1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_INETDEVICE_H #define _LINUX_INETDEVICE_H #ifdef __KERNEL__ #include <linux/bitmap.h> #include <linux/if.h> #include <linux/ip.h> #include <linux/netdevice.h> #include <linux/rcupdate.h> #include <linux/timer.h> #include <linux/sysctl.h> #include <linux/rtnetlink.h> #include <linux/refcount.h> struct ipv4_devconf { void *sysctl; int data[IPV4_DEVCONF_MAX]; DECLARE_BITMAP(state, IPV4_DEVCONF_MAX); }; #define MC_HASH_SZ_LOG 9 struct in_device { struct net_device *dev; refcount_t refcnt; int dead; struct in_ifaddr __rcu *ifa_list;/* IP ifaddr chain */ struct ip_mc_list __rcu *mc_list; /* IP multicast filter chain */ struct ip_mc_list __rcu * __rcu *mc_hash; int mc_count; /* Number of installed mcasts */ spinlock_t mc_tomb_lock; struct ip_mc_list *mc_tomb; unsigned long mr_v1_seen; unsigned long mr_v2_seen; unsigned long mr_maxdelay; unsigned long mr_qi; /* Query Interval */ unsigned long mr_qri; /* Query Response Interval */ unsigned char mr_qrv; /* Query Robustness Variable */ unsigned char mr_gq_running; u32 mr_ifc_count; struct timer_list mr_gq_timer; /* general query timer */ struct timer_list mr_ifc_timer; /* interface change timer */ struct neigh_parms *arp_parms; struct ipv4_devconf cnf; struct rcu_head rcu_head; }; #define IPV4_DEVCONF(cnf, attr) ((cnf).data[IPV4_DEVCONF_ ## attr - 1]) #define IPV4_DEVCONF_ALL(net, attr) \ IPV4_DEVCONF((*(net)->ipv4.devconf_all), attr) static inline int ipv4_devconf_get(struct in_device *in_dev, int index) { index--; return in_dev->cnf.data[index]; } static inline void ipv4_devconf_set(struct in_device *in_dev, int index, int val) { index--; set_bit(index, in_dev->cnf.state); in_dev->cnf.data[index] = val; } static inline void ipv4_devconf_setall(struct in_device *in_dev) { bitmap_fill(in_dev->cnf.state, IPV4_DEVCONF_MAX); } #define IN_DEV_CONF_GET(in_dev, attr) \ ipv4_devconf_get((in_dev), IPV4_DEVCONF_ ## attr) #define IN_DEV_CONF_SET(in_dev, attr, val) \ ipv4_devconf_set((in_dev), IPV4_DEVCONF_ ## attr, (val)) #define IN_DEV_ANDCONF(in_dev, attr) \ (IPV4_DEVCONF_ALL(dev_net(in_dev->dev), attr) && \ IN_DEV_CONF_GET((in_dev), attr)) #define IN_DEV_NET_ORCONF(in_dev, net, attr) \ (IPV4_DEVCONF_ALL(net, attr) || \ IN_DEV_CONF_GET((in_dev), attr)) #define IN_DEV_ORCONF(in_dev, attr) \ IN_DEV_NET_ORCONF(in_dev, dev_net(in_dev->dev), attr) #define IN_DEV_MAXCONF(in_dev, attr) \ (max(IPV4_DEVCONF_ALL(dev_net(in_dev->dev), attr), \ IN_DEV_CONF_GET((in_dev), attr))) #define IN_DEV_FORWARD(in_dev) IN_DEV_CONF_GET((in_dev), FORWARDING) #define IN_DEV_MFORWARD(in_dev) IN_DEV_ANDCONF((in_dev), MC_FORWARDING) #define IN_DEV_BFORWARD(in_dev) IN_DEV_ANDCONF((in_dev), BC_FORWARDING) #define IN_DEV_RPFILTER(in_dev) IN_DEV_MAXCONF((in_dev), RP_FILTER) #define IN_DEV_SRC_VMARK(in_dev) IN_DEV_ORCONF((in_dev), SRC_VMARK) #define IN_DEV_SOURCE_ROUTE(in_dev) IN_DEV_ANDCONF((in_dev), \ ACCEPT_SOURCE_ROUTE) #define IN_DEV_ACCEPT_LOCAL(in_dev) IN_DEV_ORCONF((in_dev), ACCEPT_LOCAL) #define IN_DEV_BOOTP_RELAY(in_dev) IN_DEV_ANDCONF((in_dev), BOOTP_RELAY) #define IN_DEV_LOG_MARTIANS(in_dev) IN_DEV_ORCONF((in_dev), LOG_MARTIANS) #define IN_DEV_PROXY_ARP(in_dev) IN_DEV_ORCONF((in_dev), PROXY_ARP) #define IN_DEV_PROXY_ARP_PVLAN(in_dev) IN_DEV_CONF_GET(in_dev, PROXY_ARP_PVLAN) #define IN_DEV_SHARED_MEDIA(in_dev) IN_DEV_ORCONF((in_dev), SHARED_MEDIA) #define IN_DEV_TX_REDIRECTS(in_dev) IN_DEV_ORCONF((in_dev), SEND_REDIRECTS) #define IN_DEV_SEC_REDIRECTS(in_dev) IN_DEV_ORCONF((in_dev), \ SECURE_REDIRECTS) #define IN_DEV_IDTAG(in_dev) IN_DEV_CONF_GET(in_dev, TAG) #define IN_DEV_MEDIUM_ID(in_dev) IN_DEV_CONF_GET(in_dev, MEDIUM_ID) #define IN_DEV_PROMOTE_SECONDARIES(in_dev) \ IN_DEV_ORCONF((in_dev), \ PROMOTE_SECONDARIES) #define IN_DEV_ROUTE_LOCALNET(in_dev) IN_DEV_ORCONF(in_dev, ROUTE_LOCALNET) #define IN_DEV_NET_ROUTE_LOCALNET(in_dev, net) \ IN_DEV_NET_ORCONF(in_dev, net, ROUTE_LOCALNET) #define IN_DEV_RX_REDIRECTS(in_dev) \ ((IN_DEV_FORWARD(in_dev) && \ IN_DEV_ANDCONF((in_dev), ACCEPT_REDIRECTS)) \ || (!IN_DEV_FORWARD(in_dev) && \ IN_DEV_ORCONF((in_dev), ACCEPT_REDIRECTS))) #define IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) \ IN_DEV_CONF_GET((in_dev), IGNORE_ROUTES_WITH_LINKDOWN) #define IN_DEV_ARPFILTER(in_dev) IN_DEV_ORCONF((in_dev), ARPFILTER) #define IN_DEV_ARP_ACCEPT(in_dev) IN_DEV_ORCONF((in_dev), ARP_ACCEPT) #define IN_DEV_ARP_ANNOUNCE(in_dev) IN_DEV_MAXCONF((in_dev), ARP_ANNOUNCE) #define IN_DEV_ARP_IGNORE(in_dev) IN_DEV_MAXCONF((in_dev), ARP_IGNORE) #define IN_DEV_ARP_NOTIFY(in_dev) IN_DEV_MAXCONF((in_dev), ARP_NOTIFY) struct in_ifaddr { struct hlist_node hash; struct in_ifaddr __rcu *ifa_next; struct in_device *ifa_dev; struct rcu_head rcu_head; __be32 ifa_local; __be32 ifa_address; __be32 ifa_mask; __u32 ifa_rt_priority; __be32 ifa_broadcast; unsigned char ifa_scope; unsigned char ifa_prefixlen; __u32 ifa_flags; char ifa_label[IFNAMSIZ]; /* In seconds, relative to tstamp. Expiry is at tstamp + HZ * lft. */ __u32 ifa_valid_lft; __u32 ifa_preferred_lft; unsigned long ifa_cstamp; /* created timestamp */ unsigned long ifa_tstamp; /* updated timestamp */ }; struct in_validator_info { __be32 ivi_addr; struct in_device *ivi_dev; struct netlink_ext_ack *extack; }; int register_inetaddr_notifier(struct notifier_block *nb); int unregister_inetaddr_notifier(struct notifier_block *nb); int register_inetaddr_validator_notifier(struct notifier_block *nb); int unregister_inetaddr_validator_notifier(struct notifier_block *nb); void inet_netconf_notify_devconf(struct net *net, int event, int type, int ifindex, struct ipv4_devconf *devconf); struct net_device *__ip_dev_find(struct net *net, __be32 addr, bool devref); static inline struct net_device *ip_dev_find(struct net *net, __be32 addr) { return __ip_dev_find(net, addr, true); } int inet_addr_onlink(struct in_device *in_dev, __be32 a, __be32 b); int devinet_ioctl(struct net *net, unsigned int cmd, struct ifreq *); void devinet_init(void); struct in_device *inetdev_by_index(struct net *, int); __be32 inet_select_addr(const struct net_device *dev, __be32 dst, int scope); __be32 inet_confirm_addr(struct net *net, struct in_device *in_dev, __be32 dst, __be32 local, int scope); struct in_ifaddr *inet_ifa_byprefix(struct in_device *in_dev, __be32 prefix, __be32 mask); struct in_ifaddr *inet_lookup_ifaddr_rcu(struct net *net, __be32 addr); static inline bool inet_ifa_match(__be32 addr, const struct in_ifaddr *ifa) { return !((addr^ifa->ifa_address)&ifa->ifa_mask); } /* * Check if a mask is acceptable. */ static __inline__ bool bad_mask(__be32 mask, __be32 addr) { __u32 hmask; if (addr & (mask = ~mask)) return true; hmask = ntohl(mask); if (hmask & (hmask+1)) return true; return false; } #define in_dev_for_each_ifa_rtnl(ifa, in_dev) \ for (ifa = rtnl_dereference((in_dev)->ifa_list); ifa; \ ifa = rtnl_dereference(ifa->ifa_next)) #define in_dev_for_each_ifa_rcu(ifa, in_dev) \ for (ifa = rcu_dereference((in_dev)->ifa_list); ifa; \ ifa = rcu_dereference(ifa->ifa_next)) static inline struct in_device *__in_dev_get_rcu(const struct net_device *dev) { return rcu_dereference(dev->ip_ptr); } static inline struct in_device *in_dev_get(const struct net_device *dev) { struct in_device *in_dev; rcu_read_lock(); in_dev = __in_dev_get_rcu(dev); if (in_dev) refcount_inc(&in_dev->refcnt); rcu_read_unlock(); return in_dev; } static inline struct in_device *__in_dev_get_rtnl(const struct net_device *dev) { return rtnl_dereference(dev->ip_ptr); } /* called with rcu_read_lock or rtnl held */ static inline bool ip_ignore_linkdown(const struct net_device *dev) { struct in_device *in_dev; bool rc = false; in_dev = rcu_dereference_rtnl(dev->ip_ptr); if (in_dev && IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev)) rc = true; return rc; } static inline struct neigh_parms *__in_dev_arp_parms_get_rcu(const struct net_device *dev) { struct in_device *in_dev = __in_dev_get_rcu(dev); return in_dev ? in_dev->arp_parms : NULL; } void in_dev_finish_destroy(struct in_device *idev); static inline void in_dev_put(struct in_device *idev) { if (refcount_dec_and_test(&idev->refcnt)) in_dev_finish_destroy(idev); } #define __in_dev_put(idev) refcount_dec(&(idev)->refcnt) #define in_dev_hold(idev) refcount_inc(&(idev)->refcnt) #endif /* __KERNEL__ */ static __inline__ __be32 inet_make_mask(int logmask) { if (logmask) return htonl(~((1U<<(32-logmask))-1)); return 0; } static __inline__ int inet_mask_len(__be32 mask) { __u32 hmask = ntohl(mask); if (!hmask) return 0; return 32 - ffz(~hmask); } #endif /* _LINUX_INETDEVICE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM fib #if !defined(_TRACE_FIB_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_FIB_H #include <linux/skbuff.h> #include <linux/netdevice.h> #include <net/ip_fib.h> #include <linux/tracepoint.h> TRACE_EVENT(fib_table_lookup, TP_PROTO(u32 tb_id, const struct flowi4 *flp, const struct fib_nh_common *nhc, int err), TP_ARGS(tb_id, flp, nhc, err), TP_STRUCT__entry( __field( u32, tb_id ) __field( int, err ) __field( int, oif ) __field( int, iif ) __field( u8, proto ) __field( __u8, tos ) __field( __u8, scope ) __field( __u8, flags ) __array( __u8, src, 4 ) __array( __u8, dst, 4 ) __array( __u8, gw4, 4 ) __array( __u8, gw6, 16 ) __field( u16, sport ) __field( u16, dport ) __dynamic_array(char, name, IFNAMSIZ ) ), TP_fast_assign( struct in6_addr in6_zero = {}; struct net_device *dev; struct in6_addr *in6; __be32 *p32; __entry->tb_id = tb_id; __entry->err = err; __entry->oif = flp->flowi4_oif; __entry->iif = flp->flowi4_iif; __entry->tos = flp->flowi4_tos; __entry->scope = flp->flowi4_scope; __entry->flags = flp->flowi4_flags; p32 = (__be32 *) __entry->src; *p32 = flp->saddr; p32 = (__be32 *) __entry->dst; *p32 = flp->daddr; __entry->proto = flp->flowi4_proto; if (__entry->proto == IPPROTO_TCP || __entry->proto == IPPROTO_UDP) { __entry->sport = ntohs(flp->fl4_sport); __entry->dport = ntohs(flp->fl4_dport); } else { __entry->sport = 0; __entry->dport = 0; } dev = nhc ? nhc->nhc_dev : NULL; __assign_str(name, dev ? dev->name : "-"); if (nhc) { if (nhc->nhc_gw_family == AF_INET) { p32 = (__be32 *) __entry->gw4; *p32 = nhc->nhc_gw.ipv4; in6 = (struct in6_addr *)__entry->gw6; *in6 = in6_zero; } else if (nhc->nhc_gw_family == AF_INET6) { p32 = (__be32 *) __entry->gw4; *p32 = 0; in6 = (struct in6_addr *)__entry->gw6; *in6 = nhc->nhc_gw.ipv6; } } else { p32 = (__be32 *) __entry->gw4; *p32 = 0; in6 = (struct in6_addr *)__entry->gw6; *in6 = in6_zero; } ), TP_printk("table %u oif %d iif %d proto %u %pI4/%u -> %pI4/%u tos %d scope %d flags %x ==> dev %s gw %pI4/%pI6c err %d", __entry->tb_id, __entry->oif, __entry->iif, __entry->proto, __entry->src, __entry->sport, __entry->dst, __entry->dport, __entry->tos, __entry->scope, __entry->flags, __get_str(name), __entry->gw4, __entry->gw6, __entry->err) ); #endif /* _TRACE_FIB_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 /* SPDX-License-Identifier: GPL-2.0-or-later */ #ifndef _ASM_X86_INAT_H #define _ASM_X86_INAT_H /* * x86 instruction attributes * * Written by Masami Hiramatsu <mhiramat@redhat.com> */ #include <asm/inat_types.h> /* * Internal bits. Don't use bitmasks directly, because these bits are * unstable. You should use checking functions. */ #define INAT_OPCODE_TABLE_SIZE 256 #define INAT_GROUP_TABLE_SIZE 8 /* Legacy last prefixes */ #define INAT_PFX_OPNDSZ 1 /* 0x66 */ /* LPFX1 */ #define INAT_PFX_REPE 2 /* 0xF3 */ /* LPFX2 */ #define INAT_PFX_REPNE 3 /* 0xF2 */ /* LPFX3 */ /* Other Legacy prefixes */ #define INAT_PFX_LOCK 4 /* 0xF0 */ #define INAT_PFX_CS 5 /* 0x2E */ #define INAT_PFX_DS 6 /* 0x3E */ #define INAT_PFX_ES 7 /* 0x26 */ #define INAT_PFX_FS 8 /* 0x64 */ #define INAT_PFX_GS 9 /* 0x65 */ #define INAT_PFX_SS 10 /* 0x36 */ #define INAT_PFX_ADDRSZ 11 /* 0x67 */ /* x86-64 REX prefix */ #define INAT_PFX_REX 12 /* 0x4X */ /* AVX VEX prefixes */ #define INAT_PFX_VEX2 13 /* 2-bytes VEX prefix */ #define INAT_PFX_VEX3 14 /* 3-bytes VEX prefix */ #define INAT_PFX_EVEX 15 /* EVEX prefix */ #define INAT_LSTPFX_MAX 3 #define INAT_LGCPFX_MAX 11 /* Immediate size */ #define INAT_IMM_BYTE 1 #define INAT_IMM_WORD 2 #define INAT_IMM_DWORD 3 #define INAT_IMM_QWORD 4 #define INAT_IMM_PTR 5 #define INAT_IMM_VWORD32 6 #define INAT_IMM_VWORD 7 /* Legacy prefix */ #define INAT_PFX_OFFS 0 #define INAT_PFX_BITS 4 #define INAT_PFX_MAX ((1 << INAT_PFX_BITS) - 1) #define INAT_PFX_MASK (INAT_PFX_MAX << INAT_PFX_OFFS) /* Escape opcodes */ #define INAT_ESC_OFFS (INAT_PFX_OFFS + INAT_PFX_BITS) #define INAT_ESC_BITS 2 #define INAT_ESC_MAX ((1 << INAT_ESC_BITS) - 1) #define INAT_ESC_MASK (INAT_ESC_MAX << INAT_ESC_OFFS) /* Group opcodes (1-16) */ #define INAT_GRP_OFFS (INAT_ESC_OFFS + INAT_ESC_BITS) #define INAT_GRP_BITS 5 #define INAT_GRP_MAX ((1 << INAT_GRP_BITS) - 1) #define INAT_GRP_MASK (INAT_GRP_MAX << INAT_GRP_OFFS) /* Immediates */ #define INAT_IMM_OFFS (INAT_GRP_OFFS + INAT_GRP_BITS) #define INAT_IMM_BITS 3 #define INAT_IMM_MASK (((1 << INAT_IMM_BITS) - 1) << INAT_IMM_OFFS) /* Flags */ #define INAT_FLAG_OFFS (INAT_IMM_OFFS + INAT_IMM_BITS) #define INAT_MODRM (1 << (INAT_FLAG_OFFS)) #define INAT_FORCE64 (1 << (INAT_FLAG_OFFS + 1)) #define INAT_SCNDIMM (1 << (INAT_FLAG_OFFS + 2)) #define INAT_MOFFSET (1 << (INAT_FLAG_OFFS + 3)) #define INAT_VARIANT (1 << (INAT_FLAG_OFFS + 4)) #define INAT_VEXOK (1 << (INAT_FLAG_OFFS + 5)) #define INAT_VEXONLY (1 << (INAT_FLAG_OFFS + 6)) #define INAT_EVEXONLY (1 << (INAT_FLAG_OFFS + 7)) /* Attribute making macros for attribute tables */ #define INAT_MAKE_PREFIX(pfx) (pfx << INAT_PFX_OFFS) #define INAT_MAKE_ESCAPE(esc) (esc << INAT_ESC_OFFS) #define INAT_MAKE_GROUP(grp) ((grp << INAT_GRP_OFFS) | INAT_MODRM) #define INAT_MAKE_IMM(imm) (imm << INAT_IMM_OFFS) /* Identifiers for segment registers */ #define INAT_SEG_REG_IGNORE 0 #define INAT_SEG_REG_DEFAULT 1 #define INAT_SEG_REG_CS 2 #define INAT_SEG_REG_SS 3 #define INAT_SEG_REG_DS 4 #define INAT_SEG_REG_ES 5 #define INAT_SEG_REG_FS 6 #define INAT_SEG_REG_GS 7 /* Attribute search APIs */ extern insn_attr_t inat_get_opcode_attribute(insn_byte_t opcode); extern int inat_get_last_prefix_id(insn_byte_t last_pfx); extern insn_attr_t inat_get_escape_attribute(insn_byte_t opcode, int lpfx_id, insn_attr_t esc_attr); extern insn_attr_t inat_get_group_attribute(insn_byte_t modrm, int lpfx_id, insn_attr_t esc_attr); extern insn_attr_t inat_get_avx_attribute(insn_byte_t opcode, insn_byte_t vex_m, insn_byte_t vex_pp); /* Attribute checking functions */ static inline int inat_is_legacy_prefix(insn_attr_t attr) { attr &= INAT_PFX_MASK; return attr && attr <= INAT_LGCPFX_MAX; } static inline int inat_is_address_size_prefix(insn_attr_t attr) { return (attr & INAT_PFX_MASK) == INAT_PFX_ADDRSZ; } static inline int inat_is_operand_size_prefix(insn_attr_t attr) { return (attr & INAT_PFX_MASK) == INAT_PFX_OPNDSZ; } static inline int inat_is_rex_prefix(insn_attr_t attr) { return (attr & INAT_PFX_MASK) == INAT_PFX_REX; } static inline int inat_last_prefix_id(insn_attr_t attr) { if ((attr & INAT_PFX_MASK) > INAT_LSTPFX_MAX) return 0; else return attr & INAT_PFX_MASK; } static inline int inat_is_vex_prefix(insn_attr_t attr) { attr &= INAT_PFX_MASK; return attr == INAT_PFX_VEX2 || attr == INAT_PFX_VEX3 || attr == INAT_PFX_EVEX; } static inline int inat_is_evex_prefix(insn_attr_t attr) { return (attr & INAT_PFX_MASK) == INAT_PFX_EVEX; } static inline int inat_is_vex3_prefix(insn_attr_t attr) { return (attr & INAT_PFX_MASK) == INAT_PFX_VEX3; } static inline int inat_is_escape(insn_attr_t attr) { return attr & INAT_ESC_MASK; } static inline int inat_escape_id(insn_attr_t attr) { return (attr & INAT_ESC_MASK) >> INAT_ESC_OFFS; } static inline int inat_is_group(insn_attr_t attr) { return attr & INAT_GRP_MASK; } static inline int inat_group_id(insn_attr_t attr) { return (attr & INAT_GRP_MASK) >> INAT_GRP_OFFS; } static inline int inat_group_common_attribute(insn_attr_t attr) { return attr & ~INAT_GRP_MASK; } static inline int inat_has_immediate(insn_attr_t attr) { return attr & INAT_IMM_MASK; } static inline int inat_immediate_size(insn_attr_t attr) { return (attr & INAT_IMM_MASK) >> INAT_IMM_OFFS; } static inline int inat_has_modrm(insn_attr_t attr) { return attr & INAT_MODRM; } static inline int inat_is_force64(insn_attr_t attr) { return attr & INAT_FORCE64; } static inline int inat_has_second_immediate(insn_attr_t attr) { return attr & INAT_SCNDIMM; } static inline int inat_has_moffset(insn_attr_t attr) { return attr & INAT_MOFFSET; } static inline int inat_has_variant(insn_attr_t attr) { return attr & INAT_VARIANT; } static inline int inat_accept_vex(insn_attr_t attr) { return attr & INAT_VEXOK; } static inline int inat_must_vex(insn_attr_t attr) { return attr & (INAT_VEXONLY | INAT_EVEXONLY); } static inline int inat_must_evex(insn_attr_t attr) { return attr & INAT_EVEXONLY; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_VMALLOC_H #define _LINUX_VMALLOC_H #include <linux/spinlock.h> #include <linux/init.h> #include <linux/list.h> #include <linux/llist.h> #include <asm/page.h> /* pgprot_t */ #include <linux/rbtree.h> #include <linux/overflow.h> #include <asm/vmalloc.h> struct vm_area_struct; /* vma defining user mapping in mm_types.h */ struct notifier_block; /* in notifier.h */ /* bits in flags of vmalloc's vm_struct below */ #define VM_IOREMAP 0x00000001 /* ioremap() and friends */ #define VM_ALLOC 0x00000002 /* vmalloc() */ #define VM_MAP 0x00000004 /* vmap()ed pages */ #define VM_USERMAP 0x00000008 /* suitable for remap_vmalloc_range */ #define VM_DMA_COHERENT 0x00000010 /* dma_alloc_coherent */ #define VM_UNINITIALIZED 0x00000020 /* vm_struct is not fully initialized */ #define VM_NO_GUARD 0x00000040 /* don't add guard page */ #define VM_KASAN 0x00000080 /* has allocated kasan shadow memory */ #define VM_FLUSH_RESET_PERMS 0x00000100 /* reset direct map and flush TLB on unmap, can't be freed in atomic context */ #define VM_MAP_PUT_PAGES 0x00000200 /* put pages and free array in vfree */ /* * VM_KASAN is used slighly differently depending on CONFIG_KASAN_VMALLOC. * * If IS_ENABLED(CONFIG_KASAN_VMALLOC), VM_KASAN is set on a vm_struct after * shadow memory has been mapped. It's used to handle allocation errors so that * we don't try to poision shadow on free if it was never allocated. * * Otherwise, VM_KASAN is set for kasan_module_alloc() allocations and used to * determine which allocations need the module shadow freed. */ /* bits [20..32] reserved for arch specific ioremap internals */ /* * Maximum alignment for ioremap() regions. * Can be overriden by arch-specific value. */ #ifndef IOREMAP_MAX_ORDER #define IOREMAP_MAX_ORDER (7 + PAGE_SHIFT) /* 128 pages */ #endif struct vm_struct { struct vm_struct *next; void *addr; unsigned long size; unsigned long flags; struct page **pages; unsigned int nr_pages; phys_addr_t phys_addr; const void *caller; }; struct vmap_area { unsigned long va_start; unsigned long va_end; struct rb_node rb_node; /* address sorted rbtree */ struct list_head list; /* address sorted list */ /* * The following three variables can be packed, because * a vmap_area object is always one of the three states: * 1) in "free" tree (root is vmap_area_root) * 2) in "busy" tree (root is free_vmap_area_root) * 3) in purge list (head is vmap_purge_list) */ union { unsigned long subtree_max_size; /* in "free" tree */ struct vm_struct *vm; /* in "busy" tree */ struct llist_node purge_list; /* in purge list */ }; }; /* * Highlevel APIs for driver use */ extern void vm_unmap_ram(const void *mem, unsigned int count); extern void *vm_map_ram(struct page **pages, unsigned int count, int node); extern void vm_unmap_aliases(void); #ifdef CONFIG_MMU extern void __init vmalloc_init(void); extern unsigned long vmalloc_nr_pages(void); #else static inline void vmalloc_init(void) { } static inline unsigned long vmalloc_nr_pages(void) { return 0; } #endif extern void *vmalloc(unsigned long size); extern void *vzalloc(unsigned long size); extern void *vmalloc_user(unsigned long size); extern void *vmalloc_node(unsigned long size, int node); extern void *vzalloc_node(unsigned long size, int node); extern void *vmalloc_32(unsigned long size); extern void *vmalloc_32_user(unsigned long size); extern void *__vmalloc(unsigned long size, gfp_t gfp_mask); extern void *__vmalloc_node_range(unsigned long size, unsigned long align, unsigned long start, unsigned long end, gfp_t gfp_mask, pgprot_t prot, unsigned long vm_flags, int node, const void *caller); void *__vmalloc_node(unsigned long size, unsigned long align, gfp_t gfp_mask, int node, const void *caller); extern void vfree(const void *addr); extern void vfree_atomic(const void *addr); extern void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot); void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot); extern void vunmap(const void *addr); extern int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, void *kaddr, unsigned long pgoff, unsigned long size); extern int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, unsigned long pgoff); /* * Architectures can set this mask to a combination of PGTBL_P?D_MODIFIED values * and let generic vmalloc and ioremap code know when arch_sync_kernel_mappings() * needs to be called. */ #ifndef ARCH_PAGE_TABLE_SYNC_MASK #define ARCH_PAGE_TABLE_SYNC_MASK 0 #endif /* * There is no default implementation for arch_sync_kernel_mappings(). It is * relied upon the compiler to optimize calls out if ARCH_PAGE_TABLE_SYNC_MASK * is 0. */ void arch_sync_kernel_mappings(unsigned long start, unsigned long end); /* * Lowlevel-APIs (not for driver use!) */ static inline size_t get_vm_area_size(const struct vm_struct *area) { if (!(area->flags & VM_NO_GUARD)) /* return actual size without guard page */ return area->size - PAGE_SIZE; else return area->size; } extern struct vm_struct *get_vm_area(unsigned long size, unsigned long flags); extern struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, const void *caller); extern struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, unsigned long start, unsigned long end, const void *caller); void free_vm_area(struct vm_struct *area); extern struct vm_struct *remove_vm_area(const void *addr); extern struct vm_struct *find_vm_area(const void *addr); #ifdef CONFIG_MMU extern int map_kernel_range_noflush(unsigned long start, unsigned long size, pgprot_t prot, struct page **pages); int map_kernel_range(unsigned long start, unsigned long size, pgprot_t prot, struct page **pages); extern void unmap_kernel_range_noflush(unsigned long addr, unsigned long size); extern void unmap_kernel_range(unsigned long addr, unsigned long size); static inline void set_vm_flush_reset_perms(void *addr) { struct vm_struct *vm = find_vm_area(addr); if (vm) vm->flags |= VM_FLUSH_RESET_PERMS; } #else static inline int map_kernel_range_noflush(unsigned long start, unsigned long size, pgprot_t prot, struct page **pages) { return size >> PAGE_SHIFT; } #define map_kernel_range map_kernel_range_noflush static inline void unmap_kernel_range_noflush(unsigned long addr, unsigned long size) { } #define unmap_kernel_range unmap_kernel_range_noflush static inline void set_vm_flush_reset_perms(void *addr) { } #endif /* for /dev/kmem */ extern long vread(char *buf, char *addr, unsigned long count); extern long vwrite(char *buf, char *addr, unsigned long count); /* * Internals. Dont't use.. */ extern struct list_head vmap_area_list; extern __init void vm_area_add_early(struct vm_struct *vm); extern __init void vm_area_register_early(struct vm_struct *vm, size_t align); #ifdef CONFIG_SMP # ifdef CONFIG_MMU struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, const size_t *sizes, int nr_vms, size_t align); void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms); # else static inline struct vm_struct ** pcpu_get_vm_areas(const unsigned long *offsets, const size_t *sizes, int nr_vms, size_t align) { return NULL; } static inline void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) { } # endif #endif #ifdef CONFIG_MMU #define VMALLOC_TOTAL (VMALLOC_END - VMALLOC_START) #else #define VMALLOC_TOTAL 0UL #endif int register_vmap_purge_notifier(struct notifier_block *nb); int unregister_vmap_purge_notifier(struct notifier_block *nb); #endif /* _LINUX_VMALLOC_H */
1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 // SPDX-License-Identifier: GPL-2.0-only /* * linux/mm/memory.c * * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds */ /* * demand-loading started 01.12.91 - seems it is high on the list of * things wanted, and it should be easy to implement. - Linus */ /* * Ok, demand-loading was easy, shared pages a little bit tricker. Shared * pages started 02.12.91, seems to work. - Linus. * * Tested sharing by executing about 30 /bin/sh: under the old kernel it * would have taken more than the 6M I have free, but it worked well as * far as I could see. * * Also corrected some "invalidate()"s - I wasn't doing enough of them. */ /* * Real VM (paging to/from disk) started 18.12.91. Much more work and * thought has to go into this. Oh, well.. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. * Found it. Everything seems to work now. * 20.12.91 - Ok, making the swap-device changeable like the root. */ /* * 05.04.94 - Multi-page memory management added for v1.1. * Idea by Alex Bligh (alex@cconcepts.co.uk) * * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG * (Gerhard.Wichert@pdb.siemens.de) * * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) */ #include <linux/kernel_stat.h> #include <linux/mm.h> #include <linux/sched/mm.h> #include <linux/sched/coredump.h> #include <linux/sched/numa_balancing.h> #include <linux/sched/task.h> #include <linux/hugetlb.h> #include <linux/mman.h> #include <linux/swap.h> #include <linux/highmem.h> #include <linux/pagemap.h> #include <linux/memremap.h> #include <linux/ksm.h> #include <linux/rmap.h> #include <linux/export.h> #include <linux/delayacct.h> #include <linux/init.h> #include <linux/pfn_t.h> #include <linux/writeback.h> #include <linux/memcontrol.h> #include <linux/mmu_notifier.h> #include <linux/swapops.h> #include <linux/elf.h> #include <linux/gfp.h> #include <linux/migrate.h> #include <linux/string.h> #include <linux/debugfs.h> #include <linux/userfaultfd_k.h> #include <linux/dax.h> #include <linux/oom.h> #include <linux/numa.h> #include <linux/perf_event.h> #include <linux/ptrace.h> #include <linux/vmalloc.h> #include <trace/events/kmem.h> #include <asm/io.h> #include <asm/mmu_context.h> #include <asm/pgalloc.h> #include <linux/uaccess.h> #include <asm/tlb.h> #include <asm/tlbflush.h> #include "pgalloc-track.h" #include "internal.h" #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. #endif #ifndef CONFIG_NEED_MULTIPLE_NODES /* use the per-pgdat data instead for discontigmem - mbligh */ unsigned long max_mapnr; EXPORT_SYMBOL(max_mapnr); struct page *mem_map; EXPORT_SYMBOL(mem_map); #endif /* * A number of key systems in x86 including ioremap() rely on the assumption * that high_memory defines the upper bound on direct map memory, then end * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL * and ZONE_HIGHMEM. */ void *high_memory; EXPORT_SYMBOL(high_memory); /* * Randomize the address space (stacks, mmaps, brk, etc.). * * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, * as ancient (libc5 based) binaries can segfault. ) */ int randomize_va_space __read_mostly = #ifdef CONFIG_COMPAT_BRK 1; #else 2; #endif #ifndef arch_faults_on_old_pte static inline bool arch_faults_on_old_pte(void) { /* * Those arches which don't have hw access flag feature need to * implement their own helper. By default, "true" means pagefault * will be hit on old pte. */ return true; } #endif static int __init disable_randmaps(char *s) { randomize_va_space = 0; return 1; } __setup("norandmaps", disable_randmaps); unsigned long zero_pfn __read_mostly; EXPORT_SYMBOL(zero_pfn); unsigned long highest_memmap_pfn __read_mostly; /* * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() */ static int __init init_zero_pfn(void) { zero_pfn = page_to_pfn(ZERO_PAGE(0)); return 0; } early_initcall(init_zero_pfn); void mm_trace_rss_stat(struct mm_struct *mm, int member, long count) { trace_rss_stat(mm, member, count); } #if defined(SPLIT_RSS_COUNTING) void sync_mm_rss(struct mm_struct *mm) { int i; for (i = 0; i < NR_MM_COUNTERS; i++) { if (current->rss_stat.count[i]) { add_mm_counter(mm, i, current->rss_stat.count[i]); current->rss_stat.count[i] = 0; } } current->rss_stat.events = 0; } static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) { struct task_struct *task = current; if (likely(task->mm == mm)) task->rss_stat.count[member] += val; else add_mm_counter(mm, member, val); } #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) /* sync counter once per 64 page faults */ #define TASK_RSS_EVENTS_THRESH (64) static void check_sync_rss_stat(struct task_struct *task) { if (unlikely(task != current)) return; if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) sync_mm_rss(task->mm); } #else /* SPLIT_RSS_COUNTING */ #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) static void check_sync_rss_stat(struct task_struct *task) { } #endif /* SPLIT_RSS_COUNTING */ /* * Note: this doesn't free the actual pages themselves. That * has been handled earlier when unmapping all the memory regions. */ static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, unsigned long addr) { pgtable_t token = pmd_pgtable(*pmd); pmd_clear(pmd); pte_free_tlb(tlb, token, addr); mm_dec_nr_ptes(tlb->mm); } static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, unsigned long addr, unsigned long end, unsigned long floor, unsigned long ceiling) { pmd_t *pmd; unsigned long next; unsigned long start; start = addr; pmd = pmd_offset(pud, addr); do { next = pmd_addr_end(addr, end); if (pmd_none_or_clear_bad(pmd)) continue; free_pte_range(tlb, pmd, addr); } while (pmd++, addr = next, addr != end); start &= PUD_MASK; if (start < floor) return; if (ceiling) { ceiling &= PUD_MASK; if (!ceiling) return; } if (end - 1 > ceiling - 1) return; pmd = pmd_offset(pud, start); pud_clear(pud); pmd_free_tlb(tlb, pmd, start); mm_dec_nr_pmds(tlb->mm); } static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, unsigned long addr, unsigned long end, unsigned long floor, unsigned long ceiling) { pud_t *pud; unsigned long next; unsigned long start; start = addr; pud = pud_offset(p4d, addr); do { next = pud_addr_end(addr, end); if (pud_none_or_clear_bad(pud)) continue; free_pmd_range(tlb, pud, addr, next, floor, ceiling); } while (pud++, addr = next, addr != end); start &= P4D_MASK; if (start < floor) return; if (ceiling) { ceiling &= P4D_MASK; if (!ceiling) return; } if (end - 1 > ceiling - 1) return; pud = pud_offset(p4d, start); p4d_clear(p4d); pud_free_tlb(tlb, pud, start); mm_dec_nr_puds(tlb->mm); } static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, unsigned long addr, unsigned long end, unsigned long floor, unsigned long ceiling) { p4d_t *p4d; unsigned long next; unsigned long start; start = addr; p4d = p4d_offset(pgd, addr); do { next = p4d_addr_end(addr, end); if (p4d_none_or_clear_bad(p4d)) continue; free_pud_range(tlb, p4d, addr, next, floor, ceiling); } while (p4d++, addr = next, addr != end); start &= PGDIR_MASK; if (start < floor) return; if (ceiling) { ceiling &= PGDIR_MASK; if (!ceiling) return; } if (end - 1 > ceiling - 1) return; p4d = p4d_offset(pgd, start); pgd_clear(pgd); p4d_free_tlb(tlb, p4d, start); } /* * This function frees user-level page tables of a process. */ void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, unsigned long end, unsigned long floor, unsigned long ceiling) { pgd_t *pgd; unsigned long next; /* * The next few lines have given us lots of grief... * * Why are we testing PMD* at this top level? Because often * there will be no work to do at all, and we'd prefer not to * go all the way down to the bottom just to discover that. * * Why all these "- 1"s? Because 0 represents both the bottom * of the address space and the top of it (using -1 for the * top wouldn't help much: the masks would do the wrong thing). * The rule is that addr 0 and floor 0 refer to the bottom of * the address space, but end 0 and ceiling 0 refer to the top * Comparisons need to use "end - 1" and "ceiling - 1" (though * that end 0 case should be mythical). * * Wherever addr is brought up or ceiling brought down, we must * be careful to reject "the opposite 0" before it confuses the * subsequent tests. But what about where end is brought down * by PMD_SIZE below? no, end can't go down to 0 there. * * Whereas we round start (addr) and ceiling down, by different * masks at different levels, in order to test whether a table * now has no other vmas using it, so can be freed, we don't * bother to round floor or end up - the tests don't need that. */ addr &= PMD_MASK; if (addr < floor) { addr += PMD_SIZE; if (!addr) return; } if (ceiling) { ceiling &= PMD_MASK; if (!ceiling) return; } if (end - 1 > ceiling - 1) end -= PMD_SIZE; if (addr > end - 1) return; /* * We add page table cache pages with PAGE_SIZE, * (see pte_free_tlb()), flush the tlb if we need */ tlb_change_page_size(tlb, PAGE_SIZE); pgd = pgd_offset(tlb->mm, addr); do { next = pgd_addr_end(addr, end); if (pgd_none_or_clear_bad(pgd)) continue; free_p4d_range(tlb, pgd, addr, next, floor, ceiling); } while (pgd++, addr = next, addr != end); } void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, unsigned long floor, unsigned long ceiling) { while (vma) { struct vm_area_struct *next = vma->vm_next; unsigned long addr = vma->vm_start; /* * Hide vma from rmap and truncate_pagecache before freeing * pgtables */ unlink_anon_vmas(vma); unlink_file_vma(vma); if (is_vm_hugetlb_page(vma)) { hugetlb_free_pgd_range(tlb, addr, vma->vm_end, floor, next ? next->vm_start : ceiling); } else { /* * Optimization: gather nearby vmas into one call down */ while (next && next->vm_start <= vma->vm_end + PMD_SIZE && !is_vm_hugetlb_page(next)) { vma = next; next = vma->vm_next; unlink_anon_vmas(vma); unlink_file_vma(vma); } free_pgd_range(tlb, addr, vma->vm_end, floor, next ? next->vm_start : ceiling); } vma = next; } } int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) { spinlock_t *ptl; pgtable_t new = pte_alloc_one(mm); if (!new) return -ENOMEM; /* * Ensure all pte setup (eg. pte page lock and page clearing) are * visible before the pte is made visible to other CPUs by being * put into page tables. * * The other side of the story is the pointer chasing in the page * table walking code (when walking the page table without locking; * ie. most of the time). Fortunately, these data accesses consist * of a chain of data-dependent loads, meaning most CPUs (alpha * being the notable exception) will already guarantee loads are * seen in-order. See the alpha page table accessors for the * smp_rmb() barriers in page table walking code. */ smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ ptl = pmd_lock(mm, pmd); if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ mm_inc_nr_ptes(mm); pmd_populate(mm, pmd, new); new = NULL; } spin_unlock(ptl); if (new) pte_free(mm, new); return 0; } int __pte_alloc_kernel(pmd_t *pmd) { pte_t *new = pte_alloc_one_kernel(&init_mm); if (!new) return -ENOMEM; smp_wmb(); /* See comment in __pte_alloc */ spin_lock(&init_mm.page_table_lock); if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ pmd_populate_kernel(&init_mm, pmd, new); new = NULL; } spin_unlock(&init_mm.page_table_lock); if (new) pte_free_kernel(&init_mm, new); return 0; } static inline void init_rss_vec(int *rss) { memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); } static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) { int