1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_MBCACHE_H #define _LINUX_MBCACHE_H #include <linux/hash.h> #include <linux/list_bl.h> #include <linux/list.h> #include <linux/atomic.h> #include <linux/fs.h> struct mb_cache; struct mb_cache_entry { /* List of entries in cache - protected by cache->c_list_lock */ struct list_head e_list; /* Hash table list - protected by hash chain bitlock */ struct hlist_bl_node e_hash_list; atomic_t e_refcnt; /* Key in hash - stable during lifetime of the entry */ u32 e_key; u32 e_referenced:1; u32 e_reusable:1; /* User provided value - stable during lifetime of the entry */ u64 e_value; }; struct mb_cache *mb_cache_create(int bucket_bits); void mb_cache_destroy(struct mb_cache *cache); int mb_cache_entry_create(struct mb_cache *cache, gfp_t mask, u32 key, u64 value, bool reusable); void __mb_cache_entry_free(struct mb_cache_entry *entry); static inline int mb_cache_entry_put(struct mb_cache *cache, struct mb_cache_entry *entry) { if (!atomic_dec_and_test(&entry->e_refcnt)) return 0; __mb_cache_entry_free(entry); return 1; } void mb_cache_entry_delete(struct mb_cache *cache, u32 key, u64 value); struct mb_cache_entry *mb_cache_entry_get(struct mb_cache *cache, u32 key, u64 value); struct mb_cache_entry *mb_cache_entry_find_first(struct mb_cache *cache, u32 key); struct mb_cache_entry *mb_cache_entry_find_next(struct mb_cache *cache, struct mb_cache_entry *entry); void mb_cache_entry_touch(struct mb_cache *cache, struct mb_cache_entry *entry); #endif /* _LINUX_MBCACHE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 /* SPDX-License-Identifier: GPL-2.0 */ /* * Percpu refcounts: * (C) 2012 Google, Inc. * Author: Kent Overstreet <koverstreet@google.com> * * This implements a refcount with similar semantics to atomic_t - atomic_inc(), * atomic_dec_and_test() - but percpu. * * There's one important difference between percpu refs and normal atomic_t * refcounts; you have to keep track of your initial refcount, and then when you * start shutting down you call percpu_ref_kill() _before_ dropping the initial * refcount. * * The refcount will have a range of 0 to ((1U << 31) - 1), i.e. one bit less * than an atomic_t - this is because of the way shutdown works, see * percpu_ref_kill()/PERCPU_COUNT_BIAS. * * Before you call percpu_ref_kill(), percpu_ref_put() does not check for the * refcount hitting 0 - it can't, if it was in percpu mode. percpu_ref_kill() * puts the ref back in single atomic_t mode, collecting the per cpu refs and * issuing the appropriate barriers, and then marks the ref as shutting down so * that percpu_ref_put() will check for the ref hitting 0. After it returns, * it's safe to drop the initial ref. * * USAGE: * * See fs/aio.c for some example usage; it's used there for struct kioctx, which * is created when userspaces calls io_setup(), and destroyed when userspace * calls io_destroy() or the process exits. * * In the aio code, kill_ioctx() is called when we wish to destroy a kioctx; it * removes the kioctx from the proccess's table of kioctxs and kills percpu_ref. * After that, there can't be any new users of the kioctx (from lookup_ioctx()) * and it's then safe to drop the initial ref with percpu_ref_put(). * * Note that the free path, free_ioctx(), needs to go through explicit call_rcu() * to synchronize with RCU protected lookup_ioctx(). percpu_ref operations don't * imply RCU grace periods of any kind and if a user wants to combine percpu_ref * with RCU protection, it must be done explicitly. * * Code that does a two stage shutdown like this often needs some kind of * explicit synchronization to ensure the initial refcount can only be dropped * once - percpu_ref_kill() does this for you, it returns true once and false if * someone else already called it. The aio code uses it this way, but it's not * necessary if the code has some other mechanism to synchronize teardown. * around. */ #ifndef _LINUX_PERCPU_REFCOUNT_H #define _LINUX_PERCPU_REFCOUNT_H #include <linux/atomic.h> #include <linux/kernel.h> #include <linux/percpu.h> #include <linux/rcupdate.h> #include <linux/gfp.h> struct percpu_ref; typedef void (percpu_ref_func_t)(struct percpu_ref *); /* flags set in the lower bits of percpu_ref->percpu_count_ptr */ enum { __PERCPU_REF_ATOMIC = 1LU << 0, /* operating in atomic mode */ __PERCPU_REF_DEAD = 1LU << 1, /* (being) killed */ __PERCPU_REF_ATOMIC_DEAD = __PERCPU_REF_ATOMIC | __PERCPU_REF_DEAD, __PERCPU_REF_FLAG_BITS = 2, }; /* @flags for percpu_ref_init() */ enum { /* * Start w/ ref == 1 in atomic mode. Can be switched to percpu * operation using percpu_ref_switch_to_percpu(). If initialized * with this flag, the ref will stay in atomic mode until * percpu_ref_switch_to_percpu() is invoked on it. * Implies ALLOW_REINIT. */ PERCPU_REF_INIT_ATOMIC = 1 << 0, /* * Start dead w/ ref == 0 in atomic mode. Must be revived with * percpu_ref_reinit() before used. Implies INIT_ATOMIC and * ALLOW_REINIT. */ PERCPU_REF_INIT_DEAD = 1 << 1, /* * Allow switching from atomic mode to percpu mode. */ PERCPU_REF_ALLOW_REINIT = 1 << 2, }; struct percpu_ref_data { atomic_long_t count; percpu_ref_func_t *release; percpu_ref_func_t *confirm_switch; bool force_atomic:1; bool allow_reinit:1; struct rcu_head rcu; struct percpu_ref *ref; }; struct percpu_ref { /* * The low bit of the pointer indicates whether the ref is in percpu * mode; if set, then get/put will manipulate the atomic_t. */ unsigned long percpu_count_ptr; /* * 'percpu_ref' is often embedded into user structure, and only * 'percpu_count_ptr' is required in fast path, move other fields * into 'percpu_ref_data', so we can reduce memory footprint in * fast path. */ struct percpu_ref_data *data; }; int __must_check percpu_ref_init(struct percpu_ref *ref, percpu_ref_func_t *release, unsigned int flags, gfp_t gfp); void percpu_ref_exit(struct percpu_ref *ref); void percpu_ref_switch_to_atomic(struct percpu_ref *ref, percpu_ref_func_t *confirm_switch); void percpu_ref_switch_to_atomic_sync(struct percpu_ref *ref); void percpu_ref_switch_to_percpu(struct percpu_ref *ref); void percpu_ref_kill_and_confirm(struct percpu_ref *ref, percpu_ref_func_t *confirm_kill); void percpu_ref_resurrect(struct percpu_ref *ref); void percpu_ref_reinit(struct percpu_ref *ref); bool percpu_ref_is_zero(struct percpu_ref *ref); /** * percpu_ref_kill - drop the initial ref * @ref: percpu_ref to kill * * Must be used to drop the initial ref on a percpu refcount; must be called * precisely once before shutdown. * * Switches @ref into atomic mode before gathering up the percpu counters * and dropping the initial ref. * * There are no implied RCU grace periods between kill and release. */ static inline void percpu_ref_kill(struct percpu_ref *ref) { percpu_ref_kill_and_confirm(ref, NULL); } /* * Internal helper. Don't use outside percpu-refcount proper. The * function doesn't return the pointer and let the caller test it for NULL * because doing so forces the compiler to generate two conditional * branches as it can't assume that @ref->percpu_count is not NULL. */ static inline bool __ref_is_percpu(struct percpu_ref *ref, unsigned long __percpu **percpu_countp) { unsigned long percpu_ptr; /* * The value of @ref->percpu_count_ptr is tested for * !__PERCPU_REF_ATOMIC, which may be set asynchronously, and then * used as a pointer. If the compiler generates a separate fetch * when using it as a pointer, __PERCPU_REF_ATOMIC may be set in * between contaminating the pointer value, meaning that * READ_ONCE() is required when fetching it. * * The dependency ordering from the READ_ONCE() pairs * with smp_store_release() in __percpu_ref_switch_to_percpu(). */ percpu_ptr = READ_ONCE(ref->percpu_count_ptr); /* * Theoretically, the following could test just ATOMIC; however, * then we'd have to mask off DEAD separately as DEAD may be * visible without ATOMIC if we race with percpu_ref_kill(). DEAD * implies ATOMIC anyway. Test them together. */ if (unlikely(percpu_ptr & __PERCPU_REF_ATOMIC_DEAD)) return false; *percpu_countp = (unsigned long __percpu *)percpu_ptr; return true; } /** * percpu_ref_get_many - increment a percpu refcount * @ref: percpu_ref to get * @nr: number of references to get * * Analogous to atomic_long_add(). * * This function is safe to call as long as @ref is between init and exit. */ static inline void percpu_ref_get_many(struct percpu_ref *ref, unsigned long nr) { unsigned long __percpu *percpu_count; rcu_read_lock(); if (__ref_is_percpu(ref, &percpu_count)) this_cpu_add(*percpu_count, nr); else atomic_long_add(nr, &ref->data->count); rcu_read_unlock(); } /** * percpu_ref_get - increment a percpu refcount * @ref: percpu_ref to get * * Analagous to atomic_long_inc(). * * This function is safe to call as long as @ref is between init and exit. */ static inline void percpu_ref_get(struct percpu_ref *ref) { percpu_ref_get_many(ref, 1); } /** * percpu_ref_tryget_many - try to increment a percpu refcount * @ref: percpu_ref to try-get * @nr: number of references to get * * Increment a percpu refcount by @nr unless its count already reached zero. * Returns %true on success; %false on failure. * * This function is safe to call as long as @ref is between init and exit. */ static inline bool percpu_ref_tryget_many(struct percpu_ref *ref, unsigned long nr) { unsigned long __percpu *percpu_count; bool ret; rcu_read_lock(); if (__ref_is_percpu(ref, &percpu_count)) { this_cpu_add(*percpu_count, nr); ret = true; } else { ret = atomic_long_add_unless(&ref->data->count, nr, 0); } rcu_read_unlock(); return ret; } /** * percpu_ref_tryget - try to increment a percpu refcount * @ref: percpu_ref to try-get * * Increment a percpu refcount unless its count already reached zero. * Returns %true on success; %false on failure. * * This function is safe to call as long as @ref is between init and exit. */ static inline bool percpu_ref_tryget(struct percpu_ref *ref) { return percpu_ref_tryget_many(ref, 1); } /** * percpu_ref_tryget_live - try to increment a live percpu refcount * @ref: percpu_ref to try-get * * Increment a percpu refcount unless it has already been killed. Returns * %true on success; %false on failure. * * Completion of percpu_ref_kill() in itself doesn't guarantee that this * function will fail. For such guarantee, percpu_ref_kill_and_confirm() * should be used. After the confirm_kill callback is invoked, it's * guaranteed that no new reference will be given out by * percpu_ref_tryget_live(). * * This function is safe to call as long as @ref is between init and exit. */ static inline bool percpu_ref_tryget_live(struct percpu_ref *ref) { unsigned long __percpu *percpu_count; bool ret = false; rcu_read_lock(); if (__ref_is_percpu(ref, &percpu_count)) { this_cpu_inc(*percpu_count); ret = true; } else if (!(ref->percpu_count_ptr & __PERCPU_REF_DEAD)) { ret = atomic_long_inc_not_zero(&ref->data->count); } rcu_read_unlock(); return ret; } /** * percpu_ref_put_many - decrement a percpu refcount * @ref: percpu_ref to put * @nr: number of references to put * * Decrement the refcount, and if 0, call the release function (which was passed * to percpu_ref_init()) * * This function is safe to call as long as @ref is between init and exit. */ static inline void percpu_ref_put_many(struct percpu_ref *ref, unsigned long nr) { unsigned long __percpu *percpu_count; rcu_read_lock(); if (__ref_is_percpu(ref, &percpu_count)) this_cpu_sub(*percpu_count, nr); else if (unlikely(atomic_long_sub_and_test(nr, &ref->data->count))) ref->data->release(ref); rcu_read_unlock(); } /** * percpu_ref_put - decrement a percpu refcount * @ref: percpu_ref to put * * Decrement the refcount, and if 0, call the release function (which was passed * to percpu_ref_init()) * * This function is safe to call as long as @ref is between init and exit. */ static inline void percpu_ref_put(struct percpu_ref *ref) { percpu_ref_put_many(ref, 1); } /** * percpu_ref_is_dying - test whether a percpu refcount is dying or dead * @ref: percpu_ref to test * * Returns %true if @ref is dying or dead. * * This function is safe to call as long as @ref is between init and exit * and the caller is responsible for synchronizing against state changes. */ static inline bool percpu_ref_is_dying(struct percpu_ref *ref) { return ref->percpu_count_ptr & __PERCPU_REF_DEAD; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SCHED_RT_H #define _LINUX_SCHED_RT_H #include <linux/sched.h> struct task_struct; static inline int rt_prio(int prio) { if (unlikely(prio < MAX_RT_PRIO)) return 1; return 0; } static inline int rt_task(struct task_struct *p) { return rt_prio(p->prio); } static inline bool task_is_realtime(struct task_struct *tsk) { int policy = tsk->policy; if (policy == SCHED_FIFO || policy == SCHED_RR) return true; if (policy == SCHED_DEADLINE) return true; return false; } #ifdef CONFIG_RT_MUTEXES /* * Must hold either p->pi_lock or task_rq(p)->lock. */ static inline struct task_struct *rt_mutex_get_top_task(struct task_struct *p) { return p->pi_top_task; } extern void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task); extern void rt_mutex_adjust_pi(struct task_struct *p); static inline bool tsk_is_pi_blocked(struct task_struct *tsk) { return tsk->pi_blocked_on != NULL; } #else static inline struct task_struct *rt_mutex_get_top_task(struct task_struct *task) { return NULL; } # define rt_mutex_adjust_pi(p) do { } while (0) static inline bool tsk_is_pi_blocked(struct task_struct *tsk) { return false; } #endif extern void normalize_rt_tasks(void); /* * default timeslice is 100 msecs (used only for SCHED_RR tasks). * Timeslices get refilled after they expire. */ #define RR_TIMESLICE (100 * HZ / 1000) #endif /* _LINUX_SCHED_RT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __IPC_NAMESPACE_H__ #define __IPC_NAMESPACE_H__ #include <linux/err.h> #include <linux/idr.h> #include <linux/rwsem.h> #include <linux/notifier.h> #include <linux/nsproxy.h> #include <linux/ns_common.h> #include <linux/refcount.h> #include <linux/rhashtable-types.h> struct user_namespace; struct ipc_ids { int in_use; unsigned short seq; struct rw_semaphore rwsem; struct idr ipcs_idr; int max_idx; int last_idx; /* For wrap around detection */ #ifdef CONFIG_CHECKPOINT_RESTORE int next_id; #endif struct rhashtable key_ht; }; struct ipc_namespace { refcount_t count; struct ipc_ids ids[3]; int sem_ctls[4]; int used_sems; unsigned int msg_ctlmax; unsigned int msg_ctlmnb; unsigned int msg_ctlmni; atomic_t msg_bytes; atomic_t msg_hdrs; size_t shm_ctlmax; size_t shm_ctlall; unsigned long shm_tot; int shm_ctlmni; /* * Defines whether IPC_RMID is forced for _all_ shm segments regardless * of shmctl() */ int shm_rmid_forced; struct notifier_block ipcns_nb; /* The kern_mount of the mqueuefs sb. We take a ref on it */ struct vfsmount *mq_mnt; /* # queues in this ns, protected by mq_lock */ unsigned int mq_queues_count; /* next fields are set through sysctl */ unsigned int mq_queues_max; /* initialized to DFLT_QUEUESMAX */ unsigned int mq_msg_max; /* initialized to DFLT_MSGMAX */ unsigned int mq_msgsize_max; /* initialized to DFLT_MSGSIZEMAX */ unsigned int mq_msg_default; unsigned int mq_msgsize_default; /* user_ns which owns the ipc ns */ struct user_namespace *user_ns; struct ucounts *ucounts; struct llist_node mnt_llist; struct ns_common ns; } __randomize_layout; extern struct ipc_namespace init_ipc_ns; extern spinlock_t mq_lock; #ifdef CONFIG_SYSVIPC extern void shm_destroy_orphaned(struct ipc_namespace *ns); #else /* CONFIG_SYSVIPC */ static inline void shm_destroy_orphaned(struct ipc_namespace *ns) {} #endif /* CONFIG_SYSVIPC */ #ifdef CONFIG_POSIX_MQUEUE extern int mq_init_ns(struct ipc_namespace *ns); /* * POSIX Message Queue default values: * * MIN_*: Lowest value an admin can set the maximum unprivileged limit to * DFLT_*MAX: Default values for the maximum unprivileged limits * DFLT_{MSG,MSGSIZE}: Default values used when the user doesn't supply * an attribute to the open call and the queue must be created * HARD_*: Highest value the maximums can be set to. These are enforced * on CAP_SYS_RESOURCE apps as well making them inviolate (so make them * suitably high) * * POSIX Requirements: * Per app minimum openable message queues - 8. This does not map well * to the fact that we limit the number of queues on a per namespace * basis instead of a per app basis. So, make the default high enough * that no given app should have a hard time opening 8 queues. * Minimum maximum for HARD_MSGMAX - 32767. I bumped this to 65536. * Minimum maximum for HARD_MSGSIZEMAX - POSIX is silent on this. However, * we have run into a situation where running applications in the wild * require this to be at least 5MB, and preferably 10MB, so I set the * value to 16MB in hopes that this user is the worst of the bunch and * the new maximum will handle anyone else. I may have to revisit this * in the future. */ #define DFLT_QUEUESMAX 256 #define MIN_MSGMAX 1 #define DFLT_MSG 10U #define DFLT_MSGMAX 10 #define HARD_MSGMAX 65536 #define MIN_MSGSIZEMAX 128 #define DFLT_MSGSIZE 8192U #define DFLT_MSGSIZEMAX 8192 #define HARD_MSGSIZEMAX (16*1024*1024) #else static inline int mq_init_ns(struct ipc_namespace *ns) { return 0; } #endif #if defined(CONFIG_IPC_NS) extern struct ipc_namespace *copy_ipcs(unsigned long flags, struct user_namespace *user_ns, struct ipc_namespace *ns); static inline struct ipc_namespace *get_ipc_ns(struct ipc_namespace *ns) { if (ns) refcount_inc(&ns->count); return ns; } static inline struct ipc_namespace *get_ipc_ns_not_zero(struct ipc_namespace *ns) { if (ns) { if (refcount_inc_not_zero(&ns->count)) return ns; } return NULL; } extern void put_ipc_ns(struct ipc_namespace *ns); #else static inline struct ipc_namespace *copy_ipcs(unsigned long flags, struct user_namespace *user_ns, struct ipc_namespace *ns) { if (flags & CLONE_NEWIPC) return ERR_PTR(-EINVAL); return ns; } static inline struct ipc_namespace *get_ipc_ns(struct ipc_namespace *ns) { return ns; } static inline struct ipc_namespace *get_ipc_ns_not_zero(struct ipc_namespace *ns) { return ns; } static inline void put_ipc_ns(struct ipc_namespace *ns) { } #endif #ifdef CONFIG_POSIX_MQUEUE_SYSCTL struct ctl_table_header; extern struct ctl_table_header *mq_register_sysctl_table(void); #else /* CONFIG_POSIX_MQUEUE_SYSCTL */ static inline struct ctl_table_header *mq_register_sysctl_table(void) { return NULL; } #endif /* CONFIG_POSIX_MQUEUE_SYSCTL */ #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_PVCLOCK_H #define _ASM_X86_PVCLOCK_H #include <asm/clocksource.h> #include <asm/pvclock-abi.h> /* some helper functions for xen and kvm pv clock sources */ u64 pvclock_clocksource_read(struct pvclock_vcpu_time_info *src); u8 pvclock_read_flags(struct pvclock_vcpu_time_info *src); void pvclock_set_flags(u8 flags); unsigned long pvclock_tsc_khz(struct pvclock_vcpu_time_info *src); void pvclock_read_wallclock(struct pvclock_wall_clock *wall, struct pvclock_vcpu_time_info *vcpu, struct timespec64 *ts); void pvclock_resume(void); void pvclock_touch_watchdogs(void); static __always_inline unsigned pvclock_read_begin(const struct pvclock_vcpu_time_info *src) { unsigned version = src->version & ~1; /* Make sure that the version is read before the data. */ virt_rmb(); return version; } static __always_inline bool pvclock_read_retry(const struct pvclock_vcpu_time_info *src, unsigned version) { /* Make sure that the version is re-read after the data. */ virt_rmb(); return unlikely(version != src->version); } /* * Scale a 64-bit delta by scaling and multiplying by a 32-bit fraction, * yielding a 64-bit result. */ static inline u64 pvclock_scale_delta(u64 delta, u32 mul_frac, int shift) { u64 product; #ifdef __i386__ u32 tmp1, tmp2; #else ulong tmp; #endif if (shift < 0) delta >>= -shift; else delta <<= shift; #ifdef __i386__ __asm__ ( "mul %5 ; " "mov %4,%%eax ; " "mov %%edx,%4 ; " "mul %5 ; " "xor %5,%5 ; " "add %4,%%eax ; " "adc %5,%%edx ; " : "=A" (product), "=r" (tmp1), "=r" (tmp2) : "a" ((u32)delta), "1" ((u32)(delta >> 32)), "2" (mul_frac) ); #elif defined(__x86_64__) __asm__ ( "mulq %[mul_frac] ; shrd $32, %[hi], %[lo]" : [lo]"=a"(product), [hi]"=d"(tmp) : "0"(delta), [mul_frac]"rm"((u64)mul_frac)); #else #error implement me! #endif return product; } static __always_inline u64 __pvclock_read_cycles(const struct pvclock_vcpu_time_info *src, u64 tsc) { u64 delta = tsc - src->tsc_timestamp; u64 offset = pvclock_scale_delta(delta, src->tsc_to_system_mul, src->tsc_shift); return src->system_time + offset; } struct pvclock_vsyscall_time_info { struct pvclock_vcpu_time_info pvti; } __attribute__((__aligned__(SMP_CACHE_BYTES))); #define PVTI_SIZE sizeof(struct pvclock_vsyscall_time_info) #ifdef CONFIG_PARAVIRT_CLOCK void pvclock_set_pvti_cpu0_va(struct pvclock_vsyscall_time_info *pvti); struct pvclock_vsyscall_time_info *pvclock_get_pvti_cpu0_va(void); #else static inline struct pvclock_vsyscall_time_info *pvclock_get_pvti_cpu0_va(void) { return NULL; } #endif #endif /* _ASM_X86_PVCLOCK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __PROCFS_FD_H__ #define __PROCFS_FD_H__ #include <linux/fs.h> extern const struct file_operations proc_fd_operations; extern const struct inode_operations proc_fd_inode_operations; extern const struct file_operations proc_fdinfo_operations; extern const struct inode_operations proc_fdinfo_inode_operations; extern int proc_fd_permission(struct inode *inode, int mask); static inline unsigned int proc_fd(struct inode *inode) { return PROC_I(inode)->fd; } #endif /* __PROCFS_FD_H__ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 // SPDX-License-Identifier: GPL-2.0 /* * kobject.h - generic kernel object infrastructure. * * Copyright (c) 2002-2003 Patrick Mochel * Copyright (c) 2002-2003 Open Source Development Labs * Copyright (c) 2006-2008 Greg Kroah-Hartman <greg@kroah.com> * Copyright (c) 2006-2008 Novell Inc. * * Please read Documentation/core-api/kobject.rst before using the kobject * interface, ESPECIALLY the parts about reference counts and object * destructors. */ #ifndef _KOBJECT_H_ #define _KOBJECT_H_ #include <linux/types.h> #include <linux/list.h> #include <linux/sysfs.h> #include <linux/compiler.h> #include <linux/spinlock.h> #include <linux/kref.h> #include <linux/kobject_ns.h> #include <linux/kernel.h> #include <linux/wait.h> #include <linux/atomic.h> #include <linux/workqueue.h> #include <linux/uidgid.h> #define UEVENT_HELPER_PATH_LEN 256 #define UEVENT_NUM_ENVP 64 /* number of env pointers */ #define UEVENT_BUFFER_SIZE 2048 /* buffer for the variables */ #ifdef CONFIG_UEVENT_HELPER /* path to the userspace helper executed on an event */ extern char uevent_helper[]; #endif /* counter to tag the uevent, read only except for the kobject core */ extern u64 uevent_seqnum; /* * The actions here must match the index to the string array * in lib/kobject_uevent.c * * Do not add new actions here without checking with the driver-core * maintainers. Action strings are not meant to express subsystem * or device specific properties. In most cases you want to send a * kobject_uevent_env(kobj, KOBJ_CHANGE, env) with additional event * specific variables added to the event environment. */ enum kobject_action { KOBJ_ADD, KOBJ_REMOVE, KOBJ_CHANGE, KOBJ_MOVE, KOBJ_ONLINE, KOBJ_OFFLINE, KOBJ_BIND, KOBJ_UNBIND, }; struct kobject { const char *name; struct list_head entry; struct kobject *parent; struct kset *kset; struct kobj_type *ktype; struct kernfs_node *sd; /* sysfs directory entry */ struct kref kref; #ifdef CONFIG_DEBUG_KOBJECT_RELEASE struct delayed_work release; #endif unsigned int state_initialized:1; unsigned int state_in_sysfs:1; unsigned int state_add_uevent_sent:1; unsigned int state_remove_uevent_sent:1; unsigned int uevent_suppress:1; }; extern __printf(2, 3) int kobject_set_name(struct kobject *kobj, const char *name, ...); extern __printf(2, 0) int kobject_set_name_vargs(struct kobject *kobj, const char *fmt, va_list vargs); static inline const char *kobject_name(const struct kobject *kobj) { return kobj->name; } extern void kobject_init(struct kobject *kobj, struct kobj_type *ktype); extern __printf(3, 4) __must_check int kobject_add(struct kobject *kobj, struct kobject *parent, const char *fmt, ...); extern __printf(4, 5) __must_check int kobject_init_and_add(struct kobject *kobj, struct kobj_type *ktype, struct kobject *parent, const char *fmt, ...); extern void kobject_del(struct kobject *kobj); extern struct kobject * __must_check kobject_create(void); extern struct kobject * __must_check kobject_create_and_add(const char *name, struct kobject *parent); extern int __must_check kobject_rename(struct kobject *, const char *new_name); extern int __must_check kobject_move(struct kobject *, struct kobject *); extern struct kobject *kobject_get(struct kobject *kobj); extern struct kobject * __must_check kobject_get_unless_zero( struct kobject *kobj); extern void kobject_put(struct kobject *kobj); extern const void *kobject_namespace(struct kobject *kobj); extern void kobject_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid); extern char *kobject_get_path(struct kobject *kobj, gfp_t flag); /** * kobject_has_children - Returns whether a kobject has children. * @kobj: the object to test * * This will return whether a kobject has other kobjects as children. * * It does NOT account for the presence of attribute files, only sub * directories. It also assumes there is no concurrent addition or * removal of such children, and thus relies on external locking. */ static inline bool kobject_has_children(struct kobject *kobj) { WARN_ON_ONCE(kref_read(&kobj->kref) == 0); return kobj->sd && kobj->sd->dir.subdirs; } struct kobj_type { void (*release)(struct kobject *kobj); const struct sysfs_ops *sysfs_ops; struct attribute **default_attrs; /* use default_groups instead */ const struct attribute_group **default_groups; const struct kobj_ns_type_operations *(*child_ns_type)(struct kobject *kobj); const void *(*namespace)(struct kobject *kobj); void (*get_ownership)(struct kobject *kobj, kuid_t *uid, kgid_t *gid); }; struct kobj_uevent_env { char *argv[3]; char *envp[UEVENT_NUM_ENVP]; int envp_idx; char buf[UEVENT_BUFFER_SIZE]; int buflen; }; struct kset_uevent_ops { int (* const filter)(struct kset *kset, struct kobject *kobj); const char *(* const name)(struct kset *kset, struct kobject *kobj); int (* const uevent)(struct kset *kset, struct kobject *kobj, struct kobj_uevent_env *env); }; struct kobj_attribute { struct attribute attr; ssize_t (*show)(struct kobject *kobj, struct kobj_attribute *attr, char *buf); ssize_t (*store)(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count); }; extern const struct sysfs_ops kobj_sysfs_ops; struct sock; /** * struct kset - a set of kobjects of a specific type, belonging to a specific subsystem. * * A kset defines a group of kobjects. They can be individually * different "types" but overall these kobjects all want to be grouped * together and operated on in the same manner. ksets are used to * define the attribute callbacks and other common events that happen to * a kobject. * * @list: the list of all kobjects for this kset * @list_lock: a lock for iterating over the kobjects * @kobj: the embedded kobject for this kset (recursion, isn't it fun...) * @uevent_ops: the set of uevent operations for this kset. These are * called whenever a kobject has something happen to it so that the kset * can add new environment variables, or filter out the uevents if so * desired. */ struct kset { struct list_head list; spinlock_t list_lock; struct kobject kobj; const struct kset_uevent_ops *uevent_ops; } __randomize_layout; extern void kset_init(struct kset *kset); extern int __must_check kset_register(struct kset *kset); extern void kset_unregister(struct kset *kset); extern struct kset * __must_check kset_create_and_add(const char *name, const struct kset_uevent_ops *u, struct kobject *parent_kobj); static inline struct kset *to_kset(struct kobject *kobj) { return kobj ? container_of(kobj, struct kset, kobj) : NULL; } static inline struct kset *kset_get(struct kset *k) { return k ? to_kset(kobject_get(&k->kobj)) : NULL; } static inline void kset_put(struct kset *k) { kobject_put(&k->kobj); } static inline struct kobj_type *get_ktype(struct kobject *kobj) { return kobj->ktype; } extern struct kobject *kset_find_obj(struct kset *, const char *); /* The global /sys/kernel/ kobject for people to chain off of */ extern struct kobject *kernel_kobj; /* The global /sys/kernel/mm/ kobject for people to chain off of */ extern struct kobject *mm_kobj; /* The global /sys/hypervisor/ kobject for people to chain off of */ extern struct kobject *hypervisor_kobj; /* The global /sys/power/ kobject for people to chain off of */ extern struct kobject *power_kobj; /* The global /sys/firmware/ kobject for people to chain off of */ extern struct kobject *firmware_kobj; int kobject_uevent(struct kobject *kobj, enum kobject_action action); int kobject_uevent_env(struct kobject *kobj, enum kobject_action action, char *envp[]); int kobject_synth_uevent(struct kobject *kobj, const char *buf, size_t count); __printf(2, 3) int add_uevent_var(struct kobj_uevent_env *env, const char *format, ...); #endif /* _KOBJECT_H_ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 /* SPDX-License-Identifier: GPL-2.0 */ /* * Statically sized hash table implementation * (C) 2012 Sasha Levin <levinsasha928@gmail.com> */ #ifndef _LINUX_HASHTABLE_H #define _LINUX_HASHTABLE_H #include <linux/list.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/hash.h> #include <linux/rculist.h> #define DEFINE_HASHTABLE(name, bits) \ struct hlist_head name[1 << (bits)] = \ { [0 ... ((1 << (bits)) - 1)] = HLIST_HEAD_INIT } #define DEFINE_READ_MOSTLY_HASHTABLE(name, bits) \ struct hlist_head name[1 << (bits)] __read_mostly = \ { [0 ... ((1 << (bits)) - 1)] = HLIST_HEAD_INIT } #define DECLARE_HASHTABLE(name, bits) \ struct hlist_head name[1 << (bits)] #define HASH_SIZE(name) (ARRAY_SIZE(name)) #define HASH_BITS(name) ilog2(HASH_SIZE(name)) /* Use hash_32 when possible to allow for fast 32bit hashing in 64bit kernels. */ #define hash_min(val, bits) \ (sizeof(val) <= 4 ? hash_32(val, bits) : hash_long(val, bits)) static inline void __hash_init(struct hlist_head *ht, unsigned int sz) { unsigned int i; for (i = 0; i < sz; i++) INIT_HLIST_HEAD(&ht[i]); } /** * hash_init - initialize a hash table * @hashtable: hashtable to be initialized * * Calculates the size of the hashtable from the given parameter, otherwise * same as hash_init_size. * * This has to be a macro since HASH_BITS() will not work on pointers since * it calculates the size during preprocessing. */ #define hash_init(hashtable) __hash_init(hashtable, HASH_SIZE(hashtable)) /** * hash_add - add an object to a hashtable * @hashtable: hashtable to add to * @node: the &struct hlist_node of the object to be added * @key: the key of the object to be added */ #define hash_add(hashtable, node, key) \ hlist_add_head(node, &hashtable[hash_min(key, HASH_BITS(hashtable))]) /** * hash_add_rcu - add an object to a rcu enabled hashtable * @hashtable: hashtable to add to * @node: the &struct hlist_node of the object to be added * @key: the key of the object to be added */ #define hash_add_rcu(hashtable, node, key) \ hlist_add_head_rcu(node, &hashtable[hash_min(key, HASH_BITS(hashtable))]) /** * hash_hashed - check whether an object is in any hashtable * @node: the &struct hlist_node of the object to be checked */ static inline bool hash_hashed(struct hlist_node *node) { return !hlist_unhashed(node); } static inline bool __hash_empty(struct hlist_head *ht, unsigned int sz) { unsigned int i; for (i = 0; i < sz; i++) if (!hlist_empty(&ht[i])) return false; return true; } /** * hash_empty - check whether a hashtable is empty * @hashtable: hashtable to check * * This has to be a macro since HASH_BITS() will not work on pointers since * it calculates the size during preprocessing. */ #define hash_empty(hashtable) __hash_empty(hashtable, HASH_SIZE(hashtable)) /** * hash_del - remove an object from a hashtable * @node: &struct hlist_node of the object to remove */ static inline void hash_del(struct hlist_node *node) { hlist_del_init(node); } /** * hash_del_rcu - remove an object from a rcu enabled hashtable * @node: &struct hlist_node of the object to remove */ static inline void hash_del_rcu(struct hlist_node *node) { hlist_del_init_rcu(node); } /** * hash_for_each - iterate over a hashtable * @name: hashtable to iterate * @bkt: integer to use as bucket loop cursor * @obj: the type * to use as a loop cursor for each entry * @member: the name of the hlist_node within the struct */ #define hash_for_each(name, bkt, obj, member) \ for ((bkt) = 0, obj = NULL; obj == NULL && (bkt) < HASH_SIZE(name);\ (bkt)++)\ hlist_for_each_entry(obj, &name[bkt], member) /** * hash_for_each_rcu - iterate over a rcu enabled hashtable * @name: hashtable to iterate * @bkt: integer to use as bucket loop cursor * @obj: the type * to use as a loop cursor for each entry * @member: the name of the hlist_node within the struct */ #define hash_for_each_rcu(name, bkt, obj, member) \ for ((bkt) = 0, obj = NULL; obj == NULL && (bkt) < HASH_SIZE(name);\ (bkt)++)\ hlist_for_each_entry_rcu(obj, &name[bkt], member) /** * hash_for_each_safe - iterate over a hashtable safe against removal of * hash entry * @name: hashtable to iterate * @bkt: integer to use as bucket loop cursor * @tmp: a &struct hlist_node used for temporary storage * @obj: the type * to use as a loop cursor for each entry * @member: the name of the hlist_node within the struct */ #define hash_for_each_safe(name, bkt, tmp, obj, member) \ for ((bkt) = 0, obj = NULL; obj == NULL && (bkt) < HASH_SIZE(name);\ (bkt)++)\ hlist_for_each_entry_safe(obj, tmp, &name[bkt], member) /** * hash_for_each_possible - iterate over all possible objects hashing to the * same bucket * @name: hashtable to iterate * @obj: the type * to use as a loop cursor for each entry * @member: the name of the hlist_node within the struct * @key: the key of the objects to iterate over */ #define hash_for_each_possible(name, obj, member, key) \ hlist_for_each_entry(obj, &name[hash_min(key, HASH_BITS(name))], member) /** * hash_for_each_possible_rcu - iterate over all possible objects hashing to the * same bucket in an rcu enabled hashtable * @name: hashtable to iterate * @obj: the type * to use as a loop cursor for each entry * @member: the name of the hlist_node within the struct * @key: the key of the objects to iterate over */ #define hash_for_each_possible_rcu(name, obj, member, key, cond...) \ hlist_for_each_entry_rcu(obj, &name[hash_min(key, HASH_BITS(name))],\ member, ## cond) /** * hash_for_each_possible_rcu_notrace - iterate over all possible objects hashing * to the same bucket in an rcu enabled hashtable in a rcu enabled hashtable * @name: hashtable to iterate * @obj: the type * to use as a loop cursor for each entry * @member: the name of the hlist_node within the struct * @key: the key of the objects to iterate over * * This is the same as hash_for_each_possible_rcu() except that it does * not do any RCU debugging or tracing. */ #define hash_for_each_possible_rcu_notrace(name, obj, member, key) \ hlist_for_each_entry_rcu_notrace(obj, \ &name[hash_min(key, HASH_BITS(name))], member) /** * hash_for_each_possible_safe - iterate over all possible objects hashing to the * same bucket safe against removals * @name: hashtable to iterate * @obj: the type * to use as a loop cursor for each entry * @tmp: a &struct hlist_node used for temporary storage * @member: the name of the hlist_node within the struct * @key: the key of the objects to iterate over */ #define hash_for_each_possible_safe(name, obj, tmp, member, key) \ hlist_for_each_entry_safe(obj, tmp,\ &name[hash_min(key, HASH_BITS(name))], member) #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Hash algorithms. * * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au> */ #ifndef _CRYPTO_INTERNAL_HASH_H #define _CRYPTO_INTERNAL_HASH_H #include <crypto/algapi.h> #include <crypto/hash.h> struct ahash_request; struct scatterlist; struct crypto_hash_walk { char *data; unsigned int offset; unsigned int alignmask; struct page *pg; unsigned int entrylen; unsigned int total; struct scatterlist *sg; unsigned int flags; }; struct ahash_instance { void (*free)(struct ahash_instance *inst); union { struct { char head[offsetof(struct ahash_alg, halg.base)]; struct crypto_instance base; } s; struct ahash_alg alg; }; }; struct shash_instance { void (*free)(struct shash_instance *inst); union { struct { char head[offsetof(struct shash_alg, base)]; struct crypto_instance base; } s; struct shash_alg alg; }; }; struct crypto_ahash_spawn { struct crypto_spawn base; }; struct crypto_shash_spawn { struct crypto_spawn base; }; int crypto_hash_walk_done(struct crypto_hash_walk *walk, int err); int crypto_hash_walk_first(struct ahash_request *req, struct crypto_hash_walk *walk); static inline int crypto_hash_walk_last(struct crypto_hash_walk *walk) { return !(walk->entrylen | walk->total); } int crypto_register_ahash(struct ahash_alg *alg); void crypto_unregister_ahash(struct ahash_alg *alg); int crypto_register_ahashes(struct ahash_alg *algs, int count); void crypto_unregister_ahashes(struct ahash_alg *algs, int count); int ahash_register_instance(struct crypto_template *tmpl, struct ahash_instance *inst); bool crypto_shash_alg_has_setkey(struct shash_alg *alg); static inline bool crypto_shash_alg_needs_key(struct shash_alg *alg) { return crypto_shash_alg_has_setkey(alg) && !(alg->base.cra_flags & CRYPTO_ALG_OPTIONAL_KEY); } bool crypto_hash_alg_has_setkey(struct hash_alg_common *halg); int crypto_grab_ahash(struct crypto_ahash_spawn *spawn, struct crypto_instance *inst, const char *name, u32 type, u32 mask); static inline void crypto_drop_ahash(struct crypto_ahash_spawn *spawn) { crypto_drop_spawn(&spawn->base); } static inline struct hash_alg_common *crypto_spawn_ahash_alg( struct crypto_ahash_spawn *spawn) { return __crypto_hash_alg_common(spawn->base.alg); } int crypto_register_shash(struct shash_alg *alg); void crypto_unregister_shash(struct shash_alg *alg); int crypto_register_shashes(struct shash_alg *algs, int count); void crypto_unregister_shashes(struct shash_alg *algs, int count); int shash_register_instance(struct crypto_template *tmpl, struct shash_instance *inst); void shash_free_singlespawn_instance(struct shash_instance *inst); int crypto_grab_shash(struct crypto_shash_spawn *spawn, struct crypto_instance *inst, const char *name, u32 type, u32 mask); static inline void crypto_drop_shash(struct crypto_shash_spawn *spawn) { crypto_drop_spawn(&spawn->base); } static inline struct shash_alg *crypto_spawn_shash_alg( struct crypto_shash_spawn *spawn) { return __crypto_shash_alg(spawn->base.alg); } int shash_ahash_update(struct ahash_request *req, struct shash_desc *desc); int shash_ahash_finup(struct ahash_request *req, struct shash_desc *desc); int shash_ahash_digest(struct ahash_request *req, struct shash_desc *desc); int crypto_init_shash_ops_async(struct crypto_tfm *tfm); static inline void *crypto_ahash_ctx(struct crypto_ahash *tfm) { return crypto_tfm_ctx(crypto_ahash_tfm(tfm)); } static inline struct ahash_alg *__crypto_ahash_alg(struct crypto_alg *alg) { return container_of(__crypto_hash_alg_common(alg), struct ahash_alg, halg); } static inline void crypto_ahash_set_reqsize(struct crypto_ahash *tfm, unsigned int reqsize) { tfm->reqsize = reqsize; } static inline struct crypto_instance *ahash_crypto_instance( struct ahash_instance *inst) { return &inst->s.base; } static inline struct ahash_instance *ahash_instance( struct crypto_instance *inst) { return container_of(inst, struct ahash_instance, s.base); } static inline struct ahash_instance *ahash_alg_instance( struct crypto_ahash *ahash) { return ahash_instance(crypto_tfm_alg_instance(&ahash->base)); } static inline void *ahash_instance_ctx(struct ahash_instance *inst) { return crypto_instance_ctx(ahash_crypto_instance(inst)); } static inline void ahash_request_complete(struct ahash_request *req, int err) { req->base.complete(&req->base, err); } static inline u32 ahash_request_flags(struct ahash_request *req) { return req->base.flags; } static inline struct crypto_ahash *crypto_spawn_ahash( struct crypto_ahash_spawn *spawn) { return crypto_spawn_tfm2(&spawn->base); } static inline int ahash_enqueue_request(struct crypto_queue *queue, struct ahash_request *request) { return crypto_enqueue_request(queue, &request->base); } static inline struct ahash_request *ahash_dequeue_request( struct crypto_queue *queue) { return ahash_request_cast(crypto_dequeue_request(queue)); } static inline void *crypto_shash_ctx(struct crypto_shash *tfm) { return crypto_tfm_ctx(&tfm->base); } static inline struct crypto_instance *shash_crypto_instance( struct shash_instance *inst) { return &inst->s.base; } static inline struct shash_instance *shash_instance( struct crypto_instance *inst) { return container_of(inst, struct shash_instance, s.base); } static inline struct shash_instance *shash_alg_instance( struct crypto_shash *shash) { return shash_instance(crypto_tfm_alg_instance(&shash->base)); } static inline void *shash_instance_ctx(struct shash_instance *inst) { return crypto_instance_ctx(shash_crypto_instance(inst)); } static inline struct crypto_shash *crypto_spawn_shash( struct crypto_shash_spawn *spawn) { return crypto_spawn_tfm2(&spawn->base); } static inline void *crypto_shash_ctx_aligned(struct crypto_shash *tfm) { return crypto_tfm_ctx_aligned(&tfm->base); } static inline struct crypto_shash *__crypto_shash_cast(struct crypto_tfm *tfm) { return container_of(tfm, struct crypto_shash, base); } #endif /* _CRYPTO_INTERNAL_HASH_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 /* SPDX-License-Identifier: GPL-2.0 */ /* * Dynamic queue limits (dql) - Definitions * * Copyright (c) 2011, Tom Herbert <therbert@google.com> * * This header file contains the definitions for dynamic queue limits (dql). * dql would be used in conjunction with a producer/consumer type queue * (possibly a HW queue). Such a queue would have these general properties: * * 1) Objects are queued up to some limit specified as number of objects. * 2) Periodically a completion process executes which retires consumed * objects. * 3) Starvation occurs when limit has been reached, all queued data has * actually been consumed, but completion processing has not yet run * so queuing new data is blocked. * 4) Minimizing the amount of queued data is desirable. * * The goal of dql is to calculate the limit as the minimum number of objects * needed to prevent starvation. * * The primary functions of dql are: * dql_queued - called when objects are enqueued to record number of objects * dql_avail - returns how many objects are available to be queued based * on the object limit and how many objects are already enqueued * dql_completed - called at completion time to indicate how many objects * were retired from the queue * * The dql implementation does not implement any locking for the dql data * structures, the higher layer should provide this. dql_queued should * be serialized to prevent concurrent execution of the function; this * is also true for dql_completed. However, dql_queued and dlq_completed can * be executed concurrently (i.e. they can be protected by different locks). */ #ifndef _LINUX_DQL_H #define _LINUX_DQL_H #ifdef __KERNEL__ #include <asm/bug.h> struct dql { /* Fields accessed in enqueue path (dql_queued) */ unsigned int num_queued; /* Total ever queued */ unsigned int adj_limit; /* limit + num_completed */ unsigned int last_obj_cnt; /* Count at last queuing */ /* Fields accessed only by completion path (dql_completed) */ unsigned int limit ____cacheline_aligned_in_smp; /* Current limit */ unsigned int num_completed; /* Total ever completed */ unsigned int prev_ovlimit; /* Previous over limit */ unsigned int prev_num_queued; /* Previous queue total */ unsigned int prev_last_obj_cnt; /* Previous queuing cnt */ unsigned int lowest_slack; /* Lowest slack found */ unsigned long slack_start_time; /* Time slacks seen */ /* Configuration */ unsigned int max_limit; /* Max limit */ unsigned int min_limit; /* Minimum limit */ unsigned int slack_hold_time; /* Time to measure slack */ }; /* Set some static maximums */ #define DQL_MAX_OBJECT (UINT_MAX / 16) #define DQL_MAX_LIMIT ((UINT_MAX / 2) - DQL_MAX_OBJECT) /* * Record number of objects queued. Assumes that caller has already checked * availability in the queue with dql_avail. */ static inline void dql_queued(struct dql *dql, unsigned int count) { BUG_ON(count > DQL_MAX_OBJECT); dql->last_obj_cnt = count; /* We want to force a write first, so that cpu do not attempt * to get cache line containing last_obj_cnt, num_queued, adj_limit * in Shared state, but directly does a Request For Ownership * It is only a hint, we use barrier() only. */ barrier(); dql->num_queued += count; } /* Returns how many objects can be queued, < 0 indicates over limit. */ static inline int dql_avail(const struct dql *dql) { return READ_ONCE(dql->adj_limit) - READ_ONCE(dql->num_queued); } /* Record number of completed objects and recalculate the limit. */ void dql_completed(struct dql *dql, unsigned int count); /* Reset dql state */ void dql_reset(struct dql *dql); /* Initialize dql state */ void dql_init(struct dql *dql, unsigned int hold_time); #endif /* _KERNEL_ */ #endif /* _LINUX_DQL_H */
