1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 #undef TRACE_SYSTEM #define TRACE_SYSTEM neigh #if !defined(_TRACE_NEIGH_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_NEIGH_H #include <linux/skbuff.h> #include <linux/netdevice.h> #include <linux/tracepoint.h> #include <net/neighbour.h> #define neigh_state_str(state) \ __print_symbolic(state, \ { NUD_INCOMPLETE, "incomplete" }, \ { NUD_REACHABLE, "reachable" }, \ { NUD_STALE, "stale" }, \ { NUD_DELAY, "delay" }, \ { NUD_PROBE, "probe" }, \ { NUD_FAILED, "failed" }, \ { NUD_NOARP, "noarp" }, \ { NUD_PERMANENT, "permanent"}) TRACE_EVENT(neigh_create, TP_PROTO(struct neigh_table *tbl, struct net_device *dev, const void *pkey, const struct neighbour *n, bool exempt_from_gc), TP_ARGS(tbl, dev, pkey, n, exempt_from_gc), TP_STRUCT__entry( __field(u32, family) __dynamic_array(char, dev, IFNAMSIZ ) __field(int, entries) __field(u8, created) __field(u8, gc_exempt) __array(u8, primary_key4, 4) __array(u8, primary_key6, 16) ), TP_fast_assign( struct in6_addr *pin6; __be32 *p32; __entry->family = tbl->family; __assign_str(dev, (dev ? dev->name : "NULL")); __entry->entries = atomic_read(&tbl->gc_entries); __entry->created = n != NULL; __entry->gc_exempt = exempt_from_gc; pin6 = (struct in6_addr *)__entry->primary_key6; p32 = (__be32 *)__entry->primary_key4; if (tbl->family == AF_INET) *p32 = *(__be32 *)pkey; else *p32 = 0; #if IS_ENABLED(CONFIG_IPV6) if (tbl->family == AF_INET6) { pin6 = (struct in6_addr *)__entry->primary_key6; *pin6 = *(struct in6_addr *)pkey; } #endif ), TP_printk("family %d dev %s entries %d primary_key4 %pI4 primary_key6 %pI6c created %d gc_exempt %d", __entry->family, __get_str(dev), __entry->entries, __entry->primary_key4, __entry->primary_key6, __entry->created, __entry->gc_exempt) ); TRACE_EVENT(neigh_update, TP_PROTO(struct neighbour *n, const u8 *lladdr, u8 new, u32 flags, u32 nlmsg_pid), TP_ARGS(n, lladdr, new, flags, nlmsg_pid), TP_STRUCT__entry( __field(u32, family) __string(dev, (n->dev ? n->dev->name : "NULL")) __array(u8, lladdr, MAX_ADDR_LEN) __field(u8, lladdr_len) __field(u8, flags) __field(u8, nud_state) __field(u8, type) __field(u8, dead) __field(int, refcnt) __array(__u8, primary_key4, 4) __array(__u8, primary_key6, 16) __field(unsigned long, confirmed) __field(unsigned long, updated) __field(unsigned long, used) __array(u8, new_lladdr, MAX_ADDR_LEN) __field(u8, new_state) __field(u32, update_flags) __field(u32, pid) ), TP_fast_assign( int lladdr_len = (n->dev ? n->dev->addr_len : MAX_ADDR_LEN); struct in6_addr *pin6; __be32 *p32; __entry->family = n->tbl->family; __assign_str(dev, (n->dev ? n->dev->name : "NULL")); __entry->lladdr_len = lladdr_len; memcpy(__entry->lladdr, n->ha, lladdr_len); __entry->flags = n->flags; __entry->nud_state = n->nud_state; __entry->type = n->type; __entry->dead = n->dead; __entry->refcnt = refcount_read(&n->refcnt); pin6 = (struct in6_addr *)__entry->primary_key6; p32 = (__be32 *)__entry->primary_key4; if (n->tbl->family == AF_INET) *p32 = *(__be32 *)n->primary_key; else *p32 = 0; #if IS_ENABLED(CONFIG_IPV6) if (n->tbl->family == AF_INET6) { pin6 = (struct in6_addr *)__entry->primary_key6; *pin6 = *(struct in6_addr *)n->primary_key; } else #endif { ipv6_addr_set_v4mapped(*p32, pin6); } __entry->confirmed = n->confirmed; __entry->updated = n->updated; __entry->used = n->used; if (lladdr) memcpy(__entry->new_lladdr, lladdr, lladdr_len); __entry->new_state = new; __entry->update_flags = flags; __entry->pid = nlmsg_pid; ), TP_printk("family %d dev %s lladdr %s flags %02x nud_state %s type %02x " "dead %d refcnt %d primary_key4 %pI4 primary_key6 %pI6c " "confirmed %lu updated %lu used %lu new_lladdr %s " "new_state %s update_flags %02x pid %d", __entry->family, __get_str(dev), __print_hex_str(__entry->lladdr, __entry->lladdr_len), __entry->flags, neigh_state_str(__entry->nud_state), __entry->type, __entry->dead, __entry->refcnt, __entry->primary_key4, __entry->primary_key6, __entry->confirmed, __entry->updated, __entry->used, __print_hex_str(__entry->new_lladdr, __entry->lladdr_len), neigh_state_str(__entry->new_state), __entry->update_flags, __entry->pid) ); DECLARE_EVENT_CLASS(neigh__update, TP_PROTO(struct neighbour *n, int err), TP_ARGS(n, err), TP_STRUCT__entry( __field(u32, family) __string(dev, (n->dev ? n->dev->name : "NULL")) __array(u8, lladdr, MAX_ADDR_LEN) __field(u8, lladdr_len) __field(u8, flags) __field(u8, nud_state) __field(u8, type) __field(u8, dead) __field(int, refcnt) __array(__u8, primary_key4, 4) __array(__u8, primary_key6, 16) __field(unsigned long, confirmed) __field(unsigned long, updated) __field(unsigned long, used) __field(u32, err) ), TP_fast_assign( int lladdr_len = (n->dev ? n->dev->addr_len : MAX_ADDR_LEN); struct in6_addr *pin6; __be32 *p32; __entry->family = n->tbl->family; __assign_str(dev, (n->dev ? n->dev->name : "NULL")); __entry->lladdr_len = lladdr_len; memcpy(__entry->lladdr, n->ha, lladdr_len); __entry->flags = n->flags; __entry->nud_state = n->nud_state; __entry->type = n->type; __entry->dead = n->dead; __entry->refcnt = refcount_read(&n->refcnt); pin6 = (struct in6_addr *)__entry->primary_key6; p32 = (__be32 *)__entry->primary_key4; if (n->tbl->family == AF_INET) *p32 = *(__be32 *)n->primary_key; else *p32 = 0; #if IS_ENABLED(CONFIG_IPV6) if (n->tbl->family == AF_INET6) { pin6 = (struct in6_addr *)__entry->primary_key6; *pin6 = *(struct in6_addr *)n->primary_key; } else #endif { ipv6_addr_set_v4mapped(*p32, pin6); } __entry->confirmed = n->confirmed; __entry->updated = n->updated; __entry->used = n->used; __entry->err = err; ), TP_printk("family %d dev %s lladdr %s flags %02x nud_state %s type %02x " "dead %d refcnt %d primary_key4 %pI4 primary_key6 %pI6c " "confirmed %lu updated %lu used %lu err %d", __entry->family, __get_str(dev), __print_hex_str(__entry->lladdr, __entry->lladdr_len), __entry->flags, neigh_state_str(__entry->nud_state), __entry->type, __entry->dead, __entry->refcnt, __entry->primary_key4, __entry->primary_key6, __entry->confirmed, __entry->updated, __entry->used, __entry->err) ); DEFINE_EVENT(neigh__update, neigh_update_done, TP_PROTO(struct neighbour *neigh, int err), TP_ARGS(neigh, err) ); DEFINE_EVENT(neigh__update, neigh_timer_handler, TP_PROTO(struct neighbour *neigh, int err), TP_ARGS(neigh, err) ); DEFINE_EVENT(neigh__update, neigh_event_send_done, TP_PROTO(struct neighbour *neigh, int err), TP_ARGS(neigh, err) ); DEFINE_EVENT(neigh__update, neigh_event_send_dead, TP_PROTO(struct neighbour *neigh, int err), TP_ARGS(neigh, err) ); DEFINE_EVENT(neigh__update, neigh_cleanup_and_release, TP_PROTO(struct neighbour *neigh, int rc), TP_ARGS(neigh, rc) ); #endif /* _TRACE_NEIGH_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Hash algorithms. * * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au> */ #ifndef _CRYPTO_INTERNAL_HASH_H #define _CRYPTO_INTERNAL_HASH_H #include <crypto/algapi.h> #include <crypto/hash.h> struct ahash_request; struct scatterlist; struct crypto_hash_walk { char *data; unsigned int offset; unsigned int alignmask; struct page *pg; unsigned int entrylen; unsigned int total; struct scatterlist *sg; unsigned int flags; }; struct ahash_instance { void (*free)(struct ahash_instance *inst); union { struct { char head[offsetof(struct ahash_alg, halg.base)]; struct crypto_instance base; } s; struct ahash_alg alg; }; }; struct shash_instance { void (*free)(struct shash_instance *inst); union { struct { char head[offsetof(struct shash_alg, base)]; struct crypto_instance base; } s; struct shash_alg alg; }; }; struct crypto_ahash_spawn { struct crypto_spawn base; }; struct crypto_shash_spawn { struct crypto_spawn base; }; int crypto_hash_walk_done(struct crypto_hash_walk *walk, int err); int crypto_hash_walk_first(struct ahash_request *req, struct crypto_hash_walk *walk); static inline int crypto_hash_walk_last(struct crypto_hash_walk *walk) { return !(walk->entrylen | walk->total); } int crypto_register_ahash(struct ahash_alg *alg); void crypto_unregister_ahash(struct ahash_alg *alg); int crypto_register_ahashes(struct ahash_alg *algs, int count); void crypto_unregister_ahashes(struct ahash_alg *algs, int count); int ahash_register_instance(struct crypto_template *tmpl, struct ahash_instance *inst); bool crypto_shash_alg_has_setkey(struct shash_alg *alg); static inline bool crypto_shash_alg_needs_key(struct shash_alg *alg) { return crypto_shash_alg_has_setkey(alg) && !(alg->base.cra_flags & CRYPTO_ALG_OPTIONAL_KEY); } bool crypto_hash_alg_has_setkey(struct hash_alg_common *halg); int crypto_grab_ahash(struct crypto_ahash_spawn *spawn, struct crypto_instance *inst, const char *name, u32 type, u32 mask); static inline void crypto_drop_ahash(struct crypto_ahash_spawn *spawn) { crypto_drop_spawn(&spawn->base); } static inline struct hash_alg_common *crypto_spawn_ahash_alg( struct crypto_ahash_spawn *spawn) { return __crypto_hash_alg_common(spawn->base.alg); } int crypto_register_shash(struct shash_alg *alg); void crypto_unregister_shash(struct shash_alg *alg); int crypto_register_shashes(struct shash_alg *algs, int count); void crypto_unregister_shashes(struct shash_alg *algs, int count); int shash_register_instance(struct crypto_template *tmpl, struct shash_instance *inst); void shash_free_singlespawn_instance(struct shash_instance *inst); int crypto_grab_shash(struct crypto_shash_spawn *spawn, struct crypto_instance *inst, const char *name, u32 type, u32 mask); static inline void crypto_drop_shash(struct crypto_shash_spawn *spawn) { crypto_drop_spawn(&spawn->base); } static inline struct shash_alg *crypto_spawn_shash_alg( struct crypto_shash_spawn *spawn) { return __crypto_shash_alg(spawn->base.alg); } int shash_ahash_update(struct ahash_request *req, struct shash_desc *desc); int shash_ahash_finup(struct ahash_request *req, struct shash_desc *desc); int shash_ahash_digest(struct ahash_request *req, struct shash_desc *desc); int crypto_init_shash_ops_async(struct crypto_tfm *tfm); static inline void *crypto_ahash_ctx(struct crypto_ahash *tfm) { return crypto_tfm_ctx(crypto_ahash_tfm(tfm)); } static inline struct ahash_alg *__crypto_ahash_alg(struct crypto_alg *alg) { return container_of(__crypto_hash_alg_common(alg), struct ahash_alg, halg); } static inline void crypto_ahash_set_reqsize(struct crypto_ahash *tfm, unsigned int reqsize) { tfm->reqsize = reqsize; } static inline struct crypto_instance *ahash_crypto_instance( struct ahash_instance *inst) { return &inst->s.base; } static inline struct ahash_instance *ahash_instance( struct crypto_instance *inst) { return container_of(inst, struct ahash_instance, s.base); } static inline struct ahash_instance *ahash_alg_instance( struct crypto_ahash *ahash) { return ahash_instance(crypto_tfm_alg_instance(&ahash->base)); } static inline void *ahash_instance_ctx(struct ahash_instance *inst) { return crypto_instance_ctx(ahash_crypto_instance(inst)); } static inline void ahash_request_complete(struct ahash_request *req, int err) { req->base.complete(&req->base, err); } static inline u32 ahash_request_flags(struct ahash_request *req) { return req->base.flags; } static inline struct crypto_ahash *crypto_spawn_ahash( struct crypto_ahash_spawn *spawn) { return crypto_spawn_tfm2(&spawn->base); } static inline int ahash_enqueue_request(struct crypto_queue *queue, struct ahash_request *request) { return crypto_enqueue_request(queue, &request->base); } static inline struct ahash_request *ahash_dequeue_request( struct crypto_queue *queue) { return ahash_request_cast(crypto_dequeue_request(queue)); } static inline void *crypto_shash_ctx(struct crypto_shash *tfm) { return crypto_tfm_ctx(&tfm->base); } static inline struct crypto_instance *shash_crypto_instance( struct shash_instance *inst) { return &inst->s.base; } static inline struct shash_instance *shash_instance( struct crypto_instance *inst) { return container_of(inst, struct shash_instance, s.base); } static inline struct shash_instance *shash_alg_instance( struct crypto_shash *shash) { return shash_instance(crypto_tfm_alg_instance(&shash->base)); } static inline void *shash_instance_ctx(struct shash_instance *inst) { return crypto_instance_ctx(shash_crypto_instance(inst)); } static inline struct crypto_shash *crypto_spawn_shash( struct crypto_shash_spawn *spawn) { return crypto_spawn_tfm2(&spawn->base); } static inline void *crypto_shash_ctx_aligned(struct crypto_shash *tfm) { return crypto_tfm_ctx_aligned(&tfm->base); } static inline struct crypto_shash *__crypto_shash_cast(struct crypto_tfm *tfm) { return container_of(tfm, struct crypto_shash, base); } #endif /* _CRYPTO_INTERNAL_HASH_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_RTNETLINK_H #define __LINUX_RTNETLINK_H #include <linux/mutex.h> #include <linux/netdevice.h> #include <linux/wait.h> #include <linux/refcount.h> #include <uapi/linux/rtnetlink.h> extern int rtnetlink_send(struct sk_buff *skb, struct net *net, u32 pid, u32 group, int echo); extern int rtnl_unicast(struct sk_buff *skb, struct net *net, u32 pid); extern void rtnl_notify(struct sk_buff *skb, struct net *net, u32 pid, u32 group, struct nlmsghdr *nlh, gfp_t flags); extern void rtnl_set_sk_err(struct net *net, u32 group, int error); extern int rtnetlink_put_metrics(struct sk_buff *skb, u32 *metrics); extern int rtnl_put_cacheinfo(struct sk_buff *skb, struct dst_entry *dst, u32 id, long expires, u32 error); void rtmsg_ifinfo(int type, struct net_device *dev, unsigned change, gfp_t flags); void rtmsg_ifinfo_newnet(int type, struct net_device *dev, unsigned int change, gfp_t flags, int *new_nsid, int new_ifindex); struct sk_buff *rtmsg_ifinfo_build_skb(int type, struct net_device *dev, unsigned change, u32 event, gfp_t flags, int *new_nsid, int new_ifindex); void rtmsg_ifinfo_send(struct sk_buff *skb, struct net_device *dev, gfp_t flags); /* RTNL is used as a global lock for all changes to network configuration */ extern void rtnl_lock(void); extern void rtnl_unlock(void); extern int rtnl_trylock(void); extern int rtnl_is_locked(void); extern int rtnl_lock_killable(void); extern bool refcount_dec_and_rtnl_lock(refcount_t *r); extern wait_queue_head_t netdev_unregistering_wq; extern struct rw_semaphore pernet_ops_rwsem; extern struct rw_semaphore net_rwsem; #ifdef CONFIG_PROVE_LOCKING extern bool lockdep_rtnl_is_held(void); #else static inline bool lockdep_rtnl_is_held(void) { return true; } #endif /* #ifdef CONFIG_PROVE_LOCKING */ /** * rcu_dereference_rtnl - rcu_dereference with debug checking * @p: The pointer to read, prior to dereferencing * * Do an rcu_dereference(p), but check caller either holds rcu_read_lock() * or RTNL. Note : Please prefer rtnl_dereference() or rcu_dereference() */ #define rcu_dereference_rtnl(p) \ rcu_dereference_check(p, lockdep_rtnl_is_held()) /** * rcu_dereference_bh_rtnl - rcu_dereference_bh with debug checking * @p: The pointer to read, prior to dereference * * Do an rcu_dereference_bh(p), but check caller either holds rcu_read_lock_bh() * or RTNL. Note : Please prefer rtnl_dereference() or rcu_dereference_bh() */ #define rcu_dereference_bh_rtnl(p) \ rcu_dereference_bh_check(p, lockdep_rtnl_is_held()) /** * rtnl_dereference - fetch RCU pointer when updates are prevented by RTNL * @p: The pointer to read, prior to dereferencing * * Return the value of the specified RCU-protected pointer, but omit * the READ_ONCE(), because caller holds RTNL. */ #define rtnl_dereference(p) \ rcu_dereference_protected(p, lockdep_rtnl_is_held()) static inline struct netdev_queue *dev_ingress_queue(struct net_device *dev) { return rtnl_dereference(dev->ingress_queue); } static inline struct netdev_queue *dev_ingress_queue_rcu(struct net_device *dev) { return rcu_dereference(dev->ingress_queue); } struct netdev_queue *dev_ingress_queue_create(struct net_device *dev); #ifdef CONFIG_NET_INGRESS void net_inc_ingress_queue(void); void net_dec_ingress_queue(void); #endif #ifdef CONFIG_NET_EGRESS void net_inc_egress_queue(void); void net_dec_egress_queue(void); #endif void rtnetlink_init(void); void __rtnl_unlock(void); void rtnl_kfree_skbs(struct sk_buff *head, struct sk_buff *tail); #define ASSERT_RTNL() \ WARN_ONCE(!rtnl_is_locked(), \ "RTNL: assertion failed at %s (%d)\n", __FILE__, __LINE__) extern int ndo_dflt_fdb_dump(struct sk_buff *skb, struct netlink_callback *cb, struct net_device *dev, struct net_device *filter_dev, int *idx); extern int ndo_dflt_fdb_add(struct ndmsg *ndm, struct nlattr *tb[], struct net_device *dev, const unsigned char *addr, u16 vid, u16 flags); extern int ndo_dflt_fdb_del(struct ndmsg *ndm, struct nlattr *tb[], struct net_device *dev, const unsigned char *addr, u16 vid); extern int ndo_dflt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, struct net_device *dev, u16 mode, u32 flags, u32 mask, int nlflags, u32 filter_mask, int (*vlan_fill)(struct sk_buff *skb, struct net_device *dev, u32 filter_mask)); #endif /* __LINUX_RTNETLINK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 /* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright (c) 2016 Qualcomm Atheros, Inc * * Based on net/sched/sch_fq_codel.c */ #ifndef __NET_SCHED_FQ_IMPL_H #define __NET_SCHED_FQ_IMPL_H #include <net/fq.h> /* functions that are embedded into includer */ static void fq_adjust_removal(struct fq *fq, struct fq_flow *flow, struct sk_buff *skb) { struct fq_tin *tin = flow->tin; tin->backlog_bytes -= skb->len; tin->backlog_packets--; flow->backlog -= skb->len; fq->backlog--; fq->memory_usage -= skb->truesize; } static void fq_rejigger_backlog(struct fq *fq, struct fq_flow *flow) { struct fq_flow *i; if (flow->backlog == 0) { list_del_init(&flow->backlogchain); } else { i = flow; list_for_each_entry_continue(i, &fq->backlogs, backlogchain) if (i->backlog < flow->backlog) break; list_move_tail(&flow->backlogchain, &i->backlogchain); } } static struct sk_buff *fq_flow_dequeue(struct fq *fq, struct fq_flow *flow) { struct sk_buff *skb; lockdep_assert_held(&fq->lock); skb = __skb_dequeue(&flow->queue); if (!skb) return NULL; fq_adjust_removal(fq, flow, skb); fq_rejigger_backlog(fq, flow); return skb; } static struct sk_buff *fq_tin_dequeue(struct fq *fq, struct fq_tin *tin, fq_tin_dequeue_t dequeue_func) { struct fq_flow *flow; struct list_head *head; struct sk_buff *skb; lockdep_assert_held(&fq->lock); begin: head = &tin->new_flows; if (list_empty(head)) { head = &tin->old_flows; if (list_empty(head)) return NULL; } flow = list_first_entry(head, struct fq_flow, flowchain); if (flow->deficit <= 0) { flow->deficit += fq->quantum; list_move_tail(&flow->flowchain, &tin->old_flows); goto begin; } skb = dequeue_func(fq, tin, flow); if (!skb) { /* force a pass through old_flows to prevent starvation */ if ((head == &tin->new_flows) && !list_empty(&tin->old_flows)) { list_move_tail(&flow->flowchain, &tin->old_flows); } else { list_del_init(&flow->flowchain); flow->tin = NULL; } goto begin; } flow->deficit -= skb->len; tin->tx_bytes += skb->len; tin->tx_packets++; return skb; } static u32 fq_flow_idx(struct fq *fq, struct sk_buff *skb) { u32 hash = skb_get_hash(skb); return reciprocal_scale(hash, fq->flows_cnt); } static struct fq_flow *fq_flow_classify(struct fq *fq, struct fq_tin *tin, u32 idx, struct sk_buff *skb, fq_flow_get_default_t get_default_func) { struct fq_flow *flow; lockdep_assert_held(&fq->lock); flow = &fq->flows[idx]; if (flow->tin && flow->tin != tin) { flow = get_default_func(fq, tin, idx, skb); tin->collisions++; fq->collisions++; } if (!flow->tin) tin->flows++; return flow; } static void fq_recalc_backlog(struct fq *fq, struct fq_tin *tin, struct fq_flow *flow) { struct fq_flow *i; if (list_empty(&flow->backlogchain)) list_add_tail(&flow->backlogchain, &fq->backlogs); i = flow; list_for_each_entry_continue_reverse(i, &fq->backlogs, backlogchain) if (i->backlog > flow->backlog) break; list_move(&flow->backlogchain, &i->backlogchain); } static void fq_tin_enqueue(struct fq *fq, struct fq_tin *tin, u32 idx, struct sk_buff *skb, fq_skb_free_t free_func, fq_flow_get_default_t get_default_func) { struct fq_flow *flow; bool oom; lockdep_assert_held(&fq->lock); flow = fq_flow_classify(fq, tin, idx, skb, get_default_func); flow->tin = tin; flow->backlog += skb->len; tin->backlog_bytes += skb->len; tin->backlog_packets++; fq->memory_usage += skb->truesize; fq->backlog++; fq_recalc_backlog(fq, tin, flow); if (list_empty(&flow->flowchain)) { flow->deficit = fq->quantum; list_add_tail(&flow->flowchain, &tin->new_flows); } __skb_queue_tail(&flow->queue, skb); oom = (fq->memory_usage > fq->memory_limit); while (fq->backlog > fq->limit || oom) { flow = list_first_entry_or_null(&fq->backlogs, struct fq_flow, backlogchain); if (!flow) return; skb = fq_flow_dequeue(fq, flow); if (!skb) return; free_func(fq, flow->tin, flow, skb); flow->tin->overlimit++; fq->overlimit++; if (oom) { fq->overmemory++; oom = (fq->memory_usage > fq->memory_limit); } } } static void fq_flow_filter(struct fq *fq, struct fq_flow *flow, fq_skb_filter_t filter_func, void *filter_data, fq_skb_free_t free_func) { struct fq_tin *tin = flow->tin; struct sk_buff *skb, *tmp; lockdep_assert_held(&fq->lock); skb_queue_walk_safe(&flow->queue, skb, tmp) { if (!filter_func(fq, tin, flow, skb, filter_data)) continue; __skb_unlink(skb, &flow->queue); fq_adjust_removal(fq, flow, skb); free_func(fq, tin, flow, skb); } fq_rejigger_backlog(fq, flow); } static void fq_tin_filter(struct fq *fq, struct fq_tin *tin, fq_skb_filter_t filter_func, void *filter_data, fq_skb_free_t free_func) { struct fq_flow *flow; lockdep_assert_held(&fq->lock); list_for_each_entry(flow, &tin->new_flows, flowchain) fq_flow_filter(fq, flow, filter_func, filter_data, free_func); list_for_each_entry(flow, &tin->old_flows, flowchain) fq_flow_filter(fq, flow, filter_func, filter_data, free_func); } static void fq_flow_reset(struct fq *fq, struct fq_flow *flow, fq_skb_free_t free_func) { struct sk_buff *skb; while ((skb = fq_flow_dequeue(fq, flow))) free_func(fq, flow->tin, flow, skb); if (!list_empty(&flow->flowchain)) list_del_init(&flow->flowchain); if (!list_empty(&flow->backlogchain)) list_del_init(&flow->backlogchain); flow->tin = NULL; WARN_ON_ONCE(flow->backlog); } static void fq_tin_reset(struct fq *fq, struct fq_tin *tin, fq_skb_free_t free_func) { struct list_head *head; struct fq_flow *flow; for (;;) { head = &tin->new_flows; if (list_empty(head)) { head = &tin->old_flows; if (list_empty(head)) break; } flow = list_first_entry(head, struct fq_flow, flowchain); fq_flow_reset(fq, flow, free_func); } WARN_ON_ONCE(tin->backlog_bytes); WARN_ON_ONCE(tin->backlog_packets); } static void fq_flow_init(struct fq_flow *flow) { INIT_LIST_HEAD(&flow->flowchain); INIT_LIST_HEAD(&flow->backlogchain); __skb_queue_head_init(&flow->queue); } static void fq_tin_init(struct fq_tin *tin) { INIT_LIST_HEAD(&tin->new_flows); INIT_LIST_HEAD(&tin->old_flows); } static int fq_init(struct fq *fq, int flows_cnt) { int i; memset(fq, 0, sizeof(fq[0])); INIT_LIST_HEAD(&fq->backlogs); spin_lock_init(&fq->lock); fq->flows_cnt = max_t(u32, flows_cnt, 1); fq->quantum = 300; fq->limit = 8192; fq->memory_limit = 16 << 20; /* 16 MBytes */ fq->flows = kvcalloc(fq->flows_cnt, sizeof(fq->flows[0]), GFP_KERNEL); if (!fq->flows) return -ENOMEM; for (i = 0; i < fq->flows_cnt; i++) fq_flow_init(&fq->flows[i]); return 0; } static void fq_reset(struct fq *fq, fq_skb_free_t free_func) { int i; for (i = 0; i < fq->flows_cnt; i++) fq_flow_reset(fq, &fq->flows[i], free_func); kvfree(fq->flows); fq->flows = NULL; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Checksumming functions for IPv6 * * Authors: Jorge Cwik, <jorge@laser.satlink.net> * Arnt Gulbrandsen, <agulbra@nvg.unit.no> * Borrows very liberally from tcp.c and ip.c, see those * files for more names. */ /* * Fixes: * * Ralf Baechle : generic ipv6 checksum * <ralf@waldorf-gmbh.de> */ #ifndef _CHECKSUM_IPV6_H #define _CHECKSUM_IPV6_H #include <asm/types.h> #include <asm/byteorder.h> #include <net/ip.h> #include <asm/checksum.h> #include <linux/in6.h> #include <linux/tcp.h> #include <linux/ipv6.h> #ifndef _HAVE_ARCH_IPV6_CSUM __sum16 csum_ipv6_magic(const struct in6_addr *saddr, const struct in6_addr *daddr, __u32 len, __u8 proto, __wsum csum); #endif static inline __wsum ip6_compute_pseudo(struct sk_buff *skb, int proto) { return ~csum_unfold(csum_ipv6_magic(&ipv6_hdr(skb)->saddr, &ipv6_hdr(skb)->daddr, skb->len, proto, 0)); } static inline __wsum ip6_gro_compute_pseudo(struct sk_buff *skb, int proto) { const struct ipv6hdr *iph = skb_gro_network_header(skb); return ~csum_unfold(csum_ipv6_magic(&iph->saddr, &iph->daddr, skb_gro_len(skb), proto, 0)); } static __inline__ __sum16 tcp_v6_check(int len, const struct in6_addr *saddr, const struct in6_addr *daddr, __wsum base) { return csum_ipv6_magic(saddr, daddr, len, IPPROTO_TCP, base); } static inline void __tcp_v6_send_check(struct sk_buff *skb, const struct in6_addr *saddr, const struct in6_addr *daddr) { struct tcphdr *th = tcp_hdr(skb); if (skb->ip_summed == CHECKSUM_PARTIAL) { th->check = ~tcp_v6_check(skb->len, saddr, daddr, 0); skb->csum_start = skb_transport_header(skb) - skb->head; skb->csum_offset = offsetof(struct tcphdr, check); } else { th->check = tcp_v6_check(skb->len, saddr, daddr, csum_partial(th, th->doff << 2, skb->csum)); } } static inline void tcp_v6_gso_csum_prep(struct sk_buff *skb) { struct ipv6hdr *ipv6h = ipv6_hdr(skb); struct tcphdr *th = tcp_hdr(skb); ipv6h->payload_len = 0; th->check = ~tcp_v6_check(0, &ipv6h->saddr, &ipv6h->daddr, 0); } static inline __sum16 udp_v6_check(int len, const struct in6_addr *saddr, const struct in6_addr *daddr, __wsum base) { return csum_ipv6_magic(saddr, daddr, len, IPPROTO_UDP, base); } void udp6_set_csum(bool nocheck, struct sk_buff *skb, const struct in6_addr *saddr, const struct in6_addr *daddr, int len); int udp6_csum_init(struct sk_buff *skb, struct udphdr *uh, int proto); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * SR-IPv6 implementation * * Author: * David Lebrun <david.lebrun@uclouvain.be> */ #ifndef _NET_SEG6_H #define _NET_SEG6_H #include <linux/net.h> #include <linux/ipv6.h> #include <linux/seg6.h> #include <linux/rhashtable-types.h> static inline void update_csum_diff4(struct sk_buff *skb, __be32 from, __be32 to) { __be32 diff[] = { ~from, to }; skb->csum = ~csum_partial((char *)diff, sizeof(diff), ~skb->csum); } static inline void update_csum_diff16(struct sk_buff *skb, __be32 *from, __be32 *to) { __be32 diff[] = { ~from[0], ~from[1], ~from[2], ~from[3], to[0], to[1], to[2], to[3], }; skb->csum = ~csum_partial((char *)diff, sizeof(diff), ~skb->csum); } struct seg6_pernet_data { struct mutex lock; struct in6_addr __rcu *tun_src; #ifdef CONFIG_IPV6_SEG6_HMAC struct rhashtable hmac_infos; #endif }; static inline struct seg6_pernet_data *seg6_pernet(struct net *net) { #if IS_ENABLED(CONFIG_IPV6) return net->ipv6.seg6_data; #else return NULL; #endif } extern int seg6_init(void); extern void seg6_exit(void); extern int seg6_iptunnel_init(void); extern void seg6_iptunnel_exit(void); extern int seg6_local_init(void); extern void seg6_local_exit(void); extern bool seg6_validate_srh(struct ipv6_sr_hdr *srh, int len, bool reduced); extern int seg6_do_srh_encap(struct sk_buff *skb, struct ipv6_sr_hdr *osrh, int proto); extern int seg6_do_srh_inline(struct sk_buff *skb, struct ipv6_sr_hdr *osrh); extern int seg6_lookup_nexthop(struct sk_buff *skb, struct in6_addr *nhaddr, u32 tbl_id); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 // SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com * Written by Alex Tomas <alex@clusterfs.com> */ #ifndef _EXT4_EXTENTS #define _EXT4_EXTENTS #include "ext4.h" /* * With AGGRESSIVE_TEST defined, the capacity of index/leaf blocks * becomes very small, so index split, in-depth growing and * other hard changes happen much more often. * This is for debug purposes only. */ #define AGGRESSIVE_TEST_ /* * With EXTENTS_STATS defined, the number of blocks and extents * are collected in the truncate path. They'll be shown at * umount time. */ #define EXTENTS_STATS__ /* * If CHECK_BINSEARCH is defined, then the results of the binary search * will also be checked by linear search. */ #define CHECK_BINSEARCH__ /* * If EXT_STATS is defined then stats numbers are collected. * These number will be displayed at umount time. */ #define EXT_STATS_ /* * ext4_inode has i_block array (60 bytes total). * The first 12 bytes store ext4_extent_header; * the remainder stores an array of ext4_extent. * For non-inode extent blocks, ext4_extent_tail * follows the array. */ /* * This is the extent tail on-disk structure. * All other extent structures are 12 bytes long. It turns out that * block_size % 12 >= 4 for at least all powers of 2 greater than 512, which * covers all valid ext4 block sizes. Therefore, this tail structure can be * crammed into the end of the block without having to rebalance the tree. */ struct ext4_extent_tail { __le32 et_checksum; /* crc32c(uuid+inum+extent_block) */ }; /* * This is the extent on-disk structure. * It's used at the bottom of the tree. */ struct ext4_extent { __le32 ee_block; /* first logical block extent covers */ __le16 ee_len; /* number of blocks covered by extent */ __le16 ee_start_hi; /* high 16 bits of physical block */ __le32 ee_start_lo; /* low 32 bits of physical block */ }; /* * This is index on-disk structure. * It's used at all the levels except the bottom. */ struct ext4_extent_idx { __le32 ei_block; /* index covers logical blocks from 'block' */ __le32 ei_leaf_lo; /* pointer to the physical block of the next * * level. leaf or next index could be there */ __le16 ei_leaf_hi; /* high 16 bits of physical block */ __u16 ei_unused; }; /* * Each block (leaves and indexes), even inode-stored has header. */ struct ext4_extent_header { __le16 eh_magic; /* probably will support different formats */ __le16 eh_entries; /* number of valid entries */ __le16 eh_max; /* capacity of store in entries */ __le16 eh_depth; /* has tree real underlying blocks? */ __le32 eh_generation; /* generation of the tree */ }; #define EXT4_EXT_MAGIC cpu_to_le16(0xf30a) #define EXT4_MAX_EXTENT_DEPTH 5 #define EXT4_EXTENT_TAIL_OFFSET(hdr) \ (sizeof(struct ext4_extent_header) + \ (sizeof(struct ext4_extent) * le16_to_cpu((hdr)->eh_max))) static inline struct ext4_extent_tail * find_ext4_extent_tail(struct ext4_extent_header *eh) { return (struct ext4_extent_tail *)(((void *)eh) + EXT4_EXTENT_TAIL_OFFSET(eh)); } /* * Array of ext4_ext_path contains path to some extent. * Creation/lookup routines use it for traversal/splitting/etc. * Truncate uses it to simulate recursive walking. */ struct ext4_ext_path { ext4_fsblk_t p_block; __u16 p_depth; __u16 p_maxdepth; struct ext4_extent *p_ext; struct ext4_extent_idx *p_idx; struct ext4_extent_header *p_hdr; struct buffer_head *p_bh; }; /* * Used to record a portion of a cluster found at the beginning or end * of an extent while traversing the extent tree during space removal. * A partial cluster may be removed if it does not contain blocks shared * with extents that aren't being deleted (tofree state). Otherwise, * it cannot be removed (nofree state). */ struct partial_cluster { ext4_fsblk_t pclu; /* physical cluster number */ ext4_lblk_t lblk; /* logical block number within logical cluster */ enum {initial, tofree, nofree} state; }; /* * structure for external API */ /* * EXT_INIT_MAX_LEN is the maximum number of blocks we can have in an * initialized extent. This is 2^15 and not (2^16 - 1), since we use the * MSB of ee_len field in the extent datastructure to signify if this * particular extent is an initialized extent or an unwritten (i.e. * preallocated). * EXT_UNWRITTEN_MAX_LEN is the maximum number of blocks we can have in an * unwritten extent. * If ee_len is <= 0x8000, it is an initialized extent. Otherwise, it is an * unwritten one. In other words, if MSB of ee_len is set, it is an * unwritten extent with only one special scenario when ee_len = 0x8000. * In this case we can not have an unwritten extent of zero length and * thus we make it as a special case of initialized extent with 0x8000 length. * This way we get better extent-to-group alignment for initialized extents. * Hence, the maximum number of blocks we can have in an *initialized* * extent is 2^15 (32768) and in an *unwritten* extent is 2^15-1 (32767). */ #define EXT_INIT_MAX_LEN (1UL << 15) #define EXT_UNWRITTEN_MAX_LEN (EXT_INIT_MAX_LEN - 1) #define EXT_FIRST_EXTENT(__hdr__) \ ((struct ext4_extent *) (((char *) (__hdr__)) + \ sizeof(struct ext4_extent_header))) #define EXT_FIRST_INDEX(__hdr__) \ ((struct ext4_extent_idx *) (((char *) (__hdr__)) + \ sizeof(struct ext4_extent_header))) #define EXT_HAS_FREE_INDEX(__path__) \ (le16_to_cpu((__path__)->p_hdr->eh_entries) \ < le16_to_cpu((__path__)->p_hdr->eh_max)) #define EXT_LAST_EXTENT(__hdr__) \ (EXT_FIRST_EXTENT((__hdr__)) + le16_to_cpu((__hdr__)->eh_entries) - 1) #define EXT_LAST_INDEX(__hdr__) \ (EXT_FIRST_INDEX((__hdr__)) + le16_to_cpu((__hdr__)->eh_entries) - 1) #define EXT_MAX_EXTENT(__hdr__) \ ((le16_to_cpu((__hdr__)->eh_max)) ? \ ((EXT_FIRST_EXTENT((__hdr__)) + le16_to_cpu((__hdr__)->eh_max) - 1)) \ : 0) #define EXT_MAX_INDEX(__hdr__) \ ((le16_to_cpu((__hdr__)->eh_max)) ? \ ((EXT_FIRST_INDEX((__hdr__)) + le16_to_cpu((__hdr__)->eh_max) - 1)) : 0) static inline struct ext4_extent_header *ext_inode_hdr(struct inode *inode) { return (struct ext4_extent_header *) EXT4_I(inode)->i_data; } static inline struct ext4_extent_header *ext_block_hdr(struct buffer_head *bh) { return (struct ext4_extent_header *) bh->b_data; } static inline unsigned short ext_depth(struct inode *inode) { return le16_to_cpu(ext_inode_hdr(inode)->eh_depth); } static inline void ext4_ext_mark_unwritten(struct ext4_extent *ext) { /* We can not have an unwritten extent of zero length! */ BUG_ON((le16_to_cpu(ext->ee_len) & ~EXT_INIT_MAX_LEN) == 0); ext->ee_len |= cpu_to_le16(EXT_INIT_MAX_LEN); } static inline int ext4_ext_is_unwritten(struct ext4_extent *ext) { /* Extent with ee_len of 0x8000 is treated as an initialized extent */ return (le16_to_cpu(ext->ee_len) > EXT_INIT_MAX_LEN); } static inline int ext4_ext_get_actual_len(struct ext4_extent *ext) { return (le16_to_cpu(ext->ee_len) <= EXT_INIT_MAX_LEN ? le16_to_cpu(ext->ee_len) : (le16_to_cpu(ext->ee_len) - EXT_INIT_MAX_LEN)); } static inline void ext4_ext_mark_initialized(struct ext4_extent *ext) { ext->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ext)); } /* * ext4_ext_pblock: * combine low and high parts of physical block number into ext4_fsblk_t */ static inline ext4_fsblk_t ext4_ext_pblock(struct ext4_extent *ex) { ext4_fsblk_t block; block = le32_to_cpu(ex->ee_start_lo); block |= ((ext4_fsblk_t) le16_to_cpu(ex->ee_start_hi) << 31) << 1; return block; } /* * ext4_idx_pblock: * combine low and high parts of a leaf physical block number into ext4_fsblk_t */ static inline ext4_fsblk_t ext4_idx_pblock(struct ext4_extent_idx *ix) { ext4_fsblk_t block; block = le32_to_cpu(ix->ei_leaf_lo); block |= ((ext4_fsblk_t) le16_to_cpu(ix->ei_leaf_hi) << 31) << 1; return block; } /* * ext4_ext_store_pblock: * stores a large physical block number into an extent struct, * breaking it into parts */ static inline void ext4_ext_store_pblock(struct ext4_extent *ex, ext4_fsblk_t pb) { ex->ee_start_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff)); ex->ee_start_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff); } /* * ext4_idx_store_pblock: * stores a large physical block number into an index struct, * breaking it into parts */ static inline void ext4_idx_store_pblock(struct ext4_extent_idx *ix, ext4_fsblk_t pb) { ix->ei_leaf_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff)); ix->ei_leaf_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff); } #endif /* _EXT4_EXTENTS */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _SCSI_DISK_H #define _SCSI_DISK_H /* * More than enough for everybody ;) The huge number of majors * is a leftover from 16bit dev_t days, we don't really need that * much numberspace. */ #define SD_MAJORS 16 /* * Time out in seconds for disks and Magneto-opticals (which are slower). */ #define SD_TIMEOUT (30 * HZ) #define SD_MOD_TIMEOUT (75 * HZ) /* * Flush timeout is a multiplier over the standard device timeout which is * user modifiable via sysfs but initially set to SD_TIMEOUT */ #define SD_FLUSH_TIMEOUT_MULTIPLIER 2 #define SD_WRITE_SAME_TIMEOUT (120 * HZ) /* * Number of allowed retries */ #define SD_MAX_RETRIES 5 #define SD_PASSTHROUGH_RETRIES 1 #define SD_MAX_MEDIUM_TIMEOUTS 2 /* * Size of the initial data buffer for mode and read capacity data */ #define SD_BUF_SIZE 512 /* * Number of sectors at the end of the device to avoid multi-sector * accesses to in the case of last_sector_bug */ #define SD_LAST_BUGGY_SECTORS 8 enum { SD_EXT_CDB_SIZE = 32, /* Extended CDB size */ SD_MEMPOOL_SIZE = 2, /* CDB pool size */ }; enum { SD_DEF_XFER_BLOCKS = 0xffff, SD_MAX_XFER_BLOCKS = 0xffffffff, SD_MAX_WS10_BLOCKS = 0xffff, SD_MAX_WS16_BLOCKS = 0x7fffff, }; enum { SD_LBP_FULL = 0, /* Full logical block provisioning */ SD_LBP_UNMAP, /* Use UNMAP command */ SD_LBP_WS16, /* Use WRITE SAME(16) with UNMAP bit */ SD_LBP_WS10, /* Use WRITE SAME(10) with UNMAP bit */ SD_LBP_ZERO, /* Use WRITE SAME(10) with zero payload */ SD_LBP_DISABLE, /* Discard disabled due to failed cmd */ }; enum { SD_ZERO_WRITE = 0, /* Use WRITE(10/16) command */ SD_ZERO_WS, /* Use WRITE SAME(10/16) command */ SD_ZERO_WS16_UNMAP, /* Use WRITE SAME(16) with UNMAP */ SD_ZERO_WS10_UNMAP, /* Use WRITE SAME(10) with UNMAP */ }; struct scsi_disk { struct scsi_driver *driver; /* always &sd_template */ struct scsi_device *device; struct device dev; struct gendisk *disk; struct opal_dev *opal_dev; #ifdef CONFIG_BLK_DEV_ZONED u32 nr_zones; u32 rev_nr_zones; u32 zone_blocks; u32 rev_zone_blocks; u32 zones_optimal_open; u32 zones_optimal_nonseq; u32 zones_max_open; u32 *zones_wp_offset; spinlock_t zones_wp_offset_lock; u32 *rev_wp_offset; struct mutex rev_mutex; struct work_struct zone_wp_offset_work; char *zone_wp_update_buf; #endif atomic_t openers; sector_t capacity; /* size in logical blocks */ int max_retries; u32 max_xfer_blocks; u32 opt_xfer_blocks; u32 max_ws_blocks; u32 max_unmap_blocks; u32 unmap_granularity; u32 unmap_alignment; u32 index; unsigned int physical_block_size; unsigned int max_medium_access_timeouts; unsigned int medium_access_timed_out; u8 media_present; u8 write_prot; u8 protection_type;/* Data Integrity Field */ u8 provisioning_mode; u8 zeroing_mode; unsigned ATO : 1; /* state of disk ATO bit */ unsigned cache_override : 1; /* temp override of WCE,RCD */ unsigned WCE : 1; /* state of disk WCE bit */ unsigned RCD : 1; /* state of disk RCD bit, unused */ unsigned DPOFUA : 1; /* state of disk DPOFUA bit */ unsigned first_scan : 1; unsigned lbpme : 1; unsigned lbprz : 1; unsigned lbpu : 1; unsigned lbpws : 1; unsigned lbpws10 : 1; unsigned lbpvpd : 1; unsigned ws10 : 1; unsigned ws16 : 1; unsigned rc_basis: 2; unsigned zoned: 2; unsigned urswrz : 1; unsigned security : 1; unsigned ignore_medium_access_errors : 1; }; #define to_scsi_disk(obj) container_of(obj,struct scsi_disk,dev) static inline struct scsi_disk *scsi_disk(struct gendisk *disk) { return container_of(disk->private_data, struct scsi_disk, driver); } #define sd_printk(prefix, sdsk, fmt, a...) \ (sdsk)->disk ? \ sdev_prefix_printk(prefix, (sdsk)->device, \ (sdsk)->disk->disk_name, fmt, ##a) : \ sdev_printk(prefix, (sdsk)->device, fmt, ##a) #define sd_first_printk(prefix, sdsk, fmt, a...) \ do { \ if ((sdsk)->first_scan) \ sd_printk(prefix, sdsk, fmt, ##a); \ } while (0) static inline int scsi_medium_access_command(struct scsi_cmnd *scmd) { switch (scmd->cmnd[0]) { case READ_6: case READ_10: case READ_12: case READ_16: case SYNCHRONIZE_CACHE: case VERIFY: case VERIFY_12: case VERIFY_16: case WRITE_6: case WRITE_10: case WRITE_12: case WRITE_16: case WRITE_SAME: case WRITE_SAME_16: case UNMAP: return 1; case VARIABLE_LENGTH_CMD: switch (scmd->cmnd[9]) { case READ_32: case VERIFY_32: case WRITE_32: case WRITE_SAME_32: return 1; } } return 0; } static inline sector_t logical_to_sectors(struct scsi_device *sdev, sector_t blocks) { return blocks << (ilog2(sdev->sector_size) - 9); } static inline unsigned int logical_to_bytes(struct scsi_device *sdev, sector_t blocks) { return blocks * sdev->sector_size; } static inline sector_t bytes_to_logical(struct scsi_device *sdev, unsigned int bytes) { return bytes >> ilog2(sdev->sector_size); } static inline sector_t sectors_to_logical(struct scsi_device *sdev, sector_t sector) { return sector >> (ilog2(sdev->sector_size) - 9); } #ifdef CONFIG_BLK_DEV_INTEGRITY extern void sd_dif_config_host(struct scsi_disk *); #else /* CONFIG_BLK_DEV_INTEGRITY */ static inline void sd_dif_config_host(struct scsi_disk *disk) { } #endif /* CONFIG_BLK_DEV_INTEGRITY */ static inline int sd_is_zoned(struct scsi_disk *sdkp) { return sdkp->zoned == 1 || sdkp->device->type == TYPE_ZBC; } #ifdef CONFIG_BLK_DEV_ZONED void sd_zbc_release_disk(struct scsi_disk *sdkp); int sd_zbc_read_zones(struct scsi_disk *sdkp, unsigned char *buffer); int sd_zbc_revalidate_zones(struct scsi_disk *sdkp); blk_status_t sd_zbc_setup_zone_mgmt_cmnd(struct scsi_cmnd *cmd, unsigned char op, bool all); unsigned int sd_zbc_complete(struct scsi_cmnd *cmd, unsigned int good_bytes, struct scsi_sense_hdr *sshdr); int sd_zbc_report_zones(struct gendisk *disk, sector_t sector, unsigned int nr_zones, report_zones_cb cb, void *data); blk_status_t sd_zbc_prepare_zone_append(struct scsi_cmnd *cmd, sector_t *lba, unsigned int nr_blocks); #else /* CONFIG_BLK_DEV_ZONED */ static inline void sd_zbc_release_disk(struct scsi_disk *sdkp) {} static inline int sd_zbc_read_zones(struct scsi_disk *sdkp, unsigned char *buf) { return 0; } static inline int sd_zbc_revalidate_zones(struct scsi_disk *sdkp) { return 0; } static inline blk_status_t sd_zbc_setup_zone_mgmt_cmnd(struct scsi_cmnd *cmd, unsigned char op, bool all) { return BLK_STS_TARGET; } static inline unsigned int sd_zbc_complete(struct scsi_cmnd *cmd, unsigned int good_bytes, struct scsi_sense_hdr *sshdr) { return good_bytes; } static inline blk_status_t sd_zbc_prepare_zone_append(struct scsi_cmnd *cmd, sector_t *lba, unsigned int nr_blocks) { return BLK_STS_TARGET; } #define sd_zbc_report_zones NULL #endif /* CONFIG_BLK_DEV_ZONED */ void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr); void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result); #endif /* _SCSI_DISK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 /* SPDX-License-Identifier: GPL-2.0 */ /* * linux/include/linux/sunrpc/addr.h * * Various routines for copying and comparing sockaddrs and for * converting them to and from presentation format. */ #ifndef _LINUX_SUNRPC_ADDR_H #define _LINUX_SUNRPC_ADDR_H #include <linux/socket.h> #include <linux/in.h> #include <linux/in6.h> #include <net/ipv6.h> size_t rpc_ntop(const struct sockaddr *, char *, const size_t); size_t rpc_pton(struct net *, const char *, const size_t, struct sockaddr *, const size_t); char * rpc_sockaddr2uaddr(const struct sockaddr *, gfp_t); size_t rpc_uaddr2sockaddr(struct net *, const char *, const size_t, struct sockaddr *, const size_t); static inline unsigned short rpc_get_port(const struct sockaddr *sap) { switch (sap->sa_family) { case AF_INET: return ntohs(((struct sockaddr_in *)sap)->sin_port); case AF_INET6: return ntohs(((struct sockaddr_in6 *)sap)->sin6_port); } return 0; } static inline void rpc_set_port(struct sockaddr *sap, const unsigned short port) { switch (sap->sa_family) { case AF_INET: ((struct sockaddr_in *)sap)->sin_port = htons(port); break; case AF_INET6: ((struct sockaddr_in6 *)sap)->sin6_port = htons(port); break; } } #define IPV6_SCOPE_DELIMITER '%' #define IPV6_SCOPE_ID_LEN sizeof("%nnnnnnnnnn") static inline bool rpc_cmp_addr4(const struct sockaddr *sap1, const struct sockaddr *sap2) { const struct sockaddr_in *sin1 = (const struct sockaddr_in *)sap1; const struct sockaddr_in *sin2 = (const struct sockaddr_in *)sap2; return sin1->sin_addr.s_addr == sin2->sin_addr.s_addr; } static inline bool __rpc_copy_addr4(struct sockaddr *dst, const struct sockaddr *src) { const struct sockaddr_in *ssin = (struct sockaddr_in *) src; struct sockaddr_in *dsin = (struct sockaddr_in *) dst; dsin->sin_family = ssin->sin_family; dsin->sin_addr.s_addr = ssin->sin_addr.s_addr; return true; } #if IS_ENABLED(CONFIG_IPV6) static inline bool rpc_cmp_addr6(const struct sockaddr *sap1, const struct sockaddr *sap2) { const struct sockaddr_in6 *sin1 = (const struct sockaddr_in6 *)sap1; const struct sockaddr_in6 *sin2 = (const struct sockaddr_in6 *)sap2; if (!ipv6_addr_equal(&sin1->sin6_addr, &sin2->sin6_addr)) return false; else if (ipv6_addr_type(&sin1->sin6_addr) & IPV6_ADDR_LINKLOCAL) return sin1->sin6_scope_id == sin2->sin6_scope_id; return true; } static inline bool __rpc_copy_addr6(struct sockaddr *dst, const struct sockaddr *src) { const struct sockaddr_in6 *ssin6 = (const struct sockaddr_in6 *) src; struct sockaddr_in6 *dsin6 = (struct sockaddr_in6 *) dst; dsin6->sin6_family = ssin6->sin6_family; dsin6->sin6_addr = ssin6->sin6_addr; dsin6->sin6_scope_id = ssin6->sin6_scope_id; return true; } #else /* !