1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 // SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com * Written by Alex Tomas <alex@clusterfs.com> */ #ifndef _EXT4_EXTENTS #define _EXT4_EXTENTS #include "ext4.h" /* * With AGGRESSIVE_TEST defined, the capacity of index/leaf blocks * becomes very small, so index split, in-depth growing and * other hard changes happen much more often. * This is for debug purposes only. */ #define AGGRESSIVE_TEST_ /* * With EXTENTS_STATS defined, the number of blocks and extents * are collected in the truncate path. They'll be shown at * umount time. */ #define EXTENTS_STATS__ /* * If CHECK_BINSEARCH is defined, then the results of the binary search * will also be checked by linear search. */ #define CHECK_BINSEARCH__ /* * If EXT_STATS is defined then stats numbers are collected. * These number will be displayed at umount time. */ #define EXT_STATS_ /* * ext4_inode has i_block array (60 bytes total). * The first 12 bytes store ext4_extent_header; * the remainder stores an array of ext4_extent. * For non-inode extent blocks, ext4_extent_tail * follows the array. */ /* * This is the extent tail on-disk structure. * All other extent structures are 12 bytes long. It turns out that * block_size % 12 >= 4 for at least all powers of 2 greater than 512, which * covers all valid ext4 block sizes. Therefore, this tail structure can be * crammed into the end of the block without having to rebalance the tree. */ struct ext4_extent_tail { __le32 et_checksum; /* crc32c(uuid+inum+extent_block) */ }; /* * This is the extent on-disk structure. * It's used at the bottom of the tree. */ struct ext4_extent { __le32 ee_block; /* first logical block extent covers */ __le16 ee_len; /* number of blocks covered by extent */ __le16 ee_start_hi; /* high 16 bits of physical block */ __le32 ee_start_lo; /* low 32 bits of physical block */ }; /* * This is index on-disk structure. * It's used at all the levels except the bottom. */ struct ext4_extent_idx { __le32 ei_block; /* index covers logical blocks from 'block' */ __le32 ei_leaf_lo; /* pointer to the physical block of the next * * level. leaf or next index could be there */ __le16 ei_leaf_hi; /* high 16 bits of physical block */ __u16 ei_unused; }; /* * Each block (leaves and indexes), even inode-stored has header. */ struct ext4_extent_header { __le16 eh_magic; /* probably will support different formats */ __le16 eh_entries; /* number of valid entries */ __le16 eh_max; /* capacity of store in entries */ __le16 eh_depth; /* has tree real underlying blocks? */ __le32 eh_generation; /* generation of the tree */ }; #define EXT4_EXT_MAGIC cpu_to_le16(0xf30a) #define EXT4_MAX_EXTENT_DEPTH 5 #define EXT4_EXTENT_TAIL_OFFSET(hdr) \ (sizeof(struct ext4_extent_header) + \ (sizeof(struct ext4_extent) * le16_to_cpu((hdr)->eh_max))) static inline struct ext4_extent_tail * find_ext4_extent_tail(struct ext4_extent_header *eh) { return (struct ext4_extent_tail *)(((void *)eh) + EXT4_EXTENT_TAIL_OFFSET(eh)); } /* * Array of ext4_ext_path contains path to some extent. * Creation/lookup routines use it for traversal/splitting/etc. * Truncate uses it to simulate recursive walking. */ struct ext4_ext_path { ext4_fsblk_t p_block; __u16 p_depth; __u16 p_maxdepth; struct ext4_extent *p_ext; struct ext4_extent_idx *p_idx; struct ext4_extent_header *p_hdr; struct buffer_head *p_bh; }; /* * Used to record a portion of a cluster found at the beginning or end * of an extent while traversing the extent tree during space removal. * A partial cluster may be removed if it does not contain blocks shared * with extents that aren't being deleted (tofree state). Otherwise, * it cannot be removed (nofree state). */ struct partial_cluster { ext4_fsblk_t pclu; /* physical cluster number */ ext4_lblk_t lblk; /* logical block number within logical cluster */ enum {initial, tofree, nofree} state; }; /* * structure for external API */ /* * EXT_INIT_MAX_LEN is the maximum number of blocks we can have in an * initialized extent. This is 2^15 and not (2^16 - 1), since we use the * MSB of ee_len field in the extent datastructure to signify if this * particular extent is an initialized extent or an unwritten (i.e. * preallocated). * EXT_UNWRITTEN_MAX_LEN is the maximum number of blocks we can have in an * unwritten extent. * If ee_len is <= 0x8000, it is an initialized extent. Otherwise, it is an * unwritten one. In other words, if MSB of ee_len is set, it is an * unwritten extent with only one special scenario when ee_len = 0x8000. * In this case we can not have an unwritten extent of zero length and * thus we make it as a special case of initialized extent with 0x8000 length. * This way we get better extent-to-group alignment for initialized extents. * Hence, the maximum number of blocks we can have in an *initialized* * extent is 2^15 (32768) and in an *unwritten* extent is 2^15-1 (32767). */ #define EXT_INIT_MAX_LEN (1UL << 15) #define EXT_UNWRITTEN_MAX_LEN (EXT_INIT_MAX_LEN - 1) #define EXT_FIRST_EXTENT(__hdr__) \ ((struct ext4_extent *) (((char *) (__hdr__)) + \ sizeof(struct ext4_extent_header))) #define EXT_FIRST_INDEX(__hdr__) \ ((struct ext4_extent_idx *) (((char *) (__hdr__)) + \ sizeof(struct ext4_extent_header))) #define EXT_HAS_FREE_INDEX(__path__) \ (le16_to_cpu((__path__)->p_hdr->eh_entries) \ < le16_to_cpu((__path__)->p_hdr->eh_max)) #define EXT_LAST_EXTENT(__hdr__) \ (EXT_FIRST_EXTENT((__hdr__)) + le16_to_cpu((__hdr__)->eh_entries) - 1) #define EXT_LAST_INDEX(__hdr__) \ (EXT_FIRST_INDEX((__hdr__)) + le16_to_cpu((__hdr__)->eh_entries) - 1) #define EXT_MAX_EXTENT(__hdr__) \ ((le16_to_cpu((__hdr__)->eh_max)) ? \ ((EXT_FIRST_EXTENT((__hdr__)) + le16_to_cpu((__hdr__)->eh_max) - 1)) \ : 0) #define EXT_MAX_INDEX(__hdr__) \ ((le16_to_cpu((__hdr__)->eh_max)) ? \ ((EXT_FIRST_INDEX((__hdr__)) + le16_to_cpu((__hdr__)->eh_max) - 1)) : 0) static inline struct ext4_extent_header *ext_inode_hdr(struct inode *inode) { return (struct ext4_extent_header *) EXT4_I(inode)->i_data; } static inline struct ext4_extent_header *ext_block_hdr(struct buffer_head *bh) { return (struct ext4_extent_header *) bh->b_data; } static inline unsigned short ext_depth(struct inode *inode) { return le16_to_cpu(ext_inode_hdr(inode)->eh_depth); } static inline void ext4_ext_mark_unwritten(struct ext4_extent *ext) { /* We can not have an unwritten extent of zero length! */ BUG_ON((le16_to_cpu(ext->ee_len) & ~EXT_INIT_MAX_LEN) == 0); ext->ee_len |= cpu_to_le16(EXT_INIT_MAX_LEN); } static inline int ext4_ext_is_unwritten(struct ext4_extent *ext) { /* Extent with ee_len of 0x8000 is treated as an initialized extent */ return (le16_to_cpu(ext->ee_len) > EXT_INIT_MAX_LEN); } static inline int ext4_ext_get_actual_len(struct ext4_extent *ext) { return (le16_to_cpu(ext->ee_len) <= EXT_INIT_MAX_LEN ? le16_to_cpu(ext->ee_len) : (le16_to_cpu(ext->ee_len) - EXT_INIT_MAX_LEN)); } static inline void ext4_ext_mark_initialized(struct ext4_extent *ext) { ext->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ext)); } /* * ext4_ext_pblock: * combine low and high parts of physical block number into ext4_fsblk_t */ static inline ext4_fsblk_t ext4_ext_pblock(struct ext4_extent *ex) { ext4_fsblk_t block; block = le32_to_cpu(ex->ee_start_lo); block |= ((ext4_fsblk_t) le16_to_cpu(ex->ee_start_hi) << 31) << 1; return block; } /* * ext4_idx_pblock: * combine low and high parts of a leaf physical block number into ext4_fsblk_t */ static inline ext4_fsblk_t ext4_idx_pblock(struct ext4_extent_idx *ix) { ext4_fsblk_t block; block = le32_to_cpu(ix->ei_leaf_lo); block |= ((ext4_fsblk_t) le16_to_cpu(ix->ei_leaf_hi) << 31) << 1; return block; } /* * ext4_ext_store_pblock: * stores a large physical block number into an extent struct, * breaking it into parts */ static inline void ext4_ext_store_pblock(struct ext4_extent *ex, ext4_fsblk_t pb) { ex->ee_start_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff)); ex->ee_start_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff); } /* * ext4_idx_store_pblock: * stores a large physical block number into an index struct, * breaking it into parts */ static inline void ext4_idx_store_pblock(struct ext4_extent_idx *ix, ext4_fsblk_t pb) { ix->ei_leaf_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff)); ix->ei_leaf_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff); } #endif /* _EXT4_EXTENTS */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Copyright 1997-1998 Transmeta Corporation - All Rights Reserved * Copyright 2005-2006 Ian Kent <raven@themaw.net> */ /* Internal header file for autofs */ #include <linux/auto_fs.h> #include <linux/auto_dev-ioctl.h> #include <linux/kernel.h> #include <linux/slab.h> #include <linux/time.h> #include <linux/string.h> #include <linux/wait.h> #include <linux/sched.h> #include <linux/sched/signal.h> #include <linux/mount.h> #include <linux/namei.h> #include <linux/uaccess.h> #include <linux/mutex.h> #include <linux/spinlock.h> #include <linux/list.h> #include <linux/completion.h> #include <linux/file.h> #include <linux/magic.h> /* This is the range of ioctl() numbers we claim as ours */ #define AUTOFS_IOC_FIRST AUTOFS_IOC_READY #define AUTOFS_IOC_COUNT 32 #define AUTOFS_DEV_IOCTL_IOC_FIRST (AUTOFS_DEV_IOCTL_VERSION) #define AUTOFS_DEV_IOCTL_IOC_COUNT \ (AUTOFS_DEV_IOCTL_ISMOUNTPOINT_CMD - AUTOFS_DEV_IOCTL_VERSION_CMD) #ifdef pr_fmt #undef pr_fmt #endif #define pr_fmt(fmt) KBUILD_MODNAME ":pid:%d:%s: " fmt, current->pid, __func__ extern struct file_system_type autofs_fs_type; /* * Unified info structure. This is pointed to by both the dentry and * inode structures. Each file in the filesystem has an instance of this * structure. It holds a reference to the dentry, so dentries are never * flushed while the file exists. All name lookups are dealt with at the * dentry level, although the filesystem can interfere in the validation * process. Readdir is implemented by traversing the dentry lists. */ struct autofs_info { struct dentry *dentry; struct inode *inode; int flags; struct completion expire_complete; struct list_head active; struct list_head expiring; struct autofs_sb_info *sbi; unsigned long last_used; int count; kuid_t uid; kgid_t gid; struct rcu_head rcu; }; #define AUTOFS_INF_EXPIRING (1<<0) /* dentry in the process of expiring */ #define AUTOFS_INF_WANT_EXPIRE (1<<1) /* the dentry is being considered * for expiry, so RCU_walk is * not permitted. If it progresses to * actual expiry attempt, the flag is * not cleared when EXPIRING is set - * in that case it gets cleared only * when it comes to clearing EXPIRING. */ #define AUTOFS_INF_PENDING (1<<2) /* dentry pending mount */ struct autofs_wait_queue { wait_queue_head_t queue; struct autofs_wait_queue *next; autofs_wqt_t wait_queue_token; /* We use the following to see what we are waiting for */ struct qstr name; u32 dev; u64 ino; kuid_t uid; kgid_t gid; pid_t pid; pid_t tgid; /* This is for status reporting upon return */ int status; unsigned int wait_ctr; }; #define AUTOFS_SBI_MAGIC 0x6d4a556d #define AUTOFS_SBI_CATATONIC 0x0001 #define AUTOFS_SBI_STRICTEXPIRE 0x0002 #define AUTOFS_SBI_IGNORE 0x0004 struct autofs_sb_info { u32 magic; int pipefd; struct file *pipe; struct pid *oz_pgrp; int version; int sub_version; int min_proto; int max_proto; unsigned int flags; unsigned long exp_timeout; unsigned int type; struct super_block *sb; struct mutex wq_mutex; struct mutex pipe_mutex; spinlock_t fs_lock; struct autofs_wait_queue *queues; /* Wait queue pointer */ spinlock_t lookup_lock; struct list_head active_list; struct list_head expiring_list; struct rcu_head rcu; }; static inline struct autofs_sb_info *autofs_sbi(struct super_block *sb) { return (struct autofs_sb_info *)(sb->s_fs_info); } static inline struct autofs_info *autofs_dentry_ino(struct dentry *dentry) { return (struct autofs_info *)(dentry->d_fsdata); } /* autofs_oz_mode(): do we see the man behind the curtain? (The * processes which do manipulations for us in user space sees the raw * filesystem without "magic".) */ static inline int autofs_oz_mode(struct autofs_sb_info *sbi) { return ((sbi->flags & AUTOFS_SBI_CATATONIC) || task_pgrp(current) == sbi->oz_pgrp); } struct inode *autofs_get_inode(struct super_block *, umode_t); void autofs_free_ino(struct autofs_info *); /* Expiration */ int is_autofs_dentry(struct dentry *); int autofs_expire_wait(const struct path *path, int rcu_walk); int autofs_expire_run(struct super_block *, struct vfsmount *, struct autofs_sb_info *, struct autofs_packet_expire __user *); int autofs_do_expire_multi(struct super_block *sb, struct vfsmount *mnt, struct autofs_sb_info *sbi, unsigned int how); int autofs_expire_multi(struct super_block *, struct vfsmount *, struct autofs_sb_info *, int __user *); /* Device node initialization */ int autofs_dev_ioctl_init(void); void autofs_dev_ioctl_exit(void); /* Operations structures */ extern const struct inode_operations autofs_symlink_inode_operations; extern const struct inode_operations autofs_dir_inode_operations; extern const struct file_operations autofs_dir_operations; extern const struct file_operations autofs_root_operations; extern const struct dentry_operations autofs_dentry_operations; /* VFS automount flags management functions */ static inline void __managed_dentry_set_managed(struct dentry *dentry) { dentry->d_flags |= (DCACHE_NEED_AUTOMOUNT|DCACHE_MANAGE_TRANSIT); } static inline void managed_dentry_set_managed(struct dentry *dentry) { spin_lock(&dentry->d_lock); __managed_dentry_set_managed(dentry); spin_unlock(&dentry->d_lock); } static inline void __managed_dentry_clear_managed(struct dentry *dentry) { dentry->d_flags &= ~(DCACHE_NEED_AUTOMOUNT|DCACHE_MANAGE_TRANSIT); } static inline void managed_dentry_clear_managed(struct dentry *dentry) { spin_lock(&dentry->d_lock); __managed_dentry_clear_managed(dentry); spin_unlock(&dentry->d_lock); } /* Initializing function */ int autofs_fill_super(struct super_block *, void *, int); struct autofs_info *autofs_new_ino(struct autofs_sb_info *); void autofs_clean_ino(struct autofs_info *); static inline int autofs_prepare_pipe(struct file *pipe) { if (!(pipe->f_mode & FMODE_CAN_WRITE)) return -EINVAL; if (!S_ISFIFO(file_inode(pipe)->i_mode)) return -EINVAL; /* We want a packet pipe */ pipe->f_flags |= O_DIRECT; /* We don't expect -EAGAIN */ pipe->f_flags &= ~O_NONBLOCK; return 0; } /* Queue management functions */ int autofs_wait(struct autofs_sb_info *, const struct path *, enum autofs_notify); int autofs_wait_release(struct autofs_sb_info *, autofs_wqt_t, int); void autofs_catatonic_mode(struct autofs_sb_info *); static inline u32 autofs_get_dev(struct autofs_sb_info *sbi) { return new_encode_dev(sbi->sb->s_dev); } static inline u64 autofs_get_ino(struct autofs_sb_info *sbi) { return d_inode(sbi->sb->s_root)->i_ino; } static inline void __autofs_add_expiring(struct dentry *dentry) { struct autofs_sb_info *sbi = autofs_sbi(dentry->d_sb); struct autofs_info *ino = autofs_dentry_ino(dentry); if (ino) { if (list_empty(&ino->expiring)) list_add(&ino->expiring, &sbi->expiring_list); } } static inline void autofs_add_expiring(struct dentry *dentry) { struct autofs_sb_info *sbi = autofs_sbi(dentry->d_sb); struct autofs_info *ino = autofs_dentry_ino(dentry); if (ino) { spin_lock(&sbi->lookup_lock); if (list_empty(&ino->expiring)) list_add(&ino->expiring, &sbi->expiring_list); spin_unlock(&sbi->lookup_lock); } } static inline void autofs_del_expiring(struct dentry *dentry) { struct autofs_sb_info *sbi = autofs_sbi(dentry->d_sb); struct autofs_info *ino = autofs_dentry_ino(dentry); if (ino) { spin_lock(&sbi->lookup_lock); if (!list_empty(&ino->expiring)) list_del_init(&ino->expiring); spin_unlock(&sbi->lookup_lock); } } void autofs_kill_sb(struct super_block *);
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 /* SPDX-License-Identifier: GPL-2.0 */ /* * Resizable, Scalable, Concurrent Hash Table * * Copyright (c) 2015-2016 Herbert Xu <herbert@gondor.apana.org.au> * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch> * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net> * * Code partially derived from nft_hash * Rewritten with rehash code from br_multicast plus single list * pointer as suggested by Josh Triplett * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #ifndef _LINUX_RHASHTABLE_H #define _LINUX_RHASHTABLE_H #include <linux/err.h> #include <linux/errno.h> #include <linux/jhash.h> #include <linux/list_nulls.h> #include <linux/workqueue.h> #include <linux/rculist.h> #include <linux/bit_spinlock.h> #include <linux/rhashtable-types.h> /* * Objects in an rhashtable have an embedded struct rhash_head * which is linked into as hash chain from the hash table - or one * of two or more hash tables when the rhashtable is being resized. * The end of the chain is marked with a special nulls marks which has * the least significant bit set but otherwise stores the address of * the hash bucket. This allows us to be sure we've found the end * of the right list. * The value stored in the hash bucket has BIT(0) used as a lock bit. * This bit must be atomically set before any changes are made to * the chain. To avoid dereferencing this pointer without clearing * the bit first, we use an opaque 'struct rhash_lock_head *' for the * pointer stored in the bucket. This struct needs to be defined so * that rcu_dereference() works on it, but it has no content so a * cast is needed for it to be useful. This ensures it isn't * used by mistake with clearing the lock bit first. */ struct rhash_lock_head {}; /* Maximum chain length before rehash * * The maximum (not average) chain length grows with the size of the hash * table, at a rate of (log N)/(log log N). * * The value of 16 is selected so that even if the hash table grew to * 2^32 you would not expect the maximum chain length to exceed it * unless we are under attack (or extremely unlucky). * * As this limit is only to detect attacks, we don't need to set it to a * lower value as you'd need the chain length to vastly exceed 16 to have * any real effect on the system. */ #define RHT_ELASTICITY 16u /** * struct bucket_table - Table of hash buckets * @size: Number of hash buckets * @nest: Number of bits of first-level nested table. * @rehash: Current bucket being rehashed * @hash_rnd: Random seed to fold into hash * @walkers: List of active walkers * @rcu: RCU structure for freeing the table * @future_tbl: Table under construction during rehashing * @ntbl: Nested table used when out of memory. * @buckets: size * hash buckets */ struct bucket_table { unsigned int size; unsigned int nest; u32 hash_rnd; struct list_head walkers; struct rcu_head rcu; struct bucket_table __rcu *future_tbl; struct lockdep_map dep_map; struct rhash_lock_head __rcu *buckets[] ____cacheline_aligned_in_smp; }; /* * NULLS_MARKER() expects a hash value with the low * bits mostly likely to be significant, and it discards * the msb. * We give it an address, in which the bottom bit is * always 0, and the msb might be significant. * So we shift the address down one bit to align with * expectations and avoid losing a significant bit. * * We never store the NULLS_MARKER in the hash table * itself as we need the lsb for locking. * Instead we store a NULL */ #define RHT_NULLS_MARKER(ptr) \ ((void *)NULLS_MARKER(((unsigned long) (ptr)) >> 1)) #define INIT_RHT_NULLS_HEAD(ptr) \ ((ptr) = NULL) static inline bool rht_is_a_nulls(const struct rhash_head *ptr) { return ((unsigned long) ptr & 1); } static inline void *rht_obj(const struct rhashtable *ht, const struct rhash_head *he) { return (char *)he - ht->p.head_offset; } static inline unsigned int rht_bucket_index(const struct bucket_table *tbl, unsigned int hash) { return hash & (tbl->size - 1); } static inline unsigned int rht_key_get_hash(struct rhashtable *ht, const void *key, const struct rhashtable_params params, unsigned int hash_rnd) { unsigned int hash; /* params must be equal to ht->p if it isn't constant. */ if (!__builtin_constant_p(params.key_len)) hash = ht->p.hashfn(key, ht->key_len, hash_rnd); else if (params.key_len) { unsigned int key_len = params.key_len; if (params.hashfn) hash = params.hashfn(key, key_len, hash_rnd); else if (key_len & (sizeof(u32) - 1)) hash = jhash(key, key_len, hash_rnd); else hash = jhash2(key, key_len / sizeof(u32), hash_rnd); } else { unsigned int key_len = ht->p.key_len; if (params.hashfn) hash = params.hashfn(key, key_len, hash_rnd); else hash = jhash(key, key_len, hash_rnd); } return hash; } static inline unsigned int rht_key_hashfn( struct rhashtable *ht, const struct bucket_table *tbl, const void *key, const struct rhashtable_params params) { unsigned int hash = rht_key_get_hash(ht, key, params, tbl->hash_rnd); return rht_bucket_index(tbl, hash); } static inline unsigned int rht_head_hashfn( struct rhashtable *ht, const struct bucket_table *tbl, const struct rhash_head *he, const struct rhashtable_params params) { const char *ptr = rht_obj(ht, he); return likely(params.obj_hashfn) ? rht_bucket_index(tbl, params.obj_hashfn(ptr, params.key_len ?: ht->p.key_len, tbl->hash_rnd)) : rht_key_hashfn(ht, tbl, ptr + params.key_offset, params); } /** * rht_grow_above_75 - returns true if nelems > 0.75 * table-size * @ht: hash table * @tbl: current table */ static inline bool rht_grow_above_75(const struct rhashtable *ht, const struct bucket_table *tbl) { /* Expand table when exceeding 75% load */ return atomic_read(&ht->nelems) > (tbl->size / 4 * 3) && (!ht->p.max_size || tbl->size < ht->p.max_size); } /** * rht_shrink_below_30 - returns true if nelems < 0.3 * table-size * @ht: hash table * @tbl: current table */ static inline bool rht_shrink_below_30(const struct rhashtable *ht, const struct bucket_table *tbl) { /* Shrink table beneath 30% load */ return atomic_read(&ht->nelems) < (tbl->size * 3 / 10) && tbl->size > ht->p.min_size; } /** * rht_grow_above_100 - returns true if nelems > table-size * @ht: hash table * @tbl: current table */ static inline bool rht_grow_above_100(const struct rhashtable *ht, const struct bucket_table *tbl) { return atomic_read(&ht->nelems) > tbl->size && (!ht->p.max_size || tbl->size < ht->p.max_size); } /** * rht_grow_above_max - returns true if table is above maximum * @ht: hash table * @tbl: current table */ static inline bool rht_grow_above_max(const struct rhashtable *ht, const struct bucket_table *tbl) { return atomic_read(&ht->nelems) >= ht->max_elems; } #ifdef CONFIG_PROVE_LOCKING int lockdep_rht_mutex_is_held(struct rhashtable *ht); int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash); #else static inline int lockdep_rht_mutex_is_held(struct rhashtable *ht) { return 1; } static inline int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash) { return 1; } #endif /* CONFIG_PROVE_LOCKING */ void *rhashtable_insert_slow(struct rhashtable *ht, const void *key, struct rhash_head *obj); void rhashtable_walk_enter(struct rhashtable *ht, struct rhashtable_iter *iter); void rhashtable_walk_exit(struct rhashtable_iter *iter); int rhashtable_walk_start_check(struct rhashtable_iter *iter) __acquires(RCU); static inline void rhashtable_walk_start(struct rhashtable_iter *iter) { (void)rhashtable_walk_start_check(iter); } void *rhashtable_walk_next(struct rhashtable_iter *iter); void *rhashtable_walk_peek(struct rhashtable_iter *iter); void rhashtable_walk_stop(struct rhashtable_iter *iter) __releases(RCU); void rhashtable_free_and_destroy(struct rhashtable *ht, void (*free_fn)(void *ptr, void *arg), void *arg); void rhashtable_destroy(struct rhashtable *ht); struct rhash_lock_head __rcu **rht_bucket_nested( const struct bucket_table *tbl, unsigned int hash); struct rhash_lock_head __rcu **__rht_bucket_nested( const struct bucket_table *tbl, unsigned int hash); struct rhash_lock_head __rcu **rht_bucket_nested_insert( struct rhashtable *ht, struct bucket_table *tbl, unsigned int hash); #define rht_dereference(p, ht) \ rcu_dereference_protected(p, lockdep_rht_mutex_is_held(ht)) #define rht_dereference_rcu(p, ht) \ rcu_dereference_check(p, lockdep_rht_mutex_is_held(ht)) #define rht_dereference_bucket(p, tbl, hash) \ rcu_dereference_protected(p, lockdep_rht_bucket_is_held(tbl, hash)) #define rht_dereference_bucket_rcu(p, tbl, hash) \ rcu_dereference_check(p, lockdep_rht_bucket_is_held(tbl, hash)) #define rht_entry(tpos, pos, member) \ ({ tpos = container_of(pos, typeof(*tpos), member); 1; }) static inline struct rhash_lock_head __rcu *const *rht_bucket( const struct bucket_table *tbl, unsigned int hash) { return unlikely(tbl->nest) ? rht_bucket_nested(tbl, hash) : &tbl->buckets[hash]; } static inline struct rhash_lock_head __rcu **rht_bucket_var( struct bucket_table *tbl, unsigned int hash) { return unlikely(tbl->nest) ? __rht_bucket_nested(tbl, hash) : &tbl->buckets[hash]; } static inline struct rhash_lock_head __rcu **rht_bucket_insert( struct rhashtable *ht, struct bucket_table *tbl, unsigned int hash) { return unlikely(tbl->nest) ? rht_bucket_nested_insert(ht, tbl, hash) : &tbl->buckets[hash]; } /* * We lock a bucket by setting BIT(0) in the pointer - this is always * zero in real pointers. The NULLS mark is never stored in the bucket, * rather we store NULL if the bucket is empty. * bit_spin_locks do not handle contention well, but the whole point * of the hashtable design is to achieve minimum per-bucket contention. * A nested hash table might not have a bucket pointer. In that case * we cannot get a lock. For remove and replace the bucket cannot be * interesting and doesn't need locking. * For insert we allocate the bucket if this is the last bucket_table, * and then take the lock. * Sometimes we unlock a bucket by writing a new pointer there. In that * case we don't need to unlock, but we do need to reset state such as * local_bh. For that we have rht_assign_unlock(). As rcu_assign_pointer() * provides the same release semantics that bit_spin_unlock() provides, * this is safe. * When we write to a bucket without unlocking, we use rht_assign_locked(). */ static inline void rht_lock(struct bucket_table *tbl, struct rhash_lock_head __rcu **bkt) { local_bh_disable(); bit_spin_lock(0, (unsigned long *)bkt); lock_map_acquire(&tbl->dep_map); } static inline void rht_lock_nested(struct bucket_table *tbl, struct rhash_lock_head __rcu **bucket, unsigned int subclass) { local_bh_disable(); bit_spin_lock(0, (unsigned long *)bucket); lock_acquire_exclusive(&tbl->dep_map, subclass, 0, NULL, _THIS_IP_); } static inline void rht_unlock(struct bucket_table *tbl, struct rhash_lock_head __rcu **bkt) { lock_map_release(&tbl->dep_map); bit_spin_unlock(0, (unsigned long *)bkt); local_bh_enable(); } static inline struct rhash_head *__rht_ptr( struct rhash_lock_head *p, struct rhash_lock_head __rcu *const *bkt) { return (struct rhash_head *) ((unsigned long)p & ~BIT(0) ?: (unsigned long)RHT_NULLS_MARKER(bkt)); } /* * Where 'bkt' is a bucket and might be locked: * rht_ptr_rcu() dereferences that pointer and clears the lock bit. * rht_ptr() dereferences in a context where the bucket is locked. * rht_ptr_exclusive() dereferences in a context where exclusive * access is guaranteed, such as when destroying the table. */ static inline struct rhash_head *rht_ptr_rcu( struct rhash_lock_head __rcu *const *bkt) { return __rht_ptr(rcu_dereference(*bkt), bkt); } static inline struct rhash_head *rht_ptr( struct rhash_lock_head __rcu *const *bkt, struct bucket_table *tbl, unsigned int hash) { return __rht_ptr(rht_dereference_bucket(*bkt, tbl, hash), bkt); } static inline struct rhash_head *rht_ptr_exclusive( struct rhash_lock_head __rcu *const *bkt) { return __rht_ptr(rcu_dereference_protected(*bkt, 1), bkt); } static inline void rht_assign_locked(struct rhash_lock_head __rcu **bkt, struct rhash_head *obj) { if (rht_is_a_nulls(obj)) obj = NULL; rcu_assign_pointer(*bkt, (void *)((unsigned long)obj | BIT(0))); } static inline void rht_assign_unlock(struct bucket_table *tbl, struct rhash_lock_head __rcu **bkt, struct rhash_head *obj) { if (rht_is_a_nulls(obj)) obj = NULL; lock_map_release(&tbl->dep_map); rcu_assign_pointer(*bkt, (void *)obj); preempt_enable(); __release(bitlock); local_bh_enable(); } /** * rht_for_each_from - iterate over hash chain from given head * @pos: the &struct rhash_head to use as a loop cursor. * @head: the &struct rhash_head to start from * @tbl: the &struct bucket_table * @hash: the hash value / bucket index */ #define rht_for_each_from(pos, head, tbl, hash) \ for (pos = head; \ !rht_is_a_nulls(pos); \ pos = rht_dereference_bucket((pos)->next, tbl, hash)) /** * rht_for_each - iterate over hash chain * @pos: the &struct rhash_head to use as a loop cursor. * @tbl: the &struct bucket_table * @hash: the hash value / bucket index */ #define rht_for_each(pos, tbl, hash) \ rht_for_each_from(pos, rht_ptr(rht_bucket(tbl, hash), tbl, hash), \ tbl, hash) /** * rht_for_each_entry_from - iterate over hash chain from given head * @tpos: the type * to use as a loop cursor. * @pos: the &struct rhash_head to use as a loop cursor. * @head: the &struct rhash_head to start from * @tbl: the &struct bucket_table * @hash: the hash value / bucket index * @member: name of the &struct rhash_head within the hashable struct. */ #define rht_for_each_entry_from(tpos, pos, head, tbl, hash, member) \ for (pos = head; \ (!rht_is_a_nulls(pos)) && rht_entry(tpos, pos, member); \ pos = rht_dereference_bucket((pos)->next, tbl, hash)) /** * rht_for_each_entry - iterate over hash chain of given type * @tpos: the type * to use as a loop cursor. * @pos: the &struct rhash_head to use as a loop cursor. * @tbl: the &struct bucket_table * @hash: the hash value / bucket index * @member: name of the &struct rhash_head within the hashable struct. */ #define rht_for_each_entry(tpos, pos, tbl, hash, member) \ rht_for_each_entry_from(tpos, pos, \ rht_ptr(rht_bucket(tbl, hash), tbl, hash), \ tbl, hash, member) /** * rht_for_each_entry_safe - safely iterate over hash chain of given type * @tpos: the type * to use as a loop cursor. * @pos: the &struct rhash_head to use as a loop cursor. * @next: the &struct rhash_head to use as next in loop cursor. * @tbl: the &struct bucket_table * @hash: the hash value / bucket index * @member: name of the &struct rhash_head within the hashable struct. * * This hash chain list-traversal primitive allows for the looped code to * remove the loop cursor from the list. */ #define rht_for_each_entry_safe(tpos, pos, next, tbl, hash, member) \ for (pos = rht_ptr(rht_bucket(tbl, hash), tbl, hash), \ next = !rht_is_a_nulls(pos) ? \ rht_dereference_bucket(pos->next, tbl, hash) : NULL; \ (!rht_is_a_nulls(pos)) && rht_entry(tpos, pos, member); \ pos = next, \ next = !rht_is_a_nulls(pos) ? \ rht_dereference_bucket(pos->next, tbl, hash) : NULL) /** * rht_for_each_rcu_from - iterate over rcu hash chain from given head * @pos: the &struct rhash_head to use as a loop cursor. * @head: the &struct rhash_head to start from * @tbl: the &struct bucket_table * @hash: the hash value / bucket index * * This hash chain list-traversal primitive may safely run concurrently with * the _rcu mutation primitives such as rhashtable_insert() as long as the * traversal is guarded by rcu_read_lock(). */ #define rht_for_each_rcu_from(pos, head, tbl, hash) \ for (({barrier(); }), \ pos = head; \ !rht_is_a_nulls(pos); \ pos = rcu_dereference_raw(pos->next)) /** * rht_for_each_rcu - iterate over rcu hash chain * @pos: the &struct rhash_head to use as a loop cursor. * @tbl: the &struct bucket_table * @hash: the hash value / bucket index * * This hash chain list-traversal primitive may safely run concurrently with * the _rcu mutation primitives such as rhashtable_insert() as long as the * traversal is guarded by rcu_read_lock(). */ #define rht_for_each_rcu(pos, tbl, hash) \ for (({barrier(); }), \ pos = rht_ptr_rcu(rht_bucket(tbl, hash)); \ !rht_is_a_nulls(pos); \ pos = rcu_dereference_raw(pos->next)) /** * rht_for_each_entry_rcu_from - iterated over rcu hash chain from given head * @tpos: the type * to use as a loop cursor. * @pos: the &struct rhash_head to use as a loop cursor. * @head: the &struct rhash_head to start from * @tbl: the &struct bucket_table * @hash: the hash value / bucket index * @member: name of the &struct rhash_head within the hashable struct. * * This hash chain list-traversal primitive may safely run concurrently with * the _rcu mutation primitives such as rhashtable_insert() as long as the * traversal is guarded by rcu_read_lock(). */ #define rht_for_each_entry_rcu_from(tpos, pos, head, tbl, hash, member) \ for (({barrier(); }), \ pos = head; \ (!rht_is_a_nulls(pos)) && rht_entry(tpos, pos, member); \ pos = rht_dereference_bucket_rcu(pos->next, tbl, hash)) /** * rht_for_each_entry_rcu - iterate over rcu hash chain of given type * @tpos: the type * to use as a loop cursor. * @pos: the &struct rhash_head to use as a loop cursor. * @tbl: the &struct bucket_table * @hash: the hash value / bucket index * @member: name of the &struct rhash_head within the hashable struct. * * This hash chain list-traversal primitive may safely run concurrently with * the _rcu mutation primitives such as rhashtable_insert() as long as the * traversal is guarded by rcu_read_lock(). */ #define rht_for_each_entry_rcu(tpos, pos, tbl, hash, member) \ rht_for_each_entry_rcu_from(tpos, pos, \ rht_ptr_rcu(rht_bucket(tbl, hash)), \ tbl, hash, member) /** * rhl_for_each_rcu - iterate over rcu hash table list * @pos: the &struct rlist_head to use as a loop cursor. * @list: the head of the list * * This hash chain list-traversal primitive should be used on the * list returned by rhltable_lookup. */ #define rhl_for_each_rcu(pos, list) \ for (pos = list; pos; pos = rcu_dereference_raw(pos->next)) /** * rhl_for_each_entry_rcu - iterate over rcu hash table list of given type * @tpos: the type * to use as a loop cursor. * @pos: the &struct rlist_head to use as a loop cursor. * @list: the head of the list * @member: name of the &struct rlist_head within the hashable struct. * * This hash chain list-traversal primitive should be used on the * list returned by rhltable_lookup. */ #define rhl_for_each_entry_rcu(tpos, pos, list, member) \ for (pos = list; pos && rht_entry(tpos, pos, member); \ pos = rcu_dereference_raw(pos->next)) static inline int rhashtable_compare(struct rhashtable_compare_arg *arg, const void *obj) { struct rhashtable *ht = arg->ht; const char *ptr = obj; return memcmp(ptr + ht->p.key_offset, arg->key, ht->p.key_len); } /* Internal function, do not use. */ static inline struct rhash_head *__rhashtable_lookup( struct rhashtable *ht, const void *key, const struct rhashtable_params params) { struct rhashtable_compare_arg arg = { .ht = ht, .key = key, }; struct rhash_lock_head __rcu *const *bkt; struct bucket_table *tbl; struct rhash_head *he; unsigned int hash; tbl = rht_dereference_rcu(ht->tbl, ht); restart: hash = rht_key_hashfn(ht, tbl, key, params); bkt = rht_bucket(tbl, hash); do { rht_for_each_rcu_from(he, rht_ptr_rcu(bkt), tbl, hash) { if (params.obj_cmpfn ? params.obj_cmpfn(&arg, rht_obj(ht, he)) : rhashtable_compare(&arg, rht_obj(ht, he))) continue; return he; } /* An object might have been moved to a different hash chain, * while we walk along it - better check and retry. */ } while (he != RHT_NULLS_MARKER(bkt)); /* Ensure we see any new tables. */ smp_rmb(); tbl = rht_dereference_rcu(tbl->future_tbl, ht); if (unlikely(tbl)) goto restart; return NULL; } /** * rhashtable_lookup - search hash table * @ht: hash table * @key: the pointer to the key * @params: hash table parameters * * Computes the hash value for the key and traverses the bucket chain looking * for a entry with an identical key. The first matching entry is returned. * * This must only be called under the RCU read lock. * * Returns the first entry on which the compare function returned true. */ static inline void *rhashtable_lookup( struct rhashtable *ht, const void *key, const struct rhashtable_params params) { struct rhash_head *he = __rhashtable_lookup(ht, key, params); return he ? rht_obj(ht, he) : NULL; } /** * rhashtable_lookup_fast - search hash table, without RCU read lock * @ht: hash table * @key: the pointer to the key * @params: hash table parameters * * Computes the hash value for the key and traverses the bucket chain looking * for a entry with an identical key. The first matching entry is returned. * * Only use this function when you have other mechanisms guaranteeing * that the object won't go away after the RCU read lock is released. * * Returns the first entry on which the compare function returned true. */ static inline void *rhashtable_lookup_fast( struct rhashtable *ht, const void *key, const struct rhashtable_params params) { void *obj; rcu_read_lock(); obj = rhashtable_lookup(ht, key, params); rcu_read_unlock(); return obj; } /** * rhltable_lookup - search hash list table * @hlt: hash table * @key: the pointer to the key * @params: hash table parameters * * Computes the hash value for the key and traverses the bucket chain looking * for a entry with an identical key. All matching entries are returned * in a list. * * This must only be called under the RCU read lock. * * Returns the list of entries that match the given key. */ static inline struct rhlist_head *rhltable_lookup( struct rhltable *hlt, const void *key, const struct rhashtable_params params) { struct rhash_head *he = __rhashtable_lookup(&hlt->ht, key, params); return he ? container_of(he, struct rhlist_head, rhead) : NULL; } /* Internal function, please use rhashtable_insert_fast() instead. This * function returns the existing element already in hashes in there is a clash, * otherwise it returns an error via ERR_PTR(). */ static inline void *__rhashtable_insert_fast( struct rhashtable *ht, const void *key, struct rhash_head *obj, const struct rhashtable_params params, bool rhlist) { struct rhashtable_compare_arg arg = { .ht = ht, .key = key, }; struct rhash_lock_head __rcu **bkt; struct rhash_head __rcu **pprev; struct bucket_table *tbl; struct rhash_head *head; unsigned int hash; int elasticity; void *data; rcu_read_lock(); tbl = rht_dereference_rcu(ht->tbl, ht); hash = rht_head_hashfn(ht, tbl, obj, params); elasticity = RHT_ELASTICITY; bkt = rht_bucket_insert(ht, tbl, hash); data = ERR_PTR(-ENOMEM); if (!bkt) goto out; pprev = NULL; rht_lock(tbl, bkt); if (unlikely(rcu_access_pointer(tbl->future_tbl))) { slow_path: rht_unlock(tbl, bkt); rcu_read_unlock(); return rhashtable_insert_slow(ht, key, obj); } rht_for_each_from(head, rht_ptr(bkt, tbl, hash), tbl, hash) { struct rhlist_head *plist; struct rhlist_head *list; elasticity--; if (!key || (params.obj_cmpfn ? params.obj_cmpfn(&arg, rht_obj(ht, head)) : rhashtable_compare(&arg, rht_obj(ht, head)))) { pprev = &head->next; continue; } data = rht_obj(ht, head); if (!rhlist) goto out_unlock; list = container_of(obj, struct rhlist_head, rhead); plist = container_of(head, struct rhlist_head, rhead); RCU_INIT_POINTER(list->next, plist); head = rht_dereference_bucket(head->next, tbl, hash); RCU_INIT_POINTER(list->rhead.next, head); if (pprev) { rcu_assign_pointer(*pprev, obj); rht_unlock(tbl, bkt); } else rht_assign_unlock(tbl, bkt, obj); data = NULL; goto out; } if (elasticity <= 0) goto slow_path; data = ERR_PTR(-E2BIG); if (unlikely(rht_grow_above_max(ht, tbl))) goto out_unlock; if (unlikely(rht_grow_above_100(ht, tbl))) goto slow_path; /* Inserting at head of list makes unlocking free. */ head = rht_ptr(bkt, tbl, hash); RCU_INIT_POINTER(obj->next, head); if (rhlist) { struct rhlist_head *list; list = container_of(obj, struct rhlist_head, rhead); RCU_INIT_POINTER(list->next, NULL); } atomic_inc(&ht->nelems); rht_assign_unlock(tbl, bkt, obj); if (rht_grow_above_75(ht, tbl)) schedule_work(&ht->run_work); data = NULL; out: rcu_read_unlock(); return data; out_unlock: rht_unlock(tbl, bkt); goto out; } /** * rhashtable_insert_fast - insert object into hash table * @ht: hash table * @obj: pointer to hash head inside object * @params: hash table parameters * * Will take the per bucket bitlock to protect against mutual mutations * on the same bucket. Multiple insertions may occur in parallel unless * they map to the same bucket. * * It is safe to call this function from atomic context. * * Will trigger an automatic deferred table resizing if residency in the * table grows beyond 70%. */ static inline int rhashtable_insert_fast( struct rhashtable *ht, struct rhash_head *obj, const struct rhashtable_params params) { void *ret; ret = __rhashtable_insert_fast(ht, NULL, obj, params, false); if (IS_ERR(ret)) return PTR_ERR(ret); return ret == NULL ? 0 : -EEXIST; } /** * rhltable_insert_key - insert object into hash list table * @hlt: hash list table * @key: the pointer to the key * @list: pointer to hash list head inside object * @params: hash table parameters * * Will take the per bucket bitlock to protect against mutual mutations * on the same bucket. Multiple insertions may occur in parallel unless * they map to the same bucket. * * It is safe to call this function from atomic context. * * Will trigger an automatic deferred table resizing if residency in the * table grows beyond 70%. */ static inline int rhltable_insert_key( struct rhltable *hlt, const void *key, struct rhlist_head *list, const struct rhashtable_params params) { return PTR_ERR(__rhashtable_insert_fast(&hlt->ht, key, &list->rhead, params, true)); } /** * rhltable_insert - insert object into hash list table * @hlt: hash list table * @list: pointer to hash list head inside object * @params: hash table parameters * * Will take the per bucket bitlock to protect against mutual mutations * on the same bucket. Multiple insertions may occur in parallel unless * they map to the same bucket. * * It is safe to call this function from atomic context. * * Will trigger an automatic deferred table resizing if residency in the * table grows beyond 70%. */ static inline int rhltable_insert( struct rhltable *hlt, struct rhlist_head *list, const struct rhashtable_params params) { const char *key = rht_obj(&hlt->ht, &list->rhead); key += params.key_offset; return rhltable_insert_key(hlt, key, list, params); } /** * rhashtable_lookup_insert_fast - lookup and insert object into hash table * @ht: hash table * @obj: pointer to hash head inside object * @params: hash table parameters * * This lookup function may only be used for fixed key hash table (key_len * parameter set). It will BUG() if used inappropriately. * * It is safe to call this function from atomic context. * * Will trigger an automatic deferred table resizing if residency in the * table grows beyond 70%. */ static inline int rhashtable_lookup_insert_fast( struct rhashtable *ht, struct rhash_head *obj, const struct rhashtable_params params) { const char *key = rht_obj(ht, obj); void *ret; BUG_ON(ht->p.obj_hashfn); ret = __rhashtable_insert_fast(ht, key + ht->p.key_offset, obj, params, false); if (IS_ERR(ret)) return PTR_ERR(ret); return ret == NULL ? 0 : -EEXIST; } /** * rhashtable_lookup_get_insert_fast - lookup and insert object into hash table * @ht: hash table * @obj: pointer to hash head inside object * @params: hash table parameters * * Just like rhashtable_lookup_insert_fast(), but this function returns the * object if it exists, NULL if it did not and the insertion was successful, * and an ERR_PTR otherwise. */ static inline void *rhashtable_lookup_get_insert_fast( struct rhashtable *ht, struct rhash_head *obj, const struct rhashtable_params params) { const char *key = rht_obj(ht, obj); BUG_ON(ht->p.obj_hashfn); return __rhashtable_insert_fast(ht, key + ht->p.key_offset, obj, params, false); } /** * rhashtable_lookup_insert_key - search and insert object to hash table * with explicit key * @ht: hash table * @key: key * @obj: pointer to hash head inside object * @params: hash table parameters * * Lookups may occur in parallel with hashtable mutations and resizing. * * Will trigger an automatic deferred table resizing if residency in the * table grows beyond 70%. * * Returns zero on success. */ static inline int rhashtable_lookup_insert_key( struct rhashtable *ht, const void *key, struct rhash_head *obj, const struct rhashtable_params params) { void *ret; BUG_ON(!ht->p.obj_hashfn || !key); ret = __rhashtable_insert_fast(ht, key, obj, params, false); if (IS_ERR(ret)) return PTR_ERR(ret); return ret == NULL ? 