1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_BH_H #define _LINUX_BH_H #include <linux/preempt.h> #ifdef CONFIG_TRACE_IRQFLAGS extern void __local_bh_disable_ip(unsigned long ip, unsigned int cnt); #else static __always_inline void __local_bh_disable_ip(unsigned long ip, unsigned int cnt) { preempt_count_add(cnt); barrier(); } #endif static inline void local_bh_disable(void) { __local_bh_disable_ip(_THIS_IP_, SOFTIRQ_DISABLE_OFFSET); } extern void _local_bh_enable(void); extern void __local_bh_enable_ip(unsigned long ip, unsigned int cnt); static inline void local_bh_enable_ip(unsigned long ip) { __local_bh_enable_ip(ip, SOFTIRQ_DISABLE_OFFSET); } static inline void local_bh_enable(void) { __local_bh_enable_ip(_THIS_IP_, SOFTIRQ_DISABLE_OFFSET); } #endif /* _LINUX_BH_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 /* SPDX-License-Identifier: GPL-2.0 */ /* * memory buffer pool support */ #ifndef _LINUX_MEMPOOL_H #define _LINUX_MEMPOOL_H #include <linux/wait.h> #include <linux/compiler.h> struct kmem_cache; typedef void * (mempool_alloc_t)(gfp_t gfp_mask, void *pool_data); typedef void (mempool_free_t)(void *element, void *pool_data); typedef struct mempool_s { spinlock_t lock; int min_nr; /* nr of elements at *elements */ int curr_nr; /* Current nr of elements at *elements */ void **elements; void *pool_data; mempool_alloc_t *alloc; mempool_free_t *free; wait_queue_head_t wait; } mempool_t; static inline bool mempool_initialized(mempool_t *pool) { return pool->elements != NULL; } void mempool_exit(mempool_t *pool); int mempool_init_node(mempool_t *pool, int min_nr, mempool_alloc_t *alloc_fn, mempool_free_t *free_fn, void *pool_data, gfp_t gfp_mask, int node_id); int mempool_init(mempool_t *pool, int min_nr, mempool_alloc_t *alloc_fn, mempool_free_t *free_fn, void *pool_data); extern mempool_t *mempool_create(int min_nr, mempool_alloc_t *alloc_fn, mempool_free_t *free_fn, void *pool_data); extern mempool_t *mempool_create_node(int min_nr, mempool_alloc_t *alloc_fn, mempool_free_t *free_fn, void *pool_data, gfp_t gfp_mask, int nid); extern int mempool_resize(mempool_t *pool, int new_min_nr); extern void mempool_destroy(mempool_t *pool); extern void *mempool_alloc(mempool_t *pool, gfp_t gfp_mask) __malloc; extern void mempool_free(void *element, mempool_t *pool); /* * A mempool_alloc_t and mempool_free_t that get the memory from * a slab cache that is passed in through pool_data. * Note: the slab cache may not have a ctor function. */ void *mempool_alloc_slab(gfp_t gfp_mask, void *pool_data); void mempool_free_slab(void *element, void *pool_data); static inline int mempool_init_slab_pool(mempool_t *pool, int min_nr, struct kmem_cache *kc) { return mempool_init(pool, min_nr, mempool_alloc_slab, mempool_free_slab, (void *) kc); } static inline mempool_t * mempool_create_slab_pool(int min_nr, struct kmem_cache *kc) { return mempool_create(min_nr, mempool_alloc_slab, mempool_free_slab, (void *) kc); } /* * a mempool_alloc_t and a mempool_free_t to kmalloc and kfree the * amount of memory specified by pool_data */ void *mempool_kmalloc(gfp_t gfp_mask, void *pool_data); void mempool_kfree(void *element, void *pool_data); static inline int mempool_init_kmalloc_pool(mempool_t *pool, int min_nr, size_t size) { return mempool_init(pool, min_nr, mempool_kmalloc, mempool_kfree, (void *) size); } static inline mempool_t *mempool_create_kmalloc_pool(int min_nr, size_t size) { return mempool_create(min_nr, mempool_kmalloc, mempool_kfree, (void *) size); } /* * A mempool_alloc_t and mempool_free_t for a simple page allocator that * allocates pages of the order specified by pool_data */ void *mempool_alloc_pages(gfp_t gfp_mask, void *pool_data); void mempool_free_pages(void *element, void *pool_data); static inline int mempool_init_page_pool(mempool_t *pool, int min_nr, int order) { return mempool_init(pool, min_nr, mempool_alloc_pages, mempool_free_pages, (void *)(long)order); } static inline mempool_t *mempool_create_page_pool(int min_nr, int order) { return mempool_create(min_nr, mempool_alloc_pages, mempool_free_pages, (void *)(long)order); } #endif /* _LINUX_MEMPOOL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 /* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (C) 1991, 1992 Linus Torvalds * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs */ #ifndef _ASM_X86_STACKTRACE_H #define _ASM_X86_STACKTRACE_H #include <linux/uaccess.h> #include <linux/ptrace.h> #include <asm/cpu_entry_area.h> #include <asm/switch_to.h> enum stack_type { STACK_TYPE_UNKNOWN, STACK_TYPE_TASK, STACK_TYPE_IRQ, STACK_TYPE_SOFTIRQ, STACK_TYPE_ENTRY, STACK_TYPE_EXCEPTION, STACK_TYPE_EXCEPTION_LAST = STACK_TYPE_EXCEPTION + N_EXCEPTION_STACKS-1, }; struct stack_info { enum stack_type type; unsigned long *begin, *end, *next_sp; }; bool in_task_stack(unsigned long *stack, struct task_struct *task, struct stack_info *info); bool in_entry_stack(unsigned long *stack, struct stack_info *info); int get_stack_info(unsigned long *stack, struct task_struct *task, struct stack_info *info, unsigned long *visit_mask); bool get_stack_info_noinstr(unsigned long *stack, struct task_struct *task, struct stack_info *info); const char *stack_type_name(enum stack_type type); static inline bool on_stack(struct stack_info *info, void *addr, size_t len) { void *begin = info->begin; void *end = info->end; return (info->type != STACK_TYPE_UNKNOWN && addr >= begin && addr < end && addr + len > begin && addr + len <= end); } #ifdef CONFIG_X86_32 #define STACKSLOTS_PER_LINE 8 #else #define STACKSLOTS_PER_LINE 4 #endif #ifdef CONFIG_FRAME_POINTER static inline unsigned long * get_frame_pointer(struct task_struct *task, struct pt_regs *regs) { if (regs) return (unsigned long *)regs->bp; if (task == current) return __builtin_frame_address(0); return &((struct inactive_task_frame *)task->thread.sp)->bp; } #else static inline unsigned long * get_frame_pointer(struct task_struct *task, struct pt_regs *regs) { return NULL; } #endif /* CONFIG_FRAME_POINTER */ static inline unsigned long * get_stack_pointer(struct task_struct *task, struct pt_regs *regs) { if (regs) return (unsigned long *)regs->sp; if (task == current) return __builtin_frame_address(0); return (unsigned long *)task->thread.sp; } void show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs, unsigned long *stack, const char *log_lvl); /* The form of the top of the frame on the stack */ struct stack_frame { struct stack_frame *next_frame; unsigned long return_address; }; struct stack_frame_ia32 { u32 next_frame; u32 return_address; }; void show_opcodes(struct pt_regs *regs, const char *loglvl); void show_ip(struct pt_regs *regs, const char *loglvl); #endif /* _ASM_X86_STACKTRACE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM task #if !defined(_TRACE_TASK_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_TASK_H #include <linux/tracepoint.h> TRACE_EVENT(task_newtask, TP_PROTO(struct task_struct *task, unsigned long clone_flags), TP_ARGS(task, clone_flags), TP_STRUCT__entry( __field( pid_t, pid) __array( char, comm, TASK_COMM_LEN) __field( unsigned long, clone_flags) __field( short, oom_score_adj) ), TP_fast_assign( __entry->pid = task->pid; memcpy(__entry->comm, task->comm, TASK_COMM_LEN); __entry->clone_flags = clone_flags; __entry->oom_score_adj = task->signal->oom_score_adj; ), TP_printk("pid=%d comm=%s clone_flags=%lx oom_score_adj=%hd", __entry->pid, __entry->comm, __entry->clone_flags, __entry->oom_score_adj) ); TRACE_EVENT(task_rename, TP_PROTO(struct task_struct *task, const char *comm), TP_ARGS(task, comm), TP_STRUCT__entry( __field( pid_t, pid) __array( char, oldcomm, TASK_COMM_LEN) __array( char, newcomm, TASK_COMM_LEN) __field( short, oom_score_adj) ), TP_fast_assign( __entry->pid = task->pid; memcpy(entry->oldcomm, task->comm, TASK_COMM_LEN); strlcpy(entry->newcomm, comm, TASK_COMM_LEN); __entry->oom_score_adj = task->signal->oom_score_adj; ), TP_printk("pid=%d oldcomm=%s newcomm=%s oom_score_adj=%hd", __entry->pid, __entry->oldcomm, __entry->newcomm, __entry->oom_score_adj) ); #endif /* This part must be outside protection */ #include <trace/define_trace.h>
1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 /* SPDX-License-Identifier: GPL-2.0 */ /* * descriptor table internals; you almost certainly want file.h instead. */ #ifndef __LINUX_FDTABLE_H #define __LINUX_FDTABLE_H #include <linux/posix_types.h> #include <linux/compiler.h> #include <linux/spinlock.h> #include <linux/rcupdate.h> #include <linux/nospec.h> #include <linux/types.h> #include <linux/init.h> #include <linux/fs.h> #include <linux/atomic.h> /* * The default fd array needs to be at least BITS_PER_LONG, * as this is the granularity returned by copy_fdset(). */ #define NR_OPEN_DEFAULT BITS_PER_LONG #define NR_OPEN_MAX ~0U struct fdtable { unsigned int max_fds; struct file __rcu **fd; /* current fd array */ unsigned long *close_on_exec; unsigned long *open_fds; unsigned long *full_fds_bits; struct rcu_head rcu; }; static inline bool close_on_exec(unsigned int fd, const struct fdtable *fdt) { return test_bit(fd, fdt->close_on_exec); } static inline bool fd_is_open(unsigned int fd, const struct fdtable *fdt) { return test_bit(fd, fdt->open_fds); } /* * Open file table structure */ struct files_struct { /* * read mostly part */ atomic_t count; bool resize_in_progress; wait_queue_head_t resize_wait; struct fdtable __rcu *fdt; struct fdtable fdtab; /* * written part on a separate cache line in SMP */ spinlock_t file_lock ____cacheline_aligned_in_smp; unsigned int next_fd; unsigned long close_on_exec_init[1]; unsigned long open_fds_init[1]; unsigned long full_fds_bits_init[1]; struct file __rcu * fd_array[NR_OPEN_DEFAULT]; }; struct file_operations; struct vfsmount; struct dentry; #define rcu_dereference_check_fdtable(files, fdtfd) \ rcu_dereference_check((fdtfd), lockdep_is_held(&(files)->file_lock)) #define files_fdtable(files) \ rcu_dereference_check_fdtable((files), (files)->fdt) /* * The caller must ensure that fd table isn't shared or hold rcu or file lock */ static inline struct file *__fcheck_files(struct files_struct *files, unsigned int fd) { struct fdtable *fdt = rcu_dereference_raw(files->fdt); if (fd < fdt->max_fds) { fd = array_index_nospec(fd, fdt->max_fds); return rcu_dereference_raw(fdt->fd[fd]); } return NULL; } static inline struct file *fcheck_files(struct files_struct *files, unsigned int fd) { RCU_LOCKDEP_WARN(!rcu_read_lock_held() && !lockdep_is_held(&files->file_lock), "suspicious rcu_dereference_check() usage"); return __fcheck_files(files, fd); } /* * Check whether the specified fd has an open file. */ #define fcheck(fd) fcheck_files(current->files, fd) struct task_struct; struct files_struct *get_files_struct(struct task_struct *); void put_files_struct(struct files_struct *fs); void reset_files_struct(struct files_struct *); int unshare_files(struct files_struct **); struct files_struct *dup_fd(struct files_struct *, unsigned, int *) __latent_entropy; void do_close_on_exec(struct files_struct *); int iterate_fd(struct files_struct *, unsigned, int (*)(const void *, struct file *, unsigned), const void *); extern int __alloc_fd(struct files_struct *files, unsigned start, unsigned end, unsigned flags); extern void __fd_install(struct files_struct *files, unsigned int fd, struct file *file); extern int __close_fd(struct files_struct *files, unsigned int fd); extern int __close_range(unsigned int fd, unsigned int max_fd, unsigned int flags); extern int __close_fd_get_file(unsigned int fd, struct file **res); extern int unshare_fd(unsigned long unshare_flags, unsigned int max_fds, struct files_struct **new_fdp); extern struct kmem_cache *files_cachep; #endif /* __LINUX_FDTABLE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM tcp #if !defined(_TRACE_TCP_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_TCP_H #include <linux/ipv6.h> #include <linux/tcp.h> #include <linux/tracepoint.h> #include <net/ipv6.h> #include <net/tcp.h> #include <linux/sock_diag.h> #define TP_STORE_V4MAPPED(__entry, saddr, daddr) \ do { \ struct in6_addr *pin6; \ \ pin6 = (struct in6_addr *)__entry->saddr_v6; \ ipv6_addr_set_v4mapped(saddr, pin6); \ pin6 = (struct in6_addr *)__entry->daddr_v6; \ ipv6_addr_set_v4mapped(daddr, pin6); \ } while (0) #if IS_ENABLED(CONFIG_IPV6) #define TP_STORE_ADDRS(__entry, saddr, daddr, saddr6, daddr6) \ do { \ if (sk->sk_family == AF_INET6) { \ struct in6_addr *pin6; \ \ pin6 = (struct in6_addr *)__entry->saddr_v6; \ *pin6 = saddr6; \ pin6 = (struct in6_addr *)__entry->daddr_v6; \ *pin6 = daddr6; \ } else { \ TP_STORE_V4MAPPED(__entry, saddr, daddr); \ } \ } while (0) #else #define TP_STORE_ADDRS(__entry, saddr, daddr, saddr6, daddr6) \ TP_STORE_V4MAPPED(__entry, saddr, daddr) #endif /* * tcp event with arguments sk and skb * * Note: this class requires a valid sk pointer; while skb pointer could * be NULL. */ DECLARE_EVENT_CLASS(tcp_event_sk_skb, TP_PROTO(const struct sock *sk, const struct sk_buff *skb), TP_ARGS(sk, skb), TP_STRUCT__entry( __field(const void *, skbaddr) __field(const void *, skaddr) __field(int, state) __field(__u16, sport) __field(__u16, dport) __array(__u8, saddr, 4) __array(__u8, daddr, 4) __array(__u8, saddr_v6, 16) __array(__u8, daddr_v6, 16) ), TP_fast_assign( struct inet_sock *inet = inet_sk(sk); __be32 *p32; __entry->skbaddr = skb; __entry->skaddr = sk; __entry->state = sk->sk_state; __entry->sport = ntohs(inet->inet_sport); __entry->dport = ntohs(inet->inet_dport); p32 = (__be32 *) __entry->saddr; *p32 = inet->inet_saddr; p32 = (__be32 *) __entry->daddr; *p32 = inet->inet_daddr; TP_STORE_ADDRS(__entry, inet->inet_saddr, inet->inet_daddr, sk->sk_v6_rcv_saddr, sk->sk_v6_daddr); ), TP_printk("sport=%hu dport=%hu saddr=%pI4 daddr=%pI4 saddrv6=%pI6c daddrv6=%pI6c state=%s", __entry->sport, __entry->dport, __entry->saddr, __entry->daddr, __entry->saddr_v6, __entry->daddr_v6, show_tcp_state_name(__entry->state)) ); DEFINE_EVENT(tcp_event_sk_skb, tcp_retransmit_skb, TP_PROTO(const struct sock *sk, const struct sk_buff *skb), TP_ARGS(sk, skb) ); /* * skb of trace_tcp_send_reset is the skb that caused RST. In case of * active reset, skb should be NULL */ DEFINE_EVENT(tcp_event_sk_skb, tcp_send_reset, TP_PROTO(const struct sock *sk, const struct sk_buff *skb), TP_ARGS(sk, skb) ); /* * tcp event with arguments sk * * Note: this class requires a valid sk pointer. */ DECLARE_EVENT_CLASS(tcp_event_sk, TP_PROTO(struct sock *sk), TP_ARGS(sk), TP_STRUCT__entry( __field(const void *, skaddr) __field(__u16, sport) __field(__u16, dport) __array(__u8, saddr, 4) __array(__u8, daddr, 4) __array(__u8, saddr_v6, 16) __array(__u8, daddr_v6, 16) __field(__u64, sock_cookie) ), TP_fast_assign( struct inet_sock *inet = inet_sk(sk); __be32 *p32; __entry->skaddr = sk; __entry->sport = ntohs(inet->inet_sport); __entry->dport = ntohs(inet->inet_dport); p32 = (__be32 *) __entry->saddr; *p32 = inet->inet_saddr; p32 = (__be32 *) __entry->daddr; *p32 = inet->inet_daddr; TP_STORE_ADDRS(__entry, inet->inet_saddr, inet->inet_daddr, sk->sk_v6_rcv_saddr, sk->sk_v6_daddr); __entry->sock_cookie = sock_gen_cookie(sk); ), TP_printk("sport=%hu dport=%hu saddr=%pI4 daddr=%pI4 saddrv6=%pI6c daddrv6=%pI6c sock_cookie=%llx", __entry->sport, __entry->dport, __entry->saddr, __entry->daddr, __entry->saddr_v6, __entry->daddr_v6, __entry->sock_cookie) ); DEFINE_EVENT(tcp_event_sk, tcp_receive_reset, TP_PROTO(struct sock *sk), TP_ARGS(sk) ); DEFINE_EVENT(tcp_event_sk, tcp_destroy_sock, TP_PROTO(struct sock *sk), TP_ARGS(sk) ); DEFINE_EVENT(tcp_event_sk, tcp_rcv_space_adjust, TP_PROTO(struct sock *sk), TP_ARGS(sk) ); TRACE_EVENT(tcp_retransmit_synack, TP_PROTO(const struct sock *sk, const struct request_sock *req), TP_ARGS(sk, req), TP_STRUCT__entry( __field(const void *, skaddr) __field(const void *, req) __field(__u16, sport) __field(__u16, dport) __array(__u8, saddr, 4) __array(__u8, daddr, 4) __array(__u8, saddr_v6, 16) __array(__u8, daddr_v6, 16) ), TP_fast_assign( struct inet_request_sock *ireq = inet_rsk(req); __be32 *p32; __entry->skaddr = sk; __entry->req = req; __entry->sport = ireq->ir_num; __entry->dport = ntohs(ireq->ir_rmt_port); p32 = (__be32 *) __entry->saddr; *p32 = ireq->ir_loc_addr; p32 = (__be32 *) __entry->daddr; *p32 = ireq->ir_rmt_addr; TP_STORE_ADDRS(__entry, ireq->ir_loc_addr, ireq->ir_rmt_addr, ireq->ir_v6_loc_addr, ireq->ir_v6_rmt_addr); ), TP_printk("sport=%hu dport=%hu saddr=%pI4 daddr=%pI4 saddrv6=%pI6c daddrv6=%pI6c", __entry->sport, __entry->dport, __entry->saddr, __entry->daddr, __entry->saddr_v6, __entry->daddr_v6) ); #include <trace/events/net_probe_common.h> TRACE_EVENT(tcp_probe, TP_PROTO(struct sock *sk, struct sk_buff *skb), TP_ARGS(sk, skb), TP_STRUCT__entry( /* sockaddr_in6 is always bigger than sockaddr_in */ __array(__u8, saddr, sizeof(struct sockaddr_in6)) __array(__u8, daddr, sizeof(struct sockaddr_in6)) __field(__u16, sport) __field(__u16, dport) __field(__u32, mark) __field(__u16, data_len) __field(__u32, snd_nxt) __field(__u32, snd_una) __field(__u32, snd_cwnd) __field(__u32, ssthresh) __field(__u32, snd_wnd) __field(__u32, srtt) __field(__u32, rcv_wnd) __field(__u64, sock_cookie) ), TP_fast_assign( const struct tcphdr *th = (const struct tcphdr *)skb->data; const struct inet_sock *inet = inet_sk(sk); const struct tcp_sock *tp = tcp_sk(sk); memset(__entry->saddr, 0, sizeof(struct sockaddr_in6)); memset(__entry->daddr, 0, sizeof(struct sockaddr_in6)); TP_STORE_ADDR_PORTS(__entry, inet, sk); /* For filtering use */ __entry->sport = ntohs(inet->inet_sport); __entry->dport = ntohs(inet->inet_dport); __entry->mark = skb->mark; __entry->data_len = skb->len - __tcp_hdrlen(th); __entry->snd_nxt = tp->snd_nxt; __entry->snd_una = tp->snd_una; __entry->snd_cwnd = tp->snd_cwnd; __entry->snd_wnd = tp->snd_wnd; __entry->rcv_wnd = tp->rcv_wnd; __entry->ssthresh = tcp_current_ssthresh(sk); __entry->srtt = tp->srtt_us >> 3; __entry->sock_cookie = sock_gen_cookie(sk); ), TP_printk("src=%pISpc dest=%pISpc mark=%#x data_len=%d snd_nxt=%#x snd_una=%#x snd_cwnd=%u ssthresh=%u snd_wnd=%u srtt=%u rcv_wnd=%u sock_cookie=%llx", __entry->saddr, __entry->daddr, __entry->mark, __entry->data_len, __entry->snd_nxt, __entry->snd_una, __entry->snd_cwnd, __entry->ssthresh, __entry->snd_wnd, __entry->srtt, __entry->rcv_wnd, __entry->sock_cookie) ); #endif /* _TRACE_TCP_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_RCULIST_BL_H #define _LINUX_RCULIST_BL_H /* * RCU-protected bl list version. See include/linux/list_bl.h. */ #include <linux/list_bl.h> #include <linux/rcupdate.h> static inline void hlist_bl_set_first_rcu(struct hlist_bl_head *h, struct hlist_bl_node *n) { LIST_BL_BUG_ON((unsigned long)n & LIST_BL_LOCKMASK); LIST_BL_BUG_ON(((unsigned long)h->first & LIST_BL_LOCKMASK) != LIST_BL_LOCKMASK); rcu_assign_pointer(h->first, (struct hlist_bl_node *)((unsigned long)n | LIST_BL_LOCKMASK)); } static inline struct hlist_bl_node *hlist_bl_first_rcu(struct hlist_bl_head *h) { return (struct hlist_bl_node *) ((unsigned long)rcu_dereference_check(h->first, hlist_bl_is_locked(h)) & ~LIST_BL_LOCKMASK); } /** * hlist_bl_del_rcu - deletes entry from hash list without re-initialization * @n: the element to delete from the hash list. * * Note: hlist_bl_unhashed() on entry does not return true after this, * the entry is in an undefined state. It is useful for RCU based * lockfree traversal. * * In particular, it means that we can not poison the forward * pointers that may still be used for walking the hash list. * * The caller must take whatever precautions are necessary * (such as holding appropriate locks) to avoid racing * with another list-mutation primitive, such as hlist_bl_add_head_rcu() * or hlist_bl_del_rcu(), running on this same list. * However, it is perfectly legal to run concurrently with * the _rcu list-traversal primitives, such as * hlist_bl_for_each_entry(). */ static inline void hlist_bl_del_rcu(struct hlist_bl_node *n) { __hlist_bl_del(n); n->pprev = LIST_POISON2; } /** * hlist_bl_add_head_rcu * @n: the element to add to the hash list. * @h: the list to add to. * * Description: * Adds the specified element to the specified hlist_bl, * while permitting racing traversals. * * The caller must take whatever precautions are necessary * (such as holding appropriate locks) to avoid racing * with another list-mutation primitive, such as hlist_bl_add_head_rcu() * or hlist_bl_del_rcu(), running on this same list. * However, it is perfectly legal to run concurrently with * the _rcu list-traversal primitives, such as * hlist_bl_for_each_entry_rcu(), used to prevent memory-consistency * problems on Alpha CPUs. Regardless of the type of CPU, the * list-traversal primitive must be guarded by rcu_read_lock(). */ static inline void hlist_bl_add_head_rcu(struct hlist_bl_node *n, struct hlist_bl_head *h) { struct hlist_bl_node *first; /* don't need hlist_bl_first_rcu because we're under lock */ first = hlist_bl_first(h); n->next = first; if (first) first->pprev = &n->next; n->pprev = &h->first; /* need _rcu because we can have concurrent lock free readers */ hlist_bl_set_first_rcu(h, n); } /** * hlist_bl_for_each_entry_rcu - iterate over rcu list of given type * @tpos: the type * to use as a loop cursor. * @pos: the &struct hlist_bl_node to use as a loop cursor. * @head: the head for your list. * @member: the name of the hlist_bl_node within the struct. * */ #define hlist_bl_for_each_entry_rcu(tpos, pos, head, member) \ for (pos = hlist_bl_first_rcu(head); \ pos && \ ({ tpos = hlist_bl_entry(pos, typeof(*tpos), member); 1; }); \ pos = rcu_dereference_raw(pos->next)) #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 #ifndef __NET_SCHED_CODEL_IMPL_H #define __NET_SCHED_CODEL_IMPL_H /* * Codel - The Controlled-Delay Active Queue Management algorithm * * Copyright (C) 2011-2012 Kathleen Nichols <nichols@pollere.com> * Copyright (C) 2011-2012 Van Jacobson <van@pollere.net> * Copyright (C) 2012 Michael D. Taht <dave.taht@bufferbloat.net> * Copyright (C) 2012,2015 Eric Dumazet <edumazet@google.com> * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The names of the authors may not be used to endorse or promote products * derived from this software without specific prior written permission. * * Alternatively, provided that this notice is retained in full, this * software may be distributed under the terms of the GNU General * Public License ("GPL") version 2, in which case the provisions of the * GPL apply INSTEAD OF those given above. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH * DAMAGE. * */ /* Controlling Queue Delay (CoDel) algorithm * ========================================= * Source : Kathleen Nichols and Van Jacobson * http://queue.acm.org/detail.cfm?id=2209336 * * Implemented on linux by Dave Taht and Eric Dumazet */ static void codel_params_init(struct codel_params *params) { params->interval = MS2TIME(100); params->target = MS2TIME(5); params->ce_threshold = CODEL_DISABLED_THRESHOLD; params->ecn = false; } static void codel_vars_init(struct codel_vars *vars) { memset(vars, 0, sizeof(*vars)); } static void codel_stats_init(struct codel_stats *stats) { stats->maxpacket = 0; } /* * http://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Iterative_methods_for_reciprocal_square_roots * new_invsqrt = (invsqrt / 2) * (3 - count * invsqrt^2) * * Here, invsqrt is a fixed point number (< 1.0), 32bit mantissa, aka Q0.32 */ static void codel_Newton_step(struct codel_vars *vars) { u32 invsqrt = ((u32)vars->rec_inv_sqrt) << REC_INV_SQRT_SHIFT; u32 invsqrt2 = ((u64)invsqrt * invsqrt) >> 32; u64 val = (3LL << 32) - ((u64)vars->count * invsqrt2); val >>= 2; /* avoid overflow in following multiply */ val = (val * invsqrt) >> (32 - 2 + 1); vars->rec_inv_sqrt = val >> REC_INV_SQRT_SHIFT; } /* * CoDel control_law is t + interval/sqrt(count) * We maintain in rec_inv_sqrt the reciprocal value of sqrt(count) to avoid * both sqrt() and divide operation. */ static codel_time_t codel_control_law(codel_time_t t, codel_time_t interval, u32 rec_inv_sqrt) { return t + reciprocal_scale(interval, rec_inv_sqrt << REC_INV_SQRT_SHIFT); } static bool codel_should_drop(const struct sk_buff *skb, void *ctx, struct codel_vars *vars, struct codel_params *params, struct codel_stats *stats, codel_skb_len_t skb_len_func, codel_skb_time_t skb_time_func, u32 *backlog, codel_time_t now) { bool ok_to_drop; u32 skb_len; if (!skb) { vars->first_above_time = 0; return false; } skb_len = skb_len_func(skb); vars->ldelay = now - skb_time_func(skb); if (unlikely(skb_len > stats->maxpacket)) stats->maxpacket = skb_len; if (codel_time_before(vars->ldelay, params->target) || *backlog <= params->mtu) { /* went below - stay below for at least interval */ vars->first_above_time = 0; return false; } ok_to_drop = false; if (vars->first_above_time == 0) { /* just went above from below. If we stay above * for at least interval we'll say it's ok to drop */ vars->first_above_time = now + params->interval; } else if (codel_time_after(now, vars->first_above_time)) { ok_to_drop = true; } return ok_to_drop; } static struct sk_buff *codel_dequeue(void *ctx, u32 *backlog, struct codel_params *params, struct codel_vars *vars, struct codel_stats *stats, codel_skb_len_t skb_len_func, codel_skb_time_t skb_time_func, codel_skb_drop_t drop_func, codel_skb_dequeue_t dequeue_func) { struct sk_buff *skb = dequeue_func(vars, ctx); codel_time_t now; bool drop; if (!skb) { vars->dropping = false; return skb; } now = codel_get_time(); drop = codel_should_drop(skb, ctx, vars, params, stats, skb_len_func, skb_time_func, backlog, now); if (vars->dropping) { if (!drop) { /* sojourn time below target - leave dropping state */ vars->dropping = false; } else if (codel_time_after_eq(now, vars->drop_next)) { /* It's time for the next drop. Drop the current * packet and dequeue the next. The dequeue might * take us out of dropping state. * If not, schedule the next drop. * A large backlog might result in drop rates so high * that the next drop should happen now, * hence the while loop. */ while (vars->dropping && codel_time_after_eq(now, vars->drop_next)) { vars->count++; /* dont care of possible wrap * since there is no more divide */ codel_Newton_step(vars); if (params->ecn && INET_ECN_set_ce(skb)) { stats->ecn_mark++; vars->drop_next = codel_control_law(vars->drop_next, params->interval, vars->rec_inv_sqrt); goto end; } stats->drop_len += skb_len_func(skb); drop_func(skb, ctx); stats->drop_count++; skb = dequeue_func(vars, ctx); if (!codel_should_drop(skb, ctx, vars, params, stats, skb_len_func, skb_time_func, backlog, now)) { /* leave dropping state */ vars->dropping = false; } else { /* and schedule the next drop */ vars->drop_next = codel_control_law(vars->drop_next, params->interval, vars->rec_inv_sqrt); } } } } else if (drop) { u32 delta; if (params->ecn && INET_ECN_set_ce(skb)) { stats->ecn_mark++; } else { stats->drop_len += skb_len_func(skb); drop_func(skb, ctx); stats->drop_count++; skb = dequeue_func(vars, ctx); drop = codel_should_drop(skb, ctx, vars, params, stats, skb_len_func, skb_time_func, backlog, now); } vars->dropping = true; /* if min went above target close to when we last went below it * assume that the drop rate that controlled the queue on the * last cycle is a good starting point to control it now. */ delta = vars->count - vars->lastcount; if (delta > 1 && codel_time_before(now - vars->drop_next, 16 * params->interval)) { vars->count = delta; /* we dont care if rec_inv_sqrt approximation * is not very precise : * Next Newton steps will correct it quadratically. */ codel_Newton_step(vars); } else { vars->count = 1; vars->rec_inv_sqrt = ~0U >> REC_INV_SQRT_SHIFT; } vars->lastcount = vars->count; vars->drop_next = codel_control_law(now, params->interval, vars->rec_inv_sqrt); } end: if (skb && codel_time_after(vars->ldelay, params->ce_threshold) && INET_ECN_set_ce(skb)) stats->ce_mark++; return skb; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_FUTEX_H #define _ASM_X86_FUTEX_H #ifdef __KERNEL__ #include <linux/futex.h> #include <linux/uaccess.h> #include <asm/asm.h> #include <asm/errno.h> #include <asm/processor.h> #include <asm/smap.h> #define unsafe_atomic_op1(insn, oval, uaddr, oparg, label) \ do { \ int oldval = 0, ret; \ asm volatile("1:\t" insn "\n" \ "2:\n" \ "\t.section .fixup,\"ax\"\n" \ "3:\tmov\t%3, %1\n" \ "\tjmp\t2b\n" \ "\t.previous\n" \ _ASM_EXTABLE_UA(1b, 3b) \ : "=r" (oldval), "=r" (ret), "+m" (*uaddr) \ : "i" (-EFAULT), "0" (oparg), "1" (0)); \ if (ret) \ goto label; \ *oval = oldval; \ } while(0) #define unsafe_atomic_op2(insn, oval, uaddr, oparg, label) \ do { \ int oldval = 0, ret, tem; \ asm volatile("1:\tmovl %2, %0\n" \ "2:\tmovl\t%0, %3\n" \ "\t" insn "\n" \ "3:\t" LOCK_PREFIX "cmpxchgl %3, %2\n" \ "\tjnz\t2b\n" \ "4:\n" \ "\t.section .fixup,\"ax\"\n" \ "5:\tmov\t%5, %1\n" \ "\tjmp\t4b\n" \ "\t.previous\n" \ _ASM_EXTABLE_UA(1b, 5b) \ _ASM_EXTABLE_UA(3b, 5b) \ : "=&a" (oldval), "=&r" (ret), \ "+m" (*uaddr), "=&r" (tem) \ : "r" (oparg), "i" (-EFAULT), "1" (0)); \ if (ret) \ goto label; \ *oval = oldval; \ } while(0) static __always_inline int arch_futex_atomic_op_inuser(int op, int oparg, int *oval, u32 __user *uaddr) { if (!user_access_begin(uaddr, sizeof(u32))) return -EFAULT; switch (op) { case FUTEX_OP_SET: unsafe_atomic_op1("xchgl %0, %2", oval, uaddr, oparg, Efault); break; case FUTEX_OP_ADD: unsafe_atomic_op1(LOCK_PREFIX "xaddl %0, %2", oval, uaddr, oparg, Efault); break; case FUTEX_OP_OR: unsafe_atomic_op2("orl %4, %3", oval, uaddr, oparg, Efault); break; case FUTEX_OP_ANDN: unsafe_atomic_op2("andl %4, %3", oval, uaddr, ~oparg, Efault); break; case FUTEX_OP_XOR: unsafe_atomic_op2("xorl %4, %3", oval, uaddr, oparg, Efault); break; default: user_access_end(); return -ENOSYS; } user_access_end(); return 0; Efault: user_access_end(); return -EFAULT; } static inline int futex_atomic_cmpxchg_inatomic(u32 *uval, u32 __user *uaddr, u32 oldval, u32 newval) { int ret = 0; if (!user_access_begin(uaddr, sizeof(u32))) return -EFAULT; asm volatile("\n" "1:\t" LOCK_PREFIX "cmpxchgl %4, %2\n" "2:\n" "\t.section .fixup, \"ax\"\n" "3:\tmov %3, %0\n" "\tjmp 2b\n" "\t.previous\n" _ASM_EXTABLE_UA(1b, 3b) : "+r" (ret), "=a" (oldval), "+m" (*uaddr) : "i" (-EFAULT), "r" (newval), "1" (oldval) : "memory" ); user_access_end(); *uval = oldval; return ret; } #endif #endif /* _ASM_X86_FUTEX_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 /* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright 2002-2005, Devicescape Software, Inc. * Copyright 2013-2014 Intel Mobile Communications GmbH * Copyright(c) 2015-2017 Intel Deutschland GmbH * Copyright(c) 2020-2021 Intel Corporation */ #ifndef STA_INFO_H #define STA_INFO_H #include <linux/list.h> #include <linux/types.h> #include <linux/if_ether.h> #include <linux/workqueue.h> #include <linux/average.h> #include <linux/bitfield.h> #include <linux/etherdevice.h> #include <linux/rhashtable.h> #include <linux/u64_stats_sync.h> #include "key.h" /** * enum ieee80211_sta_info_flags - Stations flags * * These flags are used with &struct sta_info's @flags member, but * only indirectly with set_sta_flag() and friends. * * @WLAN_STA_AUTH: Station is authenticated. * @WLAN_STA_ASSOC: Station is associated. * @WLAN_STA_PS_STA: Station is in power-save mode * @WLAN_STA_AUTHORIZED: Station is authorized to send/receive traffic. * This bit is always checked so needs to be enabled for all stations * when virtual port control is not in use. * @WLAN_STA_SHORT_PREAMBLE: Station is capable of receiving short-preamble * frames. * @WLAN_STA_WDS: Station is one of our WDS peers. * @WLAN_STA_CLEAR_PS_FILT: Clear PS filter in hardware (using the * IEEE80211_TX_CTL_CLEAR_PS_FILT control flag) when the next * frame to this station is transmitted. * @WLAN_STA_MFP: Management frame protection is used with this STA. * @WLAN_STA_BLOCK_BA: Used to deny ADDBA requests (both TX and RX) * during suspend/resume and station removal. * @WLAN_STA_PS_DRIVER: driver requires keeping this station in * power-save mode logically to flush frames that might still * be in the queues * @WLAN_STA_PSPOLL: Station sent PS-poll while driver was keeping * station in power-save mode, reply when the driver unblocks. * @WLAN_STA_TDLS_PEER: Station is a TDLS peer. * @WLAN_STA_TDLS_PEER_AUTH: This TDLS peer is authorized to send direct * packets. This means the link is enabled. * @WLAN_STA_TDLS_INITIATOR: We are the initiator of the TDLS link with this * station. * @WLAN_STA_TDLS_CHAN_SWITCH: This TDLS peer supports TDLS channel-switching * @WLAN_STA_TDLS_OFF_CHANNEL: The local STA is currently off-channel with this * TDLS peer * @WLAN_STA_TDLS_WIDER_BW: This TDLS peer supports working on a wider bw on * the BSS base channel. * @WLAN_STA_UAPSD: Station requested unscheduled SP while driver was * keeping station in power-save mode, reply when the driver * unblocks the station. * @WLAN_STA_SP: Station is in a service period, so don't try to * reply to other uAPSD trigger frames or PS-Poll. * @WLAN_STA_4ADDR_EVENT: 4-addr event was already sent for this frame. * @WLAN_STA_INSERTED: This station is inserted into the hash table. * @WLAN_STA_RATE_CONTROL: rate control was initialized for this station. * @WLAN_STA_TOFFSET_KNOWN: toffset calculated for this station is valid. * @WLAN_STA_MPSP_OWNER: local STA is owner of a mesh Peer Service Period. * @WLAN_STA_MPSP_RECIPIENT: local STA is recipient of a MPSP. * @WLAN_STA_PS_DELIVER: station woke up, but we're still blocking TX * until pending frames are delivered * @WLAN_STA_USES_ENCRYPTION: This station was configured for encryption, * so drop all packets without a key later. * * @NUM_WLAN_STA_FLAGS: number of defined flags */ enum ieee80211_sta_info_flags { WLAN_STA_AUTH, WLAN_STA_ASSOC, WLAN_STA_PS_STA, WLAN_STA_AUTHORIZED, WLAN_STA_SHORT_PREAMBLE, WLAN_STA_WDS, WLAN_STA_CLEAR_PS_FILT, WLAN_STA_MFP, WLAN_STA_BLOCK_BA, WLAN_STA_PS_DRIVER, WLAN_STA_PSPOLL, WLAN_STA_TDLS_PEER, WLAN_STA_TDLS_PEER_AUTH, WLAN_STA_TDLS_INITIATOR, WLAN_STA_TDLS_CHAN_SWITCH, WLAN_STA_TDLS_OFF_CHANNEL, WLAN_STA_TDLS_WIDER_BW, WLAN_STA_UAPSD, WLAN_STA_SP, WLAN_STA_4ADDR_EVENT, WLAN_STA_INSERTED, WLAN_STA_RATE_CONTROL, WLAN_STA_TOFFSET_KNOWN, WLAN_STA_MPSP_OWNER, WLAN_STA_MPSP_RECIPIENT, WLAN_STA_PS_DELIVER, WLAN_STA_USES_ENCRYPTION, NUM_WLAN_STA_FLAGS, }; #define ADDBA_RESP_INTERVAL HZ #define HT_AGG_MAX_RETRIES 15 #define HT_AGG_BURST_RETRIES 3 #define HT_AGG_RETRIES_PERIOD (15 * HZ) #define HT_AGG_STATE_DRV_READY 0 #define HT_AGG_STATE_RESPONSE_RECEIVED 1 #define HT_AGG_STATE_OPERATIONAL 2 #define HT_AGG_STATE_STOPPING 3 #define HT_AGG_STATE_WANT_START 4 #define HT_AGG_STATE_WANT_STOP 5 #define HT_AGG_STATE_START_CB 6 #define HT_AGG_STATE_STOP_CB 7 #define HT_AGG_STATE_SENT_ADDBA 8 DECLARE_EWMA(avg_signal, 10, 8) enum ieee80211_agg_stop_reason { AGG_STOP_DECLINED, AGG_STOP_LOCAL_REQUEST, AGG_STOP_PEER_REQUEST, AGG_STOP_DESTROY_STA, }; /* Debugfs flags to enable/disable use of RX/TX airtime in scheduler */ #define AIRTIME_USE_TX BIT(0) #define AIRTIME_USE_RX BIT(1) struct airtime_info { u64 rx_airtime; u64 tx_airtime; s64 deficit; atomic_t aql_tx_pending; /* Estimated airtime for frames pending */ u32 aql_limit_low; u32 aql_limit_high; }; void ieee80211_sta_update_pending_airtime(struct ieee80211_local *local, struct sta_info *sta, u8 ac, u16 tx_airtime, bool tx_completed); struct sta_info; /** * struct tid_ampdu_tx - TID aggregation information (Tx). * * @rcu_head: rcu head for freeing structure * @session_timer: check if we keep Tx-ing on the TID (by timeout value) * @addba_resp_timer: timer for peer's response to addba request * @pending: pending frames queue -- use sta's spinlock to protect * @sta: station we are attached to * @dialog_token: dialog token for aggregation session * @timeout: session timeout value to be filled in ADDBA requests * @tid: TID number * @state: session state (see above) * @last_tx: jiffies of last tx activity * @stop_initiator: initiator of a session stop * @tx_stop: TX DelBA frame when stopping * @buf_size: reorder buffer size at receiver * @failed_bar_ssn: ssn of the last failed BAR tx attempt * @bar_pending: BAR needs to be re-sent * @amsdu: support A-MSDU withing A-MDPU * * This structure's lifetime is managed by RCU, assignments to * the array holding it must hold the aggregation mutex. * * The TX path can access it under RCU lock-free if, and * only if, the state has the flag %HT_AGG_STATE_OPERATIONAL * set. Otherwise, the TX path must also acquire the spinlock * and re-check the state, see comments in the tx code * touching it. */ struct tid_ampdu_tx { struct rcu_head rcu_head; struct timer_list session_timer; struct timer_list addba_resp_timer; struct sk_buff_head pending; struct sta_info *sta; unsigned long state; unsigned long last_tx; u16 timeout; u8 dialog_token; u8 stop_initiator; bool tx_stop; u16 buf_size; u16 ssn; u16 failed_bar_ssn; bool bar_pending; bool amsdu; u8 tid; }; /** * struct tid_ampdu_rx - TID aggregation information (Rx). * * @reorder_buf: buffer to reorder incoming aggregated MPDUs. An MPDU may be an * A-MSDU with individually reported subframes. * @reorder_buf_filtered: bitmap indicating where there are filtered frames in * the reorder buffer that should be ignored when releasing frames * @reorder_time: jiffies when skb was added * @session_timer: check if peer keeps Tx-ing on the TID (by timeout value) * @reorder_timer: releases expired frames from the reorder buffer. * @sta: station we are attached to * @last_rx: jiffies of last rx activity * @head_seq_num: head sequence number in reordering buffer. * @stored_mpdu_num: number of MPDUs in reordering buffer * @ssn: Starting Sequence Number expected to be aggregated. * @buf_size: buffer size for incoming A-MPDUs * @timeout: reset timer value (in TUs). * @tid: TID number * @rcu_head: RCU head used for freeing this struct * @reorder_lock: serializes access to reorder buffer, see below. * @auto_seq: used for offloaded BA sessions to automatically pick head_seq_and * and ssn. * @removed: this session is removed (but might have been found due to RCU) * @started: this session has started (head ssn or higher was received) * * This structure's lifetime is managed by RCU, assignments to * the array holding it must hold the aggregation mutex. * * The @reorder_lock is used to protect the members of this * struct, except for @timeout, @buf_size and @dialog_token, * which are constant across the lifetime of the struct (the * dialog token being used only for debugging). */ struct tid_ampdu_rx { struct rcu_head rcu_head; spinlock_t reorder_lock; u64 reorder_buf_filtered; struct sk_buff_head *reorder_buf; unsigned long *reorder_time; struct sta_info *sta; struct timer_list session_timer; struct timer_list reorder_timer; unsigned long last_rx; u16 head_seq_num; u16 stored_mpdu_num; u16 ssn; u16 buf_size; u16 timeout; u8 tid; u8 auto_seq:1, removed:1, started:1; }; /** * struct sta_ampdu_mlme - STA aggregation information. * * @mtx: mutex to protect all TX data (except non-NULL assignments * to tid_tx[idx], which are protected by the sta spinlock) * tid_start_tx is also protected by sta->lock. * @tid_rx: aggregation info for Rx per TID -- RCU protected * @tid_rx_token: dialog tokens for valid aggregation sessions * @tid_rx_timer_expired: bitmap indicating on which TIDs the * RX timer expired until the work for it runs * @tid_rx_stop_requested: bitmap indicating which BA sessions per TID the * driver requested to close until the work for it runs * @tid_rx_manage_offl: bitmap indicating which BA sessions were requested * to be treated as started/stopped due to offloading * @agg_session_valid: bitmap indicating which TID has a rx BA session open on * @unexpected_agg: bitmap indicating which TID already sent a delBA due to * unexpected aggregation related frames outside a session * @work: work struct for starting/stopping aggregation * @tid_tx: aggregation info for Tx per TID * @tid_start_tx: sessions where start was requested * @last_addba_req_time: timestamp of the last addBA request. * @addba_req_num: number of times addBA request has been sent. * @dialog_token_allocator: dialog token enumerator for each new session; */ struct sta_ampdu_mlme { struct mutex mtx; /* rx */ struct tid_ampdu_rx __rcu *tid_rx[IEEE80211_NUM_TIDS]; u8 tid_rx_token[IEEE80211_NUM_TIDS]; unsigned long tid_rx_timer_expired[BITS_TO_LONGS(IEEE80211_NUM_TIDS)]; unsigned long tid_rx_stop_requested[BITS_TO_LONGS(IEEE80211_NUM_TIDS)]; unsigned long tid_rx_manage_offl[BITS_TO_LONGS(2 * IEEE80211_NUM_TIDS)]; unsigned long agg_session_valid[BITS_TO_LONGS(IEEE80211_NUM_TIDS)]; unsigned long unexpected_agg[BITS_TO_LONGS(IEEE80211_NUM_TIDS)]; /* tx */ struct work_struct work; struct tid_ampdu_tx __rcu *tid_tx[IEEE80211_NUM_TIDS]; struct tid_ampdu_tx *tid_start_tx[IEEE80211_NUM_TIDS]; unsigned long last_addba_req_time[IEEE80211_NUM_TIDS]; u8 addba_req_num[IEEE80211_NUM_TIDS]; u8 dialog_token_allocator; }; /* Value to indicate no TID reservation */ #define IEEE80211_TID_UNRESERVED 0xff #define IEEE80211_FAST_XMIT_MAX_IV 18 /** * struct ieee80211_fast_tx - TX fastpath information * @key: key to use for hw crypto * @hdr: the 802.11 header to put with the frame * @hdr_len: actual 802.11 header length * @sa_offs: offset of the SA * @da_offs: offset of the DA * @pn_offs: offset where to put PN for crypto (or 0 if not needed) * @band: band this will be transmitted on, for tx_info * @rcu_head: RCU head to free this struct * * This struct is small enough so that the common case (maximum crypto * header length of 8 like for CCMP/GCMP) fits into a single 64-byte * cache line. */ struct ieee80211_fast_tx { struct ieee80211_key *key; u8 hdr_len; u8 sa_offs, da_offs, pn_offs; u8 band; u8 hdr[30 + 2 + IEEE80211_FAST_XMIT_MAX_IV + sizeof(rfc1042_header)] __aligned(2); struct rcu_head rcu_head; }; /** * struct ieee80211_fast_rx - RX fastpath information * @dev: netdevice for reporting the SKB * @vif_type: (P2P-less) interface type of the original sdata (sdata->vif.type) * @vif_addr: interface address * @rfc1042_hdr: copy of the RFC 1042 SNAP header (to have in cache) * @control_port_protocol: control port protocol copied from sdata * @expected_ds_bits: from/to DS bits expected * @icv_len: length of the MIC if present * @key: bool indicating encryption is expected (key is set) * @internal_forward: forward froms internally on AP/VLAN type interfaces * @uses_rss: copy of USES_RSS hw flag * @da_offs: offset of the DA in the header (for header conversion) * @sa_offs: offset of the SA in the header (for header conversion) * @rcu_head: RCU head for freeing this structure */ struct ieee80211_fast_rx { struct net_device *dev; enum nl80211_iftype vif_type; u8 vif_addr[ETH_ALEN] __aligned(2); u8 rfc1042_hdr[6] __aligned(2); __be16 control_port_protocol; __le16 expected_ds_bits; u8 icv_len; u8 key:1, internal_forward:1, uses_rss:1; u8 da_offs, sa_offs; struct rcu_head rcu_head; }; /* we use only values in the range 0-100, so pick a large precision */ DECLARE_EWMA(mesh_fail_avg, 20, 8) DECLARE_EWMA(mesh_tx_rate_avg, 8, 16) /** * struct mesh_sta - mesh STA information * @plink_lock: serialize access to plink fields * @llid: Local link ID * @plid: Peer link ID * @aid: local aid supplied by peer * @reason: Cancel reason on PLINK_HOLDING state * @plink_retries: Retries in establishment * @plink_state: peer link state * @plink_timeout: timeout of peer link * @plink_timer: peer link watch timer * @plink_sta: peer link watch timer's sta_info * @t_offset: timing offset relative to this host * @t_offset_setpoint: reference timing offset of this sta to be used when * calculating clockdrift * @local_pm: local link-specific power save mode * @peer_pm: peer-specific power save mode towards local STA * @nonpeer_pm: STA power save mode towards non-peer neighbors * @processed_beacon: set to true after peer rates and capabilities are * processed * @connected_to_gate: true if mesh STA has a path to a mesh gate * @connected_to_as: true if mesh STA has a path to a authentication server * @fail_avg: moving percentage of failed MSDUs * @tx_rate_avg: moving average of tx bitrate */ struct mesh_sta { struct timer_list plink_timer; struct sta_info *plink_sta; s64 t_offset; s64 t_offset_setpoint; spinlock_t plink_lock; u16 llid; u16 plid; u16 aid; u16 reason; u8 plink_retries; bool processed_beacon; bool connected_to_gate; bool connected_to_as; enum nl80211_plink_state plink_state; u32 plink_timeout; /* mesh power save */ enum nl80211_mesh_power_mode local_pm; enum nl80211_mesh_power_mode peer_pm; enum nl80211_mesh_power_mode nonpeer_pm; /* moving percentage of failed MSDUs */ struct ewma_mesh_fail_avg fail_avg; /* moving average of tx bitrate */ struct ewma_mesh_tx_rate_avg tx_rate_avg; }; DECLARE_EWMA(signal, 10, 8) struct ieee80211_sta_rx_stats { unsigned long packets; unsigned long last_rx; unsigned long num_duplicates; unsigned long fragments; unsigned long dropped; int last_signal; u8 chains; s8 chain_signal_last[IEEE80211_MAX_CHAINS]; u32 last_rate; struct u64_stats_sync syncp; u64 bytes; u64 msdu[IEEE80211_NUM_TIDS + 1]; }; /* * IEEE 802.11-2016 (10.6 "Defragmentation") recommends support for "concurrent * reception of at least one MSDU per access category per associated STA" * on APs, or "at least one MSDU per access category" on other interface types. * * This limit can be increased by changing this define, at the cost of slower * frame reassembly and increased memory use while fragments are pending. */ #define IEEE80211_FRAGMENT_MAX 4 struct ieee80211_fragment_entry { struct sk_buff_head skb_list; unsigned long first_frag_time; u16 seq; u16 extra_len; u16 last_frag; u8 rx_queue; u8 check_sequential_pn:1, /* needed for CCMP/GCMP */ is_protected:1; u8 last_pn[6]; /* PN of the last fragment if CCMP was used */ unsigned int key_color; }; struct ieee80211_fragment_cache { struct ieee80211_fragment_entry entries[IEEE80211_FRAGMENT_MAX]; unsigned int next; }; /* * The bandwidth threshold below which the per-station CoDel parameters will be * scaled to be more lenient (to prevent starvation of slow stations). This * value will be scaled by the number of active stations when it is being * applied. */ #define STA_SLOW_THRESHOLD 6000 /* 6 Mbps */ /** * struct sta_info - STA information * * This structure collects information about a station that * mac80211 is communicating with. * * @list: global linked list entry * @free_list: list entry for keeping track of stations to free * @hash_node: hash node for rhashtable * @addr: station's MAC address - duplicated from public part to * let