(IS_ENABLED(CONFIG_IPV6) */ static inline bool rpc_cmp_addr6(const struct sockaddr *sap1, const struct sockaddr *sap2) { return false; } static inline bool __rpc_copy_addr6(struct sockaddr *dst, const struct sockaddr *src) { return false; } #endif /* !(IS_ENABLED(CONFIG_IPV6) */ /** * rpc_cmp_addr - compare the address portion of two sockaddrs. * @sap1: first sockaddr * @sap2: second sockaddr * * Just compares the family and address portion. Ignores port, but * compares the scope if it's a link-local address. * * Returns true if the addrs are equal, false if they aren't. */ static inline bool rpc_cmp_addr(const struct sockaddr *sap1, const struct sockaddr *sap2) { if (sap1->sa_family == sap2->sa_family) { switch (sap1->sa_family) { case AF_INET: return rpc_cmp_addr4(sap1, sap2); case AF_INET6: return rpc_cmp_addr6(sap1, sap2); } } return false; } /** * rpc_cmp_addr_port - compare the address and port number of two sockaddrs. * @sap1: first sockaddr * @sap2: second sockaddr */ static inline bool rpc_cmp_addr_port(const struct sockaddr *sap1, const struct sockaddr *sap2) { if (!rpc_cmp_addr(sap1, sap2)) return false; return rpc_get_port(sap1) == rpc_get_port(sap2); } /** * rpc_copy_addr - copy the address portion of one sockaddr to another * @dst: destination sockaddr * @src: source sockaddr * * Just copies the address portion and family. Ignores port, scope, etc. * Caller is responsible for making certain that dst is large enough to hold * the address in src. Returns true if address family is supported. Returns * false otherwise. */ static inline bool rpc_copy_addr(struct sockaddr *dst, const struct sockaddr *src) { switch (src->sa_family) { case AF_INET: return __rpc_copy_addr4(dst, src); case AF_INET6: return __rpc_copy_addr6(dst, src); } return false; } /** * rpc_get_scope_id - return scopeid for a given sockaddr * @sa: sockaddr to get scopeid from * * Returns the value of the sin6_scope_id for AF_INET6 addrs, or 0 if * not an AF_INET6 address. */ static inline u32 rpc_get_scope_id(const struct sockaddr *sa) { if (sa->sa_family != AF_INET6) return 0; return ((struct sockaddr_in6 *) sa)->sin6_scope_id; } #endif /* _LINUX_SUNRPC_ADDR_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Universal TUN/TAP device driver. * Copyright (C) 1999-2000 Maxim Krasnyansky <max_mk@yahoo.com> */ #ifndef __IF_TUN_H #define __IF_TUN_H #include <uapi/linux/if_tun.h> #include <uapi/linux/virtio_net.h> #define TUN_XDP_FLAG 0x1UL #define TUN_MSG_UBUF 1 #define TUN_MSG_PTR 2 struct tun_msg_ctl { unsigned short type; unsigned short num; void *ptr; }; struct tun_xdp_hdr { int buflen; struct virtio_net_hdr gso; }; #if defined(CONFIG_TUN) || defined(CONFIG_TUN_MODULE) struct socket *tun_get_socket(struct file *); struct ptr_ring *tun_get_tx_ring(struct file *file); static inline bool tun_is_xdp_frame(void *ptr) { return (unsigned long)ptr & TUN_XDP_FLAG; } static inline void *tun_xdp_to_ptr(struct xdp_frame *xdp) { return (void *)((unsigned long)xdp | TUN_XDP_FLAG); } static inline struct xdp_frame *tun_ptr_to_xdp(void *ptr) { return (void *)((unsigned long)ptr & ~TUN_XDP_FLAG); } void tun_ptr_free(void *ptr); #else #include <linux/err.h> #include <linux/errno.h> struct file; struct socket; static inline struct socket *tun_get_socket(struct file *f) { return ERR_PTR(-EINVAL); } static inline struct ptr_ring *tun_get_tx_ring(struct file *f) { return ERR_PTR(-EINVAL); } static inline bool tun_is_xdp_frame(void *ptr) { return false; } static inline void *tun_xdp_to_ptr(struct xdp_frame *xdp) { return NULL; } static inline struct xdp_frame *tun_ptr_to_xdp(void *ptr) { return NULL; } static inline void tun_ptr_free(void *ptr) { } #endif /* CONFIG_TUN */ #endif /* __IF_TUN_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 #ifndef _LINUX_UNALIGNED_PACKED_STRUCT_H #define _LINUX_UNALIGNED_PACKED_STRUCT_H #include <linux/kernel.h> struct __una_u16 { u16 x; } __packed; struct __una_u32 { u32 x; } __packed; struct __una_u64 { u64 x; } __packed; static inline u16 __get_unaligned_cpu16(const void *p) { const struct __una_u16 *ptr = (const struct __una_u16 *)p; return ptr->x; } static inline u32 __get_unaligned_cpu32(const void *p) { const struct __una_u32 *ptr = (const struct __una_u32 *)p; return ptr->x; } static inline u64 __get_unaligned_cpu64(const void *p) { const struct __una_u64 *ptr = (const struct __una_u64 *)p; return ptr->x; } static inline void __put_unaligned_cpu16(u16 val, void *p) { struct __una_u16 *ptr = (struct __una_u16 *)p; ptr->x = val; } static inline void __put_unaligned_cpu32(u32 val, void *p) { struct __una_u32 *ptr = (struct __una_u32 *)p; ptr->x = val; } static inline void __put_unaligned_cpu64(u64 val, void *p) { struct __una_u64 *ptr = (struct __una_u64 *)p; ptr->x = val; } #endif /* _LINUX_UNALIGNED_PACKED_STRUCT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * NET Generic infrastructure for Network protocols. * * Authors: Arnaldo Carvalho de Melo <acme@conectiva.com.br> */ #ifndef _TIMEWAIT_SOCK_H #define _TIMEWAIT_SOCK_H #include <linux/slab.h> #include <linux/bug.h> #include <net/sock.h> struct timewait_sock_ops { struct kmem_cache *twsk_slab; char *twsk_slab_name; unsigned int twsk_obj_size; int (*twsk_unique)(struct sock *sk, struct sock *sktw, void *twp); void (*twsk_destructor)(struct sock *sk); }; static inline int twsk_unique(struct sock *sk, struct sock *sktw, void *twp) { if (sk->sk_prot->twsk_prot->twsk_unique != NULL) return sk->sk_prot->twsk_prot->twsk_unique(sk, sktw, twp); return 0; } static inline void twsk_destructor(struct sock *sk) { if (sk->sk_prot->twsk_prot->twsk_destructor != NULL) sk->sk_prot->twsk_prot->twsk_destructor(sk); } #endif /* _TIMEWAIT_SOCK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 // SPDX-License-Identifier: GPL-2.0 /* * device.h - generic, centralized driver model * * Copyright (c) 2001-2003 Patrick Mochel <mochel@osdl.org> * Copyright (c) 2004-2009 Greg Kroah-Hartman <gregkh@suse.de> * Copyright (c) 2008-2009 Novell Inc. * * See Documentation/driver-api/driver-model/ for more information. */ #ifndef _DEVICE_H_ #define _DEVICE_H_ #include <linux/dev_printk.h> #include <linux/energy_model.h> #include <linux/ioport.h> #include <linux/kobject.h> #include <linux/klist.h> #include <linux/list.h> #include <linux/lockdep.h> #include <linux/compiler.h> #include <linux/types.h> #include <linux/mutex.h> #include <linux/pm.h> #include <linux/atomic.h> #include <linux/uidgid.h> #include <linux/gfp.h> #include <linux/overflow.h> #include <linux/device/bus.h> #include <linux/device/class.h> #include <linux/device/driver.h> #include <asm/device.h> struct device; struct device_private; struct device_driver; struct driver_private; struct module; struct class; struct subsys_private; struct device_node; struct fwnode_handle; struct iommu_ops; struct iommu_group; struct dev_pin_info; struct dev_iommu; /** * struct subsys_interface - interfaces to device functions * @name: name of the device function * @subsys: subsytem of the devices to attach to * @node: the list of functions registered at the subsystem * @add_dev: device hookup to device function handler * @remove_dev: device hookup to device function handler * * Simple interfaces attached to a subsystem. Multiple interfaces can * attach to a subsystem and its devices. Unlike drivers, they do not * exclusively claim or control devices. Interfaces usually represent * a specific functionality of a subsystem/class of devices. */ struct subsys_interface { const char *name; struct bus_type *subsys; struct list_head node; int (*add_dev)(struct device *dev, struct subsys_interface *sif); void (*remove_dev)(struct device *dev, struct subsys_interface *sif); }; int subsys_interface_register(struct subsys_interface *sif); void subsys_interface_unregister(struct subsys_interface *sif); int subsys_system_register(struct bus_type *subsys, const struct attribute_group **groups); int subsys_virtual_register(struct bus_type *subsys, const struct attribute_group **groups); /* * The type of device, "struct device" is embedded in. A class * or bus can contain devices of different types * like "partitions" and "disks", "mouse" and "event". * This identifies the device type and carries type-specific * information, equivalent to the kobj_type of a kobject. * If "name" is specified, the uevent will contain it in * the DEVTYPE variable. */ struct device_type { const char *name; const struct attribute_group **groups; int (*uevent)(struct device *dev, struct kobj_uevent_env *env); char *(*devnode)(struct device *dev, umode_t *mode, kuid_t *uid, kgid_t *gid); void (*release)(struct device *dev); const struct dev_pm_ops *pm; }; /* interface for exporting device attributes */ struct device_attribute { struct attribute attr; ssize_t (*show)(struct device *dev, struct device_attribute *attr, char *buf); ssize_t (*store)(struct device *dev, struct device_attribute *attr, const char *buf, size_t count); }; struct dev_ext_attribute { struct device_attribute attr; void *var; }; ssize_t device_show_ulong(struct device *dev, struct device_attribute *attr, char *buf); ssize_t device_store_ulong(struct device *dev, struct device_attribute *attr, const char *buf, size_t count); ssize_t device_show_int(struct device *dev, struct device_attribute *attr, char *buf); ssize_t device_store_int(struct device *dev, struct device_attribute *attr, const char *buf, size_t count); ssize_t device_show_bool(struct device *dev, struct device_attribute *attr, char *buf); ssize_t device_store_bool(struct device *dev, struct device_attribute *attr, const char *buf, size_t count); #define DEVICE_ATTR(_name, _mode, _show, _store) \ struct device_attribute dev_attr_##_name = __ATTR(_name, _mode, _show, _store) #define DEVICE_ATTR_PREALLOC(_name, _mode, _show, _store) \ struct device_attribute dev_attr_##_name = \ __ATTR_PREALLOC(_name, _mode, _show, _store) #define DEVICE_ATTR_RW(_name) \ struct device_attribute dev_attr_##_name = __ATTR_RW(_name) #define DEVICE_ATTR_ADMIN_RW(_name) \ struct device_attribute dev_attr_##_name = __ATTR_RW_MODE(_name, 0600) #define DEVICE_ATTR_RO(_name) \ struct device_attribute dev_attr_##_name = __ATTR_RO(_name) #define DEVICE_ATTR_ADMIN_RO(_name) \ struct device_attribute dev_attr_##_name = __ATTR_RO_MODE(_name, 0400) #define DEVICE_ATTR_WO(_name) \ struct device_attribute dev_attr_##_name = __ATTR_WO(_name) #define DEVICE_ULONG_ATTR(_name, _mode, _var) \ struct dev_ext_attribute dev_attr_##_name = \ { __ATTR(_name, _mode, device_show_ulong, device_store_ulong), &(_var) } #define DEVICE_INT_ATTR(_name, _mode, _var) \ struct dev_ext_attribute dev_attr_##_name = \ { __ATTR(_name, _mode, device_show_int, device_store_int), &(_var) } #define DEVICE_BOOL_ATTR(_name, _mode, _var) \ struct dev_ext_attribute dev_attr_##_name = \ { __ATTR(_name, _mode, device_show_bool, device_store_bool), &(_var) } #define DEVICE_ATTR_IGNORE_LOCKDEP(_name, _mode, _show, _store) \ struct device_attribute dev_attr_##_name = \ __ATTR_IGNORE_LOCKDEP(_name, _mode, _show, _store) int device_create_file(struct device *device, const struct device_attribute *entry); void device_remove_file(struct device *dev, const struct device_attribute *attr); bool device_remove_file_self(struct device *dev, const struct device_attribute *attr); int __must_check device_create_bin_file(struct device *dev, const struct bin_attribute *attr); void device_remove_bin_file(struct device *dev, const struct bin_attribute *attr); /* device resource management */ typedef void (*dr_release_t)(struct device *dev, void *res); typedef int (*dr_match_t)(struct device *dev, void *res, void *match_data); #ifdef CONFIG_DEBUG_DEVRES void *__devres_alloc_node(dr_release_t release, size_t size, gfp_t gfp, int nid, const char *name) __malloc; #define devres_alloc(release, size, gfp) \ __devres_alloc_node(release, size, gfp, NUMA_NO_NODE, #release) #define devres_alloc_node(release, size, gfp, nid) \ __devres_alloc_node(release, size, gfp, nid, #release) #else void *devres_alloc_node(dr_release_t release, size_t size, gfp_t gfp, int nid) __malloc; static inline void *devres_alloc(dr_release_t release, size_t size, gfp_t gfp) { return devres_alloc_node(release, size, gfp, NUMA_NO_NODE); } #endif void devres_for_each_res(struct device *dev, dr_release_t release, dr_match_t match, void *match_data, void (*fn)(struct device *, void *, void *), void *data); void devres_free(void *res); void devres_add(struct device *dev, void *res); void *devres_find(struct device *dev, dr_release_t release, dr_match_t match, void *match_data); void *devres_get(struct device *dev, void *new_res, dr_match_t match, void *match_data); void *devres_remove(struct device *dev, dr_release_t release, dr_match_t match, void *match_data); int devres_destroy(struct device *dev, dr_release_t release, dr_match_t match, void *match_data); int devres_release(struct device *dev, dr_release_t release, dr_match_t match, void *match_data); /* devres group */ void * __must_check devres_open_group(struct device *dev, void *id, gfp_t gfp); void devres_close_group(struct device *dev, void *id); void devres_remove_group(struct device *dev, void *id); int devres_release_group(struct device *dev, void *id); /* managed devm_k.alloc/kfree for device drivers */ void *devm_kmalloc(struct device *dev, size_t size, gfp_t gfp) __malloc; void *devm_krealloc(struct device *dev, void *ptr, size_t size, gfp_t gfp) __must_check; __printf(3, 0) char *devm_kvasprintf(struct device *dev, gfp_t gfp, const char *fmt, va_list ap) __malloc; __printf(3, 4) char *devm_kasprintf(struct device *dev, gfp_t gfp, const char *fmt, ...) __malloc; static inline void *devm_kzalloc(struct device *dev, size_t size, gfp_t gfp) { return devm_kmalloc(dev, size, gfp | __GFP_ZERO); } static inline void *devm_kmalloc_array(struct device *dev, size_t n, size_t size, gfp_t flags) { size_t bytes; if (unlikely(check_mul_overflow(n, size, &bytes))) return NULL; return devm_kmalloc(dev, bytes, flags); } static inline void *devm_kcalloc(struct device *dev, size_t n, size_t size, gfp_t flags) { return devm_kmalloc_array(dev, n, size, flags | __GFP_ZERO); } void devm_kfree(struct device *dev, const void *p); char *devm_kstrdup(struct device *dev, const char *s, gfp_t gfp) __malloc; const char *devm_kstrdup_const(struct device *dev, const char *s, gfp_t gfp); void *devm_kmemdup(struct device *dev, const void *src, size_t len, gfp_t gfp); unsigned long devm_get_free_pages(struct device *dev, gfp_t gfp_mask, unsigned int order); void devm_free_pages(struct device *dev, unsigned long addr); void __iomem *devm_ioremap_resource(struct device *dev, const struct resource *res); void __iomem *devm_ioremap_resource_wc(struct device *dev, const struct resource *res); void __iomem *devm_of_iomap(struct device *dev, struct device_node *node, int index, resource_size_t *size); /* allows to add/remove a custom action to devres stack */ int devm_add_action(struct device *dev, void (*action)(void *), void *data); void devm_remove_action(struct device *dev, void (*action)(void *), void *data); void devm_release_action(struct device *dev, void (*action)(void *), void *data); static inline int devm_add_action_or_reset(struct device *dev, void (*action)(void *), void *data) { int ret; ret = devm_add_action(dev, action, data); if (ret) action(data); return ret; } /** * devm_alloc_percpu - Resource-managed alloc_percpu * @dev: Device to allocate per-cpu memory for * @type: Type to allocate per-cpu memory for * * Managed alloc_percpu. Per-cpu memory allocated with this function is * automatically freed on driver detach. * * RETURNS: * Pointer to allocated memory on success, NULL on failure. */ #define devm_alloc_percpu(dev, type) \ ((typeof(type) __percpu *)__devm_alloc_percpu((dev), sizeof(type), \ __alignof__(type))) void __percpu *__devm_alloc_percpu(struct device *dev, size_t size, size_t align); void devm_free_percpu(struct device *dev, void __percpu *pdata); struct device_dma_parameters { /* * a low level driver may set these to teach IOMMU code about * sg limitations. */ unsigned int max_segment_size; unsigned int min_align_mask; unsigned long segment_boundary_mask; }; /** * enum device_link_state - Device link states. * @DL_STATE_NONE: The presence of the drivers is not being tracked. * @DL_STATE_DORMANT: None of the supplier/consumer drivers is present. * @DL_STATE_AVAILABLE: The supplier driver is present, but the consumer is not. * @DL_STATE_CONSUMER_PROBE: The consumer is probing (supplier driver present). * @DL_STATE_ACTIVE: Both the supplier and consumer drivers are present. * @DL_STATE_SUPPLIER_UNBIND: The supplier driver is unbinding. */ enum device_link_state { DL_STATE_NONE = -1, DL_STATE_DORMANT = 0, DL_STATE_AVAILABLE, DL_STATE_CONSUMER_PROBE, DL_STATE_ACTIVE, DL_STATE_SUPPLIER_UNBIND, }; /* * Device link flags. * * STATELESS: The core will not remove this link automatically. * AUTOREMOVE_CONSUMER: Remove the link automatically on consumer driver unbind. * PM_RUNTIME: If set, the runtime PM framework will use this link. * RPM_ACTIVE: Run pm_runtime_get_sync() on the supplier during link creation. * AUTOREMOVE_SUPPLIER: Remove the link automatically on supplier driver unbind. * AUTOPROBE_CONSUMER: Probe consumer driver automatically after supplier binds. * MANAGED: The core tracks presence of supplier/consumer drivers (internal). * SYNC_STATE_ONLY: Link only affects sync_state() behavior. */ #define DL_FLAG_STATELESS BIT(0) #define DL_FLAG_AUTOREMOVE_CONSUMER BIT(1) #define DL_FLAG_PM_RUNTIME BIT(2) #define DL_FLAG_RPM_ACTIVE BIT(3) #define DL_FLAG_AUTOREMOVE_SUPPLIER BIT(4) #define DL_FLAG_AUTOPROBE_CONSUMER BIT(5) #define DL_FLAG_MANAGED BIT(6) #define DL_FLAG_SYNC_STATE_ONLY BIT(7) /** * enum dl_dev_state - Device driver presence tracking information. * @DL_DEV_NO_DRIVER: There is no driver attached to the device. * @DL_DEV_PROBING: A driver is probing. * @DL_DEV_DRIVER_BOUND: The driver has been bound to the device. * @DL_DEV_UNBINDING: The driver is unbinding from the device. */ enum dl_dev_state { DL_DEV_NO_DRIVER = 0, DL_DEV_PROBING, DL_DEV_DRIVER_BOUND, DL_DEV_UNBINDING, }; /** * struct dev_links_info - Device data related to device links. * @suppliers: List of links to supplier devices. * @consumers: List of links to consumer devices. * @needs_suppliers: Hook to global list of devices waiting for suppliers. * @defer_hook: Hook to global list of devices that have deferred sync_state or * deferred fw_devlink. * @need_for_probe: If needs_suppliers is on a list, this indicates if the * suppliers are needed for probe or not. * @status: Driver status information. */ struct dev_links_info { struct list_head suppliers; struct list_head consumers; struct list_head needs_suppliers; struct list_head defer_hook; bool need_for_probe; enum dl_dev_state status; }; /** * struct device - The basic device structure * @parent: The device's "parent" device, the device to which it is attached. * In most cases, a parent device is some sort of bus or host * controller. If parent is NULL, the device, is a top-level device, * which is not usually what you want. * @p: Holds the private data of the driver core portions of the device. * See the comment of the struct device_private for detail. * @kobj: A top-level, abstract class from which other classes are derived. * @init_name: Initial name of the device. * @type: The type of device. * This identifies the device type and carries type-specific * information. * @mutex: Mutex to synchronize calls to its driver. * @lockdep_mutex: An optional debug lock that a subsystem can use as a * peer lock to gain localized lockdep coverage of the device_lock. * @bus: Type of bus device is on. * @driver: Which driver has allocated this * @platform_data: Platform data specific to the device. * Example: For devices on custom boards, as typical of embedded * and SOC based hardware, Linux often uses platform_data to point * to board-specific structures describing devices and how they * are wired. That can include what ports are available, chip * variants, which GPIO pins act in what additional roles, and so * on. This shrinks the "Board Support Packages" (BSPs) and * minimizes board-specific #ifdefs in drivers. * @driver_data: Private pointer for driver specific info. * @links: Links to suppliers and consumers of this device. * @power: For device power management. * See Documentation/driver-api/pm/devices.rst for details. * @pm_domain: Provide callbacks that are executed during system suspend, * hibernation, system resume and during runtime PM transitions * along with subsystem-level and driver-level callbacks. * @em_pd: device's energy model performance domain * @pins: For device pin management. * See Documentation/driver-api/pinctl.rst for details. * @msi_list: Hosts MSI descriptors * @msi_domain: The generic MSI domain this device is using. * @numa_node: NUMA node this device is close to. * @dma_ops: DMA mapping operations for this device. * @dma_mask: Dma mask (if dma'ble device). * @coherent_dma_mask: Like dma_mask, but for alloc_coherent mapping as not all * hardware supports 64-bit addresses for consistent allocations * such descriptors. * @bus_dma_limit: Limit of an upstream bridge or bus which imposes a smaller * DMA limit than the device itself supports. * @dma_range_map: map for DMA memory ranges relative to that of RAM * @dma_parms: A low level driver may set these to teach IOMMU code about * segment limitations. * @dma_pools: Dma pools (if dma'ble device). * @dma_mem: Internal for coherent mem override. * @cma_area: Contiguous memory area for dma allocations * @archdata: For arch-specific additions. * @of_node: Associated device tree node. * @fwnode: Associated device node supplied by platform firmware. * @devt: For creating the sysfs "dev". * @id: device instance * @devres_lock: Spinlock to protect the resource of the device. * @devres_head: The resources list of the device. * @knode_class: The node used to add the device to the class list. * @class: The class of the device. * @groups: Optional attribute groups. * @release: Callback to free the device after all references have * gone away. This should be set by the allocator of the * device (i.e. the bus driver that discovered the device). * @iommu_group: IOMMU group the device belongs to. * @iommu: Per device generic IOMMU runtime data * * @offline_disabled: If set, the device is permanently online. * @offline: Set after successful invocation of bus type's .offline(). * @of_node_reused: Set if the device-tree node is shared with an ancestor * device. * @state_synced: The hardware state of this device has been synced to match * the software state of this device by calling the driver/bus * sync_state() callback. * @dma_coherent: this particular device is dma coherent, even if the * architecture supports non-coherent devices. * @dma_ops_bypass: If set to %true then the dma_ops are bypassed for the * streaming DMA operations (->map_* / ->unmap_* / ->sync_*), * and optionall (if the coherent mask is large enough) also * for dma allocations. This flag is managed by the dma ops * instance from ->dma_supported. * * At the lowest level, every device in a Linux system is represented by an * instance of struct device. The device structure contains the information * that the device model core needs to model the system. Most subsystems, * however, track additional information about the devices they host. As a * result, it is rare for devices to be represented by bare device structures; * instead, that structure, like kobject structures, is usually embedded within * a higher-level representation of the device. */ struct device { struct kobject kobj; struct device *parent; struct device_private *p; const char *init_name; /* initial name of the device */ const struct device_type *type; struct bus_type *bus; /* type of bus device is on */ struct device_driver *driver; /* which driver has allocated this device */ void *platform_data; /* Platform specific data, device core doesn't touch it */ void *driver_data; /* Driver data, set and get with dev_set_drvdata/dev_get_drvdata */ #ifdef CONFIG_PROVE_LOCKING struct mutex lockdep_mutex; #endif struct mutex mutex; /* mutex to synchronize calls to * its driver. */ struct dev_links_info links; struct dev_pm_info power; struct dev_pm_domain *pm_domain; #ifdef CONFIG_ENERGY_MODEL struct em_perf_domain *em_pd; #endif #ifdef CONFIG_GENERIC_MSI_IRQ_DOMAIN struct irq_domain *msi_domain; #endif #ifdef CONFIG_PINCTRL struct dev_pin_info *pins; #endif #ifdef CONFIG_GENERIC_MSI_IRQ raw_spinlock_t msi_lock; struct list_head msi_list; #endif #ifdef CONFIG_DMA_OPS const struct dma_map_ops *dma_ops; #endif u64 *dma_mask; /* dma mask (if dma'able device) */ u64 coherent_dma_mask;/* Like dma_mask, but for alloc_coherent mappings as not all hardware supports 64 bit addresses for consistent allocations such descriptors. */ u64 bus_dma_limit; /* upstream dma constraint */ const struct bus_dma_region *dma_range_map; struct device_dma_parameters *dma_parms; struct list_head dma_pools; /* dma pools (if dma'ble) */ #ifdef CONFIG_DMA_DECLARE_COHERENT struct dma_coherent_mem *dma_mem; /* internal for coherent mem override */ #endif #ifdef CONFIG_DMA_CMA struct cma *cma_area; /* contiguous memory area for dma allocations */ #endif /* arch specific additions */ struct dev_archdata archdata; struct device_node *of_node; /* associated device tree node */ struct fwnode_handle *fwnode; /* firmware device node */ #ifdef CONFIG_NUMA int numa_node; /* NUMA node this device is close to */ #endif dev_t devt; /* dev_t, creates the sysfs "dev" */ u32 id; /* device instance */ spinlock_t devres_lock; struct list_head devres_head; struct class *class; const struct attribute_group **groups; /* optional groups */ void (*release)(struct device *dev); struct iommu_group *iommu_group; struct dev_iommu *iommu; bool offline_disabled:1; bool offline:1; bool of_node_reused:1; bool state_synced:1; #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) bool dma_coherent:1; #endif #ifdef CONFIG_DMA_OPS_BYPASS bool dma_ops_bypass : 1; #endif }; /** * struct device_link - Device link representation. * @supplier: The device on the supplier end of the link. * @s_node: Hook to the supplier device's list of links to consumers. * @consumer: The device on the consumer end of the link. * @c_node: Hook to the consumer device's list of links to suppliers. * @link_dev: device used to expose link details in sysfs * @status: The state of the link (with respect to the presence of drivers). * @flags: Link flags. * @rpm_active: Whether or not the consumer device is runtime-PM-active. * @kref: Count repeated addition of the same link. * @rm_work: Work structure used for removing the link. * @supplier_preactivated: Supplier has been made active before consumer probe. */ struct device_link { struct device *supplier; struct list_head s_node; struct device *consumer; struct list_head c_node; struct device link_dev; enum device_link_state status; u32 flags; refcount_t rpm_active; struct kref kref; struct work_struct rm_work; bool supplier_preactivated; /* Owned by consumer probe. */ }; static inline struct device *kobj_to_dev(struct kobject *kobj) { return container_of(kobj, struct device, kobj); } /** * device_iommu_mapped - Returns true when the device DMA is translated * by an IOMMU * @dev: Device to perform the check on */ static inline bool device_iommu_mapped(struct device *dev) { return (dev->iommu_group != NULL); } /* Get the wakeup routines, which depend on struct device */ #include <linux/pm_wakeup.h> static inline const char *dev_name(const struct device *dev) { /* Use the init name until the kobject becomes available */ if (dev->init_name) return dev->init_name; return kobject_name(&dev->kobj); } /** * dev_bus_name - Return a device's bus/class name, if at all possible * @dev: struct device to get the bus/class name of * * Will return the name of the bus/class the device is attached to. If it is * not attached to a bus/class, an empty string will be returned. */ static inline const char *dev_bus_name(const struct device *dev) { return dev->bus ? dev->bus->name : (dev->class ? dev->class->name : ""); } __printf(2, 3) int dev_set_name(struct device *dev, const char *name, ...); #ifdef CONFIG_NUMA static inline int dev_to_node(struct device *dev) { return dev->numa_node; } static inline void set_dev_node(struct device *dev, int node) { dev->numa_node = node; } #else static inline int dev_to_node(struct device *dev) { return NUMA_NO_NODE; } static inline void set_dev_node(struct device *dev, int node) { } #endif static inline struct irq_domain *dev_get_msi_domain(const struct device *dev) { #ifdef CONFIG_GENERIC_MSI_IRQ_DOMAIN return dev->msi_domain; #else return NULL; #endif } static inline void dev_set_msi_domain(struct device *dev, struct irq_domain *d) { #ifdef CONFIG_GENERIC_MSI_IRQ_DOMAIN dev->msi_domain = d; #endif } static inline void *dev_get_drvdata(const struct device *dev) { return dev->driver_data; } static inline void dev_set_drvdata(struct device *dev, void *data) { dev->driver_data = data; } static inline struct pm_subsys_data *dev_to_psd(struct device *dev) { return dev ? dev->power.subsys_data : NULL; } static inline unsigned int dev_get_uevent_suppress(const struct device *dev) { return dev->kobj.uevent_suppress; } static inline void dev_set_uevent_suppress(struct device *dev, int val) { dev->kobj.uevent_suppress = val; } static inline int device_is_registered(struct device *dev) { return dev->kobj.state_in_sysfs; } static inline void device_enable_async_suspend(struct device *dev) { if (!dev->power.is_prepared) dev->power.async_suspend = true; } static inline void device_disable_async_suspend(struct device *dev) { if (!dev->power.is_prepared) dev->power.async_suspend = false; } static inline bool device_async_suspend_enabled(struct device *dev) { return !!dev->power.async_suspend; } static inline bool device_pm_not_required(struct device *dev) { return dev->power.no_pm; } static inline void device_set_pm_not_required(struct device *dev) { dev->power.no_pm = true; } static inline void dev_pm_syscore_device(struct device *dev, bool val) { #ifdef CONFIG_PM_SLEEP dev->power.syscore = val; #endif } static inline void dev_pm_set_driver_flags(struct device *dev, u32 flags) { dev->power.driver_flags = flags; } static inline bool dev_pm_test_driver_flags(struct device *dev, u32 flags) { return !!(dev->power.driver_flags & flags); } static inline void device_lock(struct device *dev) { mutex_lock(&dev->mutex); } static inline int device_lock_interruptible(struct device *dev) { return mutex_lock_interruptible(&dev->mutex); } static inline int device_trylock(struct device *dev) { return mutex_trylock(&dev->mutex); } static inline void device_unlock(struct device *dev) { mutex_unlock(&dev->mutex); } static inline void device_lock_assert(struct device *dev) { lockdep_assert_held(&dev->mutex); } static inline struct device_node *dev_of_node(struct device *dev) { if (!IS_ENABLED(CONFIG_OF) || !dev) return NULL; return dev->of_node; } static inline bool dev_has_sync_state(struct device *dev) { if (!dev) return false; if (dev->driver && dev->driver->sync_state) return true; if (dev->bus && dev->bus->sync_state) return true; return false; } /* * High level routines for use by the bus drivers */ int __must_check device_register(struct device *dev); void device_unregister(struct device *dev); void device_initialize(struct device *dev); int __must_check device_add(struct device *dev); void device_del(struct device *dev); int device_for_each_child(struct device *dev, void *data, int (*fn)(struct device *dev, void *data)); int device_for_each_child_reverse(struct device *dev, void *data, int (*fn)(struct device *dev, void *data)); struct device *device_find_child(struct device *dev, void *data, int (*match)(struct device *dev, void *data)); struct device *device_find_child_by_name(struct device *parent, const char *name); int device_rename(struct device *dev, const char *new_name); int device_move(struct device *dev, struct device *new_parent, enum dpm_order dpm_order); int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid); const char *device_get_devnode(struct device *dev, umode_t *mode, kuid_t *uid, kgid_t *gid, const char **tmp); int device_is_dependent(struct device *dev, void *target); static inline bool device_supports_offline(struct device *dev) { return dev->bus && dev->bus->offline && dev->bus->online; } void lock_device_hotplug(void); void unlock_device_hotplug(void); int lock_device_hotplug_sysfs(void); int device_offline(struct device *dev); int device_online(struct device *dev); void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode); void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode); void device_set_of_node_from_dev(struct device *dev, const struct device *dev2); static inline int dev_num_vf(struct device *dev) { if (dev->bus && dev->bus->num_vf) return dev->bus->num_vf(dev); return 0; } /* * Root device objects for grouping under /sys/devices */ struct device *__root_device_register(const char *name, struct module *owner); /* This is a macro to avoid include problems with THIS_MODULE */ #define root_device_register(name) \ __root_device_register(name, THIS_MODULE) void root_device_unregister(struct device *root); static inline void *dev_get_platdata(const struct device *dev) { return dev->platform_data; } /* * Manual binding of a device to driver. See drivers/base/bus.c * for information on use. */ int __must_check device_bind_driver(struct device *dev); void device_release_driver(struct device *dev); int __must_check device_attach(struct device *dev); int __must_check driver_attach(struct device_driver *drv); void device_initial_probe(struct device *dev); int __must_check device_reprobe(struct device *dev); bool device_is_bound(struct device *dev); /* * Easy functions for dynamically creating devices on the fly */ __printf(5, 6) struct device * device_create(struct class *cls, struct device *parent, dev_t devt, void *drvdata, const char *fmt, ...); __printf(6, 7) struct device * device_create_with_groups(struct class *cls, struct device *parent, dev_t devt, void *drvdata, const struct attribute_group **groups, const char *fmt, ...); void device_destroy(struct class *cls, dev_t devt); int __must_check device_add_groups(struct device *dev, const struct attribute_group **groups); void device_remove_groups(struct device *dev, const struct attribute_group **groups); static inline int __must_check device_add_group(struct device *dev, const struct attribute_group *grp) { const struct attribute_group *groups[] = { grp, NULL }; return device_add_groups(dev, groups); } static inline void device_remove_group(struct device *dev, const struct attribute_group *grp) { const struct attribute_group *groups[] = { grp, NULL }; return device_remove_groups(dev, groups); } int __must_check devm_device_add_groups(struct device *dev, const struct attribute_group **groups); void devm_device_remove_groups(struct device *dev, const struct attribute_group **groups); int __must_check devm_device_add_group(struct device *dev, const struct attribute_group *grp); void devm_device_remove_group(struct device *dev, const struct attribute_group *grp); /* * Platform "fixup" functions - allow the platform to have their say * about devices and actions that the general device layer doesn't * know about. */ /* Notify platform of device discovery */ extern int (*platform_notify)(struct device *dev); extern int (*platform_notify_remove)(struct device *dev); /* * get_device - atomically increment the reference count for the device. * */ struct device *get_device(struct device *dev); void put_device(struct device *dev); bool kill_device(struct device *dev); #ifdef CONFIG_DEVTMPFS int devtmpfs_mount(void); #else static inline int devtmpfs_mount(void) { return 0; } #endif /* drivers/base/power/shutdown.c */ void device_shutdown(void); /* debugging and troubleshooting/diagnostic helpers. */ const char *dev_driver_string(const struct device *dev); /* Device links interface. */ struct device_link *device_link_add(struct device *consumer, struct device *supplier, u32 flags); void device_link_del(struct device_link *link); void device_link_remove(void *consumer, struct device *supplier); void device_links_supplier_sync_state_pause(void); void device_links_supplier_sync_state_resume(void); extern __printf(3, 4) int dev_err_probe(const struct device *dev, int err, const char *fmt, ...); /* Create alias, so I can be autoloaded. */ #define MODULE_ALIAS_CHARDEV(major,minor) \ MODULE_ALIAS("char-major-" __stringify(major) "-" __stringify(minor)) #define MODULE_ALIAS_CHARDEV_MAJOR(major) \ MODULE_ALIAS("char-major-" __stringify(major) "-*") #ifdef CONFIG_SYSFS_DEPRECATED extern long sysfs_deprecated; #else #define sysfs_deprecated 0 #endif #endif /* _DEVICE_H_ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Scatterlist Cryptographic API. * * Copyright (c) 2002 James Morris <jmorris@intercode.com.au> * Copyright (c) 2002 David S. Miller (davem@redhat.com) * Copyright (c) 2005 Herbert Xu <herbert@gondor.apana.org.au> * * Portions derived from Cryptoapi, by Alexander Kjeldaas <astor@fast.no> * and Nettle, by Niels Möller. */ #ifndef _LINUX_CRYPTO_H #define _LINUX_CRYPTO_H #include <linux/atomic.h> #include <linux/kernel.h> #include <linux/list.h> #include <linux/bug.h> #include <linux/refcount.h> #include <linux/slab.h> #include <linux/completion.h> /* * Autoloaded crypto modules should only use a prefixed name to avoid allowing * arbitrary modules to be loaded. Loading from userspace may still need the * unprefixed names, so retains those aliases as well. * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3 * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro * expands twice on the same line. Instead, use a separate base name for the * alias. */ #define MODULE_ALIAS_CRYPTO(name) \ __MODULE_INFO(alias, alias_userspace, name); \ __MODULE_INFO(alias, alias_crypto, "crypto-" name) /* * Algorithm masks and types. */ #define CRYPTO_ALG_TYPE_MASK 0x0000000f #define CRYPTO_ALG_TYPE_CIPHER 0x00000001 #define CRYPTO_ALG_TYPE_COMPRESS 0x00000002 #define CRYPTO_ALG_TYPE_AEAD 0x00000003 #define CRYPTO_ALG_TYPE_SKCIPHER 0x00000005 #define CRYPTO_ALG_TYPE_KPP 0x00000008 #define CRYPTO_ALG_TYPE_ACOMPRESS 0x0000000a #define CRYPTO_ALG_TYPE_SCOMPRESS 0x0000000b #define CRYPTO_ALG_TYPE_RNG 0x0000000c #define CRYPTO_ALG_TYPE_AKCIPHER 0x0000000d #define CRYPTO_ALG_TYPE_HASH 0x0000000e #define CRYPTO_ALG_TYPE_SHASH 0x0000000e #define CRYPTO_ALG_TYPE_AHASH 0x0000000f #define CRYPTO_ALG_TYPE_HASH_MASK 0x0000000e #define CRYPTO_ALG_TYPE_AHASH_MASK 0x0000000e #define CRYPTO_ALG_TYPE_ACOMPRESS_MASK 0x0000000e #define CRYPTO_ALG_LARVAL 0x00000010 #define CRYPTO_ALG_DEAD 0x00000020 #define CRYPTO_ALG_DYING 0x00000040 #define CRYPTO_ALG_ASYNC 0x00000080 /* * Set if the algorithm (or an algorithm which it uses) requires another * algorithm of the same type to handle corner cases. */ #define CRYPTO_ALG_NEED_FALLBACK 0x00000100 /* * Set if the algorithm has passed automated run-time testing. Note that * if there is no run-time testing for a given algorithm it is considered * to have passed. */ #define CRYPTO_ALG_TESTED 0x00000400 /* * Set if the algorithm is an instance that is built from templates. */ #define CRYPTO_ALG_INSTANCE 0x00000800 /* Set this bit if the algorithm provided is hardware accelerated but * not available to userspace via instruction set or so. */ #define CRYPTO_ALG_KERN_DRIVER_ONLY 0x00001000 /* * Mark a cipher as a service implementation only usable by another * cipher and never by a normal user of the kernel crypto API */ #define CRYPTO_ALG_INTERNAL 0x00002000 /* * Set if the algorithm has a ->setkey() method but can be used without * calling it first, i.e. there is a default key. */ #define CRYPTO_ALG_OPTIONAL_KEY 0x00004000 /* * Don't trigger module loading */ #define CRYPTO_NOLOAD 0x00008000 /* * The algorithm may allocate memory during request processing, i.e. during * encryption, decryption, or hashing. Users can request an algorithm with this * flag unset if they can't handle memory allocation failures. * * This flag is currently only implemented for algorithms of type "skcipher", * "aead", "ahash", "shash", and "cipher". Algorithms of other types might not * have this flag set even if they allocate memory. * * In some edge cases, algorithms can allocate memory regardless of this flag. * To avoid these cases, users must obey the following usage constraints: * skcipher: * - The IV buffer and all scatterlist elements must be aligned to the * algorithm's alignmask. * - If the data were to be divided into chunks of size * crypto_skcipher_walksize() (with any remainder going at the end), no * chunk can cross a page boundary or a scatterlist element boundary. * aead: * - The IV buffer and all scatterlist elements must be aligned to the * algorithm's alignmask. * - The first scatterlist element must contain all the associated data, * and its pages must be !PageHighMem. * - If the plaintext/ciphertext were to be divided into chunks of size * crypto_aead_walksize() (with