnt = ERR_PTR(ret); put_fs_context(fc); return mnt; } EXPORT_SYMBOL_GPL(vfs_kern_mount); struct vfsmount * vfs_submount(const struct dentry *mountpoint, struct file_system_type *type, const char *name, void *data) { /* Until it is worked out how to pass the user namespace * through from the parent mount to the submount don't support * unprivileged mounts with submounts. */ if (mountpoint->d_sb->s_user_ns != &init_user_ns) return ERR_PTR(-EPERM); return vfs_kern_mount(type, SB_SUBMOUNT, name, data); } EXPORT_SYMBOL_GPL(vfs_submount); static struct mount *clone_mnt(struct mount *old, struct dentry *root, int flag) { struct super_block *sb = old->mnt.mnt_sb; struct mount *mnt; int err; mnt = alloc_vfsmnt(old->mnt_devname); if (!mnt) return ERR_PTR(-ENOMEM); if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE)) mnt->mnt_group_id = 0; /* not a peer of original */ else mnt->mnt_group_id = old->mnt_group_id; if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { err = mnt_alloc_group_id(mnt); if (err) goto out_free; } mnt->mnt.mnt_flags = old->mnt.mnt_flags; mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL); atomic_inc(&sb->s_active); mnt->mnt.mnt_sb = sb; mnt->mnt.mnt_root = dget(root); mnt->mnt_mountpoint = mnt->mnt.mnt_root; mnt->mnt_parent = mnt; lock_mount_hash(); list_add_tail(&mnt->mnt_instance, &sb->s_mounts); unlock_mount_hash(); if ((flag & CL_SLAVE) || ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) { list_add(&mnt->mnt_slave, &old->mnt_slave_list); mnt->mnt_master = old; CLEAR_MNT_SHARED(mnt); } else if (!(flag & CL_PRIVATE)) { if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) list_add(&mnt->mnt_share, &old->mnt_share); if (IS_MNT_SLAVE(old)) list_add(&mnt->mnt_slave, &old->mnt_slave); mnt->mnt_master = old->mnt_master; } else { CLEAR_MNT_SHARED(mnt); } if (flag & CL_MAKE_SHARED) set_mnt_shared(mnt); /* stick the duplicate mount on the same expiry list * as the original if that was on one */ if (flag & CL_EXPIRE) { if (!list_empty(&old->mnt_expire)) list_add(&mnt->mnt_expire, &old->mnt_expire); } return mnt; out_free: mnt_free_id(mnt); free_vfsmnt(mnt); return ERR_PTR(err); } static void cleanup_mnt(struct mount *mnt) { struct hlist_node *p; struct mount *m; /* * The warning here probably indicates that somebody messed * up a mnt_want/drop_write() pair. If this happens, the * filesystem was probably unable to make r/w->r/o transitions. * The locking used to deal with mnt_count decrement provides barriers, * so mnt_get_writers() below is safe. */ WARN_ON(mnt_get_writers(mnt)); if (unlikely(mnt->mnt_pins.first)) mnt_pin_kill(mnt); hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) { hlist_del(&m->mnt_umount); mntput(&m->mnt); } fsnotify_vfsmount_delete(&mnt->mnt); dput(mnt->mnt.mnt_root); deactivate_super(mnt->mnt.mnt_sb); mnt_free_id(mnt); call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt); } static void __cleanup_mnt(struct rcu_head *head) { cleanup_mnt(container_of(head, struct mount, mnt_rcu)); } static LLIST_HEAD(delayed_mntput_list); static void delayed_mntput(struct work_struct *unused) { struct llist_node *node = llist_del_all(&delayed_mntput_list); struct mount *m, *t; llist_for_each_entry_safe(m, t, node, mnt_llist) cleanup_mnt(m); } static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput); static void mntput_no_expire(struct mount *mnt) { LIST_HEAD(list); int count; rcu_read_lock(); if (likely(READ_ONCE(mnt->mnt_ns))) { /* * Since we don't do lock_mount_hash() here, * ->mnt_ns can change under us. However, if it's * non-NULL, then there's a reference that won't * be dropped until after an RCU delay done after * turning ->mnt_ns NULL. So if we observe it * non-NULL under rcu_read_lock(), the reference * we are dropping is not the final one. */ mnt_add_count(mnt, -1); rcu_read_unlock(); return; } lock_mount_hash(); /* * make sure that if __legitimize_mnt() has not seen us grab * mount_lock, we'll see their refcount increment here. */ smp_mb(); mnt_add_count(mnt, -1); count = mnt_get_count(mnt); if (count != 0) { WARN_ON(count < 0); rcu_read_unlock(); unlock_mount_hash(); return; } if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) { rcu_read_unlock(); unlock_mount_hash(); return; } mnt->mnt.mnt_flags |= MNT_DOOMED; rcu_read_unlock(); list_del(&mnt->mnt_instance); if (unlikely(!list_empty(&mnt->mnt_mounts))) { struct mount *p, *tmp; list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) { __put_mountpoint(unhash_mnt(p), &list); hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children); } } unlock_mount_hash(); shrink_dentry_list(&list); if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) { struct task_struct *task = current; if (likely(!(task->flags & PF_KTHREAD))) { init_task_work(&mnt->mnt_rcu, __cleanup_mnt); if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME)) return; } if (llist_add(&mnt->mnt_llist, &delayed_mntput_list)) schedule_delayed_work(&delayed_mntput_work, 1); return; } cleanup_mnt(mnt); } void mntput(struct vfsmount *mnt) { if (mnt) { struct mount *m = real_mount(mnt); /* avoid cacheline pingpong, hope gcc doesn't get "smart" */ if (unlikely(m->mnt_expiry_mark)) m->mnt_expiry_mark = 0; mntput_no_expire(m); } } EXPORT_SYMBOL(mntput); struct vfsmount *mntget(struct vfsmount *mnt) { if (mnt) mnt_add_count(real_mount(mnt), 1); return mnt; } EXPORT_SYMBOL(mntget); /* path_is_mountpoint() - Check if path is a mount in the current * namespace. * * d_mountpoint() can only be used reliably to establish if a dentry is * not mounted in any namespace and that common case is handled inline. * d_mountpoint() isn't aware of the possibility there may be multiple * mounts using a given dentry in a different namespace. This function * checks if the passed in path is a mountpoint rather than the dentry * alone. */ bool path_is_mountpoint(const struct path *path) { unsigned seq; bool res; if (!d_mountpoint(path->dentry)) return false; rcu_read_lock(); do { seq = read_seqbegin(&mount_lock); res = __path_is_mountpoint(path); } while (read_seqretry(&mount_lock, seq)); rcu_read_unlock(); return res; } EXPORT_SYMBOL(path_is_mountpoint); struct vfsmount *mnt_clone_internal(const struct path *path) { struct mount *p; p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE); if (IS_ERR(p)) return ERR_CAST(p); p->mnt.mnt_flags |= MNT_INTERNAL; return &p->mnt; } #ifdef CONFIG_PROC_FS static struct mount *mnt_list_next(struct mnt_namespace *ns, struct list_head *p) { struct mount *mnt, *ret = NULL; lock_ns_list(ns); list_for_each_continue(p, &ns->list) { mnt = list_entry(p, typeof(*mnt), mnt_list); if (!mnt_is_cursor(mnt)) { ret = mnt; break; } } unlock_ns_list(ns); return ret; } /* iterator; we want it to have access to namespace_sem, thus here... */ static void *m_start(struct seq_file *m, loff_t *pos) { struct proc_mounts *p = m->private; struct list_head *prev; down_read(&namespace_sem); if (!*pos) { prev = &p->ns->list; } else { prev = &p->cursor.mnt_list; /* Read after we'd reached the end? */ if (list_empty(prev)) return NULL; } return mnt_list_next(p->ns, prev); } static void *m_next(struct seq_file *m, void *v, loff_t *pos) { struct proc_mounts *p = m->private; struct mount *mnt = v; ++*pos; return mnt_list_next(p->ns, &mnt->mnt_list); } static void m_stop(struct seq_file *m, void *v) { struct proc_mounts *p = m->private; struct mount *mnt = v; lock_ns_list(p->ns); if (mnt) list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list); else list_del_init(&p->cursor.mnt_list); unlock_ns_list(p->ns); up_read(&namespace_sem); } static int m_show(struct seq_file *m, void *v) { struct proc_mounts *p = m->private; struct mount *r = v; return p->show(m, &r->mnt); } const struct seq_operations mounts_op = { .start = m_start, .next = m_next, .stop = m_stop, .show = m_show, }; void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor) { down_read(&namespace_sem); lock_ns_list(ns); list_del(&cursor->mnt_list); unlock_ns_list(ns); up_read(&namespace_sem); } #endif /* CONFIG_PROC_FS */ /** * may_umount_tree - check if a mount tree is busy * @mnt: root of mount tree * * This is called to check if a tree of mounts has any * open files, pwds, chroots or sub mounts that are * busy. */ int may_umount_tree(struct vfsmount *m) { struct mount *mnt = real_mount(m); int actual_refs = 0; int minimum_refs = 0; struct mount *p; BUG_ON(!m); /* write lock needed for mnt_get_count */ lock_mount_hash(); for (p = mnt; p; p = next_mnt(p, mnt)) { actual_refs += mnt_get_count(p); minimum_refs += 2; } unlock_mount_hash(); if (actual_refs > minimum_refs) return 0; return 1; } EXPORT_SYMBOL(may_umount_tree); /** * may_umount - check if a mount point is busy * @mnt: root of mount * * This is called to check if a mount point has any * open files, pwds, chroots or sub mounts. If the * mount has sub mounts this will return busy * regardless of whether the sub mounts are busy. * * Doesn't take quota and stuff into account. IOW, in some cases it will * give false negatives. The main reason why it's here is that we need * a non-destructive way to look for easily umountable filesystems. */ int may_umount(struct vfsmount *mnt) { int ret = 1; down_read(&namespace_sem); lock_mount_hash(); if (propagate_mount_busy(real_mount(mnt), 2)) ret = 0; unlock_mount_hash(); up_read(&namespace_sem); return ret; } EXPORT_SYMBOL(may_umount); static void namespace_unlock(void) { struct hlist_head head; struct hlist_node *p; struct mount *m; LIST_HEAD(list); hlist_move_list(&unmounted, &head); list_splice_init(&ex_mountpoints, &list); up_write(&namespace_sem); shrink_dentry_list(&list); if (likely(hlist_empty(&head))) return; synchronize_rcu_expedited(); hlist_for_each_entry_safe(m, p, &head, mnt_umount) { hlist_del(&m->mnt_umount); mntput(&m->mnt); } } static inline void namespace_lock(void) { down_write(&namespace_sem); } enum umount_tree_flags { UMOUNT_SYNC = 1, UMOUNT_PROPAGATE = 2, UMOUNT_CONNECTED = 4, }; static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how) { /* Leaving mounts connected is only valid for lazy umounts */ if (how & UMOUNT_SYNC) return true; /* A mount without a parent has nothing to be connected to */ if (!mnt_has_parent(mnt)) return true; /* Because the reference counting rules change when mounts are * unmounted and connected, umounted mounts may not be * connected to mounted mounts. */ if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT)) return true; /* Has it been requested that the mount remain connected? */ if (how & UMOUNT_CONNECTED) return false; /* Is the mount locked such that it needs to remain connected? */ if (IS_MNT_LOCKED(mnt)) return false; /* By default disconnect the mount */ return true; } /* * mount_lock must be held * namespace_sem must be held for write */ static void umount_tree(struct mount *mnt, enum umount_tree_flags how) { LIST_HEAD(tmp_list); struct mount *p; if (how & UMOUNT_PROPAGATE) propagate_mount_unlock(mnt); /* Gather the mounts to umount */ for (p = mnt; p; p = next_mnt(p, mnt)) { p->mnt.mnt_flags |= MNT_UMOUNT; list_move(&p->mnt_list, &tmp_list); } /* Hide the mounts from mnt_mounts */ list_for_each_entry(p, &tmp_list, mnt_list) { list_del_init(&p->mnt_child); } /* Add propogated mounts to the tmp_list */ if (how & UMOUNT_PROPAGATE) propagate_umount(&tmp_list); while (!list_empty(&tmp_list)) { struct mnt_namespace *ns; bool disconnect; p = list_first_entry(&tmp_list, struct mount, mnt_list); list_del_init(&p->mnt_expire); list_del_init(&p->mnt_list); ns = p->mnt_ns; if (ns) { ns->mounts--; __touch_mnt_namespace(ns); } p->mnt_ns = NULL; if (how & UMOUNT_SYNC) p->mnt.mnt_flags |= MNT_SYNC_UMOUNT; disconnect = disconnect_mount(p, how); if (mnt_has_parent(p)) { mnt_add_count(p->mnt_parent, -1); if (!disconnect) { /* Don't forget about p */ list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts); } else { umount_mnt(p); } } change_mnt_propagation(p, MS_PRIVATE); if (disconnect) hlist_add_head(&p->mnt_umount, &unmounted); } } static void shrink_submounts(struct mount *mnt); static int do_umount_root(struct super_block *sb) { int ret = 0; down_write(&sb->s_umount); if (!sb_rdonly(sb)) { struct fs_context *fc; fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY, SB_RDONLY); if (IS_ERR(fc)) { ret = PTR_ERR(fc); } else { ret = parse_monolithic_mount_data(fc, NULL); if (!ret) ret = reconfigure_super(fc); put_fs_context(fc); } } up_write(&sb->s_umount); return ret; } static int do_umount(struct mount *mnt, int flags) { struct super_block *sb = mnt->mnt.mnt_sb; int retval; retval = security_sb_umount(&mnt->mnt, flags); if (retval) return retval; /* * Allow userspace to request a mountpoint be expired rather than * unmounting unconditionally. Unmount only happens if: * (1) the mark is already set (the mark is cleared by mntput()) * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] */ if (flags & MNT_EXPIRE) { if (&mnt->mnt == current->fs->root.mnt || flags & (MNT_FORCE | MNT_DETACH)) return -EINVAL; /* * probably don't strictly need the lock here if we examined * all race cases, but it's a slowpath. */ lock_mount_hash(); if (mnt_get_count(mnt) != 2) { unlock_mount_hash(); return -EBUSY; } unlock_mount_hash(); if (!xchg(&mnt->mnt_expiry_mark, 1)) return -EAGAIN; } /* * If we may have to abort operations to get out of this * mount, and they will themselves hold resources we must * allow the fs to do things. In the Unix tradition of * 'Gee thats tricky lets do it in userspace' the umount_begin * might fail to complete on the first run through as other tasks * must return, and the like. Thats for the mount program to worry * about for the moment. */ if (flags & MNT_FORCE && sb->s_op->umount_begin) { sb->s_op->umount_begin(sb); } /* * No sense to grab the lock for this test, but test itself looks * somewhat bogus. Suggestions for better replacement? * Ho-hum... In principle, we might treat that as umount + switch * to rootfs. GC would eventually take care of the old vfsmount. * Actually it makes sense, especially if rootfs would contain a * /reboot - static binary that would close all descriptors and * call reboot(9). Then init(8) could umount root and exec /reboot. */ if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { /* * Special case for "unmounting" root ... * we just try to remount it readonly. */ if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) return -EPERM; return do_umount_root(sb); } namespace_lock(); lock_mount_hash(); /* Recheck MNT_LOCKED with the locks held */ retval = -EINVAL; if (mnt->mnt.mnt_flags & MNT_LOCKED) goto out; event++; if (flags & MNT_DETACH) { if (!list_empty(&mnt->mnt_list)) umount_tree(mnt, UMOUNT_PROPAGATE); retval = 0; } else { shrink_submounts(mnt); retval = -EBUSY; if (!propagate_mount_busy(mnt, 2)) { if (!list_empty(&mnt->mnt_list)) umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); retval = 0; } } out: unlock_mount_hash(); namespace_unlock(); return retval; } /* * __detach_mounts - lazily unmount all mounts on the specified dentry * * During unlink, rmdir, and d_drop it is possible to loose the path * to an existing mountpoint, and wind up leaking the mount. * detach_mounts allows lazily unmounting those mounts instead of * leaking them. * * The caller may hold dentry->d_inode->i_mutex. */ void __detach_mounts(struct dentry *dentry) { struct mountpoint *mp; struct mount *mnt; namespace_lock(); lock_mount_hash(); mp = lookup_mountpoint(dentry); if (!mp) goto out_unlock; event++; while (!hlist_empty(&mp->m_list)) { mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list); if (mnt->mnt.mnt_flags & MNT_UMOUNT) { umount_mnt(mnt); hlist_add_head(&mnt->mnt_umount, &unmounted); } else umount_tree(mnt, UMOUNT_CONNECTED); } put_mountpoint(mp); out_unlock: unlock_mount_hash(); namespace_unlock(); } /* * Is the caller allowed to modify his namespace? */ static inline bool may_mount(void) { return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); } #ifdef CONFIG_MANDATORY_FILE_LOCKING static bool may_mandlock(void) { pr_warn_once("======================================================\n" "WARNING: the mand mount option is being deprecated and\n" " will be removed in v5.15!\n" "======================================================\n"); return capable(CAP_SYS_ADMIN); } #else static inline bool may_mandlock(void) { pr_warn("VFS: \"mand\" mount option not supported"); return false; } #endif static int can_umount(const struct path *path, int flags) { struct mount *mnt = real_mount(path->mnt); if (!may_mount()) return -EPERM; if (path->dentry != path->mnt->mnt_root) return -EINVAL; if (!check_mnt(mnt)) return -EINVAL; if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */ return -EINVAL; if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN)) return -EPERM; return 0; } // caller is responsible for flags being sane int path_umount(struct path *path, int flags) { struct mount *mnt = real_mount(path->mnt); int ret; ret = can_umount(path, flags); if (!ret) ret = do_umount(mnt, flags); /* we mustn't call path_put() as that would clear mnt_expiry_mark */ dput(path->dentry); mntput_no_expire(mnt); return ret; } static int ksys_umount(char __user *name, int flags) { int lookup_flags = LOOKUP_MOUNTPOINT; struct path path; int ret; // basic validity checks done first if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) return -EINVAL; if (!(flags & UMOUNT_NOFOLLOW)) lookup_flags |= LOOKUP_FOLLOW; ret = user_path_at(AT_FDCWD, name, lookup_flags, &path); if (ret) return ret; return path_umount(&path, flags); } SYSCALL_DEFINE2(umount, char __user *, name, int, flags) { return ksys_umount(name, flags); } #ifdef __ARCH_WANT_SYS_OLDUMOUNT /* * The 2.0 compatible umount. No flags. */ SYSCALL_DEFINE1(oldumount, char __user *, name) { return ksys_umount(name, 0); } #endif static bool is_mnt_ns_file(struct dentry *dentry) { /* Is this a proxy for a mount namespace? */ return dentry->d_op == &ns_dentry_operations && dentry->d_fsdata == &mntns_operations; } static struct mnt_namespace *to_mnt_ns(struct ns_common *ns) { return container_of(ns, struct mnt_namespace, ns); } struct ns_common *from_mnt_ns(struct mnt_namespace *mnt) { return &mnt->ns; } static bool mnt_ns_loop(struct dentry *dentry) { /* Could bind mounting the mount namespace inode cause a * mount namespace loop? */ struct mnt_namespace *mnt_ns; if (!is_mnt_ns_file(dentry)) return false; mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode)); return current->nsproxy->mnt_ns->seq >= mnt_ns->seq; } struct mount *copy_tree(struct mount *mnt, struct dentry *dentry, int flag) { struct mount *res, *p, *q, *r, *parent; if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt)) return ERR_PTR(-EINVAL); if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry)) return ERR_PTR(-EINVAL); res = q = clone_mnt(mnt, dentry, flag); if (IS_ERR(q)) return q; q->mnt_mountpoint = mnt->mnt_mountpoint; p = mnt; list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { struct mount *s; if (!is_subdir(r->mnt_mountpoint, dentry)) continue; for (s = r; s; s = next_mnt(s, r)) { if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(s)) { if (s->mnt.mnt_flags & MNT_LOCKED) { /* Both unbindable and locked. */ q = ERR_PTR(-EPERM); goto out; } else { s = skip_mnt_tree(s); continue; } } if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(s->mnt.mnt_root)) { s = skip_mnt_tree(s); continue; } while (p != s->mnt_parent) { p = p->mnt_parent; q = q->mnt_parent; } p = s; parent = q; q = clone_mnt(p, p->mnt.mnt_root, flag); if (IS_ERR(q)) goto out; lock_mount_hash(); list_add_tail(&q->mnt_list, &res->mnt_list); attach_mnt(q, parent, p->mnt_mp); unlock_mount_hash(); } } return res; out: if (res) { lock_mount_hash(); umount_tree(res, UMOUNT_SYNC); unlock_mount_hash(); } return q; } /* Caller should check returned pointer for errors */ struct vfsmount *collect_mounts(const struct path *path) { struct mount *tree; namespace_lock(); if (!check_mnt(real_mount(path->mnt))) tree = ERR_PTR(-EINVAL); else tree = copy_tree(real_mount(path->mnt), path->dentry, CL_COPY_ALL | CL_PRIVATE); namespace_unlock(); if (IS_ERR(tree)) return ERR_CAST(tree); return &tree->mnt; } static void free_mnt_ns(struct mnt_namespace *); static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool); void dissolve_on_fput(struct vfsmount *mnt) { struct mnt_namespace *ns; namespace_lock(); lock_mount_hash(); ns = real_mount(mnt)->mnt_ns; if (ns) { if (is_anon_ns(ns)) umount_tree(real_mount(mnt), UMOUNT_CONNECTED); else ns = NULL; } unlock_mount_hash(); namespace_unlock(); if (ns) free_mnt_ns(ns); } void drop_collected_mounts(struct vfsmount *mnt) { namespace_lock(); lock_mount_hash(); umount_tree(real_mount(mnt), 0); unlock_mount_hash(); namespace_unlock(); } static bool has_locked_children(struct mount *mnt, struct dentry *dentry) { struct mount *child; list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { if (!is_subdir(child->mnt_mountpoint, dentry)) continue; if (child->mnt.mnt_flags & MNT_LOCKED) return true; } return false; } /** * clone_private_mount - create a private clone of a path * * This creates a new vfsmount, which will be the clone of @path. The new will * not be attached anywhere in the namespace and will be private (i.e. changes * to the originating mount won't be propagated into this). * * Release with mntput(). */ struct vfsmount *clone_private_mount(const struct path *path) { struct mount *old_mnt = real_mount(path->mnt); struct mount *new_mnt; down_read(&namespace_sem); if (IS_MNT_UNBINDABLE(old_mnt)) goto invalid; if (!check_mnt(old_mnt)) goto invalid; if (has_locked_children(old_mnt, path->dentry)) goto invalid; new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE); up_read(&namespace_sem); if (IS_ERR(new_mnt)) return ERR_CAST(new_mnt); /* Longterm mount to be removed by kern_unmount*() */ new_mnt->mnt_ns = MNT_NS_INTERNAL; return &new_mnt->mnt; invalid: up_read(&namespace_sem); return ERR_PTR(-EINVAL); } EXPORT_SYMBOL_GPL(clone_private_mount); int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, struct vfsmount *root) { struct mount *mnt; int res = f(root, arg); if (res) return res; list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { res = f(&mnt->mnt, arg); if (res) return res; } return 0; } static void lock_mnt_tree(struct mount *mnt) { struct mount *p; for (p = mnt; p; p = next_mnt(p, mnt)) { int flags = p->mnt.mnt_flags; /* Don't allow unprivileged users to change mount flags */ flags |= MNT_LOCK_ATIME; if (flags & MNT_READONLY) flags |= MNT_LOCK_READONLY; if (flags & MNT_NODEV) flags |= MNT_LOCK_NODEV; if (flags & MNT_NOSUID) flags |= MNT_LOCK_NOSUID; if (flags & MNT_NOEXEC) flags |= MNT_LOCK_NOEXEC; /* Don't allow unprivileged users to reveal what is under a mount */ if (list_empty(&p->mnt_expire)) flags |= MNT_LOCKED; p->mnt.mnt_flags = flags; } } static void cleanup_group_ids(struct mount *mnt, struct mount *end) { struct mount *p; for (p = mnt; p != end; p = next_mnt(p, mnt)) { if (p->mnt_group_id && !IS_MNT_SHARED(p)) mnt_release_group_id(p); } } static int invent_group_ids(struct mount *mnt, bool recurse) { struct mount *p; for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { int err = mnt_alloc_group_id(p); if (err) { cleanup_group_ids(mnt, p); return err; } } } return 0; } int count_mounts(struct mnt_namespace *ns, struct mount *mnt) { unsigned int max = READ_ONCE(sysctl_mount_max); unsigned int mounts = 0, old, pending, sum; struct mount *p; for (p = mnt; p; p = next_mnt(p, mnt)) mounts++; old = ns->mounts; pending = ns->pending_mounts; sum = old + pending; if ((old > sum) || (pending > sum) || (max < sum) || (mounts > (max - sum))) return -ENOSPC; ns->pending_mounts = pending + mounts; return 0; } /* * @source_mnt : mount tree to be attached * @nd : place the mount tree @source_mnt is attached * @parent_nd : if non-null, detach the source_mnt from its parent and * store the parent mount and mountpoint dentry. * (done when source_mnt is moved) * * NOTE: in the table below explains the semantics when a source mount * of a given type is attached to a destination mount of a given type. * --------------------------------------------------------------------------- * | BIND MOUNT OPERATION | * |************************************************************************** * | source-->| shared | private | slave | unbindable | * | dest | | | | | * | | | | | | | * | v | | | | | * |************************************************************************** * | shared | shared (++) | shared (+) | shared(+++)| invalid | * | | | | | | * |non-shared| shared (+) | private | slave (*) | invalid | * *************************************************************************** * A bind operation clones the source mount and mounts the clone on the * destination mount. * * (++) the cloned mount is propagated to all the mounts in the propagation * tree of the destination mount and the cloned mount is added to * the peer group of the source mount. * (+) the cloned mount is created under the destination mount and is marked * as shared. The cloned mount is added to the peer group of the source * mount. * (+++) the mount is propagated to all the mounts in the propagation tree * of the destination mount and the cloned mount is made slave * of the same master as that of the source mount. The cloned mount * is marked as 'shared and slave'. * (*) the cloned mount is made a slave of the same master as that of the * source mount. * * --------------------------------------------------------------------------- * | MOVE MOUNT OPERATION | * |************************************************************************** * | source-->| shared | private | slave | unbindable | * | dest | | | | | * | | | | | | | * | v | | | | | * |************************************************************************** * | shared | shared (+) | shared (+) | shared(+++) | invalid | * | | | | | | * |non-shared| shared (+*) | private | slave (*) | unbindable | * *************************************************************************** * * (+) the mount is moved to the destination. And is then propagated to * all the mounts in the propagation tree of the destination mount. * (+*) the mount is moved to the destination. * (+++) the mount is moved to the destination and is then propagated to * all the mounts belonging to the destination mount's propagation tree. * the mount is marked as 'shared and slave'. * (*) the mount continues to be a slave at the new location. * * if the source mount is a tree, the operations explained above is * applied to each mount in the tree. * Must be called without spinlocks held, since this function can sleep * in allocations. */ static int attach_recursive_mnt(struct mount *source_mnt, struct mount *dest_mnt, struct mountpoint *dest_mp, bool moving) { struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; HLIST_HEAD(tree_list); struct mnt_namespace *ns = dest_mnt->mnt_ns; struct mountpoint *smp; struct mount *child, *p; struct hlist_node *n; int err; /* Preallocate a mountpoint in case the new mounts need * to be tucked under other mounts. */ smp = get_mountpoint(source_mnt->mnt.mnt_root); if (IS_ERR(smp)) return PTR_ERR(smp); /* Is there space to add these mounts to the mount namespace? */ if (!moving) { err = count_mounts(ns, source_mnt); if (err) goto out; } if (IS_MNT_SHARED(dest_mnt)) { err = invent_group_ids(source_mnt, true); if (err) goto out; err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list); lock_mount_hash(); if (err) goto out_cleanup_ids; for (p = source_mnt; p; p = next_mnt(p, source_mnt)) set_mnt_shared(p); } else { lock_mount_hash(); } if (moving) { unhash_mnt(source_mnt); attach_mnt(source_mnt, dest_mnt, dest_mp); touch_mnt_namespace(source_mnt->mnt_ns); } else { if (source_mnt->mnt_ns) { /* move from anon - the caller will destroy */ list_del_init(&source_mnt->mnt_ns->list); } mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt); commit_tree(source_mnt); } hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) { struct mount *q; hlist_del_init(&child->mnt_hash); q = __lookup_mnt(&child->mnt_parent->mnt, child->mnt_mountpoint); if (q) mnt_change_mountpoint(child, smp, q); /* Notice when we are propagating across user namespaces */ if (child->mnt_parent->mnt_ns->user_ns != user_ns) lock_mnt_tree(child); child->mnt.mnt_flags &= ~MNT_LOCKED; commit_tree(child); } put_mountpoint(smp); unlock_mount_hash(); return 0; out_cleanup_ids: while (!hlist_empty(&tree_list)) { child = hlist_entry(tree_list.first, struct mount, mnt_hash); child->mnt_parent->mnt_ns->pending_mounts = 0; umount_tree(child, UMOUNT_SYNC); } unlock_mount_hash(); cleanup_group_ids(source_mnt, NULL); out: ns->pending_mounts = 0; read_seqlock_excl(&mount_lock); put_mountpoint(smp); read_sequnlock_excl(&mount_lock); return err; } static struct mountpoint *lock_mount(struct path *path) { struct vfsmount *mnt; struct dentry *dentry = path->dentry; retry: inode_lock(dentry->d_inode); if (unlikely(cant_mount(dentry))) { inode_unlock(dentry->d_inode); return ERR_PTR(-ENOENT); } namespace_lock(); mnt = lookup_mnt(path); if (likely(!mnt)) { struct mountpoint *mp = get_mountpoint(dentry); if (IS_ERR(mp)) { namespace_unlock(); inode_unlock(dentry->d_inode); return mp; } return mp; } namespace_unlock(); inode_unlock(path->dentry->d_inode); path_put(path); path->mnt = mnt; dentry = path->dentry = dget(mnt->mnt_root); goto retry; } static void unlock_mount(struct mountpoint *where) { struct dentry *dentry = where->m_dentry; read_seqlock_excl(&mount_lock); put_mountpoint(where); read_sequnlock_excl(&mount_lock); namespace_unlock(); inode_unlock(dentry->d_inode); } static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp) { if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER) return -EINVAL; if (d_is_dir(mp->m_dentry) != d_is_dir(mnt->mnt.mnt_root)) return -ENOTDIR; return attach_recursive_mnt(mnt, p, mp, false); } /* * Sanity check the flags to change_mnt_propagation. */ static int flags_to_propagation_type(int ms_flags) { int type = ms_flags & ~(MS_REC | MS_SILENT); /* Fail if any non-propagation flags are set */ if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) return 0; /* Only one propagation flag should be set */ if (!is_power_of_2(type)) return 0; return type; } /* * recursively change the type of the mountpoint. */ static int do_change_type(struct path *path, int ms_flags) { struct mount *m; struct mount *mnt = real_mount(path->mnt); int recurse = ms_flags & MS_REC; int type; int err = 0; if (path->dentry != path->mnt->mnt_root) return -EINVAL; type = flags_to_propagation_type(ms_flags); if (!type) return -EINVAL; namespace_lock(); if (type == MS_SHARED) { err = invent_group_ids(mnt, recurse); if (err) goto out_unlock; } lock_mount_hash(); for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) change_mnt_propagation(m, type); unlock_mount_hash(); out_unlock: namespace_unlock(); return err; } static struct mount *__do_loopback(struct path *old_path, int recurse) { struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt); if (IS_MNT_UNBINDABLE(old)) return mnt; if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations) return mnt; if (!recurse && has_locked_children(old, old_path->dentry)) return mnt; if (recurse) mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE); else mnt = clone_mnt(old, old_path->dentry, 0); if (!IS_ERR(mnt)) mnt->mnt.mnt_flags &= ~MNT_LOCKED; return mnt; } /* * do loopback mount. */ static int do_loopback(struct path *path, const char *old_name, int recurse) { struct path old_path; struct mount *mnt = NULL, *parent; struct mountpoint *mp; int err; if (!old_name || !*old_name) return -EINVAL; err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); if (err) return err; err = -EINVAL; if (mnt_ns_loop(old_path.dentry)) goto out; mp = lock_mount(path); if (IS_ERR(mp)) { err = PTR_ERR(mp); goto out; } parent = real_mount(path->mnt); if (!check_mnt(parent)) goto out2; mnt = __do_loopback(&old_path, recurse); if (IS_ERR(mnt)) { err = PTR_ERR(mnt); goto out2; } err = graft_tree(mnt, parent, mp); if (err) { lock_mount_hash(); umount_tree(mnt, UMOUNT_SYNC); unlock_mount_hash(); } out2: unlock_mount(mp); out: path_put(&old_path); return err; } static struct file *open_detached_copy(struct path *path, bool recursive) { struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true); struct mount *mnt, *p; struct file *file; if (IS_ERR(ns)) return ERR_CAST(ns); namespace_lock(); mnt = __do_loopback(path, recursive); if (IS_ERR(mnt)) { namespace_unlock(); free_mnt_ns(ns); return ERR_CAST(mnt); } lock_mount_hash(); for (p = mnt; p; p = next_mnt(p, mnt)) { p->mnt_ns = ns; ns->mounts++; } ns->root = mnt; list_add_tail(&ns->list, &mnt->mnt_list); mntget(&mnt->mnt); unlock_mount_hash(); namespace_unlock(); mntput(path->mnt); path->mnt = &mnt->mnt; file = dentry_open(path, O_PATH, current_cred()); if (IS_ERR(file)) dissolve_on_fput(path->mnt); else file->f_mode |= FMODE_NEED_UNMOUNT; return file; } SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags) { struct file *file; struct path path; int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; bool detached = flags & OPEN_TREE_CLONE; int error; int fd; BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC); if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE | AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE | OPEN_TREE_CLOEXEC)) return -EINVAL; if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE) return -EINVAL; if (flags & AT_NO_AUTOMOUNT) lookup_flags &= ~LOOKUP_AUTOMOUNT; if (flags & AT_SYMLINK_NOFOLLOW) lookup_flags &= ~LOOKUP_FOLLOW; if (flags & AT_EMPTY_PATH) lookup_flags |= LOOKUP_EMPTY; if (detached && !may_mount()) return -EPERM; fd = get_unused_fd_flags(flags & O_CLOEXEC); if (fd < 0) return fd; error = user_path_at(dfd, filename, lookup_flags, &path); if (unlikely(error)) { file = ERR_PTR(error); } else { if (detached) file = open_detached_copy(&path, flags & AT_RECURSIVE); else file = dentry_open(&path, O_PATH, current_cred()); path_put(&path); } if (IS_ERR(file)) { put_unused_fd(fd); return PTR_ERR(file); } fd_install(fd, file); return fd; } /* * Don't allow locked mount flags to be cleared. * * No locks need to be held here while testing the various MNT_LOCK * flags because those flags can never be cleared once they are set. */ static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags) { unsigned int fl = mnt->mnt.mnt_flags; if ((fl & MNT_LOCK_READONLY) && !(mnt_flags & MNT_READONLY)) return false; if ((fl & MNT_LOCK_NODEV) && !(mnt_flags & MNT_NODEV)) return false; if ((fl & MNT_LOCK_NOSUID) && !(mnt_flags & MNT_NOSUID)) return false; if ((fl & MNT_LOCK_NOEXEC) && !(mnt_flags & MNT_NOEXEC)) return false; if ((fl & MNT_LOCK_ATIME) && ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) return false; return true; } static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags) { bool readonly_request = (mnt_flags & MNT_READONLY); if (readonly_request == __mnt_is_readonly(&mnt->mnt)) return 0; if (readonly_request) return mnt_make_readonly(mnt); return __mnt_unmake_readonly(mnt); } /* * Update the user-settable attributes on a mount. The caller must hold * sb->s_umount for writing. */ static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags) { lock_mount_hash(); mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK; mnt->mnt.mnt_flags = mnt_flags; touch_mnt_namespace(mnt->mnt_ns); unlock_mount_hash(); } static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt) { struct super_block *sb = mnt->mnt_sb; if (!