the hash table work with just a single cacheline * @local: pointer to the global information * @sdata: virtual interface this station belongs to * @ptk: peer keys negotiated with this station, if any * @ptk_idx: last installed peer key index * @gtk: group keys negotiated with this station, if any * @rate_ctrl: rate control algorithm reference * @rate_ctrl_lock: spinlock used to protect rate control data * (data inside the algorithm, so serializes calls there) * @rate_ctrl_priv: rate control private per-STA pointer * @lock: used for locking all fields that require locking, see comments * in the header file. * @drv_deliver_wk: used for delivering frames after driver PS unblocking * @listen_interval: listen interval of this station, when we're acting as AP * @_flags: STA flags, see &enum ieee80211_sta_info_flags, do not use directly * @ps_lock: used for powersave (when mac80211 is the AP) related locking * @ps_tx_buf: buffers (per AC) of frames to transmit to this station * when it leaves power saving state or polls * @tx_filtered: buffers (per AC) of frames we already tried to * transmit but were filtered by hardware due to STA having * entered power saving state, these are also delivered to * the station when it leaves powersave or polls for frames * @driver_buffered_tids: bitmap of TIDs the driver has data buffered on * @txq_buffered_tids: bitmap of TIDs that mac80211 has txq data buffered on * @assoc_at: clock boottime (in ns) of last association * @last_connected: time (in seconds) when a station got connected * @last_seq_ctrl: last received seq/frag number from this STA (per TID * plus one for non-QoS frames) * @tid_seq: per-TID sequence numbers for sending to this STA * @airtime: per-AC struct airtime_info describing airtime statistics for this * station * @airtime_weight: station weight for airtime fairness calculation purposes * @ampdu_mlme: A-MPDU state machine state * @mesh: mesh STA information * @debugfs_dir: debug filesystem directory dentry * @dead: set to true when sta is unlinked * @removed: set to true when sta is being removed from sta_list * @uploaded: set to true when sta is uploaded to the driver * @sta: station information we share with the driver * @sta_state: duplicates information about station state (for debug) * @rcu_head: RCU head used for freeing this station struct * @cur_max_bandwidth: maximum bandwidth to use for TX to the station, * taken from HT/VHT capabilities or VHT operating mode notification * @known_smps_mode: the smps_mode the client thinks we are in. Relevant for * AP only. * @cipher_scheme: optional cipher scheme for this station * @cparams: CoDel parameters for this station. * @reserved_tid: reserved TID (if any, otherwise IEEE80211_TID_UNRESERVED) * @fast_tx: TX fastpath information * @fast_rx: RX fastpath information * @tdls_chandef: a TDLS peer can have a wider chandef that is compatible to * the BSS one. * @tx_stats: TX statistics * @tx_stats.packets: # of packets transmitted * @tx_stats.bytes: # of bytes in all packets transmitted * @tx_stats.last_rate: last TX rate * @tx_stats.msdu: # of transmitted MSDUs per TID * @rx_stats: RX statistics * @rx_stats_avg: averaged RX statistics * @rx_stats_avg.signal: averaged signal * @rx_stats_avg.chain_signal: averaged per-chain signal * @pcpu_rx_stats: per-CPU RX statistics, assigned only if the driver needs * this (by advertising the USES_RSS hw flag) * @status_stats: TX status statistics * @status_stats.filtered: # of filtered frames * @status_stats.retry_failed: # of frames that failed after retry * @status_stats.retry_count: # of retries attempted * @status_stats.lost_packets: # of lost packets * @status_stats.last_pkt_time: timestamp of last ACKed packet * @status_stats.msdu_retries: # of MSDU retries * @status_stats.msdu_failed: # of failed MSDUs * @status_stats.last_ack: last ack timestamp (jiffies) * @status_stats.last_ack_signal: last ACK signal * @status_stats.ack_signal_filled: last ACK signal validity * @status_stats.avg_ack_signal: average ACK signal * @frags: fragment cache */ struct sta_info { /* General information, mostly static */ struct list_head list, free_list; struct rcu_head rcu_head; struct rhlist_head hash_node; u8 addr[ETH_ALEN]; struct ieee80211_local *local; struct ieee80211_sub_if_data *sdata; struct ieee80211_key __rcu *gtk[NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS + NUM_DEFAULT_BEACON_KEYS]; struct ieee80211_key __rcu *ptk[NUM_DEFAULT_KEYS]; u8 ptk_idx; struct rate_control_ref *rate_ctrl; void *rate_ctrl_priv; spinlock_t rate_ctrl_lock; spinlock_t lock; struct ieee80211_fast_tx __rcu *fast_tx; struct ieee80211_fast_rx __rcu *fast_rx; struct ieee80211_sta_rx_stats __percpu *pcpu_rx_stats; #ifdef CONFIG_MAC80211_MESH struct mesh_sta *mesh; #endif struct work_struct drv_deliver_wk; u16 listen_interval; bool dead; bool removed; bool uploaded; enum ieee80211_sta_state sta_state; /* use the accessors defined below */ unsigned long _flags; /* STA powersave lock and frame queues */ spinlock_t ps_lock; struct sk_buff_head ps_tx_buf[IEEE80211_NUM_ACS]; struct sk_buff_head tx_filtered[IEEE80211_NUM_ACS]; unsigned long driver_buffered_tids; unsigned long txq_buffered_tids; u64 assoc_at; long last_connected; /* Updated from RX path only, no locking requirements */ struct ieee80211_sta_rx_stats rx_stats; struct { struct ewma_signal signal; struct ewma_signal chain_signal[IEEE80211_MAX_CHAINS]; } rx_stats_avg; /* Plus 1 for non-QoS frames */ __le16 last_seq_ctrl[IEEE80211_NUM_TIDS + 1]; /* Updated from TX status path only, no locking requirements */ struct { unsigned long filtered; unsigned long retry_failed, retry_count; unsigned int lost_packets; unsigned long last_pkt_time; u64 msdu_retries[IEEE80211_NUM_TIDS + 1]; u64 msdu_failed[IEEE80211_NUM_TIDS + 1]; unsigned long last_ack; s8 last_ack_signal; bool ack_signal_filled; struct ewma_avg_signal avg_ack_signal; } status_stats; /* Updated from TX path only, no locking requirements */ struct { u64 packets[IEEE80211_NUM_ACS]; u64 bytes[IEEE80211_NUM_ACS]; struct ieee80211_tx_rate last_rate; struct rate_info last_rate_info; u64 msdu[IEEE80211_NUM_TIDS + 1]; } tx_stats; u16 tid_seq[IEEE80211_QOS_CTL_TID_MASK + 1]; struct airtime_info airtime[IEEE80211_NUM_ACS]; u16 airtime_weight; /* * Aggregation information, locked with lock. */ struct sta_ampdu_mlme ampdu_mlme; #ifdef CONFIG_MAC80211_DEBUGFS struct dentry *debugfs_dir; #endif enum ieee80211_sta_rx_bandwidth cur_max_bandwidth; enum ieee80211_smps_mode known_smps_mode; const struct ieee80211_cipher_scheme *cipher_scheme; struct codel_params cparams; u8 reserved_tid; struct cfg80211_chan_def tdls_chandef; struct ieee80211_fragment_cache frags; /* keep last! */ struct ieee80211_sta sta; }; static inline enum nl80211_plink_state sta_plink_state(struct sta_info *sta) { #ifdef CONFIG_MAC80211_MESH return sta->mesh->plink_state; #endif return NL80211_PLINK_LISTEN; } static inline void set_sta_flag(struct sta_info *sta, enum ieee80211_sta_info_flags flag) { WARN_ON(flag == WLAN_STA_AUTH || flag == WLAN_STA_ASSOC || flag == WLAN_STA_AUTHORIZED); set_bit(flag, &sta->_flags); } static inline void clear_sta_flag(struct sta_info *sta, enum ieee80211_sta_info_flags flag) { WARN_ON(flag == WLAN_STA_AUTH || flag == WLAN_STA_ASSOC || flag == WLAN_STA_AUTHORIZED); clear_bit(flag, &sta->_flags); } static inline int test_sta_flag(struct sta_info *sta, enum ieee80211_sta_info_flags flag) { return test_bit(flag, &sta->_flags); } static inline int test_and_clear_sta_flag(struct sta_info *sta, enum ieee80211_sta_info_flags flag) { WARN_ON(flag == WLAN_STA_AUTH || flag == WLAN_STA_ASSOC || flag == WLAN_STA_AUTHORIZED); return test_and_clear_bit(flag, &sta->_flags); } static inline int test_and_set_sta_flag(struct sta_info *sta, enum ieee80211_sta_info_flags flag) { WARN_ON(flag == WLAN_STA_AUTH || flag == WLAN_STA_ASSOC || flag == WLAN_STA_AUTHORIZED); return test_and_set_bit(flag, &sta->_flags); } int sta_info_move_state(struct sta_info *sta, enum ieee80211_sta_state new_state); static inline void sta_info_pre_move_state(struct sta_info *sta, enum ieee80211_sta_state new_state) { int ret; WARN_ON_ONCE(test_sta_flag(sta, WLAN_STA_INSERTED)); ret = sta_info_move_state(sta, new_state); WARN_ON_ONCE(ret); } void ieee80211_assign_tid_tx(struct sta_info *sta, int tid, struct tid_ampdu_tx *tid_tx); static inline struct tid_ampdu_tx * rcu_dereference_protected_tid_tx(struct sta_info *sta, int tid) { return rcu_dereference_protected(sta->ampdu_mlme.tid_tx[tid], lockdep_is_held(&sta->lock) || lockdep_is_held(&sta->ampdu_mlme.mtx)); } /* Maximum number of frames to buffer per power saving station per AC */ #define STA_MAX_TX_BUFFER 64 /* Minimum buffered frame expiry time. If STA uses listen interval that is * smaller than this value, the minimum value here is used instead. */ #define STA_TX_BUFFER_EXPIRE (10 * HZ) /* How often station data is cleaned up (e.g., expiration of buffered frames) */ #define STA_INFO_CLEANUP_INTERVAL (10 * HZ) struct rhlist_head *sta_info_hash_lookup(struct ieee80211_local *local, const u8 *addr); /* * Get a STA info, must be under RCU read lock. */ struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata, const u8 *addr); struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata, const u8 *addr); /* user must hold sta_mtx or be in RCU critical section */ struct sta_info *sta_info_get_by_addrs(struct ieee80211_local *local, const u8 *sta_addr, const u8 *vif_addr); #define for_each_sta_info(local, _addr, _sta, _tmp) \ rhl_for_each_entry_rcu(_sta, _tmp, \ sta_info_hash_lookup(local, _addr), hash_node) /* * Get STA info by index, BROKEN! */ struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata, int idx); /* * Create a new STA info, caller owns returned structure * until sta_info_insert(). */ struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata, const u8 *addr, gfp_t gfp); void sta_info_free(struct ieee80211_local *local, struct sta_info *sta); /* * Insert STA info into hash table/list, returns zero or a * -EEXIST if (if the same MAC address is already present). * * Calling the non-rcu version makes the caller relinquish, * the _rcu version calls read_lock_rcu() and must be called * without it held. */ int sta_info_insert(struct sta_info *sta); int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU); int __must_check __sta_info_destroy(struct sta_info *sta); int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr); int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata, const u8 *addr); void sta_info_recalc_tim(struct sta_info *sta); int sta_info_init(struct ieee80211_local *local); void sta_info_stop(struct ieee80211_local *local); /** * __sta_info_flush - flush matching STA entries from the STA table * * Returns the number of removed STA entries. * * @sdata: sdata to remove all stations from * @vlans: if the given interface is an AP interface, also flush VLANs */ int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans); /** * sta_info_flush - flush matching STA entries from the STA table * * Returns the number of removed STA entries. * * @sdata: sdata to remove all stations from */ static inline int sta_info_flush(struct ieee80211_sub_if_data *sdata) { return __sta_info_flush(sdata, false); } void sta_set_rate_info_tx(struct sta_info *sta, const struct ieee80211_tx_rate *rate, struct rate_info *rinfo); void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo, bool tidstats); u32 sta_get_expected_throughput(struct sta_info *sta); void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata, unsigned long exp_time); u8 sta_info_tx_streams(struct sta_info *sta); void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta); void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta); void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta); unsigned long ieee80211_sta_last_active(struct sta_info *sta); enum sta_stats_type { STA_STATS_RATE_TYPE_INVALID = 0, STA_STATS_RATE_TYPE_LEGACY, STA_STATS_RATE_TYPE_HT, STA_STATS_RATE_TYPE_VHT, STA_STATS_RATE_TYPE_HE, STA_STATS_RATE_TYPE_S1G, }; #define STA_STATS_FIELD_HT_MCS GENMASK( 7, 0) #define STA_STATS_FIELD_LEGACY_IDX GENMASK( 3, 0) #define STA_STATS_FIELD_LEGACY_BAND GENMASK( 7, 4) #define STA_STATS_FIELD_VHT_MCS GENMASK( 3, 0) #define STA_STATS_FIELD_VHT_NSS GENMASK( 7, 4) #define STA_STATS_FIELD_HE_MCS GENMASK( 3, 0) #define STA_STATS_FIELD_HE_NSS GENMASK( 7, 4) #define STA_STATS_FIELD_BW GENMASK(11, 8) #define STA_STATS_FIELD_SGI GENMASK(12, 12) #define STA_STATS_FIELD_TYPE GENMASK(15, 13) #define STA_STATS_FIELD_HE_RU GENMASK(18, 16) #define STA_STATS_FIELD_HE_GI GENMASK(20, 19) #define STA_STATS_FIELD_HE_DCM GENMASK(21, 21) #define STA_STATS_FIELD(_n, _v) FIELD_PREP(STA_STATS_FIELD_ ## _n, _v) #define STA_STATS_GET(_n, _v) FIELD_GET(STA_STATS_FIELD_ ## _n, _v) #define STA_STATS_RATE_INVALID 0 static inline u32 sta_stats_encode_rate(struct ieee80211_rx_status *s) { u32 r; r = STA_STATS_FIELD(BW, s->bw); if (s->enc_flags & RX_ENC_FLAG_SHORT_GI) r |= STA_STATS_FIELD(SGI, 1); switch (s->encoding) { case RX_ENC_VHT: r |= STA_STATS_FIELD(TYPE, STA_STATS_RATE_TYPE_VHT); r |= STA_STATS_FIELD(VHT_NSS, s->nss); r |= STA_STATS_FIELD(VHT_MCS, s->rate_idx); break; case RX_ENC_HT: r |= STA_STATS_FIELD(TYPE, STA_STATS_RATE_TYPE_HT); r |= STA_STATS_FIELD(HT_MCS, s->rate_idx); break; case RX_ENC_LEGACY: r |= STA_STATS_FIELD(TYPE, STA_STATS_RATE_TYPE_LEGACY); r |= STA_STATS_FIELD(LEGACY_BAND, s->band); r |= STA_STATS_FIELD(LEGACY_IDX, s->rate_idx); break; case RX_ENC_HE: r |= STA_STATS_FIELD(TYPE, STA_STATS_RATE_TYPE_HE); r |= STA_STATS_FIELD(HE_NSS, s->nss); r |= STA_STATS_FIELD(HE_MCS, s->rate_idx); r |= STA_STATS_FIELD(HE_GI, s->he_gi); r |= STA_STATS_FIELD(HE_RU, s->he_ru); r |= STA_STATS_FIELD(HE_DCM, s->he_dcm); break; default: WARN_ON(1); return STA_STATS_RATE_INVALID; } return r; } #endif /* STA_INFO_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _X86_IRQFLAGS_H_ #define _X86_IRQFLAGS_H_ #include <asm/processor-flags.h> #ifndef __ASSEMBLY__ #include <asm/nospec-branch.h> /* Provide __cpuidle; we can't safely include <linux/cpu.h> */ #define __cpuidle __section(".cpuidle.text") /* * Interrupt control: */ /* Declaration required for gcc < 4.9 to prevent -Werror=missing-prototypes */ extern inline unsigned long native_save_fl(void); extern __always_inline unsigned long native_save_fl(void) { unsigned long flags; /* * "=rm" is safe here, because "pop" adjusts the stack before * it evaluates its effective address -- this is part of the * documented behavior of the "pop" instruction. */ asm volatile("# __raw_save_flags\n\t" "pushf ; pop %0" : "=rm" (flags) : /* no input */ : "memory"); return flags; } extern inline void native_restore_fl(unsigned long flags); extern inline void native_restore_fl(unsigned long flags) { asm volatile("push %0 ; popf" : /* no output */ :"g" (flags) :"memory", "cc"); } static __always_inline void native_irq_disable(void) { asm volatile("cli": : :"memory"); } static __always_inline void native_irq_enable(void) { asm volatile("sti": : :"memory"); } static inline __cpuidle void native_safe_halt(void) { mds_idle_clear_cpu_buffers(); asm volatile("sti; hlt": : :"memory"); } static inline __cpuidle void native_halt(void) { mds_idle_clear_cpu_buffers(); asm volatile("hlt": : :"memory"); } #endif #ifdef CONFIG_PARAVIRT_XXL #include <asm/paravirt.h> #else #ifndef __ASSEMBLY__ #include <linux/types.h> static __always_inline unsigned long arch_local_save_flags(void) { return native_save_fl(); } static __always_inline void arch_local_irq_restore(unsigned long flags) { native_restore_fl(flags); } static __always_inline void arch_local_irq_disable(void) { native_irq_disable(); } static __always_inline void arch_local_irq_enable(void) { native_irq_enable(); } /* * Used in the idle loop; sti takes one instruction cycle * to complete: */ static inline __cpuidle void arch_safe_halt(void) { native_safe_halt(); } /* * Used when interrupts are already enabled or to * shutdown the processor: */ static inline __cpuidle void halt(void) { native_halt(); } /* * For spinlocks, etc: */ static __always_inline unsigned long arch_local_irq_save(void) { unsigned long flags = arch_local_save_flags(); arch_local_irq_disable(); return flags; } #else #define ENABLE_INTERRUPTS(x) sti #define DISABLE_INTERRUPTS(x) cli #ifdef CONFIG_X86_64 #ifdef CONFIG_DEBUG_ENTRY #define SAVE_FLAGS(x) pushfq; popq %rax #endif #define INTERRUPT_RETURN jmp native_iret #define USERGS_SYSRET64 \ swapgs; \ sysretq; #define USERGS_SYSRET32 \ swapgs; \ sysretl #else #define INTERRUPT_RETURN iret #endif #endif /* __ASSEMBLY__ */ #endif /* CONFIG_PARAVIRT_XXL */ #ifndef __ASSEMBLY__ static __always_inline int arch_irqs_disabled_flags(unsigned long flags) { return !(flags & X86_EFLAGS_IF); } static __always_inline int arch_irqs_disabled(void) { unsigned long flags = arch_local_save_flags(); return arch_irqs_disabled_flags(flags); } #else #ifdef CONFIG_X86_64 #ifdef CONFIG_XEN_PV #define SWAPGS ALTERNATIVE "swapgs", "", X86_FEATURE_XENPV #else #define SWAPGS swapgs #endif #endif #endif /* !__ASSEMBLY__ */ #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Definitions for the Forwarding Information Base. * * Authors: A.N.Kuznetsov, <kuznet@ms2.inr.ac.ru> */ #ifndef _NET_IP_FIB_H #define _NET_IP_FIB_H #include <net/flow.h> #include <linux/seq_file.h> #include <linux/rcupdate.h> #include <net/fib_notifier.h> #include <net/fib_rules.h> #include <net/inetpeer.h> #include <linux/percpu.h> #include <linux/notifier.h> #include <linux/refcount.h> struct fib_config { u8 fc_dst_len; u8 fc_tos; u8 fc_protocol; u8 fc_scope; u8 fc_type; u8 fc_gw_family; /* 2 bytes unused */ u32 fc_table; __be32 fc_dst; union { __be32 fc_gw4; struct in6_addr fc_gw6; }; int fc_oif; u32 fc_flags; u32 fc_priority; __be32 fc_prefsrc; u32 fc_nh_id; struct nlattr *fc_mx; struct rtnexthop *fc_mp; int fc_mx_len; int fc_mp_len; u32 fc_flow; u32 fc_nlflags; struct nl_info fc_nlinfo; struct nlattr *fc_encap; u16 fc_encap_type; }; struct fib_info; struct rtable; struct fib_nh_exception { struct fib_nh_exception __rcu *fnhe_next; int fnhe_genid; __be32 fnhe_daddr; u32 fnhe_pmtu; bool fnhe_mtu_locked; __be32 fnhe_gw; unsigned long fnhe_expires; struct rtable __rcu *fnhe_rth_input; struct rtable __rcu *fnhe_rth_output; unsigned long fnhe_stamp; struct rcu_head rcu; }; struct fnhe_hash_bucket { struct fib_nh_exception __rcu *chain; }; #define FNHE_HASH_SHIFT 11 #define FNHE_HASH_SIZE (1 << FNHE_HASH_SHIFT) #define FNHE_RECLAIM_DEPTH 5 struct fib_nh_common { struct net_device *nhc_dev; int nhc_oif; unsigned char nhc_scope; u8 nhc_family; u8 nhc_gw_family; unsigned char nhc_flags; struct lwtunnel_state *nhc_lwtstate; union { __be32 ipv4; struct in6_addr ipv6; } nhc_gw; int nhc_weight; atomic_t nhc_upper_bound; /* v4 specific, but allows fib6_nh with v4 routes */ struct rtable __rcu * __percpu *nhc_pcpu_rth_output; struct rtable __rcu *nhc_rth_input; struct fnhe_hash_bucket __rcu *nhc_exceptions; }; struct fib_nh { struct fib_nh_common nh_common; struct hlist_node nh_hash; struct fib_info *nh_parent; #ifdef CONFIG_IP_ROUTE_CLASSID __u32 nh_tclassid; #endif __be32 nh_saddr; int nh_saddr_genid; #define fib_nh_family nh_common.nhc_family #define fib_nh_dev nh_common.nhc_dev #define fib_nh_oif nh_common.nhc_oif #define fib_nh_flags nh_common.nhc_flags #define fib_nh_lws nh_common.nhc_lwtstate #define fib_nh_scope nh_common.nhc_scope #define fib_nh_gw_family nh_common.nhc_gw_family #define fib_nh_gw4 nh_common.nhc_gw.ipv4 #define fib_nh_gw6 nh_common.nhc_gw.ipv6 #define fib_nh_weight nh_common.nhc_weight #define fib_nh_upper_bound nh_common.nhc_upper_bound }; /* * This structure contains data shared by many of routes. */ struct nexthop; struct fib_info { struct hlist_node fib_hash; struct hlist_node fib_lhash; struct list_head nh_list; struct net *fib_net; int fib_treeref; refcount_t fib_clntref; unsigned int fib_flags; unsigned char fib_dead; unsigned char fib_protocol; unsigned char fib_scope; unsigned char fib_type; __be32 fib_prefsrc; u32 fib_tb_id; u32 fib_priority; struct dst_metrics *fib_metrics; #define fib_mtu fib_metrics->metrics[RTAX_MTU-1] #define fib_window fib_metrics->metrics[RTAX_WINDOW-1] #define fib_rtt fib_metrics->metrics[RTAX_RTT-1] #define fib_advmss fib_metrics->metrics[RTAX_ADVMSS-1] int fib_nhs; bool fib_nh_is_v6; bool nh_updated; struct nexthop *nh; struct rcu_head rcu; struct fib_nh fib_nh[]; }; #ifdef CONFIG_IP_MULTIPLE_TABLES struct fib_rule; #endif struct fib_table; struct fib_result { __be32 prefix; unsigned char prefixlen; unsigned char nh_sel; unsigned char type; unsigned char scope; u32 tclassid; struct fib_nh_common *nhc; struct fib_info *fi; struct fib_table *table; struct hlist_head *fa_head; }; struct fib_result_nl { __be32 fl_addr; /* To be looked up*/ u32 fl_mark; unsigned char fl_tos; unsigned char fl_scope; unsigned char tb_id_in; unsigned char tb_id; /* Results */ unsigned char prefixlen; unsigned char nh_sel; unsigned char type; unsigned char scope; int err; }; #ifdef CONFIG_IP_MULTIPLE_TABLES #define FIB_TABLE_HASHSZ 256 #else #define FIB_TABLE_HASHSZ 2 #endif __be32 fib_info_update_nhc_saddr(struct net *net, struct fib_nh_common *nhc, unsigned char scope); __be32 fib_result_prefsrc(struct net *net, struct fib_result *res); #define FIB_RES_NHC(res) ((res).nhc) #define FIB_RES_DEV(res) (FIB_RES_NHC(res)->nhc_dev) #define FIB_RES_OIF(res) (FIB_RES_NHC(res)->nhc_oif) struct fib_rt_info { struct fib_info *fi; u32 tb_id; __be32 dst; int dst_len; u8 tos; u8 type; u8 offload:1, trap:1, unused:6; }; struct fib_entry_notifier_info { struct fib_notifier_info info; /* must be first */ u32 dst; int dst_len; struct fib_info *fi; u8 tos; u8 type; u32 tb_id; }; struct fib_nh_notifier_info { struct fib_notifier_info info; /* must be first */ struct fib_nh *fib_nh; }; int call_fib4_notifier(struct notifier_block *nb, enum fib_event_type event_type, struct fib_notifier_info *info); int call_fib4_notifiers(struct net *net, enum fib_event_type event_type, struct fib_notifier_info *info); int __net_init fib4_notifier_init(struct net *net); void __net_exit fib4_notifier_exit(struct net *net); void fib_info_notify_update(struct net *net, struct nl_info *info); int fib_notify(struct net *net, struct notifier_block *nb, struct netlink_ext_ack *extack); struct fib_table { struct hlist_node tb_hlist; u32 tb_id; int tb_num_default; struct rcu_head rcu; unsigned long *tb_data; unsigned long __data[]; }; struct fib_dump_filter { u32 table_id; /* filter_set is an optimization that an entry is set */ bool filter_set; bool dump_routes; bool dump_exceptions; unsigned char protocol; unsigned char rt_type; unsigned int flags; struct net_device *dev; }; int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp, struct fib_result *res, int fib_flags); int fib_table_insert(struct net *, struct fib_table *, struct fib_config *, struct netlink_ext_ack *extack); int fib_table_delete(struct net *, struct fib_table *, struct fib_config *, struct netlink_ext_ack *extack); int fib_table_dump(struct fib_table *table, struct sk_buff *skb, struct netlink_callback *cb, struct fib_dump_filter *filter); int fib_table_flush(struct net *net, struct fib_table *table, bool flush_all); struct fib_table *fib_trie_unmerge(struct fib_table *main_tb); void fib_table_flush_external(struct fib_table *table); void fib_free_table(struct fib_table *tb); #ifndef CONFIG_IP_MULTIPLE_TABLES #define TABLE_LOCAL_INDEX (RT_TABLE_LOCAL & (FIB_TABLE_HASHSZ - 1)) #define TABLE_MAIN_INDEX (RT_TABLE_MAIN & (FIB_TABLE_HASHSZ - 1)) static inline struct fib_table *fib_get_table(struct net *net, u32 id) { struct hlist_node *tb_hlist; struct hlist_head *ptr; ptr = id == RT_TABLE_LOCAL ? &net->ipv4.fib_table_hash[TABLE_LOCAL_INDEX] : &net->ipv4.fib_table_hash[TABLE_MAIN_INDEX]; tb_hlist = rcu_dereference_rtnl(hlist_first_rcu(ptr)); return hlist_entry(tb_hlist, struct fib_table, tb_hlist); } static inline struct fib_table *fib_new_table(struct net *net, u32 id) { return fib_get_table(net, id); } static inline int fib_lookup(struct net *net, const struct flowi4 *flp, struct fib_result *res, unsigned int flags) { struct fib_table *tb; int err = -ENETUNREACH; rcu_read_lock(); tb = fib_get_table(net, RT_TABLE_MAIN); if (tb) err = fib_table_lookup(tb, flp, res, flags | FIB_LOOKUP_NOREF); if (err == -EAGAIN) err = -ENETUNREACH; rcu_read_unlock(); return err; } static inline bool fib4_has_custom_rules(const struct net *net) { return false; } static inline bool fib4_rule_default(const struct fib_rule *rule) { return true; } static inline int fib4_rules_dump(struct net *net, struct notifier_block *nb, struct netlink_ext_ack *extack) { return 0; } static inline unsigned int fib4_rules_seq_read(struct net *net) { return 0; } static inline bool fib4_rules_early_flow_dissect(struct net *net, struct sk_buff *skb, struct flowi4 *fl4, struct flow_keys *flkeys) { return false; } #else /* CONFIG_IP_MULTIPLE_TABLES */ int __net_init fib4_rules_init(struct net *net); void __net_exit fib4_rules_exit(struct net *net); struct fib_table *fib_new_table(struct net *net, u32 id); struct fib_table *fib_get_table(struct net *net, u32 id); int __fib_lookup(struct net *net, struct flowi4 *flp, struct fib_result *res, unsigned int flags); static inline int fib_lookup(struct net *net, struct flowi4 *flp, struct fib_result *res, unsigned int flags) { struct fib_table *tb; int err = -ENETUNREACH; flags |= FIB_LOOKUP_NOREF; if (net->ipv4.fib_has_custom_rules) return __fib_lookup(net, flp, res, flags); rcu_read_lock(); res->tclassid = 0; tb = rcu_dereference_rtnl(net->ipv4.fib_main); if (tb) err = fib_table_lookup(tb, flp, res, flags); if (!err) goto out; tb = rcu_dereference_rtnl(net->ipv4.fib_default); if (tb) err = fib_table_lookup(tb, flp, res, flags); out: if (err == -EAGAIN) err = -ENETUNREACH; rcu_read_unlock(); return err; } static inline bool fib4_has_custom_rules(const struct net *net) { return net->ipv4.fib_has_custom_rules; } bool fib4_rule_default(const struct fib_rule *rule); int fib4_rules_dump(struct net *net, struct notifier_block *nb, struct netlink_ext_ack *extack); unsigned int fib4_rules_seq_read(struct net *net); static inline bool fib4_rules_early_flow_dissect(struct net *net, struct sk_buff *skb, struct flowi4 *fl4, struct flow_keys *flkeys) { unsigned int flag = FLOW_DISSECTOR_F_STOP_AT_ENCAP; if (!net->ipv4.fib_rules_require_fldissect) return false; skb_flow_dissect_flow_keys(skb, flkeys, flag); fl4->fl4_sport = flkeys->ports.src; fl4->fl4_dport = flkeys->ports.dst; fl4->flowi4_proto = flkeys->basic.ip_proto; return true; } #endif /* CONFIG_IP_MULTIPLE_TABLES */ /* Exported by fib_frontend.c */ extern const struct nla_policy rtm_ipv4_policy[]; void ip_fib_init(void); int fib_gw_from_via(struct fib_config *cfg, struct nlattr *nla, struct netlink_ext_ack *extack); __be32 fib_compute_spec_dst(struct sk_buff *skb); bool fib_info_nh_uses_dev(struct fib_info *fi, const struct net_device *dev); int fib_validate_source(struct sk_buff *skb, __be32 src, __be32 dst, u8 tos, int oif, struct net_device *dev, struct in_device *idev, u32 *itag); #ifdef CONFIG_IP_ROUTE_CLASSID static inline int fib_num_tclassid_users(struct net *net) { return atomic_read(&net->ipv4.fib_num_tclassid_users); } #else static inline int fib_num_tclassid_users(struct net *net) { return 0; } #endif int fib_unmerge(struct net *net); static inline bool nhc_l3mdev_matches_dev(const struct fib_nh_common *nhc, const struct net_device *dev) { if (nhc->nhc_dev == dev || l3mdev_master_ifindex_rcu(nhc->nhc_dev) == dev->ifindex) return true; return false; } /* Exported by fib_semantics.c */ int ip_fib_check_default(__be32 gw, struct net_device *dev); int fib_sync_down_dev(struct net_device *dev, unsigned long event, bool force); int fib_sync_down_addr(struct net_device *dev, __be32 local); int fib_sync_up(struct net_device *dev, unsigned char nh_flags); void fib_sync_mtu(struct net_device *dev, u32 orig_mtu); void fib_nhc_update_mtu(struct fib_nh_common *nhc, u32 new, u32 orig); #ifdef CONFIG_IP_ROUTE_MULTIPATH int fib_multipath_hash(const struct net *net, const struct flowi4 *fl4, const struct sk_buff *skb, struct flow_keys *flkeys); #endif int fib_check_nh(struct net *net, struct fib_nh *nh, u32 table, u8 scope, struct netlink_ext_ack *extack); void fib_select_multipath(struct fib_result *res, int hash); void fib_select_path(struct net *net, struct fib_result *res, struct flowi4 *fl4, const struct sk_buff *skb); int fib_nh_init(struct net *net, struct fib_nh *fib_nh, struct fib_config *cfg, int nh_weight, struct netlink_ext_ack *extack); void fib_nh_release(struct net *net, struct fib_nh *fib_nh); int fib_nh_common_init(struct net *net, struct fib_nh_common *nhc, struct nlattr *fc_encap, u16 fc_encap_type, void *cfg, gfp_t gfp_flags, struct netlink_ext_ack *extack); void fib_nh_common_release(struct fib_nh_common *nhc); /* Exported by fib_trie.c */ void fib_alias_hw_flags_set(struct net *net, const struct fib_rt_info *fri); void fib_trie_init(void); struct fib_table *fib_trie_table(u32 id, struct fib_table *alias); bool fib_lookup_good_nhc(const struct fib_nh_common *nhc, int fib_flags, const struct flowi4 *flp); static inline void fib_combine_itag(u32 *itag, const struct fib_result *res) { #ifdef CONFIG_IP_ROUTE_CLASSID struct fib_nh_common *nhc = res->nhc; #ifdef CONFIG_IP_MULTIPLE_TABLES u32 rtag; #endif if (nhc->nhc_family == AF_INET) { struct fib_nh *nh; nh = container_of(nhc, struct fib_nh, nh_common); *itag = nh->nh_tclassid << 16; } else { *itag = 0; } #ifdef CONFIG_IP_MULTIPLE_TABLES rtag = res->tclassid; if (*itag == 0) *itag = (rtag<<16); *itag |= (rtag>>16); #endif #endif } void fib_flush(struct net *net); void free_fib_info(struct fib_info *fi); static inline void fib_info_hold(struct fib_info *fi) { refcount_inc(&fi->fib_clntref); } static inline void fib_info_put(struct fib_info *fi) { if (refcount_dec_and_test(&fi->fib_clntref)) free_fib_info(fi); } #ifdef CONFIG_PROC_FS int __net_init fib_proc_init(struct net *net); void __net_exit fib_proc_exit(struct net *net); #else static inline int fib_proc_init(struct net *net) { return 0; } static inline void fib_proc_exit(struct net *net) { } #endif u32 ip_mtu_from_fib_result(struct fib_result *res, __be32 daddr); int ip_valid_fib_dump_req(struct net *net, const struct nlmsghdr *nlh, struct fib_dump_filter *filter, struct netlink_callback *cb); int fib_nexthop_info(struct sk_buff *skb, const struct fib_nh_common *nh, u8 rt_family, unsigned char *flags, bool skip_oif); int fib_add_nexthop(struct sk_buff *skb, const struct fib_nh_common *nh, int nh_weight, u8 rt_family, u32 nh_tclassid); #endif /* _NET_FIB_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * ALSA sequencer Memory Manager * Copyright (c) 1998 by Frank van de Pol <fvdpol@coil.demon.nl> */ #ifndef __SND_SEQ_MEMORYMGR_H #define __SND_SEQ_MEMORYMGR_H #include <sound/seq_kernel.h> #include <linux/poll.h> struct snd_info_buffer; /* container for sequencer event (internal use) */ struct snd_seq_event_cell { struct snd_seq_event event; struct snd_seq_pool *pool; /* used pool */ struct snd_seq_event_cell *next; /* next cell */ }; /* design note: the pool is a contiguous block of memory, if we dynamicly want to add additional cells to the pool be better store this in another pool as we need to know the base address of the pool when releasing memory. */ struct snd_seq_pool { struct snd_seq_event_cell *ptr; /* pointer to first event chunk */ struct snd_seq_event_cell *free; /* pointer to the head of the free list */ int total_elements; /* pool size actually allocated */ atomic_t counter; /* cells free */ int size; /* pool size to be allocated */ int room; /* watermark for sleep/wakeup */ int closing; /* statistics */ int max_used; int event_alloc_nopool; int event_alloc_failures; int event_alloc_success; /* Write locking */ wait_queue_head_t output_sleep; /* Pool lock */ spinlock_t lock; }; void snd_seq_cell_free(struct snd_seq_event_cell *cell); int snd_seq_event_dup(struct snd_seq_pool *pool, struct snd_seq_event *event, struct snd_seq_event_cell **cellp, int nonblock, struct file *file, struct mutex *mutexp); /* return number of unused (free) cells */ static inline int snd_seq_unused_cells(struct snd_seq_pool *pool) { return pool ? pool->total_elements - atomic_read(&pool->counter) : 0; } /* return total number of allocated cells */ static inline int snd_seq_total_cells(struct snd_seq_pool *pool) { return pool ? pool->total_elements : 0; } /* init pool - allocate events */ int snd_seq_pool_init(struct snd_seq_pool *pool); /* done pool - free events */ void snd_seq_pool_mark_closing(struct snd_seq_pool *pool); int snd_seq_pool_done(struct snd_seq_pool *pool); /* create pool */ struct snd_seq_pool *snd_seq_pool_new(int poolsize); /* remove pool */ int snd_seq_pool_delete(struct snd_seq_pool **pool); /* polling */ int snd_seq_pool_poll_wait(struct snd_seq_pool *pool, struct file *file, poll_table *wait); void snd_seq_info_pool(struct snd_info_buffer *buffer, struct snd_seq_pool *pool, char *space); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 /* SPDX-License-Identifier: GPL-2.0 */ /* * ioport.h Definitions of routines for detecting, reserving and * allocating system resources. * * Authors: Linus Torvalds */ #ifndef _LINUX_IOPORT_H #define _LINUX_IOPORT_H #ifndef __ASSEMBLY__ #include <linux/compiler.h> #include <linux/types.h> #include <linux/bits.h> /* * Resources are tree-like, allowing * nesting etc.. */ struct resource { resource_size_t start; resource_size_t end; const char *name; unsigned long flags; unsigned long desc; struct resource *parent, *sibling, *child; }; /* * IO resources have these defined flags. * * PCI devices expose these flags to userspace in the "resource" sysfs file, * so don't move them. */ #define IORESOURCE_BITS 0x000000ff /* Bus-specific bits */ #define IORESOURCE_TYPE_BITS 0x00001f00 /* Resource type */ #define IORESOURCE_IO 0x00000100 /* PCI/ISA I/O ports */ #define IORESOURCE_MEM 0x00000200 #define IORESOURCE_REG 0x00000300 /* Register offsets */ #define IORESOURCE_IRQ 0x00000400 #define IORESOURCE_DMA 0x00000800 #define IORESOURCE_BUS 0x00001000 #define IORESOURCE_PREFETCH 0x00002000 /* No side effects */ #define IORESOURCE_READONLY 0x00004000 #define IORESOURCE_CACHEABLE 0x00008000 #define IORESOURCE_RANGELENGTH 0x00010000 #define IORESOURCE_SHADOWABLE 0x00020000 #define IORESOURCE_SIZEALIGN 0x00040000 /* size indicates alignment */ #define IORESOURCE_STARTALIGN 0x00080000 /* start field is alignment */ #define IORESOURCE_MEM_64 0x00100000 #define IORESOURCE_WINDOW 0x00200000 /* forwarded by bridge */ #define IORESOURCE_MUXED 0x00400000 /* Resource is software muxed */ #define IORESOURCE_EXT_TYPE_BITS 0x01000000 /* Resource extended types */ #define IORESOURCE_SYSRAM 0x01000000 /* System RAM (modifier) */ /* IORESOURCE_SYSRAM specific bits. */ #define IORESOURCE_SYSRAM_DRIVER_MANAGED 0x02000000 /* Always detected via a driver. */ #define IORESOURCE_SYSRAM_MERGEABLE 0x04000000 /* Resource can be merged. */ #define IORESOURCE_EXCLUSIVE 0x08000000 /* Userland may not map this resource */ #define IORESOURCE_DISABLED 0x10000000 #define IORESOURCE_UNSET 0x20000000 /* No address assigned yet */ #define IORESOURCE_AUTO 0x40000000 #define IORESOURCE_BUSY 0x80000000 /* Driver has marked this resource busy */ /* I/O resource extended types */ #define IORESOURCE_SYSTEM_RAM (IORESOURCE_MEM|IORESOURCE_SYSRAM) /* PnP IRQ specific bits (IORESOURCE_BITS) */ #define IORESOURCE_IRQ_HIGHEDGE (1<<0) #define IORESOURCE_IRQ_LOWEDGE (1<<1) #define IORESOURCE_IRQ_HIGHLEVEL (1<<2) #define IORESOURCE_IRQ_LOWLEVEL (1<<3) #define IORESOURCE_IRQ_SHAREABLE (1<<4) #define IORESOURCE_IRQ_OPTIONAL (1<<5) /* PnP DMA specific bits (IORESOURCE_BITS) */ #define IORESOURCE_DMA_TYPE_MASK (3<<0) #define IORESOURCE_DMA_8BIT (0<<0) #define IORESOURCE_DMA_8AND16BIT (1<<0) #define IORESOURCE_DMA_16BIT (2<<0) #define IORESOURCE_DMA_MASTER (1<<2) #define IORESOURCE_DMA_BYTE (1<<3) #define IORESOURCE_DMA_WORD (1<<4) #define IORESOURCE_DMA_SPEED_MASK (3<<6) #define IORESOURCE_DMA_COMPATIBLE (0<<6) #define IORESOURCE_DMA_TYPEA (1<<6) #define IORESOURCE_DMA_TYPEB (2<<6) #define IORESOURCE_DMA_TYPEF (3<<6) /* PnP memory I/O specific bits (IORESOURCE_BITS) */ #define IORESOURCE_MEM_WRITEABLE (1<<0) /* dup: IORESOURCE_READONLY */ #define IORESOURCE_MEM_CACHEABLE (1<<1) /* dup: IORESOURCE_CACHEABLE */ #define IORESOURCE_MEM_RANGELENGTH (1<<2) /* dup: IORESOURCE_RANGELENGTH */ #define IORESOURCE_MEM_TYPE_MASK (3<<3) #define IORESOURCE_MEM_8BIT (0<<3) #define IORESOURCE_MEM_16BIT (1<<3) #define IORESOURCE_MEM_8AND16BIT (2<<3) #define IORESOURCE_MEM_32BIT (3<<3) #define IORESOURCE_MEM_SHADOWABLE (1<<5) /* dup: IORESOURCE_SHADOWABLE */ #define IORESOURCE_MEM_EXPANSIONROM (1<<6) /* PnP I/O specific bits (IORESOURCE_BITS) */ #define IORESOURCE_IO_16BIT_ADDR (1<<0) #define IORESOURCE_IO_FIXED (1<<1) #define IORESOURCE_IO_SPARSE (1<<2) /* PCI ROM control bits (IORESOURCE_BITS) */ #define IORESOURCE_ROM_ENABLE (1<<0) /* ROM is enabled, same as PCI_ROM_ADDRESS_ENABLE */ #define IORESOURCE_ROM_SHADOW (1<<1) /* Use RAM image, not ROM BAR */ /* PCI control bits. Shares IORESOURCE_BITS with above PCI ROM. */ #define IORESOURCE_PCI_FIXED (1<<4) /* Do not move resource */ #define IORESOURCE_PCI_EA_BEI (1<<5) /* BAR Equivalent Indicator */ /* * I/O Resource Descriptors * * Descriptors are used by walk_iomem_res_desc() and region_intersects() * for searching a specific resource range in the iomem table. Assign * a new descriptor when a resource range supports the search interfaces. * Otherwise, resource.desc must be set to IORES_DESC_NONE (0). */ enum { IORES_DESC_NONE = 0, IORES_DESC_CRASH_KERNEL = 1, IORES_DESC_ACPI_TABLES = 2, IORES_DESC_ACPI_NV_STORAGE = 3, IORES_DESC_PERSISTENT_MEMORY = 4, IORES_DESC_PERSISTENT_MEMORY_LEGACY = 5, IORES_DESC_DEVICE_PRIVATE_MEMORY = 6, IORES_DESC_RESERVED = 7, IORES_DESC_SOFT_RESERVED = 8, }; /* * Flags controlling ioremap() behavior. */ enum { IORES_MAP_SYSTEM_RAM = BIT(0), IORES_MAP_ENCRYPTED = BIT(1), }; /* helpers to define resources */ #define DEFINE_RES_NAMED(_start, _size, _name, _flags) \ { \ .start = (_start), \ .end = (_start) + (_size) - 1, \ .name = (_name), \ .flags = (_flags), \ .desc = IORES_DESC_NONE, \ } #define DEFINE_RES_IO_NAMED(_start, _size, _name) \ DEFINE_RES_NAMED((_start), (_size), (_name), IORESOURCE_IO) #define DEFINE_RES_IO(_start, _size) \ DEFINE_RES_IO_NAMED((_start), (_size), NULL) #define DEFINE_RES_MEM_NAMED(_start, _size, _name) \ DEFINE_RES_NAMED((_start), (_size), (_name), IORESOURCE_MEM) #define DEFINE_RES_MEM(_start, _size) \ DEFINE_RES_MEM_NAMED((_start), (_size), NULL) #define DEFINE_RES_IRQ_NAMED(_irq, _name) \ DEFINE_RES_NAMED((_irq), 1, (_name), IORESOURCE_IRQ) #define DEFINE_RES_IRQ(_irq) \ DEFINE_RES_IRQ_NAMED((_irq), NULL) #define DEFINE_RES_DMA_NAMED(_dma, _name) \ DEFINE_RES_NAMED((_dma), 1, (_name), IORESOURCE_DMA) #define DEFINE_RES_DMA(_dma) \ DEFINE_RES_DMA_NAMED((_dma), NULL) /* PC/ISA/whatever - the normal PC address spaces: IO and memory */ extern struct resource ioport_resource; extern struct resource iomem_resource; extern struct resource *request_resource_conflict(struct resource *root, struct resource *new); extern int request_resource(struct resource *root, struct resource *new); extern int release_resource(struct resource *new); void release_child_resources(struct resource *new); extern void reserve_region_with_split(struct resource *root, resource_size_t start, resource_size_t end, const char *name); extern struct resource *insert_resource_conflict(struct resource *parent, struct resource *new); extern int insert_resource(struct resource *parent, struct resource *new); extern void insert_resource_expand_to_fit(struct resource *root, struct resource *new); extern int remove_resource(struct resource *old); extern void arch_remove_reservations(struct resource *avail); extern int allocate_resource(struct resource *root, struct resource *new, resource_size_t size, resource_size_t min, resource_size_t max, resource_size_t align, resource_size_t (*alignf)(void *, const struct resource *, resource_size_t, resource_size_t), void *alignf_data); struct resource *lookup_resource(struct resource *root, resource_size_t start); int adjust_resource(struct resource *res, resource_size_t start, resource_size_t size); resource_size_t resource_alignment(struct resource *res); static inline resource_size_t resource_size(const struct resource *res) { return res->end - res->start + 1; } static inline unsigned long resource_type(const struct resource *res) { return res->flags & IORESOURCE_TYPE_BITS; } static inline unsigned long resource_ext_type(const struct resource *res) { return res->flags & IORESOURCE_EXT_TYPE_BITS; } /* True iff r1 completely contains r2 */ static inline bool resource_contains(struct resource *r1, struct resource *r2) { if (resource_type(r1) != resource_type(r2)) return false; if (r1->flags & IORESOURCE_UNSET || r2->flags & IORESOURCE_UNSET) return false; return r1->start <= r2->start && r1->end >= r2->end; } /* Convenience shorthand with allocation */ #define request_region(start,n,name) __request_region(&ioport_resource, (start), (n), (name), 0) #define request_muxed_region(start,n,name) __request_region(&ioport_resource, (start), (n), (name), IORESOURCE_MUXED) #define __request_mem_region(start,n,name, excl) __request_region(&iomem_resource, (start), (n), (name), excl) #define request_mem_region(start,n,name) __request_region(&iomem_resource, (start), (n), (name), 0) #define request_mem_region_exclusive(start,n,name) \ __request_region(&iomem_resource, (start), (n), (name), IORESOURCE_EXCLUSIVE) #define rename_region(region, newname) do { (region)->name = (newname); } while (0) extern struct resource * __request_region(struct resource *, resource_size_t start, resource_size_t n, const char *name, int flags); /* Compatibility cruft */ #define release_region(start,n) __release_region(&ioport_resource, (start), (n)) #define release_mem_region(start,n) __release_region(&iomem_resource, (start), (n)) extern void __release_region(struct resource *, resource_size_t, resource_size_t); #ifdef CONFIG_MEMORY_HOTREMOVE extern void release_mem_region_adjustable(resource_size_t, resource_size_t); #endif #ifdef CONFIG_MEMORY_HOTPLUG extern void merge_system_ram_resource(struct resource *res); #endif /* Wrappers for managed devices */ struct device; extern int devm_request_resource(struct device *dev, struct resource *root, struct resource *new); extern void devm_release_resource(struct device *dev, struct resource *new); #define devm_request_region(dev,start,n,name) \ __devm_request_region(dev, &ioport_resource, (start), (n), (name)) #define devm_request_mem_region(dev,start,n,name) \ __devm_request_region(dev, &iomem_resource, (start), (n), (name)) extern struct resource * __devm_request_region(struct device *dev, struct resource *parent, resource_size_t start, resource_size_t n, const char *name); #define devm_release_region(dev, start, n) \ __devm_release_region(dev, &ioport_resource, (start), (n)) #define devm_release_mem_region(dev, start, n) \ __devm_release_region(dev, &iomem_resource, (start), (n)) extern void __devm_release_region(struct device *dev, struct resource *parent, resource_size_t start, resource_size_t n); extern int iomem_map_sanity_check(resource_size_t addr, unsigned long size); extern bool iomem_is_exclusive(u64 addr); extern int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages, void *arg, int (*func)(unsigned long, unsigned long, void *)); extern int walk_mem_res(u64 start, u64 end, void *arg, int (*func)(struct resource *, void *)); extern int walk_system_ram_res(u64 start, u64 end, void *arg, int (*func)(struct resource *, void *)); extern int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start, u64 end, void *arg, int (*func)(struct resource *, void *)); /* True if any part of r1 overlaps r2 */ static inline bool resource_overlaps(struct resource *r1, struct resource *r2) { return (r1->start <= r2->end && r1->end >= r2->start); } struct resource *devm_request_free_mem_region(struct device *dev, struct resource *base, unsigned long size); struct resource *request_free_mem_region(struct resource *base, unsigned long size, const char *name); #ifdef CONFIG_IO_STRICT_DEVMEM void revoke_devmem(struct resource *res); #else static inline void revoke_devmem(struct resource *res) { }; #endif #endif /* __ASSEMBLY__ */ #endif /* _LINUX_IOPORT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 /* SPDX-License-Identifier: GPL-2.0-or-later */ #ifndef _LINUX_KPROBES_H #define _LINUX_KPROBES_H /* * Kernel Probes (KProbes) * include/linux/kprobes.h * * Copyright (C) IBM Corporation, 2002, 2004 * * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel * Probes initial implementation ( includes suggestions from * Rusty Russell). * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes * interface to access function arguments. * 2005-May Hien Nguyen <hien@us.ibm.com> and Jim Keniston * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi * <prasanna@in.ibm.com> added function-return probes. */ #include <linux/compiler.h> #include <linux/linkage.h> #include <linux/list.h> #include <linux/notifier.h> #include <linux/smp.h> #include <linux/bug.h> #include <linux/percpu.h> #include <linux/spinlock.h> #include <linux/rcupdate.h> #include <linux/mutex.h> #include <linux/ftrace.h> #include <asm/kprobes.h> #ifdef CONFIG_KPROBES /* kprobe_status settings */ #define KPROBE_HIT_ACTIVE 0x00000001 #define KPROBE_HIT_SS 0x00000002 #define KPROBE_REENTER 0x00000004 #define KPROBE_HIT_SSDONE 0x00000008 #else /* CONFIG_KPROBES */ #include <asm-generic/kprobes.h> typedef int kprobe_opcode_t; struct arch_specific_insn { int dummy; }; #endif /* CONFIG_KPROBES */ struct kprobe; struct pt_regs; struct kretprobe; struct kretprobe_instance; typedef int (*kprobe_pre_handler_t) (struct kprobe *, struct pt_regs *); typedef void (*kprobe_post_handler_t) (struct