1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 /* SPDX-License-Identifier: GPL-2.0 */ /* * Definitions of structures and functions for quota formats using trie */ #ifndef _LINUX_DQBLK_QTREE_H #define _LINUX_DQBLK_QTREE_H #include <linux/types.h> /* Numbers of blocks needed for updates - we count with the smallest * possible block size (1024) */ #define QTREE_INIT_ALLOC 4 #define QTREE_INIT_REWRITE 2 #define QTREE_DEL_ALLOC 0 #define QTREE_DEL_REWRITE 6 struct dquot; struct kqid; /* Operations */ struct qtree_fmt_operations { void (*mem2disk_dqblk)(void *disk, struct dquot *dquot); /* Convert given entry from in memory format to disk one */ void (*disk2mem_dqblk)(struct dquot *dquot, void *disk); /* Convert given entry from disk format to in memory one */ int (*is_id)(void *disk, struct dquot *dquot); /* Is this structure for given id? */ }; /* Inmemory copy of version specific information */ struct qtree_mem_dqinfo { struct super_block *dqi_sb; /* Sb quota is on */ int dqi_type; /* Quota type */ unsigned int dqi_blocks; /* # of blocks in quota file */ unsigned int dqi_free_blk; /* First block in list of free blocks */ unsigned int dqi_free_entry; /* First block with free entry */ unsigned int dqi_blocksize_bits; /* Block size of quota file */ unsigned int dqi_entry_size; /* Size of quota entry in quota file */ unsigned int dqi_usable_bs; /* Space usable in block for quota data */ unsigned int dqi_qtree_depth; /* Precomputed depth of quota tree */ const struct qtree_fmt_operations *dqi_ops; /* Operations for entry manipulation */ }; int qtree_write_dquot(struct qtree_mem_dqinfo *info, struct dquot *dquot); int qtree_read_dquot(struct qtree_mem_dqinfo *info, struct dquot *dquot); int qtree_delete_dquot(struct qtree_mem_dqinfo *info, struct dquot *dquot); int qtree_release_dquot(struct qtree_mem_dqinfo *info, struct dquot *dquot); int qtree_entry_unused(struct qtree_mem_dqinfo *info, char *disk); static inline int qtree_depth(struct qtree_mem_dqinfo *info) { unsigned int epb = info->dqi_usable_bs >> 2; unsigned long long entries = epb; int i; for (i = 1; entries < (1ULL << 32); i++) entries *= epb; return i; } int qtree_get_next_id(struct qtree_mem_dqinfo *info, struct kqid *qid); #endif /* _LINUX_DQBLK_QTREE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Copyright (C) 2001 Momchil Velikov * Portions Copyright (C) 2001 Christoph Hellwig * Copyright (C) 2006 Nick Piggin * Copyright (C) 2012 Konstantin Khlebnikov */ #ifndef _LINUX_RADIX_TREE_H #define _LINUX_RADIX_TREE_H #include <linux/bitops.h> #include <linux/kernel.h> #include <linux/list.h> #include <linux/percpu.h> #include <linux/preempt.h> #include <linux/rcupdate.h> #include <linux/spinlock.h> #include <linux/types.h> #include <linux/xarray.h> #include <linux/local_lock.h> /* Keep unconverted code working */ #define radix_tree_root xarray #define radix_tree_node xa_node struct radix_tree_preload { local_lock_t lock; unsigned nr; /* nodes->parent points to next preallocated node */ struct radix_tree_node *nodes; }; DECLARE_PER_CPU(struct radix_tree_preload, radix_tree_preloads); /* * The bottom two bits of the slot determine how the remaining bits in the * slot are interpreted: * * 00 - data pointer * 10 - internal entry * x1 - value entry * * The internal entry may be a pointer to the next level in the tree, a * sibling entry, or an indicator that the entry in this slot has been moved * to another location in the tree and the lookup should be restarted. While * NULL fits the 'data pointer' pattern, it means that there is no entry in * the tree for this index (no matter what level of the tree it is found at). * This means that storing a NULL entry in the tree is the same as deleting * the entry from the tree. */ #define RADIX_TREE_ENTRY_MASK 3UL #define RADIX_TREE_INTERNAL_NODE 2UL static inline bool radix_tree_is_internal_node(void *ptr) { return ((unsigned long)ptr & RADIX_TREE_ENTRY_MASK) == RADIX_TREE_INTERNAL_NODE; } /*** radix-tree API starts here ***/ #define RADIX_TREE_MAP_SHIFT XA_CHUNK_SHIFT #define RADIX_TREE_MAP_SIZE (1UL << RADIX_TREE_MAP_SHIFT) #define RADIX_TREE_MAP_MASK (RADIX_TREE_MAP_SIZE-1) #define RADIX_TREE_MAX_TAGS XA_MAX_MARKS #define RADIX_TREE_TAG_LONGS XA_MARK_LONGS #define RADIX_TREE_INDEX_BITS (8 /* CHAR_BIT */ * sizeof(unsigned long)) #define RADIX_TREE_MAX_PATH (DIV_ROUND_UP(RADIX_TREE_INDEX_BITS, \ RADIX_TREE_MAP_SHIFT)) /* The IDR tag is stored in the low bits of xa_flags */ #define ROOT_IS_IDR ((__force gfp_t)4) /* The top bits of xa_flags are used to store the root tags */ #define ROOT_TAG_SHIFT (__GFP_BITS_SHIFT) #define RADIX_TREE_INIT(name, mask) XARRAY_INIT(name, mask) #define RADIX_TREE(name, mask) \ struct radix_tree_root name = RADIX_TREE_INIT(name, mask) #define INIT_RADIX_TREE(root, mask) xa_init_flags(root, mask) static inline bool radix_tree_empty(const struct radix_tree_root *root) { return root->xa_head == NULL; } /** * struct radix_tree_iter - radix tree iterator state * * @index: index of current slot * @next_index: one beyond the last index for this chunk * @tags: bit-mask for tag-iterating * @node: node that contains current slot * * This radix tree iterator works in terms of "chunks" of slots. A chunk is a * subinterval of slots contained within one radix tree leaf node. It is * described by a pointer to its first slot and a struct radix_tree_iter * which holds the chunk's position in the tree and its size. For tagged * iteration radix_tree_iter also holds the slots' bit-mask for one chosen * radix tree tag. */ struct radix_tree_iter { unsigned long index; unsigned long next_index; unsigned long tags; struct radix_tree_node *node; }; /** * Radix-tree synchronization * * The radix-tree API requires that users provide all synchronisation (with * specific exceptions, noted below). * * Synchronization of access to the data items being stored in the tree, and * management of their lifetimes must be completely managed by API users. * * For API usage, in general, * - any function _modifying_ the tree or tags (inserting or deleting * items, setting or clearing tags) must exclude other modifications, and * exclude any functions reading the tree. * - any function _reading_ the tree or tags (looking up items or tags, * gang lookups) must exclude modifications to the tree, but may occur * concurrently with other readers. * * The notable exceptions to this rule are the following functions: * __radix_tree_lookup * radix_tree_lookup * radix_tree_lookup_slot * radix_tree_tag_get * radix_tree_gang_lookup * radix_tree_gang_lookup_tag * radix_tree_gang_lookup_tag_slot * radix_tree_tagged * * The first 7 functions are able to be called locklessly, using RCU. The * caller must ensure calls to these functions are made within rcu_read_lock() * regions. Other readers (lock-free or otherwise) and modifications may be * running concurrently. * * It is still required that the caller manage the synchronization and lifetimes * of the items. So if RCU lock-free lookups are used, typically this would mean * that the items have their own locks, or are amenable to lock-free access; and * that the items are freed by RCU (or only freed after having been deleted from * the radix tree *and* a synchronize_rcu() grace period). * * (Note, rcu_assign_pointer and rcu_dereference are not needed to control * access to data items when inserting into or looking up from the radix tree) * * Note that the value returned by radix_tree_tag_get() may not be relied upon * if only the RCU read lock is held. Functions to set/clear tags and to * delete nodes running concurrently with it may affect its result such that * two consecutive reads in the same locked section may return different * values. If reliability is required, modification functions must also be * excluded from concurrency. * * radix_tree_tagged is able to be called without locking or RCU. */ /** * radix_tree_deref_slot - dereference a slot * @slot: slot pointer, returned by radix_tree_lookup_slot * * For use with radix_tree_lookup_slot(). Caller must hold tree at least read * locked across slot lookup and dereference. Not required if write lock is * held (ie. items cannot be concurrently inserted). * * radix_tree_deref_retry must be used to confirm validity of the pointer if * only the read lock is held. * * Return: entry stored in that slot. */ static inline void *radix_tree_deref_slot(void __rcu **slot) { return rcu_dereference(*slot); } /** * radix_tree_deref_slot_protected - dereference a slot with tree lock held * @slot: slot pointer, returned by radix_tree_lookup_slot * * Similar to radix_tree_deref_slot. The caller does not hold the RCU read * lock but it must hold the tree lock to prevent parallel updates. * * Return: entry stored in that slot. */ static inline void *radix_tree_deref_slot_protected(void __rcu **slot, spinlock_t *treelock) { return rcu_dereference_protected(*slot, lockdep_is_held(treelock)); } /** * radix_tree_deref_retry - check radix_tree_deref_slot * @arg: pointer returned by radix_tree_deref_slot * Returns: 0 if retry is not required, otherwise retry is required * * radix_tree_deref_retry must be used with radix_tree_deref_slot. */ static inline int radix_tree_deref_retry(void *arg) { return unlikely(radix_tree_is_internal_node(arg)); } /** * radix_tree_exception - radix_tree_deref_slot returned either exception? * @arg: value returned by radix_tree_deref_slot * Returns: 0 if well-aligned pointer, non-0 if either kind of exception. */ static inline int radix_tree_exception(void *arg) { return unlikely((unsigned long)arg & RADIX_TREE_ENTRY_MASK); } int radix_tree_insert(struct radix_tree_root *, unsigned long index, void *); void *__radix_tree_lookup(const struct radix_tree_root *, unsigned long index, struct radix_tree_node **nodep, void __rcu ***slotp); void *radix_tree_lookup(const struct radix_tree_root *, unsigned long); void __rcu **radix_tree_lookup_slot(const struct radix_tree_root *, unsigned long index); void __radix_tree_replace(struct radix_tree_root *, struct radix_tree_node *, void __rcu **slot, void *entry); void radix_tree_iter_replace(struct radix_tree_root *, const struct radix_tree_iter *, void __rcu **slot, void *entry); void radix_tree_replace_slot(struct radix_tree_root *, void __rcu **slot, void *entry); void radix_tree_iter_delete(struct radix_tree_root *, struct radix_tree_iter *iter, void __rcu **slot); void *radix_tree_delete_item(struct radix_tree_root *, unsigned long, void *); void *radix_tree_delete(struct radix_tree_root *, unsigned long); unsigned int radix_tree_gang_lookup(const struct radix_tree_root *, void **results, unsigned long first_index, unsigned int max_items); int radix_tree_preload(gfp_t gfp_mask); int radix_tree_maybe_preload(gfp_t gfp_mask); void radix_tree_init(void); void *radix_tree_tag_set(struct radix_tree_root *, unsigned long index, unsigned int tag); void *radix_tree_tag_clear(struct radix_tree_root *, unsigned long index, unsigned int tag); int radix_tree_tag_get(const struct radix_tree_root *, unsigned long index, unsigned int tag); void radix_tree_iter_tag_clear(struct radix_tree_root *, const struct radix_tree_iter *iter, unsigned int tag); unsigned int radix_tree_gang_lookup_tag(const struct radix_tree_root *, void **results, unsigned long first_index, unsigned int max_items, unsigned int tag); unsigned int radix_tree_gang_lookup_tag_slot(const struct radix_tree_root *, void __rcu ***results, unsigned long first_index, unsigned int max_items, unsigned int tag); int radix_tree_tagged(const struct radix_tree_root *, unsigned int tag); static inline void radix_tree_preload_end(void) { local_unlock(&radix_tree_preloads.lock); } void __rcu **idr_get_free(struct radix_tree_root *root, struct radix_tree_iter *iter, gfp_t gfp, unsigned long max); enum { RADIX_TREE_ITER_TAG_MASK = 0x0f, /* tag index in lower nybble */ RADIX_TREE_ITER_TAGGED = 0x10, /* lookup tagged slots */ RADIX_TREE_ITER_CONTIG = 0x20, /* stop at first hole */ }; /** * radix_tree_iter_init - initialize radix tree iterator * * @iter: pointer to iterator state * @start: iteration starting index * Returns: NULL */ static __always_inline void __rcu ** radix_tree_iter_init(struct radix_tree_iter *iter, unsigned long start) { /* * Leave iter->tags uninitialized. radix_tree_next_chunk() will fill it * in the case of a successful tagged chunk lookup. If the lookup was * unsuccessful or non-tagged then nobody cares about ->tags. * * Set index to zero to bypass next_index overflow protection. * See the comment in radix_tree_next_chunk() for details. */ iter->index = 0; iter->next_index = start; return NULL; } /** * radix_tree_next_chunk - find next chunk of slots for iteration * * @root: radix tree root * @iter: iterator state * @flags: RADIX_TREE_ITER_* flags and tag index * Returns: pointer to chunk first slot, or NULL if there no more left * * This function looks up the next chunk in the radix tree starting from * @iter->next_index. It returns a pointer to the chunk's first slot. * Also it fills @iter with data about chunk: position in the tree (index), * its end (next_index), and constructs a bit mask for tagged iterating (tags). */ void __rcu **radix_tree_next_chunk(const struct radix_tree_root *, struct radix_tree_iter *iter, unsigned flags); /** * radix_tree_iter_lookup - look up an index in the radix tree * @root: radix tree root * @iter: iterator state * @index: key to look up * * If @index is present in the radix tree, this function returns the slot * containing it and updates @iter to describe the entry. If @index is not * present, it returns NULL. */ static inline void __rcu ** radix_tree_iter_lookup(const struct radix_tree_root *root, struct radix_tree_iter *iter, unsigned long index) { radix_tree_iter_init(iter, index); return radix_tree_next_chunk(root, iter, RADIX_TREE_ITER_CONTIG); } /** * radix_tree_iter_retry - retry this chunk of the iteration * @iter: iterator state * * If we iterate over a tree protected only by the RCU lock, a race * against deletion or creation may result in seeing a slot for which * radix_tree_deref_retry() returns true. If so, call this function * and continue the iteration. */ static inline __must_check void __rcu **radix_tree_iter_retry(struct radix_tree_iter *iter) { iter->next_index = iter->index; iter->tags = 0; return NULL; } static inline unsigned long __radix_tree_iter_add(struct radix_tree_iter *iter, unsigned long slots) { return iter->index + slots; } /** * radix_tree_iter_resume - resume iterating when the chunk may be invalid * @slot: pointer to current slot * @iter: iterator state * Returns: New slot pointer * * If the iterator needs to release then reacquire a lock, the chunk may * have been invalidated by an insertion or deletion. Call this function * before releasing the lock to continue the iteration from the next index. */ void __rcu **__must_check radix_tree_iter_resume(void __rcu **slot, struct radix_tree_iter *iter); /** * radix_tree_chunk_size - get current chunk size * * @iter: pointer to radix tree iterator * Returns: current chunk size */ static __always_inline long radix_tree_chunk_size(struct radix_tree_iter *iter) { return iter->next_index - iter->index; } /** * radix_tree_next_slot - find next slot in chunk * * @slot: pointer to current slot * @iter: pointer to iterator state * @flags: RADIX_TREE_ITER_*, should be constant * Returns: pointer to next slot, or NULL if there no more left * * This function updates @iter->index in the case of a successful lookup. * For tagged lookup it also eats @iter->tags. * * There are several cases where 'slot' can be passed in as NULL to this * function. These cases result from the use of radix_tree_iter_resume() or * radix_tree_iter_retry(). In these cases we don't end up dereferencing * 'slot' because either: * a) we are doing tagged iteration and iter->tags has been set to 0, or * b) we are doing non-tagged iteration, and iter->index and iter->next_index * have been set up so that radix_tree_chunk_size() returns 1 or 0. */ static __always_inline void __rcu **radix_tree_next_slot(void __rcu **slot, struct radix_tree_iter *iter, unsigned flags) { if (flags & RADIX_TREE_ITER_TAGGED) { iter->tags >>= 1; if (unlikely(!iter->tags)) return NULL; if (likely(iter->tags & 1ul)) { iter->index = __radix_tree_iter_add(iter, 1); slot++; goto found; } if (!(flags & RADIX_TREE_ITER_CONTIG)) { unsigned offset = __ffs(iter->tags); iter->tags >>= offset++; iter->index = __radix_tree_iter_add(iter, offset); slot += offset; goto found; } } else { long count = radix_tree_chunk_size(iter); while (--count > 0) { slot++; iter->index = __radix_tree_iter_add(iter, 1); if (likely(*slot)) goto found; if (flags & RADIX_TREE_ITER_CONTIG) { /* forbid switching to the next chunk */ iter->next_index = 0; break; } } } return NULL; found: return slot; } /** * radix_tree_for_each_slot - iterate over non-empty slots * * @slot: the void** variable for pointer to slot * @root: the struct radix_tree_root pointer * @iter: the struct radix_tree_iter pointer * @start: iteration starting index * * @slot points to radix tree slot, @iter->index contains its index. */ #define radix_tree_for_each_slot(slot, root, iter, start) \ for (slot = radix_tree_iter_init(iter, start) ; \ slot || (slot = radix_tree_next_chunk(root, iter, 0)) ; \ slot = radix_tree_next_slot(slot, iter, 0)) /** * radix_tree_for_each_tagged - iterate over tagged slots * * @slot: the void** variable for pointer to slot * @root: the struct radix_tree_root pointer * @iter: the struct radix_tree_iter pointer * @start: iteration starting index * @tag: tag index * * @slot points to radix tree slot, @iter->index contains its index. */ #define radix_tree_for_each_tagged(slot, root, iter, start, tag) \ for (slot = radix_tree_iter_init(iter, start) ; \ slot || (slot = radix_tree_next_chunk(root, iter, \ RADIX_TREE_ITER_TAGGED | tag)) ; \ slot = radix_tree_next_slot(slot, iter, \ RADIX_TREE_ITER_TAGGED | tag)) #endif /* _LINUX_RADIX_TREE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_LIST_NULLS_H #define _LINUX_LIST_NULLS_H #include <linux/poison.h> #include <linux/const.h> /* * Special version of lists, where end of list is not a NULL pointer, * but a 'nulls' marker, which can have many different values. * (up to 2^31 different values guaranteed on all platforms) * * In the standard hlist, termination of a list is the NULL pointer. * In this special 'nulls' variant, we use the fact that objects stored in * a list are aligned on a word (4 or 8 bytes alignment). * We therefore use the last significant bit of 'ptr' : * Set to 1 : This is a 'nulls' end-of-list marker (ptr >> 1) * Set to 0 : This is a pointer to some object (ptr) */ struct hlist_nulls_head { struct hlist_nulls_node *first; }; struct hlist_nulls_node { struct hlist_nulls_node *next, **pprev; }; #define NULLS_MARKER(value) (1UL | (((long)value) << 1)) #define INIT_HLIST_NULLS_HEAD(ptr, nulls) \ ((ptr)->first = (struct hlist_nulls_node *) NULLS_MARKER(nulls)) #define hlist_nulls_entry(ptr, type, member) container_of(ptr,type,member) #define hlist_nulls_entry_safe(ptr, type, member) \ ({ typeof(ptr) ____ptr = (ptr); \ !is_a_nulls(____ptr) ? hlist_nulls_entry(____ptr, type, member) : NULL; \ }) /** * ptr_is_a_nulls - Test if a ptr is a nulls * @ptr: ptr to be tested * */ static inline int is_a_nulls(const struct hlist_nulls_node *ptr) { return ((unsigned long)ptr & 1); } /** * get_nulls_value - Get the 'nulls' value of the end of chain * @ptr: end of chain * * Should be called only if is_a_nulls(ptr); */ static inline unsigned long get_nulls_value(const struct hlist_nulls_node *ptr) { return ((unsigned long)ptr) >> 1; } /** * hlist_nulls_unhashed - Has node been removed and reinitialized? * @h: Node to be checked * * Not that not all removal functions will leave a node in unhashed state. * For example, hlist_del_init_rcu() leaves the node in unhashed state, * but hlist_nulls_del() does not. */ static inline int hlist_nulls_unhashed(const struct hlist_nulls_node *h) { return !h->pprev; } /** * hlist_nulls_unhashed_lockless - Has node been removed and reinitialized? * @h: Node to be checked * * Not that not all removal functions will leave a node in unhashed state. * For example, hlist_del_init_rcu() leaves the node in unhashed state, * but hlist_nulls_del() does not. Unlike hlist_nulls_unhashed(), this * function may be used locklessly. */ static inline int hlist_nulls_unhashed_lockless(const struct hlist_nulls_node *h) { return !READ_ONCE(h->pprev); } static inline int hlist_nulls_empty(const struct hlist_nulls_head *h) { return is_a_nulls(READ_ONCE(h->first)); } static inline void hlist_nulls_add_head(struct hlist_nulls_node *n, struct hlist_nulls_head *h) { struct hlist_nulls_node *first = h->first; n->next = first; WRITE_ONCE(n->pprev, &h->first); h->first = n; if (!is_a_nulls(first)) WRITE_ONCE(first->pprev, &n->next); } static inline void __hlist_nulls_del(struct hlist_nulls_node *n) { struct hlist_nulls_node *next = n->next; struct hlist_nulls_node **pprev = n->pprev; WRITE_ONCE(*pprev, next); if (!is_a_nulls(next)) WRITE_ONCE(next->pprev, pprev); } static inline void hlist_nulls_del(struct hlist_nulls_node *n) { __hlist_nulls_del(n); WRITE_ONCE(n->pprev, LIST_POISON2); } /** * hlist_nulls_for_each_entry - iterate over list of given type * @tpos: the type * to use as a loop cursor. * @pos: the &struct hlist_node to use as a loop cursor. * @head: the head for your list. * @member: the name of the hlist_node within the struct. * */ #define hlist_nulls_for_each_entry(tpos, pos, head, member) \ for (pos = (head)->first; \ (!is_a_nulls(pos)) && \ ({ tpos = hlist_nulls_entry(pos, typeof(*tpos), member); 1;}); \ pos = pos->next) /** * hlist_nulls_for_each_entry_from - iterate over a hlist continuing from current point * @tpos: the type * to use as a loop cursor. * @pos: the &struct hlist_node to use as a loop cursor. * @member: the name of the hlist_node within the struct. * */ #define hlist_nulls_for_each_entry_from(tpos, pos, member) \ for (; (!is_a_nulls(pos)) && \ ({ tpos = hlist_nulls_entry(pos, typeof(*tpos), member); 1;}); \ pos = pos->next) #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_BYTEORDER_GENERIC_H #define _LINUX_BYTEORDER_GENERIC_H /* * linux/byteorder/generic.h * Generic Byte-reordering support * * The "... p" macros, like le64_to_cpup, can be used with pointers * to unaligned data, but there will be a performance penalty on * some architectures. Use get_unaligned for unaligned data. * * Francois-Rene Rideau <fare@tunes.org> 19970707 * gathered all the good ideas from all asm-foo/byteorder.h into one file, * cleaned them up. * I hope it is compliant with non-GCC compilers. * I decided to put __BYTEORDER_HAS_U64__ in byteorder.h, * because I wasn't sure it would be ok to put it in types.h * Upgraded it to 2.1.43 * Francois-Rene Rideau <fare@tunes.org> 19971012 * Upgraded it to 2.1.57 * to please Linus T., replaced huge #ifdef's between little/big endian * by nestedly #include'd files. * Francois-Rene Rideau <fare@tunes.org> 19971205 * Made it to 2.1.71; now a facelift: * Put files under include/linux/byteorder/ * Split swab from generic support. * * TODO: * = Regular kernel maintainers could also replace all these manual * byteswap macros that remain, disseminated among drivers, * after some grep or the sources... * = Linus might want to rename all these macros and files to fit his taste, * to fit his personal naming scheme. * = it seems that a few drivers would also appreciate * nybble swapping support... * = every architecture could add their byteswap macro in asm/byteorder.h * see how some architectures already do (i386, alpha, ppc, etc) * = cpu_to_beXX and beXX_to_cpu might some day need to be well * distinguished throughout the kernel. This is not the case currently, * since little endian, big endian, and pdp endian machines needn't it. * But this might be the case for, say, a port of Linux to 20/21 bit * architectures (and F21 Linux addict around?). */ /* * The following macros are to be defined by <asm/byteorder.h>: * * Conversion of long and short int between network and host format * ntohl(__u32 x) * ntohs(__u16 x) * htonl(__u32 x) * htons(__u16 x) * It seems that some programs (which? where? or perhaps a standard? POSIX?) * might like the above to be functions, not macros (why?). * if that's true, then detect them, and take measures. * Anyway, the measure is: define only ___ntohl as a macro instead, * and in a separate file, have * unsigned long inline ntohl(x){return ___ntohl(x);} * * The same for constant arguments * __constant_ntohl(__u32 x) * __constant_ntohs(__u16 x) * __constant_htonl(__u32 x) * __constant_htons(__u16 x) * * Conversion of XX-bit integers (16- 32- or 64-) * between native CPU format and little/big endian format * 64-bit stuff only defined for proper architectures * cpu_to_[bl]eXX(__uXX x) * [bl]eXX_to_cpu(__uXX x) * * The same, but takes a pointer to the value to convert * cpu_to_[bl]eXXp(__uXX x) * [bl]eXX_to_cpup(__uXX x) * * The same, but change in situ * cpu_to_[bl]eXXs(__uXX x) * [bl]eXX_to_cpus(__uXX x) * * See asm-foo/byteorder.h for examples of how to provide * architecture-optimized versions * */ #define cpu_to_le64 __cpu_to_le64 #define le64_to_cpu __le64_to_cpu #define cpu_to_le32 __cpu_to_le32 #define le32_to_cpu __le32_to_cpu #define cpu_to_le16 __cpu_to_le16 #define le16_to_cpu __le16_to_cpu #define cpu_to_be64 __cpu_to_be64 #define be64_to_cpu __be64_to_cpu #define cpu_to_be32 __cpu_to_be32 #define be32_to_cpu __be32_to_cpu #define cpu_to_be16 __cpu_to_be16 #define be16_to_cpu __be16_to_cpu #define cpu_to_le64p __cpu_to_le64p #define le64_to_cpup __le64_to_cpup #define cpu_to_le32p __cpu_to_le32p #define le32_to_cpup __le32_to_cpup #define cpu_to_le16p __cpu_to_le16p #define le16_to_cpup __le16_to_cpup #define cpu_to_be64p __cpu_to_be64p #define be64_to_cpup __be64_to_cpup #define cpu_to_be32p __cpu_to_be32p #define be32_to_cpup __be32_to_cpup #define cpu_to_be16p __cpu_to_be16p #define be16_to_cpup __be16_to_cpup #define cpu_to_le64s __cpu_to_le64s #define le64_to_cpus __le64_to_cpus #define cpu_to_le32s __cpu_to_le32s #define le32_to_cpus __le32_to_cpus #define cpu_to_le16s __cpu_to_le16s #define le16_to_cpus __le16_to_cpus #define cpu_to_be64s __cpu_to_be64s #define be64_to_cpus __be64_to_cpus #define cpu_to_be32s __cpu_to_be32s #define be32_to_cpus __be32_to_cpus #define cpu_to_be16s __cpu_to_be16s #define be16_to_cpus __be16_to_cpus /* * They have to be macros in order to do the constant folding * correctly - if the argument passed into a inline function * it is no longer constant according to gcc.. */ #undef ntohl #undef ntohs #undef htonl #undef htons #define ___htonl(x) __cpu_to_be32(x) #define ___htons(x) __cpu_to_be16(x) #define ___ntohl(x) __be32_to_cpu(x) #define ___ntohs(x) __be16_to_cpu(x) #define htonl(x) ___htonl(x) #define ntohl(x) ___ntohl(x) #define htons(x) ___htons(x) #define ntohs(x) ___ntohs(x) static inline void le16_add_cpu(__le16 *var, u16 val) { *var = cpu_to_le16(le16_to_cpu(*var) + val); } static inline void le32_add_cpu(__le32 *var, u32 val) { *var = cpu_to_le32(le32_to_cpu(*var) + val); } static inline void le64_add_cpu(__le64 *var, u64 val) { *var = cpu_to_le64(le64_to_cpu(*var) + val); } /* XXX: this stuff can be optimized */ static inline void le32_to_cpu_array(u32 *buf, unsigned int words) { while (words--) { __le32_to_cpus(buf); buf++; } } static inline void cpu_to_le32_array(u32 *buf, unsigned int words) { while (words--) { __cpu_to_le32s(buf); buf++; } } static inline void be16_add_cpu(__be16 *var, u16 val) { *var = cpu_to_be16(be16_to_cpu(*var) + val); } static inline void be32_add_cpu(__be32 *var, u32 val) { *var = cpu_to_be32(be32_to_cpu(*var) + val); } static inline void be64_add_cpu(__be64 *var, u64 val) { *var = cpu_to_be64(be64_to_cpu(*var) + val); } static inline void cpu_to_be32_array(__be32 *dst, const u32 *src, size_t len) { int i; for (i = 0; i < len; i++) dst[i] = cpu_to_be32(src[i]); } static inline void be32_to_cpu_array(u32 *dst, const __be32 *src, size_t len) { int i; for (i = 0; i < len; i++) dst[i] = be32_to_cpu(src[i]); } #endif /* _LINUX_BYTEORDER_GENERIC_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_VMALLOC_H #define _LINUX_VMALLOC_H #include <linux/spinlock.h> #include <linux/init.h> #include <linux/list.h> #include <linux/llist.h> #include <asm/page.h> /* pgprot_t */ #include <linux/rbtree.h> #include <linux/overflow.h> #include <asm/vmalloc.h> struct vm_area_struct; /* vma defining user mapping in mm_types.h */ struct notifier_block; /* in notifier.h */ /* bits in flags of vmalloc's vm_struct below */ #define VM_IOREMAP 0x00000001 /* ioremap() and friends */ #define VM_ALLOC 0x00000002 /* vmalloc() */ #define VM_MAP 0x00000004 /* vmap()ed pages */ #define VM_USERMAP 0x00000008 /* suitable for remap_vmalloc_range */ #define VM_DMA_COHERENT 0x00000010 /* dma_alloc_coherent */ #define VM_UNINITIALIZED 0x00000020 /* vm_struct is not fully initialized */ #define VM_NO_GUARD 0x00000040 /* don't add guard page */ #define VM_KASAN 0x00000080 /* has allocated kasan shadow memory */ #define VM_FLUSH_RESET_PERMS 0x00000100 /* reset direct map and flush TLB on unmap, can't be freed in atomic context */ #define VM_MAP_PUT_PAGES 0x00000200 /* put pages and free array in vfree */ /* * VM_KASAN is used slighly differently depending on CONFIG_KASAN_VMALLOC. * * If IS_ENABLED(CONFIG_KASAN_VMALLOC), VM_KASAN is set on a vm_struct after * shadow memory has been mapped. It's used to handle allocation errors so that * we don't try to poision shadow on free if it was never allocated. * * Otherwise, VM_KASAN is set for kasan_module_alloc() allocations and used to * determine which allocations need the module shadow freed. */ /* bits [20..32] reserved for arch specific ioremap internals */ /* * Maximum alignment for ioremap() regions. * Can be overriden by arch-specific value. */ #ifndef IOREMAP_MAX_ORDER #define IOREMAP_MAX_ORDER (7 + PAGE_SHIFT) /* 128 pages */ #endif struct vm_struct { struct vm_struct *next; void *addr; unsigned long size; unsigned long flags; struct page **pages; unsigned int nr_pages; phys_addr_t phys_addr; const void *caller; }; struct vmap_area { unsigned long va_start; unsigned long va_end; struct rb_node rb_node; /* address sorted rbtree */ struct list_head list; /* address sorted list */ /* * The following three variables can be packed, because * a vmap_area object is always one of the three states: * 1) in "free" tree (root is vmap_area_root) * 2) in "busy" tree (root is free_vmap_area_root) * 3) in purge list (head is vmap_purge_list) */ union { unsigned long subtree_max_size; /* in "free" tree */ struct vm_struct *vm; /* in "busy" tree */ struct llist_node purge_list; /* in purge list */ }; }; /* * Highlevel APIs for driver use */ extern void vm_unmap_ram(const void *mem, unsigned int count); extern void *vm_map_ram(struct page **pages, unsigned int count, int node); extern void vm_unmap_aliases(void); #ifdef CONFIG_MMU extern void __init vmalloc_init(void); extern unsigned long vmalloc_nr_pages(void); #else static inline void vmalloc_init(void) { } static inline unsigned long vmalloc_nr_pages(void) { return 0; } #endif extern void *vmalloc(unsigned long size); extern void *vzalloc(unsigned long size); extern void *vmalloc_user(unsigned long size); extern void *vmalloc_node(unsigned long size, int node); extern void *vzalloc_node(unsigned long size, int node); extern void *vmalloc_32(unsigned long size); extern void *vmalloc_32_user(unsigned long size); extern void *__vmalloc(unsigned long size, gfp_t gfp_mask); extern void *__vmalloc_node_range(unsigned long size, unsigned long align, unsigned long start, unsigned long end, gfp_t gfp_mask, pgprot_t prot, unsigned long vm_flags, int node, const void *caller); void *__vmalloc_node(unsigned long size, unsigned long align, gfp_t gfp_mask, int node, const void *caller); extern void vfree(const void *addr); extern void vfree_atomic(const void *addr); extern void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot); void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot); extern void vunmap(const void *addr); extern int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, void *kaddr, unsigned long pgoff, unsigned long size); extern int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, unsigned long pgoff); /* * Architectures can set this mask to a combination of PGTBL_P?D_MODIFIED values * and let generic vmalloc and ioremap code know when arch_sync_kernel_mappings() * needs to be called. */ #ifndef ARCH_PAGE_TABLE_SYNC_MASK #define ARCH_PAGE_TABLE_SYNC_MASK 0 #endif /* * There is no default implementation for arch_sync_kernel_mappings(). It is * relied upon the compiler to optimize calls out if ARCH_PAGE_TABLE_SYNC_MASK * is 0. */ void arch_sync_kernel_mappings(unsigned long start, unsigned long end); /* * Lowlevel-APIs (not for driver use!) */ static inline size_t get_vm_area_size(const struct vm_struct *area) { if (!(area->flags & VM_NO_GUARD)) /* return actual size without guard page */ return area->size - PAGE_SIZE; else return area->size; } extern struct vm_struct *get_vm_area(unsigned long size, unsigned long flags); extern struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, const void *caller); extern struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, unsigned long start, unsigned long end, const void *caller); void free_vm_area(struct vm_struct *area); extern struct vm_struct *remove_vm_area(const void *addr); extern struct vm_struct *find_vm_area(const void *addr); #ifdef CONFIG_MMU extern int map_kernel_range_noflush(unsigned long start, unsigned long size, pgprot_t prot, struct page **pages); int map_kernel_range(unsigned long start, unsigned long size, pgprot_t prot, struct page **pages); extern void unmap_kernel_range_noflush(unsigned long addr, unsigned long size); extern void unmap_kernel_range(unsigned long addr, unsigned long size); static inline void set_vm_flush_reset_perms(void *addr) { struct vm_struct *vm = find_vm_area(addr); if (vm) vm->flags |= VM_FLUSH_RESET_PERMS; } #else static inline int map_kernel_range_noflush(unsigned long start, unsigned long size, pgprot_t prot, struct page **pages) { return size >> PAGE_SHIFT; } #define map_kernel_range map_kernel_range_noflush static inline void unmap_kernel_range_noflush(unsigned long addr, unsigned long size) { } #define unmap_kernel_range unmap_kernel_range_noflush static inline void set_vm_flush_reset_perms(void *addr) { } #endif /* for /dev/kmem */ extern long vread(char *buf, char *addr, unsigned long count); extern long vwrite(char *buf, char *addr, unsigned long count); /* * Internals. Dont't use.. */ extern struct list_head vmap_area_list; extern __init void vm_area_add_early(struct vm_struct *vm); extern __init void vm_area_register_early(struct vm_struct *vm, size_t align); #ifdef CONFIG_SMP # ifdef CONFIG_MMU struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, const size_t *sizes, int nr_vms, size_t align); void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms); # else static inline struct vm_struct ** pcpu_get_vm_areas(const unsigned long *offsets, const size_t *sizes, int nr_vms, size_t align) { return NULL; } static inline void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) { } # endif #endif #ifdef CONFIG_MMU #define VMALLOC_TOTAL (VMALLOC_END - VMALLOC_START) #else #define VMALLOC_TOTAL 0UL #endif int register_vmap_purge_notifier(struct notifier_block *nb); int unregister_vmap_purge_notifier(struct notifier_block *nb); #endif /* _LINUX_VMALLOC_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __NET_FIB_RULES_H #define __NET_FIB_RULES_H #include <linux/types.h> #include <linux/slab.h> #include <linux/netdevice.h> #include <linux/fib_rules.h> #include <linux/refcount.h> #include <net/flow.h> #include <net/rtnetlink.h> #include <net/fib_notifier.h> #include <linux/indirect_call_wrapper.h> struct fib_kuid_range { kuid_t start; kuid_t end; }; struct fib_rule { struct list_head list; int iifindex; int oifindex; u32 mark; u32 mark_mask; u32 flags; u32 table; u8 action; u8 l3mdev; u8 proto; u8 ip_proto; u32 target; __be64 tun_id; struct fib_rule __rcu *ctarget; struct net *fr_net; refcount_t refcnt; u32 pref; int suppress_ifgroup; int suppress_prefixlen; char iifname[IFNAMSIZ]; char oifname[IFNAMSIZ]; struct fib_kuid_range uid_range; struct fib_rule_port_range sport_range; struct fib_rule_port_range dport_range; struct rcu_head rcu; }; struct fib_lookup_arg { void *lookup_ptr; const void *lookup_data; void *result; struct fib_rule *rule; u32 table; int flags; #define FIB_LOOKUP_NOREF 1 #define FIB_LOOKUP_IGNORE_LINKSTATE 2 }; struct fib_rules_ops { int family; struct list_head list; int rule_size; int addr_size; int unresolved_rules; int nr_goto_rules; unsigned int fib_rules_seq; int (*action)(struct fib_rule *, struct flowi *, int, struct fib_lookup_arg *); bool (*suppress)(struct fib_rule *, int, struct fib_lookup_arg *); int (*match)(struct fib_rule *, struct flowi *, int); int (*configure)(struct fib_rule *, struct sk_buff *, struct fib_rule_hdr *, struct nlattr **, struct netlink_ext_ack *); int (*delete)(struct fib_rule *); int (*compare)(struct fib_rule *, struct fib_rule_hdr *, struct nlattr **); int (*fill)(struct fib_rule *, struct sk_buff *, struct fib_rule_hdr *); size_t (*nlmsg_payload)(struct fib_rule *); /* Called after modifications to the rules set, must flush * the route cache if one exists. */ void (*flush_cache)(struct fib_rules_ops *ops); int nlgroup; const struct nla_policy *policy; struct list_head rules_list; struct module *owner; struct net *fro_net; struct rcu_head rcu; }; struct fib_rule_notifier_info { struct fib_notifier_info info; /* must be first */ struct fib_rule *rule; }; #define FRA_GENERIC_POLICY \ [FRA_UNSPEC] = { .strict_start_type = FRA_DPORT_RANGE + 1 }, \ [FRA_IIFNAME] = { .type = NLA_STRING, .len = IFNAMSIZ - 1 }, \ [FRA_OIFNAME] = { .type = NLA_STRING, .len = IFNAMSIZ - 1 }, \ [FRA_PRIORITY] = { .type = NLA_U32 }, \ [FRA_FWMARK] = { .type = NLA_U32 }, \ [FRA_TUN_ID] = { .type = NLA_U64 }, \ [FRA_FWMASK] = { .type = NLA_U32 }, \ [FRA_TABLE] = { .type = NLA_U32 }, \ [FRA_SUPPRESS_PREFIXLEN] = { .type = NLA_U32 }, \ [FRA_SUPPRESS_IFGROUP] = { .type = NLA_U32 }, \ [FRA_GOTO] = { .type = NLA_U32 }, \ [FRA_L3MDEV] = { .type = NLA_U8 }, \ [FRA_UID_RANGE] = { .len = sizeof(struct fib_rule_uid_range) }, \ [FRA_PROTOCOL] = { .type = NLA_U8 }, \ [FRA_IP_PROTO] = { .type = NLA_U8 }, \ [FRA_SPORT_RANGE] = { .len = sizeof(struct fib_rule_port_range) }, \ [FRA_DPORT_RANGE] = { .len = sizeof(struct fib_rule_port_range) } static inline void fib_rule_get(struct fib_rule *rule) { refcount_inc(&rule->refcnt); } static inline void fib_rule_put(struct fib_rule *rule) { if (refcount_dec_and_test(&rule->refcnt)) kfree_rcu(rule, rcu); } #ifdef CONFIG_NET_L3_MASTER_DEV static inline u32 fib_rule_get_table(struct fib_rule *rule, struct fib_lookup_arg *arg) { return rule->l3mdev ? arg->table : rule->table; } #else static inline u32 fib_rule_get_table(struct fib_rule *rule, struct fib_lookup_arg *arg) { return rule->table; } #endif static inline u32 frh_get_table(struct fib_rule_hdr *frh, struct nlattr **nla) { if (nla[FRA_TABLE]) return nla_get_u32(nla[FRA_TABLE]); return frh->table; } static inline bool fib_rule_port_range_set(const struct fib_rule_port_range *range) { return range->start != 0 && range->end != 0; } static inline bool fib_rule_port_inrange(const struct fib_rule_port_range *a, __be16 port) { return ntohs(port) >= a->start && ntohs(port) <= a->end; } static inline bool fib_rule_port_range_valid(const struct fib_rule_port_range *a) { return a->start != 0 && a->end != 0 && a->end < 0xffff && a->start <= a->end; } static inline bool fib_rule_port_range_compare(struct fib_rule_port_range *a, struct fib_rule_port_range *b) { return a->start == b->start && a->end == b->end; } static inline bool fib_rule_requires_fldissect(struct fib_rule *rule) { return rule->iifindex != LOOPBACK_IFINDEX && (rule->ip_proto || fib_rule_port_range_set(&rule->sport_range) || fib_rule_port_range_set(&rule->dport_range)); } struct fib_rules_ops *fib_rules_register(const struct fib_rules_ops *, struct net *); void fib_rules_unregister(struct fib_rules_ops *); int fib_rules_lookup(struct fib_rules_ops *, struct flowi *, int flags, struct fib_lookup_arg *); int fib_default_rule_add(struct fib_rules_ops *, u32 pref, u32 table, u32 flags); bool fib_rule_matchall(const struct fib_rule *rule); int fib_rules_dump(struct net *net, struct notifier_block *nb, int family, struct netlink_ext_ack *extack); unsigned int fib_rules_seq_read(struct net *net, int family); int fib_nl_newrule(struct sk_buff *skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack); int fib_nl_delrule(struct sk_buff *skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack); INDIRECT_CALLABLE_DECLARE(int fib6_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)); INDIRECT_CALLABLE_DECLARE(int fib4_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)); INDIRECT_CALLABLE_DECLARE(int fib6_rule_action(struct fib_rule *rule, struct flowi *flp, int flags, struct fib_lookup_arg *arg)); INDIRECT_CALLABLE_DECLARE(int fib4_rule_action(struct fib_rule *rule, struct flowi *flp, int flags, struct fib_lookup_arg *arg)); INDIRECT_CALLABLE_DECLARE(bool fib6_rule_suppress(struct fib_rule *rule, int flags, struct fib_lookup_arg *arg)); INDIRECT_CALLABLE_DECLARE(bool fib4_rule_suppress(struct fib_rule *rule, int flags, struct fib_lookup_arg *arg)); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _INET_ECN_H_ #define _INET_ECN_H_ #include <linux/ip.h> #include <linux/skbuff.h> #include <linux/if_vlan.h> #include <net/inet_sock.h> #include <net/dsfield.h> enum { INET_ECN_NOT_ECT = 0, INET_ECN_ECT_1 = 1, INET_ECN_ECT_0 = 2, INET_ECN_CE = 3, INET_ECN_MASK = 3, }; extern int sysctl_tunnel_ecn_log; static inline int INET_ECN_is_ce(__u8 dsfield) { return (dsfield & INET_ECN_MASK) == INET_ECN_CE; } static inline int INET_ECN_is_not_ect(__u8 dsfield) { return (dsfield & INET_ECN_MASK) == INET_ECN_NOT_ECT; } static inline int INET_ECN_is_capable(__u8 dsfield) { return dsfield & INET_ECN_ECT_0; } /* * RFC 3168 9.1.1 * The full-functionality option for ECN encapsulation is to copy the * ECN codepoint of the inside header to the outside header on * encapsulation if the inside header is not-ECT or ECT, and to set the * ECN codepoint of the outside header to ECT(0) if the ECN codepoint of * the inside header is CE. */ static inline __u8 INET_ECN_encapsulate(__u8 outer, __u8 inner) { outer &= ~INET_ECN_MASK; outer |= !INET_ECN_is_ce(inner) ? (inner & INET_ECN_MASK) : INET_ECN_ECT_0; return outer; } static inline void INET_ECN_xmit(struct sock *sk) { inet_sk(sk)->tos |= INET_ECN_ECT_0; if (inet6_sk(sk) != NULL) inet6_sk(sk)->tclass |= INET_ECN_ECT_0; } static inline void INET_ECN_dontxmit(struct sock *sk) { inet_sk(sk)->tos &= ~INET_ECN_MASK; if (inet6_sk(sk) != NULL) inet6_sk(sk)->tclass &= ~INET_ECN_MASK; } #define IP6_ECN_flow_init(label) do { \ (label) &= ~htonl(INET_ECN_MASK << 20); \ } while (0) #define IP6_ECN_flow_xmit(sk, label) do { \ if (INET_ECN_is_capable(inet6_sk(sk)->tclass)) \ (label) |= htonl(INET_ECN_ECT_0 << 20); \ } while (0) static inline int IP_ECN_set_ce(struct iphdr *iph) { u32 check = (__force u32)iph->check; u32 ecn = (iph->tos + 1) & INET_ECN_MASK; /* * After the last operation we have (in binary): * INET_ECN_NOT_ECT => 01 * INET_ECN_ECT_1 => 10 * INET_ECN_ECT_0 => 11 * INET_ECN_CE => 00 */ if (!(ecn & 2)) return !ecn; /* * The following gives us: * INET_ECN_ECT_1 => check += htons(0xFFFD) * INET_ECN_ECT_0 => check += htons(0xFFFE) */ check += (__force u16)htons(0xFFFB) + (__force u16)htons(ecn); iph->check = (__force __sum16)(check + (check>=0xFFFF)); iph->tos |= INET_ECN_CE; return 1; } static inline int IP_ECN_set_ect1(struct iphdr *iph) { u32 check = (__force u32)iph->check; if ((iph->tos & INET_ECN_MASK) != INET_ECN_ECT_0) return 0; check += (__force u16)htons(0x1); iph->check = (__force __sum16)(check + (check>=0xFFFF)); iph->tos ^= INET_ECN_MASK; return 1; } static inline void IP_ECN_clear(struct iphdr *iph) { iph->tos &= ~INET_ECN_MASK; } static inline void ipv4_copy_dscp(unsigned int dscp, struct iphdr *inner) { dscp &= ~INET_ECN_MASK; ipv4_change_dsfield(inner, INET_ECN_MASK, dscp); } struct ipv6hdr; /* Note: * IP_ECN_set_ce() has to tweak IPV4 checksum when setting CE, * meaning both changes have no effect on skb->csum if/when CHECKSUM_COMPLETE * In IPv6 case, no checksum compensates the change in IPv6 header, * so we have to update skb->csum. */ static inline int IP6_ECN_set_ce(struct sk_buff *skb, struct ipv6hdr *iph) { __be32 from, to; if (INET_ECN_is_not_ect(ipv6_get_dsfield(iph))) return 0; from = *(__be32 *)iph; to = from | htonl(INET_ECN_CE << 20); *(__be32 *)iph = to; if (skb->ip_summed == CHECKSUM_COMPLETE) skb->csum = csum_add(csum_sub(skb->csum, (__force __wsum)from), (__force __wsum)to); return 1; } static inline int IP6_ECN_set_ect1(struct sk_buff *skb, struct ipv6hdr *iph) { __be32 from, to; if ((ipv6_get_dsfield(iph) & INET_ECN_MASK) != INET_ECN_ECT_0) return 0; from = *(__be32 *)iph; to = from ^ htonl(INET_ECN_MASK << 20); *(__be32 *)iph = to; if (skb->ip_summed == CHECKSUM_COMPLETE) skb->csum = csum_add(csum_sub(skb->csum, (__force __wsum)from), (__force __wsum)to); return 1; } static inline void ipv6_copy_dscp(unsigned int dscp, struct ipv6hdr *inner) { dscp &= ~INET_ECN_MASK; ipv6_change_dsfield(inner, INET_ECN_MASK, dscp); } static inline int INET_ECN_set_ce(struct sk_buff *skb) { switch (skb_protocol(skb, true)) { case cpu_to_be16(ETH_P_IP): if (skb_network_header(skb) + sizeof(struct iphdr) <= skb_tail_pointer(skb)) return IP_ECN_set_ce(ip_hdr(skb)); break; case cpu_to_be16(ETH_P_IPV6): if (skb_network_header(skb) + sizeof(struct ipv6hdr) <= skb_tail_pointer(skb)) return IP6_ECN_set_ce(skb, ipv6_hdr(skb)); break; } return 0; } static inline int INET_ECN_set_ect1(struct sk_buff *skb) { switch (skb_protocol(skb, true)) { case cpu_to_be16(ETH_P_IP): if (skb_network_header(skb) + sizeof(struct iphdr) <= skb_tail_pointer(skb)) return IP_ECN_set_ect1(ip_hdr(skb)); break; case cpu_to_be16(ETH_P_IPV6): if (skb_network_header(skb) + sizeof(struct ipv6hdr) <= skb_tail_pointer(skb)) return IP6_ECN_set_ect1(skb, ipv6_hdr(skb)); break; } return 0; } /* * RFC 6040 4.2 * To decapsulate the inner header at the tunnel egress, a compliant * tunnel egress MUST set the outgoing ECN field to the codepoint at the * intersection of the appropriate arriving inner header (row) and outer * header (column) in Figure 4 * * +---------+------------------------------------------------+ * |Arriving | Arriving Outer Header | * | Inner +---------+------------+------------+------------+ * | Header | Not-ECT | ECT(0) | ECT(1) | CE | * +---------+---------+------------+------------+------------+ * | Not-ECT | Not-ECT |Not-ECT(!!!)