the remainder going at the end), no chunk * can cross a page boundary or a scatterlist element boundary. * ahash: * - The result buffer must be aligned to the algorithm's alignmask. * - crypto_ahash_finup() must not be used unless the algorithm implements * ->finup() natively. */ #define CRYPTO_ALG_ALLOCATES_MEMORY 0x00010000 /* * Transform masks and values (for crt_flags). */ #define CRYPTO_TFM_NEED_KEY 0x00000001 #define CRYPTO_TFM_REQ_MASK 0x000fff00 #define CRYPTO_TFM_REQ_FORBID_WEAK_KEYS 0x00000100 #define CRYPTO_TFM_REQ_MAY_SLEEP 0x00000200 #define CRYPTO_TFM_REQ_MAY_BACKLOG 0x00000400 /* * Miscellaneous stuff. */ #define CRYPTO_MAX_ALG_NAME 128 /* * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual * declaration) is used to ensure that the crypto_tfm context structure is * aligned correctly for the given architecture so that there are no alignment * faults for C data types. On architectures that support non-cache coherent * DMA, such as ARM or arm64, it also takes into account the minimal alignment * that is required to ensure that the context struct member does not share any * cachelines with the rest of the struct. This is needed to ensure that cache * maintenance for non-coherent DMA (cache invalidation in particular) does not * affect data that may be accessed by the CPU concurrently. */ #define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN #define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN))) struct scatterlist; struct crypto_async_request; struct crypto_tfm; struct crypto_type; typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err); /** * DOC: Block Cipher Context Data Structures * * These data structures define the operating context for each block cipher * type. */ struct crypto_async_request { struct list_head list; crypto_completion_t complete; void *data; struct crypto_tfm *tfm; u32 flags; }; /** * DOC: Block Cipher Algorithm Definitions * * These data structures define modular crypto algorithm implementations, * managed via crypto_register_alg() and crypto_unregister_alg(). */ /** * struct cipher_alg - single-block symmetric ciphers definition * @cia_min_keysize: Minimum key size supported by the transformation. This is * the smallest key length supported by this transformation * algorithm. This must be set to one of the pre-defined * values as this is not hardware specific. Possible values * for this field can be found via git grep "_MIN_KEY_SIZE" * include/crypto/ * @cia_max_keysize: Maximum key size supported by the transformation. This is * the largest key length supported by this transformation * algorithm. This must be set to one of the pre-defined values * as this is not hardware specific. Possible values for this * field can be found via git grep "_MAX_KEY_SIZE" * include/crypto/ * @cia_setkey: Set key for the transformation. This function is used to either * program a supplied key into the hardware or store the key in the * transformation context for programming it later. Note that this * function does modify the transformation context. This function * can be called multiple times during the existence of the * transformation object, so one must make sure the key is properly * reprogrammed into the hardware. This function is also * responsible for checking the key length for validity. * @cia_encrypt: Encrypt a single block. This function is used to encrypt a * single block of data, which must be @cra_blocksize big. This * always operates on a full @cra_blocksize and it is not possible * to encrypt a block of smaller size. The supplied buffers must * therefore also be at least of @cra_blocksize size. Both the * input and output buffers are always aligned to @cra_alignmask. * In case either of the input or output buffer supplied by user * of the crypto API is not aligned to @cra_alignmask, the crypto * API will re-align the buffers. The re-alignment means that a * new buffer will be allocated, the data will be copied into the * new buffer, then the processing will happen on the new buffer, * then the data will be copied back into the original buffer and * finally the new buffer will be freed. In case a software * fallback was put in place in the @cra_init call, this function * might need to use the fallback if the algorithm doesn't support * all of the key sizes. In case the key was stored in * transformation context, the key might need to be re-programmed * into the hardware in this function. This function shall not * modify the transformation context, as this function may be * called in parallel with the same transformation object. * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to * @cia_encrypt, and the conditions are exactly the same. * * All fields are mandatory and must be filled. */ struct cipher_alg { unsigned int cia_min_keysize; unsigned int cia_max_keysize; int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key, unsigned int keylen); void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); }; /** * struct compress_alg - compression/decompression algorithm * @coa_compress: Compress a buffer of specified length, storing the resulting * data in the specified buffer. Return the length of the * compressed data in dlen. * @coa_decompress: Decompress the source buffer, storing the uncompressed * data in the specified buffer. The length of the data is * returned in dlen. * * All fields are mandatory. */ struct compress_alg { int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src, unsigned int slen, u8 *dst, unsigned int *dlen); int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src, unsigned int slen, u8 *dst, unsigned int *dlen); }; #ifdef CONFIG_CRYPTO_STATS /* * struct crypto_istat_aead - statistics for AEAD algorithm * @encrypt_cnt: number of encrypt requests * @encrypt_tlen: total data size handled by encrypt requests * @decrypt_cnt: number of decrypt requests * @decrypt_tlen: total data size handled by decrypt requests * @err_cnt: number of error for AEAD requests */ struct crypto_istat_aead { atomic64_t encrypt_cnt; atomic64_t encrypt_tlen; atomic64_t decrypt_cnt; atomic64_t decrypt_tlen; atomic64_t err_cnt; }; /* * struct crypto_istat_akcipher - statistics for akcipher algorithm * @encrypt_cnt: number of encrypt requests * @encrypt_tlen: total data size handled by encrypt requests * @decrypt_cnt: number of decrypt requests * @decrypt_tlen: total data size handled by decrypt requests * @verify_cnt: number of verify operation * @sign_cnt: number of sign requests * @err_cnt: number of error for akcipher requests */ struct crypto_istat_akcipher { atomic64_t encrypt_cnt; atomic64_t encrypt_tlen; atomic64_t decrypt_cnt; atomic64_t decrypt_tlen; atomic64_t verify_cnt; atomic64_t sign_cnt; atomic64_t err_cnt; }; /* * struct crypto_istat_cipher - statistics for cipher algorithm * @encrypt_cnt: number of encrypt requests * @encrypt_tlen: total data size handled by encrypt requests * @decrypt_cnt: number of decrypt requests * @decrypt_tlen: total data size handled by decrypt requests * @err_cnt: number of error for cipher requests */ struct crypto_istat_cipher { atomic64_t encrypt_cnt; atomic64_t encrypt_tlen; atomic64_t decrypt_cnt; atomic64_t decrypt_tlen; atomic64_t err_cnt; }; /* * struct crypto_istat_compress - statistics for compress algorithm * @compress_cnt: number of compress requests * @compress_tlen: total data size handled by compress requests * @decompress_cnt: number of decompress requests * @decompress_tlen: total data size handled by decompress requests * @err_cnt: number of error for compress requests */ struct crypto_istat_compress { atomic64_t compress_cnt; atomic64_t compress_tlen; atomic64_t decompress_cnt; atomic64_t decompress_tlen; atomic64_t err_cnt; }; /* * struct crypto_istat_hash - statistics for has algorithm * @hash_cnt: number of hash requests * @hash_tlen: total data size hashed * @err_cnt: number of error for hash requests */ struct crypto_istat_hash { atomic64_t hash_cnt; atomic64_t hash_tlen; atomic64_t err_cnt; }; /* * struct crypto_istat_kpp - statistics for KPP algorithm * @setsecret_cnt: number of setsecrey operation * @generate_public_key_cnt: number of generate_public_key operation * @compute_shared_secret_cnt: number of compute_shared_secret operation * @err_cnt: number of error for KPP requests */ struct crypto_istat_kpp { atomic64_t setsecret_cnt; atomic64_t generate_public_key_cnt; atomic64_t compute_shared_secret_cnt; atomic64_t err_cnt; }; /* * struct crypto_istat_rng: statistics for RNG algorithm * @generate_cnt: number of RNG generate requests * @generate_tlen: total data size of generated data by the RNG * @seed_cnt: number of times the RNG was seeded * @err_cnt: number of error for RNG requests */ struct crypto_istat_rng { atomic64_t generate_cnt; atomic64_t generate_tlen; atomic64_t seed_cnt; atomic64_t err_cnt; }; #endif /* CONFIG_CRYPTO_STATS */ #define cra_cipher cra_u.cipher #define cra_compress cra_u.compress /** * struct crypto_alg - definition of a cryptograpic cipher algorithm * @cra_flags: Flags describing this transformation. See include/linux/crypto.h * CRYPTO_ALG_* flags for the flags which go in here. Those are * used for fine-tuning the description of the transformation * algorithm. * @cra_blocksize: Minimum block size of this transformation. The size in bytes * of the smallest possible unit which can be transformed with * this algorithm. The users must respect this value. * In case of HASH transformation, it is possible for a smaller * block than @cra_blocksize to be passed to the crypto API for * transformation, in case of any other transformation type, an * error will be returned upon any attempt to transform smaller * than @cra_blocksize chunks. * @cra_ctxsize: Size of the operational context of the transformation. This * value informs the kernel crypto API about the memory size * needed to be allocated for the transformation context. * @cra_alignmask: Alignment mask for the input and output data buffer. The data * buffer containing the input data for the algorithm must be * aligned to this alignment mask. The data buffer for the * output data must be aligned to this alignment mask. Note that * the Crypto API will do the re-alignment in software, but * only under special conditions and there is a performance hit. * The re-alignment happens at these occasions for different * @cra_u types: cipher -- For both input data and output data * buffer; ahash -- For output hash destination buf; shash -- * For output hash destination buf. * This is needed on hardware which is flawed by design and * cannot pick data from arbitrary addresses. * @cra_priority: Priority of this transformation implementation. In case * multiple transformations with same @cra_name are available to * the Crypto API, the kernel will use the one with highest * @cra_priority. * @cra_name: Generic name (usable by multiple implementations) of the * transformation algorithm. This is the name of the transformation * itself. This field is used by the kernel when looking up the * providers of particular transformation. * @cra_driver_name: Unique name of the transformation provider. This is the * name of the provider of the transformation. This can be any * arbitrary value, but in the usual case, this contains the * name of the chip or provider and the name of the * transformation algorithm. * @cra_type: Type of the cryptographic transformation. This is a pointer to * struct crypto_type, which implements callbacks common for all * transformation types. There are multiple options, such as * &crypto_skcipher_type, &crypto_ahash_type, &crypto_rng_type. * This field might be empty. In that case, there are no common * callbacks. This is the case for: cipher, compress, shash. * @cra_u: Callbacks implementing the transformation. This is a union of * multiple structures. Depending on the type of transformation selected * by @cra_type and @cra_flags above, the associated structure must be * filled with callbacks. This field might be empty. This is the case * for ahash, shash. * @cra_init: Initialize the cryptographic transformation object. This function * is used to initialize the cryptographic transformation object. * This function is called only once at the instantiation time, right * after the transformation context was allocated. In case the * cryptographic hardware has some special requirements which need to * be handled by software, this function shall check for the precise * requirement of the transformation and put any software fallbacks * in place. * @cra_exit: Deinitialize the cryptographic transformation object. This is a * counterpart to @cra_init, used to remove various changes set in * @cra_init. * @cra_u.cipher: Union member which contains a single-block symmetric cipher * definition. See @struct @cipher_alg. * @cra_u.compress: Union member which contains a (de)compression algorithm. * See @struct @compress_alg. * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE * @cra_list: internally used * @cra_users: internally used * @cra_refcnt: internally used * @cra_destroy: internally used * * @stats: union of all possible crypto_istat_xxx structures * @stats.aead: statistics for AEAD algorithm * @stats.akcipher: statistics for akcipher algorithm * @stats.cipher: statistics for cipher algorithm * @stats.compress: statistics for compress algorithm * @stats.hash: statistics for hash algorithm * @stats.rng: statistics for rng algorithm * @stats.kpp: statistics for KPP algorithm * * The struct crypto_alg describes a generic Crypto API algorithm and is common * for all of the transformations. Any variable not documented here shall not * be used by a cipher implementation as it is internal to the Crypto API. */ struct crypto_alg { struct list_head cra_list; struct list_head cra_users; u32 cra_flags; unsigned int cra_blocksize; unsigned int cra_ctxsize; unsigned int cra_alignmask; int cra_priority; refcount_t cra_refcnt; char cra_name[CRYPTO_MAX_ALG_NAME]; char cra_driver_name[CRYPTO_MAX_ALG_NAME]; const struct crypto_type *cra_type; union { struct cipher_alg cipher; struct compress_alg compress; } cra_u; int (*cra_init)(struct crypto_tfm *tfm); void (*cra_exit)(struct crypto_tfm *tfm); void (*cra_destroy)(struct crypto_alg *alg); struct module *cra_module; #ifdef CONFIG_CRYPTO_STATS union { struct crypto_istat_aead aead; struct crypto_istat_akcipher akcipher; struct crypto_istat_cipher cipher; struct crypto_istat_compress compress; struct crypto_istat_hash hash; struct crypto_istat_rng rng; struct crypto_istat_kpp kpp; } stats; #endif /* CONFIG_CRYPTO_STATS */ } CRYPTO_MINALIGN_ATTR; #ifdef CONFIG_CRYPTO_STATS void crypto_stats_init(struct crypto_alg *alg); void crypto_stats_get(struct crypto_alg *alg); void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret); void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret); void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg); void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg); void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg); void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg); void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg); void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg); void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg); void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg); void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret); void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret); void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret); void crypto_stats_rng_seed(struct crypto_alg *alg, int ret); void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret); void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg); void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg); #else static inline void crypto_stats_init(struct crypto_alg *alg) {} static inline void crypto_stats_get(struct crypto_alg *alg) {} static inline void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret) {} static inline void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret) {} static inline void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg) {} static inline void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg) {} static inline void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg) {} static inline void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg) {} static inline void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg) {} static inline void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg) {} static inline void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg) {} static inline void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg) {} static inline void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret) {} static inline void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret) {} static inline void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret) {} static inline void crypto_stats_rng_seed(struct crypto_alg *alg, int ret) {} static inline void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret) {} static inline void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg) {} static inline void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg) {} #endif /* * A helper struct for waiting for completion of async crypto ops */ struct crypto_wait { struct completion completion; int err; }; /* * Macro for declaring a crypto op async wait object on stack */ #define DECLARE_CRYPTO_WAIT(_wait) \ struct crypto_wait _wait = { \ COMPLETION_INITIALIZER_ONSTACK((_wait).completion), 0 } /* * Async ops completion helper functioons */ void crypto_req_done(struct crypto_async_request *req, int err); static inline int crypto_wait_req(int err, struct crypto_wait *wait) { switch (err) { case -EINPROGRESS: case -EBUSY: wait_for_completion(&wait->completion); reinit_completion(&wait->completion); err = wait->err; break; } return err; } static inline void crypto_init_wait(struct crypto_wait *wait) { init_completion(&wait->completion); } /* * Algorithm registration interface. */ int crypto_register_alg(struct crypto_alg *alg); void crypto_unregister_alg(struct crypto_alg *alg); int crypto_register_algs(struct crypto_alg *algs, int count); void crypto_unregister_algs(struct crypto_alg *algs, int count); /* * Algorithm query interface. */ int crypto_has_alg(const char *name, u32 type, u32 mask); /* * Transforms: user-instantiated objects which encapsulate algorithms * and core processing logic. Managed via crypto_alloc_*() and * crypto_free_*(), as well as the various helpers below. */ struct crypto_tfm { u32 crt_flags; int node; void (*exit)(struct crypto_tfm *tfm); struct crypto_alg *__crt_alg; void *__crt_ctx[] CRYPTO_MINALIGN_ATTR; }; struct crypto_cipher { struct crypto_tfm base; }; struct crypto_comp { struct crypto_tfm base; }; enum { CRYPTOA_UNSPEC, CRYPTOA_ALG, CRYPTOA_TYPE, CRYPTOA_U32, __CRYPTOA_MAX, }; #define CRYPTOA_MAX (__CRYPTOA_MAX - 1) /* Maximum number of (rtattr) parameters for each template. */ #define CRYPTO_MAX_ATTRS 32 struct crypto_attr_alg { char name[CRYPTO_MAX_ALG_NAME]; }; struct crypto_attr_type { u32 type; u32 mask; }; struct crypto_attr_u32 { u32 num; }; /* * Transform user interface. */ struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask); void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm); static inline void crypto_free_tfm(struct crypto_tfm *tfm) { return crypto_destroy_tfm(tfm, tfm); } int alg_test(const char *driver, const char *alg, u32 type, u32 mask); /* * Transform helpers which query the underlying algorithm. */ static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm) { return tfm->__crt_alg->cra_name; } static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm) { return tfm->__crt_alg->cra_driver_name; } static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm) { return tfm->__crt_alg->cra_priority; } static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm) { return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK; } static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm) { return tfm->__crt_alg->cra_blocksize; } static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm) { return tfm->__crt_alg->cra_alignmask; } static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm) { return tfm->crt_flags; } static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags) { tfm->crt_flags |= flags; } static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags) { tfm->crt_flags &= ~flags; } static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm) { return tfm->__crt_ctx; } static inline unsigned int crypto_tfm_ctx_alignment(void) { struct crypto_tfm *tfm; return __alignof__(tfm->__crt_ctx); } /** * DOC: Single Block Cipher API * * The single block cipher API is used with the ciphers of type * CRYPTO_ALG_TYPE_CIPHER (listed as type "cipher" in /proc/crypto). * * Using the single block cipher API calls, operations with the basic cipher * primitive can be implemented. These cipher primitives exclude any block * chaining operations including IV handling. * * The purpose of this single block cipher API is to support the implementation * of templates or other concepts that only need to perform the cipher operation * on one block at a time. Templates invoke the underlying cipher primitive * block-wise and process either the input or the output data of these cipher * operations. */ static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm) { return (struct crypto_cipher *)tfm; } /** * crypto_alloc_cipher() - allocate single block cipher handle * @alg_name: is the cra_name / name or cra_driver_name / driver name of the * single block cipher * @type: specifies the type of the cipher * @mask: specifies the mask for the cipher * * Allocate a cipher handle for a single block cipher. The returned struct * crypto_cipher is the cipher handle that is required for any subsequent API * invocation for that single block cipher. * * Return: allocated cipher handle in case of success; IS_ERR() is true in case * of an error, PTR_ERR() returns the error code. */ static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name, u32 type, u32 mask) { type &= ~CRYPTO_ALG_TYPE_MASK; type |= CRYPTO_ALG_TYPE_CIPHER; mask |= CRYPTO_ALG_TYPE_MASK; return __crypto_cipher_cast(crypto_alloc_base(alg_name, type, mask)); } static inline struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm) { return &tfm->base; } /** * crypto_free_cipher() - zeroize and free the single block cipher handle * @tfm: cipher handle to be freed */ static inline void crypto_free_cipher(struct crypto_cipher *tfm) { crypto_free_tfm(crypto_cipher_tfm(tfm)); } /** * crypto_has_cipher() - Search for the availability of a single block cipher * @alg_name: is the cra_name / name or cra_driver_name / driver name of the * single block cipher * @type: specifies the type of the cipher * @mask: specifies the mask for the cipher * * Return: true when the single block cipher is known to the kernel crypto API; * false otherwise */ static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask) { type &= ~CRYPTO_ALG_TYPE_MASK; type |= CRYPTO_ALG_TYPE_CIPHER; mask |= CRYPTO_ALG_TYPE_MASK; return crypto_has_alg(alg_name, type, mask); } /** * crypto_cipher_blocksize() - obtain block size for cipher * @tfm: cipher handle * * The block size for the single block cipher referenced with the cipher handle * tfm is returned. The caller may use that information to allocate appropriate * memory for the data returned by the encryption or decryption operation * * Return: block size of cipher */ static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm) { return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm)); } static inline unsigned int crypto_cipher_alignmask(struct crypto_cipher *tfm) { return crypto_tfm_alg_alignmask(crypto_cipher_tfm(tfm)); } static inline u32 crypto_cipher_get_flags(struct crypto_cipher *tfm) { return crypto_tfm_get_flags(crypto_cipher_tfm(tfm)); } static inline void crypto_cipher_set_flags(struct crypto_cipher *tfm, u32 flags) { crypto_tfm_set_flags(crypto_cipher_tfm(tfm), flags); } static inline void crypto_cipher_clear_flags(struct crypto_cipher *tfm, u32 flags) { crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags); } /** * crypto_cipher_setkey() - set key for cipher * @tfm: cipher handle * @key: buffer holding the key * @keylen: length of the key in bytes * * The caller provided key is set for the single block cipher referenced by the * cipher handle. * * Note, the key length determines the cipher type. Many block ciphers implement * different cipher modes depending on the key size, such as AES-128 vs AES-192 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 * is performed. * * Return: 0 if the setting of the key was successful; < 0 if an error occurred */ int crypto_cipher_setkey(struct crypto_cipher *tfm, const u8 *key, unsigned int keylen); /** * crypto_cipher_encrypt_one() - encrypt one block of plaintext * @tfm: cipher handle * @dst: points to the buffer that will be filled with the ciphertext * @src: buffer holding the plaintext to be encrypted * * Invoke the encryption operation of one block. The caller must ensure that * the plaintext and ciphertext buffers are at least one block in size. */ void crypto_cipher_encrypt_one(struct crypto_cipher *tfm, u8 *dst, const u8 *src); /** * crypto_cipher_decrypt_one() - decrypt one block of ciphertext * @tfm: cipher handle * @dst: points to the buffer that will be filled with the plaintext * @src: buffer holding the ciphertext to be decrypted * * Invoke the decryption operation of one block. The caller must ensure that * the plaintext and ciphertext buffers are at least one block in size. */ void crypto_cipher_decrypt_one(struct crypto_cipher *tfm, u8 *dst, const u8 *src); static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm) { return (struct crypto_comp *)tfm; } static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name, u32 type, u32 mask) { type &= ~CRYPTO_ALG_TYPE_MASK; type |= CRYPTO_ALG_TYPE_COMPRESS; mask |= CRYPTO_ALG_TYPE_MASK; return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask)); } static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm) { return &tfm->base; } static inline void crypto_free_comp(struct crypto_comp *tfm) { crypto_free_tfm(crypto_comp_tfm(tfm)); } static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask) { type &= ~CRYPTO_ALG_TYPE_MASK; type |= CRYPTO_ALG_TYPE_COMPRESS; mask |= CRYPTO_ALG_TYPE_MASK; return crypto_has_alg(alg_name, type, mask); } static inline const char *crypto_comp_name(struct crypto_comp *tfm) { return crypto_tfm_alg_name(crypto_comp_tfm(tfm)); } int crypto_comp_compress(struct crypto_comp *tfm, const u8 *src, unsigned int slen, u8 *dst, unsigned int *dlen); int crypto_comp_decompress(struct crypto_comp *tfm, const u8 *src, unsigned int slen, u8 *dst, unsigned int *dlen); #endif /* _LINUX_CRYPTO_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * AEAD: Authenticated Encryption with Associated Data * * Copyright (c) 2007-2015 Herbert Xu <herbert@gondor.apana.org.au> */ #ifndef _CRYPTO_AEAD_H #define _CRYPTO_AEAD_H #include <linux/crypto.h> #include <linux/kernel.h> #include <linux/slab.h> /** * DOC: Authenticated Encryption With Associated Data (AEAD) Cipher API * * The AEAD cipher API is used with the ciphers of type CRYPTO_ALG_TYPE_AEAD * (listed as type "aead" in /proc/crypto) * * The most prominent examples for this type of encryption is GCM and CCM. * However, the kernel supports other types of AEAD ciphers which are defined * with the following cipher string: * * authenc(keyed message digest, block cipher) * * For example: authenc(hmac(sha256), cbc(aes)) * * The example code provided for the symmetric key cipher operation * applies here as well. Naturally all *skcipher* symbols must be exchanged * the *aead* pendants discussed in the following. In addition, for the AEAD * operation, the aead_request_set_ad function must be used to set the * pointer to the associated data memory location before performing the * encryption or decryption operation. In case of an encryption, the associated * data memory is filled during the encryption operation. For decryption, the * associated data memory must contain data that is used to verify the integrity * of the decrypted data. Another deviation from the asynchronous block cipher * operation is that the caller should explicitly check for -EBADMSG of the * crypto_aead_decrypt. That error indicates an authentication error, i.e. * a breach in the integrity of the message. In essence, that -EBADMSG error * code is the key bonus an AEAD cipher has over "standard" block chaining * modes. * * Memory Structure: * * The source scatterlist must contain the concatenation of * associated data || plaintext or ciphertext. * * The destination scatterlist has the same layout, except that the plaintext * (resp. ciphertext) will grow (resp. shrink) by the authentication tag size * during encryption (resp. decryption). * * In-place encryption/decryption is enabled by using the same scatterlist * pointer for both the source and destination. * * Even in the out-of-place case, space must be reserved in the destination for * the associated data, even though it won't be written to. This makes the * in-place and out-of-place cases more consistent. It is permissible for the * "destination" associated data to alias the "source" associated data. * * As with the other scatterlist crypto APIs, zero-length scatterlist elements * are not allowed in the used part of the scatterlist. Thus, if there is no * associated data, the first element must point to the plaintext/ciphertext. * * To meet the needs of IPsec, a special quirk applies to rfc4106, rfc4309, * rfc4543, and rfc7539esp ciphers. For these ciphers, the final 'ivsize' bytes * of the associated data buffer must contain a second copy of the IV. This is * in addition to the copy passed to aead_request_set_crypt(). These two IV * copies must not differ; different implementations of the same algorithm may * behave differently in that case. Note that the algorithm might not actually * treat the IV as associated data; nevertheless the length passed to * aead_request_set_ad() must include it. */ struct crypto_aead; /** * struct aead_request - AEAD request * @base: Common attributes for async crypto requests * @assoclen: Length in bytes of associated data for authentication * @cryptlen: Length of data to be encrypted or decrypted * @iv: Initialisation vector * @src: Source data * @dst: Destination data * @__ctx: Start of private context data */ struct aead_request { struct crypto_async_request base; unsigned int assoclen; unsigned int cryptlen; u8 *iv; struct scatterlist *src; struct scatterlist *dst; void *__ctx[] CRYPTO_MINALIGN_ATTR; }; /** * struct aead_alg - AEAD cipher definition * @maxauthsize: Set the maximum authentication tag size supported by the * transformation. A transformation may support smaller tag sizes. * As the authentication tag is a message digest to ensure the * integrity of the encrypted data, a consumer typically wants the * largest authentication tag possible as defined by this * variable. * @setauthsize: Set authentication size for the AEAD transformation. This * function is used to specify the consumer requested size of the * authentication tag to be either generated by the transformation * during encryption or the size of the authentication tag to be * supplied during the decryption operation. This function is also * responsible for checking the authentication tag size for * validity. * @setkey: see struct skcipher_alg * @encrypt: see struct skcipher_alg * @decrypt: see struct skcipher_alg * @ivsize: see struct skcipher_alg * @chunksize: see struct skcipher_alg * @init: Initialize the cryptographic transformation object. This function * is used to initialize the cryptographic transformation object. * This function is called only once at the instantiation time, right * after the transformation context was allocated. In case the * cryptographic hardware has some special requirements which need to * be handled by software, this function shall check for the precise * requirement of the transformation and put any software fallbacks * in place. * @exit: Deinitialize the cryptographic transformation object. This is a * counterpart to @init, used to remove various changes set in * @init. * @base: Definition of a generic crypto cipher algorithm. * * All fields except @ivsize is mandatory and must be filled. */ struct aead_alg { int (*setkey)(struct crypto_aead *tfm, const u8 *key, unsigned int keylen); int (*setauthsize)(struct crypto_aead *tfm, unsigned int authsize); int (*encrypt)(struct aead_request *req); int (*decrypt)(struct aead_request *req); int (*init)(struct crypto_aead *tfm); void (*exit)(struct crypto_aead *tfm); unsigned int ivsize; unsigned int maxauthsize; unsigned int chunksize; struct crypto_alg base; }; struct crypto_aead { unsigned int authsize; unsigned int reqsize; struct crypto_tfm base; }; static inline struct crypto_aead *__crypto_aead_cast(struct crypto_tfm *tfm) { return container_of(tfm, struct crypto_aead, base); } /** * crypto_alloc_aead() - allocate AEAD cipher handle * @alg_name: is the cra_name / name or cra_driver_name / driver name of the * AEAD cipher * @type: specifies the type of the cipher * @mask: specifies the mask for the cipher * * Allocate a cipher handle for an AEAD. The returned struct * crypto_aead is the cipher handle that is required for any subsequent * API invocation for that AEAD. * * Return: allocated cipher handle in case of success; IS_ERR() is true in case * of an error, PTR_ERR() returns the error code. */ struct crypto_aead *crypto_alloc_aead(const char *alg_name, u32 type, u32 mask); static inline struct crypto_tfm *crypto_aead_tfm(struct crypto_aead *tfm) { return &tfm->base; } /** * crypto_free_aead() - zeroize and free aead handle * @tfm: cipher handle to be freed * * If @tfm is a NULL or error pointer, this function does nothing. */ static inline void crypto_free_aead(struct crypto_aead *tfm) { crypto_destroy_tfm(tfm, crypto_aead_tfm(tfm)); } static inline struct aead_alg *crypto_aead_alg(struct crypto_aead *tfm) { return container_of(crypto_aead_tfm(tfm)->__crt_alg, struct aead_alg, base); } static inline unsigned int crypto_aead_alg_ivsize(struct aead_alg *alg) { return alg->ivsize; } /** * crypto_aead_ivsize() - obtain IV size * @tfm: cipher handle * * The size of the IV for the aead referenced by the cipher handle is * returned. This IV size may be zero if the cipher does not need an IV. * * Return: IV size in bytes */ static inline unsigned int crypto_aead_ivsize(struct crypto_aead *tfm) { return crypto_aead_alg_ivsize(crypto_aead_alg(tfm)); } /** * crypto_aead_authsize() - obtain maximum authentication data size * @tfm: cipher handle * * The maximum size of the authentication data for the AEAD cipher referenced * by the AEAD cipher handle is returned. The authentication data size may be * zero if the cipher implements a hard-coded maximum. * * The authentication data may also be known as "tag value". * * Return: authentication data size / tag size in bytes */ static inline unsigned int crypto_aead_authsize(struct crypto_aead *tfm) { return tfm->authsize; } static inline unsigned int crypto_aead_alg_maxauthsize(struct aead_alg *alg) { return alg->maxauthsize; } static inline unsigned int crypto_aead_maxauthsize(struct crypto_aead *aead) { return crypto_aead_alg_maxauthsize(crypto_aead_alg(aead)); } /** * crypto_aead_blocksize() - obtain block size of cipher * @tfm: cipher handle * * The block size for the AEAD referenced with the cipher handle is returned. * The caller may use that information to allocate appropriate memory for the * data returned by the encryption or decryption operation * * Return: block size of cipher */ static inline unsigned int crypto_aead_blocksize(struct crypto_aead *tfm) { return crypto_tfm_alg_blocksize(crypto_aead_tfm(tfm)); } static inline unsigned int crypto_aead_alignmask(struct crypto_aead *tfm) { return crypto_tfm_alg_alignmask(crypto_aead_tfm(tfm)); } static inline u32 crypto_aead_get_flags(struct crypto_aead *tfm) { return crypto_tfm_get_flags(crypto_aead_tfm(tfm)); } static inline void crypto_aead_set_flags(struct crypto_aead *tfm, u32 flags) { crypto_tfm_set_flags(crypto_aead_tfm(tfm), flags); } static inline void crypto_aead_clear_flags(struct crypto_aead *tfm, u32 flags) { crypto_tfm_clear_flags(crypto_aead_tfm(tfm), flags); } /** * crypto_aead_setkey() - set key for cipher * @tfm: cipher handle * @key: buffer holding the key * @keylen: length of the key in bytes * * The caller provided key is set for the AEAD referenced by the cipher * handle. * * Note, the key length determines the cipher type. Many block ciphers implement * different cipher modes depending on the key size, such as AES-128 vs AES-192 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 * is performed. * * Return: 0 if the setting of the key was successful; < 0 if an error occurred */ int crypto_aead_setkey(struct crypto_aead *tfm, const u8 *key, unsigned int keylen); /** * crypto_aead_setauthsize() - set authentication data size * @tfm: cipher handle * @authsize: size of the authentication data / tag in bytes * * Set the authentication data size / tag size. AEAD requires an authentication * tag (or MAC) in addition to the associated data. * * Return: 0 if the setting of the key was successful; < 0 if an error occurred */ int crypto_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize); static inline struct crypto_aead *crypto_aead_reqtfm(struct aead_request *req) { return __crypto_aead_cast(req->base.tfm); } /** * crypto_aead_encrypt() - encrypt plaintext * @req: reference to the aead_request handle that holds all information * needed to perform the cipher operation * * Encrypt plaintext data using the aead_request handle. That data structure * and how it is filled with data is discussed with the aead_request_* * functions. * * IMPORTANT NOTE The encryption operation creates the authentication data / * tag. That data is concatenated with the created ciphertext. * The ciphertext memory size is therefore the given number of * block cipher blocks + the size defined by the * crypto_aead_setauthsize invocation. The caller must ensure * that sufficient memory is available for the ciphertext and * the authentication tag. * * Return: 0 if the cipher operation was successful; < 0 if an error occurred */ int crypto_aead_encrypt(struct aead_request *req); /** * crypto_aead_decrypt() - decrypt ciphertext * @req: reference to the aead_request handle that holds all information * needed to perform the cipher operation * * Decrypt ciphertext data using the aead_request handle. That data structure * and how it is filled with data is discussed with the aead_request_* * functions. * * IMPORTANT NOTE The caller must concatenate the ciphertext followed by the * authentication data / tag. That authentication data / tag * must have the size defined by the crypto_aead_setauthsize * invocation. * * * Return: 0 if the cipher operation was successful; -EBADMSG: The AEAD * cipher operation performs the authentication of the data during the * decryption operation. Therefore, the function returns this error if * the authentication of the ciphertext was unsuccessful (i.e. the * integrity of the ciphertext or the associated data was violated); * < 0 if an error occurred. */ int crypto_aead_decrypt(struct aead_request *req); /** * DOC: Asynchronous AEAD Request Handle * * The aead_request data structure contains all pointers to data required for * the AEAD cipher operation. This includes the cipher handle (which can be * used by multiple aead_request instances), pointer to plaintext and * ciphertext, asynchronous callback function, etc. It acts as a handle to the * aead_request_* API calls in a similar way as AEAD handle to the * crypto_aead_* API calls. */ /** * crypto_aead_reqsize() - obtain size of the request data structure * @tfm: cipher handle * * Return: number of bytes */ static inline unsigned int crypto_aead_reqsize(struct crypto_aead *tfm) { return tfm->reqsize; } /** * aead_request_set_tfm() - update cipher handle reference in request * @req: request handle to be modified * @tfm: cipher handle that shall be added to the request handle * * Allow the caller to replace the existing aead handle in the request * data structure with a different one. */ static inline void aead_request_set_tfm(struct aead_request *req, struct crypto_aead *tfm) { req->base.tfm = crypto_aead_tfm(tfm); } /** * aead_request_alloc() - allocate request data structure * @tfm: cipher handle to be registered with the request * @gfp: memory allocation flag that is handed to kmalloc by the API call. * * Allocate the request data structure that must be used with the AEAD * encrypt and decrypt API calls. During the allocation, the provided aead * handle is registered in the request data structure. * * Return: allocated request handle in case of success, or NULL if out of memory */ static inline struct aead_request *aead_request_alloc(struct crypto_aead *tfm, gfp_t gfp) { struct aead_request *req; req = kmalloc(sizeof(*req) + crypto_aead_reqsize(tfm), gfp); if (likely(req)) aead_request_set_tfm(req, tfm); return req; } /** * aead_request_free() - zeroize and free request data structure * @req: request data structure cipher handle to be freed */ static inline void aead_request_free(struct aead_request *req) { kfree_sensitive(req); } /** * aead_request_set_callback() - set asynchronous callback function * @req: request handle * @flags: specify zero or an ORing of the flags * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and * increase the wait queue beyond the initial maximum size; * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep * @compl: callback function pointer to be registered with the request handle * @data: The data pointer refers to memory that is not used by the kernel * crypto API, but provided to the callback function for it to use. Here, * the caller can provide a reference to memory the callback function can * operate on. As the callback function is invoked asynchronously to the * related functionality, it may need to access data structures of the * related functionality which can be referenced using this pointer. The * callback function can access the memory via the "data" field in the * crypto_async_request data structure provided to the callback function. * * Setting the callback function that is triggered once the cipher operation * completes * * The callback function is registered with the aead_request handle and * must comply with the following template:: * * void callback_function(struct crypto_async_request *req, int error) */ static inline void aead_request_set_callback(struct aead_request *req, u32 flags, crypto_completion_t compl, void *data) { req->base.complete = compl; req->base.data = data; req->base.flags = flags; } /** * aead_request_set_crypt - set data buffers * @req: request handle * @src: source scatter / gather list * @dst: destination scatter / gather list * @cryptlen: number of bytes to process from @src * @iv: IV for the cipher