__mnt_is_readonly(mnt) && (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) { char *buf = (char *)__get_free_page(GFP_KERNEL); char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM); struct tm tm; time64_to_tm(sb->s_time_max, 0, &tm); pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n", sb->s_type->name, is_mounted(mnt) ? "remounted" : "mounted", mntpath, tm.tm_year+1900, (unsigned long long)sb->s_time_max); free_page((unsigned long)buf); } } /* * Handle reconfiguration of the mountpoint only without alteration of the * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND * to mount(2). */ static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags) { struct super_block *sb = path->mnt->mnt_sb; struct mount *mnt = real_mount(path->mnt); int ret; if (!check_mnt(mnt)) return -EINVAL; if (path->dentry != mnt->mnt.mnt_root) return -EINVAL; if (!can_change_locked_flags(mnt, mnt_flags)) return -EPERM; down_write(&sb->s_umount); ret = change_mount_ro_state(mnt, mnt_flags); if (ret == 0) set_mount_attributes(mnt, mnt_flags); up_write(&sb->s_umount); mnt_warn_timestamp_expiry(path, &mnt->mnt); return ret; } /* * change filesystem flags. dir should be a physical root of filesystem. * If you've mounted a non-root directory somewhere and want to do remount * on it - tough luck. */ static int do_remount(struct path *path, int ms_flags, int sb_flags, int mnt_flags, void *data) { int err; struct super_block *sb = path->mnt->mnt_sb; struct mount *mnt = real_mount(path->mnt); struct fs_context *fc; if (!check_mnt(mnt)) return -EINVAL; if (path->dentry != path->mnt->mnt_root) return -EINVAL; if (!can_change_locked_flags(mnt, mnt_flags)) return -EPERM; fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK); if (IS_ERR(fc)) return PTR_ERR(fc); fc->oldapi = true; err = parse_monolithic_mount_data(fc, data); if (!err) { down_write(&sb->s_umount); err = -EPERM; if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) { err = reconfigure_super(fc); if (!err) set_mount_attributes(mnt, mnt_flags); } up_write(&sb->s_umount); } mnt_warn_timestamp_expiry(path, &mnt->mnt); put_fs_context(fc); return err; } static inline int tree_contains_unbindable(struct mount *mnt) { struct mount *p; for (p = mnt; p; p = next_mnt(p, mnt)) { if (IS_MNT_UNBINDABLE(p)) return 1; } return 0; } /* * Check that there aren't references to earlier/same mount namespaces in the * specified subtree. Such references can act as pins for mount namespaces * that aren't checked by the mount-cycle checking code, thereby allowing * cycles to be made. */ static bool check_for_nsfs_mounts(struct mount *subtree) { struct mount *p; bool ret = false; lock_mount_hash(); for (p = subtree; p; p = next_mnt(p, subtree)) if (mnt_ns_loop(p->mnt.mnt_root)) goto out; ret = true; out: unlock_mount_hash(); return ret; } static int do_move_mount(struct path *old_path, struct path *new_path) { struct mnt_namespace *ns; struct mount *p; struct mount *old; struct mount *parent; struct mountpoint *mp, *old_mp; int err; bool attached; mp = lock_mount(new_path); if (IS_ERR(mp)) return PTR_ERR(mp); old = real_mount(old_path->mnt); p = real_mount(new_path->mnt); parent = old->mnt_parent; attached = mnt_has_parent(old); old_mp = old->mnt_mp; ns = old->mnt_ns; err = -EINVAL; /* The mountpoint must be in our namespace. */ if (!check_mnt(p)) goto out; /* The thing moved must be mounted... */ if (!is_mounted(&old->mnt)) goto out; /* ... and either ours or the root of anon namespace */ if (!(attached ? check_mnt(old) : is_anon_ns(ns))) goto out; if (old->mnt.mnt_flags & MNT_LOCKED) goto out; if (old_path->dentry != old_path->mnt->mnt_root) goto out; if (d_is_dir(new_path->dentry) != d_is_dir(old_path->dentry)) goto out; /* * Don't move a mount residing in a shared parent. */ if (attached && IS_MNT_SHARED(parent)) goto out; /* * Don't move a mount tree containing unbindable mounts to a destination * mount which is shared. */ if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) goto out; err = -ELOOP; if (!check_for_nsfs_mounts(old)) goto out; for (; mnt_has_parent(p); p = p->mnt_parent) if (p == old) goto out; err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp, attached); if (err) goto out; /* if the mount is moved, it should no longer be expire * automatically */ list_del_init(&old->mnt_expire); if (attached) put_mountpoint(old_mp); out: unlock_mount(mp); if (!err) { if (attached) mntput_no_expire(parent); else free_mnt_ns(ns); } return err; } static int do_move_mount_old(struct path *path, const char *old_name) { struct path old_path; int err; if (!old_name || !*old_name) return -EINVAL; err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); if (err) return err; err = do_move_mount(&old_path, path); path_put(&old_path); return err; } /* * add a mount into a namespace's mount tree */ static int do_add_mount(struct mount *newmnt, struct mountpoint *mp, struct path *path, int mnt_flags) { struct mount *parent = real_mount(path->mnt); mnt_flags &= ~MNT_INTERNAL_FLAGS; if (unlikely(!check_mnt(parent))) { /* that's acceptable only for automounts done in private ns */ if (!(mnt_flags & MNT_SHRINKABLE)) return -EINVAL; /* ... and for those we'd better have mountpoint still alive */ if (!parent->mnt_ns) return -EINVAL; } /* Refuse the same filesystem on the same mount point */ if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && path->mnt->mnt_root == path->dentry) return -EBUSY; if (d_is_symlink(newmnt->mnt.mnt_root)) return -EINVAL; newmnt->mnt.mnt_flags = mnt_flags; return graft_tree(newmnt, parent, mp); } static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags); /* * Create a new mount using a superblock configuration and request it * be added to the namespace tree. */ static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint, unsigned int mnt_flags) { struct vfsmount *mnt; struct mountpoint *mp; struct super_block *sb = fc->root->d_sb; int error; error = security_sb_kern_mount(sb); if (!error && mount_too_revealing(sb, &mnt_flags)) error = -EPERM; if (unlikely(error)) { fc_drop_locked(fc); return error; } up_write(&sb->s_umount); mnt = vfs_create_mount(fc); if (IS_ERR(mnt)) return PTR_ERR(mnt); mnt_warn_timestamp_expiry(mountpoint, mnt); mp = lock_mount(mountpoint); if (IS_ERR(mp)) { mntput(mnt); return PTR_ERR(mp); } error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags); unlock_mount(mp); if (error < 0) mntput(mnt); return error; } /* * create a new mount for userspace and request it to be added into the * namespace's tree */ static int do_new_mount(struct path *path, const char *fstype, int sb_flags, int mnt_flags, const char *name, void *data) { struct file_system_type *type; struct fs_context *fc; const char *subtype = NULL; int err = 0; if (!fstype) return -EINVAL; type = get_fs_type(fstype); if (!type) return -ENODEV; if (type->fs_flags & FS_HAS_SUBTYPE) { subtype = strchr(fstype, '.'); if (subtype) { subtype++; if (!*subtype) { put_filesystem(type); return -EINVAL; } } } fc = fs_context_for_mount(type, sb_flags); put_filesystem(type); if (IS_ERR(fc)) return PTR_ERR(fc); if (subtype) err = vfs_parse_fs_string(fc, "subtype", subtype, strlen(subtype)); if (!err && name) err = vfs_parse_fs_string(fc, "source", name, strlen(name)); if (!err) err = parse_monolithic_mount_data(fc, data); if (!err && !mount_capable(fc)) err = -EPERM; if (!err) err = vfs_get_tree(fc); if (!err) err = do_new_mount_fc(fc, path, mnt_flags); put_fs_context(fc); return err; } int finish_automount(struct vfsmount *m, struct path *path) { struct dentry *dentry = path->dentry; struct mountpoint *mp; struct mount *mnt; int err; if (!m) return 0; if (IS_ERR(m)) return PTR_ERR(m); mnt = real_mount(m); /* The new mount record should have at least 2 refs to prevent it being * expired before we get a chance to add it */ BUG_ON(mnt_get_count(mnt) < 2); if (m->mnt_sb == path->mnt->mnt_sb && m->mnt_root == dentry) { err = -ELOOP; goto discard; } /* * we don't want to use lock_mount() - in this case finding something * that overmounts our mountpoint to be means "quitely drop what we've * got", not "try to mount it on top". */ inode_lock(dentry->d_inode); namespace_lock(); if (unlikely(cant_mount(dentry))) { err = -ENOENT; goto discard_locked; } rcu_read_lock(); if (unlikely(__lookup_mnt(path->mnt, dentry))) { rcu_read_unlock(); err = 0; goto discard_locked; } rcu_read_unlock(); mp = get_mountpoint(dentry); if (IS_ERR(mp)) { err = PTR_ERR(mp); goto discard_locked; } err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE); unlock_mount(mp); if (unlikely(err)) goto discard; mntput(m); return 0; discard_locked: namespace_unlock(); inode_unlock(dentry->d_inode); discard: /* remove m from any expiration list it may be on */ if (!list_empty(&mnt->mnt_expire)) { namespace_lock(); list_del_init(&mnt->mnt_expire); namespace_unlock(); } mntput(m); mntput(m); return err; } /** * mnt_set_expiry - Put a mount on an expiration list * @mnt: The mount to list. * @expiry_list: The list to add the mount to. */ void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) { namespace_lock(); list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); namespace_unlock(); } EXPORT_SYMBOL(mnt_set_expiry); /* * process a list of expirable mountpoints with the intent of discarding any * mountpoints that aren't in use and haven't been touched since last we came * here */ void mark_mounts_for_expiry(struct list_head *mounts) { struct mount *mnt, *next; LIST_HEAD(graveyard); if (list_empty(mounts)) return; namespace_lock(); lock_mount_hash(); /* extract from the expiration list every vfsmount that matches the * following criteria: * - only referenced by its parent vfsmount * - still marked for expiry (marked on the last call here; marks are * cleared by mntput()) */ list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { if (!xchg(&mnt->mnt_expiry_mark, 1) || propagate_mount_busy(mnt, 1)) continue; list_move(&mnt->mnt_expire, &graveyard); } while (!list_empty(&graveyard)) { mnt = list_first_entry(&graveyard, struct mount, mnt_expire); touch_mnt_namespace(mnt->mnt_ns); umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); } unlock_mount_hash(); namespace_unlock(); } EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); /* * Ripoff of 'select_parent()' * * search the list of submounts for a given mountpoint, and move any * shrinkable submounts to the 'graveyard' list. */ static int select_submounts(struct mount *parent, struct list_head *graveyard) { struct mount *this_parent = parent; struct list_head *next; int found = 0; repeat: next = this_parent->mnt_mounts.next; resume: while (next != &this_parent->mnt_mounts) { struct list_head *tmp = next; struct mount *mnt = list_entry(tmp, struct mount, mnt_child); next = tmp->next; if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) continue; /* * Descend a level if the d_mounts list is non-empty. */ if (!list_empty(&mnt->mnt_mounts)) { this_parent = mnt; goto repeat; } if (!propagate_mount_busy(mnt, 1)) { list_move_tail(&mnt->mnt_expire, graveyard); found++; } } /* * All done at this level ... ascend and resume the search */ if (this_parent != parent) { next = this_parent->mnt_child.next; this_parent = this_parent->mnt_parent; goto resume; } return found; } /* * process a list of expirable mountpoints with the intent of discarding any * submounts of a specific parent mountpoint * * mount_lock must be held for write */ static void shrink_submounts(struct mount *mnt) { LIST_HEAD(graveyard); struct mount *m; /* extract submounts of 'mountpoint' from the expiration list */ while (select_submounts(mnt, &graveyard)) { while (!list_empty(&graveyard)) { m = list_first_entry(&graveyard, struct mount, mnt_expire); touch_mnt_namespace(m->mnt_ns); umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC); } } } static void *copy_mount_options(const void __user * data) { char *copy; unsigned left, offset; if (!data) return NULL; copy = kmalloc(PAGE_SIZE, GFP_KERNEL); if (!copy) return ERR_PTR(-ENOMEM); left = copy_from_user(copy, data, PAGE_SIZE); /* * Not all architectures have an exact copy_from_user(). Resort to * byte at a time. */ offset = PAGE_SIZE - left; while (left) { char c; if (get_user(c, (const char __user *)data + offset)) break; copy[offset] = c; left--; offset++; } if (left == PAGE_SIZE) { kfree(copy); return ERR_PTR(-EFAULT); } return copy; } static char *copy_mount_string(const void __user *data) { return data ? strndup_user(data, PATH_MAX) : NULL; } /* * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to * be given to the mount() call (ie: read-only, no-dev, no-suid etc). * * data is a (void *) that can point to any structure up to * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent * information (or be NULL). * * Pre-0.97 versions of mount() didn't have a flags word. * When the flags word was introduced its top half was required * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. * Therefore, if this magic number is present, it carries no information * and must be discarded. */ int path_mount(const char *dev_name, struct path *path, const char *type_page, unsigned long flags, void *data_page) { unsigned int mnt_flags = 0, sb_flags; int ret; /* Discard magic */ if ((flags & MS_MGC_MSK) == MS_MGC_VAL) flags &= ~MS_MGC_MSK; /* Basic sanity checks */ if (data_page) ((char *)data_page)[PAGE_SIZE - 1] = 0; if (flags & MS_NOUSER) return -EINVAL; ret = security_sb_mount(dev_name, path, type_page, flags, data_page); if (ret) return ret; if (!may_mount()) return -EPERM; if ((flags & SB_MANDLOCK) && !may_mandlock()) return -EPERM; /* Default to relatime unless overriden */ if (!(flags & MS_NOATIME)) mnt_flags |= MNT_RELATIME; /* Separate the per-mountpoint flags */ if (flags & MS_NOSUID) mnt_flags |= MNT_NOSUID; if (flags & MS_NODEV) mnt_flags |= MNT_NODEV; if (flags & MS_NOEXEC) mnt_flags |= MNT_NOEXEC; if (flags & MS_NOATIME) mnt_flags |= MNT_NOATIME; if (flags & MS_NODIRATIME) mnt_flags |= MNT_NODIRATIME; if (flags & MS_STRICTATIME) mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); if (flags & MS_RDONLY) mnt_flags |= MNT_READONLY; if (flags & MS_NOSYMFOLLOW) mnt_flags |= MNT_NOSYMFOLLOW; /* The default atime for remount is preservation */ if ((flags & MS_REMOUNT) && ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME | MS_STRICTATIME)) == 0)) { mnt_flags &= ~MNT_ATIME_MASK; mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK; } sb_flags = flags & (SB_RDONLY | SB_SYNCHRONOUS | SB_MANDLOCK | SB_DIRSYNC | SB_SILENT | SB_POSIXACL | SB_LAZYTIME | SB_I_VERSION); if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND)) return do_reconfigure_mnt(path, mnt_flags); if (flags & MS_REMOUNT) return do_remount(path, flags, sb_flags, mnt_flags, data_page); if (flags & MS_BIND) return do_loopback(path, dev_name, flags & MS_REC); if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) return do_change_type(path, flags); if (flags & MS_MOVE) return do_move_mount_old(path, dev_name); return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name, data_page); } long do_mount(const char *dev_name, const char __user *dir_name, const char *type_page, unsigned long flags, void *data_page) { struct path path; int ret; ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path); if (ret) return ret; ret = path_mount(dev_name, &path, type_page, flags, data_page); path_put(&path); return ret; } static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns) { return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES); } static void dec_mnt_namespaces(struct ucounts *ucounts) { dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES); } static void free_mnt_ns(struct mnt_namespace *ns) { if (!is_anon_ns(ns)) ns_free_inum(&ns->ns); dec_mnt_namespaces(ns->ucounts); put_user_ns(ns->user_ns); kfree(ns); } /* * Assign a sequence number so we can detect when we attempt to bind * mount a reference to an older mount namespace into the current * mount namespace, preventing reference counting loops. A 64bit * number incrementing at 10Ghz will take 12,427 years to wrap which * is effectively never, so we can ignore the possibility. */ static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1); static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon) { struct mnt_namespace *new_ns; struct ucounts *ucounts; int ret; ucounts = inc_mnt_namespaces(user_ns); if (!ucounts) return ERR_PTR(-ENOSPC); new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL); if (!new_ns) { dec_mnt_namespaces(ucounts); return ERR_PTR(-ENOMEM); } if (!anon) { ret = ns_alloc_inum(&new_ns->ns); if (ret) { kfree(new_ns); dec_mnt_namespaces(ucounts); return ERR_PTR(ret); } } new_ns->ns.ops = &mntns_operations; if (!anon) new_ns->seq = atomic64_add_return(1, &mnt_ns_seq); atomic_set(&new_ns->count, 1); INIT_LIST_HEAD(&new_ns->list); init_waitqueue_head(&new_ns->poll); spin_lock_init(&new_ns->ns_lock); new_ns->user_ns = get_user_ns(user_ns); new_ns->ucounts = ucounts; return new_ns; } __latent_entropy struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, struct user_namespace *user_ns, struct fs_struct *new_fs) { struct mnt_namespace *new_ns; struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; struct mount *p, *q; struct mount *old; struct mount *new; int copy_flags; BUG_ON(!ns); if (likely(!(flags & CLONE_NEWNS))) { get_mnt_ns(ns); return ns; } old = ns->root; new_ns = alloc_mnt_ns(user_ns, false); if (IS_ERR(new_ns)) return new_ns; namespace_lock(); /* First pass: copy the tree topology */ copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE; if (user_ns != ns->user_ns) copy_flags |= CL_SHARED_TO_SLAVE; new = copy_tree(old, old->mnt.mnt_root, copy_flags); if (IS_ERR(new)) { namespace_unlock(); free_mnt_ns(new_ns); return ERR_CAST(new); } if (user_ns != ns->user_ns) { lock_mount_hash(); lock_mnt_tree(new); unlock_mount_hash(); } new_ns->root = new; list_add_tail(&new_ns->list, &new->mnt_list); /* * Second pass: switch the tsk->fs->* elements and mark new vfsmounts * as belonging to new namespace. We have already acquired a private * fs_struct, so tsk->fs->lock is not needed. */ p = old; q = new; while (p) { q->mnt_ns = new_ns; new_ns->mounts++; if (new_fs) { if (&p->mnt == new_fs->root.mnt) { new_fs->root.mnt = mntget(&q->mnt); rootmnt = &p->mnt; } if (&p->mnt == new_fs->pwd.mnt) { new_fs->pwd.mnt = mntget(&q->mnt); pwdmnt = &p->mnt; } } p = next_mnt(p, old); q = next_mnt(q, new); if (!q) break; while (p->mnt.mnt_root != q->mnt.mnt_root) p = next_mnt(p, old); } namespace_unlock(); if (rootmnt) mntput(rootmnt); if (pwdmnt) mntput(pwdmnt); return new_ns; } struct dentry *mount_subtree(struct vfsmount *m, const char *name) { struct mount *mnt = real_mount(m); struct mnt_namespace *ns; struct super_block *s; struct path path; int err; ns = alloc_mnt_ns(&init_user_ns, true); if (IS_ERR(ns)) { mntput(m); return ERR_CAST(ns); } mnt->mnt_ns = ns; ns->root = mnt; ns->mounts++; list_add(&mnt->mnt_list, &ns->list); err = vfs_path_lookup(m->mnt_root, m, name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); put_mnt_ns(ns); if (err) return ERR_PTR(err); /* trade a vfsmount reference for active sb one */ s = path.mnt->mnt_sb; atomic_inc(&s->s_active); mntput(path.mnt); /* lock the sucker */ down_write(&s->s_umount); /* ... and return the root of (sub)tree on it */ return path.dentry; } EXPORT_SYMBOL(mount_subtree); SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, char __user *, type, unsigned long, flags, void __user *, data) { int ret; char *kernel_type; char *kernel_dev; void *options; kernel_type = copy_mount_string(type); ret = PTR_ERR(kernel_type); if (IS_ERR(kernel_type)) goto out_type; kernel_dev = copy_mount_string(dev_name); ret = PTR_ERR(kernel_dev); if (IS_ERR(kernel_dev)) goto out_dev; options = copy_mount_options(data); ret = PTR_ERR(options); if (IS_ERR(options)) goto out_data; ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options); kfree(options); out_data: kfree(kernel_dev); out_dev: kfree(kernel_type); out_type: return ret; } /* * Create a kernel mount representation for a new, prepared superblock * (specified by fs_fd) and attach to an open_tree-like file descriptor. */ SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags, unsigned int, attr_flags) { struct mnt_namespace *ns; struct fs_context *fc; struct file *file; struct path newmount; struct mount *mnt; struct fd f; unsigned int mnt_flags = 0; long ret; if (!may_mount()) return -EPERM; if ((flags & ~(FSMOUNT_CLOEXEC)) != 0) return -EINVAL; if (attr_flags & ~(MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV | MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME)) return -EINVAL; if (attr_flags & MOUNT_ATTR_RDONLY) mnt_flags |= MNT_READONLY; if (attr_flags & MOUNT_ATTR_NOSUID) mnt_flags |= MNT_NOSUID; if (attr_flags & MOUNT_ATTR_NODEV) mnt_flags |= MNT_NODEV; if (attr_flags & MOUNT_ATTR_NOEXEC) mnt_flags |= MNT_NOEXEC; if (attr_flags & MOUNT_ATTR_NODIRATIME) mnt_flags |= MNT_NODIRATIME; switch (attr_flags & MOUNT_ATTR__ATIME) { case MOUNT_ATTR_STRICTATIME: break; case MOUNT_ATTR_NOATIME: mnt_flags |= MNT_NOATIME; break; case MOUNT_ATTR_RELATIME: mnt_flags |= MNT_RELATIME; break; default: return -EINVAL; } f = fdget(fs_fd); if (!f.file) return -EBADF; ret = -EINVAL; if (f.file->f_op != &fscontext_fops) goto err_fsfd; fc = f.file->private_data; ret = mutex_lock_interruptible(&fc->uapi_mutex); if (ret < 0) goto err_fsfd; /* There must be a valid superblock or we can't mount it */ ret = -EINVAL; if (!fc->root) goto err_unlock; ret = -EPERM; if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) { pr_warn("VFS: Mount too revealing\n"); goto err_unlock; } ret = -EBUSY; if (fc->phase != FS_CONTEXT_AWAITING_MOUNT) goto err_unlock; ret = -EPERM; if ((fc->sb_flags & SB_MANDLOCK) && !may_mandlock()) goto err_unlock; newmount.mnt = vfs_create_mount(fc); if (IS_ERR(newmount.mnt)) { ret = PTR_ERR(newmount.mnt); goto err_unlock; } newmount.dentry = dget(fc->root); newmount.mnt->mnt_flags = mnt_flags; /* We've done the mount bit - now move the file context into more or * less the same state as if we'd done an fspick(). We don't want to * do any memory allocation or anything like that at this point as we * don't want to have to handle any errors incurred. */ vfs_clean_context(fc); ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true); if (IS_ERR(ns)) { ret = PTR_ERR(ns); goto err_path; } mnt = real_mount(newmount.mnt); mnt->mnt_ns = ns; ns->root = mnt; ns->mounts = 1; list_add(&mnt->mnt_list, &ns->list); mntget(newmount.mnt); /* Attach to an apparent O_PATH fd with a note that we need to unmount * it, not just simply put it. */ file = dentry_open(&newmount, O_PATH, fc->cred); if (IS_ERR(file)) { dissolve_on_fput(newmount.mnt); ret = PTR_ERR(file); goto err_path; } file->f_mode |= FMODE_NEED_UNMOUNT; ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0); if (ret >= 0) fd_install(ret, file); else fput(file); err_path: path_put(&newmount); err_unlock: mutex_unlock(&fc->uapi_mutex); err_fsfd: fdput(f); return ret; } /* * Move a mount from one place to another. In combination with * fsopen()/fsmount() this is used to install a new mount and in combination * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy * a mount subtree. * * Note the flags value is a combination of MOVE_MOUNT_* flags. */ SYSCALL_DEFINE5(move_mount, int, from_dfd, const char __user *, from_pathname, int, to_dfd, const char __user *, to_pathname, unsigned int, flags) { struct path from_path, to_path; unsigned int lflags; int ret = 0; if (!may_mount()) return -EPERM; if (flags & ~MOVE_MOUNT__MASK) return -EINVAL; /* If someone gives a pathname, they aren't permitted to move * from an fd that requires unmount as we can't get at the flag * to clear it afterwards. */ lflags = 0; if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW; if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY; ret = user_path_at(from_dfd, from_pathname, lflags, &from_path); if (ret < 0) return ret; lflags = 0; if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW; if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY; ret = user_path_at(to_dfd, to_pathname, lflags, &to_path); if (ret < 0) goto out_from; ret = security_move_mount(&from_path, &to_path); if (ret < 0) goto out_to; ret = do_move_mount(&from_path, &to_path); out_to: path_put(&to_path); out_from: path_put(&from_path); return ret; } /* * Return true if path is reachable from root * * namespace_sem or mount_lock is held */ bool is_path_reachable(struct mount *mnt, struct dentry *dentry, const struct path *root) { while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { dentry = mnt->mnt_mountpoint; mnt = mnt->mnt_parent; } return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); } bool path_is_under(const struct path *path1, const struct path *path2) { bool res; read_seqlock_excl(&mount_lock); res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); read_sequnlock_excl(&mount_lock); return res; } EXPORT_SYMBOL(path_is_under); /* * pivot_root Semantics: * Moves the root file system of the current process to the directory put_old, * makes new_root as the new root file system of the current process, and sets * root/cwd of all processes which had them on the current root to new_root. * * Restrictions: * The new_root and put_old must be directories, and must not be on the * same file system as the current process root. The put_old must be * underneath new_root, i.e. adding a non-zero number of /.. to the string * pointed to by put_old must yield the same directory as new_root. No other * file system may be mounted on put_old. After all, new_root is a mountpoint. * * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives * in this situation. * * Notes: * - we don't move root/cwd if they are not at the root (reason: if something * cared enough to change them, it's probably wrong to force them elsewhere) * - it's okay to pick a root that isn't the root of a file system, e.g. * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root * first. */ SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, const char __user *, put_old) { struct path new, old, root; struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent; struct mountpoint *old_mp, *root_mp; int error; if (!may_mount()) return -EPERM; error = user_path_at(AT_FDCWD, new_root, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new); if (error) goto out0; error = user_path_at(AT_FDCWD, put_old, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old); if (error) goto out1; error = security_sb_pivotroot(&old, &new); if (error) goto out2; get_fs_root(current->fs, &root); old_mp = lock_mount(&old); error = PTR_ERR(old_mp); if (IS_ERR(old_mp)) goto out3; error = -EINVAL; new_mnt = real_mount(new.mnt); root_mnt = real_mount(root.mnt); old_mnt = real_mount(old.mnt); ex_parent = new_mnt->mnt_parent; root_parent = root_mnt->mnt_parent; if (IS_MNT_SHARED(old_mnt) || IS_MNT_SHARED(ex_parent) || IS_MNT_SHARED(root_parent)) goto out4; if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) goto out4; if (new_mnt->mnt.mnt_flags & MNT_LOCKED) goto out4; error = -ENOENT; if (d_unlinked(new.dentry)) goto out4; error = -EBUSY; if (new_mnt == root_mnt || old_mnt == root_mnt) goto out4; /* loop, on the same file system */ error = -EINVAL; if (root.mnt->mnt_root != root.dentry) goto out4; /* not a mountpoint */ if (!mnt_has_parent(root_mnt)) goto out4; /* not attached */ if (new.mnt->mnt_root != new.dentry) goto out4; /* not a mountpoint */ if (!mnt_has_parent(new_mnt)) goto out4; /* not attached */ /* make sure we can reach put_old from new_root */ if (!is_path_reachable(old_mnt, old.dentry, &new)) goto out4; /* make certain new is below the root */ if (!is_path_reachable(new_mnt, new.dentry, &root)) goto out4; lock_mount_hash(); umount_mnt(new_mnt); root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */ if (root_mnt->mnt.mnt_flags & MNT_LOCKED) { new_mnt->mnt.mnt_flags |= MNT_LOCKED; root_mnt->mnt.mnt_flags &= ~MNT_LOCKED; } /* mount old root on put_old */ attach_mnt(root_mnt, old_mnt, old_mp); /* mount new_root on / */ attach_mnt(new_mnt, root_parent, root_mp); mnt_add_count(root_parent, -1); touch_mnt_namespace(current->nsproxy->mnt_ns); /* A moved mount should not expire automatically */ list_del_init(&new_mnt->mnt_expire); put_mountpoint(root_mp); unlock_mount_hash(); chroot_fs_refs(&root, &new); error = 0; out4: unlock_mount(old_mp); if (!error) mntput_no_expire(ex_parent); out3: path_put(&root); out2: path_put(&old); out1: path_put(&new); out0: return error; } static void __init init_mount_tree(void) { struct vfsmount *mnt; struct mount *m; struct mnt_namespace *ns; struct path root; mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL); if (IS_ERR(mnt)) panic("Can't create rootfs"); ns = alloc_mnt_ns(&init_user_ns, false); if (IS_ERR(ns)) panic("Can't allocate initial namespace"); m = real_mount(mnt); m->mnt_ns = ns; ns->root = m; ns->mounts = 1; list_add(&m->mnt_list, &ns->list); init_task.nsproxy->mnt_ns = ns; get_mnt_ns(ns); root.mnt = mnt; root.dentry = mnt->mnt_root; mnt->mnt_flags |= MNT_LOCKED; set_fs_pwd(current->fs, &root); set_fs_root(current->fs, &root); } void __init mnt_init(void) { int err; mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); mount_hashtable = alloc_large_system_hash("Mount-cache", sizeof(struct hlist_head), mhash_entries, 19, HASH_ZERO, &m_hash_shift, &m_hash_mask, 0, 0); mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache", sizeof(struct hlist_head), mphash_entries, 19, HASH_ZERO, &mp_hash_shift, &mp_hash_mask, 0, 0); if (!mount_hashtable || !mountpoint_hashtable) panic("Failed to allocate mount hash table\n"); kernfs_init(); err = sysfs_init(); if (err) printk(KERN_WARNING "%s: sysfs_init error: %d\n", __func__, err); fs_kobj = kobject_create_and_add("fs", NULL); if (!fs_kobj) printk(KERN_WARNING "%s: kobj create error\n", __func__); shmem_init(); init_rootfs(); init_mount_tree(); } void put_mnt_ns(struct mnt_namespace *ns) { if (!atomic_dec_and_test(&ns->count)) return; drop_collected_mounts(&ns->root->mnt); free_mnt_ns(ns); } struct vfsmount *kern_mount(struct file_system_type *type) { struct vfsmount *mnt; mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL); if (!IS_ERR(mnt)) { /* * it is a longterm mount, don't release mnt until * we unmount before file sys is unregistered */ real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; } return mnt; } EXPORT_SYMBOL_GPL(kern_mount); void kern_unmount(struct vfsmount *mnt) { /* release long term mount so mount point can be released */ if (!IS_ERR_OR_NULL(mnt)) { real_mount(mnt)->mnt_ns = NULL; synchronize_rcu(); /* yecchhh... */ mntput(mnt); } } EXPORT_SYMBOL(kern_unmount); void kern_unmount_array(struct vfsmount *mnt[], unsigned int num) { unsigned int i; for (i = 0; i < num; i++) if (mnt[i]) real_mount(mnt[i])->mnt_ns = NULL; synchronize_rcu_expedited(); for (i = 0; i < num; i++) mntput(mnt[i]); } EXPORT_SYMBOL(kern_unmount_array); bool our_mnt(struct vfsmount *mnt) { return check_mnt(real_mount(mnt)); } bool current_chrooted(void) { /* Does the current process have a non-standard root */ struct path ns_root; struct path fs_root; bool chrooted; /* Find the namespace root */ ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt; ns_root.dentry = ns_root.mnt->mnt_root; path_get(&ns_root); while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root)) ; get_fs_root(current->fs, &fs_root); chrooted = !path_equal(&fs_root, &ns_root); path_put(&fs_root); path_put(&ns_root); return chrooted; } static bool mnt_already_visible(struct mnt_namespace *ns, const struct super_block *sb, int *new_mnt_flags) { int new_flags = *new_mnt_flags; struct mount *mnt; bool visible = false; down_read(&namespace_sem); lock_ns_list(ns); list_for_each_entry(mnt, &ns->list, mnt_list) { struct mount *child; int mnt_flags; if (mnt_is_cursor(mnt)) continue; if (mnt->mnt.mnt_sb->s_type != sb->s_type) continue; /* This mount is not fully visible if it's root directory * is not the root directory of the filesystem. */ if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root) continue; /* A local view of the mount flags */ mnt_flags = mnt->mnt.mnt_flags; /* Don't miss readonly hidden in the superblock flags */ if (sb_rdonly(mnt->mnt.mnt_sb)) mnt_flags |= MNT_LOCK_READONLY; /* Verify the mount flags are equal to or more permissive * than the proposed new mount. */ if ((mnt_flags & MNT_LOCK_READONLY) && !(new_flags & MNT_READONLY)) continue; if ((mnt_flags & MNT_LOCK_ATIME) && ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK))) continue; /* This mount is not fully visible if there are any * locked child mounts that cover anything except for * empty directories. */ list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { struct inode *inode = child->mnt_mountpoint->d_inode; /* Only worry about locked mounts */ if (!(child->mnt.mnt_flags & MNT_LOCKED)) continue; /* Is the directory permanetly empty? */ if (!is_empty_dir_inode(inode)) goto next; } /* Preserve the locked attributes */ *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \ MNT_LOCK_ATIME); visible = true; goto found; next: ; } found: unlock_ns_list(ns); up_read(&namespace_sem); return visible; } static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags) { const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV; struct mnt_namespace *ns = current->nsproxy->mnt_ns; unsigned long s_iflags; if (ns->user_ns == &init_user_ns) return false; /* Can this filesystem be too revealing? */ s_iflags = sb->s_iflags; if (!(s_iflags & SB_I_USERNS_VISIBLE)) return false; if ((s_iflags & required_iflags) != required_iflags) { WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n", required_iflags); return true; } return !mnt_already_visible(ns, sb, new_mnt_flags); } bool mnt_may_suid(struct vfsmount *mnt) { /* * Foreign mounts (accessed via fchdir or through /proc * symlinks) are always treated as if they are nosuid. This * prevents namespaces from trusting potentially unsafe * suid/sgid bits, file caps, or security labels that originate * in other namespaces. */ return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) && current_in_userns(mnt->mnt_sb->s_user_ns); } static struct ns_common *mntns_get(struct task_struct *task) { struct ns_common *ns = NULL; struct nsproxy *nsproxy; task_lock(task); nsproxy = task->nsproxy; if (nsproxy) { ns = &nsproxy->mnt_ns->ns; get_mnt_ns(to_mnt_ns(ns)); } task_unlock(task); return ns; } static void mntns_put(struct ns_common *ns) { put_mnt_ns(to_mnt_ns(ns)); } static int mntns_install(struct nsset *nsset, struct ns_common *ns) { struct nsproxy *nsproxy = nsset->nsproxy; struct fs_struct *fs = nsset->fs; struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns; struct user_namespace *user_ns = nsset->cred->user_ns; struct path root; int err; if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || !ns_capable(user_ns, CAP_SYS_CHROOT) || !ns_capable(user_ns, CAP_SYS_ADMIN)) return -EPERM; if (is_anon_ns(mnt_ns)) return -EINVAL; if (fs->users != 1) return -EINVAL; get_mnt_ns(mnt_ns); old_mnt_ns = nsproxy->mnt_ns; nsproxy->mnt_ns = mnt_ns; /* Find the root */ err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt, "/", LOOKUP_DOWN, &root); if (err) { /* revert to old namespace */ nsproxy->mnt_ns = old_mnt_ns; put_mnt_ns(mnt_ns); return err; } put_mnt_ns(old_mnt_ns); /* Update the pwd and root */ set_fs_pwd(fs, &root); set_fs_root(fs, &root); path_put(&root); return 0; } static struct user_namespace *mntns_owner(struct ns_common *ns) { return to_mnt_ns(ns)->user_ns; } const struct proc_ns_operations mntns_operations = { .name = "mnt", .type = CLONE_NEWNS, .get = mntns_get, .put = mntns_put, .install = mntns_install, .owner = mntns_owner, };