|Not-ECT(!!!)| <drop>(!!!)| * | ECT(0) | ECT(0) | ECT(0) | ECT(1) | CE | * | ECT(1) | ECT(1) | ECT(1) (!) | ECT(1) | CE | * | CE | CE | CE | CE(!!!)| CE | * +---------+---------+------------+------------+------------+ * * Figure 4: New IP in IP Decapsulation Behaviour * * returns 0 on success * 1 if something is broken and should be logged (!!! above) * 2 if packet should be dropped */ static inline int __INET_ECN_decapsulate(__u8 outer, __u8 inner, bool *set_ce) { if (INET_ECN_is_not_ect(inner)) { switch (outer & INET_ECN_MASK) { case INET_ECN_NOT_ECT: return 0; case INET_ECN_ECT_0: case INET_ECN_ECT_1: return 1; case INET_ECN_CE: return 2; } } *set_ce = INET_ECN_is_ce(outer); return 0; } static inline int INET_ECN_decapsulate(struct sk_buff *skb, __u8 outer, __u8 inner) { bool set_ce = false; int rc; rc = __INET_ECN_decapsulate(outer, inner, &set_ce); if (!rc) { if (set_ce) INET_ECN_set_ce(skb); else if ((outer & INET_ECN_MASK) == INET_ECN_ECT_1) INET_ECN_set_ect1(skb); } return rc; } static inline int IP_ECN_decapsulate(const struct iphdr *oiph, struct sk_buff *skb) { __u8 inner; switch (skb_protocol(skb, true)) { case htons(ETH_P_IP): inner = ip_hdr(skb)->tos; break; case htons(ETH_P_IPV6): inner = ipv6_get_dsfield(ipv6_hdr(skb)); break; default: return 0; } return INET_ECN_decapsulate(skb, oiph->tos, inner); } static inline int IP6_ECN_decapsulate(const struct ipv6hdr *oipv6h, struct sk_buff *skb) { __u8 inner; switch (skb_protocol(skb, true)) { case htons(ETH_P_IP): inner = ip_hdr(skb)->tos; break; case htons(ETH_P_IPV6): inner = ipv6_get_dsfield(ipv6_hdr(skb)); break; default: return 0; } return INET_ECN_decapsulate(skb, ipv6_get_dsfield(oipv6h), inner); } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM alarmtimer #if !defined(_TRACE_ALARMTIMER_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_ALARMTIMER_H #include <linux/alarmtimer.h> #include <linux/rtc.h> #include <linux/tracepoint.h> TRACE_DEFINE_ENUM(ALARM_REALTIME); TRACE_DEFINE_ENUM(ALARM_BOOTTIME); TRACE_DEFINE_ENUM(ALARM_REALTIME_FREEZER); TRACE_DEFINE_ENUM(ALARM_BOOTTIME_FREEZER); #define show_alarm_type(type) __print_flags(type, " | ", \ { 1 << ALARM_REALTIME, "REALTIME" }, \ { 1 << ALARM_BOOTTIME, "BOOTTIME" }, \ { 1 << ALARM_REALTIME_FREEZER, "REALTIME Freezer" }, \ { 1 << ALARM_BOOTTIME_FREEZER, "BOOTTIME Freezer" }) TRACE_EVENT(alarmtimer_suspend, TP_PROTO(ktime_t expires, int flag), TP_ARGS(expires, flag), TP_STRUCT__entry( __field(s64, expires) __field(unsigned char, alarm_type) ), TP_fast_assign( __entry->expires = expires; __entry->alarm_type = flag; ), TP_printk("alarmtimer type:%s expires:%llu", show_alarm_type((1 << __entry->alarm_type)), __entry->expires ) ); DECLARE_EVENT_CLASS(alarm_class, TP_PROTO(struct alarm *alarm, ktime_t now), TP_ARGS(alarm, now), TP_STRUCT__entry( __field(void *, alarm) __field(unsigned char, alarm_type) __field(s64, expires) __field(s64, now) ), TP_fast_assign( __entry->alarm = alarm; __entry->alarm_type = alarm->type; __entry->expires = alarm->node.expires; __entry->now = now; ), TP_printk("alarmtimer:%p type:%s expires:%llu now:%llu", __entry->alarm, show_alarm_type((1 << __entry->alarm_type)), __entry->expires, __entry->now ) ); DEFINE_EVENT(alarm_class, alarmtimer_fired, TP_PROTO(struct alarm *alarm, ktime_t now), TP_ARGS(alarm, now) ); DEFINE_EVENT(alarm_class, alarmtimer_start, TP_PROTO(struct alarm *alarm, ktime_t now), TP_ARGS(alarm, now) ); DEFINE_EVENT(alarm_class, alarmtimer_cancel, TP_PROTO(struct alarm *alarm, ktime_t now), TP_ARGS(alarm, now) ); #endif /* _TRACE_ALARMTIMER_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 /* * The VGA aribiter manages VGA space routing and VGA resource decode to * allow multiple VGA devices to be used in a system in a safe way. * * (C) Copyright 2005 Benjamin Herrenschmidt <benh@kernel.crashing.org> * (C) Copyright 2007 Paulo R. Zanoni <przanoni@gmail.com> * (C) Copyright 2007, 2009 Tiago Vignatti <vignatti@freedesktop.org> * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS * IN THE SOFTWARE. * */ #ifndef LINUX_VGA_H #define LINUX_VGA_H #include <video/vga.h> /* Legacy VGA regions */ #define VGA_RSRC_NONE 0x00 #define VGA_RSRC_LEGACY_IO 0x01 #define VGA_RSRC_LEGACY_MEM 0x02 #define VGA_RSRC_LEGACY_MASK (VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM) /* Non-legacy access */ #define VGA_RSRC_NORMAL_IO 0x04 #define VGA_RSRC_NORMAL_MEM 0x08 /* Passing that instead of a pci_dev to use the system "default" * device, that is the one used by vgacon. Archs will probably * have to provide their own vga_default_device(); */ #define VGA_DEFAULT_DEVICE (NULL) struct pci_dev; /* For use by clients */ /** * vga_set_legacy_decoding * * @pdev: pci device of the VGA card * @decodes: bit mask of what legacy regions the card decodes * * Indicates to the arbiter if the card decodes legacy VGA IOs, * legacy VGA Memory, both, or none. All cards default to both, * the card driver (fbdev for example) should tell the arbiter * if it has disabled legacy decoding, so the card can be left * out of the arbitration process (and can be safe to take * interrupts at any time. */ #if defined(CONFIG_VGA_ARB) extern void vga_set_legacy_decoding(struct pci_dev *pdev, unsigned int decodes); #else static inline void vga_set_legacy_decoding(struct pci_dev *pdev, unsigned int decodes) { }; #endif #if defined(CONFIG_VGA_ARB) extern int vga_get(struct pci_dev *pdev, unsigned int rsrc, int interruptible); #else static inline int vga_get(struct pci_dev *pdev, unsigned int rsrc, int interruptible) { return 0; } #endif /** * vga_get_interruptible * @pdev: pci device of the VGA card or NULL for the system default * @rsrc: bit mask of resources to acquire and lock * * Shortcut to vga_get with interruptible set to true. * * On success, release the VGA resource again with vga_put(). */ static inline int vga_get_interruptible(struct pci_dev *pdev, unsigned int rsrc) { return vga_get(pdev, rsrc, 1); } /** * vga_get_uninterruptible - shortcut to vga_get() * @pdev: pci device of the VGA card or NULL for the system default * @rsrc: bit mask of resources to acquire and lock * * Shortcut to vga_get with interruptible set to false. * * On success, release the VGA resource again with vga_put(). */ static inline int vga_get_uninterruptible(struct pci_dev *pdev, unsigned int rsrc) { return vga_get(pdev, rsrc, 0); } #if defined(CONFIG_VGA_ARB) extern void vga_put(struct pci_dev *pdev, unsigned int rsrc); #else #define vga_put(pdev, rsrc) #endif #ifdef CONFIG_VGA_ARB extern struct pci_dev *vga_default_device(void); extern void vga_set_default_device(struct pci_dev *pdev); extern int vga_remove_vgacon(struct pci_dev *pdev); #else static inline struct pci_dev *vga_default_device(void) { return NULL; }; static inline void vga_set_default_device(struct pci_dev *pdev) { }; static inline int vga_remove_vgacon(struct pci_dev *pdev) { return 0; }; #endif /* * Architectures should define this if they have several * independent PCI domains that can afford concurrent VGA * decoding */ #ifndef __ARCH_HAS_VGA_CONFLICT static inline int vga_conflicts(struct pci_dev *p1, struct pci_dev *p2) { return 1; } #endif #if defined(CONFIG_VGA_ARB) int vga_client_register(struct pci_dev *pdev, void *cookie, void (*irq_set_state)(void *cookie, bool state), unsigned int (*set_vga_decode)(void *cookie, bool state)); #else static inline int vga_client_register(struct pci_dev *pdev, void *cookie, void (*irq_set_state)(void *cookie, bool state), unsigned int (*set_vga_decode)(void *cookie, bool state)) { return 0; } #endif #endif /* LINUX_VGA_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 /* SPDX-License-Identifier: GPL-2.0 */ /* * include/linux/buffer_head.h * * Everything to do with buffer_heads. */ #ifndef _LINUX_BUFFER_HEAD_H #define _LINUX_BUFFER_HEAD_H #include <linux/types.h> #include <linux/fs.h> #include <linux/linkage.h> #include <linux/pagemap.h> #include <linux/wait.h> #include <linux/atomic.h> #ifdef CONFIG_BLOCK enum bh_state_bits { BH_Uptodate, /* Contains valid data */ BH_Dirty, /* Is dirty */ BH_Lock, /* Is locked */ BH_Req, /* Has been submitted for I/O */ BH_Mapped, /* Has a disk mapping */ BH_New, /* Disk mapping was newly created by get_block */ BH_Async_Read, /* Is under end_buffer_async_read I/O */ BH_Async_Write, /* Is under end_buffer_async_write I/O */ BH_Delay, /* Buffer is not yet allocated on disk */ BH_Boundary, /* Block is followed by a discontiguity */ BH_Write_EIO, /* I/O error on write */ BH_Unwritten, /* Buffer is allocated on disk but not written */ BH_Quiet, /* Buffer Error Prinks to be quiet */ BH_Meta, /* Buffer contains metadata */ BH_Prio, /* Buffer should be submitted with REQ_PRIO */ BH_Defer_Completion, /* Defer AIO completion to workqueue */ BH_PrivateStart,/* not a state bit, but the first bit available * for private allocation by other entities */ }; #define MAX_BUF_PER_PAGE (PAGE_SIZE / 512) struct page; struct buffer_head; struct address_space; typedef void (bh_end_io_t)(struct buffer_head *bh, int uptodate); /* * Historically, a buffer_head was used to map a single block * within a page, and of course as the unit of I/O through the * filesystem and block layers. Nowadays the basic I/O unit * is the bio, and buffer_heads are used for extracting block * mappings (via a get_block_t call), for tracking state within * a page (via a page_mapping) and for wrapping bio submission * for backward compatibility reasons (e.g. submit_bh). */ struct buffer_head { unsigned long b_state; /* buffer state bitmap (see above) */ struct buffer_head *b_this_page;/* circular list of page's buffers */ struct page *b_page; /* the page this bh is mapped to */ sector_t b_blocknr; /* start block number */ size_t b_size; /* size of mapping */ char *b_data; /* pointer to data within the page */ struct block_device *b_bdev; bh_end_io_t *b_end_io; /* I/O completion */ void *b_private; /* reserved for b_end_io */ struct list_head b_assoc_buffers; /* associated with another mapping */ struct address_space *b_assoc_map; /* mapping this buffer is associated with */ atomic_t b_count; /* users using this buffer_head */ spinlock_t b_uptodate_lock; /* Used by the first bh in a page, to * serialise IO completion of other * buffers in the page */ }; /* * macro tricks to expand the set_buffer_foo(), clear_buffer_foo() * and buffer_foo() functions. * To avoid reset buffer flags that are already set, because that causes * a costly cache line transition, check the flag first. */ #define BUFFER_FNS(bit, name) \ static __always_inline void set_buffer_##name(struct buffer_head *bh) \ { \ if (!test_bit(BH_##bit, &(bh)->b_state)) \ set_bit(BH_##bit, &(bh)->b_state); \ } \ static __always_inline void clear_buffer_##name(struct buffer_head *bh) \ { \ clear_bit(BH_##bit, &(bh)->b_state); \ } \ static __always_inline int buffer_##name(const struct buffer_head *bh) \ { \ return test_bit(BH_##bit, &(bh)->b_state); \ } /* * test_set_buffer_foo() and test_clear_buffer_foo() */ #define TAS_BUFFER_FNS(bit, name) \ static __always_inline int test_set_buffer_##name(struct buffer_head *bh) \ { \ return test_and_set_bit(BH_##bit, &(bh)->b_state); \ } \ static __always_inline int test_clear_buffer_##name(struct buffer_head *bh) \ { \ return test_and_clear_bit(BH_##bit, &(bh)->b_state); \ } \ /* * Emit the buffer bitops functions. Note that there are also functions * of the form "mark_buffer_foo()". These are higher-level functions which * do something in addition to setting a b_state bit. */ BUFFER_FNS(Uptodate, uptodate) BUFFER_FNS(Dirty, dirty) TAS_BUFFER_FNS(Dirty, dirty) BUFFER_FNS(Lock, locked) BUFFER_FNS(Req, req) TAS_BUFFER_FNS(Req, req) BUFFER_FNS(Mapped, mapped) BUFFER_FNS(New, new) BUFFER_FNS(Async_Read, async_read) BUFFER_FNS(Async_Write, async_write) BUFFER_FNS(Delay, delay) BUFFER_FNS(Boundary, boundary) BUFFER_FNS(Write_EIO, write_io_error) BUFFER_FNS(Unwritten, unwritten) BUFFER_FNS(Meta, meta) BUFFER_FNS(Prio, prio) BUFFER_FNS(Defer_Completion, defer_completion) #define bh_offset(bh) ((unsigned long)(bh)->b_data & ~PAGE_MASK) /* If we *know* page->private refers to buffer_heads */ #define page_buffers(page) \ ({ \ BUG_ON(!PagePrivate(page)); \ ((struct buffer_head *)page_private(page)); \ }) #define page_has_buffers(page) PagePrivate(page) void buffer_check_dirty_writeback(struct page *page, bool *dirty, bool *writeback); /* * Declarations */ void mark_buffer_dirty(struct buffer_head *bh); void mark_buffer_write_io_error(struct buffer_head *bh); void touch_buffer(struct buffer_head *bh); void set_bh_page(struct buffer_head *bh, struct page *page, unsigned long offset); int try_to_free_buffers(struct page *); struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, bool retry); void create_empty_buffers(struct page *, unsigned long, unsigned long b_state); void end_buffer_read_sync(struct buffer_head *bh, int uptodate); void end_buffer_write_sync(struct buffer_head *bh, int uptodate); void end_buffer_async_write(struct buffer_head *bh, int uptodate); /* Things to do with buffers at mapping->private_list */ void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode); int inode_has_buffers(struct inode *); void invalidate_inode_buffers(struct inode *); int remove_inode_buffers(struct inode *inode); int sync_mapping_buffers(struct address_space *mapping); void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len); static inline void clean_bdev_bh_alias(struct buffer_head *bh) { clean_bdev_aliases(bh->b_bdev, bh->b_blocknr, 1); } void mark_buffer_async_write(struct buffer_head *bh); void __wait_on_buffer(struct buffer_head *); wait_queue_head_t *bh_waitq_head(struct buffer_head *bh); struct buffer_head *__find_get_block(struct block_device *bdev, sector_t block, unsigned size); struct buffer_head *__getblk_gfp(struct block_device *bdev, sector_t block, unsigned size, gfp_t gfp); void __brelse(struct buffer_head *); void __bforget(struct buffer_head *); void __breadahead(struct block_device *, sector_t block, unsigned int size); void __breadahead_gfp(struct block_device *, sector_t block, unsigned int size, gfp_t gfp); struct buffer_head *__bread_gfp(struct block_device *, sector_t block, unsigned size, gfp_t gfp); void invalidate_bh_lrus(void); struct buffer_head *alloc_buffer_head(gfp_t gfp_flags); void free_buffer_head(struct buffer_head * bh); void unlock_buffer(struct buffer_head *bh); void __lock_buffer(struct buffer_head *bh); void ll_rw_block(int, int, int, struct buffer_head * bh[]); int sync_dirty_buffer(struct buffer_head *bh); int __sync_dirty_buffer(struct buffer_head *bh, int op_flags); void write_dirty_buffer(struct buffer_head *bh, int op_flags); int submit_bh(int, int, struct buffer_head *); void write_boundary_block(struct block_device *bdev, sector_t bblock, unsigned blocksize); int bh_uptodate_or_lock(struct buffer_head *bh); int bh_submit_read(struct buffer_head *bh); extern int buffer_heads_over_limit; /* * Generic address_space_operations implementations for buffer_head-backed * address_spaces. */ void block_invalidatepage(struct page *page, unsigned int offset, unsigned int length); int block_write_full_page(struct page *page, get_block_t *get_block, struct writeback_control *wbc); int __block_write_full_page(struct inode *inode, struct page *page, get_block_t *get_block, struct writeback_control *wbc, bh_end_io_t *handler); int block_read_full_page(struct page*, get_block_t*); int block_is_partially_uptodate(struct page *page, unsigned long from, unsigned long count); int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, unsigned flags, struct page **pagep, get_block_t *get_block); int __block_write_begin(struct page *page, loff_t pos, unsigned len, get_block_t *get_block); int block_write_end(struct file *, struct address_space *, loff_t, unsigned, unsigned, struct page *, void *); int generic_write_end(struct file *, struct address_space *, loff_t, unsigned, unsigned, struct page *, void *); void page_zero_new_buffers(struct page *page, unsigned from, unsigned to); void clean_page_buffers(struct page *page); int cont_write_begin(struct file *, struct address_space *, loff_t, unsigned, unsigned, struct page **, void **, get_block_t *, loff_t *); int generic_cont_expand_simple(struct inode *inode, loff_t size); int block_commit_write(struct page *page, unsigned from, unsigned to); int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, get_block_t get_block); /* Convert errno to return value from ->page_mkwrite() call */ static inline vm_fault_t block_page_mkwrite_return(int err) { if (err == 0) return VM_FAULT_LOCKED; if (err == -EFAULT || err == -EAGAIN) return VM_FAULT_NOPAGE; if (err == -ENOMEM) return VM_FAULT_OOM; /* -ENOSPC, -EDQUOT, -EIO ... */ return VM_FAULT_SIGBUS; } sector_t generic_block_bmap(struct address_space *, sector_t, get_block_t *); int block_truncate_page(struct address_space *, loff_t, get_block_t *); int nobh_write_begin(struct address_space *, loff_t, unsigned, unsigned, struct page **, void **, get_block_t*); int nobh_write_end(struct file *, struct address_space *, loff_t, unsigned, unsigned, struct page *, void *); int nobh_truncate_page(struct address_space *, loff_t, get_block_t *); int nobh_writepage(struct page *page, get_block_t *get_block, struct writeback_control *wbc); void buffer_init(void); /* * inline definitions */ static inline void get_bh(struct buffer_head *bh) { atomic_inc(&bh->b_count); } static inline void put_bh(struct buffer_head *bh) { smp_mb__before_atomic(); atomic_dec(&bh->b_count); } static inline void brelse(struct buffer_head *bh) { if (bh) __brelse(bh); } static inline void bforget(struct buffer_head *bh) { if (bh) __bforget(bh); } static inline struct buffer_head * sb_bread(struct super_block *sb, sector_t block) { return __bread_gfp(sb->s_bdev, block, sb->s_blocksize, __GFP_MOVABLE); } static inline struct buffer_head * sb_bread_unmovable(struct super_block *sb, sector_t block) { return __bread_gfp(sb->s_bdev, block, sb->s_blocksize, 0); } static inline void sb_breadahead(struct super_block *sb, sector_t block) { __breadahead(sb->s_bdev, block, sb->s_blocksize); } static inline void sb_breadahead_unmovable(struct super_block *sb, sector_t block) { __breadahead_gfp(sb->s_bdev, block, sb->s_blocksize, 0); } static inline struct buffer_head * sb_getblk(struct super_block *sb, sector_t block) { return __getblk_gfp(sb->s_bdev, block, sb->s_blocksize, __GFP_MOVABLE); } static inline struct buffer_head * sb_getblk_gfp(struct super_block *sb, sector_t block, gfp_t gfp) { return __getblk_gfp(sb->s_bdev, block, sb->s_blocksize, gfp); } static inline struct buffer_head * sb_find_get_block(struct super_block *sb, sector_t block) { return __find_get_block(sb->s_bdev, block, sb->s_blocksize); } static inline void map_bh(struct buffer_head *bh, struct super_block *sb, sector_t block) { set_buffer_mapped(bh); bh->b_bdev = sb->s_bdev; bh->b_blocknr = block; bh->b_size = sb->s_blocksize; } static inline void wait_on_buffer(struct buffer_head *bh) { might_sleep(); if (buffer_locked(bh)) __wait_on_buffer(bh); } static inline int trylock_buffer(struct buffer_head *bh) { return likely(!test_and_set_bit_lock(BH_Lock, &bh->b_state)); } static inline void lock_buffer(struct buffer_head *bh) { might_sleep(); if (!trylock_buffer(bh)) __lock_buffer(bh); } static inline struct buffer_head *getblk_unmovable(struct block_device *bdev, sector_t block, unsigned size) { return __getblk_gfp(bdev, block, size, 0); } static inline struct buffer_head *__getblk(struct block_device *bdev, sector_t block, unsigned size) { return __getblk_gfp(bdev, block, size, __GFP_MOVABLE); } /** * __bread() - reads a specified block and returns the bh * @bdev: the block_device to read from * @block: number of block * @size: size (in bytes) to read * * Reads a specified block, and returns buffer head that contains it. * The page cache is allocated from movable area so that it can be migrated. * It returns NULL if the block was unreadable. */ static inline struct buffer_head * __bread(struct block_device *bdev, sector_t block, unsigned size) { return __bread_gfp(bdev, block, size, __GFP_MOVABLE); } extern int __set_page_dirty_buffers(struct page *page); #else /* CONFIG_BLOCK */ static inline void buffer_init(void) {} static inline int try_to_free_buffers(struct page *page) { return 1; } static inline int inode_has_buffers(struct inode *inode) { return 0; } static inline void invalidate_inode_buffers(struct inode *inode) {} static inline int remove_inode_buffers(struct inode *inode) { return 1; } static inline int sync_mapping_buffers(struct address_space *mapping) { return 0; } #define buffer_heads_over_limit 0 #endif /* CONFIG_BLOCK */ #endif /* _LINUX_BUFFER_HEAD_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 /* SPDX-License-Identifier: GPL-2.0 */ #include <linux/fs.h> #include <linux/buffer_head.h> #include <linux/exportfs.h> #include <linux/iso_fs.h> #include <asm/unaligned.h> enum isofs_file_format { isofs_file_normal = 0, isofs_file_sparse = 1, isofs_file_compressed = 2, }; /* * iso fs inode data in memory */ struct iso_inode_info { unsigned long i_iget5_block; unsigned long i_iget5_offset; unsigned int i_first_extent; unsigned char i_file_format; unsigned char i_format_parm[3]; unsigned long i_next_section_block; unsigned long i_next_section_offset; off_t i_section_size; struct inode vfs_inode; }; /* * iso9660 super-block data in memory */ struct isofs_sb_info { unsigned long s_ninodes; unsigned long s_nzones; unsigned long s_firstdatazone; unsigned long s_log_zone_size; unsigned long s_max_size; int s_rock_offset; /* offset of SUSP fields within SU area */ s32 s_sbsector; unsigned char s_joliet_level; unsigned char s_mapping; unsigned char s_check; unsigned char s_session; unsigned int s_high_sierra:1; unsigned int s_rock:2; unsigned int s_cruft:1; /* Broken disks with high byte of length * containing junk */ unsigned int s_nocompress:1; unsigned int s_hide:1; unsigned int s_showassoc:1; unsigned int s_overriderockperm:1; unsigned int s_uid_set:1; unsigned int s_gid_set:1; umode_t s_fmode; umode_t s_dmode; kgid_t s_gid; kuid_t s_uid; struct nls_table *s_nls_iocharset; /* Native language support table */ }; #define ISOFS_INVALID_MODE ((umode_t) -1) static inline struct isofs_sb_info *ISOFS_SB(struct super_block *sb) { return sb->s_fs_info; } static inline struct iso_inode_info *ISOFS_I(struct inode *inode) { return container_of(inode, struct iso_inode_info, vfs_inode); } static inline int isonum_711(u8 *p) { return *p; } static inline int isonum_712(s8 *p) { return *p; } static inline unsigned int isonum_721(u8 *p) { return get_unaligned_le16(p); } static inline unsigned int isonum_722(u8 *p) { return get_unaligned_be16(p); } static inline unsigned int isonum_723(u8 *p) { /* Ignore bigendian datum due to broken mastering programs */ return get_unaligned_le16(p); } static inline unsigned int isonum_731(u8 *p) { return get_unaligned_le32(p); } static inline unsigned int isonum_732(u8 *p) { return get_unaligned_be32(p); } static inline unsigned int isonum_733(u8 *p) { /* Ignore bigendian datum due to broken mastering programs */ return get_unaligned_le32(p); } extern int iso_date(u8 *, int); struct inode; /* To make gcc happy */ extern int parse_rock_ridge_inode(struct iso_directory_record *, struct inode *, int relocated); extern int get_rock_ridge_filename(struct iso_directory_record *, char *, struct inode *); extern int isofs_name_translate(struct iso_directory_record *, char *, struct inode *); int get_joliet_filename(struct iso_directory_record *, unsigned char *, struct inode *); int get_acorn_filename(struct iso_directory_record *, char *, struct inode *); extern struct dentry *isofs_lookup(struct inode *, struct dentry *, unsigned int flags); extern struct buffer_head *isofs_bread(struct inode *, sector_t); extern int isofs_get_blocks(struct inode *, sector_t, struct buffer_head **, unsigned long); struct inode *__isofs_iget(struct super_block *sb, unsigned long block, unsigned long offset, int relocated); static inline struct inode *isofs_iget(struct super_block *sb, unsigned long block, unsigned long offset) { return __isofs_iget(sb, block, offset, 0); } static inline struct inode *isofs_iget_reloc(struct super_block *sb, unsigned long block, unsigned long offset) { return __isofs_iget(sb, block, offset, 1); } /* Because the inode number is no longer relevant to finding the * underlying meta-data for an inode, we are free to choose a more * convenient 32-bit number as the inode number. The inode numbering * scheme was recommended by Sergey Vlasov and Eric Lammerts. */ static inline unsigned long isofs_get_ino(unsigned long block, unsigned long offset, unsigned long bufbits) { return (block << (bufbits - 5)) | (offset >> 5); } /* Every directory can have many redundant directory entries scattered * throughout the directory tree. First there is the directory entry * with the name of the directory stored in the parent directory. * Then, there is the "." directory entry stored in the directory * itself. Finally, there are possibly many ".." directory entries * stored in all the subdirectories. * * In order for the NFS get_parent() method to work and for the * general consistency of the dcache, we need to make sure the * "i_iget5_block" and "i_iget5_offset" all point to exactly one of * the many redundant entries for each directory. We normalize the * block and offset by always making them point to the "." directory. * * Notice that we do not use the entry for the directory with the name * that is located in the parent directory. Even though choosing this * first directory is more natural, it is much easier to find the "." * entry in the NFS get_parent() method because it is implicitly * encoded in the "extent + ext_attr_length" fields of _all_ the * redundant entries for the directory. Thus, it can always be * reached regardless of which directory entry you have in hand. * * This works because the "." entry is simply the first directory * record when you start reading the file that holds all the directory * records, and this file starts at "extent + ext_attr_length" blocks. * Because the "." entry is always the first entry listed in the * directories file, the normalized "offset" value is always 0. * * You should pass the directory entry in "de". On return, "block" * and "offset" will hold normalized values. Only directories are * affected making it safe to call even for non-directory file * types. */ static inline void isofs_normalize_block_and_offset(struct iso_directory_record* de, unsigned long *block, unsigned long *offset) { /* Only directories are normalized. */ if (de->flags[0] & 2) { *offset = 0; *block = (unsigned long)isonum_733(de->extent) + (unsigned long)isonum_711(de->ext_attr_length); } } extern const struct inode_operations isofs_dir_inode_operations; extern const struct file_operations isofs_dir_operations; extern const struct address_space_operations isofs_symlink_aops; extern const struct export_operations isofs_export_ops;
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * SR-IPv6 implementation * * Author: * David Lebrun <david.lebrun@uclouvain.be> */ #ifndef _NET_SEG6_H #define _NET_SEG6_H #include <linux/net.h> #include <linux/ipv6.h> #include <linux/seg6.h> #include <linux/rhashtable-types.h> static inline void update_csum_diff4(struct sk_buff *skb, __be32 from, __be32 to) { __be32 diff[] = { ~from, to }; skb->csum = ~csum_partial((char *)diff, sizeof(diff), ~skb->csum); } static inline void update_csum_diff16(struct sk_buff *skb, __be32 *from, __be32 *to) { __be32 diff[] = { ~from[0], ~from[1], ~from[2], ~from[3], to[0], to[1], to[2], to[3], }; skb->csum = ~csum_partial((char *)diff, sizeof(diff), ~skb->csum); } struct seg6_pernet_data { struct mutex lock; struct in6_addr __rcu *tun_src; #ifdef CONFIG_IPV6_SEG6_HMAC struct rhashtable hmac_infos; #endif }; static inline struct seg6_pernet_data *seg6_pernet(struct net *net) { #if IS_ENABLED(CONFIG_IPV6) return net->ipv6.seg6_data; #else return NULL; #endif } extern int seg6_init(void); extern void seg6_exit(void); extern int seg6_iptunnel_init(void); extern void seg6_iptunnel_exit(void); extern int seg6_local_init(void); extern void seg6_local_exit(void); extern bool seg6_validate_srh(struct ipv6_sr_hdr *srh, int len, bool reduced); extern int seg6_do_srh_encap(struct sk_buff *skb, struct ipv6_sr_hdr *osrh, int proto); extern int seg6_do_srh_inline(struct sk_buff *skb, struct ipv6_sr_hdr *osrh); extern int seg6_lookup_nexthop(struct sk_buff *skb, struct in6_addr *nhaddr, u32 tbl_id); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM migrate #if !defined(_TRACE_MIGRATE_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_MIGRATE_H #include <linux/tracepoint.h> #define MIGRATE_MODE \ EM( MIGRATE_ASYNC, "MIGRATE_ASYNC") \ EM( MIGRATE_SYNC_LIGHT, "MIGRATE_SYNC_LIGHT") \ EMe(MIGRATE_SYNC, "MIGRATE_SYNC") #define MIGRATE_REASON \ EM( MR_COMPACTION, "compaction") \ EM( MR_MEMORY_FAILURE, "memory_failure") \ EM( MR_MEMORY_HOTPLUG, "memory_hotplug") \ EM( MR_SYSCALL, "syscall_or_cpuset") \ EM( MR_MEMPOLICY_MBIND, "mempolicy_mbind") \ EM( MR_NUMA_MISPLACED, "numa_misplaced") \ EMe(MR_CONTIG_RANGE, "contig_range") /* * First define the enums in the above macros to be exported to userspace * via TRACE_DEFINE_ENUM(). */ #undef EM #undef EMe #define EM(a, b) TRACE_DEFINE_ENUM(a); #define EMe(a, b) TRACE_DEFINE_ENUM(a); MIGRATE_MODE MIGRATE_REASON /* * Now redefine the EM() and EMe() macros to map the enums to the strings * that will be printed in the output. */ #undef EM #undef EMe #define EM(a, b) {a, b}, #define EMe(a, b) {a, b} TRACE_EVENT(mm_migrate_pages, TP_PROTO(unsigned long succeeded, unsigned long failed, unsigned long thp_succeeded, unsigned long thp_failed, unsigned long thp_split, enum migrate_mode mode, int reason), TP_ARGS(succeeded, failed, thp_succeeded, thp_failed, thp_split, mode, reason), TP_STRUCT__entry( __field( unsigned long, succeeded) __field( unsigned long, failed) __field( unsigned long, thp_succeeded) __field( unsigned long, thp_failed) __field( unsigned long, thp_split) __field( enum migrate_mode, mode) __field( int, reason) ), TP_fast_assign( __entry->succeeded = succeeded; __entry->failed = failed; __entry->thp_succeeded = thp_succeeded; __entry->thp_failed = thp_failed; __entry->thp_split = thp_split; __entry->mode = mode; __entry->reason = reason; ), TP_printk("nr_succeeded=%lu nr_failed=%lu nr_thp_succeeded=%lu nr_thp_failed=%lu nr_thp_split=%lu mode=%s reason=%s", __entry->succeeded, __entry->failed, __entry->thp_succeeded, __entry->thp_failed, __entry->thp_split, __print_symbolic(__entry->mode, MIGRATE_MODE), __print_symbolic(__entry->reason, MIGRATE_REASON)) ); #endif /* _TRACE_MIGRATE_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 /* SPDX-License-Identifier: GPL-2.0 */ /* taskstats_kern.h - kernel header for per-task statistics interface * * Copyright (C) Shailabh Nagar, IBM Corp. 2006 * (C) Balbir Singh, IBM Corp. 2006 */ #ifndef _LINUX_TASKSTATS_KERN_H #define _LINUX_TASKSTATS_KERN_H #include <linux/taskstats.h> #include <linux/sched/signal.h> #include <linux/slab.h> #ifdef CONFIG_TASKSTATS extern struct kmem_cache *taskstats_cache; extern struct mutex taskstats_exit_mutex; static inline void taskstats_tgid_free(struct signal_struct *sig) { if (sig->stats) kmem_cache_free(taskstats_cache, sig->stats); } extern void taskstats_exit(struct task_struct *, int group_dead); extern void taskstats_init_early(void); #else static inline void taskstats_exit(struct task_struct *tsk, int group_dead) {} static inline void taskstats_tgid_free(struct signal_struct *sig) {} static inline void taskstats_init_early(void) {} #endif /* CONFIG_TASKSTATS */ #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __IEEE802154_CORE_H #define __IEEE802154_CORE_H #include <net/cfg802154.h> struct cfg802154_registered_device { const struct cfg802154_ops *ops; struct list_head list; /* wpan_phy index, internal only */ int wpan_phy_idx; /* also protected by devlist_mtx */ int opencount; wait_queue_head_t dev_wait; /* protected by RTNL only */ int num_running_ifaces; /* associated wpan interfaces, protected by rtnl or RCU */ struct list_head wpan_dev_list; int devlist_generation, wpan_dev_id; /* must be last because of the way we do wpan_phy_priv(), * and it should at least be aligned to NETDEV_ALIGN */ struct wpan_phy wpan_phy __aligned(NETDEV_ALIGN); }; static inline struct cfg802154_registered_device * wpan_phy_to_rdev(struct wpan_phy *wpan_phy) { BUG_ON(!wpan_phy); return container_of(wpan_phy, struct cfg802154_registered_device, wpan_phy); } extern struct list_head cfg802154_rdev_list; extern int cfg802154_rdev_list_generation; int cfg802154_switch_netns(struct cfg802154_registered_device *rdev, struct net *net); /* free object */ void cfg802154_dev_free(struct cfg802154_registered_device *rdev); struct cfg802154_registered_device * cfg802154_rdev_by_wpan_phy_idx(int wpan_phy_idx); struct wpan_phy *wpan_phy_idx_to_wpan_phy(int wpan_phy_idx); #endif /* __IEEE802154_CORE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef BLK_MQ_SCHED_H #define BLK_MQ_SCHED_H #include "blk-mq.h" #include "blk-mq-tag.h" void blk_mq_sched_assign_ioc(struct request *rq); void blk_mq_sched_request_inserted(struct request *rq); bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio, unsigned int nr_segs, struct request **merged_request); bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio, unsigned int nr_segs); bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq); void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx); void blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx); void blk_mq_sched_insert_request(struct request *rq, bool at_head, bool run_queue, bool async); void blk_mq_sched_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, struct list_head *list, bool run_queue_async); void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx); int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e); void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e); void blk_mq_sched_free_requests(struct request_queue *q); static inline bool blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio, unsigned int nr_segs) { if (blk_queue_nomerges(q) || !bio_mergeable(bio)) return false; return __blk_mq_sched_bio_merge(q, bio, nr_segs); } static inline bool blk_mq_sched_allow_merge(struct request_queue *q, struct request *rq, struct bio *bio) { struct elevator_queue *e = q->elevator; if (e && e->type->ops.allow_merge) return e->type->ops.allow_merge(q, rq, bio); return true; } static inline void blk_mq_sched_completed_request(struct request *rq, u64 now) { struct elevator_queue *e = rq->q->elevator; if (e && e->type->ops.completed_request) e->type->ops.completed_request(rq, now); } static inline void blk_mq_sched_requeue_request(struct request *rq) { struct request_queue *q = rq->q; struct elevator_queue *e = q->elevator; if ((rq->rq_flags & RQF_ELVPRIV) && e && e->type->ops.requeue_request) e->type->ops.requeue_request(rq); } static inline bool blk_mq_sched_has_work(struct blk_mq_hw_ctx *hctx) { struct elevator_queue *e = hctx->queue->elevator; if (e && e->type->ops.has_work) return e->type->ops.has_work(hctx); return false; } static inline bool blk_mq_sched_needs_restart(struct blk_mq_hw_ctx *hctx) { return test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state); } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 /* SPDX-License-Identifier: GPL-2.0 */ /* * include/linux/cpu.h - generic cpu definition * * This is mainly for topological representation. We define the * basic 'struct cpu' here, which can be embedded in per-arch * definitions of processors. * * Basic handling of the devices is done in drivers/base/cpu.c * * CPUs are exported via sysfs in the devices/system/cpu * directory. */ #ifndef _LINUX_CPU_H_ #define _LINUX_CPU_H_ #include <linux/node.h> #include <linux/compiler.h> #include <linux/cpumask.h> #include <linux/cpuhotplug.h> struct device; struct device_node; struct attribute_group; struct cpu { int node_id; /* The node which contains the CPU */ int hotpluggable; /* creates sysfs control file if hotpluggable */ struct device dev; }; extern void boot_cpu_init(void); extern void boot_cpu_hotplug_init(void); extern void cpu_init(void); extern void trap_init(void); extern int register_cpu(struct cpu *cpu, int num); extern struct device *get_cpu_device(unsigned cpu); extern bool cpu_is_hotpluggable(unsigned cpu); extern bool arch_match_cpu_phys_id(int cpu, u64 phys_id); extern bool arch_find_n_match_cpu_physical_id(struct device_node *cpun, int cpu, unsigned int *thread); extern int cpu_add_dev_attr(struct device_attribute *attr); extern void cpu_remove_dev_attr(struct device_attribute *attr); extern int cpu_add_dev_attr_group(struct attribute_group *attrs); extern void cpu_remove_dev_attr_group(struct attribute_group *attrs); extern ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf); extern ssize_t cpu_show_spectre_v1(struct device *dev, struct device_attribute *attr, char *buf); extern ssize_t cpu_show_spectre_v2(struct device *dev, struct device_attribute *attr, char *buf); extern ssize_t cpu_show_spec_store_bypass(struct device *dev, struct device_attribute *attr, char *buf); extern ssize_t cpu_show_l1tf(struct device *dev, struct device_attribute *attr, char *buf); extern ssize_t cpu_show_mds(struct device *dev, struct device_attribute *attr, char *buf); extern ssize_t cpu_show_tsx_async_abort(struct device *dev, struct device_attribute *attr, char *buf); extern ssize_t cpu_show_itlb_multihit(struct device *dev, struct device_attribute *attr, char *buf); extern ssize_t cpu_show_srbds(struct device *dev, struct device_attribute *attr, char *buf); extern __printf(4, 5) struct device *cpu_device_create(struct device *parent, void *drvdata, const struct attribute_group **groups, const char *fmt, ...); #ifdef CONFIG_HOTPLUG_CPU extern void unregister_cpu(struct cpu *cpu); extern ssize_t arch_cpu_probe(const char *, size_t); extern ssize_t arch_cpu_release(const char *, size_t); #endif /* * These states are not related to the core CPU hotplug mechanism. They are * used by various (sub)architectures to track internal state */ #define CPU_ONLINE 0x0002 /* CPU is up */ #define CPU_UP_PREPARE 0x0003 /* CPU coming up */ #define CPU_DEAD 0x0007 /* CPU dead */ #define CPU_DEAD_FROZEN 0x0008 /* CPU timed out on unplug */ #define CPU_POST_DEAD 0x0009 /* CPU successfully unplugged */ #define CPU_BROKEN 0x000B /* CPU did not die properly */ #ifdef CONFIG_SMP extern bool cpuhp_tasks_frozen; int add_cpu(unsigned int cpu); int cpu_device_up(struct device *dev); void notify_cpu_starting(unsigned int cpu); extern void cpu_maps_update_begin(void); extern void cpu_maps_update_done(void); int bringup_hibernate_cpu(unsigned int sleep_cpu); void bringup_nonboot_cpus(unsigned int setup_max_cpus); #else /* CONFIG_SMP */ #define cpuhp_tasks_frozen 0 static inline void cpu_maps_update_begin(void) { } static inline void cpu_maps_update_done(void) { } #endif /* CONFIG_SMP */ extern struct bus_type cpu_subsys; #ifdef CONFIG_HOTPLUG_CPU extern void cpus_write_lock(void); extern void cpus_write_unlock(void); extern void cpus_read_lock(void); extern void cpus_read_unlock(void); extern int cpus_read_trylock(void); extern void lockdep_assert_cpus_held(void); extern void cpu_hotplug_disable(void); extern void cpu_hotplug_enable(void); void clear_tasks_mm_cpumask(int cpu); int remove_cpu(unsigned int cpu); int cpu_device_down(struct device *dev); extern void smp_shutdown_nonboot_cpus(unsigned int primary_cpu); #else /* CONFIG_HOTPLUG_CPU */ static inline void cpus_write_lock(void) { } static inline void cpus_write_unlock(void) { } static inline void cpus_read_lock(void) { } static inline void cpus_read_unlock(void) { } static inline int cpus_read_trylock(void) { return true; } static inline void lockdep_assert_cpus_held(void) { } static inline void cpu_hotplug_disable(void) { } static inline void cpu_hotplug_enable(void) { } static inline void smp_shutdown_nonboot_cpus(unsigned int primary_cpu) { } #endif /* !CONFIG_HOTPLUG_CPU */ /* Wrappers which go away once all code is converted */ static inline void cpu_hotplug_begin(void) { cpus_write_lock(); } static inline void cpu_hotplug_done(void) { cpus_write_unlock(); } static inline void get_online_cpus(void) { cpus_read_lock(); } static inline void put_online_cpus(void) { cpus_read_unlock(); } #ifdef CONFIG_PM_SLEEP_SMP extern int freeze_secondary_cpus(int primary); extern void thaw_secondary_cpus(void); static inline int suspend_disable_secondary_cpus(void) { int cpu = 0; if (IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) cpu = -1; return freeze_secondary_cpus(cpu); } static inline void suspend_enable_secondary_cpus(void) { return thaw_secondary_cpus(); } #else /* !CONFIG_PM_SLEEP_SMP */ static inline void thaw_secondary_cpus(void) {} static inline int suspend_disable_secondary_cpus(void) { return 0; } static inline void suspend_enable_secondary_cpus(void) { } #endif /* !CONFIG_PM_SLEEP_SMP */ void cpu_startup_entry(enum cpuhp_state state); void cpu_idle_poll_ctrl(bool enable); /* Attach to any functions which should be considered cpuidle. */ #define __cpuidle __section(".cpuidle.text") bool cpu_in_idle(unsigned long pc); void arch_cpu_idle(void); void arch_cpu_idle_prepare(void); void arch_cpu_idle_enter(void); void arch_cpu_idle_exit(void); void arch_cpu_idle_dead(void); int cpu_report_state(int cpu); int cpu_check_up_prepare(int cpu); void cpu_set_state_online(int cpu); void play_idle_precise(u64 duration_ns, u64 latency_ns); static inline void play_idle(unsigned long duration_us) { play_idle_precise(duration_us * NSEC_PER_USEC, U64_MAX); } #ifdef CONFIG_HOTPLUG_CPU bool cpu_wait_death(unsigned int cpu, int seconds); bool cpu_report_death(void); void cpuhp_report_idle_dead(void); #else static inline void cpuhp_report_idle_dead(void) { } #endif /* #ifdef CONFIG_HOTPLUG_CPU */ enum cpuhp_smt_control { CPU_SMT_ENABLED, CPU_SMT_DISABLED, CPU_SMT_FORCE_DISABLED, CPU_SMT_NOT_SUPPORTED, CPU_SMT_NOT_IMPLEMENTED, }; #if defined(CONFIG_SMP) && defined(CONFIG_HOTPLUG_SMT) extern enum cpuhp_smt_control cpu_smt_control; extern void cpu_smt_disable(bool force); extern void cpu_smt_check_topology(void); extern bool cpu_smt_possible(void); extern int cpuhp_smt_enable(void); extern int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval); #else # define cpu_smt_control (CPU_SMT_NOT_IMPLEMENTED) static inline void cpu_smt_disable(bool force) { } static inline void cpu_smt_check_topology(void) { } static inline bool cpu_smt_possible(void) { return false; } static inline int cpuhp_smt_enable(void) { return 0; } static inline int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval) { return 0; } #endif extern bool cpu_mitigations_off(void); extern bool cpu_mitigations_auto_nosmt(void); #endif /* _LINUX_CPU_H_ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 /* * include/net/tipc.h: Include file for TIPC message header routines * * Copyright (c) 2017 Ericsson AB * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the names of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #ifndef _TIPC_HDR_H #define _TIPC_HDR_H #include <linux/random.h> #define KEEPALIVE_MSG_MASK 0x0e080000 /* LINK_PROTOCOL + MSG_IS_KEEPALIVE */ struct tipc_basic_hdr { __be32 w[4]; }; static inline __be32 tipc_hdr_rps_key(struct tipc_basic_hdr *hdr) { u32 w0 = ntohl(hdr->w[0]); bool keepalive_msg = (w0 & KEEPALIVE_MSG_MASK) == KEEPALIVE_MSG_MASK; __be32 key; /* Return source node identity as key */ if (likely(!keepalive_msg)) return hdr->w[3]; /* Spread PROBE/PROBE_REPLY messages across the cores */ get_random_bytes(&key, sizeof(key)); return key; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 #ifndef _LINUX_SCHED_ISOLATION_H #define _LINUX_SCHED_ISOLATION_H #include <linux/cpumask.h> #include <linux/init.h> #include <linux/tick.h> enum hk_flags { HK_FLAG_TIMER = 1, HK_FLAG_RCU = (1 << 1), HK_FLAG_MISC = (1 << 2), HK_FLAG_SCHED = (1 << 3), HK_FLAG_TICK = (1 << 4), HK_FLAG_DOMAIN = (1 << 5), HK_FLAG_WQ = (1 << 6), HK_FLAG_MANAGED_IRQ = (1 << 7), HK_FLAG_KTHREAD = (1 << 8), }; #ifdef CONFIG_CPU_ISOLATION DECLARE_STATIC_KEY_FALSE(housekeeping_overridden); extern int housekeeping_any_cpu(enum hk_flags flags); extern const struct cpumask *housekeeping_cpumask(enum hk_flags flags); extern bool housekeeping_enabled(enum hk_flags flags); extern void housekeeping_affine(struct task_struct *t, enum hk_flags flags); extern bool housekeeping_test_cpu(int cpu, enum hk_flags flags); extern void __init housekeeping_init(void); #else static inline int housekeeping_any_cpu(enum hk_flags flags) { return smp_processor_id(); } static inline const struct cpumask *housekeeping_cpumask(enum hk_flags flags) { return cpu_possible_mask; } static inline bool housekeeping_enabled(enum hk_flags flags) { return false; } static inline void housekeeping_affine(struct task_struct *t, enum hk_flags flags) { } static inline void housekeeping_init(void) { } #endif /* CONFIG_CPU_ISOLATION */ static inline bool housekeeping_cpu(int cpu, enum hk_flags flags) { #ifdef CONFIG_CPU_ISOLATION if (static_branch_unlikely(&housekeeping_overridden)) return housekeeping_test_cpu(cpu, flags); #endif return true; } #endif /* _LINUX_SCHED_ISOLATION_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_NAMEI_H #define _LINUX_NAMEI_H #include <linux/fs.h> #include <linux/kernel.h> #include <linux/path.h> #include <linux/fcntl.h> #include <linux/errno.h> enum { MAX_NESTED_LINKS = 8 }; #define MAXSYMLINKS 40 /* * Type of the last component on LOOKUP_PARENT */ enum {LAST_NORM, LAST_ROOT, LAST_DOT, LAST_DOTDOT}; /* pathwalk mode */ #define LOOKUP_FOLLOW 0x0001 /* follow links at the end */ #define LOOKUP_DIRECTORY 0x0002 /* require a directory */ #define LOOKUP_AUTOMOUNT 0x0004 /* force terminal automount */ #define LOOKUP_EMPTY 0x4000 /* accept empty path [user_... only] */ #define LOOKUP_DOWN 0x8000 /* follow mounts in the starting point */ #define LOOKUP_MOUNTPOINT 0x0080 /* follow mounts in the end */ #define LOOKUP_REVAL 0x0020 /* tell ->d_revalidate() to trust no cache */ #define LOOKUP_RCU 0x0040 /* RCU pathwalk mode; semi-internal */ /* These tell filesystem methods that we are dealing with the final component... */ #define LOOKUP_OPEN 0x0100 /* ... in open */ #define LOOKUP_CREATE 0x0200 /* ... in object creation */ #define LOOKUP_EXCL 0x0400 /* ... in exclusive creation */ #define LOOKUP_RENAME_TARGET 0x0800 /* ... in destination of rename() */ /* internal use only */ #define LOOKUP_PARENT 0x0010 #define LOOKUP_JUMPED 0x1000 #define LOOKUP_ROOT 0x2000 #define LOOKUP_ROOT_GRABBED 0x0008 /* Scoping flags for lookup. */ #define LOOKUP_NO_SYMLINKS 0x010000 /* No symlink crossing. */ #define LOOKUP_NO_MAGICLINKS 0x020000 /* No nd_jump_link() crossing. */ #define LOOKUP_NO_XDEV 0x040000 /* No mountpoint crossing. */ #define LOOKUP_BENEATH 0x080000 /* No escaping from starting point. */ #define LOOKUP_IN_ROOT 0x100000 /* Treat dirfd as fs root. */ /* LOOKUP_* flags which do scope-related checks based on the dirfd. */ #define LOOKUP_IS_SCOPED (LOOKUP_BENEATH | LOOKUP_IN_ROOT) extern int path_pts(struct path *path); extern int user_path_at_empty(int, const char __user *, unsigned, struct path *, int *empty); static inline int user_path_at(int dfd, const char __user *name, unsigned flags, struct path *path) { return user_path_at_empty(dfd, name, flags, path, NULL); } extern int kern_path(const char *, unsigned, struct path *); extern struct dentry *kern_path_create(int, const char *, struct path *, unsigned int); extern struct dentry *user_path_create(int, const char __user *, struct path *, unsigned int); extern void done_path_create(struct path *, struct dentry *); extern struct dentry *kern_path_locked(const char *, struct path *); extern struct dentry *try_lookup_one_len(const char *, struct dentry *, int); extern struct dentry *lookup_one_len(const char *, struct dentry *, int); extern struct dentry *lookup_one_len_unlocked(const char *, struct dentry *, int); extern struct dentry *lookup_positive_unlocked(const char *, struct dentry *, int); extern int follow_down_one(struct path *); extern int follow_down(struct path *); extern int follow_up(struct path *); extern struct dentry *lock_rename(struct dentry *, struct dentry *); extern void unlock_rename(struct dentry *, struct dentry *); extern int __must_check nd_jump_link(struct path *path); static inline void nd_terminate_link(void *name, size_t len, size_t maxlen) { ((char *) name)[min(len, maxlen)] = '\0'; } /** * retry_estale - determine whether the caller should retry an operation * @error: the error that would currently be returned * @flags: flags being used for next lookup attempt * * Check to see if the error code was -ESTALE, and then determine whether * to retry the call based on whether "flags" already has LOOKUP_REVAL set. * * Returns true if the caller should try the operation again. */ static inline bool retry_estale(const long error, const unsigned int flags) { return error == -ESTALE && !