kprobe *, struct pt_regs *, unsigned long flags); typedef int (*kprobe_fault_handler_t) (struct kprobe *, struct pt_regs *, int trapnr); typedef int (*kretprobe_handler_t) (struct kretprobe_instance *, struct pt_regs *); struct kprobe { struct hlist_node hlist; /* list of kprobes for multi-handler support */ struct list_head list; /*count the number of times this probe was temporarily disarmed */ unsigned long nmissed; /* location of the probe point */ kprobe_opcode_t *addr; /* Allow user to indicate symbol name of the probe point */ const char *symbol_name; /* Offset into the symbol */ unsigned int offset; /* Called before addr is executed. */ kprobe_pre_handler_t pre_handler; /* Called after addr is executed, unless... */ kprobe_post_handler_t post_handler; /* * ... called if executing addr causes a fault (eg. page fault). * Return 1 if it handled fault, otherwise kernel will see it. */ kprobe_fault_handler_t fault_handler; /* Saved opcode (which has been replaced with breakpoint) */ kprobe_opcode_t opcode; /* copy of the original instruction */ struct arch_specific_insn ainsn; /* * Indicates various status flags. * Protected by kprobe_mutex after this kprobe is registered. */ u32 flags; }; /* Kprobe status flags */ #define KPROBE_FLAG_GONE 1 /* breakpoint has already gone */ #define KPROBE_FLAG_DISABLED 2 /* probe is temporarily disabled */ #define KPROBE_FLAG_OPTIMIZED 4 /* * probe is really optimized. * NOTE: * this flag is only for optimized_kprobe. */ #define KPROBE_FLAG_FTRACE 8 /* probe is using ftrace */ /* Has this kprobe gone ? */ static inline int kprobe_gone(struct kprobe *p) { return p->flags & KPROBE_FLAG_GONE; } /* Is this kprobe disabled ? */ static inline int kprobe_disabled(struct kprobe *p) { return p->flags & (KPROBE_FLAG_DISABLED | KPROBE_FLAG_GONE); } /* Is this kprobe really running optimized path ? */ static inline int kprobe_optimized(struct kprobe *p) { return p->flags & KPROBE_FLAG_OPTIMIZED; } /* Is this kprobe uses ftrace ? */ static inline int kprobe_ftrace(struct kprobe *p) { return p->flags & KPROBE_FLAG_FTRACE; } /* * Function-return probe - * Note: * User needs to provide a handler function, and initialize maxactive. * maxactive - The maximum number of instances of the probed function that * can be active concurrently. * nmissed - tracks the number of times the probed function's return was * ignored, due to maxactive being too low. * */ struct kretprobe { struct kprobe kp; kretprobe_handler_t handler; kretprobe_handler_t entry_handler; int maxactive; int nmissed; size_t data_size; struct hlist_head free_instances; raw_spinlock_t lock; }; #define KRETPROBE_MAX_DATA_SIZE 4096 struct kretprobe_instance { union { struct hlist_node hlist; struct rcu_head rcu; }; struct kretprobe *rp; kprobe_opcode_t *ret_addr; struct task_struct *task; void *fp; char data[]; }; struct kretprobe_blackpoint { const char *name; void *addr; }; struct kprobe_blacklist_entry { struct list_head list; unsigned long start_addr; unsigned long end_addr; }; #ifdef CONFIG_KPROBES DECLARE_PER_CPU(struct kprobe *, current_kprobe); DECLARE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); /* * For #ifdef avoidance: */ static inline int kprobes_built_in(void) { return 1; } extern void kprobe_busy_begin(void); extern void kprobe_busy_end(void); #ifdef CONFIG_KRETPROBES extern void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs); extern int arch_trampoline_kprobe(struct kprobe *p); /* If the trampoline handler called from a kprobe, use this version */ unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs, void *trampoline_address, void *frame_pointer); static nokprobe_inline unsigned long kretprobe_trampoline_handler(struct pt_regs *regs, void *trampoline_address, void *frame_pointer) { unsigned long ret; /* * Set a dummy kprobe for avoiding kretprobe recursion. * Since kretprobe never runs in kprobe handler, no kprobe must * be running at this point. */ kprobe_busy_begin(); ret = __kretprobe_trampoline_handler(regs, trampoline_address, frame_pointer); kprobe_busy_end(); return ret; } #else /* CONFIG_KRETPROBES */ static inline void arch_prepare_kretprobe(struct kretprobe *rp, struct pt_regs *regs) { } static inline int arch_trampoline_kprobe(struct kprobe *p) { return 0; } #endif /* CONFIG_KRETPROBES */ extern struct kretprobe_blackpoint kretprobe_blacklist[]; #ifdef CONFIG_KPROBES_SANITY_TEST extern int init_test_probes(void); #else static inline int init_test_probes(void) { return 0; } #endif /* CONFIG_KPROBES_SANITY_TEST */ extern int arch_prepare_kprobe(struct kprobe *p); extern void arch_arm_kprobe(struct kprobe *p); extern void arch_disarm_kprobe(struct kprobe *p); extern int arch_init_kprobes(void); extern void kprobes_inc_nmissed_count(struct kprobe *p); extern bool arch_within_kprobe_blacklist(unsigned long addr); extern int arch_populate_kprobe_blacklist(void); extern bool arch_kprobe_on_func_entry(unsigned long offset); extern int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset); extern bool within_kprobe_blacklist(unsigned long addr); extern int kprobe_add_ksym_blacklist(unsigned long entry); extern int kprobe_add_area_blacklist(unsigned long start, unsigned long end); struct kprobe_insn_cache { struct mutex mutex; void *(*alloc)(void); /* allocate insn page */ void (*free)(void *); /* free insn page */ const char *sym; /* symbol for insn pages */ struct list_head pages; /* list of kprobe_insn_page */ size_t insn_size; /* size of instruction slot */ int nr_garbage; }; #ifdef __ARCH_WANT_KPROBES_INSN_SLOT extern kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c); extern void __free_insn_slot(struct kprobe_insn_cache *c, kprobe_opcode_t *slot, int dirty); /* sleep-less address checking routine */ extern bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr); #define DEFINE_INSN_CACHE_OPS(__name) \ extern struct kprobe_insn_cache kprobe_##__name##_slots; \ \ static inline kprobe_opcode_t *get_##__name##_slot(void) \ { \ return __get_insn_slot(&kprobe_##__name##_slots); \ } \ \ static inline void free_##__name##_slot(kprobe_opcode_t *slot, int dirty)\ { \ __free_insn_slot(&kprobe_##__name##_slots, slot, dirty); \ } \ \ static inline bool is_kprobe_##__name##_slot(unsigned long addr) \ { \ return __is_insn_slot_addr(&kprobe_##__name##_slots, addr); \ } #define KPROBE_INSN_PAGE_SYM "kprobe_insn_page" #define KPROBE_OPTINSN_PAGE_SYM "kprobe_optinsn_page" int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum, unsigned long *value, char *type, char *sym); #else /* __ARCH_WANT_KPROBES_INSN_SLOT */ #define DEFINE_INSN_CACHE_OPS(__name) \ static inline bool is_kprobe_##__name##_slot(unsigned long addr) \ { \ return 0; \ } #endif DEFINE_INSN_CACHE_OPS(insn); #ifdef CONFIG_OPTPROBES /* * Internal structure for direct jump optimized probe */ struct optimized_kprobe { struct kprobe kp; struct list_head list; /* list for optimizing queue */ struct arch_optimized_insn optinsn; }; /* Architecture dependent functions for direct jump optimization */ extern int arch_prepared_optinsn(struct arch_optimized_insn *optinsn); extern int arch_check_optimized_kprobe(struct optimized_kprobe *op); extern int arch_prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *orig); extern void arch_remove_optimized_kprobe(struct optimized_kprobe *op); extern void arch_optimize_kprobes(struct list_head *oplist); extern void arch_unoptimize_kprobes(struct list_head *oplist, struct list_head *done_list); extern void arch_unoptimize_kprobe(struct optimized_kprobe *op); extern int arch_within_optimized_kprobe(struct optimized_kprobe *op, unsigned long addr); extern void opt_pre_handler(struct kprobe *p, struct pt_regs *regs); DEFINE_INSN_CACHE_OPS(optinsn); #ifdef CONFIG_SYSCTL extern int sysctl_kprobes_optimization; extern int proc_kprobes_optimization_handler(struct ctl_table *table, int write, void *buffer, size_t *length, loff_t *ppos); #endif extern void wait_for_kprobe_optimizer(void); #else static inline void wait_for_kprobe_optimizer(void) { } #endif /* CONFIG_OPTPROBES */ #ifdef CONFIG_KPROBES_ON_FTRACE extern void kprobe_ftrace_handler(unsigned long ip, unsigned long parent_ip, struct ftrace_ops *ops, struct pt_regs *regs); extern int arch_prepare_kprobe_ftrace(struct kprobe *p); #endif int arch_check_ftrace_location(struct kprobe *p); /* Get the kprobe at this addr (if any) - called with preemption disabled */ struct kprobe *get_kprobe(void *addr); /* kprobe_running() will just return the current_kprobe on this CPU */ static inline struct kprobe *kprobe_running(void) { return (__this_cpu_read(current_kprobe)); } static inline void reset_current_kprobe(void) { __this_cpu_write(current_kprobe, NULL); } static inline struct kprobe_ctlblk *get_kprobe_ctlblk(void) { return this_cpu_ptr(&kprobe_ctlblk); } kprobe_opcode_t *kprobe_lookup_name(const char *name, unsigned int offset); int register_kprobe(struct kprobe *p); void unregister_kprobe(struct kprobe *p); int register_kprobes(struct kprobe **kps, int num); void unregister_kprobes(struct kprobe **kps, int num); unsigned long arch_deref_entry_point(void *); int register_kretprobe(struct kretprobe *rp); void unregister_kretprobe(struct kretprobe *rp); int register_kretprobes(struct kretprobe **rps, int num); void unregister_kretprobes(struct kretprobe **rps, int num); void kprobe_flush_task(struct task_struct *tk); void kprobe_free_init_mem(void); int disable_kprobe(struct kprobe *kp); int enable_kprobe(struct kprobe *kp); void dump_kprobe(struct kprobe *kp); void *alloc_insn_page(void); void free_insn_page(void *page); int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type, char *sym); int arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value, char *type, char *sym); #else /* !CONFIG_KPROBES: */ static inline int kprobes_built_in(void) { return 0; } static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr) { return 0; } static inline struct kprobe *get_kprobe(void *addr) { return NULL; } static inline struct kprobe *kprobe_running(void) { return NULL; } static inline int register_kprobe(struct kprobe *p) { return -ENOSYS; } static inline int register_kprobes(struct kprobe **kps, int num) { return -ENOSYS; } static inline void unregister_kprobe(struct kprobe *p) { } static inline void unregister_kprobes(struct kprobe **kps, int num) { } static inline int register_kretprobe(struct kretprobe *rp) { return -ENOSYS; } static inline int register_kretprobes(struct kretprobe **rps, int num) { return -ENOSYS; } static inline void unregister_kretprobe(struct kretprobe *rp) { } static inline void unregister_kretprobes(struct kretprobe **rps, int num) { } static inline void kprobe_flush_task(struct task_struct *tk) { } static inline void kprobe_free_init_mem(void) { } static inline int disable_kprobe(struct kprobe *kp) { return -ENOSYS; } static inline int enable_kprobe(struct kprobe *kp) { return -ENOSYS; } static inline bool within_kprobe_blacklist(unsigned long addr) { return true; } static inline int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type, char *sym) { return -ERANGE; } #endif /* CONFIG_KPROBES */ static inline int disable_kretprobe(struct kretprobe *rp) { return disable_kprobe(&rp->kp); } static inline int enable_kretprobe(struct kretprobe *rp) { return enable_kprobe(&rp->kp); } #ifndef CONFIG_KPROBES static inline bool is_kprobe_insn_slot(unsigned long addr) { return false; } #endif #ifndef CONFIG_OPTPROBES static inline bool is_kprobe_optinsn_slot(unsigned long addr) { return false; } #endif /* Returns true if kprobes handled the fault */ static nokprobe_inline bool kprobe_page_fault(struct pt_regs *regs, unsigned int trap) { if (!kprobes_built_in()) return false; if (user_mode(regs)) return false; /* * To be potentially processing a kprobe fault and to be allowed * to call kprobe_running(), we have to be non-preemptible. */ if (preemptible()) return false; if (!kprobe_running()) return false; return kprobe_fault_handler(regs, trap); } #endif /* _LINUX_KPROBES_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 /* * include/linux/ktime.h * * ktime_t - nanosecond-resolution time format. * * Copyright(C) 2005, Thomas Gleixner <tglx@linutronix.de> * Copyright(C) 2005, Red Hat, Inc., Ingo Molnar * * data type definitions, declarations, prototypes and macros. * * Started by: Thomas Gleixner and Ingo Molnar * * Credits: * * Roman Zippel provided the ideas and primary code snippets of * the ktime_t union and further simplifications of the original * code. * * For licencing details see kernel-base/COPYING */ #ifndef _LINUX_KTIME_H #define _LINUX_KTIME_H #include <linux/time.h> #include <linux/jiffies.h> #include <asm/bug.h> /* Nanosecond scalar representation for kernel time values */ typedef s64 ktime_t; /** * ktime_set - Set a ktime_t variable from a seconds/nanoseconds value * @secs: seconds to set * @nsecs: nanoseconds to set * * Return: The ktime_t representation of the value. */ static inline ktime_t ktime_set(const s64 secs, const unsigned long nsecs) { if (unlikely(secs >= KTIME_SEC_MAX)) return KTIME_MAX; return secs * NSEC_PER_SEC + (s64)nsecs; } /* Subtract two ktime_t variables. rem = lhs -rhs: */ #define ktime_sub(lhs, rhs) ((lhs) - (rhs)) /* Add two ktime_t variables. res = lhs + rhs: */ #define ktime_add(lhs, rhs) ((lhs) + (rhs)) /* * Same as ktime_add(), but avoids undefined behaviour on overflow; however, * this means that you must check the result for overflow yourself. */ #define ktime_add_unsafe(lhs, rhs) ((u64) (lhs) + (rhs)) /* * Add a ktime_t variable and a scalar nanosecond value. * res = kt + nsval: */ #define ktime_add_ns(kt, nsval) ((kt) + (nsval)) /* * Subtract a scalar nanosecod from a ktime_t variable * res = kt - nsval: */ #define ktime_sub_ns(kt, nsval) ((kt) - (nsval)) /* convert a timespec64 to ktime_t format: */ static inline ktime_t timespec64_to_ktime(struct timespec64 ts) { return ktime_set(ts.tv_sec, ts.tv_nsec); } /* Map the ktime_t to timespec conversion to ns_to_timespec function */ #define ktime_to_timespec64(kt) ns_to_timespec64((kt)) /* Convert ktime_t to nanoseconds */ static inline s64 ktime_to_ns(const ktime_t kt) { return kt; } /** * ktime_compare - Compares two ktime_t variables for less, greater or equal * @cmp1: comparable1 * @cmp2: comparable2 * * Return: ... * cmp1 < cmp2: return <0 * cmp1 == cmp2: return 0 * cmp1 > cmp2: return >0 */ static inline int ktime_compare(const ktime_t cmp1, const ktime_t cmp2) { if (cmp1 < cmp2) return -1; if (cmp1 > cmp2) return 1; return 0; } /** * ktime_after - Compare if a ktime_t value is bigger than another one. * @cmp1: comparable1 * @cmp2: comparable2 * * Return: true if cmp1 happened after cmp2. */ static inline bool ktime_after(const ktime_t cmp1, const ktime_t cmp2) { return ktime_compare(cmp1, cmp2) > 0; } /** * ktime_before - Compare if a ktime_t value is smaller than another one. * @cmp1: comparable1 * @cmp2: comparable2 * * Return: true if cmp1 happened before cmp2. */ static inline bool ktime_before(const ktime_t cmp1, const ktime_t cmp2) { return ktime_compare(cmp1, cmp2) < 0; } #if BITS_PER_LONG < 64 extern s64 __ktime_divns(const ktime_t kt, s64 div); static inline s64 ktime_divns(const ktime_t kt, s64 div) { /* * Negative divisors could cause an inf loop, * so bug out here. */ BUG_ON(div < 0); if (__builtin_constant_p(div) && !(div >> 32)) { s64 ns = kt; u64 tmp = ns < 0 ? -ns : ns; do_div(tmp, div); return ns < 0 ? -tmp : tmp; } else { return __ktime_divns(kt, div); } } #else /* BITS_PER_LONG < 64 */ static inline s64 ktime_divns(const ktime_t kt, s64 div) { /* * 32-bit implementation cannot handle negative divisors, * so catch them on 64bit as well. */ WARN_ON(div < 0); return kt / div; } #endif static inline s64 ktime_to_us(const ktime_t kt) { return ktime_divns(kt, NSEC_PER_USEC); } static inline s64 ktime_to_ms(const ktime_t kt) { return ktime_divns(kt, NSEC_PER_MSEC); } static inline s64 ktime_us_delta(const ktime_t later, const ktime_t earlier) { return ktime_to_us(ktime_sub(later, earlier)); } static inline s64 ktime_ms_delta(const ktime_t later, const ktime_t earlier) { return ktime_to_ms(ktime_sub(later, earlier)); } static inline ktime_t ktime_add_us(const ktime_t kt, const u64 usec) { return ktime_add_ns(kt, usec * NSEC_PER_USEC); } static inline ktime_t ktime_add_ms(const ktime_t kt, const u64 msec) { return ktime_add_ns(kt, msec * NSEC_PER_MSEC); } static inline ktime_t ktime_sub_us(const ktime_t kt, const u64 usec) { return ktime_sub_ns(kt, usec * NSEC_PER_USEC); } static inline ktime_t ktime_sub_ms(const ktime_t kt, const u64 msec) { return ktime_sub_ns(kt, msec * NSEC_PER_MSEC); } extern ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs); /** * ktime_to_timespec64_cond - convert a ktime_t variable to timespec64 * format only if the variable contains data * @kt: the ktime_t variable to convert * @ts: the timespec variable to store the result in * * Return: %true if there was a successful conversion, %false if kt was 0. */ static inline __must_check bool ktime_to_timespec64_cond(const ktime_t kt, struct timespec64 *ts) { if (kt) { *ts = ktime_to_timespec64(kt); return true; } else { return false; } } #include <vdso/ktime.h> static inline ktime_t ns_to_ktime(u64 ns) { return ns; } static inline ktime_t ms_to_ktime(u64 ms) { return ms * NSEC_PER_MSEC; } # include <linux/timekeeping.h> # include <linux/timekeeping32.h> #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 /* SPDX-License-Identifier: GPL-2.0 */ /* File: linux/posix_acl_xattr.h Extended attribute system call representation of Access Control Lists. Copyright (C) 2000 by Andreas Gruenbacher <a.gruenbacher@computer.org> Copyright (C) 2002 SGI - Silicon Graphics, Inc <linux-xfs@oss.sgi.com> */ #ifndef _POSIX_ACL_XATTR_H #define _POSIX_ACL_XATTR_H #include <uapi/linux/xattr.h> #include <uapi/linux/posix_acl_xattr.h> #include <linux/posix_acl.h> static inline size_t posix_acl_xattr_size(int count) { return (sizeof(struct posix_acl_xattr_header) + (count * sizeof(struct posix_acl_xattr_entry))); } static inline int posix_acl_xattr_count(size_t size) { if (size < sizeof(struct posix_acl_xattr_header)) return -1; size -= sizeof(struct posix_acl_xattr_header); if (size % sizeof(struct posix_acl_xattr_entry)) return -1; return size / sizeof(struct posix_acl_xattr_entry); } #ifdef CONFIG_FS_POSIX_ACL void posix_acl_fix_xattr_from_user(void *value, size_t size); void posix_acl_fix_xattr_to_user(void *value, size_t size); #else static inline void posix_acl_fix_xattr_from_user(void *value, size_t size) { } static inline void posix_acl_fix_xattr_to_user(void *value, size_t size) { } #endif struct posix_acl *posix_acl_from_xattr(struct user_namespace *user_ns, const void *value, size_t size); int posix_acl_to_xattr(struct user_namespace *user_ns, const struct posix_acl *acl, void *buffer, size_t size); extern const struct xattr_handler posix_acl_access_xattr_handler; extern const struct xattr_handler posix_acl_default_xattr_handler; #endif /* _POSIX_ACL_XATTR_H */
1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 /* SPDX-License-Identifier: GPL-2.0 */ /* * Wrapper functions for accessing the file_struct fd array. */ #ifndef __LINUX_FILE_H #define __LINUX_FILE_H #include <linux/compiler.h> #include <linux/types.h> #include <linux/posix_types.h> #include <linux/errno.h> struct file; extern void fput(struct file *); extern void fput_many(struct file *, unsigned int); struct file_operations; struct task_struct; struct vfsmount; struct dentry; struct inode; struct path; extern struct file *alloc_file_pseudo(struct inode *, struct vfsmount *, const char *, int flags, const struct file_operations *); extern struct file *alloc_file_clone(struct file *, int flags, const struct file_operations *); static inline void fput_light(struct file *file, int fput_needed) { if (fput_needed) fput(file); } struct fd { struct file *file; unsigned int flags; }; #define FDPUT_FPUT 1 #define FDPUT_POS_UNLOCK 2 static inline void fdput(struct fd fd) { if (fd.flags & FDPUT_FPUT) fput(fd.file); } extern struct file *fget(unsigned int fd); extern struct file *fget_many(unsigned int fd, unsigned int refs); extern struct file *fget_raw(unsigned int fd); extern struct file *fget_task(struct task_struct *task, unsigned int fd); extern unsigned long __fdget(unsigned int fd); extern unsigned long __fdget_raw(unsigned int fd); extern unsigned long __fdget_pos(unsigned int fd); extern void __f_unlock_pos(struct file *); static inline struct fd __to_fd(unsigned long v) { return (struct fd){(struct file *)(v & ~3),v & 3}; } static inline struct fd fdget(unsigned int fd) { return __to_fd(__fdget(fd)); } static inline struct fd fdget_raw(unsigned int fd) { return __to_fd(__fdget_raw(fd)); } static inline struct fd fdget_pos(int fd) { return __to_fd(__fdget_pos(fd)); } static inline void fdput_pos(struct fd f) { if (f.flags & FDPUT_POS_UNLOCK) __f_unlock_pos(f.file); fdput(f); } extern int f_dupfd(unsigned int from, struct file *file, unsigned flags); extern int replace_fd(unsigned fd, struct file *file, unsigned flags); extern void set_close_on_exec(unsigned int fd, int flag); extern bool get_close_on_exec(unsigned int fd); extern int __get_unused_fd_flags(unsigned flags, unsigned long nofile); extern int get_unused_fd_flags(unsigned flags); extern void put_unused_fd(unsigned int fd); extern void fd_install(unsigned int fd, struct file *file); extern int __receive_fd(int fd, struct file *file, int __user *ufd, unsigned int o_flags); static inline int receive_fd_user(struct file *file, int __user *ufd, unsigned int o_flags) { if (ufd == NULL) return -EFAULT; return __receive_fd(-1, file, ufd, o_flags); } static inline int receive_fd(struct file *file, unsigned int o_flags) { return __receive_fd(-1, file, NULL, o_flags); } static inline int receive_fd_replace(int fd, struct file *file, unsigned int o_flags) { return __receive_fd(fd, file, NULL, o_flags); } extern void flush_delayed_fput(void); extern void __fput_sync(struct file *); extern unsigned int sysctl_nr_open_min, sysctl_nr_open_max; #endif /* __LINUX_FILE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Copyright (C) 2001 Momchil Velikov * Portions Copyright (C) 2001 Christoph Hellwig * Copyright (C) 2006 Nick Piggin * Copyright (C) 2012 Konstantin Khlebnikov */ #ifndef _LINUX_RADIX_TREE_H #define _LINUX_RADIX_TREE_H #include <linux/bitops.h> #include <linux/kernel.h> #include <linux/list.h> #include <linux/percpu.h> #include <linux/preempt.h> #include <linux/rcupdate.h> #include <linux/spinlock.h> #include <linux/types.h> #include <linux/xarray.h> #include <linux/local_lock.h> /* Keep unconverted code working */ #define radix_tree_root xarray #define radix_tree_node xa_node struct radix_tree_preload { local_lock_t lock; unsigned nr; /* nodes->parent points to next preallocated node */ struct radix_tree_node *nodes; }; DECLARE_PER_CPU(struct radix_tree_preload, radix_tree_preloads); /* * The bottom two bits of the slot determine how the remaining bits in the * slot are interpreted: * * 00 - data pointer * 10 - internal entry * x1 - value entry * * The internal entry may be a pointer to the next level in the tree, a * sibling entry, or an indicator that the entry in this slot has been moved * to another location in the tree and the lookup should be restarted. While * NULL fits the 'data pointer' pattern, it means that there is no entry in * the tree for this index (no matter what level of the tree it is found at). * This means that storing a NULL entry in the tree is the same as deleting * the entry from the tree. */ #define RADIX_TREE_ENTRY_MASK 3UL #define RADIX_TREE_INTERNAL_NODE 2UL static inline bool radix_tree_is_internal_node(void *ptr) { return ((unsigned long)ptr & RADIX_TREE_ENTRY_MASK) == RADIX_TREE_INTERNAL_NODE; } /*** radix-tree API starts here ***/ #define RADIX_TREE_MAP_SHIFT XA_CHUNK_SHIFT #define RADIX_TREE_MAP_SIZE (1UL << RADIX_TREE_MAP_SHIFT) #define RADIX_TREE_MAP_MASK (RADIX_TREE_MAP_SIZE-1) #define RADIX_TREE_MAX_TAGS XA_MAX_MARKS #define RADIX_TREE_TAG_LONGS XA_MARK_LONGS #define RADIX_TREE_INDEX_BITS (8 /* CHAR_BIT */ * sizeof(unsigned long)) #define RADIX_TREE_MAX_PATH (DIV_ROUND_UP(RADIX_TREE_INDEX_BITS, \ RADIX_TREE_MAP_SHIFT)) /* The IDR tag is stored in the low bits of xa_flags */ #define ROOT_IS_IDR ((__force gfp_t)4) /* The top bits of xa_flags are used to store the root tags */ #define ROOT_TAG_SHIFT (__GFP_BITS_SHIFT) #define RADIX_TREE_INIT(name, mask) XARRAY_INIT(name, mask) #define RADIX_TREE(name, mask) \ struct radix_tree_root name = RADIX_TREE_INIT(name, mask) #define INIT_RADIX_TREE(root, mask) xa_init_flags(root, mask) static inline bool radix_tree_empty(const struct radix_tree_root *root) { return root->xa_head == NULL; } /** * struct radix_tree_iter - radix tree iterator state * * @index: index of current slot * @next_index: one beyond the last index for this chunk * @tags: bit-mask for tag-iterating * @node: node that contains current slot * * This radix tree iterator works in terms of "chunks" of slots. A chunk is a * subinterval of slots contained within one radix tree leaf node. It is * described by a pointer to its first slot and a struct radix_tree_iter * which holds the chunk's position in the tree and its size. For tagged * iteration radix_tree_iter also holds the slots' bit-mask for one chosen * radix tree tag. */ struct radix_tree_iter { unsigned long index; unsigned long next_index; unsigned long tags; struct radix_tree_node *node; }; /** * Radix-tree synchronization * * The radix-tree API requires that users provide all synchronisation (with * specific exceptions, noted below). * * Synchronization of access to the data items being stored in the tree, and * management of their lifetimes must be completely managed by API users. * * For API usage, in general, * - any function _modifying_ the tree or tags (inserting or deleting * items, setting or clearing tags) must exclude other modifications, and * exclude any functions reading the tree. * - any function _reading_ the tree or tags (looking up items or tags, * gang lookups) must exclude modifications to the tree, but may occur * concurrently with other readers. * * The notable exceptions to this rule are the following functions: * __radix_tree_lookup * radix_tree_lookup * radix_tree_lookup_slot * radix_tree_tag_get * radix_tree_gang_lookup * radix_tree_gang_lookup_tag * radix_tree_gang_lookup_tag_slot * radix_tree_tagged * * The first 7 functions are able to be called locklessly, using RCU. The * caller must ensure calls to these functions are made within rcu_read_lock() * regions. Other readers (lock-free or otherwise) and modifications may be * running concurrently. * * It is still required that the caller manage the synchronization and lifetimes * of the items. So if RCU lock-free lookups are used, typically this would mean * that the items have their own locks, or are amenable to lock-free access; and * that the items are freed by RCU (or only freed after having been deleted from * the radix tree *and* a synchronize_rcu() grace period). * * (Note, rcu_assign_pointer and rcu_dereference are not needed to control * access to data items when inserting into or looking up from the radix tree) * * Note that the value returned by radix_tree_tag_get() may not be relied upon * if only the RCU read lock is held. Functions to set/clear tags and to * delete nodes running concurrently with it may affect its result such that * two consecutive reads in the same locked section may return different * values. If reliability is required, modification functions must also be * excluded from concurrency. * * radix_tree_tagged is able to be called without locking or RCU. */ /** * radix_tree_deref_slot - dereference a slot * @slot: slot pointer, returned by radix_tree_lookup_slot * * For use with radix_tree_lookup_slot(). Caller must hold tree at least read * locked across slot lookup and dereference. Not required if write lock is * held (ie. items cannot be concurrently inserted). * * radix_tree_deref_retry must be used to confirm validity of the pointer if * only the read lock is held. * * Return: entry stored in that slot. */ static inline void *radix_tree_deref_slot(void __rcu **slot) { return rcu_dereference(*slot); } /** * radix_tree_deref_slot_protected - dereference a slot with tree lock held * @slot: slot pointer, returned by radix_tree_lookup_slot * * Similar to radix_tree_deref_slot. The caller does not hold the RCU read * lock but it must hold the tree lock to prevent parallel updates. * * Return: entry stored in that slot. */ static inline void *radix_tree_deref_slot_protected(void __rcu **slot, spinlock_t *treelock) { return rcu_dereference_protected(*slot, lockdep_is_held(treelock)); } /** * radix_tree_deref_retry - check radix_tree_deref_slot * @arg: pointer returned by radix_tree_deref_slot * Returns: 0 if retry is not required, otherwise retry is required * * radix_tree_deref_retry must be used with radix_tree_deref_slot. */ static inline int radix_tree_deref_retry(void *arg) { return unlikely(radix_tree_is_internal_node(arg)); } /** * radix_tree_exception - radix_tree_deref_slot returned either exception? * @arg: value returned by radix_tree_deref_slot * Returns: 0 if well-aligned pointer, non-0 if either kind of exception. */ static inline int radix_tree_exception(void *arg) { return unlikely((unsigned long)arg & RADIX_TREE_ENTRY_MASK); } int radix_tree_insert(struct radix_tree_root *, unsigned long index, void *); void *__radix_tree_lookup(const struct radix_tree_root *, unsigned long index, struct radix_tree_node **nodep, void __rcu ***slotp); void *radix_tree_lookup(const struct radix_tree_root *, unsigned long); void __rcu **radix_tree_lookup_slot(const struct radix_tree_root *, unsigned long index); void __radix_tree_replace(struct radix_tree_root *, struct radix_tree_node *, void __rcu **slot, void *entry); void radix_tree_iter_replace(struct radix_tree_root *, const struct radix_tree_iter *, void __rcu **slot, void *entry); void radix_tree_replace_slot(struct radix_tree_root *, void __rcu **slot, void *entry); void radix_tree_iter_delete(struct radix_tree_root *, struct radix_tree_iter *iter, void __rcu **slot); void *radix_tree_delete_item(struct radix_tree_root *, unsigned long, void *); void *radix_tree_delete(struct radix_tree_root *, unsigned long); unsigned int radix_tree_gang_lookup(const struct radix_tree_root *, void **results, unsigned long first_index, unsigned int max_items); int radix_tree_preload(gfp_t gfp_mask); int radix_tree_maybe_preload(gfp_t gfp_mask); void radix_tree_init(void); void *radix_tree_tag_set(struct radix_tree_root *, unsigned long index, unsigned int tag); void *radix_tree_tag_clear(struct radix_tree_root *, unsigned long index, unsigned int tag); int radix_tree_tag_get(const struct radix_tree_root *, unsigned long index, unsigned int tag); void radix_tree_iter_tag_clear(struct radix_tree_root *, const struct radix_tree_iter *iter, unsigned int tag); unsigned int radix_tree_gang_lookup_tag(const struct radix_tree_root *, void **results, unsigned long first_index, unsigned int max_items, unsigned int tag); unsigned int radix_tree_gang_lookup_tag_slot(const struct radix_tree_root *, void __rcu ***results, unsigned long first_index, unsigned int max_items, unsigned int tag); int radix_tree_tagged(const struct radix_tree_root *, unsigned int tag); static inline void radix_tree_preload_end(void) { local_unlock(&radix_tree_preloads.lock); } void __rcu **idr_get_free(struct radix_tree_root *root, struct radix_tree_iter *iter, gfp_t gfp, unsigned long max); enum { RADIX_TREE_ITER_TAG_MASK = 0x0f, /* tag index in lower nybble */ RADIX_TREE_ITER_TAGGED = 0x10, /* lookup tagged slots */ RADIX_TREE_ITER_CONTIG = 0x20, /* stop at first hole */ }; /** * radix_tree_iter_init - initialize radix tree iterator * * @iter: pointer to iterator state * @start: iteration starting index * Returns: NULL */ static __always_inline void __rcu ** radix_tree_iter_init(struct radix_tree_iter *iter, unsigned long start) { /* * Leave iter->tags uninitialized. radix_tree_next_chunk() will fill it * in the case of a successful tagged chunk lookup. If the lookup was * unsuccessful or non-tagged then nobody cares about ->tags. * * Set index to zero to bypass next_index overflow protection. * See the comment in radix_tree_next_chunk() for details. */ iter->index = 0; iter->next_index = start; return NULL; } /** * radix_tree_next_chunk - find next chunk of slots for iteration * * @root: radix tree root * @iter: iterator state * @flags: RADIX_TREE_ITER_* flags and tag index * Returns: pointer to chunk first slot, or NULL if there no more left * * This function looks up the next chunk in the radix tree starting from * @iter->next_index. It returns a pointer to the chunk's first slot. * Also it fills @iter with data about chunk: position in the tree (index), * its end (next_index), and constructs a bit mask for tagged iterating (tags). */ void __rcu **radix_tree_next_chunk(const struct radix_tree_root *, struct radix_tree_iter *iter, unsigned flags); /** * radix_tree_iter_lookup - look up an index in the radix tree * @root: radix tree root * @iter: iterator state * @index: key to look up * * If @index is present in the radix tree, this function returns the slot * containing it and updates @iter to describe the entry. If @index is not * present, it returns NULL. */ static inline void __rcu ** radix_tree_iter_lookup(const struct radix_tree_root *root, struct radix_tree_iter *iter, unsigned long index) { radix_tree_iter_init(iter, index); return radix_tree_next_chunk(root, iter, RADIX_TREE_ITER_CONTIG); } /** * radix_tree_iter_retry - retry this chunk of the iteration * @iter: iterator state * * If we iterate over a tree protected only by the RCU lock, a race * against deletion or creation may result in seeing a slot for which * radix_tree_deref_retry() returns true. If so, call this function * and continue the iteration. */ static inline __must_check void __rcu **radix_tree_iter_retry(struct radix_tree_iter *iter) { iter->next_index = iter->index; iter->tags = 0; return NULL; } static inline unsigned long __radix_tree_iter_add(struct radix_tree_iter *iter, unsigned long slots) { return iter->index + slots; } /** * radix_tree_iter_resume - resume iterating when the chunk may be invalid * @slot: pointer to current slot * @iter: iterator state * Returns: New slot pointer * * If the iterator needs to release then reacquire a lock, the chunk may * have been invalidated by an insertion or deletion. Call this function * before releasing the lock to continue the iteration from the next index. */ void __rcu **__must_check radix_tree_iter_resume(void __rcu **slot, struct radix_tree_iter *iter); /** * radix_tree_chunk_size - get current chunk size * * @iter: pointer to radix tree iterator * Returns: current chunk size */ static __always_inline long radix_tree_chunk_size(struct radix_tree_iter *iter) { return iter->next_index - iter->index; } /** * radix_tree_next_slot - find next slot in chunk * * @slot: pointer to current slot * @iter: pointer to iterator state * @flags: RADIX_TREE_ITER_*, should be constant * Returns: pointer to next slot, or NULL if there no more left * * This function updates @iter->index in the case of a successful lookup. * For tagged lookup it also eats @iter->tags. * * There are several cases where 'slot' can be passed in as NULL to this * function. These cases result from the use of radix_tree_iter_resume() or * radix_tree_iter_retry(). In these cases we don't end up dereferencing * 'slot' because either: * a) we are doing tagged iteration and iter->tags has been set to 0, or * b) we are doing non-tagged iteration, and iter->index and iter->next_index * have been set up so that radix_tree_chunk_size() returns 1 or 0. */ static __always_inline void __rcu **radix_tree_next_slot(void __rcu **slot, struct radix_tree_iter *iter, unsigned flags) { if (flags & RADIX_TREE_ITER_TAGGED) { iter->tags >>= 1; if (unlikely(!iter->tags)) return NULL; if (likely(iter->tags & 1ul)) { iter->index = __radix_tree_iter_add(iter, 1); slot++; goto found; } if (!(flags & RADIX_TREE_ITER_CONTIG)) { unsigned offset = __ffs(iter->tags); iter->tags >>= offset++; iter->index = __radix_tree_iter_add(iter, offset); slot += offset; goto found; } } else { long count = radix_tree_chunk_size(iter); while (--count > 0) { slot++; iter->index = __radix_tree_iter_add(iter, 1); if (likely(*slot)) goto found; if (flags & RADIX_TREE_ITER_CONTIG) { /* forbid switching to the next chunk */ iter->next_index = 0; break; } } } return NULL; found: return slot; } /** * radix_tree_for_each_slot - iterate over non-empty slots * * @slot: the void** variable for pointer to slot * @root: the struct radix_tree_root pointer * @iter: the struct radix_tree_iter pointer * @start: iteration starting index * * @slot points to radix tree slot, @iter->index contains its index. */ #define radix_tree_for_each_slot(slot, root, iter, start) \ for (slot = radix_tree_iter_init(iter, start) ; \ slot || (slot = radix_tree_next_chunk(root, iter, 0)) ; \ slot = radix_tree_next_slot(slot, iter, 0)) /** * radix_tree_for_each_tagged - iterate over tagged slots * * @slot: the void** variable for pointer to slot * @root: the struct radix_tree_root pointer * @iter: the struct radix_tree_iter pointer * @start: iteration starting index * @tag: tag index * * @slot points to radix tree slot, @iter->index contains its index. */ #define radix_tree_for_each_tagged(slot, root, iter, start, tag) \ for (slot = radix_tree_iter_init(iter, start) ; \ slot || (slot = radix_tree_next_chunk(root, iter, \ RADIX_TREE_ITER_TAGGED | tag)) ; \ slot = radix_tree_next_slot(slot, iter, \ RADIX_TREE_ITER_TAGGED | tag)) #endif /* _LINUX_RADIX_TREE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 /* SPDX-License-Identifier: GPL-2.0 */ /* * An extensible bitmap is a bitmap that supports an * arbitrary number of bits. Extensible bitmaps are * used to represent sets of values, such as types, * roles, categories, and classes. * * Each extensible bitmap is implemented as a linked * list of bitmap nodes, where each bitmap node has * an explicitly specified starting bit position within * the total bitmap. * * Author : Stephen Smalley, <sds@tycho.nsa.gov> */ #ifndef _SS_EBITMAP_H_ #define _SS_EBITMAP_H_ #include <net/netlabel.h> #ifdef CONFIG_64BIT #define EBITMAP_NODE_SIZE 64 #else #define EBITMAP_NODE_SIZE 32 #endif #define EBITMAP_UNIT_NUMS ((EBITMAP_NODE_SIZE-sizeof(void *)-sizeof(u32))\ / sizeof(unsigned long)) #define EBITMAP_UNIT_SIZE BITS_PER_LONG #define EBITMAP_SIZE (EBITMAP_UNIT_NUMS * EBITMAP_UNIT_SIZE) #define EBITMAP_BIT 1ULL #define EBITMAP_SHIFT_UNIT_SIZE(x) \ (((x) >> EBITMAP_UNIT_SIZE / 2) >> EBITMAP_UNIT_SIZE / 2) struct ebitmap_node { struct ebitmap_node *next; unsigned long maps[EBITMAP_UNIT_NUMS]; u32 startbit; }; struct ebitmap { struct ebitmap_node *node; /* first node in the bitmap */ u32 highbit; /* highest position in the total bitmap */ }; #define ebitmap_length(e) ((e)->highbit) static inline unsigned int ebitmap_start_positive(struct ebitmap *e, struct ebitmap_node **n) { unsigned int ofs; for (*n = e->node; *n; *n = (*n)->next) { ofs = find_first_bit((*n)->maps, EBITMAP_SIZE); if (ofs < EBITMAP_SIZE) return (*n)->startbit + ofs; } return ebitmap_length(e); } static inline void ebitmap_init(struct ebitmap *e) { memset(e, 0, sizeof(*e)); } static inline unsigned int ebitmap_next_positive(struct ebitmap *e, struct ebitmap_node **n, unsigned int bit) { unsigned int ofs; ofs = find_next_bit((*n)->maps, EBITMAP_SIZE, bit - (*n)->startbit + 1); if (ofs < EBITMAP_SIZE) return ofs + (*n)->startbit; for (*n = (*n)->next; *n; *n = (*n)->next) { ofs = find_first_bit((*n)->maps, EBITMAP_SIZE); if (ofs < EBITMAP_SIZE) return ofs + (*n)->startbit; } return ebitmap_length(e); } #define EBITMAP_NODE_INDEX(node, bit) \ (((bit) - (node)->startbit) / EBITMAP_UNIT_SIZE) #define EBITMAP_NODE_OFFSET(node, bit) \ (((bit) - (node)->startbit) % EBITMAP_UNIT_SIZE) static inline int ebitmap_node_get_bit(struct ebitmap_node *n, unsigned int bit) { unsigned int index = EBITMAP_NODE_INDEX(n, bit); unsigned int ofs = EBITMAP_NODE_OFFSET(n, bit); BUG_ON(index >= EBITMAP_UNIT_NUMS); if ((n->maps[index] & (EBITMAP_BIT << ofs))) return 1; return 0; } static inline void ebitmap_node_set_bit(struct ebitmap_node *n, unsigned int bit) { unsigned int index = EBITMAP_NODE_INDEX(n, bit); unsigned int ofs = EBITMAP_NODE_OFFSET(n, bit); BUG_ON(index >= EBITMAP_UNIT_NUMS); n->maps[index] |= (EBITMAP_BIT << ofs); } static inline void ebitmap_node_clr_bit(struct ebitmap_node *n, unsigned int bit) { unsigned int index = EBITMAP_NODE_INDEX(n, bit); unsigned int ofs = EBITMAP_NODE_OFFSET(n, bit); BUG_ON(index >= EBITMAP_UNIT_NUMS); n->maps[index] &= ~(EBITMAP_BIT << ofs); } #define ebitmap_for_each_positive_bit(e, n, bit) \ for (bit = ebitmap_start_positive(e, &n); \ bit < ebitmap_length(e); \ bit = ebitmap_next_positive(e, &n, bit)) \ int ebitmap_cmp(struct ebitmap *e1, struct ebitmap *e2); int ebitmap_cpy(struct ebitmap *dst, struct ebitmap *src); int ebitmap_and(struct ebitmap *dst, struct ebitmap *e1, struct ebitmap *e2); int ebitmap_contains(struct ebitmap *e1, struct ebitmap *e2, u32 last_e2bit); int ebitmap_get_bit(struct ebitmap *e, unsigned long bit); int ebitmap_set_bit(struct ebitmap *e, unsigned long bit, int value); void ebitmap_destroy(struct ebitmap *e); int ebitmap_read(struct ebitmap *e, void *fp); int ebitmap_write(struct ebitmap *e, void *fp); u32 ebitmap_hash(const struct ebitmap *e, u32 hash); #ifdef CONFIG_NETLABEL int ebitmap_netlbl_export(struct ebitmap *ebmap, struct netlbl_lsm_catmap **catmap); int ebitmap_netlbl_import(struct ebitmap *ebmap, struct netlbl_lsm_catmap *catmap); #else static inline int ebitmap_netlbl_export(struct ebitmap *ebmap, struct netlbl_lsm_catmap **catmap) { return -ENOMEM; } static inline int ebitmap_netlbl_import(struct ebitmap *ebmap, struct netlbl_lsm_catmap *catmap) { return -ENOMEM; } #endif #endif /* _SS_EBITMAP_H_ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_PGTABLE_DEFS_H #define _ASM_X86_PGTABLE_DEFS_H #include <linux/const.h> #include <linux/mem_encrypt.h> #include <asm/page_types.h> #define FIRST_USER_ADDRESS 0UL #define _PAGE_BIT_PRESENT 0 /* is present */ #define _PAGE_BIT_RW 1 /* writeable */ #define _PAGE_BIT_USER 2 /* userspace addressable */ #define _PAGE_BIT_PWT 3 /* page write through */ #define _PAGE_BIT_PCD 4 /* page cache disabled */ #define _PAGE_BIT_ACCESSED 5 /* was accessed (raised by CPU) */ #define _PAGE_BIT_DIRTY 6 /* was written to (raised by CPU) */ #define _PAGE_BIT_PSE 7 /* 4 MB (or 2MB) page */ #define _PAGE_BIT_PAT 7 /* on 4KB pages */ #define _PAGE_BIT_GLOBAL 8 /* Global TLB entry PPro+ */ #define _PAGE_BIT_SOFTW1 9 /* available for programmer */ #define _PAGE_BIT_SOFTW2 10 /* " */ #define _PAGE_BIT_SOFTW3 11 /* " */ #define _PAGE_BIT_PAT_LARGE 12 /* On 2MB or 1GB pages */ #define _PAGE_BIT_SOFTW4 58 /* available for programmer */ #define _PAGE_BIT_PKEY_BIT0 59 /* Protection Keys, bit 1/4 */ #define _PAGE_BIT_PKEY_BIT1 60 /* Protection Keys, bit 2/4 */ #define _PAGE_BIT_PKEY_BIT2 61 /* Protection Keys, bit 3/4 */ #define _PAGE_BIT_PKEY_BIT3 62 /* Protection Keys, bit 4/4 */ #define _PAGE_BIT_NX 63 /* No execute: only valid after cpuid check */ #define _PAGE_BIT_SPECIAL _PAGE_BIT_SOFTW1 #define _PAGE_BIT_CPA_TEST _PAGE_BIT_SOFTW1 #define _PAGE_BIT_UFFD_WP _PAGE_BIT_SOFTW2 /* userfaultfd wrprotected */ #define _PAGE_BIT_SOFT_DIRTY _PAGE_BIT_SOFTW3 /* software dirty tracking */ #define _PAGE_BIT_DEVMAP _PAGE_BIT_SOFTW4 /* If _PAGE_BIT_PRESENT is clear, we use these: */ /* - if the user mapped it with PROT_NONE; pte_present gives true */ #define _PAGE_BIT_PROTNONE _PAGE_BIT_GLOBAL #define _PAGE_PRESENT (_AT(pteval_t, 1) << _PAGE_BIT_PRESENT) #define _PAGE_RW (_AT(pteval_t, 1) << _PAGE_BIT_RW) #define _PAGE_USER (_AT(pteval_t, 1) << _PAGE_BIT_USER) #define _PAGE_PWT (_AT(pteval_t, 1) << _PAGE_BIT_PWT) #define _PAGE_PCD (_AT(pteval_t, 1) << _PAGE_BIT_PCD) #define _PAGE_ACCESSED (_AT(pteval_t, 1) << _PAGE_BIT_ACCESSED) #define _PAGE_DIRTY (_AT(pteval_t, 1) << _PAGE_BIT_DIRTY) #define _PAGE_PSE (_AT(pteval_t, 1) << _PAGE_BIT_PSE) #define _PAGE_GLOBAL (_AT(pteval_t, 1) << _PAGE_BIT_GLOBAL) #define _PAGE_SOFTW1 (_AT(pteval_t, 1) << _PAGE_BIT_SOFTW1) #define _PAGE_SOFTW2 (_AT(pteval_t, 1) << _PAGE_BIT_SOFTW2) #define _PAGE_SOFTW3 (_AT(pteval_t, 1) << _PAGE_BIT_SOFTW3) #define _PAGE_PAT (_AT(pteval_t, 1) << _PAGE_BIT_PAT) #define _PAGE_PAT_LARGE (_AT(pteval_t, 1) << _PAGE_BIT_PAT_LARGE) #define _PAGE_SPECIAL (_AT(pteval_t, 1) << _PAGE_BIT_SPECIAL) #define _PAGE_CPA_TEST (_AT(pteval_t, 1) << _PAGE_BIT_CPA_TEST) #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS #define _PAGE_PKEY_BIT0 (_AT(pteval_t, 1) << _PAGE_BIT_PKEY_BIT0) #define _PAGE_PKEY_BIT1 (_AT(pteval_t, 1) << _PAGE_BIT_PKEY_BIT1) #define _PAGE_PKEY_BIT2 (_AT(pteval_t, 1) << _PAGE_BIT_PKEY_BIT2) #define _PAGE_PKEY_BIT3 (_AT(pteval_t, 1) << _PAGE_BIT_PKEY_BIT3) #else #define _PAGE_PKEY_BIT0 (_AT(pteval_t, 0)) #define _PAGE_PKEY_BIT1 (_AT(pteval_t, 0)) #define _PAGE_PKEY_BIT2 (_AT(pteval_t, 0)) #define _PAGE_PKEY_BIT3 (_AT(pteval_t, 0)) #endif #define _PAGE_PKEY_MASK (_PAGE_PKEY_BIT0 | \ _PAGE_PKEY_BIT1 | \ _PAGE_PKEY_BIT2 | \ _PAGE_PKEY_BIT3) #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE) #define _PAGE_KNL_ERRATUM_MASK (_PAGE_DIRTY | _PAGE_ACCESSED) #else #define _PAGE_KNL_ERRATUM_MASK 0 #endif #ifdef CONFIG_MEM_SOFT_DIRTY #define _PAGE_SOFT_DIRTY (_AT(pteval_t, 1) << _PAGE_BIT_SOFT_DIRTY) #else #define _PAGE_SOFT_DIRTY (_AT(pteval_t, 0)) #endif /* * Tracking soft dirty bit when a page goes to a swap is tricky. * We need a bit which can be stored in pte _and_ not conflict * with swap entry format. On x86 bits 1-4 are *not* involved * into swap entry computation, but bit 7 is used for thp migration, * so we borrow bit 1 for soft dirty tracking. * * Please note that this bit must be treated as swap dirty page * mark if and