operation which must comply with the IV size defined * by crypto_aead_ivsize() * * Setting the source data and destination data scatter / gather lists which * hold the associated data concatenated with the plaintext or ciphertext. See * below for the authentication tag. * * For encryption, the source is treated as the plaintext and the * destination is the ciphertext. For a decryption operation, the use is * reversed - the source is the ciphertext and the destination is the plaintext. * * The memory structure for cipher operation has the following structure: * * - AEAD encryption input: assoc data || plaintext * - AEAD encryption output: assoc data || cipherntext || auth tag * - AEAD decryption input: assoc data || ciphertext || auth tag * - AEAD decryption output: assoc data || plaintext * * Albeit the kernel requires the presence of the AAD buffer, however, * the kernel does not fill the AAD buffer in the output case. If the * caller wants to have that data buffer filled, the caller must either * use an in-place cipher operation (i.e. same memory location for * input/output memory location). */ static inline void aead_request_set_crypt(struct aead_request *req, struct scatterlist *src, struct scatterlist *dst, unsigned int cryptlen, u8 *iv) { req->src = src; req->dst = dst; req->cryptlen = cryptlen; req->iv = iv; } /** * aead_request_set_ad - set associated data information * @req: request handle * @assoclen: number of bytes in associated data * * Setting the AD information. This function sets the length of * the associated data. */ static inline void aead_request_set_ad(struct aead_request *req, unsigned int assoclen) { req->assoclen = assoclen; } #endif /* _CRYPTO_AEAD_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 /* * Written by: Matthew Dobson, IBM Corporation * * Copyright (C) 2002, IBM Corp. * * All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * Send feedback to <colpatch@us.ibm.com> */ #ifndef _ASM_X86_TOPOLOGY_H #define _ASM_X86_TOPOLOGY_H /* * to preserve the visibility of NUMA_NO_NODE definition, * moved to there from here. May be used independent of * CONFIG_NUMA. */ #include <linux/numa.h> #ifdef CONFIG_NUMA #include <linux/cpumask.h> #include <asm/mpspec.h> #include <asm/percpu.h> /* Mappings between logical cpu number and node number */ DECLARE_EARLY_PER_CPU(int, x86_cpu_to_node_map); #ifdef CONFIG_DEBUG_PER_CPU_MAPS /* * override generic percpu implementation of cpu_to_node */ extern int __cpu_to_node(int cpu); #define cpu_to_node __cpu_to_node extern int early_cpu_to_node(int cpu); #else /* !CONFIG_DEBUG_PER_CPU_MAPS */ /* Same function but used if called before per_cpu areas are setup */ static inline int early_cpu_to_node(int cpu) { return early_per_cpu(x86_cpu_to_node_map, cpu); } #endif /* !CONFIG_DEBUG_PER_CPU_MAPS */ /* Mappings between node number and cpus on that node. */ extern cpumask_var_t node_to_cpumask_map[MAX_NUMNODES]; #ifdef CONFIG_DEBUG_PER_CPU_MAPS extern const struct cpumask *cpumask_of_node(int node); #else /* Returns a pointer to the cpumask of CPUs on Node 'node'. */ static inline const struct cpumask *cpumask_of_node(int node) { return node_to_cpumask_map[node]; } #endif extern void setup_node_to_cpumask_map(void); #define pcibus_to_node(bus) __pcibus_to_node(bus) extern int __node_distance(int, int); #define node_distance(a, b) __node_distance(a, b) #else /* !CONFIG_NUMA */ static inline int numa_node_id(void) { return 0; } /* * indicate override: */ #define numa_node_id numa_node_id static inline int early_cpu_to_node(int cpu) { return 0; } static inline void setup_node_to_cpumask_map(void) { } #endif #include <asm-generic/topology.h> extern const struct cpumask *cpu_coregroup_mask(int cpu); #define topology_logical_package_id(cpu) (cpu_data(cpu).logical_proc_id) #define topology_physical_package_id(cpu) (cpu_data(cpu).phys_proc_id) #define topology_logical_die_id(cpu) (cpu_data(cpu).logical_die_id) #define topology_die_id(cpu) (cpu_data(cpu).cpu_die_id) #define topology_core_id(cpu) (cpu_data(cpu).cpu_core_id) extern unsigned int __max_die_per_package; #ifdef CONFIG_SMP #define topology_die_cpumask(cpu) (per_cpu(cpu_die_map, cpu)) #define topology_core_cpumask(cpu) (per_cpu(cpu_core_map, cpu)) #define topology_sibling_cpumask(cpu) (per_cpu(cpu_sibling_map, cpu)) extern unsigned int __max_logical_packages; #define topology_max_packages() (__max_logical_packages) static inline int topology_max_die_per_package(void) { return __max_die_per_package; } extern int __max_smt_threads; static inline int topology_max_smt_threads(void) { return __max_smt_threads; } int topology_update_package_map(unsigned int apicid, unsigned int cpu); int topology_update_die_map(unsigned int dieid, unsigned int cpu); int topology_phys_to_logical_pkg(unsigned int pkg); int topology_phys_to_logical_die(unsigned int die, unsigned int cpu); bool topology_is_primary_thread(unsigned int cpu); bool topology_smt_supported(void); #else #define topology_max_packages() (1) static inline int topology_update_package_map(unsigned int apicid, unsigned int cpu) { return 0; } static inline int topology_update_die_map(unsigned int dieid, unsigned int cpu) { return 0; } static inline int topology_phys_to_logical_pkg(unsigned int pkg) { return 0; } static inline int topology_phys_to_logical_die(unsigned int die, unsigned int cpu) { return 0; } static inline int topology_max_die_per_package(void) { return 1; } static inline int topology_max_smt_threads(void) { return 1; } static inline bool topology_is_primary_thread(unsigned int cpu) { return true; } static inline bool topology_smt_supported(void) { return false; } #endif static inline void arch_fix_phys_package_id(int num, u32 slot) { } struct pci_bus; int x86_pci_root_bus_node(int bus); void x86_pci_root_bus_resources(int bus, struct list_head *resources); extern bool x86_topology_update; #ifdef CONFIG_SCHED_MC_PRIO #include <asm/percpu.h> DECLARE_PER_CPU_READ_MOSTLY(int, sched_core_priority); extern unsigned int __read_mostly sysctl_sched_itmt_enabled; /* Interface to set priority of a cpu */ void sched_set_itmt_core_prio(int prio, int core_cpu); /* Interface to notify scheduler that system supports ITMT */ int sched_set_itmt_support(void); /* Interface to notify scheduler that system revokes ITMT support */ void sched_clear_itmt_support(void); #else /* CONFIG_SCHED_MC_PRIO */ #define sysctl_sched_itmt_enabled 0 static inline void sched_set_itmt_core_prio(int prio, int core_cpu) { } static inline int sched_set_itmt_support(void) { return 0; } static inline void sched_clear_itmt_support(void) { } #endif /* CONFIG_SCHED_MC_PRIO */ #if defined(CONFIG_SMP) && defined(CONFIG_X86_64) #include <asm/cpufeature.h> DECLARE_STATIC_KEY_FALSE(arch_scale_freq_key); #define arch_scale_freq_invariant() static_branch_likely(&arch_scale_freq_key) DECLARE_PER_CPU(unsigned long, arch_freq_scale); static inline long arch_scale_freq_capacity(int cpu) { return per_cpu(arch_freq_scale, cpu); } #define arch_scale_freq_capacity arch_scale_freq_capacity extern void arch_scale_freq_tick(void); #define arch_scale_freq_tick arch_scale_freq_tick extern void arch_set_max_freq_ratio(bool turbo_disabled); #else static inline void arch_set_max_freq_ratio(bool turbo_disabled) { } #endif #endif /* _ASM_X86_TOPOLOGY_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* Red Black Trees (C) 1999 Andrea Arcangeli <andrea@suse.de> (C) 2002 David Woodhouse <dwmw2@infradead.org> (C) 2012 Michel Lespinasse <walken@google.com> linux/include/linux/rbtree_augmented.h */ #ifndef _LINUX_RBTREE_AUGMENTED_H #define _LINUX_RBTREE_AUGMENTED_H #include <linux/compiler.h> #include <linux/rbtree.h> #include <linux/rcupdate.h> /* * Please note - only struct rb_augment_callbacks and the prototypes for * rb_insert_augmented() and rb_erase_augmented() are intended to be public. * The rest are implementation details you are not expected to depend on. * * See Documentation/core-api/rbtree.rst for documentation and samples. */ struct rb_augment_callbacks { void (*propagate)(struct rb_node *node, struct rb_node *stop); void (*copy)(struct rb_node *old, struct rb_node *new); void (*rotate)(struct rb_node *old, struct rb_node *new); }; extern void __rb_insert_augmented(struct rb_node *node, struct rb_root *root, void (*augment_rotate)(struct rb_node *old, struct rb_node *new)); /* * Fixup the rbtree and update the augmented information when rebalancing. * * On insertion, the user must update the augmented information on the path * leading to the inserted node, then call rb_link_node() as usual and * rb_insert_augmented() instead of the usual rb_insert_color() call. * If rb_insert_augmented() rebalances the rbtree, it will callback into * a user provided function to update the augmented information on the * affected subtrees. */ static inline void rb_insert_augmented(struct rb_node *node, struct rb_root *root, const struct rb_augment_callbacks *augment) { __rb_insert_augmented(node, root, augment->rotate); } static inline void rb_insert_augmented_cached(struct rb_node *node, struct rb_root_cached *root, bool newleft, const struct rb_augment_callbacks *augment) { if (newleft) root->rb_leftmost = node; rb_insert_augmented(node, &root->rb_root, augment); } /* * Template for declaring augmented rbtree callbacks (generic case) * * RBSTATIC: 'static' or empty * RBNAME: name of the rb_augment_callbacks structure * RBSTRUCT: struct type of the tree nodes * RBFIELD: name of struct rb_node field within RBSTRUCT * RBAUGMENTED: name of field within RBSTRUCT holding data for subtree * RBCOMPUTE: name of function that recomputes the RBAUGMENTED data */ #define RB_DECLARE_CALLBACKS(RBSTATIC, RBNAME, \ RBSTRUCT, RBFIELD, RBAUGMENTED, RBCOMPUTE) \ static inline void \ RBNAME ## _propagate(struct rb_node *rb, struct rb_node *stop) \ { \ while (rb != stop) { \ RBSTRUCT *node = rb_entry(rb, RBSTRUCT, RBFIELD); \ if (RBCOMPUTE(node, true)) \ break; \ rb = rb_parent(&node->RBFIELD); \ } \ } \ static inline void \ RBNAME ## _copy(struct rb_node *rb_old, struct rb_node *rb_new) \ { \ RBSTRUCT *old = rb_entry(rb_old, RBSTRUCT, RBFIELD); \ RBSTRUCT *new = rb_entry(rb_new, RBSTRUCT, RBFIELD); \ new->RBAUGMENTED = old->RBAUGMENTED; \ } \ static void \ RBNAME ## _rotate(struct rb_node *rb_old, struct rb_node *rb_new) \ { \ RBSTRUCT *old = rb_entry(rb_old, RBSTRUCT, RBFIELD); \ RBSTRUCT *new = rb_entry(rb_new, RBSTRUCT, RBFIELD); \ new->RBAUGMENTED = old->RBAUGMENTED; \ RBCOMPUTE(old, false); \ } \ RBSTATIC const struct rb_augment_callbacks RBNAME = { \ .propagate = RBNAME ## _propagate, \ .copy = RBNAME ## _copy, \ .rotate = RBNAME ## _rotate \ }; /* * Template for declaring augmented rbtree callbacks, * computing RBAUGMENTED scalar as max(RBCOMPUTE(node)) for all subtree nodes. * * RBSTATIC: 'static' or empty * RBNAME: name of the rb_augment_callbacks structure * RBSTRUCT: struct type of the tree nodes * RBFIELD: name of struct rb_node field within RBSTRUCT * RBTYPE: type of the RBAUGMENTED field * RBAUGMENTED: name of RBTYPE field within RBSTRUCT holding data for subtree * RBCOMPUTE: name of function that returns the per-node RBTYPE scalar */ #define RB_DECLARE_CALLBACKS_MAX(RBSTATIC, RBNAME, RBSTRUCT, RBFIELD, \ RBTYPE, RBAUGMENTED, RBCOMPUTE) \ static inline bool RBNAME ## _compute_max(RBSTRUCT *node, bool exit) \ { \ RBSTRUCT *child; \ RBTYPE max = RBCOMPUTE(node); \ if (node->RBFIELD.rb_left) { \ child = rb_entry(node->RBFIELD.rb_left, RBSTRUCT, RBFIELD); \ if (child->RBAUGMENTED > max) \ max = child->RBAUGMENTED; \ } \ if (node->RBFIELD.rb_right) { \ child = rb_entry(node->RBFIELD.rb_right, RBSTRUCT, RBFIELD); \ if (child->RBAUGMENTED > max) \ max = child->RBAUGMENTED; \ } \ if (exit && node->RBAUGMENTED == max) \ return true; \ node->RBAUGMENTED = max; \ return false; \ } \ RB_DECLARE_CALLBACKS(RBSTATIC, RBNAME, \ RBSTRUCT, RBFIELD, RBAUGMENTED, RBNAME ## _compute_max) #define RB_RED 0 #define RB_BLACK 1 #define __rb_parent(pc) ((struct rb_node *)(pc & ~3)) #define __rb_color(pc) ((pc) & 1) #define __rb_is_black(pc) __rb_color(pc) #define __rb_is_red(pc) (!__rb_color(pc)) #define rb_color(rb) __rb_color((rb)->__rb_parent_color) #define rb_is_red(rb) __rb_is_red((rb)->__rb_parent_color) #define rb_is_black(rb) __rb_is_black((rb)->__rb_parent_color) static inline void rb_set_parent(struct rb_node *rb, struct rb_node *p) { rb->__rb_parent_color = rb_color(rb) | (unsigned long)p; } static inline void rb_set_parent_color(struct rb_node *rb, struct rb_node *p, int color) { rb->__rb_parent_color = (unsigned long)p | color; } static inline void __rb_change_child(struct rb_node *old, struct rb_node *new, struct rb_node *parent, struct rb_root *root) { if (parent) { if (parent->rb_left == old) WRITE_ONCE(parent->rb_left, new); else WRITE_ONCE(parent->rb_right, new); } else WRITE_ONCE(root->rb_node, new); } static inline void __rb_change_child_rcu(struct rb_node *old, struct rb_node *new, struct rb_node *parent, struct rb_root *root) { if (parent) { if (parent->rb_left == old) rcu_assign_pointer(parent->rb_left, new); else rcu_assign_pointer(parent->rb_right, new); } else rcu_assign_pointer(root->rb_node, new); } extern void __rb_erase_color(struct rb_node *parent, struct rb_root *root, void (*augment_rotate)(struct rb_node *old, struct rb_node *new)); static __always_inline struct rb_node * __rb_erase_augmented(struct rb_node *node, struct rb_root *root, const struct rb_augment_callbacks *augment) { struct rb_node *child = node->rb_right; struct rb_node *tmp = node->rb_left; struct rb_node *parent, *rebalance; unsigned long pc; if (!tmp) { /* * Case 1: node to erase has no more than 1 child (easy!) * * Note that if there is one child it must be red due to 5) * and node must be black due to 4). We adjust colors locally * so as to bypass __rb_erase_color() later on. */ pc = node->__rb_parent_color; parent = __rb_parent(pc); __rb_change_child(node, child, parent, root); if (child) { child->__rb_parent_color = pc; rebalance = NULL; } else rebalance = __rb_is_black(pc) ? parent : NULL; tmp = parent; } else if (!child) { /* Still case 1, but this time the child is node->rb_left */ tmp->__rb_parent_color = pc = node->__rb_parent_color; parent = __rb_parent(pc); __rb_change_child(node, tmp, parent, root); rebalance = NULL; tmp = parent; } else { struct rb_node *successor = child, *child2; tmp = child->rb_left; if (!tmp) { /* * Case 2: node's successor is its right child * * (n) (s) * / \ / \ * (x) (s) -> (x) (c) * \ * (c) */ parent = successor; child2 = successor->rb_right; augment->copy(node, successor); } else { /* * Case 3: node's successor is leftmost under * node's right child subtree * * (n) (s) * / \ / \ * (x) (y) -> (x) (y) * / / * (p) (p) * / / * (s) (c) * \ * (c) */ do { parent = successor; successor = tmp; tmp = tmp->rb_left; } while (tmp); child2 = successor->rb_right; WRITE_ONCE(parent->rb_left, child2); WRITE_ONCE(successor->rb_right, child); rb_set_parent(child, successor); augment->copy(node, successor); augment->propagate(parent, successor); } tmp = node->rb_left; WRITE_ONCE(successor->rb_left, tmp); rb_set_parent(tmp, successor); pc = node->__rb_parent_color; tmp = __rb_parent(pc); __rb_change_child(node, successor, tmp, root); if (child2) { rb_set_parent_color(child2, parent, RB_BLACK); rebalance = NULL; } else { rebalance = rb_is_black(successor) ? parent : NULL; } successor->__rb_parent_color = pc; tmp = successor; } augment->propagate(tmp, NULL); return rebalance; } static __always_inline void rb_erase_augmented(struct rb_node *node, struct rb_root *root, const struct rb_augment_callbacks *augment) { struct rb_node *rebalance = __rb_erase_augmented(node, root, augment); if (rebalance) __rb_erase_color(rebalance, root, augment->rotate); } static __always_inline void rb_erase_augmented_cached(struct rb_node *node, struct rb_root_cached *root, const struct rb_augment_callbacks *augment) { if (root->rb_leftmost == node) root->rb_leftmost = rb_next(node); rb_erase_augmented(node, &root->rb_root, augment); } #endif /* _LINUX_RBTREE_AUGMENTED_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_TLB_H #define _ASM_X86_TLB_H #define tlb_start_vma(tlb, vma) do { } while (0) #define tlb_end_vma(tlb, vma) do { } while (0) #define __tlb_remove_tlb_entry(tlb, ptep, address) do { } while (0) #define tlb_flush tlb_flush static inline void tlb_flush(struct mmu_gather *tlb); #include <asm-generic/tlb.h> static inline void tlb_flush(struct mmu_gather *tlb) { unsigned long start = 0UL, end = TLB_FLUSH_ALL; unsigned int stride_shift = tlb_get_unmap_shift(tlb); if (!tlb->fullmm && !tlb->need_flush_all) { start = tlb->start; end = tlb->end; } flush_tlb_mm_range(tlb->mm, start, end, stride_shift, tlb->freed_tables); } /* * While x86 architecture in general requires an IPI to perform TLB * shootdown, enablement code for several hypervisors overrides * .flush_tlb_others hook in pv_mmu_ops and implements it by issuing * a hypercall. To keep software pagetable walkers safe in this case we * switch to RCU based table free (MMU_GATHER_RCU_TABLE_FREE). See the comment * below 'ifdef CONFIG_MMU_GATHER_RCU_TABLE_FREE' in include/asm-generic/tlb.h * for more details. */ static inline void __tlb_remove_table(void *table) { free_page_and_swap_cache(table); } #endif /* _ASM_X86_TLB_H */
1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 /* SPDX-License-Identifier: GPL-2.0-only */ /* * NSA Security-Enhanced Linux (SELinux) security module * * This file contains the SELinux security data structures for kernel objects. * * Author(s): Stephen Smalley, <sds@tycho.nsa.gov> * Chris Vance, <cvance@nai.com> * Wayne Salamon, <wsalamon@nai.com> * James Morris <jmorris@redhat.com> * * Copyright (C) 2001,2002 Networks Associates Technology, Inc. * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com> * Copyright (C) 2016 Mellanox Technologies */ #ifndef _SELINUX_OBJSEC_H_ #define _SELINUX_OBJSEC_H_ #include <linux/list.h> #include <linux/sched.h> #include <linux/fs.h> #include <linux/binfmts.h> #include <linux/in.h> #include <linux/spinlock.h> #include <linux/lsm_hooks.h> #include <linux/msg.h> #include <net/net_namespace.h> #include "flask.h" #include "avc.h" struct task_security_struct { u32 osid; /* SID prior to last execve */ u32 sid; /* current SID */ u32 exec_sid; /* exec SID */ u32 create_sid; /* fscreate SID */ u32 keycreate_sid; /* keycreate SID */ u32 sockcreate_sid; /* fscreate SID */ } __randomize_layout; enum label_initialized { LABEL_INVALID, /* invalid or not initialized */ LABEL_INITIALIZED, /* initialized */ LABEL_PENDING }; struct inode_security_struct { struct inode *inode; /* back pointer to inode object */ struct list_head list; /* list of inode_security_struct */ u32 task_sid; /* SID of creating task */ u32 sid; /* SID of this object */ u16 sclass; /* security class of this object */ unsigned char initialized; /* initialization flag */ spinlock_t lock; }; struct file_security_struct { u32 sid; /* SID of open file description */ u32 fown_sid; /* SID of file owner (for SIGIO) */ u32 isid; /* SID of inode at the time of file open */ u32 pseqno; /* Policy seqno at the time of file open */ }; struct superblock_security_struct { struct super_block *sb; /* back pointer to sb object */ u32 sid; /* SID of file system superblock */ u32 def_sid; /* default SID for labeling */ u32 mntpoint_sid; /* SECURITY_FS_USE_MNTPOINT context for files */ unsigned short behavior; /* labeling behavior */ unsigned short flags; /* which mount options were specified */ struct mutex lock; struct list_head isec_head; spinlock_t isec_lock; }; struct msg_security_struct { u32 sid; /* SID of message */ }; struct ipc_security_struct { u16 sclass; /* security class of this object */ u32 sid; /* SID of IPC resource */ }; struct netif_security_struct { struct net *ns; /* network namespace */ int ifindex; /* device index */ u32 sid; /* SID for this interface */ }; struct netnode_security_struct { union { __be32 ipv4; /* IPv4 node address */ struct in6_addr ipv6; /* IPv6 node address */ } addr; u32 sid; /* SID for this node */ u16 family; /* address family */ }; struct netport_security_struct { u32 sid; /* SID for this node */ u16 port; /* port number */ u8 protocol; /* transport protocol */ }; struct sk_security_struct { #ifdef CONFIG_NETLABEL enum { /* NetLabel state */ NLBL_UNSET = 0, NLBL_REQUIRE, NLBL_LABELED, NLBL_REQSKB, NLBL_CONNLABELED, } nlbl_state; struct netlbl_lsm_secattr *nlbl_secattr; /* NetLabel sec attributes */ #endif u32 sid; /* SID of this object */ u32 peer_sid; /* SID of peer */ u16 sclass; /* sock security class */ enum { /* SCTP association state */ SCTP_ASSOC_UNSET = 0, SCTP_ASSOC_SET, } sctp_assoc_state; }; struct tun_security_struct { u32 sid; /* SID for the tun device sockets */ }; struct key_security_struct { u32 sid; /* SID of key */ }; struct ib_security_struct { u32 sid; /* SID of the queue pair or MAD agent */ }; struct pkey_security_struct { u64 subnet_prefix; /* Port subnet prefix */ u16 pkey; /* PKey number */ u32 sid; /* SID of pkey */ }; struct bpf_security_struct { u32 sid; /* SID of bpf obj creator */ }; struct perf_event_security_struct { u32 sid; /* SID of perf_event obj creator */ }; extern struct lsm_blob_sizes selinux_blob_sizes; static inline struct task_security_struct *selinux_cred(const struct cred *cred) { return cred->security + selinux_blob_sizes.lbs_cred; } static inline struct file_security_struct *selinux_file(const struct file *file) { return file->f_security + selinux_blob_sizes.lbs_file; } static inline struct inode_security_struct *selinux_inode( const struct inode *inode) { if (unlikely(!inode->i_security)) return NULL; return inode->i_security + selinux_blob_sizes.lbs_inode; } static inline struct msg_security_struct *selinux_msg_msg( const struct msg_msg *msg_msg) { return msg_msg->security + selinux_blob_sizes.lbs_msg_msg; } static inline struct ipc_security_struct *selinux_ipc( const struct kern_ipc_perm *ipc) { return ipc->security + selinux_blob_sizes.lbs_ipc; } /* * get the subjective security ID of the current task */ static inline u32 current_sid(void) { const struct task_security_struct *tsec = selinux_cred(current_cred()); return tsec->sid; } #endif /* _SELINUX_OBJSEC_H_ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * VLAN An implementation of 802.1Q VLAN tagging. * * Authors: Ben Greear <greearb@candelatech.com> */ #ifndef _LINUX_IF_VLAN_H_ #define _LINUX_IF_VLAN_H_ #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/rtnetlink.h> #include <linux/bug.h> #include <uapi/linux/if_vlan.h> #define VLAN_HLEN 4 /* The additional bytes required by VLAN * (in addition to the Ethernet header) */ #define VLAN_ETH_HLEN 18 /* Total octets in header. */ #define VLAN_ETH_ZLEN 64 /* Min. octets in frame sans FCS */ /* * According to 802.3ac, the packet can be 4 bytes longer. --Klika Jan */ #define VLAN_ETH_DATA_LEN 1500 /* Max. octets in payload */ #define VLAN_ETH_FRAME_LEN 1518 /* Max. octets in frame sans FCS */ #define VLAN_MAX_DEPTH 8 /* Max. number of nested VLAN tags parsed */ /* * struct vlan_hdr - vlan header * @h_vlan_TCI: priority and VLAN ID * @h_vlan_encapsulated_proto: packet type ID or len */ struct vlan_hdr { __be16 h_vlan_TCI; __be16 h_vlan_encapsulated_proto; }; /** * struct vlan_ethhdr - vlan ethernet header (ethhdr + vlan_hdr) * @h_dest: destination ethernet address * @h_source: source ethernet address * @h_vlan_proto: ethernet protocol * @h_vlan_TCI: priority and VLAN ID * @h_vlan_encapsulated_proto: packet type ID or len */ struct vlan_ethhdr { unsigned char h_dest[ETH_ALEN]; unsigned char h_source[ETH_ALEN]; __be16 h_vlan_proto; __be16 h_vlan_TCI; __be16 h_vlan_encapsulated_proto; }; #include <linux/skbuff.h> static inline struct vlan_ethhdr *vlan_eth_hdr(const struct sk_buff *skb) { return (struct vlan_ethhdr *)skb_mac_header(skb); } #define VLAN_PRIO_MASK 0xe000 /* Priority Code Point */ #define VLAN_PRIO_SHIFT 13 #define VLAN_CFI_MASK 0x1000 /* Canonical Format Indicator / Drop Eligible Indicator */ #define VLAN_VID_MASK 0x0fff /* VLAN Identifier */ #define VLAN_N_VID 4096 /* found in socket.c */ extern void vlan_ioctl_set(int (*hook)(struct net *, void __user *)); static inline bool is_vlan_dev(const struct net_device *dev) { return dev->priv_flags & IFF_802_1Q_VLAN; } #define skb_vlan_tag_present(__skb) ((__skb)->vlan_present) #define skb_vlan_tag_get(__skb) ((__skb)->vlan_tci) #define skb_vlan_tag_get_id(__skb) ((__skb)->vlan_tci & VLAN_VID_MASK) #define skb_vlan_tag_get_cfi(__skb) (!!((__skb)->vlan_tci & VLAN_CFI_MASK)) #define skb_vlan_tag_get_prio(__skb) (((__skb)->vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT) static inline int vlan_get_rx_ctag_filter_info(struct net_device *dev) { ASSERT_RTNL(); return notifier_to_errno(call_netdevice_notifiers(NETDEV_CVLAN_FILTER_PUSH_INFO, dev)); } static inline void vlan_drop_rx_ctag_filter_info(struct net_device *dev) { ASSERT_RTNL(); call_netdevice_notifiers(NETDEV_CVLAN_FILTER_DROP_INFO, dev); } static inline int vlan_get_rx_stag_filter_info(struct net_device *dev) { ASSERT_RTNL(); return notifier_to_errno(call_netdevice_notifiers(NETDEV_SVLAN_FILTER_PUSH_INFO, dev)); } static inline void vlan_drop_rx_stag_filter_info(struct net_device *dev) { ASSERT_RTNL(); call_netdevice_notifiers(NETDEV_SVLAN_FILTER_DROP_INFO, dev); } /** * struct vlan_pcpu_stats - VLAN percpu rx/tx stats * @rx_packets: number of received packets * @rx_bytes: number of received bytes * @rx_multicast: number of received multicast packets * @tx_packets: number of transmitted packets * @tx_bytes: number of transmitted bytes * @syncp: synchronization point for 64bit counters * @rx_errors: number of rx errors * @tx_dropped: number of tx drops */ struct vlan_pcpu_stats { u64 rx_packets; u64 rx_bytes; u64 rx_multicast; u64 tx_packets; u64 tx_bytes; struct u64_stats_sync syncp; u32 rx_errors; u32 tx_dropped; }; #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE) extern struct net_device *__vlan_find_dev_deep_rcu(struct net_device *real_dev, __be16 vlan_proto, u16 vlan_id); extern int vlan_for_each(struct net_device *dev, int (*action)(struct net_device *dev, int vid, void *arg), void *arg); extern struct net_device *vlan_dev_real_dev(const struct net_device *dev); extern u16 vlan_dev_vlan_id(const struct net_device *dev); extern __be16 vlan_dev_vlan_proto(const struct net_device *dev); /** * struct vlan_priority_tci_mapping - vlan egress priority mappings * @priority: skb priority * @vlan_qos: vlan priority: (skb->priority << 13) & 0xE000 * @next: pointer to next struct */ struct vlan_priority_tci_mapping { u32 priority; u16 vlan_qos; struct vlan_priority_tci_mapping *next; }; struct proc_dir_entry; struct netpoll; /** * struct vlan_dev_priv - VLAN private device data * @nr_ingress_mappings: number of ingress priority mappings * @ingress_priority_map: ingress priority mappings * @nr_egress_mappings: number of egress priority mappings * @egress_priority_map: hash of egress priority mappings * @vlan_proto: VLAN encapsulation protocol * @vlan_id: VLAN identifier * @flags: device flags * @real_dev: underlying netdevice * @real_dev_addr: address of underlying netdevice * @dent: proc dir entry * @vlan_pcpu_stats: ptr to percpu rx stats */ struct vlan_dev_priv { unsigned int nr_ingress_mappings; u32 ingress_priority_map[8]; unsigned int nr_egress_mappings; struct vlan_priority_tci_mapping *egress_priority_map[16]; __be16 vlan_proto; u16 vlan_id; u16 flags; struct net_device *real_dev; unsigned char real_dev_addr[ETH_ALEN]; struct proc_dir_entry *dent; struct vlan_pcpu_stats __percpu *vlan_pcpu_stats; #ifdef CONFIG_NET_POLL_CONTROLLER struct netpoll *netpoll; #endif }; static inline struct vlan_dev_priv *vlan_dev_priv(const struct net_device *dev) { return netdev_priv(dev); } static inline u16 vlan_dev_get_egress_qos_mask(struct net_device *dev, u32 skprio) { struct vlan_priority_tci_mapping *mp; smp_rmb(); /* coupled with smp_wmb() in vlan_dev_set_egress_priority() */ mp = vlan_dev_priv(dev)->egress_priority_map[(skprio & 0xF)]; while (mp) { if (mp->priority == skprio) { return mp->vlan_qos; /* This should already be shifted * to mask correctly with the * VLAN's TCI */ } mp = mp->next; } return 0; } extern bool vlan_do_receive(struct sk_buff **skb); extern int vlan_vid_add(struct net_device *dev, __be16 proto, u16 vid); extern void vlan_vid_del(struct net_device *dev, __be16 proto, u16 vid); extern int vlan_vids_add_by_dev(struct net_device *dev, const struct net_device *by_dev); extern void vlan_vids_del_by_dev(struct net_device *dev, const struct net_device *by_dev); extern bool vlan_uses_dev(const struct net_device *dev); #else static inline struct net_device * __vlan_find_dev_deep_rcu(struct net_device *real_dev, __be16 vlan_proto, u16 vlan_id) { return NULL; } static inline int vlan_for_each(struct net_device *dev, int (*action)(struct net_device *dev, int vid, void *arg), void *arg) { return 0; } static inline struct net_device *vlan_dev_real_dev(const struct net_device *dev) { BUG(); return NULL; } static inline u16 vlan_dev_vlan_id(const struct net_device *dev) { BUG(); return 0; } static inline __be16 vlan_dev_vlan_proto(const struct net_device *dev) { BUG(); return 0; } static inline u16 vlan_dev_get_egress_qos_mask(struct net_device *dev, u32 skprio) { return 0; } static inline bool vlan_do_receive(struct sk_buff **skb) { return false; } static inline int vlan_vid_add(struct net_device *dev, __be16 proto, u16 vid) { return 0; } static inline void vlan_vid_del(struct net_device *dev, __be16 proto, u16 vid) { } static inline int vlan_vids_add_by_dev(struct net_device *dev, const struct net_device *by_dev) { return 0; } static inline void vlan_vids_del_by_dev(struct net_device *dev, const struct net_device *by_dev) { } static inline bool vlan_uses_dev(const struct net_device *dev) { return false; } #endif /** * eth_type_vlan - check for valid vlan ether type. * @ethertype: ether type to check * * Returns true if the ether type is a vlan ether type. */ static inline bool eth_type_vlan(__be16 ethertype) { switch (ethertype) { case htons(ETH_P_8021Q): case htons(ETH_P_8021AD): return true; default: return false; } } static inline bool vlan_hw_offload_capable(netdev_features_t features, __be16 proto) { if (proto == htons(ETH_P_8021Q) && features & NETIF_F_HW_VLAN_CTAG_TX) return true; if (proto == htons(ETH_P_8021AD) && features & NETIF_F_HW_VLAN_STAG_TX) return true; return false; } /** * __vlan_insert_inner_tag - inner VLAN tag inserting * @skb: skbuff to tag * @vlan_proto: VLAN encapsulation protocol * @vlan_tci: VLAN TCI to insert * @mac_len: MAC header length including outer vlan headers * * Inserts the VLAN tag into @skb as part of the payload at offset mac_len * Returns error if skb_cow_head fails. * * Does not change skb->protocol so this function can be used during receive. */ static inline int __vlan_insert_inner_tag(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci, unsigned int mac_len) { struct vlan_ethhdr *veth; if (skb_cow_head(skb, VLAN_HLEN) < 0) return -ENOMEM; skb_push(skb, VLAN_HLEN); /* Move the mac header sans proto to the beginning of the new header. */ if (likely(mac_len > ETH_TLEN)) memmove(skb->data, skb->data + VLAN_HLEN, mac_len - ETH_TLEN); skb->mac_header -= VLAN_HLEN; veth = (struct vlan_ethhdr *)(skb->data + mac_len - ETH_HLEN); /* first, the ethernet type */ if (likely(mac_len >= ETH_TLEN)) { /* h_vlan_encapsulated_proto should already be populated, and * skb->data has space for h_vlan_proto */ veth->h_vlan_proto = vlan_proto; } else { /* h_vlan_encapsulated_proto should not be populated, and * skb->data has no space for h_vlan_proto */ veth->h_vlan_encapsulated_proto = skb->protocol; } /* now, the TCI */ veth->h_vlan_TCI = htons(vlan_tci); return 0; } /** * __vlan_insert_tag - regular VLAN tag inserting * @skb: skbuff to tag * @vlan_proto: VLAN encapsulation protocol * @vlan_tci: VLAN TCI to insert * * Inserts the VLAN tag into @skb as part of the payload * Returns error if skb_cow_head fails. * * Does not change skb->protocol so this function can be used during receive. */ static inline int __vlan_insert_tag(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) { return __vlan_insert_inner_tag(skb, vlan_proto, vlan_tci, ETH_HLEN); } /** * vlan_insert_inner_tag - inner VLAN tag inserting * @skb: skbuff to tag * @vlan_proto: VLAN encapsulation protocol * @vlan_tci: VLAN TCI to insert * @mac_len: MAC header length including outer vlan headers * * Inserts the VLAN tag into @skb as part of the payload at offset mac_len * Returns a VLAN tagged skb. If a new skb is created, @skb is freed. * * Following the skb_unshare() example, in case of error, the calling function * doesn't have to worry about freeing the original skb. * * Does not change skb->protocol so this function can be used during receive. */ static inline struct sk_buff *vlan_insert_inner_tag(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci, unsigned int mac_len) { int err; err = __vlan_insert_inner_tag(skb, vlan_proto, vlan_tci, mac_len); if (err) { dev_kfree_skb_any(skb); return NULL; } return skb; } /** * vlan_insert_tag - regular VLAN tag inserting * @skb: skbuff to tag * @vlan_proto: VLAN encapsulation protocol * @vlan_tci: VLAN TCI to insert * * Inserts the VLAN tag into @skb as part of the payload * Returns a VLAN tagged skb. If a new skb is created, @skb is freed. * * Following the skb_unshare() example, in case of error, the calling function * doesn't have to worry about freeing the original skb. * * Does not change skb->protocol so this function can be used during receive. */ static inline struct sk_buff *vlan_insert_tag(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) { return vlan_insert_inner_tag(skb, vlan_proto, vlan_tci, ETH_HLEN); } /** * vlan_insert_tag_set_proto - regular VLAN tag inserting * @skb: skbuff to tag * @vlan_proto: VLAN encapsulation protocol * @vlan_tci: VLAN TCI to insert * * Inserts the VLAN tag into @skb as part of the payload * Returns a VLAN tagged skb. If a new skb is created, @skb is freed. * * Following the skb_unshare() example, in case of error, the calling function * doesn't have to worry about freeing the original skb. */ static inline struct sk_buff *vlan_insert_tag_set_proto(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) { skb = vlan_insert_tag(skb, vlan_proto, vlan_tci); if (skb) skb->protocol = vlan_proto; return skb; } /** * __vlan_hwaccel_clear_tag - clear hardware accelerated VLAN info * @skb: skbuff to clear * * Clears the VLAN information from @skb */ static inline void __vlan_hwaccel_clear_tag(struct sk_buff *skb) { skb->vlan_present = 0; } /** * __vlan_hwaccel_copy_tag - copy hardware accelerated VLAN info from another skb * @dst: skbuff to copy to * @src: skbuff to copy from * * Copies VLAN information from @src to @dst (for branchless code) */ static inline void __vlan_hwaccel_copy_tag(struct sk_buff *dst, const struct sk_buff *src) { dst->vlan_present = src->vlan_present; dst->vlan_proto = src->vlan_proto; dst->vlan_tci = src->vlan_tci; } /* * __vlan_hwaccel_push_inside - pushes vlan tag to the payload * @skb: skbuff to tag * * Pushes the VLAN tag from @skb->vlan_tci inside to the payload. * * Following the skb_unshare() example, in case of error, the calling function * doesn't have to worry about freeing the original skb. */ static inline struct sk_buff *__vlan_hwaccel_push_inside(struct sk_buff *skb) { skb = vlan_insert_tag_set_proto(skb, skb->vlan_proto, skb_vlan_tag_get(skb)); if (likely(skb)) __vlan_hwaccel_clear_tag(skb); return skb; } /** * __vlan_hwaccel_put_tag - hardware accelerated VLAN inserting * @skb: skbuff to tag * @vlan_proto: VLAN encapsulation protocol * @vlan_tci: VLAN TCI to insert * * Puts the VLAN TCI in @skb->vlan_tci and lets the device do the rest */ static inline void __vlan_hwaccel_put_tag(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) { skb->vlan_proto = vlan_proto; skb->vlan_tci = vlan_tci; skb->vlan_present = 1; } /** * __vlan_get_tag - get the VLAN ID that is part of the payload * @skb: skbuff to query * @vlan_tci: buffer to store value * * Returns error if the skb is not of VLAN type */ static inline int __vlan_get_tag(const struct sk_buff *skb, u16 *vlan_tci) { struct vlan_ethhdr *veth = (struct vlan_ethhdr *)skb->data; if (!eth_type_vlan(veth->h_vlan_proto)) return -EINVAL; *vlan_tci = ntohs(veth->h_vlan_TCI); return 0; } /** * __vlan_hwaccel_get_tag - get the VLAN ID that is in @skb->cb[] * @skb: skbuff to query * @vlan_tci: buffer to store value * * Returns error if @skb->vlan_tci is not set correctly */ static inline int __vlan_hwaccel_get_tag(const struct sk_buff *skb, u16 *vlan_tci) { if (skb_vlan_tag_present(skb)) { *vlan_tci = skb_vlan_tag_get(skb); return 0; } else { *vlan_tci = 0; return -EINVAL; } } /** * vlan_get_tag - get the VLAN ID from the skb * @skb: skbuff to query * @vlan_tci: buffer to store value * * Returns error if the skb is not VLAN tagged */ static inline int vlan_get_tag(const struct sk_buff *skb, u16 *vlan_tci) { if (skb->dev->features & NETIF_F_HW_VLAN_CTAG_TX) { return __vlan_hwaccel_get_tag(skb, vlan_tci); } else { return __vlan_get_tag(skb, vlan_tci); } } /** * vlan_get_protocol - get protocol EtherType. * @skb: skbuff to query * @type: first vlan protocol * @depth: buffer to store length of eth and vlan tags in bytes * * Returns the EtherType of the packet, regardless of whether it is * vlan encapsulated (normal or hardware accelerated) or not. */ static inline __be16 __vlan_get_protocol(const struct sk_buff *skb, __be16 type, int *depth) { unsigned int vlan_depth = skb->mac_len, parse_depth = VLAN_MAX_DEPTH; /* if type is 802.1Q/AD then the header should already be * present at mac_len - VLAN_HLEN (if mac_len > 0), or at * ETH_HLEN otherwise */ if (eth_type_vlan(type)) { if (vlan_depth) { if (WARN_ON(vlan_depth < VLAN_HLEN)) return 0; vlan_depth -= VLAN_HLEN; } else { vlan_depth = ETH_HLEN; } do { struct vlan_hdr vhdr, *vh; vh = skb_header_pointer(skb, vlan_depth, sizeof(vhdr), &vhdr); if (unlikely(!vh || !--parse_depth)) return 0; type = vh->h_vlan_encapsulated_proto; vlan_depth += VLAN_HLEN; } while (eth_type_vlan(type)); } if (depth) *depth = vlan_depth; return type; } /** * vlan_get_protocol - get protocol EtherType. * @skb: skbuff to query * * Returns the EtherType of the packet, regardless of whether it is * vlan encapsulated (normal or hardware accelerated) or not. */ static inline __be16 vlan_get_protocol(const struct sk_buff *skb) { return __vlan_get_protocol(skb, skb->protocol, NULL); } /* A getter for the SKB protocol field which will handle VLAN tags consistently * whether VLAN acceleration is enabled or not. */ static inline __be16 skb_protocol(const struct sk_buff *skb, bool skip_vlan) { if (!skip_vlan) /* VLAN acceleration strips the VLAN header from the skb and * moves it to skb->vlan_proto */ return skb_vlan_tag_present(skb) ? skb->vlan_proto : skb->protocol; return vlan_get_protocol(skb); } static inline void vlan_set_encap_proto(struct sk_buff *skb, struct vlan_hdr *vhdr) { __be16 proto; unsigned short *rawp; /* * Was a VLAN packet, grab the encapsulated protocol, which the layer * three protocols care about. */ proto = vhdr->h_vlan_encapsulated_proto; if (eth_proto_is_802_3(proto)) { skb->protocol = proto; return; } rawp = (unsigned short *)(vhdr + 1); if (*rawp == 0xFFFF) /* * This is a magic hack to spot IPX packets. Older Novell * breaks the protocol design and runs IPX over 802.3 without * an 802.2 LLC layer. We look for FFFF which isn't a used * 802.2 SSAP/DSAP. This won't work for fault tolerant netware * but does for the rest. */ skb->protocol = htons(ETH_P_802_3); else /* * Real 802.2 LLC */ skb->protocol = htons(ETH_P_802_2); } /** * skb_vlan_tagged - check if skb is vlan tagged. * @skb: skbuff to query * * Returns true if the skb is tagged, regardless of whether it is hardware * accelerated or not. */ static inline bool skb_vlan_tagged(const struct sk_buff *skb) { if (!skb_vlan_tag_present(skb) && likely(!eth_type_vlan(skb->protocol))) return false; return true; } /** * skb_vlan_tagged_multi - check if skb is vlan tagged with multiple headers. * @skb: skbuff to query * * Returns true if the skb is tagged with multiple vlan headers, regardless * of whether it is hardware accelerated or not. */ static inline bool skb_vlan_tagged_multi(struct sk_buff *skb) { __be16 protocol = skb->protocol; if (!skb_vlan_tag_present(skb)) { struct vlan_ethhdr *veh; if (likely(!eth_type_vlan(protocol))) return false; if (unlikely(!pskb_may_pull(skb, VLAN_ETH_HLEN))) return false; veh = (struct vlan_ethhdr *)skb->data; protocol = veh->h_vlan_encapsulated_proto; } if (!eth_type_vlan(protocol)) return false; return true; } /** * vlan_features_check - drop unsafe features for skb with multiple tags. * @skb: skbuff to query * @features: features to be checked * * Returns features without unsafe ones if the skb has multiple tags. */ static inline netdev_features_t vlan_features_check(struct sk_buff *skb, netdev_features_t features) { if (skb_vlan_tagged_multi(skb)) { /* In the case of multi-tagged packets, use a direct mask * instead of using netdev_interesect_features(), to make * sure that only devices supporting NETIF_F_HW_CSUM will * have checksum offloading support. */ features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_HW_CSUM | NETIF_F_FRAGLIST | NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_STAG_TX; } return features; } /** * compare_vlan_header - Compare two vlan headers * @h1: Pointer to vlan header * @h2: Pointer to vlan header * * Compare two vlan headers, returns 0 if equal. * * Please note that alignment of h1 & h2 are only guaranteed to be 16 bits. */ static inline unsigned long compare_vlan_header(const struct vlan_hdr *h1, const struct vlan_hdr *h2) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) return *(u32 *)h1 ^ *(u32 *)h2; #else return ((__force u32)h1->h_vlan_TCI ^ (__force u32)h2->h_vlan_TCI) | ((__force u32)h1->h_vlan_encapsulated_proto ^ (__force u32)h2->h_vlan_encapsulated_proto); #endif } #endif /* !