0 : -EEXIST; } /** * rhashtable_lookup_get_insert_key - lookup and insert object into hash table * @ht: hash table * @key: key * @obj: pointer to hash head inside object * @params: hash table parameters * * Just like rhashtable_lookup_insert_key(), but this function returns the * object if it exists, NULL if it does not and the insertion was successful, * and an ERR_PTR otherwise. */ static inline void *rhashtable_lookup_get_insert_key( struct rhashtable *ht, const void *key, struct rhash_head *obj, const struct rhashtable_params params) { BUG_ON(!ht->p.obj_hashfn || !key); return __rhashtable_insert_fast(ht, key, obj, params, false); } /* Internal function, please use rhashtable_remove_fast() instead */ static inline int __rhashtable_remove_fast_one( struct rhashtable *ht, struct bucket_table *tbl, struct rhash_head *obj, const struct rhashtable_params params, bool rhlist) { struct rhash_lock_head __rcu **bkt; struct rhash_head __rcu **pprev; struct rhash_head *he; unsigned int hash; int err = -ENOENT; hash = rht_head_hashfn(ht, tbl, obj, params); bkt = rht_bucket_var(tbl, hash); if (!bkt) return -ENOENT; pprev = NULL; rht_lock(tbl, bkt); rht_for_each_from(he, rht_ptr(bkt, tbl, hash), tbl, hash) { struct rhlist_head *list; list = container_of(he, struct rhlist_head, rhead); if (he != obj) { struct rhlist_head __rcu **lpprev; pprev = &he->next; if (!rhlist) continue; do { lpprev = &list->next; list = rht_dereference_bucket(list->next, tbl, hash); } while (list && obj != &list->rhead); if (!list) continue; list = rht_dereference_bucket(list->next, tbl, hash); RCU_INIT_POINTER(*lpprev, list); err = 0; break; } obj = rht_dereference_bucket(obj->next, tbl, hash); err = 1; if (rhlist) { list = rht_dereference_bucket(list->next, tbl, hash); if (list) { RCU_INIT_POINTER(list->rhead.next, obj); obj = &list->rhead; err = 0; } } if (pprev) { rcu_assign_pointer(*pprev, obj); rht_unlock(tbl, bkt); } else { rht_assign_unlock(tbl, bkt, obj); } goto unlocked; } rht_unlock(tbl, bkt); unlocked: if (err > 0) { atomic_dec(&ht->nelems); if (unlikely(ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl))) schedule_work(&ht->run_work); err = 0; } return err; } /* Internal function, please use rhashtable_remove_fast() instead */ static inline int __rhashtable_remove_fast( struct rhashtable *ht, struct rhash_head *obj, const struct rhashtable_params params, bool rhlist) { struct bucket_table *tbl; int err; rcu_read_lock(); tbl = rht_dereference_rcu(ht->tbl, ht); /* Because we have already taken (and released) the bucket * lock in old_tbl, if we find that future_tbl is not yet * visible then that guarantees the entry to still be in * the old tbl if it exists. */ while ((err = __rhashtable_remove_fast_one(ht, tbl, obj, params, rhlist)) && (tbl = rht_dereference_rcu(tbl->future_tbl, ht))) ; rcu_read_unlock(); return err; } /** * rhashtable_remove_fast - remove object from hash table * @ht: hash table * @obj: pointer to hash head inside object * @params: hash table parameters * * Since the hash chain is single linked, the removal operation needs to * walk the bucket chain upon removal. The removal operation is thus * considerable slow if the hash table is not correctly sized. * * Will automatically shrink the table if permitted when residency drops * below 30%. * * Returns zero on success, -ENOENT if the entry could not be found. */ static inline int rhashtable_remove_fast( struct rhashtable *ht, struct rhash_head *obj, const struct rhashtable_params params) { return __rhashtable_remove_fast(ht, obj, params, false); } /** * rhltable_remove - remove object from hash list table * @hlt: hash list table * @list: pointer to hash list head inside object * @params: hash table parameters * * Since the hash chain is single linked, the removal operation needs to * walk the bucket chain upon removal. The removal operation is thus * considerable slow if the hash table is not correctly sized. * * Will automatically shrink the table if permitted when residency drops * below 30% * * Returns zero on success, -ENOENT if the entry could not be found. */ static inline int rhltable_remove( struct rhltable *hlt, struct rhlist_head *list, const struct rhashtable_params params) { return __rhashtable_remove_fast(&hlt->ht, &list->rhead, params, true); } /* Internal function, please use rhashtable_replace_fast() instead */ static inline int __rhashtable_replace_fast( struct rhashtable *ht, struct bucket_table *tbl, struct rhash_head *obj_old, struct rhash_head *obj_new, const struct rhashtable_params params) { struct rhash_lock_head __rcu **bkt; struct rhash_head __rcu **pprev; struct rhash_head *he; unsigned int hash; int err = -ENOENT; /* Minimally, the old and new objects must have same hash * (which should mean identifiers are the same). */ hash = rht_head_hashfn(ht, tbl, obj_old, params); if (hash != rht_head_hashfn(ht, tbl, obj_new, params)) return -EINVAL; bkt = rht_bucket_var(tbl, hash); if (!bkt) return -ENOENT; pprev = NULL; rht_lock(tbl, bkt); rht_for_each_from(he, rht_ptr(bkt, tbl, hash), tbl, hash) { if (he != obj_old) { pprev = &he->next; continue; } rcu_assign_pointer(obj_new->next, obj_old->next); if (pprev) { rcu_assign_pointer(*pprev, obj_new); rht_unlock(tbl, bkt); } else { rht_assign_unlock(tbl, bkt, obj_new); } err = 0; goto unlocked; } rht_unlock(tbl, bkt); unlocked: return err; } /** * rhashtable_replace_fast - replace an object in hash table * @ht: hash table * @obj_old: pointer to hash head inside object being replaced * @obj_new: pointer to hash head inside object which is new * @params: hash table parameters * * Replacing an object doesn't affect the number of elements in the hash table * or bucket, so we don't need to worry about shrinking or expanding the * table here. * * Returns zero on success, -ENOENT if the entry could not be found, * -EINVAL if hash is not the same for the old and new objects. */ static inline int rhashtable_replace_fast( struct rhashtable *ht, struct rhash_head *obj_old, struct rhash_head *obj_new, const struct rhashtable_params params) { struct bucket_table *tbl; int err; rcu_read_lock(); tbl = rht_dereference_rcu(ht->tbl, ht); /* Because we have already taken (and released) the bucket * lock in old_tbl, if we find that future_tbl is not yet * visible then that guarantees the entry to still be in * the old tbl if it exists. */ while ((err = __rhashtable_replace_fast(ht, tbl, obj_old, obj_new, params)) && (tbl = rht_dereference_rcu(tbl->future_tbl, ht))) ; rcu_read_unlock(); return err; } /** * rhltable_walk_enter - Initialise an iterator * @hlt: Table to walk over * @iter: Hash table Iterator * * This function prepares a hash table walk. * * Note that if you restart a walk after rhashtable_walk_stop you * may see the same object twice. Also, you may miss objects if * there are removals in between rhashtable_walk_stop and the next * call to rhashtable_walk_start. * * For a completely stable walk you should construct your own data * structure outside the hash table. * * This function may be called from any process context, including * non-preemptable context, but cannot be called from softirq or * hardirq context. * * You must call rhashtable_walk_exit after this function returns. */ static inline void rhltable_walk_enter(struct rhltable *hlt, struct rhashtable_iter *iter) { return rhashtable_walk_enter(&hlt->ht, iter); } /** * rhltable_free_and_destroy - free elements and destroy hash list table * @hlt: the hash list table to destroy * @free_fn: callback to release resources of element * @arg: pointer passed to free_fn * * See documentation for rhashtable_free_and_destroy. */ static inline void rhltable_free_and_destroy(struct rhltable *hlt, void (*free_fn)(void *ptr, void *arg), void *arg) { return rhashtable_free_and_destroy(&hlt->ht, free_fn, arg); } static inline void rhltable_destroy(struct rhltable *hlt) { return rhltable_free_and_destroy(hlt, NULL, NULL); } #endif /* _LINUX_RHASHTABLE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _SCSI_SCSI_REQUEST_H #define _SCSI_SCSI_REQUEST_H #include <linux/blk-mq.h> #define BLK_MAX_CDB 16 struct scsi_request { unsigned char __cmd[BLK_MAX_CDB]; unsigned char *cmd; unsigned short cmd_len; int result; unsigned int sense_len; unsigned int resid_len; /* residual count */ int retries; void *sense; }; static inline struct scsi_request *scsi_req(struct request *rq) { return blk_mq_rq_to_pdu(rq); } static inline void scsi_req_free_cmd(struct scsi_request *req) { if (req->cmd != req->__cmd) kfree(req->cmd); } void scsi_req_init(struct scsi_request *req); #endif /* _SCSI_SCSI_REQUEST_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 #undef TRACE_SYSTEM #define TRACE_SYSTEM rtc #if !defined(_TRACE_RTC_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_RTC_H #include <linux/rtc.h> #include <linux/tracepoint.h> DECLARE_EVENT_CLASS(rtc_time_alarm_class, TP_PROTO(time64_t secs, int err), TP_ARGS(secs, err), TP_STRUCT__entry( __field(time64_t, secs) __field(int, err) ), TP_fast_assign( __entry->secs = secs; __entry->err = err; ), TP_printk("UTC (%lld) (%d)", __entry->secs, __entry->err ) ); DEFINE_EVENT(rtc_time_alarm_class, rtc_set_time, TP_PROTO(time64_t secs, int err), TP_ARGS(secs, err) ); DEFINE_EVENT(rtc_time_alarm_class, rtc_read_time, TP_PROTO(time64_t secs, int err), TP_ARGS(secs, err) ); DEFINE_EVENT(rtc_time_alarm_class, rtc_set_alarm, TP_PROTO(time64_t secs, int err), TP_ARGS(secs, err) ); DEFINE_EVENT(rtc_time_alarm_class, rtc_read_alarm, TP_PROTO(time64_t secs, int err), TP_ARGS(secs, err) ); TRACE_EVENT(rtc_irq_set_freq, TP_PROTO(int freq, int err), TP_ARGS(freq, err), TP_STRUCT__entry( __field(int, freq) __field(int, err) ), TP_fast_assign( __entry->freq = freq; __entry->err = err; ), TP_printk("set RTC periodic IRQ frequency:%u (%d)", __entry->freq, __entry->err ) ); TRACE_EVENT(rtc_irq_set_state, TP_PROTO(int enabled, int err), TP_ARGS(enabled, err), TP_STRUCT__entry( __field(int, enabled) __field(int, err) ), TP_fast_assign( __entry->enabled = enabled; __entry->err = err; ), TP_printk("%s RTC 2^N Hz periodic IRQs (%d)", __entry->enabled ? "enable" : "disable", __entry->err ) ); TRACE_EVENT(rtc_alarm_irq_enable, TP_PROTO(unsigned int enabled, int err), TP_ARGS(enabled, err), TP_STRUCT__entry( __field(unsigned int, enabled) __field(int, err) ), TP_fast_assign( __entry->enabled = enabled; __entry->err = err; ), TP_printk("%s RTC alarm IRQ (%d)", __entry->enabled ? "enable" : "disable", __entry->err ) ); DECLARE_EVENT_CLASS(rtc_offset_class, TP_PROTO(long offset, int err), TP_ARGS(offset, err), TP_STRUCT__entry( __field(long, offset) __field(int, err) ), TP_fast_assign( __entry->offset = offset; __entry->err = err; ), TP_printk("RTC offset: %ld (%d)", __entry->offset, __entry->err ) ); DEFINE_EVENT(rtc_offset_class, rtc_set_offset, TP_PROTO(long offset, int err), TP_ARGS(offset, err) ); DEFINE_EVENT(rtc_offset_class, rtc_read_offset, TP_PROTO(long offset, int err), TP_ARGS(offset, err) ); DECLARE_EVENT_CLASS(rtc_timer_class, TP_PROTO(struct rtc_timer *timer), TP_ARGS(timer), TP_STRUCT__entry( __field(struct rtc_timer *, timer) __field(ktime_t, expires) __field(ktime_t, period) ), TP_fast_assign( __entry->timer = timer; __entry->expires = timer->node.expires; __entry->period = timer->period; ), TP_printk("RTC timer:(%p) expires:%lld period:%lld", __entry->timer, __entry->expires, __entry->period ) ); DEFINE_EVENT(rtc_timer_class, rtc_timer_enqueue, TP_PROTO(struct rtc_timer *timer), TP_ARGS(timer) ); DEFINE_EVENT(rtc_timer_class, rtc_timer_dequeue, TP_PROTO(struct rtc_timer *timer), TP_ARGS(timer) ); DEFINE_EVENT(rtc_timer_class, rtc_timer_fired, TP_PROTO(struct rtc_timer *timer), TP_ARGS(timer) ); #endif /* _TRACE_RTC_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 /* SPDX-License-Identifier: GPL-2.0 */ /* * include/linux/buffer_head.h * * Everything to do with buffer_heads. */ #ifndef _LINUX_BUFFER_HEAD_H #define _LINUX_BUFFER_HEAD_H #include <linux/types.h> #include <linux/fs.h> #include <linux/linkage.h> #include <linux/pagemap.h> #include <linux/wait.h> #include <linux/atomic.h> #ifdef CONFIG_BLOCK enum bh_state_bits { BH_Uptodate, /* Contains valid data */ BH_Dirty, /* Is dirty */ BH_Lock, /* Is locked */ BH_Req, /* Has been submitted for I/O */ BH_Mapped, /* Has a disk mapping */ BH_New, /* Disk mapping was newly created by get_block */ BH_Async_Read, /* Is under end_buffer_async_read I/O */ BH_Async_Write, /* Is under end_buffer_async_write I/O */ BH_Delay, /* Buffer is not yet allocated on disk */ BH_Boundary, /* Block is followed by a discontiguity */ BH_Write_EIO, /* I/O error on write */ BH_Unwritten, /* Buffer is allocated on disk but not written */ BH_Quiet, /* Buffer Error Prinks to be quiet */ BH_Meta, /* Buffer contains metadata */ BH_Prio, /* Buffer should be submitted with REQ_PRIO */ BH_Defer_Completion, /* Defer AIO completion to workqueue */ BH_PrivateStart,/* not a state bit, but the first bit available * for private allocation by other entities */ }; #define MAX_BUF_PER_PAGE (PAGE_SIZE / 512) struct page; struct buffer_head; struct address_space; typedef void (bh_end_io_t)(struct buffer_head *bh, int uptodate); /* * Historically, a buffer_head was used to map a single block * within a page, and of course as the unit of I/O through the * filesystem and block layers. Nowadays the basic I/O unit * is the bio, and buffer_heads are used for extracting block * mappings (via a get_block_t call), for tracking state within * a page (via a page_mapping) and for wrapping bio submission * for backward compatibility reasons (e.g. submit_bh). */ struct buffer_head { unsigned long b_state; /* buffer state bitmap (see above) */ struct buffer_head *b_this_page;/* circular list of page's buffers */ struct page *b_page; /* the page this bh is mapped to */ sector_t b_blocknr; /* start block number */ size_t b_size; /* size of mapping */ char *b_data; /* pointer to data within the page */ struct block_device *b_bdev; bh_end_io_t *b_end_io; /* I/O completion */ void *b_private; /* reserved for b_end_io */ struct list_head b_assoc_buffers; /* associated with another mapping */ struct address_space *b_assoc_map; /* mapping this buffer is associated with */ atomic_t b_count; /* users using this buffer_head */ spinlock_t b_uptodate_lock; /* Used by the first bh in a page, to * serialise IO completion of other * buffers in the page */ }; /* * macro tricks to expand the set_buffer_foo(), clear_buffer_foo() * and buffer_foo() functions. * To avoid reset buffer flags that are already set, because that causes * a costly cache line transition, check the flag first. */ #define BUFFER_FNS(bit, name) \ static __always_inline void set_buffer_##name(struct buffer_head *bh) \ { \ if (!test_bit(BH_##bit, &(bh)->b_state)) \ set_bit(BH_##bit, &(bh)->b_state); \ } \ static __always_inline void clear_buffer_##name(struct buffer_head *bh) \ { \ clear_bit(BH_##bit, &(bh)->b_state); \ } \ static __always_inline int buffer_##name(const struct buffer_head *bh) \ { \ return test_bit(BH_##bit, &(bh)->b_state); \ } /* * test_set_buffer_foo() and test_clear_buffer_foo() */ #define TAS_BUFFER_FNS(bit, name) \ static __always_inline int test_set_buffer_##name(struct buffer_head *bh) \ { \ return test_and_set_bit(BH_##bit, &(bh)->b_state); \ } \ static __always_inline int test_clear_buffer_##name(struct buffer_head *bh) \ { \ return test_and_clear_bit(BH_##bit, &(bh)->b_state); \ } \ /* * Emit the buffer bitops functions. Note that there are also functions * of the form "mark_buffer_foo()". These are higher-level functions which * do something in addition to setting a b_state bit. */ BUFFER_FNS(Uptodate, uptodate) BUFFER_FNS(Dirty, dirty) TAS_BUFFER_FNS(Dirty, dirty) BUFFER_FNS(Lock, locked) BUFFER_FNS(Req, req) TAS_BUFFER_FNS(Req, req) BUFFER_FNS(Mapped, mapped) BUFFER_FNS(New, new) BUFFER_FNS(Async_Read, async_read) BUFFER_FNS(Async_Write, async_write) BUFFER_FNS(Delay, delay) BUFFER_FNS(Boundary, boundary) BUFFER_FNS(Write_EIO, write_io_error) BUFFER_FNS(Unwritten, unwritten) BUFFER_FNS(Meta, meta) BUFFER_FNS(Prio, prio) BUFFER_FNS(Defer_Completion, defer_completion) #define bh_offset(bh) ((unsigned long)(bh)->b_data & ~PAGE_MASK) /* If we *know* page->private refers to buffer_heads */ #define page_buffers(page) \ ({ \ BUG_ON(!PagePrivate(page)); \ ((struct buffer_head *)page_private(page)); \ }) #define page_has_buffers(page) PagePrivate(page) void buffer_check_dirty_writeback(struct page *page, bool *dirty, bool *writeback); /* * Declarations */ void mark_buffer_dirty(struct buffer_head *bh); void mark_buffer_write_io_error(struct buffer_head *bh); void touch_buffer(struct buffer_head *bh); void set_bh_page(struct buffer_head *bh, struct page *page, unsigned long offset); int try_to_free_buffers(struct page *); struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, bool retry); void create_empty_buffers(struct page *, unsigned long, unsigned long b_state); void end_buffer_read_sync(struct buffer_head *bh, int uptodate); void end_buffer_write_sync(struct buffer_head *bh, int uptodate); void end_buffer_async_write(struct buffer_head *bh, int uptodate); /* Things to do with buffers at mapping->private_list */ void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode); int inode_has_buffers(struct inode *); void invalidate_inode_buffers(struct inode *); int remove_inode_buffers(struct inode *inode); int sync_mapping_buffers(struct address_space *mapping); void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len); static inline void clean_bdev_bh_alias(struct buffer_head *bh) { clean_bdev_aliases(bh->b_bdev, bh->b_blocknr, 1); } void mark_buffer_async_write(struct buffer_head *bh); void __wait_on_buffer(struct buffer_head *); wait_queue_head_t *bh_waitq_head(struct buffer_head *bh); struct buffer_head *__find_get_block(struct block_device *bdev, sector_t block, unsigned size); struct buffer_head *__getblk_gfp(struct block_device *bdev, sector_t block, unsigned size, gfp_t gfp); void __brelse(struct buffer_head *); void __bforget(struct buffer_head *); void __breadahead(struct block_device *, sector_t block, unsigned int size); void __breadahead_gfp(struct block_device *, sector_t block, unsigned int size, gfp_t gfp); struct buffer_head *__bread_gfp(struct block_device *, sector_t block, unsigned size, gfp_t gfp); void invalidate_bh_lrus(void); struct buffer_head *alloc_buffer_head(gfp_t gfp_flags); void free_buffer_head(struct buffer_head * bh); void unlock_buffer(struct buffer_head *bh); void __lock_buffer(struct buffer_head *bh); void ll_rw_block(int, int, int, struct buffer_head * bh[]); int sync_dirty_buffer(struct buffer_head *bh); int __sync_dirty_buffer(struct buffer_head *bh, int op_flags); void write_dirty_buffer(struct buffer_head *bh, int op_flags); int submit_bh(int, int, struct buffer_head *); void write_boundary_block(struct block_device *bdev, sector_t bblock, unsigned blocksize); int bh_uptodate_or_lock(struct buffer_head *bh); int bh_submit_read(struct buffer_head *bh); extern int buffer_heads_over_limit; /* * Generic address_space_operations implementations for buffer_head-backed * address_spaces. */ void block_invalidatepage(struct page *page, unsigned int offset, unsigned int length); int block_write_full_page(struct page *page, get_block_t *get_block, struct writeback_control *wbc); int __block_write_full_page(struct inode *inode, struct page *page, get_block_t *get_block, struct writeback_control *wbc, bh_end_io_t *handler); int block_read_full_page(struct page*, get_block_t*); int block_is_partially_uptodate(struct page *page, unsigned long from, unsigned long count); int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, unsigned flags, struct page **pagep, get_block_t *get_block); int __block_write_begin(struct page *page, loff_t pos, unsigned len, get_block_t *get_block); int block_write_end(struct file *, struct address_space *, loff_t, unsigned, unsigned, struct page *, void *); int generic_write_end(struct file *, struct address_space *, loff_t, unsigned, unsigned, struct page *, void *); void page_zero_new_buffers(struct page *page, unsigned from, unsigned to); void clean_page_buffers(struct page *page); int cont_write_begin(struct file *, struct address_space *, loff_t, unsigned, unsigned, struct page **, void **, get_block_t *, loff_t *); int generic_cont_expand_simple(struct inode *inode, loff_t size); int block_commit_write(struct page *page, unsigned from, unsigned to); int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, get_block_t get_block); /* Convert errno to return value from ->page_mkwrite() call */ static inline vm_fault_t block_page_mkwrite_return(int err) { if (err == 0) return VM_FAULT_LOCKED; if (err == -EFAULT || err == -EAGAIN) return VM_FAULT_NOPAGE; if (err == -ENOMEM) return VM_FAULT_OOM; /* -ENOSPC, -EDQUOT, -EIO ... */ return VM_FAULT_SIGBUS; } sector_t generic_block_bmap(struct address_space *, sector_t, get_block_t *); int block_truncate_page(struct address_space *, loff_t, get_block_t *); int nobh_write_begin(struct address_space *, loff_t, unsigned, unsigned, struct page **, void **, get_block_t*); int nobh_write_end(struct file *, struct address_space *, loff_t, unsigned, unsigned, struct page *, void *); int nobh_truncate_page(struct address_space *, loff_t, get_block_t *); int nobh_writepage(struct page *page, get_block_t *get_block, struct writeback_control *wbc); void buffer_init(void); /* * inline definitions */ static inline void get_bh(struct buffer_head *bh) { atomic_inc(&bh->b_count); } static inline void put_bh(struct buffer_head *bh) { smp_mb__before_atomic(); atomic_dec(&bh->b_count); } static inline void brelse(struct buffer_head *bh) { if (bh) __brelse(bh); } static inline void bforget(struct buffer_head *bh) { if (bh) __bforget(bh); } static inline struct buffer_head * sb_bread(struct super_block *sb, sector_t block) { return __bread_gfp(sb->s_bdev, block, sb->s_blocksize, __GFP_MOVABLE); } static inline struct buffer_head * sb_bread_unmovable(struct super_block *sb, sector_t block) { return __bread_gfp(sb->s_bdev, block, sb->s_blocksize, 0); } static inline void sb_breadahead(struct super_block *sb, sector_t block) { __breadahead(sb->s_bdev, block, sb->s_blocksize); } static inline void sb_breadahead_unmovable(struct super_block *sb, sector_t block) { __breadahead_gfp(sb->s_bdev, block, sb->s_blocksize, 0); } static inline struct buffer_head * sb_getblk(struct super_block *sb, sector_t block) { return __getblk_gfp(sb->s_bdev, block, sb->s_blocksize, __GFP_MOVABLE); } static inline struct buffer_head * sb_getblk_gfp(struct super_block *sb, sector_t block, gfp_t gfp) { return __getblk_gfp(sb->s_bdev, block, sb->s_blocksize, gfp); } static inline struct buffer_head * sb_find_get_block(struct super_block *sb, sector_t block) { return __find_get_block(sb->s_bdev, block, sb->s_blocksize); } static inline void map_bh(struct buffer_head *bh, struct super_block *sb, sector_t block) { set_buffer_mapped(bh); bh->b_bdev = sb->s_bdev; bh->b_blocknr = block; bh->b_size = sb->s_blocksize; } static inline void wait_on_buffer(struct buffer_head *bh) { might_sleep(); if (buffer_locked(bh)) __wait_on_buffer(bh); } static inline int trylock_buffer(struct buffer_head *bh) { return likely(!test_and_set_bit_lock(BH_Lock, &bh->b_state)); } static inline void lock_buffer(struct buffer_head *bh) { might_sleep(); if (!trylock_buffer(bh)) __lock_buffer(bh); } static inline struct buffer_head *getblk_unmovable(struct block_device *bdev, sector_t block, unsigned size) { return __getblk_gfp(bdev, block, size, 0); } static inline struct buffer_head *__getblk(struct block_device *bdev, sector_t block, unsigned size) { return __getblk_gfp(bdev, block, size, __GFP_MOVABLE); } /** * __bread() - reads a specified block and returns the bh * @bdev: the block_device to read from * @block: number of block * @size: size (in bytes) to read * * Reads a specified block, and returns buffer head that contains it. * The page cache is allocated from movable area so that it can be migrated. * It returns NULL if the block was unreadable. */ static inline struct buffer_head * __bread(struct block_device *bdev, sector_t block, unsigned size) { return __bread_gfp(bdev, block, size, __GFP_MOVABLE); } extern int __set_page_dirty_buffers(struct page *page); #else /* CONFIG_BLOCK */ static inline void buffer_init(void) {} static inline int try_to_free_buffers(struct page *page) { return 1; } static inline int inode_has_buffers(struct inode *inode) { return 0; } static inline void invalidate_inode_buffers(struct inode *inode) {} static inline int remove_inode_buffers(struct inode *inode) { return 1; } static inline int sync_mapping_buffers(struct address_space *mapping) { return 0; } #define buffer_heads_over_limit 0 #endif /* CONFIG_BLOCK */ #endif /* _LINUX_BUFFER_HEAD_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM alarmtimer #if !defined(_TRACE_ALARMTIMER_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_ALARMTIMER_H #include <linux/alarmtimer.h> #include <linux/rtc.h> #include <linux/tracepoint.h> TRACE_DEFINE_ENUM(ALARM_REALTIME); TRACE_DEFINE_ENUM(ALARM_BOOTTIME); TRACE_DEFINE_ENUM(ALARM_REALTIME_FREEZER); TRACE_DEFINE_ENUM(ALARM_BOOTTIME_FREEZER); #define show_alarm_type(type) __print_flags(type, " | ", \ { 1 << ALARM_REALTIME, "REALTIME" }, \ { 1 << ALARM_BOOTTIME, "BOOTTIME" }, \ { 1 << ALARM_REALTIME_FREEZER, "REALTIME Freezer" }, \ { 1 << ALARM_BOOTTIME_FREEZER, "BOOTTIME Freezer" }) TRACE_EVENT(alarmtimer_suspend, TP_PROTO(ktime_t expires, int flag), TP_ARGS(expires, flag), TP_STRUCT__entry( __field(s64, expires) __field(unsigned char, alarm_type) ), TP_fast_assign( __entry->expires = expires; __entry->alarm_type = flag; ), TP_printk("alarmtimer type:%s expires:%llu", show_alarm_type((1 << __entry->alarm_type)), __entry->expires ) ); DECLARE_EVENT_CLASS(alarm_class, TP_PROTO(struct alarm *alarm, ktime_t now), TP_ARGS(alarm, now), TP_STRUCT__entry( __field(void *, alarm) __field(unsigned char, alarm_type) __field(s64, expires) __field(s64, now) ), TP_fast_assign( __entry->alarm = alarm; __entry->alarm_type = alarm->type; __entry->expires = alarm->node.expires; __entry->now = now; ), TP_printk("alarmtimer:%p type:%s expires:%llu now:%llu", __entry->alarm, show_alarm_type((1 << __entry->alarm_type)), __entry->expires, __entry->now ) ); DEFINE_EVENT(alarm_class, alarmtimer_fired, TP_PROTO(struct alarm *alarm, ktime_t now), TP_ARGS(alarm, now) ); DEFINE_EVENT(alarm_class, alarmtimer_start, TP_PROTO(struct alarm *alarm, ktime_t now), TP_ARGS(alarm, now) ); DEFINE_EVENT(alarm_class, alarmtimer_cancel, TP_PROTO(struct alarm *alarm, ktime_t now), TP_ARGS(alarm, now) ); #endif /* _TRACE_ALARMTIMER_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 // SPDX-License-Identifier: GPL-2.0 /* * Fast batching percpu counters. */ #include <linux/percpu_counter.h> #include <linux/mutex.h> #include <linux/init.h> #include <linux/cpu.h> #include <linux/module.h> #include <linux/debugobjects.h> #ifdef CONFIG_HOTPLUG_CPU static LIST_HEAD(percpu_counters); static DEFINE_SPINLOCK(percpu_counters_lock); #endif #ifdef CONFIG_DEBUG_OBJECTS_PERCPU_COUNTER static const struct debug_obj_descr percpu_counter_debug_descr; static bool percpu_counter_fixup_free(void *addr, enum debug_obj_state state) { struct percpu_counter *fbc = addr; switch (state) { case ODEBUG_STATE_ACTIVE: percpu_counter_destroy(fbc); debug_object_free(fbc, &percpu_counter_debug_descr); return true; default: return false; } } static const struct debug_obj_descr percpu_counter_debug_descr = { .name = "percpu_counter", .fixup_free = percpu_counter_fixup_free, }; static inline void debug_percpu_counter_activate(struct percpu_counter *fbc) { debug_object_init(fbc, &percpu_counter_debug_descr); debug_object_activate(fbc, &percpu_counter_debug_descr); } static inline void debug_percpu_counter_deactivate(struct percpu_counter *fbc) { debug_object_deactivate(fbc, &percpu_counter_debug_descr); debug_object_free(fbc, &percpu_counter_debug_descr); } #else /* CONFIG_DEBUG_OBJECTS_PERCPU_COUNTER */ static inline void debug_percpu_counter_activate(struct percpu_counter *fbc) { } static inline void debug_percpu_counter_deactivate(struct percpu_counter *fbc) { } #endif /* CONFIG_DEBUG_OBJECTS_PERCPU_COUNTER */ void percpu_counter_set(struct percpu_counter *fbc, s64 amount) { int cpu; unsigned long flags; raw_spin_lock_irqsave(&fbc->lock, flags); for_each_possible_cpu(cpu) { s32 *pcount = per_cpu_ptr(fbc->counters, cpu); *pcount = 0; } fbc->count = amount; raw_spin_unlock_irqrestore(&fbc->lock, flags); } EXPORT_SYMBOL(percpu_counter_set); /** * This function is both preempt and irq safe. The former is due to explicit * preemption disable. The latter is guaranteed by the fact that the slow path * is explicitly protected by an irq-safe spinlock whereas the fast patch uses * this_cpu_add which is irq-safe by definition. Hence there is no need muck * with irq state before calling this one */ void percpu_counter_add_batch(struct percpu_counter *fbc, s64 amount, s32 batch) { s64 count; preempt_disable(); count = __this_cpu_read(*fbc->counters) + amount; if (abs(count) >= batch) { unsigned long flags; raw_spin_lock_irqsave(&fbc->lock, flags); fbc->count += count; __this_cpu_sub(*fbc->counters, count - amount); raw_spin_unlock_irqrestore(&fbc->lock, flags); } else { this_cpu_add(*fbc->counters, amount); } preempt_enable(); } EXPORT_SYMBOL(percpu_counter_add_batch); /* * For percpu_counter with a big batch, the devication of its count could * be big, and there is requirement to reduce the deviation, like when the * counter's batch could be runtime decreased to get a better accuracy, * which can be achieved by running this sync function on each CPU. */ void percpu_counter_sync(struct percpu_counter *fbc) { unsigned long flags; s64 count; raw_spin_lock_irqsave(&fbc->lock, flags); count = __this_cpu_read(*fbc->counters); fbc->count += count; __this_cpu_sub(*fbc->counters, count); raw_spin_unlock_irqrestore(&fbc->lock, flags); } EXPORT_SYMBOL(percpu_counter_sync); /* * Add up all the per-cpu counts, return the result. This is a more accurate * but much slower version of percpu_counter_read_positive() */ s64 __percpu_counter_sum(struct percpu_counter *fbc) { s64 ret; int cpu; unsigned long flags; raw_spin_lock_irqsave(&fbc->lock, flags); ret = fbc->count; for_each_online_cpu(cpu) { s32 *pcount = per_cpu_ptr(fbc->counters, cpu); ret += *pcount; } raw_spin_unlock_irqrestore(&fbc->lock, flags); return ret; } EXPORT_SYMBOL(__percpu_counter_sum); int __percpu_counter_init(struct percpu_counter *fbc, s64 amount, gfp_t gfp, struct lock_class_key *key) { unsigned long flags __maybe_unused; raw_spin_lock_init(&fbc->lock); lockdep_set_class(&fbc->lock, key); fbc->count = amount; fbc->counters = alloc_percpu_gfp(s32, gfp); if (!fbc->counters) return -ENOMEM; debug_percpu_counter_activate(fbc); #ifdef CONFIG_HOTPLUG_CPU INIT_LIST_HEAD(&fbc->list); spin_lock_irqsave(&percpu_counters_lock, flags); list_add(&fbc->list, &percpu_counters); spin_unlock_irqrestore(&percpu_counters_lock, flags); #endif return 0; } EXPORT_SYMBOL(__percpu_counter_init); void percpu_counter_destroy(struct percpu_counter *fbc) { unsigned long flags __maybe_unused; if (!fbc->counters) return; debug_percpu_counter_deactivate(fbc); #ifdef CONFIG_HOTPLUG_CPU spin_lock_irqsave(&percpu_counters_lock, flags); list_del(&fbc->list); spin_unlock_irqrestore(&percpu_counters_lock, flags); #endif free_percpu(fbc->counters); fbc->counters = NULL; } EXPORT_SYMBOL(percpu_counter_destroy); int percpu_counter_batch __read_mostly = 32; EXPORT_SYMBOL(percpu_counter_batch); static int compute_batch_value(unsigned int cpu) { int nr = num_online_cpus(); percpu_counter_batch = max(32, nr*2); return 0; } static int percpu_counter_cpu_dead(unsigned int cpu) { #ifdef CONFIG_HOTPLUG_CPU struct percpu_counter *fbc; compute_batch_value(cpu); spin_lock_irq(&percpu_counters_lock); list_for_each_entry(fbc, &percpu_counters, list) { s32 *pcount; raw_spin_lock(&fbc->lock); pcount = per_cpu_ptr(fbc->counters, cpu); fbc->count += *pcount; *pcount = 0; raw_spin_unlock(&fbc->lock); } spin_unlock_irq(&percpu_counters_lock); #endif return 0; } /* * Compare counter against given value. * Return 1 if greater, 0 if equal and -1 if less */ int __percpu_counter_compare(struct percpu_counter *fbc, s64 rhs, s32 batch) { s64 count; count = percpu_counter_read(fbc); /* Check to see if rough count will be sufficient for comparison */ if (abs(count - rhs) > (batch * num_online_cpus())) { if (count > rhs) return 1; else return -1; } /* Need to use precise count */ count = percpu_counter_sum(fbc); if (count > rhs) return 1; else if (count < rhs) return -1; else return 0; } EXPORT_SYMBOL(__percpu_counter_compare); static int __init percpu_counter_startup(void) { int ret; ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "lib/percpu_cnt:online", compute_batch_value, NULL); WARN_ON(ret < 0); ret = cpuhp_setup_state_nocalls(CPUHP_PERCPU_CNT_DEAD, "lib/percpu_cnt:dead", NULL, percpu_counter_cpu_dead); WARN_ON(ret < 0); return 0; } module_init(percpu_counter_startup);
1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __ASM_PREEMPT_H #define __ASM_PREEMPT_H #include <asm/rmwcc.h> #include <asm/percpu.h> #include <linux/thread_info.h> DECLARE_PER_CPU(int, __preempt_count); /* We use the MSB mostly because its available */ #define PREEMPT_NEED_RESCHED 0x80000000 /* * We use the PREEMPT_NEED_RESCHED bit as an inverted NEED_RESCHED such * that a decrement hitting 0 means we can and should reschedule. */ #define PREEMPT_ENABLED (0 + PREEMPT_NEED_RESCHED) /* * We mask the PREEMPT_NEED_RESCHED bit so as not to confuse all current users * that think a non-zero value indicates we cannot preempt. */ static __always_inline int preempt_count(void) { return raw_cpu_read_4(__preempt_count) & ~PREEMPT_NEED_RESCHED; } static __always_inline void preempt_count_set(int pc) { int old, new; do { old = raw_cpu_read_4(__preempt_count); new = (old & PREEMPT_NEED_RESCHED) | (pc & ~PREEMPT_NEED_RESCHED); } while (raw_cpu_cmpxchg_4(__preempt_count, old, new) != old); } /* * must be macros to avoid header recursion hell */ #define init_task_preempt_count(p) do { } while (0) #define init_idle_preempt_count(p, cpu) do { \ per_cpu(__preempt_count, (cpu)) = PREEMPT_DISABLED; \ } while (0) /* * We fold the NEED_RESCHED bit into the preempt count such that * preempt_enable() can decrement and test for needing to reschedule with a * single instruction. * * We invert the actual bit, so that when the decrement hits 0 we know we both * need to resched (the bit is cleared) and can resched (no preempt count). */ static __always_inline void set_preempt_need_resched(void) { raw_cpu_and_4(__preempt_count, ~PREEMPT_NEED_RESCHED); } static __always_inline void clear_preempt_need_resched(void) { raw_cpu_or_4(__preempt_count, PREEMPT_NEED_RESCHED); } static __always_inline bool test_preempt_need_resched(void) { return !(raw_cpu_read_4(__preempt_count) & PREEMPT_NEED_RESCHED); } /* * The various preempt_count add/sub methods */ static __always_inline void __preempt_count_add(int val) { raw_cpu_add_4(__preempt_count, val); } static __always_inline void __preempt_count_sub(int val) { raw_cpu_add_4(__preempt_count, -val); } /* * Because we keep PREEMPT_NEED_RESCHED set when we do _not_ need to reschedule * a decrement which hits zero means we have no preempt_count and should * reschedule. */ static __always_inline bool __preempt_count_dec_and_test(void) { return GEN_UNARY_RMWcc("decl", __preempt_count, e, __percpu_arg([var])); } /* * Returns true when we need to resched and can (barring IRQ state). */ static __always_inline bool should_resched(int preempt_offset) { return unlikely(raw_cpu_read_4(__preempt_count) == preempt_offset); } #ifdef CONFIG_PREEMPTION extern asmlinkage void preempt_schedule_thunk(void); # define __preempt_schedule() \ asm volatile ("call preempt_schedule_thunk" : ASM_CALL_CONSTRAINT) extern asmlinkage void preempt_schedule(void); extern asmlinkage void preempt_schedule_notrace_thunk(void); # define __preempt_schedule_notrace() \ asm volatile ("call preempt_schedule_notrace_thunk" : ASM_CALL_CONSTRAINT) extern asmlinkage void preempt_schedule_notrace(void); #endif #endif /* __ASM_PREEMPT_H */
1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_LIST_H #define _LINUX_LIST_H #include <linux/types.h> #include <linux/stddef.h> #include <linux/poison.h> #include <linux/const.h> #include <linux/kernel.h> /* * Simple doubly linked list implementation. * * Some of the internal functions ("__xxx") are useful when * manipulating whole lists rather than single entries, as * sometimes we already know the next/prev entries and we can * generate better code by using them directly rather than * using the generic single-entry routines. */ #define LIST_HEAD_INIT(name) { &(name), &(name) } #define LIST_HEAD(name) \ struct list_head name = LIST_HEAD_INIT(name) /** * INIT_LIST_HEAD - Initialize a list_head structure * @list: list_head structure to be initialized. * * Initializes the list_head to point to itself. If it is a list header, * the result is an empty list. */ static inline void INIT_LIST_HEAD(struct list_head *list) { WRITE_ONCE(list->next, list); list->prev = list; } #ifdef CONFIG_DEBUG_LIST extern bool __list_add_valid(struct list_head *new, struct list_head *prev, struct list_head *next); extern bool __list_del_entry_valid(struct list_head *entry); #else static inline bool __list_add_valid(struct list_head *new, struct list_head *prev, struct list_head *next) { return true; } static inline bool __list_del_entry_valid(struct list_head *entry) { return true; } #endif /* * Insert a new entry between two known consecutive entries. * * This is only for internal list manipulation where we know * the prev/next entries already! */ static inline void __list_add(struct list_head *new, struct list_head *prev, struct list_head *next) { if (!__list_add_valid(new, prev, next)) return; next->prev = new; new->next = next; new->prev = prev; WRITE_ONCE(prev->next, new); } /** * list_add - add a new entry * @new: new entry to be added * @head: list head to add it after * * Insert a new entry after the specified head. * This is good for implementing stacks. */ static inline void list_add(struct list_head *new, struct list_head *head) { __list_add(new, head, head->next); } /** * list_add_tail - add a new entry * @new: new entry to be added * @head: list head to add it before * * Insert a new entry before the specified head. * This is useful for implementing queues. */ static inline void list_add_tail(struct list_head *new, struct list_head *head) { __list_add(new, head->prev, head); } /* * Delete a list entry by making the prev/next entries * point to each other. * * This is only for internal list manipulation where we know * the prev/next entries already! */ static inline void __list_del(struct list_head * prev, struct list_head * next) { next->prev = prev; WRITE_ONCE(prev->next, next); } /* * Delete a list entry and clear the 'prev' pointer. * * This is a special-purpose list clearing method used in the networking code * for lists allocated as per-cpu, where we don't want to incur the extra * WRITE_ONCE() overhead of a regular list_del_init(). The code that uses this * needs to check the node 'prev' pointer instead of calling list_empty(). */ static inline void __list_del_clearprev(struct list_head *entry) { __list_del(entry->prev, entry->next); entry->prev = NULL; } static inline void __list_del_entry(struct list_head *entry) { if (!__list_del_entry_valid(entry)) return; __list_del(entry->prev, entry->next); } /** * list_del - deletes entry from list. * @entry: the element to delete from the list. * Note: list_empty() on entry does not return true after this, the entry is * in an undefined state. */ static inline void list_del(struct list_head *entry) { __list_del_entry(entry); entry->next = LIST_POISON1; entry->prev = LIST_POISON2; } /** * list_replace - replace old entry by new one * @old : the element to be replaced * @new : the new element to insert * * If @old was empty, it will be overwritten. */ static inline void list_replace(struct list_head *old, struct list_head *new) { new->next = old->next; new->next->prev = new; new->prev = old->prev; new->prev->next = new; } /** * list_replace_init - replace old entry by new one and initialize the old one * @old : the element to be replaced * @new : the new element to insert * * If @old was empty, it will be overwritten. */ static inline void list_replace_init(struct list_head *old, struct list_head *new) { list_replace(old, new); INIT_LIST_HEAD(old); } /** * list_swap - replace entry1 with entry2 and re-add entry1 at entry2's position * @entry1: the location to place entry2 * @entry2: the location to place entry1 */ static inline void list_swap(struct list_head *entry1, struct list_head *entry2) { struct list_head *pos = entry2->prev; list_del(entry2); list_replace(entry1, entry2); if (pos == entry1) pos = entry2; list_add(entry1, pos); } /** * list_del_init - deletes entry from list and reinitialize it. * @entry: the element to delete from the list. */ static inline void list_del_init(struct list_head *entry) { __list_del_entry(entry); INIT_LIST_HEAD(entry); } /** * list_move - delete from one list and add as another's head * @list: the entry to move * @head: the head that will precede our entry */ static inline void list_move(struct list_head *list, struct list_head *head) { __list_del_entry(list); list_add(list, head); } /** * list_move_tail - delete from one list and add as another's tail * @list: the entry to move * @head: the head that will follow our entry */ static inline void list_move_tail(struct list_head *list, struct list_head *head) { __list_del_entry(list); list_add_tail(list, head); } /** * list_bulk_move_tail - move a subsection of a list to its tail * @head: the head that will follow our entry * @first: first entry to move * @last: last entry to move, can be the same as first * * Move all entries between @first and including @last before @head. * All three entries must belong to the same linked list. */ static inline void list_bulk_move_tail(struct list_head *head, struct list_head *first, struct list_head *last) { first->prev->next = last->next; last->next->prev = first->prev; head->prev->next = first; first->prev = head->prev; last->next = head; head->prev = last; } /** * list_is_first -- tests whether @list is the first entry in list @head * @list: the entry to test * @head: the head of the list */ static inline int list_is_first(const struct list_head *list, const struct list_head *head) { return list->prev == head; } /** * list_is_last - tests whether @list is the last entry in list @head * @list: the entry to test * @head: the head of the list */ static inline int list_is_last(const struct list_head *list, const struct list_head *head) { return list->next == head; } /** * list_empty - tests whether a list is empty * @head: the list to test. */ static inline int list_empty(const struct list_head *head) { return READ_ONCE(head->next) == head; } /** * list_del_init_careful - deletes entry from list and reinitialize it. * @entry: the element to delete from the list. * * This is the same as list_del_init(), except designed to be used * together with list_empty_careful() in a way to guarantee ordering * of other memory operations. * * Any memory operations done before a list_del_init_careful() are * guaranteed to be visible after a list_empty_careful() test. */ static inline void list_del_init_careful(struct list_head *entry) { __list_del_entry(entry); entry->prev = entry; smp_store_release(&entry->next, entry); } /** * list_empty_careful - tests whether a list is empty and not being modified * @head: the list to test * * Description: * tests whether a list is empty _and_ checks that no other CPU might be * in the process of modifying either member (next or prev) * * NOTE: using list_empty_careful() without synchronization * can only be safe if the only activity that can happen * to the list entry is list_del_init(). Eg. it cannot be used * if another CPU could re-list_add() it. */ static inline int list_empty_careful(const struct list_head *head) { struct list_head *next = smp_load_acquire(&head->next); return (next == head) && (next == head->prev); } /** * list_rotate_left - rotate the list to the left * @head: the head of the list */ static inline void list_rotate_left(struct list_head *head) { struct list_head *first; if (!list_empty(head)) { first = head->next; list_move_tail(first, head); } } /** * list_rotate_to_front() - Rotate list to specific item. * @list: The desired new front of the list. * @head: The head of the list. * * Rotates list so that @list becomes the new front of the list. */ static inline void list_rotate_to_front(struct list_head *list, struct list_head *head) { /* * Deletes the list head from the list denoted by @head and * places it as the tail of @list, this effectively rotates the * list so that @list is at the front. */ list_move_tail(head, list); } /** * list_is_singular - tests whether a list has just one entry. * @head: the list to test. */ static inline int list_is_singular(const struct list_head *head) { return !list_empty(head) && (head->next == head->prev); } static inline void __list_cut_position(struct list_head *list, struct list_head *head, struct list_head *entry) { struct list_head *new_first = entry->next; list->next = head->next; list->next->prev = list; list->prev = entry; entry->next = list; head->next = new_first; new_first->prev = head; } /** * list_cut_position - cut a list into two * @list: a new list to add all removed entries * @head: a list with entries * @entry: an entry within head, could be the head itself * and if so we won't cut the list * * This helper moves the initial part of @head, up to and * including @entry, from @head to @list. You should * pass on @entry an element you know is on @head. @list * should be an empty list or a list you do not care about * losing its data. * */ static inline void list_cut_position(struct list_head *list, struct list_head *head, struct list_head *entry) { if (list_empty(head)) return; if (list_is_singular(head) && (head->next != entry && head != entry)) return; if (entry == head) INIT_LIST_HEAD(list); else __list_cut_position(list, head, entry); } /** * list_cut_before - cut a list into two, before given entry * @list: a new list to add all removed entries * @head: a list with entries * @entry: an entry within head, could be the head itself * * This helper moves the initial part of @head, up to but * excluding @entry, from @head to @list. You should pass * in @entry an element you know is on @head. @list should * be an empty list or a list you do not care about losing * its data. * If @entry == @head, all entries on @head are moved to * @list. */ static inline void list_cut_before(struct list_head *list, struct list_head *head, struct list_head *entry) { if (head->next == entry) { INIT_LIST_HEAD(list); return; } list->next = head->next; list->next->prev = list; list->prev = entry->prev; list->prev->next = list; head->next = entry; entry->prev = head; } static inline void __list_splice(const struct list_head *list, struct list_head *prev, struct list_head *next) { struct list_head *first = list->next; struct list_head *last = list->prev; first->prev = prev; prev->next = first; last->next = next; next->prev = last; } /** * list_splice - join two lists, this is designed for stacks * @list: the new list to add. * @head: the place to add it in the first list. */ static inline void list_splice(const struct list_head *list, struct list_head *head) { if (!list_empty(list)) __list_splice(list, head, head->next); } /** * list_splice_tail - join two lists, each list being a queue * @list: the new list to add. * @head: the place to add it in the first list. */ static inline void list_splice_tail(struct list_head *list, struct list_head *head) { if (!list_empty(list)) __list_splice(list, head->prev, head); } /** * list_splice_init - join two lists and reinitialise the emptied list. * @list: the new list to add. * @head: the place to add it in the first list. * * The list at @list is reinitialised */ static inline void list_splice_init(struct list_head *list, struct list_head *head) { if (!list_empty(list)) { __list_splice(list, head, head->next); INIT_LIST_HEAD(list); } } /** * list_splice_tail_init - join two lists and reinitialise the emptied list * @list: the new list to add. * @head: the place to add it in the first list. * * Each of the lists is a queue. * The list at @list is reinitialised */ static inline void list_splice_tail_init(struct list_head *list, struct list_head *head) { if (!list_empty(list)) { __list_splice(list, head->prev, head); INIT_LIST_HEAD(list); } } /** * list_entry - get the struct for this entry * @ptr: the &struct list_head pointer. * @type: the type of the struct this is embedded in. * @member: the name of the list_head within the struct. */ #define list_entry(ptr, type, member) \ container_of(ptr, type, member) /** * list_first_entry - get the first element from a list * @ptr: the list head to take the element from. * @type: the type of the struct this is embedded in. * @member: the name of the list_head within the struct. * * Note, that list is expected to be not empty. */ #define list_first_entry(ptr, type, member) \ list_entry((ptr)->next, type, member) /** * list_last_entry - get the last element from a list * @ptr: the list head to take the element from. * @type: the type of the struct this is embedded in. * @member: the name of the list_head within the struct. * * Note, that list is expected to be not empty. */ #define list_last_entry(ptr, type, member) \ list_entry((ptr)->prev, type, member) /** * list_first_entry_or_null - get the first element from a list * @ptr: the list head to take the element from. * @type: the type of the struct this is embedded in. * @member: the name of the list_head within the struct. * * Note that if the list is empty, it returns NULL. */ #define list_first_entry_or_null(ptr, type, member) ({ \ struct list_head *head__ = (ptr); \ struct list_head *pos__ = READ_ONCE(head__->next); \ pos__ != head__ ? list_entry(pos__, type, member) : NULL; \ }) /** * list_next_entry - get the next element in list * @pos: the type * to cursor * @member: the name of the list_head within the struct. */ #define list_next_entry(pos, member) \ list_entry((pos)->member.next, typeof(*(pos)), member) /** * list_prev_entry - get the prev element in list * @pos: the type * to cursor * @member: the name of the list_head within the struct. */ #define list_prev_entry(pos, member) \ list_entry((pos)->member.prev, typeof(*(pos)), member) /** * list_for_each - iterate over a list * @pos: the &struct list_head to use as a loop cursor. * @head: the head for your list. */ #define list_for_each(pos, head) \ for (pos = (head)->next; pos != (head); pos = pos->next) /** * list_for_each_continue - continue iteration over a list * @pos: the &struct list_head to use as a loop cursor. * @head: the head for your list. * * Continue to iterate over a list, continuing after the current position. */ #define list_for_each_continue(pos, head) \ for (pos = pos->next; pos != (head); pos = pos->next) /** * list_for_each_prev - iterate over a list backwards * @pos: the &struct list_head to use as a loop cursor. * @head: the head for your list. */ #define list_for_each_prev(pos, head) \ for (pos = (head)->prev; pos != (head); pos = pos->prev) /** * list_for_each_safe - iterate over a list safe against removal of list entry * @pos: the &struct list_head to use as a loop cursor. * @n: another &struct list_head to use as temporary storage * @head: the head for your list. */ #define list_for_each_safe(pos, n, head) \ for (pos = (head)->next, n = pos->next; pos != (head); \ pos = n, n = pos->next) /** * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry * @pos: the &struct list_head to use as a loop cursor. * @n: another &struct list_head to use as temporary storage * @head: the head for your list. */ #define list_for_each_prev_safe(pos, n, head) \ for (pos = (head)->prev, n = pos->prev; \ pos != (head); \ pos = n, n = pos->prev) /** * list_entry_is_head - test if the entry points to the head of the list * @pos: the type * to cursor * @head: the head for your list. * @member: the name of the list_head within the struct. */ #define list_entry_is_head(pos, head, member) \ (&pos->member == (head)) /** * list_for_each_entry - iterate over list of given type * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the list_head within the struct. */ #define list_for_each_entry(pos, head, member) \ for (pos = list_first_entry(head, typeof(*pos), member); \ !list_entry_is_head(pos, head, member); \ pos = list_next_entry(pos, member)) /** * list_for_each_entry_reverse - iterate backwards over list of given type. * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the list_head within the struct. */ #define list_for_each_entry_reverse(pos, head, member) \ for (pos = list_last_entry(head, typeof(*pos), member); \ !list_entry_is_head(pos, head, member); \ pos = list_prev_entry(pos, member)) /** * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue() * @pos: the type * to use as a start point * @head: the head of the list * @member: the name of the list_head within the struct. * * Prepares a pos entry for use as a start point in list_for_each_entry_continue(). */ #define list_prepare_entry(pos, head, member) \ ((pos) ? : list_entry(head, typeof(*pos), member)) /** * list_for_each_entry_continue - continue iteration over list of given type * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the list_head within the struct. * * Continue to iterate over list of given type, continuing after * the current position. */ #define list_for_each_entry_continue(pos, head, member) \ for (pos = list_next_entry(pos, member); \ !list_entry_is_head(pos, head, member); \ pos = list_next_entry(pos, member)) /** * list_for_each_entry_continue_reverse - iterate backwards from the given point * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the list_head within the struct. * * Start to iterate over list of given type backwards, continuing after * the current position. */ #define list_for_each_entry_continue_reverse(pos, head, member) \ for (pos = list_prev_entry(pos, member); \ !list_entry_is_head(pos, head, member); \ pos = list_prev_entry(pos, member)) /** * list_for_each_entry_from - iterate over list of given type from the current point * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the list_head within the struct. * * Iterate over list of given type, continuing from current position. */ #define list_for_each_entry_from(pos, head, member) \ for (; !list_entry_is_head(pos, head, member); \ pos = list_next_entry(pos, member)) /** * list_for_each_entry_from_reverse - iterate backwards over list of given type * from the current point * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the list_head within the struct. * * Iterate backwards over list of given type, continuing from current position. */ #define list_for_each_entry_from_reverse(pos, head, member) \ for (; !list_entry_is_head(pos, head, member); \ pos = list_prev_entry(pos, member)) /** * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry * @pos: the type * to use as a loop cursor. * @n: another type * to use as temporary storage * @head: the head for your list. * @member: the name of the list_head within the struct. */ #define list_for_each_entry_safe(pos, n, head, member) \ for (pos = list_first_entry(head, typeof(*pos), member), \ n = list_next_entry(pos, member); \ !list_entry_is_head(pos, head, member); \ pos = n, n = list_next_entry(n, member)) /** * list_for_each_entry_safe_continue - continue list iteration safe against removal * @pos: the type * to use as a loop cursor. * @n: another type * to use as temporary storage * @head: the head for your list. * @member: the name of the list_head within the struct. * * Iterate over list of given type, continuing after current point, * safe against removal of list entry. */ #define list_for_each_entry_safe_continue(pos, n, head, member) \ for (pos = list_next_entry(pos, member), \ n = list_next_entry(pos, member); \ !list_entry_is_head(pos, head, member); \ pos = n, n = list_next_entry(n, member)) /** * list_for_each_entry_safe_from - iterate over list from current point safe against removal * @pos: the type * to use as a loop cursor. * @n: another type * to use as temporary storage * @head: the head for your list. * @member: the name of the list_head within the struct. * * Iterate over list of given type from current point, safe against * removal of list entry. */ #define list_for_each_entry_safe_from(pos, n, head, member) \ for (n = list_next_entry(pos, member); \ !list_entry_is_head(pos, head, member); \ pos = n, n = list_next_entry(n, member)) /** * list_for_each_entry_safe_reverse - iterate backwards over list safe against removal * @pos: the type * to use as a loop cursor. * @n: another type * to use as temporary storage * @head: the head for your list. * @member: the name of the list_head within the struct. * * Iterate backwards over list of given type, safe against removal * of list entry. */ #define list_for_each_entry_safe_reverse(pos, n, head, member) \ for (pos = list_last_entry(head, typeof(*pos), member), \ n = list_prev_entry(pos, member); \ !list_entry_is_head(pos, head, member); \ pos = n, n = list_prev_entry(n, member)) /** * list_safe_reset_next - reset a stale list_for_each_entry_safe loop * @pos: the loop cursor used in the list_for_each_entry_safe loop * @n: temporary storage used in list_for_each_entry_safe * @member: the name of the list_head within the struct. * * list_safe_reset_next is not safe to use in general if the list may be * modified concurrently (eg. the lock is dropped in the loop body). An * exception to this is if the cursor element (pos) is pinned in the list, * and list_safe_reset_next is called after re-taking the lock and before * completing the current iteration of the loop body. */ #define list_safe_reset_next(pos, n, member) \ n = list_next_entry(pos, member) /* * Double linked lists with a single pointer list head. * Mostly useful for hash tables where the two pointer list head is * too wasteful. * You lose the ability to access the tail in O(1). */ #define HLIST_HEAD_INIT { .first = NULL } #define HLIST_HEAD(name) struct hlist_head name = { .first = NULL } #define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL) static inline void INIT_HLIST_NODE(struct hlist_node *h) { h->next = NULL; h->pprev = NULL; } /** * hlist_unhashed - Has node been removed from list and reinitialized? * @h: Node to be checked * * Not that not all removal functions will leave a node in unhashed * state. For example, hlist_nulls_del_init_rcu() does leave the * node in unhashed state, but hlist_nulls_del() does not. */ static inline int hlist_unhashed(const struct hlist_node *h) { return !h->pprev; } /** * hlist_unhashed_lockless - Version of hlist_unhashed for lockless use * @h: Node to be checked * * This variant of hlist_unhashed() must be used in lockless contexts * to avoid potential load-tearing. The READ_ONCE() is paired with the * various WRITE_ONCE() in hlist helpers that are defined below. */ static inline int hlist_unhashed_lockless(const struct hlist_node *h) { return !READ_ONCE(h->pprev); } /** * hlist_empty - Is the specified hlist_head structure an empty hlist? * @h: Structure to check. */ static inline int hlist_empty(const struct hlist_head *h) { return !READ_ONCE(h->first); } static inline void __hlist_del(struct hlist_node *n) { struct hlist_node *next = n->next; struct hlist_node **pprev = n->pprev; WRITE_ONCE(*pprev, next); if (next) WRITE_ONCE(next->pprev, pprev); } /** * hlist_del - Delete the specified hlist_node from its list * @n: Node to delete. * * Note that this function leaves the node in hashed state. Use * hlist_del_init() or similar instead to unhash @n. */ static inline void hlist_del(struct hlist_node *n) { __hlist_del(n); n->next = LIST_POISON1; n->pprev = LIST_POISON2; } /** * hlist_del_init - Delete the specified hlist_node from its list and initialize * @n: Node to delete. * * Note that this function leaves the node in unhashed state. */ static inline void hlist_del_init(struct hlist_node *n) { if (!hlist_unhashed(n)) { __hlist_del(n); INIT_HLIST_NODE(n); } } /** * hlist_add_head - add a new entry at the beginning of the hlist * @n: new entry to be added * @h: hlist head to add it after * * Insert a new entry after the specified head. * This is good for implementing stacks. */ static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h) { struct hlist_node *first = h->first; WRITE_ONCE(n->next, first); if (first) WRITE_ONCE(first->pprev, &n->next); WRITE_ONCE(h->first, n); WRITE_ONCE(n->pprev, &h->first); } /** * hlist_add_before - add a new entry before the one specified * @n: new entry to be added * @next: hlist node to add it before, which must be non-NULL */ static inline void hlist_add_before(struct hlist_node *n, struct hlist_node *next) { WRITE_ONCE(n->pprev, next->pprev); WRITE_ONCE(n->next, next); WRITE_ONCE(next->pprev, &n->next); WRITE_ONCE(*(n->pprev), n); } /** * hlist_add_behing - add a new entry after the one specified * @n: new entry to be added * @prev: hlist node to add it after, which must be non-NULL */ static inline void hlist_add_behind(struct hlist_node *n, struct hlist_node *prev) { WRITE_ONCE(n->next, prev->next); WRITE_ONCE(prev->next, n); WRITE_ONCE(n->pprev, &prev->next); if (n->next) WRITE_ONCE(n->next->pprev, &n->next); } /** * hlist_add_fake - create a fake hlist consisting of a single headless node * @n: Node to make a fake list out of * * This makes @n appear to be its own predecessor on a headless hlist. * The point of this is to allow things like hlist_del() to work correctly * in cases where there is no list. */ static inline void hlist_add_fake(struct hlist_node *n) { n->pprev = &n->next; } /** * hlist_fake: Is this node a fake hlist? * @h: Node to check for being a self-referential fake hlist. */ static inline bool hlist_fake(struct hlist_node *h) { return h->pprev == &h->next; } /** * hlist_is_singular_node - is node the only element of the specified hlist? * @n: Node to check for singularity. * @h: Header for potentially singular list. * * Check whether the node is the only node of the head without * accessing head, thus avoiding unnecessary cache misses. */ static inline bool hlist_is_singular_node(struct hlist_node *n, struct hlist_head *h) { return !n->next && n->pprev == &h->first; } /** * hlist_move_list - Move an hlist * @old: hlist_head for old list. * @new: hlist_head for new list. * * Move a list from one list head to another. Fixup the pprev * reference of the first entry if it exists. */ static inline void hlist_move_list(struct hlist_head *old, struct hlist_head *new) { new->first = old->first; if (new->first) new->first->pprev = &new->first; old->first = NULL; } #define hlist_entry(ptr, type, member) container_of(ptr,type,member) #define hlist_for_each(pos, head) \ for (pos = (head)->first; pos ; pos = pos->next) #define hlist_for_each_safe(pos, n, head) \ for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \ pos = n) #define hlist_entry_safe(ptr, type, member) \ ({ typeof(ptr) ____ptr = (ptr); \ ____ptr ? hlist_entry(____ptr, type, member) : NULL; \ }) /** * hlist_for_each_entry - iterate over list of given type * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the hlist_node within the struct. */ #define hlist_for_each_entry(pos, head, member) \ for (pos = hlist_entry_safe((head)->first, typeof(*(pos)), member);\ pos; \ pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member)) /** * hlist_for_each_entry_continue - iterate over a hlist continuing after current point * @pos: the type * to use as a loop cursor. * @member: the name of the hlist_node within the struct. */ #define hlist_for_each_entry_continue(pos, member) \ for (pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member);\ pos; \ pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member)) /** * hlist_for_each_entry_from - iterate over a hlist continuing from current point * @pos: the type * to use as a loop cursor. * @member: the name of the hlist_node within the struct. */ #define hlist_for_each_entry_from(pos, member) \ for (; pos; \ pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member)) /** * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry * @pos: the type * to use as a loop cursor. * @n: a &struct hlist_node to use as temporary storage * @head: the head for your list. * @member: the name of the hlist_node within the struct. */ #define hlist_for_each_entry_safe(pos, n, head, member) \ for (pos = hlist_entry_safe((head)->first, typeof(*pos), member);\ pos && ({ n = pos->member.next; 1; }); \ pos = hlist_entry_safe(n, typeof(*pos), member)) #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 /* This file is automatically generated. Do not edit. */ #ifndef _SELINUX_FLASK_H_ #define _SELINUX_FLASK_H_ #define SECCLASS_SECURITY 1 #define SECCLASS_PROCESS 2 #define SECCLASS_PROCESS2 3 #define SECCLASS_SYSTEM 4 #define SECCLASS_CAPABILITY 5 #define SECCLASS_FILESYSTEM 6 #define SECCLASS_FILE 7 #define SECCLASS_DIR 8 #define SECCLASS_FD 9 #define SECCLASS_LNK_FILE 10 #define SECCLASS_CHR_FILE 11 #define SECCLASS_BLK_FILE 12 #define SECCLASS_SOCK_FILE 13 #define SECCLASS_FIFO_FILE 14 #define SECCLASS_SOCKET 15 #define SECCLASS_TCP_SOCKET 16 #define SECCLASS_UDP_SOCKET 17 #define SECCLASS_RAWIP_SOCKET 18 #define SECCLASS_NODE 19 #define SECCLASS_NETIF 20 #define SECCLASS_NETLINK_SOCKET 21 #define SECCLASS_PACKET_SOCKET 22 #define SECCLASS_KEY_SOCKET 23 #define SECCLASS_UNIX_STREAM_SOCKET 24 #define SECCLASS_UNIX_DGRAM_SOCKET 25 #define SECCLASS_SEM 26 #define SECCLASS_MSG 27 #define SECCLASS_MSGQ 28 #define SECCLASS_SHM 29 #define SECCLASS_IPC 30 #define SECCLASS_NETLINK_ROUTE_SOCKET 31 #define SECCLASS_NETLINK_TCPDIAG_SOCKET 32 #define SECCLASS_NETLINK_NFLOG_SOCKET 33 #define SECCLASS_NETLINK_XFRM_SOCKET 34 #define SECCLASS_NETLINK_SELINUX_SOCKET 35 #define SECCLASS_NETLINK_ISCSI_SOCKET 36 #define SECCLASS_NETLINK_AUDIT_SOCKET 37 #define SECCLASS_NETLINK_FIB_LOOKUP_SOCKET 38 #define SECCLASS_NETLINK_CONNECTOR_SOCKET 39 #define SECCLASS_NETLINK_NETFILTER_SOCKET 40 #define SECCLASS_NETLINK_DNRT_SOCKET 41 #define SECCLASS_ASSOCIATION 42 #define SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET 43 #define SECCLASS_NETLINK_GENERIC_SOCKET 44 #define SECCLASS_NETLINK_SCSITRANSPORT_SOCKET 45 #define SECCLASS_NETLINK_RDMA_SOCKET 46 #define SECCLASS_NETLINK_CRYPTO_SOCKET 47 #define SECCLASS_APPLETALK_SOCKET 48 #define SECCLASS_PACKET 49 #define SECCLASS_KEY 50 #define SECCLASS_DCCP_SOCKET 51 #define SECCLASS_MEMPROTECT 52 #define SECCLASS_PEER 53 #define SECCLASS_CAPABILITY2 54 #define SECCLASS_KERNEL_SERVICE 55 #define SECCLASS_TUN_SOCKET 56 #define SECCLASS_BINDER 57 #define SECCLASS_CAP_USERNS 58 #define SECCLASS_CAP2_USERNS 59 #define SECCLASS_SCTP_SOCKET 60 #define SECCLASS_ICMP_SOCKET 61 #define SECCLASS_AX25_SOCKET 62 #define SECCLASS_IPX_SOCKET 63 #define SECCLASS_NETROM_SOCKET 64 #define SECCLASS_ATMPVC_SOCKET 65 #define SECCLASS_X25_SOCKET 66 #define SECCLASS_ROSE_SOCKET 67 #define SECCLASS_DECNET_SOCKET 68 #define SECCLASS_ATMSVC_SOCKET 69 #define SECCLASS_RDS_SOCKET 70 #define SECCLASS_IRDA_SOCKET 71 #define SECCLASS_PPPOX_SOCKET 72 #define SECCLASS_LLC_SOCKET 73 #define SECCLASS_CAN_SOCKET 74 #define SECCLASS_TIPC_SOCKET 75 #define SECCLASS_BLUETOOTH_SOCKET 76 #define SECCLASS_IUCV_SOCKET 77 #define SECCLASS_RXRPC_SOCKET 78 #define SECCLASS_ISDN_SOCKET 79 #define SECCLASS_PHONET_SOCKET 80 #define SECCLASS_IEEE802154_SOCKET 81 #define SECCLASS_CAIF_SOCKET 82 #define SECCLASS_ALG_SOCKET 83 #define SECCLASS_NFC_SOCKET 84 #define SECCLASS_VSOCK_SOCKET 85 #define SECCLASS_KCM_SOCKET 86 #define SECCLASS_QIPCRTR_SOCKET 87 #define SECCLASS_SMC_SOCKET 88 #define SECCLASS_INFINIBAND_PKEY 89 #define SECCLASS_INFINIBAND_ENDPORT 90 #define SECCLASS_BPF 91 #define SECCLASS_XDP_SOCKET 92 #define SECCLASS_PERF_EVENT 93 #define SECCLASS_LOCKDOWN 94 #define SECINITSID_KERNEL 1 #define SECINITSID_SECURITY 2 #define SECINITSID_UNLABELED 3 #define SECINITSID_FILE 5 #define SECINITSID_ANY_SOCKET 8 #define SECINITSID_PORT 9 #define SECINITSID_NETIF 10 #define SECINITSID_NETMSG 11 #define SECINITSID_NODE 12 #define SECINITSID_DEVNULL 27 #define SECINITSID_NUM 27 static inline bool security_is_socket_class(u16 kern_tclass) { bool sock = false; switch (kern_tclass) { case SECCLASS_SOCKET: case SECCLASS_TCP_SOCKET: case SECCLASS_UDP_SOCKET: case SECCLASS_RAWIP_SOCKET: case SECCLASS_NETLINK_SOCKET: case SECCLASS_PACKET_SOCKET: case SECCLASS_KEY_SOCKET: case SECCLASS_UNIX_STREAM_SOCKET: case SECCLASS_UNIX_DGRAM_SOCKET: case SECCLASS_NETLINK_ROUTE_SOCKET: case SECCLASS_NETLINK_TCPDIAG_SOCKET: case SECCLASS_NETLINK_NFLOG_SOCKET: case SECCLASS_NETLINK_XFRM_SOCKET: case SECCLASS_NETLINK_SELINUX_SOCKET: case SECCLASS_NETLINK_ISCSI_SOCKET: case SECCLASS_NETLINK_AUDIT_SOCKET: case SECCLASS_NETLINK_FIB_LOOKUP_SOCKET: case SECCLASS_NETLINK_CONNECTOR_SOCKET: case SECCLASS_NETLINK_NETFILTER_SOCKET: case SECCLASS_NETLINK_DNRT_SOCKET: case SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET: case SECCLASS_NETLINK_GENERIC_SOCKET: case SECCLASS_NETLINK_SCSITRANSPORT_SOCKET: case SECCLASS_NETLINK_RDMA_SOCKET: case SECCLASS_NETLINK_CRYPTO_SOCKET: case SECCLASS_APPLETALK_SOCKET: case SECCLASS_DCCP_SOCKET: case SECCLASS_TUN_SOCKET: case SECCLASS_SCTP_SOCKET: case SECCLASS_ICMP_SOCKET: case SECCLASS_AX25_SOCKET: case SECCLASS_IPX_SOCKET: case SECCLASS_NETROM_SOCKET: case SECCLASS_ATMPVC_SOCKET: case SECCLASS_X25_SOCKET: case SECCLASS_ROSE_SOCKET: case SECCLASS_DECNET_SOCKET: case SECCLASS_ATMSVC_SOCKET: case SECCLASS_RDS_SOCKET: case SECCLASS_IRDA_SOCKET: case SECCLASS_PPPOX_SOCKET: case SECCLASS_LLC_SOCKET: case SECCLASS_CAN_SOCKET: case SECCLASS_TIPC_SOCKET: case SECCLASS_BLUETOOTH_SOCKET: case SECCLASS_IUCV_SOCKET: case SECCLASS_RXRPC_SOCKET: case SECCLASS_ISDN_SOCKET: case SECCLASS_PHONET_SOCKET: case SECCLASS_IEEE802154_SOCKET: case SECCLASS_CAIF_SOCKET: case SECCLASS_ALG_SOCKET: case SECCLASS_NFC_SOCKET: case SECCLASS_VSOCK_SOCKET: case SECCLASS_KCM_SOCKET: case SECCLASS_QIPCRTR_SOCKET: case SECCLASS_SMC_SOCKET: case SECCLASS_XDP_SOCKET: sock = true; break; default: break; } return sock; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 /* SPDX-License-Identifier: GPL-2.0 */ /* * Released under the GPLv2 only. */ #include <linux/pm.h> #include <linux/acpi.h> struct usb_hub_descriptor; struct usb_dev_state; /* Functions local to drivers/usb/core/ */ extern int usb_create_sysfs_dev_files(struct usb_device *dev); extern void usb_remove_sysfs_dev_files(struct usb_device *dev); extern void usb_create_sysfs_intf_files(struct usb_interface *intf); extern void usb_remove_sysfs_intf_files(struct usb_interface *intf); extern int usb_create_ep_devs(struct device *parent, struct usb_host_endpoint *endpoint, struct usb_device *udev); extern void usb_remove_ep_devs(struct usb_host_endpoint *endpoint); extern void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep, bool reset_toggle); extern void usb_enable_interface(struct usb_device *dev, struct usb_interface *intf, bool reset_toggles); extern void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr, bool reset_hardware); extern void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf, bool reset_hardware); extern void usb_release_interface_cache(struct kref *ref); extern void usb_disable_device(struct usb_device *dev, int skip_ep0); extern int usb_deauthorize_device(struct usb_device *); extern int usb_authorize_device(struct usb_device *); extern void usb_deauthorize_interface(struct usb_interface *); extern void usb_authorize_interface(struct usb_interface *); extern void usb_detect_quirks(struct usb_device *udev); extern void usb_detect_interface_quirks(struct usb_device *udev); extern void usb_release_quirk_list(void); extern bool usb_endpoint_is_ignored(struct usb_device *udev, struct usb_host_interface *intf, struct usb_endpoint_descriptor *epd); extern int usb_remove_device(struct usb_device *udev); extern int usb_get_device_descriptor(struct usb_device *dev, unsigned int size); extern int usb_set_isoch_delay(struct usb_device *dev); extern int usb_get_bos_descriptor(struct usb_device *dev); extern void usb_release_bos_descriptor(struct usb_device *dev); extern char *usb_cache_string(struct usb_device *udev, int index); extern int usb_set_configuration(struct usb_device *dev, int configuration); extern int usb_choose_configuration(struct usb_device *udev); extern int usb_generic_driver_probe(struct usb_device *udev); extern void usb_generic_driver_disconnect(struct usb_device *udev); extern int usb_generic_driver_suspend(struct usb_device *udev, pm_message_t msg); extern int usb_generic_driver_resume(struct usb_device *udev, pm_message_t msg); static inline unsigned usb_get_max_power(struct usb_device *udev, struct usb_host_config *c) { /* SuperSpeed power is in 8 mA units; others are in 2 mA units */ unsigned mul = (udev->speed >= USB_SPEED_SUPER ? 8 : 2); return c->desc.bMaxPower * mul; } extern void usb_kick_hub_wq(struct usb_device *dev); extern int usb_match_one_id_intf(struct usb_device *dev, struct usb_host_interface *intf, const struct usb_device_id *id); extern int usb_match_device(struct usb_device *dev, const struct usb_device_id *id); extern const struct usb_device_id *usb_device_match_id(struct usb_device *udev, const struct usb_device_id *id); extern bool usb_driver_applicable(struct usb_device *udev, struct usb_device_driver *udrv); extern void usb_forced_unbind_intf(struct usb_interface *intf); extern void usb_unbind_and_rebind_marked_interfaces(struct usb_device *udev); extern void usb_hub_release_all_ports(struct usb_device *hdev, struct usb_dev_state *owner); extern bool usb_device_is_owned(struct usb_device *udev); extern int usb_hub_init(void); extern void usb_hub_cleanup(void); extern int usb_major_init(void); extern void usb_major_cleanup(void); extern int usb_device_supports_lpm(struct usb_device *udev); extern int usb_port_disable(struct usb_device *udev); #ifdef CONFIG_PM extern int usb_suspend(struct device *dev, pm_message_t msg); extern int usb_resume(struct device *dev, pm_message_t msg); extern int usb_resume_complete(struct device *dev); extern int usb_port_suspend(struct usb_device *dev, pm_message_t msg); extern int usb_port_resume(struct usb_device *dev, pm_message_t msg); extern void usb_autosuspend_device(struct usb_device *udev); extern int usb_autoresume_device(struct usb_device *udev); extern int usb_remote_wakeup(struct usb_device *dev); extern int usb_runtime_suspend(struct device *dev); extern int usb_runtime_resume(struct device *dev); extern int usb_runtime_idle(struct device *dev); extern int usb_enable_usb2_hardware_lpm(struct usb_device *udev); extern int usb_disable_usb2_hardware_lpm(struct usb_device *udev); extern void usbfs_notify_suspend(struct usb_device *udev); extern void usbfs_notify_resume(struct usb_device *udev); #else static inline int usb_port_suspend(struct usb_device *udev, pm_message_t msg) { return 0; } static inline int usb_port_resume(struct usb_device *udev, pm_message_t msg) { return 0; } #define usb_autosuspend_device(udev) do {} while (0) static inline int usb_autoresume_device(struct usb_device *udev) { return 0; } static inline int usb_enable_usb2_hardware_lpm(struct usb_device *udev) { return 0; } static inline int usb_disable_usb2_hardware_lpm(struct usb_device *udev) { return 0; } #endif extern struct bus_type usb_bus_type; extern struct mutex usb_port_peer_mutex; extern struct device_type usb_device_type; extern struct device_type usb_if_device_type; extern struct device_type usb_ep_device_type; extern struct device_type usb_port_device_type; extern struct usb_device_driver usb_generic_driver; static inline int is_usb_device(const struct device *dev) { return dev->type == &usb_device_type; } static inline int is_usb_interface(const struct device *dev) { return dev->type == &usb_if_device_type; } static inline int is_usb_endpoint(const struct device *dev) { return dev->type == &usb_ep_device_type; } static inline int is_usb_port(const struct device *dev) { return dev->type == &usb_port_device_type; } static inline int is_root_hub(struct usb_device *udev) { return (udev->parent == NULL); } /* Do the same for device drivers and interface drivers. */ static inline int is_usb_device_driver(struct device_driver *drv) { return container_of(drv, struct usbdrv_wrap, driver)-> for_devices; } /* for labeling diagnostics */ extern const char *usbcore_name; /* sysfs stuff */ extern const struct attribute_group *usb_device_groups[]; extern const struct attribute_group *usb_interface_groups[]; /* usbfs stuff */ extern struct usb_driver usbfs_driver; extern const struct file_operations usbfs_devices_fops; extern const struct file_operations usbdev_file_operations; extern int usb_devio_init(void); extern void usb_devio_cleanup(void); /* * Firmware specific cookie identifying a port's location. '0' == no location * data available */ typedef u32 usb_port_location_t; /* internal notify stuff */ extern void usb_notify_add_device(struct usb_device *udev); extern void usb_notify_remove_device(struct usb_device *udev); extern void usb_notify_add_bus(struct usb_bus *ubus); extern void usb_notify_remove_bus(struct usb_bus *ubus); extern void usb_hub_adjust_deviceremovable(struct usb_device *hdev, struct usb_hub_descriptor *desc); #ifdef CONFIG_ACPI extern int usb_acpi_register(void); extern void usb_acpi_unregister(void); extern acpi_handle usb_get_hub_port_acpi_handle(struct usb_device *hdev, int port1); #else static inline int usb_acpi_register(void) { return 0; }; static inline void usb_acpi_unregister(void) { }; #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 /* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (C) 2001 Jens Axboe <axboe@suse.de> */ #ifndef __LINUX_BIO_H #define __LINUX_BIO_H #include <linux/highmem.h> #include <linux/mempool.h> #include <linux/ioprio.h> /* struct bio, bio_vec and BIO_* flags are defined in blk_types.h */ #include <linux/blk_types.h> #define BIO_DEBUG #ifdef BIO_DEBUG #define BIO_BUG_ON BUG_ON #else #define BIO_BUG_ON #endif #define BIO_MAX_PAGES 256 #define bio_prio(bio) (bio)->bi_ioprio #define bio_set_prio(bio, prio) ((bio)->bi_ioprio = prio) #define bio_iter_iovec(bio, iter) \ bvec_iter_bvec((bio)->bi_io_vec, (iter)) #define bio_iter_page(bio, iter) \ bvec_iter_page((bio)->bi_io_vec, (iter)) #define bio_iter_len(bio, iter) \ bvec_iter_len((bio)->bi_io_vec, (iter)) #define bio_iter_offset(bio, iter) \ bvec_iter_offset((bio)->bi_io_vec, (iter)) #define bio_page(bio) bio_iter_page((bio), (bio)->bi_iter) #define bio_offset(bio) bio_iter_offset((bio), (bio)->bi_iter) #define bio_iovec(bio) bio_iter_iovec((bio), (bio)->bi_iter) #define bvec_iter_sectors(iter) ((iter).bi_size >> 9) #define bvec_iter_end_sector(iter) ((iter).bi_sector + bvec_iter_sectors((iter))) #define bio_sectors(bio) bvec_iter_sectors((bio)->bi_iter) #define bio_end_sector(bio) bvec_iter_end_sector((bio)->bi_iter) /* * Return the data direction, READ or WRITE. */ #define bio_data_dir(bio) \ (op_is_write(bio_op(bio)) ? WRITE : READ) /* * Check whether this bio carries any data or not. A NULL bio is allowed. */ static inline bool bio_has_data(struct bio *bio) { if (bio && bio->bi_iter.bi_size && bio_op(bio) != REQ_OP_DISCARD && bio_op(bio) != REQ_OP_SECURE_ERASE && bio_op(bio) != REQ_OP_WRITE_ZEROES) return true; return false; } static inline bool bio_no_advance_iter(const struct bio *bio) { return bio_op(bio) == REQ_OP_DISCARD || bio_op(bio) == REQ_OP_SECURE_ERASE || bio_op(bio) == REQ_OP_WRITE_SAME || bio_op(bio) == REQ_OP_WRITE_ZEROES; } static inline bool bio_mergeable(struct bio *bio) { if (bio->bi_opf & REQ_NOMERGE_FLAGS) return false; return true; } static inline unsigned int bio_cur_bytes(struct bio *bio) { if (bio_has_data(bio)) return bio_iovec(bio).bv_len; else /* dataless requests such as discard */ return bio->bi_iter.bi_size; } static inline void *bio_data(struct bio *bio) { if (bio_has_data(bio)) return page_address(bio_page(bio)) + bio_offset(bio); return NULL; } /** * bio_full - check if the bio is full * @bio: bio to check * @len: length of one segment to be added * * Return true if @bio is full and one segment with @len bytes can't be * added to the bio, otherwise return false */ static inline bool bio_full(struct bio *bio, unsigned len) { if (bio->bi_vcnt >= bio->bi_max_vecs) return true; if (bio->bi_iter.bi_size > UINT_MAX - len) return true; return false; } static inline bool bio_next_segment(const struct bio *bio, struct bvec_iter_all *iter) { if (iter->idx >= bio->bi_vcnt) return false; bvec_advance(&bio->bi_io_vec[iter->idx], iter); return true; } /* * drivers should _never_ use the all version - the bio may have been split * before it got to the driver and the driver won't own all of it */ #define bio_for_each_segment_all(bvl, bio, iter) \ for (bvl = bvec_init_iter_all(&iter); bio_next_segment((bio), &iter); ) static inline void bio_advance_iter(const struct bio *bio, struct bvec_iter *iter, unsigned int bytes) { iter->bi_sector += bytes >> 9; if (bio_no_advance_iter(bio)) iter->bi_size -= bytes; else bvec_iter_advance(bio->bi_io_vec, iter, bytes); /* TODO: It is reasonable to complete bio with error here. */ } #define __bio_for_each_segment(bvl, bio, iter, start) \ for (iter = (start); \ (iter).bi_size && \ ((bvl = bio_iter_iovec((bio), (iter))), 1); \ bio_advance_iter((bio), &(iter), (bvl).bv_len)) #define bio_for_each_segment(bvl, bio, iter) \ __bio_for_each_segment(bvl, bio, iter, (bio)->bi_iter) #define __bio_for_each_bvec(bvl, bio, iter, start) \ for (iter = (start); \ (iter).bi_size && \ ((bvl = mp_bvec_iter_bvec((bio)->bi_io_vec, (iter))), 1); \ bio_advance_iter((bio), &(iter), (bvl).bv_len)) /* iterate over multi-page bvec */ #define bio_for_each_bvec(bvl, bio, iter) \ __bio_for_each_bvec(bvl, bio, iter, (bio)->bi_iter) /* * Iterate over all multi-page bvecs. Drivers shouldn't use this version for the * same reasons as bio_for_each_segment_all(). */ #define bio_for_each_bvec_all(bvl, bio, i) \ for (i = 0, bvl = bio_first_bvec_all(bio); \ i < (bio)->bi_vcnt; i++, bvl++) \ #define bio_iter_last(bvec, iter) ((iter).bi_size == (bvec).bv_len) static inline unsigned bio_segments(struct bio *bio) { unsigned segs = 0; struct bio_vec bv; struct bvec_iter iter; /* * We special case discard/write same/write zeroes, because they * interpret bi_size differently: */ switch (bio_op(bio)) { case REQ_OP_DISCARD: case REQ_OP_SECURE_ERASE: case REQ_OP_WRITE_ZEROES: return 0; case REQ_OP_WRITE_SAME: return 1; default: break; } bio_for_each_segment(bv, bio, iter) segs++; return segs; } /* * get a reference to a bio, so it won't disappear. the intended use is * something like: * * bio_get(bio); * submit_bio(rw, bio); * if (bio->bi_flags ...) * do_something * bio_put(bio); * * without the bio_get(), it could potentially complete I/O before submit_bio * returns. and then bio would be freed memory when if (bio->bi_flags ...) * runs */ static inline void bio_get(struct bio *bio) { bio->bi_flags |= (1 << BIO_REFFED); smp_mb__before_atomic(); atomic_inc(&bio->__bi_cnt); } static inline void bio_cnt_set(struct bio *bio, unsigned int count) { if (count != 1) { bio->bi_flags |= (1 << BIO_REFFED); smp_mb(); } atomic_set(&bio->__bi_cnt, count); } static inline bool bio_flagged(struct bio *bio, unsigned int bit) { return (bio->bi_flags & (1U << bit)) != 0; } static inline void bio_set_flag(struct bio *bio, unsigned int bit) { bio->bi_flags |= (1U << bit); } static inline void bio_clear_flag(struct bio *bio, unsigned int bit) { bio->bi_flags &= ~(1U << bit); } static inline void bio_get_first_bvec(struct bio *bio, struct bio_vec *bv) { *bv = mp_bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); } static inline void bio_get_last_bvec(struct bio *bio, struct bio_vec *bv) { struct bvec_iter iter = bio->bi_iter; int idx; bio_get_first_bvec(bio, bv); if (bv->bv_len == bio->bi_iter.bi_size) return; /* this bio only has a single bvec */ bio_advance_iter(bio, &iter, iter.bi_size); if (!iter.bi_bvec_done) idx = iter.bi_idx - 1; else /* in the middle of bvec */ idx = iter.bi_idx; *bv = bio->bi_io_vec[idx]; /* * iter.bi_bvec_done records actual length of the last bvec * if this bio ends in the middle of one io vector */ if (iter.bi_bvec_done) bv->bv_len = iter.bi_bvec_done; } static inline struct bio_vec *bio_first_bvec_all(struct bio *bio) { WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)); return bio->bi_io_vec; } static inline struct page *bio_first_page_all(struct bio *bio) { return bio_first_bvec_all(bio)->bv_page; } static inline struct bio_vec *bio_last_bvec_all(struct bio *bio) { WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)); return &bio->bi_io_vec[bio->bi_vcnt - 1]; } enum bip_flags { BIP_BLOCK_INTEGRITY = 1 << 0, /* block layer owns integrity data */ BIP_MAPPED_INTEGRITY = 1 << 1, /* ref tag has been remapped */ BIP_CTRL_NOCHECK = 1 << 2, /* disable HBA integrity checking */ BIP_DISK_NOCHECK = 1 << 3, /* disable disk integrity checking */ BIP_IP_CHECKSUM = 1 << 4, /* IP checksum */ }; /* * bio integrity payload */ struct bio_integrity_payload { struct bio *bip_bio; /* parent bio */ struct bvec_iter bip_iter; unsigned short bip_slab; /* slab the bip came from */ unsigned short bip_vcnt; /* # of integrity bio_vecs */ unsigned short bip_max_vcnt; /* integrity bio_vec slots */ unsigned short bip_flags; /* control flags */ struct bvec_iter bio_iter; /* for rewinding parent bio */ struct work_struct bip_work; /* I/O completion */ struct bio_vec *bip_vec; struct bio_vec bip_inline_vecs[];/* embedded bvec array */ }; #if defined(CONFIG_BLK_DEV_INTEGRITY) static inline struct bio_integrity_payload *bio_integrity(struct bio *bio) { if (bio->bi_opf & REQ_INTEGRITY) return bio->bi_integrity; return NULL; } static inline bool bio_integrity_flagged(struct bio *bio, enum bip_flags flag) { struct bio_integrity_payload *bip = bio_integrity(bio); if (bip) return bip->bip_flags & flag; return false; } static inline sector_t bip_get_seed(struct bio_integrity_payload *bip) { return bip->bip_iter.bi_sector; } static inline void bip_set_seed(struct bio_integrity_payload *bip, sector_t seed) { bip->bip_iter.bi_sector = seed; } #endif /* CONFIG_BLK_DEV_INTEGRITY */ extern void bio_trim(struct bio *bio, int offset, int size); extern struct bio *bio_split(struct bio *bio, int sectors, gfp_t gfp, struct bio_set *bs); /** * bio_next_split - get next @sectors from a bio, splitting if necessary * @bio: bio to split * @sectors: number of sectors to split from the front of @bio * @gfp: gfp mask * @bs: bio set to allocate from * * Returns a bio representing the next @sectors of @bio - if the bio is smaller * than @sectors, returns the original bio unchanged. */ static inline struct bio *bio_next_split(struct bio *bio, int sectors, gfp_t gfp, struct bio_set *bs) { if (sectors >= bio_sectors(bio)) return bio; return bio_split(bio, sectors, gfp, bs); } enum { BIOSET_NEED_BVECS = BIT(0), BIOSET_NEED_RESCUER = BIT(1), }; extern int bioset_init(struct bio_set *, unsigned int, unsigned int, int flags); extern void bioset_exit(struct bio_set *); extern int biovec_init_pool(mempool_t *pool, int pool_entries); extern int bioset_init_from_src(struct bio_set *bs, struct bio_set *src); extern struct bio *bio_alloc_bioset(gfp_t, unsigned int, struct bio_set *); extern void bio_put(struct bio *); extern void __bio_clone_fast(struct bio *, struct bio *); extern struct bio *bio_clone_fast(struct bio *, gfp_t, struct bio_set *); extern struct bio_set fs_bio_set; static inline struct bio *bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs) { return bio_alloc_bioset(gfp_mask, nr_iovecs, &fs_bio_set); } static inline struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned int nr_iovecs) { return bio_alloc_bioset(gfp_mask, nr_iovecs, NULL); } extern blk_qc_t submit_bio(struct bio *); extern void bio_endio(struct bio *); static inline void bio_io_error(struct bio *bio) { bio->bi_status = BLK_STS_IOERR; bio_endio(bio); } static inline void bio_wouldblock_error(struct bio *bio) { bio_set_flag(bio, BIO_QUIET); bio->bi_status = BLK_STS_AGAIN; bio_endio(bio); } struct request_queue; extern int submit_bio_wait(struct bio *bio); extern void bio_advance(struct bio *, unsigned); extern void bio_init(struct bio *bio, struct bio_vec *table, unsigned short max_vecs); extern void bio_uninit(struct bio *); extern void bio_reset(struct bio *); void bio_chain(struct bio *, struct bio *); extern int bio_add_page(struct bio *, struct page *, unsigned int,unsigned int); extern int bio_add_pc_page(struct request_queue *, struct bio *, struct page *, unsigned int, unsigned int); bool __bio_try_merge_page(struct bio *bio, struct page *page, unsigned int len, unsigned int off, bool *same_page); void __bio_add_page(struct bio *bio, struct page *page, unsigned int len, unsigned int off); int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter); void bio_release_pages(struct bio *bio, bool mark_dirty); extern void bio_set_pages_dirty(struct bio *bio); extern void bio_check_pages_dirty(struct bio *bio); extern void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter, struct bio *src, struct bvec_iter *src_iter); extern void bio_copy_data(struct bio *dst, struct bio *src); extern void bio_list_copy_data(struct bio *dst, struct bio *src); extern void bio_free_pages(struct bio *bio); void zero_fill_bio_iter(struct bio *bio, struct bvec_iter iter); void bio_truncate(struct bio *bio, unsigned new_size); void guard_bio_eod(struct bio *bio); static inline void zero_fill_bio(struct bio *bio) { zero_fill_bio_iter(bio, bio->bi_iter); } extern struct bio_vec *bvec_alloc(gfp_t, int, unsigned long *, mempool_t *); extern void bvec_free(mempool_t *, struct bio_vec *, unsigned int); extern unsigned int bvec_nr_vecs(unsigned short idx); extern const char *bio_devname(struct bio *bio, char *buffer); #define bio_set_dev(bio, bdev) \ do { \ if ((bio)->bi_disk != (bdev)->bd_disk) \ bio_clear_flag(bio, BIO_THROTTLED);\ (bio)->bi_disk = (bdev)->bd_disk; \ (bio)->bi_partno = (bdev)->bd_partno; \ bio_associate_blkg(bio); \ } while (0) #define bio_copy_dev(dst, src) \ do { \ (dst)->bi_disk = (src)->bi_disk; \ (dst)->bi_partno = (src)->bi_partno; \ bio_clone_blkg_association(dst, src); \ } while (0) #define bio_dev(bio) \ disk_devt((bio)->bi_disk) #ifdef CONFIG_BLK_CGROUP void bio_associate_blkg(struct bio *bio); void bio_associate_blkg_from_css(struct bio *bio, struct cgroup_subsys_state *css); void bio_clone_blkg_association(struct bio *dst, struct bio *src); #else /* CONFIG_BLK_CGROUP */ static inline void bio_associate_blkg(struct bio *bio) { } static inline void bio_associate_blkg_from_css(struct bio *bio, struct cgroup_subsys_state *css) { } static inline void bio_clone_blkg_association(struct bio *dst, struct bio *src) { } #endif /* CONFIG_BLK_CGROUP */ #ifdef CONFIG_HIGHMEM /* * remember never ever reenable interrupts between a bvec_kmap_irq and * bvec_kunmap_irq! */ static inline char *bvec_kmap_irq(struct bio_vec *bvec, unsigned long *flags) { unsigned long addr; /* * might not be a highmem page, but the preempt/irq count * balancing is a lot nicer this way */ local_irq_save(*flags); addr = (unsigned long) kmap_atomic(bvec->bv_page); BUG_ON(addr & ~PAGE_MASK); return (char *) addr + bvec->bv_offset; } static inline void bvec_kunmap_irq(char *buffer, unsigned long *flags) { unsigned long ptr = (unsigned long) buffer & PAGE_MASK; kunmap_atomic((void *) ptr); local_irq_restore(*flags); } #else static inline char *bvec_kmap_irq(struct bio_vec *bvec, unsigned long *flags) { return page_address(bvec->bv_page) + bvec->bv_offset; } static inline void bvec_kunmap_irq(char *buffer, unsigned long *flags) { *flags = 0; } #endif /* * BIO list management for use by remapping drivers (e.g. DM or MD) and loop. * * A bio_list anchors a singly-linked list of bios chained through the bi_next * member of the bio. The bio_list also caches the last list member to allow * fast access to the tail. */ struct bio_list { struct bio *head; struct bio *tail; }; static inline int bio_list_empty(const struct bio_list *bl) { return bl->head == NULL; } static inline void bio_list_init(struct bio_list *bl) { bl->head = bl->tail = NULL; } #define BIO_EMPTY_LIST { NULL, NULL } #define bio_list_for_each(bio, bl) \ for (bio = (bl)->head; bio; bio = bio->bi_next) static inline unsigned bio_list_size(const struct bio_list *bl) { unsigned sz = 0; struct bio *bio; bio_list_for_each(bio, bl) sz++; return sz; } static inline void bio_list_add(struct bio_list *bl, struct bio *bio) { bio->bi_next = NULL; if (bl->tail) bl->tail->bi_next = bio; else bl->head = bio; bl->tail = bio; } static inline void bio_list_add_head(struct bio_list *bl, struct bio *bio) { bio->bi_next = bl->head; bl->head = bio; if (!bl->tail) bl->tail = bio; } static inline void bio_list_merge(struct bio_list *bl, struct bio_list *bl2) { if (!bl2->head) return; if (bl->tail) bl->tail->bi_next = bl2->head; else bl->head = bl2->head; bl->tail = bl2->tail; } static inline void bio_list_merge_head(struct bio_list *bl, struct bio_list *bl2) { if (!bl2->head) return; if (bl->head) bl2->tail->bi_next = bl->head; else bl->tail = bl2->tail; bl->head = bl2->head; } static inline struct bio *bio_list_peek(struct bio_list *bl) { return bl->head; } static inline struct bio *bio_list_pop(struct bio_list *bl) { struct bio *bio = bl->head; if (bio) { bl->head = bl->head->bi_next; if (!bl->head) bl->tail = NULL; bio->bi_next = NULL; } return bio; } static inline struct bio *bio_list_get(struct bio_list *bl) { struct bio *bio = bl->head; bl->head = bl->tail = NULL; return bio; } /* * Increment chain count for the bio. Make sure the CHAIN flag update * is visible before the raised count. */ static inline void bio_inc_remaining(struct bio *bio) { bio_set_flag(bio, BIO_CHAIN); smp_mb__before_atomic(); atomic_inc(&bio->__bi_remaining); } /* * bio_set is used to allow other portions of the IO system to * allocate their own private memory pools for bio and iovec structures. * These memory pools in turn all allocate from the bio_slab * and the bvec_slabs[]. */ #define BIO_POOL_SIZE 2 struct bio_set { struct kmem_cache *bio_slab; unsigned int front_pad; mempool_t bio_pool; mempool_t bvec_pool; #if defined(CONFIG_BLK_DEV_INTEGRITY) mempool_t bio_integrity_pool; mempool_t bvec_integrity_pool; #endif /* * Deadlock avoidance for stacking block drivers: see comments in * bio_alloc_bioset() for details */ spinlock_t rescue_lock; struct bio_list rescue_list; struct work_struct rescue_work; struct workqueue_struct *rescue_workqueue; }; struct biovec_slab { int nr_vecs; char *name; struct kmem_cache *slab; }; static inline bool bioset_initialized(struct bio_set *bs) { return bs->bio_slab != NULL; } /* * a small number of entries is fine, not going to be performance critical. * basically we just need to survive */ #define BIO_SPLIT_ENTRIES 2 #if defined(CONFIG_BLK_DEV_INTEGRITY) #define bip_for_each_vec(bvl, bip, iter) \ for_each_bvec(bvl, (bip)->bip_vec, iter, (bip)->bip_iter) #define bio_for_each_integrity_vec(_bvl, _bio, _iter) \ for_each_bio(_bio) \ bip_for_each_vec(_bvl, _bio->bi_integrity, _iter) extern struct bio_integrity_payload *bio_integrity_alloc(struct bio *, gfp_t, unsigned int); extern int bio_integrity_add_page(struct bio *, struct page *, unsigned int, unsigned int); extern bool bio_integrity_prep(struct bio *); extern void bio_integrity_advance(struct bio *, unsigned int); extern void bio_integrity_trim(struct bio *); extern int bio_integrity_clone(struct bio *, struct bio *, gfp_t); extern int bioset_integrity_create(struct bio_set *, int); extern void bioset_integrity_free(struct bio_set *); extern void bio_integrity_init(void); #else /* CONFIG_BLK_DEV_INTEGRITY */ static inline void *bio_integrity(struct bio *bio) { return NULL; } static inline int bioset_integrity_create(struct bio_set *bs, int pool_size) { return 0; } static inline void bioset_integrity_free (struct bio_set *bs) { return; } static inline bool bio_integrity_prep(struct bio *bio) { return true; } static inline int bio_integrity_clone(struct bio *bio, struct bio *bio_src, gfp_t gfp_mask) { return 0; } static inline void bio_integrity_advance(struct bio *bio, unsigned int bytes_done) { return; } static inline void bio_integrity_trim(struct bio *bio) { return; } static inline void bio_integrity_init(void) { return; } static inline bool bio_integrity_flagged(struct bio *bio, enum bip_flags flag) { return false; } static inline void *bio_integrity_alloc(struct bio * bio, gfp_t gfp, unsigned int nr) { return ERR_PTR(-EINVAL); } static inline int bio_integrity_add_page(struct bio *bio, struct page *page, unsigned int len, unsigned int offset) { return 0; } #endif /* CONFIG_BLK_DEV_INTEGRITY */ /* * Mark a bio as polled. Note that for async polled IO, the caller must * expect -EWOULDBLOCK if we cannot allocate a request (or other resources). * We cannot block waiting for requests on polled IO, as those completions * must be found by the caller. This is different than IRQ driven IO, where * it's safe to wait for IO to complete. */ static inline void bio_set_polled(struct bio *bio, struct kiocb *kiocb) { bio->bi_opf |= REQ_HIPRI; if (!is_sync_kiocb(kiocb)) bio->bi_opf |= REQ_NOWAIT; } #endif /* __LINUX_BIO_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef LINUX_MLD_H #define LINUX_MLD_H #include <linux/in6.h> #include <linux/icmpv6.h> /* MLDv1 Query/Report/Done */ struct mld_msg { struct icmp6hdr mld_hdr; struct in6_addr mld_mca; }; #define mld_type mld_hdr.icmp6_type #define mld_code mld_hdr.icmp6_code #define mld_cksum mld_hdr.icmp6_cksum #define mld_maxdelay mld_hdr.icmp6_maxdelay #define mld_reserved mld_hdr.icmp6_dataun.un_data16[1] /* Multicast Listener Discovery version 2 headers */ /* MLDv2 Report */ struct mld2_grec { __u8 grec_type; __u8 grec_auxwords; __be16 grec_nsrcs; struct in6_addr grec_mca; struct in6_addr grec_src[]; }; struct mld2_report { struct icmp6hdr mld2r_hdr; struct mld2_grec mld2r_grec[]; }; #define mld2r_type mld2r_hdr.icmp6_type #define mld2r_resv1 mld2r_hdr.icmp6_code #define mld2r_cksum mld2r_hdr.icmp6_cksum #define mld2r_resv2 mld2r_hdr.icmp6_dataun.un_data16[0] #define mld2r_ngrec mld2r_hdr.icmp6_dataun.un_data16[1] /* MLDv2 Query */ struct mld2_query { struct icmp6hdr mld2q_hdr; struct in6_addr mld2q_mca; #if defined(__LITTLE_ENDIAN_BITFIELD) __u8 mld2q_qrv:3, mld2q_suppress:1, mld2q_resv2:4; #elif defined(__BIG_ENDIAN_BITFIELD) __u8 mld2q_resv2:4, mld2q_suppress:1, mld2q_qrv:3; #else #error "Please fix <asm/byteorder.h>" #endif __u8 mld2q_qqic; __be16 mld2q_nsrcs; struct in6_addr mld2q_srcs[]; }; #define mld2q_type mld2q_hdr.icmp6_type #define mld2q_code mld2q_hdr.icmp6_code #define mld2q_cksum mld2q_hdr.icmp6_cksum #define mld2q_mrc mld2q_hdr.icmp6_maxdelay #define mld2q_resv1 mld2q_hdr.icmp6_dataun.un_data16[1] /* RFC3810, 5.1.3. Maximum Response Code: * * If Maximum Response Code >= 32768, Maximum Response Code represents a * floating-point value as follows: * * 0 1 2 3 4 5 6 7 8 9 A B C D E F * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * |1| exp | mant | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ */ #define MLDV2_MRC_EXP(value) (((value) >> 12) & 0x0007) #define MLDV2_MRC_MAN(value) ((value) & 0x0fff) /* RFC3810, 5.1.9. QQIC (Querier's Query Interval Code): * * If QQIC >= 128, QQIC represents a floating-point value as follows: * * 0 1 2 3 4 5 6 7 * +-+-+-+-+-+-+-+-+ * |1| exp | mant | * +-+-+-+-+-+-+-+-+ */ #define MLDV2_QQIC_EXP(value) (((value) >> 4) & 0x07) #define MLDV2_QQIC_MAN(value) ((value) & 0x0f) #define MLD_EXP_MIN_LIMIT 32768UL #define MLDV1_MRD_MAX_COMPAT (MLD_EXP_MIN_LIMIT - 1) static inline unsigned long mldv2_mrc(const struct mld2_query *mlh2) { /* RFC3810, 5.1.3. Maximum Response Code */ unsigned long ret, mc_mrc = ntohs(mlh2->mld2q_mrc); if (mc_mrc < MLD_EXP_MIN_LIMIT) { ret = mc_mrc; } else { unsigned long mc_man, mc_exp; mc_exp = MLDV2_MRC_EXP(mc_mrc); mc_man = MLDV2_MRC_MAN(mc_mrc); ret = (mc_man | 0x1000) << (mc_exp + 3); } return ret; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 // SPDX-License-Identifier: GPL-2.0 /* * Helper routines for building identity mapping page tables. This is * included by both the compressed kernel and the regular kernel. */ static void ident_pmd_init(struct x86_mapping_info *info, pmd_t *pmd_page, unsigned long addr, unsigned long end) { addr &= PMD_MASK; for (; addr < end; addr += PMD_SIZE) { pmd_t *pmd = pmd_page + pmd_index(addr); if (pmd_present(*pmd)) continue; set_pmd(pmd, __pmd((addr - info->offset) | info->page_flag)); } } static int ident_pud_init(struct x86_mapping_info *info, pud_t *pud_page, unsigned long addr, unsigned long end) { unsigned long next; for (; addr < end; addr = next) { pud_t *pud = pud_page + pud_index(addr); pmd_t *pmd; next = (addr & PUD_MASK) + PUD_SIZE; if (next > end) next = end; if (info->direct_gbpages) { pud_t pudval; if (pud_present(*pud)) continue; addr &= PUD_MASK; pudval = __pud((addr - info->offset) | info->page_flag); set_pud(pud, pudval); continue; } if (pud_present(*pud)) { pmd = pmd_offset(pud, 0); ident_pmd_init(info, pmd, addr, next); continue; } pmd = (pmd_t *)info->alloc_pgt_page(info->context); if (!pmd) return -ENOMEM; ident_pmd_init(info, pmd, addr, next); set_pud(pud, __pud(__pa(pmd) | info->kernpg_flag)); } return 0; } static int ident_p4d_init(struct x86_mapping_info *info, p4d_t *p4d_page, unsigned long addr, unsigned long end) { unsigned long next; int result; for (; addr < end; addr = next) { p4d_t *p4d = p4d_page + p4d_index(addr); pud_t *pud; next = (addr & P4D_MASK) + P4D_SIZE; if (next > end) next = end; if (p4d_present(*p4d)) { pud = pud_offset(p4d, 0); result = ident_pud_init(info, pud, addr, next); if (result) return result; continue; } pud = (pud_t *)info->alloc_pgt_page(info->context); if (!pud) return -ENOMEM; result = ident_pud_init(info, pud, addr, next); if (result) return result; set_p4d(p4d, __p4d(__pa(pud) | info->kernpg_flag)); } return 0; } int kernel_ident_mapping_init(struct x86_mapping_info *info, pgd_t *pgd_page, unsigned long pstart, unsigned long pend) { unsigned long addr = pstart + info->offset; unsigned long end = pend + info->offset; unsigned long next; int result; /* Set the default pagetable flags if not supplied */ if (!info->kernpg_flag) info->kernpg_flag = _KERNPG_TABLE; /* Filter out unsupported __PAGE_KERNEL_* bits: */ info->kernpg_flag &= __default_kernel_pte_mask; for (; addr < end; addr = next) { pgd_t *pgd = pgd_page + pgd_index(addr); p4d_t *p4d; next = (addr & PGDIR_MASK) + PGDIR_SIZE; if (next > end) next = end; if (pgd_present(*pgd)) { p4d = p4d_offset(pgd, 0); result = ident_p4d_init(info, p4d, addr, next); if (result) return result; continue; } p4d = (p4d_t *)info->alloc_pgt_page(info->context); if (!p4d) return -ENOMEM; result = ident_p4d_init(info, p4d, addr, next); if (result) return result; if (pgtable_l5_enabled()) { set_pgd(pgd, __pgd(__pa(p4d) | info->kernpg_flag)); } else { /* * With p4d folded, pgd is equal to p4d. * The pgd entry has to point to the pud page table in this case. */ pud_t *pud = pud_offset(p4d, 0); set_pgd(pgd, __pgd(__pa(pud) | info->kernpg_flag)); } } return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 /* SPDX-License-Identifier: GPL-2.0 */ /* * NUMA memory policies for Linux. * Copyright 2003,2004 Andi Kleen SuSE Labs */ #ifndef _LINUX_MEMPOLICY_H #define _LINUX_MEMPOLICY_H 1 #include <linux/sched.h> #include <linux/mmzone.h> #include <linux/dax.h> #include <linux/slab.h> #include <linux/rbtree.h> #include <linux/spinlock.h> #include <linux/nodemask.h> #include <linux/pagemap.h> #include <uapi/linux/mempolicy.h> struct mm_struct; #ifdef CONFIG_NUMA /* * Describe a memory policy. * * A mempolicy can be either associated with a process or with a VMA. * For VMA related allocations the VMA policy is preferred, otherwise * the process policy is used. Interrupts ignore the memory policy * of the current process. * * Locking policy for interleave: * In process context there is no locking because only the process accesses * its own state. All vma manipulation is somewhat protected by a down_read on * mmap_lock. * * Freeing policy: * Mempolicy objects are reference counted. A mempolicy will be freed when * mpol_put() decrements the reference count to zero. * * Duplicating policy objects: * mpol_dup() allocates a new mempolicy and copies the specified mempolicy * to the new storage. The reference count of the new object is initialized * to 1, representing the caller of mpol_dup(). */ struct mempolicy { atomic_t refcnt; unsigned short mode; /* See MPOL_* above */ unsigned short flags; /* See set_mempolicy() MPOL_F_* above */ union { short preferred_node; /* preferred */ nodemask_t nodes; /* interleave/bind */ /* undefined for default */ } v; union { nodemask_t cpuset_mems_allowed; /* relative to these nodes */ nodemask_t user_nodemask; /* nodemask passed by user */ } w; }; /* * Support for managing mempolicy data objects (clone, copy, destroy) * The default fast path of a NULL MPOL_DEFAULT policy is always inlined. */ extern void __mpol_put(struct mempolicy *pol); static inline void mpol_put(struct mempolicy *pol) { if (pol) __mpol_put(pol); } /* * Does mempolicy pol need explicit unref after use? * Currently only needed for shared policies. */ static inline int mpol_needs_cond_ref(struct mempolicy *pol) { return (pol && (pol->flags & MPOL_F_SHARED)); } static inline void mpol_cond_put(struct mempolicy *pol) { if (mpol_needs_cond_ref(pol)) __mpol_put(pol); } extern struct mempolicy *__mpol_dup(struct mempolicy *pol); static inline struct mempolicy *mpol_dup(struct mempolicy *pol) { if (pol) pol = __mpol_dup(pol); return pol; } #define vma_policy(vma) ((vma)->vm_policy) static inline void mpol_get(struct mempolicy *pol) { if (pol) atomic_inc(&pol->refcnt); } extern bool __mpol_equal(struct mempolicy *a, struct mempolicy *b); static inline bool mpol_equal(struct mempolicy *a, struct mempolicy *b) { if (a == b) return true; return __mpol_equal(a, b); } /* * Tree of shared policies for a shared memory region. * Maintain the policies in a pseudo mm that contains vmas. The vmas * carry the policy. As a special twist the pseudo mm is indexed in pages, not * bytes, so that we can work with shared memory segments bigger than * unsigned long. */ struct sp_node { struct rb_node nd; unsigned long start, end; struct mempolicy *policy; }; struct shared_policy { struct rb_root root; rwlock_t lock; }; int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst); void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol); int mpol_set_shared_policy(struct shared_policy *info, struct vm_area_struct *vma, struct mempolicy *new); void mpol_free_shared_policy(struct shared_policy *p); struct mempolicy *mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx); struct mempolicy *get_task_policy(struct task_struct *p); struct mempolicy *__get_vma_policy(struct vm_area_struct *vma, unsigned long addr); bool vma_policy_mof(struct vm_area_struct *vma); extern void numa_default_policy(void); extern void numa_policy_init(void); extern void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new); extern void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new); extern int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags, struct mempolicy **mpol, nodemask_t **nodemask); extern bool init_nodemask_of_mempolicy(nodemask_t *mask); extern bool mempolicy_nodemask_intersects(struct task_struct *tsk, const nodemask_t *mask); extern nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy); static inline nodemask_t *policy_nodemask_current(gfp_t gfp) { struct mempolicy *mpol = get_task_policy(current); return policy_nodemask(gfp, mpol); } extern unsigned int mempolicy_slab_node(void); extern enum zone_type policy_zone; static inline void check_highest_zone(enum zone_type k) { if (k > policy_zone && k != ZONE_MOVABLE) policy_zone = k; } int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, const nodemask_t *to, int flags); #ifdef CONFIG_TMPFS extern int mpol_parse_str(char *str, struct mempolicy **mpol); #endif extern void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol); /* Check if a vma is migratable */ extern bool vma_migratable(struct vm_area_struct *vma); extern int mpol_misplaced(struct page *, struct vm_area_struct *, unsigned long); extern void mpol_put_task_policy(struct task_struct *); #else struct mempolicy {}; static inline bool mpol_equal(struct mempolicy *a, struct mempolicy *b) { return true; } static inline void mpol_put(struct mempolicy *p) { } static inline void mpol_cond_put(struct mempolicy *pol) { } static inline void mpol_get(struct mempolicy *pol) { } struct shared_policy {}; static inline void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol) { } static inline void mpol_free_shared_policy(struct shared_policy *p) { } static inline struct mempolicy * mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx) { return NULL; } #define vma_policy(vma) NULL static inline int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst) { return 0; } static inline void numa_policy_init(void) { } static inline void numa_default_policy(void) { } static inline void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new) { } static inline void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) { } static inline int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags, struct mempolicy **mpol, nodemask_t **nodemask) { *mpol = NULL; *nodemask = NULL; return 0; } static inline bool init_nodemask_of_mempolicy(nodemask_t *m) { return false; } static inline int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, const nodemask_t *to, int flags) { return 0; } static inline void check_highest_zone(int k) { } #ifdef CONFIG_TMPFS static inline int mpol_parse_str(char *str, struct mempolicy **mpol) { return 1; /* error */ } #endif static inline int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long address) { return -1; /* no node preference */ } static inline void mpol_put_task_policy(struct task_struct *task) { } static inline nodemask_t *policy_nodemask_current(gfp_t gfp) { return NULL; } #endif /* CONFIG_NUMA */ #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Copyright (C) 2001 Momchil Velikov * Portions Copyright (C) 2001 Christoph Hellwig * Copyright (C) 2006 Nick Piggin * Copyright (C) 2012 Konstantin Khlebnikov */ #ifndef _LINUX_RADIX_TREE_H #define _LINUX_RADIX_TREE_H #include <linux/bitops.h> #include <linux/kernel.h> #include <linux/list.h> #include <linux/percpu.h> #include <linux/preempt.h> #include <linux/rcupdate.h> #include <linux/spinlock.h> #include <linux/types.h> #include <linux/xarray.h> #include <linux/local_lock.h> /* Keep unconverted code working */ #define radix_tree_root xarray #define radix_tree_node xa_node struct radix_tree_preload { local_lock_t lock; unsigned nr; /* nodes->parent points to next preallocated node */ struct radix_tree_node *nodes; }; DECLARE_PER_CPU(struct radix_tree_preload, radix_tree_preloads); /* * The bottom two bits of the slot determine how the remaining bits in the * slot are interpreted: * * 00 - data pointer * 10 - internal entry * x1 - value entry * * The internal entry may be a pointer to the next level in the tree, a * sibling entry, or an indicator that the entry in this slot has been moved * to another location in the tree and the lookup should be restarted. While * NULL fits the 'data pointer' pattern, it means that there is no entry in * the tree for this index (no matter what level of the tree it is found at). * This means that storing a NULL entry in the tree is the same as deleting * the entry from the tree. */ #define RADIX_TREE_ENTRY_MASK 3UL #define RADIX_TREE_INTERNAL_NODE 2UL static inline bool radix_tree_is_internal_node(void *ptr) { return ((unsigned long)ptr & RADIX_TREE_ENTRY_MASK) == RADIX_TREE_INTERNAL_NODE; } /*** radix-tree API starts here ***/ #define RADIX_TREE_MAP_SHIFT XA_CHUNK_SHIFT #define RADIX_TREE_MAP_SIZE (1UL << RADIX_TREE_MAP_SHIFT) #define RADIX_TREE_MAP_MASK (RADIX_TREE_MAP_SIZE-1) #define RADIX_TREE_MAX_TAGS XA_MAX_MARKS #define RADIX_TREE_TAG_LONGS XA_MARK_LONGS #define RADIX_TREE_INDEX_BITS (8 /* CHAR_BIT */ * sizeof(unsigned long)) #define RADIX_TREE_MAX_PATH (DIV_ROUND_UP(RADIX_TREE_INDEX_BITS, \ RADIX_TREE_MAP_SHIFT)) /* The IDR tag is stored in the low bits of xa_flags */ #define ROOT_IS_IDR ((__force gfp_t)4) /* The top bits of xa_flags are used to store the root tags */ #define ROOT_TAG_SHIFT (__GFP_BITS_SHIFT) #define RADIX_TREE_INIT(name, mask) XARRAY_INIT(name, mask) #define RADIX_TREE(name, mask) \ struct radix_tree_root name = RADIX_TREE_INIT(name, mask) #define INIT_RADIX_TREE(root, mask) xa_init_flags(root, mask) static inline bool radix_tree_empty(const struct radix_tree_root *root) { return root->xa_head == NULL; } /** * struct radix_tree_iter - radix tree iterator state * * @index: index of current slot * @next_index: one beyond the last index for this chunk * @tags: bit-mask for tag-iterating * @node: node that contains current slot * * This radix tree iterator works in terms of "chunks" of slots. A chunk is a * subinterval of slots contained within one radix tree leaf node. It is * described by a pointer to its first slot and a struct radix_tree_iter * which holds the chunk's position in the tree and its size. For tagged * iteration radix_tree_iter also holds the slots' bit-mask for one chosen * radix tree tag. */ struct radix_tree_iter { unsigned long index; unsigned long next_index; unsigned long tags; struct radix_tree_node *node; }; /** * Radix-tree synchronization * * The radix-tree API requires that users provide all synchronisation (with * specific exceptions, noted below). * * Synchronization of access to the data items being stored in the tree, and * management of their lifetimes must be completely managed by API users. * * For API usage, in general, * - any function _modifying_ the tree or tags (inserting or deleting * items, setting or clearing tags) must exclude other modifications, and * exclude any functions reading the tree. * - any function _reading_ the tree or tags (looking up items or tags, * gang lookups) must exclude modifications to the tree, but may occur * concurrently with other readers. * * The notable exceptions to this rule are the following functions: * __radix_tree_lookup * radix_tree_lookup * radix_tree_lookup_slot * radix_tree_tag_get * radix_tree_gang_lookup * radix_tree_gang_lookup_tag * radix_tree_gang_lookup_tag_slot * radix_tree_tagged * * The first 7 functions are able to be called locklessly, using RCU. The * caller must ensure calls to these functions are made within rcu_read_lock() * regions. Other readers (lock-free or otherwise) and modifications may be * running concurrently. * * It is still required that the caller manage the synchronization and lifetimes * of the items. So if RCU lock-free lookups are used, typically this would mean * that the items have their own locks, or are amenable to lock-free access; and * that the items are freed by RCU (or only freed after having been deleted from * the radix tree *and* a synchronize_rcu() grace period). * * (Note, rcu_assign_pointer and rcu_dereference are not needed to control * access to data items when inserting into or looking up from the radix tree) * * Note that the value returned by radix_tree_tag_get() may not be relied upon * if only the RCU read lock is held. Functions to set/clear tags and to * delete nodes running concurrently with it may affect its result such that * two consecutive reads in the same locked section may return different * values. If reliability is required, modification functions must also be * excluded from concurrency. * * radix_tree_tagged is able to be called without locking or RCU. */ /** * radix_tree_deref_slot - dereference a slot * @slot: slot pointer, returned by radix_tree_lookup_slot * * For use with radix_tree_lookup_slot(). Caller must hold tree at least read * locked across slot lookup and dereference. Not required if write lock is * held (ie. items cannot be concurrently inserted). * * radix_tree_deref_retry must be used to confirm validity of the pointer if * only the read lock is held. * * Return: entry stored in that slot. */ static inline void *radix_tree_deref_slot(void __rcu **slot) { return rcu_dereference(*slot); } /** * radix_tree_deref_slot_protected - dereference a slot with tree lock held * @slot: slot pointer, returned by radix_tree_lookup_slot * * Similar to radix_tree_deref_slot. The caller does not hold the RCU read * lock but it must hold the tree lock to prevent parallel updates. * * Return: entry stored in that slot. */ static inline void *radix_tree_deref_slot_protected(void __rcu **slot, spinlock_t *treelock) { return rcu_dereference_protected(*slot, lockdep_is_held(treelock)); } /** * radix_tree_deref_retry - check radix_tree_deref_slot * @arg: pointer returned by radix_tree_deref_slot * Returns: 0 if retry is not required, otherwise retry is required * * radix_tree_deref_retry must be used with radix_tree_deref_slot. */ static inline int radix_tree_deref_retry(void *arg) { return unlikely(radix_tree_is_internal_node(arg)); } /** * radix_tree_exception - radix_tree_deref_slot returned either exception? * @arg: value returned by radix_tree_deref_slot * Returns: 0 if well-aligned pointer, non-0 if either kind of exception. */ static inline int radix_tree_exception(void *arg) { return unlikely((unsigned long)arg & RADIX_TREE_ENTRY_MASK); } int radix_tree_insert(struct radix_tree_root *, unsigned long index, void *); void *__radix_tree_lookup(const struct radix_tree_root *, unsigned long index, struct radix_tree_node **nodep, void __rcu ***slotp); void *radix_tree_lookup(const struct radix_tree_root *, unsigned long); void __rcu **radix_tree_lookup_slot(const struct radix_tree_root *, unsigned long index); void __radix_tree_replace(struct radix_tree_root *, struct radix_tree_node *, void __rcu **slot, void *entry); void radix_tree_iter_replace(struct radix_tree_root *, const struct radix_tree_iter *, void __rcu **slot, void *entry); void radix_tree_replace_slot(struct radix_tree_root *, void __rcu **slot, void *entry); void radix_tree_iter_delete(struct radix_tree_root *, struct radix_tree_iter *iter, void __rcu **slot); void *radix_tree_delete_item(struct radix_tree_root *, unsigned long, void *); void *radix_tree_delete(struct radix_tree_root *, unsigned long); unsigned int radix_tree_gang_lookup(const struct radix_tree_root *, void **results, unsigned long first_index, unsigned int max_items); int radix_tree_preload(gfp_t gfp_mask); int radix_tree_maybe_preload(gfp_t gfp_mask); void radix_tree_init(void); void *radix_tree_tag_set(struct radix_tree_root *, unsigned long index, unsigned int tag); void *radix_tree_tag_clear(struct radix_tree_root *, unsigned long index, unsigned int tag); int radix_tree_tag_get(const struct radix_tree_root *, unsigned long index, unsigned int tag); void radix_tree_iter_tag_clear(struct radix_tree_root *, const struct radix_tree_iter *iter, unsigned int tag); unsigned int radix_tree_gang_lookup_tag(const struct radix_tree_root *, void **results, unsigned long first_index, unsigned int max_items, unsigned int tag); unsigned int radix_tree_gang_lookup_tag_slot(const struct radix_tree_root *, void __rcu ***results, unsigned long first_index, unsigned int max_items, unsigned int tag); int radix_tree_tagged(const struct radix_tree_root *, unsigned int tag); static inline void radix_tree_preload_end(void) { local_unlock(&radix_tree_preloads.lock); } void __rcu **idr_get_free(struct radix_tree_root *root, struct radix_tree_iter *iter, gfp_t gfp, unsigned long max); enum { RADIX_TREE_ITER_TAG_MASK = 0x0f, /* tag index in lower nybble */ RADIX_TREE_ITER_TAGGED = 0x10, /* lookup tagged slots */ RADIX_TREE_ITER_CONTIG = 0x20, /* stop at first hole */ }; /** * radix_tree_iter_init - initialize radix tree iterator * * @iter: pointer to iterator state * @start: iteration starting index * Returns: NULL */ static __always_inline void __rcu ** radix_tree_iter_init(struct radix_tree_iter *iter, unsigned long start) { /* * Leave iter->tags uninitialized. radix_tree_next_chunk() will fill it * in the case of a successful tagged chunk lookup. If the lookup was * unsuccessful or non-tagged then nobody cares about ->tags. * * Set index to zero to bypass next_index overflow protection. * See the comment in radix_tree_next_chunk() for details. */ iter->index = 0; iter->next_index = start; return NULL; } /** * radix_tree_next_chunk - find next chunk of slots for iteration * * @root: radix tree root * @iter: iterator state * @flags: RADIX_TREE_ITER_* flags and tag index * Returns: pointer to chunk first slot, or NULL if there no more left * * This function looks up the next chunk in the radix tree starting from * @iter->next_index. It returns a pointer to the chunk's first slot. * Also it fills @iter with data about chunk: position in the tree (index), * its end (next_index), and constructs a bit mask for tagged iterating (tags). */ void __rcu **radix_tree_next_chunk(const struct radix_tree_root *, struct radix_tree_iter *iter, unsigned flags); /** * radix_tree_iter_lookup - look up an index in the radix tree * @root: radix tree root * @iter: iterator state * @index: key to look up * * If @index is present in the radix tree, this function returns the slot * containing it and updates @iter to describe the entry. If @index is not * present, it returns NULL. */ static inline void __rcu ** radix_tree_iter_lookup(const struct radix_tree_root *root, struct radix_tree_iter *iter, unsigned long index) { radix_tree_iter_init(iter, index); return radix_tree_next_chunk(root, iter, RADIX_TREE_ITER_CONTIG); } /** * radix_tree_iter_retry - retry this chunk of the iteration * @iter: iterator state * * If we iterate over a tree protected only by the RCU lock, a race * against deletion or creation may result in seeing a slot for which * radix_tree_deref_retry() returns true. If so, call this function * and continue the iteration. */ static inline __must_check void __rcu **radix_tree_iter_retry(struct radix_tree_iter *iter) { iter->next_index = iter->index; iter->tags = 0; return NULL; } static inline unsigned long __radix_tree_iter_add(struct radix_tree_iter *iter, unsigned long slots) { return iter->index + slots; } /** * radix_tree_iter_resume - resume iterating when the chunk may be invalid * @slot: pointer to current slot * @iter: iterator state * Returns: New slot pointer * * If the iterator needs to release then reacquire a lock, the chunk may * have been invalidated by an insertion or deletion. Call this function * before releasing the lock to continue the iteration from the next index. */ void __rcu **__must_check radix_tree_iter_resume(void __rcu **slot, struct radix_tree_iter *iter); /** * radix_tree_chunk_size - get current chunk size * * @iter: pointer to radix tree iterator * Returns: current chunk size */ static __always_inline long radix_tree_chunk_size(struct radix_tree_iter *iter) { return iter->next_index - iter->index; } /** * radix_tree_next_slot - find next slot in chunk * * @slot: pointer to current slot * @iter: pointer to iterator state * @flags: RADIX_TREE_ITER_*, should be constant * Returns: pointer to next slot, or NULL if there no more left * * This function updates @iter->index in the case of a successful lookup. * For tagged lookup it also eats @iter->tags. * * There are several cases where 'slot' can be passed in as NULL to this * function. These cases result from the use of radix_tree_iter_resume() or * radix_tree_iter_retry(). In these cases we don't end up dereferencing * 'slot' because either: * a) we are doing tagged iteration and iter->tags has been set to 0, or * b) we are doing non-tagged iteration, and iter->index and iter->next_index * have been set up so that radix_tree_chunk_size() returns 1 or 0. */ static __always_inline void __rcu **radix_tree_next_slot(void __rcu **slot, struct radix_tree_iter *iter, unsigned flags) { if (flags & RADIX_TREE_ITER_TAGGED) { iter->tags >>= 1; if (unlikely(!iter->tags)) return NULL; if (likely(iter->tags & 1ul)) { iter->index = __radix_tree_iter_add(iter, 1); slot++; goto found; } if (!(flags & RADIX_TREE_ITER_CONTIG)) { unsigned offset = __ffs(iter->tags); iter->tags >>= offset++; iter->index = __radix_tree_iter_add(iter, offset); slot += offset; goto found; } } else { long count = radix_tree_chunk_size(iter); while (--count > 0) { slot++; iter->index = __radix_tree_iter_add(iter, 1); if (likely(*slot)) goto found; if (flags & RADIX_TREE_ITER_CONTIG) { /* forbid switching to the next chunk */ iter->next_index = 0; break; } } } return NULL; found: return slot; } /** * radix_tree_for_each_slot - iterate over non-empty slots * * @slot: the void** variable for pointer to slot * @root: the struct radix_tree_root pointer * @iter: the struct radix_tree_iter pointer * @start: iteration starting index * * @slot points to radix tree slot, @iter->index contains its index. */ #define radix_tree_for_each_slot(slot, root, iter, start) \ for (slot = radix_tree_iter_init(iter, start) ; \ slot || (slot = radix_tree_next_chunk(root, iter, 0)) ; \ slot = radix_tree_next_slot(slot, iter, 0)) /** * radix_tree_for_each_tagged - iterate over tagged slots * * @slot: the void** variable for pointer to slot * @root: the struct radix_tree_root pointer * @iter: the struct radix_tree_iter pointer * @start: iteration starting index * @tag: tag index * * @slot points to radix tree slot, @iter->index contains its index. */ #define radix_tree_for_each_tagged(slot, root, iter, start, tag) \ for (slot = radix_tree_iter_init(iter, start) ; \ slot || (slot = radix_tree_next_chunk(root, iter, \ RADIX_TREE_ITER_TAGGED | tag)) ; \ slot = radix_tree_next_slot(slot, iter, \ RADIX_TREE_ITER_TAGGED | tag)) #endif /* _LINUX_RADIX_TREE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_DCACHE_H #define __LINUX_DCACHE_H #include <linux/atomic.h> #include <linux/list.h> #include <linux/rculist.h> #include <linux/rculist_bl.h> #include <linux/spinlock.h> #include <linux/seqlock.h> #include <linux/cache.h> #include <linux/rcupdate.h> #include <linux/lockref.h> #include <linux/stringhash.h> #include <linux/wait.h> struct path; struct vfsmount; /* * linux/include/linux/dcache.h * * Dirent cache data structures * * (C) Copyright 1997 Thomas Schoebel-Theuer, * with heavy changes by Linus Torvalds */ #define IS_ROOT(x) ((x) == (x)->d_parent) /* The hash is always the low bits of hash_len */ #ifdef __LITTLE_ENDIAN #define HASH_LEN_DECLARE u32 hash; u32 len #define bytemask_from_count(cnt) (~(~0ul << (cnt)*8)) #else #define HASH_LEN_DECLARE u32 len; u32 hash #define bytemask_from_count(cnt) (~(~0ul >> (cnt)*8)) #endif /* * "quick string" -- eases parameter passing, but more importantly * saves "metadata" about the string (ie length and the hash). * * hash comes first so it snuggles against d_parent in the * dentry. */ struct qstr { union { struct { HASH_LEN_DECLARE; }; u64 hash_len; }; const unsigned char *name; }; #define QSTR_INIT(n,l) { { { .len = l } }, .name = n } extern const struct qstr empty_name; extern const struct qstr slash_name; struct dentry_stat_t { long nr_dentry; long nr_unused; long age_limit; /* age in seconds */ long want_pages; /* pages requested by system */ long nr_negative; /* # of unused negative dentries */ long dummy; /* Reserved for future use */ }; extern struct dentry_stat_t dentry_stat; /* * Try to keep struct dentry aligned on 64 byte cachelines (this will * give reasonable cacheline footprint with larger lines without the * large memory footprint increase). */ #ifdef CONFIG_64BIT # define DNAME_INLINE_LEN 32 /* 192 bytes */ #else # ifdef CONFIG_SMP # define DNAME_INLINE_LEN 36 /* 128 bytes */ # else # define DNAME_INLINE_LEN 40 /* 128 bytes */ # endif #endif #define d_lock d_lockref.lock struct dentry { /* RCU lookup touched fields */ unsigned int d_flags; /* protected by d_lock */ seqcount_spinlock_t d_seq; /* per dentry seqlock */ struct hlist_bl_node d_hash; /* lookup hash list */ struct dentry *d_parent; /* parent directory */ struct qstr d_name; struct inode *d_inode; /* Where the name belongs to - NULL is * negative */ unsigned char d_iname[DNAME_INLINE_LEN]; /* small names */ /* Ref lookup also touches following */ struct lockref d_lockref; /* per-dentry lock and refcount */ const struct dentry_operations *d_op; struct super_block *d_sb; /* The root of the dentry tree */ unsigned long d_time; /* used by d_revalidate */ void *d_fsdata; /* fs-specific data */ union { struct list_head d_lru; /* LRU list */ wait_queue_head_t *d_wait; /* in-lookup ones only */ }; struct list_head d_child; /* child of parent list */ struct list_head d_subdirs; /* our children */ /* * d_alias and d_rcu can share memory */ union { struct hlist_node d_alias; /* inode alias list */ struct hlist_bl_node d_in_lookup_hash; /* only for in-lookup ones */ struct rcu_head d_rcu; } d_u; } __randomize_layout; /* * dentry->d_lock spinlock nesting subclasses: * * 0: normal * 1: nested */ enum dentry_d_lock_class { DENTRY_D_LOCK_NORMAL, /* implicitly used by plain spin_lock() APIs. */ DENTRY_D_LOCK_NESTED }; struct dentry_operations { int (*d_revalidate)(struct dentry *, unsigned int); int (*d_weak_revalidate)(struct dentry *, unsigned int); int (*d_hash)(const struct dentry *, struct qstr *); int (*d_compare)(const struct dentry *, unsigned int, const char *, const struct qstr *); int (*d_delete)(const struct dentry *); int (*d_init)(struct dentry *); void (*d_release)(struct dentry *); void (*d_prune)(struct dentry *); void (*d_iput)(struct dentry *, struct inode *); char *(*d_dname)(struct dentry *, char *, int); struct vfsmount *(*d_automount)(struct path *); int (*d_manage)(const struct path *, bool); struct dentry *(*d_real)(struct dentry *, const struct inode *); } ____cacheline_aligned; /* * Locking rules for dentry_operations callbacks are to be found in * Documentation/filesystems/locking.rst. Keep it updated! * * FUrther descriptions are found in Documentation/filesystems/vfs.rst. * Keep it updated too! */ /* d_flags entries */ #define DCACHE_OP_HASH 0x00000001 #define DCACHE_OP_COMPARE 0x00000002 #define DCACHE_OP_REVALIDATE 0x00000004 #define DCACHE_OP_DELETE 0x00000008 #define DCACHE_OP_PRUNE 0x00000010 #define DCACHE_DISCONNECTED 0x00000020 /* This dentry is possibly not currently connected to the dcache tree, in * which case its parent will either be itself, or will have this flag as * well. nfsd will not use a dentry with this bit set, but will first * endeavour to clear the bit either by discovering that it is connected, * or by performing lookup operations. Any filesystem which supports * nfsd_operations MUST have a lookup function which, if it finds a * directory inode with a DCACHE_DISCONNECTED dentry, will d_move that * dentry into place and return that dentry rather than the passed one, * typically using d_splice_alias. */ #define DCACHE_REFERENCED 0x00000040 /* Recently used, don't discard. */ #define DCACHE_DONTCACHE 0x00000080 /* Purge from memory on final dput() */ #define DCACHE_CANT_MOUNT 0x00000100 #define DCACHE_GENOCIDE 0x00000200 #define DCACHE_SHRINK_LIST 0x00000400 #define DCACHE_OP_WEAK_REVALIDATE 0x00000800 #define DCACHE_NFSFS_RENAMED 0x00001000 /* this dentry has been "silly renamed" and has to be deleted on the last * dput() */ #define DCACHE_COOKIE 0x00002000 /* For use by dcookie subsystem */ #define DCACHE_FSNOTIFY_PARENT_WATCHED 0x00004000 /* Parent inode is watched by some fsnotify listener */ #define DCACHE_DENTRY_KILLED 0x00008000 #define DCACHE_MOUNTED 0x00010000 /* is a mountpoint */ #define DCACHE_NEED_AUTOMOUNT 0x00020000 /* handle automount on this dir */ #define DCACHE_MANAGE_TRANSIT 0x00040000 /* manage transit from this dirent */ #define DCACHE_MANAGED_DENTRY \ (DCACHE_MOUNTED|DCACHE_NEED_AUTOMOUNT|DCACHE_MANAGE_TRANSIT) #define DCACHE_LRU_LIST 0x00080000 #define DCACHE_ENTRY_TYPE 0x00700000 #define DCACHE_MISS_TYPE 0x00000000 /* Negative dentry (maybe fallthru to nowhere) */ #define DCACHE_WHITEOUT_TYPE 0x00100000 /* Whiteout dentry (stop pathwalk) */ #define DCACHE_DIRECTORY_TYPE 0x00200000 /* Normal directory */ #define DCACHE_AUTODIR_TYPE 0x00300000 /* Lookupless directory (presumed automount) */ #define DCACHE_REGULAR_TYPE 0x00400000 /* Regular file type (or fallthru to such) */ #define DCACHE_SPECIAL_TYPE 0x00500000 /* Other file type (or fallthru to such) */ #define DCACHE_SYMLINK_TYPE 0x00600000 /* Symlink (or fallthru to such) */ #define DCACHE_MAY_FREE 0x00800000 #define DCACHE_FALLTHRU 0x01000000 /* Fall through to lower layer */ #define DCACHE_NOKEY_NAME 0x02000000 /* Encrypted name encoded without key */ #define DCACHE_OP_REAL 0x04000000 #define DCACHE_PAR_LOOKUP 0x10000000 /* being looked up (with parent locked shared) */ #define DCACHE_DENTRY_CURSOR 0x20000000 #define DCACHE_NORCU 0x40000000 /* No RCU delay for freeing */ extern seqlock_t rename_lock; /* * These are the low-level FS interfaces to the dcache.. */ extern void d_instantiate(struct dentry *, struct inode *); extern void d_instantiate_new(struct dentry *, struct inode *); extern struct dentry * d_instantiate_unique(struct dentry *, struct inode *); extern struct dentry * d_instantiate_anon(struct dentry *, struct inode *); extern void __d_drop(struct dentry *dentry); extern void d_drop(struct dentry *dentry); extern void d_delete(struct dentry *); extern void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op); /* allocate/de-allocate */ extern struct dentry * d_alloc(struct dentry *, const struct qstr *); extern struct dentry * d_alloc_anon(struct super_block *); extern struct dentry * d_alloc_parallel(struct dentry *, const struct qstr *, wait_queue_head_t *); extern struct dentry * d_splice_alias(struct inode *, struct dentry *); extern struct dentry * d_add_ci(struct dentry *, struct inode *, struct qstr *); extern struct dentry * d_exact_alias(struct dentry *, struct inode *); extern struct dentry *d_find_any_alias(struct inode *inode); extern struct dentry * d_obtain_alias(struct inode *); extern struct dentry * d_obtain_root(struct inode *); extern void shrink_dcache_sb(struct super_block *); extern void shrink_dcache_parent(struct dentry *); extern void shrink_dcache_for_umount(struct super_block *); extern void d_invalidate(struct dentry *); /* only used at mount-time */ extern struct dentry * d_make_root(struct inode *); /* <clickety>-<click> the ramfs-type tree */ extern void d_genocide(struct dentry *); extern void d_tmpfile(struct dentry *, struct inode *); extern struct dentry *d_find_alias(struct inode *); extern void d_prune_aliases(struct inode *); /* test whether we have any submounts in a subdir tree */ extern int path_has_submounts(const struct path *); /* * This adds the entry to the hash queues. */ extern void d_rehash(struct dentry *); extern void d_add(struct dentry *, struct inode *); /* used for rename() and baskets */ extern void d_move(struct dentry *, struct dentry *); extern void d_exchange(struct dentry *, struct dentry *); extern struct dentry *d_ancestor(struct dentry *, struct dentry *); /* appendix may either be NULL or be used for transname suffixes */ extern struct dentry *d_lookup(const struct dentry *, const struct qstr *); extern struct dentry *d_hash_and_lookup(struct dentry *, struct qstr *); extern struct dentry *__d_lookup(const struct dentry *, const struct qstr *); extern struct dentry *__d_lookup_rcu(const struct dentry *parent, const struct qstr *name, unsigned *seq); static inline unsigned d_count(const struct dentry *dentry) { return dentry->d_lockref.count; } /* * helper function for dentry_operations.d_dname() members */ extern __printf(4, 5) char *dynamic_dname(struct dentry *, char *, int, const char *, ...); extern char *__d_path(const struct path *, const struct path *, char *, int); extern char *d_absolute_path(const struct path *, char *, int); extern char *d_path(const struct path *, char *, int); extern char *dentry_path_raw(struct dentry *, char *, int); extern char *dentry_path(struct dentry *, char *, int); /* Allocation counts.. */ /** * dget, dget_dlock - get a reference to a dentry * @dentry: dentry to get a reference to * * Given a dentry or %NULL pointer increment the reference count * if appropriate and return the dentry. A dentry will not be * destroyed when it has references. */ static inline struct dentry *dget_dlock(struct dentry *dentry) { if (dentry) dentry->d_lockref.count++; return dentry; } static inline struct dentry *dget(struct dentry *dentry) { if (dentry) lockref_get(&dentry->d_lockref); return dentry; } extern struct dentry *dget_parent(struct dentry *dentry); /** * d_unhashed - is dentry hashed * @dentry: entry to check * * Returns true if the dentry passed is not currently hashed. */ static inline int d_unhashed(const struct dentry *dentry) { return hlist_bl_unhashed(&dentry->d_hash); } static inline int d_unlinked(const struct dentry *dentry) { return d_unhashed(dentry) && !IS_ROOT(dentry); } static inline int cant_mount(const struct dentry *dentry) { return (dentry->d_flags & DCACHE_CANT_MOUNT); } static inline void dont_mount(struct dentry *dentry) { spin_lock(&dentry->d_lock); dentry->d_flags |= DCACHE_CANT_MOUNT; spin_unlock(&dentry->d_lock); } extern void __d_lookup_done(struct dentry *); static inline int d_in_lookup(const struct dentry *dentry) { return dentry->d_flags & DCACHE_PAR_LOOKUP; } static inline void d_lookup_done(struct dentry *dentry) { if (unlikely(d_in_lookup(dentry))) { spin_lock(&dentry->d_lock); __d_lookup_done(dentry); spin_unlock(&dentry->d_lock); } } extern void dput(struct dentry *); static inline bool d_managed(const struct dentry *dentry) { return dentry->d_flags & DCACHE_MANAGED_DENTRY; } static inline bool d_mountpoint(const struct dentry *dentry) { return dentry->d_flags & DCACHE_MOUNTED; } /* * Directory cache entry type accessor functions. */ static inline unsigned __d_entry_type(const struct dentry *dentry) { return dentry->d_flags & DCACHE_ENTRY_TYPE; } static inline bool d_is_miss(const struct dentry *dentry) { return __d_entry_type(dentry) == DCACHE_MISS_TYPE; } static inline bool d_is_whiteout(const struct dentry *dentry) { return __d_entry_type(dentry) == DCACHE_WHITEOUT_TYPE; } static inline bool d_can_lookup(const struct dentry *dentry) { return __d_entry_type(dentry) == DCACHE_DIRECTORY_TYPE; } static inline bool d_is_autodir(const struct dentry *dentry) { return __d_entry_type(dentry) == DCACHE_AUTODIR_TYPE; } static inline bool d_is_dir(const struct dentry *dentry) { return d_can_lookup(dentry) || d_is_autodir(dentry); } static inline bool d_is_symlink(const struct dentry *dentry) { return __d_entry_type(dentry) == DCACHE_SYMLINK_TYPE; } static inline bool d_is_reg(const struct dentry *dentry) { return __d_entry_type(dentry) == DCACHE_REGULAR_TYPE; } static inline bool d_is_special(const struct dentry *dentry) { return __d_entry_type(dentry) == DCACHE_SPECIAL_TYPE; } static inline bool d_is_file(const struct dentry *dentry) { return d_is_reg(dentry) || d_is_special(dentry); } static inline bool d_is_negative(const struct dentry *dentry) { // TODO: check d_is_whiteout(dentry) also. return d_is_miss(dentry); } static inline bool d_flags_negative(unsigned flags) { return (flags & DCACHE_ENTRY_TYPE) == DCACHE_MISS_TYPE; } static inline bool d_is_positive(const struct dentry *dentry) { return !d_is_negative(dentry); } /** * d_really_is_negative - Determine if a dentry is really negative (ignoring fallthroughs) * @dentry: The dentry in question * * Returns true if the dentry represents either an absent name or a name that * doesn't map to an inode (ie. ->d_inode is NULL). The dentry could represent * a true miss, a whiteout that isn't represented by a 0,0 chardev or a * fallthrough marker in an opaque directory. * * Note! (1) This should be used *only* by a filesystem to examine its own * dentries. It should not be used to look at some other filesystem's * dentries. (2) It should also be used in combination with d_inode() to get * the inode. (3) The dentry may have something attached to ->d_lower and the * type field of the flags may be set to something other than miss or whiteout. */ static inline bool d_really_is_negative(const struct dentry *dentry) { return dentry->d_inode == NULL; } /** * d_really_is_positive - Determine if a dentry is really positive (ignoring fallthroughs) * @dentry: The dentry in question * * Returns true if the dentry represents a name that maps to an inode * (ie. ->d_inode is not NULL). The dentry might still represent a whiteout if * that is represented on medium as a 0,0 chardev. * * Note! (1) This should be used *only* by a filesystem to examine its own * dentries. It should not be used to look at some other filesystem's * dentries. (2) It should also be used in combination with d_inode() to get * the inode. */ static inline bool d_really_is_positive(const struct dentry *dentry) { return dentry->d_inode != NULL; } static inline int simple_positive(const struct dentry *dentry) { return d_really_is_positive(dentry) && !d_unhashed(dentry); } extern void d_set_fallthru(struct dentry *dentry); static inline bool d_is_fallthru(const struct dentry *dentry) { return dentry->d_flags & DCACHE_FALLTHRU; } extern int sysctl_vfs_cache_pressure; static inline unsigned long vfs_pressure_ratio(unsigned long val) { return mult_frac(val, sysctl_vfs_cache_pressure, 100); } /** * d_inode - Get the actual inode of this dentry * @dentry: The dentry to query * * This is the helper normal filesystems should use to get at their own inodes * in their own dentries and ignore the layering superimposed upon them. */ static inline struct inode *d_inode(const struct dentry *dentry) { return dentry->d_inode; } /** * d_inode_rcu - Get the actual inode of this dentry with READ_ONCE() * @dentry: The dentry to query * * This is the helper normal filesystems should use to get at their own inodes * in their own dentries and ignore the layering superimposed upon them. */ static inline struct inode *d_inode_rcu(const struct dentry *dentry) { return READ_ONCE(dentry->d_inode); } /** * d_backing_inode - Get upper or lower inode we should be using * @upper: The upper layer * * This is the helper that should be used to get at the inode that will be used * if this dentry were to be opened as a file. The inode may be on the upper * dentry or it may be on a lower dentry pinned by the upper. * * Normal filesystems should not use this to access their own inodes. */ static inline struct inode *d_backing_inode(const struct dentry *upper) { struct inode *inode = upper->d_inode; return inode; } /** * d_backing_dentry - Get upper or lower dentry we should be using * @upper: The upper layer * * This is the helper that should be used to get the dentry of the inode that * will be used if this dentry were opened as a file. It may be the upper * dentry or it may be a lower dentry pinned by the upper. * * Normal filesystems should not use this to access their own dentries. */ static inline struct dentry *d_backing_dentry(struct dentry *upper) { return upper; } /** * d_real - Return the real dentry * @dentry: the dentry to query * @inode: inode to select the dentry from multiple layers (can be NULL) * * If dentry is on a union/overlay, then return the underlying, real dentry. * Otherwise return the dentry itself. * * See also: Documentation/filesystems/vfs.rst */ static inline struct dentry *d_real(struct dentry *dentry, const struct inode *inode) { if (unlikely(dentry->d_flags & DCACHE_OP_REAL)) return dentry->d_op->d_real(dentry, inode); else return dentry; } /** * d_real_inode - Return the real inode * @dentry: The dentry to query * * If dentry is on a union/overlay, then return the underlying, real inode. * Otherwise return d_inode(). */ static inline struct inode *d_real_inode(const struct dentry *dentry) { /* This usage of d_real() results in const dentry */ return d_backing_inode(d_real((struct dentry *) dentry, NULL)); } struct name_snapshot { struct qstr name; unsigned char inline_name[DNAME_INLINE_LEN]; }; void take_dentry_name_snapshot(struct name_snapshot *, struct dentry *); void release_dentry_name_snapshot(struct name_snapshot *); #endif /* __LINUX_DCACHE_H */