only if the PTE/PMD has present bit clear! */ #ifdef CONFIG_MEM_SOFT_DIRTY #define _PAGE_SWP_SOFT_DIRTY _PAGE_RW #else #define _PAGE_SWP_SOFT_DIRTY (_AT(pteval_t, 0)) #endif #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP #define _PAGE_UFFD_WP (_AT(pteval_t, 1) << _PAGE_BIT_UFFD_WP) #define _PAGE_SWP_UFFD_WP _PAGE_USER #else #define _PAGE_UFFD_WP (_AT(pteval_t, 0)) #define _PAGE_SWP_UFFD_WP (_AT(pteval_t, 0)) #endif #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE) #define _PAGE_NX (_AT(pteval_t, 1) << _PAGE_BIT_NX) #define _PAGE_DEVMAP (_AT(u64, 1) << _PAGE_BIT_DEVMAP) #else #define _PAGE_NX (_AT(pteval_t, 0)) #define _PAGE_DEVMAP (_AT(pteval_t, 0)) #endif #define _PAGE_PROTNONE (_AT(pteval_t, 1) << _PAGE_BIT_PROTNONE) /* * Set of bits not changed in pte_modify. The pte's * protection key is treated like _PAGE_RW, for * instance, and is *not* included in this mask since * pte_modify() does modify it. */ #define _PAGE_CHG_MASK (PTE_PFN_MASK | _PAGE_PCD | _PAGE_PWT | \ _PAGE_SPECIAL | _PAGE_ACCESSED | _PAGE_DIRTY | \ _PAGE_SOFT_DIRTY | _PAGE_DEVMAP | _PAGE_ENC | \ _PAGE_UFFD_WP) #define _HPAGE_CHG_MASK (_PAGE_CHG_MASK | _PAGE_PSE) /* * The cache modes defined here are used to translate between pure SW usage * and the HW defined cache mode bits and/or PAT entries. * * The resulting bits for PWT, PCD and PAT should be chosen in a way * to have the WB mode at index 0 (all bits clear). This is the default * right now and likely would break too much if changed. */ #ifndef __ASSEMBLY__ enum page_cache_mode { _PAGE_CACHE_MODE_WB = 0, _PAGE_CACHE_MODE_WC = 1, _PAGE_CACHE_MODE_UC_MINUS = 2, _PAGE_CACHE_MODE_UC = 3, _PAGE_CACHE_MODE_WT = 4, _PAGE_CACHE_MODE_WP = 5, _PAGE_CACHE_MODE_NUM = 8 }; #endif #define _PAGE_ENC (_AT(pteval_t, sme_me_mask)) #define _PAGE_CACHE_MASK (_PAGE_PWT | _PAGE_PCD | _PAGE_PAT) #define _PAGE_LARGE_CACHE_MASK (_PAGE_PWT | _PAGE_PCD | _PAGE_PAT_LARGE) #define _PAGE_NOCACHE (cachemode2protval(_PAGE_CACHE_MODE_UC)) #define _PAGE_CACHE_WP (cachemode2protval(_PAGE_CACHE_MODE_WP)) #define __PP _PAGE_PRESENT #define __RW _PAGE_RW #define _USR _PAGE_USER #define ___A _PAGE_ACCESSED #define ___D _PAGE_DIRTY #define ___G _PAGE_GLOBAL #define __NX _PAGE_NX #define _ENC _PAGE_ENC #define __WP _PAGE_CACHE_WP #define __NC _PAGE_NOCACHE #define _PSE _PAGE_PSE #define pgprot_val(x) ((x).pgprot) #define __pgprot(x) ((pgprot_t) { (x) } ) #define __pg(x) __pgprot(x) #define _PAGE_PAT_LARGE (_AT(pteval_t, 1) << _PAGE_BIT_PAT_LARGE) #define PAGE_NONE __pg( 0| 0| 0|___A| 0| 0| 0|___G) #define PAGE_SHARED __pg(__PP|__RW|_USR|___A|__NX| 0| 0| 0) #define PAGE_SHARED_EXEC __pg(__PP|__RW|_USR|___A| 0| 0| 0| 0) #define PAGE_COPY_NOEXEC __pg(__PP| 0|_USR|___A|__NX| 0| 0| 0) #define PAGE_COPY_EXEC __pg(__PP| 0|_USR|___A| 0| 0| 0| 0) #define PAGE_COPY __pg(__PP| 0|_USR|___A|__NX| 0| 0| 0) #define PAGE_READONLY __pg(__PP| 0|_USR|___A|__NX| 0| 0| 0) #define PAGE_READONLY_EXEC __pg(__PP| 0|_USR|___A| 0| 0| 0| 0) #define __PAGE_KERNEL (__PP|__RW| 0|___A|__NX|___D| 0|___G) #define __PAGE_KERNEL_EXEC (__PP|__RW| 0|___A| 0|___D| 0|___G) #define _KERNPG_TABLE_NOENC (__PP|__RW| 0|___A| 0|___D| 0| 0) #define _KERNPG_TABLE (__PP|__RW| 0|___A| 0|___D| 0| 0| _ENC) #define _PAGE_TABLE_NOENC (__PP|__RW|_USR|___A| 0|___D| 0| 0) #define _PAGE_TABLE (__PP|__RW|_USR|___A| 0|___D| 0| 0| _ENC) #define __PAGE_KERNEL_RO (__PP| 0| 0|___A|__NX|___D| 0|___G) #define __PAGE_KERNEL_ROX (__PP| 0| 0|___A| 0|___D| 0|___G) #define __PAGE_KERNEL_NOCACHE (__PP|__RW| 0|___A|__NX|___D| 0|___G| __NC) #define __PAGE_KERNEL_VVAR (__PP| 0|_USR|___A|__NX|___D| 0|___G) #define __PAGE_KERNEL_LARGE (__PP|__RW| 0|___A|__NX|___D|_PSE|___G) #define __PAGE_KERNEL_LARGE_EXEC (__PP|__RW| 0|___A| 0|___D|_PSE|___G) #define __PAGE_KERNEL_WP (__PP|__RW| 0|___A|__NX|___D| 0|___G| __WP) #define __PAGE_KERNEL_IO __PAGE_KERNEL #define __PAGE_KERNEL_IO_NOCACHE __PAGE_KERNEL_NOCACHE #ifndef __ASSEMBLY__ #define __PAGE_KERNEL_ENC (__PAGE_KERNEL | _ENC) #define __PAGE_KERNEL_ENC_WP (__PAGE_KERNEL_WP | _ENC) #define __PAGE_KERNEL_NOENC (__PAGE_KERNEL | 0) #define __PAGE_KERNEL_NOENC_WP (__PAGE_KERNEL_WP | 0) #define __pgprot_mask(x) __pgprot((x) & __default_kernel_pte_mask) #define PAGE_KERNEL __pgprot_mask(__PAGE_KERNEL | _ENC) #define PAGE_KERNEL_NOENC __pgprot_mask(__PAGE_KERNEL | 0) #define PAGE_KERNEL_RO __pgprot_mask(__PAGE_KERNEL_RO | _ENC) #define PAGE_KERNEL_EXEC __pgprot_mask(__PAGE_KERNEL_EXEC | _ENC) #define PAGE_KERNEL_EXEC_NOENC __pgprot_mask(__PAGE_KERNEL_EXEC | 0) #define PAGE_KERNEL_ROX __pgprot_mask(__PAGE_KERNEL_ROX | _ENC) #define PAGE_KERNEL_NOCACHE __pgprot_mask(__PAGE_KERNEL_NOCACHE | _ENC) #define PAGE_KERNEL_LARGE __pgprot_mask(__PAGE_KERNEL_LARGE | _ENC) #define PAGE_KERNEL_LARGE_EXEC __pgprot_mask(__PAGE_KERNEL_LARGE_EXEC | _ENC) #define PAGE_KERNEL_VVAR __pgprot_mask(__PAGE_KERNEL_VVAR | _ENC) #define PAGE_KERNEL_IO __pgprot_mask(__PAGE_KERNEL_IO) #define PAGE_KERNEL_IO_NOCACHE __pgprot_mask(__PAGE_KERNEL_IO_NOCACHE) #endif /* __ASSEMBLY__ */ /* xwr */ #define __P000 PAGE_NONE #define __P001 PAGE_READONLY #define __P010 PAGE_COPY #define __P011 PAGE_COPY #define __P100 PAGE_READONLY_EXEC #define __P101 PAGE_READONLY_EXEC #define __P110 PAGE_COPY_EXEC #define __P111 PAGE_COPY_EXEC #define __S000 PAGE_NONE #define __S001 PAGE_READONLY #define __S010 PAGE_SHARED #define __S011 PAGE_SHARED #define __S100 PAGE_READONLY_EXEC #define __S101 PAGE_READONLY_EXEC #define __S110 PAGE_SHARED_EXEC #define __S111 PAGE_SHARED_EXEC /* * early identity mapping pte attrib macros. */ #ifdef CONFIG_X86_64 #define __PAGE_KERNEL_IDENT_LARGE_EXEC __PAGE_KERNEL_LARGE_EXEC #else #define PTE_IDENT_ATTR 0x003 /* PRESENT+RW */ #define PDE_IDENT_ATTR 0x063 /* PRESENT+RW+DIRTY+ACCESSED */ #define PGD_IDENT_ATTR 0x001 /* PRESENT (no other attributes) */ #endif #ifdef CONFIG_X86_32 # include <asm/pgtable_32_types.h> #else # include <asm/pgtable_64_types.h> #endif #ifndef __ASSEMBLY__ #include <linux/types.h> /* Extracts the PFN from a (pte|pmd|pud|pgd)val_t of a 4KB page */ #define PTE_PFN_MASK ((pteval_t)PHYSICAL_PAGE_MASK) /* * Extracts the flags from a (pte|pmd|pud|pgd)val_t * This includes the protection key value. */ #define PTE_FLAGS_MASK (~PTE_PFN_MASK) typedef struct pgprot { pgprotval_t pgprot; } pgprot_t; typedef struct { pgdval_t pgd; } pgd_t; static inline pgprot_t pgprot_nx(pgprot_t prot) { return __pgprot(pgprot_val(prot) | _PAGE_NX); } #define pgprot_nx pgprot_nx #ifdef CONFIG_X86_PAE /* * PHYSICAL_PAGE_MASK might be non-constant when SME is compiled in, so we can't * use it here. */ #define PGD_PAE_PAGE_MASK ((signed long)PAGE_MASK) #define PGD_PAE_PHYS_MASK (((1ULL << __PHYSICAL_MASK_SHIFT)-1) & PGD_PAE_PAGE_MASK) /* * PAE allows Base Address, P, PWT, PCD and AVL bits to be set in PGD entries. * All other bits are Reserved MBZ */ #define PGD_ALLOWED_BITS (PGD_PAE_PHYS_MASK | _PAGE_PRESENT | \ _PAGE_PWT | _PAGE_PCD | \ _PAGE_SOFTW1 | _PAGE_SOFTW2 | _PAGE_SOFTW3) #else /* No need to mask any bits for !PAE */ #define PGD_ALLOWED_BITS (~0ULL) #endif static inline pgd_t native_make_pgd(pgdval_t val) { return (pgd_t) { val & PGD_ALLOWED_BITS }; } static inline pgdval_t native_pgd_val(pgd_t pgd) { return pgd.pgd & PGD_ALLOWED_BITS; } static inline pgdval_t pgd_flags(pgd_t pgd) { return native_pgd_val(pgd) & PTE_FLAGS_MASK; } #if CONFIG_PGTABLE_LEVELS > 4 typedef struct { p4dval_t p4d; } p4d_t; static inline p4d_t native_make_p4d(pudval_t val) { return (p4d_t) { val }; } static inline p4dval_t native_p4d_val(p4d_t p4d) { return p4d.p4d; } #else #include <asm-generic/pgtable-nop4d.h> static inline p4d_t native_make_p4d(pudval_t val) { return (p4d_t) { .pgd = native_make_pgd((pgdval_t)val) }; } static inline p4dval_t native_p4d_val(p4d_t p4d) { return native_pgd_val(p4d.pgd); } #endif #if CONFIG_PGTABLE_LEVELS > 3 typedef struct { pudval_t pud; } pud_t; static inline pud_t native_make_pud(pmdval_t val) { return (pud_t) { val }; } static inline pudval_t native_pud_val(pud_t pud) { return pud.pud; } #else #include <asm-generic/pgtable-nopud.h> static inline pud_t native_make_pud(pudval_t val) { return (pud_t) { .p4d.pgd = native_make_pgd(val) }; } static inline pudval_t native_pud_val(pud_t pud) { return native_pgd_val(pud.p4d.pgd); } #endif #if CONFIG_PGTABLE_LEVELS > 2 typedef struct { pmdval_t pmd; } pmd_t; static inline pmd_t native_make_pmd(pmdval_t val) { return (pmd_t) { val }; } static inline pmdval_t native_pmd_val(pmd_t pmd) { return pmd.pmd; } #else #include <asm-generic/pgtable-nopmd.h> static inline pmd_t native_make_pmd(pmdval_t val) { return (pmd_t) { .pud.p4d.pgd = native_make_pgd(val) }; } static inline pmdval_t native_pmd_val(pmd_t pmd) { return native_pgd_val(pmd.pud.p4d.pgd); } #endif static inline p4dval_t p4d_pfn_mask(p4d_t p4d) { /* No 512 GiB huge pages yet */ return PTE_PFN_MASK; } static inline p4dval_t p4d_flags_mask(p4d_t p4d) { return ~p4d_pfn_mask(p4d); } static inline p4dval_t p4d_flags(p4d_t p4d) { return native_p4d_val(p4d) & p4d_flags_mask(p4d); } static inline pudval_t pud_pfn_mask(pud_t pud) { if (native_pud_val(pud) & _PAGE_PSE) return PHYSICAL_PUD_PAGE_MASK; else return PTE_PFN_MASK; } static inline pudval_t pud_flags_mask(pud_t pud) { return ~pud_pfn_mask(pud); } static inline pudval_t pud_flags(pud_t pud) { return native_pud_val(pud) & pud_flags_mask(pud); } static inline pmdval_t pmd_pfn_mask(pmd_t pmd) { if (native_pmd_val(pmd) & _PAGE_PSE) return PHYSICAL_PMD_PAGE_MASK; else return PTE_PFN_MASK; } static inline pmdval_t pmd_flags_mask(pmd_t pmd) { return ~pmd_pfn_mask(pmd); } static inline pmdval_t pmd_flags(pmd_t pmd) { return native_pmd_val(pmd) & pmd_flags_mask(pmd); } static inline pte_t native_make_pte(pteval_t val) { return (pte_t) { .pte = val }; } static inline pteval_t native_pte_val(pte_t pte) { return pte.pte; } static inline pteval_t pte_flags(pte_t pte) { return native_pte_val(pte) & PTE_FLAGS_MASK; } #define __pte2cm_idx(cb) \ ((((cb) >> (_PAGE_BIT_PAT - 2)) & 4) | \ (((cb) >> (_PAGE_BIT_PCD - 1)) & 2) | \ (((cb) >> _PAGE_BIT_PWT) & 1)) #define __cm_idx2pte(i) \ ((((i) & 4) << (_PAGE_BIT_PAT - 2)) | \ (((i) & 2) << (_PAGE_BIT_PCD - 1)) | \ (((i) & 1) << _PAGE_BIT_PWT)) unsigned long cachemode2protval(enum page_cache_mode pcm); static inline pgprotval_t protval_4k_2_large(pgprotval_t val) { return (val & ~(_PAGE_PAT | _PAGE_PAT_LARGE)) | ((val & _PAGE_PAT) << (_PAGE_BIT_PAT_LARGE - _PAGE_BIT_PAT)); } static inline pgprot_t pgprot_4k_2_large(pgprot_t pgprot) { return __pgprot(protval_4k_2_large(pgprot_val(pgprot))); } static inline pgprotval_t protval_large_2_4k(pgprotval_t val) { return (val & ~(_PAGE_PAT | _PAGE_PAT_LARGE)) | ((val & _PAGE_PAT_LARGE) >> (_PAGE_BIT_PAT_LARGE - _PAGE_BIT_PAT)); } static inline pgprot_t pgprot_large_2_4k(pgprot_t pgprot) { return __pgprot(protval_large_2_4k(pgprot_val(pgprot))); } typedef struct page *pgtable_t; extern pteval_t __supported_pte_mask; extern pteval_t __default_kernel_pte_mask; extern void set_nx(void); extern int nx_enabled; #define pgprot_writecombine pgprot_writecombine extern pgprot_t pgprot_writecombine(pgprot_t prot); #define pgprot_writethrough pgprot_writethrough extern pgprot_t pgprot_writethrough(pgprot_t prot); /* Indicate that x86 has its own track and untrack pfn vma functions */ #define __HAVE_PFNMAP_TRACKING #define __HAVE_PHYS_MEM_ACCESS_PROT struct file; pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size, pgprot_t vma_prot); /* Install a pte for a particular vaddr in kernel space. */ void set_pte_vaddr(unsigned long vaddr, pte_t pte); #ifdef CONFIG_X86_32 extern void native_pagetable_init(void); #else #define native_pagetable_init paging_init #endif struct seq_file; extern void arch_report_meminfo(struct seq_file *m); enum pg_level { PG_LEVEL_NONE, PG_LEVEL_4K, PG_LEVEL_2M, PG_LEVEL_1G, PG_LEVEL_512G, PG_LEVEL_NUM }; #ifdef CONFIG_PROC_FS extern void update_page_count(int level, unsigned long pages); #else static inline void update_page_count(int level, unsigned long pages) { } #endif /* * Helper function that returns the kernel pagetable entry controlling * the virtual address 'address'. NULL means no pagetable entry present. * NOTE: the return type is pte_t but if the pmd is PSE then we return it * as a pte too. */ extern pte_t *lookup_address(unsigned long address, unsigned int *level); extern pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address, unsigned int *level); struct mm_struct; extern pte_t *lookup_address_in_mm(struct mm_struct *mm, unsigned long address, unsigned int *level); extern pmd_t *lookup_pmd_address(unsigned long address); extern phys_addr_t slow_virt_to_phys(void *__address); extern int __init kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address, unsigned numpages, unsigned long page_flags); extern int __init kernel_unmap_pages_in_pgd(pgd_t *pgd, unsigned long address, unsigned long numpages); #endif /* !__ASSEMBLY__ */ #endif /* _ASM_X86_PGTABLE_DEFS_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 /* SPDX-License-Identifier: GPL-2.0 */ /* * Generic nexthop implementation * * Copyright (c) 2017-19 Cumulus Networks * Copyright (c) 2017-19 David Ahern <dsa@cumulusnetworks.com> */ #ifndef __LINUX_NEXTHOP_H #define __LINUX_NEXTHOP_H #include <linux/netdevice.h> #include <linux/notifier.h> #include <linux/route.h> #include <linux/types.h> #include <net/ip_fib.h> #include <net/ip6_fib.h> #include <net/netlink.h> #define NEXTHOP_VALID_USER_FLAGS RTNH_F_ONLINK struct nexthop; struct nh_config { u32 nh_id; u8 nh_family; u8 nh_protocol; u8 nh_blackhole; u8 nh_fdb; u32 nh_flags; int nh_ifindex; struct net_device *dev; union { __be32 ipv4; struct in6_addr ipv6; } gw; struct nlattr *nh_grp; u16 nh_grp_type; struct nlattr *nh_encap; u16 nh_encap_type; u32 nlflags; struct nl_info nlinfo; }; struct nh_info { struct hlist_node dev_hash; /* entry on netns devhash */ struct nexthop *nh_parent; u8 family; bool reject_nh; bool fdb_nh; union { struct fib_nh_common fib_nhc; struct fib_nh fib_nh; struct fib6_nh fib6_nh; }; }; struct nh_grp_entry { struct nexthop *nh; u8 weight; atomic_t upper_bound; struct list_head nh_list; struct nexthop *nh_parent; /* nexthop of group with this entry */ }; struct nh_group { struct nh_group *spare; /* spare group for removals */ u16 num_nh; bool mpath; bool fdb_nh; bool has_v4; struct nh_grp_entry nh_entries[]; }; struct nexthop { struct rb_node rb_node; /* entry on netns rbtree */ struct list_head fi_list; /* v4 entries using nh */ struct list_head f6i_list; /* v6 entries using nh */ struct list_head fdb_list; /* fdb entries using this nh */ struct list_head grp_list; /* nh group entries using this nh */ struct net *net; u32 id; u8 protocol; /* app managing this nh */ u8 nh_flags; bool is_group; refcount_t refcnt; struct rcu_head rcu; union { struct nh_info __rcu *nh_info; struct nh_group __rcu *nh_grp; }; }; enum nexthop_event_type { NEXTHOP_EVENT_DEL }; int register_nexthop_notifier(struct net *net, struct notifier_block *nb); int unregister_nexthop_notifier(struct net *net, struct notifier_block *nb); /* caller is holding rcu or rtnl; no reference taken to nexthop */ struct nexthop *nexthop_find_by_id(struct net *net, u32 id); void nexthop_free_rcu(struct rcu_head *head); static inline bool nexthop_get(struct nexthop *nh) { return refcount_inc_not_zero(&nh->refcnt); } static inline void nexthop_put(struct nexthop *nh) { if (refcount_dec_and_test(&nh->refcnt)) call_rcu(&nh->rcu, nexthop_free_rcu); } static inline bool nexthop_cmp(const struct nexthop *nh1, const struct nexthop *nh2) { return nh1 == nh2; } static inline bool nexthop_is_fdb(const struct nexthop *nh) { if (nh->is_group) { const struct nh_group *nh_grp; nh_grp = rcu_dereference_rtnl(nh->nh_grp); return nh_grp->fdb_nh; } else { const struct nh_info *nhi; nhi = rcu_dereference_rtnl(nh->nh_info); return nhi->fdb_nh; } } static inline bool nexthop_has_v4(const struct nexthop *nh) { if (nh->is_group) { struct nh_group *nh_grp; nh_grp = rcu_dereference_rtnl(nh->nh_grp); return nh_grp->has_v4; } return false; } static inline bool nexthop_is_multipath(const struct nexthop *nh) { if (nh->is_group) { struct nh_group *nh_grp; nh_grp = rcu_dereference_rtnl(nh->nh_grp); return nh_grp->mpath; } return false; } struct nexthop *nexthop_select_path(struct nexthop *nh, int hash); static inline unsigned int nexthop_num_path(const struct nexthop *nh) { unsigned int rc = 1; if (nh->is_group) { struct nh_group *nh_grp; nh_grp = rcu_dereference_rtnl(nh->nh_grp); if (nh_grp->mpath) rc = nh_grp->num_nh; } return rc; } static inline struct nexthop *nexthop_mpath_select(const struct nh_group *nhg, int nhsel) { /* for_nexthops macros in fib_semantics.c grabs a pointer to * the nexthop before checking nhsel */ if (nhsel >= nhg->num_nh) return NULL; return nhg->nh_entries[nhsel].nh; } static inline int nexthop_mpath_fill_node(struct sk_buff *skb, struct nexthop *nh, u8 rt_family) { struct nh_group *nhg = rtnl_dereference(nh->nh_grp); int i; for (i = 0; i < nhg->num_nh; i++) { struct nexthop *nhe = nhg->nh_entries[i].nh; struct nh_info *nhi = rcu_dereference_rtnl(nhe->nh_info); struct fib_nh_common *nhc = &nhi->fib_nhc; int weight = nhg->nh_entries[i].weight; if (fib_add_nexthop(skb, nhc, weight, rt_family, 0) < 0) return -EMSGSIZE; } return 0; } /* called with rcu lock */ static inline bool nexthop_is_blackhole(const struct nexthop *nh) { const struct nh_info *nhi; if (nh->is_group) { struct nh_group *nh_grp; nh_grp = rcu_dereference_rtnl(nh->nh_grp); if (nh_grp->num_nh > 1) return false; nh = nh_grp->nh_entries[0].nh; } nhi = rcu_dereference_rtnl(nh->nh_info); return nhi->reject_nh; } static inline void nexthop_path_fib_result(struct fib_result *res, int hash) { struct nh_info *nhi; struct nexthop *nh; nh = nexthop_select_path(res->fi->nh, hash); nhi = rcu_dereference(nh->nh_info); res->nhc = &nhi->fib_nhc; } /* called with rcu read lock or rtnl held */ static inline struct fib_nh_common *nexthop_fib_nhc(struct nexthop *nh, int nhsel) { struct nh_info *nhi; BUILD_BUG_ON(offsetof(struct fib_nh, nh_common) != 0); BUILD_BUG_ON(offsetof(struct fib6_nh, nh_common) != 0); if (nh->is_group) { struct nh_group *nh_grp; nh_grp = rcu_dereference_rtnl(nh->nh_grp); if (nh_grp->mpath) { nh = nexthop_mpath_select(nh_grp, nhsel); if (!nh) return NULL; } } nhi = rcu_dereference_rtnl(nh->nh_info); return &nhi->fib_nhc; } /* called from fib_table_lookup with rcu_lock */ static inline struct fib_nh_common *nexthop_get_nhc_lookup(const struct nexthop *nh, int fib_flags, const struct flowi4 *flp, int *nhsel) { struct nh_info *nhi; if (nh->is_group) { struct nh_group *nhg = rcu_dereference(nh->nh_grp); int i; for (i = 0; i < nhg->num_nh; i++) { struct nexthop *nhe = nhg->nh_entries[i].nh; nhi = rcu_dereference(nhe->nh_info); if (fib_lookup_good_nhc(&nhi->fib_nhc, fib_flags, flp)) { *nhsel = i; return &nhi->fib_nhc; } } } else { nhi = rcu_dereference(nh->nh_info); if (fib_lookup_good_nhc(&nhi->fib_nhc, fib_flags, flp)) { *nhsel = 0; return &nhi->fib_nhc; } } return NULL; } static inline bool nexthop_uses_dev(const struct nexthop *nh, const struct net_device *dev) { struct nh_info *nhi; if (nh->is_group) { struct nh_group *nhg = rcu_dereference(nh->nh_grp); int i; for (i = 0; i < nhg->num_nh; i++) { struct nexthop *nhe = nhg->nh_entries[i].nh; nhi = rcu_dereference(nhe->nh_info); if (nhc_l3mdev_matches_dev(&nhi->fib_nhc, dev)) return true; } } else { nhi = rcu_dereference(nh->nh_info); if (nhc_l3mdev_matches_dev(&nhi->fib_nhc, dev)) return true; } return false; } static inline unsigned int fib_info_num_path(const struct fib_info *fi) { if (unlikely(fi->nh)) return nexthop_num_path(fi->nh); return fi->fib_nhs; } int fib_check_nexthop(struct nexthop *nh, u8 scope, struct netlink_ext_ack *extack); static inline struct fib_nh_common *fib_info_nhc(struct fib_info *fi, int nhsel) { if (unlikely(fi->nh)) return nexthop_fib_nhc(fi->nh, nhsel); return &fi->fib_nh[nhsel].nh_common; } /* only used when fib_nh is built into fib_info */ static inline struct fib_nh *fib_info_nh(struct fib_info *fi, int nhsel) { WARN_ON(fi->nh); return &fi->fib_nh[nhsel]; } /* * IPv6 variants */ int fib6_check_nexthop(struct nexthop *nh, struct fib6_config *cfg, struct netlink_ext_ack *extack); /* Caller should either hold rcu_read_lock(), or RTNL. */ static inline struct fib6_nh *nexthop_fib6_nh(struct nexthop *nh) { struct nh_info *nhi; if (nh->is_group) { struct nh_group *nh_grp; nh_grp = rcu_dereference_rtnl(nh->nh_grp); nh = nexthop_mpath_select(nh_grp, 0); if (!nh) return NULL; } nhi = rcu_dereference_rtnl(nh->nh_info); if (nhi->family == AF_INET6) return &nhi->fib6_nh; return NULL; } /* Variant of nexthop_fib6_nh(). * Caller should either hold rcu_read_lock_bh(), or RTNL. */ static inline struct fib6_nh *nexthop_fib6_nh_bh(struct nexthop *nh) { struct nh_info *nhi; if (nh->is_group) { struct nh_group *nh_grp; nh_grp = rcu_dereference_bh_rtnl(nh->nh_grp); nh = nexthop_mpath_select(nh_grp, 0); if (!nh) return NULL; } nhi = rcu_dereference_bh_rtnl(nh->nh_info); if (nhi->family == AF_INET6) return &nhi->fib6_nh; return NULL; } static inline struct net_device *fib6_info_nh_dev(struct fib6_info *f6i) { struct fib6_nh *fib6_nh; fib6_nh = f6i->nh ? nexthop_fib6_nh(f6i->nh) : f6i->fib6_nh; return fib6_nh->fib_nh_dev; } static inline void nexthop_path_fib6_result(struct fib6_result *res, int hash) { struct nexthop *nh = res->f6i->nh; struct nh_info *nhi; nh = nexthop_select_path(nh, hash); nhi = rcu_dereference_rtnl(nh->nh_info); if (nhi->reject_nh) { res->fib6_type = RTN_BLACKHOLE; res->fib6_flags |= RTF_REJECT; res->nh = nexthop_fib6_nh(nh); } else { res->nh = &nhi->fib6_nh; } } int nexthop_for_each_fib6_nh(struct nexthop *nh, int (*cb)(struct fib6_nh *nh, void *arg), void *arg); static inline int nexthop_get_family(struct nexthop *nh) { struct nh_info *nhi = rcu_dereference_rtnl(nh->nh_info); return nhi->family; } static inline struct fib_nh_common *nexthop_fdb_nhc(struct nexthop *nh) { struct nh_info *nhi = rcu_dereference_rtnl(nh->nh_info); return &nhi->fib_nhc; } static inline struct fib_nh_common *nexthop_path_fdb_result(struct nexthop *nh, int hash) { struct nh_info *nhi; struct nexthop *nhp; nhp = nexthop_select_path(nh, hash); if (unlikely(!nhp)) return NULL; nhi = rcu_dereference(nhp->nh_info); return &nhi->fib_nhc; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Hash: Hash algorithms under the crypto API * * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au> */ #ifndef _CRYPTO_HASH_H #define _CRYPTO_HASH_H #include <linux/crypto.h> #include <linux/string.h> struct crypto_ahash; /** * DOC: Message Digest Algorithm Definitions * * These data structures define modular message digest algorithm * implementations, managed via crypto_register_ahash(), * crypto_register_shash(), crypto_unregister_ahash() and * crypto_unregister_shash(). */ /** * struct hash_alg_common - define properties of message digest * @digestsize: Size of the result of the transformation. A buffer of this size * must be available to the @final and @finup calls, so they can * store the resulting hash into it. For various predefined sizes, * search include/crypto/ using * git grep _DIGEST_SIZE include/crypto. * @statesize: Size of the block for partial state of the transformation. A * buffer of this size must be passed to the @export function as it * will save the partial state of the transformation into it. On the * other side, the @import function will load the state from a * buffer of this size as well. * @base: Start of data structure of cipher algorithm. The common data * structure of crypto_alg contains information common to all ciphers. * The hash_alg_common data structure now adds the hash-specific * information. */ struct hash_alg_common { unsigned int digestsize; unsigned int statesize; struct crypto_alg base; }; struct ahash_request { struct crypto_async_request base; unsigned int nbytes; struct scatterlist *src; u8 *result; /* This field may only be used by the ahash API code. */ void *priv; void *__ctx[] CRYPTO_MINALIGN_ATTR; }; /** * struct ahash_alg - asynchronous message digest definition * @init: **[mandatory]** Initialize the transformation context. Intended only to initialize the * state of the HASH transformation at the beginning. This shall fill in * the internal structures used during the entire duration of the whole * transformation. No data processing happens at this point. Driver code * implementation must not use req->result. * @update: **[mandatory]** Push a chunk of data into the driver for transformation. This * function actually pushes blocks of data from upper layers into the * driver, which then passes those to the hardware as seen fit. This * function must not finalize the HASH transformation by calculating the * final message digest as this only adds more data into the * transformation. This function shall not modify the transformation * context, as this function may be called in parallel with the same * transformation object. Data processing can happen synchronously * [SHASH] or asynchronously [AHASH] at this point. Driver must not use * req->result. * @final: **[mandatory]** Retrieve result from the driver. This function finalizes the * transformation and retrieves the resulting hash from the driver and * pushes it back to upper layers. No data processing happens at this * point unless hardware requires it to finish the transformation * (then the data buffered by the device driver is processed). * @finup: **[optional]** Combination of @update and @final. This function is effectively a * combination of @update and @final calls issued in sequence. As some * hardware cannot do @update and @final separately, this callback was * added to allow such hardware to be used at least by IPsec. Data * processing can happen synchronously [SHASH] or asynchronously [AHASH] * at this point. * @digest: Combination of @init and @update and @final. This function * effectively behaves as the entire chain of operations, @init, * @update and @final issued in sequence. Just like @finup, this was * added for hardware which cannot do even the @finup, but can only do * the whole transformation in one run. Data processing can happen * synchronously [SHASH] or asynchronously [AHASH] at this point. * @setkey: Set optional key used by the hashing algorithm. Intended to push * optional key used by the hashing algorithm from upper layers into * the driver. This function can store the key in the transformation * context or can outright program it into the hardware. In the former * case, one must be careful to program the key into the hardware at * appropriate time and one must be careful that .setkey() can be * called multiple times during the existence of the transformation * object. Not all hashing algorithms do implement this function as it * is only needed for keyed message digests. SHAx/MDx/CRCx do NOT * implement this function. HMAC(MDx)/HMAC(SHAx)/CMAC(AES) do implement * this function. This function must be called before any other of the * @init, @update, @final, @finup, @digest is called. No data * processing happens at this point. * @export: Export partial state of the transformation. This function dumps the * entire state of the ongoing transformation into a provided block of * data so it can be @import 'ed back later on. This is useful in case * you want to save partial result of the transformation after * processing certain amount of data and reload this partial result * multiple times later on for multiple re-use. No data processing * happens at this point. Driver must not use req->result. * @import: Import partial state of the transformation. This function loads the * entire state of the ongoing transformation from a provided block of * data so the transformation can continue from this point onward. No * data processing happens at this point. Driver must not use * req->result. * @init_tfm: Initialize the cryptographic transformation object. * This function is called only once at the instantiation * time, right after the transformation context was * allocated. In case the cryptographic hardware has * some special requirements which need to be handled * by software, this function shall check for the precise * requirement of the transformation and put any software * fallbacks in place. * @exit_tfm: Deinitialize the cryptographic transformation object. * This is a counterpart to @init_tfm, used to remove * various changes set in @init_tfm. * @halg: see struct hash_alg_common */ struct ahash_alg { int (*init)(struct ahash_request *req); int (*update)(struct ahash_request *req); int (*final)(struct ahash_request *req); int (*finup)(struct ahash_request *req); int (*digest)(struct ahash_request *req); int (*export)(struct ahash_request *req, void *out); int (*import)(struct ahash_request *req, const void *in); int (*setkey)(struct crypto_ahash *tfm, const u8 *key, unsigned int keylen); int (*init_tfm)(struct crypto_ahash *tfm); void (*exit_tfm)(struct crypto_ahash *tfm); struct hash_alg_common halg; }; struct shash_desc { struct crypto_shash *tfm; void *__ctx[] __aligned(ARCH_SLAB_MINALIGN); }; #define HASH_MAX_DIGESTSIZE 64 /* * Worst case is hmac(sha3-224-generic). Its context is a nested 'shash_desc' * containing a 'struct sha3_state'. */ #define HASH_MAX_DESCSIZE (sizeof(struct shash_desc) + 360) #define HASH_MAX_STATESIZE 512 #define SHASH_DESC_ON_STACK(shash, ctx) \ char __##shash##_desc[sizeof(struct shash_desc) + HASH_MAX_DESCSIZE] \ __aligned(__alignof__(struct shash_desc)); \ struct shash_desc *shash = (struct shash_desc *)__##shash##_desc /** * struct shash_alg - synchronous message digest definition * @init: see struct ahash_alg * @update: see struct ahash_alg * @final: see struct ahash_alg * @finup: see struct ahash_alg * @digest: see struct ahash_alg * @export: see struct ahash_alg * @import: see struct ahash_alg * @setkey: see struct ahash_alg * @init_tfm: Initialize the cryptographic transformation object. * This function is called only once at the instantiation * time, right after the transformation context was * allocated. In case the cryptographic hardware has * some special requirements which need to be handled * by software, this function shall check for the precise * requirement of the transformation and put any software * fallbacks in place. * @exit_tfm: Deinitialize the cryptographic transformation object. * This is a counterpart to @init_tfm, used to remove * various changes set in @init_tfm. * @digestsize: see struct ahash_alg * @statesize: see struct ahash_alg * @descsize: Size of the operational state for the message digest. This state * size is the memory size that needs to be allocated for * shash_desc.__ctx * @base: internally used */ struct shash_alg { int (*init)(struct shash_desc *desc); int (*update)(struct shash_desc *desc, const u8 *data, unsigned int len); int (*final)(struct shash_desc *desc, u8 *out); int (*finup)(struct shash_desc *desc, const u8 *data, unsigned int len, u8 *out); int (*digest)(struct shash_desc *desc, const u8 *data, unsigned int len, u8 *out); int (*export)(struct shash_desc *desc, void *out); int (*import)(struct shash_desc *desc, const void *in); int (*setkey)(struct crypto_shash *tfm, const u8 *key, unsigned int keylen); int (*init_tfm)(struct crypto_shash *tfm); void (*exit_tfm)(struct crypto_shash *tfm); unsigned int descsize; /* These fields must match hash_alg_common. */ unsigned int digestsize __attribute__ ((aligned(__alignof__(struct hash_alg_common)))); unsigned int statesize; struct crypto_alg base; }; struct crypto_ahash { int (*init)(struct ahash_request *req); int (*update)(struct ahash_request *req); int (*final)(struct ahash_request *req); int (*finup)(struct ahash_request *req); int (*digest)(struct ahash_request *req); int (*export)(struct ahash_request *req, void *out); int (*import)(struct ahash_request *req, const void *in); int (*setkey)(struct crypto_ahash *tfm, const u8 *key, unsigned int keylen); unsigned int reqsize; struct crypto_tfm base; }; struct crypto_shash { unsigned int descsize; struct crypto_tfm base; }; /** * DOC: Asynchronous Message Digest API * * The asynchronous message digest API is used with the ciphers of type * CRYPTO_ALG_TYPE_AHASH (listed as type "ahash" in /proc/crypto) * * The asynchronous cipher operation discussion provided for the * CRYPTO_ALG_TYPE_SKCIPHER API applies here as well. */ static inline struct crypto_ahash *__crypto_ahash_cast(struct crypto_tfm *tfm) { return container_of(tfm, struct crypto_ahash, base); } /** * crypto_alloc_ahash() - allocate ahash cipher handle * @alg_name: is the cra_name / name or cra_driver_name / driver name of the * ahash cipher * @type: specifies the type of the cipher * @mask: specifies the mask for the cipher * * Allocate a cipher handle for an ahash. The returned struct * crypto_ahash is the cipher handle that is required for any subsequent * API invocation for that ahash. * * Return: allocated cipher handle in case of success; IS_ERR() is true in case * of an error, PTR_ERR() returns the error code. */ struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type, u32 mask); static inline struct crypto_tfm *crypto_ahash_tfm(struct crypto_ahash *tfm) { return &tfm->base; } /** * crypto_free_ahash() - zeroize and free the ahash handle * @tfm: cipher handle to be freed * * If @tfm is a NULL or error pointer, this function does nothing. */ static inline void crypto_free_ahash(struct crypto_ahash *tfm) { crypto_destroy_tfm(tfm, crypto_ahash_tfm(tfm)); } /** * crypto_has_ahash() - Search for the availability of an ahash. * @alg_name: is the cra_name / name or cra_driver_name / driver name of the * ahash * @type: specifies the type of the ahash * @mask: specifies the mask for the ahash * * Return: true when the ahash is known to the kernel crypto API; false * otherwise */ int crypto_has_ahash(const char *alg_name, u32 type, u32 mask); static inline const char *crypto_ahash_alg_name(struct crypto_ahash *tfm) { return crypto_tfm_alg_name(crypto_ahash_tfm(tfm)); } static inline const char *crypto_ahash_driver_name(struct crypto_ahash *tfm) { return crypto_tfm_alg_driver_name(crypto_ahash_tfm(tfm)); } static inline unsigned int crypto_ahash_alignmask( struct crypto_ahash *tfm) { return crypto_tfm_alg_alignmask(crypto_ahash_tfm(tfm)); } /** * crypto_ahash_blocksize() - obtain block size for cipher * @tfm: cipher handle * * The block size for the message digest cipher referenced with the cipher * handle is returned. * * Return: block size of cipher */ static inline unsigned int crypto_ahash_blocksize(struct crypto_ahash *tfm) { return crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm)); } static inline struct hash_alg_common *__crypto_hash_alg_common( struct crypto_alg *alg) { return container_of(alg, struct hash_alg_common, base); } static inline struct hash_alg_common *crypto_hash_alg_common( struct crypto_ahash *tfm) { return __crypto_hash_alg_common(crypto_ahash_tfm(tfm)->__crt_alg); } /** * crypto_ahash_digestsize() - obtain message digest size * @tfm: cipher handle * * The size for the message digest created by the message digest cipher * referenced with the cipher handle is returned. * * * Return: message digest size of cipher */ static inline unsigned int crypto_ahash_digestsize(struct crypto_ahash *tfm) { return crypto_hash_alg_common(tfm)->digestsize; } /** * crypto_ahash_statesize() - obtain size of the ahash state * @tfm: cipher handle * * Return the size of the ahash state. With the crypto_ahash_export() * function, the caller can export the state into a buffer whose size is * defined with this function. * * Return: size of the ahash state */ static inline unsigned int crypto_ahash_statesize(struct crypto_ahash *tfm) { return crypto_hash_alg_common(tfm)->statesize; } static inline u32 crypto_ahash_get_flags(struct crypto_ahash *tfm) { return crypto_tfm_get_flags(crypto_ahash_tfm(tfm)); } static inline void crypto_ahash_set_flags(struct crypto_ahash *tfm, u32 flags) { crypto_tfm_set_flags(crypto_ahash_tfm(tfm), flags); } static inline void crypto_ahash_clear_flags(struct crypto_ahash *tfm, u32 flags) { crypto_tfm_clear_flags(crypto_ahash_tfm(tfm), flags); } /** * crypto_ahash_reqtfm() - obtain cipher handle from request * @req: asynchronous request handle that contains the reference to the ahash * cipher handle * * Return the ahash cipher handle that is registered with the asynchronous * request handle ahash_request. * * Return: ahash cipher handle */ static inline struct crypto_ahash *crypto_ahash_reqtfm( struct ahash_request *req) { return __crypto_ahash_cast(req->base.tfm); } /** * crypto_ahash_reqsize() - obtain size of the request data structure * @tfm: cipher handle * * Return: size of the request data */ static inline unsigned int crypto_ahash_reqsize(struct crypto_ahash *tfm) { return tfm->reqsize; } static inline void *ahash_request_ctx(struct ahash_request *req) { return req->__ctx; } /** * crypto_ahash_setkey - set key for cipher handle * @tfm: cipher handle * @key: buffer holding the key * @keylen: length of the key in bytes * * The caller provided key is set for the ahash cipher. The cipher * handle must point to a keyed hash in order for this function to succeed. * * Return: 0 if the setting of the key was successful; < 0 if an error occurred */ int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key, unsigned int keylen); /** * crypto_ahash_finup() - update and finalize message digest * @req: reference to the ahash_request handle that holds all information * needed to perform the cipher operation * * This function is a "short-hand" for the function calls of * crypto_ahash_update and crypto_ahash_final. The parameters have the same * meaning as discussed for those separate functions. * * Return: see crypto_ahash_final() */ int crypto_ahash_finup(struct ahash_request *req); /** * crypto_ahash_final() - calculate message digest * @req: reference to the ahash_request handle that holds all information * needed to perform the cipher operation * * Finalize the message digest operation and create the message digest * based on all data added to the cipher handle. The message digest is placed * into the output buffer registered with the ahash_request handle. * * Return: * 0 if the message digest was successfully calculated; * -EINPROGRESS if data is feeded into hardware (DMA) or queued for later; * -EBUSY if queue is full and request should be resubmitted later; * other < 0 if an error occurred */ int crypto_ahash_final(struct ahash_request *req); /** * crypto_ahash_digest() - calculate message digest for a buffer * @req: reference to the ahash_request handle that holds all information * needed to perform the cipher operation * * This function is a "short-hand" for the function calls of crypto_ahash_init, * crypto_ahash_update and crypto_ahash_final. The parameters have the same * meaning as discussed for those separate three functions. * * Return: see crypto_ahash_final() */ int crypto_ahash_digest(struct ahash_request *req); /** * crypto_ahash_export() - extract current message digest state * @req: reference to the ahash_request handle whose state is exported * @out: output buffer of sufficient size that can hold the hash state * * This function exports the hash state of the ahash_request handle into the * caller-allocated output buffer out which must have sufficient size (e.g. by * calling crypto_ahash_statesize()). * * Return: 0 if the export was successful; < 0 if an error occurred */ static inline int crypto_ahash_export(struct ahash_request *req, void *out) { return crypto_ahash_reqtfm(req)->export(req, out); } /** * crypto_ahash_import() - import message digest state * @req: reference to ahash_request handle the state is imported into * @in: buffer holding the state * * This function imports the hash state into the ahash_request handle from the * input buffer. That buffer should have been generated with the * crypto_ahash_export function. * * Return: 0 if the import was successful; < 0 if an error occurred */ static inline int crypto_ahash_import(struct ahash_request *req, const void *in) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); if (crypto_ahash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY) return -ENOKEY; return tfm->import(req, in); } /** * crypto_ahash_init() - (re)initialize message digest handle * @req: ahash_request handle that already is initialized with all necessary * data using the ahash_request_* API functions * * The call (re-)initializes the message digest referenced by the ahash_request * handle. Any potentially existing state created by previous operations is * discarded. * * Return: see crypto_ahash_final() */ static inline int crypto_ahash_init(struct ahash_request *req) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); if (crypto_ahash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY) return -ENOKEY; return tfm->init(req); } /** * crypto_ahash_update() - add data to message digest for processing * @req: ahash_request handle that was previously initialized with the * crypto_ahash_init call. * * Updates the message digest state of the &ahash_request handle. The input data * is pointed to by the scatter/gather list registered in the &ahash_request * handle * * Return: see crypto_ahash_final() */ static inline int crypto_ahash_update(struct ahash_request *req) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct crypto_alg *alg = tfm->base.