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Definitions for the ICMP module. * * Version: @(#)icmp.h 1.0.4 05/13/93 * * Authors: Ross Biro * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> */ #ifndef _ICMP_H #define _ICMP_H #include <linux/icmp.h> #include <net/inet_sock.h> #include <net/snmp.h> #include <net/ip.h> struct icmp_err { int errno; unsigned int fatal:1; }; extern const struct icmp_err icmp_err_convert[]; #define ICMP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.icmp_statistics, field) #define __ICMP_INC_STATS(net, field) __SNMP_INC_STATS((net)->mib.icmp_statistics, field) #define ICMPMSGOUT_INC_STATS(net, field) SNMP_INC_STATS_ATOMIC_LONG((net)->mib.icmpmsg_statistics, field+256) #define ICMPMSGIN_INC_STATS(net, field) SNMP_INC_STATS_ATOMIC_LONG((net)->mib.icmpmsg_statistics, field) struct dst_entry; struct net_proto_family; struct sk_buff; struct net; void __icmp_send(struct sk_buff *skb_in, int type, int code, __be32 info, const struct ip_options *opt); static inline void icmp_send(struct sk_buff *skb_in, int type, int code, __be32 info) { __icmp_send(skb_in, type, code, info, &IPCB(skb_in)->opt); } #if IS_ENABLED(CONFIG_NF_NAT) void icmp_ndo_send(struct sk_buff *skb_in, int type, int code, __be32 info); #else static inline void icmp_ndo_send(struct sk_buff *skb_in, int type, int code, __be32 info) { struct ip_options opts = { 0 }; __icmp_send(skb_in, type, code, info, &opts); } #endif int icmp_rcv(struct sk_buff *skb); int icmp_err(struct sk_buff *skb, u32 info); int icmp_init(void); void icmp_out_count(struct net *net, unsigned char type); #endif /* _ICMP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_LOCAL_LOCK_H # error "Do not include directly, include linux/local_lock.h" #endif #include <linux/percpu-defs.h> #include <linux/lockdep.h> typedef struct { #ifdef CONFIG_DEBUG_LOCK_ALLOC struct lockdep_map dep_map; struct task_struct *owner; #endif } local_lock_t; #ifdef CONFIG_DEBUG_LOCK_ALLOC # define LOCAL_LOCK_DEBUG_INIT(lockname) \ .dep_map = { \ .name = #lockname, \ .wait_type_inner = LD_WAIT_CONFIG, \ .lock_type = LD_LOCK_PERCPU, \ }, \ .owner = NULL, static inline void local_lock_acquire(local_lock_t *l) { lock_map_acquire(&l->dep_map); DEBUG_LOCKS_WARN_ON(l->owner); l->owner = current; } static inline void local_lock_release(local_lock_t *l) { DEBUG_LOCKS_WARN_ON(l->owner != current); l->owner = NULL; lock_map_release(&l->dep_map); } static inline void local_lock_debug_init(local_lock_t *l) { l->owner = NULL; } #else /* CONFIG_DEBUG_LOCK_ALLOC */ # define LOCAL_LOCK_DEBUG_INIT(lockname) static inline void local_lock_acquire(local_lock_t *l) { } static inline void local_lock_release(local_lock_t *l) { } static inline void local_lock_debug_init(local_lock_t *l) { } #endif /* !CONFIG_DEBUG_LOCK_ALLOC */ #define INIT_LOCAL_LOCK(lockname) { LOCAL_LOCK_DEBUG_INIT(lockname) } #define __local_lock_init(lock) \ do { \ static struct lock_class_key __key; \ \ debug_check_no_locks_freed((void *)lock, sizeof(*lock));\ lockdep_init_map_type(&(lock)->dep_map, #lock, &__key, \ 0, LD_WAIT_CONFIG, LD_WAIT_INV, \ LD_LOCK_PERCPU); \ local_lock_debug_init(lock); \ } while (0) #define __local_lock(lock) \ do { \ preempt_disable(); \ local_lock_acquire(this_cpu_ptr(lock)); \ } while (0) #define __local_lock_irq(lock) \ do { \ local_irq_disable(); \ local_lock_acquire(this_cpu_ptr(lock)); \ } while (0) #define __local_lock_irqsave(lock, flags) \ do { \ local_irq_save(flags); \ local_lock_acquire(this_cpu_ptr(lock)); \ } while (0) #define __local_unlock(lock) \ do { \ local_lock_release(this_cpu_ptr(lock)); \ preempt_enable(); \ } while (0) #define __local_unlock_irq(lock) \ do { \ local_lock_release(this_cpu_ptr(lock)); \ local_irq_enable(); \ } while (0) #define __local_unlock_irqrestore(lock, flags) \ do { \ local_lock_release(this_cpu_ptr(lock)); \ local_irq_restore(flags); \ } while (0)
1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 // SPDX-License-Identifier: GPL-2.0 /* * fs/ext4/extents_status.c * * Written by Yongqiang Yang <xiaoqiangnk@gmail.com> * Modified by * Allison Henderson <achender@linux.vnet.ibm.com> * Hugh Dickins <hughd@google.com> * Zheng Liu <wenqing.lz@taobao.com> * * Ext4 extents status tree core functions. */ #include <linux/list_sort.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include "ext4.h" #include <trace/events/ext4.h> /* * According to previous discussion in Ext4 Developer Workshop, we * will introduce a new structure called io tree to track all extent * status in order to solve some problems that we have met * (e.g. Reservation space warning), and provide extent-level locking. * Delay extent tree is the first step to achieve this goal. It is * original built by Yongqiang Yang. At that time it is called delay * extent tree, whose goal is only track delayed extents in memory to * simplify the implementation of fiemap and bigalloc, and introduce * lseek SEEK_DATA/SEEK_HOLE support. That is why it is still called * delay extent tree at the first commit. But for better understand * what it does, it has been rename to extent status tree. * * Step1: * Currently the first step has been done. All delayed extents are * tracked in the tree. It maintains the delayed extent when a delayed * allocation is issued, and the delayed extent is written out or * invalidated. Therefore the implementation of fiemap and bigalloc * are simplified, and SEEK_DATA/SEEK_HOLE are introduced. * * The following comment describes the implemenmtation of extent * status tree and future works. * * Step2: * In this step all extent status are tracked by extent status tree. * Thus, we can first try to lookup a block mapping in this tree before * finding it in extent tree. Hence, single extent cache can be removed * because extent status tree can do a better job. Extents in status * tree are loaded on-demand. Therefore, the extent status tree may not * contain all of the extents in a file. Meanwhile we define a shrinker * to reclaim memory from extent status tree because fragmented extent * tree will make status tree cost too much memory. written/unwritten/- * hole extents in the tree will be reclaimed by this shrinker when we * are under high memory pressure. Delayed extents will not be * reclimed because fiemap, bigalloc, and seek_data/hole need it. */ /* * Extent status tree implementation for ext4. * * * ========================================================================== * Extent status tree tracks all extent status. * * 1. Why we need to implement extent status tree? * * Without extent status tree, ext4 identifies a delayed extent by looking * up page cache, this has several deficiencies - complicated, buggy, * and inefficient code. * * FIEMAP, SEEK_HOLE/DATA, bigalloc, and writeout all need to know if a * block or a range of blocks are belonged to a delayed extent. * * Let us have a look at how they do without extent status tree. * -- FIEMAP * FIEMAP looks up page cache to identify delayed allocations from holes. * * -- SEEK_HOLE/DATA * SEEK_HOLE/DATA has the same problem as FIEMAP. * * -- bigalloc * bigalloc looks up page cache to figure out if a block is * already under delayed allocation or not to determine whether * quota reserving is needed for the cluster. * * -- writeout * Writeout looks up whole page cache to see if a buffer is * mapped, If there are not very many delayed buffers, then it is * time consuming. * * With extent status tree implementation, FIEMAP, SEEK_HOLE/DATA, * bigalloc and writeout can figure out if a block or a range of * blocks is under delayed allocation(belonged to a delayed extent) or * not by searching the extent tree. * * * ========================================================================== * 2. Ext4 extent status tree impelmentation * * -- extent * A extent is a range of blocks which are contiguous logically and * physically. Unlike extent in extent tree, this extent in ext4 is * a in-memory struct, there is no corresponding on-disk data. There * is no limit on length of extent, so an extent can contain as many * blocks as they are contiguous logically and physically. * * -- extent status tree * Every inode has an extent status tree and all allocation blocks * are added to the tree with different status. The extent in the * tree are ordered by logical block no. * * -- operations on a extent status tree * There are three important operations on a delayed extent tree: find * next extent, adding a extent(a range of blocks) and removing a extent. * * -- race on a extent status tree * Extent status tree is protected by inode->i_es_lock. * * -- memory consumption * Fragmented extent tree will make extent status tree cost too much * memory. Hence, we will reclaim written/unwritten/hole extents from * the tree under a heavy memory pressure. * * * ========================================================================== * 3. Performance analysis * * -- overhead * 1. There is a cache extent for write access, so if writes are * not very random, adding space operaions are in O(1) time. * * -- gain * 2. Code is much simpler, more readable, more maintainable and * more efficient. * * * ========================================================================== * 4. TODO list * * -- Refactor delayed space reservation * * -- Extent-level locking */ static struct kmem_cache *ext4_es_cachep; static struct kmem_cache *ext4_pending_cachep; static int __es_insert_extent(struct inode *inode, struct extent_status *newes); static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t end, int *reserved); static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan); static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan, struct ext4_inode_info *locked_ei); static void __revise_pending(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len); int __init ext4_init_es(void) { ext4_es_cachep = kmem_cache_create("ext4_extent_status", sizeof(struct extent_status), 0, (SLAB_RECLAIM_ACCOUNT), NULL); if (ext4_es_cachep == NULL) return -ENOMEM; return 0; } void ext4_exit_es(void) { kmem_cache_destroy(ext4_es_cachep); } void ext4_es_init_tree(struct ext4_es_tree *tree) { tree->root = RB_ROOT; tree->cache_es = NULL; } #ifdef ES_DEBUG__ static void ext4_es_print_tree(struct inode *inode) { struct ext4_es_tree *tree; struct rb_node *node; printk(KERN_DEBUG "status extents for inode %lu:", inode->i_ino); tree = &EXT4_I(inode)->i_es_tree; node = rb_first(&tree->root); while (node) { struct extent_status *es; es = rb_entry(node, struct extent_status, rb_node); printk(KERN_DEBUG " [%u/%u) %llu %x", es->es_lblk, es->es_len, ext4_es_pblock(es), ext4_es_status(es)); node = rb_next(node); } printk(KERN_DEBUG "\n"); } #else #define ext4_es_print_tree(inode) #endif static inline ext4_lblk_t ext4_es_end(struct extent_status *es) { BUG_ON(es->es_lblk + es->es_len < es->es_lblk); return es->es_lblk + es->es_len - 1; } /* * search through the tree for an delayed extent with a given offset. If * it can't be found, try to find next extent. */ static struct extent_status *__es_tree_search(struct rb_root *root, ext4_lblk_t lblk) { struct rb_node *node = root->rb_node; struct extent_status *es = NULL; while (node) { es = rb_entry(node, struct extent_status, rb_node); if (lblk < es->es_lblk) node = node->rb_left; else if (lblk > ext4_es_end(es)) node = node->rb_right; else return es; } if (es && lblk < es->es_lblk) return es; if (es && lblk > ext4_es_end(es)) { node = rb_next(&es->rb_node); return node ? rb_entry(node, struct extent_status, rb_node) : NULL; } return NULL; } /* * ext4_es_find_extent_range - find extent with specified status within block * range or next extent following block range in * extents status tree * * @inode - file containing the range * @matching_fn - pointer to function that matches extents with desired status * @lblk - logical block defining start of range * @end - logical block defining end of range * @es - extent found, if any * * Find the first extent within the block range specified by @lblk and @end * in the extents status tree that satisfies @matching_fn. If a match * is found, it's returned in @es. If not, and a matching extent is found * beyond the block range, it's returned in @es. If no match is found, an * extent is returned in @es whose es_lblk, es_len, and es_pblk components * are 0. */ static void __es_find_extent_range(struct inode *inode, int (*matching_fn)(struct extent_status *es), ext4_lblk_t lblk, ext4_lblk_t end, struct extent_status *es) { struct ext4_es_tree *tree = NULL; struct extent_status *es1 = NULL; struct rb_node *node; WARN_ON(es == NULL); WARN_ON(end < lblk); tree = &EXT4_I(inode)->i_es_tree; /* see if the extent has been cached */ es->es_lblk = es->es_len = es->es_pblk = 0; if (tree->cache_es) { es1 = tree->cache_es; if (in_range(lblk, es1->es_lblk, es1->es_len)) { es_debug("%u cached by [%u/%u) %llu %x\n", lblk, es1->es_lblk, es1->es_len, ext4_es_pblock(es1), ext4_es_status(es1)); goto out; } } es1 = __es_tree_search(&tree->root, lblk); out: if (es1 && !matching_fn(es1)) { while ((node = rb_next(&es1->rb_node)) != NULL) { es1 = rb_entry(node, struct extent_status, rb_node); if (es1->es_lblk > end) { es1 = NULL; break; } if (matching_fn(es1)) break; } } if (es1 && matching_fn(es1)) { tree->cache_es = es1; es->es_lblk = es1->es_lblk; es->es_len = es1->es_len; es->es_pblk = es1->es_pblk; } } /* * Locking for __es_find_extent_range() for external use */ void ext4_es_find_extent_range(struct inode *inode, int (*matching_fn)(struct extent_status *es), ext4_lblk_t lblk, ext4_lblk_t end, struct extent_status *es) { if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) return; trace_ext4_es_find_extent_range_enter(inode, lblk); read_lock(&EXT4_I(inode)->i_es_lock); __es_find_extent_range(inode, matching_fn, lblk, end, es); read_unlock(&EXT4_I(inode)->i_es_lock); trace_ext4_es_find_extent_range_exit(inode, es); } /* * __es_scan_range - search block range for block with specified status * in extents status tree * * @inode - file containing the range * @matching_fn - pointer to function that matches extents with desired status * @lblk - logical block defining start of range * @end - logical block defining end of range * * Returns true if at least one block in the specified block range satisfies * the criterion specified by @matching_fn, and false if not. If at least * one extent has the specified status, then there is at least one block * in the cluster with that status. Should only be called by code that has * taken i_es_lock. */ static bool __es_scan_range(struct inode *inode, int (*matching_fn)(struct extent_status *es), ext4_lblk_t start, ext4_lblk_t end) { struct extent_status es; __es_find_extent_range(inode, matching_fn, start, end, &es); if (es.es_len == 0) return false; /* no matching extent in the tree */ else if (es.es_lblk <= start && start < es.es_lblk + es.es_len) return true; else if (start <= es.es_lblk && es.es_lblk <= end) return true; else return false; } /* * Locking for __es_scan_range() for external use */ bool ext4_es_scan_range(struct inode *inode, int (*matching_fn)(struct extent_status *es), ext4_lblk_t lblk, ext4_lblk_t end) { bool ret; if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) return false; read_lock(&EXT4_I(inode)->i_es_lock); ret = __es_scan_range(inode, matching_fn, lblk, end); read_unlock(&EXT4_I(inode)->i_es_lock); return ret; } /* * __es_scan_clu - search cluster for block with specified status in * extents status tree * * @inode - file containing the cluster * @matching_fn - pointer to function that matches extents with desired status * @lblk - logical block in cluster to be searched * * Returns true if at least one extent in the cluster containing @lblk * satisfies the criterion specified by @matching_fn, and false if not. If at * least one extent has the specified status, then there is at least one block * in the cluster with that status. Should only be called by code that has * taken i_es_lock. */ static bool __es_scan_clu(struct inode *inode, int (*matching_fn)(struct extent_status *es), ext4_lblk_t lblk) { struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); ext4_lblk_t lblk_start, lblk_end; lblk_start = EXT4_LBLK_CMASK(sbi, lblk); lblk_end = lblk_start + sbi->s_cluster_ratio - 1; return __es_scan_range(inode, matching_fn, lblk_start, lblk_end); } /* * Locking for __es_scan_clu() for external use */ bool ext4_es_scan_clu(struct inode *inode, int (*matching_fn)(struct extent_status *es), ext4_lblk_t lblk) { bool ret; if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) return false; read_lock(&EXT4_I(inode)->i_es_lock); ret = __es_scan_clu(inode, matching_fn, lblk); read_unlock(&EXT4_I(inode)->i_es_lock); return ret; } static void ext4_es_list_add(struct inode *inode) { struct ext4_inode_info *ei = EXT4_I(inode); struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); if (!list_empty(&ei->i_es_list)) return; spin_lock(&sbi->s_es_lock); if (list_empty(&ei->i_es_list)) { list_add_tail(&ei->i_es_list, &sbi->s_es_list); sbi->s_es_nr_inode++; } spin_unlock(&sbi->s_es_lock); } static void ext4_es_list_del(struct inode *inode) { struct ext4_inode_info *ei = EXT4_I(inode); struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); spin_lock(&sbi->s_es_lock); if (!list_empty(&ei->i_es_list)) { list_del_init(&ei->i_es_list); sbi->s_es_nr_inode--; WARN_ON_ONCE(sbi->s_es_nr_inode < 0); } spin_unlock(&sbi->s_es_lock); } static struct extent_status * ext4_es_alloc_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len, ext4_fsblk_t pblk) { struct extent_status *es; es = kmem_cache_alloc(ext4_es_cachep, GFP_ATOMIC); if (es == NULL) return NULL; es->es_lblk = lblk; es->es_len = len; es->es_pblk = pblk; /* * We don't count delayed extent because we never try to reclaim them */ if (!ext4_es_is_delayed(es)) { if (!EXT4_I(inode)->i_es_shk_nr++) ext4_es_list_add(inode); percpu_counter_inc(&EXT4_SB(inode->i_sb)-> s_es_stats.es_stats_shk_cnt); } EXT4_I(inode)->i_es_all_nr++; percpu_counter_inc(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt); return es; } static void ext4_es_free_extent(struct inode *inode, struct extent_status *es) { EXT4_I(inode)->i_es_all_nr--; percpu_counter_dec(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt); /* Decrease the shrink counter when this es is not delayed */ if (!ext4_es_is_delayed(es)) { BUG_ON(EXT4_I(inode)->i_es_shk_nr == 0); if (!--EXT4_I(inode)->i_es_shk_nr) ext4_es_list_del(inode); percpu_counter_dec(&EXT4_SB(inode->i_sb)-> s_es_stats.es_stats_shk_cnt); } kmem_cache_free(ext4_es_cachep, es); } /* * Check whether or not two extents can be merged * Condition: * - logical block number is contiguous * - physical block number is contiguous * - status is equal */ static int ext4_es_can_be_merged(struct extent_status *es1, struct extent_status *es2) { if (ext4_es_type(es1) != ext4_es_type(es2)) return 0; if (((__u64) es1->es_len) + es2->es_len > EXT_MAX_BLOCKS) { pr_warn("ES assertion failed when merging extents. " "The sum of lengths of es1 (%d) and es2 (%d) " "is bigger than allowed file size (%d)\n", es1->es_len, es2->es_len, EXT_MAX_BLOCKS); WARN_ON(1); return 0; } if (((__u64) es1->es_lblk) + es1->es_len != es2->es_lblk) return 0; if ((ext4_es_is_written(es1) || ext4_es_is_unwritten(es1)) && (ext4_es_pblock(es1) + es1->es_len == ext4_es_pblock(es2))) return 1; if (ext4_es_is_hole(es1)) return 1; /* we need to check delayed extent is without unwritten status */ if (ext4_es_is_delayed(es1) && !ext4_es_is_unwritten(es1)) return 1; return 0; } static struct extent_status * ext4_es_try_to_merge_left(struct inode *inode, struct extent_status *es) { struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree; struct extent_status *es1; struct rb_node *node; node = rb_prev(&es->rb_node); if (!node) return es; es1 = rb_entry(node, struct extent_status, rb_node); if (ext4_es_can_be_merged(es1, es)) { es1->es_len += es->es_len; if (ext4_es_is_referenced(es)) ext4_es_set_referenced(es1); rb_erase(&es->rb_node, &tree->root); ext4_es_free_extent(inode, es); es = es1; } return es; } static struct extent_status * ext4_es_try_to_merge_right(struct inode *inode, struct extent_status *es) { struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree; struct extent_status *es1; struct rb_node *node; node = rb_next(&es->rb_node); if (!node) return es; es1 = rb_entry(node, struct extent_status, rb_node); if (ext4_es_can_be_merged(es, es1)) { es->es_len += es1->es_len; if (ext4_es_is_referenced(es1)) ext4_es_set_referenced(es); rb_erase(node, &tree->root); ext4_es_free_extent(inode, es1); } return es; } #ifdef ES_AGGRESSIVE_TEST #include "ext4_extents.h" /* Needed when ES_AGGRESSIVE_TEST is defined */ static void ext4_es_insert_extent_ext_check(struct inode *inode, struct extent_status *es) { struct ext4_ext_path *path = NULL; struct ext4_extent *ex; ext4_lblk_t ee_block; ext4_fsblk_t ee_start; unsigned short ee_len; int depth, ee_status, es_status; path = ext4_find_extent(inode, es->es_lblk, NULL, EXT4_EX_NOCACHE); if (IS_ERR(path)) return; depth = ext_depth(inode); ex = path[depth].p_ext; if (ex) { ee_block = le32_to_cpu(ex->ee_block); ee_start = ext4_ext_pblock(ex); ee_len = ext4_ext_get_actual_len(ex); ee_status = ext4_ext_is_unwritten(ex) ? 1 : 0; es_status = ext4_es_is_unwritten(es) ? 1 : 0; /* * Make sure ex and es are not overlap when we try to insert * a delayed/hole extent. */ if (!ext4_es_is_written(es) && !ext4_es_is_unwritten(es)) { if (in_range(es->es_lblk, ee_block, ee_len)) { pr_warn("ES insert assertion failed for " "inode: %lu we can find an extent " "at block [%d/%d/%llu/%c], but we " "want to add a delayed/hole extent " "[%d/%d/%llu/%x]\n", inode->i_ino, ee_block, ee_len, ee_start, ee_status ? 'u' : 'w', es->es_lblk, es->es_len, ext4_es_pblock(es), ext4_es_status(es)); } goto out; } /* * We don't check ee_block == es->es_lblk, etc. because es * might be a part of whole extent, vice versa. */ if (es->es_lblk < ee_block || ext4_es_pblock(es) != ee_start + es->es_lblk - ee_block) { pr_warn("ES insert assertion failed for inode: %lu " "ex_status [%d/%d/%llu/%c] != " "es_status [%d/%d/%llu/%c]\n", inode->i_ino, ee_block, ee_len, ee_start, ee_status ? 'u' : 'w', es->es_lblk, es->es_len, ext4_es_pblock(es), es_status ? 'u' : 'w'); goto out; } if (ee_status ^ es_status) { pr_warn("ES insert assertion failed for inode: %lu " "ex_status [%d/%d/%llu/%c] != " "es_status [%d/%d/%llu/%c]\n", inode->i_ino, ee_block, ee_len, ee_start, ee_status ? 'u' : 'w', es->es_lblk, es->es_len, ext4_es_pblock(es), es_status ? 'u' : 'w'); } } else { /* * We can't find an extent on disk. So we need to make sure * that we don't want to add an written/unwritten extent. */ if (!ext4_es_is_delayed(es) && !ext4_es_is_hole(es)) { pr_warn("ES insert assertion failed for inode: %lu " "can't find an extent at block %d but we want " "to add a written/unwritten extent " "[%d/%d/%llu/%x]\n", inode->i_ino, es->es_lblk, es->es_lblk, es->es_len, ext4_es_pblock(es), ext4_es_status(es)); } } out: ext4_ext_drop_refs(path); kfree(path); } static void ext4_es_insert_extent_ind_check(struct inode *inode, struct extent_status *es) { struct ext4_map_blocks map; int retval; /* * Here we call ext4_ind_map_blocks to lookup a block mapping because * 'Indirect' structure is defined in indirect.c. So we couldn't * access direct/indirect tree from outside. It is too dirty to define * this function in indirect.c file. */ map.m_lblk = es->es_lblk; map.m_len = es->es_len; retval = ext4_ind_map_blocks(NULL, inode, &map, 0); if (retval > 0) { if (ext4_es_is_delayed(es) || ext4_es_is_hole(es)) { /* * We want to add a delayed/hole extent but this * block has been allocated. */ pr_warn("ES insert assertion failed for inode: %lu " "We can find blocks but we want to add a " "delayed/hole extent [%d/%d/%llu/%x]\n", inode->i_ino, es->es_lblk, es->es_len, ext4_es_pblock(es), ext4_es_status(es)); return; } else if (ext4_es_is_written(es)) { if (retval != es->es_len) { pr_warn("ES insert assertion failed for " "inode: %lu retval %d != es_len %d\n", inode->i_ino, retval, es->es_len); return; } if (map.m_pblk != ext4_es_pblock(es)) { pr_warn("ES insert assertion failed for " "inode: %lu m_pblk %llu != " "es_pblk %llu\n", inode->i_ino, map.m_pblk, ext4_es_pblock(es)); return; } } else { /* * We don't need to check unwritten extent because * indirect-based file doesn't have it. */ BUG(); } } else if (retval == 0) { if (ext4_es_is_written(es)) { pr_warn("ES insert assertion failed for inode: %lu " "We can't find the block but we want to add " "a written extent [%d/%d/%llu/%x]\n", inode->i_ino, es->es_lblk, es->es_len, ext4_es_pblock(es), ext4_es_status(es)); return; } } } static inline void ext4_es_insert_extent_check(struct inode *inode, struct extent_status *es) { /* * We don't need to worry about the race condition because * caller takes i_data_sem locking. */ BUG_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem)); if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) ext4_es_insert_extent_ext_check(inode, es); else ext4_es_insert_extent_ind_check(inode, es); } #else static inline void ext4_es_insert_extent_check(struct inode *inode, struct extent_status *es) { } #endif static int __es_insert_extent(struct inode *inode, struct extent_status *newes) { struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree; struct rb_node **p = &tree->root.rb_node; struct rb_node *parent = NULL; struct extent_status *es; while (*p) { parent = *p; es = rb_entry(parent, struct extent_status, rb_node); if (newes->es_lblk < es->es_lblk) { if (ext4_es_can_be_merged(newes, es)) { /* * Here we can modify es_lblk directly * because it isn't overlapped. */ es->es_lblk = newes->es_lblk; es->es_len += newes->es_len; if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) ext4_es_store_pblock(es, newes->es_pblk); es = ext4_es_try_to_merge_left(inode, es); goto out; } p = &(*p)->rb_left; } else if (newes->es_lblk > ext4_es_end(es)) { if (ext4_es_can_be_merged(es, newes)) { es->es_len += newes->es_len; es = ext4_es_try_to_merge_right(inode, es); goto out; } p = &(*p)->rb_right; } else { BUG(); return -EINVAL; } } es = ext4_es_alloc_extent(inode, newes->es_lblk, newes->es_len, newes->es_pblk); if (!es) return -ENOMEM; rb_link_node(&es->rb_node, parent, p); rb_insert_color(&es->rb_node, &tree->root); out: tree->cache_es = es; return 0; } /* * ext4_es_insert_extent() adds information to an inode's extent * status tree. * * Return 0 on success, error code on failure. */ int ext4_es_insert_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len, ext4_fsblk_t pblk, unsigned int status) { struct extent_status newes; ext4_lblk_t end = lblk + len - 1; int err = 0; struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) return 0; es_debug("add [%u/%u) %llu %x to extent status tree of inode %lu\n", lblk, len, pblk, status, inode->i_ino); if (!len) return 0; BUG_ON(end < lblk); if ((status & EXTENT_STATUS_DELAYED) && (status & EXTENT_STATUS_WRITTEN)) { ext4_warning(inode->i_sb, "Inserting extent [%u/%u] as " " delayed and written which can potentially " " cause data loss.", lblk, len); WARN_ON(1); } newes.es_lblk = lblk; newes.es_len = len; ext4_es_store_pblock_status(&newes, pblk, status); trace_ext4_es_insert_extent(inode, &newes); ext4_es_insert_extent_check(inode, &newes); write_lock(&EXT4_I(inode)->i_es_lock); err = __es_remove_extent(inode, lblk, end, NULL); if (err != 0) goto error; retry: err = __es_insert_extent(inode, &newes); if (err == -ENOMEM && __es_shrink(EXT4_SB(inode->i_sb), 128, EXT4_I(inode))) goto retry; if (err == -ENOMEM && !ext4_es_is_delayed(&newes)) err = 0; if (sbi->s_cluster_ratio > 1 && test_opt(inode->i_sb, DELALLOC) && (status & EXTENT_STATUS_WRITTEN || status & EXTENT_STATUS_UNWRITTEN)) __revise_pending(inode, lblk, len); error: write_unlock(&EXT4_I(inode)->i_es_lock); ext4_es_print_tree(inode); return err; } /* * ext4_es_cache_extent() inserts information into the extent status * tree if and only if there isn't information about the range in * question already. */ void ext4_es_cache_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len, ext4_fsblk_t pblk, unsigned int status) { struct extent_status *es; struct extent_status newes; ext4_lblk_t end = lblk + len - 1; if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) return; newes.es_lblk = lblk; newes.es_len = len; ext4_es_store_pblock_status(&newes, pblk, status); trace_ext4_es_cache_extent(inode, &newes); if (!len) return; BUG_ON(end < lblk); write_lock(&EXT4_I(inode)->i_es_lock); es = __es_tree_search(&EXT4_I(inode)->i_es_tree.root, lblk); if (!es || es->es_lblk > end) __es_insert_extent(inode, &newes); write_unlock(&EXT4_I(inode)->i_es_lock); } /* * ext4_es_lookup_extent() looks up an extent in extent status tree. * * ext4_es_lookup_extent is called by ext4_map_blocks/ext4_da_map_blocks. * * Return: 1 on found, 0 on not */ int ext4_es_lookup_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t *next_lblk, struct extent_status *es) { struct ext4_es_tree *tree; struct ext4_es_stats *stats; struct extent_status *es1 = NULL; struct rb_node *node; int found = 0; if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) return 0; trace_ext4_es_lookup_extent_enter(inode, lblk); es_debug("lookup extent in block %u\n", lblk); tree = &EXT4_I(inode)->i_es_tree; read_lock(&EXT4_I(inode)->i_es_lock); /* find extent in cache firstly */ es->es_lblk = es->es_len = es->es_pblk = 0; if (tree->cache_es) { es1 = tree->cache_es; if (in_range(lblk, es1->es_lblk, es1->es_len)) { es_debug("%u cached by [%u/%u)\n", lblk, es1->es_lblk, es1->es_len); found = 1; goto out; } } node = tree->root.rb_node; while (node) { es1 = rb_entry(node, struct extent_status, rb_node); if (lblk < es1->es_lblk) node = node->rb_left; else if (lblk > ext4_es_end(es1)) node = node->rb_right; else { found = 1; break; } } out: stats = &EXT4_SB(inode->i_sb)->s_es_stats; if (found) { BUG_ON(!es1); es->es_lblk = es1->es_lblk; es->es_len = es1->es_len; es->es_pblk = es1->es_pblk; if (!ext4_es_is_referenced(es1)) ext4_es_set_referenced(es1); percpu_counter_inc(&stats->es_stats_cache_hits); if (next_lblk) { node = rb_next(&es1->rb_node); if (node) { es1 = rb_entry(node, struct extent_status, rb_node); *next_lblk = es1->es_lblk; } else *next_lblk = 0; } } else { percpu_counter_inc(&stats->es_stats_cache_misses); } read_unlock(&EXT4_I(inode)->i_es_lock); trace_ext4_es_lookup_extent_exit(inode, es, found); return found; } struct rsvd_count { int ndelonly; bool first_do_lblk_found; ext4_lblk_t first_do_lblk; ext4_lblk_t last_do_lblk; struct extent_status *left_es; bool partial; ext4_lblk_t lclu; }; /* * init_rsvd - initialize reserved count data before removing block range * in file from extent status tree * * @inode - file containing range * @lblk - first block in range * @es - pointer to first extent in range * @rc - pointer to reserved count data * * Assumes es is not NULL */ static void init_rsvd(struct inode *inode, ext4_lblk_t lblk, struct extent_status *es, struct rsvd_count *rc) { struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); struct rb_node *node; rc->ndelonly = 0; /* * for bigalloc, note the first delonly block in the range has not * been found, record the extent containing the block to the left of * the region to be removed, if any, and note that there's no partial * cluster to track */ if (sbi->s_cluster_ratio > 1) { rc->first_do_lblk_found = false; if (lblk > es->es_lblk) { rc->left_es = es; } else { node = rb_prev(&es->rb_node); rc->left_es = node ? rb_entry(node, struct extent_status, rb_node) : NULL; } rc->partial = false; } } /* * count_rsvd - count the clusters containing delayed and not unwritten * (delonly) blocks in a range within an extent and add to * the running tally in rsvd_count * * @inode - file containing extent * @lblk - first block in range * @len - length of range in blocks * @es - pointer to extent containing clusters to be counted * @rc - pointer to reserved count data * * Tracks partial clusters found at the beginning and end of extents so * they aren't overcounted when they span adjacent extents */ static void count_rsvd(struct inode *inode, ext4_lblk_t lblk, long len, struct extent_status *es, struct rsvd_count *rc) { struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); ext4_lblk_t i, end, nclu; if (!ext4_es_is_delonly(es)) return; WARN_ON(len <= 0); if (sbi->s_cluster_ratio == 1) { rc->ndelonly += (int) len; return; } /* bigalloc */ i = (lblk < es->es_lblk) ? es->es_lblk : lblk; end = lblk + (ext4_lblk_t) len - 1; end = (end > ext4_es_end(es)) ? ext4_es_end(es) : end; /* record the first block of the first delonly extent seen */ if (!rc->first_do_lblk_found) { rc->first_do_lblk = i; rc->first_do_lblk_found = true; } /* update the last lblk in the region seen so far */ rc->last_do_lblk = end; /* * if we're tracking a partial cluster and the current extent * doesn't start with it, count it and stop tracking */ if (rc->partial && (rc->lclu != EXT4_B2C(sbi, i))) { rc->ndelonly++; rc->partial = false; } /* * if the first cluster doesn't start on a cluster boundary but * ends on one, count it */ if (EXT4_LBLK_COFF(sbi, i) != 0) { if (end >= EXT4_LBLK_CFILL(sbi, i)) { rc->ndelonly++; rc->partial = false; i = EXT4_LBLK_CFILL(sbi, i) + 1; } } /* * if the current cluster starts on a cluster boundary, count the * number of whole delonly clusters in the extent */ if ((i + sbi->s_cluster_ratio - 1) <= end) { nclu = (end - i + 1) >> sbi->s_cluster_bits; rc->ndelonly += nclu; i += nclu << sbi->s_cluster_bits; } /* * start tracking a partial cluster if there's a partial at the end * of the current extent and we're not already tracking one */ if (!rc->partial && i <= end) { rc->partial = true; rc->lclu = EXT4_B2C(sbi, i); } } /* * __pr_tree_search - search for a pending cluster reservation * * @root - root of pending reservation tree * @lclu - logical cluster to search for * * Returns the pending reservation for the cluster identified by @lclu * if found. If not, returns a reservation for the next cluster if any, * and if not, returns NULL. */ static struct pending_reservation *__pr_tree_search(struct rb_root *root, ext4_lblk_t lclu) { struct rb_node *node = root->rb_node; struct pending_reservation *pr = NULL; while (node) { pr = rb_entry(node, struct pending_reservation, rb_node); if (lclu < pr->lclu) node = node->rb_left; else if (lclu > pr->lclu) node = node->rb_right; else return pr; } if (pr && lclu < pr->lclu) return pr; if (pr && lclu > pr->lclu) { node = rb_next(&pr->rb_node); return node ? rb_entry(node, struct pending_reservation, rb_node) : NULL; } return NULL; } /* * get_rsvd - calculates and returns the number of cluster reservations to be * released when removing a block range from the extent status tree * and releases any pending reservations within the range * * @inode - file containing block range * @end - last block in range * @right_es - pointer to extent containing next block beyond end or NULL * @rc - pointer to reserved count data * * The number of reservations to be released is equal to the number of * clusters containing delayed and not unwritten (delonly) blocks within * the range, minus the number of clusters still containing delonly blocks * at the ends of the range, and minus the number of pending reservations * within the range. */ static unsigned int get_rsvd(struct inode *inode, ext4_lblk_t end, struct extent_status *right_es, struct rsvd_count *rc) { struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); struct pending_reservation *pr; struct ext4_pending_tree *tree = &EXT4_I(inode)->i_pending_tree; struct rb_node *node; ext4_lblk_t first_lclu, last_lclu; bool left_delonly, right_delonly, count_pending; struct extent_status *es; if (sbi->s_cluster_ratio > 1) { /* count any remaining partial cluster */ if (rc->partial) rc->ndelonly++; if (rc->ndelonly == 0) return 0; first_lclu = EXT4_B2C(sbi, rc->first_do_lblk); last_lclu = EXT4_B2C(sbi, rc->last_do_lblk); /* * decrease the delonly count by the number of clusters at the * ends of the range that still contain delonly blocks - * these clusters still need to be reserved */ left_delonly = right_delonly = false; es = rc->left_es; while (es && ext4_es_end(es) >= EXT4_LBLK_CMASK(sbi, rc->first_do_lblk)) { if (ext4_es_is_delonly(es)) { rc->ndelonly--; left_delonly = true; break; } node = rb_prev(&es->rb_node); if (!node) break; es = rb_entry(node, struct