(flags & LOOKUP_REVAL); } #endif /* _LINUX_NAMEI_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_WORD_AT_A_TIME_H #define _ASM_WORD_AT_A_TIME_H #include <linux/kernel.h> /* * This is largely generic for little-endian machines, but the * optimal byte mask counting is probably going to be something * that is architecture-specific. If you have a reliably fast * bit count instruction, that might be better than the multiply * and shift, for example. */ struct word_at_a_time { const unsigned long one_bits, high_bits; }; #define WORD_AT_A_TIME_CONSTANTS { REPEAT_BYTE(0x01), REPEAT_BYTE(0x80) } #ifdef CONFIG_64BIT /* * Jan Achrenius on G+: microoptimized version of * the simpler "(mask & ONEBYTES) * ONEBYTES >> 56" * that works for the bytemasks without having to * mask them first. */ static inline long count_masked_bytes(unsigned long mask) { return mask*0x0001020304050608ul >> 56; } #else /* 32-bit case */ /* Carl Chatfield / Jan Achrenius G+ version for 32-bit */ static inline long count_masked_bytes(long mask) { /* (000000 0000ff 00ffff ffffff) -> ( 1 1 2 3 ) */ long a = (0x0ff0001+mask) >> 23; /* Fix the 1 for 00 case */ return a & mask; } #endif /* Return nonzero if it has a zero */ static inline unsigned long has_zero(unsigned long a, unsigned long *bits, const struct word_at_a_time *c) { unsigned long mask = ((a - c->one_bits) & ~a) & c->high_bits; *bits = mask; return mask; } static inline unsigned long prep_zero_mask(unsigned long a, unsigned long bits, const struct word_at_a_time *c) { return bits; } static inline unsigned long create_zero_mask(unsigned long bits) { bits = (bits - 1) & ~bits; return bits >> 7; } /* The mask we created is directly usable as a bytemask */ #define zero_bytemask(mask) (mask) static inline unsigned long find_zero(unsigned long mask) { return count_masked_bytes(mask); } /* * Load an unaligned word from kernel space. * * In the (very unlikely) case of the word being a page-crosser * and the next page not being mapped, take the exception and * return zeroes in the non-existing part. */ static inline unsigned long load_unaligned_zeropad(const void *addr) { unsigned long ret, dummy; asm( "1:\tmov %2,%0\n" "2:\n" ".section .fixup,\"ax\"\n" "3:\t" "lea %2,%1\n\t" "and %3,%1\n\t" "mov (%1),%0\n\t" "leal %2,%%ecx\n\t" "andl %4,%%ecx\n\t" "shll $3,%%ecx\n\t" "shr %%cl,%0\n\t" "jmp 2b\n" ".previous\n" _ASM_EXTABLE(1b, 3b) :"=&r" (ret),"=&c" (dummy) :"m" (*(unsigned long *)addr), "i" (-sizeof(unsigned long)), "i" (sizeof(unsigned long)-1)); return ret; } #endif /* _ASM_WORD_AT_A_TIME_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _NDISC_H #define _NDISC_H #include <net/ipv6_stubs.h> /* * ICMP codes for neighbour discovery messages */ #define NDISC_ROUTER_SOLICITATION 133 #define NDISC_ROUTER_ADVERTISEMENT 134 #define NDISC_NEIGHBOUR_SOLICITATION 135 #define NDISC_NEIGHBOUR_ADVERTISEMENT 136 #define NDISC_REDIRECT 137 /* * Router type: cross-layer information from link-layer to * IPv6 layer reported by certain link types (e.g., RFC4214). */ #define NDISC_NODETYPE_UNSPEC 0 /* unspecified (default) */ #define NDISC_NODETYPE_HOST 1 /* host or unauthorized router */ #define NDISC_NODETYPE_NODEFAULT 2 /* non-default router */ #define NDISC_NODETYPE_DEFAULT 3 /* default router */ /* * ndisc options */ enum { __ND_OPT_PREFIX_INFO_END = 0, ND_OPT_SOURCE_LL_ADDR = 1, /* RFC2461 */ ND_OPT_TARGET_LL_ADDR = 2, /* RFC2461 */ ND_OPT_PREFIX_INFO = 3, /* RFC2461 */ ND_OPT_REDIRECT_HDR = 4, /* RFC2461 */ ND_OPT_MTU = 5, /* RFC2461 */ ND_OPT_NONCE = 14, /* RFC7527 */ __ND_OPT_ARRAY_MAX, ND_OPT_ROUTE_INFO = 24, /* RFC4191 */ ND_OPT_RDNSS = 25, /* RFC5006 */ ND_OPT_DNSSL = 31, /* RFC6106 */ ND_OPT_6CO = 34, /* RFC6775 */ ND_OPT_CAPTIVE_PORTAL = 37, /* RFC7710 */ ND_OPT_PREF64 = 38, /* RFC8781 */ __ND_OPT_MAX }; #define MAX_RTR_SOLICITATION_DELAY HZ #define ND_REACHABLE_TIME (30*HZ) #define ND_RETRANS_TIMER HZ #include <linux/compiler.h> #include <linux/icmpv6.h> #include <linux/in6.h> #include <linux/types.h> #include <linux/if_arp.h> #include <linux/netdevice.h> #include <linux/hash.h> #include <net/neighbour.h> /* Set to 3 to get tracing... */ #define ND_DEBUG 1 #define ND_PRINTK(val, level, fmt, ...) \ do { \ if (val <= ND_DEBUG) \ net_##level##_ratelimited(fmt, ##__VA_ARGS__); \ } while (0) struct ctl_table; struct inet6_dev; struct net_device; struct net_proto_family; struct sk_buff; struct prefix_info; extern struct neigh_table nd_tbl; struct nd_msg { struct icmp6hdr icmph; struct in6_addr target; __u8 opt[]; }; struct rs_msg { struct icmp6hdr icmph; __u8 opt[]; }; struct ra_msg { struct icmp6hdr icmph; __be32 reachable_time; __be32 retrans_timer; }; struct rd_msg { struct icmp6hdr icmph; struct in6_addr target; struct in6_addr dest; __u8 opt[]; }; struct nd_opt_hdr { __u8 nd_opt_type; __u8 nd_opt_len; } __packed; /* ND options */ struct ndisc_options { struct nd_opt_hdr *nd_opt_array[__ND_OPT_ARRAY_MAX]; #ifdef CONFIG_IPV6_ROUTE_INFO struct nd_opt_hdr *nd_opts_ri; struct nd_opt_hdr *nd_opts_ri_end; #endif struct nd_opt_hdr *nd_useropts; struct nd_opt_hdr *nd_useropts_end; #if IS_ENABLED(CONFIG_IEEE802154_6LOWPAN) struct nd_opt_hdr *nd_802154_opt_array[ND_OPT_TARGET_LL_ADDR + 1]; #endif }; #define nd_opts_src_lladdr nd_opt_array[ND_OPT_SOURCE_LL_ADDR] #define nd_opts_tgt_lladdr nd_opt_array[ND_OPT_TARGET_LL_ADDR] #define nd_opts_pi nd_opt_array[ND_OPT_PREFIX_INFO] #define nd_opts_pi_end nd_opt_array[__ND_OPT_PREFIX_INFO_END] #define nd_opts_rh nd_opt_array[ND_OPT_REDIRECT_HDR] #define nd_opts_mtu nd_opt_array[ND_OPT_MTU] #define nd_opts_nonce nd_opt_array[ND_OPT_NONCE] #define nd_802154_opts_src_lladdr nd_802154_opt_array[ND_OPT_SOURCE_LL_ADDR] #define nd_802154_opts_tgt_lladdr nd_802154_opt_array[ND_OPT_TARGET_LL_ADDR] #define NDISC_OPT_SPACE(len) (((len)+2+7)&~7) struct ndisc_options *ndisc_parse_options(const struct net_device *dev, u8 *opt, int opt_len, struct ndisc_options *ndopts); void __ndisc_fill_addr_option(struct sk_buff *skb, int type, void *data, int data_len, int pad); #define NDISC_OPS_REDIRECT_DATA_SPACE 2 /* * This structure defines the hooks for IPv6 neighbour discovery. * The following hooks can be defined; unless noted otherwise, they are * optional and can be filled with a null pointer. * * int (*is_useropt)(u8 nd_opt_type): * This function is called when IPv6 decide RA userspace options. if * this function returns 1 then the option given by nd_opt_type will * be handled as userspace option additional to the IPv6 options. * * int (*parse_options)(const struct net_device *dev, * struct nd_opt_hdr *nd_opt, * struct ndisc_options *ndopts): * This function is called while parsing ndisc ops and put each position * as pointer into ndopts. If this function return unequal 0, then this * function took care about the ndisc option, if 0 then the IPv6 ndisc * option parser will take care about that option. * * void (*update)(const struct net_device *dev, struct neighbour *n, * u32 flags, u8 icmp6_type, * const struct ndisc_options *ndopts): * This function is called when IPv6 ndisc updates the neighbour cache * entry. Additional options which can be updated may be previously * parsed by parse_opts callback and accessible over ndopts parameter. * * int (*opt_addr_space)(const struct net_device *dev, u8 icmp6_type, * struct neighbour *neigh, u8 *ha_buf, * u8 **ha): * This function is called when the necessary option space will be * calculated before allocating a skb. The parameters neigh, ha_buf * abd ha are available on NDISC_REDIRECT messages only. * * void (*fill_addr_option)(const struct net_device *dev, * struct sk_buff *skb, u8 icmp6_type, * const u8 *ha): * This function is called when the skb will finally fill the option * fields inside skb. NOTE: this callback should fill the option * fields to the skb which are previously indicated by opt_space * parameter. That means the decision to add such option should * not lost between these two callbacks, e.g. protected by interface * up state. * * void (*prefix_rcv_add_addr)(struct net *net, struct net_device *dev, * const struct prefix_info *pinfo, * struct inet6_dev *in6_dev, * struct in6_addr *addr, * int addr_type, u32 addr_flags, * bool sllao, bool tokenized, * __u32 valid_lft, u32 prefered_lft, * bool dev_addr_generated): * This function is called when a RA messages is received with valid * PIO option fields and an IPv6 address will be added to the interface * for autoconfiguration. The parameter dev_addr_generated reports about * if the address was based on dev->dev_addr or not. This can be used * to add a second address if link-layer operates with two link layer * addresses. E.g. 802.15.4 6LoWPAN. */ struct ndisc_ops { int (*is_useropt)(u8 nd_opt_type); int (*parse_options)(const struct net_device *dev, struct nd_opt_hdr *nd_opt, struct ndisc_options *ndopts); void (*update)(const struct net_device *dev, struct neighbour *n, u32 flags, u8 icmp6_type, const struct ndisc_options *ndopts); int (*opt_addr_space)(const struct net_device *dev, u8 icmp6_type, struct neighbour *neigh, u8 *ha_buf, u8 **ha); void (*fill_addr_option)(const struct net_device *dev, struct sk_buff *skb, u8 icmp6_type, const u8 *ha); void (*prefix_rcv_add_addr)(struct net *net, struct net_device *dev, const struct prefix_info *pinfo, struct inet6_dev *in6_dev, struct in6_addr *addr, int addr_type, u32 addr_flags, bool sllao, bool tokenized, __u32 valid_lft, u32 prefered_lft, bool dev_addr_generated); }; #if IS_ENABLED(CONFIG_IPV6) static inline int ndisc_ops_is_useropt(const struct net_device *dev, u8 nd_opt_type) { if (dev->ndisc_ops && dev->ndisc_ops->is_useropt) return dev->ndisc_ops->is_useropt(nd_opt_type); else return 0; } static inline int ndisc_ops_parse_options(const struct net_device *dev, struct nd_opt_hdr *nd_opt, struct ndisc_options *ndopts) { if (dev->ndisc_ops && dev->ndisc_ops->parse_options) return dev->ndisc_ops->parse_options(dev, nd_opt, ndopts); else return 0; } static inline void ndisc_ops_update(const struct net_device *dev, struct neighbour *n, u32 flags, u8 icmp6_type, const struct ndisc_options *ndopts) { if (dev->ndisc_ops && dev->ndisc_ops->update) dev->ndisc_ops->update(dev, n, flags, icmp6_type, ndopts); } static inline int ndisc_ops_opt_addr_space(const struct net_device *dev, u8 icmp6_type) { if (dev->ndisc_ops && dev->ndisc_ops->opt_addr_space && icmp6_type != NDISC_REDIRECT) return dev->ndisc_ops->opt_addr_space(dev, icmp6_type, NULL, NULL, NULL); else return 0; } static inline int ndisc_ops_redirect_opt_addr_space(const struct net_device *dev, struct neighbour *neigh, u8 *ha_buf, u8 **ha) { if (dev->ndisc_ops && dev->ndisc_ops->opt_addr_space) return dev->ndisc_ops->opt_addr_space(dev, NDISC_REDIRECT, neigh, ha_buf, ha); else return 0; } static inline void ndisc_ops_fill_addr_option(const struct net_device *dev, struct sk_buff *skb, u8 icmp6_type) { if (dev->ndisc_ops && dev->ndisc_ops->fill_addr_option && icmp6_type != NDISC_REDIRECT) dev->ndisc_ops->fill_addr_option(dev, skb, icmp6_type, NULL); } static inline void ndisc_ops_fill_redirect_addr_option(const struct net_device *dev, struct sk_buff *skb, const u8 *ha) { if (dev->ndisc_ops && dev->ndisc_ops->fill_addr_option) dev->ndisc_ops->fill_addr_option(dev, skb, NDISC_REDIRECT, ha); } static inline void ndisc_ops_prefix_rcv_add_addr(struct net *net, struct net_device *dev, const struct prefix_info *pinfo, struct inet6_dev *in6_dev, struct in6_addr *addr, int addr_type, u32 addr_flags, bool sllao, bool tokenized, __u32 valid_lft, u32 prefered_lft, bool dev_addr_generated) { if (dev->ndisc_ops && dev->ndisc_ops->prefix_rcv_add_addr) dev->ndisc_ops->prefix_rcv_add_addr(net, dev, pinfo, in6_dev, addr, addr_type, addr_flags, sllao, tokenized, valid_lft, prefered_lft, dev_addr_generated); } #endif /* * Return the padding between the option length and the start of the * link addr. Currently only IP-over-InfiniBand needs this, although * if RFC 3831 IPv6-over-Fibre Channel is ever implemented it may * also need a pad of 2. */ static inline int ndisc_addr_option_pad(unsigned short type) { switch (type) { case ARPHRD_INFINIBAND: return 2; default: return 0; } } static inline int __ndisc_opt_addr_space(unsigned char addr_len, int pad) { return NDISC_OPT_SPACE(addr_len + pad); } #if IS_ENABLED(CONFIG_IPV6) static inline int ndisc_opt_addr_space(struct net_device *dev, u8 icmp6_type) { return __ndisc_opt_addr_space(dev->addr_len, ndisc_addr_option_pad(dev->type)) + ndisc_ops_opt_addr_space(dev, icmp6_type); } static inline int ndisc_redirect_opt_addr_space(struct net_device *dev, struct neighbour *neigh, u8 *ops_data_buf, u8 **ops_data) { return __ndisc_opt_addr_space(dev->addr_len, ndisc_addr_option_pad(dev->type)) + ndisc_ops_redirect_opt_addr_space(dev, neigh, ops_data_buf, ops_data); } #endif static inline u8 *__ndisc_opt_addr_data(struct nd_opt_hdr *p, unsigned char addr_len, int prepad) { u8 *lladdr = (u8 *)(p + 1); int lladdrlen = p->nd_opt_len << 3; if (lladdrlen != __ndisc_opt_addr_space(addr_len, prepad)) return NULL; return lladdr + prepad; } static inline u8 *ndisc_opt_addr_data(struct nd_opt_hdr *p, struct net_device *dev) { return __ndisc_opt_addr_data(p, dev->addr_len, ndisc_addr_option_pad(dev->type)); } static inline u32 ndisc_hashfn(const void *pkey, const struct net_device *dev, __u32 *hash_rnd) { const u32 *p32 = pkey; return (((p32[0] ^ hash32_ptr(dev)) * hash_rnd[0]) + (p32[1] * hash_rnd[1]) + (p32[2] * hash_rnd[2]) + (p32[3] * hash_rnd[3])); } static inline struct neighbour *__ipv6_neigh_lookup_noref(struct net_device *dev, const void *pkey) { return ___neigh_lookup_noref(&nd_tbl, neigh_key_eq128, ndisc_hashfn, pkey, dev); } static inline struct neighbour *__ipv6_neigh_lookup_noref_stub(struct net_device *dev, const void *pkey) { return ___neigh_lookup_noref(ipv6_stub->nd_tbl, neigh_key_eq128, ndisc_hashfn, pkey, dev); } static inline struct neighbour *__ipv6_neigh_lookup(struct net_device *dev, const void *pkey) { struct neighbour *n; rcu_read_lock_bh(); n = __ipv6_neigh_lookup_noref(dev, pkey); if (n && !refcount_inc_not_zero(&n->refcnt)) n = NULL; rcu_read_unlock_bh(); return n; } static inline void __ipv6_confirm_neigh(struct net_device *dev, const void *pkey) { struct neighbour *n; rcu_read_lock_bh(); n = __ipv6_neigh_lookup_noref(dev, pkey); if (n) { unsigned long now = jiffies; /* avoid dirtying neighbour */ if (READ_ONCE(n->confirmed) != now) WRITE_ONCE(n->confirmed, now); } rcu_read_unlock_bh(); } static inline void __ipv6_confirm_neigh_stub(struct net_device *dev, const void *pkey) { struct neighbour *n; rcu_read_lock_bh(); n = __ipv6_neigh_lookup_noref_stub(dev, pkey); if (n) { unsigned long now = jiffies; /* avoid dirtying neighbour */ if (READ_ONCE(n->confirmed) != now) WRITE_ONCE(n->confirmed, now); } rcu_read_unlock_bh(); } /* uses ipv6_stub and is meant for use outside of IPv6 core */ static inline struct neighbour *ip_neigh_gw6(struct net_device *dev, const void *addr) { struct neighbour *neigh; neigh = __ipv6_neigh_lookup_noref_stub(dev, addr); if (unlikely(!neigh)) neigh = __neigh_create(ipv6_stub->nd_tbl, addr, dev, false); return neigh; } int ndisc_init(void); int ndisc_late_init(void); void ndisc_late_cleanup(void); void ndisc_cleanup(void); int ndisc_rcv(struct sk_buff *skb); void ndisc_send_ns(struct net_device *dev, const struct in6_addr *solicit, const struct in6_addr *daddr, const struct in6_addr *saddr, u64 nonce); void ndisc_send_rs(struct net_device *dev, const struct in6_addr *saddr, const struct in6_addr *daddr); void ndisc_send_na(struct net_device *dev, const struct in6_addr *daddr, const struct in6_addr *solicited_addr, bool router, bool solicited, bool override, bool inc_opt); void ndisc_send_redirect(struct sk_buff *skb, const struct in6_addr *target); int ndisc_mc_map(const struct in6_addr *addr, char *buf, struct net_device *dev, int dir); void ndisc_update(const struct net_device *dev, struct neighbour *neigh, const u8 *lladdr, u8 new, u32 flags, u8 icmp6_type, struct ndisc_options *ndopts); /* * IGMP */ int igmp6_init(void); int igmp6_late_init(void); void igmp6_cleanup(void); void igmp6_late_cleanup(void); int igmp6_event_query(struct sk_buff *skb); int igmp6_event_report(struct sk_buff *skb); #ifdef CONFIG_SYSCTL int ndisc_ifinfo_sysctl_change(struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *ppos); int ndisc_ifinfo_sysctl_strategy(struct ctl_table *ctl, void __user *oldval, size_t __user *oldlenp, void __user *newval, size_t newlen); #endif void inet6_ifinfo_notify(int event, struct inet6_dev *idev); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_PTRACE_H #define _ASM_X86_PTRACE_H #include <asm/segment.h> #include <asm/page_types.h> #include <uapi/asm/ptrace.h> #ifndef __ASSEMBLY__ #ifdef __i386__ struct pt_regs { /* * NB: 32-bit x86 CPUs are inconsistent as what happens in the * following cases (where %seg represents a segment register): * * - pushl %seg: some do a 16-bit write and leave the high * bits alone * - movl %seg, [mem]: some do a 16-bit write despite the movl * - IDT entry: some (e.g. 486) will leave the high bits of CS * and (if applicable) SS undefined. * * Fortunately, x86-32 doesn't read the high bits on POP or IRET, * so we can just treat all of the segment registers as 16-bit * values. */ unsigned long bx; unsigned long cx; unsigned long dx; unsigned long si; unsigned long di; unsigned long bp; unsigned long ax; unsigned short ds; unsigned short __dsh; unsigned short es; unsigned short __esh; unsigned short fs; unsigned short __fsh; /* On interrupt, gs and __gsh store the vector number. */ unsigned short gs; unsigned short __gsh; /* On interrupt, this is the error code. */ unsigned long orig_ax; unsigned long ip; unsigned short cs; unsigned short __csh; unsigned long flags; unsigned long sp; unsigned short ss; unsigned short __ssh; }; #else /* __i386__ */ struct pt_regs { /* * C ABI says these regs are callee-preserved. They aren't saved on kernel entry * unless syscall needs a complete, fully filled "struct pt_regs". */ unsigned long r15; unsigned long r14; unsigned long r13; unsigned long r12; unsigned long bp; unsigned long bx; /* These regs are callee-clobbered. Always saved on kernel entry. */ unsigned long r11; unsigned long r10; unsigned long r9; unsigned long r8; unsigned long ax; unsigned long cx; unsigned long dx; unsigned long si; unsigned long di; /* * On syscall entry, this is syscall#. On CPU exception, this is error code. * On hw interrupt, it's IRQ number: */ unsigned long orig_ax; /* Return frame for iretq */ unsigned long ip; unsigned long cs; unsigned long flags; unsigned long sp; unsigned long ss; /* top of stack page */ }; #endif /* !__i386__ */ #ifdef CONFIG_PARAVIRT #include <asm/paravirt_types.h> #endif #include <asm/proto.h> struct cpuinfo_x86; struct task_struct; extern unsigned long profile_pc(struct pt_regs *regs); extern unsigned long convert_ip_to_linear(struct task_struct *child, struct pt_regs *regs); extern void send_sigtrap(struct pt_regs *regs, int error_code, int si_code); static inline unsigned long regs_return_value(struct pt_regs *regs) { return regs->ax; } static inline void regs_set_return_value(struct pt_regs *regs, unsigned long rc) { regs->ax = rc; } /* * user_mode(regs) determines whether a register set came from user * mode. On x86_32, this is true if V8086 mode was enabled OR if the * register set was from protected mode with RPL-3 CS value. This * tricky test checks that with one comparison. * * On x86_64, vm86 mode is mercifully nonexistent, and we don't need * the extra check. */ static __always_inline int user_mode(struct pt_regs *regs) { #ifdef CONFIG_X86_32 return ((regs->cs & SEGMENT_RPL_MASK) | (regs->flags & X86_VM_MASK)) >= USER_RPL; #else return !!(regs->cs & 3); #endif } static inline int v8086_mode(struct pt_regs *regs) { #ifdef CONFIG_X86_32 return (regs->flags & X86_VM_MASK); #else return 0; /* No V86 mode support in long mode */ #endif } static inline bool user_64bit_mode(struct pt_regs *regs) { #ifdef CONFIG_X86_64 #ifndef CONFIG_PARAVIRT_XXL /* * On non-paravirt systems, this is the only long mode CPL 3 * selector. We do not allow long mode selectors in the LDT. */ return regs->cs == __USER_CS; #else /* Headers are too twisted for this to go in paravirt.h. */ return regs->cs == __USER_CS || regs->cs == pv_info.extra_user_64bit_cs; #endif #else /* !CONFIG_X86_64 */ return false; #endif } /* * Determine whether the register set came from any context that is running in * 64-bit mode. */ static inline bool any_64bit_mode(struct pt_regs *regs) { #ifdef CONFIG_X86_64 return !user_mode(regs) || user_64bit_mode(regs); #else return false; #endif } #ifdef CONFIG_X86_64 #define current_user_stack_pointer() current_pt_regs()->sp #define compat_user_stack_pointer() current_pt_regs()->sp static inline bool ip_within_syscall_gap(struct pt_regs *regs) { bool ret = (regs->ip >= (unsigned long)entry_SYSCALL_64 && regs->ip < (unsigned long)entry_SYSCALL_64_safe_stack); #ifdef CONFIG_IA32_EMULATION ret = ret || (regs->ip >= (unsigned long)entry_SYSCALL_compat && regs->ip < (unsigned long)entry_SYSCALL_compat_safe_stack); #endif return ret; } #endif static inline unsigned long kernel_stack_pointer(struct pt_regs *regs) { return regs->sp; } static inline unsigned long instruction_pointer(struct pt_regs *regs) { return regs->ip; } static inline void instruction_pointer_set(struct pt_regs *regs, unsigned long val) { regs->ip = val; } static inline unsigned long frame_pointer(struct pt_regs *regs) { return regs->bp; } static inline unsigned long user_stack_pointer(struct pt_regs *regs) { return regs->sp; } static inline void user_stack_pointer_set(struct pt_regs *regs, unsigned long val) { regs->sp = val; } static __always_inline bool regs_irqs_disabled(struct pt_regs *regs) { return !(regs->flags & X86_EFLAGS_IF); } /* Query offset/name of register from its name/offset */ extern int regs_query_register_offset(const char *name); extern const char *regs_query_register_name(unsigned int offset); #define MAX_REG_OFFSET (offsetof(struct pt_regs, ss)) /** * regs_get_register() - get register value from its offset * @regs: pt_regs from which register value is gotten. * @offset: offset number of the register. * * regs_get_register returns the value of a register. The @offset is the * offset of the register in struct pt_regs address which specified by @regs. * If @offset is bigger than MAX_REG_OFFSET, this returns 0. */ static inline unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset) { if (unlikely(offset > MAX_REG_OFFSET)) return 0; #ifdef CONFIG_X86_32 /* The selector fields are 16-bit. */ if (offset == offsetof(struct pt_regs, cs) || offset == offsetof(struct pt_regs, ss) || offset == offsetof(struct pt_regs, ds) || offset == offsetof(struct pt_regs, es) || offset == offsetof(struct pt_regs, fs) || offset == offsetof(struct pt_regs, gs)) { return *(u16 *)((unsigned long)regs + offset); } #endif return *(unsigned long *)((unsigned long)regs + offset); } /** * regs_within_kernel_stack() - check the address in the stack * @regs: pt_regs which contains kernel stack pointer. * @addr: address which is checked. * * regs_within_kernel_stack() checks @addr is within the kernel stack page(s). * If @addr is within the kernel stack, it returns true. If not, returns false. */ static inline int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr) { return ((addr & ~(THREAD_SIZE - 1)) == (regs->sp & ~(THREAD_SIZE - 1))); } /** * regs_get_kernel_stack_nth_addr() - get the address of the Nth entry on stack * @regs: pt_regs which contains kernel stack pointer. * @n: stack entry number. * * regs_get_kernel_stack_nth() returns the address of the @n th entry of the * kernel stack which is specified by @regs. If the @n th entry is NOT in * the kernel stack, this returns NULL. */ static inline unsigned long *regs_get_kernel_stack_nth_addr(struct pt_regs *regs, unsigned int n) { unsigned long *addr = (unsigned long *)regs->sp; addr += n; if (regs_within_kernel_stack(regs, (unsigned long)addr)) return addr; else return NULL; } /* To avoid include hell, we can't include uaccess.h */ extern long copy_from_kernel_nofault(void *dst, const void *src, size_t size); /** * regs_get_kernel_stack_nth() - get Nth entry of the stack * @regs: pt_regs which contains kernel stack pointer. * @n: stack entry number. * * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which * is specified by @regs. If the @n th entry is NOT in the kernel stack * this returns 0. */ static inline unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n) { unsigned long *addr; unsigned long val; long ret; addr = regs_get_kernel_stack_nth_addr(regs, n); if (addr) { ret = copy_from_kernel_nofault(&val, addr, sizeof(val)); if (!ret) return val; } return 0; } /** * regs_get_kernel_argument() - get Nth function argument in kernel * @regs: pt_regs of that context * @n: function argument number (start from 0) * * regs_get_argument() returns @n th argument of the function call. * Note that this chooses most probably assignment, in some case * it can be incorrect. * This is expected to be called from kprobes or ftrace with regs * where the top of stack is the return address. */ static inline unsigned long regs_get_kernel_argument(struct pt_regs *regs, unsigned int n) { static const unsigned int argument_offs[] = { #ifdef __i386__ offsetof(struct pt_regs, ax), offsetof(struct pt_regs, dx), offsetof(struct pt_regs, cx), #define NR_REG_ARGUMENTS 3 #else offsetof(struct pt_regs, di), offsetof(struct pt_regs, si), offsetof(struct pt_regs, dx), offsetof(struct pt_regs, cx), offsetof(struct pt_regs, r8), offsetof(struct pt_regs, r9), #define NR_REG_ARGUMENTS 6 #endif }; if (n >= NR_REG_ARGUMENTS) { n -= NR_REG_ARGUMENTS - 1; return regs_get_kernel_stack_nth(regs, n); } else return regs_get_register(regs, argument_offs[n]); } #define arch_has_single_step() (1) #ifdef CONFIG_X86_DEBUGCTLMSR #define arch_has_block_step() (1) #else #define arch_has_block_step() (boot_cpu_data.x86 >= 6) #endif #define ARCH_HAS_USER_SINGLE_STEP_REPORT struct user_desc; extern int do_get_thread_area(struct task_struct *p, int idx, struct user_desc __user *info); extern int do_set_thread_area(struct task_struct *p, int idx, struct user_desc __user *info, int can_allocate); #ifdef CONFIG_X86_64 # define do_set_thread_area_64(p, s, t) do_arch_prctl_64(p, s, t) #else # define do_set_thread_area_64(p, s, t) (0) #endif #endif /* !__ASSEMBLY__ */ #endif /* _ASM_X86_PTRACE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_WAIT_BIT_H #define _LINUX_WAIT_BIT_H /* * Linux wait-bit related types and methods: */ #include <linux/wait.h> struct wait_bit_key { void *flags; int bit_nr; unsigned long timeout; }; struct wait_bit_queue_entry { struct wait_bit_key key; struct wait_queue_entry wq_entry; }; #define __WAIT_BIT_KEY_INITIALIZER(word, bit) \ { .flags = word, .bit_nr = bit, } typedef int wait_bit_action_f(struct wait_bit_key *key, int mode); void __wake_up_bit(struct wait_queue_head *wq_head, void *word, int bit); int __wait_on_bit(struct wait_queue_head *wq_head, struct wait_bit_queue_entry *wbq_entry, wait_bit_action_f *action, unsigned int mode); int __wait_on_bit_lock(struct wait_queue_head *wq_head, struct wait_bit_queue_entry *wbq_entry, wait_bit_action_f *action, unsigned int mode); void wake_up_bit(void *word, int bit); int out_of_line_wait_on_bit(void *word, int, wait_bit_action_f *action, unsigned int mode); int out_of_line_wait_on_bit_timeout(void *word, int, wait_bit_action_f *action, unsigned int mode, unsigned long timeout); int out_of_line_wait_on_bit_lock(void *word, int, wait_bit_action_f *action, unsigned int mode); struct wait_queue_head *bit_waitqueue(void *word, int bit); extern void __init wait_bit_init(void); int wake_bit_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *key); #define DEFINE_WAIT_BIT(name, word, bit) \ struct wait_bit_queue_entry name = { \ .key = __WAIT_BIT_KEY_INITIALIZER(word, bit), \ .wq_entry = { \ .private = current, \ .func = wake_bit_function, \ .entry = \ LIST_HEAD_INIT((name).wq_entry.entry), \ }, \ } extern int bit_wait(struct wait_bit_key *key, int mode); extern int bit_wait_io(struct wait_bit_key *key, int mode); extern int bit_wait_timeout(struct wait_bit_key *key, int mode); extern int bit_wait_io_timeout(struct wait_bit_key *key, int mode); /** * wait_on_bit - wait for a bit to be cleared * @word: the word being waited on, a kernel virtual address * @bit: the bit of the word being waited on * @mode: the task state to sleep in * * There is a standard hashed waitqueue table for generic use. This * is the part of the hashtable's accessor API that waits on a bit. * For instance, if one were to have waiters on a bitflag, one would * call wait_on_bit() in threads waiting for the bit to clear. * One uses wait_on_bit() where one is waiting for the bit to clear, * but has no intention of setting it. * Returned value will be zero if the bit was cleared, or non-zero * if the process received a signal and the mode permitted wakeup * on that signal. */ static inline int wait_on_bit(unsigned long *word, int bit, unsigned mode) { might_sleep(); if (!test_bit(bit, word)) return 0; return out_of_line_wait_on_bit(word, bit, bit_wait, mode); } /** * wait_on_bit_io - wait for a bit to be cleared * @word: the word being waited on, a kernel virtual address * @bit: the bit of the word being waited on * @mode: the task state to sleep in * * Use the standard hashed waitqueue table to wait for a bit * to be cleared. This is similar to wait_on_bit(), but calls * io_schedule() instead of schedule() for the actual waiting. * * Returned value will be zero if the bit was cleared, or non-zero * if the process received a signal and the mode permitted wakeup * on that signal. */ static inline int wait_on_bit_io(unsigned long *word, int bit, unsigned mode) { might_sleep(); if (!test_bit(bit, word)) return 0; return out_of_line_wait_on_bit(word, bit, bit_wait_io, mode); } /** * wait_on_bit_timeout - wait for a bit to be cleared or a timeout elapses * @word: the word being waited on, a kernel virtual address * @bit: the bit of the word being waited on * @mode: the task state to sleep in * @timeout: timeout, in jiffies * * Use the standard hashed waitqueue table to wait for a bit * to be cleared. This is similar to wait_on_bit(), except also takes a * timeout parameter. * * Returned value will be zero if the bit was cleared before the * @timeout elapsed, or non-zero if the @timeout elapsed or process * received a signal and the mode permitted wakeup on that signal. */ static inline int wait_on_bit_timeout(unsigned long *word, int bit, unsigned mode, unsigned long timeout) { might_sleep(); if (!test_bit(bit, word)) return 0; return out_of_line_wait_on_bit_timeout(word, bit, bit_wait_timeout, mode, timeout); } /** * wait_on_bit_action - wait for a bit to be cleared * @word: the word being waited on, a kernel virtual address * @bit: the bit of the word being waited on * @action: the function used to sleep, which may take special actions * @mode: the task state to sleep in * * Use the standard hashed waitqueue table to wait for a bit * to be cleared, and allow the waiting action to be specified. * This is like wait_on_bit() but allows fine control of how the waiting * is done. * * Returned value will be zero if the bit was cleared, or non-zero * if the process received a signal and the mode permitted wakeup * on that signal. */ static inline int wait_on_bit_action(unsigned long *word, int bit, wait_bit_action_f *action, unsigned mode) { might_sleep(); if (!test_bit(bit, word)) return 0; return out_of_line_wait_on_bit(word, bit, action, mode); } /** * wait_on_bit_lock - wait for a bit to be cleared, when wanting to set it * @word: the word being waited on, a kernel virtual address * @bit: the bit of the word being waited on * @mode: the task state to sleep in * * There is a standard hashed waitqueue table for generic use. This * is the part of the hashtable's accessor API that waits on a bit * when one intends to set it, for instance, trying to lock bitflags. * For instance, if one were to have waiters trying to set bitflag * and waiting for it to clear before setting it, one would call * wait_on_bit() in threads waiting to be able to set the bit. * One uses wait_on_bit_lock() where one is waiting for the bit to * clear with the intention of setting it, and when done, clearing it. * * Returns zero if the bit was (eventually) found to be clear and was * set. Returns non-zero if a signal was delivered to the process and * the @mode allows that signal to wake the process. */ static inline int wait_on_bit_lock(unsigned long *word, int bit, unsigned mode) { might_sleep(); if (!test_and_set_bit(bit, word)) return 0; return out_of_line_wait_on_bit_lock(word, bit, bit_wait, mode); } /** * wait_on_bit_lock_io - wait for a bit to be cleared, when wanting to set it * @word: the word being waited on, a kernel virtual address * @bit: the bit of the word being waited on * @mode: the task state to sleep in * * Use the standard hashed waitqueue table to wait for a bit * to be cleared and then to atomically set it. This is similar * to wait_on_bit(), but calls io_schedule() instead of schedule() * for the actual waiting. * * Returns zero if the bit was (eventually) found to be clear and was * set. Returns non-zero if a signal was delivered to the process and * the @mode allows that signal to wake the process. */ static inline int wait_on_bit_lock_io(unsigned long *word, int bit, unsigned mode) { might_sleep(); if (!test_and_set_bit(bit, word)) return 0; return out_of_line_wait_on_bit_lock(word, bit, bit_wait_io, mode); } /** * wait_on_bit_lock_action - wait for a bit to be cleared, when wanting to set it * @word: the word being waited on, a kernel virtual address * @bit: the bit of the word being waited on * @action: the function used to sleep, which may take special actions * @mode: the task state to sleep in * * Use the standard hashed waitqueue table to wait for a bit * to be cleared and then to set it, and allow the waiting action * to be specified. * This is like wait_on_bit() but allows fine control of how the waiting * is done. * * Returns zero if the bit was (eventually) found to be clear and was * set. Returns non-zero if a signal was delivered to the process and * the @mode allows that signal to wake the process. */ static inline int wait_on_bit_lock_action(unsigned long *word, int bit, wait_bit_action_f *action, unsigned mode) { might_sleep(); if (!test_and_set_bit(bit, word)) return 0; return out_of_line_wait_on_bit_lock(word, bit, action, mode); } extern void init_wait_var_entry(struct wait_bit_queue_entry *wbq_entry, void *var, int flags); extern void wake_up_var(void *var); extern wait_queue_head_t *__var_waitqueue(void *p); #define ___wait_var_event(var, condition, state, exclusive, ret, cmd) \ ({ \ __label__ __out; \ struct wait_queue_head *__wq_head = __var_waitqueue(var); \ struct wait_bit_queue_entry __wbq_entry; \ long __ret = ret; /* explicit shadow */ \ \ init_wait_var_entry(&__wbq_entry, var, \ exclusive ? WQ_FLAG_EXCLUSIVE : 0); \ for (;;) { \ long __int = prepare_to_wait_event(__wq_head, \ &__wbq_entry.wq_entry, \ state); \ if (condition) \ break; \ \ if (___wait_is_interruptible(state) && __int) { \ __ret = __int; \ goto __out; \ } \ \ cmd; \ } \ finish_wait(__wq_head, &__wbq_entry.wq_entry); \ __out: __ret; \ }) #define __wait_var_event(var, condition) \ ___wait_var_event(var, condition, TASK_UNINTERRUPTIBLE, 0, 0, \ schedule()) #define wait_var_event(var, condition) \ do { \ might_sleep(); \ if (condition) \ break; \ __wait_var_event(var, condition); \ } while (0) #define __wait_var_event_killable(var, condition) \ ___wait_var_event(var, condition, TASK_KILLABLE, 0, 0, \ schedule()) #define wait_var_event_killable(var, condition) \ ({ \ int __ret = 0; \ might_sleep(); \ if (!(condition)) \ __ret = __wait_var_event_killable(var, condition); \ __ret; \ }) #define __wait_var_event_timeout(var, condition, timeout) \ ___wait_var_event(var, ___wait_cond_timeout(condition), \ TASK_UNINTERRUPTIBLE, 0, timeout, \ __ret = schedule_timeout(__ret)) #define wait_var_event_timeout(var, condition, timeout) \ ({ \ long __ret = timeout; \ might_sleep(); \ if (!___wait_cond_timeout(condition)) \ __ret = __wait_var_event_timeout(var, condition, timeout); \ __ret; \ }) #define __wait_var_event_interruptible(var, condition) \ ___wait_var_event(var, condition, TASK_INTERRUPTIBLE, 0, 0, \ schedule()) #define wait_var_event_interruptible(var, condition) \ ({ \ int __ret = 0; \ might_sleep(); \ if (!