__crt_alg; unsigned int nbytes = req->nbytes; int ret; crypto_stats_get(alg); ret = crypto_ahash_reqtfm(req)->update(req); crypto_stats_ahash_update(nbytes, ret, alg); return ret; } /** * DOC: Asynchronous Hash Request Handle * * The &ahash_request data structure contains all pointers to data * required for the asynchronous cipher operation. This includes the cipher * handle (which can be used by multiple &ahash_request instances), pointer * to plaintext and the message digest output buffer, asynchronous callback * function, etc. It acts as a handle to the ahash_request_* API calls in a * similar way as ahash handle to the crypto_ahash_* API calls. */ /** * ahash_request_set_tfm() - update cipher handle reference in request * @req: request handle to be modified * @tfm: cipher handle that shall be added to the request handle * * Allow the caller to replace the existing ahash handle in the request * data structure with a different one. */ static inline void ahash_request_set_tfm(struct ahash_request *req, struct crypto_ahash *tfm) { req->base.tfm = crypto_ahash_tfm(tfm); } /** * ahash_request_alloc() - allocate request data structure * @tfm: cipher handle to be registered with the request * @gfp: memory allocation flag that is handed to kmalloc by the API call. * * Allocate the request data structure that must be used with the ahash * message digest API calls. During * the allocation, the provided ahash handle * is registered in the request data structure. * * Return: allocated request handle in case of success, or NULL if out of memory */ static inline struct ahash_request *ahash_request_alloc( struct crypto_ahash *tfm, gfp_t gfp) { struct ahash_request *req; req = kmalloc(sizeof(struct ahash_request) + crypto_ahash_reqsize(tfm), gfp); if (likely(req)) ahash_request_set_tfm(req, tfm); return req; } /** * ahash_request_free() - zeroize and free the request data structure * @req: request data structure cipher handle to be freed */ static inline void ahash_request_free(struct ahash_request *req) { kfree_sensitive(req); } static inline void ahash_request_zero(struct ahash_request *req) { memzero_explicit(req, sizeof(*req) + crypto_ahash_reqsize(crypto_ahash_reqtfm(req))); } static inline struct ahash_request *ahash_request_cast( struct crypto_async_request *req) { return container_of(req, struct ahash_request, base); } /** * ahash_request_set_callback() - set asynchronous callback function * @req: request handle * @flags: specify zero or an ORing of the flags * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and * increase the wait queue beyond the initial maximum size; * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep * @compl: callback function pointer to be registered with the request handle * @data: The data pointer refers to memory that is not used by the kernel * crypto API, but provided to the callback function for it to use. Here, * the caller can provide a reference to memory the callback function can * operate on. As the callback function is invoked asynchronously to the * related functionality, it may need to access data structures of the * related functionality which can be referenced using this pointer. The * callback function can access the memory via the "data" field in the * &crypto_async_request data structure provided to the callback function. * * This function allows setting the callback function that is triggered once * the cipher operation completes. * * The callback function is registered with the &ahash_request handle and * must comply with the following template:: * * void callback_function(struct crypto_async_request *req, int error) */ static inline void ahash_request_set_callback(struct ahash_request *req, u32 flags, crypto_completion_t compl, void *data) { req->base.complete = compl; req->base.data = data; req->base.flags = flags; } /** * ahash_request_set_crypt() - set data buffers * @req: ahash_request handle to be updated * @src: source scatter/gather list * @result: buffer that is filled with the message digest -- the caller must * ensure that the buffer has sufficient space by, for example, calling * crypto_ahash_digestsize() * @nbytes: number of bytes to process from the source scatter/gather list * * By using this call, the caller references the source scatter/gather list. * The source scatter/gather list points to the data the message digest is to * be calculated for. */ static inline void ahash_request_set_crypt(struct ahash_request *req, struct scatterlist *src, u8 *result, unsigned int nbytes) { req->src = src; req->nbytes = nbytes; req->result = result; } /** * DOC: Synchronous Message Digest API * * The synchronous message digest API is used with the ciphers of type * CRYPTO_ALG_TYPE_SHASH (listed as type "shash" in /proc/crypto) * * The message digest API is able to maintain state information for the * caller. * * The synchronous message digest API can store user-related context in its * shash_desc request data structure. */ /** * crypto_alloc_shash() - allocate message digest handle * @alg_name: is the cra_name / name or cra_driver_name / driver name of the * message digest cipher * @type: specifies the type of the cipher * @mask: specifies the mask for the cipher * * Allocate a cipher handle for a message digest. The returned &struct * crypto_shash is the cipher handle that is required for any subsequent * API invocation for that message digest. * * Return: allocated cipher handle in case of success; IS_ERR() is true in case * of an error, PTR_ERR() returns the error code. */ struct crypto_shash *crypto_alloc_shash(const char *alg_name, u32 type, u32 mask); static inline struct crypto_tfm *crypto_shash_tfm(struct crypto_shash *tfm) { return &tfm->base; } /** * crypto_free_shash() - zeroize and free the message digest handle * @tfm: cipher handle to be freed * * If @tfm is a NULL or error pointer, this function does nothing. */ static inline void crypto_free_shash(struct crypto_shash *tfm) { crypto_destroy_tfm(tfm, crypto_shash_tfm(tfm)); } static inline const char *crypto_shash_alg_name(struct crypto_shash *tfm) { return crypto_tfm_alg_name(crypto_shash_tfm(tfm)); } static inline const char *crypto_shash_driver_name(struct crypto_shash *tfm) { return crypto_tfm_alg_driver_name(crypto_shash_tfm(tfm)); } static inline unsigned int crypto_shash_alignmask( struct crypto_shash *tfm) { return crypto_tfm_alg_alignmask(crypto_shash_tfm(tfm)); } /** * crypto_shash_blocksize() - obtain block size for cipher * @tfm: cipher handle * * The block size for the message digest cipher referenced with the cipher * handle is returned. * * Return: block size of cipher */ static inline unsigned int crypto_shash_blocksize(struct crypto_shash *tfm) { return crypto_tfm_alg_blocksize(crypto_shash_tfm(tfm)); } static inline struct shash_alg *__crypto_shash_alg(struct crypto_alg *alg) { return container_of(alg, struct shash_alg, base); } static inline struct shash_alg *crypto_shash_alg(struct crypto_shash *tfm) { return __crypto_shash_alg(crypto_shash_tfm(tfm)->__crt_alg); } /** * crypto_shash_digestsize() - obtain message digest size * @tfm: cipher handle * * The size for the message digest created by the message digest cipher * referenced with the cipher handle is returned. * * Return: digest size of cipher */ static inline unsigned int crypto_shash_digestsize(struct crypto_shash *tfm) { return crypto_shash_alg(tfm)->digestsize; } static inline unsigned int crypto_shash_statesize(struct crypto_shash *tfm) { return crypto_shash_alg(tfm)->statesize; } static inline u32 crypto_shash_get_flags(struct crypto_shash *tfm) { return crypto_tfm_get_flags(crypto_shash_tfm(tfm)); } static inline void crypto_shash_set_flags(struct crypto_shash *tfm, u32 flags) { crypto_tfm_set_flags(crypto_shash_tfm(tfm), flags); } static inline void crypto_shash_clear_flags(struct crypto_shash *tfm, u32 flags) { crypto_tfm_clear_flags(crypto_shash_tfm(tfm), flags); } /** * crypto_shash_descsize() - obtain the operational state size * @tfm: cipher handle * * The size of the operational state the cipher needs during operation is * returned for the hash referenced with the cipher handle. This size is * required to calculate the memory requirements to allow the caller allocating * sufficient memory for operational state. * * The operational state is defined with struct shash_desc where the size of * that data structure is to be calculated as * sizeof(struct shash_desc) + crypto_shash_descsize(alg) * * Return: size of the operational state */ static inline unsigned int crypto_shash_descsize(struct crypto_shash *tfm) { return tfm->descsize; } static inline void *shash_desc_ctx(struct shash_desc *desc) { return desc->__ctx; } /** * crypto_shash_setkey() - set key for message digest * @tfm: cipher handle * @key: buffer holding the key * @keylen: length of the key in bytes * * The caller provided key is set for the keyed message digest cipher. The * cipher handle must point to a keyed message digest cipher in order for this * function to succeed. * * Context: Any context. * Return: 0 if the setting of the key was successful; < 0 if an error occurred */ int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key, unsigned int keylen); /** * crypto_shash_digest() - calculate message digest for buffer * @desc: see crypto_shash_final() * @data: see crypto_shash_update() * @len: see crypto_shash_update() * @out: see crypto_shash_final() * * This function is a "short-hand" for the function calls of crypto_shash_init, * crypto_shash_update and crypto_shash_final. The parameters have the same * meaning as discussed for those separate three functions. * * Context: Any context. * Return: 0 if the message digest creation was successful; < 0 if an error * occurred */ int crypto_shash_digest(struct shash_desc *desc, const u8 *data, unsigned int len, u8 *out); /** * crypto_shash_tfm_digest() - calculate message digest for buffer * @tfm: hash transformation object * @data: see crypto_shash_update() * @len: see crypto_shash_update() * @out: see crypto_shash_final() * * This is a simplified version of crypto_shash_digest() for users who don't * want to allocate their own hash descriptor (shash_desc). Instead, * crypto_shash_tfm_digest() takes a hash transformation object (crypto_shash) * directly, and it allocates a hash descriptor on the stack internally. * Note that this stack allocation may be fairly large. * * Context: Any context. * Return: 0 on success; < 0 if an error occurred. */ int crypto_shash_tfm_digest(struct crypto_shash *tfm, const u8 *data, unsigned int len, u8 *out); /** * crypto_shash_export() - extract operational state for message digest * @desc: reference to the operational state handle whose state is exported * @out: output buffer of sufficient size that can hold the hash state * * This function exports the hash state of the operational state handle into the * caller-allocated output buffer out which must have sufficient size (e.g. by * calling crypto_shash_descsize). * * Context: Any context. * Return: 0 if the export creation was successful; < 0 if an error occurred */ static inline int crypto_shash_export(struct shash_desc *desc, void *out) { return crypto_shash_alg(desc->tfm)->export(desc, out); } /** * crypto_shash_import() - import operational state * @desc: reference to the operational state handle the state imported into * @in: buffer holding the state * * This function imports the hash state into the operational state handle from * the input buffer. That buffer should have been generated with the * crypto_ahash_export function. * * Context: Any context. * Return: 0 if the import was successful; < 0 if an error occurred */ static inline int crypto_shash_import(struct shash_desc *desc, const void *in) { struct crypto_shash *tfm = desc->tfm; if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY) return -ENOKEY; return crypto_shash_alg(tfm)->import(desc, in); } /** * crypto_shash_init() - (re)initialize message digest * @desc: operational state handle that is already filled * * The call (re-)initializes the message digest referenced by the * operational state handle. Any potentially existing state created by * previous operations is discarded. * * Context: Any context. * Return: 0 if the message digest initialization was successful; < 0 if an * error occurred */ static inline int crypto_shash_init(struct shash_desc *desc) { struct crypto_shash *tfm = desc->tfm; if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY) return -ENOKEY; return crypto_shash_alg(tfm)->init(desc); } /** * crypto_shash_update() - add data to message digest for processing * @desc: operational state handle that is already initialized * @data: input data to be added to the message digest * @len: length of the input data * * Updates the message digest state of the operational state handle. * * Context: Any context. * Return: 0 if the message digest update was successful; < 0 if an error * occurred */ int crypto_shash_update(struct shash_desc *desc, const u8 *data, unsigned int len); /** * crypto_shash_final() - calculate message digest * @desc: operational state handle that is already filled with data * @out: output buffer filled with the message digest * * Finalize the message digest operation and create the message digest * based on all data added to the cipher handle. The message digest is placed * into the output buffer. The caller must ensure that the output buffer is * large enough by using crypto_shash_digestsize. * * Context: Any context. * Return: 0 if the message digest creation was successful; < 0 if an error * occurred */ int crypto_shash_final(struct shash_desc *desc, u8 *out); /** * crypto_shash_finup() - calculate message digest of buffer * @desc: see crypto_shash_final() * @data: see crypto_shash_update() * @len: see crypto_shash_update() * @out: see crypto_shash_final() * * This function is a "short-hand" for the function calls of * crypto_shash_update and crypto_shash_final. The parameters have the same * meaning as discussed for those separate functions. * * Context: Any context. * Return: 0 if the message digest creation was successful; < 0 if an error * occurred */ int crypto_shash_finup(struct shash_desc *desc, const u8 *data, unsigned int len, u8 *out); static inline void shash_desc_zero(struct shash_desc *desc) { memzero_explicit(desc, sizeof(*desc) + crypto_shash_descsize(desc->tfm)); } #endif /* _CRYPTO_HASH_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __INCLUDE_LINUX_OOM_H #define __INCLUDE_LINUX_OOM_H #include <linux/sched/signal.h> #include <linux/types.h> #include <linux/nodemask.h> #include <uapi/linux/oom.h> #include <linux/sched/coredump.h> /* MMF_* */ #include <linux/mm.h> /* VM_FAULT* */ struct zonelist; struct notifier_block; struct mem_cgroup; struct task_struct; enum oom_constraint { CONSTRAINT_NONE, CONSTRAINT_CPUSET, CONSTRAINT_MEMORY_POLICY, CONSTRAINT_MEMCG, }; /* * Details of the page allocation that triggered the oom killer that are used to * determine what should be killed. */ struct oom_control { /* Used to determine cpuset */ struct zonelist *zonelist; /* Used to determine mempolicy */ nodemask_t *nodemask; /* Memory cgroup in which oom is invoked, or NULL for global oom */ struct mem_cgroup *memcg; /* Used to determine cpuset and node locality requirement */ const gfp_t gfp_mask; /* * order == -1 means the oom kill is required by sysrq, otherwise only * for display purposes. */ const int order; /* Used by oom implementation, do not set */ unsigned long totalpages; struct task_struct *chosen; long chosen_points; /* Used to print the constraint info. */ enum oom_constraint constraint; }; extern struct mutex oom_lock; extern struct mutex oom_adj_mutex; static inline void set_current_oom_origin(void) { current->signal->oom_flag_origin = true; } static inline void clear_current_oom_origin(void) { current->signal->oom_flag_origin = false; } static inline bool oom_task_origin(const struct task_struct *p) { return p->signal->oom_flag_origin; } static inline bool tsk_is_oom_victim(struct task_struct * tsk) { return tsk->signal->oom_mm; } /* * Use this helper if tsk->mm != mm and the victim mm needs a special * handling. This is guaranteed to stay true after once set. */ static inline bool mm_is_oom_victim(struct mm_struct *mm) { return test_bit(MMF_OOM_VICTIM, &mm->flags); } /* * Checks whether a page fault on the given mm is still reliable. * This is no longer true if the oom reaper started to reap the * address space which is reflected by MMF_UNSTABLE flag set in * the mm. At that moment any !shared mapping would lose the content * and could cause a memory corruption (zero pages instead of the * original content). * * User should call this before establishing a page table entry for * a !shared mapping and under the proper page table lock. * * Return 0 when the PF is safe VM_FAULT_SIGBUS otherwise. */ static inline vm_fault_t check_stable_address_space(struct mm_struct *mm) { if (unlikely(test_bit(MMF_UNSTABLE, &mm->flags))) return VM_FAULT_SIGBUS; return 0; } bool __oom_reap_task_mm(struct mm_struct *mm); long oom_badness(struct task_struct *p, unsigned long totalpages); extern bool out_of_memory(struct oom_control *oc); extern void exit_oom_victim(void); extern int register_oom_notifier(struct notifier_block *nb); extern int unregister_oom_notifier(struct notifier_block *nb); extern bool oom_killer_disable(signed long timeout); extern void oom_killer_enable(void); extern struct task_struct *find_lock_task_mm(struct task_struct *p); /* sysctls */ extern int sysctl_oom_dump_tasks; extern int sysctl_oom_kill_allocating_task; extern int sysctl_panic_on_oom; #endif /* _INCLUDE_LINUX_OOM_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_PID_H #define _LINUX_PID_H #include <linux/rculist.h> #include <linux/wait.h> #include <linux/refcount.h> enum pid_type { PIDTYPE_PID, PIDTYPE_TGID, PIDTYPE_PGID, PIDTYPE_SID, PIDTYPE_MAX, }; /* * What is struct pid? * * A struct pid is the kernel's internal notion of a process identifier. * It refers to individual tasks, process groups, and sessions. While * there are processes attached to it the struct pid lives in a hash * table, so it and then the processes that it refers to can be found * quickly from the numeric pid value. The attached processes may be * quickly accessed by following pointers from struct pid. * * Storing pid_t values in the kernel and referring to them later has a * problem. The process originally with that pid may have exited and the * pid allocator wrapped, and another process could have come along * and been assigned that pid. * * Referring to user space processes by holding a reference to struct * task_struct has a problem. When the user space process exits * the now useless task_struct is still kept. A task_struct plus a * stack consumes around 10K of low kernel memory. More precisely * this is THREAD_SIZE + sizeof(struct task_struct). By comparison * a struct pid is about 64 bytes. * * Holding a reference to struct pid solves both of these problems. * It is small so holding a reference does not consume a lot of * resources, and since a new struct pid is allocated when the numeric pid * value is reused (when pids wrap around) we don't mistakenly refer to new * processes. */ /* * struct upid is used to get the id of the struct pid, as it is * seen in particular namespace. Later the struct pid is found with * find_pid_ns() using the int nr and struct pid_namespace *ns. */ struct upid { int nr; struct pid_namespace *ns; }; struct pid { refcount_t count; unsigned int level; spinlock_t lock; /* lists of tasks that use this pid */ struct hlist_head tasks[PIDTYPE_MAX]; struct hlist_head inodes; /* wait queue for pidfd notifications */ wait_queue_head_t wait_pidfd; struct rcu_head rcu; struct upid numbers[1]; }; extern struct pid init_struct_pid; extern const struct file_operations pidfd_fops; struct file; extern struct pid *pidfd_pid(const struct file *file); struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags); static inline struct pid *get_pid(struct pid *pid) { if (pid) refcount_inc(&pid->count); return pid; } extern void put_pid(struct pid *pid); extern struct task_struct *pid_task(struct pid *pid, enum pid_type); static inline bool pid_has_task(struct pid *pid, enum pid_type type) { return !hlist_empty(&pid->tasks[type]); } extern struct task_struct *get_pid_task(struct pid *pid, enum pid_type); extern struct pid *get_task_pid(struct task_struct *task, enum pid_type type); /* * these helpers must be called with the tasklist_lock write-held. */ extern void attach_pid(struct task_struct *task, enum pid_type); extern void detach_pid(struct task_struct *task, enum pid_type); extern void change_pid(struct task_struct *task, enum pid_type, struct pid *pid); extern void exchange_tids(struct task_struct *task, struct task_struct *old); extern void transfer_pid(struct task_struct *old, struct task_struct *new, enum pid_type); struct pid_namespace; extern struct pid_namespace init_pid_ns; extern int pid_max; extern int pid_max_min, pid_max_max; /* * look up a PID in the hash table. Must be called with the tasklist_lock * or rcu_read_lock() held. * * find_pid_ns() finds the pid in the namespace specified * find_vpid() finds the pid by its virtual id, i.e. in the current namespace * * see also find_task_by_vpid() set in include/linux/sched.h */ extern struct pid *find_pid_ns(int nr, struct pid_namespace *ns); extern struct pid *find_vpid(int nr); /* * Lookup a PID in the hash table, and return with it's count elevated. */ extern struct pid *find_get_pid(int nr); extern struct pid *find_ge_pid(int nr, struct pid_namespace *); extern struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid, size_t set_tid_size); extern void free_pid(struct pid *pid); extern void disable_pid_allocation(struct pid_namespace *ns); /* * ns_of_pid() returns the pid namespace in which the specified pid was * allocated. * * NOTE: * ns_of_pid() is expected to be called for a process (task) that has * an attached 'struct pid' (see attach_pid(), detach_pid()) i.e @pid * is expected to be non-NULL. If @pid is NULL, caller should handle * the resulting NULL pid-ns. */ static inline struct pid_namespace *ns_of_pid(struct pid *pid) { struct pid_namespace *ns = NULL; if (pid) ns = pid->numbers[pid->level].ns; return ns; } /* * is_child_reaper returns true if the pid is the init process * of the current namespace. As this one could be checked before * pid_ns->child_reaper is assigned in copy_process, we check * with the pid number. */ static inline bool is_child_reaper(struct pid *pid) { return pid->numbers[pid->level].nr == 1; } /* * the helpers to get the pid's id seen from different namespaces * * pid_nr() : global id, i.e. the id seen from the init namespace; * pid_vnr() : virtual id, i.e. the id seen from the pid namespace of * current. * pid_nr_ns() : id seen from the ns specified. * * see also task_xid_nr() etc in include/linux/sched.h */ static inline pid_t pid_nr(struct pid *pid) { pid_t nr = 0; if (pid) nr = pid->numbers[0].nr; return nr; } pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns); pid_t pid_vnr(struct pid *pid); #define do_each_pid_task(pid, type, task) \ do { \ if ((pid) != NULL) \ hlist_for_each_entry_rcu((task), \ &(pid)->tasks[type], pid_links[type]) { /* * Both old and new leaders may be attached to * the same pid in the middle of de_thread(). */ #define while_each_pid_task(pid, type, task) \ if (type == PIDTYPE_PID) \ break; \ } \ } while (0) #define do_each_pid_thread(pid, type, task) \ do_each_pid_task(pid, type, task) { \ struct task_struct *tg___ = task; \ for_each_thread(tg___, task) { #define while_each_pid_thread(pid, type, task) \ } \ task = tg___; \ } while_each_pid_task(pid, type, task) #endif /* _LINUX_PID_H */
1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 // SPDX-License-Identifier: GPL-2.0-only /* * Simple NUMA memory policy for the Linux kernel. * * Copyright 2003,2004 Andi Kleen, SuSE Labs. * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc. * * NUMA policy allows the user to give hints in which node(s) memory should * be allocated. * * Support four policies per VMA and per process: * * The VMA policy has priority over the process policy for a page fault. * * interleave Allocate memory interleaved over a set of nodes, * with normal fallback if it fails. * For VMA based allocations this interleaves based on the * offset into the backing object or offset into the mapping * for anonymous memory. For process policy an process counter * is used. * * bind Only allocate memory on a specific set of nodes, * no fallback. * FIXME: memory is allocated starting with the first node * to the last. It would be better if bind would truly restrict * the allocation to memory nodes instead * * preferred Try a specific node first before normal fallback. * As a special case NUMA_NO_NODE here means do the allocation * on the local CPU. This is normally identical to default, * but useful to set in a VMA when you have a non default * process policy. * * default Allocate on the local node first, or when on a VMA * use the process policy. This is what Linux always did * in a NUMA aware kernel and still does by, ahem, default. * * The process policy is applied for most non interrupt memory allocations * in that process' context. Interrupts ignore the policies and always * try to allocate on the local CPU. The VMA policy is only applied for memory * allocations for a VMA in the VM. * * Currently there are a few corner cases in swapping where the policy * is not applied, but the majority should be handled. When process policy * is used it is not remembered over swap outs/swap ins. * * Only the highest zone in the zone hierarchy gets policied. Allocations * requesting a lower zone just use default policy. This implies that * on systems with highmem kernel lowmem allocation don't get policied. * Same with GFP_DMA allocations. * * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between * all users and remembered even when nobody has memory mapped. */ /* Notebook: fix mmap readahead to honour policy and enable policy for any page cache object statistics for bigpages global policy for page cache? currently it uses process policy. Requires first item above. handle mremap for shared memory (currently ignored for the policy) grows down? make bind policy root only? It can trigger oom much faster and the kernel is not always grateful with that. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/mempolicy.h> #include <linux/pagewalk.h> #include <linux/highmem.h> #include <linux/hugetlb.h> #include <linux/kernel.h> #include <linux/sched.h> #include <linux/sched/mm.h> #include <linux/sched/numa_balancing.h> #include <linux/sched/task.h> #include <linux/nodemask.h> #include <linux/cpuset.h> #include <linux/slab.h> #include <linux/string.h> #include <linux/export.h> #include <linux/nsproxy.h> #include <linux/interrupt.h> #include <linux/init.h> #include <linux/compat.h> #include <linux/ptrace.h> #include <linux/swap.h> #include <linux/seq_file.h> #include <linux/proc_fs.h> #include <linux/migrate.h> #include <linux/ksm.h> #include <linux/rmap.h> #include <linux/security.h> #include <linux/syscalls.h> #include <linux/ctype.h> #include <linux/mm_inline.h> #include <linux/mmu_notifier.h> #include <linux/printk.h> #include <linux/swapops.h> #include <asm/tlbflush.h> #include <linux/uaccess.h> #include "internal.h" /* Internal flags */ #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */ #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */ static struct kmem_cache *policy_cache; static struct kmem_cache *sn_cache; /* Highest zone. An specific allocation for a zone below that is not policied. */ enum zone_type policy_zone = 0; /* * run-time system-wide default policy => local allocation */ static struct mempolicy default_policy = { .refcnt = ATOMIC_INIT(1), /* never free it */ .mode = MPOL_PREFERRED, .flags = MPOL_F_LOCAL, }; static struct mempolicy preferred_node_policy[MAX_NUMNODES]; /** * numa_map_to_online_node - Find closest online node * @node: Node id to start the search * * Lookup the next closest node by distance if @nid is not online. */ int numa_map_to_online_node(int node) { int min_dist = INT_MAX, dist, n, min_node; if (node == NUMA_NO_NODE || node_online(node)) return node; min_node = node; for_each_online_node(n) { dist = node_distance(node, n); if (dist < min_dist) { min_dist = dist; min_node = n; } } return min_node; } EXPORT_SYMBOL_GPL(numa_map_to_online_node); struct mempolicy *get_task_policy(struct task_struct *p) { struct mempolicy *pol = p->mempolicy; int node; if (pol) return pol; node = numa_node_id(); if (node != NUMA_NO_NODE) { pol = &preferred_node_policy[node]; /* preferred_node_policy is not initialised early in boot */ if (pol->mode) return pol; } return &default_policy; } static const struct mempolicy_operations { int (*create)(struct mempolicy *pol, const nodemask_t *nodes); void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes); } mpol_ops[MPOL_MAX]; static inline int mpol_store_user_nodemask(const struct mempolicy *pol) { return pol->flags & MPOL_MODE_FLAGS; } static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig, const nodemask_t *rel) { nodemask_t tmp; nodes_fold(tmp, *orig, nodes_weight(*rel)); nodes_onto(*ret, tmp, *rel); } static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes) { if (nodes_empty(*nodes)) return -EINVAL; pol->v.nodes = *nodes; return 0; } static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes) { if (!nodes) pol->flags |= MPOL_F_LOCAL; /* local allocation */ else if (nodes_empty(*nodes)) return -EINVAL; /* no allowed nodes */ else pol->v.preferred_node = first_node(*nodes); return 0; } static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes) { if (nodes_empty(*nodes)) return -EINVAL; pol->v.nodes = *nodes; return 0; } /* * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if * any, for the new policy. mpol_new() has already validated the nodes * parameter with respect to the policy mode and flags. But, we need to * handle an empty nodemask with MPOL_PREFERRED here. * * Must be called holding task's alloc_lock to protect task's mems_allowed * and mempolicy. May also be called holding the mmap_lock for write. */ static int mpol_set_nodemask(struct mempolicy *pol, const nodemask_t *nodes, struct nodemask_scratch *nsc) { int ret; /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */ if (pol == NULL) return 0; /* Check N_MEMORY */ nodes_and(nsc->mask1, cpuset_current_mems_allowed, node_states[N_MEMORY]); VM_BUG_ON(!nodes); if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes)) nodes = NULL; /* explicit local allocation */ else { if (pol->flags & MPOL_F_RELATIVE_NODES) mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1); else nodes_and(nsc->mask2, *nodes, nsc->mask1); if (mpol_store_user_nodemask(pol)) pol->w.user_nodemask = *nodes; else pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed; } if (nodes) ret = mpol_ops[pol->mode].create(pol, &nsc->mask2); else ret = mpol_ops[pol->mode].create(pol, NULL); return ret; } /* * This function just creates a new policy, does some check and simple * initialization. You must invoke mpol_set_nodemask() to set nodes. */ static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags, nodemask_t *nodes) { struct mempolicy *policy; pr_debug("setting mode %d flags %d nodes[0] %lx\n", mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE); if (mode == MPOL_DEFAULT) { if (nodes && !nodes_empty(*nodes)) return ERR_PTR(-EINVAL); return NULL; } VM_BUG_ON(!nodes); /* * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation). * All other modes require a valid pointer to a non-empty nodemask. */ if (mode == MPOL_PREFERRED) { if (nodes_empty(*nodes)) { if (((flags & MPOL_F_STATIC_NODES) || (flags & MPOL_F_RELATIVE_NODES))) return ERR_PTR(-EINVAL); } } else if (mode == MPOL_LOCAL) { if (!nodes_empty(*nodes) || (flags & MPOL_F_STATIC_NODES) || (flags & MPOL_F_RELATIVE_NODES)) return ERR_PTR(-EINVAL); mode = MPOL_PREFERRED; } else if (nodes_empty(*nodes)) return ERR_PTR(-EINVAL); policy = kmem_cache_alloc(policy_cache, GFP_KERNEL); if (!policy) return ERR_PTR(-ENOMEM); atomic_set(&policy->refcnt, 1); policy->mode = mode; policy->flags = flags; return policy; } /* Slow path of a mpol destructor. */ void __mpol_put(struct mempolicy *p) { if (!atomic_dec_and_test(&p->refcnt)) return; kmem_cache_free(policy_cache, p); } static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes) { } static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes) { nodemask_t tmp; if (pol->flags & MPOL_F_STATIC_NODES) nodes_and(tmp, pol->w.user_nodemask, *nodes); else if (pol->flags & MPOL_F_RELATIVE_NODES) mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); else { nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed, *nodes); pol->w.cpuset_mems_allowed = *nodes; } if (nodes_empty(tmp)) tmp = *nodes; pol->v.nodes = tmp; } static void mpol_rebind_preferred(struct mempolicy *pol, const nodemask_t *nodes) { nodemask_t tmp; if (pol->flags & MPOL_F_STATIC_NODES) { int node = first_node(pol->w.user_nodemask); if (node_isset(node, *nodes)) { pol->v.preferred_node = node; pol->flags &= ~MPOL_F_LOCAL; } else pol->flags |= MPOL_F_LOCAL; } else if (pol->flags & MPOL_F_RELATIVE_NODES) { mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); pol->v.preferred_node = first_node(tmp); } else if (!(pol->flags & MPOL_F_LOCAL)) { pol->v.preferred_node = node_remap(pol->v.preferred_node, pol->w.cpuset_mems_allowed, *nodes); pol->w.cpuset_mems_allowed = *nodes; } } /* * mpol_rebind_policy - Migrate a policy to a different set of nodes * * Per-vma policies are protected by mmap_lock. Allocations using per-task * policies are protected by task->mems_allowed_seq to prevent a premature * OOM/allocation failure due to parallel nodemask modification. */ static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask) { if (!pol) return; if (!mpol_store_user_nodemask(pol) && !(pol->flags & MPOL_F_LOCAL) && nodes_equal(pol->w.cpuset_mems_allowed, *newmask)) return; mpol_ops[pol->mode].rebind(pol, newmask); } /* * Wrapper for mpol_rebind_policy() that just requires task * pointer, and updates task mempolicy. * * Called with task's alloc_lock held. */ void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new) { mpol_rebind_policy(tsk->mempolicy, new); } /* * Rebind each vma in mm to new nodemask. * * Call holding a reference to mm. Takes mm->mmap_lock during call. */ void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) { struct vm_area_struct *vma; mmap_write_lock(mm); for (vma = mm->mmap; vma; vma = vma->vm_next) mpol_rebind_policy(vma->vm_policy, new); mmap_write_unlock(mm); } static const struct mempolicy_operations mpol_ops[MPOL_MAX] = { [MPOL_DEFAULT] = { .rebind = mpol_rebind_default, }, [MPOL_INTERLEAVE] = { .create = mpol_new_interleave, .rebind = mpol_rebind_nodemask, }, [MPOL_PREFERRED] = { .create = mpol_new_preferred, .rebind = mpol_rebind_preferred, }, [MPOL_BIND] = { .create = mpol_new_bind, .rebind = mpol_rebind_nodemask, }, }; static int migrate_page_add(struct page *page, struct list_head *pagelist, unsigned long flags); struct queue_pages { struct list_head *pagelist; unsigned long flags; nodemask_t *nmask; unsigned long start; unsigned long end; struct vm_area_struct *first; }; /* * Check if the page's nid is in qp->nmask. * * If MPOL_MF_INVERT is set in qp->flags, check if the nid is * in the invert of qp->nmask. */ static inline bool queue_pages_required(struct page *page, struct queue_pages *qp) { int nid = page_to_nid(page); unsigned long flags = qp->flags; return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT); } /* * queue_pages_pmd() has four possible return values: * 0 - pages are placed on the right node or queued successfully. * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were * specified. * 2 - THP was split. * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an * existing page was already on a node that does not follow the * policy. */ static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr, unsigned long end, struct mm_walk *walk) __releases(ptl) { int ret = 0; struct page *page; struct queue_pages *qp = walk->private; unsigned long flags; if (unlikely(is_pmd_migration_entry(*pmd))) { ret = -EIO; goto unlock; } page = pmd_page(*pmd); if (is_huge_zero_page(page)) { spin_unlock(ptl); __split_huge_pmd(walk->vma, pmd, addr, false, NULL); ret = 2; goto out; } if (!queue_pages_required(page, qp)) goto unlock; flags = qp->flags; /* go to thp migration */ if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { if (!vma_migratable(walk->vma) || migrate_page_add(page, qp->pagelist, flags)) { ret = 1; goto unlock; } } else ret = -EIO; unlock: spin_unlock(ptl); out: return ret; } /* * Scan through pages checking if pages follow certain conditions, * and move them to the pagelist if they do. * * queue_pages_pte_range() has three possible return values: * 0 - pages are placed on the right node or queued successfully. * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were * specified. * -EIO - only MPOL_MF_STRICT was specified and an existing page was already * on a node that does not follow the policy. */ static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, struct mm_walk *walk) { struct vm_area_struct *vma = walk->vma; struct page *page; struct queue_pages *qp = walk->private; unsigned long flags = qp->flags; int ret; bool has_unmovable = false; pte_t *pte, *mapped_pte; spinlock_t *ptl; ptl = pmd_trans_huge_lock(pmd, vma); if (ptl) { ret = queue_pages_pmd(pmd, ptl, addr, end, walk); if (ret != 2) return ret; } /* THP was split, fall through to pte walk */ if (pmd_trans_unstable(pmd)) return 0; mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); for (; addr != end; pte++, addr += PAGE_SIZE) { if (!pte_present(*pte)) continue; page = vm_normal_page(vma, addr, *pte); if (!page) continue; /* * vm_normal_page() filters out zero pages, but there might * still be PageReserved pages to skip, perhaps in a VDSO. */ if (PageReserved(page)) continue; if (!queue_pages_required(page, qp)) continue; if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { /* MPOL_MF_STRICT must be specified if we get here */ if (!vma_migratable(vma)) { has_unmovable = true; break; } /* * Do not abort immediately since there may be * temporary off LRU pages in the range. Still * need migrate other LRU pages. */ if (migrate_page_add(page, qp->pagelist, flags)) has_unmovable = true; } else break; } pte_unmap_unlock(mapped_pte, ptl); cond_resched(); if (has_unmovable) return 1; return addr != end ? -EIO : 0; } static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask, unsigned long addr, unsigned long end, struct mm_walk *walk) { int ret = 0; #ifdef CONFIG_HUGETLB_PAGE struct queue_pages *qp = walk->private; unsigned long flags = (qp->flags & MPOL_MF_VALID); struct page *page; spinlock_t *ptl; pte_t entry; ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte); entry = huge_ptep_get(pte); if (!pte_present(entry)) goto unlock; page = pte_page(entry); if (!queue_pages_required(page, qp)) goto unlock; if (flags == MPOL_MF_STRICT) { /* * STRICT alone means only detecting misplaced page and no * need to further check other vma. */ ret = -EIO; goto unlock; } if (!vma_migratable(walk->vma)) { /* * Must be STRICT with MOVE*, otherwise .test_walk() have * stopped walking current vma. * Detecting misplaced page but allow migrating pages which * have been queued. */ ret = 1; goto unlock; } /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */ if (flags & (MPOL_MF_MOVE_ALL) || (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) { if (!isolate_huge_page(page, qp->pagelist) && (flags & MPOL_MF_STRICT)) /* * Failed to isolate page but allow migrating pages * which have been queued. */ ret = 1; } unlock: spin_unlock(ptl); #else BUG(); #endif return ret; } #ifdef CONFIG_NUMA_BALANCING /* * This is used to mark a range of virtual addresses to be inaccessible. * These are later cleared by a NUMA hinting fault. Depending on these * faults, pages may be migrated for better NUMA placement. * * This is assuming that NUMA faults are handled using PROT_NONE. If * an architecture makes a different choice, it will need further * changes to the core. */ unsigned long change_prot_numa(struct vm_area_struct *vma, unsigned long addr, unsigned long end) { int nr_updated; nr_updated = change_protection(vma, addr, end, PAGE_NONE, MM_CP_PROT_NUMA); if (nr_updated) count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated); return nr_updated; } #else static unsigned long change_prot_numa(struct vm_area_struct *vma, unsigned long addr, unsigned long end) { return 0; } #endif /* CONFIG_NUMA_BALANCING */ static int queue_pages_test_walk(unsigned long start, unsigned long end, struct mm_walk *walk) { struct vm_area_struct *vma = walk->vma; struct queue_pages *qp = walk->private; unsigned long endvma = vma->vm_end; unsigned long flags = qp->flags; /* range check first */ VM_BUG_ON_VMA((vma->vm_start > start) || (vma->vm_end < end), vma); if (!qp->first) { qp->first = vma; if (!(flags & MPOL_MF_DISCONTIG_OK) && (qp->start < vma->vm_start)) /* hole at head side of range */ return -EFAULT; } if (!(flags & MPOL_MF_DISCONTIG_OK) && ((vma->vm_end < qp->end) && (!vma->vm_next || vma->vm_end < vma->vm_next->vm_start))) /* hole at middle or tail of range */ return -EFAULT; /* * Need check MPOL_MF_STRICT to return -EIO if possible * regardless of vma_migratable */ if (!vma_migratable(vma) && !(flags & MPOL_MF_STRICT)) return 1; if (endvma > end) endvma = end; if (flags & MPOL_MF_LAZY) { /* Similar to task_numa_work, skip inaccessible VMAs */ if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) && !(vma->vm_flags & VM_MIXEDMAP)) change_prot_numa(vma, start, endvma); return 1; } /* queue pages from current vma */ if (flags & MPOL_MF_VALID) return 0; return 1; } static const struct mm_walk_ops queue_pages_walk_ops = { .hugetlb_entry = queue_pages_hugetlb, .pmd_entry = queue_pages_pte_range, .test_walk = queue_pages_test_walk, }; /* * Walk through page tables and collect pages to be migrated. * * If pages found in a given range are on a set of nodes (determined by * @nodes and @flags,) it's isolated and queued to the pagelist which is * passed via @private. * * queue_pages_range() has three possible return values: * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were * specified. * 0 - queue pages successfully or no misplaced page. * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or * memory range specified by nodemask and maxnode points outside * your accessible address space (-EFAULT) */ static int queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end, nodemask_t *nodes, unsigned long flags, struct list_head *pagelist) { int err; struct queue_pages qp = { .pagelist = pagelist, .flags = flags, .nmask = nodes, .start = start, .end = end, .first = NULL, }; err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp); if (!qp.first) /* whole range in hole */ err = -EFAULT; return err; } /* * Apply policy to a single VMA * This must be called with the mmap_lock held for writing. */ static int vma_replace_policy(struct vm_area_struct *vma, struct mempolicy *pol) { int err; struct mempolicy *old; struct mempolicy *new; pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n", vma->vm_start, vma->vm_end, vma->vm_pgoff, vma->vm_ops, vma->vm_file, vma->vm_ops ? vma->vm_ops->set_policy : NULL); new = mpol_dup(pol); if (IS_ERR(new)) return PTR_ERR(new); if (vma->vm_ops && vma->vm_ops->set_policy) { err = vma->vm_ops->set_policy(vma, new); if (err) goto err_out; } old = vma->vm_policy; vma->vm_policy = new; /* protected by mmap_lock */ mpol_put(old); return 0; err_out: mpol_put(new); return err; } /* Step 2: apply policy to a range and do splits. */ static int mbind_range(struct mm_struct *mm, unsigned long start, unsigned long end, struct mempolicy *new_pol) { struct vm_area_struct *next; struct vm_area_struct *prev; struct vm_area_struct *vma; int err = 0; pgoff_t pgoff; unsigned long vmstart; unsigned long vmend; vma = find_vma(mm, start); VM_BUG_ON(!vma); prev = vma->vm_prev; if (start > vma->vm_start) prev = vma; for (; vma && vma->vm_start < end; prev = vma, vma = next) { next = vma->vm_next; vmstart = max(start, vma->vm_start); vmend = min(end, vma->vm_end); if (mpol_equal(vma_policy(vma), new_pol)) continue; pgoff = vma->vm_pgoff + ((vmstart - vma->vm_start) >> PAGE_SHIFT); prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags, vma->anon_vma, vma->vm_file, pgoff, new_pol, vma->vm_userfaultfd_ctx); if (prev) { vma = prev; next = vma->vm_next; if (mpol_equal(vma_policy(vma), new_pol)) continue; /* vma_merge() joined vma && vma->next, case 8 */ goto replace; } if (vma->vm_start != vmstart) { err = split_vma(vma->vm_mm, vma, vmstart, 1); if (err) goto out; } if (vma->vm_end != vmend) { err = split_vma(vma->vm_mm, vma, vmend, 0); if (err) goto out; } replace: err = vma_replace_policy(vma, new_pol); if (err) goto out; } out: return err; } /* Set the process memory policy */ static long do_set_mempolicy(unsigned short mode, unsigned short flags, nodemask_t *nodes) { struct mempolicy *new, *old; NODEMASK_SCRATCH(scratch); int ret; if (!scratch) return -ENOMEM; new = mpol_new(mode, flags, nodes); if (IS_ERR(new)) { ret = PTR_ERR(new); goto out; } ret = mpol_set_nodemask(new, nodes, scratch); if (ret) { mpol_put(new); goto out; } task_lock(current); old = current->mempolicy; current->mempolicy = new; if (new && new->mode == MPOL_INTERLEAVE) current->il_prev = MAX_NUMNODES-1; task_unlock(current); mpol_put(old); ret = 0; out: NODEMASK_SCRATCH_FREE(scratch); return ret; } /* * Return nodemask for policy for get_mempolicy() query * * Called with task's alloc_lock held */ static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes) { nodes_clear(*nodes); if (p == &default_policy) return; switch (p->mode) { case MPOL_BIND: case MPOL_INTERLEAVE: *nodes = p->v.nodes; break; case MPOL_PREFERRED: if (!(p->flags & MPOL_F_LOCAL)) node_set(p->v.preferred_node, *nodes); /* else return empty node mask for local allocation */ break; default: BUG(); } } static int lookup_node(struct mm_struct *mm, unsigned long addr) { struct page *p = NULL; int err; int locked = 1; err = get_user_pages_locked(addr & PAGE_MASK, 1, 0, &p, &locked); if (err > 0) { err = page_to_nid(p); put_page(p); } if (locked) mmap_read_unlock(mm); return err; } /* Retrieve NUMA policy */ static long do_get_mempolicy(int *policy, nodemask_t *nmask, unsigned long addr, unsigned long flags) { int err; struct mm_struct *mm = current->mm; struct vm_area_struct *vma = NULL; struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL; if (flags & ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED)) return -EINVAL; if (flags & MPOL_F_MEMS_ALLOWED) { if (flags & (MPOL_F_NODE|MPOL_F_ADDR)) return -EINVAL; *policy = 0; /* just so it's initialized */ task_lock(current); *nmask = cpuset_current_mems_allowed; task_unlock(current); return 0; } if (flags & MPOL_F_ADDR) { /* * Do NOT fall back to task policy if the * vma/shared policy at addr is NULL. We * want to return MPOL_DEFAULT in this case. */ mmap_read_lock(mm); vma = find_vma_intersection(mm, addr, addr+1); if (!vma) { mmap_read_unlock(mm); return -EFAULT; } if (vma->vm_ops && vma->vm_ops->get_policy) pol = vma->vm_ops->get_policy(vma, addr); else pol = vma->vm_policy; } else if (addr) return -EINVAL; if (!pol) pol = &default_policy; /* indicates default behavior */ if (flags & MPOL_F_NODE) { if (flags & MPOL_F_ADDR) { /* * Take a refcount on the mpol, lookup_node() * wil drop the mmap_lock, so after calling * lookup_node() only "pol" remains valid, "vma" * is stale. */ pol_refcount = pol; vma = NULL; mpol_get(pol); err = lookup_node(mm, addr); if (err < 0) goto out; *policy = err; } else if (pol == current->mempolicy && pol->mode == MPOL_INTERLEAVE) { *policy = next_node_in(current->il_prev, pol->v.nodes); } else { err = -EINVAL; goto out; } } else { *policy = pol == &default_policy ? MPOL_DEFAULT : pol->mode; /* * Internal mempolicy flags must be masked off before exposing * the policy to userspace. */ *policy |= (pol->flags & MPOL_MODE_FLAGS); } err = 0; if (nmask) { if (mpol_store_user_nodemask(pol)) { *nmask = pol->w.user_nodemask; } else { task_lock(current); get_policy_nodemask(pol, nmask); task_unlock(current); } } out: mpol_cond_put(pol); if (vma) mmap_read_unlock(mm); if (pol_refcount) mpol_put(pol_refcount); return err; } #ifdef CONFIG_MIGRATION /* * page migration, thp tail pages can be passed. */ static int migrate_page_add(struct page *page, struct list_head *pagelist, unsigned long flags) { struct page *head = compound_head(page); /* * Avoid migrating a page that is shared with others. */ if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) { if (!isolate_lru_page(head)) { list_add_tail(&head->lru, pagelist); mod_node_page_state(page_pgdat(head), NR_ISOLATED_ANON + page_is_file_lru(head), thp_nr_pages(head)); } else if (flags & MPOL_MF_STRICT) { /* * Non-movable page may reach here. And, there may be * temporary off LRU pages or non-LRU movable pages. * Treat them as unmovable pages since they can't be * isolated, so they can't be moved at the moment. It * should return -EIO for this case too. */ return -EIO; } } return 0; } /* * Migrate pages from one node to a target node. * Returns error or the number of pages not migrated. */ static int migrate_to_node(struct mm_struct *mm, int source, int dest, int flags) { nodemask_t nmask; LIST_HEAD(pagelist); int err = 0; struct migration_target_control mtc = { .nid = dest, .