extent_status, rb_node); } if (right_es && (!left_delonly || first_lclu != last_lclu)) { if (end < ext4_es_end(right_es)) { es = right_es; } else { node = rb_next(&right_es->rb_node); es = node ? rb_entry(node, struct extent_status, rb_node) : NULL; } while (es && es->es_lblk <= EXT4_LBLK_CFILL(sbi, rc->last_do_lblk)) { if (ext4_es_is_delonly(es)) { rc->ndelonly--; right_delonly = true; break; } node = rb_next(&es->rb_node); if (!node) break; es = rb_entry(node, struct extent_status, rb_node); } } /* * Determine the block range that should be searched for * pending reservations, if any. Clusters on the ends of the * original removed range containing delonly blocks are * excluded. They've already been accounted for and it's not * possible to determine if an associated pending reservation * should be released with the information available in the * extents status tree. */ if (first_lclu == last_lclu) { if (left_delonly | right_delonly) count_pending = false; else count_pending = true; } else { if (left_delonly) first_lclu++; if (right_delonly) last_lclu--; if (first_lclu <= last_lclu) count_pending = true; else count_pending = false; } /* * a pending reservation found between first_lclu and last_lclu * represents an allocated cluster that contained at least one * delonly block, so the delonly total must be reduced by one * for each pending reservation found and released */ if (count_pending) { pr = __pr_tree_search(&tree->root, first_lclu); while (pr && pr->lclu <= last_lclu) { rc->ndelonly--; node = rb_next(&pr->rb_node); rb_erase(&pr->rb_node, &tree->root); kmem_cache_free(ext4_pending_cachep, pr); if (!node) break; pr = rb_entry(node, struct pending_reservation, rb_node); } } } return rc->ndelonly; } /* * __es_remove_extent - removes block range from extent status tree * * @inode - file containing range * @lblk - first block in range * @end - last block in range * @reserved - number of cluster reservations released * * If @reserved is not NULL and delayed allocation is enabled, counts * block/cluster reservations freed by removing range and if bigalloc * enabled cancels pending reservations as needed. Returns 0 on success, * error code on failure. */ static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t end, int *reserved) { struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree; struct rb_node *node; struct extent_status *es; struct extent_status orig_es; ext4_lblk_t len1, len2; ext4_fsblk_t block; int err; bool count_reserved = true; struct rsvd_count rc; if (reserved == NULL || !test_opt(inode->i_sb, DELALLOC)) count_reserved = false; retry: err = 0; es = __es_tree_search(&tree->root, lblk); if (!es) goto out; if (es->es_lblk > end) goto out; /* Simply invalidate cache_es. */ tree->cache_es = NULL; if (count_reserved) init_rsvd(inode, lblk, es, &rc); orig_es.es_lblk = es->es_lblk; orig_es.es_len = es->es_len; orig_es.es_pblk = es->es_pblk; len1 = lblk > es->es_lblk ? lblk - es->es_lblk : 0; len2 = ext4_es_end(es) > end ? ext4_es_end(es) - end : 0; if (len1 > 0) es->es_len = len1; if (len2 > 0) { if (len1 > 0) { struct extent_status newes; newes.es_lblk = end + 1; newes.es_len = len2; block = 0x7FDEADBEEFULL; if (ext4_es_is_written(&orig_es) || ext4_es_is_unwritten(&orig_es)) block = ext4_es_pblock(&orig_es) + orig_es.es_len - len2; ext4_es_store_pblock_status(&newes, block, ext4_es_status(&orig_es)); err = __es_insert_extent(inode, &newes); if (err) { es->es_lblk = orig_es.es_lblk; es->es_len = orig_es.es_len; if ((err == -ENOMEM) && __es_shrink(EXT4_SB(inode->i_sb), 128, EXT4_I(inode))) goto retry; goto out; } } else { es->es_lblk = end + 1; es->es_len = len2; if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) { block = orig_es.es_pblk + orig_es.es_len - len2; ext4_es_store_pblock(es, block); } } if (count_reserved) count_rsvd(inode, lblk, orig_es.es_len - len1 - len2, &orig_es, &rc); goto out; } if (len1 > 0) { if (count_reserved) count_rsvd(inode, lblk, orig_es.es_len - len1, &orig_es, &rc); node = rb_next(&es->rb_node); if (node) es = rb_entry(node, struct extent_status, rb_node); else es = NULL; } while (es && ext4_es_end(es) <= end) { if (count_reserved) count_rsvd(inode, es->es_lblk, es->es_len, es, &rc); node = rb_next(&es->rb_node); rb_erase(&es->rb_node, &tree->root); ext4_es_free_extent(inode, es); if (!node) { es = NULL; break; } es = rb_entry(node, struct extent_status, rb_node); } if (es && es->es_lblk < end + 1) { ext4_lblk_t orig_len = es->es_len; len1 = ext4_es_end(es) - end; if (count_reserved) count_rsvd(inode, es->es_lblk, orig_len - len1, es, &rc); es->es_lblk = end + 1; es->es_len = len1; if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) { block = es->es_pblk + orig_len - len1; ext4_es_store_pblock(es, block); } } if (count_reserved) *reserved = get_rsvd(inode, end, es, &rc); out: return err; } /* * ext4_es_remove_extent - removes block range from extent status tree * * @inode - file containing range * @lblk - first block in range * @len - number of blocks to remove * * Reduces block/cluster reservation count and for bigalloc cancels pending * reservations as needed. Returns 0 on success, error code on failure. */ int ext4_es_remove_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len) { ext4_lblk_t end; int err = 0; int reserved = 0; if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) return 0; trace_ext4_es_remove_extent(inode, lblk, len); es_debug("remove [%u/%u) from extent status tree of inode %lu\n", lblk, len, inode->i_ino); if (!len) return err; end = lblk + len - 1; BUG_ON(end < lblk); /* * ext4_clear_inode() depends on us taking i_es_lock unconditionally * so that we are sure __es_shrink() is done with the inode before it * is reclaimed. */ write_lock(&EXT4_I(inode)->i_es_lock); err = __es_remove_extent(inode, lblk, end, &reserved); write_unlock(&EXT4_I(inode)->i_es_lock); ext4_es_print_tree(inode); ext4_da_release_space(inode, reserved); return err; } static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan, struct ext4_inode_info *locked_ei) { struct ext4_inode_info *ei; struct ext4_es_stats *es_stats; ktime_t start_time; u64 scan_time; int nr_to_walk; int nr_shrunk = 0; int retried = 0, nr_skipped = 0; es_stats = &sbi->s_es_stats; start_time = ktime_get(); retry: spin_lock(&sbi->s_es_lock); nr_to_walk = sbi->s_es_nr_inode; while (nr_to_walk-- > 0) { if (list_empty(&sbi->s_es_list)) { spin_unlock(&sbi->s_es_lock); goto out; } ei = list_first_entry(&sbi->s_es_list, struct ext4_inode_info, i_es_list); /* Move the inode to the tail */ list_move_tail(&ei->i_es_list, &sbi->s_es_list); /* * Normally we try hard to avoid shrinking precached inodes, * but we will as a last resort. */ if (!retried && ext4_test_inode_state(&ei->vfs_inode, EXT4_STATE_EXT_PRECACHED)) { nr_skipped++; continue; } if (ei == locked_ei || !write_trylock(&ei->i_es_lock)) { nr_skipped++; continue; } /* * Now we hold i_es_lock which protects us from inode reclaim * freeing inode under us */ spin_unlock(&sbi->s_es_lock); nr_shrunk += es_reclaim_extents(ei, &nr_to_scan); write_unlock(&ei->i_es_lock); if (nr_to_scan <= 0) goto out; spin_lock(&sbi->s_es_lock); } spin_unlock(&sbi->s_es_lock); /* * If we skipped any inodes, and we weren't able to make any * forward progress, try again to scan precached inodes. */ if ((nr_shrunk == 0) && nr_skipped && !retried) { retried++; goto retry; } if (locked_ei && nr_shrunk == 0) nr_shrunk = es_reclaim_extents(locked_ei, &nr_to_scan); out: scan_time = ktime_to_ns(ktime_sub(ktime_get(), start_time)); if (likely(es_stats->es_stats_scan_time)) es_stats->es_stats_scan_time = (scan_time + es_stats->es_stats_scan_time*3) / 4; else es_stats->es_stats_scan_time = scan_time; if (scan_time > es_stats->es_stats_max_scan_time) es_stats->es_stats_max_scan_time = scan_time; if (likely(es_stats->es_stats_shrunk)) es_stats->es_stats_shrunk = (nr_shrunk + es_stats->es_stats_shrunk*3) / 4; else es_stats->es_stats_shrunk = nr_shrunk; trace_ext4_es_shrink(sbi->s_sb, nr_shrunk, scan_time, nr_skipped, retried); return nr_shrunk; } static unsigned long ext4_es_count(struct shrinker *shrink, struct shrink_control *sc) { unsigned long nr; struct ext4_sb_info *sbi; sbi = container_of(shrink, struct ext4_sb_info, s_es_shrinker); nr = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt); trace_ext4_es_shrink_count(sbi->s_sb, sc->nr_to_scan, nr); return nr; } static unsigned long ext4_es_scan(struct shrinker *shrink, struct shrink_control *sc) { struct ext4_sb_info *sbi = container_of(shrink, struct ext4_sb_info, s_es_shrinker); int nr_to_scan = sc->nr_to_scan; int ret, nr_shrunk; ret = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt); trace_ext4_es_shrink_scan_enter(sbi->s_sb, nr_to_scan, ret); nr_shrunk = __es_shrink(sbi, nr_to_scan, NULL); ret = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt); trace_ext4_es_shrink_scan_exit(sbi->s_sb, nr_shrunk, ret); return nr_shrunk; } int ext4_seq_es_shrinker_info_show(struct seq_file *seq, void *v) { struct ext4_sb_info *sbi = EXT4_SB((struct super_block *) seq->private); struct ext4_es_stats *es_stats = &sbi->s_es_stats; struct ext4_inode_info *ei, *max = NULL; unsigned int inode_cnt = 0; if (v != SEQ_START_TOKEN) return 0; /* here we just find an inode that has the max nr. of objects */ spin_lock(&sbi->s_es_lock); list_for_each_entry(ei, &sbi->s_es_list, i_es_list) { inode_cnt++; if (max && max->i_es_all_nr < ei->i_es_all_nr) max = ei; else if (!max) max = ei; } spin_unlock(&sbi->s_es_lock); seq_printf(seq, "stats:\n %lld objects\n %lld reclaimable objects\n", percpu_counter_sum_positive(&es_stats->es_stats_all_cnt), percpu_counter_sum_positive(&es_stats->es_stats_shk_cnt)); seq_printf(seq, " %lld/%lld cache hits/misses\n", percpu_counter_sum_positive(&es_stats->es_stats_cache_hits), percpu_counter_sum_positive(&es_stats->es_stats_cache_misses)); if (inode_cnt) seq_printf(seq, " %d inodes on list\n", inode_cnt); seq_printf(seq, "average:\n %llu us scan time\n", div_u64(es_stats->es_stats_scan_time, 1000)); seq_printf(seq, " %lu shrunk objects\n", es_stats->es_stats_shrunk); if (inode_cnt) seq_printf(seq, "maximum:\n %lu inode (%u objects, %u reclaimable)\n" " %llu us max scan time\n", max->vfs_inode.i_ino, max->i_es_all_nr, max->i_es_shk_nr, div_u64(es_stats->es_stats_max_scan_time, 1000)); return 0; } int ext4_es_register_shrinker(struct ext4_sb_info *sbi) { int err; /* Make sure we have enough bits for physical block number */ BUILD_BUG_ON(ES_SHIFT < 48); INIT_LIST_HEAD(&sbi->s_es_list); sbi->s_es_nr_inode = 0; spin_lock_init(&sbi->s_es_lock); sbi->s_es_stats.es_stats_shrunk = 0; err = percpu_counter_init(&sbi->s_es_stats.es_stats_cache_hits, 0, GFP_KERNEL); if (err) return err; err = percpu_counter_init(&sbi->s_es_stats.es_stats_cache_misses, 0, GFP_KERNEL); if (err) goto err1; sbi->s_es_stats.es_stats_scan_time = 0; sbi->s_es_stats.es_stats_max_scan_time = 0; err = percpu_counter_init(&sbi->s_es_stats.es_stats_all_cnt, 0, GFP_KERNEL); if (err) goto err2; err = percpu_counter_init(&sbi->s_es_stats.es_stats_shk_cnt, 0, GFP_KERNEL); if (err) goto err3; sbi->s_es_shrinker.scan_objects = ext4_es_scan; sbi->s_es_shrinker.count_objects = ext4_es_count; sbi->s_es_shrinker.seeks = DEFAULT_SEEKS; err = register_shrinker(&sbi->s_es_shrinker); if (err) goto err4; return 0; err4: percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt); err3: percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt); err2: percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_misses); err1: percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_hits); return err; } void ext4_es_unregister_shrinker(struct ext4_sb_info *sbi) { percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_hits); percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_misses); percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt); percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt); unregister_shrinker(&sbi->s_es_shrinker); } /* * Shrink extents in given inode from ei->i_es_shrink_lblk till end. Scan at * most *nr_to_scan extents, update *nr_to_scan accordingly. * * Return 0 if we hit end of tree / interval, 1 if we exhausted nr_to_scan. * Increment *nr_shrunk by the number of reclaimed extents. Also update * ei->i_es_shrink_lblk to where we should continue scanning. */ static int es_do_reclaim_extents(struct ext4_inode_info *ei, ext4_lblk_t end, int *nr_to_scan, int *nr_shrunk) { struct inode *inode = &ei->vfs_inode; struct ext4_es_tree *tree = &ei->i_es_tree; struct extent_status *es; struct rb_node *node; es = __es_tree_search(&tree->root, ei->i_es_shrink_lblk); if (!es) goto out_wrap; while (*nr_to_scan > 0) { if (es->es_lblk > end) { ei->i_es_shrink_lblk = end + 1; return 0; } (*nr_to_scan)--; node = rb_next(&es->rb_node); /* * We can't reclaim delayed extent from status tree because * fiemap, bigallic, and seek_data/hole need to use it. */ if (ext4_es_is_delayed(es)) goto next; if (ext4_es_is_referenced(es)) { ext4_es_clear_referenced(es); goto next; } rb_erase(&es->rb_node, &tree->root); ext4_es_free_extent(inode, es); (*nr_shrunk)++; next: if (!node) goto out_wrap; es = rb_entry(node, struct extent_status, rb_node); } ei->i_es_shrink_lblk = es->es_lblk; return 1; out_wrap: ei->i_es_shrink_lblk = 0; return 0; } static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan) { struct inode *inode = &ei->vfs_inode; int nr_shrunk = 0; ext4_lblk_t start = ei->i_es_shrink_lblk; static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL, DEFAULT_RATELIMIT_BURST); if (ei->i_es_shk_nr == 0) return 0; if (ext4_test_inode_state(inode, EXT4_STATE_EXT_PRECACHED) && __ratelimit(&_rs)) ext4_warning(inode->i_sb, "forced shrink of precached extents"); if (!es_do_reclaim_extents(ei, EXT_MAX_BLOCKS, nr_to_scan, &nr_shrunk) && start != 0) es_do_reclaim_extents(ei, start - 1, nr_to_scan, &nr_shrunk); ei->i_es_tree.cache_es = NULL; return nr_shrunk; } /* * Called to support EXT4_IOC_CLEAR_ES_CACHE. We can only remove * discretionary entries from the extent status cache. (Some entries * must be present for proper operations.) */ void ext4_clear_inode_es(struct inode *inode) { struct ext4_inode_info *ei = EXT4_I(inode); struct extent_status *es; struct ext4_es_tree *tree; struct rb_node *node; write_lock(&ei->i_es_lock); tree = &EXT4_I(inode)->i_es_tree; tree->cache_es = NULL; node = rb_first(&tree->root); while (node) { es = rb_entry(node, struct extent_status, rb_node); node = rb_next(node); if (!ext4_es_is_delayed(es)) { rb_erase(&es->rb_node, &tree->root); ext4_es_free_extent(inode, es); } } ext4_clear_inode_state(inode, EXT4_STATE_EXT_PRECACHED); write_unlock(&ei->i_es_lock); } #ifdef ES_DEBUG__ static void ext4_print_pending_tree(struct inode *inode) { struct ext4_pending_tree *tree; struct rb_node *node; struct pending_reservation *pr; printk(KERN_DEBUG "pending reservations for inode %lu:", inode->i_ino); tree = &EXT4_I(inode)->i_pending_tree; node = rb_first(&tree->root); while (node) { pr = rb_entry(node, struct pending_reservation, rb_node); printk(KERN_DEBUG " %u", pr->lclu); node = rb_next(node); } printk(KERN_DEBUG "\n"); } #else #define ext4_print_pending_tree(inode) #endif int __init ext4_init_pending(void) { ext4_pending_cachep = kmem_cache_create("ext4_pending_reservation", sizeof(struct pending_reservation), 0, (SLAB_RECLAIM_ACCOUNT), NULL); if (ext4_pending_cachep == NULL) return -ENOMEM; return 0; } void ext4_exit_pending(void) { kmem_cache_destroy(ext4_pending_cachep); } void ext4_init_pending_tree(struct ext4_pending_tree *tree) { tree->root = RB_ROOT; } /* * __get_pending - retrieve a pointer to a pending reservation * * @inode - file containing the pending cluster reservation * @lclu - logical cluster of interest * * Returns a pointer to a pending reservation if it's a member of * the set, and NULL if not. Must be called holding i_es_lock. */ static struct pending_reservation *__get_pending(struct inode *inode, ext4_lblk_t lclu) { struct ext4_pending_tree *tree; struct rb_node *node; struct pending_reservation *pr = NULL; tree = &EXT4_I(inode)->i_pending_tree; node = (&tree->root)->rb_node; while (node) { pr = rb_entry(node, struct pending_reservation, rb_node); if (lclu < pr->lclu) node = node->rb_left; else if (lclu > pr->lclu) node = node->rb_right; else if (lclu == pr->lclu) return pr; } return NULL; } /* * __insert_pending - adds a pending cluster reservation to the set of * pending reservations * * @inode - file containing the cluster * @lblk - logical block in the cluster to be added * * Returns 0 on successful insertion and -ENOMEM on failure. If the * pending reservation is already in the set, returns successfully. */ static int __insert_pending(struct inode *inode, ext4_lblk_t lblk) { struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); struct ext4_pending_tree *tree = &EXT4_I(inode)->i_pending_tree; struct rb_node **p = &tree->root.rb_node; struct rb_node *parent = NULL; struct pending_reservation *pr; ext4_lblk_t lclu; int ret = 0; lclu = EXT4_B2C(sbi, lblk); /* search to find parent for insertion */ while (*p) { parent = *p; pr = rb_entry(parent, struct pending_reservation, rb_node); if (lclu < pr->lclu) { p = &(*p)->rb_left; } else if (lclu > pr->lclu) { p = &(*p)->rb_right; } else { /* pending reservation already inserted */ goto out; } } pr = kmem_cache_alloc(ext4_pending_cachep, GFP_ATOMIC); if (pr == NULL) { ret = -ENOMEM; goto out; } pr->lclu = lclu; rb_link_node(&pr->rb_node, parent, p); rb_insert_color(&pr->rb_node, &tree->root); out: return ret; } /* * __remove_pending - removes a pending cluster reservation from the set * of pending reservations * * @inode - file containing the cluster * @lblk - logical block in the pending cluster reservation to be removed * * Returns successfully if pending reservation is not a member of the set. */ static void __remove_pending(struct inode *inode, ext4_lblk_t lblk) { struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); struct pending_reservation *pr; struct ext4_pending_tree *tree; pr = __get_pending(inode, EXT4_B2C(sbi, lblk)); if (pr != NULL) { tree = &EXT4_I(inode)->i_pending_tree; rb_erase(&pr->rb_node, &tree->root); kmem_cache_free(ext4_pending_cachep, pr); } } /* * ext4_remove_pending - removes a pending cluster reservation from the set * of pending reservations * * @inode - file containing the cluster * @lblk - logical block in the pending cluster reservation to be removed * * Locking for external use of __remove_pending. */ void ext4_remove_pending(struct inode *inode, ext4_lblk_t lblk) { struct ext4_inode_info *ei = EXT4_I(inode); write_lock(&ei->i_es_lock); __remove_pending(inode, lblk); write_unlock(&ei->i_es_lock); } /* * ext4_is_pending - determine whether a cluster has a pending reservation * on it * * @inode - file containing the cluster * @lblk - logical block in the cluster * * Returns true if there's a pending reservation for the cluster in the * set of pending reservations, and false if not. */ bool ext4_is_pending(struct inode *inode, ext4_lblk_t lblk) { struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); struct ext4_inode_info *ei = EXT4_I(inode); bool ret; read_lock(&ei->i_es_lock); ret = (bool)(__get_pending(inode, EXT4_B2C(sbi, lblk)) != NULL); read_unlock(&ei->i_es_lock); return ret; } /* * ext4_es_insert_delayed_block - adds a delayed block to the extents status * tree, adding a pending reservation where * needed * * @inode - file containing the newly added block * @lblk - logical block to be added * @allocated - indicates whether a physical cluster has been allocated for * the logical cluster that contains the block * * Returns 0 on success, negative error code on failure. */ int ext4_es_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk, bool allocated) { struct extent_status newes; int err = 0; if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) return 0; es_debug("add [%u/1) delayed to extent status tree of inode %lu\n", lblk, inode->i_ino); newes.es_lblk = lblk; newes.es_len = 1; ext4_es_store_pblock_status(&newes, ~0, EXTENT_STATUS_DELAYED); trace_ext4_es_insert_delayed_block(inode, &newes, allocated); ext4_es_insert_extent_check(inode, &newes); write_lock(&EXT4_I(inode)->i_es_lock); err = __es_remove_extent(inode, lblk, lblk, NULL); if (err != 0) goto error; retry: err = __es_insert_extent(inode, &newes); if (err == -ENOMEM && __es_shrink(EXT4_SB(inode->i_sb), 128, EXT4_I(inode))) goto retry; if (err != 0) goto error; if (allocated) __insert_pending(inode, lblk); error: write_unlock(&EXT4_I(inode)->i_es_lock); ext4_es_print_tree(inode); ext4_print_pending_tree(inode); return err; } /* * __es_delayed_clu - count number of clusters containing blocks that * are delayed only * * @inode - file containing block range * @start - logical block defining start of range * @end - logical block defining end of range * * Returns the number of clusters containing only delayed (not delayed * and unwritten) blocks in the range specified by @start and @end. Any * cluster or part of a cluster within the range and containing a delayed * and not unwritten block within the range is counted as a whole cluster. */ static unsigned int __es_delayed_clu(struct inode *inode, ext4_lblk_t start, ext4_lblk_t end) { struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree; struct extent_status *es; struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); struct rb_node *node; ext4_lblk_t first_lclu, last_lclu; unsigned long long last_counted_lclu; unsigned int n = 0; /* guaranteed to be unequal to any ext4_lblk_t value */ last_counted_lclu = ~0ULL; es = __es_tree_search(&tree->root, start); while (es && (es->es_lblk <= end)) { if (ext4_es_is_delonly(es)) { if (es->es_lblk <= start) first_lclu = EXT4_B2C(sbi, start); else first_lclu = EXT4_B2C(sbi, es->es_lblk); if (ext4_es_end(es) >= end) last_lclu = EXT4_B2C(sbi, end); else last_lclu = EXT4_B2C(sbi, ext4_es_end(es)); if (first_lclu == last_counted_lclu) n += last_lclu - first_lclu; else n += last_lclu - first_lclu + 1; last_counted_lclu = last_lclu; } node = rb_next(&es->rb_node); if (!node) break; es = rb_entry(node, struct extent_status, rb_node); } return n; } /* * ext4_es_delayed_clu - count number of clusters containing blocks that * are both delayed and unwritten * * @inode - file containing block range * @lblk - logical block defining start of range * @len - number of blocks in range * * Locking for external use of __es_delayed_clu(). */ unsigned int ext4_es_delayed_clu(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len) { struct ext4_inode_info *ei = EXT4_I(inode); ext4_lblk_t end; unsigned int n; if (len == 0) return 0; end = lblk + len - 1; WARN_ON(end < lblk); read_lock(&ei->i_es_lock); n = __es_delayed_clu(inode, lblk, end); read_unlock(&ei->i_es_lock); return n; } /* * __revise_pending - makes, cancels, or leaves unchanged pending cluster * reservations for a specified block range depending * upon the presence or absence of delayed blocks * outside the range within clusters at the ends of the * range * * @inode - file containing the range * @lblk - logical block defining the start of range * @len - length of range in blocks * * Used after a newly allocated extent is added to the extents status tree. * Requires that the extents in the range have either written or unwritten * status. Must be called while holding i_es_lock. */ static void __revise_pending(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len) { struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); ext4_lblk_t end = lblk + len - 1; ext4_lblk_t first, last; bool f_del = false, l_del = false; if (len == 0) return; /* * Two cases - block range within single cluster and block range * spanning two or more clusters. Note that a cluster belonging * to a range starting and/or ending on a cluster boundary is treated * as if it does not contain a delayed extent. The new range may * have allocated space for previously delayed blocks out to the * cluster boundary, requiring that any pre-existing pending * reservation be canceled. Because this code only looks at blocks * outside the range, it should revise pending reservations * correctly even if the extent represented by the range can't be * inserted in the extents status tree due to ENOSPC. */ if (EXT4_B2C(sbi, lblk) == EXT4_B2C(sbi, end)) { first = EXT4_LBLK_CMASK(sbi, lblk); if (first != lblk) f_del = __es_scan_range(inode, &ext4_es_is_delonly, first, lblk - 1); if (f_del) { __insert_pending(inode, first); } else { last = EXT4_LBLK_CMASK(sbi, end) + sbi->s_cluster_ratio - 1; if (last != end) l_del = __es_scan_range(inode, &ext4_es_is_delonly, end + 1, last); if (l_del) __insert_pending(inode, last); else __remove_pending(inode, last); } } else { first = EXT4_LBLK_CMASK(sbi, lblk); if (first != lblk) f_del = __es_scan_range(inode, &ext4_es_is_delonly, first, lblk - 1); if (f_del) __insert_pending(inode, first); else __remove_pending(inode, first); last = EXT4_LBLK_CMASK(sbi, end) + sbi->s_cluster_ratio - 1; if (last != end) l_del = __es_scan_range(inode, &ext4_es_is_delonly, end + 1, last); if (l_del) __insert_pending(inode, last); else __remove_pending(inode, last); } }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 /* * Written by: Matthew Dobson, IBM Corporation * * Copyright (C) 2002, IBM Corp. * * All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * Send feedback to <colpatch@us.ibm.com> */ #ifndef _ASM_X86_TOPOLOGY_H #define _ASM_X86_TOPOLOGY_H /* * to preserve the visibility of NUMA_NO_NODE definition, * moved to there from here. May be used independent of * CONFIG_NUMA. */ #include <linux/numa.h> #ifdef CONFIG_NUMA #include <linux/cpumask.h> #include <asm/mpspec.h> #include <asm/percpu.h> /* Mappings between logical cpu number and node number */ DECLARE_EARLY_PER_CPU(int, x86_cpu_to_node_map); #ifdef CONFIG_DEBUG_PER_CPU_MAPS /* * override generic percpu implementation of cpu_to_node */ extern int __cpu_to_node(int cpu); #define cpu_to_node __cpu_to_node extern int early_cpu_to_node(int cpu); #else /* !CONFIG_DEBUG_PER_CPU_MAPS */ /* Same function but used if called before per_cpu areas are setup */ static inline int early_cpu_to_node(int cpu) { return early_per_cpu(x86_cpu_to_node_map, cpu); } #endif /* !CONFIG_DEBUG_PER_CPU_MAPS */ /* Mappings between node number and cpus on that node. */ extern cpumask_var_t node_to_cpumask_map[MAX_NUMNODES]; #ifdef CONFIG_DEBUG_PER_CPU_MAPS extern const struct cpumask *cpumask_of_node(int node); #else /* Returns a pointer to the cpumask of CPUs on Node 'node'. */ static inline const struct cpumask *cpumask_of_node(int node) { return node_to_cpumask_map[node]; } #endif extern void setup_node_to_cpumask_map(void); #define pcibus_to_node(bus) __pcibus_to_node(bus) extern int __node_distance(int, int); #define node_distance(a, b) __node_distance(a, b) #else /* !CONFIG_NUMA */ static inline int numa_node_id(void) { return 0; } /* * indicate override: */ #define numa_node_id numa_node_id static inline int early_cpu_to_node(int cpu) { return 0; } static inline void setup_node_to_cpumask_map(void) { } #endif #include <asm-generic/topology.h> extern const struct cpumask *cpu_coregroup_mask(int cpu); #define topology_logical_package_id(cpu) (cpu_data(cpu).logical_proc_id) #define topology_physical_package_id(cpu) (cpu_data(cpu).phys_proc_id) #define topology_logical_die_id(cpu) (cpu_data(cpu).logical_die_id) #define topology_die_id(cpu) (cpu_data(cpu).cpu_die_id) #define topology_core_id(cpu) (cpu_data(cpu).cpu_core_id) extern unsigned int __max_die_per_package; #ifdef CONFIG_SMP #define topology_die_cpumask(cpu) (per_cpu(cpu_die_map, cpu)) #define topology_core_cpumask(cpu) (per_cpu(cpu_core_map, cpu)) #define topology_sibling_cpumask(cpu) (per_cpu(cpu_sibling_map, cpu)) extern unsigned int __max_logical_packages; #define topology_max_packages() (__max_logical_packages) static inline int topology_max_die_per_package(void) { return __max_die_per_package; } extern int __max_smt_threads; static inline int topology_max_smt_threads(void) { return __max_smt_threads; } int topology_update_package_map(unsigned int apicid, unsigned int cpu); int topology_update_die_map(unsigned int dieid, unsigned int cpu); int topology_phys_to_logical_pkg(unsigned int pkg); int topology_phys_to_logical_die(unsigned int die, unsigned int cpu); bool topology_is_primary_thread(unsigned int cpu); bool topology_smt_supported(void); #else #define topology_max_packages() (1) static inline int topology_update_package_map(unsigned int apicid, unsigned int cpu) { return 0; } static inline int topology_update_die_map(unsigned int dieid, unsigned int cpu) { return 0; } static inline int topology_phys_to_logical_pkg(unsigned int pkg) { return 0; } static inline int topology_phys_to_logical_die(unsigned int die, unsigned int cpu) { return 0; } static inline int topology_max_die_per_package(void) { return 1; } static inline int topology_max_smt_threads(void) { return 1; } static inline bool topology_is_primary_thread(unsigned int cpu) { return true; } static inline bool topology_smt_supported(void) { return false; } #endif static inline void arch_fix_phys_package_id(int num, u32 slot) { } struct pci_bus; int x86_pci_root_bus_node(int bus); void x86_pci_root_bus_resources(int bus, struct list_head *resources); extern bool x86_topology_update; #ifdef CONFIG_SCHED_MC_PRIO #include <asm/percpu.h> DECLARE_PER_CPU_READ_MOSTLY(int, sched_core_priority); extern unsigned int __read_mostly sysctl_sched_itmt_enabled; /* Interface to set priority of a cpu */ void sched_set_itmt_core_prio(int prio, int core_cpu); /* Interface to notify scheduler that system supports ITMT */ int sched_set_itmt_support(void); /* Interface to notify scheduler that system revokes ITMT support */ void sched_clear_itmt_support(void); #else /* CONFIG_SCHED_MC_PRIO */ #define sysctl_sched_itmt_enabled 0 static inline void sched_set_itmt_core_prio(int prio, int core_cpu) { } static inline int sched_set_itmt_support(void) { return 0; } static inline void sched_clear_itmt_support(void) { } #endif /* CONFIG_SCHED_MC_PRIO */ #if defined(CONFIG_SMP) && defined(CONFIG_X86_64) #include <asm/cpufeature.h> DECLARE_STATIC_KEY_FALSE(arch_scale_freq_key); #define arch_scale_freq_invariant() static_branch_likely(&arch_scale_freq_key) DECLARE_PER_CPU(unsigned long, arch_freq_scale); static inline long arch_scale_freq_capacity(int cpu) { return per_cpu(arch_freq_scale, cpu); } #define arch_scale_freq_capacity arch_scale_freq_capacity extern void arch_scale_freq_tick(void); #define arch_scale_freq_tick arch_scale_freq_tick extern void arch_set_max_freq_ratio(bool turbo_disabled); #else static inline void arch_set_max_freq_ratio(bool turbo_disabled) { } #endif #endif /* _ASM_X86_TOPOLOGY_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_KERNEL_STAT_H #define _LINUX_KERNEL_STAT_H #include <linux/smp.h> #include <linux/threads.h> #include <linux/percpu.h> #include <linux/cpumask.h> #include <linux/interrupt.h> #include <linux/sched.h> #include <linux/vtime.h> #include <asm/irq.h> /* * 'kernel_stat.h' contains the definitions needed for doing * some kernel statistics (CPU usage, context switches ...), * used by rstatd/perfmeter */ enum cpu_usage_stat { CPUTIME_USER, CPUTIME_NICE, CPUTIME_SYSTEM, CPUTIME_SOFTIRQ, CPUTIME_IRQ, CPUTIME_IDLE, CPUTIME_IOWAIT, CPUTIME_STEAL, CPUTIME_GUEST, CPUTIME_GUEST_NICE, NR_STATS, }; struct kernel_cpustat { u64 cpustat[NR_STATS]; }; struct kernel_stat { unsigned long irqs_sum; unsigned int softirqs[NR_SOFTIRQS]; }; DECLARE_PER_CPU(struct kernel_stat, kstat); DECLARE_PER_CPU(struct kernel_cpustat, kernel_cpustat); /* Must have preemption disabled for this to be meaningful. */ #define kstat_this_cpu this_cpu_ptr(&kstat) #define kcpustat_this_cpu this_cpu_ptr(&kernel_cpustat) #define kstat_cpu(cpu) per_cpu(kstat, cpu) #define kcpustat_cpu(cpu) per_cpu(kernel_cpustat, cpu) extern unsigned long long nr_context_switches(void); extern unsigned int kstat_irqs_cpu(unsigned int irq, int cpu); extern void kstat_incr_irq_this_cpu(unsigned int irq); static inline void kstat_incr_softirqs_this_cpu(unsigned int irq) { __this_cpu_inc(kstat.softirqs[irq]); } static inline unsigned int kstat_softirqs_cpu(unsigned int irq, int cpu) { return kstat_cpu(cpu).softirqs[irq]; } /* * Number of interrupts per specific IRQ source, since bootup */ extern unsigned int kstat_irqs(unsigned int irq); extern unsigned int kstat_irqs_usr(unsigned int irq); /* * Number of interrupts per cpu, since bootup */ static inline unsigned int kstat_cpu_irqs_sum(unsigned int cpu) { return kstat_cpu(cpu).irqs_sum; } #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN extern u64 kcpustat_field(struct kernel_cpustat *kcpustat, enum cpu_usage_stat usage, int cpu); extern void kcpustat_cpu_fetch(struct kernel_cpustat *dst, int cpu); #else static inline u64 kcpustat_field(struct kernel_cpustat *kcpustat, enum cpu_usage_stat usage, int cpu) { return kcpustat->cpustat[usage]; } static inline void kcpustat_cpu_fetch(struct kernel_cpustat *dst, int cpu) { *dst = kcpustat_cpu(cpu); } #endif extern void account_user_time(struct task_struct *, u64); extern void account_guest_time(struct task_struct *, u64); extern void account_system_time(struct task_struct *, int, u64); extern void account_system_index_time(struct task_struct *, u64, enum cpu_usage_stat); extern void account_steal_time(u64); extern void account_idle_time(u64); extern u64 get_idle_time(struct kernel_cpustat *kcs, int cpu); #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE static inline void account_process_tick(struct task_struct *tsk, int user) { vtime_flush(tsk); } #else extern void account_process_tick(struct task_struct *, int user); #endif extern void account_idle_ticks(unsigned long ticks); #endif /* _LINUX_KERNEL_STAT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _NET_FLOW_DISSECTOR_H #define _NET_FLOW_DISSECTOR_H #include <linux/types.h> #include <linux/in6.h> #include <linux/siphash.h> #include <linux/string.h> #include <uapi/linux/if_ether.h> struct bpf_prog; struct net; struct sk_buff; /** * struct flow_dissector_key_control: * @thoff: Transport header offset */ struct flow_dissector_key_control { u16 thoff; u16 addr_type; u32 flags; }; #define FLOW_DIS_IS_FRAGMENT BIT(0) #define FLOW_DIS_FIRST_FRAG BIT(1) #define FLOW_DIS_ENCAPSULATION BIT(2) enum flow_dissect_ret { FLOW_DISSECT_RET_OUT_GOOD, FLOW_DISSECT_RET_OUT_BAD, FLOW_DISSECT_RET_PROTO_AGAIN, FLOW_DISSECT_RET_IPPROTO_AGAIN, FLOW_DISSECT_RET_CONTINUE, }; /** * struct flow_dissector_key_basic: * @n_proto: Network header protocol (eg. IPv4/IPv6) * @ip_proto: Transport header protocol (eg. TCP/UDP) */ struct flow_dissector_key_basic { __be16 n_proto; u8 ip_proto; u8 padding; }; struct flow_dissector_key_tags { u32 flow_label; }; struct flow_dissector_key_vlan { union { struct { u16 vlan_id:12, vlan_dei:1, vlan_priority:3; }; __be16 vlan_tci; }; __be16 vlan_tpid; }; struct flow_dissector_mpls_lse { u32 mpls_ttl:8, mpls_bos:1, mpls_tc:3, mpls_label:20; }; #define FLOW_DIS_MPLS_MAX 7 struct flow_dissector_key_mpls { struct flow_dissector_mpls_lse ls[FLOW_DIS_MPLS_MAX]; /* Label Stack */ u8 used_lses; /* One bit set for each Label Stack Entry in use */ }; static inline void dissector_set_mpls_lse(struct flow_dissector_key_mpls *mpls, int lse_index) { mpls->used_lses |= 1 << lse_index; } #define FLOW_DIS_TUN_OPTS_MAX 255 /** * struct flow_dissector_key_enc_opts: * @data: tunnel option data * @len: length of tunnel option data * @dst_opt_type: tunnel option type */ struct flow_dissector_key_enc_opts { u8 data[FLOW_DIS_TUN_OPTS_MAX]; /* Using IP_TUNNEL_OPTS_MAX is desired * here but seems difficult to #include */ u8 len; __be16 dst_opt_type; }; struct flow_dissector_key_keyid { __be32 keyid; }; /** * struct flow_dissector_key_ipv4_addrs: * @src: source ip address * @dst: destination ip address */ struct flow_dissector_key_ipv4_addrs { /* (src,dst) must