i; if (current->mm == mm) sync_mm_rss(mm); for (i = 0; i < NR_MM_COUNTERS; i++) if (rss[i]) add_mm_counter(mm, i, rss[i]); } /* * This function is called to print an error when a bad pte * is found. For example, we might have a PFN-mapped pte in * a region that doesn't allow it. * * The calling function must still handle the error. */ static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, pte_t pte, struct page *page) { pgd_t *pgd = pgd_offset(vma->vm_mm, addr); p4d_t *p4d = p4d_offset(pgd, addr); pud_t *pud = pud_offset(p4d, addr); pmd_t *pmd = pmd_offset(pud, addr); struct address_space *mapping; pgoff_t index; static unsigned long resume; static unsigned long nr_shown; static unsigned long nr_unshown; /* * Allow a burst of 60 reports, then keep quiet for that minute; * or allow a steady drip of one report per second. */ if (nr_shown == 60) { if (time_before(jiffies, resume)) { nr_unshown++; return; } if (nr_unshown) { pr_alert("BUG: Bad page map: %lu messages suppressed\n", nr_unshown); nr_unshown = 0; } nr_shown = 0; } if (nr_shown++ == 0) resume = jiffies + 60 * HZ; mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; index = linear_page_index(vma, addr); pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", current->comm, (long long)pte_val(pte), (long long)pmd_val(*pmd)); if (page) dump_page(page, "bad pte"); pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n", vma->vm_file, vma->vm_ops ? vma->vm_ops->fault : NULL, vma->vm_file ? vma->vm_file->f_op->mmap : NULL, mapping ? mapping->a_ops->readpage : NULL); dump_stack(); add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); } /* * vm_normal_page -- This function gets the "struct page" associated with a pte. * * "Special" mappings do not wish to be associated with a "struct page" (either * it doesn't exist, or it exists but they don't want to touch it). In this * case, NULL is returned here. "Normal" mappings do have a struct page. * * There are 2 broad cases. Firstly, an architecture may define a pte_special() * pte bit, in which case this function is trivial. Secondly, an architecture * may not have a spare pte bit, which requires a more complicated scheme, * described below. * * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a * special mapping (even if there are underlying and valid "struct pages"). * COWed pages of a VM_PFNMAP are always normal. * * The way we recognize COWed pages within VM_PFNMAP mappings is through the * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit * set, and the vm_pgoff will point to the first PFN mapped: thus every special * mapping will always honor the rule * * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) * * And for normal mappings this is false. * * This restricts such mappings to be a linear translation from virtual address * to pfn. To get around this restriction, we allow arbitrary mappings so long * as the vma is not a COW mapping; in that case, we know that all ptes are * special (because none can have been COWed). * * * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. * * VM_MIXEDMAP mappings can likewise contain memory with or without "struct * page" backing, however the difference is that _all_ pages with a struct * page (that is, those where pfn_valid is true) are refcounted and considered * normal pages by the VM. The disadvantage is that pages are refcounted * (which can be slower and simply not an option for some PFNMAP users). The * advantage is that we don't have to follow the strict linearity rule of * PFNMAP mappings in order to support COWable mappings. * */ struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte) { unsigned long pfn = pte_pfn(pte); if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { if (likely(!pte_special(pte))) goto check_pfn; if (vma->vm_ops && vma->vm_ops->find_special_page) return vma->vm_ops->find_special_page(vma, addr); if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) return NULL; if (is_zero_pfn(pfn)) return NULL; if (pte_devmap(pte)) return NULL; print_bad_pte(vma, addr, pte, NULL); return NULL; } /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { if (vma->vm_flags & VM_MIXEDMAP) { if (!pfn_valid(pfn)) return NULL; goto out; } else { unsigned long off; off = (addr - vma->vm_start) >> PAGE_SHIFT; if (pfn == vma->vm_pgoff + off) return NULL; if (!is_cow_mapping(vma->vm_flags)) return NULL; } } if (is_zero_pfn(pfn)) return NULL; check_pfn: if (unlikely(pfn > highest_memmap_pfn)) { print_bad_pte(vma, addr, pte, NULL); return NULL; } /* * NOTE! We still have PageReserved() pages in the page tables. * eg. VDSO mappings can cause them to exist. */ out: return pfn_to_page(pfn); } #ifdef CONFIG_TRANSPARENT_HUGEPAGE struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, pmd_t pmd) { unsigned long pfn = pmd_pfn(pmd); /* * There is no pmd_special() but there may be special pmds, e.g. * in a direct-access (dax) mapping, so let's just replicate the * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. */ if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { if (vma->vm_flags & VM_MIXEDMAP) { if (!pfn_valid(pfn)) return NULL; goto out; } else { unsigned long off; off = (addr - vma->vm_start) >> PAGE_SHIFT; if (pfn == vma->vm_pgoff + off) return NULL; if (!is_cow_mapping(vma->vm_flags)) return NULL; } } if (pmd_devmap(pmd)) return NULL; if (is_huge_zero_pmd(pmd)) return NULL; if (unlikely(pfn > highest_memmap_pfn)) return NULL; /* * NOTE! We still have PageReserved() pages in the page tables. * eg. VDSO mappings can cause them to exist. */ out: return pfn_to_page(pfn); } #endif /* * copy one vm_area from one task to the other. Assumes the page tables * already present in the new task to be cleared in the whole range * covered by this vma. */ static unsigned long copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, unsigned long addr, int *rss) { unsigned long vm_flags = dst_vma->vm_flags; pte_t pte = *src_pte; struct page *page; swp_entry_t entry = pte_to_swp_entry(pte); if (likely(!non_swap_entry(entry))) { if (swap_duplicate(entry) < 0) return entry.val; /* make sure dst_mm is on swapoff's mmlist. */ if (unlikely(list_empty(&dst_mm->mmlist))) { spin_lock(&mmlist_lock); if (list_empty(&dst_mm->mmlist)) list_add(&dst_mm->mmlist, &src_mm->mmlist); spin_unlock(&mmlist_lock); } rss[MM_SWAPENTS]++; } else if (is_migration_entry(entry)) { page = migration_entry_to_page(entry); rss[mm_counter(page)]++; if (is_write_migration_entry(entry) && is_cow_mapping(vm_flags)) { /* * COW mappings require pages in both * parent and child to be set to read. */ make_migration_entry_read(&entry); pte = swp_entry_to_pte(entry); if (pte_swp_soft_dirty(*src_pte)) pte = pte_swp_mksoft_dirty(pte); if (pte_swp_uffd_wp(*src_pte)) pte = pte_swp_mkuffd_wp(pte); set_pte_at(src_mm, addr, src_pte, pte); } } else if (is_device_private_entry(entry)) { page = device_private_entry_to_page(entry); /* * Update rss count even for unaddressable pages, as * they should treated just like normal pages in this * respect. * * We will likely want to have some new rss counters * for unaddressable pages, at some point. But for now * keep things as they are. */ get_page(page); rss[mm_counter(page)]++; page_dup_rmap(page, false); /* * We do not preserve soft-dirty information, because so * far, checkpoint/restore is the only feature that * requires that. And checkpoint/restore does not work * when a device driver is involved (you cannot easily * save and restore device driver state). */ if (is_write_device_private_entry(entry) && is_cow_mapping(vm_flags)) { make_device_private_entry_read(&entry); pte = swp_entry_to_pte(entry); if (pte_swp_uffd_wp(*src_pte)) pte = pte_swp_mkuffd_wp(pte); set_pte_at(src_mm, addr, src_pte, pte); } } if (!userfaultfd_wp(dst_vma)) pte = pte_swp_clear_uffd_wp(pte); set_pte_at(dst_mm, addr, dst_pte, pte); return 0; } /* * Copy a present and normal page if necessary. * * NOTE! The usual case is that this doesn't need to do * anything, and can just return a positive value. That * will let the caller know that it can just increase * the page refcount and re-use the pte the traditional * way. * * But _if_ we need to copy it because it needs to be * pinned in the parent (and the child should get its own * copy rather than just a reference to the same page), * we'll do that here and return zero to let the caller * know we're done. * * And if we need a pre-allocated page but don't yet have * one, return a negative error to let the preallocation * code know so that it can do so outside the page table * lock. */ static inline int copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, struct page **prealloc, pte_t pte, struct page *page) { struct mm_struct *src_mm = src_vma->vm_mm; struct page *new_page; if (!is_cow_mapping(src_vma->vm_flags)) return 1; /* * What we want to do is to check whether this page may * have been pinned by the parent process. If so, * instead of wrprotect the pte on both sides, we copy * the page immediately so that we'll always guarantee * the pinned page won't be randomly replaced in the * future. * * The page pinning checks are just "has this mm ever * seen pinning", along with the (inexact) check of * the page count. That might give false positives for * for pinning, but it will work correctly. */ if (likely(!atomic_read(&src_mm->has_pinned))) return 1; if (likely(!page_maybe_dma_pinned(page))) return 1; new_page = *prealloc; if (!new_page) return -EAGAIN; /* * We have a prealloc page, all good! Take it * over and copy the page & arm it. */ *prealloc = NULL; copy_user_highpage(new_page, page, addr, src_vma); __SetPageUptodate(new_page); page_add_new_anon_rmap(new_page, dst_vma, addr, false); lru_cache_add_inactive_or_unevictable(new_page, dst_vma); rss[mm_counter(new_page)]++; /* All done, just insert the new page copy in the child */ pte = mk_pte(new_page, dst_vma->vm_page_prot); pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); if (userfaultfd_pte_wp(dst_vma, *src_pte)) /* Uffd-wp needs to be delivered to dest pte as well */ pte = pte_wrprotect(pte_mkuffd_wp(pte)); set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); return 0; } /* * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page * is required to copy this pte. */ static inline int copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, struct page **prealloc) { struct mm_struct *src_mm = src_vma->vm_mm; unsigned long vm_flags = src_vma->vm_flags; pte_t pte = *src_pte; struct page *page; page = vm_normal_page(src_vma, addr, pte); if (page) { int retval; retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte, addr, rss, prealloc, pte, page); if (retval <= 0) return retval; get_page(page); page_dup_rmap(page, false); rss[mm_counter(page)]++; } /* * If it's a COW mapping, write protect it both * in the parent and the child */ if (is_cow_mapping(vm_flags) && pte_write(pte)) { ptep_set_wrprotect(src_mm, addr, src_pte); pte = pte_wrprotect(pte); } /* * If it's a shared mapping, mark it clean in * the child */ if (vm_flags & VM_SHARED) pte = pte_mkclean(pte); pte = pte_mkold(pte); if (!userfaultfd_wp(dst_vma)) pte = pte_clear_uffd_wp(pte); set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); return 0; } static inline struct page * page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma, unsigned long addr) { struct page *new_page; new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr); if (!new_page) return NULL; if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) { put_page(new_page); return NULL; } cgroup_throttle_swaprate(new_page, GFP_KERNEL); return new_page; } static int copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, unsigned long end) { struct mm_struct *dst_mm = dst_vma->vm_mm; struct mm_struct *src_mm = src_vma->vm_mm; pte_t *orig_src_pte, *orig_dst_pte; pte_t *src_pte, *dst_pte; spinlock_t *src_ptl, *dst_ptl; int progress, ret = 0; int rss[NR_MM_COUNTERS]; swp_entry_t entry = (swp_entry_t){0}; struct page *prealloc = NULL; again: progress = 0; init_rss_vec(rss); dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); if (!dst_pte) { ret = -ENOMEM; goto out; } src_pte = pte_offset_map(src_pmd, addr); src_ptl = pte_lockptr(src_mm, src_pmd); spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); orig_src_pte = src_pte; orig_dst_pte = dst_pte; arch_enter_lazy_mmu_mode(); do { /* * We are holding two locks at this point - either of them * could generate latencies in another task on another CPU. */ if (progress >= 32) { progress = 0; if (need_resched() || spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) break; } if (pte_none(*src_pte)) { progress++; continue; } if (unlikely(!pte_present(*src_pte))) { entry.val = copy_nonpresent_pte(dst_mm, src_mm, dst_pte, src_pte, dst_vma, src_vma, addr, rss); if (entry.val) break; progress += 8; continue; } /* copy_present_pte() will clear `*prealloc' if consumed */ ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte, addr, rss, &prealloc); /* * If we need a pre-allocated page for this pte, drop the * locks, allocate, and try again. */ if (unlikely(ret == -EAGAIN)) break; if (unlikely(prealloc)) { /* * pre-alloc page cannot be reused by next time so as * to strictly follow mempolicy (e.g., alloc_page_vma() * will allocate page according to address). This * could only happen if one pinned pte changed. */ put_page(prealloc); prealloc = NULL; } progress += 8; } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); arch_leave_lazy_mmu_mode(); spin_unlock(src_ptl); pte_unmap(orig_src_pte); add_mm_rss_vec(dst_mm, rss); pte_unmap_unlock(orig_dst_pte, dst_ptl); cond_resched(); if (entry.val) { if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { ret = -ENOMEM; goto out; } entry.val = 0; } else if (ret) { WARN_ON_ONCE(ret != -EAGAIN); prealloc = page_copy_prealloc(src_mm, src_vma, addr); if (!prealloc) return -ENOMEM; /* We've captured and resolved the error. Reset, try again. */ ret = 0; } if (addr != end) goto again; out: if (unlikely(prealloc)) put_page(prealloc); return ret; } static inline int copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, pud_t *dst_pud, pud_t *src_pud, unsigned long addr, unsigned long end) { struct mm_struct *dst_mm = dst_vma->vm_mm; struct mm_struct *src_mm = src_vma->vm_mm; pmd_t *src_pmd, *dst_pmd; unsigned long next; dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); if (!dst_pmd) return -ENOMEM; src_pmd = pmd_offset(src_pud, addr); do { next = pmd_addr_end(addr, end); if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) { int err; VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd, addr, dst_vma, src_vma); if (err == -ENOMEM) return -ENOMEM; if (!err) continue; /* fall through */ } if (pmd_none_or_clear_bad(src_pmd)) continue; if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, addr, next)) return -ENOMEM; } while (dst_pmd++, src_pmd++, addr = next, addr != end); return 0; } static inline int copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, unsigned long end) { struct mm_struct *dst_mm = dst_vma->vm_mm; struct mm_struct *src_mm = src_vma->vm_mm; pud_t *src_pud, *dst_pud; unsigned long next; dst_pud = pud_alloc(dst_mm, dst_p4d, addr); if (!dst_pud) return -ENOMEM; src_pud = pud_offset(src_p4d, addr); do { next = pud_addr_end(addr, end); if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { int err; VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); err = copy_huge_pud(dst_mm, src_mm, dst_pud, src_pud, addr, src_vma); if (err == -ENOMEM) return -ENOMEM; if (!err) continue; /* fall through */ } if (pud_none_or_clear_bad(src_pud)) continue; if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, addr, next)) return -ENOMEM; } while (dst_pud++, src_pud++, addr = next, addr != end); return 0; } static inline int copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, unsigned long end) { struct mm_struct *dst_mm = dst_vma->vm_mm; p4d_t *src_p4d, *dst_p4d; unsigned long next; dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); if (!dst_p4d) return -ENOMEM; src_p4d = p4d_offset(src_pgd, addr); do { next = p4d_addr_end(addr, end); if (p4d_none_or_clear_bad(src_p4d)) continue; if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, addr, next)) return -ENOMEM; } while (dst_p4d++, src_p4d++, addr = next, addr != end); return 0; } int copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) { pgd_t *src_pgd, *dst_pgd; unsigned long next; unsigned long addr = src_vma->vm_start; unsigned long end = src_vma->vm_end; struct mm_struct *dst_mm = dst_vma->vm_mm; struct mm_struct *src_mm = src_vma->vm_mm; struct mmu_notifier_range range; bool is_cow; int ret; /* * Don't copy ptes where a page fault will fill them correctly. * Fork becomes much lighter when there are big shared or private * readonly mappings. The tradeoff is that copy_page_range is more * efficient than faulting. */ if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) && !src_vma->anon_vma) return 0; if (is_vm_hugetlb_page(src_vma)) return copy_hugetlb_page_range(dst_mm, src_mm, src_vma); if (unlikely(src_vma->vm_flags & VM_PFNMAP)) { /* * We do not free on error cases below as remove_vma * gets called on error from higher level routine */ ret = track_pfn_copy(src_vma); if (ret) return ret; } /* * We need to invalidate the secondary MMU mappings only when * there could be a permission downgrade on the ptes of the * parent mm. And a permission downgrade will only happen if * is_cow_mapping() returns true. */ is_cow = is_cow_mapping(src_vma->vm_flags); if (is_cow) { mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0, src_vma, src_mm, addr, end); mmu_notifier_invalidate_range_start(&range); /* * Disabling preemption is not needed for the write side, as * the read side doesn't spin, but goes to the mmap_lock. * * Use the raw variant of the seqcount_t write API to avoid * lockdep complaining about preemptibility. */ mmap_assert_write_locked(src_mm); raw_write_seqcount_begin(&src_mm->write_protect_seq); } ret = 0; dst_pgd = pgd_offset(dst_mm, addr); src_pgd = pgd_offset(src_mm, addr); do { next = pgd_addr_end(addr, end); if (pgd_none_or_clear_bad(src_pgd)) continue; if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, addr, next))) { ret = -ENOMEM; break; } } while (dst_pgd++, src_pgd++, addr = next, addr != end); if (is_cow) { raw_write_seqcount_end(&src_mm->write_protect_seq); mmu_notifier_invalidate_range_end(&range); } return ret; } static unsigned long zap_pte_range(struct mmu_gather *tlb, struct vm_area_struct *vma, pmd_t *pmd, unsigned long addr, unsigned long end, struct zap_details *details) { struct mm_struct *mm = tlb->mm; int force_flush = 0; int rss[NR_MM_COUNTERS]; spinlock_t *ptl; pte_t *start_pte; pte_t *pte; swp_entry_t entry; tlb_change_page_size(tlb, PAGE_SIZE); again: init_rss_vec(rss); start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); pte = start_pte; flush_tlb_batched_pending(mm); arch_enter_lazy_mmu_mode(); do { pte_t ptent = *pte; if (pte_none(ptent)) continue; if (need_resched()) break; if (pte_present(ptent)) { struct page *page; page = vm_normal_page(vma, addr, ptent); if (unlikely(details) && page) { /* * unmap_shared_mapping_pages() wants to * invalidate cache without truncating: * unmap shared but keep private pages. */ if (details->check_mapping && details->check_mapping != page_rmapping(page)) continue; } ptent = ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm); tlb_remove_tlb_entry(tlb, pte, addr); if (unlikely(!page)) continue; if (!PageAnon(page)) { if (pte_dirty(ptent)) { force_flush = 1; set_page_dirty(page); } if (pte_young(ptent) && likely(!(vma->vm_flags & VM_SEQ_READ))) mark_page_accessed(page); } rss[mm_counter(page)]--; page_remove_rmap(page, false); if (unlikely(page_mapcount(page) < 0)) print_bad_pte(vma, addr, ptent, page); if (unlikely(__tlb_remove_page(tlb, page))) { force_flush = 1; addr += PAGE_SIZE; break; } continue; } entry = pte_to_swp_entry(ptent); if (is_device_private_entry(entry)) { struct page *page = device_private_entry_to_page(entry); if (unlikely(details && details->check_mapping)) { /* * unmap_shared_mapping_pages() wants to * invalidate cache without truncating: * unmap shared but keep private pages. */ if (details->check_mapping != page_rmapping(page)) continue; } pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); rss[mm_counter(page)]--; page_remove_rmap(page, false); put_page(page); continue; } /* If details->check_mapping, we leave swap entries. */ if (unlikely(details)) continue; if (!non_swap_entry(entry)) rss[MM_SWAPENTS]--; else if (is_migration_entry(entry)) { struct page *page; page = migration_entry_to_page(entry); rss[mm_counter(page)]--; } if (unlikely(!free_swap_and_cache(entry))) print_bad_pte(vma, addr, ptent, NULL); pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); } while (pte++, addr += PAGE_SIZE, addr != end); add_mm_rss_vec(mm, rss); arch_leave_lazy_mmu_mode(); /* Do the actual TLB flush before dropping ptl */ if (force_flush) tlb_flush_mmu_tlbonly(tlb); pte_unmap_unlock(start_pte, ptl); /* * If we forced a TLB flush (either due to running out of * batch buffers or because we needed to flush dirty TLB * entries before releasing the ptl), free the batched * memory too. Restart if we didn't do everything. */ if (force_flush) { force_flush = 0; tlb_flush_mmu(tlb); } if (addr != end) { cond_resched(); goto again; } return addr; } static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, struct vm_area_struct *vma, pud_t *pud, unsigned long addr, unsigned long end, struct zap_details *details) { pmd_t *pmd; unsigned long next; pmd = pmd_offset(pud, addr); do { next = pmd_addr_end(addr, end); if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { if (next - addr != HPAGE_PMD_SIZE) __split_huge_pmd(vma, pmd, addr, false, NULL); else if (zap_huge_pmd(tlb, vma, pmd, addr)) goto next; /* fall through */ } else if (details && details->single_page && PageTransCompound(details->single_page) && next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) { spinlock_t *ptl = pmd_lock(tlb->mm, pmd); /* * Take and drop THP pmd lock so that we cannot return * prematurely, while zap_huge_pmd() has cleared *pmd, * but not yet decremented compound_mapcount(). */ spin_unlock(ptl); } /* * Here there can be other concurrent MADV_DONTNEED or * trans huge page faults running, and if the pmd is * none or trans huge it can change under us. This is * because MADV_DONTNEED holds the mmap_lock in read * mode. */ if (pmd_none_or_trans_huge_or_clear_bad(pmd)) goto next; next = zap_pte_range(tlb, vma, pmd, addr, next, details); next: cond_resched(); } while (pmd++, addr = next, addr != end); return addr; } static inline unsigned long zap_pud_range(struct mmu_gather *tlb, struct vm_area_struct *vma, p4d_t *p4d, unsigned long addr, unsigned long end, struct zap_details *details) { pud_t *pud; unsigned long next; pud = pud_offset(p4d, addr); do { next = pud_addr_end(addr, end); if (pud_trans_huge(*pud) || pud_devmap(*pud)) { if (next - addr != HPAGE_PUD_SIZE) { mmap_assert_locked(tlb->mm); split_huge_pud(vma, pud, addr); } else if (zap_huge_pud(tlb, vma, pud, addr)) goto next; /* fall through */ } if (pud_none_or_clear_bad(pud)) continue; next = zap_pmd_range(tlb, vma, pud, addr, next, details); next: cond_resched(); } while (pud++, addr = next, addr != end); return addr; } static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, struct vm_area_struct *vma, pgd_t *pgd, unsigned long addr, unsigned long end, struct zap_details *details) { p4d_t *p4d; unsigned long next; p4d = p4d_offset(pgd, addr); do { next = p4d_addr_end(addr, end); if (p4d_none_or_clear_bad(p4d)) continue; next = zap_pud_range(tlb, vma, p4d, addr, next, details); } while (p4d++, addr = next, addr != end); return addr; } void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma, unsigned long addr, unsigned long end, struct zap_details *details) { pgd_t *pgd; unsigned long next; BUG_ON(addr >= end); tlb_start_vma(tlb, vma); pgd = pgd_offset(vma->vm_mm, addr); do { next = pgd_addr_end(addr, end); if (pgd_none_or_clear_bad(pgd)) continue; next = zap_p4d_range(tlb, vma, pgd, addr, next, details); } while (pgd++, addr = next, addr != end); tlb_end_vma(tlb, vma); } static void unmap_single_vma(struct mmu_gather *tlb, struct vm_area_struct *vma, unsigned long start_addr, unsigned long end_addr, struct zap_details *details) { unsigned long start = max(vma->vm_start, start_addr); unsigned long end; if (start >= vma->vm_end) return; end = min(vma->vm_end, end_addr); if (end <= vma->vm_start) return; if (vma->vm_file) uprobe_munmap(vma, start, end); if (unlikely(vma->vm_flags & VM_PFNMAP)) untrack_pfn(vma, 0, 0); if (start != end) { if (unlikely(is_vm_hugetlb_page(vma))) { /* * It is undesirable to test vma->vm_file as it * should be non-null for valid hugetlb area. * However, vm_file will be NULL in the error * cleanup path of mmap_region. When * hugetlbfs ->mmap method fails, * mmap_region() nullifies vma->vm_file * before calling this function to clean up. * Since no pte has actually been setup, it is * safe to do nothing in this case. */ if (vma->vm_file) { i_mmap_lock_write(vma->vm_file->f_mapping); __unmap_hugepage_range_final(tlb, vma, start, end, NULL); i_mmap_unlock_write(vma->vm_file->f_mapping); } } else unmap_page_range(tlb, vma, start, end, details); } } /** * unmap_vmas - unmap a range of memory covered by a list of vma's * @tlb: address of the caller's struct mmu_gather * @vma: the starting vma * @start_addr: virtual address at which to start unmapping * @end_addr: virtual address at which to end unmapping * * Unmap all pages in the vma list. * * Only addresses between `start' and `end' will be unmapped. * * The VMA list must be sorted in ascending virtual address order. * * unmap_vmas() assumes that the caller will flush the whole unmapped address * range after unmap_vmas() returns. So the only responsibility here is to * ensure that any thus-far unmapped pages are flushed before unmap_vmas() * drops the lock and schedules. */ void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *vma, unsigned long start_addr, unsigned long end_addr) { struct mmu_notifier_range range; mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm, start_addr, end_addr); mmu_notifier_invalidate_range_start(&range); for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); mmu_notifier_invalidate_range_end(&range); } /** * zap_page_range - remove user pages in a given range * @vma: vm_area_struct holding the applicable pages * @start: starting address of pages to zap * @size: number of bytes to zap * * Caller must protect the VMA list */ void zap_page_range(struct vm_area_struct *vma, unsigned long start, unsigned long size) { struct mmu_notifier_range range; struct mmu_gather tlb; lru_add_drain(); mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, start, start + size); tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end); update_hiwater_rss(vma->vm_mm); mmu_notifier_invalidate_range_start(&range); for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next) unmap_single_vma(&tlb, vma, start, range.end, NULL); mmu_notifier_invalidate_range_end(&range); tlb_finish_mmu(&tlb, start, range.end); } /** * zap_page_range_single - remove user pages in a given range * @vma: vm_area_struct holding the applicable pages * @address: starting address of pages to zap * @size: number of bytes to zap * @details: details of shared cache invalidation * * The range must fit into one VMA. */ static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, unsigned long size, struct zap_details *details) { struct mmu_notifier_range range; struct mmu_gather tlb; lru_add_drain(); mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, address, address + size); tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end); update_hiwater_rss(vma->vm_mm); mmu_notifier_invalidate_range_start(&range); unmap_single_vma(&tlb, vma, address, range.end, details); mmu_notifier_invalidate_range_end(&range); tlb_finish_mmu(&tlb, address, range.end); } /** * zap_vma_ptes - remove ptes mapping the vma * @vma: vm_area_struct holding ptes to be zapped * @address: starting address of pages to zap * @size: number of bytes to zap * * This function only unmaps ptes assigned to VM_PFNMAP vmas. * * The entire address range must be fully contained within the vma. * */ void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, unsigned long size) { if (address < vma->vm_start || address + size > vma->vm_end || !(vma->vm_flags & VM_PFNMAP)) return; zap_page_range_single(vma, address, size, NULL); } EXPORT_SYMBOL_GPL(zap_vma_ptes); static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) { pgd_t *pgd; p4d_t *p4d; pud_t *pud; pmd_t *pmd; pgd = pgd_offset(mm, addr); p4d = p4d_alloc(mm, pgd, addr); if (!p4d) return NULL; pud = pud_alloc(mm, p4d, addr); if (!pud) return NULL; pmd = pmd_alloc(mm, pud, addr); if (!pmd) return NULL; VM_BUG_ON(pmd_trans_huge(*pmd)); return pmd; } pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl) { pmd_t *pmd = walk_to_pmd(mm, addr); if (!pmd) return NULL; return pte_alloc_map_lock(mm, pmd, addr, ptl); } static int validate_page_before_insert(struct page *page) { if (PageAnon(page) || PageSlab(page) || page_has_type(page)) return -EINVAL; flush_dcache_page(page); return 0; } static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte, unsigned long addr, struct page *page, pgprot_t prot) { if (!pte_none(*pte)) return -EBUSY; /* Ok, finally just insert the thing.. */ get_page(page); inc_mm_counter_fast(mm, mm_counter_file(page)); page_add_file_rmap(page, false); set_pte_at(mm, addr, pte, mk_pte(page, prot)); return 0; } /* * This is the old fallback for page remapping. * * For historical reasons, it only allows reserved pages. Only * old drivers should use this, and they needed to mark their * pages reserved for the old functions anyway. */ static int insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page, pgprot_t prot) { struct mm_struct *mm = vma->vm_mm; int retval; pte_t *pte; spinlock_t *ptl; retval = validate_page_before_insert(page); if (retval) goto out; retval = -ENOMEM; pte = get_locked_pte(mm, addr, &ptl); if (!pte) goto out; retval = insert_page_into_pte_locked(mm, pte, addr, page, prot); pte_unmap_unlock(pte, ptl); out: return retval; } #ifdef pte_index static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte, unsigned long addr, struct page *page, pgprot_t prot) { int err; if (!page_count(page)) return -EINVAL; err = validate_page_before_insert(page); if (err) return err; return insert_page_into_pte_locked(mm, pte, addr, page, prot); } /* insert_pages() amortizes the cost of spinlock operations * when inserting pages in a loop. Arch *must* define pte_index. */ static int insert_pages(struct vm_area_struct *vma, unsigned long addr, struct page **pages, unsigned long *num, pgprot_t prot) { pmd_t *pmd = NULL; pte_t *start_pte, *pte; spinlock_t *pte_lock; struct mm_struct *const mm = vma->vm_mm; unsigned long curr_page_idx = 0; unsigned long remaining_pages_total = *num; unsigned long pages_to_write_in_pmd; int ret; more: ret = -EFAULT; pmd = walk_to_pmd(mm, addr); if (!pmd) goto out; pages_to_write_in_pmd = min_t(unsigned long, remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); /* Allocate the PTE if necessary; takes PMD lock once only. */ ret = -ENOMEM; if (pte_alloc(mm, pmd)) goto out; while (pages_to_write_in_pmd) { int pte_idx = 0; const int batch_size = min_t(int, pages_to_write_in_pmd, 8); start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { int err = insert_page_in_batch_locked(mm, pte, addr, pages[curr_page_idx], prot); if (unlikely(err)) { pte_unmap_unlock(start_pte, pte_lock); ret = err; remaining_pages_total -= pte_idx; goto out; } addr += PAGE_SIZE; ++curr_page_idx; } pte_unmap_unlock(start_pte, pte_lock); pages_to_write_in_pmd -= batch_size; remaining_pages_total -= batch_size; } if (remaining_pages_total) goto more; ret = 0; out: *num = remaining_pages_total; return ret; } #endif /* ifdef pte_index */ /** * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. * @vma: user vma to map to * @addr: target start user address of these pages * @pages: source kernel pages * @num: in: number of pages to map. out: number of pages that were *not* * mapped. (0 means all pages were successfully mapped). * * Preferred over vm_insert_page() when inserting multiple pages. * * In case of error, we may have mapped a subset of the provided * pages. It is the caller's responsibility to account for this case. * * The same restrictions apply as in vm_insert_page(). */ int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, struct page **pages, unsigned long *num) { #ifdef pte_index const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; if (addr < vma->vm_start || end_addr >= vma->vm_end) return -EFAULT; if (!(vma->vm_flags & VM_MIXEDMAP)) { BUG_ON(mmap_read_trylock(vma->vm_mm)); BUG_ON(vma->vm_flags & VM_PFNMAP); vma->vm_flags |= VM_MIXEDMAP; } /* Defer page refcount checking till we're about to map that page. */ return insert_pages(vma, addr, pages, num, vma->vm_page_prot); #else unsigned long idx = 0, pgcount = *num; int err = -EINVAL; for (; idx < pgcount; ++idx) { err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]); if (err) break; } *num = pgcount - idx; return err; #endif /* ifdef pte_index */ } EXPORT_SYMBOL(vm_insert_pages); /** * vm_insert_page - insert single page into user vma * @vma: user vma to map to * @addr: target user address of this page * @page: source kernel page * * This allows drivers to insert individual pages they've allocated * into a user vma. * * The page has to be a nice clean _individual_ kernel allocation. * If you allocate a compound page, you need to have marked it as * such (__GFP_COMP), or manually just split the page up yourself * (see split_page()). * * NOTE! Traditionally this was done with "remap_pfn_range()" which * took an arbitrary page protection parameter. This doesn't allow * that. Your vma protection will have to be set up correctly, which * means that if you want a shared writable mapping, you'd better * ask for a shared writable mapping! * * The page does not need to be reserved. * * Usually this function is called from f_op->mmap() handler * under mm->mmap_lock write-lock, so it can change vma->vm_flags. * Caller must set VM_MIXEDMAP on vma if it wants to call this * function from other places, for example from page-fault handler. * * Return: %0 on success, negative error code otherwise. */ int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page) { if (addr < vma->vm_start || addr >= vma->vm_end) return -EFAULT; if (!page_count(page)) return -EINVAL; if (!