1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 // SPDX-License-Identifier: GPL-2.0 /* * linux/fs/ext4/file.c * * Copyright (C) 1992, 1993, 1994, 1995 * Remy Card (card@masi.ibp.fr) * Laboratoire MASI - Institut Blaise Pascal * Universite Pierre et Marie Curie (Paris VI) * * from * * linux/fs/minix/file.c * * Copyright (C) 1991, 1992 Linus Torvalds * * ext4 fs regular file handling primitives * * 64-bit file support on 64-bit platforms by Jakub Jelinek * (jj@sunsite.ms.mff.cuni.cz) */ #include <linux/time.h> #include <linux/fs.h> #include <linux/iomap.h> #include <linux/mount.h> #include <linux/path.h> #include <linux/dax.h> #include <linux/quotaops.h> #include <linux/pagevec.h> #include <linux/uio.h> #include <linux/mman.h> #include <linux/backing-dev.h> #include "ext4.h" #include "ext4_jbd2.h" #include "xattr.h" #include "acl.h" #include "truncate.h" static bool ext4_dio_supported(struct inode *inode) { if (IS_ENABLED(CONFIG_FS_ENCRYPTION) && IS_ENCRYPTED(inode)) return false; if (fsverity_active(inode)) return false; if (ext4_should_journal_data(inode)) return false; if (ext4_has_inline_data(inode)) return false; return true; } static ssize_t ext4_dio_read_iter(struct kiocb *iocb, struct iov_iter *to) { ssize_t ret; struct inode *inode = file_inode(iocb->ki_filp); if (iocb->ki_flags & IOCB_NOWAIT) { if (!inode_trylock_shared(inode)) return -EAGAIN; } else { inode_lock_shared(inode); } if (!ext4_dio_supported(inode)) { inode_unlock_shared(inode); /* * Fallback to buffered I/O if the operation being performed on * the inode is not supported by direct I/O. The IOCB_DIRECT * flag needs to be cleared here in order to ensure that the * direct I/O path within generic_file_read_iter() is not * taken. */ iocb->ki_flags &= ~IOCB_DIRECT; return generic_file_read_iter(iocb, to); } ret = iomap_dio_rw(iocb, to, &ext4_iomap_ops, NULL, is_sync_kiocb(iocb)); inode_unlock_shared(inode); file_accessed(iocb->ki_filp); return ret; } #ifdef CONFIG_FS_DAX static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to) { struct inode *inode = file_inode(iocb->ki_filp); ssize_t ret; if (iocb->ki_flags & IOCB_NOWAIT) { if (!inode_trylock_shared(inode)) return -EAGAIN; } else { inode_lock_shared(inode); } /* * Recheck under inode lock - at this point we are sure it cannot * change anymore */ if (!IS_DAX(inode)) { inode_unlock_shared(inode); /* Fallback to buffered IO in case we cannot support DAX */ return generic_file_read_iter(iocb, to); } ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops); inode_unlock_shared(inode); file_accessed(iocb->ki_filp); return ret; } #endif static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to) { struct inode *inode = file_inode(iocb->ki_filp); if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) return -EIO; if (!iov_iter_count(to)) return 0; /* skip atime */ #ifdef CONFIG_FS_DAX if (IS_DAX(inode)) return ext4_dax_read_iter(iocb, to); #endif if (iocb->ki_flags & IOCB_DIRECT) return ext4_dio_read_iter(iocb, to); return generic_file_read_iter(iocb, to); } /* * Called when an inode is released. Note that this is different * from ext4_file_open: open gets called at every open, but release * gets called only when /all/ the files are closed. */ static int ext4_release_file(struct inode *inode, struct file *filp) { if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) { ext4_alloc_da_blocks(inode); ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); } /* if we are the last writer on the inode, drop the block reservation */ if ((filp->f_mode & FMODE_WRITE) && (atomic_read(&inode->i_writecount) == 1) && !EXT4_I(inode)->i_reserved_data_blocks) { down_write(&EXT4_I(inode)->i_data_sem); ext4_discard_preallocations(inode, 0); up_write(&EXT4_I(inode)->i_data_sem); } if (is_dx(inode) && filp->private_data) ext4_htree_free_dir_info(filp->private_data); return 0; } /* * This tests whether the IO in question is block-aligned or not. * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they * are converted to written only after the IO is complete. Until they are * mapped, these blocks appear as holes, so dio_zero_block() will assume that * it needs to zero out portions of the start and/or end block. If 2 AIO * threads are at work on the same unwritten block, they must be synchronized * or one thread will zero the other's data, causing corruption. */ static bool ext4_unaligned_io(struct inode *inode, struct iov_iter *from, loff_t pos) { struct super_block *sb = inode->i_sb; unsigned long blockmask = sb->s_blocksize - 1; if ((pos | iov_iter_alignment(from)) & blockmask) return true; return false; } static bool ext4_extending_io(struct inode *inode, loff_t offset, size_t len) { if (offset + len > i_size_read(inode) || offset + len > EXT4_I(inode)->i_disksize) return true; return false; } /* Is IO overwriting allocated and initialized blocks? */ static bool ext4_overwrite_io(struct inode *inode, loff_t pos, loff_t len) { struct ext4_map_blocks map; unsigned int blkbits = inode->i_blkbits; int err, blklen; if (pos + len > i_size_read(inode)) return false; map.m_lblk = pos >> blkbits; map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits); blklen = map.m_len; err = ext4_map_blocks(NULL, inode, &map, 0); /* * 'err==len' means that all of the blocks have been preallocated, * regardless of whether they have been initialized or not. To exclude * unwritten extents, we need to check m_flags. */ return err == blklen && (map.m_flags & EXT4_MAP_MAPPED); } static ssize_t ext4_generic_write_checks(struct kiocb *iocb, struct iov_iter *from) { struct inode *inode = file_inode(iocb->ki_filp); ssize_t ret; if (unlikely(IS_IMMUTABLE(inode))) return -EPERM; ret = generic_write_checks(iocb, from); if (ret <= 0) return ret; /* * If we have encountered a bitmap-format file, the size limit * is smaller than s_maxbytes, which is for extent-mapped files. */ if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); if (iocb->ki_pos >= sbi->s_bitmap_maxbytes) return -EFBIG; iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos); } return iov_iter_count(from); } static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from) { ssize_t ret, count; count = ext4_generic_write_checks(iocb, from); if (count <= 0) return count; ret = file_modified(iocb->ki_filp); if (ret) return ret; return count; } static ssize_t ext4_buffered_write_iter(struct kiocb *iocb, struct iov_iter *from) { ssize_t ret; struct inode *inode = file_inode(iocb->ki_filp); if (iocb->ki_flags & IOCB_NOWAIT) return -EOPNOTSUPP; ext4_fc_start_update(inode); inode_lock(inode); ret = ext4_write_checks(iocb, from); if (ret <= 0) goto out; current->backing_dev_info = inode_to_bdi(inode); ret = generic_perform_write(iocb->ki_filp, from, iocb->ki_pos); current->backing_dev_info = NULL; out: inode_unlock(inode); ext4_fc_stop_update(inode); if (likely(ret > 0)) { iocb->ki_pos += ret; ret = generic_write_sync(iocb, ret); } return ret; } static ssize_t ext4_handle_inode_extension(struct inode *inode, loff_t offset, ssize_t written, size_t count) { handle_t *handle; bool truncate = false; u8 blkbits = inode->i_blkbits; ext4_lblk_t written_blk, end_blk; int ret; /* * Note that EXT4_I(inode)->i_disksize can get extended up to * inode->i_size while the I/O was running due to writeback of delalloc * blocks. But, the code in ext4_iomap_alloc() is careful to use * zeroed/unwritten extents if this is possible; thus we won't leave * uninitialized blocks in a file even if we didn't succeed in writing * as much as we intended. */ WARN_ON_ONCE(i_size_read(inode) < EXT4_I(inode)->i_disksize); if (offset + count <= EXT4_I(inode)->i_disksize) { /* * We need to ensure that the inode is removed from the orphan * list if it has been added prematurely, due to writeback of * delalloc blocks. */ if (!list_empty(&EXT4_I(inode)->i_orphan) && inode->i_nlink) { handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); if (IS_ERR(handle)) { ext4_orphan_del(NULL, inode); return PTR_ERR(handle); } ext4_orphan_del(handle, inode); ext4_journal_stop(handle); } return written; } if (written < 0) goto truncate; handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); if (IS_ERR(handle)) { written = PTR_ERR(handle); goto truncate; } if (ext4_update_inode_size(inode, offset + written)) { ret = ext4_mark_inode_dirty(handle, inode); if (unlikely(ret)) { written = ret; ext4_journal_stop(handle); goto truncate; } } /* * We may need to truncate allocated but not written blocks beyond EOF. */ written_blk = ALIGN(offset + written, 1 << blkbits); end_blk = ALIGN(offset + count, 1 << blkbits); if (written_blk < end_blk && ext4_can_truncate(inode)) truncate = true; /* * Remove the inode from the orphan list if it has been extended and * everything went OK. */ if (!truncate && inode->i_nlink) ext4_orphan_del(handle, inode); ext4_journal_stop(handle); if (truncate) { truncate: ext4_truncate_failed_write(inode); /* * If the truncate operation failed early, then the inode may * still be on the orphan list. In that case, we need to try * remove the inode from the in-memory linked list. */ if (inode->i_nlink) ext4_orphan_del(NULL, inode); } return written; } static int ext4_dio_write_end_io(struct kiocb *iocb, ssize_t size, int error, unsigned int flags) { loff_t pos = iocb->ki_pos; struct inode *inode = file_inode(iocb->ki_filp); if (error) return error; if (size && flags & IOMAP_DIO_UNWRITTEN) { error = ext4_convert_unwritten_extents(NULL, inode, pos, size); if (error < 0) return error; } /* * If we are extending the file, we have to update i_size here before * page cache gets invalidated in iomap_dio_rw(). Otherwise racing * buffered reads could zero out too much from page cache pages. Update * of on-disk size will happen later in ext4_dio_write_iter() where * we have enough information to also perform orphan list handling etc. * Note that we perform all extending writes synchronously under * i_rwsem held exclusively so i_size update is safe here in that case. * If the write was not extending, we cannot see pos > i_size here * because operations reducing i_size like truncate wait for all * outstanding DIO before updating i_size. */ pos += size; if (pos > i_size_read(inode)) i_size_write(inode, pos); return 0; } static const struct iomap_dio_ops ext4_dio_write_ops = { .end_io = ext4_dio_write_end_io, }; /* * The intention here is to start with shared lock acquired then see if any * condition requires an exclusive inode lock. If yes, then we restart the * whole operation by releasing the shared lock and acquiring exclusive lock. * * - For unaligned_io we never take shared lock as it may cause data corruption * when two unaligned IO tries to modify the same block e.g. while zeroing. * * - For extending writes case we don't take the shared lock, since it requires * updating inode i_disksize and/or orphan handling with exclusive lock. * * - shared locking will only be true mostly with overwrites. Otherwise we will * switch to exclusive i_rwsem lock. */ static ssize_t ext4_dio_write_checks(struct kiocb *iocb, struct iov_iter *from, bool *ilock_shared, bool *extend) { struct file *file = iocb->ki_filp; struct inode *inode = file_inode(file); loff_t offset; size_t count; ssize_t ret; restart: ret = ext4_generic_write_checks(iocb, from); if (ret <= 0) goto out; offset = iocb->ki_pos; count = ret; if (ext4_extending_io(inode, offset, count)) *extend = true; /* * Determine whether the IO operation will overwrite allocated * and initialized blocks. * We need exclusive i_rwsem for changing security info * in file_modified(). */ if (*ilock_shared && (!IS_NOSEC(inode) || *extend || !ext4_overwrite_io(inode, offset, count))) { if (iocb->ki_flags & IOCB_NOWAIT) { ret = -EAGAIN; goto out; } inode_unlock_shared(inode); *ilock_shared = false; inode_lock(inode); goto restart; } ret = file_modified(file); if (ret < 0) goto out; return count; out: if (*ilock_shared) inode_unlock_shared(inode); else inode_unlock(inode); return ret; } static ssize_t ext4_dio_write_iter(struct kiocb *iocb, struct iov_iter *from) { ssize_t ret; handle_t *handle; struct inode *inode = file_inode(iocb->ki_filp); loff_t offset = iocb->ki_pos; size_t count = iov_iter_count(from); const struct iomap_ops *iomap_ops = &ext4_iomap_ops; bool extend = false, unaligned_io = false; bool ilock_shared = true; /* * We initially start with shared inode lock unless it is * unaligned IO which needs exclusive lock anyways. */ if (ext4_unaligned_io(inode, from, offset)) { unaligned_io = true; ilock_shared = false; } /* * Quick check here without any i_rwsem lock to see if it is extending * IO. A more reliable check is done in ext4_dio_write_checks() with * proper locking in place. */ if (offset + count > i_size_read(inode)) ilock_shared = false; if (iocb->ki_flags & IOCB_NOWAIT) { if (ilock_shared) { if (!inode_trylock_shared(inode)) return -EAGAIN; } else { if (!inode_trylock(inode)) return -EAGAIN; } } else { if (ilock_shared) inode_lock_shared(inode); else inode_lock(inode); } /* Fallback to buffered I/O if the inode does not support direct I/O. */ if (!ext4_dio_supported(inode)) { if (ilock_shared) inode_unlock_shared(inode); else inode_unlock(inode); return ext4_buffered_write_iter(iocb, from); } ret = ext4_dio_write_checks(iocb, from, &ilock_shared, &extend); if (ret <= 0) return ret; /* if we're going to block and IOCB_NOWAIT is set, return -EAGAIN */ if ((iocb->ki_flags & IOCB_NOWAIT) && (unaligned_io || extend)) { ret = -EAGAIN; goto out; } offset = iocb->ki_pos; count = ret; /* * Unaligned direct IO must be serialized among each other as zeroing * of partial blocks of two competing unaligned IOs can result in data * corruption. * * So we make sure we don't allow any unaligned IO in flight. * For IOs where we need not wait (like unaligned non-AIO DIO), * below inode_dio_wait() may anyway become a no-op, since we start * with exclusive lock. */ if (unaligned_io) inode_dio_wait(inode); if (extend) { handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); if (IS_ERR(handle)) { ret = PTR_ERR(handle); goto out; } ext4_fc_start_update(inode); ret = ext4_orphan_add(handle, inode); ext4_fc_stop_update(inode); if (ret) { ext4_journal_stop(handle); goto out; } ext4_journal_stop(handle); } if (ilock_shared) iomap_ops = &ext4_iomap_overwrite_ops; ret = iomap_dio_rw(iocb, from, iomap_ops, &ext4_dio_write_ops, is_sync_kiocb(iocb) || unaligned_io || extend); if (ret == -ENOTBLK) ret = 0; if (extend) ret = ext4_handle_inode_extension(inode, offset, ret, count); out: if (ilock_shared) inode_unlock_shared(inode); else inode_unlock(inode); if (ret >= 0 && iov_iter_count(from)) { ssize_t err; loff_t endbyte; offset = iocb->ki_pos; err = ext4_buffered_write_iter(iocb, from); if (err < 0) return err; /* * We need to ensure that the pages within the page cache for * the range covered by this I/O are written to disk and * invalidated. This is in attempt to preserve the expected * direct I/O semantics in the case we fallback to buffered I/O * to complete off the I/O request. */ ret += err; endbyte = offset + err - 1; err = filemap_write_and_wait_range(iocb->ki_filp->f_mapping, offset, endbyte); if (!err) invalidate_mapping_pages(iocb->ki_filp->f_mapping, offset >> PAGE_SHIFT, endbyte >> PAGE_SHIFT); } return ret; } #ifdef CONFIG_FS_DAX static ssize_t ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from) { ssize_t ret; size_t count; loff_t offset; handle_t *handle; bool extend = false; struct inode *inode = file_inode(iocb->ki_filp); if (iocb->ki_flags & IOCB_NOWAIT) { if (!inode_trylock(inode)) return -EAGAIN; } else { inode_lock(inode); } ret = ext4_write_checks(iocb, from); if (ret <= 0) goto out; offset = iocb->ki_pos; count = iov_iter_count(from); if (offset + count > EXT4_I(inode)->i_disksize) { handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); if (IS_ERR(handle)) { ret = PTR_ERR(handle); goto out; } ret = ext4_orphan_add(handle, inode); if (ret) { ext4_journal_stop(handle); goto out; } extend = true; ext4_journal_stop(handle); } ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops); if (extend) ret = ext4_handle_inode_extension(inode, offset, ret, count); out: inode_unlock(inode); if (ret > 0) ret = generic_write_sync(iocb, ret); return ret; } #endif static ssize_t ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from) { struct inode *inode = file_inode(iocb->ki_filp); if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) return -EIO; #ifdef CONFIG_FS_DAX if (IS_DAX(inode)) return ext4_dax_write_iter(iocb, from); #endif if (iocb->ki_flags & IOCB_DIRECT) return ext4_dio_write_iter(iocb, from); else return ext4_buffered_write_iter(iocb, from); } #ifdef CONFIG_FS_DAX static vm_fault_t ext4_dax_huge_fault(struct vm_fault *vmf, enum page_entry_size pe_size) { int error = 0; vm_fault_t result; int retries = 0; handle_t *handle = NULL; struct inode *inode = file_inode(vmf->vma->vm_file); struct super_block *sb = inode->i_sb; /* * We have to distinguish real writes from writes which will result in a * COW page; COW writes should *not* poke the journal (the file will not * be changed). Doing so would cause unintended failures when mounted * read-only. * * We check for VM_SHARED rather than vmf->cow_page since the latter is * unset for pe_size != PE_SIZE_PTE (i.e. only in do_cow_fault); for * other sizes, dax_iomap_fault will handle splitting / fallback so that * we eventually come back with a COW page. */ bool write = (vmf->flags & FAULT_FLAG_WRITE) && (vmf->vma->vm_flags & VM_SHARED); pfn_t pfn; if (write) { sb_start_pagefault(sb); file_update_time(vmf->vma->vm_file); down_read(&EXT4_I(inode)->i_mmap_sem); retry: handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE, EXT4_DATA_TRANS_BLOCKS(sb)); if (IS_ERR(handle)) { up_read(&EXT4_I(inode)->i_mmap_sem); sb_end_pagefault(sb); return VM_FAULT_SIGBUS; } } else { down_read(&EXT4_I(inode)->i_mmap_sem); } result = dax_iomap_fault(vmf, pe_size, &pfn, &error, &ext4_iomap_ops); if (write) { ext4_journal_stop(handle); if ((result & VM_FAULT_ERROR) && error == -ENOSPC && ext4_should_retry_alloc(sb, &retries)) goto retry; /* Handling synchronous page fault? */ if (result & VM_FAULT_NEEDDSYNC) result = dax_finish_sync_fault(vmf, pe_size, pfn); up_read(&EXT4_I(inode)->i_mmap_sem); sb_end_pagefault(sb); } else { up_read(&EXT4_I(inode)->i_mmap_sem); } return result; } static vm_fault_t ext4_dax_fault(struct vm_fault *vmf) { return ext4_dax_huge_fault(vmf, PE_SIZE_PTE); } static const struct vm_operations_struct ext4_dax_vm_ops = { .fault = ext4_dax_fault, .huge_fault = ext4_dax_huge_fault, .page_mkwrite = ext4_dax_fault, .pfn_mkwrite = ext4_dax_fault, }; #else #define ext4_dax_vm_ops ext4_file_vm_ops #endif static const struct vm_operations_struct ext4_file_vm_ops = { .fault = ext4_filemap_fault, .map_pages = filemap_map_pages, .page_mkwrite = ext4_page_mkwrite, }; static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma) { struct inode *inode = file->f_mapping->host; struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); struct dax_device *dax_dev = sbi->s_daxdev; if (unlikely(ext4_forced_shutdown(sbi))) return -EIO; /* * We don't support synchronous mappings for non-DAX files and * for DAX files if underneath dax_device is not synchronous. */ if (!daxdev_mapping_supported(vma, dax_dev)) return -EOPNOTSUPP; file_accessed(file); if (IS_DAX(file_inode(file))) { vma->vm_ops = &ext4_dax_vm_ops; vma->vm_flags |= VM_HUGEPAGE; } else { vma->vm_ops = &ext4_file_vm_ops; } return 0; } static int ext4_sample_last_mounted(struct super_block *sb, struct vfsmount *mnt) { struct ext4_sb_info *sbi = EXT4_SB(sb); struct path path; char buf[64], *cp; handle_t *handle; int err; if (likely(ext4_test_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED))) return 0; if (sb_rdonly(sb) || !sb_start_intwrite_trylock(sb)) return 0; ext4_set_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED); /* * Sample where the filesystem has been mounted and * store it in the superblock for sysadmin convenience * when trying to sort through large numbers of block * devices or filesystem images. */ memset(buf, 0, sizeof(buf)); path.mnt = mnt; path.dentry = mnt->mnt_root; cp = d_path(&path, buf, sizeof(buf)); err = 0; if (IS_ERR(cp)) goto out; handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1); err = PTR_ERR(handle); if (IS_ERR(handle)) goto out; BUFFER_TRACE(sbi->s_sbh, "get_write_access"); err = ext4_journal_get_write_access(handle, sbi->s_sbh); if (err) goto out_journal; strncpy(sbi->s_es->s_last_mounted, cp, sizeof(sbi->s_es->s_last_mounted)); ext4_handle_dirty_super(handle, sb); out_journal: ext4_journal_stop(handle); out: sb_end_intwrite(sb); return err; } static int ext4_file_open(struct inode *inode, struct file *filp) { int ret; if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) return -EIO; ret = ext4_sample_last_mounted(inode->i_sb, filp->f_path.mnt); if (ret) return ret; ret = fscrypt_file_open(inode, filp); if (ret) return ret; ret = fsverity_file_open(inode, filp); if (ret) return ret; /* * Set up the jbd2_inode if we are opening the inode for * writing and the journal is present */ if (filp->f_mode & FMODE_WRITE) { ret = ext4_inode_attach_jinode(inode); if (ret < 0) return ret; } filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC; return dquot_file_open(inode, filp); } /* * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values * by calling generic_file_llseek_size() with the appropriate maxbytes * value for each. */ loff_t ext4_llseek(struct file *file, loff_t offset, int whence) { struct inode *inode = file->f_mapping->host; loff_t maxbytes; if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes; else maxbytes = inode->i_sb->s_maxbytes; switch (whence) { default: return generic_file_llseek_size(file, offset, whence, maxbytes, i_size_read(inode)); case SEEK_HOLE: inode_lock_shared(inode); offset = iomap_seek_hole(inode, offset, &ext4_iomap_report_ops); inode_unlock_shared(inode); break; case SEEK_DATA: inode_lock_shared(inode); offset = iomap_seek_data(inode, offset, &ext4_iomap_report_ops); inode_unlock_shared(inode); break; } if (offset < 0) return offset; return vfs_setpos(file, offset, maxbytes); } const struct file_operations ext4_file_operations = { .llseek = ext4_llseek, .read_iter = ext4_file_read_iter, .write_iter = ext4_file_write_iter, .iopoll = iomap_dio_iopoll, .unlocked_ioctl = ext4_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = ext4_compat_ioctl, #endif .mmap = ext4_file_mmap, .mmap_supported_flags = MAP_SYNC, .open = ext4_file_open, .release = ext4_release_file, .fsync = ext4_sync_file, .get_unmapped_area = thp_get_unmapped_area, .splice_read = generic_file_splice_read, .splice_write = iter_file_splice_write, .fallocate = ext4_fallocate, }; const struct inode_operations ext4_file_inode_operations = { .setattr = ext4_setattr, .getattr = ext4_file_getattr, .listxattr = ext4_listxattr, .get_acl = ext4_get_acl, .set_acl = ext4_set_acl, .fiemap = ext4_fiemap, };
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 /* SPDX-License-Identifier: GPL-2.0 */ /* * Generic nexthop implementation * * Copyright (c) 2017-19 Cumulus Networks * Copyright (c) 2017-19 David Ahern <dsa@cumulusnetworks.com> */ #ifndef __LINUX_NEXTHOP_H #define __LINUX_NEXTHOP_H #include <linux/netdevice.h> #include <linux/notifier.h> #include <linux/route.h> #include <linux/types.h> #include <net/ip_fib.h> #include <net/ip6_fib.h> #include <net/netlink.h> #define NEXTHOP_VALID_USER_FLAGS RTNH_F_ONLINK struct nexthop; struct nh_config { u32 nh_id; u8 nh_family; u8 nh_protocol; u8 nh_blackhole; u8 nh_fdb; u32 nh_flags; int nh_ifindex; struct net_device *dev; union { __be32 ipv4; struct in6_addr ipv6; } gw; struct nlattr *nh_grp; u16 nh_grp_type; struct nlattr *nh_encap; u16 nh_encap_type; u32 nlflags; struct nl_info nlinfo; }; struct nh_info { struct hlist_node dev_hash; /* entry on netns devhash */ struct nexthop *nh_parent; u8 family; bool reject_nh; bool fdb_nh; union { struct fib_nh_common fib_nhc; struct fib_nh fib_nh; struct fib6_nh fib6_nh; }; }; struct nh_grp_entry { struct nexthop *nh; u8 weight; atomic_t upper_bound; struct list_head nh_list; struct nexthop *nh_parent; /* nexthop of group with this entry */ }; struct nh_group { struct nh_group *spare; /* spare group for removals */ u16 num_nh; bool mpath; bool fdb_nh; bool has_v4; struct nh_grp_entry nh_entries[]; }; struct nexthop { struct rb_node rb_node; /* entry on netns rbtree */ struct list_head fi_list; /* v4 entries using nh */ struct list_head f6i_list; /* v6 entries using nh */ struct list_head fdb_list; /* fdb entries using this nh */ struct list_head grp_list; /* nh group entries using this nh */ struct net *net; u32 id; u8 protocol; /* app managing this nh */ u8 nh_flags; bool is_group; refcount_t refcnt; struct rcu_head rcu; union { struct nh_info __rcu *nh_info; struct nh_group __rcu *nh_grp; }; }; enum nexthop_event_type { NEXTHOP_EVENT_DEL }; int register_nexthop_notifier(struct net *net, struct notifier_block *nb); int unregister_nexthop_notifier(struct net *net, struct notifier_block *nb); /* caller is holding rcu or rtnl; no reference taken to nexthop */ struct nexthop *nexthop_find_by_id(struct net *net, u32 id); void nexthop_free_rcu(struct rcu_head *head); static inline bool nexthop_get(struct nexthop *nh) { return refcount_inc_not_zero(&nh->refcnt); } static inline void nexthop_put(struct nexthop *nh) { if (refcount_dec_and_test(&nh->refcnt)) call_rcu(&nh->rcu, nexthop_free_rcu); } static inline bool nexthop_cmp(const struct nexthop *nh1, const struct nexthop *nh2) { return nh1 == nh2; } static inline bool nexthop_is_fdb(const struct nexthop *nh) { if (nh->is_group) { const struct nh_group *nh_grp; nh_grp = rcu_dereference_rtnl(nh->nh_grp); return nh_grp->fdb_nh; } else { const struct nh_info *nhi; nhi = rcu_dereference_rtnl(nh->nh_info); return nhi->fdb_nh; } } static inline bool nexthop_has_v4(const struct nexthop *nh) { if (nh->is_group) { struct nh_group *nh_grp; nh_grp = rcu_dereference_rtnl(nh->nh_grp); return nh_grp->has_v4; } return false; } static inline bool nexthop_is_multipath(const struct nexthop *nh) { if (nh->is_group) { struct nh_group *nh_grp; nh_grp = rcu_dereference_rtnl(nh->nh_grp); return nh_grp->mpath; } return false; } struct nexthop *nexthop_select_path(struct nexthop *nh, int hash); static inline unsigned int nexthop_num_path(const struct nexthop *nh) { unsigned int rc = 1; if (nh->is_group) { struct nh_group *nh_grp; nh_grp = rcu_dereference_rtnl(nh->nh_grp); if (nh_grp->mpath) rc = nh_grp->num_nh; } return rc; } static inline struct nexthop *nexthop_mpath_select(const struct nh_group *nhg, int nhsel) { /* for_nexthops macros in fib_semantics.c grabs a pointer to * the nexthop before checking nhsel */ if (nhsel >= nhg->num_nh) return NULL; return nhg->nh_entries[nhsel].nh; } static inline int nexthop_mpath_fill_node(struct sk_buff *skb, struct nexthop *nh, u8 rt_family) { struct nh_group *nhg = rtnl_dereference(nh->nh_grp); int i; for (i = 0; i < nhg->num_nh; i++) { struct nexthop *nhe = nhg->nh_entries[i].nh; struct nh_info *nhi = rcu_dereference_rtnl(nhe->nh_info); struct fib_nh_common *nhc = &nhi->fib_nhc; int weight = nhg->nh_entries[i].weight; if (fib_add_nexthop(skb, nhc, weight, rt_family, 0) < 0) return -EMSGSIZE; } return 0; } /* called with rcu lock */ static inline bool nexthop_is_blackhole(const struct nexthop *nh) { const struct nh_info *nhi; if (nh->is_group) { struct nh_group *nh_grp; nh_grp = rcu_dereference_rtnl(nh->nh_grp); if (nh_grp->num_nh > 1) return false; nh = nh_grp->nh_entries[0].nh; } nhi = rcu_dereference_rtnl(nh->nh_info); return nhi->reject_nh; } static inline void nexthop_path_fib_result(struct fib_result *res, int hash) { struct nh_info *nhi; struct nexthop *nh; nh = nexthop_select_path(res->fi->nh, hash); nhi = rcu_dereference(nh->nh_info); res->nhc = &nhi->fib_nhc; } /* called with rcu read lock or rtnl held */ static inline struct fib_nh_common *nexthop_fib_nhc(struct nexthop *nh, int nhsel) { struct nh_info *nhi; BUILD_BUG_ON(offsetof(struct fib_nh, nh_common) != 0); BUILD_BUG_ON(offsetof(struct fib6_nh, nh_common) != 0); if (nh->is_group) { struct nh_group *nh_grp; nh_grp = rcu_dereference_rtnl(nh->nh_grp); if (nh_grp->mpath) { nh = nexthop_mpath_select(nh_grp, nhsel); if (!nh) return NULL; } } nhi = rcu_dereference_rtnl(nh->nh_info); return &nhi->fib_nhc; } /* called from fib_table_lookup with rcu_lock */ static inline struct fib_nh_common *nexthop_get_nhc_lookup(const struct nexthop *nh, int fib_flags, const struct flowi4 *flp, int *nhsel) { struct nh_info *nhi; if (nh->is_group) { struct nh_group *nhg = rcu_dereference(nh->nh_grp); int i; for (i = 0; i < nhg->num_nh; i++) { struct nexthop *nhe = nhg->nh_entries[i].nh; nhi = rcu_dereference(nhe->nh_info); if (fib_lookup_good_nhc(&nhi->fib_nhc, fib_flags, flp)) { *nhsel = i; return &nhi->fib_nhc; } } } else { nhi = rcu_dereference(nh->nh_info); if (fib_lookup_good_nhc(&nhi->fib_nhc, fib_flags, flp)) { *nhsel = 0; return &nhi->fib_nhc; } } return NULL; } static inline bool nexthop_uses_dev(const struct nexthop *nh, const struct net_device *dev) { struct nh_info *nhi; if (nh->is_group) { struct nh_group *nhg = rcu_dereference(nh->nh_grp); int i; for (i = 0; i < nhg->num_nh; i++) { struct nexthop *nhe = nhg->nh_entries[i].nh; nhi = rcu_dereference(nhe->nh_info); if (nhc_l3mdev_matches_dev(&nhi->fib_nhc, dev)) return true; } } else { nhi = rcu_dereference(nh->nh_info); if (nhc_l3mdev_matches_dev(&nhi->fib_nhc, dev)) return true; } return false; } static inline unsigned int fib_info_num_path(const struct fib_info *fi) { if (unlikely(fi->nh)) return nexthop_num_path(fi->nh); return fi->fib_nhs; } int fib_check_nexthop(struct nexthop *nh, u8 scope, struct netlink_ext_ack *extack); static inline struct fib_nh_common *fib_info_nhc(struct fib_info *fi, int nhsel) { if (unlikely(fi->nh)) return nexthop_fib_nhc(fi->nh, nhsel); return &fi->fib_nh[nhsel].nh_common; } /* only used when fib_nh is built into fib_info */ static inline struct fib_nh *fib_info_nh(struct fib_info *fi, int nhsel) { WARN_ON(fi->nh); return &fi->fib_nh[nhsel]; } /* * IPv6 variants */ int fib6_check_nexthop(struct nexthop *nh, struct fib6_config *cfg, struct netlink_ext_ack *extack); /* Caller should either hold rcu_read_lock(), or RTNL. */ static inline struct fib6_nh *nexthop_fib6_nh(struct nexthop *nh) { struct nh_info *nhi; if (nh->is_group) { struct nh_group *nh_grp; nh_grp = rcu_dereference_rtnl(nh->nh_grp); nh = nexthop_mpath_select(nh_grp, 0); if (!nh) return NULL; } nhi = rcu_dereference_rtnl(nh->nh_info); if (nhi->family == AF_INET6) return &nhi->fib6_nh; return NULL; } /* Variant of nexthop_fib6_nh(). * Caller should either hold rcu_read_lock_bh(), or RTNL. */ static inline struct fib6_nh *nexthop_fib6_nh_bh(struct nexthop *nh) { struct nh_info *nhi; if (nh->is_group) { struct nh_group *nh_grp; nh_grp = rcu_dereference_bh_rtnl(nh->nh_grp); nh = nexthop_mpath_select(nh_grp, 0); if (!nh) return NULL; } nhi = rcu_dereference_bh_rtnl(nh->nh_info); if (nhi->family == AF_INET6) return &nhi->fib6_nh; return NULL; } static inline struct net_device *fib6_info_nh_dev(struct fib6_info *f6i) { struct fib6_nh *fib6_nh; fib6_nh = f6i->nh ? nexthop_fib6_nh(f6i->nh) : f6i->fib6_nh; return fib6_nh->fib_nh_dev; } static inline void nexthop_path_fib6_result(struct fib6_result *res, int hash) { struct nexthop *nh = res->f6i->nh; struct nh_info *nhi; nh = nexthop_select_path(nh, hash); nhi = rcu_dereference_rtnl(nh->nh_info); if (nhi->reject_nh) { res->fib6_type = RTN_BLACKHOLE; res->fib6_flags |= RTF_REJECT; res->nh = nexthop_fib6_nh(nh); } else { res->nh = &nhi->fib6_nh; } } int nexthop_for_each_fib6_nh(struct nexthop *nh, int (*cb)(struct fib6_nh *nh, void *arg), void *arg); static inline int nexthop_get_family(struct nexthop *nh) { struct nh_info *nhi = rcu_dereference_rtnl(nh->nh_info); return nhi->family; } static inline struct fib_nh_common *nexthop_fdb_nhc(struct nexthop *nh) { struct nh_info *nhi = rcu_dereference_rtnl(nh->nh_info); return &nhi->fib_nhc; } static inline struct fib_nh_common *nexthop_path_fdb_result(struct nexthop *nh, int hash) { struct nh_info *nhi; struct nexthop *nhp; nhp = nexthop_select_path(nh, hash); if (unlikely(!nhp)) return NULL; nhi = rcu_dereference(nhp->nh_info); return &nhi->fib_nhc; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Symmetric key ciphers. * * Copyright (c) 2007 Herbert Xu <herbert@gondor.apana.org.au> */ #ifndef _CRYPTO_INTERNAL_SKCIPHER_H #define _CRYPTO_INTERNAL_SKCIPHER_H #include <crypto/algapi.h> #include <crypto/skcipher.h> #include <linux/list.h> #include <linux/types.h> struct aead_request; struct rtattr; struct skcipher_instance { void (*free)(struct skcipher_instance *inst); union { struct { char head[offsetof(struct skcipher_alg, base)]; struct crypto_instance base; } s; struct skcipher_alg alg; }; }; struct crypto_skcipher_spawn { struct crypto_spawn base; }; struct skcipher_walk { union { struct { struct page *page; unsigned long offset; } phys; struct { u8 *page; void *addr; } virt; } src, dst; struct scatter_walk in; unsigned int nbytes; struct scatter_walk out; unsigned int total; struct list_head buffers; u8 *page; u8 *buffer; u8 *oiv; void *iv; unsigned int ivsize; int flags; unsigned int blocksize; unsigned int stride; unsigned int alignmask; }; static inline struct crypto_instance *skcipher_crypto_instance( struct skcipher_instance *inst) { return &inst->s.base; } static inline struct skcipher_instance *skcipher_alg_instance( struct crypto_skcipher *skcipher) { return container_of(crypto_skcipher_alg(skcipher), struct skcipher_instance, alg); } static inline void *skcipher_instance_ctx(struct skcipher_instance *inst) { return crypto_instance_ctx(skcipher_crypto_instance(inst)); } static inline void skcipher_request_complete(struct skcipher_request *req, int err) { req->base.complete(&req->base, err); } int crypto_grab_skcipher(struct crypto_skcipher_spawn *spawn, struct crypto_instance *inst, const char *name, u32 type, u32 mask); static inline void crypto_drop_skcipher(struct crypto_skcipher_spawn *spawn) { crypto_drop_spawn(&spawn->base); } static inline struct skcipher_alg *crypto_skcipher_spawn_alg( struct crypto_skcipher_spawn *spawn) { return container_of(spawn->base.alg, struct skcipher_alg, base); } static inline struct skcipher_alg *crypto_spawn_skcipher_alg( struct crypto_skcipher_spawn *spawn) { return crypto_skcipher_spawn_alg(spawn); } static inline struct crypto_skcipher *crypto_spawn_skcipher( struct crypto_skcipher_spawn *spawn) { return crypto_spawn_tfm2(&spawn->base); } static inline void crypto_skcipher_set_reqsize( struct crypto_skcipher *skcipher, unsigned int reqsize) { skcipher->reqsize = reqsize; } int crypto_register_skcipher(struct skcipher_alg *alg); void crypto_unregister_skcipher(struct skcipher_alg *alg); int crypto_register_skciphers(struct skcipher_alg *algs, int count); void crypto_unregister_skciphers(struct skcipher_alg *algs, int count); int skcipher_register_instance(struct crypto_template *tmpl, struct skcipher_instance *inst); int skcipher_walk_done(struct skcipher_walk *walk, int err); int skcipher_walk_virt(struct skcipher_walk *walk, struct skcipher_request *req, bool atomic); void skcipher_walk_atomise(struct skcipher_walk *walk); int skcipher_walk_async(struct skcipher_walk *walk, struct skcipher_request *req); int skcipher_walk_aead_encrypt(struct skcipher_walk *walk, struct aead_request *req, bool atomic); int skcipher_walk_aead_decrypt(struct skcipher_walk *walk, struct aead_request *req, bool atomic); void skcipher_walk_complete(struct skcipher_walk *walk, int err); static inline void skcipher_walk_abort(struct skcipher_walk *walk) { skcipher_walk_done(walk, -ECANCELED); } static inline void *crypto_skcipher_ctx(struct crypto_skcipher *tfm) { return crypto_tfm_ctx(&tfm->base); } static inline void *skcipher_request_ctx(struct skcipher_request *req) { return req->__ctx; } static inline u32 skcipher_request_flags(struct skcipher_request *req) { return req->base.flags; } static inline unsigned int crypto_skcipher_alg_min_keysize( struct skcipher_alg *alg) { return alg->min_keysize; } static inline unsigned int crypto_skcipher_alg_max_keysize( struct skcipher_alg *alg) { return alg->max_keysize; } static inline unsigned int crypto_skcipher_alg_walksize( struct skcipher_alg *alg) { return alg->walksize; } /** * crypto_skcipher_walksize() - obtain walk size * @tfm: cipher handle * * In some cases, algorithms can only perform optimally when operating on * multiple blocks in parallel. This is reflected by the walksize, which * must be a multiple of the chunksize (or equal if the concern does not * apply) * * Return: walk size in bytes */ static inline unsigned int crypto_skcipher_walksize( struct crypto_skcipher *tfm) { return crypto_skcipher_alg_walksize(crypto_skcipher_alg(tfm)); } /* Helpers for simple block cipher modes of operation */ struct skcipher_ctx_simple { struct crypto_cipher *cipher; /* underlying block cipher */ }; static inline struct crypto_cipher * skcipher_cipher_simple(struct crypto_skcipher *tfm) { struct skcipher_ctx_simple *ctx = crypto_skcipher_ctx(tfm); return ctx->cipher; } struct skcipher_instance *skcipher_alloc_instance_simple( struct crypto_template *tmpl, struct rtattr **tb); static inline struct crypto_alg *skcipher_ialg_simple( struct skcipher_instance *inst) { struct crypto_cipher_spawn *spawn = skcipher_instance_ctx(inst); return crypto_spawn_cipher_alg(spawn); } #endif /* _CRYPTO_INTERNAL_SKCIPHER_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_MATH64_H #define _LINUX_MATH64_H #include <linux/types.h> #include <vdso/math64.h> #include <asm/div64.h> #if BITS_PER_LONG == 64 #define div64_long(x, y) div64_s64((x), (y)) #define div64_ul(x, y) div64_u64((x), (y)) /** * div_u64_rem - unsigned 64bit divide with 32bit divisor with remainder * @dividend: unsigned 64bit dividend * @divisor: unsigned 32bit divisor * @remainder: pointer to unsigned 32bit remainder * * Return: sets ``*remainder``, then returns dividend / divisor * * This is commonly provided by 32bit archs to provide an optimized 64bit * divide. */ static inline u64 div_u64_rem(u64 dividend, u32 divisor, u32 *remainder) { *remainder = dividend % divisor; return dividend / divisor; } /* * div_s64_rem - signed 64bit divide with 32bit divisor with remainder * @dividend: signed 64bit dividend * @divisor: signed 32bit divisor * @remainder: pointer to signed 32bit remainder * * Return: sets ``*remainder``, then returns dividend / divisor */ static inline s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder) { *remainder = dividend % divisor; return dividend / divisor; } /* * div64_u64_rem - unsigned 64bit divide with 64bit divisor and remainder * @dividend: unsigned 64bit dividend * @divisor: unsigned 64bit divisor * @remainder: pointer to unsigned 64bit remainder * * Return: sets ``*remainder``, then returns dividend / divisor */ static inline u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder) { *remainder = dividend % divisor; return dividend / divisor; } /* * div64_u64 - unsigned 64bit divide with 64bit divisor * @dividend: unsigned 64bit dividend * @divisor: unsigned 64bit divisor * * Return: dividend / divisor */ static inline u64 div64_u64(u64 dividend, u64 divisor) { return dividend / divisor; } /* * div64_s64 - signed 64bit divide with 64bit divisor * @dividend: signed 64bit dividend * @divisor: signed 64bit divisor * * Return: dividend / divisor */ static inline s64 div64_s64(s64 dividend, s64 divisor) { return dividend / divisor; } #elif BITS_PER_LONG == 32 #define div64_long(x, y) div_s64((x), (y)) #define div64_ul(x, y) div_u64((x), (y)) #ifndef div_u64_rem static inline u64 div_u64_rem(u64 dividend, u32 divisor, u32 *remainder) { *remainder = do_div(dividend, divisor); return dividend; } #endif #ifndef div_s64_rem extern s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder); #endif #ifndef div64_u64_rem extern u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder); #endif #ifndef div64_u64 extern u64 div64_u64(u64 dividend, u64 divisor); #endif #ifndef div64_s64 extern s64 div64_s64(s64 dividend, s64 divisor); #endif #endif /* BITS_PER_LONG */ /** * div_u64 - unsigned 64bit divide with 32bit divisor * @dividend: unsigned 64bit dividend * @divisor: unsigned 32bit divisor * * This is the most common 64bit divide and should be used if possible, * as many 32bit archs can optimize this variant better than a full 64bit * divide. */ #ifndef div_u64 static inline u64 div_u64(u64 dividend, u32 divisor) { u32 remainder; return div_u64_rem(dividend, divisor, &remainder); } #endif /** * div_s64 - signed 64bit divide with 32bit divisor * @dividend: signed 64bit dividend * @divisor: signed 32bit divisor */ #ifndef div_s64 static inline s64 div_s64(s64 dividend, s32 divisor) { s32 remainder; return div_s64_rem(dividend, divisor, &remainder); } #endif u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder); #ifndef mul_u32_u32 /* * Many a GCC version messes this up and generates a 64x64 mult :-( */ static inline u64 mul_u32_u32(u32 a, u32 b) { return (u64)a * b; } #endif #if defined(CONFIG_ARCH_SUPPORTS_INT128) && defined(__SIZEOF_INT128__) #ifndef mul_u64_u32_shr static inline u64 mul_u64_u32_shr(u64 a, u32 mul, unsigned int shift) { return (u64)(((unsigned __int128)a * mul) >> shift); } #endif /* mul_u64_u32_shr */ #ifndef mul_u64_u64_shr static inline u64 mul_u64_u64_shr(u64 a, u64 mul, unsigned int shift) { return (u64)(((unsigned __int128)a * mul) >> shift); } #endif /* mul_u64_u64_shr */ #else #ifndef mul_u64_u32_shr static inline u64 mul_u64_u32_shr(u64 a, u32 mul, unsigned int shift) { u32 ah, al; u64 ret; al = a; ah = a >> 32; ret = mul_u32_u32(al, mul) >> shift; if (ah) ret += mul_u32_u32(ah, mul) << (32 - shift); return ret; } #endif /* mul_u64_u32_shr */ #ifndef mul_u64_u64_shr static inline u64 mul_u64_u64_shr(u64 a, u64 b, unsigned int shift) { union { u64 ll; struct { #ifdef __BIG_ENDIAN u32 high, low; #else u32 low, high; #endif } l; } rl, rm, rn, rh, a0, b0; u64 c; a0.ll = a; b0.ll = b; rl.ll = mul_u32_u32(a0.l.low, b0.l.low); rm.ll = mul_u32_u32(a0.l.low, b0.l.high); rn.ll = mul_u32_u32(a0.l.high, b0.l.low); rh.ll = mul_u32_u32(a0.l.high, b0.l.high); /* * Each of these lines computes a 64-bit intermediate result into "c", * starting at bits 32-95. The low 32-bits go into the result of the * multiplication, the high 32-bits are carried into the next step. */ rl.l.high = c = (u64)rl.l.high + rm.l.low + rn.l.low; rh.l.low = c = (c >> 32) + rm.l.high + rn.l.high + rh.l.low; rh.l.high = (c >> 32) + rh.l.high; /* * The 128-bit result of the multiplication is in rl.ll and rh.ll, * shift it right and throw away the high part of the result. */ if (shift == 0) return rl.ll; if (shift < 64) return (rl.ll >> shift) | (rh.ll << (64 - shift)); return rh.ll >> (shift & 63); } #endif /* mul_u64_u64_shr */ #endif #ifndef mul_u64_u32_div static inline u64 mul_u64_u32_div(u64 a, u32 mul, u32 divisor) { union { u64 ll; struct { #ifdef __BIG_ENDIAN u32 high, low; #else u32 low, high; #endif } l; } u, rl, rh; u.ll = a; rl.ll = mul_u32_u32(u.l.low, mul); rh.ll = mul_u32_u32(u.l.high, mul) + rl.l.high; /* Bits 32-63 of the result will be in rh.l.low. */ rl.l.high = do_div(rh.ll, divisor); /* Bits 0-31 of the result will be in rl.l.low. */ do_div(rl.ll, divisor); rl.l.high = rh.l.low; return rl.ll; } #endif /* mul_u64_u32_div */ u64 mul_u64_u64_div_u64(u64 a, u64 mul, u64 div); #define DIV64_U64_ROUND_UP(ll, d) \ ({ u64 _tmp = (d); div64_u64((ll) + _tmp - 1, _tmp); }) /** * DIV64_U64_ROUND_CLOSEST - unsigned 64bit divide with 64bit divisor rounded to nearest integer * @dividend: unsigned 64bit dividend * @divisor: unsigned 64bit divisor * * Divide unsigned 64bit dividend by unsigned 64bit divisor * and round to closest integer. * * Return: dividend / divisor rounded to nearest integer */ #define DIV64_U64_ROUND_CLOSEST(dividend, divisor) \ ({ u64 _tmp = (divisor); div64_u64((dividend) + _tmp / 2, _tmp); }) /* * DIV_S64_ROUND_CLOSEST - signed 64bit divide with 32bit divisor rounded to nearest integer * @dividend: signed 64bit dividend * @divisor: signed 32bit divisor * * Divide signed 64bit dividend by signed 32bit divisor * and round to closest integer. * * Return: dividend / divisor rounded to nearest integer */ #define DIV_S64_ROUND_CLOSEST(dividend, divisor)( \ { \ s64 __x = (dividend); \ s32 __d = (divisor); \ ((__x > 0) == (__d > 0)) ? \ div_s64((__x + (__d / 2)), __d) : \ div_s64((__x - (__d / 2)), __d); \ } \ ) #endif /* _LINUX_MATH64_H */