be grouped, in the same way than in IP header */ __be32 src; __be32 dst; }; /** * struct flow_dissector_key_ipv6_addrs: * @src: source ip address * @dst: destination ip address */ struct flow_dissector_key_ipv6_addrs { /* (src,dst) must be grouped, in the same way than in IP header */ struct in6_addr src; struct in6_addr dst; }; /** * struct flow_dissector_key_tipc: * @key: source node address combined with selector */ struct flow_dissector_key_tipc { __be32 key; }; /** * struct flow_dissector_key_addrs: * @v4addrs: IPv4 addresses * @v6addrs: IPv6 addresses */ struct flow_dissector_key_addrs { union { struct flow_dissector_key_ipv4_addrs v4addrs; struct flow_dissector_key_ipv6_addrs v6addrs; struct flow_dissector_key_tipc tipckey; }; }; /** * flow_dissector_key_arp: * @ports: Operation, source and target addresses for an ARP header * for Ethernet hardware addresses and IPv4 protocol addresses * sip: Sender IP address * tip: Target IP address * op: Operation * sha: Sender hardware address * tpa: Target hardware address */ struct flow_dissector_key_arp { __u32 sip; __u32 tip; __u8 op; unsigned char sha[ETH_ALEN]; unsigned char tha[ETH_ALEN]; }; /** * flow_dissector_key_tp_ports: * @ports: port numbers of Transport header * src: source port number * dst: destination port number */ struct flow_dissector_key_ports { union { __be32 ports; struct { __be16 src; __be16 dst; }; }; }; /** * flow_dissector_key_icmp: * type: ICMP type * code: ICMP code * id: session identifier */ struct flow_dissector_key_icmp { struct { u8 type; u8 code; }; u16 id; }; /** * struct flow_dissector_key_eth_addrs: * @src: source Ethernet address * @dst: destination Ethernet address */ struct flow_dissector_key_eth_addrs { /* (dst,src) must be grouped, in the same way than in ETH header */ unsigned char dst[ETH_ALEN]; unsigned char src[ETH_ALEN]; }; /** * struct flow_dissector_key_tcp: * @flags: flags */ struct flow_dissector_key_tcp { __be16 flags; }; /** * struct flow_dissector_key_ip: * @tos: tos * @ttl: ttl */ struct flow_dissector_key_ip { __u8 tos; __u8 ttl; }; /** * struct flow_dissector_key_meta: * @ingress_ifindex: ingress ifindex * @ingress_iftype: ingress interface type */ struct flow_dissector_key_meta { int ingress_ifindex; u16 ingress_iftype; }; /** * struct flow_dissector_key_ct: * @ct_state: conntrack state after converting with map * @ct_mark: conttrack mark * @ct_zone: conntrack zone * @ct_labels: conntrack labels */ struct flow_dissector_key_ct { u16 ct_state; u16 ct_zone; u32 ct_mark; u32 ct_labels[4]; }; /** * struct flow_dissector_key_hash: * @hash: hash value */ struct flow_dissector_key_hash { u32 hash; }; enum flow_dissector_key_id { FLOW_DISSECTOR_KEY_CONTROL, /* struct flow_dissector_key_control */ FLOW_DISSECTOR_KEY_BASIC, /* struct flow_dissector_key_basic */ FLOW_DISSECTOR_KEY_IPV4_ADDRS, /* struct flow_dissector_key_ipv4_addrs */ FLOW_DISSECTOR_KEY_IPV6_ADDRS, /* struct flow_dissector_key_ipv6_addrs */ FLOW_DISSECTOR_KEY_PORTS, /* struct flow_dissector_key_ports */ FLOW_DISSECTOR_KEY_PORTS_RANGE, /* struct flow_dissector_key_ports */ FLOW_DISSECTOR_KEY_ICMP, /* struct flow_dissector_key_icmp */ FLOW_DISSECTOR_KEY_ETH_ADDRS, /* struct flow_dissector_key_eth_addrs */ FLOW_DISSECTOR_KEY_TIPC, /* struct flow_dissector_key_tipc */ FLOW_DISSECTOR_KEY_ARP, /* struct flow_dissector_key_arp */ FLOW_DISSECTOR_KEY_VLAN, /* struct flow_dissector_key_vlan */ FLOW_DISSECTOR_KEY_FLOW_LABEL, /* struct flow_dissector_key_tags */ FLOW_DISSECTOR_KEY_GRE_KEYID, /* struct flow_dissector_key_keyid */ FLOW_DISSECTOR_KEY_MPLS_ENTROPY, /* struct flow_dissector_key_keyid */ FLOW_DISSECTOR_KEY_ENC_KEYID, /* struct flow_dissector_key_keyid */ FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS, /* struct flow_dissector_key_ipv4_addrs */ FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS, /* struct flow_dissector_key_ipv6_addrs */ FLOW_DISSECTOR_KEY_ENC_CONTROL, /* struct flow_dissector_key_control */ FLOW_DISSECTOR_KEY_ENC_PORTS, /* struct flow_dissector_key_ports */ FLOW_DISSECTOR_KEY_MPLS, /* struct flow_dissector_key_mpls */ FLOW_DISSECTOR_KEY_TCP, /* struct flow_dissector_key_tcp */ FLOW_DISSECTOR_KEY_IP, /* struct flow_dissector_key_ip */ FLOW_DISSECTOR_KEY_CVLAN, /* struct flow_dissector_key_vlan */ FLOW_DISSECTOR_KEY_ENC_IP, /* struct flow_dissector_key_ip */ FLOW_DISSECTOR_KEY_ENC_OPTS, /* struct flow_dissector_key_enc_opts */ FLOW_DISSECTOR_KEY_META, /* struct flow_dissector_key_meta */ FLOW_DISSECTOR_KEY_CT, /* struct flow_dissector_key_ct */ FLOW_DISSECTOR_KEY_HASH, /* struct flow_dissector_key_hash */ FLOW_DISSECTOR_KEY_MAX, }; #define FLOW_DISSECTOR_F_PARSE_1ST_FRAG BIT(0) #define FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL BIT(1) #define FLOW_DISSECTOR_F_STOP_AT_ENCAP BIT(2) struct flow_dissector_key { enum flow_dissector_key_id key_id; size_t offset; /* offset of struct flow_dissector_key_* in target the struct */ }; struct flow_dissector { unsigned int used_keys; /* each bit repesents presence of one key id */ unsigned short int offset[FLOW_DISSECTOR_KEY_MAX]; }; struct flow_keys_basic { struct flow_dissector_key_control control; struct flow_dissector_key_basic basic; }; struct flow_keys { struct flow_dissector_key_control control; #define FLOW_KEYS_HASH_START_FIELD basic struct flow_dissector_key_basic basic __aligned(SIPHASH_ALIGNMENT); struct flow_dissector_key_tags tags; struct flow_dissector_key_vlan vlan; struct flow_dissector_key_vlan cvlan; struct flow_dissector_key_keyid keyid; struct flow_dissector_key_ports ports; struct flow_dissector_key_icmp icmp; /* 'addrs' must be the last member */ struct flow_dissector_key_addrs addrs; }; #define FLOW_KEYS_HASH_OFFSET \ offsetof(struct flow_keys, FLOW_KEYS_HASH_START_FIELD) __be32 flow_get_u32_src(const struct flow_keys *flow); __be32 flow_get_u32_dst(const struct flow_keys *flow); extern struct flow_dissector flow_keys_dissector; extern struct flow_dissector flow_keys_basic_dissector; /* struct flow_keys_digest: * * This structure is used to hold a digest of the full flow keys. This is a * larger "hash" of a flow to allow definitively matching specific flows where * the 32 bit skb->hash is not large enough. The size is limited to 16 bytes so * that it can be used in CB of skb (see sch_choke for an example). */ #define FLOW_KEYS_DIGEST_LEN 16 struct flow_keys_digest { u8 data[FLOW_KEYS_DIGEST_LEN]; }; void make_flow_keys_digest(struct flow_keys_digest *digest, const struct flow_keys *flow); static inline bool flow_keys_have_l4(const struct flow_keys *keys) { return (keys->ports.ports || keys->tags.flow_label); } u32 flow_hash_from_keys(struct flow_keys *keys); void skb_flow_get_icmp_tci(const struct sk_buff *skb, struct flow_dissector_key_icmp *key_icmp, void *data, int thoff, int hlen); static inline bool dissector_uses_key(const struct flow_dissector *flow_dissector, enum flow_dissector_key_id key_id) { return flow_dissector->used_keys & (1 << key_id); } static inline void *skb_flow_dissector_target(struct flow_dissector *flow_dissector, enum flow_dissector_key_id key_id, void *target_container) { return ((char *)target_container) + flow_dissector->offset[key_id]; } struct bpf_flow_dissector { struct bpf_flow_keys *flow_keys; const struct sk_buff *skb; void *data; void *data_end; }; static inline void flow_dissector_init_keys(struct flow_dissector_key_control *key_control, struct flow_dissector_key_basic *key_basic) { memset(key_control, 0, sizeof(*key_control)); memset(key_basic, 0, sizeof(*key_basic)); } #ifdef CONFIG_BPF_SYSCALL int flow_dissector_bpf_prog_attach_check(struct net *net, struct bpf_prog *prog); #endif /* CONFIG_BPF_SYSCALL */ #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM cgroup #if !defined(_TRACE_CGROUP_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_CGROUP_H #include <linux/cgroup.h> #include <linux/tracepoint.h> DECLARE_EVENT_CLASS(cgroup_root, TP_PROTO(struct cgroup_root *root), TP_ARGS(root), TP_STRUCT__entry( __field( int, root ) __field( u16, ss_mask ) __string( name, root->name ) ), TP_fast_assign( __entry->root = root->hierarchy_id; __entry->ss_mask = root->subsys_mask; __assign_str(name, root->name); ), TP_printk("root=%d ss_mask=%#x name=%s", __entry->root, __entry->ss_mask, __get_str(name)) ); DEFINE_EVENT(cgroup_root, cgroup_setup_root, TP_PROTO(struct cgroup_root *root), TP_ARGS(root) ); DEFINE_EVENT(cgroup_root, cgroup_destroy_root, TP_PROTO(struct cgroup_root *root), TP_ARGS(root) ); DEFINE_EVENT(cgroup_root, cgroup_remount, TP_PROTO(struct cgroup_root *root), TP_ARGS(root) ); DECLARE_EVENT_CLASS(cgroup, TP_PROTO(struct cgroup *cgrp, const char *path), TP_ARGS(cgrp, path), TP_STRUCT__entry( __field( int, root ) __field( int, id ) __field( int, level ) __string( path, path ) ), TP_fast_assign( __entry->root = cgrp->root->hierarchy_id; __entry->id = cgroup_id(cgrp); __entry->level = cgrp->level; __assign_str(path, path); ), TP_printk("root=%d id=%d level=%d path=%s", __entry->root, __entry->id, __entry->level, __get_str(path)) ); DEFINE_EVENT(cgroup, cgroup_mkdir, TP_PROTO(struct cgroup *cgrp, const char *path), TP_ARGS(cgrp, path) ); DEFINE_EVENT(cgroup, cgroup_rmdir, TP_PROTO(struct cgroup *cgrp, const char *path), TP_ARGS(cgrp, path) ); DEFINE_EVENT(cgroup, cgroup_release, TP_PROTO(struct cgroup *cgrp, const char *path), TP_ARGS(cgrp, path) ); DEFINE_EVENT(cgroup, cgroup_rename, TP_PROTO(struct cgroup *cgrp, const char *path), TP_ARGS(cgrp, path) ); DEFINE_EVENT(cgroup, cgroup_freeze, TP_PROTO(struct cgroup *cgrp, const char *path), TP_ARGS(cgrp, path) ); DEFINE_EVENT(cgroup, cgroup_unfreeze, TP_PROTO(struct cgroup *cgrp, const char *path), TP_ARGS(cgrp, path) ); DECLARE_EVENT_CLASS(cgroup_migrate, TP_PROTO(struct cgroup *dst_cgrp, const char *path, struct task_struct *task, bool threadgroup), TP_ARGS(dst_cgrp, path, task, threadgroup), TP_STRUCT__entry( __field( int, dst_root ) __field( int, dst_id ) __field( int, dst_level ) __field( int, pid ) __string( dst_path, path ) __string( comm, task->comm ) ), TP_fast_assign( __entry->dst_root = dst_cgrp->root->hierarchy_id; __entry->dst_id = cgroup_id(dst_cgrp); __entry->dst_level = dst_cgrp->level; __assign_str(dst_path, path); __entry->pid = task->pid; __assign_str(comm, task->comm); ), TP_printk("dst_root=%d dst_id=%d dst_level=%d dst_path=%s pid=%d comm=%s", __entry->dst_root, __entry->dst_id, __entry->dst_level, __get_str(dst_path), __entry->pid, __get_str(comm)) ); DEFINE_EVENT(cgroup_migrate, cgroup_attach_task, TP_PROTO(struct cgroup *dst_cgrp, const char *path, struct task_struct *task, bool threadgroup), TP_ARGS(dst_cgrp, path, task, threadgroup) ); DEFINE_EVENT(cgroup_migrate, cgroup_transfer_tasks, TP_PROTO(struct cgroup *dst_cgrp, const char *path, struct task_struct *task, bool threadgroup), TP_ARGS(dst_cgrp, path, task, threadgroup) ); DECLARE_EVENT_CLASS(cgroup_event, TP_PROTO(struct cgroup *cgrp, const char *path, int val), TP_ARGS(cgrp, path, val), TP_STRUCT__entry( __field( int, root ) __field( int, id ) __field( int, level ) __string( path, path ) __field( int, val ) ), TP_fast_assign( __entry->root = cgrp->root->hierarchy_id; __entry->id = cgroup_id(cgrp); __entry->level = cgrp->level; __assign_str(path, path); __entry->val = val; ), TP_printk("root=%d id=%d level=%d path=%s val=%d", __entry->root, __entry->id, __entry->level, __get_str(path), __entry->val) ); DEFINE_EVENT(cgroup_event, cgroup_notify_populated, TP_PROTO(struct cgroup *cgrp, const char *path, int val), TP_ARGS(cgrp, path, val) ); DEFINE_EVENT(cgroup_event, cgroup_notify_frozen, TP_PROTO(struct cgroup *cgrp, const char *path, int val), TP_ARGS(cgrp, path, val) ); #endif /* _TRACE_CGROUP_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Checksumming functions for IPv6 * * Authors: Jorge Cwik, <jorge@laser.satlink.net> * Arnt Gulbrandsen, <agulbra@nvg.unit.no> * Borrows very liberally from tcp.c and ip.c, see those * files for more names. */ /* * Fixes: * * Ralf Baechle : generic ipv6 checksum * <ralf@waldorf-gmbh.de> */ #ifndef _CHECKSUM_IPV6_H #define _CHECKSUM_IPV6_H #include <asm/types.h> #include <asm/byteorder.h> #include <net/ip.h> #include <asm/checksum.h> #include <linux/in6.h> #include <linux/tcp.h> #include <linux/ipv6.h> #ifndef _HAVE_ARCH_IPV6_CSUM __sum16 csum_ipv6_magic(const struct in6_addr *saddr, const struct in6_addr *daddr, __u32 len, __u8 proto, __wsum csum); #endif static inline __wsum ip6_compute_pseudo(struct sk_buff *skb, int proto) { return ~csum_unfold(csum_ipv6_magic(&ipv6_hdr(skb)->saddr, &ipv6_hdr(skb)->daddr, skb->len, proto, 0)); } static inline __wsum ip6_gro_compute_pseudo(struct sk_buff *skb, int proto) { const struct ipv6hdr *iph = skb_gro_network_header(skb); return ~csum_unfold(csum_ipv6_magic(&iph->saddr, &iph->daddr, skb_gro_len(skb), proto, 0)); } static __inline__ __sum16 tcp_v6_check(int len, const struct in6_addr *saddr, const struct in6_addr *daddr, __wsum base) { return csum_ipv6_magic(saddr, daddr, len, IPPROTO_TCP, base); } static inline void __tcp_v6_send_check(struct sk_buff *skb, const struct in6_addr *saddr, const struct in6_addr *daddr) { struct tcphdr *th = tcp_hdr(skb); if (skb->ip_summed == CHECKSUM_PARTIAL) { th->check = ~tcp_v6_check(skb->len, saddr, daddr, 0); skb->csum_start = skb_transport_header(skb) - skb->head; skb->csum_offset = offsetof(struct tcphdr, check); } else { th->check = tcp_v6_check(skb->len, saddr, daddr, csum_partial(th, th->doff << 2, skb->csum)); } } static inline void tcp_v6_gso_csum_prep(struct sk_buff *skb) { struct ipv6hdr *ipv6h = ipv6_hdr(skb); struct tcphdr *th = tcp_hdr(skb); ipv6h->payload_len = 0; th->check = ~tcp_v6_check(0, &ipv6h->saddr, &ipv6h->daddr, 0); } static inline __sum16 udp_v6_check(int len, const struct in6_addr *saddr, const struct in6_addr *daddr, __wsum base) { return csum_ipv6_magic(saddr, daddr, len, IPPROTO_UDP, base); } void udp6_set_csum(bool nocheck, struct sk_buff *skb, const struct in6_addr *saddr, const struct in6_addr *daddr, int len); int udp6_csum_init(struct sk_buff *skb, struct udphdr *uh, int proto); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef IOPRIO_H #define IOPRIO_H #include <linux/sched.h> #include <linux/sched/rt.h> #include <linux/iocontext.h> /* * Gives us 8 prio classes with 13-bits of data for each class */ #define IOPRIO_CLASS_SHIFT (13) #define IOPRIO_PRIO_MASK ((1UL << IOPRIO_CLASS_SHIFT) - 1) #define IOPRIO_PRIO_CLASS(mask) ((mask) >> IOPRIO_CLASS_SHIFT) #define IOPRIO_PRIO_DATA(mask) ((mask) & IOPRIO_PRIO_MASK) #define IOPRIO_PRIO_VALUE(class, data) (((class) << IOPRIO_CLASS_SHIFT) | data) #define ioprio_valid(mask) (IOPRIO_PRIO_CLASS((mask)) != IOPRIO_CLASS_NONE) /* * These are the io priority groups as implemented by CFQ. RT is the realtime * class, it always gets premium service. BE is the best-effort scheduling * class, the default for any process. IDLE is the idle scheduling class, it * is only served when no one else is using the disk. */ enum { IOPRIO_CLASS_NONE, IOPRIO_CLASS_RT, IOPRIO_CLASS_BE, IOPRIO_CLASS_IDLE, }; /* * 8 best effort priority levels are supported */ #define IOPRIO_BE_NR (8) enum { IOPRIO_WHO_PROCESS = 1, IOPRIO_WHO_PGRP, IOPRIO_WHO_USER, }; /* * Fallback BE priority */ #define IOPRIO_NORM (4) /* * if process has set io priority explicitly, use that. if not, convert * the cpu scheduler nice value to an io priority */ static inline int task_nice_ioprio(struct task_struct *task) { return (task_nice(task) + 20) / 5; } /* * This is for the case where the task hasn't asked for a specific IO class. * Check for idle and rt task process, and return appropriate IO class. */ static inline int task_nice_ioclass(struct task_struct *task) { if (task->policy == SCHED_IDLE) return IOPRIO_CLASS_IDLE; else if (task_is_realtime(task)) return IOPRIO_CLASS_RT; else return IOPRIO_CLASS_BE; } /* * If the calling process has set an I/O priority, use that. Otherwise, return * the default I/O priority. */ static inline int get_current_ioprio(void) { struct io_context *ioc = current->io_context; if (ioc) return ioc->ioprio; return IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0); } /* * For inheritance, return the highest of the two given priorities */ extern int ioprio_best(unsigned short aprio, unsigned short bprio); extern int set_task_ioprio(struct task_struct *task, int ioprio); #ifdef CONFIG_BLOCK extern int ioprio_check_cap(int ioprio); #else static inline int ioprio_check_cap(int ioprio) { return -ENOTBLK; } #endif /* CONFIG_BLOCK */ #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * include/linux/eventpoll.h ( Efficient event polling implementation ) * Copyright (C) 2001,...,2006 Davide Libenzi * * Davide Libenzi <davidel@xmailserver.org> */ #ifndef _LINUX_EVENTPOLL_H #define _LINUX_EVENTPOLL_H #include <uapi/linux/eventpoll.h> #include <uapi/linux/kcmp.h> /* Forward declarations to avoid compiler errors */ struct file; #ifdef CONFIG_EPOLL #ifdef CONFIG_KCMP struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd, unsigned long toff); #endif /* Used to initialize the epoll bits inside the "struct file" */ static inline void eventpoll_init_file(struct file *file) { INIT_LIST_HEAD(&file->f_ep_links); INIT_LIST_HEAD(&file->f_tfile_llink); } /* Used to release the epoll bits inside the "struct file" */ void eventpoll_release_file(struct file *file); /* * This is called from inside fs/file_table.c:__fput() to unlink files * from the eventpoll interface. We need to have this facility to cleanup * correctly files that are closed without being removed from the eventpoll * interface. */ static inline void eventpoll_release(struct file *file) { /* * Fast check to avoid the get/release of the semaphore. Since * we're doing this outside the semaphore lock, it might return * false negatives, but we don't care. It'll help in 99.99% of cases * to avoid the semaphore lock. False positives simply cannot happen * because the file in on the way to be removed and nobody ( but * eventpoll ) has still a reference to this file. */ if (likely(list_empty(&file->f_ep_links))) return; /* * The file is being closed while it is still linked to an epoll * descriptor. We need to handle this by correctly unlinking it * from its containers. */ eventpoll_release_file(file); } int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds, bool nonblock); /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */ static inline int ep_op_has_event(int op) { return op != EPOLL_CTL_DEL; } #else static inline void eventpoll_init_file(struct file *file) {} static inline void eventpoll_release(struct file *file) {} #endif #endif /* #ifndef _LINUX_EVENTPOLL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Linux INET6 implementation * * Authors: * Pedro Roque <roque@di.fc.ul.pt> */ #ifndef _IP6_FIB_H #define _IP6_FIB_H #include <linux/ipv6_route.h> #include <linux/rtnetlink.h> #include <linux/spinlock.h> #include <linux/notifier.h> #include <net/dst.h> #include <net/flow.h> #include <net/ip_fib.h> #include <net/netlink.h> #include <net/inetpeer.h> #include <net/fib_notifier.h> #include <linux/indirect_call_wrapper.h> #ifdef CONFIG_IPV6_MULTIPLE_TABLES #define FIB6_TABLE_HASHSZ 256 #else #define FIB6_TABLE_HASHSZ 1 #endif #define RT6_DEBUG 2 #if RT6_DEBUG >= 3 #define RT6_TRACE(x...) pr_debug(x) #else #define RT6_TRACE(x...) do { ; } while (0) #endif struct rt6_info; struct fib6_info; struct fib6_config { u32 fc_table; u32 fc_metric; int fc_dst_len; int fc_src_len; int fc_ifindex; u32 fc_flags; u32 fc_protocol; u16 fc_type; /* only 8 bits are used */ u16 fc_delete_all_nh : 1, fc_ignore_dev_down:1, __unused : 14; u32 fc_nh_id; struct in6_addr fc_dst; struct in6_addr fc_src; struct in6_addr fc_prefsrc; struct in6_addr fc_gateway; unsigned long fc_expires; struct nlattr *fc_mx; int fc_mx_len; int fc_mp_len; struct nlattr *fc_mp; struct nl_info fc_nlinfo; struct nlattr *fc_encap; u16 fc_encap_type; bool fc_is_fdb; }; struct fib6_node { struct fib6_node __rcu *parent; struct fib6_node __rcu *left; struct fib6_node __rcu *right; #ifdef CONFIG_IPV6_SUBTREES struct fib6_node __rcu *subtree; #endif struct fib6_info __rcu *leaf; __u16 fn_bit; /* bit key */ __u16 fn_flags; int fn_sernum; struct fib6_info __rcu *rr_ptr; struct rcu_head rcu; }; struct fib6_gc_args { int timeout; int more; }; #ifndef CONFIG_IPV6_SUBTREES #define FIB6_SUBTREE(fn) NULL static inline bool fib6_routes_require_src(const struct net *net) { return false; } static inline void fib6_routes_require_src_inc(struct net *net) {} static inline void fib6_routes_require_src_dec(struct net *net) {} #else static inline bool fib6_routes_require_src(const struct net *net) { return net->ipv6.fib6_routes_require_src > 0; } static inline void fib6_routes_require_src_inc(struct net *net) { net->ipv6.fib6_routes_require_src++; } static inline void fib6_routes_require_src_dec(struct net *net) { net->ipv6.fib6_routes_require_src--; } #define FIB6_SUBTREE(fn) (rcu_dereference_protected((fn)->subtree, 1)) #endif /* * routing information * */ struct rt6key { struct in6_addr addr; int plen; }; struct fib6_table; struct rt6_exception_bucket { struct hlist_head chain; int depth; }; struct rt6_exception { struct hlist_node hlist; struct rt6_info *rt6i; unsigned long stamp; struct rcu_head rcu; }; #define FIB6_EXCEPTION_BUCKET_SIZE_SHIFT 10 #define FIB6_EXCEPTION_BUCKET_SIZE (1 << FIB6_EXCEPTION_BUCKET_SIZE_SHIFT) #define FIB6_MAX_DEPTH 5 struct fib6_nh { struct fib_nh_common nh_common; #ifdef CONFIG_IPV6_ROUTER_PREF unsigned long last_probe; #endif struct rt6_info * __percpu *rt6i_pcpu; struct rt6_exception_bucket __rcu *rt6i_exception_bucket; }; struct fib6_info { struct fib6_table *fib6_table; struct fib6_info __rcu *fib6_next; struct fib6_node __rcu *fib6_node; /* Multipath routes: * siblings is a list of fib6_info that have the same metric/weight, * destination, but not the same gateway. nsiblings is just a cache * to speed up lookup. */ union { struct list_head fib6_siblings; struct list_head nh_list; }; unsigned int fib6_nsiblings; refcount_t fib6_ref; unsigned long expires; struct dst_metrics *fib6_metrics; #define fib6_pmtu fib6_metrics->metrics[RTAX_MTU-1] struct rt6key fib6_dst; u32 fib6_flags; struct rt6key fib6_src; struct rt6key fib6_prefsrc; u32 fib6_metric; u8 fib6_protocol; u8 fib6_type; u8 should_flush:1, dst_nocount:1, dst_nopolicy:1, fib6_destroying:1, offload:1, trap:1, unused:2; struct rcu_head rcu; struct nexthop *nh; struct fib6_nh fib6_nh[]; }; struct rt6_info { struct dst_entry dst; struct fib6_info __rcu *from; int sernum; struct rt6key rt6i_dst; struct rt6key rt6i_src; struct in6_addr rt6i_gateway; struct inet6_dev *rt6i_idev; u32 rt6i_flags; struct list_head rt6i_uncached; struct uncached_list *rt6i_uncached_list; /* more non-fragment space at head required */ unsigned short rt6i_nfheader_len; }; struct fib6_result { struct fib6_nh *nh; struct fib6_info *f6i; u32 fib6_flags; u8 fib6_type; struct rt6_info *rt6; }; #define for_each_fib6_node_rt_rcu(fn) \ for (rt = rcu_dereference((fn)->leaf); rt; \ rt = rcu_dereference(rt->fib6_next)) #define for_each_fib6_walker_rt(w) \ for (rt = (w)->leaf; rt; \ rt = rcu_dereference_protected(rt->fib6_next, 1)) static inline struct inet6_dev *ip6_dst_idev(struct dst_entry *dst) { return ((struct rt6_info *)dst)->rt6i_idev; } static inline bool fib6_requires_src(const struct fib6_info *rt) { return rt->fib6_src.plen > 0; } static inline void fib6_clean_expires(struct fib6_info *f6i) { f6i->fib6_flags &= ~RTF_EXPIRES; f6i->expires = 0; } static inline void fib6_set_expires(struct fib6_info *f6i, unsigned long expires) { f6i->expires = expires; f6i->fib6_flags |= RTF_EXPIRES; } static inline bool fib6_check_expired(const struct fib6_info *f6i) { if (f6i->fib6_flags & RTF_EXPIRES) return time_after(jiffies, f6i->expires); return false; } /* Function to safely get fn->sernum for passed in rt * and store result in passed in cookie. * Return true if we can get cookie safely * Return false if not */ static inline bool fib6_get_cookie_safe(const struct fib6_info *f6i, u32 *cookie) { struct fib6_node *fn; bool status = false; fn = rcu_dereference(f6i->fib6_node); if (fn) { *cookie = fn->fn_sernum; /* pairs with smp_wmb() in fib6_update_sernum_upto_root() */ smp_rmb(); status = true; } return status; } static inline u32 rt6_get_cookie(const struct rt6_info *rt) { struct fib6_info *from; u32 cookie = 0; if (rt->sernum) return rt->sernum; rcu_read_lock(); from = rcu_dereference(rt->from); if (from) fib6_get_cookie_safe(from, &cookie); rcu_read_unlock(); return cookie; } static inline void ip6_rt_put(struct rt6_info *rt) { /* dst_release() accepts a NULL parameter. * We rely on dst being first structure in struct rt6_info */ BUILD_BUG_ON(offsetof(struct rt6_info, dst) != 0); dst_release(&rt->dst); } struct fib6_info *fib6_info_alloc(gfp_t gfp_flags, bool with_fib6_nh); void fib6_info_destroy_rcu(struct rcu_head *head); static inline void fib6_info_hold(struct fib6_info *f6i) { refcount_inc(&f6i->fib6_ref); } static inline bool fib6_info_hold_safe(struct fib6_info *f6i) { return refcount_inc_not_zero(&f6i->fib6_ref); } static inline void fib6_info_release(struct fib6_info *f6i) { if (f6i && refcount_dec_and_test(&f6i->fib6_ref)) call_rcu(&f6i->rcu, fib6_info_destroy_rcu); } static inline void fib6_info_hw_flags_set(struct fib6_info *f6i, bool offload, bool trap) { f6i->offload = offload; f6i->trap = trap; } enum fib6_walk_state { #ifdef CONFIG_IPV6_SUBTREES FWS_S, #endif FWS_L, FWS_R, FWS_C, FWS_U }; struct fib6_walker { struct list_head lh; struct fib6_node *root, *node; struct fib6_info *leaf; enum fib6_walk_state state; unsigned int skip; unsigned int count; unsigned int skip_in_node; int (*func)(struct fib6_walker *); void *args; }; struct rt6_statistics { __u32 fib_nodes; /* all fib6 nodes */ __u32 fib_route_nodes; /* intermediate nodes */ __u32 fib_rt_entries; /* rt entries in fib table */ __u32 fib_rt_cache; /* cached rt entries in exception table */ __u32 fib_discarded_routes; /* total number of routes delete */ /* The following stats are not protected by any lock */ atomic_t fib_rt_alloc; /* total number of routes alloced */ atomic_t fib_rt_uncache; /* rt entries in uncached list */ }; #define RTN_TL_ROOT 0x0001 #define RTN_ROOT 0x0002 /* tree root node */ #define RTN_RTINFO 0x0004 /* node with valid routing info */ /* * priority levels (or metrics) * */ struct fib6_table { struct hlist_node tb6_hlist; u32 tb6_id; spinlock_t tb6_lock; struct fib6_node tb6_root; struct inet_peer_base tb6_peers; unsigned int flags; unsigned int fib_seq; #define RT6_TABLE_HAS_DFLT_ROUTER BIT(0) }; #define RT6_TABLE_UNSPEC RT_TABLE_UNSPEC #define RT6_TABLE_MAIN RT_TABLE_MAIN #define RT6_TABLE_DFLT RT6_TABLE_MAIN #define RT6_TABLE_INFO RT6_TABLE_MAIN #define RT6_TABLE_PREFIX RT6_TABLE_MAIN #ifdef CONFIG_IPV6_MULTIPLE_TABLES #define FIB6_TABLE_MIN 1 #define FIB6_TABLE_MAX RT_TABLE_MAX #define RT6_TABLE_LOCAL RT_TABLE_LOCAL #else #define FIB6_TABLE_MIN RT_TABLE_MAIN #define FIB6_TABLE_MAX FIB6_TABLE_MIN #define RT6_TABLE_LOCAL RT6_TABLE_MAIN #endif typedef struct rt6_info *(*pol_lookup_t)(struct net *, struct fib6_table *, struct flowi6 *, const struct sk_buff *, int); struct fib6_entry_notifier_info { struct fib_notifier_info info; /* must be first */ struct fib6_info *rt; unsigned int nsiblings; }; /* * exported functions */ struct fib6_table *fib6_get_table(struct net *net, u32 id); struct fib6_table *fib6_new_table(struct net *net, u32 id); struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6, const struct sk_buff *skb, int flags, pol_lookup_t lookup); /* called with rcu lock held; can return error pointer * caller needs to select path */ int fib6_lookup(struct net *net, int oif, struct flowi6 *fl6, struct fib6_result *res, int flags); /* called with rcu lock held; caller needs to select path */ int fib6_table_lookup(struct net *net, struct fib6_table *table, int oif, struct flowi6 *fl6, struct fib6_result *res, int strict); void fib6_select_path(const struct net *net, struct fib6_result *res, struct flowi6 *fl6, int oif, bool have_oif_match, const struct sk_buff *skb, int strict); struct fib6_node *fib6_node_lookup(struct fib6_node *root, const struct in6_addr *daddr, const struct in6_addr *saddr); struct fib6_node *fib6_locate(struct fib6_node *root, const struct in6_addr *daddr, int dst_len, const struct in6_addr *saddr, int src_len, bool exact_match); void fib6_clean_all(struct net *net, int (*func)(struct fib6_info *, void *arg), void *arg); void fib6_clean_all_skip_notify(struct net *net, int (*func)(struct fib6_info *, void *arg), void *arg); int fib6_add(struct fib6_node *root, struct fib6_info *rt, struct nl_info *info, struct netlink_ext_ack *extack); int fib6_del(struct fib6_info *rt, struct nl_info *info); static inline void rt6_get_prefsrc(const struct rt6_info *rt, struct in6_addr *addr) { const struct fib6_info *from; rcu_read_lock(); from = rcu_dereference(rt->from); if (from) { *addr = from->fib6_prefsrc.addr; } else { struct in6_addr in6_zero = {}; *addr = in6_zero; } rcu_read_unlock(); } int fib6_nh_init(struct net *net, struct fib6_nh *fib6_nh, struct fib6_config *cfg, gfp_t gfp_flags, struct netlink_ext_ack *extack); void fib6_nh_release(struct fib6_nh *fib6_nh); void fib6_nh_release_dsts(struct fib6_nh *fib6_nh); int call_fib6_entry_notifiers(struct net *net, enum fib_event_type event_type, struct fib6_info *rt, struct netlink_ext_ack *extack); int call_fib6_multipath_entry_notifiers(struct net *net, enum fib_event_type event_type, struct fib6_info *rt, unsigned int nsiblings, struct netlink_ext_ack *extack); int call_fib6_entry_notifiers_replace(struct net *net, struct fib6_info *rt); void fib6_rt_update(struct net *net, struct fib6_info *rt, struct nl_info *info); void inet6_rt_notify(int event, struct fib6_info *rt, struct nl_info *info, unsigned int flags); void fib6_run_gc(unsigned long expires, struct net *net, bool force); void fib6_gc_cleanup(void); int fib6_init(void); struct ipv6_route_iter { struct seq_net_private p; struct fib6_walker w; loff_t skip; struct fib6_table *tbl; int sernum; }; extern const struct seq_operations ipv6_route_seq_ops; int call_fib6_notifier(struct notifier_block *nb, enum fib_event_type event_type, struct fib_notifier_info *info); int call_fib6_notifiers(struct net *net, enum fib_event_type event_type, struct fib_notifier_info *info); int __net_init fib6_notifier_init(struct net *net); void __net_exit fib6_notifier_exit(struct net *net); unsigned int fib6_tables_seq_read(struct net *net); int fib6_tables_dump(struct net *net, struct notifier_block *nb, struct netlink_ext_ack *extack); void fib6_update_sernum(struct net *net, struct fib6_info *rt); void fib6_update_sernum_upto_root(struct net *net, struct fib6_info *rt); void fib6_update_sernum_stub(struct net *net, struct fib6_info *f6i); void fib6_metric_set(struct fib6_info *f6i, int metric, u32 val); static inline bool fib6_metric_locked(struct fib6_info *f6i, int metric) { return !!