(vma->vm_flags & VM_MIXEDMAP)) { BUG_ON(mmap_read_trylock(vma->vm_mm)); BUG_ON(vma->vm_flags & VM_PFNMAP); vma->vm_flags |= VM_MIXEDMAP; } return insert_page(vma, addr, page, vma->vm_page_prot); } EXPORT_SYMBOL(vm_insert_page); /* * __vm_map_pages - maps range of kernel pages into user vma * @vma: user vma to map to * @pages: pointer to array of source kernel pages * @num: number of pages in page array * @offset: user's requested vm_pgoff * * This allows drivers to map range of kernel pages into a user vma. * * Return: 0 on success and error code otherwise. */ static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, unsigned long num, unsigned long offset) { unsigned long count = vma_pages(vma); unsigned long uaddr = vma->vm_start; int ret, i; /* Fail if the user requested offset is beyond the end of the object */ if (offset >= num) return -ENXIO; /* Fail if the user requested size exceeds available object size */ if (count > num - offset) return -ENXIO; for (i = 0; i < count; i++) { ret = vm_insert_page(vma, uaddr, pages[offset + i]); if (ret < 0) return ret; uaddr += PAGE_SIZE; } return 0; } /** * vm_map_pages - maps range of kernel pages starts with non zero offset * @vma: user vma to map to * @pages: pointer to array of source kernel pages * @num: number of pages in page array * * Maps an object consisting of @num pages, catering for the user's * requested vm_pgoff * * If we fail to insert any page into the vma, the function will return * immediately leaving any previously inserted pages present. Callers * from the mmap handler may immediately return the error as their caller * will destroy the vma, removing any successfully inserted pages. Other * callers should make their own arrangements for calling unmap_region(). * * Context: Process context. Called by mmap handlers. * Return: 0 on success and error code otherwise. */ int vm_map_pages(struct vm_area_struct *vma, struct page **pages, unsigned long num) { return __vm_map_pages(vma, pages, num, vma->vm_pgoff); } EXPORT_SYMBOL(vm_map_pages); /** * vm_map_pages_zero - map range of kernel pages starts with zero offset * @vma: user vma to map to * @pages: pointer to array of source kernel pages * @num: number of pages in page array * * Similar to vm_map_pages(), except that it explicitly sets the offset * to 0. This function is intended for the drivers that did not consider * vm_pgoff. * * Context: Process context. Called by mmap handlers. * Return: 0 on success and error code otherwise. */ int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, unsigned long num) { return __vm_map_pages(vma, pages, num, 0); } EXPORT_SYMBOL(vm_map_pages_zero); static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, pfn_t pfn, pgprot_t prot, bool mkwrite) { struct mm_struct *mm = vma->vm_mm; pte_t *pte, entry; spinlock_t *ptl; pte = get_locked_pte(mm, addr, &ptl); if (!pte) return VM_FAULT_OOM; if (!pte_none(*pte)) { if (mkwrite) { /* * For read faults on private mappings the PFN passed * in may not match the PFN we have mapped if the * mapped PFN is a writeable COW page. In the mkwrite * case we are creating a writable PTE for a shared * mapping and we expect the PFNs to match. If they * don't match, we are likely racing with block * allocation and mapping invalidation so just skip the * update. */ if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) { WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte))); goto out_unlock; } entry = pte_mkyoung(*pte); entry = maybe_mkwrite(pte_mkdirty(entry), vma); if (ptep_set_access_flags(vma, addr, pte, entry, 1)) update_mmu_cache(vma, addr, pte); } goto out_unlock; } /* Ok, finally just insert the thing.. */ if (pfn_t_devmap(pfn)) entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); else entry = pte_mkspecial(pfn_t_pte(pfn, prot)); if (mkwrite) { entry = pte_mkyoung(entry); entry = maybe_mkwrite(pte_mkdirty(entry), vma); } set_pte_at(mm, addr, pte, entry); update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ out_unlock: pte_unmap_unlock(pte, ptl); return VM_FAULT_NOPAGE; } /** * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot * @vma: user vma to map to * @addr: target user address of this page * @pfn: source kernel pfn * @pgprot: pgprot flags for the inserted page * * This is exactly like vmf_insert_pfn(), except that it allows drivers * to override pgprot on a per-page basis. * * This only makes sense for IO mappings, and it makes no sense for * COW mappings. In general, using multiple vmas is preferable; * vmf_insert_pfn_prot should only be used if using multiple VMAs is * impractical. * * See vmf_insert_mixed_prot() for a discussion of the implication of using * a value of @pgprot different from that of @vma->vm_page_prot. * * Context: Process context. May allocate using %GFP_KERNEL. * Return: vm_fault_t value. */ vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn, pgprot_t pgprot) { /* * Technically, architectures with pte_special can avoid all these * restrictions (same for remap_pfn_range). However we would like * consistency in testing and feature parity among all, so we should * try to keep these invariants in place for everybody. */ BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == (VM_PFNMAP|VM_MIXEDMAP)); BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); if (addr < vma->vm_start || addr >= vma->vm_end) return VM_FAULT_SIGBUS; if (!pfn_modify_allowed(pfn, pgprot)) return VM_FAULT_SIGBUS; track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, false); } EXPORT_SYMBOL(vmf_insert_pfn_prot); /** * vmf_insert_pfn - insert single pfn into user vma * @vma: user vma to map to * @addr: target user address of this page * @pfn: source kernel pfn * * Similar to vm_insert_page, this allows drivers to insert individual pages * they've allocated into a user vma. Same comments apply. * * This function should only be called from a vm_ops->fault handler, and * in that case the handler should return the result of this function. * * vma cannot be a COW mapping. * * As this is called only for pages that do not currently exist, we * do not need to flush old virtual caches or the TLB. * * Context: Process context. May allocate using %GFP_KERNEL. * Return: vm_fault_t value. */ vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn) { return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); } EXPORT_SYMBOL(vmf_insert_pfn); static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) { /* these checks mirror the abort conditions in vm_normal_page */ if (vma->vm_flags & VM_MIXEDMAP) return true; if (pfn_t_devmap(pfn)) return true; if (pfn_t_special(pfn)) return true; if (is_zero_pfn(pfn_t_to_pfn(pfn))) return true; return false; } static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, pfn_t pfn, pgprot_t pgprot, bool mkwrite) { int err; BUG_ON(!vm_mixed_ok(vma, pfn)); if (addr < vma->vm_start || addr >= vma->vm_end) return VM_FAULT_SIGBUS; track_pfn_insert(vma, &pgprot, pfn); if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) return VM_FAULT_SIGBUS; /* * If we don't have pte special, then we have to use the pfn_valid() * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* * refcount the page if pfn_valid is true (hence insert_page rather * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP * without pte special, it would there be refcounted as a normal page. */ if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { struct page *page; /* * At this point we are committed to insert_page() * regardless of whether the caller specified flags that * result in pfn_t_has_page() == false. */ page = pfn_to_page(pfn_t_to_pfn(pfn)); err = insert_page(vma, addr, page, pgprot); } else { return insert_pfn(vma, addr, pfn, pgprot, mkwrite); } if (err == -ENOMEM) return VM_FAULT_OOM; if (err < 0 && err != -EBUSY) return VM_FAULT_SIGBUS; return VM_FAULT_NOPAGE; } /** * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot * @vma: user vma to map to * @addr: target user address of this page * @pfn: source kernel pfn * @pgprot: pgprot flags for the inserted page * * This is exactly like vmf_insert_mixed(), except that it allows drivers * to override pgprot on a per-page basis. * * Typically this function should be used by drivers to set caching- and * encryption bits different than those of @vma->vm_page_prot, because * the caching- or encryption mode may not be known at mmap() time. * This is ok as long as @vma->vm_page_prot is not used by the core vm * to set caching and encryption bits for those vmas (except for COW pages). * This is ensured by core vm only modifying these page table entries using * functions that don't touch caching- or encryption bits, using pte_modify() * if needed. (See for example mprotect()). * Also when new page-table entries are created, this is only done using the * fault() callback, and never using the value of vma->vm_page_prot, * except for page-table entries that point to anonymous pages as the result * of COW. * * Context: Process context. May allocate using %GFP_KERNEL. * Return: vm_fault_t value. */ vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, pfn_t pfn, pgprot_t pgprot) { return __vm_insert_mixed(vma, addr, pfn, pgprot, false); } EXPORT_SYMBOL(vmf_insert_mixed_prot); vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, pfn_t pfn) { return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false); } EXPORT_SYMBOL(vmf_insert_mixed); /* * If the insertion of PTE failed because someone else already added a * different entry in the mean time, we treat that as success as we assume * the same entry was actually inserted. */ vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr, pfn_t pfn) { return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true); } EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); /* * maps a range of physical memory into the requested pages. the old * mappings are removed. any references to nonexistent pages results * in null mappings (currently treated as "copy-on-access") */ static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, unsigned long addr, unsigned long end, unsigned long pfn, pgprot_t prot) { pte_t *pte, *mapped_pte; spinlock_t *ptl; int err = 0; mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); if (!pte) return -ENOMEM; arch_enter_lazy_mmu_mode(); do { BUG_ON(!pte_none(*pte)); if (!pfn_modify_allowed(pfn, prot)) { err = -EACCES; break; } set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); pfn++; } while (pte++, addr += PAGE_SIZE, addr != end); arch_leave_lazy_mmu_mode(); pte_unmap_unlock(mapped_pte, ptl); return err; } static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, unsigned long addr, unsigned long end, unsigned long pfn, pgprot_t prot) { pmd_t *pmd; unsigned long next; int err; pfn -= addr >> PAGE_SHIFT; pmd = pmd_alloc(mm, pud, addr); if (!pmd) return -ENOMEM; VM_BUG_ON(pmd_trans_huge(*pmd)); do { next = pmd_addr_end(addr, end); err = remap_pte_range(mm, pmd, addr, next, pfn + (addr >> PAGE_SHIFT), prot); if (err) return err; } while (pmd++, addr = next, addr != end); return 0; } static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, unsigned long addr, unsigned long end, unsigned long pfn, pgprot_t prot) { pud_t *pud; unsigned long next; int err; pfn -= addr >> PAGE_SHIFT; pud = pud_alloc(mm, p4d, addr); if (!pud) return -ENOMEM; do { next = pud_addr_end(addr, end); err = remap_pmd_range(mm, pud, addr, next, pfn + (addr >> PAGE_SHIFT), prot); if (err) return err; } while (pud++, addr = next, addr != end); return 0; } static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, unsigned long addr, unsigned long end, unsigned long pfn, pgprot_t prot) { p4d_t *p4d; unsigned long next; int err; pfn -= addr >> PAGE_SHIFT; p4d = p4d_alloc(mm, pgd, addr); if (!p4d) return -ENOMEM; do { next = p4d_addr_end(addr, end); err = remap_pud_range(mm, p4d, addr, next, pfn + (addr >> PAGE_SHIFT), prot); if (err) return err; } while (p4d++, addr = next, addr != end); return 0; } /** * remap_pfn_range - remap kernel memory to userspace * @vma: user vma to map to * @addr: target page aligned user address to start at * @pfn: page frame number of kernel physical memory address * @size: size of mapping area * @prot: page protection flags for this mapping * * Note: this is only safe if the mm semaphore is held when called. * * Return: %0 on success, negative error code otherwise. */ int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn, unsigned long size, pgprot_t prot) { pgd_t *pgd; unsigned long next; unsigned long end = addr + PAGE_ALIGN(size); struct mm_struct *mm = vma->vm_mm; unsigned long remap_pfn = pfn; int err; if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) return -EINVAL; /* * Physically remapped pages are special. Tell the * rest of the world about it: * VM_IO tells people not to look at these pages * (accesses can have side effects). * VM_PFNMAP tells the core MM that the base pages are just * raw PFN mappings, and do not have a "struct page" associated * with them. * VM_DONTEXPAND * Disable vma merging and expanding with mremap(). * VM_DONTDUMP * Omit vma from core dump, even when VM_IO turned off. * * There's a horrible special case to handle copy-on-write * behaviour that some programs depend on. We mark the "original" * un-COW'ed pages by matching them up with "vma->vm_pgoff". * See vm_normal_page() for details. */ if (is_cow_mapping(vma->vm_flags)) { if (addr != vma->vm_start || end != vma->vm_end) return -EINVAL; vma->vm_pgoff = pfn; } err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size)); if (err) return -EINVAL; vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; BUG_ON(addr >= end); pfn -= addr >> PAGE_SHIFT; pgd = pgd_offset(mm, addr); flush_cache_range(vma, addr, end); do { next = pgd_addr_end(addr, end); err = remap_p4d_range(mm, pgd, addr, next, pfn + (addr >> PAGE_SHIFT), prot); if (err) break; } while (pgd++, addr = next, addr != end); if (err) untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size)); return err; } EXPORT_SYMBOL(remap_pfn_range); /** * vm_iomap_memory - remap memory to userspace * @vma: user vma to map to * @start: start of the physical memory to be mapped * @len: size of area * * This is a simplified io_remap_pfn_range() for common driver use. The * driver just needs to give us the physical memory range to be mapped, * we'll figure out the rest from the vma information. * * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get * whatever write-combining details or similar. * * Return: %0 on success, negative error code otherwise. */ int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) { unsigned long vm_len, pfn, pages; /* Check that the physical memory area passed in looks valid */ if (start + len < start) return -EINVAL; /* * You *really* shouldn't map things that aren't page-aligned, * but we've historically allowed it because IO memory might * just have smaller alignment. */ len += start & ~PAGE_MASK; pfn = start >> PAGE_SHIFT; pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; if (pfn + pages < pfn) return -EINVAL; /* We start the mapping 'vm_pgoff' pages into the area */ if (vma->vm_pgoff > pages) return -EINVAL; pfn += vma->vm_pgoff; pages -= vma->vm_pgoff; /* Can we fit all of the mapping? */ vm_len = vma->vm_end - vma->vm_start; if (vm_len >> PAGE_SHIFT > pages) return -EINVAL; /* Ok, let it rip */ return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); } EXPORT_SYMBOL(vm_iomap_memory); static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, unsigned long addr, unsigned long end, pte_fn_t fn, void *data, bool create, pgtbl_mod_mask *mask) { pte_t *pte; int err = 0; spinlock_t *ptl; if (create) { pte = (mm == &init_mm) ? pte_alloc_kernel_track(pmd, addr, mask) : pte_alloc_map_lock(mm, pmd, addr, &ptl); if (!pte) return -ENOMEM; } else { pte = (mm == &init_mm) ? pte_offset_kernel(pmd, addr) : pte_offset_map_lock(mm, pmd, addr, &ptl); } BUG_ON(pmd_huge(*pmd)); arch_enter_lazy_mmu_mode(); if (fn) { do { if (create || !pte_none(*pte)) { err = fn(pte++, addr, data); if (err) break; } } while (addr += PAGE_SIZE, addr != end); } *mask |= PGTBL_PTE_MODIFIED; arch_leave_lazy_mmu_mode(); if (mm != &init_mm) pte_unmap_unlock(pte-1, ptl); return err; } static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, unsigned long addr, unsigned long end, pte_fn_t fn, void *data, bool create, pgtbl_mod_mask *mask) { pmd_t *pmd; unsigned long next; int err = 0; BUG_ON(pud_huge(*pud)); if (create) { pmd = pmd_alloc_track(mm, pud, addr, mask); if (!pmd) return -ENOMEM; } else { pmd = pmd_offset(pud, addr); } do { next = pmd_addr_end(addr, end); if (create || !pmd_none_or_clear_bad(pmd)) { err = apply_to_pte_range(mm, pmd, addr, next, fn, data, create, mask); if (err) break; } } while (pmd++, addr = next, addr != end); return err; } static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, unsigned long addr, unsigned long end, pte_fn_t fn, void *data, bool create, pgtbl_mod_mask *mask) { pud_t *pud; unsigned long next; int err = 0; if (create) { pud = pud_alloc_track(mm, p4d, addr, mask); if (!pud) return -ENOMEM; } else { pud = pud_offset(p4d, addr); } do { next = pud_addr_end(addr, end); if (create || !pud_none_or_clear_bad(pud)) { err = apply_to_pmd_range(mm, pud, addr, next, fn, data, create, mask); if (err) break; } } while (pud++, addr = next, addr != end); return err; } static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, unsigned long addr, unsigned long end, pte_fn_t fn, void *data, bool create, pgtbl_mod_mask *mask) { p4d_t *p4d; unsigned long next; int err = 0; if (create) { p4d = p4d_alloc_track(mm, pgd, addr, mask); if (!p4d) return -ENOMEM; } else { p4d = p4d_offset(pgd, addr); } do { next = p4d_addr_end(addr, end); if (create || !p4d_none_or_clear_bad(p4d)) { err = apply_to_pud_range(mm, p4d, addr, next, fn, data, create, mask); if (err) break; } } while (p4d++, addr = next, addr != end); return err; } static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, unsigned long size, pte_fn_t fn, void *data, bool create) { pgd_t *pgd; unsigned long start = addr, next; unsigned long end = addr + size; pgtbl_mod_mask mask = 0; int err = 0; if (WARN_ON(addr >= end)) return -EINVAL; pgd = pgd_offset(mm, addr); do { next = pgd_addr_end(addr, end); if (!create && pgd_none_or_clear_bad(pgd)) continue; err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create, &mask); if (err) break; } while (pgd++, addr = next, addr != end); if (mask & ARCH_PAGE_TABLE_SYNC_MASK) arch_sync_kernel_mappings(start, start + size); return err; } /* * Scan a region of virtual memory, filling in page tables as necessary * and calling a provided function on each leaf page table. */ int apply_to_page_range(struct mm_struct *mm, unsigned long addr, unsigned long size, pte_fn_t fn, void *data) { return __apply_to_page_range(mm, addr, size, fn, data, true); } EXPORT_SYMBOL_GPL(apply_to_page_range); /* * Scan a region of virtual memory, calling a provided function on * each leaf page table where it exists. * * Unlike apply_to_page_range, this does _not_ fill in page tables * where they are absent. */ int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, unsigned long size, pte_fn_t fn, void *data) { return __apply_to_page_range(mm, addr, size, fn, data, false); } EXPORT_SYMBOL_GPL(apply_to_existing_page_range); /* * handle_pte_fault chooses page fault handler according to an entry which was * read non-atomically. Before making any commitment, on those architectures * or configurations (e.g. i386 with PAE) which might give a mix of unmatched * parts, do_swap_page must check under lock before unmapping the pte and * proceeding (but do_wp_page is only called after already making such a check; * and do_anonymous_page can safely check later on). */ static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, pte_t *page_table, pte_t orig_pte) { int same = 1; #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) if (sizeof(pte_t) > sizeof(unsigned long)) { spinlock_t *ptl = pte_lockptr(mm, pmd); spin_lock(ptl); same = pte_same(*page_table, orig_pte); spin_unlock(ptl); } #endif pte_unmap(page_table); return same; } static inline bool cow_user_page(struct page *dst, struct page *src, struct vm_fault *vmf) { bool ret; void *kaddr; void __user *uaddr; bool locked = false; struct vm_area_struct *vma = vmf->vma; struct mm_struct *mm = vma->vm_mm; unsigned long addr = vmf->address; if (likely(src)) { copy_user_highpage(dst, src, addr, vma); return true; } /* * If the source page was a PFN mapping, we don't have * a "struct page" for it. We do a best-effort copy by * just copying from the original user address. If that * fails, we just zero-fill it. Live with it. */ kaddr = kmap_atomic(dst); uaddr = (void __user *)(addr & PAGE_MASK); /* * On architectures with software "accessed" bits, we would * take a double page fault, so mark it accessed here. */ if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) { pte_t entry; vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); locked = true; if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { /* * Other thread has already handled the fault * and update local tlb only */ update_mmu_tlb(vma, addr, vmf->pte); ret = false; goto pte_unlock; } entry = pte_mkyoung(vmf->orig_pte); if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) update_mmu_cache(vma, addr, vmf->pte); } /* * This really shouldn't fail, because the page is there * in the page tables. But it might just be unreadable, * in which case we just give up and fill the result with * zeroes. */ if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { if (locked) goto warn; /* Re-validate under PTL if the page is still mapped */ vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); locked = true; if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { /* The PTE changed under us, update local tlb */ update_mmu_tlb(vma, addr, vmf->pte); ret = false; goto pte_unlock; } /* * The same page can be mapped back since last copy attempt. * Try to copy again under PTL. */ if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { /* * Give a warn in case there can be some obscure * use-case */ warn: WARN_ON_ONCE(1); clear_page(kaddr); } } ret = true; pte_unlock: if (locked) pte_unmap_unlock(vmf->pte, vmf->ptl); kunmap_atomic(kaddr); flush_dcache_page(dst); return ret; } static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) { struct file *vm_file = vma->vm_file; if (vm_file) return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; /* * Special mappings (e.g. VDSO) do not have any file so fake * a default GFP_KERNEL for them. */ return GFP_KERNEL; } /* * Notify the address space that the page is about to become writable so that * it can prohibit this or wait for the page to get into an appropriate state. * * We do this without the lock held, so that it can sleep if it needs to. */ static vm_fault_t do_page_mkwrite(struct vm_fault *vmf) { vm_fault_t ret; struct page *page = vmf->page; unsigned int old_flags = vmf->flags; vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; if (vmf->vma->vm_file && IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) return VM_FAULT_SIGBUS; ret = vmf->vma->vm_ops->page_mkwrite(vmf); /* Restore original flags so that caller is not surprised */ vmf->flags = old_flags; if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) return ret; if (unlikely(!(ret & VM_FAULT_LOCKED))) { lock_page(page); if (!page->mapping) { unlock_page(page); return 0; /* retry */ } ret |= VM_FAULT_LOCKED; } else VM_BUG_ON_PAGE(!PageLocked(page), page); return ret; } /* * Handle dirtying of a page in shared file mapping on a write fault. * * The function expects the page to be locked and unlocks it. */ static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; struct address_space *mapping; struct page *page = vmf->page; bool dirtied; bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; dirtied = set_page_dirty(page); VM_BUG_ON_PAGE(PageAnon(page), page); /* * Take a local copy of the address_space - page.mapping may be zeroed * by truncate after unlock_page(). The address_space itself remains * pinned by vma->vm_file's reference. We rely on unlock_page()'s * release semantics to prevent the compiler from undoing this copying. */ mapping = page_rmapping(page); unlock_page(page); if (!page_mkwrite) file_update_time(vma->vm_file); /* * Throttle page dirtying rate down to writeback speed. * * mapping may be NULL here because some device drivers do not * set page.mapping but still dirty their pages * * Drop the mmap_lock before waiting on IO, if we can. The file * is pinning the mapping, as per above. */ if ((dirtied || page_mkwrite) && mapping) { struct file *fpin; fpin = maybe_unlock_mmap_for_io(vmf, NULL); balance_dirty_pages_ratelimited(mapping); if (fpin) { fput(fpin); return VM_FAULT_RETRY; } } return 0; } /* * Handle write page faults for pages that can be reused in the current vma * * This can happen either due to the mapping being with the VM_SHARED flag, * or due to us being the last reference standing to the page. In either * case, all we need to do here is to mark the page as writable and update * any related book-keeping. */ static inline void wp_page_reuse(struct vm_fault *vmf) __releases(vmf->ptl) { struct vm_area_struct *vma = vmf->vma; struct page *page = vmf->page; pte_t entry; /* * Clear the pages cpupid information as the existing * information potentially belongs to a now completely * unrelated process. */ if (page) page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); entry = pte_mkyoung(vmf->orig_pte); entry = maybe_mkwrite(pte_mkdirty(entry), vma); if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) update_mmu_cache(vma, vmf->address, vmf->pte); pte_unmap_unlock(vmf->pte, vmf->ptl); count_vm_event(PGREUSE); } /* * Handle the case of a page which we actually need to copy to a new page. * * Called with mmap_lock locked and the old page referenced, but * without the ptl held. * * High level logic flow: * * - Allocate a page, copy the content of the old page to the new one. * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. * - Take the PTL. If the pte changed, bail out and release the allocated page * - If the pte is still the way we remember it, update the page table and all * relevant references. This includes dropping the reference the page-table * held to the old page, as well as updating the rmap. * - In any case, unlock the PTL and drop the reference we took to the old page. */ static vm_fault_t wp_page_copy(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; struct mm_struct *mm = vma->vm_mm; struct page *old_page = vmf->page; struct page *new_page = NULL; pte_t entry; int page_copied = 0; struct mmu_notifier_range range; if (unlikely(anon_vma_prepare(vma))) goto oom; if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { new_page = alloc_zeroed_user_highpage_movable(vma, vmf->address); if (!new_page) goto oom; } else { new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); if (!new_page) goto oom; if (!cow_user_page(new_page, old_page, vmf)) { /* * COW failed, if the fault was solved by other, * it's fine. If not, userspace would re-fault on * the same address and we will handle the fault * from the second attempt. */ put_page(new_page); if (old_page) put_page(old_page); return 0; } } if (mem_cgroup_charge(new_page, mm, GFP_KERNEL)) goto oom_free_new; cgroup_throttle_swaprate(new_page, GFP_KERNEL); __SetPageUptodate(new_page); mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, vmf->address & PAGE_MASK, (vmf->address & PAGE_MASK) + PAGE_SIZE); mmu_notifier_invalidate_range_start(&range); /* * Re-check the pte - we dropped the lock */ vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); if (likely(pte_same(*vmf->pte, vmf->orig_pte))) { if (old_page) { if (!PageAnon(old_page)) { dec_mm_counter_fast(mm, mm_counter_file(old_page)); inc_mm_counter_fast(mm, MM_ANONPAGES); } } else { inc_mm_counter_fast(mm, MM_ANONPAGES); } flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); entry = mk_pte(new_page, vma->vm_page_prot); entry = pte_sw_mkyoung(entry); entry = maybe_mkwrite(pte_mkdirty(entry), vma); /* * Clear the pte entry and flush it first, before updating the * pte with the new entry. This will avoid a race condition * seen in the presence of one thread doing SMC and another * thread doing COW. */ ptep_clear_flush_notify(vma, vmf->address, vmf->pte); page_add_new_anon_rmap(new_page, vma, vmf->address, false); lru_cache_add_inactive_or_unevictable(new_page, vma); /* * We call the notify macro here because, when using secondary * mmu page tables (such as kvm shadow page tables), we want the * new page to be mapped directly into the secondary page table. */ set_pte_at_notify(mm, vmf->address, vmf->pte, entry); update_mmu_cache(vma, vmf->address, vmf->pte); if (old_page) { /* * Only after switching the pte to the new page may * we remove the mapcount here. Otherwise another * process may come and find the rmap count decremented * before the pte is switched to the new page, and * "reuse" the old page writing into it while our pte * here still points into it and can be read by other * threads. * * The critical issue is to order this * page_remove_rmap with the ptp_clear_flush above. * Those stores are ordered by (if nothing else,) * the barrier present in the atomic_add_negative * in page_remove_rmap. * * Then the TLB flush in ptep_clear_flush ensures that * no process can access the old page before the * decremented mapcount is visible. And the old page * cannot be reused until after the decremented * mapcount is visible. So transitively, TLBs to * old page will be flushed before it can be reused. */ page_remove_rmap(old_page, false); } /* Free the old page.. */ new_page = old_page; page_copied = 1; } else { update_mmu_tlb(vma, vmf->address, vmf->pte); } if (new_page) put_page(new_page); pte_unmap_unlock(vmf->pte, vmf->ptl); /* * No need to double call mmu_notifier->invalidate_range() callback as * the above ptep_clear_flush_notify() did already call it. */ mmu_notifier_invalidate_range_only_end(&range); if (old_page) { /* * Don't let another task, with possibly unlocked vma, * keep the mlocked page. */ if (page_copied && (vma->vm_flags & VM_LOCKED)) { lock_page(old_page); /* LRU manipulation */ if (PageMlocked(old_page)) munlock_vma_page(old_page); unlock_page(old_page); } put_page(old_page); } return page_copied ? VM_FAULT_WRITE : 0; oom_free_new: put_page(new_page); oom: if (old_page) put_page(old_page); return VM_FAULT_OOM; } /** * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE * writeable once the page is prepared * * @vmf: structure describing the fault * * This function handles all that is needed to finish a write page fault in a * shared mapping due to PTE being read-only once the mapped page is prepared. * It handles locking of PTE and modifying it. * * The function expects the page to be locked or other protection against * concurrent faults / writeback (such as DAX radix tree locks). * * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before * we acquired PTE lock. */ vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf) { WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, &vmf->ptl); /* * We might have raced with another page fault while we released the * pte_offset_map_lock. */ if (!pte_same(*vmf->pte, vmf->orig_pte)) { update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); pte_unmap_unlock(vmf->pte, vmf->ptl); return VM_FAULT_NOPAGE; } wp_page_reuse(vmf); return 0; } /* * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED * mapping */ static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { vm_fault_t ret; pte_unmap_unlock(vmf->pte, vmf->ptl); vmf->flags |= FAULT_FLAG_MKWRITE; ret = vma->vm_ops->pfn_mkwrite(vmf); if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) return ret; return finish_mkwrite_fault(vmf); } wp_page_reuse(vmf); return VM_FAULT_WRITE; } static vm_fault_t wp_page_shared(struct vm_fault *vmf) __releases(vmf->ptl) { struct vm_area_struct *vma = vmf->vma; vm_fault_t ret = VM_FAULT_WRITE; get_page(vmf->page); if (vma->vm_ops && vma->vm_ops->page_mkwrite) { vm_fault_t tmp; pte_unmap_unlock(vmf->pte, vmf->ptl); tmp = do_page_mkwrite(vmf); if (unlikely(!tmp || (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { put_page(vmf->page); return tmp; } tmp = finish_mkwrite_fault(vmf); if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { unlock_page(vmf->page); put_page(vmf->page); return tmp; } } else { wp_page_reuse(vmf); lock_page(vmf->page); } ret |= fault_dirty_shared_page(vmf); put_page(vmf->page); return ret; } /* * This routine handles present pages, when users try to write * to a shared page. It is done by copying the page to a new address * and decrementing the shared-page counter for the old page. * * Note that this routine assumes that the protection checks have been * done by the caller (the low-level page fault routine in most cases). * Thus we can safely just mark it writable once we've done any necessary * COW. * * We also mark the page dirty at this point even though the page will * change only once the write actually happens. This avoids a few races, * and potentially makes it more efficient. * * We enter with non-exclusive mmap_lock (to exclude vma changes, * but allow concurrent faults), with pte both mapped and locked. * We return with mmap_lock still held, but pte unmapped and unlocked. */ static vm_fault_t do_wp_page(struct vm_fault *vmf) __releases(vmf->ptl) { struct vm_area_struct *vma = vmf->vma; if (userfaultfd_pte_wp(vma, *vmf->pte)) { pte_unmap_unlock(vmf->pte, vmf->ptl); return handle_userfault(vmf, VM_UFFD_WP); } /* * Userfaultfd write-protect can defer flushes. Ensure the TLB * is flushed in this case before copying. */ if (unlikely(userfaultfd_wp(vmf->vma) && mm_tlb_flush_pending(vmf->vma->vm_mm))) flush_tlb_page(vmf->vma, vmf->address); vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); if (!vmf->page) { /* * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a * VM_PFNMAP VMA. * * We should not cow pages in a shared writeable mapping. * Just mark the pages writable and/or call ops->pfn_mkwrite. */ if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == (VM_WRITE|VM_SHARED)) return wp_pfn_shared(vmf); pte_unmap_unlock(vmf->pte, vmf->ptl); return wp_page_copy(vmf); } /* * Take out anonymous pages first, anonymous shared vmas are * not dirty accountable. */ if (PageAnon(vmf->page)) { struct page *page = vmf->page; /* PageKsm() doesn't necessarily raise the page refcount */ if (PageKsm(page) || page_count(page) != 1) goto copy; if (!trylock_page(page)) goto copy; if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) { unlock_page(page); goto copy; } /* * Ok, we've got the only map reference, and the only * page count reference, and the page is locked, * it's dark out, and we're wearing sunglasses. Hit it. */ unlock_page(page); wp_page_reuse(vmf); return VM_FAULT_WRITE; } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == (VM_WRITE|VM_SHARED))) { return wp_page_shared(vmf); } copy: /* * Ok, we need to copy. Oh, well.. */ get_page(vmf->page); pte_unmap_unlock(vmf->pte, vmf->ptl); return wp_page_copy(vmf); } static void unmap_mapping_range_vma(struct vm_area_struct *vma, unsigned long start_addr, unsigned long end_addr, struct zap_details *details) { zap_page_range_single(vma, start_addr, end_addr - start_addr, details); } static inline void unmap_mapping_range_tree(struct rb_root_cached *root, struct zap_details *details) { struct vm_area_struct *vma; pgoff_t vba, vea, zba, zea; vma_interval_tree_foreach(vma, root, details->first_index, details->last_index) { vba = vma->vm_pgoff; vea = vba + vma_pages(vma) - 1; zba = details->first_index; if (zba < vba) zba = vba; zea = details->last_index; if (zea > vea) zea = vea; unmap_mapping_range_vma(vma, ((zba - vba) << PAGE_SHIFT) + vma->vm_start, ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, details); } } /** * unmap_mapping_page() - Unmap single page from processes. * @page: The locked page to be unmapped. * * Unmap this page from any userspace process which still has it mmaped. * Typically, for efficiency, the range of nearby pages has already been * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once * truncation or invalidation holds the lock on a page, it may find that * the page has been remapped again: and then uses unmap_mapping_page() * to unmap it finally. */ void unmap_mapping_page(struct page *page) { struct address_space *mapping = page->mapping; struct zap_details details = { }; VM_BUG_ON(!PageLocked(page)); VM_BUG_ON(PageTail(page)); details.check_mapping = mapping; details.first_index = page->index; details.last_index = page->index + thp_nr_pages(page) - 1; details.single_page = page; i_mmap_lock_write(mapping); if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) unmap_mapping_range_tree(&mapping->i_mmap, &details); i_mmap_unlock_write(mapping); } /** * unmap_mapping_pages() - Unmap pages from processes. * @mapping: The address space containing pages to be unmapped. * @start: Index of first page to be unmapped. * @nr: Number of pages to be unmapped. 