(_LINUX_IF_VLAN_H_) */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 /* SPDX-License-Identifier: GPL-2.0-only */ /* * async.h: Asynchronous function calls for boot performance * * (C) Copyright 2009 Intel Corporation * Author: Arjan van de Ven <arjan@linux.intel.com> */ #ifndef __ASYNC_H__ #define __ASYNC_H__ #include <linux/types.h> #include <linux/list.h> #include <linux/numa.h> #include <linux/device.h> typedef u64 async_cookie_t; typedef void (*async_func_t) (void *data, async_cookie_t cookie); struct async_domain { struct list_head pending; unsigned registered:1; }; /* * domain participates in global async_synchronize_full */ #define ASYNC_DOMAIN(_name) \ struct async_domain _name = { .pending = LIST_HEAD_INIT(_name.pending), \ .registered = 1 } /* * domain is free to go out of scope as soon as all pending work is * complete, this domain does not participate in async_synchronize_full */ #define ASYNC_DOMAIN_EXCLUSIVE(_name) \ struct async_domain _name = { .pending = LIST_HEAD_INIT(_name.pending), \ .registered = 0 } async_cookie_t async_schedule_node(async_func_t func, void *data, int node); async_cookie_t async_schedule_node_domain(async_func_t func, void *data, int node, struct async_domain *domain); /** * async_schedule - schedule a function for asynchronous execution * @func: function to execute asynchronously * @data: data pointer to pass to the function * * Returns an async_cookie_t that may be used for checkpointing later. * Note: This function may be called from atomic or non-atomic contexts. */ static inline async_cookie_t async_schedule(async_func_t func, void *data) { return async_schedule_node(func, data, NUMA_NO_NODE); } /** * async_schedule_domain - schedule a function for asynchronous execution within a certain domain * @func: function to execute asynchronously * @data: data pointer to pass to the function * @domain: the domain * * Returns an async_cookie_t that may be used for checkpointing later. * @domain may be used in the async_synchronize_*_domain() functions to * wait within a certain synchronization domain rather than globally. * Note: This function may be called from atomic or non-atomic contexts. */ static inline async_cookie_t async_schedule_domain(async_func_t func, void *data, struct async_domain *domain) { return async_schedule_node_domain(func, data, NUMA_NO_NODE, domain); } /** * async_schedule_dev - A device specific version of async_schedule * @func: function to execute asynchronously * @dev: device argument to be passed to function * * Returns an async_cookie_t that may be used for checkpointing later. * @dev is used as both the argument for the function and to provide NUMA * context for where to run the function. By doing this we can try to * provide for the best possible outcome by operating on the device on the * CPUs closest to the device. * Note: This function may be called from atomic or non-atomic contexts. */ static inline async_cookie_t async_schedule_dev(async_func_t func, struct device *dev) { return async_schedule_node(func, dev, dev_to_node(dev)); } /** * async_schedule_dev_domain - A device specific version of async_schedule_domain * @func: function to execute asynchronously * @dev: device argument to be passed to function * @domain: the domain * * Returns an async_cookie_t that may be used for checkpointing later. * @dev is used as both the argument for the function and to provide NUMA * context for where to run the function. By doing this we can try to * provide for the best possible outcome by operating on the device on the * CPUs closest to the device. * @domain may be used in the async_synchronize_*_domain() functions to * wait within a certain synchronization domain rather than globally. * Note: This function may be called from atomic or non-atomic contexts. */ static inline async_cookie_t async_schedule_dev_domain(async_func_t func, struct device *dev, struct async_domain *domain) { return async_schedule_node_domain(func, dev, dev_to_node(dev), domain); } void async_unregister_domain(struct async_domain *domain); extern void async_synchronize_full(void); extern void async_synchronize_full_domain(struct async_domain *domain); extern void async_synchronize_cookie(async_cookie_t cookie); extern void async_synchronize_cookie_domain(async_cookie_t cookie, struct async_domain *domain); extern bool current_is_async(void); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_TASK_WORK_H #define _LINUX_TASK_WORK_H #include <linux/list.h> #include <linux/sched.h> typedef void (*task_work_func_t)(struct callback_head *); static inline void init_task_work(struct callback_head *twork, task_work_func_t func) { twork->func = func; } enum task_work_notify_mode { TWA_NONE, TWA_RESUME, TWA_SIGNAL, }; int task_work_add(struct task_struct *task, struct callback_head *twork, enum task_work_notify_mode mode); struct callback_head *task_work_cancel(struct task_struct *, task_work_func_t); void task_work_run(void); static inline void exit_task_work(struct task_struct *task) { task_work_run(); } #endif /* _LINUX_TASK_WORK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SCHED_TASK_STACK_H #define _LINUX_SCHED_TASK_STACK_H /* * task->stack (kernel stack) handling interfaces: */ #include <linux/sched.h> #include <linux/magic.h> #ifdef CONFIG_THREAD_INFO_IN_TASK /* * When accessing the stack of a non-current task that might exit, use * try_get_task_stack() instead. task_stack_page will return a pointer * that could get freed out from under you. */ static inline void *task_stack_page(const struct task_struct *task) { return task->stack; } #define setup_thread_stack(new,old) do { } while(0) static inline unsigned long *end_of_stack(const struct task_struct *task) { #ifdef CONFIG_STACK_GROWSUP return (unsigned long *)((unsigned long)task->stack + THREAD_SIZE) - 1; #else return task->stack; #endif } #elif !defined(__HAVE_THREAD_FUNCTIONS) #define task_stack_page(task) ((void *)(task)->stack) static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) { *task_thread_info(p) = *task_thread_info(org); task_thread_info(p)->task = p; } /* * Return the address of the last usable long on the stack. * * When the stack grows down, this is just above the thread * info struct. Going any lower will corrupt the threadinfo. * * When the stack grows up, this is the highest address. * Beyond that position, we corrupt data on the next page. */ static inline unsigned long *end_of_stack(struct task_struct *p) { #ifdef CONFIG_STACK_GROWSUP return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1; #else return (unsigned long *)(task_thread_info(p) + 1); #endif } #endif #ifdef CONFIG_THREAD_INFO_IN_TASK static inline void *try_get_task_stack(struct task_struct *tsk) { return refcount_inc_not_zero(&tsk->stack_refcount) ? task_stack_page(tsk) : NULL; } extern void put_task_stack(struct task_struct *tsk); #else static inline void *try_get_task_stack(struct task_struct *tsk) { return task_stack_page(tsk); } static inline void put_task_stack(struct task_struct *tsk) {} #endif #define task_stack_end_corrupted(task) \ (*(end_of_stack(task)) != STACK_END_MAGIC) static inline int object_is_on_stack(const void *obj) { void *stack = task_stack_page(current); return (obj >= stack) && (obj < (stack + THREAD_SIZE)); } extern void thread_stack_cache_init(void); #ifdef CONFIG_DEBUG_STACK_USAGE static inline unsigned long stack_not_used(struct task_struct *p) { unsigned long *n = end_of_stack(p); do { /* Skip over canary */ # ifdef CONFIG_STACK_GROWSUP n--; # else n++; # endif } while (!*n); # ifdef CONFIG_STACK_GROWSUP return (unsigned long)end_of_stack(p) - (unsigned long)n; # else return (unsigned long)n - (unsigned long)end_of_stack(p); # endif } #endif extern void set_task_stack_end_magic(struct task_struct *tsk); #ifndef __HAVE_ARCH_KSTACK_END static inline int kstack_end(void *addr) { /* Reliable end of stack detection: * Some APM bios versions misalign the stack */ return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); } #endif #endif /* _LINUX_SCHED_TASK_STACK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_SMP_H #define _ASM_X86_SMP_H #ifndef __ASSEMBLY__ #include <linux/cpumask.h> #include <asm/percpu.h> #include <asm/thread_info.h> #include <asm/cpumask.h> extern int smp_num_siblings; extern unsigned int num_processors; DECLARE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map); DECLARE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map); DECLARE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map); /* cpus sharing the last level cache: */ DECLARE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map); DECLARE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id); DECLARE_PER_CPU_READ_MOSTLY(int, cpu_number); static inline struct cpumask *cpu_llc_shared_mask(int cpu) { return per_cpu(cpu_llc_shared_map, cpu); } DECLARE_EARLY_PER_CPU_READ_MOSTLY(u16, x86_cpu_to_apicid); DECLARE_EARLY_PER_CPU_READ_MOSTLY(u32, x86_cpu_to_acpiid); DECLARE_EARLY_PER_CPU_READ_MOSTLY(u16, x86_bios_cpu_apicid); #if defined(CONFIG_X86_LOCAL_APIC) && defined(CONFIG_X86_32) DECLARE_EARLY_PER_CPU_READ_MOSTLY(int, x86_cpu_to_logical_apicid); #endif struct task_struct; struct smp_ops { void (*smp_prepare_boot_cpu)(void); void (*smp_prepare_cpus)(unsigned max_cpus); void (*smp_cpus_done)(unsigned max_cpus); void (*stop_other_cpus)(int wait); void (*crash_stop_other_cpus)(void); void (*smp_send_reschedule)(int cpu); int (*cpu_up)(unsigned cpu, struct task_struct *tidle); int (*cpu_disable)(void); void (*cpu_die)(unsigned int cpu); void (*play_dead)(void); void (*send_call_func_ipi)(const struct cpumask *mask); void (*send_call_func_single_ipi)(int cpu); }; /* Globals due to paravirt */ extern void set_cpu_sibling_map(int cpu); #ifdef CONFIG_SMP extern struct smp_ops smp_ops; static inline void smp_send_stop(void) { smp_ops.stop_other_cpus(0); } static inline void stop_other_cpus(void) { smp_ops.stop_other_cpus(1); } static inline void smp_prepare_boot_cpu(void) { smp_ops.smp_prepare_boot_cpu(); } static inline void smp_prepare_cpus(unsigned int max_cpus) { smp_ops.smp_prepare_cpus(max_cpus); } static inline void smp_cpus_done(unsigned int max_cpus) { smp_ops.smp_cpus_done(max_cpus); } static inline int __cpu_up(unsigned int cpu, struct task_struct *tidle) { return smp_ops.cpu_up(cpu, tidle); } static inline int __cpu_disable(void) { return smp_ops.cpu_disable(); } static inline void __cpu_die(unsigned int cpu) { smp_ops.cpu_die(cpu); } static inline void play_dead(void) { smp_ops.play_dead(); } static inline void smp_send_reschedule(int cpu) { smp_ops.smp_send_reschedule(cpu); } static inline void arch_send_call_function_single_ipi(int cpu) { smp_ops.send_call_func_single_ipi(cpu); } static inline void arch_send_call_function_ipi_mask(const struct cpumask *mask) { smp_ops.send_call_func_ipi(mask); } void cpu_disable_common(void); void native_smp_prepare_boot_cpu(void); void native_smp_prepare_cpus(unsigned int max_cpus); void calculate_max_logical_packages(void); void native_smp_cpus_done(unsigned int max_cpus); int common_cpu_up(unsigned int cpunum, struct task_struct *tidle); int native_cpu_up(unsigned int cpunum, struct task_struct *tidle); int native_cpu_disable(void); int common_cpu_die(unsigned int cpu); void native_cpu_die(unsigned int cpu); void hlt_play_dead(void); void native_play_dead(void); void play_dead_common(void); void wbinvd_on_cpu(int cpu); int wbinvd_on_all_cpus(void); void cond_wakeup_cpu0(void); void native_smp_send_reschedule(int cpu); void native_send_call_func_ipi(const struct cpumask *mask); void native_send_call_func_single_ipi(int cpu); void x86_idle_thread_init(unsigned int cpu, struct task_struct *idle); void smp_store_boot_cpu_info(void); void smp_store_cpu_info(int id); asmlinkage __visible void smp_reboot_interrupt(void); __visible void smp_reschedule_interrupt(struct pt_regs *regs); __visible void smp_call_function_interrupt(struct pt_regs *regs); __visible void smp_call_function_single_interrupt(struct pt_regs *r); #define cpu_physical_id(cpu) per_cpu(x86_cpu_to_apicid, cpu) #define cpu_acpi_id(cpu) per_cpu(x86_cpu_to_acpiid, cpu) /* * This function is needed by all SMP systems. It must _always_ be valid * from the initial startup. We map APIC_BASE very early in page_setup(), * so this is correct in the x86 case. */ #define raw_smp_processor_id() this_cpu_read(cpu_number) #define __smp_processor_id() __this_cpu_read(cpu_number) #ifdef CONFIG_X86_32 extern int safe_smp_processor_id(void); #else # define safe_smp_processor_id() smp_processor_id() #endif #else /* !CONFIG_SMP */ #define wbinvd_on_cpu(cpu) wbinvd() static inline int wbinvd_on_all_cpus(void) { wbinvd(); return 0; } #endif /* CONFIG_SMP */ extern unsigned disabled_cpus; #ifdef CONFIG_X86_LOCAL_APIC extern int hard_smp_processor_id(void); #else /* CONFIG_X86_LOCAL_APIC */ #define hard_smp_processor_id() 0 #endif /* CONFIG_X86_LOCAL_APIC */ #ifdef CONFIG_DEBUG_NMI_SELFTEST extern void nmi_selftest(void); #else #define nmi_selftest() do { } while (0) #endif #endif /* __ASSEMBLY__ */ #endif /* _ASM_X86_SMP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 /* SPDX-License-Identifier: GPL-2.0-only */ /* * fs/kernfs/kernfs-internal.h - kernfs internal header file * * Copyright (c) 2001-3 Patrick Mochel * Copyright (c) 2007 SUSE Linux Products GmbH * Copyright (c) 2007, 2013 Tejun Heo <teheo@suse.de> */ #ifndef __KERNFS_INTERNAL_H #define __KERNFS_INTERNAL_H #include <linux/lockdep.h> #include <linux/fs.h> #include <linux/mutex.h> #include <linux/xattr.h> #include <linux/kernfs.h> #include <linux/fs_context.h> struct kernfs_iattrs { kuid_t ia_uid; kgid_t ia_gid; struct timespec64 ia_atime; struct timespec64 ia_mtime; struct timespec64 ia_ctime; struct simple_xattrs xattrs; atomic_t nr_user_xattrs; atomic_t user_xattr_size; }; /* +1 to avoid triggering overflow warning when negating it */ #define KN_DEACTIVATED_BIAS (INT_MIN + 1) /* KERNFS_TYPE_MASK and types are defined in include/linux/kernfs.h */ /** * kernfs_root - find out the kernfs_root a kernfs_node belongs to * @kn: kernfs_node of interest * * Return the kernfs_root @kn belongs to. */ static inline struct kernfs_root *kernfs_root(struct kernfs_node *kn) { /* if parent exists, it's always a dir; otherwise, @sd is a dir */ if (kn->parent) kn = kn->parent; return kn->dir.root; } /* * mount.c */ struct kernfs_super_info { struct super_block *sb; /* * The root associated with this super_block. Each super_block is * identified by the root and ns it's associated with. */ struct kernfs_root *root; /* * Each sb is associated with one namespace tag, currently the * network namespace of the task which mounted this kernfs * instance. If multiple tags become necessary, make the following * an array and compare kernfs_node tag against every entry. */ const void *ns; /* anchored at kernfs_root->supers, protected by kernfs_mutex */ struct list_head node; }; #define kernfs_info(SB) ((struct kernfs_super_info *)(SB->s_fs_info)) static inline struct kernfs_node *kernfs_dentry_node(struct dentry *dentry) { if (d_really_is_negative(dentry)) return NULL; return d_inode(dentry)->i_private; } extern const struct super_operations kernfs_sops; extern struct kmem_cache *kernfs_node_cache, *kernfs_iattrs_cache; /* * inode.c */ extern const struct xattr_handler *kernfs_xattr_handlers[]; void kernfs_evict_inode(struct inode *inode); int kernfs_iop_permission(struct inode *inode, int mask); int kernfs_iop_setattr(struct dentry *dentry, struct iattr *iattr); int kernfs_iop_getattr(const struct path *path, struct kstat *stat, u32 request_mask, unsigned int query_flags); ssize_t kernfs_iop_listxattr(struct dentry *dentry, char *buf, size_t size); int __kernfs_setattr(struct kernfs_node *kn, const struct iattr *iattr); /* * dir.c */ extern struct mutex kernfs_mutex; extern const struct dentry_operations kernfs_dops; extern const struct file_operations kernfs_dir_fops; extern const struct inode_operations kernfs_dir_iops; struct kernfs_node *kernfs_get_active(struct kernfs_node *kn); void kernfs_put_active(struct kernfs_node *kn); int kernfs_add_one(struct kernfs_node *kn); struct kernfs_node *kernfs_new_node(struct kernfs_node *parent, const char *name, umode_t mode, kuid_t uid, kgid_t gid, unsigned flags); /* * file.c */ extern const struct file_operations kernfs_file_fops; void kernfs_drain_open_files(struct kernfs_node *kn); /* * symlink.c */ extern const struct inode_operations kernfs_symlink_iops; #endif /* __KERNFS_INTERNAL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 #ifndef _LINUX_PSI_H #define _LINUX_PSI_H #include <linux/jump_label.h> #include <linux/psi_types.h> #include <linux/sched.h> #include <linux/poll.h> struct seq_file; struct css_set; #ifdef CONFIG_PSI extern struct static_key_false psi_disabled; extern struct psi_group psi_system; void psi_init(void); void psi_task_change(struct task_struct *task, int clear, int set); void psi_task_switch(struct task_struct *prev, struct task_struct *next, bool sleep); void psi_memstall_tick(struct task_struct *task, int cpu); void psi_memstall_enter(unsigned long *flags); void psi_memstall_leave(unsigned long *flags); int psi_show(struct seq_file *s, struct psi_group *group, enum psi_res res); #ifdef CONFIG_CGROUPS int psi_cgroup_alloc(struct cgroup *cgrp); void psi_cgroup_free(struct cgroup *cgrp); void cgroup_move_task(struct task_struct *p, struct css_set *to); struct psi_trigger *psi_trigger_create(struct psi_group *group, char *buf, size_t nbytes, enum psi_res res); void psi_trigger_replace(void **trigger_ptr, struct psi_trigger *t); __poll_t psi_trigger_poll(void **trigger_ptr, struct file *file, poll_table *wait); #endif #else /* CONFIG_PSI */ static inline void psi_init(void) {} static inline void psi_memstall_enter(unsigned long *flags) {} static inline void psi_memstall_leave(unsigned long *flags) {} #ifdef CONFIG_CGROUPS static inline int psi_cgroup_alloc(struct cgroup *cgrp) { return 0; } static inline void psi_cgroup_free(struct cgroup *cgrp) { } static inline void cgroup_move_task(struct task_struct *p, struct css_set *to) { rcu_assign_pointer(p->cgroups, to); } #endif #endif /* CONFIG_PSI */ #endif /* _LINUX_PSI_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 /* SPDX-License-Identifier: GPL-2.0 */ /* include/net/dsfield.h - Manipulation of the Differentiated Services field */ /* Written 1998-2000 by Werner Almesberger, EPFL ICA */ #ifndef __NET_DSFIELD_H #define __NET_DSFIELD_H #include <linux/types.h> #include <linux/ip.h> #include <linux/ipv6.h> #include <asm/byteorder.h> static inline __u8 ipv4_get_dsfield(const struct iphdr *iph) { return iph->tos; } static inline __u8 ipv6_get_dsfield(const struct ipv6hdr *ipv6h) { return ntohs(*(__force const __be16 *)ipv6h) >> 4; } static inline void ipv4_change_dsfield(struct iphdr *iph,__u8 mask, __u8 value) { __u32 check = ntohs((__force __be16)iph->check); __u8 dsfield; dsfield = (iph->tos & mask) | value; check += iph->tos; if ((check+1) >> 16) check = (check+1) & 0xffff; check -= dsfield; check += check >> 16; /* adjust carry */ iph->check = (__force __sum16)htons(check); iph->tos = dsfield; } static inline void ipv6_change_dsfield(struct ipv6hdr *ipv6h,__u8 mask, __u8 value) { __be16 *p = (__force __be16 *)ipv6h; *p = (*p & htons((((u16)mask << 4) | 0xf00f))) | htons((u16)value << 4); } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM x86_fpu #if !defined(_TRACE_FPU_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_FPU_H #include <linux/tracepoint.h> DECLARE_EVENT_CLASS(x86_fpu, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu), TP_STRUCT__entry( __field(struct fpu *, fpu) __field(bool, load_fpu) __field(u64, xfeatures) __field(u64, xcomp_bv) ), TP_fast_assign( __entry->fpu = fpu; __entry->load_fpu = test_thread_flag(TIF_NEED_FPU_LOAD); if (boot_cpu_has(X86_FEATURE_OSXSAVE)) { __entry->xfeatures = fpu->state.xsave.header.xfeatures; __entry->xcomp_bv = fpu->state.xsave.header.xcomp_bv; } ), TP_printk("x86/fpu: %p load: %d xfeatures: %llx xcomp_bv: %llx", __entry->fpu, __entry->load_fpu, __entry->xfeatures, __entry->xcomp_bv ) ); DEFINE_EVENT(x86_fpu, x86_fpu_before_save, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu) ); DEFINE_EVENT(x86_fpu, x86_fpu_after_save, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu) ); DEFINE_EVENT(x86_fpu, x86_fpu_before_restore, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu) ); DEFINE_EVENT(x86_fpu, x86_fpu_after_restore, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu) ); DEFINE_EVENT(x86_fpu, x86_fpu_regs_activated, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu) ); DEFINE_EVENT(x86_fpu, x86_fpu_regs_deactivated, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu) ); DEFINE_EVENT(x86_fpu, x86_fpu_init_state, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu) ); DEFINE_EVENT(x86_fpu, x86_fpu_dropped, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu) ); DEFINE_EVENT(x86_fpu, x86_fpu_copy_src, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu) ); DEFINE_EVENT(x86_fpu, x86_fpu_copy_dst, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu) ); DEFINE_EVENT(x86_fpu, x86_fpu_xstate_check_failed, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu) ); #undef TRACE_INCLUDE_PATH #define TRACE_INCLUDE_PATH asm/trace/ #undef TRACE_INCLUDE_FILE #define TRACE_INCLUDE_FILE fpu #endif /* _TRACE_FPU_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_GENERIC_SECTIONS_H_ #define _ASM_GENERIC_SECTIONS_H_ /* References to section boundaries */ #include <linux/compiler.h> #include <linux/types.h> /* * Usage guidelines: * _text, _data: architecture specific, don't use them in arch-independent code * [_stext, _etext]: contains .text.* sections, may also contain .rodata.* * and/or .init.* sections * [_sdata, _edata]: contains .data.* sections, may also contain .rodata.* * and/or .init.* sections. * [__start_rodata, __end_rodata]: contains .rodata.* sections * [__start_ro_after_init, __end_ro_after_init]: * contains .data..ro_after_init section * [__init_begin, __init_end]: contains .init.* sections, but .init.text.* * may be out of this range on some architectures. * [_sinittext, _einittext]: contains .init.text.* sections * [__bss_start, __bss_stop]: contains BSS sections * * Following global variables are optional and may be unavailable on some * architectures and/or kernel configurations. * _text, _data * __kprobes_text_start, __kprobes_text_end * __entry_text_start, __entry_text_end * __ctors_start, __ctors_end * __irqentry_text_start, __irqentry_text_end * __softirqentry_text_start, __softirqentry_text_end * __start_opd, __end_opd */ extern char _text[], _stext[], _etext[]; extern char _data[], _sdata[], _edata[]; extern char __bss_start[], __bss_stop[]; extern char __init_begin[], __init_end[]; extern char _sinittext[], _einittext[]; extern char __start_ro_after_init[], __end_ro_after_init[]; extern char _end[]; extern char __per_cpu_load[], __per_cpu_start[], __per_cpu_end[]; extern char __kprobes_text_start[], __kprobes_text_end[]; extern char __entry_text_start[], __entry_text_end[]; extern char __start_rodata[], __end_rodata[]; extern char __irqentry_text_start[], __irqentry_text_end[]; extern char __softirqentry_text_start[], __softirqentry_text_end[]; extern char __start_once[], __end_once[]; /* Start and end of .ctors section - used for constructor calls. */ extern char __ctors_start[], __ctors_end[]; /* Start and end of .opd section - used for function descriptors. */ extern char __start_opd[], __end_opd[]; /* Start and end of instrumentation protected text section */ extern char __noinstr_text_start[], __noinstr_text_end[]; extern __visible const void __nosave_begin, __nosave_end; /* Function descriptor handling (if any). Override in asm/sections.h */ #ifndef dereference_function_descriptor #define dereference_function_descriptor(p) ((void *)(p)) #define dereference_kernel_function_descriptor(p) ((void *)(p)) #endif /* random extra sections (if any). Override * in asm/sections.h */ #ifndef arch_is_kernel_text static inline int arch_is_kernel_text(unsigned long addr) { return 0; } #endif #ifndef arch_is_kernel_data static inline int arch_is_kernel_data(unsigned long addr) { return 0; } #endif /* * Check if an address is part of freed initmem. This is needed on architectures * with virt == phys kernel mapping, for code that wants to check if an address * is part of a static object within [_stext, _end]. After initmem is freed, * memory can be allocated from it, and such allocations would then have * addresses within the range [_stext, _end]. */ #ifndef arch_is_kernel_initmem_freed static inline int arch_is_kernel_initmem_freed(unsigned long addr) { return 0; } #endif /** * memory_contains - checks if an object is contained within a memory region * @begin: virtual address of the beginning of the memory region * @end: virtual address of the end of the memory region * @virt: virtual address of the memory object * @size: size of the memory object * * Returns: true if the object specified by @virt and @size is entirely * contained within the memory region defined by @begin and @end, false * otherwise. */ static inline bool memory_contains(void *begin, void *end, void *virt, size_t size) { return virt >= begin && virt + size <= end; } /** * memory_intersects - checks if the region occupied by an object intersects * with another memory region * @begin: virtual address of the beginning of the memory regien * @end: virtual address of the end of the memory region * @virt: virtual address of the memory object * @size: size of the memory object * * Returns: true if an object's memory region, specified by @virt and @size, * intersects with the region specified by @begin and @end, false otherwise. */ static inline bool memory_intersects(void *begin, void *end, void *virt, size_t size) { void *vend = virt + size; return (virt >= begin && virt < end) || (vend >= begin && vend < end); } /** * init_section_contains - checks if an object is contained within the init * section * @virt: virtual address of the memory object * @size: size of the memory object * * Returns: true if the object specified by @virt and @size is entirely * contained within the init section, false otherwise. */ static inline bool init_section_contains(void *virt, size_t size) { return memory_contains(__init_begin, __init_end, virt, size); } /** * init_section_intersects - checks if the region occupied by an object * intersects with the init section * @virt: virtual address of the memory object * @size: size of the memory object * * Returns: true if an object's memory region, specified by @virt and @size, * intersects with the init section, false otherwise. */ static inline bool init_section_intersects(void *virt, size_t size) { return memory_intersects(__init_begin, __init_end, virt, size); } /** * is_kernel_rodata - checks if the pointer address is located in the * .rodata section * * @addr: address to check * * Returns: true if the address is located in .rodata, false otherwise. */ static inline bool is_kernel_rodata(unsigned long addr) { return addr >= (unsigned long)__start_rodata && addr < (unsigned long)__end_rodata; } #endif /* _ASM_GENERIC_SECTIONS_H_ */
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 // SPDX-License-Identifier: GPL-2.0-or-later /* * TUN - Universal TUN/TAP device driver. * Copyright (C) 1999-2002 Maxim Krasnyansky <maxk@qualcomm.com> * * $Id: tun.c,v 1.15 2002/03/01 02:44:24 maxk Exp $ */ /* * Changes: * * Mike Kershaw <dragorn@kismetwireless.net> 2005/08/14 * Add TUNSETLINK ioctl to set the link encapsulation * * Mark Smith <markzzzsmith@yahoo.com.au> * Use eth_random_addr() for tap MAC address. * * Harald Roelle <harald.roelle@ifi.lmu.de> 2004/04/20 * Fixes in packet dropping, queue length setting and queue wakeup. * Increased default tx queue length. * Added ethtool API. * Minor cleanups * * Daniel Podlejski <underley@underley.eu.org> * Modifications for 2.3.99-pre5 kernel. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #define DRV_NAME "tun" #define DRV_VERSION "1.6" #define DRV_DESCRIPTION "Universal TUN/TAP device driver" #define DRV_COPYRIGHT "(C) 1999-2004 Max Krasnyansky <maxk@qualcomm.com>" #include <linux/module.h> #include <linux/errno.h> #include <linux/kernel.h> #include <linux/sched/signal.h> #include <linux/major.h> #include <linux/slab.h> #include <linux/poll.h> #include <linux/fcntl.h> #include <linux/init.h> #include <linux/skbuff.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/miscdevice.h> #include <linux/ethtool.h> #include <linux/rtnetlink.h> #include <linux/compat.h> #include <linux/if.h> #include <linux/if_arp.h> #include <linux/if_ether.h> #include <linux/if_tun.h> #include <linux/if_vlan.h> #include <linux/crc32.h> #include <linux/nsproxy.h> #include <linux/virtio_net.h> #include <linux/rcupdate.h> #include <net/net_namespace.h> #include <net/netns/generic.h> #include <net/rtnetlink.h> #include <net/sock.h> #include <net/xdp.h> #include <net/ip_tunnels.h> #include <linux/seq_file.h> #include <linux/uio.h> #include <linux/skb_array.h> #include <linux/bpf.h> #include <linux/bpf_trace.h> #include <linux/mutex.h> #include <linux/ieee802154.h> #include <linux/if_ltalk.h> #include <uapi/linux/if_fddi.h> #include <uapi/linux/if_hippi.h> #include <uapi/linux/if_fc.h> #include <net/ax25.h> #include <net/rose.h> #include <net/6lowpan.h> #include <linux/uaccess.h> #include <linux/proc_fs.h> static void tun_default_link_ksettings(struct net_device *dev, struct ethtool_link_ksettings *cmd); #define TUN_RX_PAD (NET_IP_ALIGN + NET_SKB_PAD) /* TUN device flags */ /* IFF_ATTACH_QUEUE is never stored in device flags, * overload it to mean fasync when stored there. */ #define TUN_FASYNC IFF_ATTACH_QUEUE /* High bits in flags field are unused. */ #define TUN_VNET_LE 0x80000000 #define TUN_VNET_BE 0x40000000 #define TUN_FEATURES (IFF_NO_PI | IFF_ONE_QUEUE | IFF_VNET_HDR | \ IFF_MULTI_QUEUE | IFF_NAPI | IFF_NAPI_FRAGS) #define GOODCOPY_LEN 128 #define FLT_EXACT_COUNT 8 struct tap_filter { unsigned int count; /* Number of addrs. Zero means disabled */ u32 mask[2]; /* Mask of the hashed addrs */ unsigned char addr[FLT_EXACT_COUNT][ETH_ALEN]; }; /* MAX_TAP_QUEUES 256 is chosen to allow rx/tx queues to be equal * to max number of VCPUs in guest. */ #define MAX_TAP_QUEUES 256 #define MAX_TAP_FLOWS 4096 #define TUN_FLOW_EXPIRE (3 * HZ) struct tun_pcpu_stats { u64_stats_t rx_packets; u64_stats_t rx_bytes; u64_stats_t tx_packets; u64_stats_t tx_bytes; struct u64_stats_sync syncp; u32 rx_dropped; u32 tx_dropped; u32 rx_frame_errors; }; /* A tun_file connects an open character device to a tuntap netdevice. It * also contains all socket related structures (except sock_fprog and tap_filter) * to serve as one transmit queue for tuntap device. The sock_fprog and * tap_filter were kept in tun_struct since they were used for filtering for the * netdevice not for a specific queue (at least I didn't see the requirement for * this). * * RCU usage: * The tun_file and tun_struct are loosely coupled, the pointer from one to the * other can only be read while rcu_read_lock or rtnl_lock is held. */ struct tun_file { struct sock sk; struct socket socket; struct tun_struct __rcu *tun; struct fasync_struct *fasync; /* only used for fasnyc */ unsigned int flags; union { u16 queue_index; unsigned int ifindex; }; struct napi_struct napi; bool napi_enabled; bool napi_frags_enabled; struct mutex napi_mutex; /* Protects access to the above napi */ struct list_head next; struct tun_struct *detached; struct ptr_ring tx_ring; struct xdp_rxq_info xdp_rxq; }; struct tun_page { struct page *page; int count; }; struct tun_flow_entry { struct hlist_node hash_link; struct rcu_head rcu; struct tun_struct *tun; u32 rxhash; u32 rps_rxhash; int queue_index; unsigned long updated ____cacheline_aligned_in_smp; }; #define TUN_NUM_FLOW_ENTRIES 1024 #define TUN_MASK_FLOW_ENTRIES (TUN_NUM_FLOW_ENTRIES - 1) struct tun_prog { struct rcu_head rcu; struct bpf_prog *prog; }; /* Since the socket were moved to tun_file, to preserve the behavior of persist * device, socket filter, sndbuf and vnet header size were restore when the * file were attached to a persist device. */ struct tun_struct { struct tun_file __rcu *tfiles[MAX_TAP_QUEUES]; unsigned int numqueues; unsigned int flags; kuid_t owner; kgid_t group; struct net_device *dev; netdev_features_t set_features; #define TUN_USER_FEATURES (NETIF_F_HW_CSUM|NETIF_F_TSO_ECN|NETIF_F_TSO| \ NETIF_F_TSO6) int align; int vnet_hdr_sz; int sndbuf; struct tap_filter txflt; struct sock_fprog fprog; /* protected by rtnl lock */ bool filter_attached; u32 msg_enable; spinlock_t lock; struct hlist_head flows[TUN_NUM_FLOW_ENTRIES]; struct timer_list flow_gc_timer; unsigned long ageing_time; unsigned int numdisabled; struct list_head disabled; void *security; u32 flow_count; u32 rx_batched; struct tun_pcpu_stats __percpu *pcpu_stats; struct bpf_prog __rcu *xdp_prog; struct tun_prog __rcu *steering_prog; struct tun_prog __rcu *filter_prog; struct ethtool_link_ksettings link_ksettings; }; struct veth { __be16 h_vlan_proto; __be16 h_vlan_TCI; }; static int tun_napi_receive(struct napi_struct *napi, int budget) { struct tun_file *tfile = container_of(napi, struct tun_file, napi); struct sk_buff_head *queue = &tfile->sk.sk_write_queue; struct sk_buff_head process_queue; struct sk_buff *skb; int received = 0; __skb_queue_head_init(&process_queue); spin_lock(&queue->lock); skb_queue_splice_tail_init(queue, &process_queue); spin_unlock(&queue->lock); while (received < budget && (skb = __skb_dequeue(&process_queue))) { napi_gro_receive(napi, skb); ++received; } if (!skb_queue_empty(&process_queue)) { spin_lock(&queue->lock); skb_queue_splice(&process_queue, queue); spin_unlock(&queue->lock); } return received; } static int tun_napi_poll(struct napi_struct *napi, int budget) { unsigned int received; received = tun_napi_receive(napi, budget); if (received < budget) napi_complete_done(napi, received); return received; } static void tun_napi_init(struct tun_struct *tun, struct tun_file *tfile, bool napi_en, bool napi_frags) { tfile->napi_enabled = napi_en; tfile->napi_frags_enabled = napi_en && napi_frags; if (napi_en) { netif_tx_napi_add(tun->dev, &tfile->napi, tun_napi_poll, NAPI_POLL_WEIGHT); napi_enable(&tfile->napi); } } static void tun_napi_disable(struct tun_file *tfile) { if (tfile->napi_enabled) napi_disable(&tfile->napi); } static void tun_napi_del(struct tun_file *tfile) { if (tfile->napi_enabled) netif_napi_del(&tfile->napi); } static bool tun_napi_frags_enabled(const struct tun_file *tfile) { return tfile->napi_frags_enabled; } #ifdef CONFIG_TUN_VNET_CROSS_LE static inline bool tun_legacy_is_little_endian(struct tun_struct *tun) { return tun->flags & TUN_VNET_BE ? false : virtio_legacy_is_little_endian(); } static long tun_get_vnet_be(struct tun_struct *tun, int __user *argp) { int be = !!(tun->flags & TUN_VNET_BE); if (put_user(be, argp)) return -EFAULT; return 0; } static long tun_set_vnet_be(struct tun_struct *tun, int __user *argp) { int be; if (get_user(be, argp)) return -EFAULT; if (be) tun->flags |= TUN_VNET_BE; else tun->flags &= ~TUN_VNET_BE; return 0; } #else static inline bool tun_legacy_is_little_endian(struct tun_struct *tun) { return virtio_legacy_is_little_endian(); } static long tun_get_vnet_be(struct tun_struct *tun, int __user *argp) { return -EINVAL; } static long tun_set_vnet_be(struct tun_struct *tun, int __user *argp) { return -EINVAL; } #endif /* CONFIG_TUN_VNET_CROSS_LE */ static inline bool tun_is_little_endian(struct tun_struct *tun) { return tun->flags & TUN_VNET_LE || tun_legacy_is_little_endian(tun); } static inline u16 tun16_to_cpu(struct tun_struct *tun, __virtio16 val) { return __virtio16_to_cpu(tun_is_little_endian(tun), val); } static inline __virtio16 cpu_to_tun16(struct tun_struct *tun, u16 val) { return __cpu_to_virtio16(tun_is_little_endian(tun), val); } static inline u32 tun_hashfn(u32 rxhash) { return rxhash & TUN_MASK_FLOW_ENTRIES; } static struct tun_flow_entry *tun_flow_find(struct hlist_head *head, u32 rxhash) { struct tun_flow_entry *e; hlist_for_each_entry_rcu(e, head, hash_link) { if (e->rxhash == rxhash) return e; } return NULL; } static struct tun_flow_entry *tun_flow_create(struct tun_struct *tun, struct hlist_head *head, u32 rxhash, u16 queue_index) { struct tun_flow_entry *e = kmalloc(sizeof(*e), GFP_ATOMIC); if (e) { netif_info(tun, tx_queued, tun->dev, "create flow: hash %u index %u\n", rxhash, queue_index); e->updated = jiffies; e->rxhash = rxhash; e->rps_rxhash = 0; e->queue_index = queue_index; e->tun = tun; hlist_add_head_rcu(&e->hash_link, head); ++tun->flow_count; } return e; } static void tun_flow_delete(struct tun_struct *tun, struct tun_flow_entry *e) { netif_info(tun, tx_queued, tun->dev, "delete flow: hash %u index %u\n", e->rxhash, e->queue_index); hlist_del_rcu(&e->hash_link); kfree_rcu(e, rcu); --tun->flow_count; } static void tun_flow_flush(struct tun_struct *tun) { int i; spin_lock_bh(&tun->lock); for (i = 0; i < TUN_NUM_FLOW_ENTRIES; i++) { struct tun_flow_entry *e; struct hlist_node *n; hlist_for_each_entry_safe(e, n, &tun->flows[i], hash_link) tun_flow_delete(tun, e); } spin_unlock_bh(&tun->lock); } static void tun_flow_delete_by_queue(struct tun_struct *tun, u16 queue_index) { int i; spin_lock_bh(&tun->lock); for (i = 0; i < TUN_NUM_FLOW_ENTRIES; i++) { struct tun_flow_entry *e; struct hlist_node *n; hlist_for_each_entry_safe(e, n, &tun->flows[i], hash_link) { if (e->queue_index == queue_index) tun_flow_delete(tun, e); } } spin_unlock_bh(&tun->lock); } static void tun_flow_cleanup(struct timer_list *t) { struct tun_struct *tun = from_timer(tun, t, flow_gc_timer); unsigned long delay = tun->ageing_time; unsigned long next_timer = jiffies + delay; unsigned long count = 0; int i; spin_lock(&tun->lock); for (i = 0; i < TUN_NUM_FLOW_ENTRIES; i++) { struct tun_flow_entry *e; struct hlist_node *n; hlist_for_each_entry_safe(e, n, &tun->flows[i], hash_link) { unsigned long this_timer; this_timer = e->updated + delay; if (time_before_eq(this_timer, jiffies)) { tun_flow_delete(tun, e); continue; } count++; if (time_before(this_timer, next_timer)) next_timer = this_timer; } } if (count) mod_timer(&tun->flow_gc_timer, round_jiffies_up(next_timer)); spin_unlock(&tun->lock); } static void tun_flow_update(struct tun_struct *tun, u32 rxhash, struct tun_file *tfile) { struct hlist_head *head; struct tun_flow_entry *e; unsigned long delay = tun->ageing_time; u16 queue_index = tfile->queue_index; head = &tun->flows[tun_hashfn(rxhash)]; rcu_read_lock(); e = tun_flow_find(head, rxhash); if (likely(e)) { /* TODO: keep queueing to old queue until it's empty? */ if (READ_ONCE(e->queue_index) != queue_index) WRITE_ONCE(e->queue_index, queue_index); if (e->updated != jiffies) e->updated = jiffies; sock_rps_record_flow_hash(e->rps_rxhash); } else { spin_lock_bh(&tun->lock); if (!tun_flow_find(head, rxhash) && tun->flow_count < MAX_TAP_FLOWS) tun_flow_create(tun, head, rxhash, queue_index); if (!timer_pending(&tun->flow_gc_timer)) mod_timer(&tun->flow_gc_timer, round_jiffies_up(jiffies + delay)); spin_unlock_bh(&tun->lock); } rcu_read_unlock(); } /* Save the hash received in the stack receive path and update the * flow_hash table accordingly. */ static inline void tun_flow_save_rps_rxhash(struct tun_flow_entry *e, u32 hash) { if (unlikely(e->rps_rxhash != hash)) e->rps_rxhash = hash; } /* We try to identify a flow through its rxhash. The reason that * we do not check rxq no. is because some cards(e.g 82599), chooses * the rxq based on the txq where the last packet of the flow comes. As * the userspace application move between processors, we may get a * different rxq no. here. */ static u16 tun_automq_select_queue(struct tun_struct *tun, struct sk_buff *skb) { struct tun_flow_entry *e; u32 txq = 0; u32 numqueues = 0; numqueues = READ_ONCE(tun->numqueues); txq = __skb_get_hash_symmetric(skb); e = tun_flow_find(&tun->flows[tun_hashfn(txq)], txq); if (e) { tun_flow_save_rps_rxhash(e, txq); txq = e->queue_index; } else { /* use multiply and shift instead of expensive divide */ txq = ((u64)txq * numqueues) >> 32; } return txq; } static u16 tun_ebpf_select_queue(struct tun_struct *tun, struct sk_buff *skb) { struct tun_prog *prog; u32 numqueues; u16 ret = 0; numqueues = READ_ONCE(tun->numqueues); if (!numqueues) return 0; prog = rcu_dereference(tun->steering_prog); if (prog) ret = bpf_prog_run_clear_cb(prog->prog, skb); return ret % numqueues; } static u16 tun_select_queue(struct net_device *dev, struct sk_buff *skb, struct net_device *sb_dev) { struct tun_struct *tun = netdev_priv(dev); u16 ret; rcu_read_lock(); if (rcu_dereference(tun->steering_prog)) ret = tun_ebpf_select_queue(tun, skb); else ret = tun_automq_select_queue(tun, skb); rcu_read_unlock(); return ret; } static inline bool tun_not_capable(struct tun_struct *tun) { const struct cred *cred = current_cred(); struct net *net = dev_net(tun->dev); return ((uid_valid(tun->owner) && !uid_eq(cred->euid, tun->owner)) || (gid_valid(tun->group) && !in_egroup_p(tun->group))) && !ns_capable(net->user_ns, CAP_NET_ADMIN); } static void tun_set_real_num_queues(struct tun_struct *tun) { netif_set_real_num_tx_queues(tun->dev, tun->numqueues); netif_set_real_num_rx_queues(tun->dev, tun->numqueues); } static void tun_disable_queue(struct tun_struct *tun, struct tun_file *tfile) { tfile->detached = tun; list_add_tail(&tfile->next, &tun->disabled); ++tun->numdisabled; } static struct tun_struct *tun_enable_queue(struct tun_file *tfile) { struct tun_struct *tun = tfile->detached; tfile->detached = NULL; list_del_init(&tfile->next); --tun->numdisabled; return tun; } void tun_ptr_free(void *ptr) { if (!ptr) return; if (tun_is_xdp_frame(ptr)) { struct xdp_frame *xdpf = tun_ptr_to_xdp(ptr); xdp_return_frame(xdpf); } else { __skb_array_destroy_skb(ptr); } } EXPORT_SYMBOL_GPL(tun_ptr_free); static void tun_queue_purge(struct tun_file *tfile) { void *ptr; while ((ptr = ptr_ring_consume(&tfile->tx_ring)) != NULL) tun_ptr_free(ptr); skb_queue_purge(&tfile->sk.sk_write_queue); skb_queue_purge(&tfile->sk.sk_error_queue); } static void __tun_detach(struct tun_file *tfile, bool clean) { struct tun_file *ntfile; struct tun_struct *tun; tun = rtnl_dereference(tfile->tun); if (tun && clean) { tun_napi_disable(tfile); tun_napi_del(tfile); } if (tun && !tfile->detached) { u16 index = tfile->queue_index; BUG_ON(index >= tun->numqueues); rcu_assign_pointer(tun->tfiles[index], tun->tfiles[tun->numqueues - 1]); ntfile = rtnl_dereference(tun->tfiles[index]); ntfile->queue_index = index; rcu_assign_pointer(tun->tfiles[tun->numqueues - 1], NULL); --tun->numqueues; if (clean) { RCU_INIT_POINTER(tfile->tun, NULL); sock_put(&tfile->sk); } else tun_disable_queue(tun, tfile); synchronize_net(); tun_flow_delete_by_queue(tun, tun->numqueues + 1); /* Drop read queue */ tun_queue_purge(tfile); tun_set_real_num_queues(tun); } else if (tfile->detached && clean) { tun = tun_enable_queue(tfile); sock_put(&tfile->sk); } if (clean) { if (tun && tun->numqueues == 0 && tun->numdisabled == 0) { netif_carrier_off(tun->dev); if (!(tun->flags & IFF_PERSIST) && tun->dev->reg_state == NETREG_REGISTERED) unregister_netdevice(tun->dev); } if (tun) xdp_rxq_info_unreg(&tfile->xdp_rxq); ptr_ring_cleanup(&tfile->tx_ring, tun_ptr_free); sock_put(&tfile->sk); } } static void tun_detach(struct tun_file *tfile, bool clean) { struct tun_struct *tun; struct net_device *dev; rtnl_lock(); tun = rtnl_dereference(tfile->tun); dev = tun ? tun->dev : NULL; __tun_detach(tfile, clean); if (dev) netdev_state_change(dev); rtnl_unlock(); } static void tun_detach_all(struct net_device *dev) { struct tun_struct *tun = netdev_priv(dev); struct tun_file *tfile, *tmp; int i, n = tun->numqueues; for (i = 0; i < n; i++) { tfile = rtnl_dereference(tun->tfiles[i]); BUG_ON(!tfile); tun_napi_disable(tfile); tfile->socket.sk->sk_shutdown = RCV_SHUTDOWN; tfile->socket.sk->sk_data_ready(tfile->socket.sk); RCU_INIT_POINTER(tfile->tun, NULL); --tun->numqueues; } list_for_each_entry(tfile, &tun->disabled, next) { tfile->socket.sk->sk_shutdown = RCV_SHUTDOWN; tfile->socket.sk->sk_data_ready(tfile->socket.sk); RCU_INIT_POINTER(tfile->tun, NULL); } BUG_ON(tun->numqueues != 0); synchronize_net(); for (i = 0; i < n; i++) { tfile = rtnl_dereference(tun->tfiles[i]); tun_napi_del(tfile); /* Drop read queue */ tun_queue_purge(tfile); xdp_rxq_info_unreg(&tfile->xdp_rxq); sock_put(&tfile->sk); } list_for_each_entry_safe(tfile, tmp, &tun->disabled, next) { tun_enable_queue(tfile); tun_queue_purge(tfile); xdp_rxq_info_unreg(&tfile->xdp_rxq); sock_put(&tfile->sk); } BUG_ON(tun->numdisabled != 0); if (tun->flags & IFF_PERSIST) module_put(THIS_MODULE); } static int tun_attach(struct tun_struct *tun, struct file *file, bool skip_filter, bool napi, bool napi_frags, bool publish_tun) { struct tun_file *tfile = file->private_data; struct net_device *dev = tun->dev; int err; err = security_tun_dev_attach(tfile->socket.sk, tun->security); if (err < 0) goto out; err = -EINVAL; if (rtnl_dereference(tfile->tun) && !tfile->detached) goto out; err = -EBUSY; if (!