(f6i->fib6_metrics->metrics[RTAX_LOCK - 1] & (1 << metric)); } #if IS_BUILTIN(CONFIG_IPV6) && defined(CONFIG_BPF_SYSCALL) struct bpf_iter__ipv6_route { __bpf_md_ptr(struct bpf_iter_meta *, meta); __bpf_md_ptr(struct fib6_info *, rt); }; #endif INDIRECT_CALLABLE_DECLARE(struct rt6_info *ip6_pol_route_output(struct net *net, struct fib6_table *table, struct flowi6 *fl6, const struct sk_buff *skb, int flags)); INDIRECT_CALLABLE_DECLARE(struct rt6_info *ip6_pol_route_input(struct net *net, struct fib6_table *table, struct flowi6 *fl6, const struct sk_buff *skb, int flags)); INDIRECT_CALLABLE_DECLARE(struct rt6_info *__ip6_route_redirect(struct net *net, struct fib6_table *table, struct flowi6 *fl6, const struct sk_buff *skb, int flags)); INDIRECT_CALLABLE_DECLARE(struct rt6_info *ip6_pol_route_lookup(struct net *net, struct fib6_table *table, struct flowi6 *fl6, const struct sk_buff *skb, int flags)); static inline struct rt6_info *pol_lookup_func(pol_lookup_t lookup, struct net *net, struct fib6_table *table, struct flowi6 *fl6, const struct sk_buff *skb, int flags) { return INDIRECT_CALL_4(lookup, ip6_pol_route_output, ip6_pol_route_input, ip6_pol_route_lookup, __ip6_route_redirect, net, table, fl6, skb, flags); } #ifdef CONFIG_IPV6_MULTIPLE_TABLES static inline bool fib6_has_custom_rules(const struct net *net) { return net->ipv6.fib6_has_custom_rules; } int fib6_rules_init(void); void fib6_rules_cleanup(void); bool fib6_rule_default(const struct fib_rule *rule); int fib6_rules_dump(struct net *net, struct notifier_block *nb, struct netlink_ext_ack *extack); unsigned int fib6_rules_seq_read(struct net *net); static inline bool fib6_rules_early_flow_dissect(struct net *net, struct sk_buff *skb, struct flowi6 *fl6, struct flow_keys *flkeys) { unsigned int flag = FLOW_DISSECTOR_F_STOP_AT_ENCAP; if (!net->ipv6.fib6_rules_require_fldissect) return false; skb_flow_dissect_flow_keys(skb, flkeys, flag); fl6->fl6_sport = flkeys->ports.src; fl6->fl6_dport = flkeys->ports.dst; fl6->flowi6_proto = flkeys->basic.ip_proto; return true; } #else static inline bool fib6_has_custom_rules(const struct net *net) { return false; } static inline int fib6_rules_init(void) { return 0; } static inline void fib6_rules_cleanup(void) { return ; } static inline bool fib6_rule_default(const struct fib_rule *rule) { return true; } static inline int fib6_rules_dump(struct net *net, struct notifier_block *nb, struct netlink_ext_ack *extack) { return 0; } static inline unsigned int fib6_rules_seq_read(struct net *net) { return 0; } static inline bool fib6_rules_early_flow_dissect(struct net *net, struct sk_buff *skb, struct flowi6 *fl6, struct flow_keys *flkeys) { return false; } #endif #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SCHED_CPUTIME_H #define _LINUX_SCHED_CPUTIME_H #include <linux/sched/signal.h> /* * cputime accounting APIs: */ #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE #include <asm/cputime.h> #ifndef cputime_to_nsecs # define cputime_to_nsecs(__ct) \ (cputime_to_usecs(__ct) * NSEC_PER_USEC) #endif #endif /* CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */ #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN extern void task_cputime(struct task_struct *t, u64 *utime, u64 *stime); extern u64 task_gtime(struct task_struct *t); #else static inline void task_cputime(struct task_struct *t, u64 *utime, u64 *stime) { *utime = t->utime; *stime = t->stime; } static inline u64 task_gtime(struct task_struct *t) { return t->gtime; } #endif #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME static inline void task_cputime_scaled(struct task_struct *t, u64 *utimescaled, u64 *stimescaled) { *utimescaled = t->utimescaled; *stimescaled = t->stimescaled; } #else static inline void task_cputime_scaled(struct task_struct *t, u64 *utimescaled, u64 *stimescaled) { task_cputime(t, utimescaled, stimescaled); } #endif extern void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st); extern void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st); extern void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev, u64 *ut, u64 *st); /* * Thread group CPU time accounting. */ void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); void thread_group_sample_cputime(struct task_struct *tsk, u64 *samples); /* * The following are functions that support scheduler-internal time accounting. * These functions are generally called at the timer tick. None of this depends * on CONFIG_SCHEDSTATS. */ /** * get_running_cputimer - return &tsk->signal->cputimer if cputimers are active * * @tsk: Pointer to target task. */ #ifdef CONFIG_POSIX_TIMERS static inline struct thread_group_cputimer *get_running_cputimer(struct task_struct *tsk) { struct thread_group_cputimer *cputimer = &tsk->signal->cputimer; /* * Check whether posix CPU timers are active. If not the thread * group accounting is not active either. Lockless check. */ if (!READ_ONCE(tsk->signal->posix_cputimers.timers_active)) return NULL; /* * After we flush the task's sum_exec_runtime to sig->sum_sched_runtime * in __exit_signal(), we won't account to the signal struct further * cputime consumed by that task, even though the task can still be * ticking after __exit_signal(). * * In order to keep a consistent behaviour between thread group cputime * and thread group cputimer accounting, lets also ignore the cputime * elapsing after __exit_signal() in any thread group timer running. * * This makes sure that POSIX CPU clocks and timers are synchronized, so * that a POSIX CPU timer won't expire while the corresponding POSIX CPU * clock delta is behind the expiring timer value. */ if (unlikely(!tsk->sighand)) return NULL; return cputimer; } #else static inline struct thread_group_cputimer *get_running_cputimer(struct task_struct *tsk) { return NULL; } #endif /** * account_group_user_time - Maintain utime for a thread group. * * @tsk: Pointer to task structure. * @cputime: Time value by which to increment the utime field of the * thread_group_cputime structure. * * If thread group time is being maintained, get the structure for the * running CPU and update the utime field there. */ static inline void account_group_user_time(struct task_struct *tsk, u64 cputime) { struct thread_group_cputimer *cputimer = get_running_cputimer(tsk); if (!cputimer) return; atomic64_add(cputime, &cputimer->cputime_atomic.utime); } /** * account_group_system_time - Maintain stime for a thread group. * * @tsk: Pointer to task structure. * @cputime: Time value by which to increment the stime field of the * thread_group_cputime structure. * * If thread group time is being maintained, get the structure for the * running CPU and update the stime field there. */ static inline void account_group_system_time(struct task_struct *tsk, u64 cputime) { struct thread_group_cputimer *cputimer = get_running_cputimer(tsk); if (!cputimer) return; atomic64_add(cputime, &cputimer->cputime_atomic.stime); } /** * account_group_exec_runtime - Maintain exec runtime for a thread group. * * @tsk: Pointer to task structure. * @ns: Time value by which to increment the sum_exec_runtime field * of the thread_group_cputime structure. * * If thread group time is being maintained, get the structure for the * running CPU and update the sum_exec_runtime field there. */ static inline void account_group_exec_runtime(struct task_struct *tsk, unsigned long long ns) { struct thread_group_cputimer *cputimer = get_running_cputimer(tsk); if (!cputimer) return; atomic64_add(ns, &cputimer->cputime_atomic.sum_exec_runtime); } static inline void prev_cputime_init(struct prev_cputime *prev) { #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE prev->utime = prev->stime = 0; raw_spin_lock_init(&prev->lock); #endif } extern unsigned long long task_sched_runtime(struct task_struct *task); #endif /* _LINUX_SCHED_CPUTIME_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 /* SPDX-License-Identifier: GPL-2.0 */ /* * ioport.h Definitions of routines for detecting, reserving and * allocating system resources. * * Authors: Linus Torvalds */ #ifndef _LINUX_IOPORT_H #define _LINUX_IOPORT_H #ifndef __ASSEMBLY__ #include <linux/compiler.h> #include <linux/types.h> #include <linux/bits.h> /* * Resources are tree-like, allowing * nesting etc.. */ struct resource { resource_size_t start; resource_size_t end; const char *name; unsigned long flags; unsigned long desc; struct resource *parent, *sibling, *child; }; /* * IO resources have these defined flags. * * PCI devices expose these flags to userspace in the "resource" sysfs file, * so don't move them. */ #define IORESOURCE_BITS 0x000000ff /* Bus-specific bits */ #define IORESOURCE_TYPE_BITS 0x00001f00 /* Resource type */ #define IORESOURCE_IO 0x00000100 /* PCI/ISA I/O ports */ #define IORESOURCE_MEM 0x00000200 #define IORESOURCE_REG 0x00000300 /* Register offsets */ #define IORESOURCE_IRQ 0x00000400 #define IORESOURCE_DMA 0x00000800 #define IORESOURCE_BUS 0x00001000 #define IORESOURCE_PREFETCH 0x00002000 /* No side effects */ #define IORESOURCE_READONLY 0x00004000 #define IORESOURCE_CACHEABLE 0x00008000 #define IORESOURCE_RANGELENGTH 0x00010000 #define IORESOURCE_SHADOWABLE 0x00020000 #define IORESOURCE_SIZEALIGN 0x00040000 /* size indicates alignment */ #define IORESOURCE_STARTALIGN 0x00080000 /* start field is alignment */ #define IORESOURCE_MEM_64 0x00100000 #define IORESOURCE_WINDOW 0x00200000 /* forwarded by bridge */ #define IORESOURCE_MUXED 0x00400000 /* Resource is software muxed */ #define IORESOURCE_EXT_TYPE_BITS 0x01000000 /* Resource extended types */ #define IORESOURCE_SYSRAM 0x01000000 /* System RAM (modifier) */ /* IORESOURCE_SYSRAM specific bits. */ #define IORESOURCE_SYSRAM_DRIVER_MANAGED 0x02000000 /* Always detected via a driver. */ #define IORESOURCE_SYSRAM_MERGEABLE 0x04000000 /* Resource can be merged. */ #define IORESOURCE_EXCLUSIVE 0x08000000 /* Userland may not map this resource */ #define IORESOURCE_DISABLED 0x10000000 #define IORESOURCE_UNSET 0x20000000 /* No address assigned yet */ #define IORESOURCE_AUTO 0x40000000 #define IORESOURCE_BUSY 0x80000000 /* Driver has marked this resource busy */ /* I/O resource extended types */ #define IORESOURCE_SYSTEM_RAM (IORESOURCE_MEM|IORESOURCE_SYSRAM) /* PnP IRQ specific bits (IORESOURCE_BITS) */ #define IORESOURCE_IRQ_HIGHEDGE (1<<0) #define IORESOURCE_IRQ_LOWEDGE (1<<1) #define IORESOURCE_IRQ_HIGHLEVEL (1<<2) #define IORESOURCE_IRQ_LOWLEVEL (1<<3) #define IORESOURCE_IRQ_SHAREABLE (1<<4) #define IORESOURCE_IRQ_OPTIONAL (1<<5) /* PnP DMA specific bits (IORESOURCE_BITS) */ #define IORESOURCE_DMA_TYPE_MASK (3<<0) #define IORESOURCE_DMA_8BIT (0<<0) #define IORESOURCE_DMA_8AND16BIT (1<<0) #define IORESOURCE_DMA_16BIT (2<<0) #define IORESOURCE_DMA_MASTER (1<<2) #define IORESOURCE_DMA_BYTE (1<<3) #define IORESOURCE_DMA_WORD (1<<4) #define IORESOURCE_DMA_SPEED_MASK (3<<6) #define IORESOURCE_DMA_COMPATIBLE (0<<6) #define IORESOURCE_DMA_TYPEA (1<<6) #define IORESOURCE_DMA_TYPEB (2<<6) #define IORESOURCE_DMA_TYPEF (3<<6) /* PnP memory I/O specific bits (IORESOURCE_BITS) */ #define IORESOURCE_MEM_WRITEABLE (1<<0) /* dup: IORESOURCE_READONLY */ #define IORESOURCE_MEM_CACHEABLE (1<<1) /* dup: IORESOURCE_CACHEABLE */ #define IORESOURCE_MEM_RANGELENGTH (1<<2) /* dup: IORESOURCE_RANGELENGTH */ #define IORESOURCE_MEM_TYPE_MASK (3<<3) #define IORESOURCE_MEM_8BIT (0<<3) #define IORESOURCE_MEM_16BIT (1<<3) #define IORESOURCE_MEM_8AND16BIT (2<<3) #define IORESOURCE_MEM_32BIT (3<<3) #define IORESOURCE_MEM_SHADOWABLE (1<<5) /* dup: IORESOURCE_SHADOWABLE */ #define IORESOURCE_MEM_EXPANSIONROM (1<<6) /* PnP I/O specific bits (IORESOURCE_BITS) */ #define IORESOURCE_IO_16BIT_ADDR (1<<0) #define IORESOURCE_IO_FIXED (1<<1) #define IORESOURCE_IO_SPARSE (1<<2) /* PCI ROM control bits (IORESOURCE_BITS) */ #define IORESOURCE_ROM_ENABLE (1<<0) /* ROM is enabled, same as PCI_ROM_ADDRESS_ENABLE */ #define IORESOURCE_ROM_SHADOW (1<<1) /* Use RAM image, not ROM BAR */ /* PCI control bits. Shares IORESOURCE_BITS with above PCI ROM. */ #define IORESOURCE_PCI_FIXED (1<<4) /* Do not move resource */ #define IORESOURCE_PCI_EA_BEI (1<<5) /* BAR Equivalent Indicator */ /* * I/O Resource Descriptors * * Descriptors are used by walk_iomem_res_desc() and region_intersects() * for searching a specific resource range in the iomem table. Assign * a new descriptor when a resource range supports the search interfaces. * Otherwise, resource.desc must be set to IORES_DESC_NONE (0). */ enum { IORES_DESC_NONE = 0, IORES_DESC_CRASH_KERNEL = 1, IORES_DESC_ACPI_TABLES = 2, IORES_DESC_ACPI_NV_STORAGE = 3, IORES_DESC_PERSISTENT_MEMORY = 4, IORES_DESC_PERSISTENT_MEMORY_LEGACY = 5, IORES_DESC_DEVICE_PRIVATE_MEMORY = 6, IORES_DESC_RESERVED = 7, IORES_DESC_SOFT_RESERVED = 8, }; /* * Flags controlling ioremap() behavior. */ enum { IORES_MAP_SYSTEM_RAM = BIT(0), IORES_MAP_ENCRYPTED = BIT(1), }; /* helpers to define resources */ #define DEFINE_RES_NAMED(_start, _size, _name, _flags) \ { \ .start = (_start), \ .end = (_start) + (_size) - 1, \ .name = (_name), \ .flags = (_flags), \ .desc = IORES_DESC_NONE, \ } #define DEFINE_RES_IO_NAMED(_start, _size, _name) \ DEFINE_RES_NAMED((_start), (_size), (_name), IORESOURCE_IO) #define DEFINE_RES_IO(_start, _size) \ DEFINE_RES_IO_NAMED((_start), (_size), NULL) #define DEFINE_RES_MEM_NAMED(_start, _size, _name) \ DEFINE_RES_NAMED((_start), (_size), (_name), IORESOURCE_MEM) #define DEFINE_RES_MEM(_start, _size) \ DEFINE_RES_MEM_NAMED((_start), (_size), NULL) #define DEFINE_RES_IRQ_NAMED(_irq, _name) \ DEFINE_RES_NAMED((_irq), 1, (_name), IORESOURCE_IRQ) #define DEFINE_RES_IRQ(_irq) \ DEFINE_RES_IRQ_NAMED((_irq), NULL) #define DEFINE_RES_DMA_NAMED(_dma, _name) \ DEFINE_RES_NAMED((_dma), 1, (_name), IORESOURCE_DMA) #define DEFINE_RES_DMA(_dma) \ DEFINE_RES_DMA_NAMED((_dma), NULL) /* PC/ISA/whatever - the normal PC address spaces: IO and memory */ extern struct resource ioport_resource; extern struct resource iomem_resource; extern struct resource *request_resource_conflict(struct resource *root, struct resource *new); extern int request_resource(struct resource *root, struct resource *new); extern int release_resource(struct resource *new); void release_child_resources(struct resource *new); extern void reserve_region_with_split(struct resource *root, resource_size_t start, resource_size_t end, const char *name); extern struct resource *insert_resource_conflict(struct resource *parent, struct resource *new); extern int insert_resource(struct resource *parent, struct resource *new); extern void insert_resource_expand_to_fit(struct resource *root, struct resource *new); extern int remove_resource(struct resource *old); extern void arch_remove_reservations(struct resource *avail); extern int allocate_resource(struct resource *root, struct resource *new, resource_size_t size, resource_size_t min, resource_size_t max, resource_size_t align, resource_size_t (*alignf)(void *, const struct resource *, resource_size_t, resource_size_t), void *alignf_data); struct resource *lookup_resource(struct resource *root, resource_size_t start); int adjust_resource(struct resource *res, resource_size_t start, resource_size_t size); resource_size_t resource_alignment(struct resource *res); static inline resource_size_t resource_size(const struct resource *res) { return res->end - res->start + 1; } static inline unsigned long resource_type(const struct resource *res) { return res->flags & IORESOURCE_TYPE_BITS; } static inline unsigned long resource_ext_type(const struct resource *res) { return res->flags & IORESOURCE_EXT_TYPE_BITS; } /* True iff r1 completely contains r2 */ static inline bool resource_contains(struct resource *r1, struct resource *r2) { if (resource_type(r1) != resource_type(r2)) return false; if (r1->flags & IORESOURCE_UNSET || r2->flags & IORESOURCE_UNSET) return false; return r1->start <= r2->start && r1->end >= r2->end; } /* Convenience shorthand with allocation */ #define request_region(start,n,name) __request_region(&ioport_resource, (start), (n), (name), 0) #define request_muxed_region(start,n,name) __request_region(&ioport_resource, (start), (n), (name), IORESOURCE_MUXED) #define __request_mem_region(start,n,name, excl) __request_region(&iomem_resource, (start), (n), (name), excl) #define request_mem_region(start,n,name) __request_region(&iomem_resource, (start), (n), (name), 0) #define request_mem_region_exclusive(start,n,name) \ __request_region(&iomem_resource, (start), (n), (name), IORESOURCE_EXCLUSIVE) #define rename_region(region, newname) do { (region)->name = (newname); } while (0) extern struct resource * __request_region(struct resource *, resource_size_t start, resource_size_t n, const char *name, int flags); /* Compatibility cruft */ #define release_region(start,n) __release_region(&ioport_resource, (start), (n)) #define release_mem_region(start,n) __release_region(&iomem_resource, (start), (n)) extern void __release_region(struct resource *, resource_size_t, resource_size_t); #ifdef CONFIG_MEMORY_HOTREMOVE extern void release_mem_region_adjustable(resource_size_t, resource_size_t); #endif #ifdef CONFIG_MEMORY_HOTPLUG extern void merge_system_ram_resource(struct resource *res); #endif /* Wrappers for managed devices */ struct device; extern int devm_request_resource(struct device *dev, struct resource *root, struct resource *new); extern void devm_release_resource(struct device *dev, struct resource *new); #define devm_request_region(dev,start,n,name) \ __devm_request_region(dev, &ioport_resource, (start), (n), (name)) #define devm_request_mem_region(dev,start,n,name) \ __devm_request_region(dev, &iomem_resource, (start), (n), (name)) extern struct resource * __devm_request_region(struct device *dev, struct resource *parent, resource_size_t start, resource_size_t n, const char *name); #define devm_release_region(dev, start, n) \ __devm_release_region(dev, &ioport_resource, (start), (n)) #define devm_release_mem_region(dev, start, n) \ __devm_release_region(dev, &iomem_resource, (start), (n)) extern void __devm_release_region(struct device *dev, struct resource *parent, resource_size_t start, resource_size_t n); extern int iomem_map_sanity_check(resource_size_t addr, unsigned long size); extern bool iomem_is_exclusive(u64 addr); extern int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages, void *arg, int (*func)(unsigned long, unsigned long, void *)); extern int walk_mem_res(u64 start, u64 end, void *arg, int (*func)(struct resource *, void *)); extern int walk_system_ram_res(u64 start, u64 end, void *arg, int (*func)(struct resource *, void *)); extern int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start, u64 end, void *arg, int (*func)(struct resource *, void *)); /* True if any part of r1 overlaps r2 */ static inline bool resource_overlaps(struct resource *r1, struct resource *r2) { return (r1->start <= r2->end && r1->end >= r2->start); } struct resource *devm_request_free_mem_region(struct device *dev, struct resource *base, unsigned long size); struct resource *request_free_mem_region(struct resource *base, unsigned long size, const char *name); #ifdef CONFIG_IO_STRICT_DEVMEM void revoke_devmem(struct resource *res); #else static inline void revoke_devmem(struct resource *res) { }; #endif #endif /* __ASSEMBLY__ */ #endif /* _LINUX_IOPORT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * NetLabel System * * The NetLabel system manages static and dynamic label mappings for network * protocols such as CIPSO and RIPSO. * * Author: Paul Moore <paul@paul-moore.com> */ /* * (c) Copyright Hewlett-Packard Development Company, L.P., 2006, 2008 */ #ifndef _NETLABEL_H #define _NETLABEL_H #include <linux/types.h> #include <linux/slab.h> #include <linux/net.h> #include <linux/skbuff.h> #include <linux/in.h> #include <linux/in6.h> #include <net/netlink.h> #include <net/request_sock.h> #include <linux/refcount.h> struct cipso_v4_doi; struct calipso_doi; /* * NetLabel - A management interface for maintaining network packet label * mapping tables for explicit packet labling protocols. * * Network protocols such as CIPSO and RIPSO require a label translation layer * to convert the label on the packet into something meaningful on the host * machine. In the current Linux implementation these mapping tables live * inside the kernel; NetLabel provides a mechanism for user space applications * to manage these mapping tables. * * NetLabel makes use of the Generic NETLINK mechanism as a transport layer to * send messages between kernel and user space. The general format of a * NetLabel message is shown below: * * +-----------------+-------------------+--------- --- -- - * | struct nlmsghdr | struct genlmsghdr | payload * +-----------------+-------------------+--------- --- -- - * * The 'nlmsghdr' and 'genlmsghdr' structs should be dealt with like normal. * The payload is dependent on the subsystem specified in the * 'nlmsghdr->nlmsg_type' and should be defined below, supporting functions * should be defined in the corresponding net/netlabel/netlabel_<subsys>.h|c * file. All of the fields in the NetLabel payload are NETLINK attributes, see * the include/net/netlink.h file for more information on NETLINK attributes. * */ /* * NetLabel NETLINK protocol */ /* NetLabel NETLINK protocol version * 1: initial version * 2: added static labels for unlabeled connections * 3: network selectors added to the NetLabel/LSM domain mapping and the * CIPSO_V4_MAP_LOCAL CIPSO mapping was added */ #define NETLBL_PROTO_VERSION 3 /* NetLabel NETLINK types/families */ #define NETLBL_NLTYPE_NONE 0 #define NETLBL_NLTYPE_MGMT 1 #define NETLBL_NLTYPE_MGMT_NAME "NLBL_MGMT" #define NETLBL_NLTYPE_RIPSO 2 #define NETLBL_NLTYPE_RIPSO_NAME "NLBL_RIPSO" #define NETLBL_NLTYPE_CIPSOV4 3 #define NETLBL_NLTYPE_CIPSOV4_NAME "NLBL_CIPSOv4" #define NETLBL_NLTYPE_CIPSOV6 4 #define NETLBL_NLTYPE_CIPSOV6_NAME "NLBL_CIPSOv6" #define NETLBL_NLTYPE_UNLABELED 5 #define NETLBL_NLTYPE_UNLABELED_NAME "NLBL_UNLBL" #define NETLBL_NLTYPE_ADDRSELECT 6 #define NETLBL_NLTYPE_ADDRSELECT_NAME "NLBL_ADRSEL" #define NETLBL_NLTYPE_CALIPSO 7 #define NETLBL_NLTYPE_CALIPSO_NAME "NLBL_CALIPSO" /* * NetLabel - Kernel API for accessing the network packet label mappings. * * The following functions are provided for use by other kernel modules, * specifically kernel LSM modules, to provide a consistent, transparent API * for dealing with explicit packet labeling protocols such as CIPSO and * RIPSO. The functions defined here are implemented in the * net/netlabel/netlabel_kapi.c file. * */ /* NetLabel audit information */ struct netlbl_audit { u32 secid; kuid_t loginuid; unsigned int sessionid; }; /* * LSM security attributes */ /** * struct netlbl_lsm_cache - NetLabel LSM security attribute cache * @refcount: atomic reference counter * @free: LSM supplied function to free the cache data * @data: LSM supplied cache data * * Description: * This structure is provided for LSMs which wish to make use of the NetLabel * caching mechanism to store LSM specific data/attributes in the NetLabel * cache. If the LSM has to perform a lot of translation from the NetLabel * security attributes into it's own internal representation then the cache * mechanism can provide a way to eliminate some or all of that translation * overhead on a cache hit. * */ struct netlbl_lsm_cache { refcount_t refcount; void (*free) (const void *data); void *data; }; /** * struct netlbl_lsm_catmap - NetLabel LSM secattr category bitmap * @startbit: the value of the lowest order bit in the bitmap * @bitmap: the category bitmap * @next: pointer to the next bitmap "node" or NULL * * Description: * This structure is used to represent category bitmaps. Due to the large * number of categories supported by most labeling protocols it is not * practical to transfer a full bitmap internally so NetLabel adopts a sparse * bitmap structure modeled after SELinux's ebitmap structure. * The catmap bitmap field MUST be a power of two in length and large * enough to hold at least 240 bits. Special care (i.e. check the code!) * should be used when changing these values as the LSM implementation * probably has functions which rely on the sizes of these types to speed * processing. * */ #define NETLBL_CATMAP_MAPTYPE u64 #define NETLBL_CATMAP_MAPCNT 4 #define NETLBL_CATMAP_MAPSIZE (sizeof(NETLBL_CATMAP_MAPTYPE) * 8) #define NETLBL_CATMAP_SIZE (NETLBL_CATMAP_MAPSIZE * \ NETLBL_CATMAP_MAPCNT) #define NETLBL_CATMAP_BIT (NETLBL_CATMAP_MAPTYPE)0x01 struct netlbl_lsm_catmap { u32 startbit; NETLBL_CATMAP_MAPTYPE bitmap[NETLBL_CATMAP_MAPCNT]; struct netlbl_lsm_catmap *next; }; /** * struct netlbl_lsm_secattr - NetLabel LSM security attributes * @flags: indicate structure attributes, see NETLBL_SECATTR_* * @type: indicate the NLTYPE of the attributes * @domain: the NetLabel LSM domain * @cache: NetLabel LSM specific cache * @attr.mls: MLS sensitivity label * @attr.mls.cat: MLS category bitmap * @attr.mls.lvl: MLS sensitivity level * @attr.secid: LSM specific secid token * * Description: * This structure is used to pass security attributes between NetLabel and the * LSM modules. The flags field is used to specify which fields within the * struct are valid and valid values can be created by bitwise OR'ing the * NETLBL_SECATTR_* defines. The domain field is typically set by the LSM to * specify domain specific configuration settings and is not usually used by * NetLabel itself when returning security attributes to the LSM. * */ struct netlbl_lsm_secattr { u32 flags; /* bitmap values for 'flags' */ #define NETLBL_SECATTR_NONE 0x00000000 #define NETLBL_SECATTR_DOMAIN 0x00000001 #define NETLBL_SECATTR_DOMAIN_CPY (NETLBL_SECATTR_DOMAIN | \ NETLBL_SECATTR_FREE_DOMAIN) #define NETLBL_SECATTR_CACHE 0x00000002 #define NETLBL_SECATTR_MLS_LVL 0x00000004 #define NETLBL_SECATTR_MLS_CAT 0x00000008 #define NETLBL_SECATTR_SECID 0x00000010 /* bitmap meta-values for 'flags' */ #define NETLBL_SECATTR_FREE_DOMAIN 0x01000000 #define NETLBL_SECATTR_CACHEABLE (NETLBL_SECATTR_MLS_LVL | \ NETLBL_SECATTR_MLS_CAT | \ NETLBL_SECATTR_SECID) u32 type; char *domain; struct netlbl_lsm_cache *cache; struct { struct { struct netlbl_lsm_catmap *cat; u32 lvl; } mls; u32 secid; } attr; }; /** * struct netlbl_calipso_ops - NetLabel CALIPSO operations * @doi_add: add a CALIPSO DOI * @doi_free: free a CALIPSO DOI * @doi_getdef: returns a reference to a DOI * @doi_putdef: releases a reference of a DOI * @doi_walk: enumerate the DOI list * @sock_getattr: retrieve the socket's attr * @sock_setattr: set the socket's attr * @sock_delattr: remove the socket's attr * @req_setattr: set the req socket's attr * @req_delattr: remove the req socket's attr * @opt_getattr: retrieve attr from memory block * @skbuff_optptr: find option in packet * @skbuff_setattr: set the skbuff's attr * @skbuff_delattr: remove the skbuff's attr * @cache_invalidate: invalidate cache * @cache_add: add cache entry * * Description: * This structure is filled out by the CALIPSO engine and passed * to the NetLabel core via a call to netlbl_calipso_ops_register(). * It enables the CALIPSO engine (and hence IPv6) to be compiled * as a module. */ struct netlbl_calipso_ops { int (*doi_add)(struct calipso_doi *doi_def, struct netlbl_audit *audit_info); void (*doi_free)(struct calipso_doi *doi_def); int (*doi_remove)(u32 doi, struct netlbl_audit *audit_info); struct calipso_doi *(*doi_getdef)(u32 doi); void (*doi_putdef)(struct calipso_doi *doi_def); int (*doi_walk)(u32 *skip_cnt, int (*callback)(struct calipso_doi *doi_def, void *arg), void *cb_arg); int (*sock_getattr)(struct sock *sk, struct netlbl_lsm_secattr *secattr); int (*sock_setattr)(struct sock *sk, const struct calipso_doi *doi_def, const struct netlbl_lsm_secattr *secattr); void (*sock_delattr)(struct sock *sk); int (*req_setattr)(struct request_sock *req, const struct calipso_doi *doi_def, const struct netlbl_lsm_secattr *secattr); void (*req_delattr)(struct request_sock *req); int (*opt_getattr)(const unsigned char *calipso, struct netlbl_lsm_secattr *secattr); unsigned char *(*skbuff_optptr)(const struct sk_buff *skb); int (*skbuff_setattr)(struct sk_buff *skb, const struct calipso_doi *doi_def, const struct netlbl_lsm_secattr *secattr); int (*skbuff_delattr)(struct sk_buff *skb); void (*cache_invalidate)(void); int (*cache_add)(const unsigned char *calipso_ptr, const struct netlbl_lsm_secattr *secattr); }; /* * LSM security attribute operations (inline) */ /** * netlbl_secattr_cache_alloc - Allocate and initialize a secattr cache * @flags: the memory allocation flags * * Description: * Allocate and initialize a netlbl_lsm_cache structure. Returns a pointer * on success, NULL on failure. * */ static inline struct netlbl_lsm_cache *netlbl_secattr_cache_alloc(gfp_t flags) { struct netlbl_lsm_cache *cache; cache = kzalloc(sizeof(*cache), flags); if (cache) refcount_set(&cache->refcount, 1); return cache; } /** * netlbl_secattr_cache_free - Frees a netlbl_lsm_cache struct * @cache: the struct to free * * Description: * Frees @secattr including all of the internal buffers. * */ static inline void netlbl_secattr_cache_free(struct netlbl_lsm_cache *cache) { if (!refcount_dec_and_test(&cache->refcount)) return; if (cache->free) cache->free(cache->data); kfree(cache); } /** * netlbl_catmap_alloc - Allocate a LSM secattr catmap * @flags: memory allocation flags * * Description: * Allocate memory for a LSM secattr catmap, returns a pointer on success, NULL * on failure. * */ static inline struct netlbl_lsm_catmap *netlbl_catmap_alloc(gfp_t flags) { return kzalloc(sizeof(struct netlbl_lsm_catmap), flags); } /** * netlbl_catmap_free - Free a LSM secattr catmap * @catmap: the category bitmap * * Description: * Free a LSM secattr catmap. * */ static inline void netlbl_catmap_free(struct netlbl_lsm_catmap *catmap) { struct netlbl_lsm_catmap *iter; while (catmap) { iter = catmap; catmap = catmap->next; kfree(iter); } } /** * netlbl_secattr_init - Initialize a netlbl_lsm_secattr struct * @secattr: the struct to initialize * * Description: * Initialize an already allocated netlbl_lsm_secattr struct. * */ static inline void netlbl_secattr_init(struct netlbl_lsm_secattr *secattr) { memset(secattr, 0, sizeof(*secattr)); } /** * netlbl_secattr_destroy - Clears a netlbl_lsm_secattr struct * @secattr: the struct to clear * * Description: * Destroys the @secattr struct, including freeing all of the internal buffers. * The struct must be reset with a call to netlbl_secattr_init() before reuse. * */ static inline void netlbl_secattr_destroy(struct netlbl_lsm_secattr *secattr) { if (secattr->flags & NETLBL_SECATTR_FREE_DOMAIN) kfree(secattr->domain); if (secattr->flags & NETLBL_SECATTR_CACHE) netlbl_secattr_cache_free(secattr->cache); if (secattr->flags & NETLBL_SECATTR_MLS_CAT) netlbl_catmap_free(secattr->attr.mls.cat); } /** * netlbl_secattr_alloc - Allocate and initialize a netlbl_lsm_secattr struct * @flags: the memory allocation flags * * Description: * Allocate and initialize a netlbl_lsm_secattr struct. Returns a valid * pointer on success, or NULL on failure. * */ static inline struct netlbl_lsm_secattr *netlbl_secattr_alloc(gfp_t flags) { return kzalloc(sizeof(struct netlbl_lsm_secattr), flags); } /** * netlbl_secattr_free - Frees a netlbl_lsm_secattr struct * @secattr: the struct to free * * Description: * Frees @secattr including all of the internal buffers. * */ static inline void netlbl_secattr_free(struct netlbl_lsm_secattr *secattr) { netlbl_secattr_destroy(secattr); kfree(secattr); } #ifdef CONFIG_NETLABEL /* * LSM configuration operations */ int netlbl_cfg_map_del(const char *domain, u16 family, const void *addr, const void *mask, struct netlbl_audit *audit_info); int netlbl_cfg_unlbl_map_add(const char *domain, u16 family, const void *addr, const void *mask, struct netlbl_audit *audit_info); int netlbl_cfg_unlbl_static_add(struct net *net, const char *dev_name, const void *addr, const void *mask, u16 family, u32 secid, struct netlbl_audit *audit_info); int netlbl_cfg_unlbl_static_del(struct net *net, const char *dev_name, const void *addr, const void *mask, u16 family, struct netlbl_audit *audit_info); int netlbl_cfg_cipsov4_add(struct cipso_v4_doi *doi_def, struct netlbl_audit *audit_info); void netlbl_cfg_cipsov4_del(u32 doi, struct netlbl_audit *audit_info); int netlbl_cfg_cipsov4_map_add(u32 doi, const char *domain, const struct in_addr *addr, const struct in_addr *mask, struct netlbl_audit *audit_info); int netlbl_cfg_calipso_add(struct calipso_doi *doi_def, struct netlbl_audit *audit_info); void netlbl_cfg_calipso_del(u32 doi, struct netlbl_audit *audit_info); int netlbl_cfg_calipso_map_add(u32 doi, const char *domain, const struct in6_addr *addr, const struct in6_addr *mask, struct netlbl_audit *audit_info); /* * LSM security attribute operations */ int netlbl_catmap_walk(struct netlbl_lsm_catmap *catmap, u32 offset); int netlbl_catmap_walkrng(struct netlbl_lsm_catmap *catmap, u32 offset); int netlbl_catmap_getlong(struct netlbl_lsm_catmap *catmap, u32 *offset, unsigned long *bitmap); int netlbl_catmap_setbit(struct netlbl_lsm_catmap **catmap, u32 bit, gfp_t flags); int netlbl_catmap_setrng(struct netlbl_lsm_catmap **catmap, u32 start, u32 end, gfp_t flags); int netlbl_catmap_setlong(struct netlbl_lsm_catmap **catmap, u32 offset, unsigned long bitmap, gfp_t flags); /* Bitmap functions */ int netlbl_bitmap_walk(const unsigned char *bitmap, u32 bitmap_len, u32 offset, u8 state); void netlbl_bitmap_setbit(unsigned char *bitmap, u32 bit, u8 state); /* * LSM protocol operations (NetLabel LSM/kernel API) */ int netlbl_enabled(void); int netlbl_sock_setattr(struct sock *sk, u16 family, const struct netlbl_lsm_secattr *secattr); void netlbl_sock_delattr(struct sock *sk); int netlbl_sock_getattr(struct sock *sk, struct netlbl_lsm_secattr *secattr); int netlbl_conn_setattr(struct sock *sk, struct sockaddr *addr, const struct netlbl_lsm_secattr *secattr); int netlbl_req_setattr(struct request_sock *req, const struct netlbl_lsm_secattr *secattr); void netlbl_req_delattr(struct request_sock *req); int netlbl_skbuff_setattr(struct sk_buff *skb, u16 family, const struct netlbl_lsm_secattr *secattr); int netlbl_skbuff_getattr(const struct sk_buff *skb, u16 family, struct netlbl_lsm_secattr *secattr); void netlbl_skbuff_err(struct sk_buff *skb, u16 family, int error, int gateway); /* * LSM label mapping cache operations */ void netlbl_cache_invalidate(void); int netlbl_cache_add(const struct sk_buff *skb, u16 family, const struct netlbl_lsm_secattr *secattr); /* * Protocol engine operations */ struct audit_buffer *netlbl_audit_start(int type, struct netlbl_audit *audit_info); #else static inline int netlbl_cfg_map_del(const char *domain, u16 family, const void *addr, const void *mask, struct netlbl_audit *audit_info) { return -ENOSYS; } static inline int netlbl_cfg_unlbl_map_add(const char *domain, u16 family, void *addr, void *mask, struct netlbl_audit *audit_info) { return -ENOSYS; } static inline int netlbl_cfg_unlbl_static_add(struct net *net, const char *dev_name, const void *addr, const void *mask, u16 family, u32 secid, struct netlbl_audit *audit_info) { return -ENOSYS; } static inline int netlbl_cfg_unlbl_static_del(struct net *net, const char *dev_name, const void *addr, const void *mask, u16 family, struct netlbl_audit *audit_info) { return -ENOSYS; } static inline int netlbl_cfg_cipsov4_add(struct cipso_v4_doi *doi_def, struct netlbl_audit *audit_info) { return -ENOSYS; } static inline void netlbl_cfg_cipsov4_del(u32 doi, struct netlbl_audit *audit_info) { return; } static inline int netlbl_cfg_cipsov4_map_add(u32 doi, const char *domain, const struct in_addr *addr, const struct in_addr *mask, struct netlbl_audit *audit_info) { return -ENOSYS; } static inline int netlbl_cfg_calipso_add(struct calipso_doi *doi_def, struct netlbl_audit *audit_info) { return -ENOSYS; } static inline void netlbl_cfg_calipso_del(u32 doi, struct netlbl_audit *audit_info) { return; } static inline int netlbl_cfg_calipso_map_add(u32 doi, const char *domain, const struct in6_addr *addr, const struct in6_addr *mask, struct netlbl_audit *audit_info) { return -ENOSYS; } static inline int netlbl_catmap_walk(struct netlbl_lsm_catmap *catmap, u32 offset) { return -ENOENT; } static inline int netlbl_catmap_walkrng(struct netlbl_lsm_catmap *catmap, u32 offset) { return -ENOENT; } static inline int netlbl_catmap_getlong(struct netlbl_lsm_catmap *catmap, u32 *offset, unsigned long *bitmap) { return 0; } static inline int netlbl_catmap_setbit(struct netlbl_lsm_catmap **catmap, u32 bit, gfp_t flags) { return 0; } static inline int netlbl_catmap_setrng(struct netlbl_lsm_catmap **catmap, u32 start, u32 end, gfp_t flags) { return 0; } static inline int netlbl_catmap_setlong(struct netlbl_lsm_catmap **catmap, u32 offset, unsigned long bitmap, gfp_t flags) { return 0; } static inline int netlbl_enabled(void) { return 0; } static inline int netlbl_sock_setattr(struct sock *sk, u16 family, const struct netlbl_lsm_secattr *secattr) { return -ENOSYS; } static inline void netlbl_sock_delattr(struct sock *sk) { } static inline int netlbl_sock_getattr(struct sock *sk, struct netlbl_lsm_secattr *secattr) { return -ENOSYS; } static inline int netlbl_conn_setattr(struct sock *sk, struct sockaddr *addr, const struct netlbl_lsm_secattr *secattr) { return -ENOSYS; } static inline int netlbl_req_setattr(struct request_sock *req, const struct netlbl_lsm_secattr *secattr) { return -ENOSYS; } static inline void netlbl_req_delattr(struct request_sock *req) { return; } static inline int netlbl_skbuff_setattr(struct sk_buff *skb, u16 family, const struct netlbl_lsm_secattr *secattr) { return -ENOSYS; } static inline int netlbl_skbuff_getattr(const struct sk_buff *skb, u16 family, struct netlbl_lsm_secattr *secattr) { return -ENOSYS; } static inline void netlbl_skbuff_err(struct sk_buff *skb, int error, int gateway) { return; } static inline void netlbl_cache_invalidate(void) { return; } static inline int netlbl_cache_add(const struct sk_buff *skb, u16 family, const struct netlbl_lsm_secattr *secattr) { return 0; } static inline struct audit_buffer *netlbl_audit_start(int type, struct netlbl_audit *audit_info) { return NULL; } #endif /* CONFIG_NETLABEL */ const struct netlbl_calipso_ops * netlbl_calipso_ops_register(const struct netlbl_calipso_ops *ops); #endif /* _NETLABEL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 // SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com * Written by Alex Tomas <alex@clusterfs.com> */ #ifndef _EXT4_EXTENTS #define _EXT4_EXTENTS #include "ext4.h" /* * With AGGRESSIVE_TEST defined, the capacity of index/leaf blocks * becomes very small, so index split, in-depth growing and * other hard changes happen much more often. * This is for debug purposes only. */ #define AGGRESSIVE_TEST_ /* * With EXTENTS_STATS defined, the number of blocks and extents * are collected in the truncate path. They'll be shown at * umount time. */ #define EXTENTS_STATS__ /* * If CHECK_BINSEARCH is defined, then the results of the binary search * will also be checked by linear search. */ #define CHECK_BINSEARCH__ /* * If EXT_STATS is defined then stats numbers are collected. * These number will be displayed at umount time. */ #define EXT_STATS_ /* * ext4_inode has i_block array (60 bytes total). * The first 12 bytes store ext4_extent_header; * the remainder stores an array of ext4_extent. * For non-inode extent blocks, ext4_extent_tail * follows the array. */ /* * This is the extent tail on-disk structure. * All other extent structures are 12 bytes long. It turns out that * block_size % 12 >= 4 for at least all powers of 2 greater than 512, which * covers all valid ext4 block sizes. Therefore, this tail structure can be * crammed into the end of the block without having to rebalance the tree. */ struct ext4_extent_tail { __le32 et_checksum; /* crc32c(uuid+inum+extent_block) */ }; /* * This is the extent on-disk structure. * It's used at the bottom of the tree. */ struct ext4_extent { __le32 ee_block; /* first logical block extent covers */ __le16 ee_len; /* number of blocks covered by extent */ __le16 ee_start_hi; /* high 16 bits of physical block */ __le32 ee_start_lo; /* low 32 bits of physical block */ }; /* * This is index on-disk structure. * It's used at all the levels except the bottom. */ struct ext4_extent_idx { __le32 ei_block; /* index covers logical blocks from 'block' */ __le32 ei_leaf_lo; /* pointer to the physical block of the next * * level. leaf or next index could be there */ __le16 ei_leaf_hi; /* high 16 bits of physical block */ __u16 ei_unused; }; /* * Each block (leaves and indexes), even inode-stored has header. */ struct ext4_extent_header { __le16 eh_magic; /* probably will support different formats */ __le16 eh_entries; /* number of valid entries */ __le16 eh_max; /* capacity of store in entries */ __le16 eh_depth; /* has tree real underlying blocks? */ __le32 eh_generation; /* generation of the tree */ }; #define EXT4_EXT_MAGIC cpu_to_le16(0xf30a) #define EXT4_MAX_EXTENT_DEPTH 5 #define EXT4_EXTENT_TAIL_OFFSET(hdr) \ (sizeof(struct ext4_extent_header) + \ (sizeof(struct ext4_extent) * le16_to_cpu((hdr)->eh_max))) static inline struct ext4_extent_tail * find_ext4_extent_tail(struct ext4_extent_header *eh) { return (struct ext4_extent_tail *)(((void *)eh) + EXT4_EXTENT_TAIL_OFFSET(eh)); } /* * Array of ext4_ext_path contains path to some extent. * Creation/lookup routines use it for traversal/splitting/etc. * Truncate uses it to simulate recursive walking. */ struct ext4_ext_path { ext4_fsblk_t p_block; __u16 p_depth; __u16 p_maxdepth; struct ext4_extent *p_ext; struct ext4_extent_idx *p_idx; struct ext4_extent_header *p_hdr; struct buffer_head *p_bh; }; /* * Used to record a portion of a cluster found at the beginning or end * of an extent while traversing the extent tree during space removal. * A partial cluster may be removed if it does not contain blocks shared * with extents that aren't being deleted (tofree state). Otherwise, * it cannot be removed (nofree state). */ struct partial_cluster { ext4_fsblk_t pclu; /* physical cluster number */ ext4_lblk_t lblk; /* logical block number within logical cluster */ enum {initial, tofree, nofree} state; }; /* * structure for external API */ /* * EXT_INIT_MAX_LEN is the maximum number of blocks we can have in an * initialized extent. This is 2^15 and not (2^16 - 1), since we use the * MSB of ee_len field in the extent datastructure to signify if this * particular extent is an initialized extent or an unwritten (i.e. * preallocated). * EXT_UNWRITTEN_MAX_LEN is the maximum number of blocks we can have in an * unwritten extent. * If ee_len is <= 0x8000, it is an initialized extent. Otherwise, it is an * unwritten one. In other words, if MSB of ee_len is set, it is an * unwritten extent with only one special scenario when ee_len = 0x8000. * In this case we can not have an unwritten extent of zero length and * thus we make it as a special case of initialized extent with 0x8000 length. * This way we get better extent-to-group alignment for initialized extents. * Hence, the maximum number of blocks we can have in an *initialized* * extent is 2^15 (32768) and in an *unwritten* extent is 2^15-1 (32767). */ #define EXT_INIT_MAX_LEN (1UL << 15) #define EXT_UNWRITTEN_MAX_LEN (EXT_INIT_MAX_LEN - 1) #define EXT_FIRST_EXTENT(__hdr__) \ ((struct ext4_extent *) (((char *) (__hdr__)) + \ sizeof(struct ext4_extent_header))) #define EXT_FIRST_INDEX(__hdr__) \ ((struct ext4_extent_idx *) (((char *) (__hdr__)) + \ sizeof(struct ext4_extent_header))) #define EXT_HAS_FREE_INDEX(__path__) \ (le16_to_cpu((__path__)->p_hdr->eh_entries) \ < le16_to_cpu((__path__)->p_hdr->eh_max)) #define EXT_LAST_EXTENT(__hdr__) \ (EXT_FIRST_EXTENT((__hdr__)) + le16_to_cpu((__hdr__)->eh_entries) - 1) #define EXT_LAST_INDEX(__hdr__) \ (EXT_FIRST_INDEX((__hdr__)) + le16_to_cpu((__hdr__)->eh_entries) - 1) #define EXT_MAX_EXTENT(__hdr__) \ ((le16_to_cpu((__hdr__)->eh_max)) ? \ ((EXT_FIRST_EXTENT((__hdr__)) + le16_to_cpu((__hdr__)->eh_max) - 1)) \ : 0) #define EXT_MAX_INDEX(__hdr__) \ ((le16_to_cpu((__hdr__)->eh_max)) ? \ ((EXT_FIRST_INDEX((__hdr__)) + le16_to_cpu((__hdr__)->eh_max) - 1)) : 0) static inline struct ext4_extent_header *ext_inode_hdr(struct inode *inode) { return (struct ext4_extent_header *) EXT4_I(inode)->i_data; } static inline struct ext4_extent_header *ext_block_hdr(struct buffer_head *bh) { return (struct ext4_extent_header *) bh->b_data; } static inline unsigned short ext_depth(struct inode *inode) { return le16_to_cpu(ext_inode_hdr(inode)->eh_depth); } static inline void ext4_ext_mark_unwritten(struct ext4_extent *ext) { /* We can not have an unwritten extent of zero length! */ BUG_ON((le16_to_cpu(ext->ee_len) & ~EXT_INIT_MAX_LEN) == 0); ext->ee_len |= cpu_to_le16(EXT_INIT_MAX_LEN); } static inline int ext4_ext_is_unwritten(struct ext4_extent *ext) { /* Extent with ee_len of 0x8000 is treated as an initialized extent */ return (le16_to_cpu(ext->ee_len) > EXT_INIT_MAX_LEN); } static inline int ext4_ext_get_actual_len(struct ext4_extent *ext) { return (le16_to_cpu(ext->ee_len) <= EXT_INIT_MAX_LEN ? le16_to_cpu(ext->ee_len) : (le16_to_cpu(ext->ee_len) - EXT_INIT_MAX_LEN)); } static inline void ext4_ext_mark_initialized(struct ext4_extent *ext) { ext->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ext)); } /* * ext4_ext_pblock: * combine low and high parts of physical block number into ext4_fsblk_t */ static inline ext4_fsblk_t ext4_ext_pblock(struct ext4_extent *ex) { ext4_fsblk_t block; block = le32_to_cpu(ex->ee_start_lo); block |= ((ext4_fsblk_t) le16_to_cpu(ex->ee_start_hi) << 31) << 1; return block; } /* * ext4_idx_pblock: * combine low and high parts of a leaf physical block number into ext4_fsblk_t */ static inline ext4_fsblk_t ext4_idx_pblock(struct ext4_extent_idx *ix) { ext4_fsblk_t block; block = le32_to_cpu(ix->ei_leaf_lo); block |= ((ext4_fsblk_t) le16_to_cpu(ix->ei_leaf_hi) << 31) << 1; return block; } /* * ext4_ext_store_pblock: * stores a large physical block number into an extent struct, * breaking it into parts */ static inline void ext4_ext_store_pblock(struct ext4_extent *ex, ext4_fsblk_t pb) { ex->ee_start_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff)); ex->ee_start_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff); } /* * ext4_idx_store_pblock: * stores a large physical block number into an index struct, * breaking it into parts */ static inline void ext4_idx_store_pblock(struct ext4_extent_idx *ix, ext4_fsblk_t pb) { ix->ei_leaf_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff)); ix->ei_leaf_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff); } #endif /* _EXT4_EXTENTS */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM rpm #if !defined(_TRACE_RUNTIME_POWER_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_RUNTIME_POWER_H #include <linux/ktime.h> #include <linux/tracepoint.h> struct device; /* * The rpm_internal events are used for tracing some important * runtime pm internal functions. */ DECLARE_EVENT_CLASS(rpm_internal, TP_PROTO(struct device *dev, int flags), TP_ARGS(dev, flags), TP_STRUCT__entry( __string( name, dev_name(dev) ) __field( int, flags ) __field( int , usage_count ) __field( int , disable_depth ) __field( int , runtime_auto ) __field( int , request_pending ) __field( int , irq_safe ) __field( int , child_count ) ), TP_fast_assign( __assign_str(name, dev_name(dev)); __entry->flags = flags; __entry->usage_count = atomic_read( &dev->power.usage_count); __entry->disable_depth = dev->power.disable_depth; __entry->runtime_auto = dev->power.runtime_auto; __entry->request_pending = dev->power.request_pending; __entry->irq_safe = dev->power.irq_safe; __entry->child_count = atomic_read( &dev->power.child_count); ), TP_printk("%s flags-%x cnt-%-2d dep-%-2d auto-%-1d p-%-1d" " irq-%-1d child-%d", __get_str(name), __entry->flags, __entry->usage_count, __entry->disable_depth, __entry->runtime_auto, __entry->request_pending, __entry->irq_safe, __entry->child_count ) ); DEFINE_EVENT(rpm_internal, rpm_suspend, TP_PROTO(struct device *dev, int flags), TP_ARGS(dev, flags) ); DEFINE_EVENT(rpm_internal, rpm_resume, TP_PROTO(struct device *dev, int flags), TP_ARGS(dev, flags) ); DEFINE_EVENT(rpm_internal, rpm_idle, TP_PROTO(struct device *dev, int flags), TP_ARGS(dev, flags) ); DEFINE_EVENT(rpm_internal, rpm_usage, TP_PROTO(struct device *dev, int flags), TP_ARGS(dev, flags) ); TRACE_EVENT(rpm_return_int, TP_PROTO(struct device *dev, unsigned long ip, int ret), TP_ARGS(dev, ip, ret), TP_STRUCT__entry( __string( name, dev_name(dev)) __field( unsigned long, ip ) __field( int, ret ) ), TP_fast_assign( __assign_str(name, dev_name(dev)); __entry->ip = ip; __entry->ret = ret; ), TP_printk("%pS:%s ret=%d", (void *)__entry->ip, __get_str(name), __entry->ret) ); #endif /* _TRACE_RUNTIME_POWER_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_PART_STAT_H #define _LINUX_PART_STAT_H #include <linux/genhd.h> struct disk_stats { u64 nsecs[NR_STAT_GROUPS]; unsigned long sectors[NR_STAT_GROUPS]; unsigned long ios[NR_STAT_GROUPS]; unsigned long merges[NR_STAT_GROUPS]; unsigned long io_ticks; local_t in_flight[2]; }; /* * Macros to operate on percpu disk statistics: * * {disk|part|all}_stat_{add|sub|inc|dec}() modify the stat counters and should * be called between disk_stat_lock() and disk_stat_unlock(). * * part_stat_read() can be called at any time. */ #define part_stat_lock() preempt_disable() #define part_stat_unlock() preempt_enable() #define part_stat_get_cpu(part, field, cpu) \ (per_cpu_ptr((part)->dkstats, (cpu))->field) #define part_stat_get(part, field) \ part_stat_get_cpu(part, field, smp_processor_id()) #define part_stat_read(part, field) \ ({ \ typeof((part)->dkstats->field) res = 0; \ unsigned int _cpu; \ for_each_possible_cpu(_cpu) \ res += per_cpu_ptr((part)->dkstats, _cpu)->field; \ res; \ }) static inline void part_stat_set_all(struct hd_struct *part, int value) { int i; for_each_possible_cpu(i) memset(per_cpu_ptr(part->dkstats, i), value, sizeof(struct disk_stats)); } #define part_stat_read_accum(part, field) \ (part_stat_read(part, field[STAT_READ]) + \ part_stat_read(part, field[STAT_WRITE]) + \ part_stat_read(part, field[STAT_DISCARD])) #define __part_stat_add(part, field, addnd) \ __this_cpu_add((part)->dkstats->field, addnd) #define part_stat_add(part, field, addnd) do { \ __part_stat_add((part), field, addnd); \ if ((part)->partno) \ __part_stat_add(&part_to_disk((part))->part0, \ field, addnd); \ } while (0) #define part_stat_dec(gendiskp, field) \ part_stat_add(gendiskp, field, -1) #define part_stat_inc(gendiskp, field) \ part_stat_add(gendiskp, field, 1) #define part_stat_sub(gendiskp, field, subnd) \ part_stat_add(gendiskp, field, -subnd) #define part_stat_local_dec(gendiskp, field) \ local_dec(&(part_stat_get(gendiskp, field))) #define part_stat_local_inc(gendiskp, field) \ local_inc(&(part_stat_get(gendiskp, field))) #define part_stat_local_read(gendiskp, field) \ local_read(&(part_stat_get(gendiskp, field))) #define part_stat_local_read_cpu(gendiskp, field, cpu) \ local_read(&(part_stat_get_cpu(gendiskp, field, cpu))) #endif /* _LINUX_PART_STAT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 /* SPDX-License-Identifier: GPL-2.0 */ /* * Internals of the DMA direct mapping implementation. Only for use by the * DMA mapping code and IOMMU drivers. */ #ifndef _LINUX_DMA_DIRECT_H #define _LINUX_DMA_DIRECT_H 1 #include <linux/dma-mapping.h> #include <linux/dma-map-ops.h> #include <linux/memblock.h> /* for min_low_pfn */ #include <linux/mem_encrypt.h> #include <linux/swiotlb.h> extern unsigned int zone_dma_bits; /* * Record the mapping of CPU physical to DMA addresses for a given region. */ struct bus_dma_region { phys_addr_t cpu_start; dma_addr_t dma_start; u64 size; u64 offset; }; static inline dma_addr_t translate_phys_to_dma(struct device *dev, phys_addr_t paddr) { const struct bus_dma_region *m; for (m = dev->dma_range_map; m->size; m++) if (paddr >= m->cpu_start && paddr - m->cpu_start < m->size) return (dma_addr_t)paddr - m->offset; /* make sure dma_capable fails when no translation is available */ return DMA_MAPPING_ERROR; } static inline phys_addr_t translate_dma_to_phys(struct device *dev, dma_addr_t dma_addr) { const struct bus_dma_region *m; for (m = dev->dma_range_map; m->size; m++) if (dma_addr >= m->dma_start && dma_addr - m->dma_start < m->size) return (phys_addr_t)dma_addr + m->offset; return (phys_addr_t)-1; } #ifdef CONFIG_ARCH_HAS_PHYS_TO_DMA #include <asm/dma-direct.h> #ifndef phys_to_dma_unencrypted #define phys_to_dma_unencrypted phys_to_dma #endif #else static inline dma_addr_t phys_to_dma_unencrypted(struct device *dev, phys_addr_t paddr) { if (dev->dma_range_map) return translate_phys_to_dma(dev, paddr); return paddr; } /* * If memory encryption is supported, phys_to_dma will set the memory encryption * bit in the DMA address, and dma_to_phys will clear it. * phys_to_dma_unencrypted is for use on special unencrypted memory like swiotlb * buffers. */ static inline dma_addr_t phys_to_dma(struct device *dev, phys_addr_t paddr) { return __sme_set(phys_to_dma_unencrypted(dev, paddr)); } static inline phys_addr_t dma_to_phys(struct device *dev, dma_addr_t dma_addr) { phys_addr_t paddr; if (dev->dma_range_map) paddr = translate_dma_to_phys(dev, dma_addr); else paddr = dma_addr; return __sme_clr(paddr); } #endif /* !CONFIG_ARCH_HAS_PHYS_TO_DMA */ #ifdef CONFIG_ARCH_HAS_FORCE_DMA_UNENCRYPTED bool force_dma_unencrypted(struct device *dev); #else static inline bool force_dma_unencrypted(struct device *dev) { return false; } #endif /* CONFIG_ARCH_HAS_FORCE_DMA_UNENCRYPTED */ static inline bool dma_capable(struct device *dev, dma_addr_t addr, size_t size, bool is_ram) { dma_addr_t end = addr + size - 1; if (addr == DMA_MAPPING_ERROR) return false; if (is_ram && !IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT) && min(addr, end) < phys_to_dma(dev, PFN_PHYS(min_low_pfn))) return false; return end <= min_not_zero(*dev->dma_mask, dev->bus_dma_limit); } u64 dma_direct_get_required_mask(struct device *dev); void *dma_direct_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs); void dma_direct_free(struct device *dev, size_t size, void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs); struct page *dma_direct_alloc_pages(struct device *dev, size_t size, dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp); void dma_direct_free_pages(struct device *dev, size_t size, struct page *page, dma_addr_t dma_addr, enum dma_data_direction dir); int dma_direct_supported(struct device *dev, u64 mask); dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr, size_t size, enum dma_data_direction dir, unsigned long attrs); #endif /* _LINUX_DMA_DIRECT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 /* SPDX-License-Identifier: GPL-2.0 OR MIT */ #ifndef __LINUX_OVERFLOW_H #define __LINUX_OVERFLOW_H #include <linux/compiler.h> #include <linux/limits.h> /* * In the fallback code below, we need to compute the minimum and * maximum values representable in a given type. These macros may also * be useful elsewhere, so we provide them outside the * COMPILER_HAS_GENERIC_BUILTIN_OVERFLOW block. * * It would seem more obvious to do something like * * #define type_min(T) (T)(is_signed_type(T) ? (T)1 << (8*sizeof(T)-1) : 0) * #define type_max(T) (T)(is_signed_type(T) ? ((T)1 << (8*sizeof(T)-1)) - 1 : ~(T)0) * * Unfortunately, the middle expressions, strictly speaking, have * undefined behaviour, and at least some versions of gcc warn about * the type_max expression (but not if -fsanitize=undefined is in * effect; in that case, the warning is deferred to runtime...). * * The slightly excessive casting in type_min is to make sure the * macros also produce sensible values for the exotic type _Bool. [The * overflow checkers only almost work for _Bool, but that's * a-feature-not-a-bug, since people shouldn't be doing arithmetic on * _Bools. Besides, the gcc builtins don't allow _Bool* as third * argument.] * * Idea stolen from * https://mail-index.netbsd.org/tech-misc/2007/02/05/0000.html - * credit to Christian Biere. */ #define is_signed_type(type) (((type)(-1)) < (type)1) #define __type_half_max(type) ((type)1 << (8*sizeof(type) - 1 - is_signed_type(type))) #define type_max(T) ((T)((__type_half_max(T) - 1) + __type_half_max(T))) #define type_min(T) ((T)((T)-type_max(T)-(T)1)) /* * Avoids triggering -Wtype-limits compilation warning, * while using unsigned data types to check a < 0. */ #define is_non_negative(a) ((a) > 0 || (a) == 0) #define is_negative(a) (!(is_non_negative(a))) /* * Allows for effectively applying __must_check to a macro so we can have * both the type-agnostic benefits of the macros while also being able to * enforce that the return value is, in fact, checked. */ static inline bool __must_check __must_check_overflow(bool overflow) { return unlikely(overflow); } #ifdef COMPILER_HAS_GENERIC_BUILTIN_OVERFLOW /* * For simplicity and code hygiene, the fallback code below insists on * a, b and *d having the same type (similar to the min() and max() * macros), whereas gcc's type-generic overflow checkers accept * different types. Hence we don't just make check_add_overflow an * alias for __builtin_add_overflow, but add type checks similar to * below. */ #define check_add_overflow(a, b, d) __must_check_overflow(({ \ typeof(a) __a = (a); \ typeof(b) __b = (b); \ typeof(d) __d = (d); \ (void) (&__a == &__b); \ (void) (&__a == __d); \ __builtin_add_overflow(__a, __b, __d); \ })) #define check_sub_overflow(a, b, d) __must_check_overflow(({ \ typeof(a) __a = (a); \ typeof(b) __b = (b); \ typeof(d) __d = (d); \ (void) (&__a == &__b); \ (void) (&__a == __d); \ __builtin_sub_overflow(__a, __b, __d); \ })) #define check_mul_overflow(a, b, d) __must_check_overflow(({ \ typeof(a) __a = (a); \ typeof(b) __b = (b); \ typeof(d) __d = (d); \ (void) (&__a == &__b); \ (void) (&__a == __d); \ __builtin_mul_overflow(__a, __b, __d); \ })) #else /* Checking for unsigned overflow is relatively easy without causing UB. */ #define __unsigned_add_overflow(a, b, d) ({ \ typeof(a) __a = (a); \ typeof(b) __b = (b); \ typeof(d) __d = (d); \ (void) (&__a == &__b); \ (void) (&__a == __d); \ *__d = __a + __b; \ *__d < __a; \ }) #define __unsigned_sub_overflow(a, b, d) ({ \ typeof(a) __a = (a); \ typeof(b) __b = (b); \ typeof(d) __d = (d); \ (void) (&__a == &__b); \ (void) (&__a == __d); \ *__d = __a - __b; \ __a < __b; \ }) /* * If one of a or b is a compile-time constant, this avoids a division. */ #define __unsigned_mul_overflow(a, b, d) ({ \ typeof(a) __a = (a); \ typeof(b) __b = (b); \ typeof(d) __d = (d); \ (void) (&__a == &__b); \ (void) (&__a == __d); \ *__d = __a * __b; \ __builtin_constant_p(__b) ? \ __b > 0 && __a > type_max(typeof(__a)) / __b : \ __a > 0 && __b > type_max(typeof(__b)) / __a; \ }) /* * For signed types, detecting overflow is much harder, especially if * we want to avoid UB. But the interface of these macros is such that * we must provide a result in *d, and in fact we must produce the * result promised by gcc's builtins, which is simply the possibly * wrapped-around value. Fortunately, we can just formally do the * operations in the widest relevant unsigned type (u64) and then * truncate the result - gcc is smart enough to generate the same code * with and without the (u64) casts. */ /* * Adding two signed integers can overflow only if they have the same * sign, and overflow has happened iff the result has the opposite * sign. */ #define __signed_add_overflow(a, b, d) ({ \ typeof(a) __a = (a); \ typeof(b) __b = (b); \ typeof(d) __d = (d); \ (void) (&__a == &__b); \ (void) (&__a == __d); \ *__d = (u64)__a + (u64)__b; \ (((~(__a ^ __b)) & (*__d ^ __a)) \ & type_min(typeof(__a))) != 0; \ }) /* * Subtraction is similar, except that overflow can now happen only * when the signs are opposite. In this case, overflow has happened if * the result has the opposite sign of a. */ #define __signed_sub_overflow(a, b, d) ({ \ typeof(a) __a = (a); \ typeof(b) __b = (b); \ typeof(d) __d = (d); \ (void) (&__a == &__b); \ (void) (&__a == __d); \ *__d = (u64)__a - (u64)__b; \ ((((__a ^ __b)) & (*__d ^ __a)) \ & type_min(typeof(__a))) != 0; \ }) /* * Signed multiplication is rather hard. gcc always follows C99, so * division is truncated towards 0. This means that we can write the * overflow check like this: * * (a > 0 && (b > MAX/a || b < MIN/a)) || * (a < -1 && (b > MIN/a || b < MAX/a) || * (a == -1 && b == MIN) * * The redundant casts of -1 are to silence an annoying -Wtype-limits * (included in -Wextra) warning: When the type is u8 or u16, the * __b_c_e in check_mul_overflow obviously selects * __unsigned_mul_overflow, but unfortunately gcc still parses this * code and warns about the limited range of __b. */ #define __signed_mul_overflow(a, b, d) ({ \ typeof(a) __a = (a); \ typeof(b) __b = (b); \ typeof(d) __d = (d); \ typeof(a) __tmax = type_max(typeof(a)); \ typeof(a) __tmin = type_min(typeof(a)); \ (void) (&__a == &__b); \ (void) (&__a == __d); \ *__d = (u64)__a * (u64)__b; \ (__b > 0 && (__a > __tmax/__b || __a < __tmin/__b)) || \ (__b < (typeof(__b))-1 && (__a > __tmin/__b || __a < __tmax/__b)) || \ (__b == (typeof(__b))-1 && __a == __tmin); \ }) #define check_add_overflow(a, b, d) __must_check_overflow( \ __builtin_choose_expr(is_signed_type(typeof(a)), \ __signed_add_overflow(a, b, d), \ __unsigned_add_overflow(a, b, d))) #define check_sub_overflow(a, b, d) __must_check_overflow( \ __builtin_choose_expr(is_signed_type(typeof(a)), \ __signed_sub_overflow(a, b, d), \ __unsigned_sub_overflow(a, b, d))) #define check_mul_overflow(a, b, d) __must_check_overflow( \ __builtin_choose_expr(is_signed_type(typeof(a)), \ __signed_mul_overflow(a, b, d), \ __unsigned_mul_overflow(a, b, d))) #endif /* COMPILER_HAS_GENERIC_BUILTIN_OVERFLOW */ /** check_shl_overflow() - Calculate a left-shifted value and check overflow * * @a: Value to be shifted * @s: How many bits left to shift * @d: Pointer to where to store the result * * Computes *@d = (@a << @s) * * Returns true if '*d' cannot hold the result or when 'a << s' doesn't * make sense. Example conditions: * - 'a << s' causes bits to be lost when stored in *d. * - 's' is garbage (e.g. negative) or so large that the result of * 'a << s' is guaranteed to be 0. * - 'a' is negative. * - 'a << s' sets the sign bit, if any, in '*d'. * * '*d' will hold the results of the attempted shift, but is not * considered "safe for use" if false is returned. */ #define check_shl_overflow(a, s, d) __must_check_overflow(({ \ typeof(a) _a = a; \ typeof(s) _s = s; \ typeof(d) _d = d; \ u64 _a_full = _a; \ unsigned int _to_shift = \ is_non_negative(_s) && _s < 8 * sizeof(*d) ? _s : 0; \ *_d = (_a_full << _to_shift); \ (_to_shift != _s || is_negative(*_d) || is_negative(_a) || \ (*_d >> _to_shift) != _a); \ })) /** * array_size() - Calculate size of 2-dimensional array. * * @a: dimension one * @b: dimension two * * Calculates size of 2-dimensional array: @a * @b. * * Returns: number of bytes needed to represent the array or SIZE_MAX on * overflow. */ static inline __must_check size_t array_size(size_t a, size_t b) { size_t bytes; if (check_mul_overflow(a, b, &bytes)) return SIZE_MAX; return bytes; } /** * array3_size() - Calculate size of 3-dimensional array. * * @a: dimension one * @b: dimension two * @c: dimension three * * Calculates size of 3-dimensional array: @a * @b * @c. * * Returns: number of bytes needed to represent the array or SIZE_MAX on * overflow. */ static inline __must_check size_t array3_size(size_t a, size_t b, size_t c) { size_t bytes; if (check_mul_overflow(a, b, &bytes)) return SIZE_MAX; if (check_mul_overflow(bytes, c, &bytes)) return SIZE_MAX; return bytes; } /* * Compute a*b+c, returning SIZE_MAX on overflow. Internal helper for * struct_size() below. */ static inline __must_check size_t __ab_c_size(size_t a, size_t b, size_t c) { size_t bytes; if (check_mul_overflow(a, b, &bytes)) return SIZE_MAX; if (check_add_overflow(bytes, c, &bytes)) return SIZE_MAX; return bytes; } /** * struct_size() - Calculate size of structure with trailing array. * @p: Pointer to the structure. * @member: Name of the array member. * @count: Number of elements in the array. * * Calculates size of memory needed for structure @p followed by an * array of @count number of @member elements. * * Return: number of bytes needed or SIZE_MAX on overflow. */ #define struct_size(p, member, count) \ __ab_c_size(count, \ sizeof(*(p)->member) + __must_be_array((p)->member),\ sizeof(*(p))) /** * flex_array_size() - Calculate size of a flexible array member * within an enclosing structure. * * @p: Pointer to the structure. * @member: Name of the flexible array member. * @count: Number of elements in the array. * * Calculates size of a flexible array of @count number of @member * elements, at the end of structure @p. * * Return: number of bytes needed or SIZE_MAX on overflow. */ #define flex_array_size(p, member, count) \ array_size(count, \ sizeof(*(p)->member) + __must_be_array((p)->member)) #endif /* __LINUX_OVERFLOW_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 /* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright (c) 1999-2002 Vojtech Pavlik */ #ifndef _INPUT_H #define _INPUT_H #include <linux/time.h> #include <linux/list.h> #include <uapi/linux/input.h> /* Implementation details, userspace should not care about these */ #define ABS_MT_FIRST ABS_MT_TOUCH_MAJOR #define ABS_MT_LAST ABS_MT_TOOL_Y /* * In-kernel definitions. */ #include <linux/device.h> #include <linux/fs.h> #include <linux/timer.h> #include <linux/mod_devicetable.h> struct input_dev_poller; /** * struct input_value - input value representation * @type: type of value (EV_KEY, EV_ABS, etc) * @code: the value code * @value: the value */ struct input_value { __u16 type; __u16 code; __s32 value; }; enum input_clock_type { INPUT_CLK_REAL = 0, INPUT_CLK_MONO, INPUT_CLK_BOOT, INPUT_CLK_MAX }; /** * struct input_dev - represents an input device * @name: name of the device * @phys: physical path to the device in the system hierarchy * @uniq: unique identification code for the device (if device has it) * @id: id of the device (struct input_id) * @propbit: bitmap of device properties and quirks * @evbit: bitmap of types of events supported by the device (EV_KEY, * EV_REL, etc.) * @keybit: bitmap of keys/buttons this device has * @relbit: bitmap of relative axes for the device * @absbit: bitmap of absolute axes for the device * @mscbit: bitmap of miscellaneous events supported by the device * @ledbit: bitmap of leds present on the device * @sndbit: bitmap of sound effects supported by the device * @ffbit: bitmap of force feedback effects supported by the device * @swbit: bitmap of switches present on the device * @hint_events_per_packet: average number of events generated by the * device in a packet (between EV_SYN/SYN_REPORT events). Used by * event handlers to estimate size of the buffer needed to hold * events. * @keycodemax: size of keycode table * @keycodesize: size of elements in keycode table * @keycode: map of scancodes to keycodes for this device * @getkeycode: optional legacy method to retrieve current keymap. * @setkeycode: optional method to alter current keymap, used to implement * sparse keymaps. If not supplied default mechanism will be used. * The method is being called while holding event_lock and thus must * not sleep * @ff: force feedback structure associated with the device if device * supports force feedback effects * @poller: poller structure associated with the device if device is * set up to use polling mode * @repeat_key: stores key code of the last key pressed; used to implement * software autorepeat * @timer: timer for software autorepeat * @rep: current values for autorepeat parameters (delay, rate) * @mt: pointer to multitouch state * @absinfo: array of &struct input_absinfo elements holding information * about absolute axes (current value, min, max, flat, fuzz, * resolution) * @key: reflects current state of device's keys/buttons * @led: reflects current state of device's LEDs * @snd: reflects current state of sound effects * @sw: reflects current state of device's switches * @open: this method is called when the very first user calls * input_open_device(). The driver must prepare the device * to start generating events (start polling thread, * request an IRQ, submit URB, etc.) * @close: this method is called when the very last user calls * input_close_device(). * @flush: purges the device. Most commonly used to get rid of force * feedback effects loaded into the device when disconnecting * from it * @event: event handler for events sent _to_ the device, like EV_LED * or EV_SND. The device is expected to carry out the requested * action (turn on a LED, play sound, etc.) The call is protected * by @event_lock and must not sleep * @grab: input handle that currently has the device grabbed (via * EVIOCGRAB ioctl). When a handle grabs a device it becomes sole * recipient for all input events coming from the device * @event_lock: this spinlock is taken when input core receives * and processes a new event for the device (in input_event()). * Code that accesses and/or modifies parameters of a device * (such as keymap or absmin, absmax, absfuzz, etc.) after device * has been registered with input core must take this lock. * @mutex: serializes calls to open(), close() and flush() methods * @users: stores number of users (input handlers) that opened this * device. It is used by input_open_device() and input_close_device() * to make sure that dev->open() is only called when the first * user opens device and dev->close() is called when the very * last user closes the device * @going_away: marks devices that are in a middle of unregistering and * causes input_open_device*() fail with -ENODEV. * @dev: driver model's view of this device * @h_list: list of input handles associated with the device. When * accessing the list dev->mutex must be held * @node: used to place the device onto input_dev_list * @num_vals: number of values queued in the current frame * @max_vals: maximum number of values queued in a frame * @vals: array of values queued in the current frame * @devres_managed: indicates that devices is managed with devres framework * and needs not be explicitly unregistered or freed. * @timestamp: storage for a timestamp set by input_set_timestamp called * by a driver */ struct input_dev { const char *name; const char *phys; const char *uniq; struct input_id id; unsigned long propbit[BITS_TO_LONGS(INPUT_PROP_CNT)]; unsigned long evbit[BITS_TO_LONGS(EV_CNT)]; unsigned long keybit[BITS_TO_LONGS(KEY_CNT)]; unsigned long relbit[BITS_TO_LONGS(REL_CNT)]; unsigned long absbit[BITS_TO_LONGS(ABS_CNT)]; unsigned long mscbit[BITS_TO_LONGS(MSC_CNT)]; unsigned long ledbit[BITS_TO_LONGS(LED_CNT)]; unsigned long sndbit[BITS_TO_LONGS(SND_CNT)]; unsigned long ffbit[BITS_TO_LONGS(FF_CNT)]; unsigned long swbit[BITS_TO_LONGS(SW_CNT)]; unsigned int hint_events_per_packet; unsigned int keycodemax; unsigned int keycodesize; void *keycode; int (*setkeycode)(struct input_dev *dev, const struct input_keymap_entry *ke, unsigned int *old_keycode); int (*getkeycode)(struct input_dev *dev, struct input_keymap_entry *ke); struct ff_device *ff; struct input_dev_poller *poller; unsigned int repeat_key; struct timer_list timer; int rep[REP_CNT]; struct input_mt *mt; struct input_absinfo *absinfo; unsigned long key[BITS_TO_LONGS(KEY_CNT)]; unsigned long led[BITS_TO_LONGS(LED_CNT)]; unsigned long snd[BITS_TO_LONGS(SND_CNT)]; unsigned long sw[BITS_TO_LONGS(SW_CNT)]; int (*open)(struct input_dev *dev); void (*close)(struct input_dev *dev); int (*flush)(struct input_dev *dev, struct file *file); int (*event)(struct input_dev *dev, unsigned int type, unsigned int code, int value); struct input_handle __rcu *grab; spinlock_t event_lock; struct mutex mutex; unsigned int users; bool going_away; struct device dev; struct list_head h_list; struct list_head node; unsigned int num_vals; unsigned int max_vals; struct input_value *vals; bool devres_managed; ktime_t timestamp[INPUT_CLK_MAX]; }; #define to_input_dev(d) container_of(d, struct input_dev, dev) /* * Verify that we are in sync with input_device_id mod_devicetable.h #defines */ #if EV_MAX != INPUT_DEVICE_ID_EV_MAX #error "EV_MAX and INPUT_DEVICE_ID_EV_MAX do not match" #endif #if KEY_MIN_INTERESTING != INPUT_DEVICE_ID_KEY_MIN_INTERESTING #error "KEY_MIN_INTERESTING and INPUT_DEVICE_ID_KEY_MIN_INTERESTING do not match" #endif #if KEY_MAX != INPUT_DEVICE_ID_KEY_MAX #error "KEY_MAX and INPUT_DEVICE_ID_KEY_MAX do not match" #endif #if REL_MAX != INPUT_DEVICE_ID_REL_MAX #error "REL_MAX and INPUT_DEVICE_ID_REL_MAX do not match" #endif #if ABS_MAX != INPUT_DEVICE_ID_ABS_MAX #error "ABS_MAX and INPUT_DEVICE_ID_ABS_MAX do not match" #endif #if MSC_MAX != INPUT_DEVICE_ID_MSC_MAX #error "MSC_MAX and INPUT_DEVICE_ID_MSC_MAX do not match" #endif #if LED_MAX != INPUT_DEVICE_ID_LED_MAX #error "LED_MAX and INPUT_DEVICE_ID_LED_MAX do not match" #endif #if SND_MAX != INPUT_DEVICE_ID_SND_MAX #error "SND_MAX and INPUT_DEVICE_ID_SND_MAX do not match" #endif #if FF_MAX != INPUT_DEVICE_ID_FF_MAX #error "FF_MAX and INPUT_DEVICE_ID_FF_MAX do not match" #endif #if SW_MAX != INPUT_DEVICE_ID_SW_MAX #error "SW_MAX and INPUT_DEVICE_ID_SW_MAX do not match" #endif #if INPUT_PROP_MAX != INPUT_DEVICE_ID_PROP_MAX #error "INPUT_PROP_MAX and INPUT_DEVICE_ID_PROP_MAX do not match" #endif #define INPUT_DEVICE_ID_MATCH_DEVICE \ (INPUT_DEVICE_ID_MATCH_BUS | INPUT_DEVICE_ID_MATCH_VENDOR | INPUT_DEVICE_ID_MATCH_PRODUCT) #define INPUT_DEVICE_ID_MATCH_DEVICE_AND_VERSION \ (INPUT_DEVICE_ID_MATCH_DEVICE | INPUT_DEVICE_ID_MATCH_VERSION) struct input_handle; /** * struct input_handler - implements one of interfaces for input devices * @private: driver-specific data * @event: event handler. This method is being called by input core with * interrupts disabled and dev->event_lock spinlock held and so * it may not sleep * @events: event sequence handler. This method is being called by * input core with interrupts disabled and dev->event_lock * spinlock held and so it may not sleep * @filter: similar to @event; separates normal event handlers from * "filters". * @match: called after comparing device's id with handler's id_table * to perform fine-grained matching between device and handler * @connect: called when attaching a handler to an input device * @disconnect: disconnects a handler from input device * @start: starts handler for given handle. This function is called by * input core right after connect() method and also when a process * that "grabbed" a device releases it * @legacy_minors: set to %true by drivers using legacy minor ranges * @minor: beginning of range of 32 legacy minors for devices this driver * can provide * @name: name of the handler, to be shown in /proc/bus/input/handlers * @id_table: pointer to a table of input_device_ids this driver can * handle * @h_list: list of input handles associated with the handler * @node: for placing the driver onto input_handler_list * * Input handlers attach to input devices and create input handles. There * are likely several handlers attached to any given input device at the * same time. All of them will get their copy of input event generated by * the device. * * The very same structure is used to implement input filters. Input core * allows filters to run first and will not pass event to regular handlers * if any of the filters indicate that the event should be filtered (by * returning %true from their filter() method). * * Note that input core serializes calls to connect() and disconnect() * methods. */ struct input_handler { void *private; void (*event)(struct input_handle *handle, unsigned int type, unsigned int code, int value); void (*events)(struct input_handle *handle, const struct input_value *vals, unsigned int count); bool (*filter)(struct input_handle *handle, unsigned int type, unsigned int code, int value); bool (*match)(struct input_handler *handler, struct input_dev *dev); int (*connect)(struct input_handler *handler, struct input_dev *dev, const struct input_device_id *id); void (*disconnect)(struct input_handle *handle); void (*start)(struct input_handle *handle); bool legacy_minors; int minor; const char *name; const struct input_device_id *id_table; struct list_head h_list; struct list_head node; }; /** * struct input_handle - links input device with an input handler * @private: handler-specific data * @open: counter showing whether the handle is 'open', i.e. should deliver * events from its device * @name: name