(condition)) \ __ret = __wait_var_event_interruptible(var, condition); \ __ret; \ }) /** * clear_and_wake_up_bit - clear a bit and wake up anyone waiting on that bit * * @bit: the bit of the word being waited on * @word: the word being waited on, a kernel virtual address * * You can use this helper if bitflags are manipulated atomically rather than * non-atomically under a lock. */ static inline void clear_and_wake_up_bit(int bit, void *word) { clear_bit_unlock(bit, word); /* See wake_up_bit() for which memory barrier you need to use. */ smp_mb__after_atomic(); wake_up_bit(word, bit); } #endif /* _LINUX_WAIT_BIT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_IO_H #define _ASM_X86_IO_H /* * This file contains the definitions for the x86 IO instructions * inb/inw/inl/outb/outw/outl and the "string versions" of the same * (insb/insw/insl/outsb/outsw/outsl). You can also use "pausing" * versions of the single-IO instructions (inb_p/inw_p/..). * * This file is not meant to be obfuscating: it's just complicated * to (a) handle it all in a way that makes gcc able to optimize it * as well as possible and (b) trying to avoid writing the same thing * over and over again with slight variations and possibly making a * mistake somewhere. */ /* * Thanks to James van Artsdalen for a better timing-fix than * the two short jumps: using outb's to a nonexistent port seems * to guarantee better timings even on fast machines. * * On the other hand, I'd like to be sure of a non-existent port: * I feel a bit unsafe about using 0x80 (should be safe, though) * * Linus */ /* * Bit simplified and optimized by Jan Hubicka * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999. * * isa_memset_io, isa_memcpy_fromio, isa_memcpy_toio added, * isa_read[wl] and isa_write[wl] fixed * - Arnaldo Carvalho de Melo <acme@conectiva.com.br> */ #define ARCH_HAS_IOREMAP_WC #define ARCH_HAS_IOREMAP_WT #include <linux/string.h> #include <linux/compiler.h> #include <asm/page.h> #include <asm/early_ioremap.h> #include <asm/pgtable_types.h> #define build_mmio_read(name, size, type, reg, barrier) \ static inline type name(const volatile void __iomem *addr) \ { type ret; asm volatile("mov" size " %1,%0":reg (ret) \ :"m" (*(volatile type __force *)addr) barrier); return ret; } #define build_mmio_write(name, size, type, reg, barrier) \ static inline void name(type val, volatile void __iomem *addr) \ { asm volatile("mov" size " %0,%1": :reg (val), \ "m" (*(volatile type __force *)addr) barrier); } build_mmio_read(readb, "b", unsigned char, "=q", :"memory") build_mmio_read(readw, "w", unsigned short, "=r", :"memory") build_mmio_read(readl, "l", unsigned int, "=r", :"memory") build_mmio_read(__readb, "b", unsigned char, "=q", ) build_mmio_read(__readw, "w", unsigned short, "=r", ) build_mmio_read(__readl, "l", unsigned int, "=r", ) build_mmio_write(writeb, "b", unsigned char, "q", :"memory") build_mmio_write(writew, "w", unsigned short, "r", :"memory") build_mmio_write(writel, "l", unsigned int, "r", :"memory") build_mmio_write(__writeb, "b", unsigned char, "q", ) build_mmio_write(__writew, "w", unsigned short, "r", ) build_mmio_write(__writel, "l", unsigned int, "r", ) #define readb readb #define readw readw #define readl readl #define readb_relaxed(a) __readb(a) #define readw_relaxed(a) __readw(a) #define readl_relaxed(a) __readl(a) #define __raw_readb __readb #define __raw_readw __readw #define __raw_readl __readl #define writeb writeb #define writew writew #define writel writel #define writeb_relaxed(v, a) __writeb(v, a) #define writew_relaxed(v, a) __writew(v, a) #define writel_relaxed(v, a) __writel(v, a) #define __raw_writeb __writeb #define __raw_writew __writew #define __raw_writel __writel #ifdef CONFIG_X86_64 build_mmio_read(readq, "q", u64, "=r", :"memory") build_mmio_read(__readq, "q", u64, "=r", ) build_mmio_write(writeq, "q", u64, "r", :"memory") build_mmio_write(__writeq, "q", u64, "r", ) #define readq_relaxed(a) __readq(a) #define writeq_relaxed(v, a) __writeq(v, a) #define __raw_readq __readq #define __raw_writeq __writeq /* Let people know that we have them */ #define readq readq #define writeq writeq #endif #define ARCH_HAS_VALID_PHYS_ADDR_RANGE extern int valid_phys_addr_range(phys_addr_t addr, size_t size); extern int valid_mmap_phys_addr_range(unsigned long pfn, size_t size); /** * virt_to_phys - map virtual addresses to physical * @address: address to remap * * The returned physical address is the physical (CPU) mapping for * the memory address given. It is only valid to use this function on * addresses directly mapped or allocated via kmalloc. * * This function does not give bus mappings for DMA transfers. In * almost all conceivable cases a device driver should not be using * this function */ static inline phys_addr_t virt_to_phys(volatile void *address) { return __pa(address); } #define virt_to_phys virt_to_phys /** * phys_to_virt - map physical address to virtual * @address: address to remap * * The returned virtual address is a current CPU mapping for * the memory address given. It is only valid to use this function on * addresses that have a kernel mapping * * This function does not handle bus mappings for DMA transfers. In * almost all conceivable cases a device driver should not be using * this function */ static inline void *phys_to_virt(phys_addr_t address) { return __va(address); } #define phys_to_virt phys_to_virt /* * Change "struct page" to physical address. */ #define page_to_phys(page) ((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT) /* * ISA I/O bus memory addresses are 1:1 with the physical address. * However, we truncate the address to unsigned int to avoid undesirable * promitions in legacy drivers. */ static inline unsigned int isa_virt_to_bus(volatile void *address) { return (unsigned int)virt_to_phys(address); } #define isa_bus_to_virt phys_to_virt /* * However PCI ones are not necessarily 1:1 and therefore these interfaces * are forbidden in portable PCI drivers. * * Allow them on x86 for legacy drivers, though. */ #define virt_to_bus virt_to_phys #define bus_to_virt phys_to_virt /* * The default ioremap() behavior is non-cached; if you need something * else, you probably want one of the following. */ extern void __iomem *ioremap_uc(resource_size_t offset, unsigned long size); #define ioremap_uc ioremap_uc extern void __iomem *ioremap_cache(resource_size_t offset, unsigned long size); #define ioremap_cache ioremap_cache extern void __iomem *ioremap_prot(resource_size_t offset, unsigned long size, unsigned long prot_val); #define ioremap_prot ioremap_prot extern void __iomem *ioremap_encrypted(resource_size_t phys_addr, unsigned long size); #define ioremap_encrypted ioremap_encrypted /** * ioremap - map bus memory into CPU space * @offset: bus address of the memory * @size: size of the resource to map * * ioremap performs a platform specific sequence of operations to * make bus memory CPU accessible via the readb/readw/readl/writeb/ * writew/writel functions and the other mmio helpers. The returned * address is not guaranteed to be usable directly as a virtual * address. * * If the area you are trying to map is a PCI BAR you should have a * look at pci_iomap(). */ void __iomem *ioremap(resource_size_t offset, unsigned long size); #define ioremap ioremap extern void iounmap(volatile void __iomem *addr); #define iounmap iounmap extern void set_iounmap_nonlazy(void); #ifdef __KERNEL__ void memcpy_fromio(void *, const volatile void __iomem *, size_t); void memcpy_toio(volatile void __iomem *, const void *, size_t); void memset_io(volatile void __iomem *, int, size_t); #define memcpy_fromio memcpy_fromio #define memcpy_toio memcpy_toio #define memset_io memset_io #include <asm-generic/iomap.h> /* * ISA space is 'always mapped' on a typical x86 system, no need to * explicitly ioremap() it. The fact that the ISA IO space is mapped * to PAGE_OFFSET is pure coincidence - it does not mean ISA values * are physical addresses. The following constant pointer can be * used as the IO-area pointer (it can be iounmapped as well, so the * analogy with PCI is quite large): */ #define __ISA_IO_base ((char __iomem *)(PAGE_OFFSET)) #endif /* __KERNEL__ */ extern void native_io_delay(void); extern int io_delay_type; extern void io_delay_init(void); #if defined(CONFIG_PARAVIRT) #include <asm/paravirt.h> #else static inline void slow_down_io(void) { native_io_delay(); #ifdef REALLY_SLOW_IO native_io_delay(); native_io_delay(); native_io_delay(); #endif } #endif #ifdef CONFIG_AMD_MEM_ENCRYPT #include <linux/jump_label.h> extern struct static_key_false sev_enable_key; static inline bool sev_key_active(void) { return static_branch_unlikely(&sev_enable_key); } #else /* !CONFIG_AMD_MEM_ENCRYPT */ static inline bool sev_key_active(void) { return false; } #endif /* CONFIG_AMD_MEM_ENCRYPT */ #define BUILDIO(bwl, bw, type) \ static inline void out##bwl(unsigned type value, int port) \ { \ asm volatile("out" #bwl " %" #bw "0, %w1" \ : : "a"(value), "Nd"(port)); \ } \ \ static inline unsigned type in##bwl(int port) \ { \ unsigned type value; \ asm volatile("in" #bwl " %w1, %" #bw "0" \ : "=a"(value) : "Nd"(port)); \ return value; \ } \ \ static inline void out##bwl##_p(unsigned type value, int port) \ { \ out##bwl(value, port); \ slow_down_io(); \ } \ \ static inline unsigned type in##bwl##_p(int port) \ { \ unsigned type value = in##bwl(port); \ slow_down_io(); \ return value; \ } \ \ static inline void outs##bwl(int port, const void *addr, unsigned long count) \ { \ if (sev_key_active()) { \ unsigned type *value = (unsigned type *)addr; \ while (count) { \ out##bwl(*value, port); \ value++; \ count--; \ } \ } else { \ asm volatile("rep; outs" #bwl \ : "+S"(addr), "+c"(count) \ : "d"(port) : "memory"); \ } \ } \ \ static inline void ins##bwl(int port, void *addr, unsigned long count) \ { \ if (sev_key_active()) { \ unsigned type *value = (unsigned type *)addr; \ while (count) { \ *value = in##bwl(port); \ value++; \ count--; \ } \ } else { \ asm volatile("rep; ins" #bwl \ : "+D"(addr), "+c"(count) \ : "d"(port) : "memory"); \ } \ } BUILDIO(b, b, char) BUILDIO(w, w, short) BUILDIO(l, , int) #define inb inb #define inw inw #define inl inl #define inb_p inb_p #define inw_p inw_p #define inl_p inl_p #define insb insb #define insw insw #define insl insl #define outb outb #define outw outw #define outl outl #define outb_p outb_p #define outw_p outw_p #define outl_p outl_p #define outsb outsb #define outsw outsw #define outsl outsl extern void *xlate_dev_mem_ptr(phys_addr_t phys); extern void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr); #define xlate_dev_mem_ptr xlate_dev_mem_ptr #define unxlate_dev_mem_ptr unxlate_dev_mem_ptr extern int ioremap_change_attr(unsigned long vaddr, unsigned long size, enum page_cache_mode pcm); extern void __iomem *ioremap_wc(resource_size_t offset, unsigned long size); #define ioremap_wc ioremap_wc extern void __iomem *ioremap_wt(resource_size_t offset, unsigned long size); #define ioremap_wt ioremap_wt extern bool is_early_ioremap_ptep(pte_t *ptep); #define IO_SPACE_LIMIT 0xffff #include <asm-generic/io.h> #undef PCI_IOBASE #ifdef CONFIG_MTRR extern int __must_check arch_phys_wc_index(int handle); #define arch_phys_wc_index arch_phys_wc_index extern int __must_check arch_phys_wc_add(unsigned long base, unsigned long size); extern void arch_phys_wc_del(int handle); #define arch_phys_wc_add arch_phys_wc_add #endif #ifdef CONFIG_X86_PAT extern int arch_io_reserve_memtype_wc(resource_size_t start, resource_size_t size); extern void arch_io_free_memtype_wc(resource_size_t start, resource_size_t size); #define arch_io_reserve_memtype_wc arch_io_reserve_memtype_wc #endif extern bool arch_memremap_can_ram_remap(resource_size_t offset, unsigned long size, unsigned long flags); #define arch_memremap_can_ram_remap arch_memremap_can_ram_remap extern bool phys_mem_access_encrypted(unsigned long phys_addr, unsigned long size); /** * iosubmit_cmds512 - copy data to single MMIO location, in 512-bit units * @dst: destination, in MMIO space (must be 512-bit aligned) * @src: source * @count: number of 512 bits quantities to submit * * Submit data from kernel space to MMIO space, in units of 512 bits at a * time. Order of access is not guaranteed, nor is a memory barrier * performed afterwards. * * Warning: Do not use this helper unless your driver has checked that the CPU * instruction is supported on the platform. */ static inline void iosubmit_cmds512(void __iomem *dst, const void *src, size_t count) { const u8 *from = src; const u8 *end = from + count * 64; while (from < end) { movdir64b(dst, from); from += 64; } } #endif /* _ASM_X86_IO_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_DELAY_H #define _LINUX_DELAY_H /* * Copyright (C) 1993 Linus Torvalds * * Delay routines, using a pre-computed "loops_per_jiffy" value. * * Please note that ndelay(), udelay() and mdelay() may return early for * several reasons: * 1. computed loops_per_jiffy too low (due to the time taken to * execute the timer interrupt.) * 2. cache behaviour affecting the time it takes to execute the * loop function. * 3. CPU clock rate changes. * * Please see this thread: * https://lists.openwall.net/linux-kernel/2011/01/09/56 */ #include <linux/kernel.h> extern unsigned long loops_per_jiffy; #include <asm/delay.h> /* * Using udelay() for intervals greater than a few milliseconds can * risk overflow for high loops_per_jiffy (high bogomips) machines. The * mdelay() provides a wrapper to prevent this. For delays greater * than MAX_UDELAY_MS milliseconds, the wrapper is used. Architecture * specific values can be defined in asm-???/delay.h as an override. * The 2nd mdelay() definition ensures GCC will optimize away the * while loop for the common cases where n <= MAX_UDELAY_MS -- Paul G. */ #ifndef MAX_UDELAY_MS #define MAX_UDELAY_MS 5 #endif #ifndef mdelay #define mdelay(n) (\ (__builtin_constant_p(n) && (n)<=MAX_UDELAY_MS) ? udelay((n)*1000) : \ ({unsigned long __ms=(n); while (__ms--) udelay(1000);})) #endif #ifndef ndelay static inline void ndelay(unsigned long x) { udelay(DIV_ROUND_UP(x, 1000)); } #define ndelay(x) ndelay(x) #endif extern unsigned long lpj_fine; void calibrate_delay(void); void __attribute__((weak)) calibration_delay_done(void); void msleep(unsigned int msecs); unsigned long msleep_interruptible(unsigned int msecs); void usleep_range(unsigned long min, unsigned long max); static inline void ssleep(unsigned int seconds) { msleep(seconds * 1000); } /* see Documentation/timers/timers-howto.rst for the thresholds */ static inline void fsleep(unsigned long usecs) { if (usecs <= 10) udelay(usecs); else if (usecs <= 20000) usleep_range(usecs, 2 * usecs); else msleep(DIV_ROUND_UP(usecs, 1000)); } #endif /* defined(_LINUX_DELAY_H) */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 /* SPDX-License-Identifier: GPL-2.0 */ /* * Because linux/module.h has tracepoints in the header, and ftrace.h * used to include this file, define_trace.h includes linux/module.h * But we do not want the module.h to override the TRACE_SYSTEM macro * variable that define_trace.h is processing, so we only set it * when module events are being processed, which would happen when * CREATE_TRACE_POINTS is defined. */ #ifdef CREATE_TRACE_POINTS #undef TRACE_SYSTEM #define TRACE_SYSTEM module #endif #if !defined(_TRACE_MODULE_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_MODULE_H #include <linux/tracepoint.h> #ifdef CONFIG_MODULES struct module; #define show_module_flags(flags) __print_flags(flags, "", \ { (1UL << TAINT_PROPRIETARY_MODULE), "P" }, \ { (1UL << TAINT_OOT_MODULE), "O" }, \ { (1UL << TAINT_FORCED_MODULE), "F" }, \ { (1UL << TAINT_CRAP), "C" }, \ { (1UL << TAINT_UNSIGNED_MODULE), "E" }) TRACE_EVENT(module_load, TP_PROTO(struct module *mod), TP_ARGS(mod), TP_STRUCT__entry( __field( unsigned int, taints ) __string( name, mod->name ) ), TP_fast_assign( __entry->taints = mod->taints; __assign_str(name, mod->name); ), TP_printk("%s %s", __get_str(name), show_module_flags(__entry->taints)) ); TRACE_EVENT(module_free, TP_PROTO(struct module *mod), TP_ARGS(mod), TP_STRUCT__entry( __string( name, mod->name ) ), TP_fast_assign( __assign_str(name, mod->name); ), TP_printk("%s", __get_str(name)) ); #ifdef CONFIG_MODULE_UNLOAD /* trace_module_get/put are only used if CONFIG_MODULE_UNLOAD is defined */ DECLARE_EVENT_CLASS(module_refcnt, TP_PROTO(struct module *mod, unsigned long ip), TP_ARGS(mod, ip), TP_STRUCT__entry( __field( unsigned long, ip ) __field( int, refcnt ) __string( name, mod->name ) ), TP_fast_assign( __entry->ip = ip; __entry->refcnt = atomic_read(&mod->refcnt); __assign_str(name, mod->name); ), TP_printk("%s call_site=%ps refcnt=%d", __get_str(name), (void *)__entry->ip, __entry->refcnt) ); DEFINE_EVENT(module_refcnt, module_get, TP_PROTO(struct module *mod, unsigned long ip), TP_ARGS(mod, ip) ); DEFINE_EVENT(module_refcnt, module_put, TP_PROTO(struct module *mod, unsigned long ip), TP_ARGS(mod, ip) ); #endif /* CONFIG_MODULE_UNLOAD */ TRACE_EVENT(module_request, TP_PROTO(char *name, bool wait, unsigned long ip), TP_ARGS(name, wait, ip), TP_STRUCT__entry( __field( unsigned long, ip ) __field( bool, wait ) __string( name, name ) ), TP_fast_assign( __entry->ip = ip; __entry->wait = wait; __assign_str(name, name); ), TP_printk("%s wait=%d call_site=%ps", __get_str(name), (int)__entry->wait, (void *)__entry->ip) ); #endif /* CONFIG_MODULES */ #endif /* _TRACE_MODULE_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_BITMAP_H #define __LINUX_BITMAP_H #ifndef __ASSEMBLY__ #include <linux/types.h> #include <linux/bitops.h> #include <linux/string.h> #include <linux/kernel.h> /* * bitmaps provide bit arrays that consume one or more unsigned * longs. The bitmap interface and available operations are listed * here, in bitmap.h * * Function implementations generic to all architectures are in * lib/bitmap.c. Functions implementations that are architecture * specific are in various include/asm-<arch>/bitops.h headers * and other arch/<arch> specific files. * * See lib/bitmap.c for more details. */ /** * DOC: bitmap overview * * The available bitmap operations and their rough meaning in the * case that the bitmap is a single unsigned long are thus: * * The generated code is more efficient when nbits is known at * compile-time and at most BITS_PER_LONG. * * :: * * bitmap_zero(dst, nbits) *dst = 0UL * bitmap_fill(dst, nbits) *dst = ~0UL * bitmap_copy(dst, src, nbits) *dst = *src * bitmap_and(dst, src1, src2, nbits) *dst = *src1 & *src2 * bitmap_or(dst, src1, src2, nbits) *dst = *src1 | *src2 * bitmap_xor(dst, src1, src2, nbits) *dst = *src1 ^ *src2 * bitmap_andnot(dst, src1, src2, nbits) *dst = *src1 & ~(*src2) * bitmap_complement(dst, src, nbits) *dst = ~(*src) * bitmap_equal(src1, src2, nbits) Are *src1 and *src2 equal? * bitmap_intersects(src1, src2, nbits) Do *src1 and *src2 overlap? * bitmap_subset(src1, src2, nbits) Is *src1 a subset of *src2? * bitmap_empty(src, nbits) Are all bits zero in *src? * bitmap_full(src, nbits) Are all bits set in *src? * bitmap_weight(src, nbits) Hamming Weight: number set bits * bitmap_set(dst, pos, nbits) Set specified bit area * bitmap_clear(dst, pos, nbits) Clear specified bit area * bitmap_find_next_zero_area(buf, len, pos, n, mask) Find bit free area * bitmap_find_next_zero_area_off(buf, len, pos, n, mask, mask_off) as above * bitmap_next_clear_region(map, &start, &end, nbits) Find next clear region * bitmap_next_set_region(map, &start, &end, nbits) Find next set region * bitmap_for_each_clear_region(map, rs, re, start, end) * Iterate over all clear regions * bitmap_for_each_set_region(map, rs, re, start, end) * Iterate over all set regions * bitmap_shift_right(dst, src, n, nbits) *dst = *src >> n * bitmap_shift_left(dst, src, n, nbits) *dst = *src << n * bitmap_cut(dst, src, first, n, nbits) Cut n bits from first, copy rest * bitmap_replace(dst, old, new, mask, nbits) *dst = (*old & ~(*mask)) | (*new & *mask) * bitmap_remap(dst, src, old, new, nbits) *dst = map(old, new)(src) * bitmap_bitremap(oldbit, old, new, nbits) newbit = map(old, new)(oldbit) * bitmap_onto(dst, orig, relmap, nbits) *dst = orig relative to relmap * bitmap_fold(dst, orig, sz, nbits) dst bits = orig bits mod sz * bitmap_parse(buf, buflen, dst, nbits) Parse bitmap dst from kernel buf * bitmap_parse_user(ubuf, ulen, dst, nbits) Parse bitmap dst from user buf * bitmap_parselist(buf, dst, nbits) Parse bitmap dst from kernel buf * bitmap_parselist_user(buf, dst, nbits) Parse bitmap dst from user buf * bitmap_find_free_region(bitmap, bits, order) Find and allocate bit region * bitmap_release_region(bitmap, pos, order) Free specified bit region * bitmap_allocate_region(bitmap, pos, order) Allocate specified bit region * bitmap_from_arr32(dst, buf, nbits) Copy nbits from u32[] buf to dst * bitmap_to_arr32(buf, src, nbits) Copy nbits from buf to u32[] dst * bitmap_get_value8(map, start) Get 8bit value from map at start * bitmap_set_value8(map, value, start) Set 8bit value to map at start * * Note, bitmap_zero() and bitmap_fill() operate over the region of * unsigned longs, that is, bits behind bitmap till the unsigned long * boundary will be zeroed or filled as well. Consider to use * bitmap_clear() or bitmap_set() to make explicit zeroing or filling * respectively. */ /** * DOC: bitmap bitops * * Also the following operations in asm/bitops.h apply to bitmaps.:: * * set_bit(bit, addr) *addr |= bit * clear_bit(bit, addr) *addr &= ~bit * change_bit(bit, addr) *addr ^= bit * test_bit(bit, addr) Is bit set in *addr? * test_and_set_bit(bit, addr) Set bit and return old value * test_and_clear_bit(bit, addr) Clear bit and return old value * test_and_change_bit(bit, addr) Change bit and return old value * find_first_zero_bit(addr, nbits) Position first zero bit in *addr * find_first_bit(addr, nbits) Position first set bit in *addr * find_next_zero_bit(addr, nbits, bit) * Position next zero bit in *addr >= bit * find_next_bit(addr, nbits, bit) Position next set bit in *addr >= bit * find_next_and_bit(addr1, addr2, nbits, bit) * Same as find_next_bit, but in * (*addr1 & *addr2) * */ /** * DOC: declare bitmap * The DECLARE_BITMAP(name,bits) macro, in linux/types.h, can be used * to declare an array named 'name' of just enough unsigned longs to * contain all bit positions from 0 to 'bits' - 1. */ /* * Allocation and deallocation of bitmap. * Provided in lib/bitmap.c to avoid circular dependency. */ extern unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags); extern unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags); extern void bitmap_free(const unsigned long *bitmap); /* * lib/bitmap.c provides these functions: */ extern int __bitmap_empty(const unsigned long *bitmap, unsigned int nbits); extern int __bitmap_full(const unsigned long *bitmap, unsigned int nbits); extern int __bitmap_equal(const unsigned long *bitmap1, const unsigned long *bitmap2, unsigned int nbits); extern bool __pure __bitmap_or_equal(const unsigned long *src1, const unsigned long *src2, const unsigned long *src3, unsigned int nbits); extern void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int nbits); extern void __bitmap_shift_right(unsigned long *dst, const unsigned long *src, unsigned int shift, unsigned int nbits); extern void __bitmap_shift_left(unsigned long *dst, const unsigned long *src, unsigned int shift, unsigned int nbits); extern void bitmap_cut(unsigned long *dst, const unsigned long *src, unsigned int first, unsigned int cut, unsigned int nbits); extern int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1, const unsigned long *bitmap2, unsigned int nbits); extern void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1, const unsigned long *bitmap2, unsigned int nbits); extern void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1, const unsigned long *bitmap2, unsigned int nbits); extern int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1, const unsigned long *bitmap2, unsigned int nbits); extern void __bitmap_replace(unsigned long *dst, const unsigned long *old, const unsigned long *new, const unsigned long *mask, unsigned int nbits); extern int __bitmap_intersects(const unsigned long *bitmap1, const unsigned long *bitmap2, unsigned int nbits); extern int __bitmap_subset(const unsigned long *bitmap1, const unsigned long *bitmap2, unsigned int nbits); extern int __bitmap_weight(const unsigned long *bitmap, unsigned int nbits); extern void __bitmap_set(unsigned long *map, unsigned int start, int len); extern void __bitmap_clear(unsigned long *map, unsigned int start, int len); extern unsigned long bitmap_find_next_zero_area_off(unsigned long *map, unsigned long size, unsigned long start, unsigned int nr, unsigned long align_mask, unsigned long align_offset); /** * bitmap_find_next_zero_area - find a contiguous aligned zero area * @map: The address to base the search on * @size: The bitmap size in bits * @start: The bitnumber to start searching at * @nr: The number of zeroed bits we're looking for * @align_mask: Alignment mask for zero area * * The @align_mask should be one less than a power of 2; the effect is that * the bit offset of all zero areas this function finds is multiples of that * power of 2. A @align_mask of 0 means no alignment is required. */ static inline unsigned long bitmap_find_next_zero_area(unsigned long *map, unsigned long size, unsigned long start, unsigned int nr, unsigned long align_mask) { return bitmap_find_next_zero_area_off(map, size, start, nr, align_mask, 0); } extern int bitmap_parse(const char *buf, unsigned int buflen, unsigned long *dst, int nbits); extern int bitmap_parse_user(const char __user *ubuf, unsigned int ulen, unsigned long *dst, int nbits); extern int bitmap_parselist(const char *buf, unsigned long *maskp, int nmaskbits); extern int bitmap_parselist_user(const char __user *ubuf, unsigned int ulen, unsigned long *dst, int nbits); extern void bitmap_remap(unsigned long *dst, const unsigned long *src, const unsigned long *old, const unsigned long *new, unsigned int nbits); extern int bitmap_bitremap(int oldbit, const unsigned long *old, const unsigned long *new, int bits); extern void bitmap_onto(unsigned long *dst, const unsigned long *orig, const unsigned long *relmap, unsigned int bits); extern void bitmap_fold(unsigned long *dst, const unsigned long *orig, unsigned int sz, unsigned int nbits); extern int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order); extern void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order); extern int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order); #ifdef __BIG_ENDIAN extern void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits); #else #define bitmap_copy_le bitmap_copy #endif extern unsigned int bitmap_ord_to_pos(const unsigned long *bitmap, unsigned int ord, unsigned int nbits); extern int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp, int nmaskbits); #define BITMAP_FIRST_WORD_MASK(start) (~0UL << ((start) & (BITS_PER_LONG - 1))) #define BITMAP_LAST_WORD_MASK(nbits) (~0UL >> (-(nbits) & (BITS_PER_LONG - 1))) /* * The static inlines below do not handle constant nbits==0 correctly, * so make such users (should any ever turn up) call the out-of-line * versions. */ #define small_const_nbits(nbits) \ (__builtin_constant_p(nbits) && (nbits) <= BITS_PER_LONG && (nbits) > 0) static inline void bitmap_zero(unsigned long *dst, unsigned int nbits) { unsigned int len = BITS_TO_LONGS(nbits) * sizeof(unsigned long); memset(dst, 0, len); } static inline void bitmap_fill(unsigned long *dst, unsigned int nbits) { unsigned int len = BITS_TO_LONGS(nbits) * sizeof(unsigned long); memset(dst, 0xff, len); } static inline void bitmap_copy(unsigned long *dst, const unsigned long *src, unsigned int nbits) { unsigned int len = BITS_TO_LONGS(nbits) * sizeof(unsigned long); memcpy(dst, src, len); } /* * Copy bitmap and clear tail bits in last word. */ static inline void bitmap_copy_clear_tail(unsigned long *dst, const unsigned long *src, unsigned int nbits) { bitmap_copy(dst, src, nbits); if (nbits % BITS_PER_LONG) dst[nbits / BITS_PER_LONG] &= BITMAP_LAST_WORD_MASK(nbits); } /* * On 32-bit systems bitmaps are represented as u32 arrays internally, and * therefore conversion is not needed when copying data from/to arrays of u32. */ #if BITS_PER_LONG == 64 extern void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits); extern void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits); #else #define bitmap_from_arr32(bitmap, buf, nbits) \ bitmap_copy_clear_tail((unsigned long *) (bitmap), \ (const unsigned long *) (buf), (nbits)) #define bitmap_to_arr32(buf, bitmap, nbits) \ bitmap_copy_clear_tail((unsigned long *) (buf), \ (const unsigned long *) (bitmap), (nbits)) #endif static inline int bitmap_and(unsigned long *dst, const unsigned long *src1, const unsigned long *src2, unsigned int nbits) { if (small_const_nbits(nbits)) return (*dst = *src1 & *src2 & BITMAP_LAST_WORD_MASK(nbits)) != 0; return __bitmap_and(dst, src1, src2, nbits); } static inline void bitmap_or(unsigned long *dst, const unsigned long *src1, const unsigned long *src2, unsigned int nbits) { if (small_const_nbits(nbits)) *dst = *src1 | *src2; else __bitmap_or(dst, src1, src2, nbits); } static inline void bitmap_xor(unsigned long *dst, const unsigned long *src1, const unsigned long *src2, unsigned int nbits) { if (small_const_nbits(nbits)) *dst = *src1 ^ *src2; else __bitmap_xor(dst, src1, src2, nbits); } static inline int bitmap_andnot(unsigned long *dst, const unsigned long *src1, const unsigned long *src2, unsigned int nbits) { if (small_const_nbits(nbits)) return (*dst = *src1 & ~(*src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0; return __bitmap_andnot(dst, src1, src2, nbits); } static inline void bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int nbits) { if (small_const_nbits(nbits)) *dst = ~(*src); else __bitmap_complement(dst, src, nbits); } #ifdef __LITTLE_ENDIAN #define BITMAP_MEM_ALIGNMENT 8 #else #define BITMAP_MEM_ALIGNMENT (8 * sizeof(unsigned long)) #endif #define BITMAP_MEM_MASK (BITMAP_MEM_ALIGNMENT - 1) static inline int bitmap_equal(const unsigned long *src1, const unsigned long *src2, unsigned int nbits) { if (small_const_nbits(nbits)) return !((*src1 ^ *src2) & BITMAP_LAST_WORD_MASK(nbits)); if (__builtin_constant_p(nbits & BITMAP_MEM_MASK) && IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT)) return !memcmp(src1, src2, nbits / 8); return __bitmap_equal(src1, src2, nbits); } /** * bitmap_or_equal - Check whether the or of two bitmaps is equal to a third * @src1: Pointer to bitmap 1 * @src2: Pointer to bitmap 2 will be or'ed with bitmap 1 * @src3: Pointer to bitmap 3. Compare to the result of *@src1 | *@src2 * @nbits: number of bits in each of these bitmaps * * Returns: True if (*@src1 | *@src2) == *@src3, false otherwise */ static inline bool bitmap_or_equal(const unsigned long *src1, const unsigned long *src2, const unsigned long *src3, unsigned int nbits) { if (!small_const_nbits(nbits)) return __bitmap_or_equal(src1, src2, src3, nbits); return !(((*src1 | *src2) ^ *src3) & BITMAP_LAST_WORD_MASK(nbits)); } static inline int bitmap_intersects(const unsigned long *src1, const unsigned long *src2, unsigned int nbits) { if (small_const_nbits(nbits)) return ((*src1 & *src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0; else return __bitmap_intersects(src1, src2, nbits); } static inline int bitmap_subset(const unsigned long *src1, const unsigned long *src2, unsigned int nbits) { if (small_const_nbits(nbits)) return ! ((*src1 & ~(*src2)) & BITMAP_LAST_WORD_MASK(nbits)); else return __bitmap_subset(src1, src2, nbits); } static inline int bitmap_empty(const unsigned long *src, unsigned nbits) { if (small_const_nbits(nbits)) return ! (*src & BITMAP_LAST_WORD_MASK(nbits)); return find_first_bit(src, nbits) == nbits; } static inline int bitmap_full(const unsigned long *src, unsigned int nbits) { if (small_const_nbits(nbits)) return ! (~(*src) & BITMAP_LAST_WORD_MASK(nbits)); return find_first_zero_bit(src, nbits) == nbits; } static __always_inline int bitmap_weight(const unsigned long *src, unsigned int nbits) { if (small_const_nbits(nbits)) return hweight_long(*src & BITMAP_LAST_WORD_MASK(nbits)); return __bitmap_weight(src, nbits); } static __always_inline void bitmap_set(unsigned long *map, unsigned int start, unsigned int nbits) { if (__builtin_constant_p(nbits) && nbits == 1) __set_bit(start, map); else if (__builtin_constant_p(start & BITMAP_MEM_MASK) && IS_ALIGNED(start, BITMAP_MEM_ALIGNMENT) && __builtin_constant_p(nbits & BITMAP_MEM_MASK) && IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT)) memset((char *)map + start / 8, 0xff, nbits / 8); else __bitmap_set(map, start, nbits); } static __always_inline void bitmap_clear(unsigned long *map, unsigned int start, unsigned int nbits) { if (__builtin_constant_p(nbits) && nbits == 1) __clear_bit(start, map); else if (__builtin_constant_p(start & BITMAP_MEM_MASK) && IS_ALIGNED(start, BITMAP_MEM_ALIGNMENT) && __builtin_constant_p(nbits & BITMAP_MEM_MASK) && IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT)) memset((char *)map + start / 8, 0, nbits / 8); else __bitmap_clear(map, start, nbits); } static inline void bitmap_shift_right(unsigned long *dst, const unsigned long *src, unsigned int shift, unsigned int nbits) { if (small_const_nbits(nbits)) *dst = (*src & BITMAP_LAST_WORD_MASK(nbits)) >> shift; else __bitmap_shift_right(dst, src, shift, nbits); } static inline void bitmap_shift_left(unsigned long *dst, const unsigned long *src, unsigned int shift, unsigned int nbits) { if (small_const_nbits(nbits)) *dst = (*src << shift) & BITMAP_LAST_WORD_MASK(nbits); else __bitmap_shift_left(dst, src, shift, nbits); } static inline void bitmap_replace(unsigned long *dst, const unsigned long *old, const unsigned long *new, const unsigned long *mask, unsigned int nbits) { if (small_const_nbits(nbits)) *dst = (*old & ~(*mask)) | (*new & *mask); else __bitmap_replace(dst, old, new, mask, nbits); } static inline void bitmap_next_clear_region(unsigned long *bitmap, unsigned int *rs, unsigned int *re, unsigned int end) { *rs = find_next_zero_bit(bitmap, end, *rs); *re = find_next_bit(bitmap, end, *rs + 1); } static inline void bitmap_next_set_region(unsigned long *bitmap, unsigned int *rs, unsigned int *re, unsigned int end) { *rs = find_next_bit(bitmap, end, *rs); *re = find_next_zero_bit(bitmap, end, *rs + 1); } /* * Bitmap region iterators. Iterates over the bitmap between [@start, @end). * @rs and @re should be integer variables and will be set to start and end * index of the current clear or set region. */ #define bitmap_for_each_clear_region(bitmap, rs, re, start, end) \ for ((rs) = (start), \ bitmap_next_clear_region((bitmap), &(rs), &(re), (end)); \ (rs) < (re); \ (rs) = (re) + 1, \ bitmap_next_clear_region((bitmap), &(rs), &(re), (end))) #define bitmap_for_each_set_region(bitmap, rs, re, start, end) \ for ((rs) = (start), \ bitmap_next_set_region((bitmap), &(rs), &(re), (end)); \ (rs) < (re); \ (rs) = (re) + 1, \ bitmap_next_set_region((bitmap), &(rs), &(re), (end))) /** * BITMAP_FROM_U64() - Represent u64 value in the format suitable for bitmap. * @n: u64 value * * Linux bitmaps are internally arrays of unsigned longs, i.e. 32-bit * integers in 32-bit environment, and 64-bit integers in 64-bit one. * * There are four combinations of endianness and length of the word in linux * ABIs: LE64, BE64, LE32 and BE32. * * On 64-bit kernels 64-bit LE and BE numbers are naturally ordered in * bitmaps and therefore don't require any special handling. * * On 32-bit kernels 32-bit LE ABI orders lo word of 64-bit number in memory * prior to hi, and 32-bit BE orders hi word prior to lo. The bitmap on the * other hand is represented as an array of 32-bit words and the position of * bit N may therefore be calculated as: word #(N/32) and bit #(N%32) in that * word. For example, bit #42 is located at 10th position of 2nd word. * It matches 32-bit LE ABI, and we can simply let the compiler store 64-bit * values in memory as it usually does. But for BE we need to swap hi and lo * words manually. * * With all that, the macro BITMAP_FROM_U64() does explicit reordering of hi and * lo parts of u64. For LE32 it does nothing, and for BE environment it swaps * hi and lo words, as is expected by bitmap. */ #if __BITS_PER_LONG == 64 #define BITMAP_FROM_U64(n) (n) #else #define BITMAP_FROM_U64(n) ((unsigned long) ((u64)(n) & ULONG_MAX)), \ ((unsigned long) ((u64)(n) >> 32)) #endif /** * bitmap_from_u64 - Check and swap words within u64. * @mask: source bitmap * @dst: destination bitmap * * In 32-bit Big Endian kernel, when using ``(u32 *)(&val)[*]`` * to read u64 mask, we will get the wrong word. * That is ``(u32 *)(&val)[0]`` gets the upper 32 bits, * but we expect the lower 32-bits of u64. */ static inline void bitmap_from_u64(unsigned long *dst, u64 mask) { dst[0] = mask & ULONG_MAX; if (sizeof(mask) > sizeof(unsigned long)) dst[1] = mask >> 32; } /** * bitmap_get_value8 - get an 8-bit value within a memory region * @map: address to the bitmap memory region * @start: bit offset of the 8-bit value; must be a multiple of 8 * * Returns the 8-bit value located at the @start bit offset within the @src * memory region. */ static inline unsigned long bitmap_get_value8(const unsigned long *map, unsigned long start) { const size_t index = BIT_WORD(start); const unsigned long offset = start % BITS_PER_LONG; return (map[index] >> offset) & 0xFF; } /** * bitmap_set_value8 - set an 8-bit value within a memory region * @map: address to the bitmap memory region * @value: the 8-bit value; values wider than 8 bits may clobber bitmap * @start: bit offset of the 8-bit value; must be a multiple of 8 */ static inline void bitmap_set_value8(unsigned long *map, unsigned long value, unsigned long start) { const size_t index = BIT_WORD(start); const unsigned long offset = start % BITS_PER_LONG; map[index] &= ~(0xFFUL << offset); map[index] |= value << offset; } #endif /* __ASSEMBLY__ */ #endif /* __LINUX_BITMAP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_MMIOTRACE_H #define _LINUX_MMIOTRACE_H #include <linux/types.h> #include <linux/list.h> struct kmmio_probe; struct pt_regs; typedef void (*kmmio_pre_handler_t)(struct kmmio_probe *, struct pt_regs *, unsigned long addr); typedef void (*kmmio_post_handler_t)(struct kmmio_probe *, unsigned long condition, struct pt_regs *); struct kmmio_probe { /* kmmio internal list: */ struct list_head list; /* start location of the probe point: */ unsigned long addr; /* length of the probe region: */ unsigned long len; /* Called before addr is executed: */ kmmio_pre_handler_t pre_handler; /* Called after addr is executed: */ kmmio_post_handler_t post_handler; void *private; }; extern unsigned int kmmio_count; extern int register_kmmio_probe(struct kmmio_probe *p); extern void unregister_kmmio_probe(struct kmmio_probe *p); extern int kmmio_init(void); extern void kmmio_cleanup(void); #ifdef CONFIG_MMIOTRACE /* kmmio is active by some kmmio_probes? */ static inline int is_kmmio_active(void) { return kmmio_count; } /* Called from page fault handler. */ extern int kmmio_handler(struct pt_regs *regs, unsigned long addr); /* Called from ioremap.c */ extern void mmiotrace_ioremap(resource_size_t offset, unsigned long size, void __iomem *addr); extern void mmiotrace_iounmap(volatile void __iomem *addr); /* For anyone to insert markers. Remember trailing newline. */ extern __printf(1, 2) int mmiotrace_printk(const char *fmt, ...); #else /* !CONFIG_MMIOTRACE: */ static inline int is_kmmio_active(void) { return 0; } static inline int kmmio_handler(struct pt_regs *regs, unsigned long addr) { return 0; } static inline void mmiotrace_ioremap(resource_size_t offset, unsigned long size, void __iomem *addr) { } static inline void mmiotrace_iounmap(volatile void __iomem *addr) { } static inline __printf(1, 2) int mmiotrace_printk(const char *fmt, ...) { return 0; } #endif /* CONFIG_MMIOTRACE */ enum mm_io_opcode { MMIO_READ = 0x1, /* struct mmiotrace_rw */ MMIO_WRITE = 0x2, /* struct mmiotrace_rw */ MMIO_PROBE = 0x3, /* struct mmiotrace_map */ MMIO_UNPROBE = 0x4, /* struct mmiotrace_map */ MMIO_UNKNOWN_OP = 0x5, /* struct mmiotrace_rw */ }; struct mmiotrace_rw { resource_size_t phys; /* PCI address of register */ unsigned long value; unsigned long pc; /* optional program counter */ int map_id; unsigned char opcode; /* one of MMIO_{READ,WRITE,UNKNOWN_OP} */ unsigned char width; /* size of register access in bytes */ }; struct mmiotrace_map { resource_size_t phys; /* base address in PCI space */ unsigned long virt; /* base virtual address */ unsigned long len; /* mapping size */ int map_id; unsigned char opcode; /* MMIO_PROBE or MMIO_UNPROBE */ }; /* in kernel/trace/trace_mmiotrace.c */ extern void enable_mmiotrace(void); extern void disable_mmiotrace(void); extern void mmio_trace_rw(struct mmiotrace_rw *rw); extern void mmio_trace_mapping(struct mmiotrace_map *map); extern __printf(1, 0) int mmio_trace_printk(const char *fmt, va_list args); #endif /* _LINUX_MMIOTRACE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 /* SPDX-License-Identifier: GPL-2.0 */ /* * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk). * * (C) SGI 2006, Christoph Lameter * Cleaned up and restructured to ease the addition of alternative * implementations of SLAB allocators. * (C) Linux Foundation 2008-2013 * Unified interface for all slab allocators */ #ifndef _LINUX_SLAB_H #define _LINUX_SLAB_H #include <linux/gfp.h> #include <linux/overflow.h> #include <linux/types.h> #include <linux/workqueue.h> #include <linux/percpu-refcount.h> /* * Flags to pass to kmem_cache_create(). * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set. */ /* DEBUG: Perform (expensive) checks on alloc/free */ #define SLAB_CONSISTENCY_CHECKS ((slab_flags_t __force)0x00000100U) /* DEBUG: Red zone objs in a cache */ #define SLAB_RED_ZONE ((slab_flags_t __force)0x00000400U) /* DEBUG: Poison objects */ #define SLAB_POISON ((slab_flags_t __force)0x00000800U) /* Align objs on cache lines */ #define SLAB_HWCACHE_ALIGN ((slab_flags_t __force)0x00002000U) /* Use GFP_DMA memory */ #define SLAB_CACHE_DMA ((slab_flags_t __force)0x00004000U) /* Use GFP_DMA32 memory */ #define SLAB_CACHE_DMA32 ((slab_flags_t __force)0x00008000U) /* DEBUG: Store the last owner for bug hunting */ #define SLAB_STORE_USER ((slab_flags_t __force)0x00010000U) /* Panic if kmem_cache_create() fails */ #define SLAB_PANIC ((slab_flags_t __force)0x00040000U) /* * SLAB_TYPESAFE_BY_RCU - **WARNING** READ THIS! * * This delays freeing the SLAB page by a grace period, it does _NOT_ * delay object freeing. This means that if you do kmem_cache_free() * that memory location is free to be reused at any time. Thus it may * be possible to see another object there in the same RCU grace period. * * This feature only ensures the memory location backing the object * stays valid, the trick to using this is relying on an independent * object validation pass. Something like: * * rcu_read_lock() * again: * obj = lockless_lookup(key); * if (obj) { * if (!try_get_ref(obj)) // might fail for free objects * goto again; * * if (obj->key != key) { // not the object we expected * put_ref(obj); * goto again; * } * } * rcu_read_unlock(); * * This is useful if we need to approach a kernel structure obliquely, * from its address obtained without the usual locking. We can lock * the structure to stabilize it and check it's still at the given address, * only if we can be sure that the memory has not been meanwhile reused * for some other kind of object (which our subsystem's lock might corrupt). * * rcu_read_lock before reading the address, then rcu_read_unlock after * taking the spinlock within the structure expected at that address. * * Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU. */ /* Defer freeing slabs to RCU */ #define SLAB_TYPESAFE_BY_RCU ((slab_flags_t __force)0x00080000U) /* Spread some memory over cpuset */ #define SLAB_MEM_SPREAD ((slab_flags_t __force)0x00100000U) /* Trace allocations and frees */ #define SLAB_TRACE ((slab_flags_t __force)0x00200000U) /* Flag to prevent checks on free */ #ifdef CONFIG_DEBUG_OBJECTS # define SLAB_DEBUG_OBJECTS ((slab_flags_t __force)0x00400000U) #else # define SLAB_DEBUG_OBJECTS 0 #endif /* Avoid kmemleak tracing */ #define SLAB_NOLEAKTRACE ((slab_flags_t __force)0x00800000U) /* Fault injection mark */ #ifdef CONFIG_FAILSLAB # define SLAB_FAILSLAB ((slab_flags_t __force)0x02000000U) #else # define SLAB_FAILSLAB 0 #endif /* Account to memcg */ #ifdef CONFIG_MEMCG_KMEM # define SLAB_ACCOUNT ((slab_flags_t __force)0x04000000U) #else # define SLAB_ACCOUNT 0 #endif #ifdef CONFIG_KASAN #define SLAB_KASAN ((slab_flags_t __force)0x08000000U) #else #define SLAB_KASAN 0 #endif /* The following flags affect the page allocator grouping pages by mobility */ /* Objects are reclaimable */ #define SLAB_RECLAIM_ACCOUNT ((slab_flags_t __force)0x00020000U) #define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */ /* Slab deactivation flag */ #define SLAB_DEACTIVATED ((slab_flags_t __force)0x10000000U) /* * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests. * * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault. * * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can. * Both make kfree a no-op. */ #define ZERO_SIZE_PTR ((void *)16) #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \ (unsigned long)ZERO_SIZE_PTR) #include <linux/kasan.h> struct mem_cgroup; /* * struct kmem_cache related prototypes */ void __init kmem_cache_init(void); bool slab_is_available(void); extern bool usercopy_fallback; struct kmem_cache *kmem_cache_create(const char *name, unsigned int size, unsigned int align, slab_flags_t flags, void (*ctor)(void *)); struct kmem_cache *kmem_cache_create_usercopy(const char *name, unsigned int size, unsigned int align, slab_flags_t flags, unsigned int useroffset, unsigned int usersize, void (*ctor)(void *)); void kmem_cache_destroy(struct kmem_cache *); int kmem_cache_shrink(struct kmem_cache *); /* * Please use this macro to create slab caches. Simply specify the * name of the structure and maybe some flags that are listed above. * * The alignment of the struct determines object alignment. If you * f.e. add ____cacheline_aligned_in_smp to the struct declaration * then the objects will be properly aligned in SMP configurations. */ #define KMEM_CACHE(__struct, __flags) \ kmem_cache_create(#__struct, sizeof(struct __struct), \ __alignof__(struct __struct), (__flags), NULL) /* * To whitelist a single field for copying to/from usercopy, use this * macro instead for KMEM_CACHE() above. */ #define KMEM_CACHE_USERCOPY(__struct, __flags, __field) \ kmem_cache_create_usercopy(#__struct, \ sizeof(struct __struct), \ __alignof__(struct __struct), (__flags), \ offsetof(struct __struct, __field), \ sizeof_field(struct __struct, __field), NULL) /* * Common kmalloc functions provided by all allocators */ void * __must_check krealloc(const void *, size_t, gfp_t); void kfree(const void *); void kfree_sensitive(const void *); size_t __ksize(const void *); size_t ksize(const void *); #ifdef CONFIG_HAVE_HARDENED_USERCOPY_ALLOCATOR void __check_heap_object(const void *ptr, unsigned long n, struct page *page, bool to_user); #else static inline void __check_heap_object(const void *ptr, unsigned long n, struct page *page, bool to_user) { } #endif /* * Some archs want to perform DMA into kmalloc caches and need a guaranteed * alignment larger than the alignment of a 64-bit integer. * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that. */ #if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8 #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN #define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN #define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN) #else #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) #endif /* * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment. * Intended for arches that get misalignment faults even for 64 bit integer * aligned buffers. */ #ifndef ARCH_SLAB_MINALIGN #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long) #endif /* * kmalloc and friends return ARCH_KMALLOC_MINALIGN aligned * pointers. kmem_cache_alloc and friends return ARCH_SLAB_MINALIGN * aligned pointers. */ #define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN) #define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN) #define __assume_page_alignment __assume_aligned(PAGE_SIZE) /* * Kmalloc array related definitions */ #ifdef CONFIG_SLAB /* * The largest kmalloc size supported by the SLAB allocators is * 32 megabyte (2^25) or the maximum allocatable page order if that is * less than 32 MB. * * WARNING: Its not easy to increase this value since the allocators have * to do various tricks to work around compiler limitations in order to * ensure proper constant folding. */ #define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \ (MAX_ORDER + PAGE_SHIFT - 1) : 25) #define KMALLOC_SHIFT_MAX KMALLOC_SHIFT_HIGH #ifndef KMALLOC_SHIFT_LOW #define KMALLOC_SHIFT_LOW 5 #endif #endif #ifdef CONFIG_SLUB /* * SLUB directly allocates requests fitting in to an order-1 page * (PAGE_SIZE*2). Larger requests are passed to the page allocator. */ #define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1) #define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT - 1) #ifndef KMALLOC_SHIFT_LOW #define KMALLOC_SHIFT_LOW 3 #endif #endif #ifdef CONFIG_SLOB /* * SLOB passes all requests larger than one page to the page allocator. * No kmalloc array is necessary since objects of different sizes can * be allocated from the same page. */ #define KMALLOC_SHIFT_HIGH PAGE_SHIFT #define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT - 1) #ifndef KMALLOC_SHIFT_LOW #define KMALLOC_SHIFT_LOW 3 #endif #endif /* Maximum allocatable size */ #define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX) /* Maximum size for which we actually use a slab cache */ #define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH) /* Maximum order allocatable via the slab allocator */ #define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT) /* * Kmalloc subsystem. */ #ifndef KMALLOC_MIN_SIZE #define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW) #endif /* * This restriction comes from byte sized index implementation. * Page size is normally 2^12 bytes and, in this case, if we want to use * byte sized index which can represent 2^8 entries, the size of the object * should be equal or greater to 2^12 / 2^8 = 2^4 = 16. * If minimum size of kmalloc is less than 16, we use it as minimum object * size and give up to use byte sized index. */ #define SLAB_OBJ_MIN_SIZE (KMALLOC_MIN_SIZE < 16 ? \ (KMALLOC_MIN_SIZE) : 16) /* * Whenever changing this, take care of that kmalloc_type() and * create_kmalloc_caches() still work as intended. */ enum kmalloc_cache_type { KMALLOC_NORMAL = 0, KMALLOC_RECLAIM, #ifdef CONFIG_ZONE_DMA KMALLOC_DMA, #endif NR_KMALLOC_TYPES }; #ifndef CONFIG_SLOB extern struct kmem_cache * kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1]; static __always_inline enum kmalloc_cache_type kmalloc_type(gfp_t flags) { #ifdef CONFIG_ZONE_DMA /* * The most common case is KMALLOC_NORMAL, so test for it * with a single branch for both flags. */ if (likely((flags & (__GFP_DMA | __GFP_RECLAIMABLE)) == 0)) return KMALLOC_NORMAL; /* * At least one of the flags has to be set. If both are, __GFP_DMA * is more important. */ return flags & __GFP_DMA ? KMALLOC_DMA : KMALLOC_RECLAIM; #else return flags & __GFP_RECLAIMABLE ? KMALLOC_RECLAIM : KMALLOC_NORMAL; #endif } /* * Figure out which kmalloc slab an allocation of a certain size * belongs to. * 0 = zero alloc * 1 = 65 .. 