0 to unmap to end of file. * @even_cows: Whether to unmap even private COWed pages. * * Unmap the pages in this address space from any userspace process which * has them mmaped. Generally, you want to remove COWed pages as well when * a file is being truncated, but not when invalidating pages from the page * cache. */ void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, pgoff_t nr, bool even_cows) { struct zap_details details = { }; details.check_mapping = even_cows ? NULL : mapping; details.first_index = start; details.last_index = start + nr - 1; if (details.last_index < details.first_index) details.last_index = ULONG_MAX; i_mmap_lock_write(mapping); if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) unmap_mapping_range_tree(&mapping->i_mmap, &details); i_mmap_unlock_write(mapping); } /** * unmap_mapping_range - unmap the portion of all mmaps in the specified * address_space corresponding to the specified byte range in the underlying * file. * * @mapping: the address space containing mmaps to be unmapped. * @holebegin: byte in first page to unmap, relative to the start of * the underlying file. This will be rounded down to a PAGE_SIZE * boundary. Note that this is different from truncate_pagecache(), which * must keep the partial page. In contrast, we must get rid of * partial pages. * @holelen: size of prospective hole in bytes. This will be rounded * up to a PAGE_SIZE boundary. A holelen of zero truncates to the * end of the file. * @even_cows: 1 when truncating a file, unmap even private COWed pages; * but 0 when invalidating pagecache, don't throw away private data. */ void unmap_mapping_range(struct address_space *mapping, loff_t const holebegin, loff_t const holelen, int even_cows) { pgoff_t hba = holebegin >> PAGE_SHIFT; pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; /* Check for overflow. */ if (sizeof(holelen) > sizeof(hlen)) { long long holeend = (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; if (holeend & ~(long long)ULONG_MAX) hlen = ULONG_MAX - hba + 1; } unmap_mapping_pages(mapping, hba, hlen, even_cows); } EXPORT_SYMBOL(unmap_mapping_range); /* * We enter with non-exclusive mmap_lock (to exclude vma changes, * but allow concurrent faults), and pte mapped but not yet locked. * We return with pte unmapped and unlocked. * * We return with the mmap_lock locked or unlocked in the same cases * as does filemap_fault(). */ vm_fault_t do_swap_page(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; struct page *page = NULL, *swapcache; swp_entry_t entry; pte_t pte; int locked; int exclusive = 0; vm_fault_t ret = 0; void *shadow = NULL; if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) goto out; entry = pte_to_swp_entry(vmf->orig_pte); if (unlikely(non_swap_entry(entry))) { if (is_migration_entry(entry)) { migration_entry_wait(vma->vm_mm, vmf->pmd, vmf->address); } else if (is_device_private_entry(entry)) { vmf->page = device_private_entry_to_page(entry); ret = vmf->page->pgmap->ops->migrate_to_ram(vmf); } else if (is_hwpoison_entry(entry)) { ret = VM_FAULT_HWPOISON; } else { print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); ret = VM_FAULT_SIGBUS; } goto out; } delayacct_set_flag(DELAYACCT_PF_SWAPIN); page = lookup_swap_cache(entry, vma, vmf->address); swapcache = page; if (!page) { struct swap_info_struct *si = swp_swap_info(entry); if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && __swap_count(entry) == 1) { /* skip swapcache */ page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); if (page) { int err; __SetPageLocked(page); __SetPageSwapBacked(page); set_page_private(page, entry.val); /* Tell memcg to use swap ownership records */ SetPageSwapCache(page); err = mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL); ClearPageSwapCache(page); if (err) { ret = VM_FAULT_OOM; goto out_page; } shadow = get_shadow_from_swap_cache(entry); if (shadow) workingset_refault(page, shadow); lru_cache_add(page); swap_readpage(page, true); } } else { page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, vmf); swapcache = page; } if (!page) { /* * Back out if somebody else faulted in this pte * while we released the pte lock. */ vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, &vmf->ptl); if (likely(pte_same(*vmf->pte, vmf->orig_pte))) ret = VM_FAULT_OOM; delayacct_clear_flag(DELAYACCT_PF_SWAPIN); goto unlock; } /* Had to read the page from swap area: Major fault */ ret = VM_FAULT_MAJOR; count_vm_event(PGMAJFAULT); count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); } else if (PageHWPoison(page)) { /* * hwpoisoned dirty swapcache pages are kept for killing * owner processes (which may be unknown at hwpoison time) */ ret = VM_FAULT_HWPOISON; delayacct_clear_flag(DELAYACCT_PF_SWAPIN); goto out_release; } locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags); delayacct_clear_flag(DELAYACCT_PF_SWAPIN); if (!locked) { ret |= VM_FAULT_RETRY; goto out_release; } /* * Make sure try_to_free_swap or reuse_swap_page or swapoff did not * release the swapcache from under us. The page pin, and pte_same * test below, are not enough to exclude that. Even if it is still * swapcache, we need to check that the page's swap has not changed. */ if (unlikely((!PageSwapCache(page) || page_private(page) != entry.val)) && swapcache) goto out_page; page = ksm_might_need_to_copy(page, vma, vmf->address); if (unlikely(!page)) { ret = VM_FAULT_OOM; page = swapcache; goto out_page; } cgroup_throttle_swaprate(page, GFP_KERNEL); /* * Back out if somebody else already faulted in this pte. */ vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, &vmf->ptl); if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) goto out_nomap; if (unlikely(!PageUptodate(page))) { ret = VM_FAULT_SIGBUS; goto out_nomap; } /* * The page isn't present yet, go ahead with the fault. * * Be careful about the sequence of operations here. * To get its accounting right, reuse_swap_page() must be called * while the page is counted on swap but not yet in mapcount i.e. * before page_add_anon_rmap() and swap_free(); try_to_free_swap() * must be called after the swap_free(), or it will never succeed. */ inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS); pte = mk_pte(page, vma->vm_page_prot); if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) { pte = maybe_mkwrite(pte_mkdirty(pte), vma); vmf->flags &= ~FAULT_FLAG_WRITE; ret |= VM_FAULT_WRITE; exclusive = RMAP_EXCLUSIVE; } flush_icache_page(vma, page); if (pte_swp_soft_dirty(vmf->orig_pte)) pte = pte_mksoft_dirty(pte); if (pte_swp_uffd_wp(vmf->orig_pte)) { pte = pte_mkuffd_wp(pte); pte = pte_wrprotect(pte); } set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); vmf->orig_pte = pte; /* ksm created a completely new copy */ if (unlikely(page != swapcache && swapcache)) { page_add_new_anon_rmap(page, vma, vmf->address, false); lru_cache_add_inactive_or_unevictable(page, vma); } else { do_page_add_anon_rmap(page, vma, vmf->address, exclusive); } swap_free(entry); if (mem_cgroup_swap_full(page) || (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) try_to_free_swap(page); unlock_page(page); if (page != swapcache && swapcache) { /* * Hold the lock to avoid the swap entry to be reused * until we take the PT lock for the pte_same() check * (to avoid false positives from pte_same). For * further safety release the lock after the swap_free * so that the swap count won't change under a * parallel locked swapcache. */ unlock_page(swapcache); put_page(swapcache); } if (vmf->flags & FAULT_FLAG_WRITE) { ret |= do_wp_page(vmf); if (ret & VM_FAULT_ERROR) ret &= VM_FAULT_ERROR; goto out; } /* No need to invalidate - it was non-present before */ update_mmu_cache(vma, vmf->address, vmf->pte); unlock: pte_unmap_unlock(vmf->pte, vmf->ptl); out: return ret; out_nomap: pte_unmap_unlock(vmf->pte, vmf->ptl); out_page: unlock_page(page); out_release: put_page(page); if (page != swapcache && swapcache) { unlock_page(swapcache); put_page(swapcache); } return ret; } /* * We enter with non-exclusive mmap_lock (to exclude vma changes, * but allow concurrent faults), and pte mapped but not yet locked. * We return with mmap_lock still held, but pte unmapped and unlocked. */ static vm_fault_t do_anonymous_page(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; struct page *page; vm_fault_t ret = 0; pte_t entry; /* File mapping without ->vm_ops ? */ if (vma->vm_flags & VM_SHARED) return VM_FAULT_SIGBUS; /* * Use pte_alloc() instead of pte_alloc_map(). We can't run * pte_offset_map() on pmds where a huge pmd might be created * from a different thread. * * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when * parallel threads are excluded by other means. * * Here we only have mmap_read_lock(mm). */ if (pte_alloc(vma->vm_mm, vmf->pmd)) return VM_FAULT_OOM; /* See the comment in pte_alloc_one_map() */ if (unlikely(pmd_trans_unstable(vmf->pmd))) return 0; /* Use the zero-page for reads */ if (!(vmf->flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(vma->vm_mm)) { entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), vma->vm_page_prot)); vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, &vmf->ptl); if (!pte_none(*vmf->pte)) { update_mmu_tlb(vma, vmf->address, vmf->pte); goto unlock; } ret = check_stable_address_space(vma->vm_mm); if (ret) goto unlock; /* Deliver the page fault to userland, check inside PT lock */ if (userfaultfd_missing(vma)) { pte_unmap_unlock(vmf->pte, vmf->ptl); return handle_userfault(vmf, VM_UFFD_MISSING); } goto setpte; } /* Allocate our own private page. */ if (unlikely(anon_vma_prepare(vma))) goto oom; page = alloc_zeroed_user_highpage_movable(vma, vmf->address); if (!page) goto oom; if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL)) goto oom_free_page; cgroup_throttle_swaprate(page, GFP_KERNEL); /* * The memory barrier inside __SetPageUptodate makes sure that * preceding stores to the page contents become visible before * the set_pte_at() write. */ __SetPageUptodate(page); entry = mk_pte(page, vma->vm_page_prot); entry = pte_sw_mkyoung(entry); if (vma->vm_flags & VM_WRITE) entry = pte_mkwrite(pte_mkdirty(entry)); vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, &vmf->ptl); if (!pte_none(*vmf->pte)) { update_mmu_cache(vma, vmf->address, vmf->pte); goto release; } ret = check_stable_address_space(vma->vm_mm); if (ret) goto release; /* Deliver the page fault to userland, check inside PT lock */ if (userfaultfd_missing(vma)) { pte_unmap_unlock(vmf->pte, vmf->ptl); put_page(page); return handle_userfault(vmf, VM_UFFD_MISSING); } inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); page_add_new_anon_rmap(page, vma, vmf->address, false); lru_cache_add_inactive_or_unevictable(page, vma); setpte: set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); /* No need to invalidate - it was non-present before */ update_mmu_cache(vma, vmf->address, vmf->pte); unlock: pte_unmap_unlock(vmf->pte, vmf->ptl); return ret; release: put_page(page); goto unlock; oom_free_page: put_page(page); oom: return VM_FAULT_OOM; } /* * The mmap_lock must have been held on entry, and may have been * released depending on flags and vma->vm_ops->fault() return value. * See filemap_fault() and __lock_page_retry(). */ static vm_fault_t __do_fault(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; vm_fault_t ret; /* * Preallocate pte before we take page_lock because this might lead to * deadlocks for memcg reclaim which waits for pages under writeback: * lock_page(A) * SetPageWriteback(A) * unlock_page(A) * lock_page(B) * lock_page(B) * pte_alloc_one * shrink_page_list * wait_on_page_writeback(A) * SetPageWriteback(B) * unlock_page(B) * # flush A, B to clear the writeback */ if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); if (!vmf->prealloc_pte) return VM_FAULT_OOM; smp_wmb(); /* See comment in __pte_alloc() */ } ret = vma->vm_ops->fault(vmf); if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | VM_FAULT_DONE_COW))) return ret; if (unlikely(PageHWPoison(vmf->page))) { if (ret & VM_FAULT_LOCKED) unlock_page(vmf->page); put_page(vmf->page); vmf->page = NULL; return VM_FAULT_HWPOISON; } if (unlikely(!(ret & VM_FAULT_LOCKED))) lock_page(vmf->page); else VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); return ret; } /* * The ordering of these checks is important for pmds with _PAGE_DEVMAP set. * If we check pmd_trans_unstable() first we will trip the bad_pmd() check * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly * returning 1 but not before it spams dmesg with the pmd_clear_bad() output. */ static int pmd_devmap_trans_unstable(pmd_t *pmd) { return pmd_devmap(*pmd) || pmd_trans_unstable(pmd); } static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; if (!pmd_none(*vmf->pmd)) goto map_pte; if (vmf->prealloc_pte) { vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); if (unlikely(!pmd_none(*vmf->pmd))) { spin_unlock(vmf->ptl); goto map_pte; } mm_inc_nr_ptes(vma->vm_mm); pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); spin_unlock(vmf->ptl); vmf->prealloc_pte = NULL; } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) { return VM_FAULT_OOM; } map_pte: /* * If a huge pmd materialized under us just retry later. Use * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge * under us and then back to pmd_none, as a result of MADV_DONTNEED * running immediately after a huge pmd fault in a different thread of * this mm, in turn leading to a misleading pmd_trans_huge() retval. * All we have to ensure is that it is a regular pmd that we can walk * with pte_offset_map() and we can do that through an atomic read in * C, which is what pmd_trans_unstable() provides. */ if (pmd_devmap_trans_unstable(vmf->pmd)) return VM_FAULT_NOPAGE; /* * At this point we know that our vmf->pmd points to a page of ptes * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge() * for the duration of the fault. If a racing MADV_DONTNEED runs and * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still * be valid and we will re-check to make sure the vmf->pte isn't * pte_none() under vmf->ptl protection when we return to * alloc_set_pte(). */ vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, &vmf->ptl); return 0; } #ifdef CONFIG_TRANSPARENT_HUGEPAGE static void deposit_prealloc_pte(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); /* * We are going to consume the prealloc table, * count that as nr_ptes. */ mm_inc_nr_ptes(vma->vm_mm); vmf->prealloc_pte = NULL; } static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) { struct vm_area_struct *vma = vmf->vma; bool write = vmf->flags & FAULT_FLAG_WRITE; unsigned long haddr = vmf->address & HPAGE_PMD_MASK; pmd_t entry; int i; vm_fault_t ret = VM_FAULT_FALLBACK; if (!transhuge_vma_suitable(vma, haddr)) return ret; page = compound_head(page); if (compound_order(page) != HPAGE_PMD_ORDER) return ret; /* * Archs like ppc64 need additonal space to store information * related to pte entry. Use the preallocated table for that. */ if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); if (!vmf->prealloc_pte) return VM_FAULT_OOM; smp_wmb(); /* See comment in __pte_alloc() */ } vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); if (unlikely(!pmd_none(*vmf->pmd))) goto out; for (i = 0; i < HPAGE_PMD_NR; i++) flush_icache_page(vma, page + i); entry = mk_huge_pmd(page, vma->vm_page_prot); if (write) entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR); page_add_file_rmap(page, true); /* * deposit and withdraw with pmd lock held */ if (arch_needs_pgtable_deposit()) deposit_prealloc_pte(vmf); set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); update_mmu_cache_pmd(vma, haddr, vmf->pmd); /* fault is handled */ ret = 0; count_vm_event(THP_FILE_MAPPED); out: spin_unlock(vmf->ptl); return ret; } #else static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) { BUILD_BUG(); return 0; } #endif /** * alloc_set_pte - setup new PTE entry for given page and add reverse page * mapping. If needed, the function allocates page table or use pre-allocated. * * @vmf: fault environment * @page: page to map * * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on * return. * * Target users are page handler itself and implementations of * vm_ops->map_pages. * * Return: %0 on success, %VM_FAULT_ code in case of error. */ vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page) { struct vm_area_struct *vma = vmf->vma; bool write = vmf->flags & FAULT_FLAG_WRITE; pte_t entry; vm_fault_t ret; if (pmd_none(*vmf->pmd) && PageTransCompound(page)) { ret = do_set_pmd(vmf, page); if (ret != VM_FAULT_FALLBACK) return ret; } if (!vmf->pte) { ret = pte_alloc_one_map(vmf); if (ret) return ret; } /* Re-check under ptl */ if (unlikely(!pte_none(*vmf->pte))) { update_mmu_tlb(vma, vmf->address, vmf->pte); return VM_FAULT_NOPAGE; } flush_icache_page(vma, page); entry = mk_pte(page, vma->vm_page_prot); entry = pte_sw_mkyoung(entry); if (write) entry = maybe_mkwrite(pte_mkdirty(entry), vma); /* copy-on-write page */ if (write && !(vma->vm_flags & VM_SHARED)) { inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); page_add_new_anon_rmap(page, vma, vmf->address, false); lru_cache_add_inactive_or_unevictable(page, vma); } else { inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); page_add_file_rmap(page, false); } set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); /* no need to invalidate: a not-present page won't be cached */ update_mmu_cache(vma, vmf->address, vmf->pte); return 0; } /** * finish_fault - finish page fault once we have prepared the page to fault * * @vmf: structure describing the fault * * This function handles all that is needed to finish a page fault once the * page to fault in is prepared. It handles locking of PTEs, inserts PTE for * given page, adds reverse page mapping, handles memcg charges and LRU * addition. * * The function expects the page to be locked and on success it consumes a * reference of a page being mapped (for the PTE which maps it). * * Return: %0 on success, %VM_FAULT_ code in case of error. */ vm_fault_t finish_fault(struct vm_fault *vmf) { struct page *page; vm_fault_t ret = 0; /* Did we COW the page? */ if ((vmf->flags & FAULT_FLAG_WRITE) && !(vmf->vma->vm_flags & VM_SHARED)) page = vmf->cow_page; else page = vmf->page; /* * check even for read faults because we might have lost our CoWed * page */ if (!(vmf->vma->vm_flags & VM_SHARED)) ret = check_stable_address_space(vmf->vma->vm_mm); if (!ret) ret = alloc_set_pte(vmf, page); if (vmf->pte) pte_unmap_unlock(vmf->pte, vmf->ptl); return ret; } static unsigned long fault_around_bytes __read_mostly = rounddown_pow_of_two(65536); #ifdef CONFIG_DEBUG_FS static int fault_around_bytes_get(void *data, u64 *val) { *val = fault_around_bytes; return 0; } /* * fault_around_bytes must be rounded down to the nearest page order as it's * what do_fault_around() expects to see. */ static int fault_around_bytes_set(void *data, u64 val) { if (val / PAGE_SIZE > PTRS_PER_PTE) return -EINVAL; if (val > PAGE_SIZE) fault_around_bytes = rounddown_pow_of_two(val); else fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ return 0; } DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); static int __init fault_around_debugfs(void) { debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, &fault_around_bytes_fops); return 0; } late_initcall(fault_around_debugfs); #endif /* * do_fault_around() tries to map few pages around the fault address. The hope * is that the pages will be needed soon and this will lower the number of * faults to handle. * * It uses vm_ops->map_pages() to map the pages, which skips the page if it's * not ready to be mapped: not up-to-date, locked, etc. * * This function is called with the page table lock taken. In the split ptlock * case the page table lock only protects only those entries which belong to * the page table corresponding to the fault address. * * This function doesn't cross the VMA boundaries, in order to call map_pages() * only once. * * fault_around_bytes defines how many bytes we'll try to map. * do_fault_around() expects it to be set to a power of two less than or equal * to PTRS_PER_PTE. * * The virtual address of the area that we map is naturally aligned to * fault_around_bytes rounded down to the machine page size * (and therefore to page order). This way it's easier to guarantee * that we don't cross page table boundaries. */ static vm_fault_t do_fault_around(struct vm_fault *vmf) { unsigned long address = vmf->address, nr_pages, mask; pgoff_t start_pgoff = vmf->pgoff; pgoff_t end_pgoff; int off; vm_fault_t ret = 0; nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; vmf->address = max(address & mask, vmf->vma->vm_start); off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); start_pgoff -= off; /* * end_pgoff is either the end of the page table, the end of * the vma or nr_pages from start_pgoff, depending what is nearest. */ end_pgoff = start_pgoff - ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + PTRS_PER_PTE - 1; end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1, start_pgoff + nr_pages - 1); if (pmd_none(*vmf->pmd)) { vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); if (!vmf->prealloc_pte) goto out; smp_wmb(); /* See comment in __pte_alloc() */ } vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff); /* Huge page is mapped? Page fault is solved */ if (pmd_trans_huge(*vmf->pmd)) { ret = VM_FAULT_NOPAGE; goto out; } /* ->map_pages() haven't done anything useful. Cold page cache? */ if (!vmf->pte) goto out; /* check if the page fault is solved */ vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT); if (!pte_none(*vmf->pte)) ret = VM_FAULT_NOPAGE; pte_unmap_unlock(vmf->pte, vmf->ptl); out: vmf->address = address; vmf->pte = NULL; return ret; } static vm_fault_t do_read_fault(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; vm_fault_t ret = 0; /* * Let's call ->map_pages() first and use ->fault() as fallback * if page by the offset is not ready to be mapped (cold cache or * something). */ if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) { ret = do_fault_around(vmf); if (ret) return ret; } ret = __do_fault(vmf); if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) return ret; ret |= finish_fault(vmf); unlock_page(vmf->page); if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) put_page(vmf->page); return ret; } static vm_fault_t do_cow_fault(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; vm_fault_t ret; if (unlikely(anon_vma_prepare(vma))) return VM_FAULT_OOM; vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); if (!vmf->cow_page) return VM_FAULT_OOM; if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) { put_page(vmf->cow_page); return VM_FAULT_OOM; } cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL); ret = __do_fault(vmf); if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) goto uncharge_out; if (ret & VM_FAULT_DONE_COW) return ret; copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); __SetPageUptodate(vmf->cow_page); ret |= finish_fault(vmf); unlock_page(vmf->page); put_page(vmf->page); if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) goto uncharge_out; return ret; uncharge_out: put_page(vmf->cow_page); return ret; } static vm_fault_t do_shared_fault(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; vm_fault_t ret, tmp; ret = __do_fault(vmf); if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) return ret; /* * Check if the backing address space wants to know that the page is * about to become writable */ if (vma->vm_ops->page_mkwrite) { unlock_page(vmf->page); tmp = do_page_mkwrite(vmf); if (unlikely(!tmp || (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { put_page(vmf->page); return tmp; } } ret |= finish_fault(vmf); if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) { unlock_page(vmf->page); put_page(vmf->page); return ret; } ret |= fault_dirty_shared_page(vmf); return ret; } /* * We enter with non-exclusive mmap_lock (to exclude vma changes, * but allow concurrent faults). * The mmap_lock may have been released depending on flags and our * return value. See filemap_fault() and __lock_page_or_retry(). * If mmap_lock is released, vma may become invalid (for example * by other thread calling munmap()). */ static vm_fault_t do_fault(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; struct mm_struct *vm_mm = vma->vm_mm; vm_fault_t ret; /* * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */ if (!vma->vm_ops->fault) { /* * If we find a migration pmd entry or a none pmd entry, which * should never happen, return SIGBUS */ if (unlikely(!pmd_present(*vmf->pmd))) ret = VM_FAULT_SIGBUS; else { vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, &vmf->ptl); /* * Make sure this is not a temporary clearing of pte * by holding ptl and checking again. A R/M/W update * of pte involves: take ptl, clearing the pte so that * we don't have concurrent modification by hardware * followed by an update. */ if (unlikely(pte_none(*vmf->pte))) ret = VM_FAULT_SIGBUS; else ret = VM_FAULT_NOPAGE; pte_unmap_unlock(vmf->pte, vmf->ptl); } } else if (!(vmf->flags & FAULT_FLAG_WRITE)) ret = do_read_fault(vmf); else if (!(vma->vm_flags & VM_SHARED)) ret = do_cow_fault(vmf); else ret = do_shared_fault(vmf); /* preallocated pagetable is unused: free it */ if (vmf->prealloc_pte) { pte_free(vm_mm, vmf->prealloc_pte); vmf->prealloc_pte = NULL; } return ret; } static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, unsigned long addr, int page_nid, int *flags) { get_page(page); count_vm_numa_event(NUMA_HINT_FAULTS); if (page_nid == numa_node_id()) { count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); *flags |= TNF_FAULT_LOCAL; } return mpol_misplaced(page, vma, addr); } static vm_fault_t do_numa_page(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; struct page *page = NULL; int page_nid = NUMA_NO_NODE; int last_cpupid; int target_nid; bool migrated = false; pte_t pte, old_pte; bool was_writable = pte_savedwrite(vmf->orig_pte); int flags = 0; /* * The "pte" at this point cannot be used safely without * validation through pte_unmap_same(). It's of NUMA type but * the pfn may be screwed if the read is non atomic. */ vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd); spin_lock(vmf->ptl); if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { pte_unmap_unlock(vmf->pte, vmf->ptl); goto out; } /* * Make it present again, Depending on how arch implementes non * accessible ptes, some can allow access by kernel mode. */ old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte); pte = pte_modify(old_pte, vma->vm_page_prot); pte = pte_mkyoung(pte); if (was_writable) pte = pte_mkwrite(pte); ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte); update_mmu_cache(vma, vmf->address, vmf->pte); page = vm_normal_page(vma, vmf->address, pte); if (!page) { pte_unmap_unlock(vmf->pte, vmf->ptl); return 0; } /* TODO: handle PTE-mapped THP */ if (PageCompound(page)) { pte_unmap_unlock(vmf->pte, vmf->ptl); return 0; } /* * Avoid grouping on RO pages in general. RO pages shouldn't hurt as * much anyway since they can be in shared cache state. This misses * the case where a mapping is writable but the process never writes * to it but pte_write gets cleared during protection updates and * pte_dirty has unpredictable behaviour between PTE scan updates, * background writeback, dirty balancing and application behaviour. */ if (!pte_write(pte)) flags |= TNF_NO_GROUP; /* * Flag if the page is shared between multiple address spaces. This * is later used when determining whether to group tasks together */ if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) flags |= TNF_SHARED; last_cpupid = page_cpupid_last(page); page_nid = page_to_nid(page); target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, &flags); pte_unmap_unlock(vmf->pte, vmf->ptl); if (target_nid == NUMA_NO_NODE) { put_page(page); goto out; } /* Migrate to the requested node */ migrated = migrate_misplaced_page(page, vma, target_nid); if (migrated) { page_nid = target_nid; flags |= TNF_MIGRATED; } else flags |= TNF_MIGRATE_FAIL; out: if (page_nid != NUMA_NO_NODE) task_numa_fault(last_cpupid, page_nid, 1, flags); return 0; } static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) { if (vma_is_anonymous(vmf->vma)) return do_huge_pmd_anonymous_page(vmf); if (vmf->vma->vm_ops->huge_fault) return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); return VM_FAULT_FALLBACK; } /* `inline' is required to avoid gcc 4.1.2 build error */ static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd) { if (vma_is_anonymous(vmf->vma)) { if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd)) return handle_userfault(vmf, VM_UFFD_WP); return do_huge_pmd_wp_page(vmf, orig_pmd); } if (vmf->vma->vm_ops->huge_fault) { vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); if (!(ret & VM_FAULT_FALLBACK)) return ret; } /* COW or write-notify handled on pte level: split pmd. */ __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); return VM_FAULT_FALLBACK; } static vm_fault_t create_huge_pud(struct vm_fault *vmf) { #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) /* No support for anonymous transparent PUD pages yet */ if (vma_is_anonymous(vmf->vma)) goto split; if (vmf->vma->vm_ops->huge_fault) { vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); if (!(ret & VM_FAULT_FALLBACK)) return ret; } split: /* COW or write-notify not handled on PUD level: split pud.*/ __split_huge_pud(vmf->vma, vmf->pud, vmf->address); #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ return VM_FAULT_FALLBACK; } static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) { #ifdef CONFIG_TRANSPARENT_HUGEPAGE /* No support for anonymous transparent PUD pages yet */ if (vma_is_anonymous(vmf->vma)) return VM_FAULT_FALLBACK; if (vmf->vma->vm_ops->huge_fault) return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ return VM_FAULT_FALLBACK; } /* * These routines also need to handle stuff like marking pages dirty * and/or accessed for architectures that don't do it in hardware (most * RISC architectures). The early dirtying is also good on the i386. * * There is also a hook called "update_mmu_cache()" that architectures * with external mmu caches can use to update those (ie the Sparc or * PowerPC hashed page tables that act as extended TLBs). * * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow * concurrent faults). * * The mmap_lock may have been released depending on flags and our return value. * See filemap_fault() and __lock_page_or_retry(). */ static vm_fault_t handle_pte_fault(struct vm_fault *vmf) { pte_t entry; if (unlikely(pmd_none(*vmf->pmd))) { /* * Leave __pte_alloc() until later: because vm_ops->fault may * want to allocate huge page, and if we expose page table * for an instant, it will be difficult to retract from * concurrent faults and from rmap lookups. */ vmf->pte = NULL; } else { /* See comment in pte_alloc_one_map() */ if (pmd_devmap_trans_unstable(vmf->pmd)) return 0; /* * A regular pmd is established and it can't morph into a huge * pmd from under us anymore at this point because we hold the * mmap_lock read mode and khugepaged takes it in write mode. * So now it's safe to run pte_offset_map(). */ vmf->pte = pte_offset_map(vmf->pmd, vmf->address); vmf->orig_pte = *vmf->pte; /* * some architectures can have larger ptes than wordsize, * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic * accesses. The code below just needs a consistent view * for the ifs and we later double check anyway with the * ptl lock held. So here a barrier will do. */ barrier(); if (pte_none(vmf->orig_pte)) { pte_unmap(vmf->pte); vmf->pte = NULL; } } if (!vmf->pte) { if (vma_is_anonymous(vmf->vma)) return do_anonymous_page(vmf); else return do_fault(vmf); } if (!pte_present(vmf->orig_pte)) return do_swap_page(vmf); if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) return do_numa_page(vmf); vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); spin_lock(vmf->ptl); entry = vmf->orig_pte; if (unlikely(!pte_same(*vmf->pte, entry))) { update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); goto unlock; } if (vmf->flags & FAULT_FLAG_WRITE) { if (!pte_write(entry)) return do_wp_page(vmf); entry = pte_mkdirty(entry); } entry = pte_mkyoung(entry); if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, vmf->flags & FAULT_FLAG_WRITE)) { update_mmu_cache(vmf->vma, vmf->address, vmf->pte); } else { /* Skip spurious TLB flush for retried page fault */ if (vmf->flags & FAULT_FLAG_TRIED) goto unlock; /* * This is needed only for protection faults but the arch code * is not yet telling us if this is a protection fault or not. * This still avoids useless tlb flushes for .text page faults * with threads. */ if (vmf->flags & FAULT_FLAG_WRITE) flush_tlb_fix_spurious_fault(vmf->vma, vmf->address); } unlock: pte_unmap_unlock(vmf->pte, vmf->ptl); return 0; } /* * By the time we get here, we already hold the mm semaphore * * The mmap_lock may have been released depending on flags and our * return value. See filemap_fault() and __lock_page_or_retry(). */ static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, unsigned long address, unsigned int flags) { struct vm_fault vmf = { .vma = vma, .address = address & PAGE_MASK, .flags = flags, .pgoff = linear_page_index(vma, address), .gfp_mask = __get_fault_gfp_mask(vma), }; unsigned int dirty = flags & FAULT_FLAG_WRITE; struct mm_struct *mm = vma->vm_mm; pgd_t *pgd; p4d_t *p4d; vm_fault_t ret; pgd = pgd_offset(mm, address); p4d = p4d_alloc(mm, pgd, address); if (!p4d) return VM_FAULT_OOM; vmf.pud = pud_alloc(mm, p4d, address); if (!vmf.pud) return VM_FAULT_OOM; retry_pud: if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) { ret = create_huge_pud(&vmf); if (!(ret & VM_FAULT_FALLBACK)) return ret; } else { pud_t orig_pud = *vmf.pud; barrier(); if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { /* NUMA case for anonymous PUDs would go here */ if (dirty && !pud_write(orig_pud)) { ret = wp_huge_pud(&vmf, orig_pud); if (!(ret & VM_FAULT_FALLBACK)) return ret; } else { huge_pud_set_accessed(&vmf, orig_pud); return 0; } } } vmf.pmd = pmd_alloc(mm, vmf.pud, address); if (!vmf.pmd) return VM_FAULT_OOM; /* Huge pud page fault raced with pmd_alloc? */ if (pud_trans_unstable(vmf.pud)) goto retry_pud; if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) { ret = create_huge_pmd(&vmf); if (!(ret & VM_FAULT_FALLBACK)) return ret; } else { pmd_t orig_pmd = *vmf.pmd; barrier(); if (unlikely(is_swap_pmd(orig_pmd))) { VM_BUG_ON(thp_migration_supported() && !is_pmd_migration_entry(orig_pmd)); if (is_pmd_migration_entry(orig_pmd)) pmd_migration_entry_wait(mm, vmf.pmd); return 0; } if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) { if (pmd_protnone(orig_pmd) && vma_is_accessible(vma)) return do_huge_pmd_numa_page(&vmf, orig_pmd); if (dirty && !pmd_write(orig_pmd)) { ret = wp_huge_pmd(&vmf, orig_pmd); if (!