given to the handle by handler that created it * @dev: input device the handle is attached to * @handler: handler that works with the device through this handle * @d_node: used to put the handle on device's list of attached handles * @h_node: used to put the handle on handler's list of handles from which * it gets events */ struct input_handle { void *private; int open; const char *name; struct input_dev *dev; struct input_handler *handler; struct list_head d_node; struct list_head h_node; }; struct input_dev __must_check *input_allocate_device(void); struct input_dev __must_check *devm_input_allocate_device(struct device *); void input_free_device(struct input_dev *dev); static inline struct input_dev *input_get_device(struct input_dev *dev) { return dev ? to_input_dev(get_device(&dev->dev)) : NULL; } static inline void input_put_device(struct input_dev *dev) { if (dev) put_device(&dev->dev); } static inline void *input_get_drvdata(struct input_dev *dev) { return dev_get_drvdata(&dev->dev); } static inline void input_set_drvdata(struct input_dev *dev, void *data) { dev_set_drvdata(&dev->dev, data); } int __must_check input_register_device(struct input_dev *); void input_unregister_device(struct input_dev *); void input_reset_device(struct input_dev *); int input_setup_polling(struct input_dev *dev, void (*poll_fn)(struct input_dev *dev)); void input_set_poll_interval(struct input_dev *dev, unsigned int interval); void input_set_min_poll_interval(struct input_dev *dev, unsigned int interval); void input_set_max_poll_interval(struct input_dev *dev, unsigned int interval); int input_get_poll_interval(struct input_dev *dev); int __must_check input_register_handler(struct input_handler *); void input_unregister_handler(struct input_handler *); int __must_check input_get_new_minor(int legacy_base, unsigned int legacy_num, bool allow_dynamic); void input_free_minor(unsigned int minor); int input_handler_for_each_handle(struct input_handler *, void *data, int (*fn)(struct input_handle *, void *)); int input_register_handle(struct input_handle *); void input_unregister_handle(struct input_handle *); int input_grab_device(struct input_handle *); void input_release_device(struct input_handle *); int input_open_device(struct input_handle *); void input_close_device(struct input_handle *); int input_flush_device(struct input_handle *handle, struct file *file); void input_set_timestamp(struct input_dev *dev, ktime_t timestamp); ktime_t *input_get_timestamp(struct input_dev *dev); void input_event(struct input_dev *dev, unsigned int type, unsigned int code, int value); void input_inject_event(struct input_handle *handle, unsigned int type, unsigned int code, int value); static inline void input_report_key(struct input_dev *dev, unsigned int code, int value) { input_event(dev, EV_KEY, code, !!value); } static inline void input_report_rel(struct input_dev *dev, unsigned int code, int value) { input_event(dev, EV_REL, code, value); } static inline void input_report_abs(struct input_dev *dev, unsigned int code, int value) { input_event(dev, EV_ABS, code, value); } static inline void input_report_ff_status(struct input_dev *dev, unsigned int code, int value) { input_event(dev, EV_FF_STATUS, code, value); } static inline void input_report_switch(struct input_dev *dev, unsigned int code, int value) { input_event(dev, EV_SW, code, !!value); } static inline void input_sync(struct input_dev *dev) { input_event(dev, EV_SYN, SYN_REPORT, 0); } static inline void input_mt_sync(struct input_dev *dev) { input_event(dev, EV_SYN, SYN_MT_REPORT, 0); } void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code); /** * input_set_events_per_packet - tell handlers about the driver event rate * @dev: the input device used by the driver * @n_events: the average number of events between calls to input_sync() * * If the event rate sent from a device is unusually large, use this * function to set the expected event rate. This will allow handlers * to set up an appropriate buffer size for the event stream, in order * to minimize information loss. */ static inline void input_set_events_per_packet(struct input_dev *dev, int n_events) { dev->hint_events_per_packet = n_events; } void input_alloc_absinfo(struct input_dev *dev); void input_set_abs_params(struct input_dev *dev, unsigned int axis, int min, int max, int fuzz, int flat); #define INPUT_GENERATE_ABS_ACCESSORS(_suffix, _item) \ static inline int input_abs_get_##_suffix(struct input_dev *dev, \ unsigned int axis) \ { \ return dev->absinfo ? dev->absinfo[axis]._item : 0; \ } \ \ static inline void input_abs_set_##_suffix(struct input_dev *dev, \ unsigned int axis, int val) \ { \ input_alloc_absinfo(dev); \ if (dev->absinfo) \ dev->absinfo[axis]._item = val; \ } INPUT_GENERATE_ABS_ACCESSORS(val, value) INPUT_GENERATE_ABS_ACCESSORS(min, minimum) INPUT_GENERATE_ABS_ACCESSORS(max, maximum) INPUT_GENERATE_ABS_ACCESSORS(fuzz, fuzz) INPUT_GENERATE_ABS_ACCESSORS(flat, flat) INPUT_GENERATE_ABS_ACCESSORS(res, resolution) int input_scancode_to_scalar(const struct input_keymap_entry *ke, unsigned int *scancode); int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke); int input_set_keycode(struct input_dev *dev, const struct input_keymap_entry *ke); bool input_match_device_id(const struct input_dev *dev, const struct input_device_id *id); void input_enable_softrepeat(struct input_dev *dev, int delay, int period); extern struct class input_class; /** * struct ff_device - force-feedback part of an input device * @upload: Called to upload an new effect into device * @erase: Called to erase an effect from device * @playback: Called to request device to start playing specified effect * @set_gain: Called to set specified gain * @set_autocenter: Called to auto-center device * @destroy: called by input core when parent input device is being * destroyed * @private: driver-specific data, will be freed automatically * @ffbit: bitmap of force feedback capabilities truly supported by * device (not emulated like ones in input_dev->ffbit) * @mutex: mutex for serializing access to the device * @max_effects: maximum number of effects supported by device * @effects: pointer to an array of effects currently loaded into device * @effect_owners: array of effect owners; when file handle owning * an effect gets closed the effect is automatically erased * * Every force-feedback device must implement upload() and playback() * methods; erase() is optional. set_gain() and set_autocenter() need * only be implemented if driver sets up FF_GAIN and FF_AUTOCENTER * bits. * * Note that playback(), set_gain() and set_autocenter() are called with * dev->event_lock spinlock held and interrupts off and thus may not * sleep. */ struct ff_device { int (*upload)(struct input_dev *dev, struct ff_effect *effect, struct ff_effect *old); int (*erase)(struct input_dev *dev, int effect_id); int (*playback)(struct input_dev *dev, int effect_id, int value); void (*set_gain)(struct input_dev *dev, u16 gain); void (*set_autocenter)(struct input_dev *dev, u16 magnitude); void (*destroy)(struct ff_device *); void *private; unsigned long ffbit[BITS_TO_LONGS(FF_CNT)]; struct mutex mutex; int max_effects; struct ff_effect *effects; struct file *effect_owners[]; }; int input_ff_create(struct input_dev *dev, unsigned int max_effects); void input_ff_destroy(struct input_dev *dev); int input_ff_event(struct input_dev *dev, unsigned int type, unsigned int code, int value); int input_ff_upload(struct input_dev *dev, struct ff_effect *effect, struct file *file); int input_ff_erase(struct input_dev *dev, int effect_id, struct file *file); int input_ff_flush(struct input_dev *dev, struct file *file); int input_ff_create_memless(struct input_dev *dev, void *data, int (*play_effect)(struct input_dev *, void *, struct ff_effect *)); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM skb #if !defined(_TRACE_SKB_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_SKB_H #include <linux/skbuff.h> #include <linux/netdevice.h> #include <linux/tracepoint.h> /* * Tracepoint for free an sk_buff: */ TRACE_EVENT(kfree_skb, TP_PROTO(struct sk_buff *skb, void *location), TP_ARGS(skb, location), TP_STRUCT__entry( __field( void *, skbaddr ) __field( void *, location ) __field( unsigned short, protocol ) ), TP_fast_assign( __entry->skbaddr = skb; __entry->location = location; __entry->protocol = ntohs(skb->protocol); ), TP_printk("skbaddr=%p protocol=%u location=%p", __entry->skbaddr, __entry->protocol, __entry->location) ); TRACE_EVENT(consume_skb, TP_PROTO(struct sk_buff *skb), TP_ARGS(skb), TP_STRUCT__entry( __field( void *, skbaddr ) ), TP_fast_assign( __entry->skbaddr = skb; ), TP_printk("skbaddr=%p", __entry->skbaddr) ); TRACE_EVENT(skb_copy_datagram_iovec, TP_PROTO(const struct sk_buff *skb, int len), TP_ARGS(skb, len), TP_STRUCT__entry( __field( const void *, skbaddr ) __field( int, len ) ), TP_fast_assign( __entry->skbaddr = skb; __entry->len = len; ), TP_printk("skbaddr=%p len=%d", __entry->skbaddr, __entry->len) ); #endif /* _TRACE_SKB_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_MM_TYPES_H #define _LINUX_MM_TYPES_H #include <linux/mm_types_task.h> #include <linux/auxvec.h> #include <linux/list.h> #include <linux/spinlock.h> #include <linux/rbtree.h> #include <linux/rwsem.h> #include <linux/completion.h> #include <linux/cpumask.h> #include <linux/uprobes.h> #include <linux/page-flags-layout.h> #include <linux/workqueue.h> #include <linux/seqlock.h> #include <asm/mmu.h> #ifndef AT_VECTOR_SIZE_ARCH #define AT_VECTOR_SIZE_ARCH 0 #endif #define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1)) #define INIT_PASID 0 struct address_space; struct mem_cgroup; /* * Each physical page in the system has a struct page associated with * it to keep track of whatever it is we are using the page for at the * moment. Note that we have no way to track which tasks are using * a page, though if it is a pagecache page, rmap structures can tell us * who is mapping it. * * If you allocate the page using alloc_pages(), you can use some of the * space in struct page for your own purposes. The five words in the main * union are available, except for bit 0 of the first word which must be * kept clear. Many users use this word to store a pointer to an object * which is guaranteed to be aligned. If you use the same storage as * page->mapping, you must restore it to NULL before freeing the page. * * If your page will not be mapped to userspace, you can also use the four * bytes in the mapcount union, but you must call page_mapcount_reset() * before freeing it. * * If you want to use the refcount field, it must be used in such a way * that other CPUs temporarily incrementing and then decrementing the * refcount does not cause problems. On receiving the page from * alloc_pages(), the refcount will be positive. * * If you allocate pages of order > 0, you can use some of the fields * in each subpage, but you may need to restore some of their values * afterwards. * * SLUB uses cmpxchg_double() to atomically update its freelist and * counters. That requires that freelist & counters be adjacent and * double-word aligned. We align all struct pages to double-word * boundaries, and ensure that 'freelist' is aligned within the * struct. */ #ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE #define _struct_page_alignment __aligned(2 * sizeof(unsigned long)) #else #define _struct_page_alignment #endif struct page { unsigned long flags; /* Atomic flags, some possibly * updated asynchronously */ /* * Five words (20/40 bytes) are available in this union. * WARNING: bit 0 of the first word is used for PageTail(). That * means the other users of this union MUST NOT use the bit to * avoid collision and false-positive PageTail(). */ union { struct { /* Page cache and anonymous pages */ /** * @lru: Pageout list, eg. active_list protected by * pgdat->lru_lock. Sometimes used as a generic list * by the page owner. */ struct list_head lru; /* See page-flags.h for PAGE_MAPPING_FLAGS */ struct address_space *mapping; pgoff_t index; /* Our offset within mapping. */ /** * @private: Mapping-private opaque data. * Usually used for buffer_heads if PagePrivate. * Used for swp_entry_t if PageSwapCache. * Indicates order in the buddy system if PageBuddy. */ unsigned long private; }; struct { /* page_pool used by netstack */ /** * @dma_addr: might require a 64-bit value on * 32-bit architectures. */ unsigned long dma_addr[2]; }; struct { /* slab, slob and slub */ union { struct list_head slab_list; struct { /* Partial pages */ struct page *next; #ifdef CONFIG_64BIT int pages; /* Nr of pages left */ int pobjects; /* Approximate count */ #else short int pages; short int pobjects; #endif }; }; struct kmem_cache *slab_cache; /* not slob */ /* Double-word boundary */ void *freelist; /* first free object */ union { void *s_mem; /* slab: first object */ unsigned long counters; /* SLUB */ struct { /* SLUB */ unsigned inuse:16; unsigned objects:15; unsigned frozen:1; }; }; }; struct { /* Tail pages of compound page */ unsigned long compound_head; /* Bit zero is set */ /* First tail page only */ unsigned char compound_dtor; unsigned char compound_order; atomic_t compound_mapcount; unsigned int compound_nr; /* 1 << compound_order */ }; struct { /* Second tail page of compound page */ unsigned long _compound_pad_1; /* compound_head */ atomic_t hpage_pinned_refcount; /* For both global and memcg */ struct list_head deferred_list; }; struct { /* Page table pages */ unsigned long _pt_pad_1; /* compound_head */ pgtable_t pmd_huge_pte; /* protected by page->ptl */ unsigned long _pt_pad_2; /* mapping */ union { struct mm_struct *pt_mm; /* x86 pgds only */ atomic_t pt_frag_refcount; /* powerpc */ }; #if ALLOC_SPLIT_PTLOCKS spinlock_t *ptl; #else spinlock_t ptl; #endif }; struct { /* ZONE_DEVICE pages */ /** @pgmap: Points to the hosting device page map. */ struct dev_pagemap *pgmap; void *zone_device_data; /* * ZONE_DEVICE private pages are counted as being * mapped so the next 3 words hold the mapping, index, * and private fields from the source anonymous or * page cache page while the page is migrated to device * private memory. * ZONE_DEVICE MEMORY_DEVICE_FS_DAX pages also * use the mapping, index, and private fields when * pmem backed DAX files are mapped. */ }; /** @rcu_head: You can use this to free a page by RCU. */ struct rcu_head rcu_head; }; union { /* This union is 4 bytes in size. */ /* * If the page can be mapped to userspace, encodes the number * of times this page is referenced by a page table. */ atomic_t _mapcount; /* * If the page is neither PageSlab nor mappable to userspace, * the value stored here may help determine what this page * is used for. See page-flags.h for a list of page types * which are currently stored here. */ unsigned int page_type; unsigned int active; /* SLAB */ int units; /* SLOB */ }; /* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */ atomic_t _refcount; #ifdef CONFIG_MEMCG union { struct mem_cgroup *mem_cgroup; struct obj_cgroup **obj_cgroups; }; #endif /* * On machines where all RAM is mapped into kernel address space, * we can simply calculate the virtual address. On machines with * highmem some memory is mapped into kernel virtual memory * dynamically, so we need a place to store that address. * Note that this field could be 16 bits on x86 ... ;) * * Architectures with slow multiplication can define * WANT_PAGE_VIRTUAL in asm/page.h */ #if defined(WANT_PAGE_VIRTUAL) void *virtual; /* Kernel virtual address (NULL if not kmapped, ie. highmem) */ #endif /* WANT_PAGE_VIRTUAL */ #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS int _last_cpupid; #endif } _struct_page_alignment; static inline atomic_t *compound_mapcount_ptr(struct page *page) { return &page[1].compound_mapcount; } static inline atomic_t *compound_pincount_ptr(struct page *page) { return &page[2].hpage_pinned_refcount; } /* * Used for sizing the vmemmap region on some architectures */ #define STRUCT_PAGE_MAX_SHIFT (order_base_2(sizeof(struct page))) #define PAGE_FRAG_CACHE_MAX_SIZE __ALIGN_MASK(32768, ~PAGE_MASK) #define PAGE_FRAG_CACHE_MAX_ORDER get_order(PAGE_FRAG_CACHE_MAX_SIZE) #define page_private(page) ((page)->private) static inline void set_page_private(struct page *page, unsigned long private) { page->private = private; } struct page_frag_cache { void * va; #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) __u16 offset; __u16 size; #else __u32 offset; #endif /* we maintain a pagecount bias, so that we dont dirty cache line * containing page->_refcount every time we allocate a fragment. */ unsigned int pagecnt_bias; bool pfmemalloc; }; typedef unsigned long vm_flags_t; /* * A region containing a mapping of a non-memory backed file under NOMMU * conditions. These are held in a global tree and are pinned by the VMAs that * map parts of them. */ struct vm_region { struct rb_node vm_rb; /* link in global region tree */ vm_flags_t vm_flags; /* VMA vm_flags */ unsigned long vm_start; /* start address of region */ unsigned long vm_end; /* region initialised to here */ unsigned long vm_top; /* region allocated to here */ unsigned long vm_pgoff; /* the offset in vm_file corresponding to vm_start */ struct file *vm_file; /* the backing file or NULL */ int vm_usage; /* region usage count (access under nommu_region_sem) */ bool vm_icache_flushed : 1; /* true if the icache has been flushed for * this region */ }; #ifdef CONFIG_USERFAULTFD #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, }) struct vm_userfaultfd_ctx { struct userfaultfd_ctx *ctx; }; #else /* CONFIG_USERFAULTFD */ #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {}) struct vm_userfaultfd_ctx {}; #endif /* CONFIG_USERFAULTFD */ /* * This struct describes a virtual memory area. There is one of these * per VM-area/task. A VM area is any part of the process virtual memory * space that has a special rule for the page-fault handlers (ie a shared * library, the executable area etc). */ struct vm_area_struct { /* The first cache line has the info for VMA tree walking. */ unsigned long vm_start; /* Our start address within vm_mm. */ unsigned long vm_end; /* The first byte after our end address within vm_mm. */ /* linked list of VM areas per task, sorted by address */ struct vm_area_struct *vm_next, *vm_prev; struct rb_node vm_rb; /* * Largest free memory gap in bytes to the left of this VMA. * Either between this VMA and vma->vm_prev, or between one of the * VMAs below us in the VMA rbtree and its ->vm_prev. This helps * get_unmapped_area find a free area of the right size. */ unsigned long rb_subtree_gap; /* Second cache line starts here. */ struct mm_struct *vm_mm; /* The address space we belong to. */ /* * Access permissions of this VMA. * See vmf_insert_mixed_prot() for discussion. */ pgprot_t vm_page_prot; unsigned long vm_flags; /* Flags, see mm.h. */ /* * For areas with an address space and backing store, * linkage into the address_space->i_mmap interval tree. */ struct { struct rb_node rb; unsigned long rb_subtree_last; } shared; /* * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma * list, after a COW of one of the file pages. A MAP_SHARED vma * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack * or brk vma (with NULL file) can only be in an anon_vma list. */ struct list_head anon_vma_chain; /* Serialized by mmap_lock & * page_table_lock */ struct anon_vma *anon_vma; /* Serialized by page_table_lock */ /* Function pointers to deal with this struct. */ const struct vm_operations_struct *vm_ops; /* Information about our backing store: */ unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE units */ struct file * vm_file; /* File we map to (can be NULL). */ void * vm_private_data; /* was vm_pte (shared mem) */ #ifdef CONFIG_SWAP atomic_long_t swap_readahead_info; #endif #ifndef CONFIG_MMU struct vm_region *vm_region; /* NOMMU mapping region */ #endif #ifdef CONFIG_NUMA struct mempolicy *vm_policy; /* NUMA policy for the VMA */ #endif struct vm_userfaultfd_ctx vm_userfaultfd_ctx; } __randomize_layout; struct core_thread { struct task_struct *task; struct core_thread *next; }; struct core_state { atomic_t nr_threads; struct core_thread dumper; struct completion startup; }; struct kioctx_table; struct mm_struct { struct { struct vm_area_struct *mmap; /* list of VMAs */ struct rb_root mm_rb; u64 vmacache_seqnum; /* per-thread vmacache */ #ifdef CONFIG_MMU unsigned long (*get_unmapped_area) (struct file *filp, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags); #endif unsigned long mmap_base; /* base of mmap area */ unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */ #ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES /* Base adresses for compatible mmap() */ unsigned long mmap_compat_base; unsigned long mmap_compat_legacy_base; #endif unsigned long task_size; /* size of task vm space */ unsigned long highest_vm_end; /* highest vma end address */ pgd_t * pgd; #ifdef CONFIG_MEMBARRIER /** * @membarrier_state: Flags controlling membarrier behavior. * * This field is close to @pgd to hopefully fit in the same * cache-line, which needs to be touched by switch_mm(). */ atomic_t membarrier_state; #endif /** * @mm_users: The number of users including userspace. * * Use mmget()/mmget_not_zero()/mmput() to modify. When this * drops to 0 (i.e. when the task exits and there are no other * temporary reference holders), we also release a reference on * @mm_count (which may then free the &struct mm_struct if * @mm_count also drops to 0). */ atomic_t mm_users; /** * @mm_count: The number of references to &struct mm_struct * (@mm_users count as 1). * * Use mmgrab()/mmdrop() to modify. When this drops to 0, the * &struct mm_struct is freed. */ atomic_t mm_count; /** * @has_pinned: Whether this mm has pinned any pages. This can * be either replaced in the future by @pinned_vm when it * becomes stable, or grow into a counter on its own. We're * aggresive on this bit now - even if the pinned pages were * unpinned later on, we'll still keep this bit set for the * lifecycle of this mm just for simplicity. */ atomic_t has_pinned; #ifdef CONFIG_MMU atomic_long_t pgtables_bytes; /* PTE page table pages */ #endif int map_count; /* number of VMAs */ spinlock_t page_table_lock; /* Protects page tables and some * counters */ /* * With some kernel config, the current mmap_lock's offset * inside 'mm_struct' is at 0x120, which is very optimal, as * its two hot fields 'count' and 'owner' sit in 2 different * cachelines, and when mmap_lock is highly contended, both * of the 2 fields will be accessed frequently, current layout * will help to reduce cache bouncing. * * So please be careful with adding new fields before * mmap_lock, which can easily push the 2 fields into one * cacheline. */ struct rw_semaphore mmap_lock; struct list_head mmlist; /* List of maybe swapped mm's. These * are globally strung together off * init_mm.mmlist, and are protected * by mmlist_lock */ unsigned long hiwater_rss; /* High-watermark of RSS usage */ unsigned long hiwater_vm; /* High-water virtual memory usage */ unsigned long total_vm; /* Total pages mapped */ unsigned long locked_vm; /* Pages that have PG_mlocked set */ atomic64_t pinned_vm; /* Refcount permanently increased */ unsigned long data_vm; /* VM_WRITE & ~VM_SHARED & ~VM_STACK */ unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE & ~VM_STACK */ unsigned long stack_vm; /* VM_STACK */ unsigned long def_flags; /** * @write_protect_seq: Locked when any thread is write * protecting pages mapped by this mm to enforce a later COW, * for instance during page table copying for fork(). */ seqcount_t write_protect_seq; spinlock_t arg_lock; /* protect the below fields */ unsigned long start_code, end_code, start_data, end_data; unsigned long start_brk, brk, start_stack; unsigned long arg_start, arg_end, env_start, env_end; unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */ /* * Special counters, in some configurations protected by the * page_table_lock, in other configurations by being atomic. */ struct mm_rss_stat rss_stat; struct linux_binfmt *binfmt; /* Architecture-specific MM context */ mm_context_t context; unsigned long flags; /* Must use atomic bitops to access */ struct core_state *core_state; /* coredumping support */ #ifdef CONFIG_AIO spinlock_t ioctx_lock; struct kioctx_table __rcu *ioctx_table; #endif #ifdef CONFIG_MEMCG /* * "owner" points to a task that is regarded as the canonical * user/owner of this mm. All of the following must be true in * order for it to be changed: * * current == mm->owner * current->mm != mm * new_owner->mm == mm * new_owner->alloc_lock is held */ struct task_struct __rcu *owner; #endif struct user_namespace *user_ns; /* store ref to file /proc/<pid>/exe symlink points to */ struct file __rcu *exe_file; #ifdef CONFIG_MMU_NOTIFIER struct mmu_notifier_subscriptions *notifier_subscriptions; #endif #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS pgtable_t pmd_huge_pte; /* protected by page_table_lock */ #endif #ifdef CONFIG_NUMA_BALANCING /* * numa_next_scan is the next time that the PTEs will be marked * pte_numa. NUMA hinting faults will gather statistics and * migrate pages to new nodes if necessary. */ unsigned long numa_next_scan; /* Restart point for scanning and setting pte_numa */ unsigned long numa_scan_offset; /* numa_scan_seq prevents two threads setting pte_numa */ int numa_scan_seq; #endif /* * An operation with batched TLB flushing is going on. Anything * that can move process memory needs to flush the TLB when * moving a PROT_NONE or PROT_NUMA mapped page. */ atomic_t tlb_flush_pending; #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH /* See flush_tlb_batched_pending() */ bool tlb_flush_batched; #endif struct uprobes_state uprobes_state; #ifdef CONFIG_HUGETLB_PAGE atomic_long_t hugetlb_usage; #endif struct work_struct async_put_work; #ifdef CONFIG_IOMMU_SUPPORT u32 pasid; #endif } __randomize_layout; /* * The mm_cpumask needs to be at the end of mm_struct, because it * is dynamically sized based on nr_cpu_ids. */ unsigned long cpu_bitmap[]; }; extern struct mm_struct init_mm; /* Pointer magic because the dynamic array size confuses some compilers. */ static inline void mm_init_cpumask(struct mm_struct *mm) { unsigned long cpu_bitmap = (unsigned long)mm; cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap); cpumask_clear((struct cpumask *)cpu_bitmap); } /* Future-safe accessor for struct mm_struct's cpu_vm_mask. */ static inline cpumask_t *mm_cpumask(struct mm_struct *mm) { return (struct cpumask *)&mm->cpu_bitmap; } struct mmu_gather; extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end); extern void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end); static inline void init_tlb_flush_pending(struct mm_struct *mm) { atomic_set(&mm->tlb_flush_pending, 0); } static inline void inc_tlb_flush_pending(struct mm_struct *mm) { atomic_inc(&mm->tlb_flush_pending); /* * The only time this value is relevant is when there are indeed pages * to flush. And we'll only flush pages after changing them, which * requires the PTL. * * So the ordering here is: * * atomic_inc(&mm->tlb_flush_pending); * spin_lock(&ptl); * ... * set_pte_at(); * spin_unlock(&ptl); * * spin_lock(&ptl) * mm_tlb_flush_pending(); * .... * spin_unlock(&ptl); * * flush_tlb_range(); * atomic_dec(&mm->tlb_flush_pending); * * Where the increment if constrained by the PTL unlock, it thus * ensures that the increment is visible if the PTE modification is * visible. After all, if there is no PTE modification, nobody cares * about TLB flushes either. * * This very much relies on users (mm_tlb_flush_pending() and * mm_tlb_flush_nested()) only caring about _specific_ PTEs (and * therefore specific PTLs), because with SPLIT_PTE_PTLOCKS and RCpc * locks (PPC) the unlock of one doesn't order against the lock of * another PTL. * * The decrement is ordered by the flush_tlb_range(), such that * mm_tlb_flush_pending() will not return false unless all flushes have * completed. */ } static inline void dec_tlb_flush_pending(struct mm_struct *mm) { /* * See inc_tlb_flush_pending(). * * This cannot be smp_mb__before_atomic() because smp_mb() simply does * not order against TLB invalidate completion, which is what we need. * * Therefore we must rely on tlb_flush_*() to guarantee order. */ atomic_dec(&mm->tlb_flush_pending); } static inline bool mm_tlb_flush_pending(struct mm_struct *mm) { /* * Must be called after having acquired the PTL; orders against that * PTLs release and therefore ensures that if we observe the modified * PTE we must also observe the increment from inc_tlb_flush_pending(). * * That is, it only guarantees to return true if there is a flush * pending for _this_ PTL. */ return atomic_read(&mm->tlb_flush_pending); } static inline bool mm_tlb_flush_nested(struct mm_struct *mm) { /* * Similar to mm_tlb_flush_pending(), we must have acquired the PTL * for which there is a TLB flush pending in order to guarantee * we've seen both that PTE modification and the increment. * * (no requirement on actually still holding the PTL, that is irrelevant) */ return atomic_read(&mm->tlb_flush_pending) > 1; } struct vm_fault; /** * typedef vm_fault_t - Return type for page fault handlers. * * Page fault handlers return a bitmask of %VM_FAULT values. */ typedef __bitwise unsigned int vm_fault_t; /** * enum vm_fault_reason - Page fault handlers return a bitmask of * these values to tell the core VM what happened when handling the * fault. Used to decide whether a process gets delivered SIGBUS or * just gets major/minor fault counters bumped up. * * @VM_FAULT_OOM: Out Of Memory * @VM_FAULT_SIGBUS: Bad access * @VM_FAULT_MAJOR: Page read from storage * @VM_FAULT_WRITE: Special case for get_user_pages * @VM_FAULT_HWPOISON: Hit poisoned small page * @VM_FAULT_HWPOISON_LARGE: Hit poisoned large page. Index encoded * in upper bits * @VM_FAULT_SIGSEGV: segmentation fault * @VM_FAULT_NOPAGE: ->fault installed the pte, not return page * @VM_FAULT_LOCKED: ->fault locked the returned page * @VM_FAULT_RETRY: ->fault blocked, must retry * @VM_FAULT_FALLBACK: huge page fault failed, fall back to small * @VM_FAULT_DONE_COW: ->fault has fully handled COW * @VM_FAULT_NEEDDSYNC: ->fault did not modify page tables and needs * fsync() to complete (for synchronous page faults * in DAX) * @VM_FAULT_HINDEX_MASK: mask HINDEX value * */ enum vm_fault_reason { VM_FAULT_OOM = (__force vm_fault_t)0x000001, VM_FAULT_SIGBUS = (__force vm_fault_t)0x000002, VM_FAULT_MAJOR = (__force vm_fault_t)0x000004, VM_FAULT_WRITE = (__force vm_fault_t)0x000008, VM_FAULT_HWPOISON = (__force vm_fault_t)0x000010, VM_FAULT_HWPOISON_LARGE = (__force vm_fault_t)0x000020, VM_FAULT_SIGSEGV = (__force vm_fault_t)0x000040, VM_FAULT_NOPAGE = (__force vm_fault_t)0x000100, VM_FAULT_LOCKED = (__force vm_fault_t)0x000200, VM_FAULT_RETRY = (__force vm_fault_t)0x000400, VM_FAULT_FALLBACK = (__force vm_fault_t)0x000800, VM_FAULT_DONE_COW = (__force vm_fault_t)0x001000, VM_FAULT_NEEDDSYNC = (__force vm_fault_t)0x002000, VM_FAULT_HINDEX_MASK = (__force vm_fault_t)0x0f0000, }; /* Encode hstate index for a hwpoisoned large page */ #define VM_FAULT_SET_HINDEX(x) ((__force vm_fault_t)((x) << 16)) #define VM_FAULT_GET_HINDEX(x) (((__force unsigned int)(x) >> 16) & 0xf) #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | \ VM_FAULT_SIGSEGV | VM_FAULT_HWPOISON | \ VM_FAULT_HWPOISON_LARGE | VM_FAULT_FALLBACK) #define VM_FAULT_RESULT_TRACE \ { VM_FAULT_OOM, "OOM" }, \ { VM_FAULT_SIGBUS, "SIGBUS" }, \ { VM_FAULT_MAJOR, "MAJOR" }, \ { VM_FAULT_WRITE, "WRITE" }, \ { VM_FAULT_HWPOISON, "HWPOISON" }, \ { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \ { VM_FAULT_SIGSEGV, "SIGSEGV" }, \ { VM_FAULT_NOPAGE, "NOPAGE" }, \ { VM_FAULT_LOCKED, "LOCKED" }, \ { VM_FAULT_RETRY, "RETRY" }, \ { VM_FAULT_FALLBACK, "FALLBACK" }, \ { VM_FAULT_DONE_COW, "DONE_COW" }, \ { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" } struct vm_special_mapping { const char *name; /* The name, e.g. "[vdso]". */ /* * If .fault is not provided, this points to a * NULL-terminated array of pages that back the special mapping. * * This must not be NULL unless .fault is provided. */ struct page **pages; /* * If non-NULL, then this is called to resolve page faults * on the special mapping. If used, .pages is not checked. */ vm_fault_t (*fault)(const struct vm_special_mapping *sm, struct vm_area_struct *vma, struct vm_fault *vmf); int (*mremap)(const struct vm_special_mapping *sm, struct vm_area_struct *new_vma); }; enum tlb_flush_reason { TLB_FLUSH_ON_TASK_SWITCH, TLB_REMOTE_SHOOTDOWN, TLB_LOCAL_SHOOTDOWN, TLB_LOCAL_MM_SHOOTDOWN, TLB_REMOTE_SEND_IPI, NR_TLB_FLUSH_REASONS, }; /* * A swap entry has to fit into a "unsigned long", as the entry is hidden * in the "index" field of the swapper address space. */ typedef struct { unsigned long val; } swp_entry_t; #endif /* _LINUX_MM_TYPES_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_NODEMASK_H #define __LINUX_NODEMASK_H /* * Nodemasks provide a bitmap suitable for representing the * set of Node's in a system, one bit position per Node number. * * See detailed comments in the file linux/bitmap.h describing the * data type on which these nodemasks are based. * * For details of nodemask_parse_user(), see bitmap_parse_user() in * lib/bitmap.c. For details of nodelist_parse(), see bitmap_parselist(), * also in bitmap.c. For details of node_remap(), see bitmap_bitremap in * lib/bitmap.c. For details of nodes_remap(), see bitmap_remap in * lib/bitmap.c. For details of nodes_onto(), see bitmap_onto in * lib/bitmap.c. For details of nodes_fold(), see bitmap_fold in * lib/bitmap.c. * * The available nodemask operations are: * * void node_set(node, mask) turn on bit 'node' in mask * void node_clear(node, mask) turn off bit 'node' in mask * void nodes_setall(mask) set all bits * void nodes_clear(mask) clear all bits * int node_isset(node, mask) true iff bit 'node' set in mask * int node_test_and_set(node, mask) test and set bit 'node' in mask * * void nodes_and(dst, src1, src2) dst = src1 & src2 [intersection] * void nodes_or(dst, src1, src2) dst = src1 | src2 [union] * void nodes_xor(dst, src1, src2) dst = src1 ^ src2 * void nodes_andnot(dst, src1, src2) dst = src1 & ~src2 * void nodes_complement(dst, src) dst = ~src * * int nodes_equal(mask1, mask2) Does mask1 == mask2? * int nodes_intersects(mask1, mask2) Do mask1 and mask2 intersect? * int nodes_subset(mask1, mask2) Is mask1 a subset of mask2? * int nodes_empty(mask) Is mask empty (no bits sets)? * int nodes_full(mask) Is mask full (all bits sets)? * int nodes_weight(mask) Hamming weight - number of set bits * * void nodes_shift_right(dst, src, n) Shift right * void nodes_shift_left(dst, src, n) Shift left * * int first_node(mask) Number lowest set bit, or MAX_NUMNODES * int next_node(node, mask) Next node past 'node', or MAX_NUMNODES * int next_node_in(node, mask) Next node past 'node', or wrap to first, * or MAX_NUMNODES * int first_unset_node(mask) First node not set in mask, or * MAX_NUMNODES * * nodemask_t nodemask_of_node(node) Return nodemask with bit 'node' set * NODE_MASK_ALL Initializer - all bits set * NODE_MASK_NONE Initializer - no bits set * unsigned long *nodes_addr(mask) Array of unsigned long's in mask * * int nodemask_parse_user(ubuf, ulen, mask) Parse ascii string as nodemask * int nodelist_parse(buf, map) Parse ascii string as nodelist * int node_remap(oldbit, old, new) newbit = map(old, new)(oldbit) * void nodes_remap(dst, src, old, new) *dst = map(old, new)(src) * void nodes_onto(dst, orig, relmap) *dst = orig relative to relmap * void nodes_fold(dst, orig, sz) dst bits = orig bits mod sz * * for_each_node_mask(node, mask) for-loop node over mask * * int num_online_nodes() Number of online Nodes * int num_possible_nodes() Number of all possibl