96 bytes * 2 = 129 .. 192 bytes * n = 2^(n-1)+1 .. 2^n */ static __always_inline unsigned int kmalloc_index(size_t size) { if (!size) return 0; if (size <= KMALLOC_MIN_SIZE) return KMALLOC_SHIFT_LOW; if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96) return 1; if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192) return 2; if (size <= 8) return 3; if (size <= 16) return 4; if (size <= 32) return 5; if (size <= 64) return 6; if (size <= 128) return 7; if (size <= 256) return 8; if (size <= 512) return 9; if (size <= 1024) return 10; if (size <= 2 * 1024) return 11; if (size <= 4 * 1024) return 12; if (size <= 8 * 1024) return 13; if (size <= 16 * 1024) return 14; if (size <= 32 * 1024) return 15; if (size <= 64 * 1024) return 16; if (size <= 128 * 1024) return 17; if (size <= 256 * 1024) return 18; if (size <= 512 * 1024) return 19; if (size <= 1024 * 1024) return 20; if (size <= 2 * 1024 * 1024) return 21; if (size <= 4 * 1024 * 1024) return 22; if (size <= 8 * 1024 * 1024) return 23; if (size <= 16 * 1024 * 1024) return 24; if (size <= 32 * 1024 * 1024) return 25; if (size <= 64 * 1024 * 1024) return 26; BUG(); /* Will never be reached. Needed because the compiler may complain */ return -1; } #endif /* !CONFIG_SLOB */ void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment __malloc; void *kmem_cache_alloc(struct kmem_cache *, gfp_t flags) __assume_slab_alignment __malloc; void kmem_cache_free(struct kmem_cache *, void *); /* * Bulk allocation and freeing operations. These are accelerated in an * allocator specific way to avoid taking locks repeatedly or building * metadata structures unnecessarily. * * Note that interrupts must be enabled when calling these functions. */ void kmem_cache_free_bulk(struct kmem_cache *, size_t, void **); int kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **); /* * Caller must not use kfree_bulk() on memory not originally allocated * by kmalloc(), because the SLOB allocator cannot handle this. */ static __always_inline void kfree_bulk(size_t size, void **p) { kmem_cache_free_bulk(NULL, size, p); } #ifdef CONFIG_NUMA void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment __malloc; void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node) __assume_slab_alignment __malloc; #else static __always_inline void *__kmalloc_node(size_t size, gfp_t flags, int node) { return __kmalloc(size, flags); } static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node) { return kmem_cache_alloc(s, flags); } #endif #ifdef CONFIG_TRACING extern void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t) __assume_slab_alignment __malloc; #ifdef CONFIG_NUMA extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s, gfp_t gfpflags, int node, size_t size) __assume_slab_alignment __malloc; #else static __always_inline void * kmem_cache_alloc_node_trace(struct kmem_cache *s, gfp_t gfpflags, int node, size_t size) { return kmem_cache_alloc_trace(s, gfpflags, size); } #endif /* CONFIG_NUMA */ #else /* CONFIG_TRACING */ static __always_inline void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t flags, size_t size) { void *ret = kmem_cache_alloc(s, flags); ret = kasan_kmalloc(s, ret, size, flags); return ret; } static __always_inline void * kmem_cache_alloc_node_trace(struct kmem_cache *s, gfp_t gfpflags, int node, size_t size) { void *ret = kmem_cache_alloc_node(s, gfpflags, node); ret = kasan_kmalloc(s, ret, size, gfpflags); return ret; } #endif /* CONFIG_TRACING */ extern void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc; #ifdef CONFIG_TRACING extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc; #else static __always_inline void * kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) { return kmalloc_order(size, flags, order); } #endif static __always_inline void *kmalloc_large(size_t size, gfp_t flags) { unsigned int order = get_order(size); return kmalloc_order_trace(size, flags, order); } /** * kmalloc - allocate memory * @size: how many bytes of memory are required. * @flags: the type of memory to allocate. * * kmalloc is the normal method of allocating memory * for objects smaller than page size in the kernel. * * The allocated object address is aligned to at least ARCH_KMALLOC_MINALIGN * bytes. For @size of power of two bytes, the alignment is also guaranteed * to be at least to the size. * * The @flags argument may be one of the GFP flags defined at * include/linux/gfp.h and described at * :ref:`Documentation/core-api/mm-api.rst <mm-api-gfp-flags>` * * The recommended usage of the @flags is described at * :ref:`Documentation/core-api/memory-allocation.rst <memory_allocation>` * * Below is a brief outline of the most useful GFP flags * * %GFP_KERNEL * Allocate normal kernel ram. May sleep. * * %GFP_NOWAIT * Allocation will not sleep. * * %GFP_ATOMIC * Allocation will not sleep. May use emergency pools. * * %GFP_HIGHUSER * Allocate memory from high memory on behalf of user. * * Also it is possible to set different flags by OR'ing * in one or more of the following additional @flags: * * %__GFP_HIGH * This allocation has high priority and may use emergency pools. * * %__GFP_NOFAIL * Indicate that this allocation is in no way allowed to fail * (think twice before using). * * %__GFP_NORETRY * If memory is not immediately available, * then give up at once. * * %__GFP_NOWARN * If allocation fails, don't issue any warnings. * * %__GFP_RETRY_MAYFAIL * Try really hard to succeed the allocation but fail * eventually. */ static __always_inline void *kmalloc(size_t size, gfp_t flags) { if (__builtin_constant_p(size)) { #ifndef CONFIG_SLOB unsigned int index; #endif if (size > KMALLOC_MAX_CACHE_SIZE) return kmalloc_large(size, flags); #ifndef CONFIG_SLOB index = kmalloc_index(size); if (!index) return ZERO_SIZE_PTR; return kmem_cache_alloc_trace( kmalloc_caches[kmalloc_type(flags)][index], flags, size); #endif } return __kmalloc(size, flags); } static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node) { #ifndef CONFIG_SLOB if (__builtin_constant_p(size) && size <= KMALLOC_MAX_CACHE_SIZE) { unsigned int i = kmalloc_index(size); if (!i) return ZERO_SIZE_PTR; return kmem_cache_alloc_node_trace( kmalloc_caches[kmalloc_type(flags)][i], flags, node, size); } #endif return __kmalloc_node(size, flags, node); } /** * kmalloc_array - allocate memory for an array. * @n: number of elements. * @size: element size. * @flags: the type of memory to allocate (see kmalloc). */ static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags) { size_t bytes; if (unlikely(check_mul_overflow(n, size, &bytes))) return NULL; if (__builtin_constant_p(n) && __builtin_constant_p(size)) return kmalloc(bytes, flags); return __kmalloc(bytes, flags); } /** * kcalloc - allocate memory for an array. The memory is set to zero. * @n: number of elements. * @size: element size. * @flags: the type of memory to allocate (see kmalloc). */ static inline void *kcalloc(size_t n, size_t size, gfp_t flags) { return kmalloc_array(n, size, flags | __GFP_ZERO); } /* * kmalloc_track_caller is a special version of kmalloc that records the * calling function of the routine calling it for slab leak tracking instead * of just the calling function (confusing, eh?). * It's useful when the call to kmalloc comes from a widely-used standard * allocator where we care about the real place the memory allocation * request comes from. */ extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long); #define kmalloc_track_caller(size, flags) \ __kmalloc_track_caller(size, flags, _RET_IP_) static inline void *kmalloc_array_node(size_t n, size_t size, gfp_t flags, int node) { size_t bytes; if (unlikely(check_mul_overflow(n, size, &bytes))) return NULL; if (__builtin_constant_p(n) && __builtin_constant_p(size)) return kmalloc_node(bytes, flags, node); return __kmalloc_node(bytes, flags, node); } static inline void *kcalloc_node(size_t n, size_t size, gfp_t flags, int node) { return kmalloc_array_node(n, size, flags | __GFP_ZERO, node); } #ifdef CONFIG_NUMA extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long); #define kmalloc_node_track_caller(size, flags, node) \ __kmalloc_node_track_caller(size, flags, node, \ _RET_IP_) #else /* CONFIG_NUMA */ #define kmalloc_node_track_caller(size, flags, node) \ kmalloc_track_caller(size, flags) #endif /* CONFIG_NUMA */ /* * Shortcuts */ static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags) { return kmem_cache_alloc(k, flags | __GFP_ZERO); } /** * kzalloc - allocate memory. The memory is set to zero. * @size: how many bytes of memory are required. * @flags: the type of memory to allocate (see kmalloc). */ static inline void *kzalloc(size_t size, gfp_t flags) { return kmalloc(size, flags | __GFP_ZERO); } /** * kzalloc_node - allocate zeroed memory from a particular memory node. * @size: how many bytes of memory are required. * @flags: the type of memory to allocate (see kmalloc). * @node: memory node from which to allocate */ static inline void *kzalloc_node(size_t size, gfp_t flags, int node) { return kmalloc_node(size, flags | __GFP_ZERO, node); } unsigned int kmem_cache_size(struct kmem_cache *s); void __init kmem_cache_init_late(void); #if defined(CONFIG_SMP) && defined(CONFIG_SLAB) int slab_prepare_cpu(unsigned int cpu); int slab_dead_cpu(unsigned int cpu); #else #define slab_prepare_cpu NULL #define slab_dead_cpu NULL #endif #endif /* _LINUX_SLAB_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SIGNAL_H #define _LINUX_SIGNAL_H #include <linux/bug.h> #include <linux/signal_types.h> #include <linux/string.h> struct task_struct; /* for sysctl */ extern int print_fatal_signals; static inline void copy_siginfo(kernel_siginfo_t *to, const kernel_siginfo_t *from) { memcpy(to, from, sizeof(*to)); } static inline void clear_siginfo(kernel_siginfo_t *info) { memset(info, 0, sizeof(*info)); } #define SI_EXPANSION_SIZE (sizeof(struct siginfo) - sizeof(struct kernel_siginfo)) static inline void copy_siginfo_to_external(siginfo_t *to, const kernel_siginfo_t *from) { memcpy(to, from, sizeof(*from)); memset(((char *)to) + sizeof(struct kernel_siginfo), 0, SI_EXPANSION_SIZE); } int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from); int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from); enum siginfo_layout { SIL_KILL, SIL_TIMER, SIL_POLL, SIL_FAULT, SIL_FAULT_MCEERR, SIL_FAULT_BNDERR, SIL_FAULT_PKUERR, SIL_CHLD, SIL_RT, SIL_SYS, }; enum siginfo_layout siginfo_layout(unsigned sig, int si_code); /* * Define some primitives to manipulate sigset_t. */ #ifndef __HAVE_ARCH_SIG_BITOPS #include <linux/bitops.h> /* We don't use <linux/bitops.h> for these because there is no need to be atomic. */ static inline void sigaddset(sigset_t *set, int _sig) { unsigned long sig = _sig - 1; if (_NSIG_WORDS == 1) set->sig[0] |= 1UL << sig; else set->sig[sig / _NSIG_BPW] |= 1UL << (sig % _NSIG_BPW); } static inline void sigdelset(sigset_t *set, int _sig) { unsigned long sig = _sig - 1; if (_NSIG_WORDS == 1) set->sig[0] &= ~(1UL << sig); else set->sig[sig / _NSIG_BPW] &= ~(1UL << (sig % _NSIG_BPW)); } static inline int sigismember(sigset_t *set, int _sig) { unsigned long sig = _sig - 1; if (_NSIG_WORDS == 1) return 1 & (set->sig[0] >> sig); else return 1 & (set->sig[sig / _NSIG_BPW] >> (sig % _NSIG_BPW)); } #endif /* __HAVE_ARCH_SIG_BITOPS */ static inline int sigisemptyset(sigset_t *set) { switch (_NSIG_WORDS) { case 4: return (set->sig[3] | set->sig[2] | set->sig[1] | set->sig[0]) == 0; case 2: return (set->sig[1] | set->sig[0]) == 0; case 1: return set->sig[0] == 0; default: BUILD_BUG(); return 0; } } static inline int sigequalsets(const sigset_t *set1, const sigset_t *set2) { switch (_NSIG_WORDS) { case 4: return (set1->sig[3] == set2->sig[3]) && (set1->sig[2] == set2->sig[2]) && (set1->sig[1] == set2->sig[1]) && (set1->sig[0] == set2->sig[0]); case 2: return (set1->sig[1] == set2->sig[1]) && (set1->sig[0] == set2->sig[0]); case 1: return set1->sig[0] == set2->sig[0]; } return 0; } #define sigmask(sig) (1UL << ((sig) - 1)) #ifndef __HAVE_ARCH_SIG_SETOPS #include <linux/string.h> #define _SIG_SET_BINOP(name, op) \ static inline void name(sigset_t *r, const sigset_t *a, const sigset_t *b) \ { \ unsigned long a0, a1, a2, a3, b0, b1, b2, b3; \ \ switch (_NSIG_WORDS) { \ case 4: \ a3 = a->sig[3]; a2 = a->sig[2]; \ b3 = b->sig[3]; b2 = b->sig[2]; \ r->sig[3] = op(a3, b3); \ r->sig[2] = op(a2, b2); \ fallthrough; \ case 2: \ a1 = a->sig[1]; b1 = b->sig[1]; \ r->sig[1] = op(a1, b1); \ fallthrough; \ case 1: \ a0 = a->sig[0]; b0 = b->sig[0]; \ r->sig[0] = op(a0, b0); \ break; \ default: \ BUILD_BUG(); \ } \ } #define _sig_or(x,y) ((x) | (y)) _SIG_SET_BINOP(sigorsets, _sig_or) #define _sig_and(x,y) ((x) & (y)) _SIG_SET_BINOP(sigandsets, _sig_and) #define _sig_andn(x,y) ((x) & ~(y)) _SIG_SET_BINOP(sigandnsets, _sig_andn) #undef _SIG_SET_BINOP #undef _sig_or #undef _sig_and #undef _sig_andn #define _SIG_SET_OP(name, op) \ static inline void name(sigset_t *set) \ { \ switch (_NSIG_WORDS) { \ case 4: set->sig[3] = op(set->sig[3]); \ set->sig[2] = op(set->sig[2]); \ fallthrough; \ case 2: set->sig[1] = op(set->sig[1]); \ fallthrough; \ case 1: set->sig[0] = op(set->sig[0]); \ break; \ default: \ BUILD_BUG(); \ } \ } #define _sig_not(x) (~(x)) _SIG_SET_OP(signotset, _sig_not) #undef _SIG_SET_OP #undef _sig_not static inline void sigemptyset(sigset_t *set) { switch (_NSIG_WORDS) { default: memset(set, 0, sizeof(sigset_t)); break; case 2: set->sig[1] = 0; fallthrough; case 1: set->sig[0] = 0; break; } } static inline void sigfillset(sigset_t *set) { switch (_NSIG_WORDS) { default: memset(set, -1, sizeof(sigset_t)); break; case 2: set->sig[1] = -1; fallthrough; case 1: set->sig[0] = -1; break; } } /* Some extensions for manipulating the low 32 signals in particular. */ static inline void sigaddsetmask(sigset_t *set, unsigned long mask) { set->sig[0] |= mask; } static inline void sigdelsetmask(sigset_t *set, unsigned long mask) { set->sig[0] &= ~mask; } static inline int sigtestsetmask(sigset_t *set, unsigned long mask) { return (set->sig[0] & mask) != 0; } static inline void siginitset(sigset_t *set, unsigned long mask) { set->sig[0] = mask; switch (_NSIG_WORDS) { default: memset(&set->sig[1], 0, sizeof(long)*(_NSIG_WORDS-1)); break; case 2: set->sig[1] = 0; break; case 1: ; } } static inline void siginitsetinv(sigset_t *set, unsigned long mask) { set->sig[0] = ~mask; switch (_NSIG_WORDS) { default: memset(&set->sig[1], -1, sizeof(long)*(_NSIG_WORDS-1)); break; case 2: set->sig[1] = -1; break; case 1: ; } } #endif /* __HAVE_ARCH_SIG_SETOPS */ static inline void init_sigpending(struct sigpending *sig) { sigemptyset(&sig->signal); INIT_LIST_HEAD(&sig->list); } extern void flush_sigqueue(struct sigpending *queue); /* Test if 'sig' is valid signal. Use this instead of testing _NSIG directly */ static inline int valid_signal(unsigned long sig) { return sig <= _NSIG ? 1 : 0; } struct timespec; struct pt_regs; enum pid_type; extern int next_signal(struct sigpending *pending, sigset_t *mask); extern int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p, enum pid_type type); extern int group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p, enum pid_type type); extern int __group_send_sig_info(int, struct kernel_siginfo *, struct task_struct *); extern int sigprocmask(int, sigset_t *, sigset_t *); extern void set_current_blocked(sigset_t *); extern void __set_current_blocked(const sigset_t *); extern int show_unhandled_signals; extern bool get_signal(struct ksignal *ksig); extern void signal_setup_done(int failed, struct ksignal *ksig, int stepping); extern void exit_signals(struct task_struct *tsk); extern void kernel_sigaction(int, __sighandler_t); #define SIG_KTHREAD ((__force __sighandler_t)2) #define SIG_KTHREAD_KERNEL ((__force __sighandler_t)3) static inline void allow_signal(int sig) { /* * Kernel threads handle their own signals. Let the signal code * know it'll be handled, so that they don't get converted to * SIGKILL or just silently dropped. */ kernel_sigaction(sig, SIG_KTHREAD); } static inline void allow_kernel_signal(int sig) { /* * Kernel threads handle their own signals. Let the signal code * know signals sent by the kernel will be handled, so that they * don't get silently dropped. */ kernel_sigaction(sig, SIG_KTHREAD_KERNEL); } static inline void disallow_signal(int sig) { kernel_sigaction(sig, SIG_IGN); } extern struct kmem_cache *sighand_cachep; extern bool unhandled_signal(struct task_struct *tsk, int sig); /* * In POSIX a signal is sent either to a specific thread (Linux task) * or to the process as a whole (Linux thread group). How the signal * is sent determines whether it's to one thread or the whole group, * which determines which signal mask(s) are involved in blocking it * from being delivered until later. When the signal is delivered, * either it's caught or ignored by a user handler or it has a default * effect that applies to the whole thread group (POSIX process). * * The possible effects an unblocked signal set to SIG_DFL can have are: * ignore - Nothing Happens * terminate - kill the process, i.e. all threads in the group, * similar to exit_group. The group leader (only) reports * WIFSIGNALED status to its parent. * coredump - write a core dump file describing all threads using * the same mm and then kill all those threads * stop - stop all the threads in the group, i.e. TASK_STOPPED state * * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored. * Other signals when not blocked and set to SIG_DFL behaves as follows. * The job control signals also have other special effects. * * +--------------------+------------------+ * | POSIX signal | default action | * +--------------------+------------------+ * | SIGHUP | terminate | * | SIGINT | terminate | * | SIGQUIT | coredump | * | SIGILL | coredump | * | SIGTRAP | coredump | * | SIGABRT/SIGIOT | coredump | * | SIGBUS | coredump | * | SIGFPE | coredump | * | SIGKILL | terminate(+) | * | SIGUSR1 | terminate | * | SIGSEGV | coredump | * | SIGUSR2 | terminate | * | SIGPIPE | terminate | * | SIGALRM | terminate | * | SIGTERM | terminate | * | SIGCHLD | ignore | * | SIGCONT | ignore(*) | * | SIGSTOP | stop(*)(+) | * | SIGTSTP | stop(*) | * | SIGTTIN | stop(*) | * | SIGTTOU | stop(*) | * | SIGURG | ignore | * | SIGXCPU | coredump | * | SIGXFSZ | coredump | * | SIGVTALRM | terminate | * | SIGPROF | terminate | * | SIGPOLL/SIGIO | terminate | * | SIGSYS/SIGUNUSED | coredump | * | SIGSTKFLT | terminate | * | SIGWINCH | ignore | * | SIGPWR | terminate | * | SIGRTMIN-SIGRTMAX | terminate | * +--------------------+------------------+ * | non-POSIX signal | default action | * +--------------------+------------------+ * | SIGEMT | coredump | * +--------------------+------------------+ * * (+) For SIGKILL and SIGSTOP the action is "always", not just "default". * (*) Special job control effects: * When SIGCONT is sent, it resumes the process (all threads in the group) * from TASK_STOPPED state and also clears any pending/queued stop signals * (any of those marked with "stop(*)"). This happens regardless of blocking, * catching, or ignoring SIGCONT. When any stop signal is sent, it clears * any pending/queued SIGCONT signals; this happens regardless of blocking, * catching, or ignored the stop signal, though (except for SIGSTOP) the * default action of stopping the process may happen later or never. */ #ifdef SIGEMT #define SIGEMT_MASK rt_sigmask(SIGEMT) #else #define SIGEMT_MASK 0 #endif #if SIGRTMIN > BITS_PER_LONG #define rt_sigmask(sig) (1ULL << ((sig)-1)) #else #define rt_sigmask(sig) sigmask(sig) #endif #define siginmask(sig, mask) \ ((sig) > 0 && (sig) < SIGRTMIN && (rt_sigmask(sig) & (mask))) #define SIG_KERNEL_ONLY_MASK (\ rt_sigmask(SIGKILL) | rt_sigmask(SIGSTOP)) #define SIG_KERNEL_STOP_MASK (\ rt_sigmask(SIGSTOP) | rt_sigmask(SIGTSTP) | \ rt_sigmask(SIGTTIN) | rt_sigmask(SIGTTOU) ) #define SIG_KERNEL_COREDUMP_MASK (\ rt_sigmask(SIGQUIT) | rt_sigmask(SIGILL) | \ rt_sigmask(SIGTRAP) | rt_sigmask(SIGABRT) | \ rt_sigmask(SIGFPE) | rt_sigmask(SIGSEGV) | \ rt_sigmask(SIGBUS) | rt_sigmask(SIGSYS) | \ rt_sigmask(SIGXCPU) | rt_sigmask(SIGXFSZ) | \ SIGEMT_MASK ) #define SIG_KERNEL_IGNORE_MASK (\ rt_sigmask(SIGCONT) | rt_sigmask(SIGCHLD) | \ rt_sigmask(SIGWINCH) | rt_sigmask(SIGURG) ) #define SIG_SPECIFIC_SICODES_MASK (\ rt_sigmask(SIGILL) | rt_sigmask(SIGFPE) | \ rt_sigmask(SIGSEGV) | rt_sigmask(SIGBUS) | \ rt_sigmask(SIGTRAP) | rt_sigmask(SIGCHLD) | \ rt_sigmask(SIGPOLL) | rt_sigmask(SIGSYS) | \ SIGEMT_MASK ) #define sig_kernel_only(sig) siginmask(sig, SIG_KERNEL_ONLY_MASK) #define sig_kernel_coredump(sig) siginmask(sig, SIG_KERNEL_COREDUMP_MASK) #define sig_kernel_ignore(sig) siginmask(sig, SIG_KERNEL_IGNORE_MASK) #define sig_kernel_stop(sig) siginmask(sig, SIG_KERNEL_STOP_MASK) #define sig_specific_sicodes(sig) siginmask(sig, SIG_SPECIFIC_SICODES_MASK) #define sig_fatal(t, signr) \ (!siginmask(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \ (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL) void signals_init(void); int restore_altstack(const stack_t __user *); int __save_altstack(stack_t __user *, unsigned long); #define unsafe_save_altstack(uss, sp, label) do { \ stack_t __user *__uss = uss; \ struct task_struct *t = current; \ unsafe_put_user((void __user *)t->sas_ss_sp, &__uss->ss_sp, label); \ unsafe_put_user(t->sas_ss_flags, &__uss->ss_flags, label); \ unsafe_put_user(t->sas_ss_size, &__uss->ss_size, label); \ if (t->sas_ss_flags & SS_AUTODISARM) \ sas_ss_reset(t); \ } while (0); #ifdef CONFIG_PROC_FS struct seq_file; extern void render_sigset_t(struct seq_file *, const char *, sigset_t *); #endif #endif /* _LINUX_SIGNAL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_PGTABLE_H #define _LINUX_PGTABLE_H #include <linux/pfn.h> #include <asm/pgtable.h> #ifndef __ASSEMBLY__ #ifdef CONFIG_MMU #include <linux/mm_types.h> #include <linux/bug.h> #include <linux/errno.h> #include <asm-generic/pgtable_uffd.h> #if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \ defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS #error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED #endif /* * On almost all architectures and configurations, 0 can be used as the * upper ceiling to free_pgtables(): on many architectures it has the same * effect as using TASK_SIZE. However, there is one configuration which * must impose a more careful limit, to avoid freeing kernel pgtables. */ #ifndef USER_PGTABLES_CEILING #define USER_PGTABLES_CEILING 0UL #endif /* * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD] * * The pXx_index() functions return the index of the entry in the page * table page which would control the given virtual address * * As these functions may be used by the same code for different levels of * the page table folding, they are always available, regardless of * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0 * because in such cases PTRS_PER_PxD equals 1. */ static inline unsigned long pte_index(unsigned long address) { return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); } #ifndef pmd_index static inline unsigned long pmd_index(unsigned long address) { return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1); } #define pmd_index pmd_index #endif #ifndef pud_index static inline unsigned long pud_index(unsigned long address) { return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1); } #define pud_index pud_index #endif #ifndef pgd_index /* Must be a compile-time constant, so implement it as a macro */ #define pgd_index(a) (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)) #endif #ifndef pte_offset_kernel static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address) { return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address); } #define pte_offset_kernel pte_offset_kernel #endif #if defined(CONFIG_HIGHPTE) #define pte_offset_map(dir, address) \ ((pte_t *)kmap_atomic(pmd_page(*(dir))) + \ pte_index((address))) #define pte_unmap(pte) kunmap_atomic((pte)) #else #define pte_offset_map(dir, address) pte_offset_kernel((dir), (address)) #define pte_unmap(pte) ((void)(pte)) /* NOP */ #endif /* Find an entry in the second-level page table.. */ #ifndef pmd_offset static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address) { return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(address); } #define pmd_offset pmd_offset #endif #ifndef pud_offset static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address) { return (pud_t *)p4d_page_vaddr(*p4d) + pud_index(address); } #define pud_offset pud_offset #endif static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address) { return (pgd + pgd_index(address)); }; /* * a shortcut to get a pgd_t in a given mm */ #ifndef pgd_offset #define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address)) #endif /* * a shortcut which implies the use of the kernel's pgd, instead * of a process's */ #ifndef pgd_offset_k #define pgd_offset_k(address) pgd_offset(&init_mm, (address)) #endif /* * In many cases it is known that a virtual address is mapped at PMD or PTE * level, so instead of traversing all the page table levels, we can get a * pointer to the PMD entry in user or kernel page table or translate a virtual * address to the pointer in the PTE in the kernel page tables with simple * helpers. */ static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va) { return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va); } static inline pmd_t *pmd_off_k(unsigned long va) { return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va); } static inline pte_t *virt_to_kpte(unsigned long vaddr) { pmd_t *pmd = pmd_off_k(vaddr); return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr); } #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address, pte_t *ptep, pte_t entry, int dirty); #endif #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS #ifdef CONFIG_TRANSPARENT_HUGEPAGE extern int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp, pmd_t entry, int dirty); extern int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address, pud_t *pudp, pud_t entry, int dirty); #else static inline int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp, pmd_t entry, int dirty) { BUILD_BUG(); return 0; } static inline int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address, pud_t *pudp, pud_t entry, int dirty) { BUILD_BUG(); return 0; } #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ #endif #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long address, pte_t *ptep) { pte_t pte = *ptep; int r = 1; if (!pte_young(pte)) r = 0; else set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte)); return r; } #endif #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG #ifdef CONFIG_TRANSPARENT_HUGEPAGE static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp) { pmd_t pmd = *pmdp; int r = 1; if (!pmd_young(pmd)) r = 0; else set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd)); return r; } #else static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp) { BUILD_BUG(); return 0; } #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ #endif #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH int ptep_clear_flush_young(struct vm_area_struct *vma, unsigned long address, pte_t *ptep); #endif #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH #ifdef CONFIG_TRANSPARENT_HUGEPAGE extern int pmdp_clear_flush_young(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp); #else /* * Despite relevant to THP only, this API is called from generic rmap code * under PageTransHuge(), hence needs a dummy implementation for !THP */ static inline int pmdp_clear_flush_young(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp) { BUILD_BUG(); return 0; } #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ #endif #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long address, pte_t *ptep) { pte_t pte = *ptep; pte_clear(mm, address, ptep); return pte; } #endif #ifndef __HAVE_ARCH_PTEP_GET static inline pte_t ptep_get(pte_t *ptep) { return READ_ONCE(*ptep); } #endif #ifdef CONFIG_TRANSPARENT_HUGEPAGE #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, unsigned long address, pmd_t *pmdp) { pmd_t pmd = *pmdp; pmd_clear(pmdp); return pmd; } #endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */ #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm, unsigned long address, pud_t *pudp) { pud_t pud = *pudp; pud_clear(pudp); return pud; } #endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */ #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ #ifdef CONFIG_TRANSPARENT_HUGEPAGE #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp, int full) { return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp); } #endif #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm, unsigned long address, pud_t *pudp, int full) { return pudp_huge_get_and_clear(mm, address, pudp); } #endif #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, unsigned long address, pte_t *ptep, int full) { pte_t pte; pte = ptep_get_and_clear(mm, address, ptep); return pte; } #endif /* * If two threads concurrently fault at the same page, the thread that * won the race updates the PTE and its local TLB/Cache. The other thread * gives up, simply does nothing, and continues; on architectures where * software can update TLB, local TLB can be updated here to avoid next page * fault. This function updates TLB only, do nothing with cache or others. * It is the difference with function update_mmu_cache. */ #ifndef __HAVE_ARCH_UPDATE_MMU_TLB static inline void update_mmu_tlb(struct vm_area_struct *vma, unsigned long address, pte_t *ptep) { } #define __HAVE_ARCH_UPDATE_MMU_TLB #endif /* * Some architectures may be able to avoid expensive synchronization * primitives when modifications are made to PTE's which are already * not present, or in the process of an address space destruction. */ #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL static inline void pte_clear_not_present_full(struct mm_struct *mm, unsigned long address, pte_t *ptep, int full) { pte_clear(mm, address, ptep); } #endif #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH extern pte_t ptep_clear_flush(struct vm_area_struct *vma, unsigned long address, pte_t *ptep); #endif #ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp); extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma, unsigned long address, pud_t *pudp); #endif #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT struct mm_struct; static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep) { pte_t old_pte = *ptep; set_pte_at(mm, address, ptep, pte_wrprotect(old_pte)); } #endif /* * On some architectures hardware does not set page access bit when accessing * memory page, it is responsibilty of software setting this bit. It brings * out extra page fault penalty to track page access bit. For optimization page * access bit can be set during all page fault flow on these arches. * To be differentiate with macro pte_mkyoung, this macro is used on platforms * where software maintains page access bit. */ #ifndef pte_sw_mkyoung static inline pte_t pte_sw_mkyoung(pte_t pte) { return pte; } #define pte_sw_mkyoung pte_sw_mkyoung #endif #ifndef pte_savedwrite #define pte_savedwrite pte_write #endif #ifndef pte_mk_savedwrite #define pte_mk_savedwrite pte_mkwrite #endif #ifndef pte_clear_savedwrite #define pte_clear_savedwrite pte_wrprotect #endif #ifndef pmd_savedwrite #define pmd_savedwrite pmd_write #endif #ifndef pmd_mk_savedwrite #define pmd_mk_savedwrite pmd_mkwrite #endif #ifndef pmd_clear_savedwrite #define pmd_clear_savedwrite pmd_wrprotect #endif #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT #ifdef CONFIG_TRANSPARENT_HUGEPAGE static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long address, pmd_t *pmdp) { pmd_t old_pmd = *pmdp; set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd)); } #else static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long address, pmd_t *pmdp) { BUILD_BUG(); } #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ #endif #ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD static inline void pudp_set_wrprotect(struct mm_struct *mm, unsigned long address, pud_t *pudp) { pud_t old_pud = *pudp; set_pud_at(mm, address, pudp, pud_wrprotect(old_pud)); } #else static inline void pudp_set_wrprotect(struct mm_struct *mm, unsigned long address, pud_t *pudp) { BUILD_BUG(); } #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ #endif #ifndef pmdp_collapse_flush #ifdef CONFIG_TRANSPARENT_HUGEPAGE extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp); #else static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp) { BUILD_BUG(); return *pmdp; } #define pmdp_collapse_flush pmdp_collapse_flush #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ #endif #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, pgtable_t pgtable); #endif #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); #endif #ifdef CONFIG_TRANSPARENT_HUGEPAGE /* * This is an implementation of pmdp_establish() that is only suitable for an * architecture that doesn't have hardware dirty/accessed bits. In this case we * can't race with CPU which sets these bits and non-atomic aproach is fine. */ static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp, pmd_t pmd) { pmd_t old_pmd = *pmdp; set_pmd_at(vma->vm_mm, address, pmdp, pmd); return old_pmd; } #endif #ifndef __HAVE_ARCH_PMDP_INVALIDATE extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp); #endif #ifndef __HAVE_ARCH_PTE_SAME static inline int pte_same(pte_t pte_a, pte_t pte_b) { return pte_val(pte_a) == pte_val(pte_b); } #endif #ifndef __HAVE_ARCH_PTE_UNUSED /* * Some architectures provide facilities to virtualization guests * so that they can flag allocated pages as unused. This allows the * host to transparently reclaim unused pages. This function returns * whether the pte's page is unused. */ static inline int pte_unused(pte_t pte) { return 0; } #endif #ifndef pte_access_permitted #define pte_access_permitted(pte, write) \ (pte_present(pte) && (!(write) || pte_write(pte))) #endif #ifndef pmd_access_permitted #define pmd_access_permitted(pmd, write) \ (pmd_present(pmd) && (!(write) || pmd_write(pmd))) #endif #ifndef pud_access_permitted #define pud_access_permitted(pud, write) \ (pud_present(pud) && (!(write) || pud_write(pud))) #endif #ifndef p4d_access_permitted #define p4d_access_permitted(p4d, write) \ (p4d_present(p4d) && (!(write) || p4d_write(p4d))) #endif #ifndef pgd_access_permitted #define pgd_access_permitted(pgd, write) \ (pgd_present(pgd) && (!(write) || pgd_write(pgd))) #endif #ifndef __HAVE_ARCH_PMD_SAME static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b) { return pmd_val(pmd_a) == pmd_val(pmd_b); } static inline int pud_same(pud_t pud_a, pud_t pud_b) { return pud_val(pud_a) == pud_val(pud_b); } #endif #ifndef __HAVE_ARCH_P4D_SAME static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b) { return p4d_val(p4d_a) == p4d_val(p4d_b); } #endif #ifndef __HAVE_ARCH_PGD_SAME static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b) { return pgd_val(pgd_a) == pgd_val(pgd_b); } #endif /* * Use set_p*_safe(), and elide TLB flushing, when confident that *no* * TLB flush will be required as a result of the "set". For example, use * in scenarios where it is known ahead of time that the routine is * setting non-present entries, or re-setting an existing entry to the * same value. Otherwise, use the typical "set" helpers and flush the * TLB. */ #define set_pte_safe(ptep, pte) \ ({ \ WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \ set_pte(ptep, pte); \ }) #define set_pmd_safe(pmdp, pmd) \ ({ \ WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \ set_pmd(pmdp, pmd); \ }) #define set_pud_safe(pudp, pud) \ ({ \ WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \ set_pud(pudp, pud); \ }) #define set_p4d_safe(p4dp, p4d) \ ({ \ WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \ set_p4d(p4dp, p4d); \ }) #define set_pgd_safe(pgdp, pgd) \ ({ \ WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \ set_pgd(pgdp, pgd); \ }) #ifndef __HAVE_ARCH_DO_SWAP_PAGE /* * Some architectures support metadata associated with a page. When a * page is being swapped out, this metadata must be saved so it can be * restored when the page is swapped back in. SPARC M7 and newer * processors support an ADI (Application Data Integrity) tag for the * page as metadata for the page. arch_do_swap_page() can restore this * metadata when a page is swapped back in. */ static inline void arch_do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, pte_t pte, pte_t oldpte) { } #endif #ifndef __HAVE_ARCH_UNMAP_ONE /* * Some architectures support metadata associated with a page. When a * page is being swapped out, this metadata must be saved so it can be * restored when the page is swapped back in. SPARC M7 and newer * processors support an ADI (Application Data Integrity) tag for the * page as metadata for the page. arch_unmap_one() can save this * metadata on a swap-out of a page. */ static inline int arch_unmap_one(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, pte_t orig_pte) { return 0; } #endif /* * Allow architectures to preserve additional metadata associated with * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function * prototypes must be defined in the arch-specific asm/pgtable.h file. */ #ifndef __HAVE_ARCH_PREPARE_TO_SWAP static inline int arch_prepare_to_swap(struct page *page) { return 0; } #endif #ifndef __HAVE_ARCH_SWAP_INVALIDATE static inline void arch_swap_invalidate_page(int type, pgoff_t offset) { } static inline void arch_swap_invalidate_area(int type) { } #endif #ifndef __HAVE_ARCH_SWAP_RESTORE static inline void arch_swap_restore(swp_entry_t entry, struct page *page) { } #endif #ifndef __HAVE_ARCH_PGD_OFFSET_GATE #define pgd_offset_gate(mm, addr) pgd_offset(mm, addr) #endif #ifndef __HAVE_ARCH_MOVE_PTE #define move_pte(pte, prot, old_addr, new_addr) (pte) #endif #ifndef pte_accessible # define pte_accessible(mm, pte) ((void)(pte), 1) #endif #ifndef flush_tlb_fix_spurious_fault #define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address) #endif /* * When walking page tables, get the address of the next boundary, * or the end address of the range if that comes earlier. Although no * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout. */ #define pgd_addr_end(addr, end) \ ({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \ (__boundary - 1 < (end) - 1)? __boundary: (end); \ }) #ifndef p4d_addr_end #define p4d_addr_end(addr, end) \ ({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \ (__boundary - 1 < (end) - 1)? __boundary: (end); \ }) #endif #ifndef pud_addr_end #define pud_addr_end(addr, end) \ ({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \ (__boundary - 1 < (end) - 1)? __boundary: (end); \ }) #endif #ifndef pmd_addr_end #define pmd_addr_end(addr, end) \ ({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \ (__boundary - 1 < (end) - 1)? __boundary: (end); \ }) #endif /* * When walking page tables, we usually want to skip any p?d_none entries; * and any p?d_bad entries - reporting the error before resetting to none. * Do the tests inline, but report and clear the bad entry in mm/memory.c. */ void pgd_clear_bad(pgd_t *); #ifndef __PAGETABLE_P4D_FOLDED void p4d_clear_bad(p4d_t *); #else #define p4d_clear_bad(p4d) do { } while (0) #endif #ifndef __PAGETABLE_PUD_FOLDED void pud_clear_bad(pud_t *); #else #define pud_clear_bad(p4d) do { } while (0) #endif void pmd_clear_bad(pmd_t *); static inline int pgd_none_or_clear_bad(pgd_t *pgd) { if (pgd_none(*pgd)) return 1; if (unlikely(pgd_bad(*pgd))) { pgd_clear_bad(pgd); return 1; } return 0; } static inline int p4d_none_or_clear_bad(p4d_t *p4d) { if (p4d_none(*p4d)) return 1; if (unlikely(p4d_bad(*p4d))) { p4d_clear_bad(p4d); return 1; } return 0; } static inline int pud_none_or_clear_bad(pud_t *pud) { if (pud_none(*pud)) return 1; if (unlikely(pud_bad(*pud))) { pud_clear_bad(pud); return 1; } return 0; } static inline int pmd_none_or_clear_bad(pmd_t *pmd) { if (pmd_none(*pmd)) return 1; if (unlikely(pmd_bad(*pmd))) { pmd_clear_bad(pmd); return 1; } return 0; } static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) { /* * Get the current pte state, but zero it out to make it * non-present, preventing the hardware from asynchronously * updating it. */ return ptep_get_and_clear(vma->vm_mm, addr, ptep); } static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep, pte_t pte) { /* * The pte is non-present, so there's no hardware state to * preserve. */ set_pte_at(vma->vm_mm, addr, ptep, pte); } #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION /* * Start a pte protection read-modify-write transaction, which * protects against asynchronous hardware modifications to the pte. * The intention is not to prevent the hardware from making pte * updates, but to prevent any updates it may make from being lost. * * This does not protect against other software modifications of the * pte; the appropriate pte lock must be held over the transation. * * Note that this interface is intended to be batchable, meaning that * ptep_modify_prot_commit may not actually update the pte, but merely * queue the update to be done at some later time. The update must be * actually committed before the pte lock is released, however. */ static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) { return __ptep_modify_prot_start(vma, addr, ptep); } /* * Commit an update to a pte, leaving any hardware-controlled bits in * the PTE unmodified. */ static inline void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep, pte_t old_pte, pte_t pte) { __ptep_modify_prot_commit(vma, addr, ptep, pte); } #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */ #endif /* CONFIG_MMU */ /* * No-op macros that just return the current protection value. Defined here * because these macros can be used even if CONFIG_MMU is not defined. */ #ifndef pgprot_nx #define pgprot_nx(prot) (prot) #endif #ifndef pgprot_noncached #define pgprot_noncached(prot) (prot) #endif #ifndef pgprot_writecombine #define pgprot_writecombine pgprot_noncached #endif #ifndef pgprot_writethrough #define pgprot_writethrough pgprot_noncached #endif #ifndef pgprot_device #define pgprot_device pgprot_noncached #endif #ifndef pgprot_mhp #define pgprot_mhp(prot) (prot) #endif #ifdef CONFIG_MMU #ifndef pgprot_modify #define pgprot_modify pgprot_modify static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot) { if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot))) newprot = pgprot_noncached(newprot); if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot))) newprot = pgprot_writecombine(newprot); if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot))) newprot = pgprot_device(newprot); return newprot; } #endif #endif /* CONFIG_MMU */ #ifndef pgprot_encrypted #define pgprot_encrypted(prot) (prot) #endif #ifndef pgprot_decrypted #define pgprot_decrypted(prot) (prot) #endif /* * A facility to provide lazy MMU batching. This allows PTE updates and * page invalidations to be delayed until a call to leave lazy MMU mode * is issued. Some architectures may benefit from doing this, and it is * beneficial for both shadow and direct mode hypervisors, which may batch * the PTE updates which happen during this window. Note that using this * interface requires that read hazards be removed from the code. A read * hazard could result in the direct mode hypervisor case, since the actual * write to the page tables may not yet have taken place, so reads though * a raw PTE pointer after it has been modified are not guaranteed to be * up to date. This mode can only be entered and left under the protection of * the page table locks for all page tables which may be modified. In the UP * case, this is required so that preemption is disabled, and in the SMP case, * it must synchronize the delayed page table writes properly on other CPUs. */ #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE #define arch_enter_lazy_mmu_mode() do {} while (0) #define arch_leave_lazy_mmu_mode() do {} while (0) #define arch_flush_lazy_mmu_mode() do {} while (0) #endif /* * A facility to provide batching of the reload of page tables and * other process state with the actual context switch code for * paravirtualized guests. By convention, only one of the batched * update (lazy) modes (CPU, MMU) should be active at any given time, * entry should never be nested, and entry and exits should always be * paired. This is for sanity of maintaining and reasoning about the * kernel code. In this case, the exit (end of the context switch) is * in architecture-specific code, and so doesn't need a generic * definition. */ #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH #define arch_start_context_switch(prev) do {} while (0) #endif #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY #ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) { return pmd; } static inline int pmd_swp_soft_dirty(pmd_t pmd) { return 0; } static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) { return pmd; } #endif #else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */ static inline int pte_soft_dirty(pte_t pte) { return 0; } static inline int pmd_soft_dirty(pmd_t pmd) { return 0; } static inline pte_t pte_mksoft_dirty(pte_t pte) { return pte; } static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) { return pmd; } static inline pte_t pte_clear_soft_dirty(pte_t pte) { return pte; } static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd) { return pmd; } static inline pte_t pte_swp_mksoft_dirty(pte_t pte) { return pte; } static inline int pte_swp_soft_dirty(pte_t pte) { return 0; } static inline pte_t pte_swp_clear_soft_dirty(pte_t pte) { return pte; } static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) { return pmd; } static inline int pmd_swp_soft_dirty(pmd_t pmd) { return 0; } static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) { return pmd; } #endif #ifndef __HAVE_PFNMAP_TRACKING /* * Interfaces that can be used by architecture code to keep track of * memory type of pfn mappings specified by the remap_pfn_range, * vmf_insert_pfn. */ /* * track_pfn_remap is called when a _new_ pfn mapping is being established * by remap_pfn_range() for physical range indicated by pfn and size. */ static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, unsigned long pfn, unsigned long addr, unsigned long size) { return 0; } /* * track_pfn_insert is called when a _new_ single pfn is established * by vmf_insert_pfn(). */ static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, pfn_t pfn) { } /* * track_pfn_copy is called when vma that is covering the pfnmap gets * copied through copy_page_range(). */ static inline int track_pfn_copy(struct vm_area_struct *vma) { return 0; } /* * untrack_pfn is called while unmapping a pfnmap for a region. * untrack can be called for a specific region indicated by pfn and size or * can be for the entire vma (in which case pfn, size are zero). */ static inline void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn, unsigned long size) { } /* * untrack_pfn_moved is called while mremapping a pfnmap for a new region. */ static inline void untrack_pfn_moved(struct vm_area_struct *vma) { } #else extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, unsigned long pfn, unsigned long addr, unsigned long size); extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, pfn_t pfn); extern int track_pfn_copy(struct vm_area_struct *vma); extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn, unsigned long size); extern void untrack_pfn_moved(struct vm_area_struct *vma); #endif #ifdef __HAVE_COLOR_ZERO_PAGE static inline int is_zero_pfn(unsigned long pfn) { extern unsigned long zero_pfn; unsigned long offset_from_zero_pfn = pfn - zero_pfn; return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT); } #define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr)) #else static inline int is_zero_pfn(unsigned long pfn) { extern unsigned long zero_pfn; return pfn == zero_pfn; } static inline unsigned long my_zero_pfn(unsigned long addr) { extern unsigned long zero_pfn; return zero_pfn; } #endif #ifdef CONFIG_MMU #ifndef CONFIG_TRANSPARENT_HUGEPAGE static inline int pmd_trans_huge(pmd_t pmd) { return 0; } #ifndef pmd_write static inline int pmd_write(pmd_t pmd) { BUG(); return 0; } #endif /* pmd_write */ #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ #ifndef pud_write static inline int pud_write(pud_t pud) { BUG(); return 0; } #endif /* pud_write */ #if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) static inline int pmd_devmap(pmd_t pmd) { return 0; } static inline int pud_devmap(pud_t pud) { return 0; } static inline int pgd_devmap(pgd_t pgd) { return 0; } #endif #if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \ (defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)) static inline int pud_trans_huge(pud_t pud) { return 0; } #endif /* See pmd_none_or_trans_huge_or_clear_bad for discussion. */ static inline int pud_none_or_trans_huge_or_dev_or_clear_bad(pud_t *pud) { pud_t pudval = READ_ONCE(*pud); if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval)) return 1; if (unlikely(pud_bad(pudval))) { pud_clear_bad(pud); return 1; } return 0; } /* See pmd_trans_unstable for discussion. */ static inline int pud_trans_unstable(pud_t *pud) { #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) return pud_none_or_trans_huge_or_dev_or_clear_bad(pud); #else return 0; #endif } #ifndef pmd_read_atomic static inline pmd_t pmd_read_atomic(pmd_t *pmdp) { /* * Depend on compiler for an atomic pmd read. NOTE: this is * only going to work, if the pmdval_t isn't larger than * an unsigned long. */ return *pmdp; } #endif #ifndef arch_needs_pgtable_deposit #define arch_needs_pgtable_deposit() (false) #endif /* * This function is meant to be used by sites walking pagetables with * the mmap_lock held in read mode to protect against MADV_DONTNEED and * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd * into a null pmd and the transhuge page fault can convert a null pmd * into an hugepmd or into a regular pmd (if the hugepage allocation * fails). While holding the mmap_lock in read mode the pmd becomes * stable and stops changing under us only if it's not null and not a * transhuge pmd. When those races occurs and this function makes a * difference vs the standard pmd_none_or_clear_bad, the result is * undefined so behaving like if the pmd was none is safe (because it * can return none anyway). The compiler level barrier() is critically * important to compute the two checks atomically on the same pmdval. * * For 32bit kernels with a 64bit large pmd_t this automatically takes * care of reading the pmd atomically to avoid SMP race conditions * against pmd_populate() when the mmap_lock is hold for reading by the * caller (a special atomic read not done by "gcc" as in the generic * version above, is also needed when THP is disabled because the page * fault can populate the pmd from under us). */ static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd) { pmd_t pmdval = pmd_read_atomic(pmd); /* * The barrier will stabilize the pmdval in a register or on * the stack so that it will stop changing under the code. * * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE, * pmd_read_atomic is allowed to return a not atomic pmdval * (for example pointing to an hugepage that has never been * mapped in the pmd). The below checks will only care about * the low part of the pmd with 32bit PAE x86 anyway, with the * exception of pmd_none(). So the important thing is that if * the low part of the pmd is found null, the high part will * be also null or the pmd_none() check below would be * confused. */ #ifdef CONFIG_TRANSPARENT_HUGEPAGE barrier(); #endif /* * !pmd_present() checks for pmd migration entries * * The complete check uses is_pmd_migration_entry() in linux/swapops.h * But using that requires moving current function and pmd_trans_unstable() * to linux/swapops.h to resovle dependency, which is too much code move. * * !pmd_present() is equivalent to is_pmd_migration_entry() currently, * because !pmd_present() pages can only be under migration not swapped * out. * * pmd_none() is preseved for future condition checks on pmd migration * entries and not confusing with this function name, although it is * redundant with !pmd_present(). */ if (pmd_none(pmdval) || pmd_trans_huge(pmdval) || (IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION) && !pmd_present(pmdval))) return 1; if (unlikely(pmd_bad(pmdval))) { pmd_clear_bad(pmd); return 1; } return 0; } /* * This is a noop if Transparent Hugepage Support is not built into * the kernel. Otherwise it is equivalent to * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in * places that already verified the pmd is not none and they want to * walk ptes while holding the mmap sem in read mode (write mode don't * need this). If THP is not enabled, the pmd can't go away under the * code even if MADV_DONTNEED runs, but if THP is enabled we need to * run a pmd_trans_unstable before walking the ptes after * split_huge_pmd returns (because it may have run when the pmd become * null, but then a page fault can map in a THP and not a regular page). */ static inline int pmd_trans_unstable(pmd_t *pmd) { #ifdef CONFIG_TRANSPARENT_HUGEPAGE return pmd_none_or_trans_huge_or_clear_bad(pmd); #else return 0; #endif } #ifndef CONFIG_NUMA_BALANCING /* * Technically a PTE can be PROTNONE even when not doing NUMA balancing but * the only case the kernel cares is for NUMA balancing and is only ever set * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked * _PAGE_PROTNONE so by default, implement the helper as "always no". It * is the responsibility of the caller to distinguish between PROT_NONE * protections and NUMA hinting fault protections. */ static inline int pte_protnone(pte_t pte) { return 0; } static inline int pmd_protnone(pmd_t pmd) { return 0; } #endif /* CONFIG_NUMA_BALANCING */ #endif /* CONFIG_MMU */ #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP #ifndef __PAGETABLE_P4D_FOLDED int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot); int p4d_clear_huge(p4d_t *p4d); #else static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) { return 0; } static inline int p4d_clear_huge(p4d_t *p4d) { return 0; } #endif /* !__PAGETABLE_P4D_FOLDED */ int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot); int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot); int pud_clear_huge(pud_t *pud); int pmd_clear_huge(pmd_t *pmd); int p4d_free_pud_page(p4d_t *p4d, unsigned long addr); int pud_free_pmd_page(pud_t *pud, unsigned long addr); int pmd_free_pte_page(pmd_t *pmd, unsigned long addr); #else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */ static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) { return 0; } static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot) { return 0; } static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot) { return 0; } static inline int p4d_clear_huge(p4d_t *p4d) { return 0; } static inline int pud_clear_huge(pud_t *pud) { return 0; } static inline int pmd_clear_huge(pmd_t *pmd) { return 0; } static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr) { return 0; } static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr) { return 0; } static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr) { return 0; } #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ #ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE #ifdef CONFIG_TRANSPARENT_HUGEPAGE /* * ARCHes with special requirements for evicting THP backing TLB entries can * implement this. Otherwise also, it can help optimize normal TLB flush in * THP regime. Stock flush_tlb_range() typically has optimization to nuke the * entire TLB if flush span is greater than a threshold, which will * likely be true for a single huge page. Thus a single THP flush will * invalidate the entire TLB which is not desirable. * e.g. see arch/arc: flush_pmd_tlb_range */ #define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) #define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) #else #define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG() #define flush_pud_tlb_range(vma, addr, end) BUILD_BUG() #endif #endif struct file; int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn, unsigned long size, pgprot_t *vma_prot); #ifndef CONFIG_X86_ESPFIX64 static inline void init_espfix_bsp(void) { } #endif extern void __init pgtable_cache_init(void); #ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot) { return true; } static inline bool arch_has_pfn_modify_check(void) { return false; } #endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */ /* * Architecture PAGE_KERNEL_* fallbacks * * Some architectures don't define certain PAGE_KERNEL_* flags. This is either * because they really don't support them, or the port needs to be updated to * reflect the required functionality. Below are a set of relatively safe * fallbacks, as best effort, which we can count on in lieu of the architectures * not defining them on their own yet. */ #ifndef PAGE_KERNEL_RO # define PAGE_KERNEL_RO PAGE_KERNEL #endif #ifndef PAGE_KERNEL_EXEC # define PAGE_KERNEL_EXEC PAGE_KERNEL #endif /* * Page Table Modification bits for pgtbl_mod_mask. * * These are used by the p?d_alloc_track*() set of functions an in the generic * vmalloc/ioremap code to track at which page-table levels entries have been * modified. Based on that the code can better decide when vmalloc and ioremap * mapping changes need to be synchronized to other page-tables in the system. */ #define __PGTBL_PGD_MODIFIED 0 #define __PGTBL_P4D_MODIFIED 1 #define __PGTBL_PUD_MODIFIED 2 #define __PGTBL_PMD_MODIFIED 3 #define __PGTBL_PTE_MODIFIED 4 #define PGTBL_PGD_MODIFIED BIT(__PGTBL_PGD_MODIFIED) #define PGTBL_P4D_MODIFIED BIT(__PGTBL_P4D_MODIFIED) #define PGTBL_PUD_MODIFIED BIT(__PGTBL_PUD_MODIFIED) #define PGTBL_PMD_MODIFIED BIT(__PGTBL_PMD_MODIFIED) #define PGTBL_PTE_MODIFIED BIT(__PGTBL_PTE_MODIFIED) /* Page-Table Modification Mask */ typedef unsigned int pgtbl_mod_mask; #endif /* !__ASSEMBLY__ */ #if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT) #ifdef CONFIG_PHYS_ADDR_T_64BIT /* * ZSMALLOC needs to know the highest PFN on 32-bit architectures * with physical address space extension, but falls back to * BITS_PER_LONG otherwise. */ #error Missing MAX_POSSIBLE_PHYSMEM_BITS definition #else #define MAX_POSSIBLE_PHYSMEM_BITS 32 #endif #endif #ifndef has_transparent_hugepage #ifdef CONFIG_TRANSPARENT_HUGEPAGE #define has_transparent_hugepage() 1 #else #define has_transparent_hugepage() 0 #endif #endif /* * On some architectures it depends on the mm if the p4d/pud or pmd * layer of the page table hierarchy is folded or not. */ #ifndef mm_p4d_folded #define mm_p4d_folded(mm) __is_defined(__PAGETABLE_P4D_FOLDED) #endif #ifndef mm_pud_folded #define mm_pud_folded(mm) __is_defined(__PAGETABLE_PUD_FOLDED) #endif #ifndef mm_pmd_folded #define mm_pmd_folded(mm) __is_defined(__PAGETABLE_PMD_FOLDED) #endif #ifndef p4d_offset_lockless #define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address) #endif #ifndef pud_offset_lockless #define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address) #endif #ifndef pmd_offset_lockless #define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address) #endif /* * p?d_leaf() - true if this entry is a final mapping to a physical address. * This differs from p?d_huge() by the fact that they are always available (if * the architecture supports large pages at the appropriate level) even * if CONFIG_HUGETLB_PAGE is not defined. * Only meaningful when called on a valid entry. */ #ifndef pgd_leaf #define pgd_leaf(x) 0 #endif #ifndef p4d_leaf #define p4d_leaf(x) 0 #endif #ifndef pud_leaf #define pud_leaf(x) 0 #endif #ifndef pmd_leaf #define pmd_leaf(x) 0 #endif #endif /* _LINUX_PGTABLE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 /* * Performance events: * * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de> * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra * * Data type definitions, declarations, prototypes. * * Started by: Thomas Gleixner and Ingo Molnar * * For licencing details see kernel-base/COPYING */ #ifndef _LINUX_PERF_EVENT_H #define _LINUX_PERF_EVENT_H #include <uapi/linux/perf_event.h> #include <uapi/linux/bpf_perf_event.h> /* * Kernel-internal data types and definitions: */ #ifdef CONFIG_PERF_EVENTS # include <asm/perf_event.h> # include <asm/local64.h> #endif struct perf_guest_info_callbacks { int (*is_in_guest)(void); int (*is_user_mode)(void); unsigned long (*get_guest_ip)(void); void (*handle_intel_pt_intr)(void); }; #ifdef CONFIG_HAVE_HW_BREAKPOINT #include <asm/hw_breakpoint.h> #endif #include <linux/list.h> #include <linux/mutex.h> #include <linux/rculist.h> #include <linux/rcupdate.h> #include <linux/spinlock.h> #include <linux/hrtimer.h> #include <linux/fs.h> #include <linux/pid_namespace.h> #include <linux/workqueue.h> #include <linux/ftrace.h> #include <linux/cpu.h> #include <linux/irq_work.h> #include <linux/static_key.h> #include <linux/jump_label_ratelimit.h> #include <linux/atomic.h> #include <linux/sysfs.h> #include <linux/perf_regs.h> #include <linux/cgroup.h> #include <linux/refcount.h> #include <linux/security.h> #include <asm/local.h> struct perf_callchain_entry { __u64 nr; __u64 ip[]; /* /proc/sys/kernel/perf_event_max_stack */ }; struct perf_callchain_entry_ctx { struct perf_callchain_entry *entry; u32 max_stack; u32 nr; short contexts; bool contexts_maxed; }; typedef unsigned long (*perf_copy_f)(void *dst, const void *src, unsigned long off, unsigned long len); struct perf_raw_frag { union { struct perf_raw_frag *next; unsigned long pad; }; perf_copy_f copy; void *data; u32 size; } __packed; struct perf_raw_record { struct perf_raw_frag frag; u32 size; }; /* * branch stack layout: * nr: number of taken branches stored in entries[] * hw_idx: The low level index of raw branch records * for the most recent branch. * -1ULL means invalid/unknown. * * Note that nr can vary from sample to sample * branches (to, from) are stored from most recent * to least recent, i.e., entries[0] contains the most * recent branch. * The entries[] is an abstraction of raw branch records, * which may not be stored in age order in HW, e.g. Intel LBR. * The hw_idx is to expose the low level index of raw * branch record for the most recent branch aka entries[0]. * The hw_idx index is between -1 (unknown) and max depth, * which can be retrieved in /sys/devices/cpu/caps/branches. * For the architectures whose raw branch records are * already stored in age order, the hw_idx should be 0. */ struct perf_branch_stack { __u64 nr; __u64 hw_idx; struct perf_branch_entry entries[]; }; struct task_struct; /* * extra PMU register associated with an event */ struct hw_perf_event_extra { u64 config; /* register value */ unsigned int reg; /* register address or index */ int alloc; /* extra register already allocated */ int idx; /* index in shared_regs->regs[] */ }; /** * struct hw_perf_event - performance event hardware details: */ struct hw_perf_event { #ifdef CONFIG_PERF_EVENTS union { struct { /* hardware */ u64 config; u64 last_tag; unsigned long config_base; unsigned long event_base; int event_base_rdpmc; int idx; int last_cpu; int flags; struct hw_perf_event_extra extra_reg; struct hw_perf_event_extra branch_reg; }; struct { /* software */ struct hrtimer hrtimer; }; struct { /* tracepoint */ /* for tp_event->class */ struct list_head tp_list; }; struct { /* amd_power */ u64 pwr_acc; u64 ptsc; }; #ifdef CONFIG_HAVE_HW_BREAKPOINT struct { /* breakpoint */ /* * Crufty hack to avoid the chicken and egg * problem hw_breakpoint has with context * creation and event initalization. */ struct arch_hw_breakpoint info; struct list_head bp_list; }; #endif struct { /* amd_iommu */ u8 iommu_bank; u8 iommu_cntr; u16 padding; u64 conf; u64 conf1; }; }; /* * If the event is a per task event, this will point to the task in * question. See the comment in perf_event_alloc(). */ struct task_struct *target; /* * PMU would store hardware filter configuration * here. */ void *addr_filters; /* Last sync'ed generation of filters */ unsigned long addr_filters_gen; /* * hw_perf_event::state flags; used to track the PERF_EF_* state. */ #define PERF_HES_STOPPED 0x01 /* the counter is stopped */ #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ #define PERF_HES_ARCH 0x04 int state; /* * The last observed hardware counter value, updated with a * local64_cmpxchg() such that pmu::read() can be called nested. */ local64_t prev_count; /* * The period to start the next sample with. */ u64 sample_period; union { struct { /* Sampling */ /* * The period we started this sample with. */ u64 last_period; /* * However much is left of the current period; * note that this is a full 64bit value and * allows for generation of periods longer * than hardware might allow. */ local64_t period_left; }; struct { /* Topdown events counting for context switch */ u64 saved_metric; u64 saved_slots; }; }; /* * State for throttling the event, see __perf_event_overflow() and * perf_adjust_freq_unthr_context(). */ u64 interrupts_seq; u64 interrupts; /* * State for freq target events, see __perf_event_overflow() and * perf_adjust_freq_unthr_context(). */ u64 freq_time_stamp; u64 freq_count_stamp; #endif }; struct perf_event; /* * Common implementation detail of pmu::{start,commit,cancel}_txn */ #define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */ #define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */ /** * pmu::capabilities flags */ #define PERF_PMU_CAP_NO_INTERRUPT 0x01 #define PERF_PMU_CAP_NO_NMI 0x02 #define PERF_PMU_CAP_AUX_NO_SG 0x04 #define PERF_PMU_CAP_EXTENDED_REGS 0x08 #define PERF_PMU_CAP_EXCLUSIVE 0x10 #define PERF_PMU_CAP_ITRACE 0x20 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x40 #define PERF_PMU_CAP_NO_EXCLUDE 0x80 #define PERF_PMU_CAP_AUX_OUTPUT 0x100 struct perf_output_handle; /** * struct pmu - generic performance monitoring unit */ struct pmu { struct list_head entry; struct module *module; struct device *dev; const struct attribute_group **attr_groups; const struct attribute_group **attr_update; const char *name; int type; /* * various common per-pmu feature flags */ int capabilities; int __percpu *pmu_disable_count; struct perf_cpu_context __percpu *pmu_cpu_context; atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */ int task_ctx_nr; int hrtimer_interval_ms; /* number of address filters this PMU can do */ unsigned int nr_addr_filters; /* * Fully disable/enable this PMU, can be used to protect from the PMI * as well as for lazy/batch writing of the MSRs. */ void (*pmu_enable) (struct pmu *pmu); /* optional */ void (*pmu_disable) (struct pmu *pmu); /* optional */ /* * Try and initialize the event for this PMU. * * Returns: * -ENOENT -- @event is not for this PMU * * -ENODEV -- @event is for this PMU but PMU not present * -EBUSY -- @event is for this PMU but PMU temporarily unavailable * -EINVAL -- @event is for this PMU but @event is not valid * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported * -EACCES -- @event is for this PMU, @event is valid, but no privileges * * 0 -- @event is for this PMU and valid * * Other error return values are allowed. */ int (*event_init) (struct perf_event *event); /* * Notification that the event was mapped or unmapped. Called * in the context of the mapping task. */ void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ /* * Flags for ->add()/->del()/ ->start()/->stop(). There are * matching hw_perf_event::state flags. */ #define PERF_EF_START 0x01 /* start the counter when adding */ #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ /* * Adds/Removes a counter to/from the PMU, can be done inside a * transaction, see the ->*_txn() methods. * * The add/del callbacks will reserve all hardware resources required * to service the event, this includes any counter constraint * scheduling etc. * * Called with IRQs disabled and the PMU disabled on the CPU the event * is on. * * ->add() called without PERF_EF_START should result in the same state * as ->add() followed by ->stop(). * * ->del() must always PERF_EF_UPDATE stop an event. If it calls * ->stop() that must deal with already being stopped without * PERF_EF_UPDATE. */ int (*add) (struct perf_event *event, int flags); void (*del) (struct perf_event *event, int flags); /* * Starts/Stops a counter present on the PMU. * * The PMI handler should stop the counter when perf_event_overflow() * returns !0. ->start() will be used to continue. * * Also used to change the sample period. * * Called with IRQs disabled and the PMU disabled on the CPU the event * is on -- will be called from NMI context with the PMU generates * NMIs. * * ->stop() with PERF_EF_UPDATE will read the counter and update * period/count values like ->read() would. * * ->start() with PERF_EF_RELOAD will reprogram the counter * value, must be preceded by a ->stop() with PERF_EF_UPDATE. */ void (*start) (struct perf_event *event, int flags); void (*stop) (struct perf_event *event, int flags); /* * Updates the counter value of the event. * * For sampling capable PMUs this will also update the software period * hw_perf_event::period_left field. */ void (*read) (struct perf_event *event); /* * Group events scheduling is treated as a transaction, add * group events as a whole and perform one schedulability test. * If the test fails, roll back the whole group * * Start the transaction, after this ->add() doesn't need to * do schedulability tests. * * Optional. */ void (*start_txn) (struct pmu *pmu, unsigned int txn_flags); /* * If ->start_txn() disabled the ->add() schedulability test * then ->commit_txn() is required to perform one. On success * the transaction is closed. On error the transaction is kept * open until ->cancel_txn() is called. * * Optional. */ int (*commit_txn) (struct pmu *pmu); /* * Will cancel the transaction, assumes ->del() is called * for each successful ->add() during the transaction. * * Optional. */ void (*cancel_txn) (struct pmu *pmu); /* * Will return the value for perf_event_mmap_page::index for this event, * if no implementation is provided it will default to: event->hw.idx + 1. */ int (*event_idx) (struct perf_event *event); /*optional */ /* * context-switches callback */ void (*sched_task) (struct perf_event_context *ctx, bool sched_in); /* * Kmem cache of PMU specific data */ struct kmem_cache *task_ctx_cache; /* * PMU specific parts of task perf event context (i.e. ctx->task_ctx_data) * can be synchronized using this function. See Intel LBR callstack support * implementation and Perf core context switch handling callbacks for usage * examples. */ void (*swap_task_ctx) (struct perf_event_context *prev, struct perf_event_context *next); /* optional */ /* * Set up pmu-private data structures for an AUX area */ void *(*setup_aux) (struct perf_event *event, void **pages, int nr_pages, bool overwrite); /* optional */ /* * Free pmu-private AUX data structures */ void (*free_aux) (void *aux); /* optional */ /* * Take a snapshot of the AUX buffer without touching the event * state, so that preempting ->start()/->stop() callbacks does * not interfere with their logic. Called in PMI context. * * Returns the size of AUX data copied to the output handle. * * Optional. */ long (*snapshot_aux) (struct perf_event *event, struct perf_output_handle *handle, unsigned long size); /* * Validate address range filters: make sure the HW supports the * requested configuration and number of filters; return 0 if the * supplied filters are valid, -errno otherwise. * * Runs in the context of the ioctl()ing process and is not serialized * with the rest of the PMU callbacks. */ int (*addr_filters_validate) (struct list_head *filters); /* optional */ /* * Synchronize address range filter configuration: * translate hw-agnostic filters into hardware configuration in * event::hw::addr_filters. * * Runs as a part of filter sync sequence that is done in ->start() * callback by calling perf_event_addr_filters_sync(). * * May (and should) traverse event::addr_filters::list, for which its * caller provides necessary serialization. */ void (*addr_filters_sync) (struct perf_event *event); /* optional */ /* * Check if event can be used for aux_output purposes for * events of this PMU. * * Runs from perf_event_open(). Should return 0 for "no match" * or non-zero for "match". */ int (*aux_output_match) (struct perf_event *event); /* optional */ /* * Filter events for PMU-specific reasons. */ int (*filter_match) (struct perf_event *event); /* optional */ /* * Check period value for PERF_EVENT_IOC_PERIOD ioctl. */ int (*check_period) (struct perf_event *event, u64 value); /* optional */ }; enum perf_addr_filter_action_t { PERF_ADDR_FILTER_ACTION_STOP = 0, PERF_ADDR_FILTER_ACTION_START, PERF_ADDR_FILTER_ACTION_FILTER, }; /** * struct perf_addr_filter - address range filter definition * @entry: event's filter list linkage * @path: object file's path for file-based filters * @offset: filter range offset * @size: filter range size (size==0 means single address trigger) * @action: filter/start/stop * * This is a hardware-agnostic filter configuration as specified by the user. */ struct perf_addr_filter { struct list_head entry; struct path path; unsigned long offset; unsigned long size; enum perf_addr_filter_action_t action; }; /** * struct perf_addr_filters_head - container for address range filters * @list: list of filters for this event * @lock: spinlock that serializes accesses to the @list and event's * (and its children's) filter generations. * @nr_file_filters: number of file-based filters * * A child event will use parent's @list (and therefore @lock), so they are * bundled together; see perf_event_addr_filters(). */ struct perf_addr_filters_head { struct list_head list; raw_spinlock_t lock; unsigned int nr_file_filters; }; struct perf_addr_filter_range { unsigned long start; unsigned long size; }; /** * enum perf_event_state - the states of an event: */ enum perf_event_state { PERF_EVENT_STATE_DEAD = -4, PERF_EVENT_STATE_EXIT = -3, PERF_EVENT_STATE_ERROR = -2, PERF_EVENT_STATE_OFF = -1, PERF_EVENT_STATE_INACTIVE = 0, PERF_EVENT_STATE_ACTIVE = 1, }; struct file; struct perf_sample_data; typedef void (*perf_overflow_handler_t)(struct perf_event *, struct perf_sample_data *, struct pt_regs *regs); /* * Event capabilities. For event_caps and groups caps. * * PERF_EV_CAP_SOFTWARE: Is a software event. * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read * from any CPU in the package where it is active. * PERF_EV_CAP_SIBLING: An event with this flag must be a group sibling and * cannot be a group leader. If an event with this flag is detached from the * group it is scheduled out and moved into an unrecoverable ERROR state. */ #define PERF_EV_CAP_SOFTWARE BIT(0) #define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1) #define PERF_EV_CAP_SIBLING BIT(2) #define SWEVENT_HLIST_BITS 8 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) struct swevent_hlist { struct hlist_head heads[SWEVENT_HLIST_SIZE]; struct rcu_head rcu_head; }; #define PERF_ATTACH_CONTEXT 0x01 #define PERF_ATTACH_GROUP 0x02 #define PERF_ATTACH_TASK 0x04 #define PERF_ATTACH_TASK_DATA 0x08 #define PERF_ATTACH_ITRACE 0x10 #define PERF_ATTACH_SCHED_CB 0x20 struct perf_cgroup; struct perf_buffer; struct pmu_event_list { raw_spinlock_t lock; struct list_head list; }; #define for_each_sibling_event(sibling, event) \ if ((event)->group_leader == (event)) \ list_for_each_entry((sibling), &(event)->sibling_list, sibling_list) /** * struct perf_event - performance event kernel representation: */ struct perf_event { #ifdef CONFIG_PERF_EVENTS /* * entry onto perf_event_context::event_list; * modifications require ctx->lock * RCU safe iterations. */ struct list_head event_entry; /* * Locked for modification by both ctx->mutex and ctx->lock; holding * either sufficies for read. */ struct list_head sibling_list; struct list_head active_list; /* * Node on the pinned or flexible tree located at the event context; */ struct rb_node group_node; u64 group_index; /* * We need storage to track the entries in perf_pmu_migrate_context; we * cannot use the event_entry because of RCU and we want to keep the * group in tact which avoids us using the other two entries. */ struct list_head migrate_entry; struct hlist_node hlist_entry; struct list_head active_entry; int nr_siblings; /* Not serialized. Only written during event initialization. */ int event_caps; /* The cumulative AND of all event_caps for events in this group. */ int group_caps; struct perf_event *group_leader; struct pmu *pmu; void *pmu_private; enum perf_event_state state; unsigned int attach_state; local64_t count; atomic64_t child_count; /* * These are the total time in nanoseconds that the event * has been enabled (i.e. eligible to run, and the task has * been scheduled in, if this is a per-task event) * and running (scheduled onto the CPU), respectively. */ u64 total_time_enabled; u64 total_time_running; u64 tstamp; /* * timestamp shadows the actual context timing but it can * be safely used in NMI interrupt context. It reflects the * context time as it was when the event was last scheduled in, * or when ctx_sched_in failed to schedule the event because we * run out of PMC. * * ctx_time already accounts for ctx->timestamp. Therefore to * compute ctx_time for a sample, simply add perf_clock(). */ u64 shadow_ctx_time; struct perf_event_attr attr; u16 header_size; u16 id_header_size; u16 read_size; struct hw_perf_event hw; struct perf_event_context *ctx; atomic_long_t refcount; /* * These accumulate total time (in nanoseconds) that children * events have been enabled and running, respectively. */ atomic64_t child_total_time_enabled; atomic64_t child_total_time_running; /* * Protect attach/detach and child_list: */ struct mutex child_mutex; struct list_head child_list; struct perf_event *parent; int oncpu; int cpu; struct list_head owner_entry; struct task_struct *owner; /* mmap bits */ struct mutex mmap_mutex; atomic_t mmap_count; struct perf_buffer *rb; struct list_head rb_entry; unsigned long rcu_batches; int rcu_pending; /* poll related */ wait_queue_head_t waitq; struct fasync_struct *fasync; /* delayed work for NMIs and such */ int pending_wakeup; int pending_kill; int pending_disable; struct irq_work pending; atomic_t event_limit; /* address range filters */ struct perf_addr_filters_head addr_filters; /* vma address array for file-based filders */ struct perf_addr_filter_range *addr_filter_ranges; unsigned long addr_filters_gen; /* for aux_output events */ struct perf_event *aux_event; void (*destroy)(struct perf_event *); struct rcu_head rcu_head; struct pid_namespace *ns; u64 id; u64 (*clock)(void); perf_overflow_handler_t overflow_handler; void *overflow_handler_context; #ifdef CONFIG_BPF_SYSCALL perf_overflow_handler_t orig_overflow_handler; struct bpf_prog *prog; #endif #ifdef CONFIG_EVENT_TRACING struct trace_event_call *tp_event; struct event_filter *filter; #ifdef CONFIG_FUNCTION_TRACER struct ftrace_ops ftrace_ops; #endif #endif #ifdef CONFIG_CGROUP_PERF struct perf_cgroup *cgrp; /* cgroup event is attach to */ #endif #ifdef CONFIG_SECURITY void *security; #endif struct list_head sb_list; #endif /* CONFIG_PERF_EVENTS */ }; struct perf_event_groups { struct rb_root tree; u64 index; }; /** * struct perf_event_context - event context structure * * Used as a container for task events and CPU events as well: */ struct perf_event_context { struct pmu *pmu; /* * Protect the states of the events in the list, * nr_active, and the list: */ raw_spinlock_t lock; /* * Protect the list of events. Locking either mutex or lock * is sufficient to ensure the list doesn't change; to change * the list you need to lock both the mutex and the spinlock. */ struct mutex mutex; struct list_head active_ctx_list; struct perf_event_groups pinned_groups; struct perf_event_groups flexible_groups; struct list_head event_list; struct list_head pinned_active; struct list_head flexible_active; int nr_events; int nr_active; int is_active; int nr_stat; int nr_freq; int rotate_disable; /* * Set when nr_events != nr_active, except tolerant to events not * necessary to be active due to scheduling constraints, such as cgroups. */ int rotate_necessary; refcount_t refcount; struct task_struct *task; /* * Context clock, runs when context enabled. */ u64 time; u64 timestamp; /* * These fields let us detect when two contexts have both * been cloned (inherited) from a common ancestor. */ struct perf_event_context *parent_ctx; u64 parent_gen; u64 generation; int pin_count; #ifdef CONFIG_CGROUP_PERF int nr_cgroups; /* cgroup evts */ #endif void *task_ctx_data; /* pmu specific data */ struct rcu_head rcu_head; }; /* * Number of contexts where an event can trigger: * task, softirq, hardirq, nmi. */ #define PERF_NR_CONTEXTS 4 /** * struct perf_event_cpu_context - per cpu event context structure */ struct perf_cpu_context { struct perf_event_context ctx; struct perf_event_context *task_ctx; int active_oncpu; int exclusive; raw_spinlock_t hrtimer_lock; struct hrtimer hrtimer; ktime_t hrtimer_interval; unsigned int hrtimer_active; #ifdef CONFIG_CGROUP_PERF struct perf_cgroup *cgrp; struct list_head cgrp_cpuctx_entry; #endif struct list_head sched_cb_entry; int sched_cb_usage; int online; /* * Per-CPU storage for iterators used in visit_groups_merge. The default * storage is of size 2 to hold the CPU and any CPU event iterators. */ int heap_size; struct perf_event **heap; struct perf_event *heap_default[2]; }; struct perf_output_handle { struct perf_event *event; struct perf_buffer *rb; unsigned long wakeup; unsigned long size; u64 aux_flags; union { void *addr; unsigned long head; }; int page; }; struct bpf_perf_event_data_kern { bpf_user_pt_regs_t *regs; struct perf_sample_data *data; struct perf_event *event; }; #ifdef CONFIG_CGROUP_PERF /* * perf_cgroup_info keeps track of time_enabled for a cgroup. * This is a per-cpu dynamically allocated data structure. */ struct perf_cgroup_info { u64 time; u64 timestamp; }; struct perf_cgroup { struct cgroup_subsys_state css; struct perf_cgroup_info __percpu *info; }; /* * Must ensure cgroup is pinned (css_get) before calling * this function. In other words, we cannot call this function * if there is no cgroup event for the current CPU context. */ static inline struct perf_cgroup * perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx) { return container_of(task_css_check(task, perf_event_cgrp_id, ctx ? lockdep_is_held(&ctx->lock) : true), struct perf_cgroup, css); } #endif /* CONFIG_CGROUP_PERF */ #ifdef CONFIG_PERF_EVENTS extern void *perf_aux_output_begin(struct perf_output_handle *handle, struct perf_event *event); extern void perf_aux_output_end(struct perf_output_handle *handle, unsigned long size); extern int perf_aux_output_skip(struct perf_output_handle *handle, unsigned long size); extern void *perf_get_aux(struct perf_output_handle *handle); extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags); extern void perf_event_itrace_started(struct perf_event *event); extern int perf_pmu_register(struct pmu *pmu, const char *name, int type); extern void perf_pmu_unregister(struct pmu *pmu); extern int perf_num_counters(void); extern const char *perf_pmu_name(void); extern void __perf_event_task_sched_in(struct task_struct *prev, struct task_struct *task); extern void __perf_event_task_sched_out(struct task_struct *prev, struct task_struct *next); extern int perf_event_init_task(struct task_struct *child); extern void perf_event_exit_task(struct task_struct *child); extern void perf_event_free_task(struct task_struct *task); extern void perf_event_delayed_put(struct task_struct *task); extern struct file *perf_event_get(unsigned int fd); extern const struct perf_event *perf_get_event(struct file *file); extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event); extern void perf_event_print_debug(void); extern void perf_pmu_disable(struct pmu *pmu); extern void perf_pmu_enable(struct pmu *pmu); extern void perf_sched_cb_dec(struct pmu *pmu); extern void perf_sched_cb_inc(struct pmu *pmu); extern int perf_event_task_disable(void); extern int perf_event_task_enable(void); extern void perf_pmu_resched(struct pmu *pmu); extern int perf_event_refresh(struct perf_event *event, int refresh); extern void perf_event_update_userpage(struct perf_event *event); extern int perf_event_release_kernel(struct perf_event *event); extern struct perf_event * perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, struct task_struct *task, perf_overflow_handler_t callback, void *context); extern void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu); int perf_event_read_local(struct perf_event *event, u64 *value, u64 *enabled, u64 *running); extern u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running); struct perf_sample_data { /* * Fields set by perf_sample_data_init(), group so as to * minimize the cachelines touched. */ u64 addr; struct perf_raw_record *raw; struct perf_branch_stack *br_stack; u64 period; u64 weight; u64 txn; union perf_mem_data_src data_src; /* * The other fields, optionally {set,used} by * perf_{prepare,output}_sample(). */ u64 type; u64 ip; struct { u32 pid; u32 tid; } tid_entry; u64 time; u64 id; u64 stream_id; struct { u32 cpu; u32 reserved; } cpu_entry; struct perf_callchain_entry *callchain; u64 aux_size; struct perf_regs regs_user; struct perf_regs regs_intr; u64 stack_user_size; u64 phys_addr; u64 cgroup; } ____cacheline_aligned; /* default value for data source */ #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\ PERF_MEM_S(LVL, NA) |\ PERF_MEM_S(SNOOP, NA) |\ PERF_MEM_S(LOCK, NA) |\ PERF_MEM_S(TLB, NA)) static inline void perf_sample_data_init(struct perf_sample_data *data, u64 addr, u64 period) { /* remaining struct members initialized in perf_prepare_sample() */ data->addr = addr; data->raw = NULL; data->br_stack = NULL; data->period = period; data->weight = 0; data->data_src.val = PERF_MEM_NA; data->txn = 0; } extern void perf_output_sample(struct perf_output_handle *handle, struct perf_event_header *header, struct perf_sample_data *data, struct perf_event *event); extern void perf_prepare_sample(struct perf_event_header *header, struct perf_sample_data *data, struct perf_event *event, struct pt_regs *regs); extern int perf_event_overflow(struct perf_event *event, struct perf_sample_data *data, struct pt_regs *regs); extern void perf_event_output_forward(struct perf_event *event, struct perf_sample_data *data, struct pt_regs *regs); extern void perf_event_output_backward(struct perf_event *event, struct perf_sample_data *data, struct pt_regs *regs); extern int perf_event_output(struct perf_event *event, struct perf_sample_data *data, struct pt_regs *regs); static inline bool is_default_overflow_handler(struct perf_event *event) { if (likely(event->overflow_handler == perf_event_output_forward)) return true; if (unlikely(event->overflow_handler == perf_event_output_backward)) return true; return false; } extern void perf_event_header__init_id(struct perf_event_header *header, struct perf_sample_data *data, struct perf_event *event); extern void perf_event__output_id_sample(struct perf_event *event, struct perf_output_handle *handle, struct perf_sample_data *sample); extern void perf_log_lost_samples(struct perf_event *event, u64 lost); static inline bool event_has_any_exclude_flag(struct perf_event *event) { struct perf_event_attr *attr = &event->attr; return attr->exclude_idle || attr->exclude_user || attr->exclude_kernel || attr->exclude_hv || attr->exclude_guest || attr->exclude_host; } static inline bool is_sampling_event(struct perf_event *event) { return event->attr.sample_period != 0; } /* * Return 1 for a software event, 0 for a hardware event */ static inline int is_software_event(struct perf_event *event) { return event->event_caps & PERF_EV_CAP_SOFTWARE; } /* * Return 1 for event in sw context, 0 for event in hw context */ static inline int in_software_context(struct perf_event *event) { return event->ctx->pmu->task_ctx_nr == perf_sw_context; } static inline int is_exclusive_pmu(struct pmu *pmu) { return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE; } extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64); extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); #ifndef perf_arch_fetch_caller_regs static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } #endif /* * When generating a perf sample in-line, instead of from an interrupt / * exception, we lack a pt_regs. This is typically used from software events * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints. * * We typically don't need a full set, but (for x86) do require: * - ip for PERF_SAMPLE_IP * - cs for user_mode() tests * - sp for PERF_SAMPLE_CALLCHAIN * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs()) * * NOTE: assumes @regs is otherwise already 0 filled; this is important for * things like PERF_SAMPLE_REGS_INTR. */ static inline void perf_fetch_caller_regs(struct pt_regs *regs) { perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); } static __always_inline void perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { if (static_key_false(&perf_swevent_enabled[event_id])) __perf_sw_event(event_id, nr, regs, addr); } DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]); /* * 'Special' version for the scheduler, it hard assumes no recursion, * which is guaranteed by us not actually scheduling inside other swevents * because those disable preemption. */ static __always_inline void perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { if (static_key_false(&perf_swevent_enabled[event_id])) { struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); perf_fetch_caller_regs(regs); ___perf_sw_event(event_id, nr, regs, addr); } } extern struct static_key_false perf_sched_events; static __always_inline bool perf_sw_migrate_enabled(void) { if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS])) return true; return false; } static inline void perf_event_task_migrate(struct task_struct *task) { if (perf_sw_migrate_enabled()) task->sched_migrated = 1; } static inline void perf_event_task_sched_in(struct task_struct *prev, struct task_struct *task) { if (static_branch_unlikely(&perf_sched_events)) __perf_event_task_sched_in(prev, task); if (perf_sw_migrate_enabled() && task->sched_migrated) { struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); perf_fetch_caller_regs(regs); ___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0); task->sched_migrated = 0; } } static inline void perf_event_task_sched_out(struct task_struct *prev, struct task_struct *next) { perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0); if (static_branch_unlikely(&perf_sched_events)) __perf_event_task_sched_out(prev, next); } extern void perf_event_mmap(struct vm_area_struct *vma); extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, const char *sym); extern void perf_event_bpf_event(struct bpf_prog *prog, enum perf_bpf_event_type type, u16 flags); extern struct perf_guest_info_callbacks *perf_guest_cbs; extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); extern void perf_event_exec(void); extern void perf_event_comm(struct task_struct *tsk, bool exec); extern void perf_event_namespaces(struct task_struct *tsk); extern void perf_event_fork(struct task_struct *tsk); extern void perf_event_text_poke(const void *addr, const void *old_bytes, size_t old_len, const void *new_bytes, size_t new_len); /* Callchains */ DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); extern struct perf_callchain_entry * get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user, u32 max_stack, bool crosstask, bool add_mark); extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs); extern int get_callchain_buffers(int max_stack); extern void put_callchain_buffers(void); extern struct perf_callchain_entry *get_callchain_entry(int *rctx); extern void put_callchain_entry(int rctx); extern int sysctl_perf_event_max_stack; extern int sysctl_perf_event_max_contexts_per_stack; static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip) { if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) { struct perf_callchain_entry *entry = ctx->entry; entry->ip[entry->nr++] = ip; ++ctx->contexts; return 0; } else { ctx->contexts_maxed = true; return -1; /* no more room, stop walking the stack */ } } static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip) { if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) { struct perf_callchain_entry *entry = ctx->entry; entry->ip[entry->nr++] = ip; ++ctx->nr; return 0; } else { return -1; /* no more room, stop walking the stack */ } } extern int sysctl_perf_event_paranoid; extern int sysctl_perf_event_mlock; extern int sysctl_perf_event_sample_rate; extern int sysctl_perf_cpu_time_max_percent; extern void perf_sample_event_took(u64 sample_len_ns); int perf_proc_update_handler(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos); int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos); int perf_event_max_stack_handler(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos); /* Access to perf_event_open(2) syscall. */ #define PERF_SECURITY_OPEN 0 /* Finer grained perf_event_open(2) access control. */ #define PERF_SECURITY_CPU 1 #define PERF_SECURITY_KERNEL 2 #define PERF_SECURITY_TRACEPOINT 3 static inline int perf_is_paranoid(void) { return sysctl_perf_event_paranoid > -1; } static inline int perf_allow_kernel(struct perf_event_attr *attr) { if (sysctl_perf_event_paranoid > 1 && !perfmon_capable()) return -EACCES; return security_perf_event_open(attr, PERF_SECURITY_KERNEL); } static inline int perf_allow_cpu(struct perf_event_attr *attr) { if (sysctl_perf_event_paranoid > 0 && !perfmon_capable()) return -EACCES; return security_perf_event_open(attr, PERF_SECURITY_CPU); } static inline int perf_allow_tracepoint(struct perf_event_attr *attr) { if (sysctl_perf_event_paranoid > -1 && !perfmon_capable()) return -EPERM; return security_perf_event_open(attr, PERF_SECURITY_TRACEPOINT); } extern void perf_event_init(void); extern void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, struct pt_regs *regs, struct hlist_head *head, int rctx, struct task_struct *task); extern void perf_bp_event(struct perf_event *event, void *data); #ifndef perf_misc_flags # define perf_misc_flags(regs) \ (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) # define perf_instruction_pointer(regs) instruction_pointer(regs) #endif #ifndef perf_arch_bpf_user_pt_regs # define perf_arch_bpf_user_pt_regs(regs) regs #endif static inline bool has_branch_stack(struct perf_event *event) { return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK; } static inline bool needs_branch_stack(struct perf_event *event) { return event->attr.branch_sample_type != 0; } static inline bool has_aux(struct perf_event *event) { return event->pmu->setup_aux; } static inline bool is_write_backward(struct perf_event *event) { return !!event->attr.write_backward; } static inline bool has_addr_filter(struct perf_event *event) { return event->pmu->nr_addr_filters; } /* * An inherited event uses parent's filters */ static inline struct perf_addr_filters_head * perf_event_addr_filters(struct perf_event *event) { struct perf_addr_filters_head *ifh = &event->addr_filters; if (event->parent) ifh = &event->parent->addr_filters; return ifh; } extern void perf_event_addr_filters_sync(struct perf_event *event); extern int perf_output_begin(struct perf_output_handle *handle, struct perf_sample_data *data, struct perf_event *event, unsigned int size); extern int perf_output_begin_forward(struct perf_output_handle *handle, struct perf_sample_data *data, struct perf_event *event, unsigned int size); extern int perf_output_begin_backward(struct perf_output_handle *handle, struct perf_sample_data *data, struct perf_event *event, unsigned int size); extern void perf_output_end(struct perf_output_handle *handle); extern unsigned int perf_output_copy(struct perf_output_handle *handle, const void *buf, unsigned int len); extern unsigned int perf_output_skip(struct perf_output_handle *handle, unsigned int len); extern long perf_output_copy_aux(struct perf_output_handle *aux_handle, struct perf_output_handle *handle, unsigned long from, unsigned long to); extern int perf_swevent_get_recursion_context(void); extern void perf_swevent_put_recursion_context(int rctx); extern u64 perf_swevent_set_period(struct perf_event *event); extern void perf_event_enable(struct perf_event *event); extern void perf_event_disable(struct perf_event *event); extern void perf_event_disable_local(struct perf_event *event); extern void perf_event_disable_inatomic(struct perf_event *event); extern void perf_event_task_tick(void); extern int perf_event_account_interrupt(struct perf_event *event); extern int perf_event_period(struct perf_event *event, u64 value); extern u64 perf_event_pause(struct perf_event *event, bool reset); #else /* !CONFIG_PERF_EVENTS: */ static inline void * perf_aux_output_begin(struct perf_output_handle *handle, struct perf_event *event) { return NULL; } static inline void perf_aux_output_end(struct perf_output_handle *handle, unsigned long size) { } static inline int perf_aux_output_skip(struct perf_output_handle *handle, unsigned long size) { return -EINVAL; } static inline void * perf_get_aux(struct perf_output_handle *handle) { return NULL; } static inline void perf_event_task_migrate(struct task_struct *task) { } static inline void perf_event_task_sched_in(struct task_struct *prev, struct task_struct *task) { } static inline void perf_event_task_sched_out(struct task_struct *prev, struct task_struct *next) { } static inline int perf_event_init_task(struct task_struct *child) { return 0; } static inline void perf_event_exit_task(struct task_struct *child) { } static inline void perf_event_free_task(struct task_struct *task) { } static inline void perf_event_delayed_put(struct task_struct *task) { } static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); } static inline const struct perf_event *perf_get_event(struct file *file) { return ERR_PTR(-EINVAL); } static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event) { return ERR_PTR(-EINVAL); } static inline int perf_event_read_local(struct perf_event *event, u64 *value, u64 *enabled, u64 *running) { return -EINVAL; } static inline void perf_event_print_debug(void) { } static inline int perf_event_task_disable(void) { return -EINVAL; } static inline int perf_event_task_enable(void) { return -EINVAL; } static inline int perf_event_refresh(struct perf_event *event, int refresh) { return -EINVAL; } static inline void perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } static inline void perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { } static inline void perf_bp_event(struct perf_event *event, void *data) { } static inline int perf_register_guest_info_callbacks (struct perf_guest_info_callbacks *callbacks) { return 0; } static inline int perf_unregister_guest_info_callbacks (struct perf_guest_info_callbacks *callbacks) { return 0; } static inline void perf_event_mmap(struct vm_area_struct *vma) { } typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data); static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, const char *sym) { } static inline void perf_event_bpf_event(struct bpf_prog *prog, enum perf_bpf_event_type type, u16 flags) { } static inline void perf_event_exec(void) { } static inline void perf_event_comm(struct task_struct *tsk, bool exec) { } static inline void perf_event_namespaces(struct task_struct *tsk) { } static inline void perf_event_fork(struct task_struct *tsk) { } static inline void perf_event_text_poke(const void *addr, const void *old_bytes, size_t old_len, const void *new_bytes, size_t new_len) { } static inline void perf_event_init(void) { } static inline int perf_swevent_get_recursion_context(void) { return -1; } static inline void perf_swevent_put_recursion_context(int rctx) { } static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; } static inline void perf_event_enable(struct perf_event *event) { } static inline void perf_event_disable(struct perf_event *event) { } static inline int __perf_event_disable(void *info) { return -1; } static inline void perf_event_task_tick(void) { } static inline int perf_event_release_kernel(struct perf_event *event) { return 0; } static inline int perf_event_period(struct perf_event *event, u64 value) { return -EINVAL; } static inline u64 perf_event_pause(struct perf_event *event, bool reset) { return 0; } #endif #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL) extern void perf_restore_debug_store(void); #else static inline void perf_restore_debug_store(void) { } #endif static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag) { return frag->pad < sizeof(u64); } #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) struct perf_pmu_events_attr { struct device_attribute attr; u64 id; const char *event_str; }; struct perf_pmu_events_ht_attr { struct device_attribute attr; u64 id; const char *event_str_ht; const char *event_str_noht; }; ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, char *page); #define PMU_EVENT_ATTR(_name, _var, _id, _show) \ static struct perf_pmu_events_attr _var = { \ .attr = __ATTR(_name, 0444, _show, NULL), \ .id = _id, \ }; #define PMU_EVENT_ATTR_STRING(_name, _var, _str) \ static struct perf_pmu_events_attr _var = { \ .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \ .id = 0, \ .event_str = _str, \ }; #define PMU_FORMAT_ATTR(_name, _format) \ static ssize_t \ _name##_show(struct device *dev, \ struct device_attribute *attr, \ char *page) \ { \ BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ return sprintf(page, _format "\n"); \ } \ \ static struct device_attribute format_attr_##_name = __ATTR_RO(_name) /* Performance counter hotplug functions */ #ifdef CONFIG_PERF_EVENTS int perf_event_init_cpu(unsigned int cpu); int perf_event_exit_cpu(unsigned int cpu); #else #define perf_event_init_cpu NULL #define perf_event_exit_cpu NULL #endif extern void __weak arch_perf_update_userpage(struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now); #endif /* _LINUX_PERF_EVENT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_DAX_H #define _LINUX_DAX_H #include <linux/fs.h> #include <linux/mm.h> #include <linux/radix-tree.h> /* Flag for synchronous flush */ #define DAXDEV_F_SYNC (1UL << 0) typedef unsigned long dax_entry_t; struct iomap_ops; struct iomap; struct dax_device; struct dax_operations { /* * direct_access: translate a device-relative * logical-page-offset into an absolute physical pfn. Return the * number of pages available for DAX at that pfn. */ long (*direct_access)(struct dax_device *, pgoff_t, long, void **, pfn_t *); /* * Validate whether this device is usable as an fsdax backing * device. */ bool (*dax_supported)(struct dax_device *, struct block_device *, int, sector_t, sector_t); /* copy_from_iter: required operation for fs-dax direct-i/o */ size_t (*copy_from_iter)(struct dax_device *, pgoff_t, void *, size_t, struct iov_iter *); /* copy_to_iter: required operation for fs-dax direct-i/o */ size_t (*copy_to_iter)(struct dax_device *, pgoff_t, void *, size_t, struct iov_iter *); /* zero_page_range: required operation. Zero page range */ int (*zero_page_range)(struct dax_device *, pgoff_t, size_t); }; extern struct attribute_group dax_attribute_group; #if IS_ENABLED(CONFIG_DAX) struct dax_device *dax_get_by_host(const char *host); struct dax_device *alloc_dax(void *private, const char *host, const struct dax_operations *ops, unsigned long flags); void put_dax(struct dax_device *dax_dev); void kill_dax(struct dax_device *dax_dev); void dax_write_cache(struct dax_device *dax_dev, bool wc); bool dax_write_cache_enabled(struct dax_device *dax_dev); bool __dax_synchronous(struct dax_device *dax_dev); static inline bool dax_synchronous(struct dax_device *dax_dev) { return __dax_synchronous(dax_dev); } void __set_dax_synchronous(struct dax_device *dax_dev); static inline void set_dax_synchronous(struct dax_device *dax_dev) { __set_dax_synchronous(dax_dev); } bool dax_supported(struct dax_device *dax_dev, struct block_device *bdev, int blocksize, sector_t start, sector_t len); /* * Check if given mapping is supported by the file / underlying device. */ static inline bool daxdev_mapping_supported(struct vm_area_struct *vma, struct dax_device *dax_dev) { if (!(vma->vm_flags & VM_SYNC)) return true; if (!IS_DAX(file_inode(vma->vm_file))) return false; return dax_synchronous(dax_dev); } #else static inline struct dax_device *dax_get_by_host(const char *host) { return NULL; } static inline struct dax_device *alloc_dax(void *private, const char *host, const struct dax_operations *ops, unsigned long flags) { /* * Callers should check IS_ENABLED(CONFIG_DAX) to know if this * NULL is an error or expected. */ return NULL; } static inline void put_dax(struct dax_device *dax_dev) { } static inline void kill_dax(struct dax_device *dax_dev) { } static inline void dax_write_cache(struct dax_device *dax_dev, bool wc) { } static inline bool dax_write_cache_enabled(struct dax_device *dax_dev) { return false; } static inline bool dax_synchronous(struct dax_device *dax_dev) { return true; } static inline void set_dax_synchronous(struct dax_device *dax_dev) { } static inline bool dax_supported(struct dax_device *dax_dev, struct block_device *bdev, int blocksize, sector_t start, sector_t len) { return false; } static inline bool daxdev_mapping_supported(struct vm_area_struct *vma, struct dax_device *dax_dev) { return !(vma->vm_flags & VM_SYNC); } #endif struct writeback_control; int bdev_dax_pgoff(struct block_device *, sector_t, size_t, pgoff_t *pgoff); #if IS_ENABLED(CONFIG_FS_DAX) bool __bdev_dax_supported(struct block_device *bdev, int blocksize); static inline bool bdev_dax_supported(struct block_device *bdev, int blocksize) { return __bdev_dax_supported(bdev, blocksize); } bool __generic_fsdax_supported(struct dax_device *dax_dev, struct block_device *bdev, int blocksize, sector_t start, sector_t sectors); static inline bool generic_fsdax_supported(struct dax_device *dax_dev, struct block_device *bdev, int blocksize, sector_t start, sector_t sectors) { return __generic_fsdax_supported(dax_dev, bdev, blocksize, start, sectors); } static inline void fs_put_dax(struct dax_device *dax_dev) { put_dax(dax_dev); } struct dax_device *fs_dax_get_by_bdev(struct block_device *bdev); int dax_writeback_mapping_range(struct address_space *mapping, struct dax_device *dax_dev, struct writeback_control *wbc); struct page *dax_layout_busy_page(struct address_space *mapping); struct page *dax_layout_busy_page_range(struct address_space *mapping, loff_t start, loff_t end); dax_entry_t dax_lock_page(struct page *page); void dax_unlock_page(struct page *page, dax_entry_t cookie); #else static inline bool bdev_dax_supported(struct block_device *bdev, int blocksize) { return false; } static inline bool generic_fsdax_supported(struct dax_device *dax_dev, struct block_device *bdev, int blocksize, sector_t start, sector_t sectors) { return false; } static inline void fs_put_dax(struct dax_device *dax_dev) { } static inline struct dax_device *fs_dax_get_by_bdev(struct block_device *bdev) { return NULL; } static inline struct page *dax_layout_busy_page(struct address_space *mapping) { return NULL; } static inline struct page *dax_layout_busy_page_range(struct address_space *mapping, pgoff_t start, pgoff_t nr_pages) { return NULL; } static inline int dax_writeback_mapping_range(struct address_space *mapping, struct dax_device *dax_dev, struct writeback_control *wbc) { return -EOPNOTSUPP; } static inline dax_entry_t dax_lock_page(struct page *page) { if (IS_DAX(page->mapping->host)) return ~0UL; return 0; } static inline void dax_unlock_page(struct page *page, dax_entry_t cookie) { } #endif #if IS_ENABLED(CONFIG_DAX) int dax_read_lock(void); void dax_read_unlock(int id); #else static inline int dax_read_lock(void) { return 0; } static inline void dax_read_unlock(int id) { } #endif /* CONFIG_DAX */ bool dax_alive(struct dax_device *dax_dev); void *dax_get_private(struct dax_device *dax_dev); long dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, long nr_pages, void **kaddr, pfn_t *pfn); size_t dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff, void *addr, size_t bytes, struct iov_iter *i); size_t dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff, void *addr, size_t bytes, struct iov_iter *i); int dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff, size_t nr_pages); void dax_flush(struct dax_device *dax_dev, void *addr, size_t size); ssize_t dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter, const struct iomap_ops *ops); vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size, pfn_t *pfnp, int *errp, const struct iomap_ops *ops); vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf, enum page_entry_size pe_size, pfn_t pfn); int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index); int dax_invalidate_mapping_entry_sync(struct address_space *mapping, pgoff_t index); s64 dax_iomap_zero(loff_t pos, u64 length, struct iomap *iomap); static inline bool dax_mapping(struct address_space *mapping) { return mapping->host && IS_DAX(mapping->host); } #ifdef CONFIG_DEV_DAX_HMEM_DEVICES void hmem_register_device(int target_nid, struct resource *r); #else static inline void hmem_register_device(int target_nid, struct resource *r) { } #endif #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 /* SPDX-License-Identifier: GPL-2.0 */ /* * Type definitions for the multi-level security (MLS) policy. * * Author : Stephen Smalley, <sds@tycho.nsa.gov> */ /* * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com> * * Support for enhanced MLS infrastructure. * * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc. */ #ifndef _SS_MLS_TYPES_H_ #define _SS_MLS_TYPES_H_ #include "security.h" #include "ebitmap.h" struct mls_level { u32 sens; /* sensitivity */ struct ebitmap cat; /* category set */ }; struct mls_range { struct mls_level level[2]; /* low == level[0], high == level[1] */ }; static inline int mls_level_eq(struct mls_level *l1, struct mls_level *l2) { return ((l1->sens == l2->sens) && ebitmap_cmp(&l1->cat, &l2->cat)); } static inline int mls_level_dom(struct mls_level *l1, struct mls_level *l2) { return ((l1->sens >= l2->sens) && ebitmap_contains(&l1->cat, &l2->cat, 0)); } #define mls_level_incomp(l1, l2) \ (!mls_level_dom((l1), (l2)) && !mls_level_dom((l2), (l1))) #define mls_level_between(l1, l2, l3) \ (mls_level_dom((l1), (l2)) && mls_level_dom((l3), (l1))) #define mls_range_contains(r1, r2) \ (mls_level_dom(&(r2).level[0], &(r1).level[0]) && \ mls_level_dom(&(r1).level[1], &(r2).level[1])) #endif /* _SS_MLS_TYPES_H_ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 /* SPDX-License-Identifier: GPL-2.0 */ /* * Events for filesystem locks * * Copyright 2013 Jeff Layton <jlayton@poochiereds.net> */ #undef TRACE_SYSTEM #define TRACE_SYSTEM filelock #if !defined(_TRACE_FILELOCK_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_FILELOCK_H #include <linux/tracepoint.h> #include <linux/fs.h> #include <linux/device.h> #include <linux/kdev_t.h> #define show_fl_flags(val) \ __print_flags(val, "|", \ { FL_POSIX, "FL_POSIX" }, \ { FL_FLOCK, "FL_FLOCK" }, \ { FL_DELEG, "FL_DELEG" }, \ { FL_ACCESS, "FL_ACCESS" }, \ { FL_EXISTS, "FL_EXISTS" }, \ { FL_LEASE, "FL_LEASE" }, \ { FL_CLOSE, "FL_CLOSE" }, \ { FL_SLEEP, "FL_SLEEP" }, \ { FL_DOWNGRADE_PENDING, "FL_DOWNGRADE_PENDING" }, \ { FL_UNLOCK_PENDING, "FL_UNLOCK_PENDING" }, \ { FL_OFDLCK, "FL_OFDLCK" }) #define show_fl_type(val) \ __print_symbolic(val, \ { F_RDLCK, "F_RDLCK" }, \ { F_WRLCK, "F_WRLCK" }, \ { F_UNLCK, "F_UNLCK" }) TRACE_EVENT(locks_get_lock_context, TP_PROTO(struct inode *inode, int type, struct file_lock_context *ctx), TP_ARGS(inode, type, ctx), TP_STRUCT__entry( __field(unsigned long, i_ino) __field(dev_t, s_dev) __field(unsigned char, type) __field(struct file_lock_context *, ctx) ), TP_fast_assign( __entry->s_dev = inode->i_sb->s_dev; __entry->i_ino = inode->i_ino; __entry->type = type; __entry->ctx = ctx; ), TP_printk("dev=0x%x:0x%x ino=0x%lx type=%s ctx=%p", MAJOR(__entry->s_dev), MINOR(__entry->s_dev), __entry->i_ino, show_fl_type(__entry->type), __entry->ctx) ); DECLARE_EVENT_CLASS(filelock_lock, TP_PROTO(struct inode *inode, struct file_lock *fl, int ret), TP_ARGS(inode, fl, ret), TP_STRUCT__entry( __field(struct file_lock *, fl) __field(unsigned long, i_ino) __field(dev_t, s_dev) __field(struct file_lock *, fl_blocker) __field(fl_owner_t, fl_owner) __field(unsigned int, fl_pid) __field(unsigned int, fl_flags) __field(unsigned char, fl_type) __field(loff_t, fl_start) __field(loff_t, fl_end) __field(int, ret) ), TP_fast_assign( __entry->fl = fl ? fl : NULL; __entry->s_dev = inode->i_sb->s_dev; __entry->i_ino = inode->i_ino; __entry->fl_blocker = fl ? fl->fl_blocker : NULL; __entry->fl_owner = fl ? fl->fl_owner : NULL; __entry->fl_pid = fl ? fl->fl_pid : 0; __entry->fl_flags = fl ? fl->fl_flags : 0; __entry->fl_type = fl ? fl->fl_type : 0; __entry->fl_start = fl ? fl->fl_start : 0; __entry->fl_end = fl ? fl->fl_end : 0; __entry->ret = ret; ), TP_printk("fl=%p dev=0x%x:0x%x ino=0x%lx fl_blocker=%p fl_owner=%p fl_pid=%u fl_flags=%s fl_type=%s fl_start=%lld fl_end=%lld ret=%d", __entry->fl, MAJOR(__entry->s_dev), MINOR(__entry->s_dev), __entry->i_ino, __entry->fl_blocker, __entry->fl_owner, __entry->fl_pid, show_fl_flags(__entry->fl_flags), show_fl_type(__entry->fl_type), __entry->fl_start, __entry->fl_end, __entry->ret) ); DEFINE_EVENT(filelock_lock, posix_lock_inode, TP_PROTO(struct inode *inode, struct file_lock *fl, int ret), TP_ARGS(inode, fl, ret)); DEFINE_EVENT(filelock_lock, fcntl_setlk, TP_PROTO(struct inode *inode, struct file_lock *fl, int ret), TP_ARGS(inode, fl, ret)); DEFINE_EVENT(filelock_lock, locks_remove_posix, TP_PROTO(struct inode *inode, struct file_lock *fl, int ret), TP_ARGS(inode, fl, ret)); DEFINE_EVENT(filelock_lock, flock_lock_inode, TP_PROTO(struct inode *inode, struct file_lock *fl, int ret), TP_ARGS(inode, fl, ret)); DECLARE_EVENT_CLASS(filelock_lease, TP_PROTO(struct inode *inode, struct file_lock *fl), TP_ARGS(inode, fl), TP_STRUCT__entry( __field(struct file_lock *, fl) __field(unsigned long, i_ino) __field(dev_t, s_dev) __field(struct file_lock *, fl_blocker) __field(fl_owner_t, fl_owner) __field(unsigned int, fl_flags) __field(unsigned char, fl_type) __field(unsigned long, fl_break_time) __field(unsigned long, fl_downgrade_time) ), TP_fast_assign( __entry->fl = fl ? fl : NULL; __entry->s_dev = inode->i_sb->s_dev; __entry->i_ino = inode->i_ino; __entry->fl_blocker = fl ? fl->fl_blocker : NULL; __entry->fl_owner = fl ? fl->fl_owner : NULL; __entry->fl_flags = fl ? fl->fl_flags : 0; __entry->fl_type = fl ? fl->fl_type : 0; __entry->fl_break_time = fl ? fl->fl_break_time : 0; __entry->fl_downgrade_time = fl ? fl->fl_downgrade_time : 0; ), TP_printk("fl=%p dev=0x%x:0x%x ino=0x%lx fl_blocker=%p fl_owner=%p fl_flags=%s fl_type=%s fl_break_time=%lu fl_downgrade_time=%lu", __entry->fl, MAJOR(__entry->s_dev), MINOR(__entry->s_dev), __entry->i_ino, __entry->fl_blocker, __entry->fl_owner, show_fl_flags(__entry->fl_flags), show_fl_type(__entry->fl_type), __entry->fl_break_time, __entry->fl_downgrade_time) ); DEFINE_EVENT(filelock_lease, break_lease_noblock, TP_PROTO(struct inode *inode, struct file_lock *fl), TP_ARGS(inode, fl)); DEFINE_EVENT(filelock_lease, break_lease_block, TP_PROTO(struct inode *inode, struct file_lock *fl), TP_ARGS(inode, fl)); DEFINE_EVENT(filelock_lease, break_lease_unblock, TP_PROTO(struct inode *inode, struct file_lock *fl), TP_ARGS(inode, fl)); DEFINE_EVENT(filelock_lease, generic_delete_lease, TP_PROTO(struct inode *inode, struct file_lock *fl), TP_ARGS(inode, fl)); DEFINE_EVENT(filelock_lease, time_out_leases, TP_PROTO(struct inode *inode, struct file_lock *fl), TP_ARGS(inode, fl)); TRACE_EVENT(generic_add_lease, TP_PROTO(struct inode *inode, struct file_lock *fl), TP_ARGS(inode, fl), TP_STRUCT__entry( __field(unsigned long, i_ino) __field(int, wcount) __field(int, rcount) __field(int, icount) __field(dev_t, s_dev) __field(fl_owner_t, fl_owner) __field(unsigned int, fl_flags) __field(unsigned char, fl_type) ), TP_fast_assign( __entry->s_dev = inode->i_sb->s_dev; __entry->i_ino = inode->i_ino; __entry->wcount = atomic_read(&inode->i_writecount); __entry->rcount = atomic_read(&inode->i_readcount); __entry->icount = atomic_read(&inode->i_count); __entry->fl_owner = fl->fl_owner; __entry->fl_flags = fl->fl_flags; __entry->fl_type = fl->fl_type; ), TP_printk("dev=0x%x:0x%x ino=0x%lx wcount=%d rcount=%d icount=%d fl_owner=%p fl_flags=%s fl_type=%s", MAJOR(__entry->s_dev), MINOR(__entry->s_dev), __entry->i_ino, __entry->wcount, __entry->rcount, __entry->icount, __entry->fl_owner, show_fl_flags(__entry->fl_flags), show_fl_type(__entry->fl_type)) ); TRACE_EVENT(leases_conflict, TP_PROTO(bool conflict, struct file_lock *lease, struct file_lock *breaker), TP_ARGS(conflict, lease, breaker), TP_STRUCT__entry( __field(void *, lease) __field(void *, breaker) __field(unsigned int, l_fl_flags) __field(unsigned int, b_fl_flags) __field(unsigned char, l_fl_type) __field(unsigned char, b_fl_type) __field(bool, conflict) ), TP_fast_assign( __entry->lease = lease; __entry->l_fl_flags = lease->fl_flags; __entry->l_fl_type = lease->fl_type; __entry->breaker = breaker; __entry->b_fl_flags = breaker->fl_flags; __entry->b_fl_type = breaker->fl_type; __entry->conflict = conflict; ), TP_printk("conflict %d: lease=%p fl_flags=%s fl_type=%s; breaker=%p fl_flags=%s fl_type=%s", __entry->conflict, __entry->lease, show_fl_flags(__entry->l_fl_flags), show_fl_type(__entry->l_fl_type), __entry->breaker, show_fl_flags(__entry->b_fl_flags), show_fl_type(__entry->b_fl_type)) ); #endif /* _TRACE_FILELOCK_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 /* SPDX-License-Identifier: GPL-2.0 */ /* * The proc filesystem constants/structures */ #ifndef _LINUX_PROC_FS_H #define _LINUX_PROC_FS_H #include <linux/compiler.h> #include <linux/types.h> #include <linux/fs.h> struct proc_dir_entry; struct seq_file; struct seq_operations; enum { /* * All /proc entries using this ->proc_ops instance are never removed. * * If in doubt, ignore this flag. */ #ifdef MODULE PROC_ENTRY_PERMANENT = 0U, #else PROC_ENTRY_PERMANENT = 1U << 0, #endif }; struct proc_ops { unsigned int proc_flags; int (*proc_open)(struct inode *, struct file *); ssize_t (*proc_read)(struct file *, char __user *, size_t, loff_t *); ssize_t (*proc_read_iter)(struct kiocb *, struct iov_iter *); ssize_t (*proc_write)(struct file *, const char __user *, size_t, loff_t *); loff_t (*proc_lseek)(struct file *, loff_t, int); int (*proc_release)(struct inode *, struct file *); __poll_t (*proc_poll)(struct file *, struct poll_table_struct *); long (*proc_ioctl)(struct file *, unsigned int, unsigned long); #ifdef CONFIG_COMPAT long (*proc_compat_ioctl)(struct file *, unsigned int, unsigned long); #endif int (*proc_mmap)(struct file *, struct vm_area_struct *); unsigned long (*proc_get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); } __randomize_layout; /* definitions for hide_pid field */ enum proc_hidepid { HIDEPID_OFF = 0, HIDEPID_NO_ACCESS = 1, HIDEPID_INVISIBLE = 2, HIDEPID_NOT_PTRACEABLE = 4, /* Limit pids to only ptraceable pids */ }; /* definitions for proc mount option pidonly */ enum proc_pidonly { PROC_PIDONLY_OFF = 0, PROC_PIDONLY_ON = 1, }; struct proc_fs_info { struct pid_namespace *pid_ns; struct dentry *proc_self; /* For /proc/self */ struct dentry *proc_thread_self; /* For /proc/thread-self */ kgid_t pid_gid; enum proc_hidepid hide_pid; enum proc_pidonly pidonly; }; static inline struct proc_fs_info *proc_sb_info(struct super_block *sb) { return sb->s_fs_info; } #ifdef CONFIG_PROC_FS typedef int (*proc_write_t)(struct file *, char *, size_t); extern void proc_root_init(void); extern void proc_flush_pid(struct pid *); extern struct proc_dir_entry *proc_symlink(const char *, struct proc_dir_entry *, const char *); struct proc_dir_entry *_proc_mkdir(const char *, umode_t, struct proc_dir_entry *, void *, bool); extern struct proc_dir_entry *proc_mkdir(const char *, struct proc_dir_entry *); extern struct proc_dir_entry *proc_mkdir_data(const char *, umode_t, struct proc_dir_entry *, void *); extern struct proc_dir_entry *proc_mkdir_mode(const char *, umode_t, struct proc_dir_entry *); struct proc_dir_entry *proc_create_mount_point(const char *name); struct proc_dir_entry *proc_create_seq_private(const char *name, umode_t mode, struct proc_dir_entry *parent, const struct seq_operations *ops, unsigned int state_size, void *data); #define proc_create_seq_data(name, mode, parent, ops, data) \ proc_create_seq_private(name, mode, parent, ops, 0, data) #define proc_create_seq(name, mode, parent, ops) \ proc_create_seq_private(name, mode, parent, ops, 0, NULL) struct proc_dir_entry *proc_create_single_data(const char *name, umode_t mode, struct proc_dir_entry *parent, int (*show)(struct seq_file *, void *), void *data); #define proc_create_single(name, mode, parent, show) \ proc_create_single_data(name, mode, parent, show, NULL) extern struct proc_dir_entry *proc_create_data(const char *, umode_t, struct proc_dir_entry *, const struct proc_ops *, void *); struct proc_dir_entry *proc_create(const char *name, umode_t mode, struct proc_dir_entry *parent, const struct proc_ops *proc_ops); extern void proc_set_size(struct proc_dir_entry *, loff_t); extern void proc_set_user(struct proc_dir_entry *, kuid_t, kgid_t); extern void *PDE_DATA(const struct inode *); extern void *proc_get_parent_data(const struct inode *); extern void proc_remove(struct proc_dir_entry *); extern void remove_proc_entry(const char *, struct proc_dir_entry *); extern int remove_proc_subtree(const char *, struct proc_dir_entry *); struct proc_dir_entry *proc_create_net_data(const char *name, umode_t mode, struct proc_dir_entry *parent, const struct seq_operations *ops, unsigned int state_size, void *data); #define proc_create_net(name, mode, parent, ops, state_size) \ proc_create_net_data(name, mode, parent, ops, state_size, NULL) struct proc_dir_entry *proc_create_net_single(const char *name, umode_t mode, struct proc_dir_entry *parent, int (*show)(struct seq_file *, void *), void *data); struct proc_dir_entry *proc_create_net_data_write(const char *name, umode_t mode, struct proc_dir_entry *parent, const struct seq_operations *ops, proc_write_t write, unsigned int state_size, void *data); struct proc_dir_entry *proc_create_net_single_write(const char *name, umode_t mode, struct proc_dir_entry *parent, int (*show)(struct seq_file *, void *), proc_write_t write, void *data); extern struct pid *tgid_pidfd_to_pid(const struct file *file); struct bpf_iter_aux_info; extern int bpf_iter_init_seq_net(void *priv_data, struct bpf_iter_aux_info *aux); extern void bpf_iter_fini_seq_net(void *priv_data); #ifdef CONFIG_PROC_PID_ARCH_STATUS /* * The architecture which selects CONFIG_PROC_PID_ARCH_STATUS must * provide proc_pid_arch_status() definition. */ int proc_pid_arch_status(struct seq_file *m, struct pid_namespace *ns, struct pid *pid, struct task_struct *task); #endif /* CONFIG_PROC_PID_ARCH_STATUS */ #else /* CONFIG_PROC_FS */ static inline void proc_root_init(void) { } static inline void proc_flush_pid(struct pid *pid) { } static inline struct proc_dir_entry *proc_symlink(const char *name, struct proc_dir_entry *parent,const char *dest) { return NULL;} static inline struct proc_dir_entry *proc_mkdir(const char *name, struct proc_dir_entry *parent) {return NULL;} static inline struct proc_dir_entry *proc_create_mount_point(const char *name) { return NULL; } static inline struct proc_dir_entry *_proc_mkdir(const char *name, umode_t mode, struct proc_dir_entry *parent, void *data, bool force_lookup) { return NULL; } static inline struct proc_dir_entry *proc_mkdir_data(const char *name, umode_t mode, struct proc_dir_entry *parent, void *data) { return NULL; } static inline struct proc_dir_entry *proc_mkdir_mode(const char *name, umode_t mode, struct proc_dir_entry *parent) { return NULL; } #define proc_create_seq_private(name, mode, parent, ops, size, data) ({NULL;}) #define proc_create_seq_data(name, mode, parent, ops, data) ({NULL;}) #define proc_create_seq(name, mode, parent, ops) ({NULL;}) #define proc_create_single(name, mode, parent, show) ({NULL;}) #define proc_create_single_data(name, mode, parent, show, data) ({NULL;}) #define proc_create(name, mode, parent, proc_ops) ({NULL;}) #define proc_create_data(name, mode, parent, proc_ops, data) ({NULL;}) static inline void proc_set_size(struct proc_dir_entry *de, loff_t size) {} static inline void proc_set_user(struct proc_dir_entry *de, kuid_t uid, kgid_t gid) {} static inline void *PDE_DATA(const struct inode *inode) {BUG(); return NULL;} static inline void *proc_get_parent_data(const struct inode *inode) { BUG(); return NULL; } static inline void proc_remove(struct proc_dir_entry *de) {} #define remove_proc_entry(name, parent) do {} while (0) static inline int remove_proc_subtree(const char *name, struct proc_dir_entry *parent) { return 0; } #define proc_create_net_data(name, mode, parent, ops, state_size, data) ({NULL;}) #define proc_create_net(name, mode, parent, state_size, ops) ({NULL;}) #define proc_create_net_single(name, mode, parent, show, data) ({NULL;}) static inline struct pid *tgid_pidfd_to_pid(const struct file *file) { return ERR_PTR(-EBADF); } #endif /* CONFIG_PROC_FS */ struct net; static inline struct proc_dir_entry *proc_net_mkdir( struct net *net, const char *name, struct proc_dir_entry *parent) { return _proc_mkdir(name, 0, parent, net, true); } struct ns_common; int open_related_ns(struct ns_common *ns, struct ns_common *(*get_ns)(struct ns_common *ns)); /* get the associated pid namespace for a file in procfs */ static inline struct pid_namespace *proc_pid_ns(struct super_block *sb) { return proc_sb_info(sb)->pid_ns; } bool proc_ns_file(const struct file *file); #endif /* _LINUX_PROC_FS_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * NetLabel System * * The NetLabel system manages static and dynamic label mappings for network * protocols such as CIPSO and RIPSO. * * Author: Paul Moore <paul@paul-moore.com> */ /* * (c) Copyright Hewlett-Packard Development Company, L.P., 2006, 2008 */ #ifndef _NETLABEL_H #define _NETLABEL_H #include <linux/types.h> #include <linux/slab.h> #include <linux/net.h> #include <linux/skbuff.h> #include <linux/in.h> #include <linux/in6.h> #include <net/netlink.h> #include <net/request_sock.h> #include <linux/refcount.h> struct cipso_v4_doi; struct calipso_doi; /* * NetLabel - A management interface for maintaining network packet label * mapping tables for explicit packet labling protocols. * * Network protocols such as CIPSO and RIPSO require a label translation layer * to convert the label on the packet into something meaningful on the host * machine. In the current Linux implementation these mapping tables live * inside the kernel; NetLabel provides a mechanism for user space applications * to manage these mapping tables. * * NetLabel makes use of the Generic NETLINK mechanism as a transport layer to * send messages between kernel and user space. The general format of a * NetLabel message is shown below: * * +-----------------+-------------------+--------- --- -- - * | struct nlmsghdr | struct genlmsghdr | payload * +-----------------+-------------------+--------- --- -- - * * The 'nlmsghdr' and 'genlmsghdr' structs should be dealt with like normal. * The payload is dependent on the subsystem specified in the * 'nlmsghdr->nlmsg_type' and should be defined below, supporting functions * should be defined in the corresponding net/netlabel/netlabel_<subsys>.h|c * file. All of the fields in the NetLabel payload are NETLINK attributes, see * the include/net/netlink.h file for more information on NETLINK attributes. * */ /* * NetLabel NETLINK protocol */ /* NetLabel NETLINK protocol version * 1: initial version * 2: added static labels for unlabeled connections * 3: network selectors added to the NetLabel/LSM domain mapping and the * CIPSO_V4_MAP_LOCAL CIPSO mapping was added */ #define NETLBL_PROTO_VERSION 3 /* NetLabel NETLINK types/families */ #define NETLBL_NLTYPE_NONE 0 #define NETLBL_NLTYPE_MGMT 1 #define NETLBL_NLTYPE_MGMT_NAME "NLBL_MGMT" #define NETLBL_NLTYPE_RIPSO 2 #define NETLBL_NLTYPE_RIPSO_NAME "NLBL_RIPSO" #define NETLBL_NLTYPE_CIPSOV4 3 #define NETLBL_NLTYPE_CIPSOV4_NAME "NLBL_CIPSOv4" #define NETLBL_NLTYPE_CIPSOV6 4 #define NETLBL_NLTYPE_CIPSOV6_NAME "NLBL_CIPSOv6" #define NETLBL_NLTYPE_UNLABELED 5 #define NETLBL_NLTYPE_UNLABELED_NAME "NLBL_UNLBL" #define NETLBL_NLTYPE_ADDRSELECT 6 #define NETLBL_NLTYPE_ADDRSELECT_NAME "NLBL_ADRSEL" #define NETLBL_NLTYPE_CALIPSO 7 #define NETLBL_NLTYPE_CALIPSO_NAME "NLBL_CALIPSO" /* * NetLabel - Kernel API for accessing the network packet label mappings. * * The following functions are provided for use by other kernel modules, * specifically kernel LSM modules, to provide a consistent, transparent API * for dealing with explicit packet labeling protocols such as CIPSO and * RIPSO. The functions defined here are implemented in the * net/netlabel/netlabel_kapi.c file. * */ /* NetLabel audit information */ struct netlbl_audit { u32 secid; kuid_t loginuid; unsigned int sessionid; }; /* * LSM security attributes */ /** * struct netlbl_lsm_cache - NetLabel LSM security attribute cache * @refcount: atomic reference counter * @free: LSM supplied function to free the cache data * @data: LSM supplied cache data * * Description: * This structure is provided for LSMs which wish to make use of the NetLabel * caching mechanism to store LSM specific data/attributes in the NetLabel * cache. If the LSM has to perform a lot of translation from the NetLabel * security attributes into it's own internal representation then the cache * mechanism can provide a way to eliminate some or all of that translation * overhead on a cache hit. * */ struct netlbl_lsm_cache { refcount_t refcount; void (*free) (const void *data); void *data; }; /** * struct netlbl_lsm_catmap - NetLabel LSM secattr category bitmap * @startbit: the value of the lowest order bit in the bitmap * @bitmap: the category bitmap * @next: pointer to the next bitmap "node" or NULL * * Description: * This structure is used to represent category bitmaps. Due to the large * number of categories supported by most labeling protocols it is not * practical to transfer a full bitmap internally so NetLabel adopts a sparse * bitmap structure modeled after SELinux's ebitmap structure. * The catmap bitmap field MUST be a power of two in length and large * enough to hold at least 240 bits. Special care (i.e. check the code!) * should be used when changing these values as the LSM implementation * probably has functions which rely on the sizes of these types to speed * processing. * */ #define NETLBL_CATMAP_MAPTYPE u64 #define NETLBL_CATMAP_MAPCNT 4 #define NETLBL_CATMAP_MAPSIZE (sizeof(NETLBL_CATMAP_MAPTYPE) * 8) #define NETLBL_CATMAP_SIZE (NETLBL_CATMAP_MAPSIZE * \ NETLBL_CATMAP_MAPCNT) #define NETLBL_CATMAP_BIT (NETLBL_CATMAP_MAPTYPE)0x01 struct netlbl_lsm_catmap { u32 startbit; NETLBL_CATMAP_MAPTYPE bitmap[NETLBL_CATMAP_MAPCNT]; struct netlbl_lsm_catmap *next; }; /** * struct netlbl_lsm_secattr - NetLabel LSM security attributes * @flags: indicate structure attributes, see NETLBL_SECATTR_* * @type: indicate the NLTYPE of the attributes * @domain: the NetLabel LSM domain * @cache: NetLabel LSM specific cache * @attr.mls: MLS sensitivity label * @attr.mls.cat: MLS category bitmap * @attr.mls.lvl: MLS sensitivity level * @attr.secid: LSM specific secid token * * Description: * This structure is used to pass security attributes between NetLabel and the * LSM modules. The flags field is used to specify which fields within the * struct are valid and valid values can be created by bitwise OR'ing the * NETLBL_SECATTR_* defines. The domain field is typically set by the LSM to * specify domain specific configuration settings and is not usually used by * NetLabel itself when returning security attributes to the LSM. * */ struct netlbl_lsm_secattr { u32 flags; /* bitmap values for 'flags' */ #define NETLBL_SECATTR_NONE 0x00000000 #define NETLBL_SECATTR_DOMAIN 0x00000001 #define NETLBL_SECATTR_DOMAIN_CPY (NETLBL_SECATTR_DOMAIN | \ NETLBL_SECATTR_FREE_DOMAIN) #define NETLBL_SECATTR_CACHE 0x00000002 #define NETLBL_SECATTR_MLS_LVL 0x00000004 #define NETLBL_SECATTR_MLS_CAT 0x00000008 #define NETLBL_SECATTR_SECID 0x00000010 /* bitmap meta-values for 'flags' */ #define NETLBL_SECATTR_FREE_DOMAIN 0x01000000 #define NETLBL_SECATTR_CACHEABLE (NETLBL_SECATTR_MLS_LVL | \ NETLBL_SECATTR_MLS_CAT | \ NETLBL_SECATTR_SECID) u32 type; char *domain; struct netlbl_lsm_cache *cache; struct { struct { struct netlbl_lsm_catmap *cat; u32 lvl; } mls; u32 secid; } attr; }; /** * struct netlbl_calipso_ops - NetLabel CALIPSO operations * @doi_add: add a CALIPSO DOI * @doi_free: free a CALIPSO DOI * @doi_getdef: returns a reference to a DOI * @doi_putdef: releases a reference of a DOI * @doi_walk: enumerate the DOI list * @sock_getattr: retrieve the socket's attr * @sock_setattr: set the socket's attr * @sock_delattr: remove the socket's attr * @req_setattr: set the req socket's attr * @req_delattr: remove the req socket's attr * @opt_getattr: retrieve attr from memory block * @skbuff_optptr: find option in packet * @skbuff_setattr: set the skbuff's attr * @skbuff_delattr: remove the skbuff's attr * @cache_invalidate: invalidate cache * @cache_add: add cache entry * * Description: * This structure is filled out by the CALIPSO engine and passed * to the NetLabel core via a call to netlbl_calipso_ops_register(). * It enables the CALIPSO engine (and hence IPv6) to be compiled * as a module. */ struct netlbl_calipso_ops { int (*doi_add)(struct calipso_doi *doi_def, struct netlbl_audit *audit_info); void (*doi_free)(struct calipso_doi *doi_def); int (*doi_remove)(u32 doi, struct netlbl_audit *audit_info); struct calipso_doi *(*doi_getdef)(u32 doi); void (*doi_putdef)(struct calipso_doi *doi_def); int (*doi_walk)(u32 *skip_cnt, int (*callback)(struct calipso_doi *doi_def, void *arg), void *cb_arg); int (*sock_getattr)(struct sock *sk, struct netlbl_lsm_secattr *secattr); int (*sock_setattr)(struct sock *sk, const struct calipso_doi *doi_def, const struct netlbl_lsm_secattr *secattr); void (*sock_delattr)(struct sock *sk); int (*req_setattr)(struct request_sock *req, const struct calipso_doi *doi_def, const struct netlbl_lsm_secattr *secattr); void (*req_delattr)(struct request_sock *req); int (*opt_getattr)(const unsigned char *calipso, struct netlbl_lsm_secattr *secattr); unsigned char *(*skbuff_optptr)(const struct sk_buff *skb); int (*skbuff_setattr)(struct sk_buff *skb, const struct calipso_doi *doi_def, const struct netlbl_lsm_secattr *secattr); int (*skbuff_delattr)(struct sk_buff *skb); void (*cache_invalidate)(void); int (*cache_add)(const unsigned char *calipso_ptr, const struct netlbl_lsm_secattr *secattr); }; /* * LSM security attribute operations (inline) */ /** * netlbl_secattr_cache_alloc - Allocate and initialize a secattr cache * @flags: the memory allocation flags * * Description: * Allocate and initialize a netlbl_lsm_cache structure. Returns a pointer * on success, NULL on failure. * */ static inline struct netlbl_lsm_cache *netlbl_secattr_cache_alloc(gfp_t flags) { struct netlbl_lsm_cache *cache; cache = kzalloc(sizeof(*cache), flags); if (cache) refcount_set(&cache->refcount, 1); return cache; } /** * netlbl_secattr_cache_free - Frees a netlbl_lsm_cache struct * @cache: the struct to free * * Description: * Frees @secattr including all of the internal buffers. * */ static inline void netlbl_secattr_cache_free(struct netlbl_lsm_cache *cache) { if (!refcount_dec_and_test(&cache->refcount)) return; if (cache->free) cache->free(cache->data); kfree(cache); } /** * netlbl_catmap_alloc - Allocate a LSM secattr catmap * @flags: memory allocation flags * * Description: * Allocate memory for a LSM secattr catmap, returns a pointer on success, NULL * on failure. * */ static inline struct netlbl_lsm_catmap *netlbl_catmap_alloc(gfp_t flags) { return kzalloc(sizeof(struct netlbl_lsm_catmap), flags); } /** * netlbl_catmap_free - Free a LSM secattr catmap * @catmap: the category bitmap * * Description: * Free a LSM secattr catmap. * */ static inline void netlbl_catmap_free(struct netlbl_lsm_catmap *catmap) { struct netlbl_lsm_catmap *iter; while (catmap) { iter = catmap; catmap = catmap->next; kfree(iter); } } /** * netlbl_secattr_init - Initialize a netlbl_lsm_secattr struct * @secattr: the struct to initialize * * Description: * Initialize an already allocated netlbl_lsm_secattr struct. * */ static inline void netlbl_secattr_init(struct netlbl_lsm_secattr *secattr) { memset(secattr, 0, sizeof(*secattr)); } /** * netlbl_secattr_destroy - Clears a netlbl_lsm_secattr struct * @secattr: the struct to clear * * Description: * Destroys the @secattr struct, including freeing all of the internal buffers. * The struct must be reset with a call to netlbl_secattr_init() before reuse. * */ static inline void netlbl_secattr_destroy(struct netlbl_lsm_secattr *secattr) { if (secattr->flags & NETLBL_SECATTR_FREE_DOMAIN) kfree(secattr->domain); if (secattr->flags & NETLBL_SECATTR_CACHE) netlbl_secattr_cache_free(secattr->cache); if (secattr->flags & NETLBL_SECATTR_MLS_CAT) netlbl_catmap_free(secattr->attr.mls.cat); } /** * netlbl_secattr_alloc - Allocate and initialize a netlbl_lsm_secattr struct * @flags: the memory allocation flags * * Description: * Allocate and initialize a netlbl_lsm_secattr struct. Returns a valid * pointer on success, or NULL on failure. * */ static inline struct netlbl_lsm_secattr *netlbl_secattr_alloc(gfp_t flags) { return kzalloc(sizeof(struct netlbl_lsm_secattr), flags); } /** * netlbl_secattr_free - Frees a netlbl_lsm_secattr struct * @secattr: the struct to free * * Description: * Frees @secattr including all of the internal buffers. * */ static inline void netlbl_secattr_free(struct netlbl_lsm_secattr *secattr) { netlbl_secattr_destroy(secattr); kfree(secattr); } #ifdef CONFIG_NETLABEL /* * LSM configuration operations */ int netlbl_cfg_map_del(const char *domain, u16 family, const void *addr, const void *mask, struct netlbl_audit *audit_info); int netlbl_cfg_unlbl_map_add(const char *domain, u16 family, const void *addr, const void *mask, struct netlbl_audit *audit_info); int netlbl_cfg_unlbl_static_add(struct net *net, const char *dev_name, const void *addr, const void *mask, u16 family, u32 secid, struct netlbl_audit *audit_info); int netlbl_cfg_unlbl_static_del(struct net *net, const char *dev_name, const void *addr, const void *mask, u16 family, struct netlbl_audit *audit_info); int netlbl_cfg_cipsov4_add(struct cipso_v4_doi *doi_def, struct netlbl_audit *audit_info); void netlbl_cfg_cipsov4_del(u32 doi, struct netlbl_audit *audit_info); int netlbl_cfg_cipsov4_map_add(u32 doi, const char *domain, const struct in_addr *addr, const struct in_addr *mask, struct netlbl_audit *audit_info); int netlbl_cfg_calipso_add(struct calipso_doi *doi_def, struct netlbl_audit *audit_info); void netlbl_cfg_calipso_del(u32 doi, struct netlbl_audit *audit_info); int netlbl_cfg_calipso_map_add(u32 doi, const char *domain, const struct in6_addr *addr, const struct in6_addr *mask, struct netlbl_audit *audit_info); /* * LSM security attribute operations */ int netlbl_catmap_walk(struct netlbl_lsm_catmap *catmap, u32 offset); int netlbl_catmap_walkrng(struct netlbl_lsm_catmap *catmap, u32 offset); int netlbl_catmap_getlong(struct netlbl_lsm_catmap *catmap, u32 *offset, unsigned long *bitmap); int netlbl_catmap_setbit(struct netlbl_lsm_catmap **catmap, u32 bit, gfp_t flags); int netlbl_catmap_setrng(struct netlbl_lsm_catmap **catmap, u32 start, u32 end, gfp_t flags); int netlbl_catmap_setlong(struct netlbl_lsm_catmap **catmap, u32 offset, unsigned long bitmap, gfp_t flags); /* Bitmap functions */ int netlbl_bitmap_walk(const unsigned char *bitmap, u32 bitmap_len, u32 offset, u8 state); void netlbl_bitmap_setbit(unsigned char *bitmap, u32 bit, u8 state); /* * LSM protocol operations (NetLabel LSM/kernel API) */ int netlbl_enabled(void); int netlbl_sock_setattr(struct sock *sk, u16 family, const struct netlbl_lsm_secattr *secattr); void netlbl_sock_delattr(struct sock *sk); int netlbl_sock_getattr(struct sock *sk, struct netlbl_lsm_secattr *secattr); int netlbl_conn_setattr(struct sock *sk, struct sockaddr *addr, const struct netlbl_lsm_secattr *secattr); int netlbl_req_setattr(struct request_sock *req, const struct netlbl_lsm_secattr *secattr); void netlbl_req_delattr(struct request_sock *req); int netlbl_skbuff_setattr(struct sk_buff *skb, u16 family, const struct netlbl_lsm_secattr *secattr); int netlbl_skbuff_getattr(const struct sk_buff *skb, u16 family, struct netlbl_lsm_secattr *secattr); void netlbl_skbuff_err(struct sk_buff *skb, u16 family, int error, int gateway); /* * LSM label mapping cache operations */ void netlbl_cache_invalidate(void); int netlbl_cache_add(const struct sk_buff *skb, u16 family, const struct netlbl_lsm_secattr *secattr); /* * Protocol engine operations */ struct audit_buffer *netlbl_audit_start(int type, struct netlbl_audit *audit_info); #else static inline int netlbl_cfg_map_del(const char *domain, u16 family, const void *addr, const void *mask, struct netlbl_audit *audit_info) { return -ENOSYS; } static inline int netlbl_cfg_unlbl_map_add(const char *domain, u16 family, void *addr, void *mask, struct netlbl_audit *audit_info) { return -ENOSYS; } static inline int netlbl_cfg_unlbl_static_add(struct net *net, const char *dev_name, const void *addr, const void *mask, u16 family, u32 secid, struct netlbl_audit *audit_info) { return -ENOSYS; } static inline int netlbl_cfg_unlbl_static_del(struct net *net, const char *dev_name, const void *addr, const void *mask, u16 family, struct netlbl_audit *audit_info) { return -ENOSYS; } static inline int netlbl_cfg_cipsov4_add(struct cipso_v4_doi *doi_def, struct netlbl_audit *audit_info) { return -ENOSYS; } static inline void netlbl_cfg_cipsov4_del(u32 doi, struct netlbl_audit *audit_info) { return; } static inline int netlbl_cfg_cipsov4_map_add(u32 doi, const char *domain, const struct in_addr *addr, const struct in_addr *mask, struct netlbl_audit *audit_info) { return -ENOSYS; } static inline int netlbl_cfg_calipso_add(struct calipso_doi *doi_def, struct netlbl_audit *audit_info) { return -ENOSYS; } static inline void netlbl_cfg_calipso_del(u32 doi, struct netlbl_audit *audit_info) { return; } static inline int netlbl_cfg_calipso_map_add(u32 doi, const char *domain, const struct in6_addr *addr, const struct in6_addr *mask, struct netlbl_audit *audit_info) { return -ENOSYS; } static inline int netlbl_catmap_walk(struct netlbl_lsm_catmap *catmap, u32 offset) { return -ENOENT; } static inline int netlbl_catmap_walkrng(struct netlbl_lsm_catmap *catmap, u32 offset) { return -ENOENT; } static inline int netlbl_catmap_getlong(struct netlbl_lsm_catmap *catmap, u32 *offset, unsigned long *bitmap) { return 0; } static inline int netlbl_catmap_setbit(struct netlbl_lsm_catmap **catmap, u32 bit, gfp_t flags) { return 0; } static inline int netlbl_catmap_setrng(struct netlbl_lsm_catmap **catmap, u32 start, u32 end, gfp_t flags) { return 0; } static inline int netlbl_catmap_setlong(struct netlbl_lsm_catmap **catmap, u32 offset, unsigned long bitmap, gfp_t flags) { return 0; } static inline int netlbl_enabled(void) { return 0; } static inline int netlbl_sock_setattr(struct sock *sk, u16 family, const struct netlbl_lsm_secattr *secattr) { return -ENOSYS; } static inline void netlbl_sock_delattr(struct sock *sk) { } static inline int netlbl_sock_getattr(struct sock *sk, struct netlbl_lsm_secattr *secattr) { return -ENOSYS; } static inline int netlbl_conn_setattr(struct sock *sk, struct sockaddr *addr, const struct netlbl_lsm_secattr *secattr) { return -ENOSYS; } static inline int netlbl_req_setattr(struct request_sock *req, const struct netlbl_lsm_secattr *secattr) { return -ENOSYS; } static inline void netlbl_req_delattr(struct request_sock *req) { return; } static inline int netlbl_skbuff_setattr(struct sk_buff *skb, u16 family, const struct netlbl_lsm_secattr *secattr) { return -ENOSYS; } static inline int netlbl_skbuff_getattr(const struct sk_buff *skb, u16 family, struct netlbl_lsm_secattr *secattr) { return -ENOSYS; } static inline void netlbl_skbuff_err(struct sk_buff *skb, int error, int gateway) { return; } static inline void netlbl_cache_invalidate(void) { return; } static inline int netlbl_cache_add(const struct sk_buff *skb, u16 family, const struct netlbl_lsm_secattr *secattr) { return 0; } static inline struct audit_buffer *netlbl_audit_start(int type, struct netlbl_audit *audit_info) { return NULL; } #endif /* CONFIG_NETLABEL */ const struct netlbl_calipso_ops * netlbl_calipso_ops_register(const struct netlbl_calipso_ops *ops); #endif /* _NETLABEL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_NODEMASK_H #define __LINUX_NODEMASK_H /* * Nodemasks provide a bitmap suitable for representing the * set of Node's in a system, one bit position per Node number. * * See detailed comments in the file linux/bitmap.h describing the * data type on which these nodemasks are based. * * For details of nodemask_parse_user(), see bitmap_parse_user() in * lib/bitmap.c. For details of nodelist_parse(), see bitmap_parselist(), * also in bitmap.c. For details of node_remap(), see bitmap_bitremap in * lib/bitmap.c. For details of nodes_remap(), see bitmap_remap in * lib/bitmap.c. For details of nodes_onto(), see bitmap_onto in * lib/bitmap.c. For details of nodes_fold(), see bitmap_fold in * lib/bitmap.c. * * The available nodemask operations are: * * void node_set(node, mask) turn on bit 'node' in mask * void node_clear(node, mask) turn off bit 'node' in mask * void nodes_setall(mask) set all bits * void nodes_clear(mask) clear all bits * int node_isset(node, mask) true iff bit 'node' set in mask * int node_test_and_set(node, mask) test and set bit 'node' in mask * * void nodes_and(dst, src1, src2) dst = src1 & src2 [intersection] * void nodes_or(dst, src1, src2) dst = src1 | src2 [union] * void nodes_xor(dst, src1, src2) dst = src1 ^ src2 * void nodes_andnot(dst, src1, src2) dst = src1 & ~src2 * void nodes_complement(dst, src) dst = ~src * * int nodes_equal(mask1, mask2) Does mask1 == mask2? * int nodes_intersects(mask1, mask2) Do mask1 and mask2 intersect? * int nodes_subset(mask1, mask2) Is mask1 a subset of mask2? * int nodes_empty(mask) Is mask empty (no bits sets)? * int nodes_full(mask) Is mask full (all bits sets)? * int nodes_weight(mask) Hamming weight - number of set bits * * void nodes_shift_right(dst, src, n) Shift right * void nodes_shift_left(dst, src, n) Shift left * * int first_node(mask) Number lowest set bit, or MAX_NUMNODES * int next_node(node, mask) Next node past 'node', or MAX_NUMNODES * int next_node_in(node, mask) Next node past 'node', or wrap to first, * or MAX_NUMNODES * int first_unset_node(mask) First node not set in mask, or * MAX_NUMNODES * * nodemask_t nodemask_of_node(node) Return nodemask with bit 'node' set * NODE_MASK_ALL Initializer - all bits set * NODE_MASK_NONE Initializer - no bits set * unsigned long *nodes_addr(mask) Array of unsigned long's in mask * * int nodemask_parse_user(ubuf, ulen, mask) Parse ascii string as nodemask * int nodelist_parse(buf, map) Parse ascii string as nodelist * int node_remap(oldbit, old, new) newbit = map(old, new)(oldbit) * void nodes_remap(dst, src, old, new) *dst = map(old, new)(src) * void nodes_onto(dst, orig, relmap) *dst = orig relative to relmap * void nodes_fold(dst, orig, sz) dst bits = orig bits mod sz * * for_each_node_mask(node, mask) for-loop node over mask * * int num_online_nodes() Number of online Nodes * int num_possible_nodes() Number of all possible Nodes * * int node_random(mask) Random node with set bit in mask * * int node_online(node) Is some node online? * int node_possible(node) Is some node possible? * * node_set_online(node) set bit 'node' in node_online_map * node_set_offline(node) clear bit 'node' in node_online_map * * for_each_node(node) for-loop node over node_possible_map * for_each_online_node(node) for-loop node over node_online_map * * Subtlety: * 1) The 'type-checked' form of node_isset() causes gcc (3.3.2, anyway) * to generate slightly worse code. So use a simple one-line #define * for node_isset(), instead of wrapping an inline inside a macro, the * way we do the other calls. * * NODEMASK_SCRATCH * When doing above logical AND, OR, XOR, Remap operations the callers tend to * need temporary nodemask_t's on the stack. But if NODES_SHIFT is large, * nodemask_t's consume too much stack space. NODEMASK_SCRATCH is a helper * for such situations. See below and CPUMASK_ALLOC also. */ #include <linux/threads.h> #include <linux/bitmap.h> #include <linux/minmax.h> #include <linux/numa.h> typedef struct { DECLARE_BITMAP(bits, MAX_NUMNODES); } nodemask_t; extern nodemask_t _unused_nodemask_arg_; /** * nodemask_pr_args - printf args to output a nodemask * @maskp: nodemask to be printed * * Can be used to provide arguments for '%*pb[l]' when printing a nodemask. */ #define nodemask_pr_args(maskp) __nodemask_pr_numnodes(maskp), \ __nodemask_pr_bits(maskp) static inline unsigned int __nodemask_pr_numnodes(const nodemask_t *m) { return m ? MAX_NUMNODES : 0; } static inline const unsigned long *__nodemask_pr_bits(const nodemask_t *m) { return m ? m->bits : NULL; } /* * The inline keyword gives the compiler room to decide to inline, or * not inline a function as it sees best. However, as these functions * are called in both __init and non-__init functions, if they are not * inlined we will end up with a section mis-match error (of the type of * freeable items not being freed). So we must use __always_inline here * to fix the problem. If other functions in the future also end up in * this situation they will also need to be annotated as __always_inline */ #define node_set(node, dst) __node_set((node), &(dst)) static __always_inline void __node_set(int node, volatile nodemask_t *dstp) { set_bit(node, dstp->bits); } #define node_clear(node, dst) __node_clear((node), &(dst)) static inline void __node_clear(int node, volatile nodemask_t *dstp) { clear_bit(node, dstp->bits); } #define nodes_setall(dst) __nodes_setall(&(dst), MAX_NUMNODES) static inline void __nodes_setall(nodemask_t *dstp, unsigned int nbits) { bitmap_fill(dstp->bits, nbits); } #define nodes_clear(dst) __nodes_clear(&(dst), MAX_NUMNODES) static inline void __nodes_clear(nodemask_t *dstp, unsigned int nbits) { bitmap_zero(dstp->bits, nbits); } /* No static inline type checking - see Subtlety (1) above. */ #define node_isset(node, nodemask) test_bit((node), (nodemask).bits) #define node_test_and_set(node, nodemask) \ __node_test_and_set((node), &(nodemask)) static inline int __node_test_and_set(int node, nodemask_t *addr) { return test_and_set_bit(node, addr->bits); } #define nodes_and(dst, src1, src2) \ __nodes_and(&(dst), &(src1), &(src2), MAX_NUMNODES) static inline void __nodes_and(nodemask_t *dstp, const nodemask_t *src1p, const nodemask_t *src2p, unsigned int nbits) { bitmap_and(dstp->bits, src1p->bits, src2p->bits, nbits); } #define nodes_or(dst, src1, src2) \ __nodes_or(&(dst), &(src1), &(src2), MAX_NUMNODES) static inline void __nodes_or(nodemask_t *dstp, const nodemask_t *src1p, const nodemask_t *src2p, unsigned int nbits) { bitmap_or(dstp->bits, src1p->bits, src2p->bits, nbits); } #define nodes_xor(dst, src1, src2) \ __nodes_xor(&(dst), &(src1), &(src2), MAX_NUMNODES) static inline void __nodes_xor(nodemask_t *dstp, const nodemask_t *src1p, const nodemask_t *src2p, unsigned int nbits) { bitmap_xor(dstp->bits, src1p->bits, src2p->bits, nbits); } #define nodes_andnot(dst, src1, src2) \ __nodes_andnot(&(dst), &(src1), &(src2), MAX_NUMNODES) static inline void __nodes_andnot(nodemask_t *dstp, const nodemask_t *src1p, const nodemask_t *src2p, unsigned int nbits) { bitmap_andnot(dstp->bits, src1p->bits, src2p->bits, nbits); } #define nodes_complement(dst, src) \ __nodes_complement(&(dst), &(src), MAX_NUMNODES) static inline void __nodes_complement(nodemask_t *dstp, const nodemask_t *srcp, unsigned int nbits) { bitmap_complement(dstp->bits, srcp->bits, nbits); } #define nodes_equal(src1, src2) \ __nodes_equal(&(src1), &(src2), MAX_NUMNODES) static inline int __nodes_equal(const nodemask_t *src1p, const nodemask_t *src2p, unsigned int nbits) { return bitmap_equal(src1p->bits, src2p->bits, nbits); } #define nodes_intersects(src1, src2) \ __nodes_intersects(&(src1), &(src2), MAX_NUMNODES) static inline int __nodes_intersects(const nodemask_t *src1p, const nodemask_t *src2p, unsigned int nbits) { return bitmap_intersects(src1p->bits, src2p->bits, nbits); } #define nodes_subset(src1, src2) \ __nodes_subset(&(src1), &(src2), MAX_NUMNODES) static inline int __nodes_subset(const nodemask_t *src1p, const nodemask_t *src2p, unsigned int nbits) { return bitmap_subset(src1p->bits, src2p->bits, nbits); } #define nodes_empty(src) __nodes_empty(&(src), MAX_NUMNODES) static inline int __nodes_empty(const nodemask_t *srcp, unsigned int nbits) { return bitmap_empty(srcp->bits, nbits); } #define nodes_full(nodemask) __nodes_full(&(nodemask), MAX_NUMNODES) static inline int __nodes_full(const nodemask_t *srcp, unsigned int nbits) { return bitmap_full(srcp->bits, nbits); } #define nodes_weight(nodemask) __nodes_weight(&(nodemask), MAX_NUMNODES) static inline int __nodes_weight(const nodemask_t *srcp, unsigned int nbits) { return bitmap_weight(srcp->bits, nbits); } #define nodes_shift_right(dst, src, n) \ __nodes_shift_right(&(dst), &(src), (n), MAX_NUMNODES) static inline void __nodes_shift_right(nodemask_t *dstp, const nodemask_t *srcp, int n, int nbits) { bitmap_shift_right(dstp->bits, srcp->bits, n, nbits); } #define nodes_shift_left(dst, src, n) \ __nodes_shift_left(&(dst), &(src), (n), MAX_NUMNODES) static inline void __nodes_shift_left(nodemask_t *dstp, const nodemask_t *srcp, int n, int nbits) { bitmap_shift_left(dstp->bits, srcp->bits, n, nbits); } /* FIXME: better would be to fix all architectures to never return > MAX_NUMNODES, then the silly min_ts could be dropped. */ #define first_node(src) __first_node(&(src)) static inline int __first_node(const nodemask_t *srcp) { return min_t(int, MAX_NUMNODES, find_first_bit(srcp->bits, MAX_NUMNODES)); } #define next_node(n, src) __next_node((n), &(src)) static inline int __next_node(int n, const nodemask_t *srcp) { return min_t(int,MAX_NUMNODES,find_next_bit(srcp->bits, MAX_NUMNODES, n+1)); } /* * Find the next present node in src, starting after node n, wrapping around to * the first node in src if needed. Returns MAX_NUMNODES if src is empty. */ #define next_node_in(n, src) __next_node_in((n), &(src)) int __next_node_in(int node, const nodemask_t *srcp); static inline void init_nodemask_of_node(nodemask_t *mask, int node) { nodes_clear(*mask); node_set(node, *mask); } #define nodemask_of_node(node) \ ({ \ typeof(_unused_nodemask_arg_) m; \ if (sizeof(m) == sizeof(unsigned long)) { \ m.bits[0] = 1UL << (node); \ } else { \ init_nodemask_of_node(&m, (node)); \ } \ m; \ }) #define first_unset_node(mask) __first_unset_node(&(mask)) static inline int __first_unset_node(const nodemask_t *maskp) { return min_t(int,MAX_NUMNODES, find_first_zero_bit(maskp->bits, MAX_NUMNODES)); } #define NODE_MASK_LAST_WORD BITMAP_LAST_WORD_MASK(MAX_NUMNODES) #if MAX_NUMNODES <= BITS_PER_LONG #define NODE_MASK_ALL \ ((nodemask_t) { { \ [BITS_TO_LONGS(MAX_NUMNODES)-1] = NODE_MASK_LAST_WORD \ } }) #else #define NODE_MASK_ALL \ ((nodemask_t) { { \ [0 ... BITS_TO_LONGS(MAX_NUMNODES)-2] = ~0UL, \ [BITS_TO_LONGS(MAX_NUMNODES)-1] = NODE_MASK_LAST_WORD \ } }) #endif #define NODE_MASK_NONE \ ((nodemask_t) { { \ [0 ... BITS_TO_LONGS(MAX_NUMNODES)-1] = 0UL \ } }) #define nodes_addr(src) ((src).bits) #define nodemask_parse_user(ubuf, ulen, dst) \ __nodemask_parse_user((ubuf), (ulen), &(dst), MAX_NUMNODES) static inline int __nodemask_parse_user(const char __user *buf, int len, nodemask_t *dstp, int nbits) { return bitmap_parse_user(buf, len, dstp->bits, nbits); } #define nodelist_parse(buf, dst) __nodelist_parse((buf), &(dst), MAX_NUMNODES) static inline int __nodelist_parse(const char *buf, nodemask_t *dstp, int nbits) { return bitmap_parselist(buf, dstp->bits, nbits); } #define node_remap(oldbit, old, new) \ __node_remap((oldbit), &(old), &(new), MAX_NUMNODES) static inline int __node_remap(int oldbit, const nodemask_t *oldp, const nodemask_t *newp, int nbits) { return bitmap_bitremap(oldbit, oldp->bits, newp->bits, nbits); } #define nodes_remap(dst, src, old, new) \ __nodes_remap(&(dst), &(src), &(old), &(new), MAX_NUMNODES) static inline void __nodes_remap(nodemask_t *dstp, const nodemask_t *srcp, const nodemask_t *oldp, const nodemask_t *newp, int nbits) { bitmap_remap(dstp->bits, srcp->bits, oldp->bits, newp->bits, nbits); } #define nodes_onto(dst, orig, relmap) \ __nodes_onto(&(dst), &(orig), &(relmap), MAX_NUMNODES) static inline void __nodes_onto(nodemask_t *dstp, const nodemask_t *origp, const nodemask_t *relmapp, int nbits) { bitmap_onto(dstp->bits, origp->bits, relmapp->bits, nbits); } #define nodes_fold(dst, orig, sz) \ __nodes_fold(&(dst), &(orig), sz, MAX_NUMNODES) static inline void __nodes_fold(nodemask_t *dstp, const nodemask_t *origp, int sz, int nbits) { bitmap_fold(dstp->bits, origp->bits, sz, nbits); } #if MAX_NUMNODES > 1 #define for_each_node_mask(node, mask) \ for ((node) = first_node(mask); \ (node) < MAX_NUMNODES; \ (node) = next_node((node), (mask))) #else /* MAX_NUMNODES == 1 */ #define for_each_node_mask(node, mask) \ if (!nodes_empty(mask)) \ for ((node) = 0; (node) < 1; (node)++) #endif /* MAX_NUMNODES */ /* * Bitmasks that are kept for all the nodes. */ enum node_states { N_POSSIBLE, /* The node could become online at some point */ N_ONLINE, /* The node is online */ N_NORMAL_MEMORY, /* The node has regular memory */ #ifdef CONFIG_HIGHMEM N_HIGH_MEMORY, /* The node has regular or high memory */ #else N_HIGH_MEMORY = N_NORMAL_MEMORY, #endif N_MEMORY, /* The node has memory(regular, high, movable) */ N_CPU, /* The node has one or more cpus */ N_GENERIC_INITIATOR, /* The node has one or more Generic Initiators */ NR_NODE_STATES }; /* * The following particular system nodemasks and operations * on them manage all possible and online nodes. */ extern nodemask_t node_states[NR_NODE_STATES]; #if MAX_NUMNODES > 1 static inline int node_state(int node, enum node_states state) { return node_isset(node, node_states[state]); } static inline void node_set_state(int node, enum node_states state) { __node_set(node, &node_states[state]); } static inline void node_clear_state(int node, enum node_states state) { __node_clear(node, &node_states[state]); } static inline int num_node_state(enum node_states state) { return nodes_weight(node_states[state]); } #define for_each_node_state(__node, __state) \ for_each_node_mask((__node), node_states[__state]) #define first_online_node first_node(node_states[N_ONLINE]) #define first_memory_node first_node(node_states[N_MEMORY]) static inline int next_online_node(int nid) { return next_node(nid, node_states[N_ONLINE]); } static inline int next_memory_node(int nid) { return next_node(nid, node_states[N_MEMORY]); } extern unsigned int nr_node_ids; extern unsigned int nr_online_nodes; static inline void node_set_online(int nid) { node_set_state(nid, N_ONLINE); nr_online_nodes = num_node_state(N_ONLINE); } static inline void node_set_offline(int nid) { node_clear_state(nid, N_ONLINE); nr_online_nodes = num_node_state(N_ONLINE); } #else static inline int node_state(int node, enum node_states state) { return node == 0; } static inline void node_set_state(int node, enum node_states state) { } static inline void node_clear_state(int node, enum node_states state) { } static inline int num_node_state(enum node_states state) { return 1; } #define for_each_node_state(node, __state) \ for ( (node) = 0; (node) == 0; (node) = 1) #define first_online_node 0 #define first_memory_node 0 #define next_online_node(nid) (MAX_NUMNODES) #define nr_node_ids 1U #define nr_online_nodes 1U #define node_set_online(node) node_set_state((node), N_ONLINE) #define node_set_offline(node) node_clear_state((node), N_ONLINE) #endif #if defined(CONFIG_NUMA) && (MAX_NUMNODES > 1) extern int node_random(const nodemask_t *maskp); #else static inline int node_random(const nodemask_t *mask) { return 0; } #endif #define node_online_map node_states[N_ONLINE] #define node_possible_map node_states[N_POSSIBLE] #define num_online_nodes() num_node_state(N_ONLINE) #define num_possible_nodes() num_node_state(N_POSSIBLE) #define node_online(node) node_state((node), N_ONLINE) #define node_possible(node) node_state((node), N_POSSIBLE) #define for_each_node(node) for_each_node_state(node, N_POSSIBLE) #define for_each_online_node(node) for_each_node_state(node, N_ONLINE) /* * For nodemask scrach area. * NODEMASK_ALLOC(type, name) allocates an object with a specified type and * name. */ #if NODES_SHIFT > 8 /* nodemask_t > 32 bytes */ #define NODEMASK_ALLOC(type, name, gfp_flags) \ type *name = kmalloc(sizeof(*name), gfp_flags) #define NODEMASK_FREE(m) kfree(m) #else #define NODEMASK_ALLOC(type, name, gfp_flags) type _##name, *name = &_##name #define NODEMASK_FREE(m) do {} while (0) #endif /* A example struture for using NODEMASK_ALLOC, used in mempolicy. */ struct nodemask_scratch { nodemask_t mask1; nodemask_t mask2; }; #define NODEMASK_SCRATCH(x) \ NODEMASK_ALLOC(struct nodemask_scratch, x, \ GFP_KERNEL | __GFP_NORETRY) #define NODEMASK_SCRATCH_FREE(x) NODEMASK_FREE(x) #endif /* __LINUX_NODEMASK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_MEMREMAP_H_ #define _LINUX_MEMREMAP_H_ #include <linux/range.h> #include <linux/ioport.h> #include <linux/percpu-refcount.h> struct resource; struct device; /** * struct vmem_altmap - pre-allocated storage for vmemmap_populate * @base_pfn: base of the entire dev_pagemap mapping * @reserve: pages mapped, but reserved for driver use (relative to @base) * @free: free pages set aside in the mapping for memmap storage * @align: pages reserved to meet allocation alignments * @alloc: track pages consumed, private to vmemmap_populate() */ struct vmem_altmap { const unsigned long base_pfn; const unsigned long end_pfn; const unsigned long reserve; unsigned long free; unsigned long align; unsigned long alloc; }; /* * Specialize ZONE_DEVICE memory into multiple types each having differents * usage. * * MEMORY_DEVICE_PRIVATE: * Device memory that is not directly addressable by the CPU: CPU can neither * read nor write private memory. In this case, we do still have struct pages * backing the device memory. Doing so simplifies the implementation, but it is * important to remember that there are certain points at which the struct page * must be treated as an opaque object, rather than a "normal" struct page. * * A more complete discussion of unaddressable memory may be found in * include/linux/hmm.h and Documentation/vm/hmm.rst. * * MEMORY_DEVICE_FS_DAX: * Host memory that has similar access semantics as System RAM i.e. DMA * coherent and supports page pinning. In support of coordinating page * pinning vs other operations MEMORY_DEVICE_FS_DAX arranges for a * wakeup event whenever a page is unpinned and becomes idle. This * wakeup is used to coordinate physical address space management (ex: * fs truncate/hole punch) vs pinned pages (ex: device dma). * * MEMORY_DEVICE_GENERIC: * Host memory that has similar access semantics as System RAM i.e. DMA * coherent and supports page pinning. This is for example used by DAX devices * that expose memory using a character device. * * MEMORY_DEVICE_PCI_P2PDMA: * Device memory residing in a PCI BAR intended for use with Peer-to-Peer * transactions. */ enum memory_type { /* 0 is reserved to catch uninitialized type fields */ MEMORY_DEVICE_PRIVATE = 1, MEMORY_DEVICE_FS_DAX, MEMORY_DEVICE_GENERIC, MEMORY_DEVICE_PCI_P2PDMA, }; struct dev_pagemap_ops { /* * Called once the page refcount reaches 1. (ZONE_DEVICE pages never * reach 0 refcount unless there is a refcount bug. This allows the * device driver to implement its own memory management.) */ void (*page_free)(struct page *page); /* * Transition the refcount in struct dev_pagemap to the dead state. */ void (*kill)(struct dev_pagemap *pgmap); /* * Wait for refcount in struct dev_pagemap to be idle and reap it. */ void (*cleanup)(struct dev_pagemap *pgmap); /* * Used for private (un-addressable) device memory only. Must migrate * the page back to a CPU accessible page. */ vm_fault_t (*migrate_to_ram)(struct vm_fault *vmf); }; #define PGMAP_ALTMAP_VALID (1 << 0) /** * struct dev_pagemap - metadata for ZONE_DEVICE mappings * @altmap: pre-allocated/reserved memory for vmemmap allocations * @ref: reference count that pins the devm_memremap_pages() mapping * @internal_ref: internal reference if @ref is not provided by the caller * @done: completion for @internal_ref * @type: memory type: see MEMORY_* in memory_hotplug.h * @flags: PGMAP_* flags to specify defailed behavior * @ops: method table * @owner: an opaque pointer identifying the entity that manages this * instance. Used by various helpers to make sure that no * foreign ZONE_DEVICE memory is accessed. * @nr_range: number of ranges to be mapped * @range: range to be mapped when nr_range == 1 * @ranges: array of ranges to be mapped when nr_range > 1 */ struct dev_pagemap { struct vmem_altmap altmap; struct percpu_ref *ref; struct percpu_ref internal_ref; struct completion done; enum memory_type type; unsigned int flags; const struct dev_pagemap_ops *ops; void *owner; int nr_range; union { struct range range; struct range ranges[0]; }; }; static inline struct vmem_altmap *pgmap_altmap(struct dev_pagemap *pgmap) { if (pgmap->flags & PGMAP_ALTMAP_VALID) return &pgmap->altmap; return NULL; } #ifdef CONFIG_ZONE_DEVICE void *memremap_pages(struct dev_pagemap *pgmap, int nid); void memunmap_pages(struct dev_pagemap *pgmap); void *devm_memremap_pages(struct device *dev, struct dev_pagemap *pgmap); void devm_memunmap_pages(struct device *dev, struct dev_pagemap *pgmap); struct dev_pagemap *get_dev_pagemap(unsigned long pfn, struct dev_pagemap *pgmap); bool pgmap_pfn_valid(struct dev_pagemap *pgmap, unsigned long pfn); unsigned long vmem_altmap_offset(struct vmem_altmap *altmap); void vmem_altmap_free(struct vmem_altmap *altmap, unsigned long nr_pfns); unsigned long memremap_compat_align(void); #else static inline void *devm_memremap_pages(struct device *dev, struct dev_pagemap *pgmap) { /* * Fail attempts to call devm_memremap_pages() without * ZONE_DEVICE support enabled, this requires callers to fall * back to plain devm_memremap() based on config */ WARN_ON_ONCE(1); return ERR_PTR(-ENXIO); } static inline void devm_memunmap_pages(struct device *dev, struct dev_pagemap *pgmap) { } static inline struct dev_pagemap *get_dev_pagemap(unsigned long pfn, struct dev_pagemap *pgmap) { return NULL; } static inline bool pgmap_pfn_valid(struct dev_pagemap *pgmap, unsigned long pfn) { return false; } static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) { return 0; } static inline void vmem_altmap_free(struct vmem_altmap *altmap, unsigned long nr_pfns) { } /* when memremap_pages() is disabled all archs can remap a single page */ static inline unsigned long memremap_compat_align(void) { return PAGE_SIZE; } #endif /* CONFIG_ZONE_DEVICE */ static inline void put_dev_pagemap(struct dev_pagemap *pgmap) { if (pgmap) percpu_ref_put(pgmap->ref); } #endif /* _LINUX_MEMREMAP_H_ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 /* SPDX-License-Identifier: GPL-2.0 */ /* * Task I/O accounting operations */ #ifndef __TASK_IO_ACCOUNTING_OPS_INCLUDED #define __TASK_IO_ACCOUNTING_OPS_INCLUDED #include <linux/sched.h> #ifdef CONFIG_TASK_IO_ACCOUNTING static inline void task_io_account_read(size_t bytes) { current->ioac.read_bytes += bytes; } /* * We approximate number of blocks, because we account bytes only. * A 'block' is 512 bytes */ static inline unsigned long task_io_get_inblock(const struct task_struct *p) { return p->ioac.read_bytes >> 9; } static inline void task_io_account_write(size_t bytes) { current->ioac.write_bytes += bytes; } /* * We approximate number of blocks, because we account bytes only. * A 'block' is 512 bytes */ static inline unsigned long task_io_get_oublock(const struct task_struct *p) { return p->ioac.write_bytes >> 9; } static inline void task_io_account_cancelled_write(size_t bytes) { current->ioac.cancelled_write_bytes += bytes; } static inline void task_io_accounting_init(struct task_io_accounting *ioac) { memset(ioac, 0, sizeof(*ioac)); } static inline void task_blk_io_accounting_add(struct task_io_accounting *dst, struct task_io_accounting *src) { dst->read_bytes += src->read_bytes; dst->write_bytes += src->write_bytes; dst->cancelled_write_bytes += src->cancelled_write_bytes; } #else static inline void task_io_account_read(size_t bytes) { } static inline unsigned long task_io_get_inblock(const struct task_struct *p) { return 0; } static inline void task_io_account_write(size_t bytes) { } static inline unsigned long task_io_get_oublock(const struct task_struct *p) { return 0; } static inline void task_io_account_cancelled_write(size_t bytes) { } static inline void task_io_accounting_init(struct task_io_accounting *ioac) { } static inline void task_blk_io_accounting_add(struct task_io_accounting *dst, struct task_io_accounting *src) { } #endif /* CONFIG_TASK_IO_ACCOUNTING */ #ifdef CONFIG_TASK_XACCT static inline void task_chr_io_accounting_add(struct task_io_accounting *dst, struct task_io_accounting *src) { dst->rchar += src->rchar; dst->wchar += src->wchar; dst->syscr += src->syscr; dst->syscw += src->syscw; } #else static inline void task_chr_io_accounting_add(struct task_io_accounting *dst, struct task_io_accounting *src) { } #endif /* CONFIG_TASK_XACCT */ static inline void task_io_accounting_add(struct task_io_accounting *dst, struct task_io_accounting *src) { task_chr_io_accounting_add(dst, src); task_blk_io_accounting_add(dst, src); } #endif /* __TASK_IO_ACCOUNTING_OPS_INCLUDED */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __CFG802154_RDEV_OPS #define __CFG802154_RDEV_OPS #include <net/cfg802154.h> #include "core.h" #include "trace.h" static inline struct net_device * rdev_add_virtual_intf_deprecated(struct cfg802154_registered_device *rdev, const char *name, unsigned char name_assign_type, int type) { return rdev->ops->add_virtual_intf_deprecated(&rdev->wpan_phy, name, name_assign_type, type); } static inline void rdev_del_virtual_intf_deprecated(struct cfg802154_registered_device *rdev, struct net_device *dev) { rdev->ops->del_virtual_intf_deprecated(&rdev->wpan_phy, dev); } static inline int rdev_suspend(struct cfg802154_registered_device *rdev) { int ret; trace_802154_rdev_suspend(&rdev->wpan_phy); ret = rdev->ops->suspend(&rdev->wpan_phy); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_resume(struct cfg802154_registered_device *rdev) { int ret; trace_802154_rdev_resume(&rdev->wpan_phy); ret = rdev->ops->resume(&rdev->wpan_phy); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_add_virtual_intf(struct cfg802154_registered_device *rdev, char *name, unsigned char name_assign_type, enum nl802154_iftype type, __le64 extended_addr) { int ret; trace_802154_rdev_add_virtual_intf(&rdev->wpan_phy, name, type, extended_addr); ret = rdev->ops->add_virtual_intf(&rdev->wpan_phy, name, name_assign_type, type, extended_addr); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_del_virtual_intf(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev) { int ret; trace_802154_rdev_del_virtual_intf(&rdev->wpan_phy, wpan_dev); ret = rdev->ops->del_virtual_intf(&rdev->wpan_phy, wpan_dev); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_set_channel(struct cfg802154_registered_device *rdev, u8 page, u8 channel) { int ret; trace_802154_rdev_set_channel(&rdev->wpan_phy, page, channel); ret = rdev->ops->set_channel(&rdev->wpan_phy, page, channel); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_set_cca_mode(struct cfg802154_registered_device *rdev, const struct wpan_phy_cca *cca) { int ret; trace_802154_rdev_set_cca_mode(&rdev->wpan_phy, cca); ret = rdev->ops->set_cca_mode(&rdev->wpan_phy, cca); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_set_cca_ed_level(struct cfg802154_registered_device *rdev, s32 ed_level) { int ret; trace_802154_rdev_set_cca_ed_level(&rdev->wpan_phy, ed_level); ret = rdev->ops->set_cca_ed_level(&rdev->wpan_phy, ed_level); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_set_tx_power(struct cfg802154_registered_device *rdev, s32 power) { int ret; trace_802154_rdev_set_tx_power(&rdev->wpan_phy, power); ret = rdev->ops->set_tx_power(&rdev->wpan_phy, power); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_set_pan_id(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, __le16 pan_id) { int ret; trace_802154_rdev_set_pan_id(&rdev->wpan_phy, wpan_dev, pan_id); ret = rdev->ops->set_pan_id(&rdev->wpan_phy, wpan_dev, pan_id); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_set_short_addr(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, __le16 short_addr) { int ret; trace_802154_rdev_set_short_addr(&rdev->wpan_phy, wpan_dev, short_addr); ret = rdev->ops->set_short_addr(&rdev->wpan_phy, wpan_dev, short_addr); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_set_backoff_exponent(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, u8 min_be, u8 max_be) { int ret; trace_802154_rdev_set_backoff_exponent(&rdev->wpan_phy, wpan_dev, min_be, max_be); ret = rdev->ops->set_backoff_exponent(&rdev->wpan_phy, wpan_dev, min_be, max_be); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_set_max_csma_backoffs(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, u8 max_csma_backoffs) { int ret; trace_802154_rdev_set_csma_backoffs(&rdev->wpan_phy, wpan_dev, max_csma_backoffs); ret = rdev->ops->set_max_csma_backoffs(&rdev->wpan_phy, wpan_dev, max_csma_backoffs); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_set_max_frame_retries(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, s8 max_frame_retries) { int ret; trace_802154_rdev_set_max_frame_retries(&rdev->wpan_phy, wpan_dev, max_frame_retries); ret = rdev->ops->set_max_frame_retries(&rdev->wpan_phy, wpan_dev, max_frame_retries); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_set_lbt_mode(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, bool mode) { int ret; trace_802154_rdev_set_lbt_mode(&rdev->wpan_phy, wpan_dev, mode); ret = rdev->ops->set_lbt_mode(&rdev->wpan_phy, wpan_dev, mode); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_set_ackreq_default(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, bool ackreq) { int ret; trace_802154_rdev_set_ackreq_default(&rdev->wpan_phy, wpan_dev, ackreq); ret = rdev->ops->set_ackreq_default(&rdev->wpan_phy, wpan_dev, ackreq); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } #ifdef CONFIG_IEEE802154_NL802154_EXPERIMENTAL /* TODO this is already a nl802154, so move into ieee802154 */ static inline void rdev_get_llsec_table(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, struct ieee802154_llsec_table **table) { rdev->ops->get_llsec_table(&rdev->wpan_phy, wpan_dev, table); } static inline void rdev_lock_llsec_table(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev) { rdev->ops->lock_llsec_table(&rdev->wpan_phy, wpan_dev); } static inline void rdev_unlock_llsec_table(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev) { rdev->ops->unlock_llsec_table(&rdev->wpan_phy, wpan_dev); } static inline int rdev_get_llsec_params(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, struct ieee802154_llsec_params *params) { return rdev->ops->get_llsec_params(&rdev->wpan_phy, wpan_dev, params); } static inline int rdev_set_llsec_params(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, const struct ieee802154_llsec_params *params, u32 changed) { return rdev->ops->set_llsec_params(&rdev->wpan_phy, wpan_dev, params, changed); } static inline int rdev_add_llsec_key(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, const struct ieee802154_llsec_key_id *id, const struct ieee802154_llsec_key *key) { return rdev->ops->add_llsec_key(&rdev->wpan_phy, wpan_dev, id, key); } static inline int rdev_del_llsec_key(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, const struct ieee802154_llsec_key_id *id) { return rdev->ops->del_llsec_key(&rdev->wpan_phy, wpan_dev, id); } static inline int rdev_add_seclevel(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, const struct ieee802154_llsec_seclevel *sl) { return rdev->ops->add_seclevel(&rdev->wpan_phy, wpan_dev, sl); } static inline int rdev_del_seclevel(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, const struct ieee802154_llsec_seclevel *sl) { return rdev->ops->del_seclevel(&rdev->wpan_phy, wpan_dev, sl); } static inline int rdev_add_device(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, const struct ieee802154_llsec_device *dev_desc) { return rdev->ops->add_device(&rdev->wpan_phy, wpan_dev, dev_desc); } static inline int rdev_del_device(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, __le64 extended_addr) { return rdev->ops->del_device(&rdev->wpan_phy, wpan_dev, extended_addr); } static inline int rdev_add_devkey(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, __le64 extended_addr, const struct ieee802154_llsec_device_key *devkey) { return rdev->ops->add_devkey(&rdev->wpan_phy, wpan_dev, extended_addr, devkey); } static inline int rdev_del_devkey(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, __le64 extended_addr, const struct ieee802154_llsec_device_key *devkey) { return rdev->ops->del_devkey(&rdev->wpan_phy, wpan_dev, extended_addr, devkey); } #endif /* CONFIG_IEEE802154_NL802154_EXPERIMENTAL */ #endif /* __CFG802154_RDEV_OPS */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 // SPDX-License-Identifier: GPL-2.0 /* * Helper routines for building identity mapping page tables. This is * included by both the compressed kernel and the regular kernel. */ static void ident_pmd_init(struct x86_mapping_info *info, pmd_t *pmd_page, unsigned long addr, unsigned long end) { addr &= PMD_MASK; for (; addr < end; addr += PMD_SIZE) { pmd_t *pmd = pmd_page + pmd_index(addr); if (pmd_present(*pmd)) continue; set_pmd(pmd, __pmd((addr - info->offset) | info->page_flag)); } } static int ident_pud_init(struct x86_mapping_info *info, pud_t *pud_page, unsigned long addr, unsigned long end) { unsigned long next; for (; addr < end; addr = next) { pud_t *pud = pud_page + pud_index(addr); pmd_t *pmd; next = (addr & PUD_MASK) + PUD_SIZE; if (next > end) next = end; if (info->direct_gbpages) { pud_t pudval; if (pud_present(*pud)) continue; addr &= PUD_MASK; pudval = __pud((addr - info->offset) | info->page_flag); set_pud(pud, pudval); continue; } if (pud_present(*pud)) { pmd = pmd_offset(pud, 0); ident_pmd_init(info, pmd, addr, next); continue; } pmd = (pmd_t *)info->alloc_pgt_page(info->context); if (!pmd) return -ENOMEM; ident_pmd_init(info, pmd, addr, next); set_pud(pud, __pud(__pa(pmd) | info->kernpg_flag)); } return 0; } static int ident_p4d_init(struct x86_mapping_info *info, p4d_t *p4d_page, unsigned long addr, unsigned long end) { unsigned long next; int result; for (; addr < end; addr = next) { p4d_t *p4d = p4d_page + p4d_index(addr); pud_t *pud; next = (addr & P4D_MASK) + P4D_SIZE; if (next > end) next = end; if (p4d_present(*p4d)) { pud = pud_offset(p4d, 0); result = ident_pud_init(info, pud, addr, next); if (result) return result; continue; } pud = (pud_t *)info->alloc_pgt_page(info->context); if (!pud) return -ENOMEM; result = ident_pud_init(info, pud, addr, next); if (result) return result; set_p4d(p4d, __p4d(__pa(pud) | info->kernpg_flag)); } return 0; } int kernel_ident_mapping_init(struct x86_mapping_info *info, pgd_t *pgd_page, unsigned long pstart, unsigned long pend) { unsigned long addr = pstart + info->offset; unsigned long end = pend + info->offset; unsigned long next; int result; /* Set the default pagetable flags if not supplied */ if (!info->kernpg_flag) info->kernpg_flag = _KERNPG_TABLE; /* Filter out unsupported __PAGE_KERNEL_* bits: */ info->kernpg_flag &= __default_kernel_pte_mask; for (; addr < end; addr = next) { pgd_t *pgd = pgd_page + pgd_index(addr); p4d_t *p4d; next = (addr & PGDIR_MASK) + PGDIR_SIZE; if (next > end) next = end; if (pgd_present(*pgd)) { p4d = p4d_offset(pgd, 0); result = ident_p4d_init(info, p4d, addr, next); if (result) return result; continue; } p4d = (p4d_t *)info->alloc_pgt_page(info->context); if (!p4d) return -ENOMEM; result = ident_p4d_init(info, p4d, addr, next); if (result) return result; if (pgtable_l5_enabled()) { set_pgd(pgd, __pgd(__pa(p4d) | info->kernpg_flag)); } else { /* * With p4d folded, pgd is equal to p4d. * The pgd entry has to point to the pud page table in this case. */ pud_t *pud = pud_offset(p4d, 0); set_pgd(pgd, __pgd(__pa(pud) | info->kernpg_flag)); } } return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 /* SPDX-License-Identifier: GPL-2.0 */ /* * include/linux/eventfd.h * * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org> * */ #ifndef _LINUX_EVENTFD_H #define _LINUX_EVENTFD_H #include <linux/fcntl.h> #include <linux/wait.h> #include <linux/err.h> #include <linux/percpu-defs.h> #include <linux/percpu.h> /* * CAREFUL: Check include/uapi/asm-generic/fcntl.h when defining * new flags, since they might collide with O_* ones. We want * to re-use O_* flags that couldn't possibly have a meaning * from eventfd, in order to leave a free define-space for * shared O_* flags. */ #define EFD_SEMAPHORE (1 << 0) #define EFD_CLOEXEC O_CLOEXEC #define EFD_NONBLOCK O_NONBLOCK #define EFD_SHARED_FCNTL_FLAGS (O_CLOEXEC | O_NONBLOCK) #define EFD_FLAGS_SET (EFD_SHARED_FCNTL_FLAGS | EFD_SEMAPHORE) struct eventfd_ctx; struct file; #ifdef CONFIG_EVENTFD void eventfd_ctx_put(struct eventfd_ctx *ctx); struct file *eventfd_fget(int fd); struct eventfd_ctx *eventfd_ctx_fdget(int fd); struct eventfd_ctx *eventfd_ctx_fileget(struct file *file); __u64 eventfd_signal(struct eventfd_ctx *ctx, __u64 n); int eventfd_ctx_remove_wait_queue(struct eventfd_ctx *ctx, wait_queue_entry_t *wait,