(ret & VM_FAULT_FALLBACK)) return ret; } else { huge_pmd_set_accessed(&vmf, orig_pmd); return 0; } } } return handle_pte_fault(&vmf); } /** * mm_account_fault - Do page fault accountings * * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting * of perf event counters, but we'll still do the per-task accounting to * the task who triggered this page fault. * @address: the faulted address. * @flags: the fault flags. * @ret: the fault retcode. * * This will take care of most of the page fault accountings. Meanwhile, it * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter * updates. However note that the handling of PERF_COUNT_SW_PAGE_FAULTS should * still be in per-arch page fault handlers at the entry of page fault. */ static inline void mm_account_fault(struct pt_regs *regs, unsigned long address, unsigned int flags, vm_fault_t ret) { bool major; /* * We don't do accounting for some specific faults: * * - Unsuccessful faults (e.g. when the address wasn't valid). That * includes arch_vma_access_permitted() failing before reaching here. * So this is not a "this many hardware page faults" counter. We * should use the hw profiling for that. * * - Incomplete faults (VM_FAULT_RETRY). They will only be counted * once they're completed. */ if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY)) return; /* * We define the fault as a major fault when the final successful fault * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't * handle it immediately previously). */ major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); if (major) current->maj_flt++; else current->min_flt++; /* * If the fault is done for GUP, regs will be NULL. We only do the * accounting for the per thread fault counters who triggered the * fault, and we skip the perf event updates. */ if (!regs) return; if (major) perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); else perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); } /* * By the time we get here, we already hold the mm semaphore * * The mmap_lock may have been released depending on flags and our * return value. See filemap_fault() and __lock_page_or_retry(). */ vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, unsigned int flags, struct pt_regs *regs) { vm_fault_t ret; __set_current_state(TASK_RUNNING); count_vm_event(PGFAULT); count_memcg_event_mm(vma->vm_mm, PGFAULT); /* do counter updates before entering really critical section. */ check_sync_rss_stat(current); if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, flags & FAULT_FLAG_INSTRUCTION, flags & FAULT_FLAG_REMOTE)) return VM_FAULT_SIGSEGV; /* * Enable the memcg OOM handling for faults triggered in user * space. Kernel faults are handled more gracefully. */ if (flags & FAULT_FLAG_USER) mem_cgroup_enter_user_fault(); if (unlikely(is_vm_hugetlb_page(vma))) ret = hugetlb_fault(vma->vm_mm, vma, address, flags); else ret = __handle_mm_fault(vma, address, flags); if (flags & FAULT_FLAG_USER) { mem_cgroup_exit_user_fault(); /* * The task may have entered a memcg OOM situation but * if the allocation error was handled gracefully (no * VM_FAULT_OOM), there is no need to kill anything. * Just clean up the OOM state peacefully. */ if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) mem_cgroup_oom_synchronize(false); } mm_account_fault(regs, address, flags, ret); return ret; } EXPORT_SYMBOL_GPL(handle_mm_fault); #ifndef __PAGETABLE_P4D_FOLDED /* * Allocate p4d page table. * We've already handled the fast-path in-line. */ int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) { p4d_t *new = p4d_alloc_one(mm, address); if (!new) return -ENOMEM; smp_wmb(); /* See comment in __pte_alloc */ spin_lock(&mm->page_table_lock); if (pgd_present(*pgd)) /* Another has populated it */ p4d_free(mm, new); else pgd_populate(mm, pgd, new); spin_unlock(&mm->page_table_lock); return 0; } #endif /* __PAGETABLE_P4D_FOLDED */ #ifndef __PAGETABLE_PUD_FOLDED /* * Allocate page upper directory. * We've already handled the fast-path in-line. */ int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) { pud_t *new = pud_alloc_one(mm, address); if (!new) return -ENOMEM; smp_wmb(); /* See comment in __pte_alloc */ spin_lock(&mm->page_table_lock); if (!p4d_present(*p4d)) { mm_inc_nr_puds(mm); p4d_populate(mm, p4d, new); } else /* Another has populated it */ pud_free(mm, new); spin_unlock(&mm->page_table_lock); return 0; } #endif /* __PAGETABLE_PUD_FOLDED */ #ifndef __PAGETABLE_PMD_FOLDED /* * Allocate page middle directory. * We've already handled the fast-path in-line. */ int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) { spinlock_t *ptl; pmd_t *new = pmd_alloc_one(mm, address); if (!new) return -ENOMEM; smp_wmb(); /* See comment in __pte_alloc */ ptl = pud_lock(mm, pud); if (!pud_present(*pud)) { mm_inc_nr_pmds(mm); pud_populate(mm, pud, new); } else /* Another has populated it */ pmd_free(mm, new); spin_unlock(ptl); return 0; } #endif /* __PAGETABLE_PMD_FOLDED */ int follow_invalidate_pte(struct mm_struct *mm, unsigned long address, struct mmu_notifier_range *range, pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) { pgd_t *pgd; p4d_t *p4d; pud_t *pud; pmd_t *pmd; pte_t *ptep; pgd = pgd_offset(mm, address); if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) goto out; p4d = p4d_offset(pgd, address); if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) goto out; pud = pud_offset(p4d, address); if (pud_none(*pud) || unlikely(pud_bad(*pud))) goto out; pmd = pmd_offset(pud, address); VM_BUG_ON(pmd_trans_huge(*pmd)); if (pmd_huge(*pmd)) { if (!pmdpp) goto out; if (range) { mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm, address & PMD_MASK, (address & PMD_MASK) + PMD_SIZE); mmu_notifier_invalidate_range_start(range); } *ptlp = pmd_lock(mm, pmd); if (pmd_huge(*pmd)) { *pmdpp = pmd; return 0; } spin_unlock(*ptlp); if (range) mmu_notifier_invalidate_range_end(range); } if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) goto out; if (range) { mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm, address & PAGE_MASK, (address & PAGE_MASK) + PAGE_SIZE); mmu_notifier_invalidate_range_start(range); } ptep = pte_offset_map_lock(mm, pmd, address, ptlp); if (!pte_present(*ptep)) goto unlock; *ptepp = ptep; return 0; unlock: pte_unmap_unlock(ptep, *ptlp); if (range) mmu_notifier_invalidate_range_end(range); out: return -EINVAL; } /** * follow_pte - look up PTE at a user virtual address * @mm: the mm_struct of the target address space * @address: user virtual address * @ptepp: location to store found PTE * @ptlp: location to store the lock for the PTE * * On a successful return, the pointer to the PTE is stored in @ptepp; * the corresponding lock is taken and its location is stored in @ptlp. * The contents of the PTE are only stable until @ptlp is released; * any further use, if any, must be protected against invalidation * with MMU notifiers. * * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore * should be taken for read. * * KVM uses this function. While it is arguably less bad than ``follow_pfn``, * it is not a good general-purpose API. * * Return: zero on success, -ve otherwise. */ int follow_pte(struct mm_struct *mm, unsigned long address, pte_t **ptepp, spinlock_t **ptlp) { return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp); } EXPORT_SYMBOL_GPL(follow_pte); /** * follow_pfn - look up PFN at a user virtual address * @vma: memory mapping * @address: user virtual address * @pfn: location to store found PFN * * Only IO mappings and raw PFN mappings are allowed. * * This function does not allow the caller to read the permissions * of the PTE. Do not use it. * * Return: zero and the pfn at @pfn on success, -ve otherwise. */ int follow_pfn(struct vm_area_struct *vma, unsigned long address, unsigned long *pfn) { int ret = -EINVAL; spinlock_t *ptl; pte_t *ptep; if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) return ret; ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); if (ret) return ret; *pfn = pte_pfn(*ptep); pte_unmap_unlock(ptep, ptl); return 0; } EXPORT_SYMBOL(follow_pfn); #ifdef CONFIG_HAVE_IOREMAP_PROT int follow_phys(struct vm_area_struct *vma, unsigned long address, unsigned int flags, unsigned long *prot, resource_size_t *phys) { int ret = -EINVAL; pte_t *ptep, pte; spinlock_t *ptl; if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) goto out; if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) goto out; pte = *ptep; if ((flags & FOLL_WRITE) && !pte_write(pte)) goto unlock; *prot = pgprot_val(pte_pgprot(pte)); *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; ret = 0; unlock: pte_unmap_unlock(ptep, ptl); out: return ret; } int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, void *buf, int len, int write) { resource_size_t phys_addr; unsigned long prot = 0; void __iomem *maddr; int offset = addr & (PAGE_SIZE-1); if (follow_phys(vma, addr, write, &prot, &phys_addr)) return -EINVAL; maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); if (!maddr) return -ENOMEM; if (write) memcpy_toio(maddr + offset, buf, len); else memcpy_fromio(buf, maddr + offset, len); iounmap(maddr); return len; } EXPORT_SYMBOL_GPL(generic_access_phys); #endif /* * Access another process' address space as given in mm. If non-NULL, use the * given task for page fault accounting. */ int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, unsigned long addr, void *buf, int len, unsigned int gup_flags) { struct vm_area_struct *vma; void *old_buf = buf; int write = gup_flags & FOLL_WRITE; if (mmap_read_lock_killable(mm)) return 0; /* ignore errors, just check how much was successfully transferred */ while (len) { int bytes, ret, offset; void *maddr; struct page *page = NULL; ret = get_user_pages_remote(mm, addr, 1, gup_flags, &page, &vma, NULL); if (ret <= 0) { #ifndef CONFIG_HAVE_IOREMAP_PROT break; #else /* * Check if this is a VM_IO | VM_PFNMAP VMA, which * we can access using slightly different code. */ vma = find_vma(mm, addr); if (!vma || vma->vm_start > addr) break; if (vma->vm_ops && vma->vm_ops->access) ret = vma->vm_ops->access(vma, addr, buf, len, write); if (ret <= 0) break; bytes = ret; #endif } else { bytes = len; offset = addr & (PAGE_SIZE-1); if (bytes > PAGE_SIZE-offset) bytes = PAGE_SIZE-offset; maddr = kmap(page); if (write) { copy_to_user_page(vma, page, addr, maddr + offset, buf, bytes); set_page_dirty_lock(page); } else { copy_from_user_page(vma, page, addr, buf, maddr + offset, bytes); } kunmap(page); put_page(page); } len -= bytes; buf += bytes; addr += bytes; } mmap_read_unlock(mm); return buf - old_buf; } /** * access_remote_vm - access another process' address space * @mm: the mm_struct of the target address space * @addr: start address to access * @buf: source or destination buffer * @len: number of bytes to transfer * @gup_flags: flags modifying lookup behaviour * * The caller must hold a reference on @mm. * * Return: number of bytes copied from source to destination. */ int access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf, int len, unsigned int gup_flags) { return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags); } /* * Access another process' address space. * Source/target buffer must be kernel space, * Do not walk the page table directly, use get_user_pages */ int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, unsigned int gup_flags) { struct mm_struct *mm; int ret; mm = get_task_mm(tsk); if (!mm) return 0; ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags); mmput(mm); return ret; } EXPORT_SYMBOL_GPL(access_process_vm); /* * Print the name of a VMA. */ void print_vma_addr(char *prefix, unsigned long ip) { struct mm_struct *mm = current->mm; struct vm_area_struct *vma; /* * we might be running from an atomic context so we cannot sleep */ if (!mmap_read_trylock(mm)) return; vma = find_vma(mm, ip); if (vma && vma->vm_file) { struct file *f = vma->vm_file; char *buf = (char *)__get_free_page(GFP_NOWAIT); if (buf) { char *p; p = file_path(f, buf, PAGE_SIZE); if (IS_ERR(p)) p = "?"; printk("%s%s[%lx+%lx]", prefix, kbasename(p), vma->vm_start, vma->vm_end - vma->vm_start); free_page((unsigned long)buf); } } mmap_read_unlock(mm); } #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) void __might_fault(const char *file, int line) { /* * Some code (nfs/sunrpc) uses socket ops on kernel memory while * holding the mmap_lock, this is safe because kernel memory doesn't * get paged out, therefore we'll never actually fault, and the * below annotations will generate false positives. */ if (uaccess_kernel()) return; if (pagefault_disabled()) return; __might_sleep(file, line, 0); #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) if (current->mm) might_lock_read(&current->mm->mmap_lock); #endif } EXPORT_SYMBOL(__might_fault); #endif #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) /* * Process all subpages of the specified huge page with the specified * operation. The target subpage will be processed last to keep its * cache lines hot. */ static inline void process_huge_page( unsigned long addr_hint, unsigned int pages_per_huge_page, void (*process_subpage)(unsigned long addr, int idx, void *arg), void *arg) { int i, n, base, l; unsigned long addr = addr_hint & ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); /* Process target subpage last to keep its cache lines hot */ might_sleep(); n = (addr_hint - addr) / PAGE_SIZE; if (2 * n <= pages_per_huge_page) { /* If target subpage in first half of huge page */ base = 0; l = n; /* Process subpages at the end of huge page */ for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { cond_resched(); process_subpage(addr + i * PAGE_SIZE, i, arg); } } else { /* If target subpage in second half of huge page */ base = pages_per_huge_page - 2 * (pages_per_huge_page - n); l = pages_per_huge_page - n; /* Process subpages at the begin of huge page */ for (i = 0; i < base; i++) { cond_resched(); process_subpage(addr + i * PAGE_SIZE, i, arg); } } /* * Process remaining subpages in left-right-left-right pattern * towards the target subpage */ for (i = 0; i < l; i++) { int left_idx = base + i; int right_idx = base + 2 * l - 1 - i; cond_resched(); process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); cond_resched(); process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); } } static void clear_gigantic_page(struct page *page, unsigned long addr, unsigned int pages_per_huge_page) { int i; struct page *p = page; might_sleep(); for (i = 0; i < pages_per_huge_page; i++, p = mem_map_next(p, page, i)) { cond_resched(); clear_user_highpage(p, addr + i * PAGE_SIZE); } } static void clear_subpage(unsigned long addr, int idx, void *arg) { struct page *page = arg; clear_user_highpage(page + idx, addr); } void clear_huge_page(struct page *page, unsigned long addr_hint, unsigned int pages_per_huge_page) { unsigned long addr = addr_hint & ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { clear_gigantic_page(page, addr, pages_per_huge_page); return; } process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); } static void copy_user_gigantic_page(struct page *dst, struct page *src, unsigned long addr, struct vm_area_struct *vma, unsigned int pages_per_huge_page) { int i; struct page *dst_base = dst; struct page *src_base = src; for (i = 0; i < pages_per_huge_page; ) { cond_resched(); copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); i++; dst = mem_map_next(dst, dst_base, i); src = mem_map_next(src, src_base, i); } } struct copy_subpage_arg { struct page *dst; struct page *src; struct vm_area_struct *vma; }; static void copy_subpage(unsigned long addr, int idx, void *arg) { struct copy_subpage_arg *copy_arg = arg; copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx, addr, copy_arg->vma); } void copy_user_huge_page(struct page *dst, struct page *src, unsigned long addr_hint, struct vm_area_struct *vma, unsigned int pages_per_huge_page) { unsigned long addr = addr_hint & ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); struct copy_subpage_arg arg = { .dst = dst, .src = src, .vma = vma, }; if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { copy_user_gigantic_page(dst, src, addr, vma, pages_per_huge_page); return; } process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); } long copy_huge_page_from_user(struct page *dst_page, const void __user *usr_src, unsigned int pages_per_huge_page, bool allow_pagefault) { void *src = (void *)usr_src; void *page_kaddr; unsigned long i, rc = 0; unsigned long ret_val = pages_per_huge_page * PAGE_SIZE; struct page *subpage = dst_page; for (i = 0; i < pages_per_huge_page; i++, subpage = mem_map_next(subpage, dst_page, i)) { if (allow_pagefault) page_kaddr = kmap(subpage); else page_kaddr = kmap_atomic(subpage); rc = copy_from_user(page_kaddr, (const void __user *)(src + i * PAGE_SIZE), PAGE_SIZE); if (allow_pagefault) kunmap(subpage); else kunmap_atomic(page_kaddr); ret_val -= (PAGE_SIZE - rc); if (rc) break; cond_resched(); } return ret_val; } #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS static struct kmem_cache *page_ptl_cachep; void __init ptlock_cache_init(void) { page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, SLAB_PANIC, NULL); } bool ptlock_alloc(struct page *page) { spinlock_t *ptl; ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); if (!ptl) return false; page->ptl = ptl; return true; } void ptlock_free(struct page *page) { kmem_cache_free(page_ptl_cachep, page->ptl); } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_NSPROXY_H #define _LINUX_NSPROXY_H #include <linux/spinlock.h> #include <linux/sched.h> struct mnt_namespace; struct uts_namespace; struct ipc_namespace; struct pid_namespace; struct cgroup_namespace; struct fs_struct; /* * A structure to contain pointers to all per-process * namespaces - fs (mount), uts, network, sysvipc, etc. * * The pid namespace is an exception -- it's accessed using * task_active_pid_ns. The pid namespace here is the * namespace that children will use. * * 'count' is the number of tasks holding a reference. * The count for each namespace, then, will be the number * of nsproxies pointing to it, not the number of tasks. * * The nsproxy is shared by tasks which share all namespaces. * As soon as a single namespace is cloned or unshared, the * nsproxy is copied. */ struct nsproxy { atomic_t count; struct uts_namespace *uts_ns; struct ipc_namespace *ipc_ns; struct mnt_namespace *mnt_ns; struct pid_namespace *pid_ns_for_children; struct net *net_ns; struct time_namespace *time_ns; struct time_namespace *time_ns_for_children; struct cgroup_namespace *cgroup_ns; }; extern struct nsproxy init_nsproxy; /* * A structure to encompass all bits needed to install * a partial or complete new set of namespaces. * * If a new user namespace is requested cred will * point to a modifiable set of credentials. If a pointer * to a modifiable set is needed nsset_cred() must be * used and tested. */ struct nsset { unsigned flags; struct nsproxy *nsproxy; struct fs_struct *fs; const struct cred *cred; }; static inline struct cred *nsset_cred(struct nsset *set) { if (set->flags & CLONE_NEWUSER) return (struct cred *)set->cred; return NULL; } /* * the namespaces access rules are: * * 1. only current task is allowed to change tsk->nsproxy pointer or * any pointer on the nsproxy itself. Current must hold the task_lock * when changing tsk->nsproxy. * * 2. when accessing (i.e. reading) current task's namespaces - no * precautions should be taken - just dereference the pointers * * 3. the access to other task namespaces is performed like this * task_lock(task); * nsproxy = task->nsproxy; * if (nsproxy != NULL) { * / * * * work with the namespaces here * * e.g. get the reference on one of them * * / * } / * * * NULL task->nsproxy means that this task is * * almost dead (zombie) * * / * task_unlock(task); * */ int copy_namespaces(unsigned long flags, struct task_struct *tsk); void exit_task_namespaces(struct task_struct *tsk); void switch_task_namespaces(struct task_struct *tsk, struct nsproxy *new); void free_nsproxy(struct nsproxy *ns); int unshare_nsproxy_namespaces(unsigned long, struct nsproxy **, struct cred *, struct fs_struct *); int __init nsproxy_cache_init(void); static inline void put_nsproxy(struct nsproxy *ns) { if (atomic_dec_and_test(&ns->count)) { free_nsproxy(ns); } } static inline void get_nsproxy(struct nsproxy *ns) { atomic_inc(&ns->count); } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 // SPDX-License-Identifier: GPL-2.0 /* * The class-specific portions of the driver model * * Copyright (c) 2001-2003 Patrick Mochel <mochel@osdl.org> * Copyright (c) 2004-2009 Greg Kroah-Hartman <gregkh@suse.de> * Copyright (c) 2008-2009 Novell Inc. * Copyright (c) 2012-2019 Greg Kroah-Hartman <gregkh@linuxfoundation.org> * Copyright (c) 2012-2019 Linux Foundation * * See Documentation/driver-api/driver-model/ for more information. */ #ifndef _DEVICE_CLASS_H_ #define _DEVICE_CLASS_H_ #include <linux/kobject.h> #include <linux/klist.h> #include <linux/pm.h> #include <linux/device/bus.h> struct device; struct fwnode_handle; /** * struct class - device classes * @name: Name of the class. * @owner: The module owner. * @class_groups: Default attributes of this class. * @dev_groups: Default attributes of the devices that belong to the class. * @dev_kobj: The kobject that represents this class and links it into the hierarchy. * @dev_uevent: Called when a device is added, removed from this class, or a * few other things that generate uevents to add the environment * variables. * @devnode: Callback to provide the devtmpfs. * @class_release: Called to release this class. * @dev_release: Called to release the device. * @shutdown_pre: Called at shut-down time before driver shutdown. * @ns_type: Callbacks so sysfs can detemine namespaces. * @namespace: Namespace of the device belongs to this class. * @get_ownership: Allows class to specify uid/gid of the sysfs directories * for the devices belonging to the class. Usually tied to * device's namespace. * @pm: The default device power management operations of this class. * @p: The private data of the driver core, no one other than the * driver core can touch this. * * A class is a higher-level view of a device that abstracts out low-level * implementation details. Drivers may see a SCSI disk or an ATA disk, but, * at the class level, they are all simply disks. Classes allow user space * to work with devices based on what they do, rather than how they are * connected or how they work. */ struct class { const char *name; struct module *owner; const struct attribute_group **class_groups; const struct attribute_group **dev_groups; struct kobject *dev_kobj; int (*dev_uevent)(struct device *dev, struct kobj_uevent_env *env); char *(*devnode)(struct device *dev, umode_t *mode); void (*class_release)(struct class *class); void (*dev_release)(struct device *dev); int (*shutdown_pre)(struct device *dev); const struct kobj_ns_type_operations *ns_type; const void *(*namespace)(struct device *dev); void (*get_ownership)(struct device *dev, kuid_t *uid, kgid_t *gid); const struct dev_pm_ops *pm; struct subsys_private *p; }; struct class_dev_iter { struct klist_iter ki; const struct device_type *type; }; extern struct kobject *sysfs_dev_block_kobj; extern struct kobject *sysfs_dev_char_kobj; extern int __must_check __class_register(struct class *class, struct lock_class_key *key); extern void class_unregister(struct class *class); /* This is a #define to keep the compiler from merging different * instances of the __key variable */ #define class_register(class) \ ({ \ static struct lock_class_key __key; \ __class_register(class, &__key); \ }) struct class_compat; struct class_compat *class_compat_register(const char *name); void class_compat_unregister(struct class_compat *cls); int class_compat_create_link(struct class_compat *cls, struct device *dev, struct device *device_link); void class_compat_remove_link(struct class_compat *cls, struct device *dev, struct device *device_link); extern void class_dev_iter_init(struct class_dev_iter *iter, struct class *class, struct device *start, const struct device_type *type); extern struct device *class_dev_iter_next(struct class_dev_iter *iter); extern void class_dev_iter_exit(struct class_dev_iter *iter); extern int class_for_each_device(struct class *class, struct device *start, void *data, int (*fn)(struct device *dev, void *data)); extern struct device *class_find_device(struct class *class, struct device *start, const void *data, int (*match)(struct device *, const void *)); /** * class_find_device_by_name - device iterator for locating a particular device * of a specific name. * @class: class type * @name: name of the device to match */ static inline struct device *class_find_device_by_name(struct class *class, const char *name) { return class_find_device(class, NULL, name, device_match_name); } /** * class_find_device_by_of_node : device iterator for locating a particular device * matching the of_node. * @class: class type * @np: of_node of the device to match. */ static inline struct device * class_find_device_by_of_node(struct class *class, const struct device_node *np) { return class_find_device(class, NULL, np, device_match_of_node); } /** * class_find_device_by_fwnode : device iterator for locating a particular device * matching the fwnode. * @class: class type * @fwnode: fwnode of the device to match. */ static inline struct device * class_find_device_by_fwnode(struct class *class, const struct fwnode_handle *fwnode) { return class_find_device(class, NULL, fwnode, device_match_fwnode); } /** * class_find_device_by_devt : device iterator for locating a particular device * matching the device type. * @class: class type * @devt: device type of the device to match. */ static inline struct device *class_find_device_by_devt(struct class *class, dev_t devt) { return class_find_device(class, NULL, &devt, device_match_devt); } #ifdef CONFIG_ACPI struct acpi_device; /** * class_find_device_by_acpi_dev : device iterator for locating a particular * device matching the ACPI_COMPANION device. * @class: class type * @adev: ACPI_COMPANION device to match. */ static inline struct device * class_find_device_by_acpi_dev(struct class *class, const struct acpi_device *adev) { return class_find_device(class, NULL, adev, device_match_acpi_dev); } #else static inline struct device * class_find_device_by_acpi_dev(struct class *class, const void *adev) { return NULL; } #endif struct class_attribute { struct attribute attr; ssize_t (*show)(struct class *class, struct class_attribute *attr, char *buf); ssize_t (*store)(struct class *class, struct class_attribute *attr, const char *buf, size_t count); }; #define CLASS_ATTR_RW(_name) \ struct class_attribute class_attr_##_name = __ATTR_RW(_name) #define CLASS_ATTR_RO(_name) \ struct class_attribute class_attr_##_name = __ATTR_RO(_name) #define CLASS_ATTR_WO(_name) \ struct class_attribute class_attr_##_name = __ATTR_WO(_name) extern int __must_check class_create_file_ns(struct class *class, const struct class_attribute *attr, const void *ns); extern void class_remove_file_ns(struct class *class, const struct class_attribute *attr, const void *ns); static inline int __must_check class_create_file(struct class *class, const struct class_attribute *attr) { return class_create_file_ns(class, attr, NULL); } static inline void class_remove_file(struct class *class, const struct class_attribute *attr) { return class_remove_file_ns(class, attr, NULL); } /* Simple class attribute that is just a static string */ struct class_attribute_string { struct class_attribute attr; char *str; }; /* Currently read-only only */ #define _CLASS_ATTR_STRING(_name, _mode, _str) \ { __ATTR(_name, _mode, show_class_attr_string, NULL), _str } #define CLASS_ATTR_STRING(_name, _mode, _str) \ struct class_attribute_string class_attr_##_name = \ _CLASS_ATTR_STRING(_name, _mode, _str) extern ssize_t show_class_attr_string(struct class *class, struct class_attribute *attr, char *buf); struct class_interface { struct list_head node; struct class *class; int (*add_dev) (struct device *, struct class_interface *); void (*remove_dev) (struct device *, struct class_interface *); }; extern int __must_check class_interface_register(struct class_interface *); extern void class_interface_unregister(struct class_interface *); extern struct class * __must_check __class_create(struct module *owner, const char *name, struct lock_class_key *key); extern void class_destroy(struct class *cls); /* This is a #define to keep the compiler from merging different * instances of the __key variable */ #define class_create(owner, name) \ ({ \ static struct lock_class_key __key; \ __class_create(owner, name, &__key); \ }) #endif /* _DEVICE_CLASS_H_ */
1 2 3 4 5 6 7 8 9 10 11 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __NET_NS_HASH_H__ #define __NET_NS_HASH_H__ #include <net/net_namespace.h> static inline u32 net_hash_mix(const struct net *net) { return net->hash_mix; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _NF_CONNTRACK_ZONES_H #define _NF_CONNTRACK_ZONES_H #include <linux/netfilter/nf_conntrack_zones_common.h> #include <net/netfilter/nf_conntrack.h> static inline const struct nf_conntrack_zone * nf_ct_zone(const struct nf_conn *ct) { #ifdef CONFIG_NF_CONNTRACK_ZONES return &ct->zone; #else return &nf_ct_zone_dflt; #endif } static inline const struct nf_conntrack_zone * nf_ct_zone_init(struct nf_conntrack_zone *zone, u16 id, u8 dir, u8 flags) { zone->id = id; zone->flags = flags; zone->dir = dir; return zone; } static inline const struct nf_conntrack_zone * nf_ct_zone_tmpl(const struct nf_conn *tmpl, const struct sk_buff *skb, struct nf_conntrack_zone *tmp) { #ifdef CONFIG_NF_CONNTRACK_ZONES if (!tmpl) return &nf_ct_zone_dflt; if (tmpl->zone.flags & NF_CT_FLAG_MARK) return nf_ct_zone_init(tmp, skb->mark, tmpl->zone.dir, 0); #endif return nf_ct_zone(tmpl); } static inline void nf_ct_zone_add(struct nf_conn *ct, const struct nf_conntrack_zone *zone) { #ifdef CONFIG_NF_CONNTRACK_ZONES ct->zone = *zone; #endif } static inline bool nf_ct_zone_matches_dir(const struct nf_conntrack_zone *zone, enum ip_conntrack_dir dir) { return zone->dir & (1 << dir); } static inline u16 nf_ct_zone_id(const struct nf_conntrack_zone *zone, enum ip_conntrack_dir dir) { #ifdef CONFIG_NF_CONNTRACK_ZONES return nf_ct_zone_matches_dir(zone, dir) ? zone->id : NF_CT_DEFAULT_ZONE_ID; #else return NF_CT_DEFAULT_ZONE_ID; #endif } static inline bool nf_ct_zone_equal(const struct nf_conn *a, const struct nf_conntrack_zone *b, enum ip_conntrack_dir dir) { #ifdef CONFIG_NF_CONNTRACK_ZONES return nf_ct_zone_id(nf_ct_zone(a), dir) == nf_ct_zone_id(b, dir); #else return true; #endif } static inline bool nf_ct_zone_equal_any(const struct nf_conn *a, const struct nf_conntrack_zone *b) { #ifdef CONFIG_NF_CONNTRACK_ZONES return nf_ct_zone(a)->id == b->id; #else return true; #endif } #endif /* _NF_CONNTRACK_ZONES_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 /* SPDX-License-Identifier: GPL-2.0 */ /* File: linux/posix_acl.h (C) 2002 Andreas Gruenbacher, <a.gruenbacher@computer.org> */ #ifndef __LINUX_POSIX_ACL_H #define __LINUX_POSIX_ACL_H #include <linux/bug.h> #include <linux/slab.h> #include <linux/rcupdate.h> #include <linux/refcount.h> #include <uapi/linux/posix_acl.h> struct posix_acl_entry { short e_tag; unsigned short e_perm; union { kuid_t e_uid; kgid_t e_gid; }; }; struct posix_acl { refcount_t a_refcount; struct rcu_head a_rcu; unsigned int a_count; struct posix_acl_entry a_entries[]; }; #define FOREACH_ACL_ENTRY(pa, acl, pe) \ for(pa=(acl)->a_entries, pe=pa+(acl)->a_count; pa<pe; pa++) /* * Duplicate an ACL handle. */ static inline struct posix_acl * posix_acl_dup(struct posix_acl *acl) { if (acl) refcount_inc(&acl->a_refcount); return acl; } /* * Free an ACL handle. */ static inline void posix_acl_release(struct posix_acl *acl) { if (acl && refcount_dec_and_test(&acl->a_refcount)) kfree_rcu(acl, a_rcu); } /* posix_acl.c */ extern void posix_acl_init(struct posix_acl *, int); extern struct posix_acl *posix_acl_alloc(int, gfp_t); extern int posix_acl_valid(struct user_namespace *, const struct posix_acl *); extern int posix_acl_permission(struct inode *, const struct posix_acl *, int); extern struct posix_acl *posix_acl_from_mode(umode_t, gfp_t); extern int posix_acl_equiv_mode(const struct posix_acl *, umode_t *); extern int __posix_acl_create(struct posix_acl **, gfp_t, umode_t *); extern int __posix_acl_chmod(struct posix_acl **, gfp_t, umode_t); extern struct posix_acl *get_posix_acl(struct inode *, int); extern int set_posix_acl(struct inode *, int, struct posix_acl *); #ifdef CONFIG_FS_POSIX_ACL extern int posix_acl_chmod(struct inode *, umode_t); extern int posix_acl_create(struct inode *, umode_t *, struct posix_acl **, struct posix_acl **); extern int posix_acl_update_mode(struct inode *, umode_t *, struct posix_acl **); extern int simple_set_acl(struct inode *, struct posix_acl *, int); extern int simple_acl_create(struct inode *, struct inode *); struct posix_acl *get_cached_acl(struct inode *inode, int type); struct posix_acl *get_cached_acl_rcu(struct inode *inode, int type); void set_cached_acl(struct inode *inode, int type, struct posix_acl *acl); void forget_cached_acl(struct inode *inode, int type); void forget_all_cached_acls(struct inode *inode); static inline void cache_no_acl(struct inode *inode) { inode->i_acl = NULL; inode->i_default_acl = NULL; } #else static inline int posix_acl_chmod(struct inode *inode, umode_t mode) { return 0; } #define simple_set_acl NULL static inline int simple_acl_create(struct inode *dir, struct inode *inode) { return 0; } static inline void cache_no_acl(struct inode *inode) { } static inline int posix_acl_create(struct inode *inode, umode_t *mode, struct posix_acl **default_acl, struct posix_acl **acl) { *default_acl = *acl = NULL; return 0; } static inline void forget_all_cached_acls(struct inode *inode) { } #endif /* CONFIG_FS_POSIX_ACL */ struct posix_acl *get_acl(struct inode *inode, int type); #endif /* __LINUX_POSIX_ACL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 /* SPDX-License-Identifier: GPL-2.0-only */ /* * pm_runtime.h - Device run-time power management helper functions. * * Copyright (C) 2009 Rafael J. Wysocki <rjw@sisk.pl> */ #ifndef _LINUX_PM_RUNTIME_H #define _LINUX_PM_RUNTIME_H #include <linux/device.h> #include <linux/notifier.h> #include <linux/pm.h> #include <linux/jiffies.h> /* Runtime PM flag argument bits */ #define RPM_ASYNC 0x01 /* Request is asynchronous */ #define RPM_NOWAIT 0x02 /* Don't wait for concurrent state change */ #define RPM_GET_PUT 0x04 /* Increment/decrement the usage_count */ #define RPM_AUTO 0x08 /* Use autosuspend_delay */ #ifdef CONFIG_PM extern struct workqueue_struct *pm_wq; static inline bool queue_pm_work(struct work_struct *work) { return queue_work(pm_wq, work); } extern int pm_generic_runtime_suspend(struct device *dev); extern int pm_generic_runtime_resume(struct device *dev); extern int pm_runtime_force_suspend(struct device *dev); extern int pm_runtime_force_resume(struct device *dev); extern int __pm_runtime_idle(struct device *dev, int rpmflags); extern int __pm_runtime_suspend(struct device *dev, int rpmflags); extern int __pm_runtime_resume(struct device *dev, int rpmflags); extern int pm_runtime_get_if_active(struct device *dev, bool ign_usage_count); extern int pm_schedule_suspend(struct device *dev, unsigned int delay); extern int __pm_runtime_set_status(struct device *dev, unsigned int status); extern int pm_runtime_barrier(struct device *dev); extern void pm_runtime_enable(struct device *dev); extern void __pm_runtime_disable(struct device *dev, bool check_resume); extern void pm_runtime_allow(struct device *dev); extern void pm_runtime_forbid(struct device *dev); extern void