(tun->flags & IFF_MULTI_QUEUE) && tun->numqueues == 1) goto out; err = -E2BIG; if (!tfile->detached && tun->numqueues + tun->numdisabled == MAX_TAP_QUEUES) goto out; err = 0; /* Re-attach the filter to persist device */ if (!skip_filter && (tun->filter_attached == true)) { lock_sock(tfile->socket.sk); err = sk_attach_filter(&tun->fprog, tfile->socket.sk); release_sock(tfile->socket.sk); if (!err) goto out; } if (!tfile->detached && ptr_ring_resize(&tfile->tx_ring, dev->tx_queue_len, GFP_KERNEL, tun_ptr_free)) { err = -ENOMEM; goto out; } tfile->queue_index = tun->numqueues; tfile->socket.sk->sk_shutdown &= ~RCV_SHUTDOWN; if (tfile->detached) { /* Re-attach detached tfile, updating XDP queue_index */ WARN_ON(!xdp_rxq_info_is_reg(&tfile->xdp_rxq)); if (tfile->xdp_rxq.queue_index != tfile->queue_index) tfile->xdp_rxq.queue_index = tfile->queue_index; } else { /* Setup XDP RX-queue info, for new tfile getting attached */ err = xdp_rxq_info_reg(&tfile->xdp_rxq, tun->dev, tfile->queue_index); if (err < 0) goto out; err = xdp_rxq_info_reg_mem_model(&tfile->xdp_rxq, MEM_TYPE_PAGE_SHARED, NULL); if (err < 0) { xdp_rxq_info_unreg(&tfile->xdp_rxq); goto out; } err = 0; } if (tfile->detached) { tun_enable_queue(tfile); } else { sock_hold(&tfile->sk); tun_napi_init(tun, tfile, napi, napi_frags); } if (rtnl_dereference(tun->xdp_prog)) sock_set_flag(&tfile->sk, SOCK_XDP); /* device is allowed to go away first, so no need to hold extra * refcnt. */ /* Publish tfile->tun and tun->tfiles only after we've fully * initialized tfile; otherwise we risk using half-initialized * object. */ if (publish_tun) rcu_assign_pointer(tfile->tun, tun); rcu_assign_pointer(tun->tfiles[tun->numqueues], tfile); tun->numqueues++; tun_set_real_num_queues(tun); out: return err; } static struct tun_struct *tun_get(struct tun_file *tfile) { struct tun_struct *tun; rcu_read_lock(); tun = rcu_dereference(tfile->tun); if (tun) dev_hold(tun->dev); rcu_read_unlock(); return tun; } static void tun_put(struct tun_struct *tun) { dev_put(tun->dev); } /* TAP filtering */ static void addr_hash_set(u32 *mask, const u8 *addr) { int n = ether_crc(ETH_ALEN, addr) >> 26; mask[n >> 5] |= (1 << (n & 31)); } static unsigned int addr_hash_test(const u32 *mask, const u8 *addr) { int n = ether_crc(ETH_ALEN, addr) >> 26; return mask[n >> 5] & (1 << (n & 31)); } static int update_filter(struct tap_filter *filter, void __user *arg) { struct { u8 u[ETH_ALEN]; } *addr; struct tun_filter uf; int err, alen, n, nexact; if (copy_from_user(&uf, arg, sizeof(uf))) return -EFAULT; if (!uf.count) { /* Disabled */ filter->count = 0; return 0; } alen = ETH_ALEN * uf.count; addr = memdup_user(arg + sizeof(uf), alen); if (IS_ERR(addr)) return PTR_ERR(addr); /* The filter is updated without holding any locks. Which is * perfectly safe. We disable it first and in the worst * case we'll accept a few undesired packets. */ filter->count = 0; wmb(); /* Use first set of addresses as an exact filter */ for (n = 0; n < uf.count && n < FLT_EXACT_COUNT; n++) memcpy(filter->addr[n], addr[n].u, ETH_ALEN); nexact = n; /* Remaining multicast addresses are hashed, * unicast will leave the filter disabled. */ memset(filter->mask, 0, sizeof(filter->mask)); for (; n < uf.count; n++) { if (!is_multicast_ether_addr(addr[n].u)) { err = 0; /* no filter */ goto free_addr; } addr_hash_set(filter->mask, addr[n].u); } /* For ALLMULTI just set the mask to all ones. * This overrides the mask populated above. */ if ((uf.flags & TUN_FLT_ALLMULTI)) memset(filter->mask, ~0, sizeof(filter->mask)); /* Now enable the filter */ wmb(); filter->count = nexact; /* Return the number of exact filters */ err = nexact; free_addr: kfree(addr); return err; } /* Returns: 0 - drop, !=0 - accept */ static int run_filter(struct tap_filter *filter, const struct sk_buff *skb) { /* Cannot use eth_hdr(skb) here because skb_mac_hdr() is incorrect * at this point. */ struct ethhdr *eh = (struct ethhdr *) skb->data; int i; /* Exact match */ for (i = 0; i < filter->count; i++) if (ether_addr_equal(eh->h_dest, filter->addr[i])) return 1; /* Inexact match (multicast only) */ if (is_multicast_ether_addr(eh->h_dest)) return addr_hash_test(filter->mask, eh->h_dest); return 0; } /* * Checks whether the packet is accepted or not. * Returns: 0 - drop, !=0 - accept */ static int check_filter(struct tap_filter *filter, const struct sk_buff *skb) { if (!filter->count) return 1; return run_filter(filter, skb); } /* Network device part of the driver */ static const struct ethtool_ops tun_ethtool_ops; /* Net device detach from fd. */ static void tun_net_uninit(struct net_device *dev) { tun_detach_all(dev); } /* Net device open. */ static int tun_net_open(struct net_device *dev) { netif_tx_start_all_queues(dev); return 0; } /* Net device close. */ static int tun_net_close(struct net_device *dev) { netif_tx_stop_all_queues(dev); return 0; } /* Net device start xmit */ static void tun_automq_xmit(struct tun_struct *tun, struct sk_buff *skb) { #ifdef CONFIG_RPS if (tun->numqueues == 1 && static_branch_unlikely(&rps_needed)) { /* Select queue was not called for the skbuff, so we extract the * RPS hash and save it into the flow_table here. */ struct tun_flow_entry *e; __u32 rxhash; rxhash = __skb_get_hash_symmetric(skb); e = tun_flow_find(&tun->flows[tun_hashfn(rxhash)], rxhash); if (e) tun_flow_save_rps_rxhash(e, rxhash); } #endif } static unsigned int run_ebpf_filter(struct tun_struct *tun, struct sk_buff *skb, int len) { struct tun_prog *prog = rcu_dereference(tun->filter_prog); if (prog) len = bpf_prog_run_clear_cb(prog->prog, skb); return len; } /* Net device start xmit */ static netdev_tx_t tun_net_xmit(struct sk_buff *skb, struct net_device *dev) { struct tun_struct *tun = netdev_priv(dev); int txq = skb->queue_mapping; struct netdev_queue *queue; struct tun_file *tfile; int len = skb->len; rcu_read_lock(); tfile = rcu_dereference(tun->tfiles[txq]); /* Drop packet if interface is not attached */ if (!tfile) goto drop; if (!rcu_dereference(tun->steering_prog)) tun_automq_xmit(tun, skb); netif_info(tun, tx_queued, tun->dev, "%s %d\n", __func__, skb->len); /* Drop if the filter does not like it. * This is a noop if the filter is disabled. * Filter can be enabled only for the TAP devices. */ if (!check_filter(&tun->txflt, skb)) goto drop; if (tfile->socket.sk->sk_filter && sk_filter(tfile->socket.sk, skb)) goto drop; len = run_ebpf_filter(tun, skb, len); if (len == 0 || pskb_trim(skb, len)) goto drop; if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) goto drop; skb_tx_timestamp(skb); /* Orphan the skb - required as we might hang on to it * for indefinite time. */ skb_orphan(skb); nf_reset_ct(skb); if (ptr_ring_produce(&tfile->tx_ring, skb)) goto drop; /* NETIF_F_LLTX requires to do our own update of trans_start */ queue = netdev_get_tx_queue(dev, txq); queue->trans_start = jiffies; /* Notify and wake up reader process */ if (tfile->flags & TUN_FASYNC) kill_fasync(&tfile->fasync, SIGIO, POLL_IN); tfile->socket.sk->sk_data_ready(tfile->socket.sk); rcu_read_unlock(); return NETDEV_TX_OK; drop: this_cpu_inc(tun->pcpu_stats->tx_dropped); skb_tx_error(skb); kfree_skb(skb); rcu_read_unlock(); return NET_XMIT_DROP; } static void tun_net_mclist(struct net_device *dev) { /* * This callback is supposed to deal with mc filter in * _rx_ path and has nothing to do with the _tx_ path. * In rx path we always accept everything userspace gives us. */ } static netdev_features_t tun_net_fix_features(struct net_device *dev, netdev_features_t features) { struct tun_struct *tun = netdev_priv(dev); return (features & tun->set_features) | (features & ~TUN_USER_FEATURES); } static void tun_set_headroom(struct net_device *dev, int new_hr) { struct tun_struct *tun = netdev_priv(dev); if (new_hr < NET_SKB_PAD) new_hr = NET_SKB_PAD; tun->align = new_hr; } static void tun_net_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) { u32 rx_dropped = 0, tx_dropped = 0, rx_frame_errors = 0; struct tun_struct *tun = netdev_priv(dev); struct tun_pcpu_stats *p; int i; for_each_possible_cpu(i) { u64 rxpackets, rxbytes, txpackets, txbytes; unsigned int start; p = per_cpu_ptr(tun->pcpu_stats, i); do { start = u64_stats_fetch_begin(&p->syncp); rxpackets = u64_stats_read(&p->rx_packets); rxbytes = u64_stats_read(&p->rx_bytes); txpackets = u64_stats_read(&p->tx_packets); txbytes = u64_stats_read(&p->tx_bytes); } while (u64_stats_fetch_retry(&p->syncp, start)); stats->rx_packets += rxpackets; stats->rx_bytes += rxbytes; stats->tx_packets += txpackets; stats->tx_bytes += txbytes; /* u32 counters */ rx_dropped += p->rx_dropped; rx_frame_errors += p->rx_frame_errors; tx_dropped += p->tx_dropped; } stats->rx_dropped = rx_dropped; stats->rx_frame_errors = rx_frame_errors; stats->tx_dropped = tx_dropped; } static int tun_xdp_set(struct net_device *dev, struct bpf_prog *prog, struct netlink_ext_ack *extack) { struct tun_struct *tun = netdev_priv(dev); struct tun_file *tfile; struct bpf_prog *old_prog; int i; old_prog = rtnl_dereference(tun->xdp_prog); rcu_assign_pointer(tun->xdp_prog, prog); if (old_prog) bpf_prog_put(old_prog); for (i = 0; i < tun->numqueues; i++) { tfile = rtnl_dereference(tun->tfiles[i]); if (prog) sock_set_flag(&tfile->sk, SOCK_XDP); else sock_reset_flag(&tfile->sk, SOCK_XDP); } list_for_each_entry(tfile, &tun->disabled, next) { if (prog) sock_set_flag(&tfile->sk, SOCK_XDP); else sock_reset_flag(&tfile->sk, SOCK_XDP); } return 0; } static int tun_xdp(struct net_device *dev, struct netdev_bpf *xdp) { switch (xdp->command) { case XDP_SETUP_PROG: return tun_xdp_set(dev, xdp->prog, xdp->extack); default: return -EINVAL; } } static int tun_net_change_carrier(struct net_device *dev, bool new_carrier) { if (new_carrier) { struct tun_struct *tun = netdev_priv(dev); if (!tun->numqueues) return -EPERM; netif_carrier_on(dev); } else { netif_carrier_off(dev); } return 0; } static const struct net_device_ops tun_netdev_ops = { .ndo_uninit = tun_net_uninit, .ndo_open = tun_net_open, .ndo_stop = tun_net_close, .ndo_start_xmit = tun_net_xmit, .ndo_fix_features = tun_net_fix_features, .ndo_select_queue = tun_select_queue, .ndo_set_rx_headroom = tun_set_headroom, .ndo_get_stats64 = tun_net_get_stats64, .ndo_change_carrier = tun_net_change_carrier, }; static void __tun_xdp_flush_tfile(struct tun_file *tfile) { /* Notify and wake up reader process */ if (tfile->flags & TUN_FASYNC) kill_fasync(&tfile->fasync, SIGIO, POLL_IN); tfile->socket.sk->sk_data_ready(tfile->socket.sk); } static int tun_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames, u32 flags) { struct tun_struct *tun = netdev_priv(dev); struct tun_file *tfile; u32 numqueues; int drops = 0; int cnt = n; int i; if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) return -EINVAL; rcu_read_lock(); resample: numqueues = READ_ONCE(tun->numqueues); if (!numqueues) { rcu_read_unlock(); return -ENXIO; /* Caller will free/return all frames */ } tfile = rcu_dereference(tun->tfiles[smp_processor_id() % numqueues]); if (unlikely(!tfile)) goto resample; spin_lock(&tfile->tx_ring.producer_lock); for (i = 0; i < n; i++) { struct xdp_frame *xdp = frames[i]; /* Encode the XDP flag into lowest bit for consumer to differ * XDP buffer from sk_buff. */ void *frame = tun_xdp_to_ptr(xdp); if (__ptr_ring_produce(&tfile->tx_ring, frame)) { this_cpu_inc(tun->pcpu_stats->tx_dropped); xdp_return_frame_rx_napi(xdp); drops++; } } spin_unlock(&tfile->tx_ring.producer_lock); if (flags & XDP_XMIT_FLUSH) __tun_xdp_flush_tfile(tfile); rcu_read_unlock(); return cnt - drops; } static int tun_xdp_tx(struct net_device *dev, struct xdp_buff *xdp) { struct xdp_frame *frame = xdp_convert_buff_to_frame(xdp); if (unlikely(!frame)) return -EOVERFLOW; return tun_xdp_xmit(dev, 1, &frame, XDP_XMIT_FLUSH); } static const struct net_device_ops tap_netdev_ops = { .ndo_uninit = tun_net_uninit, .ndo_open = tun_net_open, .ndo_stop = tun_net_close, .ndo_start_xmit = tun_net_xmit, .ndo_fix_features = tun_net_fix_features, .ndo_set_rx_mode = tun_net_mclist, .ndo_set_mac_address = eth_mac_addr, .ndo_validate_addr = eth_validate_addr, .ndo_select_queue = tun_select_queue, .ndo_features_check = passthru_features_check, .ndo_set_rx_headroom = tun_set_headroom, .ndo_get_stats64 = tun_net_get_stats64, .ndo_bpf = tun_xdp, .ndo_xdp_xmit = tun_xdp_xmit, .ndo_change_carrier = tun_net_change_carrier, }; static void tun_flow_init(struct tun_struct *tun) { int i; for (i = 0; i < TUN_NUM_FLOW_ENTRIES; i++) INIT_HLIST_HEAD(&tun->flows[i]); tun->ageing_time = TUN_FLOW_EXPIRE; timer_setup(&tun->flow_gc_timer, tun_flow_cleanup, 0); mod_timer(&tun->flow_gc_timer, round_jiffies_up(jiffies + tun->ageing_time)); } static void tun_flow_uninit(struct tun_struct *tun) { del_timer_sync(&tun->flow_gc_timer); tun_flow_flush(tun); } #define MIN_MTU 68 #define MAX_MTU 65535 /* Initialize net device. */ static void tun_net_init(struct net_device *dev) { struct tun_struct *tun = netdev_priv(dev); switch (tun->flags & TUN_TYPE_MASK) { case IFF_TUN: dev->netdev_ops = &tun_netdev_ops; dev->header_ops = &ip_tunnel_header_ops; /* Point-to-Point TUN Device */ dev->hard_header_len = 0; dev->addr_len = 0; dev->mtu = 1500; /* Zero header length */ dev->type = ARPHRD_NONE; dev->flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST; break; case IFF_TAP: dev->netdev_ops = &tap_netdev_ops; /* Ethernet TAP Device */ ether_setup(dev); dev->priv_flags &= ~IFF_TX_SKB_SHARING; dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; eth_hw_addr_random(dev); break; } dev->min_mtu = MIN_MTU; dev->max_mtu = MAX_MTU - dev->hard_header_len; } static bool tun_sock_writeable(struct tun_struct *tun, struct tun_file *tfile) { struct sock *sk = tfile->socket.sk; return (tun->dev->flags & IFF_UP) && sock_writeable(sk); } /* Character device part */ /* Poll */ static __poll_t tun_chr_poll(struct file *file, poll_table *wait) { struct tun_file *tfile = file->private_data; struct tun_struct *tun = tun_get(tfile); struct sock *sk; __poll_t mask = 0; if (!tun) return EPOLLERR; sk = tfile->socket.sk; poll_wait(file, sk_sleep(sk), wait); if (!ptr_ring_empty(&tfile->tx_ring)) mask |= EPOLLIN | EPOLLRDNORM; /* Make sure SOCKWQ_ASYNC_NOSPACE is set if not writable to * guarantee EPOLLOUT to be raised by either here or * tun_sock_write_space(). Then process could get notification * after it writes to a down device and meets -EIO. */ if (tun_sock_writeable(tun, tfile) || (!test_and_set_bit(SOCKWQ_ASYNC_NOSPACE, &sk->sk_socket->flags) && tun_sock_writeable(tun, tfile))) mask |= EPOLLOUT | EPOLLWRNORM; if (tun->dev->reg_state != NETREG_REGISTERED) mask = EPOLLERR; tun_put(tun); return mask; } static struct sk_buff *tun_napi_alloc_frags(struct tun_file *tfile, size_t len, const struct iov_iter *it) { struct sk_buff *skb; size_t linear; int err; int i; if (it->nr_segs > MAX_SKB_FRAGS + 1) return ERR_PTR(-EMSGSIZE); local_bh_disable(); skb = napi_get_frags(&tfile->napi); local_bh_enable(); if (!skb) return ERR_PTR(-ENOMEM); linear = iov_iter_single_seg_count(it); err = __skb_grow(skb, linear); if (err) goto free; skb->len = len; skb->data_len = len - linear; skb->truesize += skb->data_len; for (i = 1; i < it->nr_segs; i++) { size_t fragsz = it->iov[i].iov_len; struct page *page; void *frag; if (fragsz == 0 || fragsz > PAGE_SIZE) { err = -EINVAL; goto free; } frag = netdev_alloc_frag(fragsz); if (!frag) { err = -ENOMEM; goto free; } page = virt_to_head_page(frag); skb_fill_page_desc(skb, i - 1, page, frag - page_address(page), fragsz); } return skb; free: /* frees skb and all frags allocated with napi_alloc_frag() */ napi_free_frags(&tfile->napi); return ERR_PTR(err); } /* prepad is the amount to reserve at front. len is length after that. * linear is a hint as to how much to copy (usually headers). */ static struct sk_buff *tun_alloc_skb(struct tun_file *tfile, size_t prepad, size_t len, size_t linear, int noblock) { struct sock *sk = tfile->socket.sk; struct sk_buff *skb; int err; /* Under a page? Don't bother with paged skb. */ if (prepad + len < PAGE_SIZE || !linear) linear = len; skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock, &err, 0); if (!skb) return ERR_PTR(err); skb_reserve(skb, prepad); skb_put(skb, linear); skb->data_len = len - linear; skb->len += len - linear; return skb; } static void tun_rx_batched(struct tun_struct *tun, struct tun_file *tfile, struct sk_buff *skb, int more) { struct sk_buff_head *queue = &tfile->sk.sk_write_queue; struct sk_buff_head process_queue; u32 rx_batched = tun->rx_batched; bool rcv = false; if (!rx_batched || (!more && skb_queue_empty(queue))) { local_bh_disable(); skb_record_rx_queue(skb, tfile->queue_index); netif_receive_skb(skb); local_bh_enable(); return; } spin_lock(&queue->lock); if (!more || skb_queue_len(queue) == rx_batched) { __skb_queue_head_init(&process_queue); skb_queue_splice_tail_init(queue, &process_queue); rcv = true; } else { __skb_queue_tail(queue, skb); } spin_unlock(&queue->lock); if (rcv) { struct sk_buff *nskb; local_bh_disable(); while ((nskb = __skb_dequeue(&process_queue))) { skb_record_rx_queue(nskb, tfile->queue_index); netif_receive_skb(nskb); } skb_record_rx_queue(skb, tfile->queue_index); netif_receive_skb(skb); local_bh_enable(); } } static bool tun_can_build_skb(struct tun_struct *tun, struct tun_file *tfile, int len, int noblock, bool zerocopy) { if ((tun->flags & TUN_TYPE_MASK) != IFF_TAP) return false; if (tfile->socket.sk->sk_sndbuf != INT_MAX) return false; if (!noblock) return false; if (zerocopy) return false; if (SKB_DATA_ALIGN(len + TUN_RX_PAD) + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) > PAGE_SIZE) return false; return true; } static struct sk_buff *__tun_build_skb(struct tun_file *tfile, struct page_frag *alloc_frag, char *buf, int buflen, int len, int pad) { struct sk_buff *skb = build_skb(buf, buflen); if (!skb) return ERR_PTR(-ENOMEM); skb_reserve(skb, pad); skb_put(skb, len); skb_set_owner_w(skb, tfile->socket.sk); get_page(alloc_frag->page); alloc_frag->offset += buflen; return skb; } static int tun_xdp_act(struct tun_struct *tun, struct bpf_prog *xdp_prog, struct xdp_buff *xdp, u32 act) { int err; switch (act) { case XDP_REDIRECT: err = xdp_do_redirect(tun->dev, xdp, xdp_prog); if (err) return err; break; case XDP_TX: err = tun_xdp_tx(tun->dev, xdp); if (err < 0) return err; break; case XDP_PASS: break; default: bpf_warn_invalid_xdp_action(act); fallthrough; case XDP_ABORTED: trace_xdp_exception(tun->dev, xdp_prog, act); fallthrough; case XDP_DROP: this_cpu_inc(tun->pcpu_stats->rx_dropped); break; } return act; } static struct sk_buff *tun_build_skb(struct tun_struct *tun, struct tun_file *tfile, struct iov_iter *from, struct virtio_net_hdr *hdr, int len, int *skb_xdp) { struct page_frag *alloc_frag = &current->task_frag; struct bpf_prog *xdp_prog; int buflen = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); char *buf; size_t copied; int pad = TUN_RX_PAD; int err = 0; rcu_read_lock(); xdp_prog = rcu_dereference(tun->xdp_prog); if (xdp_prog) pad += XDP_PACKET_HEADROOM; buflen += SKB_DATA_ALIGN(len + pad); rcu_read_unlock(); alloc_frag->offset = ALIGN((u64)alloc_frag->offset, SMP_CACHE_BYTES); if (unlikely(!skb_page_frag_refill(buflen, alloc_frag, GFP_KERNEL))) return ERR_PTR(-ENOMEM); buf = (char *)page_address(alloc_frag->page) + alloc_frag->offset; copied = copy_page_from_iter(alloc_frag->page, alloc_frag->offset + pad, len, from); if (copied != len) return ERR_PTR(-EFAULT); /* There's a small window that XDP may be set after the check * of xdp_prog above, this should be rare and for simplicity * we do XDP on skb in case the headroom is not enough. */ if (hdr->gso_type || !xdp_prog) { *skb_xdp = 1; return __tun_build_skb(tfile, alloc_frag, buf, buflen, len, pad); } *skb_xdp = 0; local_bh_disable(); rcu_read_lock(); xdp_prog = rcu_dereference(tun->xdp_prog); if (xdp_prog) { struct xdp_buff xdp; u32 act; xdp.data_hard_start = buf; xdp.data = buf + pad; xdp_set_data_meta_invalid(&xdp); xdp.data_end = xdp.data + len; xdp.rxq = &tfile->xdp_rxq; xdp.frame_sz = buflen; act = bpf_prog_run_xdp(xdp_prog, &xdp); if (act == XDP_REDIRECT || act == XDP_TX) { get_page(alloc_frag->page); alloc_frag->offset += buflen; } err = tun_xdp_act(tun, xdp_prog, &xdp, act); if (err < 0) { if (act == XDP_REDIRECT || act == XDP_TX) put_page(alloc_frag->page); goto out; } if (err == XDP_REDIRECT) xdp_do_flush(); if (err != XDP_PASS) goto out; pad = xdp.data - xdp.data_hard_start; len = xdp.data_end - xdp.data; } rcu_read_unlock(); local_bh_enable(); return __tun_build_skb(tfile, alloc_frag, buf, buflen, len, pad); out: rcu_read_unlock(); local_bh_enable(); return NULL; } /* Get packet from user space buffer */ static ssize_t tun_get_user(struct tun_struct *tun, struct tun_file *tfile, void *msg_control, struct iov_iter *from, int noblock, bool more) { struct tun_pi pi = { 0, cpu_to_be16(ETH_P_IP) }; struct sk_buff *skb; size_t total_len = iov_iter_count(from); size_t len = total_len, align = tun->align, linear; struct virtio_net_hdr gso = { 0 }; struct tun_pcpu_stats *stats; int good_linear; int copylen; bool zerocopy = false; int err; u32 rxhash = 0; int skb_xdp = 1; bool frags = tun_napi_frags_enabled(tfile); if (!(tun->flags & IFF_NO_PI)) { if (len < sizeof(pi)) return -EINVAL; len -= sizeof(pi); if (!copy_from_iter_full(&pi, sizeof(pi), from)) return -EFAULT; } if (tun->flags & IFF_VNET_HDR) { int vnet_hdr_sz = READ_ONCE(tun->vnet_hdr_sz); if (len < vnet_hdr_sz) return -EINVAL; len -= vnet_hdr_sz; if (!copy_from_iter_full(&gso, sizeof(gso), from)) return -EFAULT; if ((gso.flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) && tun16_to_cpu(tun, gso.csum_start) + tun16_to_cpu(tun, gso.csum_offset) + 2 > tun16_to_cpu(tun, gso.hdr_len)) gso.hdr_len = cpu_to_tun16(tun, tun16_to_cpu(tun, gso.csum_start) + tun16_to_cpu(tun, gso.csum_offset) + 2); if (tun16_to_cpu(tun, gso.hdr_len) > len) return -EINVAL; iov_iter_advance(from, vnet_hdr_sz - sizeof(gso)); } if ((tun->flags & TUN_TYPE_MASK) == IFF_TAP) { align += NET_IP_ALIGN; if (unlikely(len < ETH_HLEN || (gso.hdr_len && tun16_to_cpu(tun, gso.hdr_len) < ETH_HLEN))) return -EINVAL; } good_linear = SKB_MAX_HEAD(align); if (msg_control) { struct iov_iter i = *from; /* There are 256 bytes to be copied in skb, so there is * enough room for skb expand head in case it is used. * The rest of the buffer is mapped from userspace. */ copylen = gso.hdr_len ? tun16_to_cpu(tun, gso.hdr_len) : GOODCOPY_LEN; if (copylen > good_linear) copylen = good_linear; linear = copylen; iov_iter_advance(&i, copylen); if (iov_iter_npages(&i, INT_MAX) <= MAX_SKB_FRAGS) zerocopy = true; } if (!frags && tun_can_build_skb(tun, tfile, len, noblock, zerocopy)) { /* For the packet that is not easy to be processed * (e.g gso or jumbo packet), we will do it at after * skb was created with generic XDP routine. */ skb = tun_build_skb(tun, tfile, from, &gso, len, &skb_xdp); if (IS_ERR(skb)) { this_cpu_inc(tun->pcpu_stats->rx_dropped); return PTR_ERR(skb); } if (!skb) return total_len; } else { if (!zerocopy) { copylen = len; if (tun16_to_cpu(tun, gso.hdr_len) > good_linear) linear = good_linear; else linear = tun16_to_cpu(tun, gso.hdr_len); } if (frags) { mutex_lock(&tfile->napi_mutex); skb = tun_napi_alloc_frags(tfile, copylen, from); /* tun_napi_alloc_frags() enforces a layout for the skb. * If zerocopy is enabled, then this layout will be * overwritten by zerocopy_sg_from_iter(). */ zerocopy = false; } else { skb = tun_alloc_skb(tfile, align, copylen, linear, noblock); } if (IS_ERR(skb)) { if (PTR_ERR(skb) != -EAGAIN) this_cpu_inc(tun->pcpu_stats->rx_dropped); if (frags) mutex_unlock(&tfile->napi_mutex); return PTR_ERR(skb); } if (zerocopy) err = zerocopy_sg_from_iter(skb, from); else err = skb_copy_datagram_from_iter(skb, 0, from, len); if (err) { err = -EFAULT; drop: this_cpu_inc(tun->pcpu_stats->rx_dropped); kfree_skb(skb); if (frags) { tfile->napi.skb = NULL; mutex_unlock(&tfile->napi_mutex); } return err; } } if (virtio_net_hdr_to_skb(skb, &gso, tun_is_little_endian(tun))) { this_cpu_inc(tun->pcpu_stats->rx_frame_errors); kfree_skb(skb); if (frags) { tfile->napi.skb = NULL; mutex_unlock(&tfile->napi_mutex); } return -EINVAL; } switch (tun->flags & TUN_TYPE_MASK) { case IFF_TUN: if (tun->flags & IFF_NO_PI) { u8 ip_version = skb->len ? (skb->data[0] >> 4) : 0; switch (ip_version) { case 4: pi.proto = htons(ETH_P_IP); break; case 6: pi.proto = htons(ETH_P_IPV6); break; default: this_cpu_inc(tun->pcpu_stats->rx_dropped); kfree_skb(skb); return -EINVAL; } } skb_reset_mac_header(skb); skb->protocol = pi.proto; skb->dev = tun->dev; break; case IFF_TAP: if (frags && !pskb_may_pull(skb, ETH_HLEN)) { err = -ENOMEM; goto drop; } skb->protocol = eth_type_trans(skb, tun->dev); break; } /* copy skb_ubuf_info for callback when skb has no error */ if (zerocopy) { skb_shinfo(skb)->destructor_arg = msg_control; skb_shinfo(skb)->tx_flags |= SKBTX_DEV_ZEROCOPY; skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG; } else if (msg_control) { struct ubuf_info *uarg = msg_control; uarg->callback(uarg, false); } skb_reset_network_header(skb); skb_probe_transport_header(skb); skb_record_rx_queue(skb, tfile->queue_index); if (skb_xdp) { struct bpf_prog *xdp_prog; int ret; local_bh_disable(); rcu_read_lock(); xdp_prog = rcu_dereference(tun->xdp_prog); if (xdp_prog) { ret = do_xdp_generic(xdp_prog, skb); if (ret != XDP_PASS) { rcu_read_unlock(); local_bh_enable(); if (frags) { tfile->napi.skb = NULL; mutex_unlock(&tfile->napi_mutex); } return total_len; } } rcu_read_unlock(); local_bh_enable(); } /* Compute the costly rx hash only if needed for flow updates. * We may get a very small possibility of OOO during switching, not * worth to optimize. */ if (!rcu_access_pointer(tun->steering_prog) && tun->numqueues > 1 && !tfile->detached) rxhash = __skb_get_hash_symmetric(skb); rcu_read_lock(); if (unlikely(!(tun->dev->flags & IFF_UP))) { err = -EIO; rcu_read_unlock(); goto drop; } if (frags) { u32 headlen; /* Exercise flow dissector code path. */ skb_push(skb, ETH_HLEN); headlen = eth_get_headlen(tun->dev, skb->data, skb_headlen(skb)); if (unlikely(headlen > skb_headlen(skb))) { this_cpu_inc(tun->pcpu_stats->rx_dropped); napi_free_frags(&tfile->napi); rcu_read_unlock(); mutex_unlock(&tfile->napi_mutex); WARN_ON(1); return -ENOMEM; } local_bh_disable(); napi_gro_frags(&tfile->napi); local_bh_enable(); mutex_unlock(&tfile->napi_mutex); } else if (tfile->napi_enabled) { struct sk_buff_head *queue = &tfile->sk.sk_write_queue; int queue_len; spin_lock_bh(&queue->lock); __skb_queue_tail(queue, skb); queue_len = skb_queue_len(queue); spin_unlock(&queue->lock); if (!more || queue_len > NAPI_POLL_WEIGHT) napi_schedule(&tfile->napi); local_bh_enable(); } else if (!IS_ENABLED(CONFIG_4KSTACKS)) { tun_rx_batched(tun, tfile, skb, more); } else { netif_rx_ni(skb); } rcu_read_unlock(); stats = get_cpu_ptr(tun->pcpu_stats); u64_stats_update_begin(&stats->syncp); u64_stats_inc(&stats->rx_packets); u64_stats_add(&stats->rx_bytes, len); u64_stats_update_end(&stats->syncp); put_cpu_ptr(stats); if (rxhash) tun_flow_update(tun, rxhash, tfile); return total_len; } static ssize_t tun_chr_write_iter(struct kiocb *iocb, struct iov_iter *from) { struct file *file = iocb->ki_filp; struct tun_file *tfile = file->private_data; struct tun_struct *tun = tun_get(tfile); ssize_t result; int noblock = 0; if (!tun) return -EBADFD; if ((file->f_flags & O_NONBLOCK) || (iocb->ki_flags & IOCB_NOWAIT)) noblock = 1; result = tun_get_user(tun, tfile, NULL, from, noblock, false); tun_put(tun); return result; } static ssize_t tun_put_user_xdp(struct tun_struct *tun, struct tun_file *tfile, struct xdp_frame *xdp_frame, struct iov_iter *iter) { int vnet_hdr_sz = 0; size_t size = xdp_frame->len; struct tun_pcpu_stats *stats; size_t ret; if (tun->flags & IFF_VNET_HDR) { struct virtio_net_hdr gso = { 0 }; vnet_hdr_sz = READ_ONCE(tun->vnet_hdr_sz); if (unlikely(iov_iter_count(iter) < vnet_hdr_sz)) return -EINVAL; if (unlikely(copy_to_iter(&gso, sizeof(gso), iter) != sizeof(gso))) return -EFAULT; iov_iter_advance(iter, vnet_hdr_sz - sizeof(gso)); } ret = copy_to_iter(xdp_frame->data, size, iter) + vnet_hdr_sz; stats = get_cpu_ptr(tun->pcpu_stats); u64_stats_update_begin(&stats->syncp); u64_stats_inc(&stats->tx_packets); u64_stats_add(&stats->tx_bytes, ret); u64_stats_update_end(&stats->syncp); put_cpu_ptr(tun->pcpu_stats); return ret; } /* Put packet to the user space buffer */ static ssize_t tun_put_user(struct tun_struct *tun, struct tun_file *tfile, struct sk_buff *skb, struct iov_iter *iter) { struct tun_pi pi = { 0, skb->protocol }; struct tun_pcpu_stats *stats; ssize_t total; int vlan_offset = 0; int vlan_hlen = 0; int vnet_hdr_sz = 0; if (skb_vlan_tag_present(skb)) vlan_hlen = VLAN_HLEN; if (tun->flags & IFF_VNET_HDR) vnet_hdr_sz = READ_ONCE(tun->vnet_hdr_sz); total = skb->len + vlan_hlen + vnet_hdr_sz; if (!(tun->flags & IFF_NO_PI)) { if (iov_iter_count(iter) < sizeof(pi)) return -EINVAL; total += sizeof(pi); if (iov_iter_count(iter) < total) { /* Packet will be striped */ pi.flags |= TUN_PKT_STRIP; } if (copy_to_iter(&pi, sizeof(pi), iter) != sizeof(pi)) return -EFAULT; } if (vnet_hdr_sz) { struct virtio_net_hdr gso; if (iov_iter_count(iter) < vnet_hdr_sz) return -EINVAL; if (virtio_net_hdr_from_skb(skb, &gso, tun_is_little_endian(tun), true, vlan_hlen)) { struct skb_shared_info *sinfo = skb_shinfo(skb); pr_err("unexpected GSO type: " "0x%x, gso_size %d, hdr_len %d\n", sinfo->gso_type, tun16_to_cpu(tun, gso.gso_size), tun16_to_cpu(tun, gso.hdr_len)); print_hex_dump(KERN_ERR, "tun: ", DUMP_PREFIX_NONE, 16, 1, skb->head, min((int)tun16_to_cpu(tun, gso.hdr_len), 64), true); WARN_ON_ONCE(1); return -EINVAL; } if (copy_to_iter(&gso, sizeof(gso), iter) != sizeof(gso)) return -EFAULT; iov_iter_advance(iter, vnet_hdr_sz - sizeof(gso)); } if (vlan_hlen) { int ret; struct veth veth; veth.h_vlan_proto = skb->vlan_proto; veth.h_vlan_TCI = htons(skb_vlan_tag_get(skb)); vlan_offset = offsetof(struct vlan_ethhdr, h_vlan_proto); ret = skb_copy_datagram_iter(skb, 0, iter, vlan_offset); if (ret || !iov_iter_count(iter)) goto done; ret = copy_to_iter(&veth, sizeof(veth), iter); if (ret != sizeof(veth) || !iov_iter_count(iter)) goto done; } skb_copy_datagram_iter(skb, vlan_offset, iter, skb->len - vlan_offset); done: /* caller is in process context, */ stats = get_cpu_ptr(tun->pcpu_stats); u64_stats_update_begin(&stats->syncp); u64_stats_inc(&stats->tx_packets); u64_stats_add(&stats->tx_bytes, skb->len + vlan_hlen); u64_stats_update_end(&stats->syncp); put_cpu_ptr(tun->pcpu_stats); return total; } static void *tun_ring_recv(struct tun_file *tfile, int noblock, int *err) { DECLARE_WAITQUEUE(wait, current); void *ptr = NULL; int error = 0; ptr = ptr_ring_consume(&tfile->tx_ring); if (ptr) goto out; if (noblock) { error = -EAGAIN; goto out; } add_wait_queue(&tfile->socket.wq.wait, &wait); while (1) { set_current_state(TASK_INTERRUPTIBLE); ptr = ptr_ring_consume(&tfile->tx_ring); if (ptr) break; if (signal_pending(current)) { error = -ERESTARTSYS; break; } if (tfile->socket.sk->sk_shutdown & RCV_SHUTDOWN) { error = -EFAULT; break; } schedule(); } __set_current_state(TASK_RUNNING); remove_wait_queue(&tfile->socket.wq.wait, &wait); out: *err = error; return ptr; } static ssize_t tun_do_read(struct tun_struct *tun, struct tun_file *tfile, struct iov_iter *to, int noblock, void *ptr) { ssize_t ret; int err; if (!iov_iter_count(to)) { tun_ptr_free(ptr); return 0; } if (!ptr) { /* Read frames from ring */ ptr = tun_ring_recv(tfile, noblock, &err); if (!ptr) return err; } if (tun_is_xdp_frame(ptr)) { struct xdp_frame *xdpf = tun_ptr_to_xdp(ptr); ret = tun_put_user_xdp(tun, tfile, xdpf, to); xdp_return_frame(xdpf); } else { struct sk_buff *skb = ptr; ret = tun_put_user(tun, tfile, skb, to); if (unlikely(ret < 0)) kfree_skb(skb); else consume_skb(skb); } return ret; } static ssize_t tun_chr_read_iter(struct kiocb *iocb, struct iov_iter *to) { struct file *file = iocb->ki_filp; struct tun_file *tfile = file->private_data; struct tun_struct *tun = tun_get(tfile); ssize_t len = iov_iter_count(to), ret; int noblock = 0; if (!tun) return -EBADFD; if ((file->f_flags & O_NONBLOCK) || (iocb->ki_flags & IOCB_NOWAIT)) noblock = 1; ret = tun_do_read(tun, tfile, to, noblock, NULL); ret = min_t(ssize_t, ret, len); if (ret > 0) iocb->ki_pos = ret; tun_put(tun); return ret; } static void tun_prog_free(struct rcu_head *rcu) { struct tun_prog *prog = container_of(rcu, struct tun_prog, rcu); bpf_prog_destroy(prog->prog); kfree(prog); } static int __tun_set_ebpf(struct tun_struct *tun, struct tun_prog __rcu **prog_p, struct bpf_prog *prog) { struct tun_prog *old, *new = NULL; if (prog) { new = kmalloc(sizeof(*new), GFP_KERNEL); if (!new) return -ENOMEM; new->prog = prog; } spin_lock_bh(&tun->lock); old = rcu_dereference_protected(*prog_p, lockdep_is_held(&tun->lock)); rcu_assign_pointer(*prog_p, new); spin_unlock_bh(&tun->lock); if (old) call_rcu(&old->rcu, tun_prog_free); return 0; } static void tun_free_netdev(struct net_device *dev) { struct tun_struct *tun = netdev_priv(dev); BUG_ON(!(list_empty(&tun->disabled))); free_percpu(tun->pcpu_stats); /* We clear pcpu_stats so that tun_set_iff() can tell if * tun_free_netdev() has been called from register_netdevice(). */ tun->pcpu_stats = NULL; tun_flow_uninit(tun); security_tun_dev_free_security(tun->security); __tun_set_ebpf(tun, &tun->steering_prog, NULL); __tun_set_ebpf(tun, &tun->filter_prog, NULL); } static void tun_setup(struct net_device *dev) { struct tun_struct *tun = netdev_priv(dev); tun->owner = INVALID_UID; tun->group = INVALID_GID; tun_default_link_ksettings(dev, &tun->link_ksettings); dev->ethtool_ops = &tun_ethtool_ops; dev->needs_free_netdev = true; dev->priv_destructor = tun_free_netdev; /* We prefer our own queue length */ dev->tx_queue_len = TUN_READQ_SIZE; } /* Trivial set of netlink ops to allow deleting tun or tap * device with netlink. */ static int tun_validate(struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack) { NL_SET_ERR_MSG(extack, "tun/tap creation via rtnetlink is not supported."); return -EOPNOTSUPP; } static size_t tun_get_size(const struct net_device *dev) { BUILD_BUG_ON(sizeof(u32) != sizeof(uid_t)); BUILD_BUG_ON(sizeof(u32) != sizeof(gid_t)); return nla_total_size(sizeof(uid_t)) + /* OWNER */ nla_total_size(sizeof(gid_t)) + /* GROUP */ nla_total_size(sizeof(u8)) + /* TYPE */ nla_total_size(sizeof(u8)) + /* PI */ nla_total_size(sizeof(u8)) + /* VNET_HDR */ nla_total_size(sizeof(u8)) + /* PERSIST */ nla_total_size(sizeof(u8)) + /* MULTI_QUEUE */ nla_total_size(sizeof(u32)) + /* NUM_QUEUES */ nla_total_size(sizeof(u32)) + /* NUM_DISABLED_QUEUES */ 0; } static int tun_fill_info(struct sk_buff *skb, const struct net_device *dev) { struct tun_struct *tun = netdev_priv(dev); if (nla_put_u8(skb, IFLA_TUN_TYPE, tun->flags & TUN_TYPE_MASK)) goto nla_put_failure; if (uid_valid(tun->owner) && nla_put_u32(skb, IFLA_TUN_OWNER, from_kuid_munged(current_user_ns(), tun->owner))) goto nla_put_failure; if (gid_valid(tun->group) && nla_put_u32(skb, IFLA_TUN_GROUP, from_kgid_munged(current_user_ns(), tun->group))) goto nla_put_failure; if (nla_put_u8(skb, IFLA_TUN_PI, !(tun->flags & IFF_NO_PI))) goto nla_put_failure; if (nla_put_u8(skb, IFLA_TUN_VNET_HDR, !!(tun->flags & IFF_VNET_HDR))) goto nla_put_failure; if (nla_put_u8(skb, IFLA_TUN_PERSIST, !!(tun->flags & IFF_PERSIST))) goto nla_put_failure; if (nla_put_u8(skb, IFLA_TUN_MULTI_QUEUE, !!(tun->flags & IFF_MULTI_QUEUE))) goto nla_put_failure; if (tun->flags & IFF_MULTI_QUEUE) { if (nla_put_u32(skb, IFLA_TUN_NUM_QUEUES, tun->numqueues)) goto nla_put_failure; if (nla_put_u32(skb, IFLA_TUN_NUM_DISABLED_QUEUES, tun->numdisabled)) goto nla_put_failure; } return 0; nla_put_failure: return -EMSGSIZE; } static struct rtnl_link_ops tun_link_ops __read_mostly = { .kind = DRV_NAME, .priv_size = sizeof(struct tun_struct), .setup = tun_setup, .validate = tun_validate, .get_size = tun_get_size, .fill_info = tun_fill_info, }; static void tun_sock_write_space(struct sock *sk) { struct tun_file *tfile; wait_queue_head_t *wqueue; if (!sock_writeable(sk)) return; if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &sk->sk_socket->flags)) return; wqueue = sk_sleep(sk); if (wqueue && waitqueue_active(wqueue)) wake_up_interruptible_sync_poll(wqueue, EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND); tfile = container_of(sk, struct tun_file, sk); kill_fasync(&tfile->fasync, SIGIO, POLL_OUT); } static void tun_put_page(struct tun_page *tpage) { if (tpage->page) __page_frag_cache_drain(tpage->page, tpage->count); } static int tun_xdp_one(struct tun_struct *tun, struct tun_file *tfile, struct xdp_buff *xdp, int *flush, struct tun_page *tpage) { unsigned int datasize = xdp->data_end - xdp->data; struct tun_xdp_hdr *hdr = xdp->data_hard_start; struct virtio_net_hdr *gso = &hdr->gso; struct tun_pcpu_stats *stats; struct bpf_prog *xdp_prog; struct sk_buff *skb = NULL; u32 rxhash = 0, act; int buflen = hdr->buflen; int err = 0; bool skb_xdp = false; struct page *page; xdp_prog = rcu_dereference(tun->xdp_prog); if (xdp_prog) { if (gso->gso_type) { skb_xdp = true; goto build; } xdp_set_data_meta_invalid(xdp); xdp->rxq = &tfile->xdp_rxq; xdp->frame_sz = buflen; act = bpf_prog_run_xdp(xdp_prog, xdp); err = tun_xdp_act(tun, xdp_prog, xdp, act); if (err < 0) { put_page(virt_to_head_page(xdp->data)); return err; } switch (err) { case XDP_REDIRECT: *flush = true; fallthrough; case XDP_TX: return 0; case XDP_PASS: break; default: page = virt_to_head_page(xdp->data); if (tpage->page == page) { ++tpage->count; } else { tun_put_page(tpage); tpage->page = page; tpage->count = 1; } return 0; } } build: skb = build_skb(xdp->data_hard_start, buflen); if (!skb) { err = -ENOMEM; goto out; } skb_reserve(skb, xdp->data - xdp->data_hard_start); skb_put(skb, xdp->data_end - xdp->data); if (virtio_net_hdr_to_skb(skb, gso, tun_is_little_endian(tun))) { this_cpu_inc(tun->pcpu_stats->rx_frame_errors); kfree_skb(skb); err = -EINVAL; goto out; } skb->protocol = eth_type_trans(skb, tun->dev); skb_reset_network_header(skb); skb_probe_transport_header(skb); skb_record_rx_queue(skb, tfile->queue_index); if (skb_xdp) { err = do_xdp_generic(xdp_prog, skb); if (err != XDP_PASS) goto out; } if (!rcu_dereference(tun->steering_prog) && tun->numqueues > 1 && !tfile->detached) rxhash = __skb_get_hash_symmetric(skb); netif_receive_skb(skb); /* No need for get_cpu_ptr() here since this function is * always called with bh disabled */ stats = this_cpu_ptr(tun->pcpu_stats); u64_stats_update_begin(&stats->syncp); u64_stats_inc(&stats->rx_packets); u64_stats_add(&stats->rx_bytes, datasize); u64_stats_update_end(&stats->syncp); if (rxhash) tun_flow_update(tun, rxhash, tfile); out: return err; } static int tun_sendmsg(struct socket *sock, struct msghdr *m, size_t total_len) { int ret, i; struct tun_file *tfile = container_of(sock, struct tun_file, socket); struct tun_struct *tun = tun_get(tfile); struct tun_msg_ctl *ctl = m->msg_control; struct xdp_buff *xdp; if (!tun) return -EBADFD; if (ctl && (ctl->type == TUN_MSG_PTR)) { struct tun_page tpage; int n = ctl->num; int flush = 0; memset(&tpage, 0, sizeof(tpage)); local_bh_disable(); rcu_read_lock(); for (i = 0; i < n; i++) { xdp = &((struct xdp_buff *)ctl->ptr)[i]; tun_xdp_one(tun, tfile, xdp, &flush, &tpage); } if (flush) xdp_do_flush(); rcu_read_unlock(); local_bh_enable(); tun_put_page(&tpage); ret = total_len; goto out; } ret = tun_get_user(tun, tfile, ctl ? ctl->ptr : NULL, &m->msg_iter, m->msg_flags & MSG_DONTWAIT, m->msg_flags & MSG_MORE); out: tun_put(tun); return ret; } static int tun_recvmsg(struct socket *sock, struct msghdr *m, size_t total_len, int flags) { struct tun_file *tfile = container_of(sock, struct tun_file, socket); struct tun_struct *tun = tun_get(tfile); void *ptr = m->msg_control; int ret; if (!tun) { ret = -EBADFD; goto out_free; } if (flags & ~(MSG_DONTWAIT|MSG_TRUNC|MSG_ERRQUEUE)) { ret = -EINVAL; goto out_put_tun; } if (flags & MSG_ERRQUEUE) { ret = sock_recv_errqueue(sock->sk, m, total_len, SOL_PACKET, TUN_TX_TIMESTAMP); goto out; } ret = tun_do_read(tun, tfile, &m->msg_iter, flags & MSG_DONTWAIT, ptr); if (ret > (ssize_t)total_len) { m->msg_flags |= MSG_TRUNC; ret = flags & MSG_TRUNC ? ret : total_len; } out: tun_put(tun); return ret; out_put_tun: tun_put(tun); out_free: tun_ptr_free(ptr); return ret; } static int tun_ptr_peek_len(void *ptr) { if (likely(ptr)) { if (tun_is_xdp_frame(ptr)) { struct xdp_frame *xdpf = tun_ptr_to_xdp(ptr); return xdpf->len; } return __skb_array_len_with_tag(ptr); } else { return 0; } } static int tun_peek_len(struct socket *sock) { struct tun_file *tfile = container_of(sock, struct tun_file, socket); struct tun_struct *tun; int ret = 0; tun = tun_get(tfile); if (!tun) return 0; ret = PTR_RING_PEEK_CALL(&tfile->tx_ring, tun_ptr_peek_len); tun_put(tun); return ret; } /* Ops structure to mimic raw sockets with tun */ static const struct proto_ops tun_socket_ops = { .peek_len = tun_peek_len, .sendmsg = tun_sendmsg, .recvmsg = tun_recvmsg, }; static struct proto tun_proto = { .name = "tun", .owner = THIS_MODULE, .obj_size = sizeof(struct tun_file), }; static int tun_flags(struct tun_struct *tun) { return tun->flags & (TUN_FEATURES | IFF_PERSIST | IFF_TUN | IFF_TAP); } static ssize_t tun_show_flags(struct device *dev, struct device_attribute *attr, char *buf) { struct tun_struct *tun = netdev_priv(to_net_dev(dev)); return sprintf(buf, "0x%x\n", tun_flags(tun)); } static ssize_t tun_show_owner(struct device *dev, struct device_attribute *attr, char *buf) { struct tun_struct *tun = netdev_priv(to_net_dev(dev)); return uid_valid(tun->owner)? sprintf(buf, "%u\n", from_kuid_munged(current_user_ns(), tun->owner)): sprintf(buf, "-1\n"); } static ssize_t tun_show_group(struct device *dev, struct device_attribute *attr, char *buf) { struct tun_struct *tun = netdev_priv(to_net_dev(dev)); return gid_valid(tun->group) ? sprintf(buf, "%u\n", from_kgid_munged(current_user_ns(), tun->group)): sprintf(buf, "-1\n"); } static DEVICE_ATTR(tun_flags, 0444, tun_show_flags, NULL); static DEVICE_ATTR(owner, 0444, tun_show_owner, NULL); static DEVICE_ATTR(group, 0444, tun_show_group, NULL); static struct attribute *tun_dev_attrs[] = { &dev_attr_tun_flags.attr, &dev_attr_owner.attr, &dev_attr_group.attr, NULL }; static const struct attribute_group tun_attr_group = { .attrs = tun_dev_attrs }; static int tun_set_iff(struct net *net, struct file *file, struct ifreq *ifr) { struct tun_struct *tun; struct tun_file *tfile = file->private_data; struct net_device *dev; int err; if (tfile->detached) return -EINVAL; if ((ifr->ifr_flags & IFF_NAPI_FRAGS)) { if (!capable(CAP_NET_ADMIN)) return -EPERM; if (!