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_PERCPU_COUNTER_H #define _LINUX_PERCPU_COUNTER_H /* * A simple "approximate counter" for use in ext2 and ext3 superblocks. * * WARNING: these things are HUGE. 4 kbytes per counter on 32-way P4. */ #include <linux/spinlock.h> #include <linux/smp.h> #include <linux/list.h> #include <linux/threads.h> #include <linux/percpu.h> #include <linux/types.h> #include <linux/gfp.h> #ifdef CONFIG_SMP struct percpu_counter { raw_spinlock_t lock; s64 count; #ifdef CONFIG_HOTPLUG_CPU struct list_head list; /* All percpu_counters are on a list */ #endif s32 __percpu *counters; }; extern int percpu_counter_batch; int __percpu_counter_init(struct percpu_counter *fbc, s64 amount, gfp_t gfp, struct lock_class_key *key); #define percpu_counter_init(fbc, value, gfp) \ ({ \ static struct lock_class_key __key; \ \ __percpu_counter_init(fbc, value, gfp, &__key); \ }) void percpu_counter_destroy(struct percpu_counter *fbc); void percpu_counter_set(struct percpu_counter *fbc, s64 amount); void percpu_counter_add_batch(struct percpu_counter *fbc, s64 amount, s32 batch); s64 __percpu_counter_sum(struct percpu_counter *fbc); int __percpu_counter_compare(struct percpu_counter *fbc, s64 rhs, s32 batch); void percpu_counter_sync(struct percpu_counter *fbc); static inline int percpu_counter_compare(struct percpu_counter *fbc, s64 rhs) { return __percpu_counter_compare(fbc, rhs, percpu_counter_batch); } static inline void percpu_counter_add(struct percpu_counter *fbc, s64 amount) { percpu_counter_add_batch(fbc, amount, percpu_counter_batch); } static inline s64 percpu_counter_sum_positive(struct percpu_counter *fbc) { s64 ret = __percpu_counter_sum(fbc); return ret < 0 ? 0 : ret; } static inline s64 percpu_counter_sum(struct percpu_counter *fbc) { return __percpu_counter_sum(fbc); } static inline s64 percpu_counter_read(struct percpu_counter *fbc) { return fbc->count; } /* * It is possible for the percpu_counter_read() to return a small negative * number for some counter which should never be negative. * */ static inline s64 percpu_counter_read_positive(struct percpu_counter *fbc) { /* Prevent reloads of fbc->count */ s64 ret = READ_ONCE(fbc->count); if (ret >= 0) return ret; return 0; } static inline bool percpu_counter_initialized(struct percpu_counter *fbc) { return (fbc->counters != NULL); } #else /* !CONFIG_SMP */ struct percpu_counter { s64 count; }; static inline int percpu_counter_init(struct percpu_counter *fbc, s64 amount, gfp_t gfp) { fbc->count = amount; return 0; } static inline void percpu_counter_destroy(struct percpu_counter *fbc) { } static inline void percpu_counter_set(struct percpu_counter *fbc, s64 amount) { fbc->count = amount; } static inline int percpu_counter_compare(struct percpu_counter *fbc, s64 rhs) { if (fbc->count > rhs) return 1; else if (fbc->count < rhs) return -1; else return 0; } static inline int __percpu_counter_compare(struct percpu_counter *fbc, s64 rhs, s32 batch) { return percpu_counter_compare(fbc, rhs); } static inline void percpu_counter_add(struct percpu_counter *fbc, s64 amount) { preempt_disable(); fbc->count += amount; preempt_enable(); } static inline void percpu_counter_add_batch(struct percpu_counter *fbc, s64 amount, s32 batch) { percpu_counter_add(fbc, amount); } static inline s64 percpu_counter_read(struct percpu_counter *fbc) { return fbc->count; } /* * percpu_counter is intended to track positive numbers. In the UP case the * number should never be negative. */ static inline s64 percpu_counter_read_positive(struct percpu_counter *fbc) { return fbc->count; } static inline s64 percpu_counter_sum_positive(struct percpu_counter *fbc) { return percpu_counter_read_positive(fbc); } static inline s64 percpu_counter_sum(struct percpu_counter *fbc) { return percpu_counter_read(fbc); } static inline bool percpu_counter_initialized(struct percpu_counter *fbc) { return true; } static inline void percpu_counter_sync(struct percpu_counter *fbc) { } #endif /* CONFIG_SMP */ static inline void percpu_counter_inc(struct percpu_counter *fbc) { percpu_counter_add(fbc, 1); } static inline void percpu_counter_dec(struct percpu_counter *fbc) { percpu_counter_add(fbc, -1); } static inline void percpu_counter_sub(struct percpu_counter *fbc, s64 amount) { percpu_counter_add(fbc, -amount); } #endif /* _LINUX_PERCPU_COUNTER_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 /* SPDX-License-Identifier: GPL-2.0 */ /* * The proc filesystem constants/structures */ #ifndef _LINUX_PROC_FS_H #define _LINUX_PROC_FS_H #include <linux/compiler.h> #include <linux/types.h> #include <linux/fs.h> struct proc_dir_entry; struct seq_file; struct seq_operations; enum { /* * All /proc entries using this ->proc_ops instance are never removed. * * If in doubt, ignore this flag. */ #ifdef MODULE PROC_ENTRY_PERMANENT = 0U, #else PROC_ENTRY_PERMANENT = 1U << 0, #endif }; struct proc_ops { unsigned int proc_flags; int (*proc_open)(struct inode *, struct file *); ssize_t (*proc_read)(struct file *, char __user *, size_t, loff_t *); ssize_t (*proc_read_iter)(struct kiocb *, struct iov_iter *); ssize_t (*proc_write)(struct file *, const char __user *, size_t, loff_t *); loff_t (*proc_lseek)(struct file *, loff_t, int); int (*proc_release)(struct inode *, struct file *); __poll_t (*proc_poll)(struct file *, struct poll_table_struct *); long (*proc_ioctl)(struct file *, unsigned int, unsigned long); #ifdef CONFIG_COMPAT long (*proc_compat_ioctl)(struct file *, unsigned int, unsigned long); #endif int (*proc_mmap)(struct file *, struct vm_area_struct *); unsigned long (*proc_get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); } __randomize_layout; /* definitions for hide_pid field */ enum proc_hidepid { HIDEPID_OFF = 0, HIDEPID_NO_ACCESS = 1, HIDEPID_INVISIBLE = 2, HIDEPID_NOT_PTRACEABLE = 4, /* Limit pids to only ptraceable pids */ }; /* definitions for proc mount option pidonly */ enum proc_pidonly { PROC_PIDONLY_OFF = 0, PROC_PIDONLY_ON = 1, }; struct proc_fs_info { struct pid_namespace *pid_ns; struct dentry *proc_self; /* For /proc/self */ struct dentry *proc_thread_self; /* For /proc/thread-self */ kgid_t pid_gid; enum proc_hidepid hide_pid; enum proc_pidonly pidonly; }; static inline struct proc_fs_info *proc_sb_info(struct super_block *sb) { return sb->s_fs_info; } #ifdef CONFIG_PROC_FS typedef int (*proc_write_t)(struct file *, char *, size_t); extern void proc_root_init(void); extern void proc_flush_pid(struct pid *); extern struct proc_dir_entry *proc_symlink(const char *, struct proc_dir_entry *, const char *); struct proc_dir_entry *_proc_mkdir(const char *, umode_t, struct proc_dir_entry *, void *, bool); extern struct proc_dir_entry *proc_mkdir(const char *, struct proc_dir_entry *); extern struct proc_dir_entry *proc_mkdir_data(const char *, umode_t, struct proc_dir_entry *, void *); extern struct proc_dir_entry *proc_mkdir_mode(const char *, umode_t, struct proc_dir_entry *); struct proc_dir_entry *proc_create_mount_point(const char *name); struct proc_dir_entry *proc_create_seq_private(const char *name, umode_t mode, struct proc_dir_entry *parent, const struct seq_operations *ops, unsigned int state_size, void *data); #define proc_create_seq_data(name, mode, parent, ops, data) \ proc_create_seq_private(name, mode, parent, ops, 0, data) #define proc_create_seq(name, mode, parent, ops) \ proc_create_seq_private(name, mode, parent, ops, 0, NULL) struct proc_dir_entry *proc_create_single_data(const char *name, umode_t mode, struct proc_dir_entry *parent, int (*show)(struct seq_file *, void *), void *data); #define proc_create_single(name, mode, parent, show) \ proc_create_single_data(name, mode, parent, show, NULL) extern struct proc_dir_entry *proc_create_data(const char *, umode_t, struct proc_dir_entry *, const struct proc_ops *, void *); struct proc_dir_entry *proc_create(const char *name, umode_t mode, struct proc_dir_entry *parent, const struct proc_ops *proc_ops); extern void proc_set_size(struct proc_dir_entry *, loff_t); extern void proc_set_user(struct proc_dir_entry *, kuid_t, kgid_t); extern void *PDE_DATA(const struct inode *); extern void *proc_get_parent_data(const struct inode *); extern void proc_remove(struct proc_dir_entry *); extern void remove_proc_entry(const char *, struct proc_dir_entry *); extern int remove_proc_subtree(const char *, struct proc_dir_entry *); struct proc_dir_entry *proc_create_net_data(const char *name, umode_t mode, struct proc_dir_entry *parent, const struct seq_operations *ops, unsigned int state_size, void *data); #define proc_create_net(name, mode, parent, ops, state_size) \ proc_create_net_data(name, mode, parent, ops, state_size, NULL) struct proc_dir_entry *proc_create_net_single(const char *name, umode_t mode, struct proc_dir_entry *parent, int (*show)(struct seq_file *, void *), void *data); struct proc_dir_entry *proc_create_net_data_write(const char *name, umode_t mode, struct proc_dir_entry *parent, const struct seq_operations *ops, proc_write_t write, unsigned int state_size, void *data); struct proc_dir_entry *proc_create_net_single_write(const char *name, umode_t mode, struct proc_dir_entry *parent, int (*show)(struct seq_file *, void *), proc_write_t write, void *data); extern struct pid *tgid_pidfd_to_pid(const struct file *file); struct bpf_iter_aux_info; extern int bpf_iter_init_seq_net(void *priv_data, struct bpf_iter_aux_info *aux); extern void bpf_iter_fini_seq_net(void *priv_data); #ifdef CONFIG_PROC_PID_ARCH_STATUS /* * The architecture which selects CONFIG_PROC_PID_ARCH_STATUS must * provide proc_pid_arch_status() definition. */ int proc_pid_arch_status(struct seq_file *m, struct pid_namespace *ns, struct pid *pid, struct task_struct *task); #endif /* CONFIG_PROC_PID_ARCH_STATUS */ #else /* CONFIG_PROC_FS */ static inline void proc_root_init(void) { } static inline void proc_flush_pid(struct pid *pid) { } static inline struct proc_dir_entry *proc_symlink(const char *name, struct proc_dir_entry *parent,const char *dest) { return NULL;} static inline struct proc_dir_entry *proc_mkdir(const char *name, struct proc_dir_entry *parent) {return NULL;} static inline struct proc_dir_entry *proc_create_mount_point(const char *name) { return NULL; } static inline struct proc_dir_entry *_proc_mkdir(const char *name, umode_t mode, struct proc_dir_entry *parent, void *data, bool force_lookup) { return NULL; } static inline struct proc_dir_entry *proc_mkdir_data(const char *name, umode_t mode, struct proc_dir_entry *parent, void *data) { return NULL; } static inline struct proc_dir_entry *proc_mkdir_mode(const char *name, umode_t mode, struct proc_dir_entry *parent) { return NULL; } #define proc_create_seq_private(name, mode, parent, ops, size, data) ({NULL;}) #define proc_create_seq_data(name, mode, parent, ops, data) ({NULL;}) #define proc_create_seq(name, mode, parent, ops) ({NULL;}) #define proc_create_single(name, mode, parent, show) ({NULL;}) #define proc_create_single_data(name, mode, parent, show, data) ({NULL;}) #define proc_create(name, mode, parent, proc_ops) ({NULL;}) #define proc_create_data(name, mode, parent, proc_ops, data) ({NULL;}) static inline void proc_set_size(struct proc_dir_entry *de, loff_t size) {} static inline void proc_set_user(struct proc_dir_entry *de, kuid_t uid, kgid_t gid) {} static inline void *PDE_DATA(const struct inode *inode) {BUG(); return NULL;} static inline void *proc_get_parent_data(const struct inode *inode) { BUG(); return NULL; } static inline void proc_remove(struct proc_dir_entry *de) {} #define remove_proc_entry(name, parent) do {} while (0) static inline int remove_proc_subtree(const char *name, struct proc_dir_entry *parent) { return 0; } #define proc_create_net_data(name, mode, parent, ops, state_size, data) ({NULL;}) #define proc_create_net(name, mode, parent, state_size, ops) ({NULL;}) #define proc_create_net_single(name, mode, parent, show, data) ({NULL;}) static inline struct pid *tgid_pidfd_to_pid(const struct file *file) { return ERR_PTR(-EBADF); } #endif /* CONFIG_PROC_FS */ struct net; static inline struct proc_dir_entry *proc_net_mkdir( struct net *net, const char *name, struct proc_dir_entry *parent) { return _proc_mkdir(name, 0, parent, net, true); } struct ns_common; int open_related_ns(struct ns_common *ns, struct ns_common *(*get_ns)(struct ns_common *ns)); /* get the associated pid namespace for a file in procfs */ static inline struct pid_namespace *proc_pid_ns(struct super_block *sb) { return proc_sb_info(sb)->pid_ns; } bool proc_ns_file(const struct file *file); #endif /* _LINUX_PROC_FS_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __NET_PKT_CLS_H #define __NET_PKT_CLS_H #include <linux/pkt_cls.h> #include <linux/workqueue.h> #include <net/sch_generic.h> #include <net/act_api.h> #include <net/net_namespace.h> /* TC action not accessible from user space */ #define TC_ACT_CONSUMED (TC_ACT_VALUE_MAX + 1) /* Basic packet classifier frontend definitions. */ struct tcf_walker { int stop; int skip; int count; bool nonempty; unsigned long cookie; int (*fn)(struct tcf_proto *, void *node, struct tcf_walker *); }; int register_tcf_proto_ops(struct tcf_proto_ops *ops); int unregister_tcf_proto_ops(struct tcf_proto_ops *ops); struct tcf_block_ext_info { enum flow_block_binder_type binder_type; tcf_chain_head_change_t *chain_head_change; void *chain_head_change_priv; u32 block_index; }; struct tcf_qevent { struct tcf_block *block; struct tcf_block_ext_info info; struct tcf_proto __rcu *filter_chain; }; struct tcf_block_cb; bool tcf_queue_work(struct rcu_work *rwork, work_func_t func); #ifdef CONFIG_NET_CLS struct tcf_chain *tcf_chain_get_by_act(struct tcf_block *block, u32 chain_index); void tcf_chain_put_by_act(struct tcf_chain *chain); struct tcf_chain *tcf_get_next_chain(struct tcf_block *block, struct tcf_chain *chain); struct tcf_proto *tcf_get_next_proto(struct tcf_chain *chain, struct tcf_proto *tp, bool rtnl_held); void tcf_block_netif_keep_dst(struct tcf_block *block); int tcf_block_get(struct tcf_block **p_block, struct tcf_proto __rcu **p_filter_chain, struct Qdisc *q, struct netlink_ext_ack *extack); int tcf_block_get_ext(struct tcf_block **p_block, struct Qdisc *q, struct tcf_block_ext_info *ei, struct netlink_ext_ack *extack); void tcf_block_put(struct tcf_block *block); void tcf_block_put_ext(struct tcf_block *block, struct Qdisc *q, struct tcf_block_ext_info *ei); static inline bool tcf_block_shared(struct tcf_block *block) { return block->index; } static inline bool tcf_block_non_null_shared(struct tcf_block *block) { return block && block->index; } static inline struct Qdisc *tcf_block_q(struct tcf_block *block) { WARN_ON(tcf_block_shared(block)); return block->q; } int tcf_classify(struct sk_buff *skb, const struct tcf_proto *tp, struct tcf_result *res, bool compat_mode); int tcf_classify_ingress(struct sk_buff *skb, const struct tcf_block *ingress_block, const struct tcf_proto *tp, struct tcf_result *res, bool compat_mode); #else static inline bool tcf_block_shared(struct tcf_block *block) { return false; } static inline bool tcf_block_non_null_shared(struct tcf_block *block) { return false; } static inline int tcf_block_get(struct tcf_block **p_block, struct tcf_proto __rcu **p_filter_chain, struct Qdisc *q, struct netlink_ext_ack *extack) { return 0; } static inline int tcf_block_get_ext(struct tcf_block **p_block, struct Qdisc *q, struct tcf_block_ext_info *ei, struct netlink_ext_ack *extack) { return 0; } static inline void tcf_block_put(struct tcf_block *block) { } static inline void tcf_block_put_ext(struct tcf_block *block, struct Qdisc *q, struct tcf_block_ext_info *ei) { } static inline struct Qdisc *tcf_block_q(struct tcf_block *block) { return NULL; } static inline int tc_setup_cb_block_register(struct tcf_block *block, flow_setup_cb_t *cb, void *cb_priv) { return 0; } static inline void tc_setup_cb_block_unregister(struct tcf_block *block, flow_setup_cb_t *cb, void *cb_priv) { } static inline int tcf_classify(struct sk_buff *skb, const struct tcf_proto *tp, struct tcf_result *res, bool compat_mode) { return TC_ACT_UNSPEC; } static inline int tcf_classify_ingress(struct sk_buff *skb, const struct tcf_block *ingress_block, const struct tcf_proto *tp, struct tcf_result *res, bool compat_mode) { return TC_ACT_UNSPEC; } #endif static inline unsigned long __cls_set_class(unsigned long *clp, unsigned long cl) { return xchg(clp, cl); } static inline void __tcf_bind_filter(struct Qdisc *q, struct tcf_result *r, unsigned long base) { unsigned long cl; cl = q->ops->cl_ops->bind_tcf(q, base, r->classid); cl = __cls_set_class(&r->class, cl); if (cl) q->ops->cl_ops->unbind_tcf(q, cl); } static inline void tcf_bind_filter(struct tcf_proto *tp, struct tcf_result *r, unsigned long base) { struct Qdisc *q = tp->chain->block->q; /* Check q as it is not set for shared blocks. In that case, * setting class is not supported. */ if (!q) return; sch_tree_lock(q); __tcf_bind_filter(q, r, base); sch_tree_unlock(q); } static inline void __tcf_unbind_filter(struct Qdisc *q, struct tcf_result *r) { unsigned long cl; if ((cl = __cls_set_class(&r->class, 0)) != 0) q->ops->cl_ops->unbind_tcf(q, cl); } static inline void tcf_unbind_filter(struct tcf_proto *tp, struct tcf_result *r) { struct Qdisc *q = tp->chain->block->q; if (!q) return; __tcf_unbind_filter(q, r); } struct tcf_exts { #ifdef CONFIG_NET_CLS_ACT __u32 type; /* for backward compat(TCA_OLD_COMPAT) */ int nr_actions; struct tc_action **actions; struct net *net; #endif /* Map to export classifier specific extension TLV types to the * generic extensions API. Unsupported extensions must be set to 0. */ int action; int police; }; static inline int tcf_exts_init(struct tcf_exts *exts, struct net *net, int action, int police) { #ifdef CONFIG_NET_CLS_ACT exts->type = 0; exts->nr_actions = 0; exts->net = net; exts->actions = kcalloc(TCA_ACT_MAX_PRIO, sizeof(struct tc_action *), GFP_KERNEL); if (!exts->actions) return -ENOMEM; #endif exts->action = action; exts->police = police; return 0; } /* Return false if the netns is being destroyed in cleanup_net(). Callers * need to do cleanup synchronously in this case, otherwise may race with * tc_action_net_exit(). Return true for other cases. */ static inline bool tcf_exts_get_net(struct tcf_exts *exts) { #ifdef CONFIG_NET_CLS_ACT exts->net = maybe_get_net(exts->net); return exts->net != NULL; #else return true; #endif } static inline void tcf_exts_put_net(struct tcf_exts *exts) { #ifdef CONFIG_NET_CLS_ACT if (exts->net) put_net(exts->net); #endif } #ifdef CONFIG_NET_CLS_ACT #define tcf_exts_for_each_action(i, a, exts) \ for (i = 0; i < TCA_ACT_MAX_PRIO && ((a) = (exts)->actions[i]); i++) #else #define tcf_exts_for_each_action(i, a, exts) \ for (; 0; (void)(i), (void)(a), (void)(exts)) #endif static inline void tcf_exts_stats_update(const struct tcf_exts *exts, u64 bytes, u64 packets, u64 drops, u64 lastuse, u8 used_hw_stats, bool used_hw_stats_valid) { #ifdef CONFIG_NET_CLS_ACT int i; preempt_disable(); for (i = 0; i < exts->nr_actions; i++) { struct tc_action *a = exts->actions[i]; tcf_action_stats_update(a, bytes, packets, drops, lastuse, true); a->used_hw_stats = used_hw_stats; a->used_hw_stats_valid = used_hw_stats_valid; } preempt_enable(); #endif } /** * tcf_exts_has_actions - check if at least one action is present * @exts: tc filter extensions handle * * Returns true if at least one action is present. */ static inline bool tcf_exts_has_actions(struct tcf_exts *exts) { #ifdef CONFIG_NET_CLS_ACT return exts->nr_actions; #else return false; #endif } /** * tcf_exts_exec - execute tc filter extensions * @skb: socket buffer * @exts: tc filter extensions handle * @res: desired result * * Executes all configured extensions. Returns TC_ACT_OK on a normal execution, * a negative number if the filter must be considered unmatched or * a positive action code (TC_ACT_*) which must be returned to the * underlying layer. */ static inline int tcf_exts_exec(struct sk_buff *skb, struct tcf_exts *exts, struct tcf_result *res) { #ifdef CONFIG_NET_CLS_ACT return tcf_action_exec(skb, exts->actions, exts->nr_actions, res); #endif return TC_ACT_OK; } int tcf_exts_validate(struct net *net, struct tcf_proto *tp, struct nlattr **tb, struct nlattr *rate_tlv, struct tcf_exts *exts, bool ovr, bool rtnl_held, struct netlink_ext_ack *extack); void tcf_exts_destroy(struct tcf_exts *exts); void tcf_exts_change(struct tcf_exts *dst, struct tcf_exts *src); int tcf_exts_dump(struct sk_buff *skb, struct tcf_exts *exts); int tcf_exts_terse_dump(struct sk_buff *skb, struct tcf_exts *exts); int tcf_exts_dump_stats(struct sk_buff *skb, struct tcf_exts *exts); /** * struct tcf_pkt_info - packet information */ struct tcf_pkt_info { unsigned char * ptr; int nexthdr; }; #ifdef CONFIG_NET_EMATCH struct tcf_ematch_ops; /** * struct tcf_ematch - extended match (ematch) * * @matchid: identifier to allow userspace to reidentify a match * @flags: flags specifying attributes and the relation to other matches * @ops: the operations lookup table of the corresponding ematch module * @datalen: length of the ematch specific configuration data * @data: ematch specific data */ struct tcf_ematch { struct tcf_ematch_ops * ops; unsigned long data; unsigned int datalen; u16 matchid; u16 flags; struct net *net; }; static inline int tcf_em_is_container(struct tcf_ematch *em) { return !em->ops; } static inline int tcf_em_is_simple(struct tcf_ematch *em) { return em->flags & TCF_EM_SIMPLE; } static inline int tcf_em_is_inverted(struct tcf_ematch *em) { return em->flags & TCF_EM_INVERT; } static inline int tcf_em_last_match(struct tcf_ematch *em) { return (em->flags & TCF_EM_REL_MASK) == TCF_EM_REL_END; } static inline int tcf_em_early_end(struct tcf_ematch *em, int result) { if (tcf_em_last_match(em)) return 1; if (result == 0 && em->flags & TCF_EM_REL_AND) return 1; if (result != 0 && em->flags & TCF_EM_REL_OR) return 1; return 0; } /** * struct tcf_ematch_tree - ematch tree handle * * @hdr: ematch tree header supplied by userspace * @matches: array of ematches */ struct tcf_ematch_tree { struct tcf_ematch_tree_hdr hdr; struct tcf_ematch * matches; }; /** * struct tcf_ematch_ops - ematch module operations * * @kind: identifier (kind) of this ematch module * @datalen: length of expected configuration data (optional) * @change: called during validation (optional) * @match: called during ematch tree evaluation, must return 1/0 * @destroy: called during destroyage (optional) * @dump: called during dumping process (optional) * @owner: owner, must be set to THIS_MODULE * @link: link to previous/next ematch module (internal use) */ struct tcf_ematch_ops { int kind; int datalen; int (*change)(struct net *net, void *, int, struct tcf_ematch *); int (*match)(struct sk_buff *, struct tcf_ematch *, struct tcf_pkt_info *); void (*destroy)(struct tcf_ematch *); int (*dump)(struct sk_buff *, struct tcf_ematch *); struct module *owner; struct list_head link; }; int tcf_em_register(struct tcf_ematch_ops *); void tcf_em_unregister(struct tcf_ematch_ops *); int tcf_em_tree_validate(struct tcf_proto *, struct nlattr *, struct tcf_ematch_tree *); void tcf_em_tree_destroy(struct tcf_ematch_tree *); int tcf_em_tree_dump(struct sk_buff *, struct tcf_ematch_tree *, int); int __tcf_em_tree_match(struct sk_buff *, struct tcf_ematch_tree *, struct tcf_pkt_info *); /** * tcf_em_tree_match - evaulate an ematch tree * * @skb: socket buffer of the packet in question * @tree: ematch tree to be used for evaluation * @info: packet information examined by classifier * * This function matches @skb against the ematch tree in @tree by going * through all ematches respecting their logic relations returning * as soon as the result is obvious. * * Returns 1 if the ematch tree as-one matches, no ematches are configured * or ematch is not enabled in the kernel, otherwise 0 is returned. */ static inline int tcf_em_tree_match(struct sk_buff *skb, struct tcf_ematch_tree *tree, struct tcf_pkt_info *info) { if (tree->hdr.nmatches) return __tcf_em_tree_match(skb, tree, info); else return 1; } #define MODULE_ALIAS_TCF_EMATCH(kind) MODULE_ALIAS("ematch-kind-" __stringify(kind)) #else /* CONFIG_NET_EMATCH */ struct tcf_ematch_tree { }; #define tcf_em_tree_validate(tp, tb, t) ((void)(t), 0) #define tcf_em_tree_destroy(t) do { (void)(t); } while(0) #define tcf_em_tree_dump(skb, t, tlv) (0) #define tcf_em_tree_match(skb, t, info) ((void)(info), 1) #endif /* CONFIG_NET_EMATCH */ static inline unsigned char * tcf_get_base_ptr(struct sk_buff *skb, int layer) { switch (layer) { case TCF_LAYER_LINK: return skb_mac_header(skb); case TCF_LAYER_NETWORK: return skb_network_header(skb); case TCF_LAYER_TRANSPORT: return skb_transport_header(skb); } return NULL; } static inline int tcf_valid_offset(const struct sk_buff *skb, const unsigned char *ptr, const int len) { return likely((ptr + len) <= skb_tail_pointer(skb) && ptr >= skb->head && (ptr <= (ptr + len))); } static inline int tcf_change_indev(struct net *net, struct nlattr *indev_tlv, struct netlink_ext_ack *extack) { char indev[IFNAMSIZ]; struct net_device *dev; if (nla_strlcpy(indev, indev_tlv, IFNAMSIZ) >= IFNAMSIZ) { NL_SET_ERR_MSG_ATTR(extack, indev_tlv, "Interface name too long"); return -EINVAL; } dev = __dev_get_by_name(net, indev); if (!dev) { NL_SET_ERR_MSG_ATTR(extack, indev_tlv, "Network device not found"); return -ENODEV; } return dev->ifindex; } static inline bool tcf_match_indev(struct sk_buff *skb, int ifindex) { if (!ifindex) return true; if (!skb->skb_iif) return false; return ifindex == skb->skb_iif; } int tc_setup_flow_action(struct flow_action *flow_action, const struct tcf_exts *exts); void tc_cleanup_flow_action(struct flow_action *flow_action); int tc_setup_cb_call(struct tcf_block *block, enum tc_setup_type type, void *type_data, bool err_stop, bool rtnl_held); int tc_setup_cb_add(struct tcf_block *block, struct tcf_proto *tp, enum tc_setup_type type, void *type_data, bool err_stop, u32 *flags, unsigned int *in_hw_count, bool rtnl_held); int tc_setup_cb_replace(struct tcf_block *block, struct tcf_proto *tp, enum tc_setup_type type, void *type_data, bool err_stop, u32 *old_flags, unsigned int *old_in_hw_count, u32 *new_flags, unsigned int *new_in_hw_count, bool rtnl_held); int tc_setup_cb_destroy(struct tcf_block *block, struct tcf_proto *tp, enum tc_setup_type type, void *type_data, bool err_stop, u32 *flags, unsigned int *in_hw_count, bool rtnl_held); int tc_setup_cb_reoffload(struct tcf_block *block, struct tcf_proto *tp, bool add, flow_setup_cb_t *cb, enum tc_setup_type type, void *type_data, void *cb_priv, u32 *flags, unsigned int *in_hw_count); unsigned int tcf_exts_num_actions(struct tcf_exts *exts); #ifdef CONFIG_NET_CLS_ACT int tcf_qevent_init(struct tcf_qevent *qe, struct Qdisc *sch, enum flow_block_binder_type binder_type, struct nlattr *block_index_attr, struct netlink_ext_ack *extack); void tcf_qevent_destroy(struct tcf_qevent *qe, struct Qdisc *sch); int tcf_qevent_validate_change(struct tcf_qevent *qe, struct nlattr *block_index_attr, struct netlink_ext_ack *extack); struct sk_buff *tcf_qevent_handle(struct tcf_qevent *qe, struct Qdisc *sch, struct sk_buff *skb, struct sk_buff **to_free, int *ret); int tcf_qevent_dump(struct sk_buff *skb, int attr_name, struct tcf_qevent *qe); #else static inline int tcf_qevent_init(struct tcf_qevent *qe, struct Qdisc *sch, enum flow_block_binder_type binder_type, struct nlattr *block_index_attr, struct netlink_ext_ack *extack) { return 0; } static inline void tcf_qevent_destroy(struct tcf_qevent *qe, struct Qdisc *sch) { } static inline int tcf_qevent_validate_change(struct tcf_qevent *qe, struct nlattr *block_index_attr, struct netlink_ext_ack *extack) { return 0; } static inline struct sk_buff * tcf_qevent_handle(struct tcf_qevent *qe, struct Qdisc *sch, struct sk_buff *skb, struct sk_buff **to_free, int *ret) { return skb; } static inline int tcf_qevent_dump(struct sk_buff *skb, int attr_name, struct tcf_qevent *qe) { return 0; } #endif struct tc_cls_u32_knode { struct tcf_exts *exts; struct tcf_result *res; struct tc_u32_sel *sel; u32 handle; u32 val; u32 mask; u32 link_handle; u8 fshift; }; struct tc_cls_u32_hnode { u32 handle; u32 prio; unsigned int divisor; }; enum tc_clsu32_command { TC_CLSU32_NEW_KNODE, TC_CLSU32_REPLACE_KNODE, TC_CLSU32_DELETE_KNODE, TC_CLSU32_NEW_HNODE, TC_CLSU32_REPLACE_HNODE, TC_CLSU32_DELETE_HNODE, }; struct tc_cls_u32_offload { struct flow_cls_common_offload common; /* knode values */ enum tc_clsu32_command command; union { struct tc_cls_u32_knode knode; struct tc_cls_u32_hnode hnode; }; }; static inline bool tc_can_offload(const struct net_device *dev) { return dev->features & NETIF_F_HW_TC; } static inline bool tc_can_offload_extack(const struct net_device *dev, struct netlink_ext_ack *extack) { bool can = tc_can_offload(dev); if (!can) NL_SET_ERR_MSG(extack, "TC offload is disabled on net device"); return can; } static inline bool tc_cls_can_offload_and_chain0(const struct net_device *dev, struct flow_cls_common_offload *common) { if (!tc_can_offload_extack(dev, common->extack)) return false; if (common->chain_index) { NL_SET_ERR_MSG(common->extack, "Driver supports only offload of chain 0"); return false; } return true; } static inline bool tc_skip_hw(u32 flags) { return (flags & TCA_CLS_FLAGS_SKIP_HW) ? true : false; } static inline bool tc_skip_sw(u32 flags) { return (flags & TCA_CLS_FLAGS_SKIP_SW) ? true : false; } /* SKIP_HW and SKIP_SW are mutually exclusive flags. */ static inline bool tc_flags_valid(u32 flags) { if (flags & ~(TCA_CLS_FLAGS_SKIP_HW | TCA_CLS_FLAGS_SKIP_SW | TCA_CLS_FLAGS_VERBOSE)) return false; flags &= TCA_CLS_FLAGS_SKIP_HW | TCA_CLS_FLAGS_SKIP_SW; if (!(flags ^ (TCA_CLS_FLAGS_SKIP_HW | TCA_CLS_FLAGS_SKIP_SW))) return false; return true; } static inline bool tc_in_hw(u32 flags) { return (flags & TCA_CLS_FLAGS_IN_HW) ? true : false; } static inline void tc_cls_common_offload_init(struct flow_cls_common_offload *cls_common, const struct tcf_proto *tp, u32 flags, struct netlink_ext_ack *extack) { cls_common->chain_index = tp->chain->index; cls_common->protocol = tp->protocol; cls_common->prio = tp->prio >> 16; if (tc_skip_sw(flags) || flags & TCA_CLS_FLAGS_VERBOSE) cls_common->extack = extack; } #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) static inline struct tc_skb_ext *tc_skb_ext_alloc(struct sk_buff *skb) { struct tc_skb_ext *tc_skb_ext = skb_ext_add(skb, TC_SKB_EXT); if (tc_skb_ext) memset(tc_skb_ext, 0, sizeof(*tc_skb_ext)); return tc_skb_ext; } #endif enum tc_matchall_command { TC_CLSMATCHALL_REPLACE, TC_CLSMATCHALL_DESTROY, TC_CLSMATCHALL_STATS, }; struct tc_cls_matchall_offload { struct flow_cls_common_offload common; enum tc_matchall_command command; struct flow_rule *rule; struct flow_stats stats; unsigned long cookie; }; enum tc_clsbpf_command { TC_CLSBPF_OFFLOAD, TC_CLSBPF_STATS, }; struct tc_cls_bpf_offload { struct flow_cls_common_offload common; enum tc_clsbpf_command command; struct tcf_exts *exts; struct bpf_prog *prog; struct bpf_prog *oldprog; const char *name; bool exts_integrated; }; struct tc_mqprio_qopt_offload { /* struct tc_mqprio_qopt must always be the first element */ struct tc_mqprio_qopt qopt; u16 mode; u16 shaper; u32 flags; u64 min_rate[TC_QOPT_MAX_QUEUE]; u64 max_rate[TC_QOPT_MAX_QUEUE]; }; /* This structure holds cookie structure that is passed from user * to the kernel for actions and classifiers */ struct tc_cookie { u8 *data; u32 len; struct rcu_head rcu; }; struct tc_qopt_offload_stats { struct gnet_stats_basic_packed *bstats; struct gnet_stats_queue *qstats; }; enum tc_mq_command { TC_MQ_CREATE, TC_MQ_DESTROY, TC_MQ_STATS, TC_MQ_GRAFT, }; struct tc_mq_opt_offload_graft_params { unsigned long queue; u32 child_handle; }; struct tc_mq_qopt_offload { enum tc_mq_command command; u32 handle; union { struct tc_qopt_offload_stats stats; struct tc_mq_opt_offload_graft_params graft_params; }; }; enum tc_red_command { TC_RED_REPLACE, TC_RED_DESTROY, TC_RED_STATS, TC_RED_XSTATS, TC_RED_GRAFT, }; struct tc_red_qopt_offload_params { u32 min; u32 max; u32 probability; u32 limit; bool is_ecn; bool is_harddrop; bool is_nodrop; struct gnet_stats_queue *qstats; }; struct tc_red_qopt_offload { enum tc_red_command command; u32 handle; u32 parent; union { struct tc_red_qopt_offload_params set; struct tc_qopt_offload_stats stats; struct red_stats *xstats; u32 child_handle; }; }; enum tc_gred_command { TC_GRED_REPLACE, TC_GRED_DESTROY, TC_GRED_STATS, }; struct tc_gred_vq_qopt_offload_params { bool present; u32 limit; u32 prio; u32 min; u32 max; bool is_ecn; bool is_harddrop; u32 probability; /* Only need backlog, see struct tc_prio_qopt_offload_params */ u32 *backlog; }; struct tc_gred_qopt_offload_params { bool grio_on; bool wred_on; unsigned int dp_cnt; unsigned int dp_def; struct gnet_stats_queue *qstats; struct tc_gred_vq_qopt_offload_params tab[MAX_DPs]; }; struct tc_gred_qopt_offload_stats { struct gnet_stats_basic_packed bstats[MAX_DPs]; struct gnet_stats_queue qstats[MAX_DPs]; struct red_stats *xstats[MAX_DPs]; }; struct tc_gred_qopt_offload { enum tc_gred_command command; u32 handle; u32 parent; union { struct tc_gred_qopt_offload_params set; struct tc_gred_qopt_offload_stats stats; }; }; enum tc_prio_command { TC_PRIO_REPLACE, TC_PRIO_DESTROY, TC_PRIO_STATS, TC_PRIO_GRAFT, }; struct tc_prio_qopt_offload_params { int bands; u8 priomap[TC_PRIO_MAX + 1]; /* At the point of un-offloading the Qdisc, the reported backlog and * qlen need to be reduced by the portion that is in HW. */ struct gnet_stats_queue *qstats; }; struct tc_prio_qopt_offload_graft_params { u8 band; u32 child_handle; }; struct tc_prio_qopt_offload { enum tc_prio_command command; u32 handle; u32 parent; union { struct tc_prio_qopt_offload_params replace_params; struct tc_qopt_offload_stats stats; struct tc_prio_qopt_offload_graft_params graft_params; }; }; enum tc_root_command { TC_ROOT_GRAFT, }; struct tc_root_qopt_offload { enum tc_root_command command; u32 handle; bool ingress; }; enum tc_ets_command { TC_ETS_REPLACE, TC_ETS_DESTROY, TC_ETS_STATS, TC_ETS_GRAFT, }; struct tc_ets_qopt_offload_replace_params { unsigned int bands; u8 priomap[TC_PRIO_MAX + 1]; unsigned int quanta[TCQ_ETS_MAX_BANDS]; /* 0 for strict bands. */ unsigned int weights[TCQ_ETS_MAX_BANDS]; struct gnet_stats_queue *qstats; }; struct tc_ets_qopt_offload_graft_params { u8 band; u32 child_handle; }; struct tc_ets_qopt_offload { enum tc_ets_command command; u32 handle; u32 parent; union { struct tc_ets_qopt_offload_replace_params replace_params; struct tc_qopt_offload_stats stats; struct tc_ets_qopt_offload_graft_params graft_params; }; }; enum tc_tbf_command { TC_TBF_REPLACE, TC_TBF_DESTROY, TC_TBF_STATS, }; struct tc_tbf_qopt_offload_replace_params { struct psched_ratecfg rate; u32 max_size; struct gnet_stats_queue *qstats; }; struct tc_tbf_qopt_offload { enum tc_tbf_command command; u32 handle; u32 parent; union { struct tc_tbf_qopt_offload_replace_params replace_params; struct tc_qopt_offload_stats stats; }; }; enum tc_fifo_command { TC_FIFO_REPLACE, TC_FIFO_DESTROY, TC_FIFO_STATS, }; struct tc_fifo_qopt_offload { enum tc_fifo_command command; u32 handle; u32 parent; union { struct tc_qopt_offload_stats stats; }; }; #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 #undef TRACE_SYSTEM #define TRACE_SYSTEM neigh #if !defined(_TRACE_NEIGH_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_NEIGH_H #include <linux/skbuff.h> #include <linux/netdevice.h> #include <linux/tracepoint.h> #include <net/neighbour.h> #define neigh_state_str(state) \ __print_symbolic(state, \ { NUD_INCOMPLETE, "incomplete" }, \ { NUD_REACHABLE, "reachable" }, \ { NUD_STALE, "stale" }, \ { NUD_DELAY, "delay" }, \ { NUD_PROBE, "probe" }, \ { NUD_FAILED, "failed" }, \ { NUD_NOARP, "noarp" }, \ { NUD_PERMANENT, "permanent"}) TRACE_EVENT(neigh_create, TP_PROTO(struct neigh_table *tbl, struct net_device *dev, const void *pkey, const struct neighbour *n, bool exempt_from_gc), TP_ARGS(tbl, dev, pkey, n, exempt_from_gc), TP_STRUCT__entry( __field(u32, family) __dynamic_array(char, dev, IFNAMSIZ ) __field(int, entries) __field(u8, created) __field(u8, gc_exempt) __array(u8, primary_key4, 4) __array(u8, primary_key6, 16) ), TP_fast_assign( struct in6_addr *pin6; __be32 *p32; __entry->family = tbl->family; __assign_str(dev, (dev ? dev->name : "NULL")); __entry->entries = atomic_read(&tbl->gc_entries); __entry->created = n != NULL; __entry->gc_exempt = exempt_from_gc; pin6 = (struct in6_addr *)__entry->primary_key6; p32 = (__be32 *)__entry->primary_key4; if (tbl->family == AF_INET) *p32 = *(__be32 *)pkey; else *p32 = 0; #if IS_ENABLED(CONFIG_IPV6) if (tbl->family == AF_INET6) { pin6 = (struct in6_addr *)__entry->primary_key6; *pin6 = *(struct in6_addr *)pkey; } #endif ), TP_printk("family %d dev %s entries %d primary_key4 %pI4 primary_key6 %pI6c created %d gc_exempt %d", __entry->family, __get_str(dev), __entry->entries, __entry->primary_key4, __entry->primary_key6, __entry->created, __entry->gc_exempt) ); TRACE_EVENT(neigh_update, TP_PROTO(struct neighbour *n, const u8 *lladdr, u8 new, u32 flags, u32 nlmsg_pid), TP_ARGS(n, lladdr, new, flags, nlmsg_pid), TP_STRUCT__entry( __field(u32, family) __string(dev, (n->dev ? n->dev->name : "NULL")) __array(u8, lladdr, MAX_ADDR_LEN) __field(u8, lladdr_len) __field(u8, flags) __field(u8, nud_state) __field(u8, type) __field(u8, dead) __field(int, refcnt) __array(__u8, primary_key4, 4) __array(__u8, primary_key6, 16) __field(unsigned long, confirmed) __field(unsigned long, updated) __field(unsigned long, used) __array(u8, new_lladdr, MAX_ADDR_LEN) __field(u8, new_state) __field(u32, update_flags) __field(u32, pid) ), TP_fast_assign( int lladdr_len = (n->dev ? n->dev->addr_len : MAX_ADDR_LEN); struct in6_addr *pin6; __be32 *p32; __entry->family = n->tbl->family; __assign_str(dev, (n->dev ? n->dev->name : "NULL")); __entry->lladdr_len = lladdr_len; memcpy(__entry->lladdr, n->ha, lladdr_len); __entry->flags = n->flags; __entry->nud_state = n->nud_state; __entry->type = n->type; __entry->dead = n->dead; __entry->refcnt = refcount_read(&n->refcnt); pin6 = (struct in6_addr *)__entry->primary_key6; p32 = (__be32 *)__entry->primary_key4; if (n->tbl->family == AF_INET) *p32 = *(__be32 *)n->primary_key; else *p32 = 0; #if IS_ENABLED(CONFIG_IPV6) if (n->tbl->family == AF_INET6) { pin6 = (struct in6_addr *)__entry->primary_key6; *pin6 = *(struct in6_addr *)n->primary_key; } else #endif { ipv6_addr_set_v4mapped(*p32, pin6); } __entry->confirmed = n->confirmed; __entry->updated = n->updated; __entry->used = n->used; if (lladdr) memcpy(__entry->new_lladdr, lladdr, lladdr_len); __entry->new_state = new; __entry->update_flags = flags; __entry->pid = nlmsg_pid; ), TP_printk("family %d dev %s lladdr %s flags %02x nud_state %s type %02x " "dead %d refcnt %d primary_key4 %pI4 primary_key6 %pI6c " "confirmed %lu updated %lu used %lu new_lladdr %s " "new_state %s update_flags %02x pid %d", __entry->family, __get_str(dev), __print_hex_str(__entry->lladdr, __entry->lladdr_len), __entry->flags, neigh_state_str(__entry->nud_state), __entry->type, __entry->dead, __entry->refcnt, __entry->primary_key4, __entry->primary_key6, __entry->confirmed, __entry->updated, __entry->used, __print_hex_str(__entry->new_lladdr, __entry->lladdr_len), neigh_state_str(__entry->new_state), __entry->update_flags, __entry->pid) ); DECLARE_EVENT_CLASS(neigh__update, TP_PROTO(struct neighbour *n, int err), TP_ARGS(n, err), TP_STRUCT__entry( __field(u32, family) __string(dev, (n->dev ? n->dev->name : "NULL")) __array(u8, lladdr, MAX_ADDR_LEN) __field(u8, lladdr_len) __field(u8, flags) __field(u8, nud_state) __field(u8, type) __field(u8, dead) __field(int, refcnt) __array(__u8, primary_key4, 4) __array(__u8, primary_key6, 16) __field(unsigned long, confirmed) __field(unsigned long, updated) __field(unsigned long, used) __field(u32, err) ), TP_fast_assign( int lladdr_len = (n->dev ? n->dev->addr_len : MAX_ADDR_LEN); struct in6_addr *pin6; __be32 *p32; __entry->family = n->tbl->family; __assign_str(dev, (n->dev ? n->dev->name : "NULL")); __entry->lladdr_len = lladdr_len; memcpy(__entry->lladdr, n->ha, lladdr_len); __entry->flags = n->flags; __entry->nud_state = n->nud_state; __entry->type = n->type; __entry->dead = n->dead; __entry->refcnt = refcount_read(&n->refcnt); pin6 = (struct in6_addr *)__entry->primary_key6; p32 = (__be32 *)__entry->primary_key4; if (n->tbl->family == AF_INET) *p32 = *(__be32 *)n->primary_key; else *p32 = 0; #if IS_ENABLED(CONFIG_IPV6) if (n->tbl->family == AF_INET6) { pin6 = (struct in6_addr *)__entry->primary_key6; *pin6 = *(struct in6_addr *)n->primary_key; } else #endif { ipv6_addr_set_v4mapped(*p32, pin6); } __entry->confirmed = n->confirmed; __entry->updated = n->updated; __entry->used = n->used; __entry->err = err; ), TP_printk("family %d dev %s lladdr %s flags %02x nud_state %s type %02x " "dead %d refcnt %d primary_key4 %pI4 primary_key6 %pI6c " "confirmed %lu updated %lu used %lu err %d", __entry->family, __get_str(dev), __print_hex_str(__entry->lladdr, __entry->lladdr_len), __entry->flags, neigh_state_str(__entry->nud_state), __entry->type, __entry->dead, __entry->refcnt, __entry->primary_key4, __entry->primary_key6, __entry->confirmed, __entry->updated, __entry->used, __entry->err) ); DEFINE_EVENT(neigh__update, neigh_update_done, TP_PROTO(struct neighbour *neigh, int err), TP_ARGS(neigh, err) ); DEFINE_EVENT(neigh__update, neigh_timer_handler, TP_PROTO(struct neighbour *neigh, int err), TP_ARGS(neigh, err) ); DEFINE_EVENT(neigh__update, neigh_event_send_done, TP_PROTO(struct neighbour *neigh, int err), TP_ARGS(neigh, err) ); DEFINE_EVENT(neigh__update, neigh_event_send_dead, TP_PROTO(struct neighbour *neigh, int err), TP_ARGS(neigh, err) ); DEFINE_EVENT(neigh__update, neigh_cleanup_and_release, TP_PROTO(struct neighbour *neigh, int rc), TP_ARGS(neigh, rc) ); #endif /* _TRACE_NEIGH_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * pm_wakeup.h - Power management wakeup interface * * Copyright (C) 2008 Alan Stern * Copyright (C) 2010 Rafael J. Wysocki, Novell Inc. */ #ifndef _LINUX_PM_WAKEUP_H #define _LINUX_PM_WAKEUP_H #ifndef _DEVICE_H_ # error "please don't include this file directly" #endif #include <linux/types.h> struct wake_irq; /** * struct wakeup_source - Representation of wakeup sources * * @name: Name of the wakeup source * @id: Wakeup source id * @entry: Wakeup source list entry * @lock: Wakeup source lock * @wakeirq: Optional device specific wakeirq * @timer: Wakeup timer list * @timer_expires: Wakeup timer expiration * @total_time: Total time this wakeup source has been active. * @max_time: Maximum time this wakeup source has been continuously active. * @last_time: Monotonic clock when the wakeup source's was touched last time. * @prevent_sleep_time: Total time this source has been preventing autosleep. * @event_count: Number of signaled wakeup events. * @active_count: Number of times the wakeup source was activated. * @relax_count: Number of times the wakeup source was deactivated. * @expire_count: Number of times the wakeup source's timeout has expired. * @wakeup_count: Number of times the wakeup source might abort suspend. * @dev: Struct device for sysfs statistics about the wakeup source. * @active: Status of the wakeup source. * @autosleep_enabled: Autosleep is active, so update @prevent_sleep_time. */ struct wakeup_source { const char *name; int id; struct list_head entry; spinlock_t lock; struct wake_irq *wakeirq; struct timer_list timer; unsigned long timer_expires; ktime_t total_time; ktime_t max_time; ktime_t last_time; ktime_t start_prevent_time; ktime_t prevent_sleep_time; unsigned long event_count; unsigned long active_count; unsigned long relax_count; unsigned long expire_count; unsigned long wakeup_count; struct device *dev; bool active:1; bool autosleep_enabled:1; }; #define for_each_wakeup_source(ws) \ for ((ws) = wakeup_sources_walk_start(); \ (ws); \ (ws) = wakeup_sources_walk_next((ws))) #ifdef CONFIG_PM_SLEEP /* * Changes to device_may_wakeup take effect on the next pm state change. */ static inline bool device_can_wakeup(struct device *dev) { return dev->power.can_wakeup; } static inline bool device_may_wakeup(struct device *dev) { return dev->power.can_wakeup && !!dev->power.wakeup; } static inline void device_set_wakeup_path(struct device *dev) { dev->power.wakeup_path = true; } /* drivers/base/power/wakeup.c */ extern struct wakeup_source *wakeup_source_create(const char *name); extern void wakeup_source_destroy(struct wakeup_source *ws); extern void wakeup_source_add(struct wakeup_source *ws); extern void wakeup_source_remove(struct wakeup_source *ws); extern struct wakeup_source *wakeup_source_register(struct device *dev, const char *name); extern void wakeup_source_unregister(struct wakeup_source *ws); extern int wakeup_sources_read_lock(void); extern void wakeup_sources_read_unlock(int idx); extern struct wakeup_source *wakeup_sources_walk_start(void); extern struct wakeup_source *wakeup_sources_walk_next(struct wakeup_source *ws); extern int device_wakeup_enable(struct device *dev); extern int device_wakeup_disable(struct device *dev); extern void device_set_wakeup_capable(struct device *dev, bool capable); extern int device_init_wakeup(struct device *dev, bool val); extern int device_set_wakeup_enable(struct device *dev, bool enable); extern void __pm_stay_awake(struct wakeup_source *ws); extern void pm_stay_awake(struct device *dev); extern void __pm_relax(struct wakeup_source *ws); extern void pm_relax(struct device *dev); extern void pm_wakeup_ws_event(struct wakeup_source *ws, unsigned int msec, bool hard); extern void pm_wakeup_dev_event(struct device *dev, unsigned int msec, bool hard); #else /* !CONFIG_PM_SLEEP */ static inline void device_set_wakeup_capable(struct device *dev, bool capable) { dev->power.can_wakeup = capable; } static inline bool device_can_wakeup(struct device *dev) { return dev->power.can_wakeup; } static inline struct wakeup_source *wakeup_source_create(const char *name) { return NULL; } static inline void wakeup_source_destroy(struct wakeup_source *ws) {} static inline void wakeup_source_add(struct wakeup_source *ws) {} static inline void wakeup_source_remove(struct wakeup_source *ws) {} static inline struct wakeup_source *wakeup_source_register(struct device *dev, const char *name) { return NULL; } static inline void wakeup_source_unregister(struct wakeup_source *ws) {} static inline int device_wakeup_enable(struct device *dev) { dev->power.should_wakeup = true; return 0; } static inline int device_wakeup_disable(struct device *dev) { dev->power.should_wakeup = false; return 0; } static inline int device_set_wakeup_enable(struct device *dev, bool enable) { dev->power.should_wakeup = enable; return 0; } static inline int device_init_wakeup(struct device *dev, bool val) { device_set_wakeup_capable(dev, val); device_set_wakeup_enable(dev, val); return 0; } static inline bool device_may_wakeup(struct device *dev) { return dev->power.can_wakeup && dev->power.should_wakeup; } static inline void device_set_wakeup_path(struct device *dev) {} static inline void __pm_stay_awake(struct wakeup_source *ws) {} static inline void pm_stay_awake(struct device *dev) {} static inline void __pm_relax(struct wakeup_source *ws) {} static inline void pm_relax(struct device *dev) {} static inline void pm_wakeup_ws_event(struct wakeup_source *ws, unsigned int msec, bool hard) {} static inline void pm_wakeup_dev_event(struct device *dev, unsigned int msec, bool hard) {} #endif /* !CONFIG_PM_SLEEP */ static inline void __pm_wakeup_event(struct wakeup_source *ws, unsigned int msec) { return pm_wakeup_ws_event(ws, msec, false); } static inline void pm_wakeup_event(struct device *dev, unsigned int msec) { return pm_wakeup_dev_event(dev, msec, false); } static inline void pm_wakeup_hard_event(struct device *dev) { return pm_wakeup_dev_event(dev, 0, true); } #endif /* _LINUX_PM_WAKEUP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_KERNEL_H #define _LINUX_KERNEL_H #include <stdarg.h> #include <linux/limits.h> #include <linux/linkage.h> #include <linux/stddef.h> #include <linux/types.h> #include <linux/compiler.h> #include <linux/bitops.h> #include <linux/log2.h> #include <linux/minmax.h> #include <linux/typecheck.h> #include <linux/printk.h> #include <linux/build_bug.h> #include <asm/byteorder.h> #include <asm/div64.h> #include <uapi/linux/kernel.h> #define STACK_MAGIC 0xdeadbeef /** * REPEAT_BYTE - repeat the value @x multiple times as an unsigned long value * @x: value to repeat * * NOTE: @x is not checked for > 0xff; larger values produce odd results. */ #define REPEAT_BYTE(x) ((~0ul / 0xff) * (x)) /* @a is a power of 2 value */ #define ALIGN(x, a) __ALIGN_KERNEL((x), (a)) #define ALIGN_DOWN(x, a) __ALIGN_KERNEL((x) - ((a) - 1), (a)) #define __ALIGN_MASK(x, mask) __ALIGN_KERNEL_MASK((x), (mask)) #define PTR_ALIGN(p, a) ((typeof(p))ALIGN((unsigned long)(p), (a))) #define PTR_ALIGN_DOWN(p, a) ((typeof(p))ALIGN_DOWN((unsigned long)(p), (a))) #define IS_ALIGNED(x, a) (((x) & ((typeof(x))(a) - 1)) == 0) /* generic data direction definitions */ #define READ 0 #define WRITE 1 /** * ARRAY_SIZE - get the number of elements in array @arr * @arr: array to be sized */ #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) + __must_be_array(arr)) #define u64_to_user_ptr(x) ( \ { \ typecheck(u64, (x)); \ (void __user *)(uintptr_t)(x); \ } \ ) /* * This looks more complex than it should be. But we need to * get the type for the ~ right in round_down (it needs to be * as wide as the result!), and we want to evaluate the macro * arguments just once each. */ #define __round_mask(x, y) ((__typeof__(x))((y)-1)) /** * round_up - round up to next specified power of 2 * @x: the value to round * @y: multiple to round up to (must be a power of 2) * * Rounds @x up to next multiple of @y (which must be a power of 2). * To perform arbitrary rounding up, use roundup() below. */ #define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1) /** * round_down - round down to next specified power of 2 * @x: the value to round * @y: multiple to round down to (must be a power of 2) * * Rounds @x down to next multiple of @y (which must be a power of 2). * To perform arbitrary rounding down, use rounddown() below. */ #define round_down(x, y) ((x) & ~__round_mask(x, y)) #define typeof_member(T, m) typeof(((T*)0)->m) #define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP #define DIV_ROUND_DOWN_ULL(ll, d) \ ({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; }) #define DIV_ROUND_UP_ULL(ll, d) \ DIV_ROUND_DOWN_ULL((unsigned long long)(ll) + (d) - 1, (d)) #if BITS_PER_LONG == 32 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d) #else # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d) #endif /** * roundup - round up to the next specified multiple * @x: the value to up * @y: multiple to round up to * * Rounds @x up to next multiple of @y. If @y will always be a power * of 2, consider using the faster round_up(). */ #define roundup(x, y) ( \ { \ typeof(y) __y = y; \ (((x) + (__y - 1)) / __y) * __y; \ } \ ) /** * rounddown - round down to next specified multiple * @x: the value to round * @y: multiple to round down to * * Rounds @x down to next multiple of @y. If @y will always be a power * of 2, consider using the faster round_down(). */ #define rounddown(x, y) ( \ { \ typeof(x) __x = (x); \ __x - (__x % (y)); \ } \ ) /* * Divide positive or negative dividend by positive or negative divisor * and round to closest integer. Result is undefined for negative * divisors if the dividend variable type is unsigned and for negative * dividends if the divisor variable type is unsigned. */ #define DIV_ROUND_CLOSEST(x, divisor)( \ { \ typeof(x) __x = x; \ typeof(divisor) __d = divisor; \ (((typeof(x))-1) > 0 || \ ((typeof(divisor))-1) > 0 || \ (((__x) > 0) == ((__d) > 0))) ? \ (((__x) + ((__d) / 2)) / (__d)) : \ (((__x) - ((__d) / 2)) / (__d)); \ } \ ) /* * Same as above but for u64 dividends. divisor must be a 32-bit * number. */ #define DIV_ROUND_CLOSEST_ULL(x, divisor)( \ { \ typeof(divisor) __d = divisor; \ unsigned long long _tmp = (x) + (__d) / 2; \ do_div(_tmp, __d); \ _tmp; \ } \ ) /* * Multiplies an integer by a fraction, while avoiding unnecessary * overflow or loss of precision. */ #define mult_frac(x, numer, denom)( \ { \ typeof(x) quot = (x) / (denom); \ typeof(x) rem = (x) % (denom); \ (quot * (numer)) + ((rem * (numer)) / (denom)); \ } \ ) #define _RET_IP_ (unsigned long)__builtin_return_address(0) #define _THIS_IP_ ({ __label__ __here; __here: (unsigned long)&&__here; }) #define sector_div(a, b) do_div(a, b) /** * upper_32_bits - return bits 32-63 of a number * @n: the number we're accessing * * A basic shift-right of a 64- or 32-bit quantity. Use this to suppress * the "right shift count >= width of type" warning when that quantity is * 32-bits. */ #define upper_32_bits(n) ((u32)(((n) >> 16) >> 16)) /** * lower_32_bits - return bits 0-31 of a number * @n: the number we're accessing */ #define lower_32_bits(n) ((u32)((n) & 0xffffffff)) struct completion; struct pt_regs; struct user; #ifdef CONFIG_PREEMPT_VOLUNTARY extern int _cond_resched(void); # define might_resched() _cond_resched() #else # define might_resched() do { } while (0) #endif #ifdef CONFIG_DEBUG_ATOMIC_SLEEP extern void ___might_sleep(const char *file, int line, int preempt_offset); extern void __might_sleep(const char *file, int line, int preempt_offset); extern void __cant_sleep(const char *file, int line, int preempt_offset); /** * might_sleep - annotation for functions that can sleep * * this macro will print a stack trace if it is executed in an atomic * context (spinlock, irq-handler, ...). Additional sections where blocking is * not allowed can be annotated with non_block_start() and non_block_end() * pairs. * * This is a useful debugging help to be able to catch problems early and not * be bitten later when the calling function happens to sleep when it is not * supposed to. */ # define might_sleep() \ do { __might_sleep(__FILE__, __LINE__, 0); might_resched(); } while (0) /** * cant_sleep - annotation for functions that cannot sleep * * this macro will print a stack trace if it is executed with preemption enabled */ # define cant_sleep() \ do { __cant_sleep(__FILE__, __LINE__, 0); } while (0) # define sched_annotate_sleep() (current->task_state_change = 0) /** * non_block_start - annotate the start of section where sleeping is prohibited * * This is on behalf of the oom reaper, specifically when it is calling the mmu * notifiers. The problem is that if the notifier were to block on, for example, * mutex_lock() and if the process which holds that mutex were to perform a * sleeping memory allocation, the oom reaper is now blocked on completion of * that memory allocation. Other blocking calls like wait_event() pose similar * issues. */ # define non_block_start() (current->non_block_count++) /** * non_block_end - annotate the end of section where sleeping is prohibited * * Closes a section opened by non_block_start(). */ # define non_block_end() WARN_ON(current->non_block_count-- == 0) #else static inline void ___might_sleep(const char *file, int line, int preempt_offset) { } static inline void __might_sleep(const char *file, int line, int preempt_offset) { } # define might_sleep() do { might_resched(); } while (0) # define cant_sleep() do { } while (0) # define sched_annotate_sleep() do { } while (0) # define non_block_start() do { } while (0) # define non_block_end() do { } while (0) #endif #define might_sleep_if(cond) do { if (cond) might_sleep(); } while (0) #ifndef CONFIG_PREEMPT_RT # define cant_migrate() cant_sleep() #else /* Placeholder for now */ # define cant_migrate() do { } while (0) #endif /** * abs - return absolute value of an argument * @x: the value. If it is unsigned type, it is converted to signed type first. * char is treated as if it was signed (regardless of whether it really is) * but the macro's return type is preserved as char. * * Return: an absolute value of x. */ #define abs(x) __abs_choose_expr(x, long long, \ __abs_choose_expr(x, long, \ __abs_choose_expr(x, int, \ __abs_choose_expr(x, short, \ __abs_choose_expr(x, char, \ __builtin_choose_expr( \ __builtin_types_compatible_p(typeof(x), char), \ (char)({ signed char __x = (x); __x<0?-__x:__x; }), \ ((void)0))))))) #define __abs_choose_expr(x, type, other) __builtin_choose_expr( \ __builtin_types_compatible_p(typeof(x), signed type) || \ __builtin_types_compatible_p(typeof(x), unsigned type), \ ({ signed type __x = (x); __x < 0 ? -__x : __x; }), other) /** * reciprocal_scale - "scale" a value into range [0, ep_ro) * @val: value * @ep_ro: right open interval endpoint * * Perform a "reciprocal multiplication" in order to "scale" a value into * range [0, @ep_ro), where the upper interval endpoint is right-open. * This is useful, e.g. for accessing a index of an array containing * @ep_ro elements, for example. Think of it as sort of modulus, only that * the result isn't that of modulo. ;) Note that if initial input is a * small value, then result will return 0. * * Return: a result based on @val in interval [0, @ep_ro). */ static inline u32 reciprocal_scale(u32 val, u32 ep_ro) { return (u32)(((u64) val * ep_ro) >> 32); } #if defined(CONFIG_MMU) && \ (defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)) #define might_fault() __might_fault(__FILE__, __LINE__) void __might_fault(const char *file, int line); #else static inline void might_fault(void) { } #endif extern struct atomic_notifier_head panic_notifier_list; extern long (*panic_blink)(int state); __printf(1, 2) void panic(const char *fmt, ...) __noreturn __cold; void nmi_panic(struct pt_regs *regs, const char *msg); extern void oops_enter(void); extern void oops_exit(void); extern bool oops_may_print(void); void do_exit(long error_code) __noreturn; void complete_and_exit(struct completion *, long) __noreturn; /* Internal, do not use. */ int __must_check _kstrtoul(const char *s, unsigned int base, unsigned long *res); int __must_check _kstrtol(const char *s, unsigned int base, long *res); int __must_check kstrtoull(const char *s, unsigned int base, unsigned long long *res); int __must_check kstrtoll(const char *s, unsigned int base, long long *res); /** * kstrtoul - convert a string to an unsigned long * @s: The start of the string. The string must be null-terminated, and may also * include a single newline before its terminating null. The first character * may also be a plus sign, but not a minus sign. * @base: The number base to use. The maximum supported base is 16. If base is * given as 0, then the base of the string is automatically detected with the * conventional semantics - If it begins with 0x the number will be parsed as a * hexadecimal (case insensitive), if it otherwise begins with 0, it will be * parsed as an octal number. Otherwise it will be parsed as a decimal. * @res: Where to write the result of the conversion on success. * * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. * Preferred over simple_strtoul(). Return code must be checked. */ static inline int __must_check kstrtoul(const char *s, unsigned int base, unsigned long *res) { /* * We want to shortcut function call, but * __builtin_types_compatible_p(unsigned long, unsigned long long) = 0. */ if (sizeof(unsigned long) == sizeof(unsigned long long) && __alignof__(unsigned long) == __alignof__(unsigned long long)) return kstrtoull(s, base, (unsigned long long *)res); else return _kstrtoul(s, base, res); } /** * kstrtol - convert a string to a long * @s: The start of the string. The string must be null-terminated, and may also * include a single newline before its terminating null. The first character * may also be a plus sign or a minus sign. * @base: The number base to use. The maximum supported base is 16. If base is * given as 0, then the base of the string is automatically detected with the * conventional semantics - If it begins with 0x the number will be parsed as a * hexadecimal (case insensitive), if it otherwise begins with 0, it will be * parsed as an octal number. Otherwise it will be parsed as a decimal. * @res: Where to write the result of the conversion on success. * * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. * Preferred over simple_strtol(). Return code must be checked. */ static inline int __must_check kstrtol(const char *s, unsigned int base, long *res) { /* * We want to shortcut function call, but * __builtin_types_compatible_p(long, long long) = 0. */ if (sizeof(long) == sizeof(long long) && __alignof__(long) == __alignof__(long long)) return kstrtoll(s, base, (long long *)res); else return _kstrtol(s, base, res); } int __must_check kstrtouint(const char *s, unsigned int base, unsigned int *res); int __must_check kstrtoint(const char *s, unsigned int base, int *res); static inline int __must_check kstrtou64(const char *s, unsigned int base, u64 *res) { return kstrtoull(s, base, res); } static inline int __must_check kstrtos64(const char *s, unsigned int base, s64 *res) { return kstrtoll(s, base, res); } static inline int __must_check kstrtou32(const char *s, unsigned int base, u32 *res) { return kstrtouint(s, base, res); } static inline int __must_check kstrtos32(const char *s, unsigned int base, s32 *res) { return kstrtoint(s, base, res); } int __must_check kstrtou16(const char *s, unsigned int base, u16 *res); int __must_check kstrtos16(const char *s, unsigned int base, s16 *res); int __must_check kstrtou8(const char *s, unsigned int base, u8 *res); int __must_check kstrtos8(const char *s, unsigned int base, s8 *res); int __must_check kstrtobool(const char *s, bool *res); int __must_check kstrtoull_from_user(const char __user *s, size_t count, unsigned int base, unsigned long long *res); int __must_check kstrtoll_from_user(const char __user *s, size_t count, unsigned int base, long long *res); int __must_check kstrtoul_from_user(const char __user *s, size_t count, unsigned int base, unsigned long *res); int __must_check kstrtol_from_user(const char __user *s, size_t count, unsigned int base, long *res); int __must_check kstrtouint_from_user(const char __user *s, size_t count, unsigned int base, unsigned int *res); int __must_check kstrtoint_from_user(const char __user *s, size_t count, unsigned int base, int *res); int __must_check kstrtou16_from_user(const char __user *s, size_t count, unsigned int base, u16 *res); int __must_check kstrtos16_from_user(const char __user *s, size_t count, unsigned int base, s16 *res); int __must_check kstrtou8_from_user(const char __user *s, size_t count, unsigned int base, u8 *res); int __must_check kstrtos8_from_user(const char __user *s, size_t count, unsigned int base, s8 *res); int __must_check kstrtobool_from_user(const char __user *s, size_t count, bool *res); static inline int __must_check kstrtou64_from_user(const char __user *s, size_t count, unsigned int base, u64 *res) { return kstrtoull_from_user(s, count, base, res); } static inline int __must_check kstrtos64_from_user(const char __user *s, size_t count, unsigned int base, s64 *res) { return kstrtoll_from_user(s, count, base, res); } static inline int __must_check kstrtou32_from_user(const char __user *s, size_t count, unsigned int base, u32 *res) { return kstrtouint_from_user(s, count, base, res); } static inline int __must_check kstrtos32_from_user(const char __user *s, size_t count, unsigned int base, s32 *res) { return kstrtoint_from_user(s, count, base, res); } /* * Use kstrto<foo> instead. * * NOTE: simple_strto<foo> does not check for the range overflow and, * depending on the input, may give interesting results. * * Use these functions if and only if you cannot use kstrto<foo>, because * the conversion ends on the first non-digit character, which may be far * beyond the supported range. It might be useful to parse the strings like * 10x50 or 12:21 without altering original string or temporary buffer in use. * Keep in mind above caveat. */ extern unsigned long simple_strtoul(const char *,char **,unsigned int); extern long simple_strtol(const char *,char **,unsigned int); extern unsigned long long simple_strtoull(const char *,char **,unsigned int); extern long long simple_strtoll(const char *,char **,unsigned int); extern int num_to_str(char *buf, int size, unsigned long long num, unsigned int width); /* lib/printf utilities */ extern __printf(2, 3) int sprintf(char *buf, const char * fmt, ...); extern __printf(2, 0) int vsprintf(char *buf, const char *, va_list); extern __printf(3, 4) int snprintf(char *buf, size_t size, const char *fmt, ...); extern __printf(3, 0) int vsnprintf(char *buf, size_t size, const char *fmt, va_list args); extern __printf(3, 4) int scnprintf(char *buf, size_t size, const char *fmt, ...); extern __printf(3, 0) int vscnprintf(char *buf, size_t size, const char *fmt, va_list args); extern __printf(2, 3) __malloc char *kasprintf(gfp_t gfp, const char *fmt, ...); extern __printf(2, 0) __malloc char *kvasprintf(gfp_t gfp, const char *fmt, va_list args); extern __printf(2, 0) const char *kvasprintf_const(gfp_t gfp, const char *fmt, va_list args); extern __scanf(2, 3) int sscanf(const char *, const char *, ...); extern __scanf(2, 0) int vsscanf(const char *, const char *, va_list); extern int get_option(char **str, int *pint); extern char *get_options(const char *str, int nints, int *ints); extern unsigned long long memparse(const char *ptr, char **retptr); extern bool parse_option_str(const char *str, const char *option); extern char *next_arg(char *args, char **param, char **val); extern int core_kernel_text(unsigned long addr); extern int init_kernel_text(unsigned long addr); extern int core_kernel_data(unsigned long addr); extern int __kernel_text_address(unsigned long addr); extern int kernel_text_address(unsigned long addr); extern int func_ptr_is_kernel_text(void *ptr); u64 int_pow(u64 base, unsigned int exp); unsigned long int_sqrt(unsigned long); #if BITS_PER_LONG < 64 u32 int_sqrt64(u64 x); #else static inline u32 int_sqrt64(u64 x) { return (u32)int_sqrt(x); } #endif #ifdef CONFIG_SMP extern unsigned int sysctl_oops_all_cpu_backtrace; #else #define sysctl_oops_all_cpu_backtrace 0 #endif /* CONFIG_SMP */ extern void bust_spinlocks(int yes); extern int panic_timeout; extern unsigned long panic_print; extern int panic_on_oops; extern int panic_on_unrecovered_nmi; extern int panic_on_io_nmi; extern int panic_on_warn; extern unsigned long panic_on_taint; extern bool panic_on_taint_nousertaint; extern int sysctl_panic_on_rcu_stall; extern int sysctl_panic_on_stackoverflow; extern bool crash_kexec_post_notifiers; /* * panic_cpu is used for synchronizing panic() and crash_kexec() execution. It * holds a CPU number which is executing panic() currently. A value of * PANIC_CPU_INVALID means no CPU has entered panic() or crash_kexec(). */ extern atomic_t panic_cpu; #define PANIC_CPU_INVALID -1 /* * Only to be used by arch init code. If the user over-wrote the default * CONFIG_PANIC_TIMEOUT, honor it. */ static inline void set_arch_panic_timeout(int timeout, int arch_default_timeout) { if (panic_timeout == arch_default_timeout) panic_timeout = timeout; } extern const char *print_tainted(void); enum lockdep_ok { LOCKDEP_STILL_OK, LOCKDEP_NOW_UNRELIABLE }; extern void add_taint(unsigned flag, enum lockdep_ok); extern int test_taint(unsigned flag); extern unsigned long get_taint(void); extern int root_mountflags; extern bool early_boot_irqs_disabled; /* * Values used for system_state. Ordering of the states must not be changed * as code checks for <, <=, >, >= STATE. */ extern enum system_states { SYSTEM_BOOTING, SYSTEM_SCHEDULING, SYSTEM_RUNNING, SYSTEM_HALT, SYSTEM_POWER_OFF, SYSTEM_RESTART, SYSTEM_SUSPEND, } system_state; /* This cannot be an enum because some may be used in assembly source. */ #define TAINT_PROPRIETARY_MODULE 0 #define TAINT_FORCED_MODULE 1 #define TAINT_CPU_OUT_OF_SPEC 2 #define TAINT_FORCED_RMMOD 3 #define TAINT_MACHINE_CHECK 4 #define TAINT_BAD_PAGE 5 #define TAINT_USER 6 #define TAINT_DIE 7 #define TAINT_OVERRIDDEN_ACPI_TABLE 8 #define TAINT_WARN 9 #define TAINT_CRAP 10 #define TAINT_FIRMWARE_WORKAROUND 11 #define TAINT_OOT_MODULE 12 #define TAINT_UNSIGNED_MODULE 13 #define TAINT_SOFTLOCKUP 14 #define TAINT_LIVEPATCH 15 #define TAINT_AUX 16 #define TAINT_RANDSTRUCT 17 #define TAINT_FLAGS_COUNT 18 #define TAINT_FLAGS_MAX ((1UL << TAINT_FLAGS_COUNT) - 1) struct taint_flag { char c_true; /* character printed when tainted */ char c_false; /* character printed when not tainted */ bool module; /* also show as a per-module taint flag */ }; extern const struct taint_flag taint_flags[TAINT_FLAGS_COUNT]; extern const char hex_asc[]; #define hex_asc_lo(x) hex_asc[((x) & 0x0f)] #define hex_asc_hi(x) hex_asc[((x) & 0xf0) >> 4] static inline char *hex_byte_pack(char *buf, u8 byte) { *buf++ = hex_asc_hi(byte); *buf++ = hex_asc_lo(byte); return buf; } extern const char hex_asc_upper[]; #define hex_asc_upper_lo(x) hex_asc_upper[((x) & 0x0f)] #define hex_asc_upper_hi(x) hex_asc_upper[((x) & 0xf0) >> 4] static inline char *hex_byte_pack_upper(char *buf, u8 byte) { *buf++ = hex_asc_upper_hi(byte); *buf++ = hex_asc_upper_lo(byte); return buf; } extern int hex_to_bin(char ch); extern int __must_check hex2bin(u8 *dst, const char *src, size_t count); extern char *bin2hex(char *dst, const void *src, size_t count); bool mac_pton(const char *s, u8 *mac); /* * General tracing related utility functions - trace_printk(), * tracing_on/tracing_off and tracing_start()/tracing_stop * * Use tracing_on/tracing_off when you want to quickly turn on or off * tracing. It simply enables or disables the recording of the trace events. * This also corresponds to the user space /sys/kernel/debug/tracing/tracing_on * file, which gives a means for the kernel and userspace to interact. * Place a tracing_off() in the kernel where you want tracing to end. * From user space, examine the trace, and then echo 1 > tracing_on * to continue tracing. * * tracing_stop/tracing_start has slightly more overhead. It is used * by things like suspend to ram where disabling the recording of the * trace is not enough, but tracing must actually stop because things * like calling smp_processor_id() may crash the system. * * Most likely, you want to use tracing_on/tracing_off. */ enum ftrace_dump_mode { DUMP_NONE, DUMP_ALL, DUMP_ORIG, }; #ifdef CONFIG_TRACING void tracing_on(void); void tracing_off(void); int tracing_is_on(void); void tracing_snapshot(void); void tracing_snapshot_alloc(void); extern void tracing_start(void); extern void tracing_stop(void); static inline __printf(1, 2) void ____trace_printk_check_format(const char *fmt, ...) { } #define __trace_printk_check_format(fmt, args...) \ do { \ if (0) \ ____trace_printk_check_format(fmt, ##args); \ } while (0) /** * trace_printk - printf formatting in the ftrace buffer * @fmt: the printf format for printing * * Note: __trace_printk is an internal function for trace_printk() and * the @ip is passed in via the trace_printk() macro. * * This function allows a kernel developer to debug fast path sections * that printk is not appropriate for. By scattering in various * printk like tracing in the code, a developer can quickly see * where problems are occurring. * * This is intended as a debugging tool for the developer only. * Please refrain from leaving trace_printks scattered around in * your code. (Extra memory is used for special buffers that are * allocated when trace_printk() is used.) * * A little optimization trick is done here. If there's only one * argument, there's no need to scan the string for printf formats. * The trace_puts() will suffice. But how can we take advantage of * using trace_puts() when trace_printk() has only one argument? * By stringifying the args and checking the size we can tell * whether or not there are args. __stringify((__VA_ARGS__)) will * turn into "()\0" with a size of 3 when there are no args, anything * else will be bigger. All we need to do is define a string to this, * and then take its size and compare to 3. If it's bigger, use * do_trace_printk() otherwise, optimize it to trace_puts(). Then just * let gcc optimize the rest. */ #define trace_printk(fmt, ...) \ do { \ char _______STR[] = __stringify((__VA_ARGS__)); \ if (sizeof(_______STR) > 3) \ do_trace_printk(fmt, ##__VA_ARGS__); \ else \ trace_puts(fmt); \ } while (0) #define do_trace_printk(fmt, args...) \ do { \ static const char *trace_printk_fmt __used \ __section("__trace_printk_fmt") = \ __builtin_constant_p(fmt) ? fmt : NULL; \ \ __trace_printk_check_format(fmt, ##args); \ \ if (__builtin_constant_p(fmt)) \ __trace_bprintk(_THIS_IP_, trace_printk_fmt, ##args); \ else \ __trace_printk(_THIS_IP_, fmt, ##args); \ } while (0) extern __printf(2, 3) int __trace_bprintk(unsigned long ip, const char *fmt, ...); extern __printf(2, 3) int __trace_printk(unsigned long ip, const char *fmt, ...); /** * trace_puts - write a string into the ftrace buffer * @str: the string to record * * Note: __trace_bputs is an internal function for trace_puts and * the @ip is passed in via the trace_puts macro. * * This is similar to trace_printk() but is made for those really fast * paths that a developer wants the least amount of "Heisenbug" effects, * where the processing of the print format is still too much. * * This function allows a kernel developer to debug fast path sections * that printk is not appropriate for. By scattering in various * printk like tracing in the code, a developer can quickly see * where problems are occurring. * * This is intended as a debugging tool for the developer only. * Please refrain from leaving trace_puts scattered around in * your code. (Extra memory is used for special buffers that are * allocated when trace_puts() is used.) * * Returns: 0 if nothing was written, positive # if string was. * (1 when __trace_bputs is used, strlen(str) when __trace_puts is used) */ #define trace_puts(str) ({ \ static const char *trace_printk_fmt __used \ __section("__trace_printk_fmt") = \ __builtin_constant_p(str) ? str : NULL; \ \ if (__builtin_constant_p(str)) \ __trace_bputs(_THIS_IP_, trace_printk_fmt); \ else \ __trace_puts(_THIS_IP_, str, strlen(str)); \ }) extern int __trace_bputs(unsigned long ip, const char *str); extern int __trace_puts(unsigned long ip, const char *str, int size); extern void trace_dump_stack(int skip); /* * The double __builtin_constant_p is because gcc will give us an error * if we try to allocate the static variable to fmt if it is not a * constant. Even with the outer if statement. */ #define ftrace_vprintk(fmt, vargs) \ do { \ if (__builtin_constant_p(fmt)) { \ static const char *trace_printk_fmt __used \ __section("__trace_printk_fmt") = \ __builtin_constant_p(fmt) ? fmt : NULL; \ \ __ftrace_vbprintk(_THIS_IP_, trace_printk_fmt, vargs); \ } else \ __ftrace_vprintk(_THIS_IP_, fmt, vargs); \ } while (0) extern __printf(2, 0) int __ftrace_vbprintk(unsigned long ip, const char *fmt, va_list ap); extern __printf(2, 0) int __ftrace_vprintk(unsigned long ip, const char *fmt, va_list ap); extern void ftrace_dump(enum ftrace_dump_mode oops_dump_mode); #else static inline void tracing_start(void) { } static inline void tracing_stop(void) { } static inline void trace_dump_stack(int skip) { } static inline void tracing_on(void) { } static inline void tracing_off(void) { } static inline int tracing_is_on(void) { return 0; } static inline void tracing_snapshot(void) { } static inline void tracing_snapshot_alloc(void) { } static inline __printf(1, 2) int trace_printk(const char *fmt, ...) { return 0; } static __printf(1, 0) inline int ftrace_vprintk(const char *fmt, va_list ap) { return 0; } static inline void ftrace_dump(enum ftrace_dump_mode oops_dump_mode) { } #endif /* CONFIG_TRACING */ /* This counts to 12. Any more, it will return 13th argument. */ #define __COUNT_ARGS(_0, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _n, X...) _n #define COUNT_ARGS(X...) __COUNT_ARGS(, ##X, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0) #define __CONCAT(a, b) a ## b #define CONCATENATE(a, b) __CONCAT(a, b) /** * container_of - cast a member of a structure out to the containing structure * @ptr: the pointer to the member. * @type: the type of the container struct this is embedded in. * @member: the name of the member within the struct. * */ #define container_of(ptr, type, member) ({ \ void *__mptr = (void *)(ptr); \ BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) && \ !__same_type(*(ptr), void), \ "pointer type mismatch in container_of()"); \ ((type *)(__mptr - offsetof(type, member))); }) /** * container_of_safe - cast a member of a structure out to the containing structure * @ptr: the pointer to the member. * @type: the type of the container struct this is embedded in. * @member: the name of the member within the struct. * * If IS_ERR_OR_NULL(ptr), ptr is returned unchanged. */ #define container_of_safe(ptr, type, member) ({ \ void *__mptr = (void *)(ptr); \ BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) && \ !__same_type(*(ptr), void), \ "pointer type mismatch in container_of()"); \ IS_ERR_OR_NULL(__mptr) ? ERR_CAST(__mptr) : \ ((type *)(__mptr - offsetof(type, member))); }) /* Rebuild everything on CONFIG_FTRACE_MCOUNT_RECORD */ #ifdef CONFIG_FTRACE_MCOUNT_RECORD # define REBUILD_DUE_TO_FTRACE_MCOUNT_RECORD #endif /* Permissions on a sysfs file: you didn't miss the 0 prefix did you? */ #define VERIFY_OCTAL_PERMISSIONS(perms) \ (BUILD_BUG_ON_ZERO((perms) < 0) + \ BUILD_BUG_ON_ZERO((perms) > 0777) + \ /* USER_READABLE >= GROUP_READABLE >= OTHER_READABLE */ \ BUILD_BUG_ON_ZERO((((perms) >> 6) & 4) < (((perms) >> 3) & 4)) + \ BUILD_BUG_ON_ZERO((((perms) >> 3) & 4) < ((perms) & 4)) + \ /* USER_WRITABLE >= GROUP_WRITABLE */ \ BUILD_BUG_ON_ZERO((((perms) >> 6) & 2) < (((perms) >> 3) & 2)) + \ /* OTHER_WRITABLE? Generally considered a bad idea. */ \ BUILD_BUG_ON_ZERO((perms) & 2) + \ (perms)) #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 /* SPDX-License-Identifier: GPL-2.0 */ /* * Linux Socket Filter Data Structures */ #ifndef __LINUX_FILTER_H__ #define __LINUX_FILTER_H__ #include <stdarg.h> #include <linux/atomic.h> #include <linux/refcount.h> #include <linux/compat.h> #include <linux/skbuff.h> #include <linux/linkage.h> #include <linux/printk.h> #include <linux/workqueue.h> #include <linux/sched.h> #include <linux/capability.h> #include <linux/set_memory.h> #include <linux/kallsyms.h> #include <linux/if_vlan.h> #include <linux/vmalloc.h> #include <linux/sockptr.h> #include <crypto/sha.h> #include <net/sch_generic.h> #include <asm/byteorder.h> #include <uapi/linux/filter.h> #include <uapi/linux/bpf.h> struct sk_buff; struct sock; struct seccomp_data; struct bpf_prog_aux; struct xdp_rxq_info; struct xdp_buff; struct sock_reuseport; struct ctl_table; struct ctl_table_header; /* ArgX, context and stack frame pointer register positions. Note, * Arg1, Arg2, Arg3, etc are used as argument mappings of function * calls in BPF_CALL instruction. */ #define BPF_REG_ARG1 BPF_REG_1 #define BPF_REG_ARG2 BPF_REG_2 #define BPF_REG_ARG3 BPF_REG_3 #define BPF_REG_ARG4 BPF_REG_4 #define BPF_REG_ARG5 BPF_REG_5 #define BPF_REG_CTX BPF_REG_6 #define BPF_REG_FP BPF_REG_10 /* Additional register mappings for converted user programs. */ #define BPF_REG_A BPF_REG_0 #define BPF_REG_X BPF_REG_7 #define BPF_REG_TMP BPF_REG_2 /* scratch reg */ #define BPF_REG_D BPF_REG_8 /* data, callee-saved */ #define BPF_REG_H BPF_REG_9 /* hlen, callee-saved */ /* Kernel hidden auxiliary/helper register. */ #define BPF_REG_AX MAX_BPF_REG #define MAX_BPF_EXT_REG (MAX_BPF_REG + 1) #define MAX_BPF_JIT_REG MAX_BPF_EXT_REG /* unused opcode to mark special call to bpf_tail_call() helper */ #define BPF_TAIL_CALL 0xf0 /* unused opcode to mark special load instruction. Same as BPF_ABS */ #define BPF_PROBE_MEM 0x20 /* unused opcode to mark call to interpreter with arguments */ #define BPF_CALL_ARGS 0xe0 /* unused opcode to mark speculation barrier for mitigating * Speculative Store Bypass */ #define BPF_NOSPEC 0xc0 /* As per nm, we expose JITed images as text (code) section for * kallsyms. That way, tools like perf can find it to match * addresses. */ #define BPF_SYM_ELF_TYPE 't' /* BPF program can access up to 512 bytes of stack space. */ #define MAX_BPF_STACK 512 /* Helper macros for filter block array initializers. */ /* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */ #define BPF_ALU64_REG(OP, DST, SRC) \ ((struct bpf_insn) { \ .code = BPF_ALU64 | BPF_OP(OP) | BPF_X, \ .dst_reg = DST, \ .src_reg = SRC, \ .off = 0, \ .imm = 0 }) #define BPF_ALU32_REG(OP, DST, SRC) \ ((struct bpf_insn) { \ .code = BPF_ALU | BPF_OP(OP) | BPF_X, \ .dst_reg = DST, \ .src_reg = SRC, \ .off = 0, \ .imm = 0 }) /* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */ #define BPF_ALU64_IMM(OP, DST, IMM) \ ((struct bpf_insn) { \ .code = BPF_ALU64 | BPF_OP(OP) | BPF_K, \ .dst_reg = DST, \ .src_reg = 0, \ .off = 0, \ .imm = IMM }) #define BPF_ALU32_IMM(OP, DST, IMM) \ ((struct bpf_insn) { \ .code = BPF_ALU | BPF_OP(OP) | BPF_K, \ .dst_reg = DST, \ .src_reg = 0, \ .off = 0, \ .imm = IMM }) /* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */ #define BPF_ENDIAN(TYPE, DST, LEN) \ ((struct bpf_insn) { \ .code = BPF_ALU | BPF_END | BPF_SRC(TYPE), \ .dst_reg = DST, \ .src_reg = 0, \ .off = 0, \ .imm = LEN }) /* Short form of mov, dst_reg = src_reg */ #define BPF_MOV64_REG(DST, SRC) \ ((struct bpf_insn) { \ .code = BPF_ALU64 | BPF_MOV | BPF_X, \ .dst_reg = DST, \ .src_reg = SRC, \ .off = 0, \ .imm = 0 }) #define BPF_MOV32_REG(DST, SRC) \ ((struct bpf_insn) { \ .code = BPF_ALU | BPF_MOV | BPF_X, \ .dst_reg = DST, \ .src_reg = SRC, \ .off = 0, \ .imm = 0 }) /* Short form of mov, dst_reg = imm32 */ #define BPF_MOV64_IMM(DST, IMM) \ ((struct bpf_insn) { \ .code = BPF_ALU64 | BPF_MOV | BPF_K, \ .dst_reg = DST, \ .src_reg = 0, \ .off = 0, \ .imm = IMM }) #define BPF_MOV32_IMM(DST, IMM) \ ((struct bpf_insn) { \ .code = BPF_ALU | BPF_MOV | BPF_K, \ .dst_reg = DST, \ .src_reg = 0, \ .off = 0, \ .imm = IMM }) /* Special form of mov32, used for doing explicit zero extension on dst. */ #define BPF_ZEXT_REG(DST) \ ((struct bpf_insn) { \ .code = BPF_ALU | BPF_MOV | BPF_X, \ .dst_reg = DST, \ .src_reg = DST, \ .off = 0, \ .imm = 1 }) static inline bool insn_is_zext(const struct bpf_insn *insn) { return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1; } /* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */ #define BPF_LD_IMM64(DST, IMM) \ BPF_LD_IMM64_RAW(DST, 0, IMM) #define BPF_LD_IMM64_RAW(DST, SRC, IMM) \ ((struct bpf_insn) { \ .code = BPF_LD | BPF_DW | BPF_IMM, \ .dst_reg = DST, \ .src_reg = SRC, \ .off = 0, \ .imm = (__u32) (IMM) }), \ ((struct bpf_insn) { \ .code = 0, /* zero is reserved opcode */ \ .dst_reg = 0, \ .src_reg = 0, \ .off = 0, \ .imm = ((__u64) (IMM)) >> 32 }) /* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */ #define BPF_LD_MAP_FD(DST, MAP_FD) \ BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD) /* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */ #define BPF_MOV64_RAW(TYPE, DST, SRC, IMM) \ ((struct bpf_insn) { \ .code = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE), \ .dst_reg = DST, \ .src_reg = SRC, \ .off = 0, \ .imm = IMM }) #define BPF_MOV32_RAW(TYPE, DST, SRC, IMM) \ ((struct bpf_insn) { \ .code = BPF_ALU | BPF_MOV | BPF_SRC(TYPE), \ .dst_reg = DST, \ .src_reg = SRC, \ .off = 0, \ .imm = IMM }) /* Direct packet access, R0 = *(uint *) (skb->data + imm32) */ #define BPF_LD_ABS(SIZE, IMM) \ ((struct bpf_insn) { \ .code = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS, \ .dst_reg = 0, \ .src_reg = 0, \ .off = 0, \ .imm = IMM }) /* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */ #define BPF_LD_IND(SIZE, SRC, IMM) \ ((struct bpf_insn) { \ .code = BPF_LD | BPF_SIZE(SIZE) | BPF_IND, \ .dst_reg = 0, \ .src_reg = SRC, \ .off = 0, \ .imm = IMM }) /* Memory load, dst_reg = *(uint *) (src_reg + off16) */ #define BPF_LDX_MEM(SIZE, DST, SRC, OFF) \ ((struct bpf_insn) { \ .code = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM, \ .dst_reg = DST, \ .src_reg = SRC, \ .off = OFF, \ .imm = 0 }) /* Memory store, *(uint *) (dst_reg + off16) = src_reg */ #define BPF_STX_MEM(SIZE, DST, SRC, OFF) \ ((struct bpf_insn) { \ .code = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM, \ .dst_reg = DST, \ .src_reg = SRC, \ .off = OFF, \ .imm = 0 }) /* Atomic memory add, *(uint *)(dst_reg + off16) += src_reg */ #define BPF_STX_XADD(SIZE, DST, SRC, OFF) \ ((struct bpf_insn) { \ .code = BPF_STX | BPF_SIZE(SIZE) | BPF_XADD, \ .dst_reg = DST, \ .src_reg = SRC, \ .off = OFF, \ .imm = 0 }) /* Memory store, *(uint *) (dst_reg + off16) = imm32 */ #define BPF_ST_MEM(SIZE, DST, OFF, IMM) \ ((struct bpf_insn) { \ .code = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM, \ .dst_reg = DST, \ .src_reg = 0, \ .off = OFF, \ .imm = IMM }) /* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */ #define BPF_JMP_REG(OP, DST, SRC, OFF) \ ((struct bpf_insn) { \ .code = BPF_JMP | BPF_OP(OP) | BPF_X, \ .dst_reg = DST, \ .src_reg = SRC, \ .off = OFF, \ .imm = 0 }) /* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */ #define BPF_JMP_IMM(OP, DST, IMM, OFF) \ ((struct bpf_insn) { \ .code = BPF_JMP | BPF_OP(OP) | BPF_K, \ .dst_reg = DST, \ .src_reg = 0, \ .off = OFF, \ .imm = IMM }) /* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */ #define BPF_JMP32_REG(OP, DST, SRC, OFF) \ ((struct bpf_insn) { \ .code = BPF_JMP32 | BPF_OP(OP) | BPF_X, \ .dst_reg = DST, \ .src_reg = SRC, \ .off = OFF, \ .imm = 0 }) /* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */ #define BPF_JMP32_IMM(OP, DST, IMM, OFF) \ ((struct bpf_insn) { \ .code = BPF_JMP32 | BPF_OP(OP) | BPF_K, \ .dst_reg = DST, \ .src_reg = 0, \ .off = OFF, \ .imm = IMM }) /* Unconditional jumps, goto pc + off16 */ #define BPF_JMP_A(OFF) \ ((struct bpf_insn) { \ .code = BPF_JMP | BPF_JA, \ .dst_reg = 0, \ .src_reg = 0, \ .off = OFF, \ .imm = 0 }) /* Relative call */ #define BPF_CALL_REL(TGT) \ ((struct bpf_insn) { \ .code = BPF_JMP | BPF_CALL, \ .dst_reg = 0, \ .src_reg = BPF_PSEUDO_CALL, \ .off = 0, \ .imm = TGT }) /* Function call */ #define BPF_CAST_CALL(x) \ ((u64 (*)(u64, u64, u64, u64, u64))(x)) #define BPF_EMIT_CALL(FUNC) \ ((struct bpf_insn) { \ .code = BPF_JMP | BPF_CALL, \ .dst_reg = 0, \ .src_reg = 0, \ .off = 0, \ .imm = ((FUNC) - __bpf_call_base) }) /* Raw code statement block */ #define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM) \ ((struct bpf_insn) { \ .code = CODE, \ .dst_reg = DST, \ .src_reg = SRC, \ .off = OFF, \ .imm = IMM }) /* Program exit */ #define BPF_EXIT_INSN() \ ((struct bpf_insn) { \ .code = BPF_JMP | BPF_EXIT, \ .dst_reg = 0, \ .src_reg = 0, \ .off = 0, \ .imm = 0 }) /* Speculation barrier */ #define BPF_ST_NOSPEC() \ ((struct bpf_insn) { \ .code = BPF_ST | BPF_NOSPEC, \ .dst_reg = 0, \ .src_reg = 0, \ .off = 0, \ .imm = 0 }) /* Internal classic blocks for direct assignment */ #define __BPF_STMT(CODE, K) \ ((struct sock_filter) BPF_STMT(CODE, K)) #define __BPF_JUMP(CODE, K, JT, JF) \ ((struct sock_filter) BPF_JUMP(CODE, K, JT, JF)) #define bytes_to_bpf_size(bytes) \ ({ \ int bpf_size = -EINVAL; \ \ if (bytes == sizeof(u8)) \ bpf_size = BPF_B; \ else if (bytes == sizeof(u16)) \ bpf_size = BPF_H; \ else if (bytes == sizeof(u32)) \ bpf_size = BPF_W; \ else if (bytes == sizeof(u64)) \ bpf_size = BPF_DW; \ \ bpf_size; \ }) #define bpf_size_to_bytes(bpf_size) \ ({ \ int bytes = -EINVAL; \ \ if (bpf_size == BPF_B) \ bytes = sizeof(u8); \ else if (bpf_size == BPF_H) \ bytes = sizeof(u16); \ else if (bpf_size == BPF_W) \ bytes = sizeof(u32); \ else if (bpf_size == BPF_DW) \ bytes = sizeof(u64); \ \ bytes; \ }) #define BPF_SIZEOF(type) \ ({ \ const int __size = bytes_to_bpf_size(sizeof(type)); \ BUILD_BUG_ON(__size < 0); \ __size; \ }) #define BPF_FIELD_SIZEOF(type, field) \ ({ \ const int __size = bytes_to_bpf_size(sizeof_field(type, field)); \ BUILD_BUG_ON(__size < 0); \ __size; \ }) #define BPF_LDST_BYTES(insn) \ ({ \ const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \ WARN_ON(__size < 0); \ __size; \ }) #define __BPF_MAP_0(m, v, ...) v #define __BPF_MAP_1(m, v, t, a, ...) m(t, a) #define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__) #define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__) #define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__) #define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__) #define __BPF_REG_0(...) __BPF_PAD(5) #define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4) #define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3) #define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2) #define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1) #define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__) #define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__) #define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__) #define __BPF_CAST(t, a) \ (__force t) \ (__force \ typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long), \ (unsigned long)0, (t)0))) a #define __BPF_V void #define __BPF_N #define __BPF_DECL_ARGS(t, a) t a #define __BPF_DECL_REGS(t, a) u64 a #define __BPF_PAD(n) \ __BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2, \ u64, __ur_3, u64, __ur_4, u64, __ur_5) #define BPF_CALL_x(x, name, ...) \ static __always_inline \ u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \ typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \ u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)); \ u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)) \ { \ return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\ } \ static __always_inline \ u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)) #define BPF_CALL_0(name, ...) BPF_CALL_x(0, name, __VA_ARGS__) #define BPF_CALL_1(name, ...) BPF_CALL_x(1, name, __VA_ARGS__) #define BPF_CALL_2(name, ...) BPF_CALL_x(2, name, __VA_ARGS__) #define BPF_CALL_3(name, ...) BPF_CALL_x(3, name, __VA_ARGS__) #define BPF_CALL_4(name, ...) BPF_CALL_x(4, name, __VA_ARGS__) #define BPF_CALL_5(name, ...) BPF_CALL_x(5, name, __VA_ARGS__) #define bpf_ctx_range(TYPE, MEMBER) \ offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1 #define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2) \ offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1 #if BITS_PER_LONG == 64 # define bpf_ctx_range_ptr(TYPE, MEMBER) \ offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1 #else # define bpf_ctx_range_ptr(TYPE, MEMBER) \ offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1 #endif /* BITS_PER_LONG == 64 */ #define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE) \ ({ \ BUILD_BUG_ON(sizeof_field(TYPE, MEMBER) != (SIZE)); \ *(PTR_SIZE) = (SIZE); \ offsetof(TYPE, MEMBER); \ }) /* A struct sock_filter is architecture independent. */ struct compat_sock_fprog { u16 len; compat_uptr_t filter; /* struct sock_filter * */ }; struct sock_fprog_kern { u16 len; struct sock_filter *filter; }; /* Some arches need doubleword alignment for their instructions and/or data */ #define BPF_IMAGE_ALIGNMENT 8 struct bpf_binary_header { u32 pages; u8 image[] __aligned(BPF_IMAGE_ALIGNMENT); }; struct bpf_prog { u16 pages; /* Number of allocated pages */ u16 jited:1, /* Is our filter JIT'ed? */ jit_requested:1,/* archs need to JIT the prog */ gpl_compatible:1, /* Is filter GPL compatible? */ cb_access:1, /* Is control block accessed? */ dst_needed:1, /* Do we need dst entry? */ blinded:1, /* Was blinded */ is_func:1, /* program is a bpf function */ kprobe_override:1, /* Do we override a kprobe? */ has_callchain_buf:1, /* callchain buffer allocated? */ enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */ call_get_stack:1; /* Do we call bpf_get_stack() or bpf_get_stackid() */ enum bpf_prog_type type; /* Type of BPF program */ enum bpf_attach_type expected_attach_type; /* For some prog types */ u32 len; /* Number of filter blocks */ u32 jited_len; /* Size of jited insns in bytes */ u8 tag[BPF_TAG_SIZE]; struct bpf_prog_aux *aux; /* Auxiliary fields */ struct sock_fprog_kern *orig_prog; /* Original BPF program */ unsigned int (*bpf_func)(const void *ctx, const struct bpf_insn *insn); /* Instructions for interpreter */ struct sock_filter insns[0]; struct bpf_insn insnsi[]; }; struct sk_filter { refcount_t refcnt; struct rcu_head rcu; struct bpf_prog *prog; }; DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key); #define __BPF_PROG_RUN(prog, ctx, dfunc) ({ \ u32 __ret; \ cant_migrate(); \ if (static_branch_unlikely(&bpf_stats_enabled_key)) { \ struct bpf_prog_stats *__stats; \ u64 __start = sched_clock(); \ __ret = dfunc(ctx, (prog)->insnsi, (prog)->bpf_func); \ __stats = this_cpu_ptr(prog->aux->stats); \ u64_stats_update_begin(&__stats->syncp); \ __stats->cnt++; \ __stats->nsecs += sched_clock() - __start; \ u64_stats_update_end(&__stats->syncp); \ } else { \ __ret = dfunc(ctx, (prog)->insnsi, (prog)->bpf_func); \ } \ __ret; }) #define BPF_PROG_RUN(prog, ctx) \ __BPF_PROG_RUN(prog, ctx, bpf_dispatcher_nop_func) /* * Use in preemptible and therefore migratable context to make sure that * the execution of the BPF program runs on one CPU. * * This uses migrate_disable/enable() explicitly to document that the * invocation of a BPF program does not require reentrancy protection * against a BPF program which is invoked from a preempting task. * * For non RT enabled kernels migrate_disable/enable() maps to * preempt_disable/enable(), i.e. it disables also preemption. */ static inline u32 bpf_prog_run_pin_on_cpu(const struct bpf_prog *prog, const void *ctx) { u32 ret; migrate_disable(); ret = __BPF_PROG_RUN(prog, ctx, bpf_dispatcher_nop_func); migrate_enable(); return ret; } #define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN struct bpf_skb_data_end { struct qdisc_skb_cb qdisc_cb; void *data_meta; void *data_end; }; struct bpf_nh_params { u32 nh_family; union { u32 ipv4_nh; struct in6_addr ipv6_nh; }; }; struct bpf_redirect_info { u32 flags; u32 tgt_index; void *tgt_value; struct bpf_map *map; u32 kern_flags; struct bpf_nh_params nh; }; DECLARE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info); /* flags for bpf_redirect_info kern_flags */ #define BPF_RI_F_RF_NO_DIRECT BIT(0) /* no napi_direct on return_frame */ /* Compute the linear packet data range [data, data_end) which * will be accessed by various program types (cls_bpf, act_bpf, * lwt, ...). Subsystems allowing direct data access must (!) * ensure that cb[] area can be written to when BPF program is * invoked (otherwise cb[] save/restore is necessary). */ static inline void bpf_compute_data_pointers(struct sk_buff *skb) { struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; BUILD_BUG_ON(sizeof(*cb) > sizeof_field(struct sk_buff, cb)); cb->data_meta = skb->data - skb_metadata_len(skb); cb->data_end = skb->data + skb_headlen(skb); } /* Similar to bpf_compute_data_pointers(), except that save orginal * data in cb->data and cb->meta_data for restore. */ static inline void bpf_compute_and_save_data_end( struct sk_buff *skb, void **saved_data_end) { struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; *saved_data_end = cb->data_end; cb->data_end = skb->data + skb_headlen(skb); } /* Restore data saved by bpf_compute_data_pointers(). */ static inline void bpf_restore_data_end( struct sk_buff *skb, void *saved_data_end) { struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; cb->data_end = saved_data_end; } static inline u8 *bpf_skb_cb(struct sk_buff *skb) { /* eBPF programs may read/write skb->cb[] area to transfer meta * data between tail calls. Since this also needs to work with * tc, that scratch memory is mapped to qdisc_skb_cb's data area. * * In some socket filter cases, the cb unfortunately needs to be * saved/restored so that protocol specific skb->cb[] data won't * be lost. In any case, due to unpriviledged eBPF programs * attached to sockets, we need to clear the bpf_skb_cb() area * to not leak previous contents to user space. */ BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != BPF_SKB_CB_LEN); BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != sizeof_field(struct qdisc_skb_cb, data)); return qdisc_skb_cb(skb)->data; } /* Must be invoked with migration disabled */ static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog, struct sk_buff *skb) { u8 *cb_data = bpf_skb_cb(skb); u8 cb_saved[BPF_SKB_CB_LEN]; u32 res; if (unlikely(prog->cb_access)) { memcpy(cb_saved, cb_data, sizeof(cb_saved)); memset(cb_data, 0, sizeof(cb_saved)); } res = BPF_PROG_RUN(prog, skb); if (unlikely(prog->cb_access)) memcpy(cb_data, cb_saved, sizeof(cb_saved)); return res; } static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog, struct sk_buff *skb) { u32 res; migrate_disable(); res = __bpf_prog_run_save_cb(prog, skb); migrate_enable(); return res; } static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog, struct sk_buff *skb) { u8 *cb_data = bpf_skb_cb(skb); u32 res; if (unlikely(prog->cb_access)) memset(cb_data, 0, BPF_SKB_CB_LEN); res = bpf_prog_run_pin_on_cpu(prog, skb); return res; } DECLARE_BPF_DISPATCHER(xdp) static __always_inline u32 bpf_prog_run_xdp(const struct bpf_prog *prog, struct xdp_buff *xdp) { /* Caller needs to hold rcu_read_lock() (!), otherwise program * can be released while still running, or map elements could be * freed early while still having concurrent users. XDP fastpath * already takes rcu_read_lock() when fetching the program, so * it's not necessary here anymore. */ return __BPF_PROG_RUN(prog, xdp, BPF_DISPATCHER_FUNC(xdp)); } void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog); static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog) { return prog->len * sizeof(struct bpf_insn); } static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog) { return round_up(bpf_prog_insn_size(prog) + sizeof(__be64) + 1, SHA1_BLOCK_SIZE); } static inline unsigned int bpf_prog_size(unsigned int proglen) { return max(sizeof(struct bpf_prog), offsetof(struct bpf_prog, insns[proglen])); } static inline bool bpf_prog_was_classic(const struct bpf_prog *prog) { /* When classic BPF programs have been loaded and the arch * does not have a classic BPF JIT (anymore), they have been * converted via bpf_migrate_filter() to eBPF and thus always * have an unspec program type. */ return prog->type == BPF_PROG_TYPE_UNSPEC; } static inline u32 bpf_ctx_off_adjust_machine(u32 size) { const u32 size_machine = sizeof(unsigned long); if (size > size_machine && size % size_machine == 0) size = size_machine; return size; } static inline bool bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default) { return size <= size_default && (size & (size - 1)) == 0; } static inline u8 bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default) { u8 access_off = off & (size_default - 1); #ifdef __LITTLE_ENDIAN return access_off; #else return size_default - (access_off + size); #endif } #define bpf_ctx_wide_access_ok(off, size, type, field) \ (size == sizeof(__u64) && \ off >= offsetof(type, field) && \ off + sizeof(__u64) <= offsetofend(type, field) && \ off % sizeof(__u64) == 0) #define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0])) static inline void bpf_prog_lock_ro(struct bpf_prog *fp) { #ifndef CONFIG_BPF_JIT_ALWAYS_ON if (!fp->jited) { set_vm_flush_reset_perms(fp); set_memory_ro((unsigned long)fp, fp->pages); } #endif } static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr) { set_vm_flush_reset_perms(hdr); set_memory_ro((unsigned long)hdr, hdr->pages); set_memory_x((unsigned long)hdr, hdr->pages); } static inline struct bpf_binary_header * bpf_jit_binary_hdr(const struct bpf_prog *fp) { unsigned long real_start = (unsigned long)fp->bpf_func; unsigned long addr = real_start & PAGE_MASK; return (void *)addr; } int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap); static inline int sk_filter(struct sock *sk, struct sk_buff *skb) { return sk_filter_trim_cap(sk, skb, 1); } struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err); void bpf_prog_free(struct bpf_prog *fp); bool bpf_opcode_in_insntable(u8 code); void bpf_prog_free_linfo(struct bpf_prog *prog); void bpf_prog_fill_jited_linfo(struct bpf_prog *prog, const u32 *insn_to_jit_off); int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog); void bpf_prog_free_jited_linfo(struct bpf_prog *prog); void bpf_prog_free_unused_jited_linfo(struct bpf_prog *prog); struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags); struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags); struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size, gfp_t gfp_extra_flags); void __bpf_prog_free(struct bpf_prog *fp); static inline void bpf_prog_unlock_free(struct bpf_prog *fp) { __bpf_prog_free(fp); } typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter, unsigned int flen); int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog); int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog, bpf_aux_classic_check_t trans, bool save_orig); void bpf_prog_destroy(struct bpf_prog *fp); int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk); int sk_attach_bpf(u32 ufd, struct sock *sk); int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk); int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk); void sk_reuseport_prog_free(struct bpf_prog *prog); int sk_detach_filter(struct sock *sk); int sk_get_filter(struct sock *sk, struct sock_filter __user *filter, unsigned int len); bool sk_filter_charge(struct sock *sk, struct sk_filter *fp); void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp); u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); #define __bpf_call_base_args \ ((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \ (void *)__bpf_call_base) struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog); void bpf_jit_compile(struct bpf_prog *prog); bool bpf_jit_needs_zext(void); bool bpf_helper_changes_pkt_data(void *func); static inline bool bpf_dump_raw_ok(const struct cred *cred) { /* Reconstruction of call-sites is dependent on kallsyms, * thus make dump the same restriction. */ return kallsyms_show_value(cred); } struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off, const struct bpf_insn *patch, u32 len); int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt); void bpf_clear_redirect_map(struct bpf_map *map); static inline bool xdp_return_frame_no_direct(void) { struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT; } static inline void xdp_set_return_frame_no_direct(void) { struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT; } static inline void xdp_clear_return_frame_no_direct(void) { struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT; } static inline int xdp_ok_fwd_dev(const struct net_device *fwd, unsigned int pktlen) { unsigned int len; if (unlikely(!(fwd->flags & IFF_UP))) return -ENETDOWN; len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN; if (pktlen > len) return -EMSGSIZE; return 0; } /* The pair of xdp_do_redirect and xdp_do_flush MUST be called in the * same cpu context. Further for best results no more than a single map * for the do_redirect/do_flush pair should be used. This limitation is * because we only track one map and force a flush when the map changes. * This does not appear to be a real limitation for existing software. */ int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb, struct xdp_buff *xdp, struct bpf_prog *prog); int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp, struct bpf_prog *prog); void xdp_do_flush(void); /* The xdp_do_flush_map() helper has been renamed to drop the _map suffix, as * it is no longer only flushing maps. Keep this define for compatibility * until all drivers are updated - do not use xdp_do_flush_map() in new code! */ #define xdp_do_flush_map xdp_do_flush void bpf_warn_invalid_xdp_action(u32 act); #ifdef CONFIG_INET struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk, struct bpf_prog *prog, struct sk_buff *skb, u32 hash); #else static inline struct sock * bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk, struct bpf_prog *prog, struct sk_buff *skb, u32 hash) { return NULL; } #endif #ifdef CONFIG_BPF_JIT extern int bpf_jit_enable; extern int bpf_jit_harden; extern int bpf_jit_kallsyms; extern long bpf_jit_limit; extern long bpf_jit_limit_max; typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size); struct bpf_binary_header * bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr, unsigned int alignment, bpf_jit_fill_hole_t bpf_fill_ill_insns); void bpf_jit_binary_free(struct bpf_binary_header *hdr); u64 bpf_jit_alloc_exec_limit(void); void *bpf_jit_alloc_exec(unsigned long size); void bpf_jit_free_exec(void *addr); void bpf_jit_free(struct bpf_prog *fp); int bpf_jit_add_poke_descriptor(struct bpf_prog *prog, struct bpf_jit_poke_descriptor *poke); int bpf_jit_get_func_addr(const struct bpf_prog *prog, const struct bpf_insn *insn, bool extra_pass, u64 *func_addr, bool *func_addr_fixed); struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp); void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other); static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen, u32 pass, void *image) { pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen, proglen, pass, image, current->comm, task_pid_nr(current)); if (image) print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET, 16, 1, image, proglen, false); } static inline bool bpf_jit_is_ebpf(void) { # ifdef CONFIG_HAVE_EBPF_JIT return true; # else return false; # endif } static inline bool ebpf_jit_enabled(void) { return bpf_jit_enable && bpf_jit_is_ebpf(); } static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp) { return fp->jited && bpf_jit_is_ebpf(); } static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog) { /* These are the prerequisites, should someone ever have the * idea to call blinding outside of them, we make sure to * bail out. */ if (!bpf_jit_is_ebpf()) return false; if (!prog->jit_requested) return false; if (!bpf_jit_harden) return false; if (bpf_jit_harden == 1 && capable(CAP_SYS_ADMIN)) return false; return true; } static inline bool bpf_jit_kallsyms_enabled(void) { /* There are a couple of corner cases where kallsyms should * not be enabled f.e. on hardening. */ if (bpf_jit_harden) return false; if (!bpf_jit_kallsyms) return false; if (bpf_jit_kallsyms == 1) return true; return false; } const char *__bpf_address_lookup(unsigned long addr, unsigned long *size, unsigned long *off, char *sym); bool is_bpf_text_address(unsigned long addr); int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type, char *sym); static inline const char * bpf_address_lookup(unsigned long addr, unsigned long *size, unsigned long *off, char **modname, char *sym) { const char *ret = __bpf_address_lookup(addr, size, off, sym); if (ret && modname) *modname = NULL; return ret; } void bpf_prog_kallsyms_add(struct bpf_prog *fp); void bpf_prog_kallsyms_del(struct bpf_prog *fp); #else /* CONFIG_BPF_JIT */ static inline bool ebpf_jit_enabled(void) { return false; } static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog) { return false; } static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp) { return false; } static inline int bpf_jit_add_poke_descriptor(struct bpf_prog *prog, struct bpf_jit_poke_descriptor *poke) { return -ENOTSUPP; } static inline void bpf_jit_free(struct bpf_prog *fp) { bpf_prog_unlock_free(fp); } static inline bool bpf_jit_kallsyms_enabled(void) { return false; } static inline const char * __bpf_address_lookup(unsigned long addr, unsigned long *size, unsigned long *off, char *sym) { return NULL; } static inline bool is_bpf_text_address(unsigned long addr) { return false; } static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type, char *sym) { return -ERANGE; } static inline const char * bpf_address_lookup(unsigned long addr, unsigned long *size, unsigned long *off, char **modname, char *sym) { return NULL; } static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp) { } static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp) { } #endif /* CONFIG_BPF_JIT */ void bpf_prog_kallsyms_del_all(struct bpf_prog *fp); #define BPF_ANC BIT(15) static inline bool bpf_needs_clear_a(const struct sock_filter *first) { switch (first->code) { case BPF_RET | BPF_K: case BPF_LD | BPF_W | BPF_LEN: return false; case BPF_LD | BPF_W | BPF_ABS: case BPF_LD | BPF_H | BPF_ABS: case BPF_LD | BPF_B | BPF_ABS: if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X) return true; return false; default: return true; } } static inline u16 bpf_anc_helper(const struct sock_filter *ftest) { BUG_ON(ftest->code & BPF_ANC); switch (ftest->code) { case BPF_LD | BPF_W | BPF_ABS: case BPF_LD | BPF_H | BPF_ABS: case BPF_LD | BPF_B | BPF_ABS: #define BPF_ANCILLARY(CODE) case SKF_AD_OFF + SKF_AD_##CODE: \ return BPF_ANC | SKF_AD_##CODE switch (ftest->k) { BPF_ANCILLARY(PROTOCOL); BPF_ANCILLARY(PKTTYPE); BPF_ANCILLARY(IFINDEX); BPF_ANCILLARY(NLATTR); BPF_ANCILLARY(NLATTR_NEST); BPF_ANCILLARY(MARK); BPF_ANCILLARY(QUEUE); BPF_ANCILLARY(HATYPE); BPF_ANCILLARY(RXHASH); BPF_ANCILLARY(CPU); BPF_ANCILLARY(ALU_XOR_X); BPF_ANCILLARY(VLAN_TAG); BPF_ANCILLARY(VLAN_TAG_PRESENT); BPF_ANCILLARY(PAY_OFFSET); BPF_ANCILLARY(RANDOM); BPF_ANCILLARY(VLAN_TPID); } fallthrough; default: return ftest->code; } } void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size); static inline void *bpf_load_pointer(const struct sk_buff *skb, int k, unsigned int size, void *buffer) { if (k >= 0) return skb_header_pointer(skb, k, size, buffer); return bpf_internal_load_pointer_neg_helper(skb, k, size); } static inline int bpf_tell_extensions(void) { return SKF_AD_MAX; } struct bpf_sock_addr_kern { struct sock *sk; struct sockaddr *uaddr; /* Temporary "register" to make indirect stores to nested structures * defined above. We need three registers to make such a store, but * only two (src and dst) are available at convert_ctx_access time */ u64 tmp_reg; void *t_ctx; /* Attach type specific context. */ }; struct bpf_sock_ops_kern { struct sock *sk; union { u32 args[4]; u32 reply; u32 replylong[4]; }; struct sk_buff *syn_skb; struct sk_buff *skb; void *skb_data_end; u8 op; u8 is_fullsock; u8 remaining_opt_len; u64 temp; /* temp and everything after is not * initialized to 0 before calling * the BPF program. New fields that * should be initialized to 0 should * be inserted before temp. * temp is scratch storage used by * sock_ops_convert_ctx_access * as temporary storage of a register. */ }; struct bpf_sysctl_kern { struct ctl_table_header *head; struct ctl_table *table; void *cur_val; size_t cur_len; void *new_val; size_t new_len; int new_updated; int write; loff_t *ppos; /* Temporary "register" for indirect stores to ppos. */ u64 tmp_reg; }; struct bpf_sockopt_kern { struct sock *sk; u8 *optval; u8 *optval_end; s32 level; s32 optname; s32 optlen; s32 retval; }; int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len); struct bpf_sk_lookup_kern { u16 family; u16 protocol; __be16 sport; u16 dport; struct { __be32 saddr; __be32 daddr; } v4; struct { const struct in6_addr *saddr; const struct in6_addr *daddr; } v6; struct sock *selected_sk; bool no_reuseport; }; extern struct static_key_false bpf_sk_lookup_enabled; /* Runners for BPF_SK_LOOKUP programs to invoke on socket lookup. * * Allowed return values for a BPF SK_LOOKUP program are SK_PASS and * SK_DROP. Their meaning is as follows: * * SK_PASS && ctx.selected_sk != NULL: use selected_sk as lookup result * SK_PASS && ctx.selected_sk == NULL: continue to htable-based socket lookup * SK_DROP : terminate lookup with -ECONNREFUSED * * This macro aggregates return values and selected sockets from * multiple BPF programs according to following rules in order: * * 1. If any program returned SK_PASS and a non-NULL ctx.selected_sk, * macro result is SK_PASS and last ctx.selected_sk is used. * 2. If any program returned SK_DROP return value, * macro result is SK_DROP. * 3. Otherwise result is SK_PASS and ctx.selected_sk is NULL. * * Caller must ensure that the prog array is non-NULL, and that the * array as well as the programs it contains remain valid. */ #define BPF_PROG_SK_LOOKUP_RUN_ARRAY(array, ctx, func) \ ({ \ struct bpf_sk_lookup_kern *_ctx = &(ctx); \ struct bpf_prog_array_item *_item; \ struct sock *_selected_sk = NULL; \ bool _no_reuseport = false; \ struct bpf_prog *_prog; \ bool _all_pass = true; \ u32 _ret; \ \ migrate_disable(); \ _item = &(array)->items[0]; \ while ((_prog = READ_ONCE(_item->prog))) { \ /* restore most recent selection */ \ _ctx->selected_sk = _selected_sk; \ _ctx->no_reuseport = _no_reuseport; \ \ _ret = func(_prog, _ctx); \ if (_ret == SK_PASS && _ctx->selected_sk) { \ /* remember last non-NULL socket */ \ _selected_sk = _ctx->selected_sk; \ _no_reuseport = _ctx->no_reuseport; \ } else if (_ret == SK_DROP && _all_pass) { \ _all_pass = false; \ } \ _item++; \ } \ _ctx->selected_sk = _selected_sk; \ _ctx->no_reuseport = _no_reuseport; \ migrate_enable(); \ _all_pass || _selected_sk ? SK_PASS : SK_DROP; \ }) static inline bool bpf_sk_lookup_run_v4(struct net *net, int protocol, const __be32 saddr, const __be16 sport, const __be32 daddr, const u16 dport, struct sock **psk) { struct bpf_prog_array *run_array; struct sock *selected_sk = NULL; bool no_reuseport = false; rcu_read_lock(); run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]); if (run_array) { struct bpf_sk_lookup_kern ctx = { .family = AF_INET, .protocol = protocol, .v4.saddr = saddr, .v4.daddr = daddr, .sport = sport, .dport = dport, }; u32 act; act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, BPF_PROG_RUN); if (act == SK_PASS) { selected_sk = ctx.selected_sk; no_reuseport = ctx.no_reuseport; } else { selected_sk = ERR_PTR(-ECONNREFUSED); } } rcu_read_unlock(); *psk = selected_sk; return no_reuseport; } #if IS_ENABLED(CONFIG_IPV6) static inline bool bpf_sk_lookup_run_v6(struct net *net, int protocol, const struct in6_addr *saddr, const __be16 sport, const struct in6_addr *daddr, const u16 dport, struct sock **psk) { struct bpf_prog_array *run_array; struct sock *selected_sk = NULL; bool no_reuseport = false; rcu_read_lock(); run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]); if (run_array) { struct bpf_sk_lookup_kern ctx = { .family = AF_INET6, .protocol = protocol, .v6.saddr = saddr, .v6.daddr = daddr, .sport = sport, .dport = dport, }; u32 act; act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, BPF_PROG_RUN); if (act == SK_PASS) { selected_sk = ctx.selected_sk; no_reuseport = ctx.no_reuseport; } else { selected_sk = ERR_PTR(-ECONNREFUSED); } } rcu_read_unlock(); *psk = selected_sk; return no_reuseport; } #endif /* IS_ENABLED(CONFIG_IPV6) */ #endif /* __LINUX_FILTER_H__ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 /* SPDX-License-Identifier: GPL-2.0-only */ /* * async.h: Asynchronous function calls for boot performance * * (C) Copyright 2009 Intel Corporation * Author: Arjan van de Ven <arjan@linux.intel.com> */ #ifndef __ASYNC_H__ #define __ASYNC_H__ #include <linux/types.h> #include <linux/list.h> #include <linux/numa.h> #include <linux/device.h> typedef u64 async_cookie_t; typedef void (*async_func_t) (void *data, async_cookie_t cookie); struct async_domain { struct list_head pending; unsigned registered:1; }; /* * domain participates in global async_synchronize_full */ #define ASYNC_DOMAIN(_name) \ struct async_domain _name = { .pending = LIST_HEAD_INIT(_name.pending), \ .registered = 1 } /* * domain is free to go out of scope as soon as all pending work is * complete, this domain does not participate in async_synchronize_full */ #define ASYNC_DOMAIN_EXCLUSIVE(_name) \ struct async_domain _name = { .pending = LIST_HEAD_INIT(_name.pending), \ .registered = 0 } async_cookie_t async_schedule_node(async_func_t func, void *data, int node); async_cookie_t async_schedule_node_domain(async_func_t func, void *data, int node, struct async_domain *domain); /** * async_schedule - schedule a function for asynchronous execution * @func: function to execute asynchronously * @data: data pointer to pass to the function * * Returns an async_cookie_t that may be used for checkpointing later. * Note: This function may be called from atomic or non-atomic contexts. */ static inline async_cookie_t async_schedule(async_func_t func, void *data) { return async_schedule_node(func, data, NUMA_NO_NODE); } /** * async_schedule_domain - schedule a function for asynchronous execution within a certain domain * @func: function to execute asynchronously * @data: data pointer to pass to the function * @domain: the domain * * Returns an async_cookie_t that may be used for checkpointing later. * @domain may be used in the async_synchronize_*_domain() functions to * wait within a certain synchronization domain rather than globally. * Note: This function may be called from atomic or non-atomic contexts. */ static inline async_cookie_t async_schedule_domain(async_func_t func, void *data, struct async_domain *domain) { return async_schedule_node_domain(func, data, NUMA_NO_NODE, domain); } /** * async_schedule_dev - A device specific version of async_schedule * @func: function to execute asynchronously * @dev: device argument to be passed to function * * Returns an async_cookie_t that may be used for checkpointing later. * @dev is used as both the argument for the function and to provide NUMA * context for where to run the function. By doing this we can try to * provide for the best possible outcome by operating on the device on the * CPUs closest to the device. * Note: This function may be called from atomic or non-atomic contexts. */ static inline async_cookie_t async_schedule_dev(async_func_t func, struct device *dev) { return async_schedule_node(func, dev, dev_to_node(dev)); } /** * async_schedule_dev_domain - A device specific version of async_schedule_domain * @func: function to execute asynchronously * @dev: device argument to be passed to function * @domain: the domain * * Returns an async_cookie_t that may be used for checkpointing later. * @dev is used as both the argument for the function and to provide NUMA * context for where to run the function. By doing this we can try to * provide for the best possible outcome by operating on the device on the * CPUs closest to the device. * @domain may be used in the async_synchronize_*_domain() functions to * wait within a certain synchronization domain rather than globally. * Note: This function may be called from atomic or non-atomic contexts. */ static inline async_cookie_t async_schedule_dev_domain(async_func_t func, struct device *dev, struct async_domain *domain) { return async_schedule_node_domain(func, dev, dev_to_node(dev), domain); } void async_unregister_domain(struct async_domain *domain); extern void async_synchronize_full(void); extern void async_synchronize_full_domain(struct async_domain *domain); extern void async_synchronize_cookie(async_cookie_t cookie); extern void async_synchronize_cookie_domain(async_cookie_t cookie, struct async_domain *domain); extern bool current_is_async(void); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* Red Black Trees (C) 1999 Andrea Arcangeli <andrea@suse.de> linux/include/linux/rbtree.h To use rbtrees you'll have to implement your own insert and search cores. This will avoid us to use callbacks and to drop drammatically performances. I know it's not the cleaner way, but in C (not in C++) to get performances and genericity... See Documentation/core-api/rbtree.rst for documentation and samples. */ #ifndef _LINUX_RBTREE_H #define _LINUX_RBTREE_H #include <linux/kernel.h> #include <linux/stddef.h> #include <linux/rcupdate.h> struct rb_node { unsigned long __rb_parent_color; struct rb_node *rb_right; struct rb_node *rb_left; } __attribute__((aligned(sizeof(long)))); /* The alignment might seem pointless, but allegedly CRIS needs it */ struct rb_root { struct rb_node *rb_node; }; #define rb_parent(r) ((struct rb_node *)((r)->__rb_parent_color & ~3)) #define RB_ROOT (struct rb_root) { NULL, } #define rb_entry(ptr, type, member) container_of(ptr, type, member) #define RB_EMPTY_ROOT(root) (READ_ONCE((root)->rb_node) == NULL) /* 'empty' nodes are nodes that are known not to be inserted in an rbtree */ #define RB_EMPTY_NODE(node) \ ((node)->__rb_parent_color == (unsigned long)(node)) #define RB_CLEAR_NODE(node) \ ((node)->__rb_parent_color = (unsigned long)(node)) extern void rb_insert_color(struct rb_node *, struct rb_root *); extern void rb_erase(struct rb_node *, struct rb_root *); /* Find logical next and previous nodes in a tree */ extern struct rb_node *rb_next(const struct rb_node *); extern struct rb_node *rb_prev(const struct rb_node *); extern struct rb_node *rb_first(const struct rb_root *); extern struct rb_node *rb_last(const struct rb_root *); /* Postorder iteration - always visit the parent after its children */ extern struct rb_node *rb_first_postorder(const struct rb_root *); extern struct rb_node *rb_next_postorder(const struct rb_node *); /* Fast replacement of a single node without remove/rebalance/add/rebalance */ extern void rb_replace_node(struct rb_node *victim, struct rb_node *new, struct rb_root *root); extern void rb_replace_node_rcu(struct rb_node *victim, struct rb_node *new, struct rb_root *root); static inline void rb_link_node(struct rb_node *node, struct rb_node *parent, struct rb_node **rb_link) { node->__rb_parent_color = (unsigned long)parent; node->rb_left = node->rb_right = NULL; *rb_link = node; } static inline void rb_link_node_rcu(struct rb_node *node, struct rb_node *parent, struct rb_node **rb_link) { node->__rb_parent_color = (unsigned long)parent; node->rb_left = node->rb_right = NULL; rcu_assign_pointer(*rb_link, node); } #define rb_entry_safe(ptr, type, member) \ ({ typeof(ptr) ____ptr = (ptr); \ ____ptr ? rb_entry(____ptr, type, member) : NULL; \ }) /** * rbtree_postorder_for_each_entry_safe - iterate in post-order over rb_root of * given type allowing the backing memory of @pos to be invalidated * * @pos: the 'type *' to use as a loop cursor. * @n: another 'type *' to use as temporary storage * @root: 'rb_root *' of the rbtree. * @field: the name of the rb_node field within 'type'. * * rbtree_postorder_for_each_entry_safe() provides a similar guarantee as * list_for_each_entry_safe() and allows the iteration to continue independent * of changes to @pos by the body of the loop. * * Note, however, that it cannot handle other modifications that re-order the * rbtree it is iterating over. This includes calling rb_erase() on @pos, as * rb_erase() may rebalance the tree, causing us to miss some nodes. */ #define rbtree_postorder_for_each_entry_safe(pos, n, root, field) \ for (pos = rb_entry_safe(rb_first_postorder(root), typeof(*pos), field); \ pos && ({ n = rb_entry_safe(rb_next_postorder(&pos->field), \ typeof(*pos), field); 1; }); \ pos = n) /* * Leftmost-cached rbtrees. * * We do not cache the rightmost node based on footprint * size vs number of potential users that could benefit * from O(1) rb_last(). Just not worth it, users that want * this feature can always implement the logic explicitly. * Furthermore, users that want to cache both pointers may * find it a bit asymmetric, but that's ok. */ struct rb_root_cached { struct rb_root rb_root; struct rb_node *rb_leftmost; }; #define RB_ROOT_CACHED (struct rb_root_cached) { {NULL, }, NULL } /* Same as rb_first(), but O(1) */ #define rb_first_cached(root) (root)->rb_leftmost static inline void rb_insert_color_cached(struct rb_node *node, struct rb_root_cached *root, bool leftmost) { if (leftmost) root->rb_leftmost = node; rb_insert_color(node, &root->rb_root); } static inline void rb_erase_cached(struct rb_node *node, struct rb_root_cached *root) { if (root->rb_leftmost == node) root->rb_leftmost = rb_next(node); rb_erase(node, &root->rb_root); } static inline void rb_replace_node_cached(struct rb_node *victim, struct rb_node *new, struct rb_root_cached *root) { if (root->rb_leftmost == victim) root->rb_leftmost = new; rb_replace_node(victim, new, &root->rb_root); } #endif /* _LINUX_RBTREE_H */
1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_PAGEMAP_H #define _LINUX_PAGEMAP_H /* * Copyright 1995 Linus Torvalds */ #include <linux/mm.h> #include <linux/fs.h> #include <linux/list.h> #include <linux/highmem.h> #include <linux/compiler.h> #include <linux/uaccess.h> #include <linux/gfp.h> #include <linux/bitops.h> #include <linux/hardirq.h> /* for in_interrupt() */ #include <linux/hugetlb_inline.h> struct pagevec; /* * Bits in mapping->flags. */ enum mapping_flags { AS_EIO = 0, /* IO error on async write */ AS_ENOSPC = 1, /* ENOSPC on async write */ AS_MM_ALL_LOCKS = 2, /* under mm_take_all_locks() */ AS_UNEVICTABLE = 3, /* e.g., ramdisk, SHM_LOCK */ AS_EXITING = 4, /* final truncate in progress */ /* writeback related tags are not used */ AS_NO_WRITEBACK_TAGS = 5, AS_THP_SUPPORT = 6, /* THPs supported */ }; /** * mapping_set_error - record a writeback error in the address_space * @mapping: the mapping in which an error should be set * @error: the error to set in the mapping * * When writeback fails in some way, we must record that error so that * userspace can be informed when fsync and the like are called. We endeavor * to report errors on any file that was open at the time of the error. Some * internal callers also need to know when writeback errors have occurred. * * When a writeback error occurs, most filesystems will want to call * mapping_set_error to record the error in the mapping so that it can be * reported when the application calls fsync(2). */ static inline void mapping_set_error(struct address_space *mapping, int error) { if (likely(!error)) return; /* Record in wb_err for checkers using errseq_t based tracking */ __filemap_set_wb_err(mapping, error); /* Record it in superblock */ if (mapping->host) errseq_set(&mapping->host->i_sb->s_wb_err, error); /* Record it in flags for now, for legacy callers */ if (error == -ENOSPC) set_bit(AS_ENOSPC, &mapping->flags); else set_bit(AS_EIO, &mapping->flags); } static inline void mapping_set_unevictable(struct address_space *mapping) { set_bit(AS_UNEVICTABLE, &mapping->flags); } static inline void mapping_clear_unevictable(struct address_space *mapping) { clear_bit(AS_UNEVICTABLE, &mapping->flags); } static inline bool mapping_unevictable(struct address_space *mapping) { return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags); } static inline void mapping_set_exiting(struct address_space *mapping) { set_bit(AS_EXITING, &mapping->flags); } static inline int mapping_exiting(struct address_space *mapping) { return test_bit(AS_EXITING, &mapping->flags); } static inline void mapping_set_no_writeback_tags(struct address_space *mapping) { set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags); } static inline int mapping_use_writeback_tags(struct address_space *mapping) { return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags); } static inline gfp_t mapping_gfp_mask(struct address_space * mapping) { return mapping->gfp_mask; } /* Restricts the given gfp_mask to what the mapping allows. */ static inline gfp_t mapping_gfp_constraint(struct address_space *mapping, gfp_t gfp_mask) { return mapping_gfp_mask(mapping) & gfp_mask; } /* * This is non-atomic. Only to be used before the mapping is activated. * Probably needs a barrier... */ static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask) { m->gfp_mask = mask; } static inline bool mapping_thp_support(struct address_space *mapping) { return test_bit(AS_THP_SUPPORT, &mapping->flags); } static inline int filemap_nr_thps(struct address_space *mapping) { #ifdef CONFIG_READ_ONLY_THP_FOR_FS return atomic_read(&mapping->nr_thps); #else return 0; #endif } static inline void filemap_nr_thps_inc(struct address_space *mapping) { #ifdef CONFIG_READ_ONLY_THP_FOR_FS if (!mapping_thp_support(mapping)) atomic_inc(&mapping->nr_thps); #else WARN_ON_ONCE(1); #endif } static inline void filemap_nr_thps_dec(struct address_space *mapping) { #ifdef CONFIG_READ_ONLY_THP_FOR_FS if (!mapping_thp_support(mapping)) atomic_dec(&mapping->nr_thps); #else WARN_ON_ONCE(1); #endif } void release_pages(struct page **pages, int nr); /* * speculatively take a reference to a page. * If the page is free (_refcount == 0), then _refcount is untouched, and 0 * is returned. Otherwise, _refcount is incremented by 1 and 1 is returned. * * This function must be called inside the same rcu_read_lock() section as has * been used to lookup the page in the pagecache radix-tree (or page table): * this allows allocators to use a synchronize_rcu() to stabilize _refcount. * * Unless an RCU grace period has passed, the count of all pages coming out * of the allocator must be considered unstable. page_count may return higher * than expected, and put_page must be able to do the right thing when the * page has been finished with, no matter what it is subsequently allocated * for (because put_page is what is used here to drop an invalid speculative * reference). * * This is the interesting part of the lockless pagecache (and lockless * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page) * has the following pattern: * 1. find page in radix tree * 2. conditionally increment refcount * 3. check the page is still in pagecache (if no, goto 1) * * Remove-side that cares about stability of _refcount (eg. reclaim) has the * following (with the i_pages lock held): * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg) * B. remove page from pagecache * C. free the page * * There are 2 critical interleavings that matter: * - 2 runs before A: in this case, A sees elevated refcount and bails out * - A runs before 2: in this case, 2 sees zero refcount and retries; * subsequently, B will complete and 1 will find no page, causing the * lookup to return NULL. * * It is possible that between 1 and 2, the page is removed then the exact same * page is inserted into the same position in pagecache. That's OK: the * old find_get_page using a lock could equally have run before or after * such a re-insertion, depending on order that locks are granted. * * Lookups racing against pagecache insertion isn't a big problem: either 1 * will find the page or it will not. Likewise, the old find_get_page could run * either before the insertion or afterwards, depending on timing. */ static inline int __page_cache_add_speculative(struct page *page, int count) { #ifdef CONFIG_TINY_RCU # ifdef CONFIG_PREEMPT_COUNT VM_BUG_ON(!in_atomic() && !irqs_disabled()); # endif /* * Preempt must be disabled here - we rely on rcu_read_lock doing * this for us. * * Pagecache won't be truncated from interrupt context, so if we have * found a page in the radix tree here, we have pinned its refcount by * disabling preempt, and hence no need for the "speculative get" that * SMP requires. */ VM_BUG_ON_PAGE(page_count(page) == 0, page); page_ref_add(page, count); #else if (unlikely(!page_ref_add_unless(page, count, 0))) { /* * Either the page has been freed, or will be freed. * In either case, retry here and the caller should * do the right thing (see comments above). */ return 0; } #endif VM_BUG_ON_PAGE(PageTail(page), page); return 1; } static inline int page_cache_get_speculative(struct page *page) { return __page_cache_add_speculative(page, 1); } static inline int page_cache_add_speculative(struct page *page, int count) { return __page_cache_add_speculative(page, count); } /** * attach_page_private - Attach private data to a page. * @page: Page to attach data to. * @data: Data to attach to page. * * Attaching private data to a page increments the page's reference count. * The data must be detached before the page will be freed. */ static inline void attach_page_private(struct page *page, void *data) { get_page(page); set_page_private(page, (unsigned long)data); SetPagePrivate(page); } /** * detach_page_private - Detach private data from a page. * @page: Page to detach data from. * * Removes the data that was previously attached to the page and decrements * the refcount on the page. * * Return: Data that was attached to the page. */ static inline void *detach_page_private(struct page *page) { void *data = (void *)page_private(page); if (!PagePrivate(page)) return NULL; ClearPagePrivate(page); set_page_private(page, 0); put_page(page); return data; } #ifdef CONFIG_NUMA extern struct page *__page_cache_alloc(gfp_t gfp); #else static inline struct page *__page_cache_alloc(gfp_t gfp) { return alloc_pages(gfp, 0); } #endif static inline struct page *page_cache_alloc(struct address_space *x) { return __page_cache_alloc(mapping_gfp_mask(x)); } static inline gfp_t readahead_gfp_mask(struct address_space *x) { return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN; } typedef int filler_t(void *, struct page *); pgoff_t page_cache_next_miss(struct address_space *mapping, pgoff_t index, unsigned long max_scan); pgoff_t page_cache_prev_miss(struct address_space *mapping, pgoff_t index, unsigned long max_scan); #define FGP_ACCESSED 0x00000001 #define FGP_LOCK 0x00000002 #define FGP_CREAT 0x00000004 #define FGP_WRITE 0x00000008 #define FGP_NOFS 0x00000010 #define FGP_NOWAIT 0x00000020 #define FGP_FOR_MMAP 0x00000040 #define FGP_HEAD 0x00000080 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset, int fgp_flags, gfp_t cache_gfp_mask); /** * find_get_page - find and get a page reference * @mapping: the address_space to search * @offset: the page index * * Looks up the page cache slot at @mapping & @offset. If there is a * page cache page, it is returned with an increased refcount. * * Otherwise, %NULL is returned. */ static inline struct page *find_get_page(struct address_space *mapping, pgoff_t offset) { return pagecache_get_page(mapping, offset, 0, 0); } static inline struct page *find_get_page_flags(struct address_space *mapping, pgoff_t offset, int fgp_flags) { return pagecache_get_page(mapping, offset, fgp_flags, 0); } /** * find_lock_page - locate, pin and lock a pagecache page * @mapping: the address_space to search * @index: the page index * * Looks up the page cache entry at @mapping & @index. If there is a * page cache page, it is returned locked and with an increased * refcount. * * Context: May sleep. * Return: A struct page or %N