pm_runtime_no_callbacks(struct device *dev); extern void pm_runtime_irq_safe(struct device *dev); extern void __pm_runtime_use_autosuspend(struct device *dev, bool use); extern void pm_runtime_set_autosuspend_delay(struct device *dev, int delay); extern u64 pm_runtime_autosuspend_expiration(struct device *dev); extern void pm_runtime_update_max_time_suspended(struct device *dev, s64 delta_ns); extern void pm_runtime_set_memalloc_noio(struct device *dev, bool enable); extern void pm_runtime_get_suppliers(struct device *dev); extern void pm_runtime_put_suppliers(struct device *dev); extern void pm_runtime_new_link(struct device *dev); extern void pm_runtime_drop_link(struct device_link *link); /** * pm_runtime_get_if_in_use - Conditionally bump up runtime PM usage counter. * @dev: Target device. * * Increment the runtime PM usage counter of @dev if its runtime PM status is * %RPM_ACTIVE and its runtime PM usage counter is greater than 0. */ static inline int pm_runtime_get_if_in_use(struct device *dev) { return pm_runtime_get_if_active(dev, false); } /** * pm_suspend_ignore_children - Set runtime PM behavior regarding children. * @dev: Target device. * @enable: Whether or not to ignore possible dependencies on children. * * The dependencies of @dev on its children will not be taken into account by * the runtime PM framework going forward if @enable is %true, or they will * be taken into account otherwise. */ static inline void pm_suspend_ignore_children(struct device *dev, bool enable) { dev->power.ignore_children = enable; } /** * pm_runtime_get_noresume - Bump up runtime PM usage counter of a device. * @dev: Target device. */ static inline void pm_runtime_get_noresume(struct device *dev) { atomic_inc(&dev->power.usage_count); } /** * pm_runtime_put_noidle - Drop runtime PM usage counter of a device. * @dev: Target device. * * Decrement the runtime PM usage counter of @dev unless it is 0 already. */ static inline void pm_runtime_put_noidle(struct device *dev) { atomic_add_unless(&dev->power.usage_count, -1, 0); } /** * pm_runtime_suspended - Check whether or not a device is runtime-suspended. * @dev: Target device. * * Return %true if runtime PM is enabled for @dev and its runtime PM status is * %RPM_SUSPENDED, or %false otherwise. * * Note that the return value of this function can only be trusted if it is * called under the runtime PM lock of @dev or under conditions in which * runtime PM cannot be either disabled or enabled for @dev and its runtime PM * status cannot change. */ static inline bool pm_runtime_suspended(struct device *dev) { return dev->power.runtime_status == RPM_SUSPENDED && !dev->power.disable_depth; } /** * pm_runtime_active - Check whether or not a device is runtime-active. * @dev: Target device. * * Return %true if runtime PM is disabled for @dev or its runtime PM status is * %RPM_ACTIVE, or %false otherwise. * * Note that the return value of this function can only be trusted if it is * called under the runtime PM lock of @dev or under conditions in which * runtime PM cannot be either disabled or enabled for @dev and its runtime PM * status cannot change. */ static inline bool pm_runtime_active(struct device *dev) { return dev->power.runtime_status == RPM_ACTIVE || dev->power.disable_depth; } /** * pm_runtime_status_suspended - Check if runtime PM status is "suspended". * @dev: Target device. * * Return %true if the runtime PM status of @dev is %RPM_SUSPENDED, or %false * otherwise, regardless of whether or not runtime PM has been enabled for @dev. * * Note that the return value of this function can only be trusted if it is * called under the runtime PM lock of @dev or under conditions in which the * runtime PM status of @dev cannot change. */ static inline bool pm_runtime_status_suspended(struct device *dev) { return dev->power.runtime_status == RPM_SUSPENDED; } /** * pm_runtime_enabled - Check if runtime PM is enabled. * @dev: Target device. * * Return %true if runtime PM is enabled for @dev or %false otherwise. * * Note that the return value of this function can only be trusted if it is * called under the runtime PM lock of @dev or under conditions in which * runtime PM cannot be either disabled or enabled for @dev. */ static inline bool pm_runtime_enabled(struct device *dev) { return !dev->power.disable_depth; } /** * pm_runtime_has_no_callbacks - Check if runtime PM callbacks may be present. * @dev: Target device. * * Return %true if @dev is a special device without runtime PM callbacks or * %false otherwise. */ static inline bool pm_runtime_has_no_callbacks(struct device *dev) { return dev->power.no_callbacks; } /** * pm_runtime_mark_last_busy - Update the last access time of a device. * @dev: Target device. * * Update the last access time of @dev used by the runtime PM autosuspend * mechanism to the current time as returned by ktime_get_mono_fast_ns(). */ static inline void pm_runtime_mark_last_busy(struct device *dev) { WRITE_ONCE(dev->power.last_busy, ktime_get_mono_fast_ns()); } /** * pm_runtime_is_irq_safe - Check if runtime PM can work in interrupt context. * @dev: Target device. * * Return %true if @dev has been marked as an "IRQ-safe" device (with respect * to runtime PM), in which case its runtime PM callabcks can be expected to * work correctly when invoked from interrupt handlers. */ static inline bool pm_runtime_is_irq_safe(struct device *dev) { return dev->power.irq_safe; } extern u64 pm_runtime_suspended_time(struct device *dev); #else /* !CONFIG_PM */ static inline bool queue_pm_work(struct work_struct *work) { return false; } static inline int pm_generic_runtime_suspend(struct device *dev) { return 0; } static inline int pm_generic_runtime_resume(struct device *dev) { return 0; } static inline int pm_runtime_force_suspend(struct device *dev) { return 0; } static inline int pm_runtime_force_resume(struct device *dev) { return 0; } static inline int __pm_runtime_idle(struct device *dev, int rpmflags) { return -ENOSYS; } static inline int __pm_runtime_suspend(struct device *dev, int rpmflags) { return -ENOSYS; } static inline int __pm_runtime_resume(struct device *dev, int rpmflags) { return 1; } static inline int pm_schedule_suspend(struct device *dev, unsigned int delay) { return -ENOSYS; } static inline int pm_runtime_get_if_in_use(struct device *dev) { return -EINVAL; } static inline int pm_runtime_get_if_active(struct device *dev, bool ign_usage_count) { return -EINVAL; } static inline int __pm_runtime_set_status(struct device *dev, unsigned int status) { return 0; } static inline int pm_runtime_barrier(struct device *dev) { return 0; } static inline void pm_runtime_enable(struct device *dev) {} static inline void __pm_runtime_disable(struct device *dev, bool c) {} static inline void pm_runtime_allow(struct device *dev) {} static inline void pm_runtime_forbid(struct device *dev) {} static inline void pm_suspend_ignore_children(struct device *dev, bool enable) {} static inline void pm_runtime_get_noresume(struct device *dev) {} static inline void pm_runtime_put_noidle(struct device *dev) {} static inline bool pm_runtime_suspended(struct device *dev) { return false; } static inline bool pm_runtime_active(struct device *dev) { return true; } static inline bool pm_runtime_status_suspended(struct device *dev) { return false; } static inline bool pm_runtime_enabled(struct device *dev) { return false; } static inline void pm_runtime_no_callbacks(struct device *dev) {} static inline void pm_runtime_irq_safe(struct device *dev) {} static inline bool pm_runtime_is_irq_safe(struct device *dev) { return false; } static inline bool pm_runtime_has_no_callbacks(struct device *dev) { return false; } static inline void pm_runtime_mark_last_busy(struct device *dev) {} static inline void __pm_runtime_use_autosuspend(struct device *dev, bool use) {} static inline void pm_runtime_set_autosuspend_delay(struct device *dev, int delay) {} static inline u64 pm_runtime_autosuspend_expiration( struct device *dev) { return 0; } static inline void pm_runtime_set_memalloc_noio(struct device *dev, bool enable){} static inline void pm_runtime_get_suppliers(struct device *dev) {} static inline void pm_runtime_put_suppliers(struct device *dev) {} static inline void pm_runtime_new_link(struct device *dev) {} static inline void pm_runtime_drop_link(struct device_link *link) {} #endif /* !CONFIG_PM */ /** * pm_runtime_idle - Conditionally set up autosuspend of a device or suspend it. * @dev: Target device. * * Invoke the "idle check" callback of @dev and, depending on its return value, * set up autosuspend of @dev or suspend it (depending on whether or not * autosuspend has been enabled for it). */ static inline int pm_runtime_idle(struct device *dev) { return __pm_runtime_idle(dev, 0); } /** * pm_runtime_suspend - Suspend a device synchronously. * @dev: Target device. */ static inline int pm_runtime_suspend(struct device *dev) { return __pm_runtime_suspend(dev, 0); } /** * pm_runtime_autosuspend - Set up autosuspend of a device or suspend it. * @dev: Target device. * * Set up autosuspend of @dev or suspend it (depending on whether or not * autosuspend is enabled for it) without engaging its "idle check" callback. */ static inline int pm_runtime_autosuspend(struct device *dev) { return __pm_runtime_suspend(dev, RPM_AUTO); } /** * pm_runtime_resume - Resume a device synchronously. * @dev: Target device. */ static inline int pm_runtime_resume(struct device *dev) { return __pm_runtime_resume(dev, 0); } /** * pm_request_idle - Queue up "idle check" execution for a device. * @dev: Target device. * * Queue up a work item to run an equivalent of pm_runtime_idle() for @dev * asynchronously. */ static inline int pm_request_idle(struct device *dev) { return __pm_runtime_idle(dev, RPM_ASYNC); } /** * pm_request_resume - Queue up runtime-resume of a device. * @dev: Target device. */ static inline int pm_request_resume(struct device *dev) { return __pm_runtime_resume(dev, RPM_ASYNC); } /** * pm_request_autosuspend - Queue up autosuspend of a device. * @dev: Target device. * * Queue up a work item to run an equivalent pm_runtime_autosuspend() for @dev * asynchronously. */ static inline int pm_request_autosuspend(struct device *dev) { return __pm_runtime_suspend(dev, RPM_ASYNC | RPM_AUTO); } /** * pm_runtime_get - Bump up usage counter and queue up resume of a device. * @dev: Target device. * * Bump up the runtime PM usage counter of @dev and queue up a work item to * carry out runtime-resume of it. */ static inline int pm_runtime_get(struct device *dev) { return __pm_runtime_resume(dev, RPM_GET_PUT | RPM_ASYNC); } /** * pm_runtime_get_sync - Bump up usage counter of a device and resume it. * @dev: Target device. * * Bump up the runtime PM usage counter of @dev and carry out runtime-resume of * it synchronously. * * The possible return values of this function are the same as for * pm_runtime_resume() and the runtime PM usage counter of @dev remains * incremented in all cases, even if it returns an error code. */ static inline int pm_runtime_get_sync(struct device *dev) { return __pm_runtime_resume(dev, RPM_GET_PUT); } /** * pm_runtime_resume_and_get - Bump up usage counter of a device and resume it. * @dev: Target device. * * Resume @dev synchronously and if that is successful, increment its runtime * PM usage counter. Return 0 if the runtime PM usage counter of @dev has been * incremented or a negative error code otherwise. */ static inline int pm_runtime_resume_and_get(struct device *dev) { int ret; ret = __pm_runtime_resume(dev, RPM_GET_PUT); if (ret < 0) { pm_runtime_put_noidle(dev); return ret; } return 0; } /** * pm_runtime_put - Drop device usage counter and queue up "idle check" if 0. * @dev: Target device. * * Decrement the runtime PM usage counter of @dev and if it turns out to be * equal to 0, queue up a work item for @dev like in pm_request_idle(). */ static inline int pm_runtime_put(struct device *dev) { return __pm_runtime_idle(dev, RPM_GET_PUT | RPM_ASYNC); } /** * pm_runtime_put_autosuspend - Drop device usage counter and queue autosuspend if 0. * @dev: Target device. * * Decrement the runtime PM usage counter of @dev and if it turns out to be * equal to 0, queue up a work item for @dev like in pm_request_autosuspend(). */ static inline int pm_runtime_put_autosuspend(struct device *dev) { return __pm_runtime_suspend(dev, RPM_GET_PUT | RPM_ASYNC | RPM_AUTO); } /** * pm_runtime_put_sync - Drop device usage counter and run "idle check" if 0. * @dev: Target device. * * Decrement the runtime PM usage counter of @dev and if it turns out to be * equal to 0, invoke the "idle check" callback of @dev and, depending on its * return value, set up autosuspend of @dev or suspend it (depending on whether * or not autosuspend has been enabled for it). * * The possible return values of this function are the same as for * pm_runtime_idle() and the runtime PM usage counter of @dev remains * decremented in all cases, even if it returns an error code. */ static inline int pm_runtime_put_sync(struct device *dev) { return __pm_runtime_idle(dev, RPM_GET_PUT); } /** * pm_runtime_put_sync_suspend - Drop device usage counter and suspend if 0. * @dev: Target device. * * Decrement the runtime PM usage counter of @dev and if it turns out to be * equal to 0, carry out runtime-suspend of @dev synchronously. * * The possible return values of this function are the same as for * pm_runtime_suspend() and the runtime PM usage counter of @dev remains * decremented in all cases, even if it returns an error code. */ static inline int pm_runtime_put_sync_suspend(struct device *dev) { return __pm_runtime_suspend(dev, RPM_GET_PUT); } /** * pm_runtime_put_sync_autosuspend - Drop device usage counter and autosuspend if 0. * @dev: Target device. * * Decrement the runtime PM usage counter of @dev and if it turns out to be * equal to 0, set up autosuspend of @dev or suspend it synchronously (depending * on whether or not autosuspend has been enabled for it). * * The possible return values of this function are the same as for * pm_runtime_autosuspend() and the runtime PM usage counter of @dev remains * decremented in all cases, even if it returns an error code. */ static inline int pm_runtime_put_sync_autosuspend(struct device *dev) { return __pm_runtime_suspend(dev, RPM_GET_PUT | RPM_AUTO); } /** * pm_runtime_set_active - Set runtime PM status to "active". * @dev: Target device. * * Set the runtime PM status of @dev to %RPM_ACTIVE and ensure that dependencies * of it will be taken into account. * * It is not valid to call this function for devices with runtime PM enabled. */ static inline int pm_runtime_set_active(struct device *dev) { return __pm_runtime_set_status(dev, RPM_ACTIVE); } /** * pm_runtime_set_suspended - Set runtime PM status to "suspended". * @dev: Target device. * * Set the runtime PM status of @dev to %RPM_SUSPENDED and ensure that * dependencies of it will be taken into account. * * It is not valid to call this function for devices with runtime PM enabled. */ static inline int pm_runtime_set_suspended(struct device *dev) { return __pm_runtime_set_status(dev, RPM_SUSPENDED); } /** * pm_runtime_disable - Disable runtime PM for a device. * @dev: Target device. * * Prevent the runtime PM framework from working with @dev (by incrementing its * "blocking" counter). * * For each invocation of this function for @dev there must be a matching * pm_runtime_enable() call in order for runtime PM to be enabled for it. */ static inline void pm_runtime_disable(struct device *dev) { __pm_runtime_disable(dev, true); } /** * pm_runtime_use_autosuspend - Allow autosuspend to be used for a device. * @dev: Target device. * * Allow the runtime PM autosuspend mechanism to be used for @dev whenever * requested (or "autosuspend" will be handled as direct runtime-suspend for * it). */ static inline void pm_runtime_use_autosuspend(struct device *dev) { __pm_runtime_use_autosuspend(dev, true); } /** * pm_runtime_dont_use_autosuspend - Prevent autosuspend from being used. * @dev: Target device. * * Prevent the runtime PM autosuspend mechanism from being used for @dev which * means that "autosuspend" will be handled as direct runtime-suspend for it * going forward. */ static inline void pm_runtime_dont_use_autosuspend(struct device *dev) { __pm_runtime_use_autosuspend(dev, false); } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */ /* * 25-Jul-1998 Major changes to allow for ip chain table * * 3-Jan-2000 Named tables to allow packet selection for different uses. */ /* * Format of an IP6 firewall descriptor * * src, dst, src_mask, dst_mask are always stored in network byte order. * flags are stored in host byte order (of course). * Port numbers are stored in HOST byte order. */ #ifndef _UAPI_IP6_TABLES_H #define _UAPI_IP6_TABLES_H #include <linux/types.h> #include <linux/compiler.h> #include <linux/if.h> #include <linux/netfilter_ipv6.h> #include <linux/netfilter/x_tables.h> #ifndef __KERNEL__ #define IP6T_FUNCTION_MAXNAMELEN XT_FUNCTION_MAXNAMELEN #define IP6T_TABLE_MAXNAMELEN XT_TABLE_MAXNAMELEN #define ip6t_match xt_match #define ip6t_target xt_target #define ip6t_table xt_table #define ip6t_get_revision xt_get_revision #define ip6t_entry_match xt_entry_match #define ip6t_entry_target xt_entry_target #define ip6t_standard_target xt_standard_target #define ip6t_error_target xt_error_target #define ip6t_counters xt_counters #define IP6T_CONTINUE XT_CONTINUE #define IP6T_RETURN XT_RETURN /* Pre-iptables-1.4.0 */ #include <linux/netfilter/xt_tcpudp.h> #define ip6t_tcp xt_tcp #define ip6t_udp xt_udp #define IP6T_TCP_INV_SRCPT XT_TCP_INV_SRCPT #define IP6T_TCP_INV_DSTPT XT_TCP_INV_DSTPT #define IP6T_TCP_INV_FLAGS XT_TCP_INV_FLAGS #define IP6T_TCP_INV_OPTION XT_TCP_INV_OPTION #define IP6T_TCP_INV_MASK XT_TCP_INV_MASK #define IP6T_UDP_INV_SRCPT XT_UDP_INV_SRCPT #define IP6T_UDP_INV_DSTPT XT_UDP_INV_DSTPT #define IP6T_UDP_INV_MASK XT_UDP_INV_MASK #define ip6t_counters_info xt_counters_info #define IP6T_STANDARD_TARGET XT_STANDARD_TARGET #define IP6T_ERROR_TARGET XT_ERROR_TARGET #define IP6T_MATCH_ITERATE(e, fn, args...) \ XT_MATCH_ITERATE(struct ip6t_entry, e, fn, ## args) #define IP6T_ENTRY_ITERATE(entries, size, fn, args...) \ XT_ENTRY_ITERATE(struct ip6t_entry, entries, size, fn, ## args) #endif /* Yes, Virginia, you have to zero the padding. */ struct ip6t_ip6 { /* Source and destination IP6 addr */ struct in6_addr src, dst; /* Mask for src and dest IP6 addr */ struct in6_addr smsk, dmsk; char iniface[IFNAMSIZ], outiface[IFNAMSIZ]; unsigned char iniface_mask[IFNAMSIZ], outiface_mask[IFNAMSIZ]; /* Upper protocol number * - The allowed value is 0 (any) or protocol number of last parsable * header, which is 50 (ESP), 59 (No Next Header), 135 (MH), or * the non IPv6 extension headers. * - The protocol numbers of IPv6 extension headers except of ESP and * MH do not match any packets. * - You also need to set IP6T_FLAGS_PROTO to "flags" to check protocol. */ __u16 proto; /* TOS to match iff flags & IP6T_F_TOS */ __u8 tos; /* Flags word */ __u8 flags; /* Inverse flags */ __u8 invflags; }; /* Values for "flag" field in struct ip6t_ip6 (general ip6 structure). */ #define IP6T_F_PROTO 0x01 /* Set if rule cares about upper protocols */ #define IP6T_F_TOS 0x02 /* Match the TOS. */ #define IP6T_F_GOTO 0x04 /* Set if jump is a goto */ #define IP6T_F_MASK 0x07 /* All possible flag bits mask. */ /* Values for "inv" field in struct ip6t_ip6. */ #define IP6T_INV_VIA_IN 0x01 /* Invert the sense of IN IFACE. */ #define IP6T_INV_VIA_OUT 0x02 /* Invert the sense of OUT IFACE */ #define IP6T_INV_TOS 0x04 /* Invert the sense of TOS. */ #define IP6T_INV_SRCIP 0x08 /* Invert the sense of SRC IP. */ #define IP6T_INV_DSTIP 0x10 /* Invert the sense of DST OP. */ #define IP6T_INV_FRAG 0x20 /* Invert the sense of FRAG. */ #define IP6T_INV_PROTO XT_INV_PROTO #define IP6T_INV_MASK 0x7F /* All possible flag bits mask. */ /* This structure defines each of the firewall rules. Consists of 3 parts which are 1) general IP header stuff 2) match specific stuff 3) the target to perform if the rule matches */ struct ip6t_entry { struct ip6t_ip6 ipv6; /* Mark with fields that we care about. */ unsigned int nfcache; /* Size of ipt_entry + matches */ __u16 target_offset; /* Size of ipt_entry + matches + target */ __u16 next_offset; /* Back pointer */ unsigned int comefrom; /* Packet and byte counters. */ struct xt_counters counters; /* The matches (if any), then the target. */ unsigned char elems[0]; }; /* Standard entry */ struct ip6t_standard { struct ip6t_entry entry; struct xt_standard_target target; }; struct ip6t_error { struct ip6t_entry entry; struct xt_error_target target; }; #define IP6T_ENTRY_INIT(__size) \ { \ .target_offset = sizeof(struct ip6t_entry), \ .next_offset = (__size), \ } #define IP6T_STANDARD_INIT(__verdict) \ { \ .entry = IP6T_ENTRY_INIT(sizeof(struct ip6t_standard)), \ .target = XT_TARGET_INIT(XT_STANDARD_TARGET, \ sizeof(struct xt_standard_target)), \ .target.verdict = -(__verdict) - 1, \ } #define IP6T_ERROR_INIT \ { \ .entry = IP6T_ENTRY_INIT(sizeof(struct ip6t_error)), \ .target = XT_TARGET_INIT(XT_ERROR_TARGET, \ sizeof(struct xt_error_target)), \ .target.errorname = "ERROR", \ } /* * New IP firewall options for [gs]etsockopt at the RAW IP level. * Unlike BSD Linux inherits IP options so you don't have to use * a raw socket for this. Instead we check rights in the calls. * * ATTENTION: check linux/in6.h before adding new number here. */ #define IP6T_BASE_CTL 64 #define IP6T_SO_SET_REPLACE (IP6T_BASE_CTL) #define IP6T_SO_SET_ADD_COUNTERS (IP6T_BASE_CTL + 1) #define IP6T_SO_SET_MAX IP6T_SO_SET_ADD_COUNTERS #define IP6T_SO_GET_INFO (IP6T_BASE_CTL) #define IP6T_SO_GET_ENTRIES (IP6T_BASE_CTL + 1) #define IP6T_SO_GET_REVISION_MATCH (IP6T_BASE_CTL + 4) #define IP6T_SO_GET_REVISION_TARGET (IP6T_BASE_CTL + 5) #define IP6T_SO_GET_MAX IP6T_SO_GET_REVISION_TARGET /* obtain original address if REDIRECT'd connection */ #define IP6T_SO_ORIGINAL_DST 80 /* ICMP matching stuff */ struct ip6t_icmp { __u8 type; /* type to match */ __u8 code[2]; /* range of code */ __u8 invflags; /* Inverse flags */ }; /* Values for "inv" field for struct ipt_icmp. */ #define IP6T_ICMP_INV 0x01 /* Invert the sense of type/code test */ /* The argument to IP6T_SO_GET_INFO */ struct ip6t_getinfo { /* Which table: caller fills this in. */ char name[XT_TABLE_MAXNAMELEN]; /* Kernel fills these in. */ /* Which hook entry points are valid: bitmask */ unsigned int valid_hooks; /* Hook entry points: one per netfilter hook. */ unsigned int hook_entry[NF_INET_NUMHOOKS]; /* Underflow points. */ unsigned int underflow[NF_INET_NUMHOOKS]; /* Number of entries */ unsigned int num_entries; /* Size of entries. */ unsigned int size; }; /* The argument to IP6T_SO_SET_REPLACE. */ struct ip6t_replace { /* Which table. */ char name[XT_TABLE_MAXNAMELEN]; /* Which hook entry points are valid: bitmask. You can't change this. */ unsigned int valid_hooks; /* Number of entries */ unsigned int num_entries; /* Total size of new entries */ unsigned int size; /* Hook entry points. */ unsigned int hook_entry[NF_INET_NUMHOOKS]; /* Underflow points. */ unsigned int underflow[NF_INET_NUMHOOKS]; /* Information about old entries: */ /* Number of counters (must be equal to current number of entries). */ unsigned int num_counters; /* The old entries' counters. */ struct xt_counters __user *counters; /* The entries (hang off end: not really an array). */ struct ip6t_entry entries[0]; }; /* The argument to IP6T_SO_GET_ENTRIES. */ struct ip6t_get_entries { /* Which table: user fills this in. */ char name[XT_TABLE_MAXNAMELEN]; /* User fills this in: total entry size. */ unsigned int size; /* The entries. */ struct ip6t_entry entrytable[0]; }; /* Helper functions */ static __inline__ struct xt_entry_target * ip6t_get_target(struct ip6t_entry *e) { return (struct xt_entry_target *)((char *)e + e->target_offset); } /* * Main firewall chains definitions and global var's definitions. */ #endif /* _UAPI_IP6_TABLES_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 /* SPDX-License-Identifier: GPL-2.0+ */ /* * Sleepable Read-Copy Update mechanism for mutual exclusion * * Copyright (C) IBM Corporation, 2006 * Copyright (C) Fujitsu, 2012 * * Author: Paul McKenney <paulmck@linux.ibm.com> * Lai Jiangshan <laijs@cn.fujitsu.com> * * For detailed explanation of Read-Copy Update mechanism see - * Documentation/RCU/ *.txt * */ #ifndef _LINUX_SRCU_H #define _LINUX_SRCU_H #include <linux/mutex.h> #include <linux/rcupdate.h> #include <linux/workqueue.h> #include <linux/rcu_segcblist.h> struct srcu_struct; #ifdef CONFIG_DEBUG_LOCK_ALLOC int __init_srcu_struct(struct srcu_struct *ssp, const char *name, struct lock_class_key *key); #define init_srcu_struct(ssp) \ ({ \ static struct lock_class_key __srcu_key; \ \ __init_srcu_struct((ssp), #ssp, &__srcu_key); \ }) #define __SRCU_DEP_MAP_INIT(srcu_name) .dep_map = { .name = #srcu_name }, #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ int init_srcu_struct(struct srcu_struct *ssp); #define __SRCU_DEP_MAP_INIT(srcu_name) #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ #ifdef CONFIG_TINY_SRCU #include <linux/srcutiny.h> #elif defined(CONFIG_TREE_SRCU) #include <linux/srcutree.h> #elif defined(CONFIG_SRCU) #error "Unknown SRCU implementation specified to kernel configuration" #else /* Dummy definition for things like notifiers. Actual use gets link error. */ struct srcu_struct { }; #endif void call_srcu(struct srcu_struct *ssp, struct rcu_head *head, void (*func)(struct rcu_head *head)); void cleanup_srcu_struct(struct srcu_struct *ssp); int __srcu_read_lock(struct srcu_struct *ssp) __acquires(ssp); void __srcu_read_unlock(struct srcu_struct *ssp, int idx) __releases(ssp); void synchronize_srcu(struct srcu_struct *ssp); unsigned long get_state_synchronize_srcu(struct srcu_struct *ssp); unsigned long start_poll_synchronize_srcu(struct srcu_struct *ssp); bool poll_state_synchronize_srcu(struct srcu_struct *ssp, unsigned long cookie); #ifdef CONFIG_DEBUG_LOCK_ALLOC /** * srcu_read_lock_held - might we be in SRCU read-side critical section? * @ssp: The srcu_struct structure to check * * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an SRCU * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC, * this assumes we are in an SRCU read-side critical section unless it can * prove otherwise. * * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot * and while lockdep is disabled. * * Note that SRCU is based on its own statemachine and it doesn't * relies on normal RCU, it can be called from the CPU which * is in the idle loop from an RCU point of view or offline. */ static inline int srcu_read_lock_held(const struct srcu_struct *ssp) { if (!debug_lockdep_rcu_enabled()) return 1; return lock_is_held(&ssp->dep_map); } #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ static inline int srcu_read_lock_held(const struct srcu_struct *ssp) { return 1; } #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ /** * srcu_dereference_check - fetch SRCU-protected pointer for later dereferencing * @p: the pointer to fetch and protect for later dereferencing * @ssp: pointer to the srcu_struct, which is used to check that we * really are in an SRCU read-side critical section. * @c: condition to check for update-side use * * If PROVE_RCU is enabled, invoking this outside of an RCU read-side * critical section will result in an RCU-lockdep splat, unless @c evaluates * to 1. The @c argument will normally be a logical expression containing * lockdep_is_held() calls. */ #define srcu_dereference_check(p, ssp, c) \ __rcu_dereference_check((p), (c) || srcu_read_lock_held(ssp), __rcu) /** * srcu_dereference - fetch SRCU-protected pointer for later dereferencing * @p: the pointer to fetch and protect for later dereferencing * @ssp: pointer to the srcu_struct, which is used to check that we * really are in an SRCU read-side critical section. * * Makes rcu_dereference_check() do the dirty work. If PROVE_RCU * is enabled, invoking this outside of an RCU read-side critical * section will result in an RCU-lockdep splat. */ #define srcu_dereference(p, ssp) srcu_dereference_check((p), (ssp), 0) /** * srcu_dereference_notrace - no tracing and no lockdep calls from here * @p: the pointer to fetch and protect for later dereferencing * @ssp: pointer to the srcu_struct, which is used to check that we * really are in an SRCU read-side critical section. */ #define srcu_dereference_notrace(p, ssp) srcu_dereference_check((p), (ssp), 1) /** * srcu_read_lock - register a new reader for an SRCU-protected structure. * @ssp: srcu_struct in which to register the new reader. * * Enter an SRCU read-side critical section. Note that SRCU read-side * critical sections may be nested. However, it is illegal to * call anything that waits on an SRCU grace period for the same * srcu_struct, whether directly or indirectly. Please note that * one way to indirectly wait on an SRCU grace period is to acquire * a mutex that is held elsewhere while calling synchronize_srcu() or * synchronize_srcu_expedited(). * * Note that srcu_read_lock() and the matching srcu_read_unlock() must * occur in the same context, for example, it is illegal to invoke * srcu_read_unlock() in an irq handler if the matching srcu_read_lock() * was invoked in process context. */ static inline int srcu_read_lock(struct srcu_struct *ssp) __acquires(ssp) { int retval; retval = __srcu_read_lock(ssp); rcu_lock_acquire(&(ssp)->dep_map); return retval; } /* Used by tracing, cannot be traced and cannot invoke lockdep. */ static inline notrace int srcu_read_lock_notrace(struct srcu_struct *ssp) __acquires(ssp) { int retval; retval = __srcu_read_lock(ssp); return retval; } /** * srcu_read_unlock - unregister a old reader from an SRCU-protected structure. * @ssp: srcu_struct in which to unregister the old reader. * @idx: return value from corresponding srcu_read_lock(). * * Exit an SRCU read-side critical section. */ static inline void srcu_read_unlock(struct srcu_struct *ssp, int idx) __releases(ssp) { WARN_ON_ONCE(idx & ~0x1); rcu_lock_release(&(ssp)->dep_map); __srcu_read_unlock(ssp, idx); } /* Used by tracing, cannot be traced and cannot call lockdep. */ static inline notrace void srcu_read_unlock_notrace(struct srcu_struct *ssp, int idx) __releases(ssp) { __srcu_read_unlock(ssp, idx); } /** * smp_mb__after_srcu_read_unlock - ensure full ordering after srcu_read_unlock * * Converts the preceding srcu_read_unlock into a two-way memory barrier. * * Call this after srcu_read_unlock, to guarantee that all memory operations * that occur after smp_mb__after_srcu_read_unlock will appear to happen after * the preceding srcu_read_unlock. */ static inline void smp_mb__after_srcu_read_unlock(void) { /* __srcu_read_unlock has smp_mb() internally so nothing to do here. */ } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 /* SPDX-License-Identifier: GPL-2.0 */ /* linux/include/linux/clockchips.h * * This file contains the structure definitions for clockchips. * * If you are not a clockchip, or the time of day code, you should * not be including this file! */ #ifndef _LINUX_CLOCKCHIPS_H #define _LINUX_CLOCKCHIPS_H #ifdef CONFIG_GENERIC_CLOCKEVENTS # include <linux/clocksource.h> # include <linux/cpumask.h> # include <linux/ktime.h> # include <linux/notifier.h> struct clock_event_device; struct module; /* * Possible states of a clock event device. * * DETACHED: Device is not used by clockevents core. Initial state or can be * reached from SHUTDOWN. * SHUTDOWN: Device is powered-off. Can be reached from PERIODIC or ONESHOT. * PERIODIC: Device is programmed to generate events periodically. Can be * reached from DETACHED or SHUTDOWN. * ONESHOT: Device is programmed to generate event only once. Can be reached * from DETACHED or SHUTDOWN. * ONESHOT_STOPPED: Device was programmed in ONESHOT mode and is temporarily * stopped. */ enum clock_event_state { CLOCK_EVT_STATE_DETACHED, CLOCK_EVT_STATE_SHUTDOWN, CLOCK_EVT_STATE_PERIODIC, CLOCK_EVT_STATE_ONESHOT, CLOCK_EVT_STATE_ONESHOT_STOPPED, }; /* * Clock event features */ # define CLOCK_EVT_FEAT_PERIODIC 0x000001 # define CLOCK_EVT_FEAT_ONESHOT 0x000002 # define CLOCK_EVT_FEAT_KTIME 0x000004 /* * x86(64) specific (mis)features: * * - Clockevent source stops in C3 State and needs broadcast support. * - Local APIC timer is used as a dummy device. */ # define CLOCK_EVT_FEAT_C3STOP 0x000008 # define CLOCK_EVT_FEAT_DUMMY 0x000010 /* * Core shall set the interrupt affinity dynamically in broadcast mode */ # define CLOCK_EVT_FEAT_DYNIRQ 0x000020 # define CLOCK_EVT_FEAT_PERCPU 0x000040 /* * Clockevent device is based on a hrtimer for broadcast */ # define CLOCK_EVT_FEAT_HRTIMER 0x000080 /** * struct clock_event_device - clock event device descriptor * @event_handler: Assigned by the framework to be called by the low * level handler of the event source * @set_next_event: set next event function using a clocksource delta * @set_next_ktime: set next event function using a direct ktime value * @next_event: local storage for the next event in oneshot mode * @max_delta_ns: maximum delta value in ns * @min_delta_ns: minimum delta value in ns * @mult: nanosecond to cycles multiplier * @shift: nanoseconds to cycles divisor (power of two) * @state_use_accessors:current state of the device, assigned by the core code * @features: features * @retries: number of forced programming retries * @set_state_periodic: switch state to periodic * @set_state_oneshot: switch state to oneshot * @set_state_oneshot_stopped: switch state to oneshot_stopped * @set_state_shutdown: switch state to shutdown * @tick_resume: resume clkevt device * @broadcast: function to broadcast events * @min_delta_ticks: minimum delta value in ticks stored for reconfiguration * @max_delta_ticks: maximum delta value in ticks stored for reconfiguration * @name: ptr to clock event name * @rating: variable to rate clock event devices * @irq: IRQ number (only for non CPU local devices) * @bound_on: Bound on CPU * @cpumask: cpumask to indicate for which CPUs this device works * @list: list head for the management code * @owner: module reference */ struct clock_event_device { void (*event_handler)(struct clock_event_device *); int (*set_next_event)(unsigned long evt, struct clock_event_device *); int (*set_next_ktime)(ktime_t expires, struct clock_event_device *); ktime_t next_event; u64 max_delta_ns; u64 min_delta_ns; u32 mult; u32 shift; enum clock_event_state state_use_accessors; unsigned int features; unsigned long retries; int (*set_state_periodic)(struct clock_event_device *); int (*set_state_oneshot)(struct clock_event_device *); int (*set_state_oneshot_stopped)(struct clock_event_device *); int (*set_state_shutdown)(struct clock_event_device *); int (*tick_resume)(struct clock_event_device *); void (*broadcast)(const struct cpumask *mask); void (*suspend)(struct clock_event_device *); void (*resume)(struct clock_event_device *); unsigned long min_delta_ticks; unsigned long max_delta_ticks; const char *name; int rating; int irq; int bound_on; const struct cpumask *cpumask; struct list_head list; struct module *owner; } ____cacheline_aligned; /* Helpers to verify state of a clockevent device */ static inline bool clockevent_state_detached(struct clock_event_device *dev) { return dev->state_use_accessors == CLOCK_EVT_STATE_DETACHED; } static inline bool clockevent_state_shutdown(struct clock_event_device *dev) { return dev->state_use_accessors == CLOCK_EVT_STATE_SHUTDOWN; } static inline bool clockevent_state_periodic(struct clock_event_device *dev) { return dev->state_use_accessors == CLOCK_EVT_STATE_PERIODIC; } static