(ifr->ifr_flags & IFF_NAPI) || (ifr->ifr_flags & TUN_TYPE_MASK) != IFF_TAP) return -EINVAL; } dev = __dev_get_by_name(net, ifr->ifr_name); if (dev) { if (ifr->ifr_flags & IFF_TUN_EXCL) return -EBUSY; if ((ifr->ifr_flags & IFF_TUN) && dev->netdev_ops == &tun_netdev_ops) tun = netdev_priv(dev); else if ((ifr->ifr_flags & IFF_TAP) && dev->netdev_ops == &tap_netdev_ops) tun = netdev_priv(dev); else return -EINVAL; if (!!(ifr->ifr_flags & IFF_MULTI_QUEUE) != !!(tun->flags & IFF_MULTI_QUEUE)) return -EINVAL; if (tun_not_capable(tun)) return -EPERM; err = security_tun_dev_open(tun->security); if (err < 0) return err; err = tun_attach(tun, file, ifr->ifr_flags & IFF_NOFILTER, ifr->ifr_flags & IFF_NAPI, ifr->ifr_flags & IFF_NAPI_FRAGS, true); if (err < 0) return err; if (tun->flags & IFF_MULTI_QUEUE && (tun->numqueues + tun->numdisabled > 1)) { /* One or more queue has already been attached, no need * to initialize the device again. */ netdev_state_change(dev); return 0; } tun->flags = (tun->flags & ~TUN_FEATURES) | (ifr->ifr_flags & TUN_FEATURES); netdev_state_change(dev); } else { char *name; unsigned long flags = 0; int queues = ifr->ifr_flags & IFF_MULTI_QUEUE ? MAX_TAP_QUEUES : 1; if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) return -EPERM; err = security_tun_dev_create(); if (err < 0) return err; /* Set dev type */ if (ifr->ifr_flags & IFF_TUN) { /* TUN device */ flags |= IFF_TUN; name = "tun%d"; } else if (ifr->ifr_flags & IFF_TAP) { /* TAP device */ flags |= IFF_TAP; name = "tap%d"; } else return -EINVAL; if (*ifr->ifr_name) name = ifr->ifr_name; dev = alloc_netdev_mqs(sizeof(struct tun_struct), name, NET_NAME_UNKNOWN, tun_setup, queues, queues); if (!dev) return -ENOMEM; dev_net_set(dev, net); dev->rtnl_link_ops = &tun_link_ops; dev->ifindex = tfile->ifindex; dev->sysfs_groups[0] = &tun_attr_group; tun = netdev_priv(dev); tun->dev = dev; tun->flags = flags; tun->txflt.count = 0; tun->vnet_hdr_sz = sizeof(struct virtio_net_hdr); tun->align = NET_SKB_PAD; tun->filter_attached = false; tun->sndbuf = tfile->socket.sk->sk_sndbuf; tun->rx_batched = 0; RCU_INIT_POINTER(tun->steering_prog, NULL); tun->pcpu_stats = netdev_alloc_pcpu_stats(struct tun_pcpu_stats); if (!tun->pcpu_stats) { err = -ENOMEM; goto err_free_dev; } spin_lock_init(&tun->lock); err = security_tun_dev_alloc_security(&tun->security); if (err < 0) goto err_free_stat; tun_net_init(dev); tun_flow_init(tun); dev->hw_features = NETIF_F_SG | NETIF_F_FRAGLIST | TUN_USER_FEATURES | NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_STAG_TX; dev->features = dev->hw_features | NETIF_F_LLTX; dev->vlan_features = dev->features & ~(NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_STAG_TX); tun->flags = (tun->flags & ~TUN_FEATURES) | (ifr->ifr_flags & TUN_FEATURES); INIT_LIST_HEAD(&tun->disabled); err = tun_attach(tun, file, false, ifr->ifr_flags & IFF_NAPI, ifr->ifr_flags & IFF_NAPI_FRAGS, false); if (err < 0) goto err_free_flow; err = register_netdevice(tun->dev); if (err < 0) goto err_detach; /* free_netdev() won't check refcnt, to aovid race * with dev_put() we need publish tun after registration. */ rcu_assign_pointer(tfile->tun, tun); } netif_carrier_on(tun->dev); /* Make sure persistent devices do not get stuck in * xoff state. */ if (netif_running(tun->dev)) netif_tx_wake_all_queues(tun->dev); strcpy(ifr->ifr_name, tun->dev->name); return 0; err_detach: tun_detach_all(dev); /* We are here because register_netdevice() has failed. * If register_netdevice() already called tun_free_netdev() * while dealing with the error, tun->pcpu_stats has been cleared. */ if (!tun->pcpu_stats) goto err_free_dev; err_free_flow: tun_flow_uninit(tun); security_tun_dev_free_security(tun->security); err_free_stat: free_percpu(tun->pcpu_stats); err_free_dev: free_netdev(dev); return err; } static void tun_get_iff(struct tun_struct *tun, struct ifreq *ifr) { strcpy(ifr->ifr_name, tun->dev->name); ifr->ifr_flags = tun_flags(tun); } /* This is like a cut-down ethtool ops, except done via tun fd so no * privs required. */ static int set_offload(struct tun_struct *tun, unsigned long arg) { netdev_features_t features = 0; if (arg & TUN_F_CSUM) { features |= NETIF_F_HW_CSUM; arg &= ~TUN_F_CSUM; if (arg & (TUN_F_TSO4|TUN_F_TSO6)) { if (arg & TUN_F_TSO_ECN) { features |= NETIF_F_TSO_ECN; arg &= ~TUN_F_TSO_ECN; } if (arg & TUN_F_TSO4) features |= NETIF_F_TSO; if (arg & TUN_F_TSO6) features |= NETIF_F_TSO6; arg &= ~(TUN_F_TSO4|TUN_F_TSO6); } arg &= ~TUN_F_UFO; } /* This gives the user a way to test for new features in future by * trying to set them. */ if (arg) return -EINVAL; tun->set_features = features; tun->dev->wanted_features &= ~TUN_USER_FEATURES; tun->dev->wanted_features |= features; netdev_update_features(tun->dev); return 0; } static void tun_detach_filter(struct tun_struct *tun, int n) { int i; struct tun_file *tfile; for (i = 0; i < n; i++) { tfile = rtnl_dereference(tun->tfiles[i]); lock_sock(tfile->socket.sk); sk_detach_filter(tfile->socket.sk); release_sock(tfile->socket.sk); } tun->filter_attached = false; } static int tun_attach_filter(struct tun_struct *tun) { int i, ret = 0; struct tun_file *tfile; for (i = 0; i < tun->numqueues; i++) { tfile = rtnl_dereference(tun->tfiles[i]); lock_sock(tfile->socket.sk); ret = sk_attach_filter(&tun->fprog, tfile->socket.sk); release_sock(tfile->socket.sk); if (ret) { tun_detach_filter(tun, i); return ret; } } tun->filter_attached = true; return ret; } static void tun_set_sndbuf(struct tun_struct *tun) { struct tun_file *tfile; int i; for (i = 0; i < tun->numqueues; i++) { tfile = rtnl_dereference(tun->tfiles[i]); tfile->socket.sk->sk_sndbuf = tun->sndbuf; } } static int tun_set_queue(struct file *file, struct ifreq *ifr) { struct tun_file *tfile = file->private_data; struct tun_struct *tun; int ret = 0; rtnl_lock(); if (ifr->ifr_flags & IFF_ATTACH_QUEUE) { tun = tfile->detached; if (!tun) { ret = -EINVAL; goto unlock; } ret = security_tun_dev_attach_queue(tun->security); if (ret < 0) goto unlock; ret = tun_attach(tun, file, false, tun->flags & IFF_NAPI, tun->flags & IFF_NAPI_FRAGS, true); } else if (ifr->ifr_flags & IFF_DETACH_QUEUE) { tun = rtnl_dereference(tfile->tun); if (!tun || !(tun->flags & IFF_MULTI_QUEUE) || tfile->detached) ret = -EINVAL; else __tun_detach(tfile, false); } else ret = -EINVAL; if (ret >= 0) netdev_state_change(tun->dev); unlock: rtnl_unlock(); return ret; } static int tun_set_ebpf(struct tun_struct *tun, struct tun_prog __rcu **prog_p, void __user *data) { struct bpf_prog *prog; int fd; if (copy_from_user(&fd, data, sizeof(fd))) return -EFAULT; if (fd == -1) { prog = NULL; } else { prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_SOCKET_FILTER); if (IS_ERR(prog)) return PTR_ERR(prog); } return __tun_set_ebpf(tun, prog_p, prog); } /* Return correct value for tun->dev->addr_len based on tun->dev->type. */ static unsigned char tun_get_addr_len(unsigned short type) { switch (type) { case ARPHRD_IP6GRE: case ARPHRD_TUNNEL6: return sizeof(struct in6_addr); case ARPHRD_IPGRE: case ARPHRD_TUNNEL: case ARPHRD_SIT: return 4; case ARPHRD_ETHER: return ETH_ALEN; case ARPHRD_IEEE802154: case ARPHRD_IEEE802154_MONITOR: return IEEE802154_EXTENDED_ADDR_LEN; case ARPHRD_PHONET_PIPE: case ARPHRD_PPP: case ARPHRD_NONE: return 0; case ARPHRD_6LOWPAN: return EUI64_ADDR_LEN; case ARPHRD_FDDI: return FDDI_K_ALEN; case ARPHRD_HIPPI: return HIPPI_ALEN; case ARPHRD_IEEE802: return FC_ALEN; case ARPHRD_ROSE: return ROSE_ADDR_LEN; case ARPHRD_NETROM: return AX25_ADDR_LEN; case ARPHRD_LOCALTLK: return LTALK_ALEN; default: return 0; } } static long __tun_chr_ioctl(struct file *file, unsigned int cmd, unsigned long arg, int ifreq_len) { struct tun_file *tfile = file->private_data; struct net *net = sock_net(&tfile->sk); struct tun_struct *tun; void __user* argp = (void __user*)arg; unsigned int ifindex, carrier; struct ifreq ifr; kuid_t owner; kgid_t group; int sndbuf; int vnet_hdr_sz; int le; int ret; bool do_notify = false; if (cmd == TUNSETIFF || cmd == TUNSETQUEUE || (_IOC_TYPE(cmd) == SOCK_IOC_TYPE && cmd != SIOCGSKNS)) { if (copy_from_user(&ifr, argp, ifreq_len)) return -EFAULT; } else { memset(&ifr, 0, sizeof(ifr)); } if (cmd == TUNGETFEATURES) { /* Currently this just means: "what IFF flags are valid?". * This is needed because we never checked for invalid flags on * TUNSETIFF. */ return put_user(IFF_TUN | IFF_TAP | TUN_FEATURES, (unsigned int __user*)argp); } else if (cmd == TUNSETQUEUE) { return tun_set_queue(file, &ifr); } else if (cmd == SIOCGSKNS) { if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) return -EPERM; return open_related_ns(&net->ns, get_net_ns); } ret = 0; rtnl_lock(); tun = tun_get(tfile); if (cmd == TUNSETIFF) { ret = -EEXIST; if (tun) goto unlock; ifr.ifr_name[IFNAMSIZ-1] = '\0'; ret = tun_set_iff(net, file, &ifr); if (ret) goto unlock; if (copy_to_user(argp, &ifr, ifreq_len)) ret = -EFAULT; goto unlock; } if (cmd == TUNSETIFINDEX) { ret = -EPERM; if (tun) goto unlock; ret = -EFAULT; if (copy_from_user(&ifindex, argp, sizeof(ifindex))) goto unlock; ret = 0; tfile->ifindex = ifindex; goto unlock; } ret = -EBADFD; if (!tun) goto unlock; netif_info(tun, drv, tun->dev, "tun_chr_ioctl cmd %u\n", cmd); net = dev_net(tun->dev); ret = 0; switch (cmd) { case TUNGETIFF: tun_get_iff(tun, &ifr); if (tfile->detached) ifr.ifr_flags |= IFF_DETACH_QUEUE; if (!tfile->socket.sk->sk_filter) ifr.ifr_flags |= IFF_NOFILTER; if (copy_to_user(argp, &ifr, ifreq_len)) ret = -EFAULT; break; case TUNSETNOCSUM: /* Disable/Enable checksum */ /* [unimplemented] */ netif_info(tun, drv, tun->dev, "ignored: set checksum %s\n", arg ? "disabled" : "enabled"); break; case TUNSETPERSIST: /* Disable/Enable persist mode. Keep an extra reference to the * module to prevent the module being unprobed. */ if (arg && !(tun->flags & IFF_PERSIST)) { tun->flags |= IFF_PERSIST; __module_get(THIS_MODULE); do_notify = true; } if (!arg && (tun->flags & IFF_PERSIST)) { tun->flags &= ~IFF_PERSIST; module_put(THIS_MODULE); do_notify = true; } netif_info(tun, drv, tun->dev, "persist %s\n", arg ? "enabled" : "disabled"); break; case TUNSETOWNER: /* Set owner of the device */ owner = make_kuid(current_user_ns(), arg); if (!uid_valid(owner)) { ret = -EINVAL; break; } tun->owner = owner; do_notify = true; netif_info(tun, drv, tun->dev, "owner set to %u\n", from_kuid(&init_user_ns, tun->owner)); break; case TUNSETGROUP: /* Set group of the device */ group = make_kgid(current_user_ns(), arg); if (!gid_valid(group)) { ret = -EINVAL; break; } tun->group = group; do_notify = true; netif_info(tun, drv, tun->dev, "group set to %u\n", from_kgid(&init_user_ns, tun->group)); break; case TUNSETLINK: /* Only allow setting the type when the interface is down */ if (tun->dev->flags & IFF_UP) { netif_info(tun, drv, tun->dev, "Linktype set failed because interface is up\n"); ret = -EBUSY; } else { tun->dev->type = (int) arg; tun->dev->addr_len = tun_get_addr_len(tun->dev->type); netif_info(tun, drv, tun->dev, "linktype set to %d\n", tun->dev->type); ret = 0; } break; case TUNSETDEBUG: tun->msg_enable = (u32)arg; break; case TUNSETOFFLOAD: ret = set_offload(tun, arg); break; case TUNSETTXFILTER: /* Can be set only for TAPs */ ret = -EINVAL; if ((tun->flags & TUN_TYPE_MASK) != IFF_TAP) break; ret = update_filter(&tun->txflt, (void __user *)arg); break; case SIOCGIFHWADDR: /* Get hw address */ dev_get_mac_address(&ifr.ifr_hwaddr, net, tun->dev->name); if (copy_to_user(argp, &ifr, ifreq_len)) ret = -EFAULT; break; case SIOCSIFHWADDR: /* Set hw address */ ret = dev_set_mac_address_user(tun->dev, &ifr.ifr_hwaddr, NULL); break; case TUNGETSNDBUF: sndbuf = tfile->socket.sk->sk_sndbuf; if (copy_to_user(argp, &sndbuf, sizeof(sndbuf))) ret = -EFAULT; break; case TUNSETSNDBUF: if (copy_from_user(&sndbuf, argp, sizeof(sndbuf))) { ret = -EFAULT; break; } if (sndbuf <= 0) { ret = -EINVAL; break; } tun->sndbuf = sndbuf; tun_set_sndbuf(tun); break; case TUNGETVNETHDRSZ: vnet_hdr_sz = tun->vnet_hdr_sz; if (copy_to_user(argp, &vnet_hdr_sz, sizeof(vnet_hdr_sz))) ret = -EFAULT; break; case TUNSETVNETHDRSZ: if (copy_from_user(&vnet_hdr_sz, argp, sizeof(vnet_hdr_sz))) { ret = -EFAULT; break; } if (vnet_hdr_sz < (int)sizeof(struct virtio_net_hdr)) { ret = -EINVAL; break; } tun->vnet_hdr_sz = vnet_hdr_sz; break; case TUNGETVNETLE: le = !!(tun->flags & TUN_VNET_LE); if (put_user(le, (int __user *)argp)) ret = -EFAULT; break; case TUNSETVNETLE: if (get_user(le, (int __user *)argp)) { ret = -EFAULT; break; } if (le) tun->flags |= TUN_VNET_LE; else tun->flags &= ~TUN_VNET_LE; break; case TUNGETVNETBE: ret = tun_get_vnet_be(tun, argp); break; case TUNSETVNETBE: ret = tun_set_vnet_be(tun, argp); break; case TUNATTACHFILTER: /* Can be set only for TAPs */ ret = -EINVAL; if ((tun->flags & TUN_TYPE_MASK) != IFF_TAP) break; ret = -EFAULT; if (copy_from_user(&tun->fprog, argp, sizeof(tun->fprog))) break; ret = tun_attach_filter(tun); break; case TUNDETACHFILTER: /* Can be set only for TAPs */ ret = -EINVAL; if ((tun->flags & TUN_TYPE_MASK) != IFF_TAP) break; ret = 0; tun_detach_filter(tun, tun->numqueues); break; case TUNGETFILTER: ret = -EINVAL; if ((tun->flags & TUN_TYPE_MASK) != IFF_TAP) break; ret = -EFAULT; if (copy_to_user(argp, &tun->fprog, sizeof(tun->fprog))) break; ret = 0; break; case TUNSETSTEERINGEBPF: ret = tun_set_ebpf(tun, &tun->steering_prog, argp); break; case TUNSETFILTEREBPF: ret = tun_set_ebpf(tun, &tun->filter_prog, argp); break; case TUNSETCARRIER: ret = -EFAULT; if (copy_from_user(&carrier, argp, sizeof(carrier))) goto unlock; ret = tun_net_change_carrier(tun->dev, (bool)carrier); break; case TUNGETDEVNETNS: ret = -EPERM; if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) goto unlock; ret = open_related_ns(&net->ns, get_net_ns); break; default: ret = -EINVAL; break; } if (do_notify) netdev_state_change(tun->dev); unlock: rtnl_unlock(); if (tun) tun_put(tun); return ret; } static long tun_chr_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { return __tun_chr_ioctl(file, cmd, arg, sizeof (struct ifreq)); } #ifdef CONFIG_COMPAT static long tun_chr_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { switch (cmd) { case TUNSETIFF: case TUNGETIFF: case TUNSETTXFILTER: case TUNGETSNDBUF: case TUNSETSNDBUF: case SIOCGIFHWADDR: case SIOCSIFHWADDR: arg = (unsigned long)compat_ptr(arg); break; default: arg = (compat_ulong_t)arg; break; } /* * compat_ifreq is shorter than ifreq, so we must not access beyond * the end of that structure. All fields that are used in this * driver are compatible though, we don't need to convert the * contents. */ return __tun_chr_ioctl(file, cmd, arg, sizeof(struct compat_ifreq)); } #endif /* CONFIG_COMPAT */ static int tun_chr_fasync(int fd, struct file *file, int on) { struct tun_file *tfile = file->private_data; int ret; if ((ret = fasync_helper(fd, file, on, &tfile->fasync)) < 0) goto out; if (on) { __f_setown(file, task_pid(current), PIDTYPE_TGID, 0); tfile->flags |= TUN_FASYNC; } else tfile->flags &= ~TUN_FASYNC; ret = 0; out: return ret; } static int tun_chr_open(struct inode *inode, struct file * file) { struct net *net = current->nsproxy->net_ns; struct tun_file *tfile; tfile = (struct tun_file *)sk_alloc(net, AF_UNSPEC, GFP_KERNEL, &tun_proto, 0); if (!tfile) return -ENOMEM; if (ptr_ring_init(&tfile->tx_ring, 0, GFP_KERNEL)) { sk_free(&tfile->sk); return -ENOMEM; } mutex_init(&tfile->napi_mutex); RCU_INIT_POINTER(tfile->tun, NULL); tfile->flags = 0; tfile->ifindex = 0; init_waitqueue_head(&tfile->socket.wq.wait); tfile->socket.file = file; tfile->socket.ops = &tun_socket_ops; sock_init_data(&tfile->socket, &tfile->sk); tfile->sk.sk_write_space = tun_sock_write_space; tfile->sk.sk_sndbuf = INT_MAX; file->private_data = tfile; INIT_LIST_HEAD(&tfile->next); sock_set_flag(&tfile->sk, SOCK_ZEROCOPY); return 0; } static int tun_chr_close(struct inode *inode, struct file *file) { struct tun_file *tfile = file->private_data; tun_detach(tfile, true); return 0; } #ifdef CONFIG_PROC_FS static void tun_chr_show_fdinfo(struct seq_file *m, struct file *file) { struct tun_file *tfile = file->private_data; struct tun_struct *tun; struct ifreq ifr; memset(&ifr, 0, sizeof(ifr)); rtnl_lock(); tun = tun_get(tfile); if (tun) tun_get_iff(tun, &ifr); rtnl_unlock(); if (tun) tun_put(tun); seq_printf(m, "iff:\t%s\n", ifr.ifr_name); } #endif static const struct file_operations tun_fops = { .owner = THIS_MODULE, .llseek = no_llseek, .read_iter = tun_chr_read_iter, .write_iter = tun_chr_write_iter, .poll = tun_chr_poll, .unlocked_ioctl = tun_chr_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = tun_chr_compat_ioctl, #endif .open = tun_chr_open, .release = tun_chr_close, .fasync = tun_chr_fasync, #ifdef CONFIG_PROC_FS .show_fdinfo = tun_chr_show_fdinfo, #endif }; static struct miscdevice tun_miscdev = { .minor = TUN_MINOR, .name = "tun", .nodename = "net/tun", .fops = &tun_fops, }; /* ethtool interface */ static void tun_default_link_ksettings(struct net_device *dev, struct ethtool_link_ksettings *cmd) { ethtool_link_ksettings_zero_link_mode(cmd, supported); ethtool_link_ksettings_zero_link_mode(cmd, advertising); cmd->base.speed = SPEED_10; cmd->base.duplex = DUPLEX_FULL; cmd->base.port = PORT_TP; cmd->base.phy_address = 0; cmd->base.autoneg = AUTONEG_DISABLE; } static int tun_get_link_ksettings(struct net_device *dev, struct ethtool_link_ksettings *cmd) { struct tun_struct *tun = netdev_priv(dev); memcpy(cmd, &tun->link_ksettings, sizeof(*cmd)); return 0; } static int tun_set_link_ksettings(struct net_device *dev, const struct ethtool_link_ksettings *cmd) { struct tun_struct *tun = netdev_priv(dev); memcpy(&tun->link_ksettings, cmd, sizeof(*cmd)); return 0; } static void tun_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { struct tun_struct *tun = netdev_priv(dev); strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); strlcpy(info->version, DRV_VERSION, sizeof(info->version)); switch (tun->flags & TUN_TYPE_MASK) { case IFF_TUN: strlcpy(info->bus_info, "tun", sizeof(info->bus_info)); break; case IFF_TAP: strlcpy(info->bus_info, "tap", sizeof(info->bus_info)); break; } } static u32 tun_get_msglevel(struct net_device *dev) { struct tun_struct *tun = netdev_priv(dev); return tun->msg_enable; } static void tun_set_msglevel(struct net_device *dev, u32 value) { struct tun_struct *tun = netdev_priv(dev); tun->msg_enable = value; } static int tun_get_coalesce(struct net_device *dev, struct ethtool_coalesce *ec) { struct tun_struct *tun = netdev_priv(dev); ec->rx_max_coalesced_frames = tun->rx_batched; return 0; } static int tun_set_coalesce(struct net_device *dev, struct ethtool_coalesce *ec) { struct tun_struct *tun = netdev_priv(dev); if (ec->rx_max_coalesced_frames > NAPI_POLL_WEIGHT) tun->rx_batched = NAPI_POLL_WEIGHT; else tun->rx_batched = ec->rx_max_coalesced_frames; return 0; } static const struct ethtool_ops tun_ethtool_ops = { .supported_coalesce_params = ETHTOOL_COALESCE_RX_MAX_FRAMES, .get_drvinfo = tun_get_drvinfo, .get_msglevel = tun_get_msglevel, .set_msglevel = tun_set_msglevel, .get_link = ethtool_op_get_link, .get_ts_info = ethtool_op_get_ts_info, .get_coalesce = tun_get_coalesce, .set_coalesce = tun_set_coalesce, .get_link_ksettings = tun_get_link_ksettings, .set_link_ksettings = tun_set_link_ksettings, }; static int tun_queue_resize(struct tun_struct *tun) { struct net_device *dev = tun->dev; struct tun_file *tfile; struct ptr_ring **rings; int n = tun->numqueues + tun->numdisabled; int ret, i; rings = kmalloc_array(n, sizeof(*rings), GFP_KERNEL); if (!rings) return -ENOMEM; for (i = 0; i < tun->numqueues; i++) { tfile = rtnl_dereference(tun->tfiles[i]); rings[i] = &tfile->tx_ring; } list_for_each_entry(tfile, &tun->disabled, next) rings[i++] = &tfile->tx_ring; ret = ptr_ring_resize_multiple(rings, n, dev->tx_queue_len, GFP_KERNEL, tun_ptr_free); kfree(rings); return ret; } static int tun_device_event(struct notifier_block *unused, unsigned long event, void *ptr) { struct net_device *dev = netdev_notifier_info_to_dev(ptr); struct tun_struct *tun = netdev_priv(dev); int i; if (dev->rtnl_link_ops != &tun_link_ops) return NOTIFY_DONE; switch (event) { case NETDEV_CHANGE_TX_QUEUE_LEN: if (tun_queue_resize(tun)) return NOTIFY_BAD; break; case NETDEV_UP: for (i = 0; i < tun->numqueues; i++) { struct tun_file *tfile; tfile = rtnl_dereference(tun->tfiles[i]); tfile->socket.sk->sk_write_space(tfile->socket.sk); } break; default: break; } return NOTIFY_DONE; } static struct notifier_block tun_notifier_block __read_mostly = { .notifier_call = tun_device_event, }; static int __init tun_init(void) { int ret = 0; pr_info("%s, %s\n", DRV_DESCRIPTION, DRV_VERSION); ret = rtnl_link_register(&tun_link_ops); if (ret) { pr_err("Can't register link_ops\n"); goto err_linkops; } ret = misc_register(&tun_miscdev); if (ret) { pr_err("Can't register misc device %d\n", TUN_MINOR); goto err_misc; } ret = register_netdevice_notifier(&tun_notifier_block); if (ret) { pr_err("Can't register netdevice notifier\n"); goto err_notifier; } return 0; err_notifier: misc_deregister(&tun_miscdev); err_misc: rtnl_link_unregister(&tun_link_ops); err_linkops: return ret; } static void tun_cleanup(void) { misc_deregister(&tun_miscdev); rtnl_link_unregister(&tun_link_ops); unregister_netdevice_notifier(&tun_notifier_block); } /* Get an underlying socket object from tun file. Returns error unless file is * attached to a device. The returned object works like a packet socket, it * can be used for sock_sendmsg/sock_recvmsg. The caller is responsible for * holding a reference to the file for as long as the socket is in use. */ struct socket *tun_get_socket(struct file *file) { struct tun_file *tfile; if (file->f_op != &tun_fops) return ERR_PTR(-EINVAL); tfile = file->private_data; if (!tfile) return ERR_PTR(-EBADFD); return &tfile->socket; } EXPORT_SYMBOL_GPL(tun_get_socket); struct ptr_ring *tun_get_tx_ring(struct file *file) { struct tun_file *tfile; if (file->f_op != &tun_fops) return ERR_PTR(-EINVAL); tfile = file->private_data; if (!tfile) return ERR_PTR(-EBADFD); return &tfile->tx_ring; } EXPORT_SYMBOL_GPL(tun_get_tx_ring); module_init(tun_init); module_exit(tun_cleanup); MODULE_DESCRIPTION(DRV_DESCRIPTION); MODULE_AUTHOR(DRV_COPYRIGHT); MODULE_LICENSE("GPL"); MODULE_ALIAS_MISCDEV(TUN_MINOR); MODULE_ALIAS("devname:net/tun");
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM signal #if !defined(_TRACE_SIGNAL_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_SIGNAL_H #include <linux/signal.h> #include <linux/sched.h> #include <linux/tracepoint.h> #define TP_STORE_SIGINFO(__entry, info) \ do { \ if (info == SEND_SIG_NOINFO) { \ __entry->errno = 0; \ __entry->code = SI_USER; \ } else if (info == SEND_SIG_PRIV) { \ __entry->errno = 0; \ __entry->code = SI_KERNEL; \ } else { \ __entry->errno = info->si_errno; \ __entry->code = info->si_code; \ } \ } while (0) #ifndef TRACE_HEADER_MULTI_READ enum { TRACE_SIGNAL_DELIVERED, TRACE_SIGNAL_IGNORED, TRACE_SIGNAL_ALREADY_PENDING, TRACE_SIGNAL_OVERFLOW_FAIL, TRACE_SIGNAL_LOSE_INFO, }; #endif /** * signal_generate - called when a signal is generated * @sig: signal number * @info: pointer to struct siginfo * @task: pointer to struct task_struct * @group: shared or private * @result: TRACE_SIGNAL_* * * Current process sends a 'sig' signal to 'task' process with * 'info' siginfo. If 'info' is SEND_SIG_NOINFO or SEND_SIG_PRIV, * 'info' is not a pointer and you can't access its field. Instead, * SEND_SIG_NOINFO means that si_code is SI_USER, and SEND_SIG_PRIV * means that si_code is SI_KERNEL. */ TRACE_EVENT(signal_generate, TP_PROTO(int sig, struct kernel_siginfo *info, struct task_struct *task, int group, int result), TP_ARGS(sig, info, task, group, result), TP_STRUCT__entry( __field( int, sig ) __field( int, errno ) __field( int, code ) __array( char, comm, TASK_COMM_LEN ) __field( pid_t, pid ) __field( int, group ) __field( int, result ) ), TP_fast_assign( __entry->sig = sig; TP_STORE_SIGINFO(__entry, info); memcpy(__entry->comm, task->comm, TASK_COMM_LEN); __entry->pid = task->pid; __entry->group = group; __entry->result = result; ), TP_printk("sig=%d errno=%d code=%d comm=%s pid=%d grp=%d res=%d", __entry->sig, __entry->errno, __entry->code, __entry->comm, __entry->pid, __entry->group, __entry->result) ); /** * signal_deliver - called when a signal is delivered * @sig: signal number * @info: pointer to struct siginfo * @ka: pointer to struct k_sigaction * * A 'sig' signal is delivered to current process with 'info' siginfo, * and it will be handled by 'ka'. ka->sa.sa_handler can be SIG_IGN or * SIG_DFL. * Note that some signals reported by signal_generate tracepoint can be * lost, ignored or modified (by debugger) before hitting this tracepoint. * This means, this can show which signals are actually delivered, but * matching generated signals and delivered signals may not be correct. */ TRACE_EVENT(signal_deliver, TP_PROTO(int sig, struct kernel_siginfo *info, struct k_sigaction *ka), TP_ARGS(sig, info, ka), TP_STRUCT__entry( __field( int, sig ) __field( int, errno ) __field( int, code ) __field( unsigned long, sa_handler ) __field( unsigned long, sa_flags ) ), TP_fast_assign( __entry->sig = sig; TP_STORE_SIGINFO(__entry, info); __entry->sa_handler = (unsigned long)ka->sa.sa_handler; __entry->sa_flags = ka->sa.sa_flags; ), TP_printk("sig=%d errno=%d code=%d sa_handler=%lx sa_flags=%lx", __entry->sig, __entry->errno, __entry->code, __entry->sa_handler, __entry->sa_flags) ); #endif /* _TRACE_SIGNAL_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 /* SPDX-License-Identifier: GPL-2.0 */ /* * This file provides wrappers with sanitizer instrumentation for atomic bit * operations. * * To use this functionality, an arch's bitops.h file needs to define each of * the below bit operations with an arch_ prefix (e.g. arch_set_bit(), * arch___set_bit(), etc.). */ #ifndef _ASM_GENERIC_BITOPS_INSTRUMENTED_ATOMIC_H #define _ASM_GENERIC_BITOPS_INSTRUMENTED_ATOMIC_H #include <linux/instrumented.h> /** * set_bit - Atomically set a bit in memory * @nr: the bit to set * @addr: the address to start counting from * * This is a relaxed atomic operation (no implied memory barriers). * * Note that @nr may be almost arbitrarily large; this function is not * restricted to acting on a single-word quantity. */ static inline void set_bit(long nr, volatile unsigned long *addr) { instrument_atomic_write(addr + BIT_WORD(nr), sizeof(long)); arch_set_bit(nr, addr); } /** * clear_bit - Clears a bit in memory * @nr: Bit to clear * @addr: Address to start counting from * * This is a relaxed atomic operation (no implied memory barriers). */ static inline void clear_bit(long nr, volatile unsigned long *addr) { instrument_atomic_write(addr + BIT_WORD(nr), sizeof(long)); arch_clear_bit(nr, addr); } /** * change_bit - Toggle a bit in memory * @nr: Bit to change * @addr: Address to start counting from * * This is a relaxed atomic operation (no implied memory barriers). * * Note that @nr may be almost arbitrarily large; this function is not * restricted to acting on a single-word quantity. */ static inline void change_bit(long nr, volatile unsigned long *addr) { instrument_atomic_write(addr + BIT_WORD(nr), sizeof(long)); arch_change_bit(nr, addr); } /** * test_and_set_bit - Set a bit and return its old value * @nr: Bit to set * @addr: Address to count from * * This is an atomic fully-ordered operation (implied full memory barrier). */ static inline bool test_and_set_bit(long nr, volatile unsigned long *addr) { instrument_atomic_read_write(addr + BIT_WORD(nr), sizeof(long)); return arch_test_and_set_bit(nr, addr); } /** * test_and_clear_bit - Clear a bit and return its old value * @nr: Bit to clear * @addr: Address to count from * * This is an atomic fully-ordered operation (implied full memory barrier). */ static inline bool test_and_clear_bit(long nr, volatile unsigned long *addr) { instrument_atomic_read_write(addr + BIT_WORD(nr), sizeof(long)); return arch_test_and_clear_bit(nr, addr); } /** * test_and_change_bit - Change a bit and return its old value * @nr: Bit to change * @addr: Address to count from * * This is an atomic fully-ordered operation (implied full memory barrier). */ static inline bool test_and_change_bit(long nr, volatile unsigned long *addr) { instrument_atomic_read_write(addr + BIT_WORD(nr), sizeof(long)); return arch_test_and_change_bit(nr, addr); } #endif /* _ASM_GENERIC_BITOPS_INSTRUMENTED_NON_ATOMIC_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 /* SPDX-License-Identifier: GPL-2.0 */ /* * Generic RTC interface. * This version contains the part of the user interface to the Real Time Clock * service. It is used with both the legacy mc146818 and also EFI * Struct rtc_time and first 12 ioctl by Paul Gortmaker, 1996 - separated out * from <linux/mc146818rtc.h> to this file for 2.4 kernels. * * Copyright (C) 1999 Hewlett-Packard Co. * Copyright (C) 1999 Stephane Eranian <eranian@hpl.hp.com> */ #ifndef _LINUX_RTC_H_ #define _LINUX_RTC_H_ #include <linux/types.h> #include <linux/interrupt.h> #include <linux/nvmem-provider.h> #include <uapi/linux/rtc.h> extern int rtc_month_days(unsigned int month, unsigned int year); extern int rtc_year_days(unsigned int day, unsigned int month, unsigned int year); extern int rtc_valid_tm(struct rtc_time *tm); extern time64_t rtc_tm_to_time64(struct rtc_time *tm); extern void rtc_time64_to_tm(time64_t time, struct rtc_time *tm); ktime_t rtc_tm_to_ktime(struct rtc_time tm); struct rtc_time rtc_ktime_to_tm(ktime_t kt); /* * rtc_tm_sub - Return the difference in seconds. */ static inline time64_t rtc_tm_sub(struct rtc_time *lhs, struct rtc_time *rhs) { return rtc_tm_to_time64(lhs) - rtc_tm_to_time64(rhs); } #include <linux/device.h> #include <linux/seq_file.h> #include <linux/cdev.h> #include <linux/poll.h> #include <linux/mutex.h> #include <linux/timerqueue.h> #include <linux/workqueue.h> extern struct class *rtc_class; /* * For these RTC methods the device parameter is the physical device * on whatever bus holds the hardware (I2C, Platform, SPI, etc), which * was passed to rtc_device_register(). Its driver_data normally holds * device state, including the rtc_device pointer for the RTC. * * Most of these methods are called with rtc_device.ops_lock held, * through the rtc_*(struct rtc_device *, ...) calls. * * The (current) exceptions are mostly filesystem hooks: * - the proc() hook for procfs */ struct rtc_class_ops { int (*ioctl)(struct device *, unsigned int, unsigned long); int (*read_time)(struct device *, struct rtc_time *); int (*set_time)(struct device *, struct rtc_time *); int (*read_alarm)(struct device *, struct rtc_wkalrm *); int (*set_alarm)(struct device *, struct rtc_wkalrm *); int (*proc)(struct device *, struct seq_file *); int (*alarm_irq_enable)(struct device *, unsigned int enabled); int (*read_offset)(struct device *, long *offset); int (*set_offset)(struct device *, long offset); }; struct rtc_device; struct rtc_timer { struct timerqueue_node node; ktime_t period; void (*func)(struct rtc_device *rtc); struct rtc_device *rtc; int enabled; }; /* flags */ #define RTC_DEV_BUSY 0 struct rtc_device { struct device dev; struct module *owner; int id; const struct rtc_class_ops *ops; struct mutex ops_lock; struct cdev char_dev; unsigned long flags; unsigned long irq_data; spinlock_t irq_lock; wait_queue_head_t irq_queue; struct fasync_struct *async_queue; int irq_freq; int max_user_freq; struct timerqueue_head timerqueue; struct rtc_timer aie_timer; struct rtc_timer uie_rtctimer; struct hrtimer pie_timer; /* sub second exp, so needs hrtimer */ int pie_enabled; struct work_struct irqwork; /* Some hardware can't support UIE mode */ int uie_unsupported; /* Number of nsec it takes to set the RTC clock. This influences when * the set ops are called. An offset: * - of 0.5 s will call RTC set for wall clock time 10.0 s at 9.5 s * - of 1.5 s will call RTC set for wall clock time 10.0 s at 8.5 s * - of -0.5 s will call RTC set for wall clock time 10.0 s at 10.5 s */ long set_offset_nsec; bool registered; /* Old ABI support */ bool nvram_old_abi; struct bin_attribute *nvram; time64_t range_min; timeu64_t range_max; time64_t start_secs; time64_t offset_secs; bool set_start_time; #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL struct work_struct uie_task; struct timer_list uie_timer; /* Those fields are protected by rtc->irq_lock */ unsigned int oldsecs; unsigned int uie_irq_active:1; unsigned int stop_uie_polling:1; unsigned int uie_task_active:1; unsigned int uie_timer_active:1; #endif }; #define to_rtc_device(d) container_of(d, struct rtc_device, dev) #define rtc_lock(d) mutex_lock(&d->ops_lock) #define rtc_unlock(d) mutex_unlock(&d->ops_lock) /* useful timestamps */ #define RTC_TIMESTAMP_BEGIN_0000 -62167219200ULL /* 0000-01-01 00:00:00 */ #define RTC_TIMESTAMP_BEGIN_1900 -2208988800LL /* 1900-01-01 00:00:00 */ #define RTC_TIMESTAMP_BEGIN_2000 946684800LL /* 2000-01-01 00:00:00 */ #define RTC_TIMESTAMP_END_2063 2966371199LL /* 2063-12-31 23:59:59 */ #define RTC_TIMESTAMP_END_2079 3471292799LL /* 2079-12-31 23:59:59 */ #define RTC_TIMESTAMP_END_2099 4102444799LL /* 2099-12-31 23:59:59 */ #define RTC_TIMESTAMP_END_2199 7258118399LL /* 2199-12-31 23:59:59 */ #define RTC_TIMESTAMP_END_9999 253402300799LL /* 9999-12-31 23:59:59 */ extern struct rtc_device *devm_rtc_device_register(struct device *dev, const char *name, const struct rtc_class_ops *ops, struct module *owner); struct rtc_device *devm_rtc_allocate_device(struct device *dev); int __rtc_register_device(struct module *owner, struct rtc_device *rtc); extern int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm); extern int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm); extern int rtc_set_ntp_time(struct timespec64 now, unsigned long *target_nsec); int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm); extern int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alrm); extern int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alrm); extern int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alrm); extern void rtc_update_irq(struct rtc_device *rtc, unsigned long num, unsigned long events); extern struct rtc_device *rtc_class_open(const char *name); extern void rtc_class_close(struct rtc_device *rtc); extern int rtc_irq_set_state(struct rtc_device *rtc, int enabled); extern int rtc_irq_set_freq(struct rtc_device *rtc, int freq); extern int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled); extern int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled); extern int rtc_dev_update_irq_enable_emul(struct rtc_device *rtc, unsigned int enabled); void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode); void rtc_aie_update_irq(struct rtc_device *rtc); void rtc_uie_update_irq(struct rtc_device *rtc); enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer); void rtc_timer_init(struct rtc_timer *timer, void (*f)(struct rtc_device *r), struct rtc_device *rtc); int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer, ktime_t expires, ktime_t period); void rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer); int rtc_read_offset(struct rtc_device *rtc, long *offset); int rtc_set_offset(struct rtc_device *rtc, long offset); void rtc_timer_do_work(struct work_struct *work); static inline bool is_leap_year(unsigned int year) { return (!(year % 4) && (year % 100)) || !(year % 400); } /* Determine if we can call to driver to set the time. Drivers can only be * called to set a second aligned time value, and the field set_offset_nsec * specifies how far away from the second aligned time to call the driver. * * This also computes 'to_set' which is the time we are trying to set, and has * a zero in tv_nsecs, such that: * to_set - set_delay_nsec == now +/- FUZZ * */ static inline bool rtc_tv_nsec_ok(s64 set_offset_nsec, struct timespec64 *to_set, const struct timespec64 *now) { /* Allowed error in tv_nsec, arbitarily set to 5 jiffies in ns. */ const unsigned long TIME_SET_NSEC_FUZZ = TICK_NSEC * 5; struct timespec64 delay = {.tv_sec = 0, .tv_nsec = set_offset_nsec}; *to_set = timespec64_add(*now, delay); if (to_set->tv_nsec < TIME_SET_NSEC_FUZZ) { to_set->tv_nsec = 0; return true; } if (to_set->tv_nsec > NSEC_PER_SEC - TIME_SET_NSEC_FUZZ) { to_set->tv_sec++; to_set->tv_nsec = 0; return true; } return false; } #define rtc_register_device(device) \ __rtc_register_device(THIS_MODULE, device) #ifdef CONFIG_RTC_HCTOSYS_DEVICE extern int rtc_hctosys_ret; #else #define rtc_hctosys_ret -ENODEV #endif #ifdef CONFIG_RTC_NVMEM int rtc_nvmem_register(struct rtc_device *rtc, struct nvmem_config *nvmem_config); void rtc_nvmem_unregister(struct rtc_device *rtc); #else static inline int rtc_nvmem_register(struct rtc_device *rtc, struct nvmem_config *nvmem_config) { return 0; } static inline void rtc_nvmem_unregister(struct rtc_device *rtc) {} #endif #ifdef CONFIG_RTC_INTF_SYSFS int rtc_add_group(struct rtc_device *rtc, const struct attribute_group *grp); int rtc_add_groups(struct rtc_device *rtc, const struct attribute_group **grps); #else static inline int rtc_add_group(struct rtc_device *rtc, const struct attribute_group *grp) { return 0; } static inline int rtc_add_groups(struct rtc_device *rtc, const struct attribute_group **grps) { return 0; } #endif #endif /* _LINUX_RTC_H_ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 /* SPDX-License-Identifier: GPL-2.0-only */ /* * Supervisor Mode Access Prevention support * * Copyright (C) 2012 Intel Corporation * Author: H. Peter Anvin <hpa@linux.intel.com> */ #ifndef _ASM_X86_SMAP_H #define _ASM_X86_SMAP_H #include <asm/nops.h> #include <asm/cpufeatures.h> /* "Raw" instruction opcodes */ #define __ASM_CLAC ".byte 0x0f,0x01,0xca" #define __ASM_STAC ".byte 0x0f,0x01,0xcb" #ifdef __ASSEMBLY__ #include <asm/alternative-asm.h> #ifdef CONFIG_X86_SMAP #define ASM_CLAC \ ALTERNATIVE "", __ASM_CLAC, X86_FEATURE_SMAP #define ASM_STAC \ ALTERNATIVE "", __ASM_STAC, X86_FEATURE_SMAP #else /* CONFIG_X86_SMAP */ #define ASM_CLAC #define ASM_STAC #endif /* CONFIG_X86_SMAP */ #else /* __ASSEMBLY__ */ #include <asm/alternative.h> #ifdef CONFIG_X86_SMAP static __always_inline void clac(void) { /* Note: a barrier is implicit in alternative() */ alternative("", __ASM_CLAC, X86_FEATURE_SMAP); } static __always_inline void stac(void) { /* Note: a barrier is implicit in alternative() */ alternative("", __ASM_STAC, X86_FEATURE_SMAP); } static __always_inline unsigned long smap_save(void) { unsigned long flags; asm volatile ("# smap_save\n\t" ALTERNATIVE("jmp 1f", "", X86_FEATURE_SMAP) "pushf; pop %0; " __ASM_CLAC "\n\t" "1:" : "=rm" (flags) : : "memory", "cc"); return flags; } static __always_inline void smap_restore(unsigned long flags) { asm volatile ("# smap_restore\n\t" ALTERNATIVE("jmp 1f", "", X86_FEATURE_SMAP) "push %0; popf\n\t" "1:" : : "g" (flags) : "memory", "cc"); } /* These macros can be used in asm() statements */ #define ASM_CLAC \ ALTERNATIVE("", __ASM_CLAC, X86_FEATURE_SMAP) #define ASM_STAC \ ALTERNATIVE("", __ASM_STAC, X86_FEATURE_SMAP) #else /* CONFIG_X86_SMAP */ static inline void clac(void) { } static inline void stac(void) { } static inline unsigned long smap_save(void) { return 0; } static inline void smap_restore(unsigned long flags) { } #define ASM_CLAC #define ASM_STAC #endif /* CONFIG_X86_SMAP */ #endif /* __ASSEMBLY__ */ #endif /* _ASM_X86_SMAP_H */
1 2 3 4 5 6 7 8 9 10 11 12 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_MSDOS_FS_H #define _LINUX_MSDOS_FS_H #include <uapi/linux/msdos_fs.h> /* media of boot sector */ static inline int fat_valid_media(u8 media) { return 0xf8 <= media || media == 0xf0; } #endif /* !_LINUX_MSDOS_FS_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Cryptographic scatter and gather helpers. * * Copyright (c) 2002 James Morris <jmorris@intercode.com.au> * Copyright (c) 2002 Adam J. Richter <adam@yggdrasil.com> * Copyright (c) 2004 Jean-Luc Cooke <jlcooke@certainkey.com> * Copyright (c) 2007 Herbert Xu <herbert@gondor.apana.org.au> */ #ifndef _CRYPTO_SCATTERWALK_H #define _CRYPTO_SCATTERWALK_H #include <crypto/algapi.h> #include <linux/highmem.h> #include <linux/kernel.h> #include <linux/scatterlist.h> static inline void scatterwalk_crypto_chain(struct scatterlist *head, struct scatterlist *sg, int num) { if (sg) sg_chain(head, num, sg); else sg_mark_end(head); } static inline unsigned int scatterwalk_pagelen(struct scatter_walk *walk) { unsigned int len = walk->sg->offset + walk->sg->length - walk->offset; unsigned int len_this_page = offset_in_page(~walk->offset) + 1; return len_this_page > len ? len : len_this_page; } static inline unsigned int scatterwalk_clamp(struct scatter_walk *walk, unsigned int nbytes) { unsigned int len_this_page = scatterwalk_pagelen(walk); return nbytes > len_this_page ? len_this_page : nbytes; } static inline void scatterwalk_advance(struct scatter_walk *walk, unsigned int nbytes) { walk->offset += nbytes; } static inline unsigned int scatterwalk_aligned(struct scatter_walk *walk, unsigned int alignmask) { return !(walk->offset & alignmask); } static inline struct page *scatterwalk_page(struct scatter_walk *walk) { return sg_page(walk->sg) + (walk->offset >> PAGE_SHIFT); } static inline void scatterwalk_unmap(void *vaddr) { kunmap_atomic(vaddr); } static inline void scatterwalk_start(struct scatter_walk *walk, struct scatterlist *sg) { walk->sg = sg; walk->offset = sg->offset; } static inline void *scatterwalk_map(struct scatter_walk *walk) { return kmap_atomic(scatterwalk_page(walk)) + offset_in_page(walk->offset); } static inline void scatterwalk_pagedone(struct scatter_walk *walk, int out, unsigned int more) { if (out) { struct page *page; page = sg_page(walk->sg) + ((walk->offset - 1) >> PAGE_SHIFT); /* Test ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE first as * PageSlab cannot be optimised away per se due to * use of volatile pointer. */ if (ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE && !PageSlab(page)) flush_dcache_page(page); } if (more && walk->offset >= walk->sg->offset + walk->sg->length) scatterwalk_start(walk, sg_next(walk->sg)); } static inline void scatterwalk_done(struct scatter_walk *walk, int out, int more) { if (!more || walk->offset >= walk->sg->offset + walk->sg->length || !(walk->offset & (PAGE_SIZE - 1))) scatterwalk_pagedone(walk, out, more); } void scatterwalk_copychunks(void *buf, struct scatter_walk *walk, size_t nbytes, int out); void *scatterwalk_map(struct scatter_walk *walk); void scatterwalk_map_and_copy(void *buf, struct scatterlist *sg, unsigned int start, unsigned int nbytes, int out); struct scatterlist *scatterwalk_ffwd(struct scatterlist dst[2], struct scatterlist *src, unsigned int len); #endif /* _CRYPTO_SCATTERWALK_H */