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, }; nodes_clear(nmask); node_set(source, nmask); /* * This does not "check" the range but isolates all pages that * need migration. Between passing in the full user address * space range and MPOL_MF_DISCONTIG_OK, this call can not fail. */ VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))); queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask, flags | MPOL_MF_DISCONTIG_OK, &pagelist); if (!list_empty(&pagelist)) { err = migrate_pages(&pagelist, alloc_migration_target, NULL, (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL); if (err) putback_movable_pages(&pagelist); } return err; } /* * Move pages between the two nodesets so as to preserve the physical * layout as much as possible. * * Returns the number of page that could not be moved. */ int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, const nodemask_t *to, int flags) { int busy = 0; int err; nodemask_t tmp; err = migrate_prep(); if (err) return err; mmap_read_lock(mm); /* * Find a 'source' bit set in 'tmp' whose corresponding 'dest' * bit in 'to' is not also set in 'tmp'. Clear the found 'source' * bit in 'tmp', and return that <source, dest> pair for migration. * The pair of nodemasks 'to' and 'from' define the map. * * If no pair of bits is found that way, fallback to picking some * pair of 'source' and 'dest' bits that are not the same. If the * 'source' and 'dest' bits are the same, this represents a node * that will be migrating to itself, so no pages need move. * * If no bits are left in 'tmp', or if all remaining bits left * in 'tmp' correspond to the same bit in 'to', return false * (nothing left to migrate). * * This lets us pick a pair of nodes to migrate between, such that * if possible the dest node is not already occupied by some other * source node, minimizing the risk of overloading the memory on a * node that would happen if we migrated incoming memory to a node * before migrating outgoing memory source that same node. * * A single scan of tmp is sufficient. As we go, we remember the * most recent <s, d> pair that moved (s != d). If we find a pair * that not only moved, but what's better, moved to an empty slot * (d is not set in tmp), then we break out then, with that pair. * Otherwise when we finish scanning from_tmp, we at least have the * most recent <s, d> pair that moved. If we get all the way through * the scan of tmp without finding any node that moved, much less * moved to an empty node, then there is nothing left worth migrating. */ tmp = *from; while (!nodes_empty(tmp)) { int s,d; int source = NUMA_NO_NODE; int dest = 0; for_each_node_mask(s, tmp) { /* * do_migrate_pages() tries to maintain the relative * node relationship of the pages established between * threads and memory areas. * * However if the number of source nodes is not equal to * the number of destination nodes we can not preserve * this node relative relationship. In that case, skip * copying memory from a node that is in the destination * mask. * * Example: [2,3,4] -> [3,4,5] moves everything. * [0-7] - > [3,4,5] moves only 0,1,2,6,7. */ if ((nodes_weight(*from) != nodes_weight(*to)) && (node_isset(s, *to))) continue; d = node_remap(s, *from, *to); if (s == d) continue; source = s; /* Node moved. Memorize */ dest = d; /* dest not in remaining from nodes? */ if (!node_isset(dest, tmp)) break; } if (source == NUMA_NO_NODE) break; node_clear(source, tmp); err = migrate_to_node(mm, source, dest, flags); if (err > 0) busy += err; if (err < 0) break; } mmap_read_unlock(mm); if (err < 0) return err; return busy; } /* * Allocate a new page for page migration based on vma policy. * Start by assuming the page is mapped by the same vma as contains @start. * Search forward from there, if not. N.B., this assumes that the * list of pages handed to migrate_pages()--which is how we get here-- * is in virtual address order. */ static struct page *new_page(struct page *page, unsigned long start) { struct vm_area_struct *vma; unsigned long address; vma = find_vma(current->mm, start); while (vma) { address = page_address_in_vma(page, vma); if (address != -EFAULT) break; vma = vma->vm_next; } if (PageHuge(page)) { return alloc_huge_page_vma(page_hstate(compound_head(page)), vma, address); } else if (PageTransHuge(page)) { struct page *thp; thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address, HPAGE_PMD_ORDER); if (!thp) return NULL; prep_transhuge_page(thp); return thp; } /* * if !vma, alloc_page_vma() will use task or system default policy */ return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL, vma, address); } #else static int migrate_page_add(struct page *page, struct list_head *pagelist, unsigned long flags) { return -EIO; } int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, const nodemask_t *to, int flags) { return -ENOSYS; } static struct page *new_page(struct page *page, unsigned long start) { return NULL; } #endif static long do_mbind(unsigned long start, unsigned long len, unsigned short mode, unsigned short mode_flags, nodemask_t *nmask, unsigned long flags) { struct mm_struct *mm = current->mm; struct mempolicy *new; unsigned long end; int err; int ret; LIST_HEAD(pagelist); if (flags & ~(unsigned long)MPOL_MF_VALID) return -EINVAL; if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) return -EPERM; if (start & ~PAGE_MASK) return -EINVAL; if (mode == MPOL_DEFAULT) flags &= ~MPOL_MF_STRICT; len = (len + PAGE_SIZE - 1) & PAGE_MASK; end = start + len; if (end < start) return -EINVAL; if (end == start) return 0; new = mpol_new(mode, mode_flags, nmask); if (IS_ERR(new)) return PTR_ERR(new); if (flags & MPOL_MF_LAZY) new->flags |= MPOL_F_MOF; /* * If we are using the default policy then operation * on discontinuous address spaces is okay after all */ if (!new) flags |= MPOL_MF_DISCONTIG_OK; pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n", start, start + len, mode, mode_flags, nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE); if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { err = migrate_prep(); if (err) goto mpol_out; } { NODEMASK_SCRATCH(scratch); if (scratch) { mmap_write_lock(mm); err = mpol_set_nodemask(new, nmask, scratch); if (err) mmap_write_unlock(mm); } else err = -ENOMEM; NODEMASK_SCRATCH_FREE(scratch); } if (err) goto mpol_out; ret = queue_pages_range(mm, start, end, nmask, flags | MPOL_MF_INVERT, &pagelist); if (ret < 0) { err = ret; goto up_out; } err = mbind_range(mm, start, end, new); if (!err) { int nr_failed = 0; if (!list_empty(&pagelist)) { WARN_ON_ONCE(flags & MPOL_MF_LAZY); nr_failed = migrate_pages(&pagelist, new_page, NULL, start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND); if (nr_failed) putback_movable_pages(&pagelist); } if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT))) err = -EIO; } else { up_out: if (!list_empty(&pagelist)) putback_movable_pages(&pagelist); } mmap_write_unlock(mm); mpol_out: mpol_put(new); return err; } /* * User space interface with variable sized bitmaps for nodelists. */ /* Copy a node mask from user space. */ static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask, unsigned long maxnode) { unsigned long k; unsigned long t; unsigned long nlongs; unsigned long endmask; --maxnode; nodes_clear(*nodes); if (maxnode == 0 || !nmask) return 0; if (maxnode > PAGE_SIZE*BITS_PER_BYTE) return -EINVAL; nlongs = BITS_TO_LONGS(maxnode); if ((maxnode % BITS_PER_LONG) == 0) endmask = ~0UL; else endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1; /* * When the user specified more nodes than supported just check * if the non supported part is all zero. * * If maxnode have more longs than MAX_NUMNODES, check * the bits in that area first. And then go through to * check the rest bits which equal or bigger than MAX_NUMNODES. * Otherwise, just check bits [MAX_NUMNODES, maxnode). */ if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) { for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) { if (get_user(t, nmask + k)) return -EFAULT; if (k == nlongs - 1) { if (t & endmask) return -EINVAL; } else if (t) return -EINVAL; } nlongs = BITS_TO_LONGS(MAX_NUMNODES); endmask = ~0UL; } if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) { unsigned long valid_mask = endmask; valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1); if (get_user(t, nmask + nlongs - 1)) return -EFAULT; if (t & valid_mask) return -EINVAL; } if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long))) return -EFAULT; nodes_addr(*nodes)[nlongs-1] &= endmask; return 0; } /* Copy a kernel node mask to user space */ static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode, nodemask_t *nodes) { unsigned long copy = ALIGN(maxnode-1, 64) / 8; unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long); if (copy > nbytes) { if (copy > PAGE_SIZE) return -EINVAL; if (clear_user((char __user *)mask + nbytes, copy - nbytes)) return -EFAULT; copy = nbytes; } return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0; } static long kernel_mbind(unsigned long start, unsigned long len, unsigned long mode, const unsigned long __user *nmask, unsigned long maxnode, unsigned int flags) { nodemask_t nodes; int err; unsigned short mode_flags; start = untagged_addr(start); mode_flags = mode & MPOL_MODE_FLAGS; mode &= ~MPOL_MODE_FLAGS; if (mode >= MPOL_MAX) return -EINVAL; if ((mode_flags & MPOL_F_STATIC_NODES) && (mode_flags & MPOL_F_RELATIVE_NODES)) return -EINVAL; err = get_nodes(&nodes, nmask, maxnode); if (err) return err; return do_mbind(start, len, mode, mode_flags, &nodes, flags); } SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len, unsigned long, mode, const unsigned long __user *, nmask, unsigned long, maxnode, unsigned int, flags) { return kernel_mbind(start, len, mode, nmask, maxnode, flags); } /* Set the process memory policy */ static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask, unsigned long maxnode) { int err; nodemask_t nodes; unsigned short flags; flags = mode & MPOL_MODE_FLAGS; mode &= ~MPOL_MODE_FLAGS; if ((unsigned int)mode >= MPOL_MAX) return -EINVAL; if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES)) return -EINVAL; err = get_nodes(&nodes, nmask, maxnode); if (err) return err; return do_set_mempolicy(mode, flags, &nodes); } SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask, unsigned long, maxnode) { return kernel_set_mempolicy(mode, nmask, maxnode); } static int kernel_migrate_pages(pid_t pid, unsigned long maxnode, const unsigned long __user *old_nodes, const unsigned long __user *new_nodes) { struct mm_struct *mm = NULL; struct task_struct *task; nodemask_t task_nodes; int err; nodemask_t *old; nodemask_t *new; NODEMASK_SCRATCH(scratch); if (!scratch) return -ENOMEM; old = &scratch->mask1; new = &scratch->mask2; err = get_nodes(old, old_nodes, maxnode); if (err) goto out; err = get_nodes(new, new_nodes, maxnode); if (err) goto out; /* Find the mm_struct */ rcu_read_lock(); task = pid ? find_task_by_vpid(pid) : current; if (!task) { rcu_read_unlock(); err = -ESRCH; goto out; } get_task_struct(task); err = -EINVAL; /* * Check if this process has the right to modify the specified process. * Use the regular "ptrace_may_access()" checks. */ if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { rcu_read_unlock(); err = -EPERM; goto out_put; } rcu_read_unlock(); task_nodes = cpuset_mems_allowed(task); /* Is the user allowed to access the target nodes? */ if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) { err = -EPERM; goto out_put; } task_nodes = cpuset_mems_allowed(current); nodes_and(*new, *new, task_nodes); if (nodes_empty(*new)) goto out_put; err = security_task_movememory(task); if (err) goto out_put; mm = get_task_mm(task); put_task_struct(task); if (!mm) { err = -EINVAL; goto out; } err = do_migrate_pages(mm, old, new, capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE); mmput(mm); out: NODEMASK_SCRATCH_FREE(scratch); return err; out_put: put_task_struct(task); goto out; } SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode, const unsigned long __user *, old_nodes, const unsigned long __user *, new_nodes) { return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes); } /* Retrieve NUMA policy */ static int kernel_get_mempolicy(int __user *policy, unsigned long __user *nmask, unsigned long maxnode, unsigned long addr, unsigned long flags) { int err; int pval; nodemask_t nodes; if (nmask != NULL && maxnode < nr_node_ids) return -EINVAL; addr = untagged_addr(addr); err = do_get_mempolicy(&pval, &nodes, addr, flags); if (err) return err; if (policy && put_user(pval, policy)) return -EFAULT; if (nmask) err = copy_nodes_to_user(nmask, maxnode, &nodes); return err; } SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, unsigned long __user *, nmask, unsigned long, maxnode, unsigned long, addr, unsigned long, flags) { return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags); } #ifdef CONFIG_COMPAT COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, compat_ulong_t __user *, nmask, compat_ulong_t, maxnode, compat_ulong_t, addr, compat_ulong_t, flags) { long err; unsigned long __user *nm = NULL; unsigned long nr_bits, alloc_size; DECLARE_BITMAP(bm, MAX_NUMNODES); nr_bits = min_t(unsigned long, maxnode-1, nr_node_ids); alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; if (nmask) nm = compat_alloc_user_space(alloc_size); err = kernel_get_mempolicy(policy, nm, nr_bits+1, addr, flags); if (!err && nmask) { unsigned long copy_size; copy_size = min_t(unsigned long, sizeof(bm), alloc_size); err = copy_from_user(bm, nm, copy_size); /* ensure entire bitmap is zeroed */ err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8); err |= compat_put_bitmap(nmask, bm, nr_bits); } return err; } COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask, compat_ulong_t, maxnode) { unsigned long __user *nm = NULL; unsigned long nr_bits, alloc_size; DECLARE_BITMAP(bm, MAX_NUMNODES); nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; if (nmask) { if (compat_get_bitmap(bm, nmask, nr_bits)) return -EFAULT; nm = compat_alloc_user_space(alloc_size); if (copy_to_user(nm, bm, alloc_size)) return -EFAULT; } return kernel_set_mempolicy(mode, nm, nr_bits+1); } COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len, compat_ulong_t, mode, compat_ulong_t __user *, nmask, compat_ulong_t, maxnode, compat_ulong_t, flags) { unsigned long __user *nm = NULL; unsigned long nr_bits, alloc_size; nodemask_t bm; nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; if (nmask) { if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits)) return -EFAULT; nm = compat_alloc_user_space(alloc_size); if (copy_to_user(nm, nodes_addr(bm), alloc_size)) return -EFAULT; } return kernel_mbind(start, len, mode, nm, nr_bits+1, flags); } COMPAT_SYSCALL_DEFINE4(migrate_pages, compat_pid_t, pid, compat_ulong_t, maxnode, const compat_ulong_t __user *, old_nodes, const compat_ulong_t __user *, new_nodes) { unsigned long __user *old = NULL; unsigned long __user *new = NULL; nodemask_t tmp_mask; unsigned long nr_bits; unsigned long size; nr_bits = min_t(unsigned long, maxnode - 1, MAX_NUMNODES); size = ALIGN(nr_bits, BITS_PER_LONG) / 8; if (old_nodes) { if (compat_get_bitmap(nodes_addr(tmp_mask), old_nodes, nr_bits)) return -EFAULT; old = compat_alloc_user_space(new_nodes ? size * 2 : size); if (new_nodes) new = old + size / sizeof(unsigned long); if (copy_to_user(old, nodes_addr(tmp_mask), size)) return -EFAULT; } if (new_nodes) { if (compat_get_bitmap(nodes_addr(tmp_mask), new_nodes, nr_bits)) return -EFAULT; if (new == NULL) new = compat_alloc_user_space(size); if (copy_to_user(new, nodes_addr(tmp_mask), size)) return -EFAULT; } return kernel_migrate_pages(pid, nr_bits + 1, old, new); } #endif /* CONFIG_COMPAT */ bool vma_migratable(struct vm_area_struct *vma) { if (vma->vm_flags & (VM_IO | VM_PFNMAP)) return false; /* * DAX device mappings require predictable access latency, so avoid * incurring periodic faults. */ if (vma_is_dax(vma)) return false; if (is_vm_hugetlb_page(vma) && !hugepage_migration_supported(hstate_vma(vma))) return false; /* * Migration allocates pages in the highest zone. If we cannot * do so then migration (at least from node to node) is not * possible. */ if (vma->vm_file && gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping)) < policy_zone) return false; return true; } struct mempolicy *__get_vma_policy(struct vm_area_struct *vma, unsigned long addr) { struct mempolicy *pol = NULL; if (vma) { if (vma->vm_ops && vma->vm_ops->get_policy) { pol = vma->vm_ops->get_policy(vma, addr); } else if (vma->vm_policy) { pol = vma->vm_policy; /* * shmem_alloc_page() passes MPOL_F_SHARED policy with * a pseudo vma whose vma->vm_ops=NULL. Take a reference * count on these policies which will be dropped by * mpol_cond_put() later */ if (mpol_needs_cond_ref(pol)) mpol_get(pol); } } return pol; } /* * get_vma_policy(@vma, @addr) * @vma: virtual memory area whose policy is sought * @addr: address in @vma for shared policy lookup * * Returns effective policy for a VMA at specified address. * Falls back to current->mempolicy or system default policy, as necessary. * Shared policies [those marked as MPOL_F_SHARED] require an extra reference * count--added by the get_policy() vm_op, as appropriate--to protect against * freeing by another task. It is the caller's responsibility to free the * extra reference for shared policies. */ static struct mempolicy *get_vma_policy(struct vm_area_struct *vma, unsigned long addr) { struct mempolicy *pol = __get_vma_policy(vma, addr); if (!pol) pol = get_task_policy(current); return pol; } bool vma_policy_mof(struct vm_area_struct *vma) { struct mempolicy *pol; if (vma->vm_ops && vma->vm_ops->get_policy) { bool ret = false; pol = vma->vm_ops->get_policy(vma, vma->vm_start); if (pol && (pol->flags & MPOL_F_MOF)) ret = true; mpol_cond_put(pol); return ret; } pol = vma->vm_policy; if (!pol) pol = get_task_policy(current); return pol->flags & MPOL_F_MOF; } static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone) { enum zone_type dynamic_policy_zone = policy_zone; BUG_ON(dynamic_policy_zone == ZONE_MOVABLE); /* * if policy->v.nodes has movable memory only, * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only. * * policy->v.nodes is intersect with node_states[N_MEMORY]. * so if the following test faile, it implies * policy->v.nodes has movable memory only. */ if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY])) dynamic_policy_zone = ZONE_MOVABLE; return zone >= dynamic_policy_zone; } /* * Return a nodemask representing a mempolicy for filtering nodes for * page allocation */ nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy) { /* Lower zones don't get a nodemask applied for MPOL_BIND */ if (unlikely(policy->mode == MPOL_BIND) && apply_policy_zone(policy, gfp_zone(gfp)) && cpuset_nodemask_valid_mems_allowed(&policy->v.nodes)) return &policy->v.nodes; return NULL; } /* Return the node id preferred by the given mempolicy, or the given id */ static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd) { if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL)) nd = policy->v.preferred_node; else { /* * __GFP_THISNODE shouldn't even be used with the bind policy * because we might easily break the expectation to stay on the * requested node and not break the policy. */ WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE)); } return nd; } /* Do dynamic interleaving for a process */ static unsigned interleave_nodes(struct mempolicy *policy) { unsigned next; struct task_struct *me = current; next = next_node_in(me->il_prev, policy->v.nodes); if (next < MAX_NUMNODES) me->il_prev = next; return next; } /* * Depending on the memory policy provide a node from which to allocate the * next slab entry. */ unsigned int mempolicy_slab_node(void) { struct mempolicy *policy; int node = numa_mem_id(); if (in_interrupt()) return node; policy = current->mempolicy; if (!policy || policy->flags & MPOL_F_LOCAL) return node; switch (policy->mode) { case MPOL_PREFERRED: /* * handled MPOL_F_LOCAL above */ return policy->v.preferred_node; case MPOL_INTERLEAVE: return interleave_nodes(policy); case MPOL_BIND: { struct zoneref *z; /* * Follow bind policy behavior and start allocation at the * first node. */ struct zonelist *zonelist; enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL); zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK]; z = first_zones_zonelist(zonelist, highest_zoneidx, &policy->v.nodes); return z->zone ? zone_to_nid(z->zone) : node; } default: BUG(); } } /* * Do static interleaving for a VMA with known offset @n. Returns the n'th * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the * number of present nodes. */ static unsigned offset_il_node(struct mempolicy *pol, unsigned long n) { unsigned nnodes = nodes_weight(pol->v.nodes); unsigned target; int i; int nid; if (!nnodes) return numa_node_id(); target = (unsigned int)n % nnodes; nid = first_node(pol->v.nodes); for (i = 0; i < target; i++) nid = next_node(nid, pol->v.nodes); return nid; } /* Determine a node number for interleave */ static inline unsigned interleave_nid(struct mempolicy *pol, struct vm_area_struct *vma, unsigned long addr, int shift) { if (vma) { unsigned long off; /* * for small pages, there is no difference between * shift and PAGE_SHIFT, so the bit-shift is safe. * for huge pages, since vm_pgoff is in units of small * pages, we need to shift off the always 0 bits to get * a useful offset. */ BUG_ON(shift < PAGE_SHIFT); off = vma->vm_pgoff >> (shift - PAGE_SHIFT); off += (addr - vma->vm_start) >> shift; return offset_il_node(pol, off); } else return interleave_nodes(pol); } #ifdef CONFIG_HUGETLBFS /* * huge_node(@vma, @addr, @gfp_flags, @mpol) * @vma: virtual memory area whose policy is sought * @addr: address in @vma for shared policy lookup and interleave policy * @gfp_flags: for requested zone * @mpol: pointer to mempolicy pointer for reference counted mempolicy * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask * * Returns a nid suitable for a huge page allocation and a pointer * to the struct mempolicy for conditional unref after allocation. * If the effective policy is 'BIND, returns a pointer to the mempolicy's * @nodemask for filtering the zonelist. * * Must be protected by read_mems_allowed_begin() */ int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags, struct mempolicy **mpol, nodemask_t **nodemask) { int nid; *mpol = get_vma_policy(vma, addr); *nodemask = NULL; /* assume !MPOL_BIND */ if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) { nid = interleave_nid(*mpol, vma, addr, huge_page_shift(hstate_vma(vma))); } else { nid = policy_node(gfp_flags, *mpol, numa_node_id()); if ((*mpol)->mode == MPOL_BIND) *nodemask = &(*mpol)->v.nodes; } return nid; } /* * init_nodemask_of_mempolicy * * If the current task's mempolicy is "default" [NULL], return 'false' * to indicate default policy. Otherwise, extract the policy nodemask * for 'bind' or 'interleave' policy into the argument nodemask, or * initialize the argument nodemask to contain the single node for * 'preferred' or 'local' policy and return 'true' to indicate presence * of non-default mempolicy. * * We don't bother with reference counting the mempolicy [mpol_get/put] * because the current task is examining it's own mempolicy and a task's * mempolicy is only ever changed by the task itself. * * N.B., it is the caller's responsibility to free a returned nodemask. */ bool init_nodemask_of_mempolicy(nodemask_t *mask) { struct mempolicy *mempolicy; int nid; if (!(mask && current->mempolicy)) return false; task_lock(current); mempolicy = current->mempolicy; switch (mempolicy->mode) { case MPOL_PREFERRED: if (mempolicy->flags & MPOL_F_LOCAL) nid = numa_node_id(); else nid = mempolicy->v.preferred_node; init_nodemask_of_node(mask, nid); break; case MPOL_BIND: case MPOL_INTERLEAVE: *mask = mempolicy->v.nodes; break; default: BUG(); } task_unlock(current); return true; } #endif /* * mempolicy_nodemask_intersects * * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default * policy. Otherwise, check for intersection between mask and the policy * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local' * policy, always return true since it may allocate elsewhere on fallback. * * Takes task_lock(tsk) to prevent freeing of its mempolicy. */ bool mempolicy_nodemask_intersects(struct task_struct *tsk, const nodemask_t *mask) { struct mempolicy *mempolicy; bool ret = true; if (!mask) return ret; task_lock(tsk); mempolicy = tsk->mempolicy; if (!mempolicy) goto out; switch (mempolicy->mode) { case MPOL_PREFERRED: /* * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to * allocate from, they may fallback to other nodes when oom. * Thus, it's possible for tsk to have allocated memory from * nodes in mask. */ break; case MPOL_BIND: case MPOL_INTERLEAVE: ret = nodes_intersects(mempolicy->v.nodes, *mask); break; default: BUG(); } out: task_unlock(tsk); return ret; } /* Allocate a page in interleaved policy. Own path because it needs to do special accounting. */ static struct page *alloc_page_interleave(gfp_t gfp, unsigned order, unsigned nid) { struct page *page; page = __alloc_pages(gfp, order, nid); /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */ if (!static_branch_likely(&vm_numa_stat_key)) return page; if (page && page_to_nid(page) == nid) { preempt_disable(); __inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT); preempt_enable(); } return page; } /** * alloc_pages_vma - Allocate a page for a VMA. * * @gfp: * %GFP_USER user allocation. * %GFP_KERNEL kernel allocations, * %GFP_HIGHMEM highmem/user allocations, * %GFP_FS allocation should not call back into a file system. * %GFP_ATOMIC don't sleep. * * @order:Order of the GFP allocation. * @vma: Pointer to VMA or NULL if not available. * @addr: Virtual Address of the allocation. Must be inside the VMA. * @node: Which node to prefer for allocation (modulo policy). * @hugepage: for hugepages try only the preferred node if possible * * This function allocates a page from the kernel page pool and applies * a NUMA policy associated with the VMA or the current process. * When VMA is not NULL caller must read-lock the mmap_lock of the * mm_struct of the VMA to prevent it from going away. Should be used for * all allocations for pages that will be mapped into user space. Returns * NULL when no page can be allocated. */ struct page * alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma, unsigned long addr, int node, bool hugepage) { struct mempolicy *pol; struct page *page; int preferred_nid; nodemask_t *nmask; pol = get_vma_policy(vma, addr); if (pol->mode == MPOL_INTERLEAVE) { unsigned nid; nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order); mpol_cond_put(pol); page = alloc_page_interleave(gfp, order, nid); goto out; } if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) { int hpage_node = node; /* * For hugepage allocation and non-interleave policy which * allows the current node (or other explicitly preferred * node) we only try to allocate from the current/preferred * node and don't fall back to other nodes, as the cost of * remote accesses would likely offset THP benefits. * * If the policy is interleave, or does not allow the current * node in its nodemask, we allocate the standard way. */ if (pol->mode == MPOL_PREFERRED && !(pol->flags & MPOL_F_LOCAL)) hpage_node = pol->v.preferred_node; nmask = policy_nodemask(gfp, pol); if (!nmask || node_isset(hpage_node, *nmask)) { mpol_cond_put(pol); /* * First, try to allocate THP only on local node, but * don't reclaim unnecessarily, just compact. */ page = __alloc_pages_node(hpage_node, gfp | __GFP_THISNODE | __GFP_NORETRY, order); /* * If hugepage allocations are configured to always * synchronous compact or the vma has been madvised * to prefer hugepage backing, retry allowing remote * memory with both reclaim and compact as well. */ if (!page && (gfp & __GFP_DIRECT_RECLAIM)) page = __alloc_pages_nodemask(gfp, order, hpage_node, nmask); goto out; } } nmask = policy_nodemask(gfp, pol); preferred_nid = policy_node(gfp, pol, node); page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask); mpol_cond_put(pol); out: return page; } EXPORT_SYMBOL(alloc_pages_vma); /** * alloc_pages_current - Allocate pages. * * @gfp: * %GFP_USER user allocation, * %GFP_KERNEL kernel allocation, * %GFP_HIGHMEM highmem allocation, * %GFP_FS don't call back into a file system. * %GFP_ATOMIC don't sleep. * @order: Power of two of allocation size in pages. 0 is a single page. * * Allocate a page from the kernel page pool. When not in * interrupt context and apply the current process NUMA policy. * Returns NULL when no page can be allocated. */ struct page *alloc_pages_current(gfp_t gfp, unsigned order) { struct mempolicy *pol = &default_policy; struct page *page; if (!in_interrupt() && !(gfp & __GFP_THISNODE)) pol = get_task_policy(current); /* * No reference counting needed for current->mempolicy * nor system default_policy */ if (pol->mode == MPOL_INTERLEAVE) page = alloc_page_interleave(gfp, order, interleave_nodes(pol)); else page = __alloc_pages_nodemask(gfp, order, policy_node(gfp, pol, numa_node_id()), policy_nodemask(gfp, pol)); return page; } EXPORT_SYMBOL(alloc_pages_current); int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst) { struct mempolicy *pol = mpol_dup(vma_policy(src)); if (IS_ERR(pol)) return PTR_ERR(pol); dst->vm_policy = pol; return 0; } /* * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it * rebinds the mempolicy its copying by calling mpol_rebind_policy() * with the mems_allowed returned by cpuset_mems_allowed(). This * keeps mempolicies cpuset relative after its cpuset moves. See * further kernel/cpuset.c update_nodemask(). * * current's mempolicy may be rebinded by the other task(the task that changes * cpuset's mems), so we needn't do rebind work for current task. */ /* Slow path of a mempolicy duplicate */ struct mempolicy *__mpol_dup(struct mempolicy *old) { struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL); if (!new) return ERR_PTR(-ENOMEM); /* task's mempolicy is protected by alloc_lock */ if (old == current->mempolicy) { task_lock(current); *new = *old; task_unlock(current); } else *new = *old; if (current_cpuset_is_being_rebound()) { nodemask_t mems = cpuset_mems_allowed(current); mpol_rebind_policy(new, &mems); } atomic_set(&new->refcnt, 1); return new; } /* Slow path of a mempolicy comparison */ bool __mpol_equal(struct mempolicy *a, struct mempolicy *b) { if (!a || !b) return false; if (a->mode != b->mode) return false; if (a->flags != b->flags) return false; if (mpol_store_user_nodemask(a)) if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask)) return false; switch (a->mode) { case MPOL_BIND: case MPOL_INTERLEAVE: return !!nodes_equal(a->v.nodes, b->v.nodes); case MPOL_PREFERRED: /* a's ->flags is the same as b's */ if (a->flags & MPOL_F_LOCAL) return true; return a->v.preferred_node == b->v.preferred_node; default: BUG(); return false; } } /* * Shared memory backing store policy support. * * Remember policies even when nobody has shared memory mapped. * The policies are kept in Red-Black tree linked from the inode. * They are protected by the sp->lock rwlock, which should be held * for any accesses to the tree. */ /* * lookup first element intersecting start-end. Caller holds sp->lock for * reading or for writing */ static struct sp_node * sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end) { struct rb_node *n = sp->root.rb_node; while (n) { struct sp_node *p = rb_entry(n, struct sp_node, nd); if (start >= p->end) n = n->rb_right; else if (end <= p->start) n = n->rb_left; else break; } if (!n) return NULL; for (;;) { struct sp_node *w = NULL; struct rb_node *prev = rb_prev(n); if (!prev) break; w = rb_entry(prev, struct sp_node, nd); if (w->end <= start) break; n = prev; } return rb_entry(n, struct sp_node, nd); } /* * Insert a new shared policy into the list. Caller holds sp->lock for * writing. */ static void sp_insert(struct shared_policy *sp, struct sp_node *new) { struct rb_node **p = &sp->root.rb_node; struct rb_node *parent = NULL; struct sp_node *nd; while (*p) { parent = *p; nd = rb_entry(parent, struct sp_node, nd); if (new->start < nd->start) p = &(*p)->rb_left; else if (new->end > nd->end) p = &(*p)->rb_right; else BUG(); } rb_link_node(&new->nd, parent, p); rb_insert_color(&new->nd, &sp->root); pr_debug("inserting %lx-%lx: %d\n", new->start, new->end, new->policy ? new->policy->mode : 0); } /* Find shared policy intersecting idx */ struct mempolicy * mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx) { struct mempolicy *pol = NULL; struct sp_node *sn; if (!sp->root.rb_node) return NULL; read_lock(&sp->lock); sn = sp_lookup(sp, idx, idx+1); if (sn) { mpol_get(sn->policy); pol = sn->policy; } read_unlock(&sp->lock); return pol; } static void sp_free(struct sp_node *n) { mpol_put(n->policy); kmem_cache_free(sn_cache, n); } /** * mpol_misplaced - check whether current page node is valid in policy * * @page: page to be checked * @vma: vm area where page mapped * @addr: virtual address where page mapped * * Lookup current policy node id for vma,addr and "compare to" page's * node id. * * Returns: * -1 - not misplaced, page is in the right node * node - node id where the page should be * * Policy determination "mimics" alloc_page_vma(). * Called from fault path where we know the vma and faulting address. */ int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr) { struct mempolicy *pol; struct zoneref *z; int curnid = page_to_nid(page); unsigned long pgoff; int thiscpu = raw_smp_processor_id(); int thisnid = cpu_to_node(thiscpu); int polnid = NUMA_NO_NODE; int ret = -1; pol = get_vma_policy(vma, addr); if (!(pol->flags & MPOL_F_MOF)) goto out; switch (pol->mode) { case MPOL_INTERLEAVE: pgoff = vma->vm_pgoff; pgoff += (addr - vma->vm_start) >> PAGE_SHIFT; polnid = offset_il_node(pol, pgoff); break; case MPOL_PREFERRED: if (pol->flags & MPOL_F_LOCAL) polnid = numa_node_id(); else polnid = pol->v.preferred_node; break; case MPOL_BIND: /* * allows binding to multiple nodes. * use current page if in policy nodemask, * else select nearest allowed node, if any. * If no allowed nodes, use current [!misplaced]. */ if (node_isset(curnid, pol->v.nodes)) goto out; z = first_zones_zonelist( node_zonelist(numa_node_id(), GFP_HIGHUSER), gfp_zone(GFP_HIGHUSER), &pol->v.nodes); polnid = zone_to_nid(z->zone); break; default: BUG(); } /* Migrate the page towards the node whose CPU is referencing it */ if (pol->flags & MPOL_F_MORON) { polnid = thisnid; if (!should_numa_migrate_memory(current, page, curnid, thiscpu)) goto out; } if (curnid != polnid) ret = polnid; out: mpol_cond_put(pol); return ret; } /* * Drop the (possibly final) reference to task->mempolicy. It needs to be * dropped after task->mempolicy is set to NULL so that any allocation done as * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed * policy. */ void mpol_put_task_policy(struct task_struct *task) { struct mempolicy *pol; task_lock(task); pol = task->mempolicy; task->mempolicy = NULL; task_unlock(task); mpol_put(pol); } static void sp_delete(struct shared_policy *sp, struct sp_node *n) { pr_debug("deleting %lx-l%lx\n", n->start, n->end); rb_erase(&n->nd, &sp->root); sp_free(n); } static void sp_node_init(struct sp_node *node, unsigned long start, unsigned long end, struct mempolicy *pol) { node->start = start; node->end = end; node->policy = pol; } static struct sp_node *sp_alloc(unsigned long start, unsigned long end, struct mempolicy *pol) { struct sp_node *n; struct mempolicy *newpol; n = kmem_cache_alloc(sn_cache, GFP_KERNEL); if (!n) return NULL; newpol = mpol_dup(pol); if (IS_ERR(newpol)) { kmem_cache_free(sn_cache, n); return NULL; } newpol->flags |= MPOL_F_SHARED; sp_node_init(n, start, end, newpol); return n; } /* Replace a policy range. */ static int shared_policy_replace(struct shared_policy *sp, unsigned long start, unsigned long end, struct sp_node *new) { struct sp_node *n; struct sp_node *n_new = NULL; struct mempolicy *mpol_new = NULL; int ret = 0; restart: write_lock(&sp->lock); n = sp_lookup(sp, start, end); /* Take care of old policies in the same range. */ while (n && n->start < end) { struct rb_node *next = rb_next(&n->nd); if (n->start >= start) { if (n->end <= end) sp_delete(sp, n); else n->start = end; } else { /* Old policy spanning whole new range. */ if (n->end > end) { if (!n_new) goto alloc_new; *mpol_new = *n->policy; atomic_set(&mpol_new->refcnt, 1); sp_node_init(n_new, end, n->end, mpol_new); n->end = start; sp_insert(sp, n_new); n_new = NULL; mpol_new = NULL; break; } else n->end = start; } if (!next) break; n = rb_entry(next, struct sp_node, nd); } if (new) sp_insert(sp, new); write_unlock(&sp->lock); ret = 0; err_out: if (mpol_new) mpol_put(mpol_new); if (n_new) kmem_cache_free(sn_cache, n_new); return ret; alloc_new: write_unlock(&sp->lock); ret = -ENOMEM; n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL); if (!n_new) goto err_out; mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL); if (!mpol_new) goto err_out; goto restart; } /** * mpol_shared_policy_init - initialize shared policy for inode * @sp: pointer to inode shared policy * @mpol: struct mempolicy to install * * Install non-NULL @mpol in inode's shared policy rb-tree. * On entry, the current task has a reference on a non-NULL @mpol. * This must be released on exit. * This is called at get_inode() calls and we can use GFP_KERNEL. */ void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol) { int ret; sp->root = RB_ROOT; /* empty tree == default mempolicy */ rwlock_init(&sp->lock); if (mpol) { struct vm_area_struct pvma; struct mempolicy *new; NODEMASK_SCRATCH(scratch); if (!scratch) goto put_mpol; /* contextualize the tmpfs mount point mempolicy */ new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask); if (IS_ERR(new)) goto free_scratch; /* no valid nodemask intersection */ task_lock(current); ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch); task_unlock(current); if (ret) goto put_new; /* Create pseudo-vma that contains just the policy */ vma_init(&pvma, NULL); pvma.vm_end = TASK_SIZE; /* policy covers entire file */ mpol_set_shared_policy(sp, &pvma, new); /* adds ref */ put_new: mpol_put(new); /* drop initial ref */ free_scratch: NODEMASK_SCRATCH_FREE(scratch); put_mpol: mpol_put(mpol); /* drop our incoming ref on sb mpol */ } } int mpol_set_shared_policy(struct shared_policy *info, struct vm_area_struct *vma, struct mempolicy *npol) { int err; struct sp_node *new = NULL; unsigned long sz = vma_pages(vma); pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n", vma->vm_pgoff, sz, npol ? npol->mode : -1, npol ? npol->flags : -1, npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE); if (npol) { new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol); if (!new) return -ENOMEM; } err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new); if (err && new) sp_free(new); return err; } /* Free a backing policy store on inode delete. */ void mpol_free_shared_policy(struct shared_policy *p) { struct sp_node *n; struct rb_node *next; if (!p->root.rb_node) return; write_lock(&p->lock); next = rb_first(&p->root); while (next) { n = rb_entry(next, struct sp_node, nd); next = rb_next(&n->nd); sp_delete(p, n); } write_unlock(&p->lock); } #ifdef CONFIG_NUMA_BALANCING static int __initdata numabalancing_override; static void __init check_numabalancing_enable(void) { bool numabalancing_default = false; if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED)) numabalancing_default = true; /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */ if (numabalancing_override) set_numabalancing_state(numabalancing_override == 1); if (num_online_nodes() > 1 && !numabalancing_override) { pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n", numabalancing_default ? "Enabling" : "Disabling"); set_numabalancing_state(numabalancing_default); } } static int __init setup_numabalancing(char *str) { int ret = 0; if (!str) goto out; if (!strcmp(str, "enable")) { numabalancing_override = 1; ret = 1; } else if (!strcmp(str, "disable")) { numabalancing_override = -1; ret = 1; } out: if (!ret) pr_warn("Unable to parse numa_balancing=\n"); return ret; } __setup("numa_balancing=", setup_numabalancing); #else static inline void __init check_numabalancing_enable(void) { } #endif /* CONFIG_NUMA_BALANCING */ /* assumes fs == KERNEL_DS */ void __init numa_policy_init(void) { nodemask_t interleave_nodes; unsigned long largest = 0; int nid, prefer = 0; policy_cache = kmem_cache_create("numa_policy", sizeof(struct mempolicy), 0, SLAB_PANIC, NULL); sn_cache = kmem_cache_create("shared_policy_node", sizeof(struct sp_node), 0, SLAB_PANIC, NULL); for_each_node(nid) { preferred_node_policy[nid] = (struct mempolicy) { .refcnt = ATOMIC_INIT(1), .mode = MPOL_PREFERRED, .flags = MPOL_F_MOF | MPOL_F_MORON, .v = { .preferred_node = nid, }, }; } /* * Set interleaving policy for system init. Interleaving is only * enabled across suitably sized nodes (default is >= 16MB), or * fall back to the largest node if they're all smaller. */ nodes_clear(interleave_nodes); for_each_node_state(nid, N_MEMORY) { unsigned long total_pages = node_present_pages(nid); /* Preserve the largest node */ if (largest < total_pages) { largest = total_pages; prefer = nid; } /* Interleave this node? */ if ((total_pages << PAGE_SHIFT) >= (16 << 20)) node_set(nid, interleave_nodes); } /* All too small, use the largest */ if (unlikely(nodes_empty(interleave_nodes))) node_set(prefer, interleave_nodes); if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes)) pr_err("%s: interleaving failed\n", __func__); check_numabalancing_enable(); } /* Reset policy of current process to default */ void numa_default_policy(void) { do_set_mempolicy(MPOL_DEFAULT, 0, NULL); } /* * Parse and format mempolicy from/to strings */ /* * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag. */ static const char * const policy_modes[] = { [MPOL_DEFAULT] = "default", [MPOL_PREFERRED] = "prefer", [MPOL_BIND] = "bind", [MPOL_INTERLEAVE] = "interleave", [MPOL_LOCAL] = "local", }; #ifdef CONFIG_TMPFS /** * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option. * @str: string containing mempolicy to parse * @mpol: pointer to struct mempolicy pointer, returned on success. * * Format of input: * <mode>[=<flags>][:<nodelist>] * * On success, returns 0, else 1 */ int mpol_parse_str(char *str, struct mempolicy **mpol) { struct mempolicy *new = NULL; unsigned short mode_flags; nodemask_t nodes; char *nodelist = strchr(str, ':'); char *flags = strchr(str, '='); int err = 1, mode; if (flags) *flags++ = '\0'; /* terminate mode string */ if (nodelist) { /* NUL-terminate mode or flags string */ *nodelist++ = '\0'; if (nodelist_parse(nodelist, nodes)) goto out; if (!nodes_subset(nodes, node_states[N_MEMORY])) goto out; } else nodes_clear(nodes); mode = match_string(policy_modes, MPOL_MAX, str); if (mode < 0) goto out; switch (mode) { case MPOL_PREFERRED: /* * Insist on a nodelist of one node only, although later * we use first_node(nodes) to grab a single node, so here * nodelist (or nodes) cannot be empty. */ if (nodelist) { char *rest = nodelist; while (isdigit(*rest)) rest++; if (*rest) goto out; if (nodes_empty(nodes)) goto out; } break; case MPOL_INTERLEAVE: /* * Default to online nodes with memory if no nodelist */ if (!nodelist) nodes = node_states[N_MEMORY]; break; case MPOL_LOCAL: /* * Don't allow a nodelist; mpol_new() checks flags */ if (nodelist) goto out; mode = MPOL_PREFERRED; break; case MPOL_DEFAULT: /* * Insist on a empty nodelist */ if (!nodelist) err = 0; goto out; case MPOL_BIND: /* * Insist on a nodelist */ if (!nodelist) goto out; } mode_flags = 0; if (flags) { /* * Currently, we only support two mutually exclusive * mode flags. */ if (!strcmp(flags, "static")) mode_flags |= MPOL_F_STATIC_NODES; else if (!strcmp(flags, "relative")) mode_flags |= MPOL_F_RELATIVE_NODES; else goto out; } new = mpol_new(mode, mode_flags, &nodes); if (IS_ERR(new)) goto out; /* * Save nodes for mpol_to_str() to show the tmpfs mount options * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo. */ if (mode != MPOL_PREFERRED) new->v.nodes = nodes; else if (nodelist) new->v.preferred_node = first_node(nodes); else new->flags |= MPOL_F_LOCAL; /* * Save nodes for contextualization: this will be used to "clone" * the mempolicy in a specific context [cpuset] at a later time. */ new->w.user_nodemask = nodes; err = 0; out: /* Restore string for error message */ if (nodelist) *--nodelist = ':'; if (flags) *--flags = '='; if (!err) *mpol = new; return err; } #endif /* CONFIG_TMPFS */ /** * mpol_to_str - format a mempolicy structure for printing * @buffer: to contain formatted mempolicy string * @maxlen: length of @buffer * @pol: pointer to mempolicy to be formatted * * Convert @pol into a string. If @buffer is too short, truncate the string. * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the * longest flag, "relative", and to display at least a few node ids. */ void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol) { char *p = buffer; nodemask_t nodes = NODE_MASK_NONE; unsigned short mode = MPOL_DEFAULT; unsigned short flags = 0; if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) { mode = pol->mode; flags = pol->flags; } switch (mode) { case MPOL_DEFAULT: break; case MPOL_PREFERRED: if (flags & MPOL_F_LOCAL) mode = MPOL_LOCAL; else node_set(pol->v.preferred_node, nodes); break; case MPOL_BIND: case MPOL_INTERLEAVE: nodes = pol->v.nodes; break; default: WARN_ON_ONCE(1); snprintf(p, maxlen, "unknown"); return; } p += snprintf(p, maxlen, "%s", policy_modes[mode]); if (flags & MPOL_MODE_FLAGS) { p += snprintf(p, buffer + maxlen - p, "="); /* * Currently, the only defined flags are mutually exclusive */ if (flags & MPOL_F_STATIC_NODES) p += snprintf(p, buffer + maxlen - p, "static"); else if (flags & MPOL_F_RELATIVE_NODES) p += snprintf(p, buffer + maxlen - p, "relative"); } if (!nodes_empty(nodes)) p += scnprintf(p, buffer + maxlen - p, ":%*pbl", nodemask_pr_args(&nodes)); }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 /* SPDX-License-Identifier: GPL-2.0-only */ #ifndef _INPUT_MT_H #define _INPUT_MT_H /* * Input Multitouch Library * * Copyright (c) 2010 Henrik Rydberg */ #include <linux/input.h> #define TRKID_MAX 0xffff #define INPUT_MT_POINTER 0x0001 /* pointer device, e.g. trackpad */ #define INPUT_MT_DIRECT 0x0002 /* direct device, e.g. touchscreen */ #define INPUT_MT_DROP_UNUSED 0x0004 /* drop contacts not seen in frame */ #define INPUT_MT_TRACK 0x0008 /* use in-kernel tracking */ #define INPUT_MT_SEMI_MT 0x0010 /* semi-mt device, finger count handled manually */ /** * struct input_mt_slot - represents the state of an input MT slot * @abs: holds current values of ABS_MT axes for this slot * @frame: last frame at which input_mt_report_slot_state() was called * @key: optional driver designation of this slot */ struct input_mt_slot { int abs[ABS_MT_LAST - ABS_MT_FIRST + 1]; unsigned int frame; unsigned int key; }; /** * struct input_mt - state of tracked contacts * @trkid: stores MT tracking ID for the next contact * @num_slots: number of MT slots the device uses * @slot: MT slot currently being transmitted * @flags: input_mt operation flags * @frame: increases every time input_mt_sync_frame() is called * @red: reduced cost matrix for in-kernel tracking * @slots: array of slots holding current values of tracked contacts */ struct input_mt { int trkid; int num_slots; int slot; unsigned int flags; unsigned int frame; int *red; struct input_mt_slot slots[]; }; static inline void input_mt_set_value(struct input_mt_slot *slot, unsigned code, int value) { slot->abs[code - ABS_MT_FIRST] = value; } static inline int input_mt_get_value(const struct input_mt_slot *slot, unsigned code) { return slot->abs[code - ABS_MT_FIRST]; } static inline bool input_mt_is_active(const struct input_mt_slot *slot) { return input_mt_get_value(slot, ABS_MT_TRACKING_ID) >= 0; } static inline bool input_mt_is_used(const struct input_mt *mt, const struct input_mt_slot *slot) { return slot->frame == mt->frame; } int input_mt_init_slots(struct input_dev *dev, unsigned int num_slots, unsigned int flags); void input_mt_destroy_slots(struct input_dev *dev); static inline int input_mt_new_trkid(struct input_mt *mt) { return mt->trkid++ & TRKID_MAX; } static inline void input_mt_slot(struct input_dev *dev, int slot) { input_event(dev, EV_ABS, ABS_MT_SLOT, slot); } static inline bool input_is_mt_value(int axis) { return axis >= ABS_MT_FIRST && axis <= ABS_MT_LAST; } static inline bool input_is_mt_axis(int axis) { return axis == ABS_MT_SLOT || input_is_mt_value(axis); } bool input_mt_report_slot_state(struct input_dev *dev, unsigned int tool_type, bool active); static inline void input_mt_report_slot_inactive(struct input_dev *dev) { input_mt_report_slot_state(dev, 0, false); } void input_mt_report_finger_count(struct input_dev *dev, int count); void input_mt_report_pointer_emulation(struct input_dev *dev, bool use_count); void input_mt_drop_unused(struct input_dev *dev); void input_mt_sync_frame(struct input_dev *dev); /** * struct input_mt_pos - contact position * @x: horizontal coordinate * @y: vertical coordinate */ struct input_mt_pos { s16 x, y; }; int input_mt_assign_slots(struct input_dev *dev, int *slots, const struct input_mt_pos *pos, int num_pos, int dmax); int input_mt_get_slot_by_key(struct input_dev *dev, int key); #endif