inline bool clockevent_state_oneshot(struct clock_event_device *dev) { return dev->state_use_accessors == CLOCK_EVT_STATE_ONESHOT; } static inline bool clockevent_state_oneshot_stopped(struct clock_event_device *dev) { return dev->state_use_accessors == CLOCK_EVT_STATE_ONESHOT_STOPPED; } /* * Calculate a multiplication factor for scaled math, which is used to convert * nanoseconds based values to clock ticks: * * clock_ticks = (nanoseconds * factor) >> shift. * * div_sc is the rearranged equation to calculate a factor from a given clock * ticks / nanoseconds ratio: * * factor = (clock_ticks << shift) / nanoseconds */ static inline unsigned long div_sc(unsigned long ticks, unsigned long nsec, int shift) { u64 tmp = ((u64)ticks) << shift; do_div(tmp, nsec); return (unsigned long) tmp; } /* Clock event layer functions */ extern u64 clockevent_delta2ns(unsigned long latch, struct clock_event_device *evt); extern void clockevents_register_device(struct clock_event_device *dev); extern int clockevents_unbind_device(struct clock_event_device *ced, int cpu); extern void clockevents_config_and_register(struct clock_event_device *dev, u32 freq, unsigned long min_delta, unsigned long max_delta); extern int clockevents_update_freq(struct clock_event_device *ce, u32 freq); static inline void clockevents_calc_mult_shift(struct clock_event_device *ce, u32 freq, u32 maxsec) { return clocks_calc_mult_shift(&ce->mult, &ce->shift, NSEC_PER_SEC, freq, maxsec); } extern void clockevents_suspend(void); extern void clockevents_resume(void); # ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST # ifdef CONFIG_ARCH_HAS_TICK_BROADCAST extern void tick_broadcast(const struct cpumask *mask); # else # define tick_broadcast NULL # endif extern int tick_receive_broadcast(void); # endif # if defined(CONFIG_GENERIC_CLOCKEVENTS_BROADCAST) && defined(CONFIG_TICK_ONESHOT) extern void tick_setup_hrtimer_broadcast(void); extern int tick_check_broadcast_expired(void); # else static inline int tick_check_broadcast_expired(void) { return 0; } static inline void tick_setup_hrtimer_broadcast(void) { } # endif #else /* !CONFIG_GENERIC_CLOCKEVENTS: */ static inline void clockevents_suspend(void) { } static inline void clockevents_resume(void) { } static inline int tick_check_broadcast_expired(void) { return 0; } static inline void tick_setup_hrtimer_broadcast(void) { } #endif /* !CONFIG_GENERIC_CLOCKEVENTS */ #endif /* _LINUX_CLOCKCHIPS_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 /* SPDX-License-Identifier: GPL-2.0 */ /* * Task I/O accounting operations */ #ifndef __TASK_IO_ACCOUNTING_OPS_INCLUDED #define __TASK_IO_ACCOUNTING_OPS_INCLUDED #include <linux/sched.h> #ifdef CONFIG_TASK_IO_ACCOUNTING static inline void task_io_account_read(size_t bytes) { current->ioac.read_bytes += bytes; } /* * We approximate number of blocks, because we account bytes only. * A 'block' is 512 bytes */ static inline unsigned long task_io_get_inblock(const struct task_struct *p) { return p->ioac.read_bytes >> 9; } static inline void task_io_account_write(size_t bytes) { current->ioac.write_bytes += bytes; } /* * We approximate number of blocks, because we account bytes only. * A 'block' is 512 bytes */ static inline unsigned long task_io_get_oublock(const struct task_struct *p) { return p->ioac.write_bytes >> 9; } static inline void task_io_account_cancelled_write(size_t bytes) { current->ioac.cancelled_write_bytes += bytes; } static inline void task_io_accounting_init(struct task_io_accounting *ioac) { memset(ioac, 0, sizeof(*ioac)); } static inline void task_blk_io_accounting_add(struct task_io_accounting *dst, struct task_io_accounting *src) { dst->read_bytes += src->read_bytes; dst->write_bytes += src->write_bytes; dst->cancelled_write_bytes += src->cancelled_write_bytes; } #else static inline void task_io_account_read(size_t bytes) { } static inline unsigned long task_io_get_inblock(const struct task_struct *p) { return 0; } static inline void task_io_account_write(size_t bytes) { } static inline unsigned long task_io_get_oublock(const struct task_struct *p) { return 0; } static inline void task_io_account_cancelled_write(size_t bytes) { } static inline void task_io_accounting_init(struct task_io_accounting *ioac) { } static inline void task_blk_io_accounting_add(struct task_io_accounting *dst, struct task_io_accounting *src) { } #endif /* CONFIG_TASK_IO_ACCOUNTING */ #ifdef CONFIG_TASK_XACCT static inline void task_chr_io_accounting_add(struct task_io_accounting *dst, struct task_io_accounting *src) { dst->rchar += src->rchar; dst->wchar += src->wchar; dst->syscr += src->syscr; dst->syscw += src->syscw; } #else static inline void task_chr_io_accounting_add(struct task_io_accounting *dst, struct task_io_accounting *src) { } #endif /* CONFIG_TASK_XACCT */ static inline void task_io_accounting_add(struct task_io_accounting *dst, struct task_io_accounting *src) { task_chr_io_accounting_add(dst, src); task_blk_io_accounting_add(dst, src); } #endif /* __TASK_IO_ACCOUNTING_OPS_INCLUDED */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_HWEIGHT_H #define _ASM_X86_HWEIGHT_H #include <asm/cpufeatures.h> #ifdef CONFIG_64BIT #define REG_IN "D" #define REG_OUT "a" #else #define REG_IN "a" #define REG_OUT "a" #endif static __always_inline unsigned int __arch_hweight32(unsigned int w) { unsigned int res; asm (ALTERNATIVE("call __sw_hweight32", "popcntl %1, %0", X86_FEATURE_POPCNT) : "="REG_OUT (res) : REG_IN (w)); return res; } static inline unsigned int __arch_hweight16(unsigned int w) { return __arch_hweight32(w & 0xffff); } static inline unsigned int __arch_hweight8(unsigned int w) { return __arch_hweight32(w & 0xff); } #ifdef CONFIG_X86_32 static inline unsigned long __arch_hweight64(__u64 w) { return __arch_hweight32((u32)w) + __arch_hweight32((u32)(w >> 32)); } #else static __always_inline unsigned long __arch_hweight64(__u64 w) { unsigned long res; asm (ALTERNATIVE("call __sw_hweight64", "popcntq %1, %0", X86_FEATURE_POPCNT) : "="REG_OUT (res) : REG_IN (w)); return res; } #endif /* CONFIG_X86_32 */ #endif
1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 // SPDX-License-Identifier: GPL-2.0-or-later /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Pseudo-driver for the loopback interface. * * Version: @(#)loopback.c 1.0.4b 08/16/93 * * Authors: Ross Biro * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> * Donald Becker, <becker@scyld.com> * * Alan Cox : Fixed oddments for NET3.014 * Alan Cox : Rejig for NET3.029 snap #3 * Alan Cox : Fixed NET3.029 bugs and sped up * Larry McVoy : Tiny tweak to double performance * Alan Cox : Backed out LMV's tweak - the linux mm * can't take it... * Michael Griffith: Don't bother computing the checksums * on packets received on the loopback * interface. * Alexey Kuznetsov: Potential hang under some extreme * cases removed. */ #include <linux/kernel.h> #include <linux/jiffies.h> #include <linux/module.h> #include <linux/interrupt.h> #include <linux/fs.h> #include <linux/types.h> #include <linux/string.h> #include <linux/socket.h> #include <linux/errno.h> #include <linux/fcntl.h> #include <linux/in.h> #include <linux/uaccess.h> #include <linux/io.h> #include <linux/inet.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/skbuff.h> #include <linux/ethtool.h> #include <net/sock.h> #include <net/checksum.h> #include <linux/if_ether.h> /* For the statistics structure. */ #include <linux/if_arp.h> /* For ARPHRD_ETHER */ #include <linux/ip.h> #include <linux/tcp.h> #include <linux/percpu.h> #include <linux/net_tstamp.h> #include <net/net_namespace.h> #include <linux/u64_stats_sync.h> /* blackhole_netdev - a device used for dsts that are marked expired! * This is global device (instead of per-net-ns) since it's not needed * to be per-ns and gets initialized at boot time. */ struct net_device *blackhole_netdev; EXPORT_SYMBOL(blackhole_netdev); /* The higher levels take care of making this non-reentrant (it's * called with bh's disabled). */ static netdev_tx_t loopback_xmit(struct sk_buff *skb, struct net_device *dev) { int len; skb_tx_timestamp(skb); /* do not fool net_timestamp_check() with various clock bases */ skb->tstamp = 0; skb_orphan(skb); /* Before queueing this packet to netif_rx(), * make sure dst is refcounted. */ skb_dst_force(skb); skb->protocol = eth_type_trans(skb, dev); len = skb->len; if (likely(netif_rx(skb) == NET_RX_SUCCESS)) dev_lstats_add(dev, len); return NETDEV_TX_OK; } void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes) { int i; *packets = 0; *bytes = 0; for_each_possible_cpu(i) { const struct pcpu_lstats *lb_stats; u64 tbytes, tpackets; unsigned int start; lb_stats = per_cpu_ptr(dev->lstats, i); do { start = u64_stats_fetch_begin_irq(&lb_stats->syncp); tpackets = u64_stats_read(&lb_stats->packets); tbytes = u64_stats_read(&lb_stats->bytes); } while (u64_stats_fetch_retry_irq(&lb_stats->syncp, start)); *bytes += tbytes; *packets += tpackets; } } EXPORT_SYMBOL(dev_lstats_read); static void loopback_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) { u64 packets, bytes; dev_lstats_read(dev, &packets, &bytes); stats->rx_packets = packets; stats->tx_packets = packets; stats->rx_bytes = bytes; stats->tx_bytes = bytes; } static u32 always_on(struct net_device *dev) { return 1; } static const struct ethtool_ops loopback_ethtool_ops = { .get_link = always_on, .get_ts_info = ethtool_op_get_ts_info, }; static int loopback_dev_init(struct net_device *dev) { dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats); if (!dev->lstats) return -ENOMEM; return 0; } static void loopback_dev_free(struct net_device *dev) { dev_net(dev)->loopback_dev = NULL; free_percpu(dev->lstats); } static const struct net_device_ops loopback_ops = { .ndo_init = loopback_dev_init, .ndo_start_xmit = loopback_xmit, .ndo_get_stats64 = loopback_get_stats64, .ndo_set_mac_address = eth_mac_addr, }; static void gen_lo_setup(struct net_device *dev, unsigned int mtu, const struct ethtool_ops *eth_ops, const struct header_ops *hdr_ops, const struct net_device_ops *dev_ops, void (*dev_destructor)(struct net_device *dev)) { dev->mtu = mtu; dev->hard_header_len = ETH_HLEN; /* 14 */ dev->min_header_len = ETH_HLEN; /* 14 */ dev->addr_len = ETH_ALEN; /* 6 */ dev->type = ARPHRD_LOOPBACK; /* 0x0001*/ dev->flags = IFF_LOOPBACK; dev->priv_flags |= IFF_LIVE_ADDR_CHANGE | IFF_NO_QUEUE; netif_keep_dst(dev); dev->hw_features = NETIF_F_GSO_SOFTWARE; dev->features = NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_GSO_SOFTWARE | NETIF_F_HW_CSUM | NETIF_F_RXCSUM | NETIF_F_SCTP_CRC | NETIF_F_HIGHDMA | NETIF_F_LLTX | NETIF_F_NETNS_LOCAL | NETIF_F_VLAN_CHALLENGED | NETIF_F_LOOPBACK; dev->ethtool_ops = eth_ops; dev->header_ops = hdr_ops; dev->netdev_ops = dev_ops; dev->needs_free_netdev = true; dev->priv_destructor = dev_destructor; } /* The loopback device is special. There is only one instance * per network namespace. */ static void loopback_setup(struct net_device *dev) { gen_lo_setup(dev, (64 * 1024), &loopback_ethtool_ops, &eth_header_ops, &loopback_ops, loopback_dev_free); } /* Setup and register the loopback device. */ static __net_init int loopback_net_init(struct net *net) { struct net_device *dev; int err; err = -ENOMEM; dev = alloc_netdev(0, "lo", NET_NAME_UNKNOWN, loopback_setup); if (!dev) goto out; dev_net_set(dev, net); err = register_netdev(dev); if (err) goto out_free_netdev; BUG_ON(dev->ifindex != LOOPBACK_IFINDEX); net->loopback_dev = dev; return 0; out_free_netdev: free_netdev(dev); out: if (net_eq(net, &init_net)) panic("loopback: Failed to register netdevice: %d\n", err); return err; } /* Registered in net/core/dev.c */ struct pernet_operations __net_initdata loopback_net_ops = { .init = loopback_net_init, }; /* blackhole netdevice */ static netdev_tx_t blackhole_netdev_xmit(struct sk_buff *skb, struct net_device *dev) { kfree_skb(skb); net_warn_ratelimited("%s(): Dropping skb.\n", __func__); return NETDEV_TX_OK; } static const struct net_device_ops blackhole_netdev_ops = { .ndo_start_xmit = blackhole_netdev_xmit, }; /* This is a dst-dummy device used specifically for invalidated * DSTs and unlike loopback, this is not per-ns. */ static void blackhole_netdev_setup(struct net_device *dev) { gen_lo_setup(dev, ETH_MIN_MTU, NULL, NULL, &blackhole_netdev_ops, NULL); } /* Setup and register the blackhole_netdev. */ static int __init blackhole_netdev_init(void) { blackhole_netdev = alloc_netdev(0, "blackhole_dev", NET_NAME_UNKNOWN, blackhole_netdev_setup); if (!blackhole_netdev) return -ENOMEM; rtnl_lock(); dev_init_scheduler(blackhole_netdev); dev_activate(blackhole_netdev); rtnl_unlock(); blackhole_netdev->flags |= IFF_UP | IFF_RUNNING; dev_net_set(blackhole_netdev, &init_net); return 0; } device_initcall(blackhole_netdev_init);
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 /* SPDX-License-Identifier: GPL-2.0-only */ /* * net busy poll support * Copyright(c) 2013 Intel Corporation. * * Author: Eliezer Tamir * * Contact Information: * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> */ #ifndef _LINUX_NET_BUSY_POLL_H #define _LINUX_NET_BUSY_POLL_H #include <linux/netdevice.h> #include <linux/sched/clock.h> #include <linux/sched/signal.h> #include <net/ip.h> /* 0 - Reserved to indicate value not set * 1..NR_CPUS - Reserved for sender_cpu * NR_CPUS+1..~0 - Region available for NAPI IDs */ #define MIN_NAPI_ID ((unsigned int)(NR_CPUS + 1)) #ifdef CONFIG_NET_RX_BUSY_POLL struct napi_struct; extern unsigned int sysctl_net_busy_read __read_mostly; extern unsigned int sysctl_net_busy_poll __read_mostly; static inline bool net_busy_loop_on(void) { return sysctl_net_busy_poll; } static inline bool sk_can_busy_loop(const struct sock *sk) { return READ_ONCE(sk->sk_ll_usec) && !signal_pending(current); } bool sk_busy_loop_end(void *p, unsigned long start_time); void napi_busy_loop(unsigned int napi_id, bool (*loop_end)(void *, unsigned long), void *loop_end_arg); #else /* CONFIG_NET_RX_BUSY_POLL */ static inline unsigned long net_busy_loop_on(void) { return 0; } static inline bool sk_can_busy_loop(struct sock *sk) { return false; } #endif /* CONFIG_NET_RX_BUSY_POLL */ static inline unsigned long busy_loop_current_time(void) { #ifdef CONFIG_NET_RX_BUSY_POLL return (unsigned long)(local_clock() >> 10); #else return 0; #endif } /* in poll/select we use the global sysctl_net_ll_poll value */ static inline bool busy_loop_timeout(unsigned long start_time) { #ifdef CONFIG_NET_RX_BUSY_POLL unsigned long bp_usec = READ_ONCE(sysctl_net_busy_poll); if (bp_usec) { unsigned long end_time = start_time + bp_usec; unsigned long now = busy_loop_current_time(); return time_after(now, end_time); } #endif return true; } static inline bool sk_busy_loop_timeout(struct sock *sk, unsigned long start_time) { #ifdef CONFIG_NET_RX_BUSY_POLL unsigned long bp_usec = READ_ONCE(sk->sk_ll_usec); if (bp_usec) { unsigned long end_time = start_time + bp_usec; unsigned long now = busy_loop_current_time(); return time_after(now, end_time); } #endif return true; } static inline void sk_busy_loop(struct sock *sk, int nonblock) { #ifdef CONFIG_NET_RX_BUSY_POLL unsigned int napi_id = READ_ONCE(sk->sk_napi_id); if (napi_id >= MIN_NAPI_ID) napi_busy_loop(napi_id, nonblock ? NULL : sk_busy_loop_end, sk); #endif } /* used in the NIC receive handler to mark the skb */ static inline void skb_mark_napi_id(struct sk_buff *skb, struct napi_struct *napi) { #ifdef CONFIG_NET_RX_BUSY_POLL /* If the skb was already marked with a valid NAPI ID, avoid overwriting * it. */ if (skb->napi_id < MIN_NAPI_ID) skb->napi_id = napi->napi_id; #endif } /* used in the protocol hanlder to propagate the napi_id to the socket */ static inline void sk_mark_napi_id(struct sock *sk, const struct sk_buff *skb) { #ifdef CONFIG_NET_RX_BUSY_POLL WRITE_ONCE(sk->sk_napi_id, skb->napi_id); #endif sk_rx_queue_set(sk, skb); } /* variant used for unconnected sockets */ static inline void sk_mark_napi_id_once(struct sock *sk, const struct sk_buff *skb) { #ifdef CONFIG_NET_RX_BUSY_POLL if (!READ_ONCE(sk->sk_napi_id)) WRITE_ONCE(sk->sk_napi_id, skb->napi_id); #endif } #endif /* _LINUX_NET_BUSY_POLL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_USER_NAMESPACE_H #define _LINUX_USER_NAMESPACE_H #include <linux/kref.h> #include <linux/nsproxy.h> #include <linux/ns_common.h> #include <linux/sched.h> #include <linux/workqueue.h> #include <linux/rwsem.h> #include <linux/sysctl.h> #include <linux/err.h> #define UID_GID_MAP_MAX_BASE_EXTENTS 5 #define UID_GID_MAP_MAX_EXTENTS 340 struct uid_gid_extent { u32 first; u32 lower_first; u32 count; }; struct uid_gid_map { /* 64 bytes -- 1 cache line */ u32 nr_extents; union { struct uid_gid_extent extent[UID_GID_MAP_MAX_BASE_EXTENTS]; struct { struct uid_gid_extent *forward; struct uid_gid_extent *reverse; }; }; }; #define USERNS_SETGROUPS_ALLOWED 1UL #define USERNS_INIT_FLAGS USERNS_SETGROUPS_ALLOWED struct ucounts; enum ucount_type { UCOUNT_USER_NAMESPACES, UCOUNT_PID_NAMESPACES, UCOUNT_UTS_NAMESPACES, UCOUNT_IPC_NAMESPACES, UCOUNT_NET_NAMESPACES, UCOUNT_MNT_NAMESPACES, UCOUNT_CGROUP_NAMESPACES, UCOUNT_TIME_NAMESPACES, #ifdef CONFIG_INOTIFY_USER UCOUNT_INOTIFY_INSTANCES, UCOUNT_INOTIFY_WATCHES, #endif UCOUNT_COUNTS, }; struct user_namespace { struct uid_gid_map uid_map; struct uid_gid_map gid_map; struct uid_gid_map projid_map; atomic_t count; struct user_namespace *parent; int level; kuid_t owner; kgid_t group; struct ns_common ns; unsigned long flags; /* parent_could_setfcap: true if the creator if this ns had CAP_SETFCAP * in its effective capability set at the child ns creation time. */ bool parent_could_setfcap; #ifdef CONFIG_KEYS /* List of joinable keyrings in this namespace. Modification access of * these pointers is controlled by keyring_sem. Once * user_keyring_register is set, it won't be changed, so it can be * accessed directly with READ_ONCE(). */ struct list_head keyring_name_list; struct key *user_keyring_register; struct rw_semaphore keyring_sem; #endif /* Register of per-UID persistent keyrings for this namespace */ #ifdef CONFIG_PERSISTENT_KEYRINGS struct key *persistent_keyring_register; #endif struct work_struct work; #ifdef CONFIG_SYSCTL struct ctl_table_set set; struct ctl_table_header *sysctls; #endif struct ucounts *ucounts; int ucount_max[UCOUNT_COUNTS]; } __randomize_layout; struct ucounts { struct hlist_node node; struct user_namespace *ns; kuid_t uid; int count; atomic_t ucount[UCOUNT_COUNTS]; }; extern struct user_namespace init_user_ns; bool setup_userns_sysctls(struct user_namespace *ns); void retire_userns_sysctls(struct user_namespace *ns); struct ucounts *inc_ucount(struct user_namespace *ns, kuid_t uid, enum ucount_type type); void dec_ucount(struct ucounts *ucounts, enum ucount_type type); #ifdef CONFIG_USER_NS static inline struct user_namespace *get_user_ns(struct user_namespace *ns) { if (ns) atomic_inc(&ns->count); return ns; } extern int create_user_ns(struct cred *new); extern int unshare_userns(unsigned long unshare_flags, struct cred **new_cred); extern void __put_user_ns(struct user_namespace *ns); static inline void put_user_ns(struct user_namespace *ns) { if (ns && atomic_dec_and_test(&ns->count)) __put_user_ns(ns); } struct seq_operations; extern const struct seq_operations proc_uid_seq_operations; extern const struct seq_operations proc_gid_seq_operations; extern const struct seq_operations proc_projid_seq_operations; extern ssize_t proc_uid_map_write(struct file *, const char __user *, size_t, loff_t *); extern ssize_t proc_gid_map_write(struct file *, const char __user *, size_t, loff_t *); extern ssize_t proc_projid_map_write(struct file *, const char __user *, size_t, loff_t *); extern ssize_t proc_setgroups_write(struct file *, const char __user *, size_t, loff_t *); extern int proc_setgroups_show(struct seq_file *m, void *v); extern bool userns_may_setgroups(const struct user_namespace *ns); extern bool in_userns(const struct user_namespace *ancestor, const struct user_namespace *child); extern bool current_in_userns(const struct user_namespace *target_ns); struct ns_common *ns_get_owner(struct ns_common *ns); #else static inline struct user_namespace *get_user_ns(struct user_namespace *ns) { return &init_user_ns; } static inline int create_user_ns(struct cred *new) { return -EINVAL; } static inline int unshare_userns(unsigned long unshare_flags, struct cred **new_cred) { if (unshare_flags & CLONE_NEWUSER) return -EINVAL; return 0; } static inline void put_user_ns(struct user_namespace *ns) { } static inline bool userns_may_setgroups(const struct user_namespace *ns) { return true; } static inline bool in_userns(const struct user_namespace *ancestor, const struct user_namespace *child) { return true; } static inline bool current_in_userns(const struct user_namespace *target_ns) { return true; } static inline struct ns_common *ns_get_owner(struct ns_common *ns) { return ERR_PTR(-EPERM); } #endif #endif /* _LINUX_USER_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_UACCESS_64_H #define _ASM_X86_UACCESS_64_H /* * User space memory access functions */ #include <linux/compiler.h> #include <linux/lockdep.h> #include <linux/kasan-checks.h> #include <asm/alternative.h> #include <asm/cpufeatures.h> #include <asm/page.h> /* * Copy To/From Userspace */ /* Handles exceptions in both to and from, but doesn't do access_ok */ __must_check unsigned long copy_user_enhanced_fast_string(void *to, const void *from, unsigned len); __must_check unsigned long copy_user_generic_string(void *to, const void *from, unsigned len); __must_check unsigned long copy_user_generic_unrolled(void *to, const void *from, unsigned len); static __always_inline __must_check unsigned long copy_user_generic(void *to, const void *from, unsigned len) { unsigned ret; /* * If CPU has ERMS feature, use copy_user_enhanced_fast_string. * Otherwise, if CPU has rep_good feature, use copy_user_generic_string. * Otherwise, use copy_user_generic_unrolled. */ alternative_call_2(copy_user_generic_unrolled, copy_user_generic_string, X86_FEATURE_REP_GOOD, copy_user_enhanced_fast_string, X86_FEATURE_ERMS, ASM_OUTPUT2("=a" (ret), "=D" (to), "=S" (from), "=d" (len)), "1" (to), "2" (from), "3" (len) : "memory", "rcx", "r8", "r9", "r10", "r11"); return ret; } static __always_inline __must_check unsigned long raw_copy_from_user(void *dst, const void __user *src, unsigned long size) { return copy_user_generic(dst, (__force void *)src, size); } static __always_inline __must_check unsigned long raw_copy_to_user(void __user *dst, const void *src, unsigned long size) { return copy_user_generic((__force void *)dst, src, size); } static __always_inline __must_check unsigned long raw_copy_in_user(void __user *dst, const void __user *src, unsigned long size) { return copy_user_generic((__force void *)dst, (__force void *)src, size); } extern long __copy_user_nocache(void *dst, const void __user *src, unsigned size, int zerorest); extern long __copy_user_flushcache(void *dst, const void __user *src, unsigned size); extern void memcpy_page_flushcache(char *to, struct page *page, size_t offset, size_t len); static inline int __copy_from_user_inatomic_nocache(void *dst, const void __user *src, unsigned size) { kasan_check_write(dst, size); return __copy_user_nocache(dst, src, size, 0); } static inline int __copy_from_user_flushcache(void *dst, const void __user *src, unsigned size) { kasan_check_write(dst, size); return __copy_user_flushcache(dst, src, size); } #endif /* _ASM_X86_UACCESS_64_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_DMA_MAPPING_H #define _ASM_X86_DMA_MAPPING_H /* * IOMMU interface. See Documentation/core-api/dma-api-howto.rst and * Documentation/core-api/dma-api.rst for documentation. */ #include <linux/scatterlist.h> #include <asm/io.h> #include <asm/swiotlb.h> extern int iommu_merge; extern int panic_on_overflow; extern const struct dma_map_ops *dma_ops; static inline const struct dma_map_ops *get_arch_dma_ops(struct bus_type *bus) { return dma_ops; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM mmap #if !defined(_TRACE_MMAP_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_MMAP_H #include <linux/tracepoint.h> TRACE_EVENT(vm_unmapped_area, TP_PROTO(unsigned long addr, struct vm_unmapped_area_info *info), TP_ARGS(addr, info), TP_STRUCT__entry( __field(unsigned long, addr) __field(unsigned long, total_vm) __field(unsigned long, flags) __field(unsigned long, length) __field(unsigned long, low_limit) __field(unsigned long, high_limit) __field(unsigned long, align_mask) __field(unsigned long, align_offset) ), TP_fast_assign( __entry->addr = addr; __entry->total_vm = current->mm->total_vm; __entry->flags = info->flags; __entry->length = info->length; __entry->low_limit = info->low_limit; __entry->high_limit = info->high_limit; __entry->align_mask = info->align_mask; __entry->align_offset = info->align_offset; ), TP_printk("addr=0x%lx err=%ld total_vm=0x%lx flags=0x%lx len=0x%lx lo=0x%lx hi=0x%lx mask=0x%lx ofs=0x%lx\n", IS_ERR_VALUE(__entry->addr) ? 0 : __entry->addr, IS_ERR_VALUE(__entry->addr) ? __entry->addr : 0, __entry->total_vm, __entry->flags, __entry->length, __entry->low_limit, __entry->high_limit, __entry->align_mask, __entry->align_offset) ); #endif /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef INT_BLK_MQ_TAG_H #define INT_BLK_MQ_TAG_H /* * Tag address space map. */ struct blk_mq_tags { unsigned int nr_tags; unsigned int nr_reserved_tags; atomic_t active_queues; struct sbitmap_queue *bitmap_tags; struct sbitmap_queue *breserved_tags; struct sbitmap_queue __bitmap_tags; struct sbitmap_queue __breserved_tags; struct request **rqs; struct request **static_rqs; struct list_head page_list; /* * used to clear request reference in rqs[] before freeing one * request pool */ spinlock_t lock; }; extern struct blk_mq_tags *blk_mq_init_tags(unsigned int nr_tags, unsigned int reserved_tags, int node, unsigned int flags); extern void blk_mq_free_tags(struct blk_mq_tags *tags, unsigned int flags); extern int blk_mq_init_shared_sbitmap(struct blk_mq_tag_set *set, unsigned int flags); extern void blk_mq_exit_shared_sbitmap(struct blk_mq_tag_set *set); extern unsigned int blk_mq_get_tag(struct blk_mq_alloc_data *data); extern void blk_mq_put_tag(struct blk_mq_tags *tags, struct blk_mq_ctx *ctx, unsigned int tag); extern int blk_mq_tag_update_depth(struct blk_mq_hw_ctx *hctx, struct blk_mq_tags **tags, unsigned int depth, bool can_grow); extern void blk_mq_tag_resize_shared_sbitmap(struct blk_mq_tag_set *set, unsigned int size); extern void blk_mq_tag_wakeup_all(struct blk_mq_tags *tags, bool); void blk_mq_queue_tag_busy_iter(struct request_queue *q, busy_iter_fn *fn, void *priv); void blk_mq_all_tag_iter(struct blk_mq_tags *tags, busy_tag_iter_fn *fn, void *priv); static inline struct sbq_wait_state *bt_wait_ptr(struct sbitmap_queue *bt, struct blk_mq_hw_ctx *hctx) { if (!hctx) return &bt->ws[0]; return sbq_wait_ptr(bt, &hctx->wait_index); } enum { BLK_MQ_NO_TAG = -1U, BLK_MQ_TAG_MIN = 1, BLK_MQ_TAG_MAX = BLK_MQ_NO_TAG - 1, }; extern bool __blk_mq_tag_busy(struct blk_mq_hw_ctx *); extern void __blk_mq_tag_idle(struct blk_mq_hw_ctx *); static inline bool blk_mq_tag_busy(struct blk_mq_hw_ctx *hctx) { if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) return false; return __blk_mq_tag_busy(hctx); } static inline void blk_mq_tag_idle(struct blk_mq_hw_ctx *hctx) { if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) return; __blk_mq_tag_idle(hctx); } static inline bool blk_mq_tag_is_reserved(struct blk_mq_tags *tags, unsigned int tag) { return tag < tags->nr_reserved_tags; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_SMP_H #define _ASM_X86_SMP_H #ifndef __ASSEMBLY__ #include <linux/cpumask.h> #include <asm/percpu.h> #include <asm/thread_info.h> #include <asm/cpumask.h> extern int smp_num_siblings; extern unsigned int num_processors; DECLARE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map); DECLARE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map); DECLARE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map); /* cpus sharing the last level cache: */ DECLARE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map); DECLARE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id); DECLARE_PER_CPU_READ_MOSTLY(int, cpu_number); static inline struct cpumask *cpu_llc_shared_mask(int cpu) { return per_cpu(cpu_llc_shared_map, cpu); } DECLARE_EARLY_PER_CPU_READ_MOSTLY(u16, x86_cpu_to_apicid); DECLARE_EARLY_PER_CPU_READ_MOSTLY(u32, x86_cpu_to_acpiid); DECLARE_EARLY_PER_CPU_READ_MOSTLY(u16, x86_bios_cpu_apicid); #if defined(CONFIG_X86_LOCAL_APIC) && defined(CONFIG_X86_32) DECLARE_EARLY_PER_CPU_READ_MOSTLY(int, x86_cpu_to_logical_apicid); #endif struct task_struct; struct smp_ops { void (*smp_prepare_boot_cpu)(void); void (*smp_prepare_cpus)(unsigned max_cpus); void (*smp_cpus_done)(unsigned max_cpus); void (*stop_other_cpus)(int wait); void (*crash_stop_other_cpus)(void); void (*smp_send_reschedule)(int cpu); int (*cpu_up)(unsigned cpu, struct task_struct *tidle); int (*cpu_disable)(void); void (*cpu_die)(unsigned int cpu); void (*play_dead)(void); void (*send_call_func_ipi)(const struct cpumask *mask); void (*send_call_func_single_ipi)(int cpu); }; /* Globals due to paravirt */ extern void set_cpu_sibling_map(int cpu); #ifdef CONFIG_SMP extern struct smp_ops smp_ops; static inline void smp_send_stop(void) { smp_ops.stop_other_cpus(0); } static inline void stop_other_cpus(void) { smp_ops.stop_other_cpus(1); } static inline void smp_prepare_boot_cpu(void) { smp_ops.smp_prepare_boot_cpu(); } static inline void smp_prepare_cpus(unsigned int max_cpus) { smp_ops.smp_prepare_cpus(max_cpus); } static inline void smp_cpus_done(unsigned int max_cpus) { smp_ops.smp_cpus_done(max_cpus); } static inline int __cpu_up(unsigned int cpu, struct task_struct *tidle) { return smp_ops.cpu_up(cpu, tidle); } static inline int __cpu_disable(void) { return smp_ops.cpu_disable(); } static inline void __cpu_die(unsigned int cpu) { smp_ops.cpu_die(cpu); } static inline void play_dead(void) { smp_ops.play_dead(); } static inline void smp_send_reschedule(int cpu) { smp_ops.smp_send_reschedule(cpu); } static inline void arch_send_call_function_single_ipi(int cpu) { smp_ops.send_call_func_single_ipi(cpu); } static inline void arch_send_call_function_ipi_mask(const struct cpumask *mask) { smp_ops.send_call_func_ipi(mask); } void cpu_disable_common(void); void native_smp_prepare_boot_cpu(void); void native_smp_prepare_cpus(unsigned int max_cpus); void calculate_max_logical_packages(void); void native_smp_cpus_done(unsigned int max_cpus); int common_cpu_up(unsigned int cpunum, struct task_struct *tidle); int native_cpu_up(unsigned int cpunum, struct task_struct *tidle); int native_cpu_disable(void); int common_cpu_die(unsigned int cpu); void native_cpu_die(unsigned int cpu); void hlt_play_dead(void); void native_play_dead(void); void play_dead_common(void); void wbinvd_on_cpu(int cpu); int wbinvd_on_all_cpus(void); void cond_wakeup_cpu0(void); void native_smp_send_reschedule(int cpu); void native_send_call_func_ipi(const struct cpumask *mask); void native_send_call_func_single_ipi(int cpu); void x86_idle_thread_init(unsigned int cpu, struct task_struct *idle); void smp_store_boot_cpu_info(void); void smp_store_cpu_info(int id); asmlinkage __visible void smp_reboot_interrupt(void); __visible void smp_reschedule_interrupt(struct pt_regs *regs); __visible void smp_call_function_interrupt(struct pt_regs *regs); __visible void smp_call_function_single_interrupt(struct pt_regs *r); #define cpu_physical_id(cpu) per_cpu(x86_cpu_to_apicid, cpu) #define cpu_acpi_id(cpu) per_cpu(x86_cpu_to_acpiid, cpu) /* * This function is needed by all SMP systems. It must _always_ be valid * from the initial startup. We map APIC_BASE very early in page_setup(), * so this is correct in the x86 case. */ #define raw_smp_processor_id() this_cpu_read(cpu_number) #define __smp_processor_id() __this_cpu_read(cpu_number) #ifdef CONFIG_X86_32 extern int safe_smp_processor_id(void); #else # define safe_smp_processor_id() smp_processor_id() #endif #else /* !CONFIG_SMP */ #define wbinvd_on_cpu(cpu) wbinvd() static inline int wbinvd_on_all_cpus(void) { wbinvd(); return 0; } #endif /* CONFIG_SMP */ extern unsigned disabled_cpus; #ifdef CONFIG_X86_LOCAL_APIC extern int hard_smp_processor_id(void); #else /* CONFIG_X86_LOCAL_APIC */ #define hard_smp_processor_id() 0 #endif /* CONFIG_X86_LOCAL_APIC */ #ifdef CONFIG_DEBUG_NMI_SELFTEST extern void nmi_selftest(void); #else #define nmi_selftest() do { } while (0) #endif #endif /* __ASSEMBLY__ */ #endif /* _ASM_X86_SMP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_TRACE_EVENT_H #define _LINUX_TRACE_EVENT_H #include <linux/ring_buffer.h> #include <linux/trace_seq.h> #include <linux/percpu.h> #include <linux/hardirq.h> #include <linux/perf_event.h> #include <linux/tracepoint.h> struct trace_array; struct array_buffer; struct tracer; struct dentry; struct bpf_prog; const char *trace_print_flags_seq(struct trace_seq *p, const char *delim, unsigned long flags, const struct trace_print_flags *flag_array); const char *trace_print_symbols_seq(struct trace_seq *p, unsigned long val, const struct trace_print_flags *symbol_array); #if BITS_PER_LONG == 32 const char *trace_print_flags_seq_u64(struct trace_seq *p, const char *delim, unsigned long long flags, const struct trace_print_flags_u64 *flag_array); const char *trace_print_symbols_seq_u64(struct trace_seq *p, unsigned long long val, const struct trace_print_flags_u64 *symbol_array); #endif const char *trace_print_bitmask_seq(struct trace_seq *p, void *bitmask_ptr, unsigned int bitmask_size); const char *trace_print_hex_seq(struct trace_seq *p, const unsigned char *buf, int len, bool concatenate); const char *trace_print_array_seq(struct trace_seq *p, const void *buf, int count, size_t el_size); const char * trace_print_hex_dump_seq(struct trace_seq *p, const char *prefix_str, int prefix_type, int rowsize, int groupsize, const void *buf, size_t len, bool ascii); struct trace_iterator; struct trace_event; int trace_raw_output_prep(struct trace_iterator *iter, struct trace_event *event); /* * The trace entry - the most basic unit of tracing. This is what * is printed in the end as a single line in the trace output, such as: * * bash-15816 [01] 235.197585: idle_cpu <- irq_enter */ struct trace_entry { unsigned short type; unsigned char flags; unsigned char preempt_count; int pid; }; #define TRACE_EVENT_TYPE_MAX \ ((1 << (sizeof(((struct trace_entry *)0)->type) * 8)) - 1) /* * Trace iterator - used by printout routines who present trace * results to users and which routines might sleep, etc: */ struct trace_iterator { struct trace_array *tr; struct tracer *trace; struct array_buffer *array_buffer; void *private; int cpu_file; struct mutex mutex; struct ring_buffer_iter **buffer_iter; unsigned long iter_flags; void *temp; /* temp holder */ unsigned int temp_size; /* trace_seq for __print_flags() and __print_symbolic() etc. */ struct trace_seq tmp_seq; cpumask_var_t started; /* it's true when current open file is snapshot */ bool snapshot; /* The below is zeroed out in pipe_read */ struct trace_seq seq; struct trace_entry *ent; unsigned long lost_events; int leftover; int ent_size; int cpu; u64 ts; loff_t pos; long idx; /* All new field here will be zeroed out in pipe_read */ }; enum trace_iter_flags { TRACE_FILE_LAT_FMT = 1, TRACE_FILE_ANNOTATE = 2, TRACE_FILE_TIME_IN_NS = 4, }; typedef enum print_line_t (*trace_print_func)(struct trace_iterator *iter, int flags, struct trace_event *event); struct trace_event_functions { trace_print_func trace; trace_print_func raw; trace_print_func