1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 // SPDX-License-Identifier: GPL-2.0-or-later /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Ethernet-type device handling. * * Version: @(#)eth.c 1.0.7 05/25/93 * * Authors: Ross Biro * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> * Mark Evans, <evansmp@uhura.aston.ac.uk> * Florian La Roche, <rzsfl@rz.uni-sb.de> * Alan Cox, <gw4pts@gw4pts.ampr.org> * * Fixes: * Mr Linux : Arp problems * Alan Cox : Generic queue tidyup (very tiny here) * Alan Cox : eth_header ntohs should be htons * Alan Cox : eth_rebuild_header missing an htons and * minor other things. * Tegge : Arp bug fixes. * Florian : Removed many unnecessary functions, code cleanup * and changes for new arp and skbuff. * Alan Cox : Redid header building to reflect new format. * Alan Cox : ARP only when compiled with CONFIG_INET * Greg Page : 802.2 and SNAP stuff. * Alan Cox : MAC layer pointers/new format. * Paul Gortmaker : eth_copy_and_sum shouldn't csum padding. * Alan Cox : Protect against forwarding explosions with * older network drivers and IFF_ALLMULTI. * Christer Weinigel : Better rebuild header message. * Andrew Morton : 26Feb01: kill ether_setup() - use netdev_boot_setup(). */ #include <linux/module.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/string.h> #include <linux/mm.h> #include <linux/socket.h> #include <linux/in.h> #include <linux/inet.h> #include <linux/ip.h> #include <linux/netdevice.h> #include <linux/nvmem-consumer.h> #include <linux/etherdevice.h> #include <linux/skbuff.h> #include <linux/errno.h> #include <linux/init.h> #include <linux/if_ether.h> #include <linux/of_net.h> #include <linux/pci.h> #include <net/dst.h> #include <net/arp.h> #include <net/sock.h> #include <net/ipv6.h> #include <net/ip.h> #include <net/dsa.h> #include <net/flow_dissector.h> #include <linux/uaccess.h> #include <net/pkt_sched.h> __setup("ether=", netdev_boot_setup); /** * eth_header - create the Ethernet header * @skb: buffer to alter * @dev: source device * @type: Ethernet type field * @daddr: destination address (NULL leave destination address) * @saddr: source address (NULL use device source address) * @len: packet length (<= skb->len) * * * Set the protocol type. For a packet of type ETH_P_802_3/2 we put the length * in here instead. */ int eth_header(struct sk_buff *skb, struct net_device *dev, unsigned short type, const void *daddr, const void *saddr, unsigned int len) { struct ethhdr *eth = skb_push(skb, ETH_HLEN); if (type != ETH_P_802_3 && type != ETH_P_802_2) eth->h_proto = htons(type); else eth->h_proto = htons(len); /* * Set the source hardware address. */ if (!saddr) saddr = dev->dev_addr; memcpy(eth->h_source, saddr, ETH_ALEN); if (daddr) { memcpy(eth->h_dest, daddr, ETH_ALEN); return ETH_HLEN; } /* * Anyway, the loopback-device should never use this function... */ if (dev->flags & (IFF_LOOPBACK | IFF_NOARP)) { eth_zero_addr(eth->h_dest); return ETH_HLEN; } return -ETH_HLEN; } EXPORT_SYMBOL(eth_header); /** * eth_get_headlen - determine the length of header for an ethernet frame * @dev: pointer to network device * @data: pointer to start of frame * @len: total length of frame * * Make a best effort attempt to pull the length for all of the headers for * a given frame in a linear buffer. */ u32 eth_get_headlen(const struct net_device *dev, void *data, unsigned int len) { const unsigned int flags = FLOW_DISSECTOR_F_PARSE_1ST_FRAG; const struct ethhdr *eth = (const struct ethhdr *)data; struct flow_keys_basic keys; /* this should never happen, but better safe than sorry */ if (unlikely(len < sizeof(*eth))) return len; /* parse any remaining L2/L3 headers, check for L4 */ if (!skb_flow_dissect_flow_keys_basic(dev_net(dev), NULL, &keys, data, eth->h_proto, sizeof(*eth), len, flags)) return max_t(u32, keys.control.thoff, sizeof(*eth)); /* parse for any L4 headers */ return min_t(u32, __skb_get_poff(NULL, data, &keys, len), len); } EXPORT_SYMBOL(eth_get_headlen); /** * eth_type_trans - determine the packet's protocol ID. * @skb: received socket data * @dev: receiving network device * * The rule here is that we * assume 802.3 if the type field is short enough to be a length. * This is normal practice and works for any 'now in use' protocol. */ __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev) { unsigned short _service_access_point; const unsigned short *sap; const struct ethhdr *eth; skb->dev = dev; skb_reset_mac_header(skb); eth = (struct ethhdr *)skb->data; skb_pull_inline(skb, ETH_HLEN); if (unlikely(!ether_addr_equal_64bits(eth->h_dest, dev->dev_addr))) { if (unlikely(is_multicast_ether_addr_64bits(eth->h_dest))) { if (ether_addr_equal_64bits(eth->h_dest, dev->broadcast)) skb->pkt_type = PACKET_BROADCAST; else skb->pkt_type = PACKET_MULTICAST; } else { skb->pkt_type = PACKET_OTHERHOST; } } /* * Some variants of DSA tagging don't have an ethertype field * at all, so we check here whether one of those tagging * variants has been configured on the receiving interface, * and if so, set skb->protocol without looking at the packet. * The DSA tagging protocol may be able to decode some but not all * traffic (for example only for management). In that case give it the * option to filter the packets from which it can decode source port * information. */ if (unlikely(netdev_uses_dsa(dev)) && dsa_can_decode(skb, dev)) return htons(ETH_P_XDSA); if (likely(eth_proto_is_802_3(eth->h_proto))) return eth->h_proto; /* * This is a magic hack to spot IPX packets. Older Novell breaks * the protocol design and runs IPX over 802.3 without an 802.2 LLC * layer. We look for FFFF which isn't a used 802.2 SSAP/DSAP. This * won't work for fault tolerant netware but does for the rest. */ sap = skb_header_pointer(skb, 0, sizeof(*sap), &_service_access_point); if (sap && *sap == 0xFFFF) return htons(ETH_P_802_3); /* * Real 802.2 LLC */ return htons(ETH_P_802_2); } EXPORT_SYMBOL(eth_type_trans); /** * eth_header_parse - extract hardware address from packet * @skb: packet to extract header from * @haddr: destination buffer */ int eth_header_parse(const struct sk_buff *skb, unsigned char *haddr) { const struct ethhdr *eth = eth_hdr(skb); memcpy(haddr, eth->h_source, ETH_ALEN); return ETH_ALEN; } EXPORT_SYMBOL(eth_header_parse); /** * eth_header_cache - fill cache entry from neighbour * @neigh: source neighbour * @hh: destination cache entry * @type: Ethernet type field * * Create an Ethernet header template from the neighbour. */ int eth_header_cache(const struct neighbour *neigh, struct hh_cache *hh, __be16 type) { struct ethhdr *eth; const struct net_device *dev = neigh->dev; eth = (struct ethhdr *) (((u8 *) hh->hh_data) + (HH_DATA_OFF(sizeof(*eth)))); if (type == htons(ETH_P_802_3)) return -1; eth->h_proto = type; memcpy(eth->h_source, dev->dev_addr, ETH_ALEN); memcpy(eth->h_dest, neigh->ha, ETH_ALEN); /* Pairs with READ_ONCE() in neigh_resolve_output(), * neigh_hh_output() and neigh_update_hhs(). */ smp_store_release(&hh->hh_len, ETH_HLEN); return 0; } EXPORT_SYMBOL(eth_header_cache); /** * eth_header_cache_update - update cache entry * @hh: destination cache entry * @dev: network device * @haddr: new hardware address * * Called by Address Resolution module to notify changes in address. */ void eth_header_cache_update(struct hh_cache *hh, const struct net_device *dev, const unsigned char *haddr) { memcpy(((u8 *) hh->hh_data) + HH_DATA_OFF(sizeof(struct ethhdr)), haddr, ETH_ALEN); } EXPORT_SYMBOL(eth_header_cache_update); /** * eth_header_parser_protocol - extract protocol from L2 header * @skb: packet to extract protocol from */ __be16 eth_header_parse_protocol(const struct sk_buff *skb) { const struct ethhdr *eth = eth_hdr(skb); return eth->h_proto; } EXPORT_SYMBOL(eth_header_parse_protocol); /** * eth_prepare_mac_addr_change - prepare for mac change * @dev: network device * @p: socket address */ int eth_prepare_mac_addr_change(struct net_device *dev, void *p) { struct sockaddr *addr = p; if (!(dev->priv_flags & IFF_LIVE_ADDR_CHANGE) && netif_running(dev)) return -EBUSY; if (!is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; return 0; } EXPORT_SYMBOL(eth_prepare_mac_addr_change); /** * eth_commit_mac_addr_change - commit mac change * @dev: network device * @p: socket address */ void eth_commit_mac_addr_change(struct net_device *dev, void *p) { struct sockaddr *addr = p; memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN); } EXPORT_SYMBOL(eth_commit_mac_addr_change); /** * eth_mac_addr - set new Ethernet hardware address * @dev: network device * @p: socket address * * Change hardware address of device. * * This doesn't change hardware matching, so needs to be overridden * for most real devices. */ int eth_mac_addr(struct net_device *dev, void *p) { int ret; ret = eth_prepare_mac_addr_change(dev, p); if (ret < 0) return ret; eth_commit_mac_addr_change(dev, p); return 0; } EXPORT_SYMBOL(eth_mac_addr); int eth_validate_addr(struct net_device *dev) { if (!is_valid_ether_addr(dev->dev_addr)) return -EADDRNOTAVAIL; return 0; } EXPORT_SYMBOL(eth_validate_addr); const struct header_ops eth_header_ops ____cacheline_aligned = { .create = eth_header, .parse = eth_header_parse, .cache = eth_header_cache, .cache_update = eth_header_cache_update, .parse_protocol = eth_header_parse_protocol, }; /** * ether_setup - setup Ethernet network device * @dev: network device * * Fill in the fields of the device structure with Ethernet-generic values. */ void ether_setup(struct net_device *dev) { dev->header_ops = &eth_header_ops; dev->type = ARPHRD_ETHER; dev->hard_header_len = ETH_HLEN; dev->min_header_len = ETH_HLEN; dev->mtu = ETH_DATA_LEN; dev->min_mtu = ETH_MIN_MTU; dev->max_mtu = ETH_DATA_LEN; dev->addr_len = ETH_ALEN; dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; dev->flags = IFF_BROADCAST|IFF_MULTICAST; dev->priv_flags |= IFF_TX_SKB_SHARING; eth_broadcast_addr(dev->broadcast); } EXPORT_SYMBOL(ether_setup); /** * alloc_etherdev_mqs - Allocates and sets up an Ethernet device * @sizeof_priv: Size of additional driver-private structure to be allocated * for this Ethernet device * @txqs: The number of TX queues this device has. * @rxqs: The number of RX queues this device has. * * Fill in the fields of the device structure with Ethernet-generic * values. Basically does everything except registering the device. * * Constructs a new net device, complete with a private data area of * size (sizeof_priv). A 32-byte (not bit) alignment is enforced for * this private data area. */ struct net_device *alloc_etherdev_mqs(int sizeof_priv, unsigned int txqs, unsigned int rxqs) { return alloc_netdev_mqs(sizeof_priv, "eth%d", NET_NAME_UNKNOWN, ether_setup, txqs, rxqs); } EXPORT_SYMBOL(alloc_etherdev_mqs); ssize_t sysfs_format_mac(char *buf, const unsigned char *addr, int len) { return scnprintf(buf, PAGE_SIZE, "%*phC\n", len, addr); } EXPORT_SYMBOL(sysfs_format_mac); struct sk_buff *eth_gro_receive(struct list_head *head, struct sk_buff *skb) { const struct packet_offload *ptype; unsigned int hlen, off_eth; struct sk_buff *pp = NULL; struct ethhdr *eh, *eh2; struct sk_buff *p; __be16 type; int flush = 1; off_eth = skb_gro_offset(skb); hlen = off_eth + sizeof(*eh); eh = skb_gro_header_fast(skb, off_eth); if (skb_gro_header_hard(skb, hlen)) { eh = skb_gro_header_slow(skb, hlen, off_eth); if (unlikely(!eh)) goto out; } flush = 0; list_for_each_entry(p, head, list) { if (!NAPI_GRO_CB(p)->same_flow) continue; eh2 = (struct ethhdr *)(p->data + off_eth); if (compare_ether_header(eh, eh2)) { NAPI_GRO_CB(p)->same_flow = 0; continue; } } type = eh->h_proto; rcu_read_lock(); ptype = gro_find_receive_by_type(type); if (ptype == NULL) { flush = 1; goto out_unlock; } skb_gro_pull(skb, sizeof(*eh)); skb_gro_postpull_rcsum(skb, eh, sizeof(*eh)); pp = call_gro_receive(ptype->callbacks.gro_receive, head, skb); out_unlock: rcu_read_unlock(); out: skb_gro_flush_final(skb, pp, flush); return pp; } EXPORT_SYMBOL(eth_gro_receive); int eth_gro_complete(struct sk_buff *skb, int nhoff) { struct ethhdr *eh = (struct ethhdr *)(skb->data + nhoff); __be16 type = eh->h_proto; struct packet_offload *ptype; int err = -ENOSYS; if (skb->encapsulation) skb_set_inner_mac_header(skb, nhoff); rcu_read_lock(); ptype = gro_find_complete_by_type(type); if (ptype != NULL) err = ptype->callbacks.gro_complete(skb, nhoff + sizeof(struct ethhdr)); rcu_read_unlock(); return err; } EXPORT_SYMBOL(eth_gro_complete); static struct packet_offload eth_packet_offload __read_mostly = { .type = cpu_to_be16(ETH_P_TEB), .priority = 10, .callbacks = { .gro_receive = eth_gro_receive, .gro_complete = eth_gro_complete, }, }; static int __init eth_offload_init(void) { dev_add_offload(&eth_packet_offload); return 0; } fs_initcall(eth_offload_init); unsigned char * __weak arch_get_platform_mac_address(void) { return NULL; } int eth_platform_get_mac_address(struct device *dev, u8 *mac_addr) { const unsigned char *addr = NULL; if (dev->of_node) addr = of_get_mac_address(dev->of_node); if (IS_ERR_OR_NULL(addr)) addr = arch_get_platform_mac_address(); if (!addr) return -ENODEV; ether_addr_copy(mac_addr, addr); return 0; } EXPORT_SYMBOL(eth_platform_get_mac_address); /** * Obtain the MAC address from an nvmem cell named 'mac-address' associated * with given device. * * @dev: Device with which the mac-address cell is associated. * @addrbuf: Buffer to which the MAC address will be copied on success. * * Returns 0 on success or a negative error number on failure. */ int nvmem_get_mac_address(struct device *dev, void *addrbuf) { struct nvmem_cell *cell; const void *mac; size_t len; cell = nvmem_cell_get(dev, "mac-address"); if (IS_ERR(cell)) return PTR_ERR(cell); mac = nvmem_cell_read(cell, &len); nvmem_cell_put(cell); if (IS_ERR(mac)) return PTR_ERR(mac); if (len != ETH_ALEN || !is_valid_ether_addr(mac)) { kfree(mac); return -EINVAL; } ether_addr_copy(addrbuf, mac); kfree(mac); return 0; } EXPORT_SYMBOL(nvmem_get_mac_address);
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __NET_LWTUNNEL_H #define __NET_LWTUNNEL_H 1 #include <linux/lwtunnel.h> #include <linux/netdevice.h> #include <linux/skbuff.h> #include <linux/types.h> #include <net/route.h> #define LWTUNNEL_HASH_BITS 7 #define LWTUNNEL_HASH_SIZE (1 << LWTUNNEL_HASH_BITS) /* lw tunnel state flags */ #define LWTUNNEL_STATE_OUTPUT_REDIRECT BIT(0) #define LWTUNNEL_STATE_INPUT_REDIRECT BIT(1) #define LWTUNNEL_STATE_XMIT_REDIRECT BIT(2) enum { LWTUNNEL_XMIT_DONE, LWTUNNEL_XMIT_CONTINUE, }; struct lwtunnel_state { __u16 type; __u16 flags; __u16 headroom; atomic_t refcnt; int (*orig_output)(struct net *net, struct sock *sk, struct sk_buff *skb); int (*orig_input)(struct sk_buff *); struct rcu_head rcu; __u8 data[]; }; struct lwtunnel_encap_ops { int (*build_state)(struct net *net, struct nlattr *encap, unsigned int family, const void *cfg, struct lwtunnel_state **ts, struct netlink_ext_ack *extack); void (*destroy_state)(struct lwtunnel_state *lws); int (*output)(struct net *net, struct sock *sk, struct sk_buff *skb); int (*input)(struct sk_buff *skb); int (*fill_encap)(struct sk_buff *skb, struct lwtunnel_state *lwtstate); int (*get_encap_size)(struct lwtunnel_state *lwtstate); int (*cmp_encap)(struct lwtunnel_state *a, struct lwtunnel_state *b); int (*xmit)(struct sk_buff *skb); struct module *owner; }; #ifdef CONFIG_LWTUNNEL void lwtstate_free(struct lwtunnel_state *lws); static inline struct lwtunnel_state * lwtstate_get(struct lwtunnel_state *lws) { if (lws) atomic_inc(&lws->refcnt); return lws; } static inline void lwtstate_put(struct lwtunnel_state *lws) { if (!lws) return; if (atomic_dec_and_test(&lws->refcnt)) lwtstate_free(lws); } static inline bool lwtunnel_output_redirect(struct lwtunnel_state *lwtstate) { if (lwtstate && (lwtstate->flags & LWTUNNEL_STATE_OUTPUT_REDIRECT)) return true; return false; } static inline bool lwtunnel_input_redirect(struct lwtunnel_state *lwtstate) { if (lwtstate && (lwtstate->flags & LWTUNNEL_STATE_INPUT_REDIRECT)) return true; return false; } static inline bool lwtunnel_xmit_redirect(struct lwtunnel_state *lwtstate) { if (lwtstate && (lwtstate->flags & LWTUNNEL_STATE_XMIT_REDIRECT)) return true; return false; } static inline unsigned int lwtunnel_headroom(struct lwtunnel_state *lwtstate, unsigned int mtu) { if ((lwtunnel_xmit_redirect(lwtstate) || lwtunnel_output_redirect(lwtstate)) && lwtstate->headroom < mtu) return lwtstate->headroom; return 0; } int lwtunnel_encap_add_ops(const struct lwtunnel_encap_ops *op, unsigned int num); int lwtunnel_encap_del_ops(const struct lwtunnel_encap_ops *op, unsigned int num); int lwtunnel_valid_encap_type(u16 encap_type, struct netlink_ext_ack *extack); int lwtunnel_valid_encap_type_attr(struct nlattr *attr, int len, struct netlink_ext_ack *extack); int lwtunnel_build_state(struct net *net, u16 encap_type, struct nlattr *encap, unsigned int family, const void *cfg, struct lwtunnel_state **lws, struct netlink_ext_ack *extack); int lwtunnel_fill_encap(struct sk_buff *skb, struct lwtunnel_state *lwtstate, int encap_attr, int encap_type_attr); int lwtunnel_get_encap_size(struct lwtunnel_state *lwtstate); struct lwtunnel_state *lwtunnel_state_alloc(int hdr_len); int lwtunnel_cmp_encap(struct lwtunnel_state *a, struct lwtunnel_state *b); int lwtunnel_output(struct net *net, struct sock *sk, struct sk_buff *skb); int lwtunnel_input(struct sk_buff *skb); int lwtunnel_xmit(struct sk_buff *skb); int bpf_lwt_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len, bool ingress); static inline void lwtunnel_set_redirect(struct dst_entry *dst) { if (lwtunnel_output_redirect(dst->lwtstate)) { dst->lwtstate->orig_output = dst->output; dst->output = lwtunnel_output; } if (lwtunnel_input_redirect(dst->lwtstate)) { dst->lwtstate->orig_input = dst->input; dst->input = lwtunnel_input; } } #else static inline void lwtstate_free(struct lwtunnel_state *lws) { } static inline struct lwtunnel_state * lwtstate_get(struct lwtunnel_state *lws) { return lws; } static inline void lwtstate_put(struct lwtunnel_state *lws) { } static inline bool lwtunnel_output_redirect(struct lwtunnel_state *lwtstate) { return false; } static inline bool lwtunnel_input_redirect(struct lwtunnel_state *lwtstate) { return false; } static inline bool lwtunnel_xmit_redirect(struct lwtunnel_state *lwtstate) { return false; } static inline void lwtunnel_set_redirect(struct dst_entry *dst) { } static inline unsigned int lwtunnel_headroom(struct lwtunnel_state *lwtstate, unsigned int mtu) { return 0; } static inline int lwtunnel_encap_add_ops(const struct lwtunnel_encap_ops *op, unsigned int num) { return -EOPNOTSUPP; } static inline int lwtunnel_encap_del_ops(const struct lwtunnel_encap_ops *op, unsigned int num) { return -EOPNOTSUPP; } static inline int lwtunnel_valid_encap_type(u16 encap_type, struct netlink_ext_ack *extack) { NL_SET_ERR_MSG(extack, "CONFIG_LWTUNNEL is not enabled in this kernel"); return -EOPNOTSUPP; } static inline int lwtunnel_valid_encap_type_attr(struct nlattr *attr, int len, struct netlink_ext_ack *extack) { /* return 0 since we are not walking attr looking for * RTA_ENCAP_TYPE attribute on nexthops. */ return 0; } static inline int lwtunnel_build_state(struct net *net, u16 encap_type, struct nlattr *encap, unsigned int family, const void *cfg, struct lwtunnel_state **lws, struct netlink_ext_ack *extack) { return -EOPNOTSUPP; } static inline int lwtunnel_fill_encap(struct sk_buff *skb, struct lwtunnel_state *lwtstate, int encap_attr, int encap_type_attr) { return 0; } static inline int lwtunnel_get_encap_size(struct lwtunnel_state *lwtstate) { return 0; } static inline struct lwtunnel_state *lwtunnel_state_alloc(int hdr_len) { return NULL; } static inline int lwtunnel_cmp_encap(struct lwtunnel_state *a, struct lwtunnel_state *b) { return 0; } static inline int lwtunnel_output(struct net *net, struct sock *sk, struct sk_buff *skb) { return -EOPNOTSUPP; } static inline int lwtunnel_input(struct sk_buff *skb) { return -EOPNOTSUPP; } static inline int lwtunnel_xmit(struct sk_buff *skb) { return -EOPNOTSUPP; } #endif /* CONFIG_LWTUNNEL */ #define MODULE_ALIAS_RTNL_LWT(encap_type) MODULE_ALIAS("rtnl-lwt-" __stringify(encap_type)) #endif /* __NET_LWTUNNEL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM filemap #if !defined(_TRACE_FILEMAP_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_FILEMAP_H #include <linux/types.h> #include <linux/tracepoint.h> #include <linux/mm.h> #include <linux/memcontrol.h> #include <linux/device.h> #include <linux/kdev_t.h> #include <linux/errseq.h> DECLARE_EVENT_CLASS(mm_filemap_op_page_cache, TP_PROTO(struct page *page), TP_ARGS(page), TP_STRUCT__entry( __field(unsigned long, pfn) __field(unsigned long, i_ino) __field(unsigned long, index) __field(dev_t, s_dev) ), TP_fast_assign( __entry->pfn = page_to_pfn(page); __entry->i_ino = page->mapping->host->i_ino; __entry->index = page->index; if (page->mapping->host->i_sb) __entry->s_dev = page->mapping->host->i_sb->s_dev; else __entry->s_dev = page->mapping->host->i_rdev; ), TP_printk("dev %d:%d ino %lx page=%p pfn=%lu ofs=%lu", MAJOR(__entry->s_dev), MINOR(__entry->s_dev), __entry->i_ino, pfn_to_page(__entry->pfn), __entry->pfn, __entry->index << PAGE_SHIFT) ); DEFINE_EVENT(mm_filemap_op_page_cache, mm_filemap_delete_from_page_cache, TP_PROTO(struct page *page), TP_ARGS(page) ); DEFINE_EVENT(mm_filemap_op_page_cache, mm_filemap_add_to_page_cache, TP_PROTO(struct page *page), TP_ARGS(page) ); TRACE_EVENT(filemap_set_wb_err, TP_PROTO(struct address_space *mapping, errseq_t eseq), TP_ARGS(mapping, eseq), TP_STRUCT__entry( __field(unsigned long, i_ino) __field(dev_t, s_dev) __field(errseq_t, errseq) ), TP_fast_assign( __entry->i_ino = mapping->host->i_ino; __entry->errseq = eseq; if (mapping->host->i_sb) __entry->s_dev = mapping->host->i_sb->s_dev; else __entry->s_dev = mapping->host->i_rdev; ), TP_printk("dev=%d:%d ino=0x%lx errseq=0x%x", MAJOR(__entry->s_dev), MINOR(__entry->s_dev), __entry->i_ino, __entry->errseq) ); TRACE_EVENT(file_check_and_advance_wb_err, TP_PROTO(struct file *file, errseq_t old), TP_ARGS(file, old), TP_STRUCT__entry( __field(struct file *, file) __field(unsigned long, i_ino) __field(dev_t, s_dev) __field(errseq_t, old) __field(errseq_t, new) ), TP_fast_assign( __entry->file = file; __entry->i_ino = file->f_mapping->host->i_ino; if (file->f_mapping->host->i_sb) __entry->s_dev = file->f_mapping->host->i_sb->s_dev; else __entry->s_dev = file->f_mapping->host->i_rdev; __entry->old = old; __entry->new = file->f_wb_err; ), TP_printk("file=%p dev=%d:%d ino=0x%lx old=0x%x new=0x%x", __entry->file, MAJOR(__entry->s_dev), MINOR(__entry->s_dev), __entry->i_ino, __entry->old, __entry->new) ); #endif /* _TRACE_FILEMAP_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM percpu #if !defined(_TRACE_PERCPU_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_PERCPU_H #include <linux/tracepoint.h> TRACE_EVENT(percpu_alloc_percpu, TP_PROTO(bool reserved, bool is_atomic, size_t size, size_t align, void *base_addr, int off, void __percpu *ptr), TP_ARGS(reserved, is_atomic, size, align, base_addr, off, ptr), TP_STRUCT__entry( __field( bool, reserved ) __field( bool, is_atomic ) __field( size_t, size ) __field( size_t, align ) __field( void *, base_addr ) __field( int, off ) __field( void __percpu *, ptr ) ), TP_fast_assign( __entry->reserved = reserved; __entry->is_atomic = is_atomic; __entry->size = size; __entry->align = align; __entry->base_addr = base_addr; __entry->off = off; __entry->ptr = ptr; ), TP_printk("reserved=%d is_atomic=%d size=%zu align=%zu base_addr=%p off=%d ptr=%p", __entry->reserved, __entry->is_atomic, __entry->size, __entry->align, __entry->base_addr, __entry->off, __entry->ptr) ); TRACE_EVENT(percpu_free_percpu, TP_PROTO(void *base_addr, int off, void __percpu *ptr), TP_ARGS(base_addr, off, ptr), TP_STRUCT__entry( __field( void *, base_addr ) __field( int, off ) __field( void __percpu *, ptr ) ), TP_fast_assign( __entry->base_addr = base_addr; __entry->off = off; __entry->ptr = ptr; ), TP_printk("base_addr=%p off=%d ptr=%p", __entry->base_addr, __entry->off, __entry->ptr) ); TRACE_EVENT(percpu_alloc_percpu_fail, TP_PROTO(bool reserved, bool is_atomic, size_t size, size_t align), TP_ARGS(reserved, is_atomic, size, align), TP_STRUCT__entry( __field( bool, reserved ) __field( bool, is_atomic ) __field( size_t, size ) __field( size_t, align ) ), TP_fast_assign( __entry->reserved = reserved; __entry->is_atomic = is_atomic; __entry->size = size; __entry->align = align; ), TP_printk("reserved=%d is_atomic=%d size=%zu align=%zu", __entry->reserved, __entry->is_atomic, __entry->size, __entry->align) ); TRACE_EVENT(percpu_create_chunk, TP_PROTO(void *base_addr), TP_ARGS(base_addr), TP_STRUCT__entry( __field( void *, base_addr ) ), TP_fast_assign( __entry->base_addr = base_addr; ), TP_printk("base_addr=%p", __entry->base_addr) ); TRACE_EVENT(percpu_destroy_chunk, TP_PROTO(void *base_addr), TP_ARGS(base_addr), TP_STRUCT__entry( __field( void *, base_addr ) ), TP_fast_assign( __entry->base_addr = base_addr; ), TP_printk("base_addr=%p", __entry->base_addr) ); #endif /* _TRACE_PERCPU_H */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM udp #if !defined(_TRACE_UDP_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_UDP_H #include <linux/udp.h> #include <linux/tracepoint.h> TRACE_EVENT(udp_fail_queue_rcv_skb, TP_PROTO(int rc, struct sock *sk), TP_ARGS(rc, sk), TP_STRUCT__entry( __field(int, rc) __field(__u16, lport) ), TP_fast_assign( __entry->rc = rc; __entry->lport = inet_sk(sk)->inet_num; ), TP_printk("rc=%d port=%hu", __entry->rc, __entry->lport) ); #endif /* _TRACE_UDP_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 /* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright 2002-2005, Instant802 Networks, Inc. * Copyright 2005, Devicescape Software, Inc. * Copyright (c) 2006 Jiri Benc <jbenc@suse.cz> */ #ifndef IEEE80211_RATE_H #define IEEE80211_RATE_H #include <linux/netdevice.h> #include <linux/skbuff.h> #include <linux/types.h> #include <net/mac80211.h> #include "ieee80211_i.h" #include "sta_info.h" #include "driver-ops.h" struct rate_control_ref { const struct rate_control_ops *ops; void *priv; }; void rate_control_get_rate(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, struct ieee80211_tx_rate_control *txrc); void rate_control_tx_status(struct ieee80211_local *local, struct ieee80211_supported_band *sband, struct ieee80211_tx_status *st); void rate_control_rate_init(struct sta_info *sta); void rate_control_rate_update(struct ieee80211_local *local, struct ieee80211_supported_band *sband, struct sta_info *sta, u32 changed); static inline void *rate_control_alloc_sta(struct rate_control_ref *ref, struct sta_info *sta, gfp_t gfp) { spin_lock_init(&sta->rate_ctrl_lock); return ref->ops->alloc_sta(ref->priv, &sta->sta, gfp); } static inline void rate_control_free_sta(struct sta_info *sta) { struct rate_control_ref *ref = sta->rate_ctrl; struct ieee80211_sta *ista = &sta->sta; void *priv_sta = sta->rate_ctrl_priv; ref->ops->free_sta(ref->priv, ista, priv_sta); } static inline void rate_control_add_sta_debugfs(struct sta_info *sta) { #ifdef CONFIG_MAC80211_DEBUGFS struct rate_control_ref *ref = sta->rate_ctrl; if (ref && sta->debugfs_dir && ref->ops->add_sta_debugfs) ref->ops->add_sta_debugfs(ref->priv, sta->rate_ctrl_priv, sta->debugfs_dir); #endif } extern const struct file_operations rcname_ops; static inline void rate_control_add_debugfs(struct ieee80211_local *local) { #ifdef CONFIG_MAC80211_DEBUGFS struct dentry *debugfsdir; if (!local->rate_ctrl) return; if (!local->rate_ctrl->ops->add_debugfs) return; debugfsdir = debugfs_create_dir("rc", local->hw.wiphy->debugfsdir); local->debugfs.rcdir = debugfsdir; debugfs_create_file("name", 0400, debugfsdir, local->rate_ctrl, &rcname_ops); local->rate_ctrl->ops->add_debugfs(&local->hw, local->rate_ctrl->priv, debugfsdir); #endif } void ieee80211_check_rate_mask(struct ieee80211_sub_if_data *sdata); /* Get a reference to the rate control algorithm. If `name' is NULL, get the * first available algorithm. */ int ieee80211_init_rate_ctrl_alg(struct ieee80211_local *local, const char *name); void rate_control_deinitialize(struct ieee80211_local *local); /* Rate control algorithms */ #ifdef CONFIG_MAC80211_RC_MINSTREL int rc80211_minstrel_init(void); void rc80211_minstrel_exit(void); #else static inline int rc80211_minstrel_init(void) { return 0; } static inline void rc80211_minstrel_exit(void) { } #endif #endif /* IEEE80211_RATE_H */
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM random #if !defined(_TRACE_RANDOM_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_RANDOM_H #include <linux/writeback.h> #include <linux/tracepoint.h> TRACE_EVENT(add_device_randomness, TP_PROTO(int bytes, unsigned long IP), TP_ARGS(bytes, IP), TP_STRUCT__entry( __field( int, bytes ) __field(unsigned long, IP ) ), TP_fast_assign( __entry->bytes = bytes; __entry->IP = IP; ), TP_printk("bytes %d caller %pS", __entry->bytes, (void *)__entry->IP) ); DECLARE_EVENT_CLASS(random__mix_pool_bytes, TP_PROTO(const char *pool_name, int bytes, unsigned long IP), TP_ARGS(pool_name, bytes, IP), TP_STRUCT__entry( __field( const char *, pool_name ) __field( int, bytes ) __field(unsigned long, IP ) ), TP_fast_assign( __entry->pool_name = pool_name; __entry->bytes = bytes; __entry->IP = IP; ), TP_printk("%s pool: bytes %d caller %pS", __entry->pool_name, __entry->bytes, (void *)__entry->IP) ); DEFINE_EVENT(random__mix_pool_bytes, mix_pool_bytes, TP_PROTO(const char *pool_name, int bytes, unsigned long IP), TP_ARGS(pool_name, bytes, IP) ); DEFINE_EVENT(random__mix_pool_bytes, mix_pool_bytes_nolock, TP_PROTO(const char *pool_name, int bytes, unsigned long IP), TP_ARGS(pool_name, bytes, IP) ); TRACE_EVENT(credit_entropy_bits, TP_PROTO(const char *pool_name, int bits, int entropy_count, unsigned long IP), TP_ARGS(pool_name, bits, entropy_count, IP), TP_STRUCT__entry( __field( const char *, pool_name ) __field( int, bits ) __field( int, entropy_count ) __field(unsigned long, IP ) ), TP_fast_assign( __entry->pool_name = pool_name; __entry->bits = bits; __entry->entropy_count = entropy_count; __entry->IP = IP; ), TP_printk("%s pool: bits %d entropy_count %d caller %pS", __entry->pool_name, __entry->bits, __entry->entropy_count, (void *)__entry->IP) ); TRACE_EVENT(push_to_pool, TP_PROTO(const char *pool_name, int pool_bits, int input_bits), TP_ARGS(pool_name, pool_bits, input_bits), TP_STRUCT__entry( __field( const char *, pool_name ) __field( int, pool_bits ) __field( int, input_bits ) ), TP_fast_assign( __entry->pool_name = pool_name; __entry->pool_bits = pool_bits; __entry->input_bits = input_bits; ), TP_printk("%s: pool_bits %d input_pool_bits %d", __entry->pool_name, __entry->pool_bits, __entry->input_bits) ); TRACE_EVENT(debit_entropy, TP_PROTO(const char *pool_name, int debit_bits), TP_ARGS(pool_name, debit_bits), TP_STRUCT__entry( __field( const char *, pool_name ) __field( int, debit_bits ) ), TP_fast_assign( __entry->pool_name = pool_name; __entry->debit_bits = debit_bits; ), TP_printk("%s: debit_bits %d", __entry->pool_name, __entry->debit_bits) ); TRACE_EVENT(add_input_randomness, TP_PROTO(int input_bits), TP_ARGS(input_bits), TP_STRUCT__entry( __field( int, input_bits ) ), TP_fast_assign( __entry->input_bits = input_bits; ), TP_printk("input_pool_bits %d", __entry->input_bits) ); TRACE_EVENT(add_disk_randomness, TP_PROTO(dev_t dev, int input_bits), TP_ARGS(dev, input_bits), TP_STRUCT__entry( __field( dev_t, dev ) __field( int, input_bits ) ), TP_fast_assign( __entry->dev = dev; __entry->input_bits = input_bits; ), TP_printk("dev %d,%d input_pool_bits %d", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->input_bits) ); TRACE_EVENT(xfer_secondary_pool, TP_PROTO(const char *pool_name, int xfer_bits, int request_bits, int pool_entropy, int input_entropy), TP_ARGS(pool_name, xfer_bits, request_bits, pool_entropy, input_entropy), TP_STRUCT__entry( __field( const char *, pool_name ) __field( int, xfer_bits ) __field( int, request_bits ) __field( int, pool_entropy ) __field( int, input_entropy ) ), TP_fast_assign( __entry->pool_name = pool_name; __entry->xfer_bits = xfer_bits; __entry->request_bits = request_bits; __entry->pool_entropy = pool_entropy; __entry->input_entropy = input_entropy; ), TP_printk("pool %s xfer_bits %d request_bits %d pool_entropy %d " "input_entropy %d", __entry->pool_name, __entry->xfer_bits, __entry->request_bits, __entry->pool_entropy, __entry->input_entropy) ); DECLARE_EVENT_CLASS(random__get_random_bytes, TP_PROTO(int nbytes, unsigned long IP), TP_ARGS(nbytes, IP), TP_STRUCT__entry( __field( int, nbytes ) __field(unsigned long, IP ) ), TP_fast_assign( __entry->nbytes = nbytes; __entry->IP = IP; ), TP_printk("nbytes %d caller %pS", __entry->nbytes, (void *)__entry->IP) ); DEFINE_EVENT(random__get_random_bytes, get_random_bytes, TP_PROTO(int nbytes, unsigned long IP), TP_ARGS(nbytes, IP) ); DEFINE_EVENT(random__get_random_bytes, get_random_bytes_arch, TP_PROTO(int nbytes, unsigned long IP), TP_ARGS(nbytes, IP) ); DECLARE_EVENT_CLASS(random__extract_entropy, TP_PROTO(const char *pool_name, int nbytes, int entropy_count, unsigned long IP), TP_ARGS(pool_name, nbytes, entropy_count, IP), TP_STRUCT__entry( __field( const char *, pool_name ) __field( int, nbytes ) __field( int, entropy_count ) __field(unsigned long, IP ) ), TP_fast_assign( __entry->pool_name = pool_name; __entry->nbytes = nbytes; __entry->entropy_count = entropy_count; __entry->IP = IP; ), TP_printk("%s pool: nbytes %d entropy_count %d caller %pS", __entry->pool_name, __entry->nbytes, __entry->entropy_count, (void *)__entry->IP) ); DEFINE_EVENT(random__extract_entropy, extract_entropy, TP_PROTO(const char *pool_name, int nbytes, int entropy_count, unsigned long IP), TP_ARGS(pool_name, nbytes, entropy_count, IP) ); DEFINE_EVENT(random__extract_entropy, extract_entropy_user, TP_PROTO(const char *pool_name, int nbytes, int entropy_count, unsigned long IP), TP_ARGS(pool_name, nbytes, entropy_count, IP) ); TRACE_EVENT(random_read, TP_PROTO(int got_bits, int need_bits, int pool_left, int input_left), TP_ARGS(got_bits, need_bits, pool_left, input_left), TP_STRUCT__entry( __field( int, got_bits ) __field( int, need_bits ) __field( int, pool_left ) __field( int, input_left ) ), TP_fast_assign( __entry->got_bits = got_bits; __entry->need_bits = need_bits; __entry->pool_left = pool_left; __entry->input_left = input_left; ), TP_printk("got_bits %d still_needed_bits %d " "blocking_pool_entropy_left %d input_entropy_left %d", __entry->got_bits, __entry->got_bits, __entry->pool_left, __entry->input_left) ); TRACE_EVENT(urandom_read, TP_PROTO(int got_bits, int pool_left, int input_left), TP_ARGS(got_bits, pool_left, input_left), TP_STRUCT__entry( __field( int, got_bits ) __field( int, pool_left ) __field( int, input_left ) ), TP_fast_assign( __entry->got_bits = got_bits; __entry->pool_left = pool_left; __entry->input_left = input_left; ), TP_printk("got_bits %d nonblocking_pool_entropy_left %d " "input_entropy_left %d", __entry->got_bits, __entry->pool_left, __entry->input_left) ); TRACE_EVENT(prandom_u32, TP_PROTO(unsigned int ret), TP_ARGS(ret), TP_STRUCT__entry( __field( unsigned int, ret) ), TP_fast_assign( __entry->ret = ret; ), TP_printk("ret=%u" , __entry->ret) ); #endif /* _TRACE_RANDOM_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 // SPDX-License-Identifier: GPL-2.0 /* * trace event based perf event profiling/tracing * * Copyright (C) 2009 Red Hat Inc, Peter Zijlstra * Copyright (C) 2009-2010 Frederic Weisbecker <fweisbec@gmail.com> */ #include <linux/module.h> #include <linux/kprobes.h> #include <linux/security.h> #include "trace.h" #include "trace_probe.h" static char __percpu *perf_trace_buf[PERF_NR_CONTEXTS]; /* * Force it to be aligned to unsigned long to avoid misaligned accesses * suprises */ typedef typeof(unsigned long [PERF_MAX_TRACE_SIZE / sizeof(unsigned long)]) perf_trace_t; /* Count the events in use (per event id, not per instance) */ static int total_ref_count; static int perf_trace_event_perm(struct trace_event_call *tp_event, struct perf_event *p_event) { int ret; if (tp_event->perf_perm) { ret = tp_event->perf_perm(tp_event, p_event); if (ret) return ret; } /* * We checked and allowed to create parent, * allow children without checking. */ if (p_event->parent) return 0; /* * It's ok to check current process (owner) permissions in here, * because code below is called only via perf_event_open syscall. */ /* The ftrace function trace is allowed only for root. */ if (ftrace_event_is_function(tp_event)) { ret = perf_allow_tracepoint(&p_event->attr); if (ret) return ret; if (!is_sampling_event(p_event)) return 0; /* * We don't allow user space callchains for function trace * event, due to issues with page faults while tracing page * fault handler and its overall trickiness nature. */ if (!p_event->attr.exclude_callchain_user) return -EINVAL; /* * Same reason to disable user stack dump as for user space * callchains above. */ if (p_event->attr.sample_type & PERF_SAMPLE_STACK_USER) return -EINVAL; } /* No tracing, just counting, so no obvious leak */ if (!(p_event->attr.sample_type & PERF_SAMPLE_RAW)) return 0; /* Some events are ok to be traced by non-root users... */ if (p_event->attach_state == PERF_ATTACH_TASK) { if (tp_event->flags & TRACE_EVENT_FL_CAP_ANY) return 0; } /* * ...otherwise raw tracepoint data can be a severe data leak, * only allow root to have these. */ ret = perf_allow_tracepoint(&p_event->attr); if (ret) return ret; return 0; } static int perf_trace_event_reg(struct trace_event_call *tp_event, struct perf_event *p_event) { struct hlist_head __percpu *list; int ret = -ENOMEM; int cpu; p_event->tp_event = tp_event; if (tp_event->perf_refcount++ > 0) return 0; list = alloc_percpu(struct hlist_head); if (!list) goto fail; for_each_possible_cpu(cpu) INIT_HLIST_HEAD(per_cpu_ptr(list, cpu)); tp_event->perf_events = list; if (!total_ref_count) { char __percpu *buf; int i; for (i = 0; i < PERF_NR_CONTEXTS; i++) { buf = (char __percpu *)alloc_percpu(perf_trace_t); if (!buf) goto fail; perf_trace_buf[i] = buf; } } ret = tp_event->class->reg(tp_event, TRACE_REG_PERF_REGISTER, NULL); if (ret) goto fail; total_ref_count++; return 0; fail: if (!total_ref_count) { int i; for (i = 0; i < PERF_NR_CONTEXTS; i++) { free_percpu(perf_trace_buf[i]); perf_trace_buf[i] = NULL; } } if (!--tp_event->perf_refcount) { free_percpu(tp_event->perf_events); tp_event->perf_events = NULL; } return ret; } static void perf_trace_event_unreg(struct perf_event *p_event) { struct trace_event_call *tp_event = p_event->tp_event; int i; if (--tp_event->perf_refcount > 0) goto out; tp_event->class->reg(tp_event, TRACE_REG_PERF_UNREGISTER, NULL); /* * Ensure our callback won't be called anymore. The buffers * will be freed after that. */ tracepoint_synchronize_unregister(); free_percpu(tp_event->perf_events); tp_event->perf_events = NULL; if (!--total_ref_count) { for (i = 0; i < PERF_NR_CONTEXTS; i++) { free_percpu(perf_trace_buf[i]); perf_trace_buf[i] = NULL; } } out: module_put(tp_event->mod); } static int perf_trace_event_open(struct perf_event *p_event) { struct trace_event_call *tp_event = p_event->tp_event; return tp_event->class->reg(tp_event, TRACE_REG_PERF_OPEN, p_event); } static void perf_trace_event_close(struct perf_event *p_event) { struct trace_event_call *tp_event = p_event->tp_event; tp_event->class->reg(tp_event, TRACE_REG_PERF_CLOSE, p_event); } static int perf_trace_event_init(struct trace_event_call *tp_event, struct perf_event *p_event) { int ret; ret = perf_trace_event_perm(tp_event, p_event); if (ret) return ret; ret = perf_trace_event_reg(tp_event, p_event); if (ret) return ret; ret = perf_trace_event_open(p_event); if (ret) { perf_trace_event_unreg(p_event); return ret; } return 0; } int perf_trace_init(struct perf_event *p_event) { struct trace_event_call *tp_event; u64 event_id = p_event->attr.config; int ret = -EINVAL; mutex_lock(&event_mutex); list_for_each_entry(tp_event, &ftrace_events, list) { if (tp_event->event.type == event_id && tp_event->class && tp_event->class->reg && try_module_get(tp_event->mod)) { ret = perf_trace_event_init(tp_event, p_event); if (ret) module_put(tp_event->mod); break; } } mutex_unlock(&event_mutex); return ret; } void perf_trace_destroy(struct perf_event *p_event) { mutex_lock(&event_mutex); perf_trace_event_close(p_event); perf_trace_event_unreg(p_event); mutex_unlock(&event_mutex); } #ifdef CONFIG_KPROBE_EVENTS int perf_kprobe_init(struct perf_event *p_event, bool is_retprobe) { int ret; char *func = NULL; struct trace_event_call *tp_event; if (p_event->attr.kprobe_func) { func = kzalloc(KSYM_NAME_LEN, GFP_KERNEL); if (!func) return -ENOMEM; ret = strncpy_from_user( func, u64_to_user_ptr(p_event->attr.kprobe_func), KSYM_NAME_LEN); if (ret == KSYM_NAME_LEN) ret = -E2BIG; if (ret < 0) goto out; if (func[0] == '\0') { kfree(func); func = NULL; } } tp_event = create_local_trace_kprobe( func, (void *)(unsigned long)(p_event->attr.kprobe_addr), p_event->attr.probe_offset, is_retprobe); if (IS_ERR(tp_event)) { ret = PTR_ERR(tp_event); goto out; } mutex_lock(&event_mutex); ret = perf_trace_event_init(tp_event, p_event); if (ret) destroy_local_trace_kprobe(tp_event); mutex_unlock(&event_mutex); out: kfree(func); return ret; } void perf_kprobe_destroy(struct perf_event *p_event) { mutex_lock(&event_mutex); perf_trace_event_close(p_event); perf_trace_event_unreg(p_event); mutex_unlock(&event_mutex); destroy_local_trace_kprobe(p_event->tp_event); } #endif /* CONFIG_KPROBE_EVENTS */ #ifdef CONFIG_UPROBE_EVENTS int perf_uprobe_init(struct perf_event *p_event, unsigned long ref_ctr_offset, bool is_retprobe) { int ret; char *path = NULL; struct trace_event_call *tp_event; if (!p_event->attr.uprobe_path) return -EINVAL; path = strndup_user(u64_to_user_ptr(p_event->attr.uprobe_path), PATH_MAX); if (IS_ERR(path)) { ret = PTR_ERR(path); return (ret == -EINVAL) ? -E2BIG : ret; } if (path[0] == '\0') { ret = -EINVAL; goto out; } tp_event = create_local_trace_uprobe(path, p_event->attr.probe_offset, ref_ctr_offset, is_retprobe); if (IS_ERR(tp_event)) { ret = PTR_ERR(tp_event); goto out; } /* * local trace_uprobe need to hold event_mutex to call * uprobe_buffer_enable() and uprobe_buffer_disable(). * event_mutex is not required for local trace_kprobes. */ mutex_lock(&event_mutex); ret = perf_trace_event_init(tp_event, p_event); if (ret) destroy_local_trace_uprobe(tp_event); mutex_unlock(&event_mutex); out: kfree(path); return ret; } void perf_uprobe_destroy(struct perf_event *p_event) { mutex_lock(&event_mutex); perf_trace_event_close(p_event); perf_trace_event_unreg(p_event); mutex_unlock(&event_mutex); destroy_local_trace_uprobe(p_event->tp_event); } #endif /* CONFIG_UPROBE_EVENTS */ int perf_trace_add(struct perf_event *p_event, int flags) { struct trace_event_call *tp_event = p_event->tp_event; if (!(flags & PERF_EF_START)) p_event->hw.state = PERF_HES_STOPPED; /* * If TRACE_REG_PERF_ADD returns false; no custom action was performed * and we need to take the default action of enqueueing our event on * the right per-cpu hlist. */ if (!tp_event->class->reg(tp_event, TRACE_REG_PERF_ADD, p_event)) { struct hlist_head __percpu *pcpu_list; struct hlist_head *list; pcpu_list = tp_event->perf_events;