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_DCACHE_H #define __LINUX_DCACHE_H #include <linux/atomic.h> #include <linux/list.h> #include <linux/rculist.h> #include <linux/rculist_bl.h> #include <linux/spinlock.h> #include <linux/seqlock.h> #include <linux/cache.h> #include <linux/rcupdate.h> #include <linux/lockref.h> #include <linux/stringhash.h> #include <linux/wait.h> struct path; struct vfsmount; /* * linux/include/linux/dcache.h * * Dirent cache data structures * * (C) Copyright 1997 Thomas Schoebel-Theuer, * with heavy changes by Linus Torvalds */ #define IS_ROOT(x) ((x) == (x)->d_parent) /* The hash is always the low bits of hash_len */ #ifdef __LITTLE_ENDIAN #define HASH_LEN_DECLARE u32 hash; u32 len #define bytemask_from_count(cnt) (~(~0ul << (cnt)*8)) #else #define HASH_LEN_DECLARE u32 len; u32 hash #define bytemask_from_count(cnt) (~(~0ul >> (cnt)*8)) #endif /* * "quick string" -- eases parameter passing, but more importantly * saves "metadata" about the string (ie length and the hash). * * hash comes first so it snuggles against d_parent in the * dentry. */ struct qstr { union { struct { HASH_LEN_DECLARE; }; u64 hash_len; }; const unsigned char *name; }; #define QSTR_INIT(n,l) { { { .len = l } }, .name = n } extern const struct qstr empty_name; extern const struct qstr slash_name; struct dentry_stat_t { long nr_dentry; long nr_unused; long age_limit; /* age in seconds */ long want_pages; /* pages requested by system */ long nr_negative; /* # of unused negative dentries */ long dummy; /* Reserved for future use */ }; extern struct dentry_stat_t dentry_stat; /* * Try to keep struct dentry aligned on 64 byte cachelines (this will * give reasonable cacheline footprint with larger lines without the * large memory footprint increase). */ #ifdef CONFIG_64BIT # define DNAME_INLINE_LEN 32 /* 192 bytes */ #else # ifdef CONFIG_SMP # define DNAME_INLINE_LEN 36 /* 128 bytes */ # else # define DNAME_INLINE_LEN 40 /* 128 bytes */ # endif #endif #define d_lock d_lockref.lock struct dentry { /* RCU lookup touched fields */ unsigned int d_flags; /* protected by d_lock */ seqcount_spinlock_t d_seq; /* per dentry seqlock */ struct hlist_bl_node d_hash; /* lookup hash list */ struct dentry *d_parent; /* parent directory */ struct qstr d_name; struct inode *d_inode; /* Where the name belongs to - NULL is * negative */ unsigned char d_iname[DNAME_INLINE_LEN]; /* small names */ /* Ref lookup also touches following */ struct lockref d_lockref; /* per-dentry lock and refcount */ const struct dentry_operations *d_op; struct super_block *d_sb; /* The root of the dentry tree */ unsigned long d_time; /* used by d_revalidate */ void *d_fsdata; /* fs-specific data */ union { struct list_head d_lru; /* LRU list */ wait_queue_head_t *d_wait; /* in-lookup ones only */ }; struct list_head d_child; /* child of parent list */ struct list_head d_subdirs; /* our children */ /* * d_alias and d_rcu can share memory */ union { struct hlist_node d_alias; /* inode alias list */ struct hlist_bl_node d_in_lookup_hash; /* only for in-lookup ones */ struct rcu_head d_rcu; } d_u; } __randomize_layout; /* * dentry->d_lock spinlock nesting subclasses: * * 0: normal * 1: nested */ enum dentry_d_lock_class { DENTRY_D_LOCK_NORMAL, /* implicitly used by plain spin_lock() APIs. */ DENTRY_D_LOCK_NESTED }; struct dentry_operations { int (*d_revalidate)(struct dentry *, unsigned int); int (*d_weak_revalidate)(struct dentry *, unsigned int); int (*d_hash)(const struct dentry *, struct qstr *); int (*d_compare)(const struct dentry *, unsigned int, const char *, const struct qstr *); int (*d_delete)(const struct dentry *); int (*d_init)(struct dentry *); void (*d_release)(struct dentry *); void (*d_prune)(struct dentry *); void (*d_iput)(struct dentry *, struct inode *); char *(*d_dname)(struct dentry *, char *, int); struct vfsmount *(*d_automount)(struct path *); int (*d_manage)(const struct path *, bool); struct dentry *(*d_real)(struct dentry *, const struct inode *); } ____cacheline_aligned; /* * Locking rules for dentry_operations callbacks are to be found in * Documentation/filesystems/locking.rst. Keep it updated! * * FUrther descriptions are found in Documentation/filesystems/vfs.rst. * Keep it updated too! */ /* d_flags entries */ #define DCACHE_OP_HASH 0x00000001 #define DCACHE_OP_COMPARE 0x00000002 #define DCACHE_OP_REVALIDATE 0x00000004 #define DCACHE_OP_DELETE 0x00000008 #define DCACHE_OP_PRUNE 0x00000010 #define DCACHE_DISCONNECTED 0x00000020 /* This dentry is possibly not currently connected to the dcache tree, in * which case its parent will either be itself, or will have this flag as * well. nfsd will not use a dentry with this bit set, but will first * endeavour to clear the bit either by discovering that it is connected, * or by performing lookup operations. Any filesystem which supports * nfsd_operations MUST have a lookup function which, if it finds a * directory inode with a DCACHE_DISCONNECTED dentry, will d_move that * dentry into place and return that dentry rather than the passed one, * typically using d_splice_alias. */ #define DCACHE_REFERENCED 0x00000040 /* Recently used, don't discard. */ #define DCACHE_DONTCACHE 0x00000080 /* Purge from memory on final dput() */ #define DCACHE_CANT_MOUNT 0x00000100 #define DCACHE_GENOCIDE 0x00000200 #define DCACHE_SHRINK_LIST 0x00000400 #define DCACHE_OP_WEAK_REVALIDATE 0x00000800 #define DCACHE_NFSFS_RENAMED 0x00001000 /* this dentry has been "silly renamed" and has to be deleted on the last * dput() */ #define DCACHE_COOKIE 0x00002000 /* For use by dcookie subsystem */ #define DCACHE_FSNOTIFY_PARENT_WATCHED 0x00004000 /* Parent inode is watched by some fsnotify listener */ #define DCACHE_DENTRY_KILLED 0x00008000 #define DCACHE_MOUNTED 0x00010000 /* is a mountpoint */ #define DCACHE_NEED_AUTOMOUNT 0x00020000 /* handle automount on this dir */ #define DCACHE_MANAGE_TRANSIT 0x00040000 /* manage transit from this dirent */ #define DCACHE_MANAGED_DENTRY \ (DCACHE_MOUNTED|DCACHE_NEED_AUTOMOUNT|DCACHE_MANAGE_TRANSIT) #define DCACHE_LRU_LIST 0x00080000 #define DCACHE_ENTRY_TYPE 0x00700000 #define DCACHE_MISS_TYPE 0x00000000 /* Negative dentry (maybe fallthru to nowhere) */ #define DCACHE_WHITEOUT_TYPE 0x00100000 /* Whiteout dentry (stop pathwalk) */ #define DCACHE_DIRECTORY_TYPE 0x00200000 /* Normal directory */ #define DCACHE_AUTODIR_TYPE 0x00300000 /* Lookupless directory (presumed automount) */ #define DCACHE_REGULAR_TYPE 0x00400000 /* Regular file type (or fallthru to such) */ #define DCACHE_SPECIAL_TYPE 0x00500000 /* Other file type (or fallthru to such) */ #define DCACHE_SYMLINK_TYPE 0x00600000 /* Symlink (or fallthru to such) */ #define DCACHE_MAY_FREE 0x00800000 #define DCACHE_FALLTHRU 0x01000000 /* Fall through to lower layer */ #define DCACHE_NOKEY_NAME 0x02000000 /* Encrypted name encoded without key */ #define DCACHE_OP_REAL 0x04000000 #define DCACHE_PAR_LOOKUP 0x10000000 /* being looked up (with parent locked shared) */ #define DCACHE_DENTRY_CURSOR 0x20000000 #define DCACHE_NORCU 0x40000000 /* No RCU delay for freeing */ extern seqlock_t rename_lock; /* * These are the low-level FS interfaces to the dcache.. */ extern void d_instantiate(struct dentry *, struct inode *); extern void d_instantiate_new(struct dentry *, struct inode *); extern struct dentry * d_instantiate_unique(struct dentry *, struct inode *); extern struct dentry * d_instantiate_anon(struct dentry *, struct inode *); extern void __d_drop(struct dentry *dentry); extern void d_drop(struct dentry *dentry); extern void d_delete(struct dentry *); extern void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op); /* allocate/de-allocate */ extern struct dentry * d_alloc(struct dentry *, const struct qstr *); extern struct dentry * d_alloc_anon(struct super_block *); extern struct dentry * d_alloc_parallel(struct dentry *, const struct qstr *, wait_queue_head_t *); extern struct dentry * d_splice_alias(struct inode *, struct dentry *); extern struct dentry * d_add_ci(struct dentry *, struct inode *, struct qstr *); extern struct dentry * d_exact_alias(struct dentry *, struct inode *); extern struct dentry *d_find_any_alias(struct inode *inode); extern struct dentry * d_obtain_alias(struct inode *); extern struct dentry * d_obtain_root(struct inode *); extern void shrink_dcache_sb(struct super_block *); extern void shrink_dcache_parent(struct dentry *); extern void shrink_dcache_for_umount(struct super_block *); extern void d_invalidate(struct dentry *); /* only used at mount-time */ extern struct dentry * d_make_root(struct inode *); /* <clickety>-<click> the ramfs-type tree */ extern void d_genocide(struct dentry *); extern void d_tmpfile(struct dentry *, struct inode *); extern struct dentry *d_find_alias(struct inode *); extern void d_prune_aliases(struct inode *); /* test whether we have any submounts in a subdir tree */ extern int path_has_submounts(const struct path *); /* * This adds the entry to the hash queues. */ extern void d_rehash(struct dentry *); extern void d_add(struct dentry *, struct inode *); /* used for rename() and baskets */ extern void d_move(struct dentry *, struct dentry *); extern void d_exchange(struct dentry *, struct dentry *); extern struct dentry *d_ancestor(struct dentry *, struct dentry *); /* appendix may either be NULL or be used for transname suffixes */ extern struct dentry *d_lookup(const struct dentry *, const struct qstr *); extern struct dentry *d_hash_and_lookup(struct dentry *, struct qstr *); extern struct dentry *__d_lookup(const struct dentry *, const struct qstr *); extern struct dentry *__d_lookup_rcu(const struct dentry *parent, const struct qstr *name, unsigned *seq); static inline unsigned d_count(const struct dentry *dentry) { return dentry->d_lockref.count; } /* * helper function for dentry_operations.d_dname() members */ extern __printf(4, 5) char *dynamic_dname(struct dentry *, char *, int, const char *, ...); extern char *__d_path(const struct path *, const struct path *, char *, int); extern char *d_absolute_path(const struct path *, char *, int); extern char *d_path(const struct path *, char *, int); extern char *dentry_path_raw(struct dentry *, char *, int); extern char *dentry_path(struct dentry *, char *, int); /* Allocation counts.. */ /** * dget, dget_dlock - get a reference to a dentry * @dentry: dentry to get a reference to * * Given a dentry or %NULL pointer increment the reference count * if appropriate and return the dentry. A dentry will not be * destroyed when it has references. */ static inline struct dentry *dget_dlock(struct dentry *dentry) { if (dentry) dentry->d_lockref.count++; return dentry; } static inline struct dentry *dget(struct dentry *dentry) { if (dentry) lockref_get(&dentry->d_lockref); return dentry; } extern struct dentry *dget_parent(struct dentry *dentry); /** * d_unhashed - is dentry hashed * @dentry: entry to check * * Returns true if the dentry passed is not currently hashed. */ static inline int d_unhashed(const struct dentry *dentry) { return hlist_bl_unhashed(&dentry->d_hash); } static inline int d_unlinked(const struct dentry *dentry) { return d_unhashed(dentry) && !IS_ROOT(dentry); } static inline int cant_mount(const struct dentry *dentry) { return (dentry->d_flags & DCACHE_CANT_MOUNT); } static inline void dont_mount(struct dentry *dentry) { spin_lock(&dentry->d_lock); dentry->d_flags |= DCACHE_CANT_MOUNT; spin_unlock(&dentry->d_lock); } extern void __d_lookup_done(struct dentry *); static inline int d_in_lookup(const struct dentry *dentry) { return dentry->d_flags & DCACHE_PAR_LOOKUP; } static inline void d_lookup_done(struct dentry *dentry) { if (unlikely(d_in_lookup(dentry))) { spin_lock(&dentry->d_lock); __d_lookup_done(dentry); spin_unlock(&dentry->d_lock); } } extern void dput(struct dentry *); static inline bool d_managed(const struct dentry *dentry) { return dentry->d_flags & DCACHE_MANAGED_DENTRY; } static inline bool d_mountpoint(const struct dentry *dentry) { return dentry->d_flags & DCACHE_MOUNTED; } /* * Directory cache entry type accessor functions. */ static inline unsigned __d_entry_type(const struct dentry *dentry) { return dentry->d_flags & DCACHE_ENTRY_TYPE; } static inline bool d_is_miss(const struct dentry *dentry) { return __d_entry_type(dentry) == DCACHE_MISS_TYPE; } static inline bool d_is_whiteout(const struct dentry *dentry) { return __d_entry_type(dentry) == DCACHE_WHITEOUT_TYPE; } static inline bool d_can_lookup(const struct dentry *dentry) { return __d_entry_type(dentry) == DCACHE_DIRECTORY_TYPE; } static inline bool d_is_autodir(const struct dentry *dentry) { return __d_entry_type(dentry) == DCACHE_AUTODIR_TYPE; } static inline bool d_is_dir(const struct dentry *dentry) { return d_can_lookup(dentry) || d_is_autodir(dentry); } static inline bool d_is_symlink(const struct dentry *dentry) { return __d_entry_type(dentry) == DCACHE_SYMLINK_TYPE; } static inline bool d_is_reg(const struct dentry *dentry) { return __d_entry_type(dentry) == DCACHE_REGULAR_TYPE; } static inline bool d_is_special(const struct dentry *dentry) { return __d_entry_type(dentry) == DCACHE_SPECIAL_TYPE; } static inline bool d_is_file(const struct dentry *dentry) { return d_is_reg(dentry) || d_is_special(dentry); } static inline bool d_is_negative(const struct dentry *dentry) { // TODO: check d_is_whiteout(dentry) also. return d_is_miss(dentry); } static inline bool d_flags_negative(unsigned flags) { return (flags & DCACHE_ENTRY_TYPE) == DCACHE_MISS_TYPE; } static inline bool d_is_positive(const struct dentry *dentry) { return !d_is_negative(dentry); } /** * d_really_is_negative - Determine if a dentry is really negative (ignoring fallthroughs) * @dentry: The dentry in question * * Returns true if the dentry represents either an absent name or a name that * doesn't map to an inode (ie. ->d_inode is NULL). The dentry could represent * a true miss, a whiteout that isn't represented by a 0,0 chardev or a * fallthrough marker in an opaque directory. * * Note! (1) This should be used *only* by a filesystem to examine its own * dentries. It should not be used to look at some other filesystem's * dentries. (2) It should also be used in combination with d_inode() to get * the inode. (3) The dentry may have something attached to ->d_lower and the * type field of the flags may be set to something other than miss or whiteout. */ static inline bool d_really_is_negative(const struct dentry *dentry) { return dentry->d_inode == NULL; } /** * d_really_is_positive - Determine if a dentry is really positive (ignoring fallthroughs) * @dentry: The dentry in question * * Returns true if the dentry represents a name that maps to an inode * (ie. ->d_inode is not NULL). The dentry might still represent a whiteout if * that is represented on medium as a 0,0 chardev. * * Note! (1) This should be used *only* by a filesystem to examine its own * dentries. It should not be used to look at some other filesystem's * dentries. (2) It should also be used in combination with d_inode() to get * the inode. */ static inline bool d_really_is_positive(const struct dentry *dentry) { return dentry->d_inode != NULL; } static inline int simple_positive(const struct dentry *dentry) { return d_really_is_positive(dentry) && !d_unhashed(dentry); } extern void d_set_fallthru(struct dentry *dentry); static inline bool d_is_fallthru(const struct dentry *dentry) { return dentry->d_flags & DCACHE_FALLTHRU; } extern int sysctl_vfs_cache_pressure; static inline unsigned long vfs_pressure_ratio(unsigned long val) { return mult_frac(val, sysctl_vfs_cache_pressure, 100); } /** * d_inode - Get the actual inode of this dentry * @dentry: The dentry to query * * This is the helper normal filesystems should use to get at their own inodes * in their own dentries and ignore the layering superimposed upon them. */ static inline struct inode *d_inode(const struct dentry *dentry) { return dentry->d_inode; } /** * d_inode_rcu - Get the actual inode of this dentry with READ_ONCE() * @dentry: The dentry to query * * This is the helper normal filesystems should use to get at their own inodes * in their own dentries and ignore the layering superimposed upon them. */ static inline struct inode *d_inode_rcu(const struct dentry *dentry) { return READ_ONCE(dentry->d_inode); } /** * d_backing_inode - Get upper or lower inode we should be using * @upper: The upper layer * * This is the helper that should be used to get at the inode that will be used * if this dentry were to be opened as a file. The inode may be on the upper * dentry or it may be on a lower dentry pinned by the upper. * * Normal filesystems should not use this to access their own inodes. */ static inline struct inode *d_backing_inode(const struct dentry *upper) { struct inode *inode = upper->d_inode; return inode; } /** * d_backing_dentry - Get upper or lower dentry we should be using * @upper: The upper layer * * This is the helper that should be used to get the dentry of the inode that * will be used if this dentry were opened as a file. It may be the upper * dentry or it may be a lower dentry pinned by the upper. * * Normal filesystems should not use this to access their own dentries. */ static inline struct dentry *d_backing_dentry(struct dentry *upper) { return upper; } /** * d_real - Return the real dentry * @dentry: the dentry to query * @inode: inode to select the dentry from multiple layers (can be NULL) * * If dentry is on a union/overlay, then return the underlying, real dentry. * Otherwise return the dentry itself. * * See also: Documentation/filesystems/vfs.rst */ static inline struct dentry *d_real(struct dentry *dentry, const struct inode *inode) { if (unlikely(dentry->d_flags & DCACHE_OP_REAL)) return dentry->d_op->d_real(dentry, inode); else return dentry; } /** * d_real_inode - Return the real inode * @dentry: The dentry to query * * If dentry is on a union/overlay, then return the underlying, real inode. * Otherwise return d_inode(). */ static inline struct inode *d_real_inode(const struct dentry *dentry) { /* This usage of d_real() results in const dentry */ return d_backing_inode(d_real((struct dentry *) dentry, NULL)); } struct name_snapshot { struct qstr name; unsigned char inline_name[DNAME_INLINE_LEN]; }; void take_dentry_name_snapshot(struct name_snapshot *, struct dentry *); void release_dentry_name_snapshot(struct name_snapshot *); #endif /* __LINUX_DCACHE_H */
1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 // SPDX-License-Identifier: GPL-2.0-or-later /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Ethernet-type device handling. * * Version: @(#)eth.c 1.0.7 05/25/93 * * Authors: Ross Biro * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> * Mark Evans, <evansmp@uhura.aston.ac.uk> * Florian La Roche, <rzsfl@rz.uni-sb.de> * Alan Cox, <gw4pts@gw4pts.ampr.org> * * Fixes: * Mr Linux : Arp problems * Alan Cox : Generic queue tidyup (very tiny here) * Alan Cox : eth_header ntohs should be htons * Alan Cox : eth_rebuild_header missing an htons and * minor other things. * Tegge : Arp bug fixes. * Florian : Removed many unnecessary functions, code cleanup * and changes for new arp and skbuff. * Alan Cox : Redid header building to reflect new format. * Alan Cox : ARP only when compiled with CONFIG_INET * Greg Page : 802.2 and SNAP stuff. * Alan Cox : MAC layer pointers/new format. * Paul Gortmaker : eth_copy_and_sum shouldn't csum padding. * Alan Cox : Protect against forwarding explosions with * older network drivers and IFF_ALLMULTI. * Christer Weinigel : Better rebuild header message. * Andrew Morton : 26Feb01: kill ether_setup() - use netdev_boot_setup(). */ #include <linux/module.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/string.h> #include <linux/mm.h> #include <linux/socket.h> #include <linux/in.h> #include <linux/inet.h> #include <linux/ip.h> #include <linux/netdevice.h> #include <linux/nvmem-consumer.h> #include <linux/etherdevice.h> #include <linux/skbuff.h> #include <linux/errno.h> #include <linux/init.h> #include <linux/if_ether.h> #include <linux/of_net.h> #include <linux/pci.h> #include <net/dst.h> #include <net/arp.h> #include <net/sock.h> #include <net/ipv6.h> #include <net/ip.h> #include <net/dsa.h> #include <net/flow_dissector.h> #include <linux/uaccess.h> #include <net/pkt_sched.h> __setup("ether=", netdev_boot_setup); /** * eth_header - create the Ethernet header * @skb: buffer to alter * @dev: source device * @type: Ethernet type field * @daddr: destination address (NULL leave destination address) * @saddr: source address (NULL use device source address) * @len: packet length (<= skb->len) * * * Set the protocol type. For a packet of type ETH_P_802_3/2 we put the length * in here instead. */ int eth_header(struct sk_buff *skb, struct net_device *dev, unsigned short type, const void *daddr, const void *saddr, unsigned int len) { struct ethhdr *eth = skb_push(skb, ETH_HLEN); if (type != ETH_P_802_3 && type != ETH_P_802_2) eth->h_proto = htons(type); else eth->h_proto = htons(len); /* * Set the source hardware address. */ if (!saddr) saddr = dev->dev_addr; memcpy(eth->h_source, saddr, ETH_ALEN); if (daddr) { memcpy(eth->h_dest, daddr, ETH_ALEN); return ETH_HLEN; } /* * Anyway, the loopback-device should never use this function... */ if (dev->flags & (IFF_LOOPBACK | IFF_NOARP)) { eth_zero_addr(eth->h_dest); return ETH_HLEN; } return -ETH_HLEN; } EXPORT_SYMBOL(eth_header); /** * eth_get_headlen - determine the length of header for an ethernet frame * @dev: pointer to network device * @data: pointer to start of frame * @len: total length of frame * * Make a best effort attempt to pull the length for all of the headers for * a given frame in a linear buffer. */ u32 eth_get_headlen(const struct net_device *dev, void *data, unsigned int len) { const unsigned int flags = FLOW_DISSECTOR_F_PARSE_1ST_FRAG; const struct ethhdr *eth = (const struct ethhdr *)data; struct flow_keys_basic keys; /* this should never happen, but better safe than sorry */ if (unlikely(len < sizeof(*eth))) return len; /* parse any remaining L2/L3 headers, check for L4 */ if (!skb_flow_dissect_flow_keys_basic(dev_net(dev), NULL, &keys, data, eth->h_proto, sizeof(*eth), len, flags)) return max_t(u32, keys.control.thoff, sizeof(*eth)); /* parse for any L4 headers */ return min_t(u32, __skb_get_poff(NULL, data, &keys, len), len); } EXPORT_SYMBOL(eth_get_headlen); /** * eth_type_trans - determine the packet's protocol ID. * @skb: received socket data * @dev: receiving network device * * The rule here is that we * assume 802.3 if the type field is short enough to be a length. * This is normal practice and works for any 'now in use' protocol. */ __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev) { unsigned short _service_access_point; const unsigned short *sap; const struct ethhdr *eth; skb->dev = dev; skb_reset_mac_header(skb); eth = (struct ethhdr *)skb->data; skb_pull_inline(skb, ETH_HLEN); if (unlikely(!ether_addr_equal_64bits(eth->h_dest, dev->dev_addr))) { if (unlikely(is_multicast_ether_addr_64bits(eth->h_dest))) { if (ether_addr_equal_64bits(eth->h_dest, dev->broadcast)) skb->pkt_type = PACKET_BROADCAST; else skb->pkt_type = PACKET_MULTICAST; } else { skb->pkt_type = PACKET_OTHERHOST; } } /* * Some variants of DSA tagging don't have an ethertype field * at all, so we check here whether one of those tagging * variants has been configured on the receiving interface, * and if so, set skb->protocol without looking at the packet. * The DSA tagging protocol may be able to decode some but not all * traffic (for example only for management). In that case give it the * option to filter the packets from which it can decode source port * information. */ if (unlikely(netdev_uses_dsa(dev)) && dsa_can_decode(skb, dev)) return htons(ETH_P_XDSA); if (likely(eth_proto_is_802_3(eth->h_proto))) return eth->h_proto; /* * This is a magic hack to spot IPX packets. Older Novell breaks * the protocol design and runs IPX over 802.3 without an 802.2 LLC * layer. We look for FFFF which isn't a used 802.2 SSAP/DSAP. This * won't work for fault tolerant netware but does for the rest. */ sap = skb_header_pointer(skb, 0, sizeof(*sap), &_service_access_point); if (sap && *sap == 0xFFFF) return htons(ETH_P_802_3); /* * Real 802.2 LLC */ return htons(ETH_P_802_2); } EXPORT_SYMBOL(eth_type_trans); /** * eth_header_parse - extract hardware address from packet * @skb: packet to extract header from * @haddr: destination buffer */ int eth_header_parse(const struct sk_buff *skb, unsigned char *haddr) { const struct ethhdr *eth = eth_hdr(skb); memcpy(haddr, eth->h_source, ETH_ALEN); return ETH_ALEN; } EXPORT_SYMBOL(eth_header_parse); /** * eth_header_cache - fill cache entry from neighbour * @neigh: source neighbour * @hh: destination cache entry * @type: Ethernet type field * * Create an Ethernet header template from the neighbour. */ int eth_header_cache(const struct neighbour *neigh, struct hh_cache *hh, __be16 type) { struct ethhdr *eth; const struct net_device *dev = neigh->dev; eth = (struct ethhdr *) (((u8 *) hh->hh_data) + (HH_DATA_OFF(sizeof(*eth)))); if (type == htons(ETH_P_802_3)) return -1; eth->h_proto = type; memcpy(eth->h_source, dev->dev_addr, ETH_ALEN); memcpy(eth->h_dest, neigh->ha, ETH_ALEN); /* Pairs with READ_ONCE() in neigh_resolve_output(), * neigh_hh_output() and neigh_update_hhs(). */ smp_store_release(&hh->hh_len, ETH_HLEN); return 0; } EXPORT_SYMBOL(eth_header_cache); /** * eth_header_cache_update - update cache entry * @hh: destination cache entry * @dev: network device * @haddr: new hardware address * * Called by Address Resolution module to notify changes in address. */ void eth_header_cache_update(struct hh_cache *hh, const struct net_device *dev, const unsigned char *haddr) { memcpy(((u8 *) hh->hh_data) + HH_DATA_OFF(sizeof(struct ethhdr)), haddr, ETH_ALEN); } EXPORT_SYMBOL(eth_header_cache_update); /** * eth_header_parser_protocol - extract protocol from L2 header * @skb: packet to extract protocol from */ __be16 eth_header_parse_protocol(const struct sk_buff *skb) { const struct ethhdr *eth = eth_hdr(skb); return eth->h_proto; } EXPORT_SYMBOL(eth_header_parse_protocol); /** * eth_prepare_mac_addr_change - prepare for mac change * @dev: network device * @p: socket address */ int eth_prepare_mac_addr_change(struct net_device *dev, void *p) { struct sockaddr *addr = p; if (!(dev->priv_flags & IFF_LIVE_ADDR_CHANGE) && netif_running(dev)) return -EBUSY; if (!is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; return 0; } EXPORT_SYMBOL(eth_prepare_mac_addr_change); /** * eth_commit_mac_addr_change - commit mac change * @dev: network device * @p: socket address */ void eth_commit_mac_addr_change(struct net_device *dev, void *p) { struct sockaddr *addr = p; memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN); } EXPORT_SYMBOL(eth_commit_mac_addr_change); /** * eth_mac_addr - set new Ethernet hardware address * @dev: network device * @p: socket address * * Change hardware address of device. * * This doesn't change hardware matching, so needs to be overridden * for most real devices. */ int eth_mac_addr(struct net_device *dev, void *p) { int ret; ret = eth_prepare_mac_addr_change(dev, p); if (ret < 0) return ret; eth_commit_mac_addr_change(dev, p); return 0; } EXPORT_SYMBOL(eth_mac_addr); int eth_validate_addr(struct net_device *dev) { if (!is_valid_ether_addr(dev->dev_addr)) return -EADDRNOTAVAIL; return 0; } EXPORT_SYMBOL(eth_validate_addr); const struct header_ops eth_header_ops ____cacheline_aligned = { .create = eth_header, .parse = eth_header_parse, .cache = eth_header_cache, .cache_update = eth_header_cache_update, .parse_protocol = eth_header_parse_protocol, }; /** * ether_setup - setup Ethernet network device * @dev: network device * * Fill in the fields of the device structure with Ethernet-generic values. */ void ether_setup(struct net_device *dev) { dev->header_ops = &eth_header_ops; dev->type = ARPHRD_ETHER; dev->hard_header_len = ETH_HLEN; dev->min_header_len = ETH_HLEN; dev->mtu = ETH_DATA_LEN; dev->min_mtu = ETH_MIN_MTU; dev->max_mtu = ETH_DATA_LEN; dev->addr_len = ETH_ALEN; dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; dev->flags = IFF_BROADCAST|IFF_MULTICAST; dev->priv_flags |= IFF_TX_SKB_SHARING; eth_broadcast_addr(dev->broadcast); } EXPORT_SYMBOL(ether_setup); /** * alloc_etherdev_mqs - Allocates and sets up an Ethernet device * @sizeof_priv: Size of additional driver-private structure to be allocated * for this Ethernet device * @txqs: The number of TX queues this device has. * @rxqs: The number of RX queues this device has. * * Fill in the fields of the device structure with Ethernet-generic * values. Basically does everything except registering the device. * * Constructs a new net device, complete with a private data area of * size (sizeof_priv). A 32-byte (not bit) alignment is enforced for * this private data area. */ struct net_device *alloc_etherdev_mqs(int sizeof_priv, unsigned int txqs, unsigned int rxqs) { return alloc_netdev_mqs(sizeof_priv, "eth%d", NET_NAME_UNKNOWN, ether_setup, txqs, rxqs); } EXPORT_SYMBOL(alloc_etherdev_mqs); ssize_t sysfs_format_mac(char *buf, const unsigned char *addr, int len) { return scnprintf(buf, PAGE_SIZE, "%*phC\n", len, addr); } EXPORT_SYMBOL(sysfs_format_mac); struct sk_buff *eth_gro_receive(struct list_head *head, struct sk_buff *skb) { const struct packet_offload *ptype; unsigned int hlen, off_eth; struct sk_buff *pp = NULL; struct ethhdr *eh, *eh2; struct sk_buff *p; __be16 type; int flush = 1; off_eth = skb_gro_offset(skb); hlen = off_eth + sizeof(*eh); eh = skb_gro_header_fast(skb, off_eth); if (skb_gro_header_hard(skb, hlen)) { eh = skb_gro_header_slow(skb, hlen, off_eth); if (unlikely(!eh)) goto out; } flush = 0; list_for_each_entry(p, head, list) { if (!NAPI_GRO_CB(p)->same_flow) continue; eh2 = (struct ethhdr *)(p->data + off_eth); if (compare_ether_header(eh, eh2)) { NAPI_GRO_CB(p)->same_flow = 0; continue; } } type = eh->h_proto; rcu_read_lock(); ptype = gro_find_receive_by_type(type); if (ptype == NULL) { flush = 1; goto out_unlock; } skb_gro_pull(skb, sizeof(*eh)); skb_gro_postpull_rcsum(skb, eh, sizeof(*eh)); pp = call_gro_receive(ptype->callbacks.gro_receive, head, skb); out_unlock: rcu_read_unlock(); out: skb_gro_flush_final(skb, pp, flush); return pp; } EXPORT_SYMBOL(eth_gro_receive); int eth_gro_complete(struct sk_buff *skb, int nhoff) { struct ethhdr *eh = (struct ethhdr *)(skb->data + nhoff); __be16 type = eh->h_proto; struct packet_offload *ptype; int err = -ENOSYS; if (skb->encapsulation) skb_set_inner_mac_header(skb, nhoff); rcu_read_lock(); ptype = gro_find_complete_by_type(type); if (ptype != NULL) err = ptype->callbacks.gro_complete(skb, nhoff + sizeof(struct ethhdr)); rcu_read_unlock(); return err; } EXPORT_SYMBOL(eth_gro_complete); static struct packet_offload eth_packet_offload __read_mostly = { .type = cpu_to_be16(ETH_P_TEB), .priority = 10, .callbacks = { .gro_receive = eth_gro_receive, .gro_complete = eth_gro_complete, }, }; static int __init eth_offload_init(void) { dev_add_offload(&eth_packet_offload); return 0; } fs_initcall(eth_offload_init); unsigned char * __weak arch_get_platform_mac_address(void) { return NULL; } int eth_platform_get_mac_address(struct device *dev, u8 *mac_addr) { const unsigned char *addr = NULL; if (dev->of_node) addr = of_get_mac_address(dev->of_node); if (IS_ERR_OR_NULL(addr)) addr = arch_get_platform_mac_address(); if (!addr) return -ENODEV; ether_addr_copy(mac_addr, addr); return 0; } EXPORT_SYMBOL(eth_platform_get_mac_address); /** * Obtain the MAC address from an nvmem cell named 'mac-address' associated * with given device. * * @dev: Device with which the mac-address cell is associated. * @addrbuf: Buffer to which the MAC address will be copied on success. * * Returns 0 on success or a negative error number on failure. */ int nvmem_get_mac_address(struct device *dev, void *addrbuf) { struct nvmem_cell *cell; const void *mac; size_t len; cell = nvmem_cell_get(dev, "mac-address"); if (IS_ERR(cell)) return PTR_ERR(cell); mac = nvmem_cell_read(cell, &len); nvmem_cell_put(cell); if (IS_ERR(mac)) return PTR_ERR(mac); if (len != ETH_ALEN || !is_valid_ether_addr(mac)) { kfree(mac); return -EINVAL; } ether_addr_copy(addrbuf, mac); kfree(mac); return 0; } EXPORT_SYMBOL(nvmem_get_mac_address);
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SCHED_CPUTIME_H #define _LINUX_SCHED_CPUTIME_H #include <linux/sched/signal.h> /* * cputime accounting APIs: */ #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE #include <asm/cputime.h> #ifndef cputime_to_nsecs # define cputime_to_nsecs(__ct) \ (cputime_to_usecs(__ct) * NSEC_PER_USEC) #endif #endif /* CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */ #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN extern void task_cputime(struct task_struct *t, u64 *utime, u64 *stime); extern u64 task_gtime(struct task_struct *t); #else static inline void task_cputime(struct task_struct *t, u64 *utime, u64 *stime) { *utime = t->utime; *stime = t->stime; } static inline u64 task_gtime(struct task_struct *t) { return t->gtime; } #endif #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME static inline void task_cputime_scaled(struct task_struct *t, u64 *utimescaled, u64 *stimescaled) { *utimescaled = t->utimescaled; *stimescaled = t->stimescaled; } #else static inline void task_cputime_scaled(struct task_struct *t, u64 *utimescaled, u64 *stimescaled) { task_cputime(t, utimescaled, stimescaled); } #endif extern void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st); extern void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st); extern void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev, u64 *ut, u64 *st); /* * Thread group CPU time accounting. */ void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); void thread_group_sample_cputime(struct task_struct *tsk, u64 *samples); /* * The following are functions that support scheduler-internal time accounting. * These functions are generally called at the timer tick. None of this depends * on CONFIG_SCHEDSTATS. */ /** * get_running_cputimer - return &tsk->signal->cputimer if cputimers are active * * @tsk: Pointer to target task. */ #ifdef CONFIG_POSIX_TIMERS static inline struct thread_group_cputimer *get_running_cputimer(struct task_struct *tsk) { struct thread_group_cputimer *cputimer = &tsk->signal->cputimer; /* * Check whether posix CPU timers are active. If not the thread * group accounting is not active either. Lockless check. */ if (!READ_ONCE(tsk->signal->posix_cputimers.timers_active)) return NULL; /* * After we flush the task's sum_exec_runtime to sig->sum_sched_runtime * in __exit_signal(), we won't account to the signal struct further * cputime consumed by that task, even though the task can still be * ticking after __exit_signal(). * * In order to keep a consistent behaviour between thread group cputime * and thread group cputimer accounting, lets also ignore the cputime * elapsing after __exit_signal() in any thread group timer running. * * This makes sure that POSIX CPU clocks and timers are synchronized, so * that a POSIX CPU timer won't expire while the corresponding POSIX CPU * clock delta is behind the expiring timer value. */ if (unlikely(!tsk->sighand)) return NULL; return cputimer; } #else static inline struct thread_group_cputimer *get_running_cputimer(struct task_struct *tsk) { return NULL; } #endif /** * account_group_user_time - Maintain utime for a thread group. * * @tsk: Pointer to task structure. * @cputime: Time value by which to increment the utime field of the * thread_group_cputime structure. * * If thread group time is being maintained, get the structure for the * running CPU and update the utime field there. */ static inline void account_group_user_time(struct task_struct *tsk, u64 cputime) { struct thread_group_cputimer *cputimer = get_running_cputimer(tsk); if (!cputimer) return; atomic64_add(cputime, &cputimer->cputime_atomic.utime); } /** * account_group_system_time - Maintain stime for a thread group. * * @tsk: Pointer to task structure. * @cputime: Time value by which to increment the stime field of the * thread_group_cputime structure. * * If thread group time is being maintained, get the structure for the * running CPU and update the stime field there. */ static inline void account_group_system_time(struct task_struct *tsk, u64 cputime) { struct thread_group_cputimer *cputimer = get_running_cputimer(tsk); if (!cputimer) return; atomic64_add(cputime, &cputimer->cputime_atomic.stime); } /** * account_group_exec_runtime - Maintain exec runtime for a thread group. * * @tsk: Pointer to task structure. * @ns: Time value by which to increment the sum_exec_runtime field * of the thread_group_cputime structure. * * If thread group time is being maintained, get the structure for the * running CPU and update the sum_exec_runtime field there. */ static inline void account_group_exec_runtime(struct task_struct *tsk, unsigned long long ns) { struct thread_group_cputimer *cputimer = get_running_cputimer(tsk); if (!cputimer) return; atomic64_add(ns, &cputimer->cputime_atomic.sum_exec_runtime); } static inline void prev_cputime_init(struct prev_cputime *prev) { #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE prev->utime = prev->stime = 0; raw_spin_lock_init(&prev->lock); #endif } extern unsigned long long task_sched_runtime(struct task_struct *task); #endif /* _LINUX_SCHED_CPUTIME_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 /* * linux/include/video/vga.h -- standard VGA chipset interaction * * Copyright 1999 Jeff Garzik <jgarzik@pobox.com> * * Copyright history from vga16fb.c: * Copyright 1999 Ben Pfaff and Petr Vandrovec * Based on VGA info at http://www.osdever.net/FreeVGA/home.htm * Based on VESA framebuffer (c) 1998 Gerd Knorr * * This file is subject to the terms and conditions of the GNU General * Public License. See the file COPYING in the main directory of this * archive for more details. * */ #ifndef __linux_video_vga_h__ #define __linux_video_vga_h__ #include <linux/types.h> #include <linux/io.h> #include <asm/vga.h> #include <asm/byteorder.h> /* Some of the code below is taken from SVGAlib. The original, unmodified copyright notice for that code is below. */ /* VGAlib version 1.2 - (c) 1993 Tommy Frandsen */ /* */ /* This library is free software; you can redistribute it and/or */ /* modify it without any restrictions. This library is distributed */ /* in the hope that it will be useful, but without any warranty. */ /* Multi-chipset support Copyright 1993 Harm Hanemaayer */ /* partially copyrighted (C) 1993 by Hartmut Schirmer */ /* VGA data register ports */ #define VGA_CRT_DC 0x3D5 /* CRT Controller Data Register - color emulation */ #define VGA_CRT_DM 0x3B5 /* CRT Controller Data Register - mono emulation */ #define VGA_ATT_R 0x3C1 /* Attribute Controller Data Read Register */ #define VGA_ATT_W 0x3C0 /* Attribute Controller Data Write Register */ #define VGA_GFX_D 0x3CF /* Graphics Controller Data Register */ #define VGA_SEQ_D 0x3C5 /* Sequencer Data Register */ #define VGA_MIS_R 0x3CC /* Misc Output Read Register */ #define VGA_MIS_W 0x3C2 /* Misc Output Write Register */ #define VGA_FTC_R 0x3CA /* Feature Control Read Register */ #define VGA_IS1_RC 0x3DA /* Input Status Register 1 - color emulation */ #define VGA_IS1_RM 0x3BA /* Input Status Register 1 - mono emulation */ #define VGA_PEL_D 0x3C9 /* PEL Data Register */ #define VGA_PEL_MSK 0x3C6 /* PEL mask register */ /* EGA-specific registers */ #define EGA_GFX_E0 0x3CC /* Graphics enable processor 0 */ #define EGA_GFX_E1 0x3CA /* Graphics enable processor 1 */ /* VGA index register ports */ #define VGA_CRT_IC 0x3D4 /* CRT Controller Index - color emulation */ #define VGA_CRT_IM 0x3B4 /* CRT Controller Index - mono emulation */ #define VGA_ATT_IW 0x3C0 /* Attribute Controller Index & Data Write Register */ #define VGA_GFX_I 0x3CE /* Graphics Controller Index */ #define VGA_SEQ_I 0x3C4 /* Sequencer Index */ #define VGA_PEL_IW 0x3C8 /* PEL Write Index */ #define VGA_PEL_IR 0x3C7 /* PEL Read Index */ /* standard VGA indexes max counts */ #define VGA_CRT_C 0x19 /* Number of CRT Controller Registers */ #define VGA_ATT_C 0x15 /* Number of Attribute Controller Registers */ #define VGA_GFX_C 0x09 /* Number of Graphics Controller Registers */ #define VGA_SEQ_C 0x05 /* Number of Sequencer Registers */ #define VGA_MIS_C 0x01 /* Number of Misc Output Register */ /* VGA misc register bit masks */ #define VGA_MIS_COLOR 0x01 #define VGA_MIS_ENB_MEM_ACCESS 0x02 #define VGA_MIS_DCLK_28322_720 0x04 #define VGA_MIS_ENB_PLL_LOAD (0x04 | 0x08) #define VGA_MIS_SEL_HIGH_PAGE 0x20 /* VGA CRT controller register indices */ #define VGA_CRTC_H_TOTAL 0 #define VGA_CRTC_H_DISP 1 #define VGA_CRTC_H_BLANK_START 2 #define VGA_CRTC_H_BLANK_END 3 #define VGA_CRTC_H_SYNC_START 4 #define VGA_CRTC_H_SYNC_END 5 #define VGA_CRTC_V_TOTAL 6 #define VGA_CRTC_OVERFLOW 7 #define VGA_CRTC_PRESET_ROW 8 #define VGA_CRTC_MAX_SCAN 9 #define VGA_CRTC_CURSOR_START 0x0A #define VGA_CRTC_CURSOR_END 0x0B #define VGA_CRTC_START_HI 0x0C #define VGA_CRTC_START_LO 0x0D #define VGA_CRTC_CURSOR_HI 0x0E #define VGA_CRTC_CURSOR_LO 0x0F #define VGA_CRTC_V_SYNC_START 0x10 #define VGA_CRTC_V_SYNC_END 0x11 #define VGA_CRTC_V_DISP_END 0x12 #define VGA_CRTC_OFFSET 0x13 #define VGA_CRTC_UNDERLINE 0x14 #define VGA_CRTC_V_BLANK_START 0x15 #define VGA_CRTC_V_BLANK_END 0x16 #define VGA_CRTC_MODE 0x17 #define VGA_CRTC_LINE_COMPARE 0x18 #define VGA_CRTC_REGS VGA_CRT_C /* VGA CRT controller bit masks */ #define VGA_CR11_LOCK_CR0_CR7 0x80 /* lock writes to CR0 - CR7 */ #define VGA_CR17_H_V_SIGNALS_ENABLED 0x80 /* VGA attribute controller register indices */ #define VGA_ATC_PALETTE0 0x00 #define VGA_ATC_PALETTE1 0x01 #define VGA_ATC_PALETTE2 0x02 #define VGA_ATC_PALETTE3 0x03 #define VGA_ATC_PALETTE4 0x04 #define VGA_ATC_PALETTE5 0x05 #define VGA_ATC_PALETTE6 0x06 #define VGA_ATC_PALETTE7 0x07 #define VGA_ATC_PALETTE8 0x08 #define VGA_ATC_PALETTE9 0x09 #define VGA_ATC_PALETTEA 0x0A #define VGA_ATC_PALETTEB 0x0B #define VGA_ATC_PALETTEC 0x0C #define VGA_ATC_PALETTED 0x0D #define VGA_ATC_PALETTEE 0x0E #define VGA_ATC_PALETTEF 0x0F #define VGA_ATC_MODE 0x10 #define VGA_ATC_OVERSCAN 0x11 #define VGA_ATC_PLANE_ENABLE 0x12 #define VGA_ATC_PEL 0x13 #define VGA_ATC_COLOR_PAGE 0x14 #define VGA_AR_ENABLE_DISPLAY 0x20 /* VGA sequencer register indices */ #define VGA_SEQ_RESET 0x00 #define VGA_SEQ_CLOCK_MODE 0x01 #define VGA_SEQ_PLANE_WRITE 0x02 #define VGA_SEQ_CHARACTER_MAP 0x03 #define VGA_SEQ_MEMORY_MODE 0x04 /* VGA sequencer register bit masks */ #define VGA_SR01_CHAR_CLK_8DOTS 0x01 /* bit 0: character clocks 8 dots wide are generated */ #define VGA_SR01_SCREEN_OFF 0x20 /* bit 5: Screen is off */ #define VGA_SR02_ALL_PLANES 0x0F /* bits 3-0: enable access to all planes */ #define VGA_SR04_EXT_MEM 0x02 /* bit 1: allows complete mem access to 256K */ #define VGA_SR04_SEQ_MODE 0x04 /* bit 2: directs system to use a sequential addressing mode */ #define VGA_SR04_CHN_4M 0x08 /* bit 3: selects modulo 4 addressing for CPU access to display memory */ /* VGA graphics controller register indices */ #define VGA_GFX_SR_VALUE 0x00 #define VGA_GFX_SR_ENABLE 0x01 #define VGA_GFX_COMPARE_VALUE 0x02 #define VGA_GFX_DATA_ROTATE 0x03 #define VGA_GFX_PLANE_READ 0x04 #define VGA_GFX_MODE 0x05 #define VGA_GFX_MISC 0x06 #define VGA_GFX_COMPARE_MASK 0x07 #define VGA_GFX_BIT_MASK