hex; trace_print_func binary; }; struct trace_event { struct hlist_node node; struct list_head list; int type; struct trace_event_functions *funcs; }; extern int register_trace_event(struct trace_event *event); extern int unregister_trace_event(struct trace_event *event); /* Return values for print_line callback */ enum print_line_t { TRACE_TYPE_PARTIAL_LINE = 0, /* Retry after flushing the seq */ TRACE_TYPE_HANDLED = 1, TRACE_TYPE_UNHANDLED = 2, /* Relay to other output functions */ TRACE_TYPE_NO_CONSUME = 3 /* Handled but ask to not consume */ }; enum print_line_t trace_handle_return(struct trace_seq *s); void tracing_generic_entry_update(struct trace_entry *entry, unsigned short type, unsigned long flags, int pc); struct trace_event_file; struct ring_buffer_event * trace_event_buffer_lock_reserve(struct trace_buffer **current_buffer, struct trace_event_file *trace_file, int type, unsigned long len, unsigned long flags, int pc); #define TRACE_RECORD_CMDLINE BIT(0) #define TRACE_RECORD_TGID BIT(1) void tracing_record_taskinfo(struct task_struct *task, int flags); void tracing_record_taskinfo_sched_switch(struct task_struct *prev, struct task_struct *next, int flags); void tracing_record_cmdline(struct task_struct *task); void tracing_record_tgid(struct task_struct *task); int trace_output_call(struct trace_iterator *iter, char *name, char *fmt, ...); struct event_filter; enum trace_reg { TRACE_REG_REGISTER, TRACE_REG_UNREGISTER, #ifdef CONFIG_PERF_EVENTS TRACE_REG_PERF_REGISTER, TRACE_REG_PERF_UNREGISTER, TRACE_REG_PERF_OPEN, TRACE_REG_PERF_CLOSE, /* * These (ADD/DEL) use a 'boolean' return value, where 1 (true) means a * custom action was taken and the default action is not to be * performed. */ TRACE_REG_PERF_ADD, TRACE_REG_PERF_DEL, #endif }; struct trace_event_call; #define TRACE_FUNCTION_TYPE ((const char *)~0UL) struct trace_event_fields { const char *type; union { struct { const char *name; const int size; const int align; const int is_signed; const int filter_type; }; int (*define_fields)(struct trace_event_call *); }; }; struct trace_event_class { const char *system; void *probe; #ifdef CONFIG_PERF_EVENTS void *perf_probe; #endif int (*reg)(struct trace_event_call *event, enum trace_reg type, void *data); struct trace_event_fields *fields_array; struct list_head *(*get_fields)(struct trace_event_call *); struct list_head fields; int (*raw_init)(struct trace_event_call *); }; extern int trace_event_reg(struct trace_event_call *event, enum trace_reg type, void *data); struct trace_event_buffer { struct trace_buffer *buffer; struct ring_buffer_event *event; struct trace_event_file *trace_file; void *entry; unsigned long flags; int pc; struct pt_regs *regs; }; void *trace_event_buffer_reserve(struct trace_event_buffer *fbuffer, struct trace_event_file *trace_file, unsigned long len); void trace_event_buffer_commit(struct trace_event_buffer *fbuffer); enum { TRACE_EVENT_FL_FILTERED_BIT, TRACE_EVENT_FL_CAP_ANY_BIT, TRACE_EVENT_FL_NO_SET_FILTER_BIT, TRACE_EVENT_FL_IGNORE_ENABLE_BIT, TRACE_EVENT_FL_TRACEPOINT_BIT, TRACE_EVENT_FL_KPROBE_BIT, TRACE_EVENT_FL_UPROBE_BIT, }; /* * Event flags: * FILTERED - The event has a filter attached * CAP_ANY - Any user can enable for perf * NO_SET_FILTER - Set when filter has error and is to be ignored * IGNORE_ENABLE - For trace internal events, do not enable with debugfs file * TRACEPOINT - Event is a tracepoint * KPROBE - Event is a kprobe * UPROBE - Event is a uprobe */ enum { TRACE_EVENT_FL_FILTERED = (1 << TRACE_EVENT_FL_FILTERED_BIT), TRACE_EVENT_FL_CAP_ANY = (1 << TRACE_EVENT_FL_CAP_ANY_BIT), TRACE_EVENT_FL_NO_SET_FILTER = (1 << TRACE_EVENT_FL_NO_SET_FILTER_BIT), TRACE_EVENT_FL_IGNORE_ENABLE = (1 << TRACE_EVENT_FL_IGNORE_ENABLE_BIT), TRACE_EVENT_FL_TRACEPOINT = (1 << TRACE_EVENT_FL_TRACEPOINT_BIT), TRACE_EVENT_FL_KPROBE = (1 << TRACE_EVENT_FL_KPROBE_BIT), TRACE_EVENT_FL_UPROBE = (1 << TRACE_EVENT_FL_UPROBE_BIT), }; #define TRACE_EVENT_FL_UKPROBE (TRACE_EVENT_FL_KPROBE | TRACE_EVENT_FL_UPROBE) struct trace_event_call { struct list_head list; struct trace_event_class *class; union { char *name; /* Set TRACE_EVENT_FL_TRACEPOINT flag when using "tp" */ struct tracepoint *tp; }; struct trace_event event; char *print_fmt; struct event_filter *filter; void *mod; void *data; /* * bit 0: filter_active * bit 1: allow trace by non root (cap any) * bit 2: failed to apply filter * bit 3: trace internal event (do not enable) * bit 4: Event was enabled by module * bit 5: use call filter rather than file filter * bit 6: Event is a tracepoint */ int flags; /* static flags of different events */ #ifdef CONFIG_PERF_EVENTS int perf_refcount; struct hlist_head __percpu *perf_events; struct bpf_prog_array __rcu *prog_array; int (*perf_perm)(struct trace_event_call *, struct perf_event *); #endif }; #ifdef CONFIG_PERF_EVENTS static inline bool bpf_prog_array_valid(struct trace_event_call *call) { /* * This inline function checks whether call->prog_array * is valid or not. The function is called in various places, * outside rcu_read_lock/unlock, as a heuristic to speed up execution. * * If this function returns true, and later call->prog_array * becomes false inside rcu_read_lock/unlock region, * we bail out then. If this function return false, * there is a risk that we might miss a few events if the checking * were delayed until inside rcu_read_lock/unlock region and * call->prog_array happened to become non-NULL then. * * Here, READ_ONCE() is used instead of rcu_access_pointer(). * rcu_access_pointer() requires the actual definition of * "struct bpf_prog_array" while READ_ONCE() only needs * a declaration of the same type. */ return !!READ_ONCE(call->prog_array); } #endif static inline const char * trace_event_name(struct trace_event_call *call) { if (call->flags & TRACE_EVENT_FL_TRACEPOINT) return call->tp ? call->tp->name : NULL; else return call->name; } static inline struct list_head * trace_get_fields(struct trace_event_call *event_call) { if (!event_call->class->get_fields) return &event_call->class->fields; return event_call->class->get_fields(event_call); } struct trace_array; struct trace_subsystem_dir; enum { EVENT_FILE_FL_ENABLED_BIT, EVENT_FILE_FL_RECORDED_CMD_BIT, EVENT_FILE_FL_RECORDED_TGID_BIT, EVENT_FILE_FL_FILTERED_BIT, EVENT_FILE_FL_NO_SET_FILTER_BIT, EVENT_FILE_FL_SOFT_MODE_BIT, EVENT_FILE_FL_SOFT_DISABLED_BIT, EVENT_FILE_FL_TRIGGER_MODE_BIT, EVENT_FILE_FL_TRIGGER_COND_BIT, EVENT_FILE_FL_PID_FILTER_BIT, EVENT_FILE_FL_WAS_ENABLED_BIT, }; extern struct trace_event_file *trace_get_event_file(const char *instance, const char *system, const char *event); extern void trace_put_event_file(struct trace_event_file *file); #define MAX_DYNEVENT_CMD_LEN (2048) enum dynevent_type { DYNEVENT_TYPE_SYNTH = 1, DYNEVENT_TYPE_KPROBE, DYNEVENT_TYPE_NONE, }; struct dynevent_cmd; typedef int (*dynevent_create_fn_t)(struct dynevent_cmd *cmd); struct dynevent_cmd { struct seq_buf seq; const char *event_name; unsigned int n_fields; enum dynevent_type type; dynevent_create_fn_t run_command; void *private_data; }; extern int dynevent_create(struct dynevent_cmd *cmd); extern int synth_event_delete(const char *name); extern void synth_event_cmd_init(struct dynevent_cmd *cmd, char *buf, int maxlen); extern int __synth_event_gen_cmd_start(struct dynevent_cmd *cmd, const char *name, struct module *mod, ...); #define synth_event_gen_cmd_start(cmd, name, mod, ...) \ __synth_event_gen_cmd_start(cmd, name, mod, ## __VA_ARGS__, NULL) struct synth_field_desc { const char *type; const char *name; }; extern int synth_event_gen_cmd_array_start(struct dynevent_cmd *cmd, const char *name, struct module *mod, struct synth_field_desc *fields, unsigned int n_fields); extern int synth_event_create(const char *name, struct synth_field_desc *fields, unsigned int n_fields, struct module *mod); extern int synth_event_add_field(struct dynevent_cmd *cmd, const char *type, const char *name); extern int synth_event_add_field_str(struct dynevent_cmd *cmd, const char *type_name); extern int synth_event_add_fields(struct dynevent_cmd *cmd, struct synth_field_desc *fields, unsigned int n_fields); #define synth_event_gen_cmd_end(cmd) \ dynevent_create(cmd) struct synth_event; struct synth_event_trace_state { struct trace_event_buffer fbuffer; struct synth_trace_event *entry; struct trace_buffer *buffer; struct synth_event *event; unsigned int cur_field; unsigned int n_u64; bool disabled; bool add_next; bool add_name; }; extern int synth_event_trace(struct trace_event_file *file, unsigned int n_vals, ...); extern int synth_event_trace_array(struct trace_event_file *file, u64 *vals, unsigned int n_vals); extern int synth_event_trace_start(struct trace_event_file *file, struct synth_event_trace_state *trace_state); extern int synth_event_add_next_val(u64 val, struct synth_event_trace_state *trace_state); extern int synth_event_add_val(const char *field_name, u64 val, struct synth_event_trace_state *trace_state); extern int synth_event_trace_end(struct synth_event_trace_state *trace_state); extern int kprobe_event_delete(const char *name); extern void kprobe_event_cmd_init(struct dynevent_cmd *cmd, char *buf, int maxlen); #define kprobe_event_gen_cmd_start(cmd, name, loc, ...) \ __kprobe_event_gen_cmd_start(cmd, false, name, loc, ## __VA_ARGS__, NULL) #define kretprobe_event_gen_cmd_start(cmd, name, loc, ...) \ __kprobe_event_gen_cmd_start(cmd, true, name, loc, ## __VA_ARGS__, NULL) extern int __kprobe_event_gen_cmd_start(struct dynevent_cmd *cmd, bool kretprobe, const char *name, const char *loc, ...); #define kprobe_event_add_fields(cmd, ...) \ __kprobe_event_add_fields(cmd, ## __VA_ARGS__, NULL) #define kprobe_event_add_field(cmd, field) \ __kprobe_event_add_fields(cmd, field, NULL) extern int __kprobe_event_add_fields(struct dynevent_cmd *cmd, ...); #define kprobe_event_gen_cmd_end(cmd) \ dynevent_create(cmd) #define kretprobe_event_gen_cmd_end(cmd) \ dynevent_create(cmd) /* * Event file flags: * ENABLED - The event is enabled * RECORDED_CMD - The comms should be recorded at sched_switch * RECORDED_TGID - The tgids should be recorded at sched_switch * FILTERED - The event has a filter attached * NO_SET_FILTER - Set when filter has error and is to be ignored * SOFT_MODE - The event is enabled/disabled by SOFT_DISABLED * SOFT_DISABLED - When set, do not trace the event (even though its * tracepoint may be enabled) * TRIGGER_MODE - When set, invoke the triggers associated with the event * TRIGGER_COND - When set, one or more triggers has an associated filter * PID_FILTER - When set, the event is filtered based on pid * WAS_ENABLED - Set when enabled to know to clear trace on module removal */ enum { EVENT_FILE_FL_ENABLED = (1 << EVENT_FILE_FL_ENABLED_BIT), EVENT_FILE_FL_RECORDED_CMD = (1 << EVENT_FILE_FL_RECORDED_CMD_BIT), EVENT_FILE_FL_RECORDED_TGID = (1 << EVENT_FILE_FL_RECORDED_TGID_BIT), EVENT_FILE_FL_FILTERED = (1 << EVENT_FILE_FL_FILTERED_BIT), EVENT_FILE_FL_NO_SET_FILTER = (1 << EVENT_FILE_FL_NO_SET_FILTER_BIT), EVENT_FILE_FL_SOFT_MODE = (1 << EVENT_FILE_FL_SOFT_MODE_BIT), EVENT_FILE_FL_SOFT_DISABLED = (1 << EVENT_FILE_FL_SOFT_DISABLED_BIT), EVENT_FILE_FL_TRIGGER_MODE = (1 << EVENT_FILE_FL_TRIGGER_MODE_BIT), EVENT_FILE_FL_TRIGGER_COND = (1 << EVENT_FILE_FL_TRIGGER_COND_BIT), EVENT_FILE_FL_PID_FILTER = (1 << EVENT_FILE_FL_PID_FILTER_BIT), EVENT_FILE_FL_WAS_ENABLED = (1 << EVENT_FILE_FL_WAS_ENABLED_BIT), }; struct trace_event_file { struct list_head list; struct trace_event_call *event_call; struct event_filter __rcu *filter; struct dentry *dir; struct trace_array *tr; struct trace_subsystem_dir *system; struct list_head triggers; /* * 32 bit flags: * bit 0: enabled * bit 1: enabled cmd record * bit 2: enable/disable with the soft disable bit * bit 3: soft disabled * bit 4: trigger enabled * * Note: The bits must be set atomically to prevent races * from other writers. Reads of flags do not need to be in * sync as they occur in critical sections. But the way flags * is currently used, these changes do not affect the code * except that when a change is made, it may have a slight * delay in propagating the changes to other CPUs due to * caching and such. Which is mostly OK ;-) */ unsigned long flags; atomic_t sm_ref; /* soft-mode reference counter */ atomic_t tm_ref; /* trigger-mode reference counter */ }; #define __TRACE_EVENT_FLAGS(name, value) \ static int __init trace_init_flags_##name(void) \ { \ event_##name.flags |= value; \ return 0; \ } \ early_initcall(trace_init_flags_##name); #define __TRACE_EVENT_PERF_PERM(name, expr...) \ static int perf_perm_##name(struct trace_event_call *tp_event, \ struct perf_event *p_event) \ { \ return ({ expr; }); \ } \ static int __init trace_init_perf_perm_##name(void) \ { \ event_##name.perf_perm = &perf_perm_##name; \ return 0; \ } \ early_initcall(trace_init_perf_perm_##name); #define PERF_MAX_TRACE_SIZE 2048 #define MAX_FILTER_STR_VAL 256U /* Should handle KSYM_SYMBOL_LEN */ enum event_trigger_type { ETT_NONE = (0), ETT_TRACE_ONOFF = (1 << 0), ETT_SNAPSHOT = (1 << 1), ETT_STACKTRACE = (1 << 2), ETT_EVENT_ENABLE = (1 << 3), ETT_EVENT_HIST = (1 << 4), ETT_HIST_ENABLE = (1 << 5), }; extern int filter_match_preds(struct event_filter *filter, void *rec); extern enum event_trigger_type event_triggers_call(struct trace_event_file *file, void *rec, struct ring_buffer_event *event); extern void event_triggers_post_call(struct trace_event_file *file, enum event_trigger_type tt); bool trace_event_ignore_this_pid(struct trace_event_file *trace_file); /** * trace_trigger_soft_disabled - do triggers and test if soft disabled * @file: The file pointer of the event to test * * If any triggers without filters are attached to this event, they * will be called here. If the event is soft disabled and has no * triggers that require testing the fields, it will return true, * otherwise false. */ static inline bool trace_trigger_soft_disabled(struct trace_event_file *file) { unsigned long eflags = file->flags; if (!(eflags & EVENT_FILE_FL_TRIGGER_COND)) { if (eflags & EVENT_FILE_FL_TRIGGER_MODE) event_triggers_call(file, NULL, NULL); if (eflags & EVENT_FILE_FL_SOFT_DISABLED) return true; if (eflags & EVENT_FILE_FL_PID_FILTER) return trace_event_ignore_this_pid(file); } return false; } #ifdef CONFIG_BPF_EVENTS unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx); int perf_event_attach_bpf_prog(struct perf_event *event, struct bpf_prog *prog); void perf_event_detach_bpf_prog(struct perf_event *event); int perf_event_query_prog_array(struct perf_event *event, void __user *info); int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog); int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog); struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name); void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp); int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id, u32 *fd_type, const char **buf, u64 *probe_offset, u64 *probe_addr); #else static inline unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx) { return 1; } static inline int perf_event_attach_bpf_prog(struct perf_event *event, struct bpf_prog *prog) { return -EOPNOTSUPP; } static inline void perf_event_detach_bpf_prog(struct perf_event *event) { } static inline int perf_event_query_prog_array(struct perf_event *event, void __user *info) { return -EOPNOTSUPP; } static inline int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *p) { return -EOPNOTSUPP; } static inline int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *p) { return -EOPNOTSUPP; } static inline struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name) { return NULL; } static inline void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp) { } static inline int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id, u32 *fd_type, const char **buf, u64 *probe_offset, u64 *probe_addr) { return -EOPNOTSUPP; } #endif enum { FILTER_OTHER = 0, FILTER_STATIC_STRING, FILTER_DYN_STRING, FILTER_PTR_STRING, FILTER_TRACE_FN, FILTER_COMM, FILTER_CPU, }; extern int trace_event_raw_init(struct trace_event_call *call); extern int trace_define_field(struct trace_event_call *call, const char *type, const char *name, int offset, int size, int is_signed, int filter_type); extern int trace_add_event_call(struct trace_event_call *call); extern int trace_remove_event_call(struct trace_event_call *call); extern int trace_event_get_offsets(struct trace_event_call *call); #define is_signed_type(type) (((type)(-1)) < (type)1) int ftrace_set_clr_event(struct trace_array *tr, char *buf, int set); int trace_set_clr_event(const char *system, const char *event, int set); int trace_array_set_clr_event(struct trace_array *tr, const char *system, const char *event, bool enable); /* * The double __builtin_constant_p is because gcc will give us an error * if we try to allocate the static variable to fmt if it is not a * constant. Even with the outer if statement optimizing out. */ #define event_trace_printk(ip, fmt, args...) \ do { \ __trace_printk_check_format(fmt, ##args); \ tracing_record_cmdline(current); \ if (__builtin_constant_p(fmt)) { \ static const char *trace_printk_fmt \ __section("__trace_printk_fmt") = \ __builtin_constant_p(fmt) ? fmt : NULL; \ \ __trace_bprintk(ip, trace_printk_fmt, ##args); \ } else \ __trace_printk(ip, fmt, ##args); \ } while (0) #ifdef CONFIG_PERF_EVENTS struct perf_event; DECLARE_PER_CPU(struct pt_regs, perf_trace_regs); DECLARE_PER_CPU(int, bpf_kprobe_override); extern int perf_trace_init(struct perf_event *event); extern void perf_trace_destroy(struct perf_event *event); extern int perf_trace_add(struct perf_event *event, int flags); extern void perf_trace_del(struct perf_event *event, int flags); #ifdef CONFIG_KPROBE_EVENTS extern int perf_kprobe_init(struct perf_event *event, bool is_retprobe); extern void perf_kprobe_destroy(struct perf_event *event); extern int bpf_get_kprobe_info(const struct perf_event *event, u32 *fd_type, const char **symbol, u64 *probe_offset, u64 *probe_addr, bool perf_type_tracepoint); #endif #ifdef CONFIG_UPROBE_EVENTS extern int perf_uprobe_init(struct perf_event *event, unsigned long ref_ctr_offset, bool is_retprobe); extern void perf_uprobe_destroy(struct perf_event *event); extern int bpf_get_uprobe_info(const struct perf_event *event, u32 *fd_type, const char **filename, u64 *probe_offset, bool perf_type_tracepoint); #endif extern int ftrace_profile_set_filter(struct perf_event *event, int event_id, char *filter_str); extern void ftrace_profile_free_filter(struct perf_event *event); void perf_trace_buf_update(void *record, u16 type); void *perf_trace_buf_alloc(int size, struct pt_regs **regs, int *rctxp); void bpf_trace_run1(struct bpf_prog *prog, u64 arg1); void bpf_trace_run2(struct bpf_prog *prog, u64 arg1, u64 arg2); void bpf_trace_run3(struct bpf_prog *prog, u64 arg1, u64 arg2, u64 arg3); void bpf_trace_run4(struct bpf_prog *prog, u64 arg1, u64 arg2, u64 arg3, u64 arg4); void bpf_trace_run5(struct bpf_prog *prog, u64 arg1, u64 arg2, u64 arg3, u64 arg4, u64 arg5); void bpf_trace_run6(struct bpf_prog *prog, u64 arg1, u64 arg2, u64 arg3, u64 arg4, u64 arg5, u64 arg6); void bpf_trace_run7(struct bpf_prog *prog, u64 arg1, u64 arg2, u64 arg3, u64 arg4, u64 arg5, u64 arg6, u64 arg7); void bpf_trace_run8(struct bpf_prog *prog, u64 arg1, u64 arg2, u64 arg3, u64 arg4, u64 arg5, u64 arg6, u64 arg7, u64 arg8); void bpf_trace_run9(struct bpf_prog *prog, u64 arg1, u64 arg2, u64 arg3, u64 arg4, u64 arg5, u64 arg6, u64 arg7, u64 arg8, u64 arg9); void bpf_trace_run10(struct bpf_prog *prog, u64 arg1, u64 arg2, u64 arg3, u64 arg4, u64 arg5, u64 arg6, u64 arg7, u64 arg8, u64 arg9, u64 arg10); void bpf_trace_run11(struct bpf_prog *prog, u64 arg1, u64 arg2, u64 arg3, u64 arg4, u64 arg5, u64 arg6, u64 arg7, u64 arg8, u64 arg9, u64 arg10, u64 arg11); void bpf_trace_run12(struct bpf_prog *prog, u64 arg1, u64 arg2, u64 arg3, u64 arg4, u64 arg5, u64 arg6, u64 arg7, u64 arg8, u64 arg9, u64 arg10, u64 arg11, u64 arg12); void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, struct trace_event_call *call, u64 count, struct pt_regs *regs, struct hlist_head *head, struct task_struct *task); static inline void perf_trace_buf_submit(void *raw_data, int size, int rctx, u16 type, u64 count, struct pt_regs *regs, void *head, struct task_struct *task) { perf_tp_event(type, count, raw_data, size, regs, head, rctx, task); } #endif #endif /* _LINUX_TRACE_EVENT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_POLL_H #define _LINUX_POLL_H #include <linux/compiler.h> #include <linux/ktime.h> #include <linux/wait.h> #include <linux/string.h> #include <linux/fs.h> #include <linux/sysctl.h> #include <linux/uaccess.h> #include <uapi/linux/poll.h> #include <uapi/linux/eventpoll.h> extern struct ctl_table epoll_table[]; /* for sysctl */ /* ~832 bytes of stack space used max in sys_select/sys_poll before allocating additional memory. */ #ifdef __clang__ #define MAX_STACK_ALLOC 768 #else #define MAX_STACK_ALLOC 832 #endif #define FRONTEND_STACK_ALLOC 256 #define SELECT_STACK_ALLOC FRONTEND_STACK_ALLOC #define POLL_STACK_ALLOC FRONTEND_STACK_ALLOC #define WQUEUES_STACK_ALLOC (MAX_STACK_ALLOC - FRONTEND_STACK_ALLOC) #define N_INLINE_POLL_ENTRIES (WQUEUES_STACK_ALLOC / sizeof(struct poll_table_entry)) #define DEFAULT_POLLMASK (EPOLLIN | EPOLLOUT | EPOLLRDNORM | EPOLLWRNORM) struct poll_table_struct; /* * structures and helpers for f_op->poll implementations */ typedef void (*poll_queue_proc)(struct file *, wait_queue_head_t *, struct poll_table_struct *); /* * Do not touch the structure directly, use the access functions * poll_does_not_wait() and poll_requested_events() instead. */ typedef struct poll_table_struct { poll_queue_proc _qproc; __poll_t _key; } poll_table; static inline void poll_wait(struct file * filp, wait_queue_head_t * wait_address, poll_table *p) { if (p && p->_qproc && wait_address) p->_qproc(filp, wait_address, p); } /* * Return true if it is guaranteed that poll will not wait. This is the case * if the poll() of another file descriptor in the set got an event, so there * is no need for waiting. */ static inline bool poll_does_not_wait(const poll_table *p) { return p == NULL || p->_qproc == NULL; } /* * Return the set of events that the application wants to poll for. * This is useful for drivers that need to know whether a DMA transfer has * to be started implicitly on poll(). You typically only want to do that * if the application is actually polling for POLLIN and/or POLLOUT. */ static inline __poll_t poll_requested_events(const poll_table *p) { return p ? p->_key : ~(__poll_t)0; } static inline void init_poll_funcptr(poll_table *pt, poll_queue_proc qproc) { pt->_qproc = qproc; pt->_key = ~(__poll_t)0; /* all events enabled */ } static inline bool file_can_poll(struct file *file) { return file->f_op->poll; } static inline __poll_t vfs_poll(struct file *file, struct poll_table_struct *pt) { if (unlikely(!file->f_op->poll)) return DEFAULT_POLLMASK; return file->f_op->poll(file, pt); } struct poll_table_entry { struct file *filp; __poll_t key; wait_queue_entry_t wait; wait_queue_head_t *wait_address; }; /* * Structures and helpers for select/poll syscall */ struct poll_wqueues { poll_table pt; struct poll_table_page *table; struct task_struct *polling_task; int triggered; int error; int inline_index; struct poll_table_entry inline_entries[N_INLINE_POLL_ENTRIES]; }; extern void poll_initwait(struct poll_wqueues *pwq); extern void poll_freewait(struct poll_wqueues *pwq); extern u64 select_estimate_accuracy(struct timespec64 *tv); #define MAX_INT64_SECONDS (((s64)(~((u64)0)>>1)/HZ)-1) extern int core_sys_select(int n, fd_set __user *inp, fd_set __user *outp, fd_set __user *exp, struct timespec64 *end_time); extern int poll_select_set_timeout(struct timespec64 *to, time64_t sec, long nsec); #define __MAP(v, from, to) \ (from < to ? (v & from) * (to/from) : (v & from) / (from/to)) static inline __u16 mangle_poll(__poll_t val) { __u16 v = (__force __u16)val; #define M(X) __MAP(v, (__force __u16)EPOLL##X, POLL##X) return M(IN) | M(OUT) | M(PRI) | M(ERR) | M(NVAL) | M(RDNORM) | M(RDBAND) | M(WRNORM) | M(WRBAND) | M(HUP) | M(RDHUP) | M(MSG); #undef M } static inline __poll_t demangle_poll(u16 val) { #define M(X) (__force __poll_t)__MAP(val, POLL##X, (__force __u16)EPOLL##X) return M(IN) | M(OUT) | M(PRI) | M(ERR) | M(NVAL) | M(RDNORM) | M(RDBAND) | M(WRNORM) | M(WRBAND) | M(HUP) | M(RDHUP) | M(MSG); #undef M } #undef __MAP #endif /* _LINUX_POLL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM writeback #if !defined(_TRACE_WRITEBACK_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_WRITEBACK_H #include <linux/tracepoint.h> #include <linux/backing-dev.h> #include <linux/writeback.h> #define show_inode_state(state) \ __print_flags(state, "|", \ {I_DIRTY_SYNC, "I_DIRTY_SYNC"}, \ {I_DIRTY_DATASYNC, "I_DIRTY_DATASYNC"}, \ {I_DIRTY_PAGES, "I_DIRTY_PAGES"}, \ {I_NEW, "I_NEW"}, \ {I_WILL_FREE, "I_WILL_FREE"}, \ {I_FREEING, "I_FREEING"}, \ {I_CLEAR, "I_CLEAR"}, \ {I_SYNC, "I_SYNC"}, \ {I_DIRTY_TIME, "I_DIRTY_TIME"}, \ {I_REFERENCED, "I_REFERENCED"} \ ) /* enums need to be exported to user space */ #undef EM #undef EMe #define EM(a,b) TRACE_DEFINE_ENUM(a); #define EMe(a,b) TRACE_DEFINE_ENUM(a); #define WB_WORK_REASON \ EM( WB_REASON_BACKGROUND, "background") \ EM( WB_REASON_VMSCAN, "vmscan") \ EM( WB_REASON_SYNC, "sync") \ EM( WB_REASON_PERIODIC, "periodic") \ EM( WB_REASON_LAPTOP_TIMER, "laptop_timer") \ EM( WB_REASON_FS_FREE_SPACE, "fs_free_space") \ EMe(WB_REASON_FORKER_THREAD, "forker_thread") WB_WORK_REASON /* * Now redefine the EM() and EMe() macros to map the enums to the strings * that will be printed in the output. */ #undef EM #undef EMe #define EM(a,b) { a, b }, #define EMe(a,b) { a, b } struct wb_writeback_work; DECLARE_EVENT_CLASS(writeback_page_template, TP_PROTO(struct page *page, struct address_space *mapping), TP_ARGS(page, mapping), TP_STRUCT__entry ( __array(char, name, 32) __field(ino_t, ino) __field(pgoff_t, index) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(mapping ? inode_to_bdi(mapping->host) : NULL), 32); __entry->ino = mapping ? mapping->host->i_ino : 0; __entry->index = page->index; ), TP_printk("bdi %s: ino=%lu index=%lu", __entry->name, (unsigned long)__entry->ino, __entry->index ) ); DEFINE_EVENT(writeback_page_template, writeback_dirty_page, TP_PROTO(struct page *page, struct address_space *mapping), TP_ARGS(page, mapping) ); DEFINE_EVENT(writeback_page_template, wait_on_page_writeback, TP_PROTO(struct page *page, struct address_space *mapping), TP_ARGS(page, mapping) ); DECLARE_EVENT_CLASS(writeback_dirty_inode_template, TP_PROTO(struct inode *inode, int flags), TP_ARGS(inode, flags), TP_STRUCT__entry ( __array(char, name, 32) __field(ino_t, ino) __field(unsigned long, state) __field(unsigned long, flags) ), TP_fast_assign( struct backing_dev_info *bdi = inode_to_bdi(inode); /* may be called for files on pseudo FSes w/ unregistered bdi */ strscpy_pad(__entry->name, bdi_dev_name(bdi), 32); __entry->ino = inode->i_ino; __entry->state = inode->i_state; __entry->flags = flags; ), TP_printk("bdi %s: ino=%lu state=%s flags=%s", __entry->name, (unsigned long)__entry->ino, show_inode_state(__entry->state), show_inode_state(__entry->flags) ) ); DEFINE_EVENT(writeback_dirty_inode_template, writeback_mark_inode_dirty, TP_PROTO(struct inode *inode, int flags), TP_ARGS(inode, flags) ); DEFINE_EVENT(writeback_dirty_inode_template, writeback_dirty_inode_start, TP_PROTO(struct inode *inode, int flags), TP_ARGS(inode, flags) ); DEFINE_EVENT(writeback_dirty_inode_template, writeback_dirty_inode, TP_PROTO(struct inode *inode, int flags), TP_ARGS(inode, flags) ); #ifdef CREATE_TRACE_POINTS #ifdef CONFIG_CGROUP_WRITEBACK static inline ino_t __trace_wb_assign_cgroup(struct bdi_writeback *wb) { return cgroup_ino(wb->memcg_css->cgroup); } static inline ino_t __trace_wbc_assign_cgroup(struct writeback_control *wbc) { if (wbc->wb) return __trace_wb_assign_cgroup(wbc->wb); else return 1; } #else /* CONFIG_CGROUP_WRITEBACK */ static inline ino_t __trace_wb_assign_cgroup(struct bdi_writeback *wb) { return 1; } static inline ino_t __trace_wbc_assign_cgroup(struct writeback_control *wbc) { return 1; } #endif /* CONFIG_CGROUP_WRITEBACK */ #endif /* CREATE_TRACE_POINTS */ #ifdef CONFIG_CGROUP_WRITEBACK TRACE_EVENT(inode_foreign_history, TP_PROTO(struct inode *inode, struct writeback_control *wbc, unsigned int history), TP_ARGS(inode, wbc, history), TP_STRUCT__entry( __array(char, name, 32) __field(ino_t, ino) __field(ino_t, cgroup_ino) __field(unsigned int, history) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(inode_to_bdi(inode)), 32); __entry->ino = inode->i_ino; __entry->cgroup_ino = __trace_wbc_assign_cgroup(wbc); __entry->history = history; ), TP_printk("bdi %s: ino=%lu cgroup_ino=%lu history=0x%x", __entry->name, (unsigned long)__entry->ino, (unsigned long)__entry->cgroup_ino, __entry->history ) ); TRACE_EVENT(inode_switch_wbs, TP_PROTO(struct inode *inode, struct bdi_writeback *old_wb, struct bdi_writeback *new_wb), TP_ARGS(inode, old_wb, new_wb), TP_STRUCT__entry( __array(char, name, 32) __field(ino_t, ino) __field(ino_t, old_cgroup_ino) __field(ino_t, new_cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(old_wb->bdi), 32); __entry->ino = inode->i_ino; __entry->old_cgroup_ino = __trace_wb_assign_cgroup(old_wb); __entry->new_cgroup_ino = __trace_wb_assign_cgroup(new_wb); ), TP_printk("bdi %s: ino=%lu old_cgroup_ino=%lu new_cgroup_ino=%lu", __entry->name, (unsigned long)__entry->ino, (unsigned long)__entry->old_cgroup_ino, (unsigned long)__entry->new_cgroup_ino ) ); TRACE_EVENT(track_foreign_dirty, TP_PROTO(struct page *page, struct bdi_writeback *wb), TP_ARGS(page, wb), TP_STRUCT__entry( __array(char, name, 32) __field(u64, bdi_id) __field(ino_t, ino) __field(unsigned int, memcg_id) __field(ino_t, cgroup_ino) __field(ino_t, page_cgroup_ino) ), TP_fast_assign( struct address_space *mapping = page_mapping(page); struct inode *inode = mapping ? mapping->host : NULL; strscpy_pad(__entry->name, bdi_dev_name(wb->bdi), 32); __entry->bdi_id = wb->bdi->id; __entry->ino = inode ? inode->i_ino : 0; __entry->memcg_id = wb->memcg_css->id; __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); __entry->page_cgroup_ino = cgroup_ino(page->mem_cgroup->css.cgroup); ), TP_printk("bdi %s[%llu]: ino=%lu memcg_id=%u cgroup_ino=%lu page_cgroup_ino=%lu", __entry->name, __entry->bdi_id, (unsigned long)__entry->ino, __entry->memcg_id, (unsigned long)__entry->cgroup_ino, (unsigned long)__entry->page_cgroup_ino ) ); TRACE_EVENT(flush_foreign, TP_PROTO(struct bdi_writeback *wb, unsigned int frn_bdi_id, unsigned int frn_memcg_id), TP_ARGS(wb, frn_bdi_id, frn_memcg_id), TP_STRUCT__entry( __array(char, name, 32) __field(ino_t, cgroup_ino) __field(unsigned int, frn_bdi_id) __field(unsigned int, frn_memcg_id) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(wb->bdi), 32); __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); __entry->frn_bdi_id = frn_bdi_id; __entry->frn_memcg_id = frn_memcg_id; ), TP_printk("bdi %s: cgroup_ino=%lu frn_bdi_id=%u frn_memcg_id=%u", __entry->name, (unsigned long)__entry->cgroup_ino, __entry->frn_bdi_id, __entry->frn_memcg_id ) ); #endif DECLARE_EVENT_CLASS(writeback_write_inode_template, TP_PROTO(struct inode *inode, struct writeback_control *wbc), TP_ARGS(inode, wbc), TP_STRUCT__entry ( __array(char, name, 32) __field(ino_t, ino) __field(int, sync_mode) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(inode_to_bdi(inode)), 32); __entry->ino = inode->i_ino; __entry->sync_mode = wbc->sync_mode; __entry->cgroup_ino = __trace_wbc_assign_cgroup(wbc); ), TP_printk("bdi %s: ino=%lu sync_mode=%d cgroup_ino=%lu", __entry->name, (unsigned long)__entry->ino, __entry->sync_mode, (unsigned long)__entry->cgroup_ino ) ); DEFINE_EVENT(writeback_write_inode_template, writeback_write_inode_start, TP_PROTO(struct inode *inode, struct writeback_control *wbc), TP_ARGS(inode, wbc) ); DEFINE_EVENT(writeback_write_inode_template, writeback_write_inode, TP_PROTO(struct inode *inode, struct writeback_control *wbc), TP_ARGS(inode, wbc) ); DECLARE_EVENT_CLASS(writeback_work_class, TP_PROTO(struct bdi_writeback *wb, struct wb_writeback_work *work), TP_ARGS(wb, work), TP_STRUCT__entry( __array(char, name, 32) __field(long, nr_pages) __field(dev_t, sb_dev) __field(int, sync_mode) __field(int, for_kupdate) __field(int, range_cyclic) __field(int, for_background) __field(int, reason) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(wb->bdi), 32); __entry->nr_pages = work->nr_pages; __entry->sb_dev = work->sb ? work->sb->s_dev : 0; __entry->sync_mode = work->sync_mode; __entry->for_kupdate = work->for_kupdate; __entry->range_cyclic = work->range_cyclic; __entry->for_background = work->for_background; __entry->reason = work->reason; __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); ), TP_printk("bdi %s: sb_dev %d:%d nr_pages=%ld sync_mode=%d " "kupdate=%d range_cyclic=%d background=%d reason=%s cgroup_ino=%lu", __entry->name, MAJOR(__entry->sb_dev), MINOR(__entry->sb_dev), __entry->nr_pages, __entry->sync_mode, __entry->for_kupdate, __entry->range_cyclic, __entry->for_background, __print_symbolic(__entry->reason, WB_WORK_REASON), (unsigned long)__entry->cgroup_ino ) ); #define DEFINE_WRITEBACK_WORK_EVENT(name) \ DEFINE_EVENT(writeback_work_class, name, \ TP_PROTO(struct bdi_writeback *wb, struct wb_writeback_work *work), \ TP_ARGS(wb, work)) DEFINE_WRITEBACK_WORK_EVENT(writeback_queue); DEFINE_WRITEBACK_WORK_EVENT(writeback_exec); DEFINE_WRITEBACK_WORK_EVENT(writeback_start); DEFINE_WRITEBACK_WORK_EVENT(writeback_written); DEFINE_WRITEBACK_WORK_EVENT(writeback_wait); TRACE_EVENT(writeback_pages_written, TP_PROTO(long pages_written), TP_ARGS(pages_written), TP_STRUCT__entry( __field(long, pages) ), TP_fast_assign( __entry->pages = pages_written; ), TP_printk("%ld", __entry->pages) ); DECLARE_EVENT_CLASS(writeback_class, TP_PROTO(struct bdi_writeback *wb), TP_ARGS(wb), TP_STRUCT__entry( __array(char, name, 32) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(wb->bdi), 32); __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); ), TP_printk("bdi %s: cgroup_ino=%lu", __entry->name, (unsigned long)__entry->cgroup_ino ) ); #define DEFINE_WRITEBACK_EVENT(name) \ DEFINE_EVENT(writeback_class, name, \ TP_PROTO(struct bdi_writeback *wb), \ TP_ARGS(wb)) DEFINE_WRITEBACK_EVENT(writeback_wake_background); TRACE_EVENT(writeback_bdi_register, TP_PROTO(struct backing_dev_info *bdi), TP_ARGS(bdi), TP_STRUCT__entry( __array(char, name, 32) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(bdi), 32); ), TP_printk("bdi %s", __entry->name ) ); DECLARE_EVENT_CLASS(wbc_class, TP_PROTO(struct writeback_control *wbc, struct backing_dev_info *bdi), TP_ARGS(wbc, bdi), TP_STRUCT__entry( __array(char, name, 32) __field(long, nr_to_write) __field(long, pages_skipped) __field(int, sync_mode) __field(int, for_kupdate) __field(int, for_background) __field(int, for_reclaim) __field(int, range_cyclic) __field(long, range_start) __field(long, range_end) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(bdi), 32); __entry->nr_to_write = wbc->nr_to_write; __entry->pages_skipped = wbc->pages_skipped; __entry->sync_mode = wbc->sync_mode; __entry->for_kupdate = wbc->for_kupdate; __entry->for_background = wbc->for_background; __entry->for_reclaim = wbc->for_reclaim; __entry->range_cyclic = wbc->range_cyclic; __entry->range_start = (long)wbc->range_start; __entry->range_end = (long)wbc->range_end; __entry->cgroup_ino = __trace_wbc_assign_cgroup(wbc); ), TP_printk("bdi %s: towrt=%ld skip=%ld mode=%d kupd=%d " "bgrd=%d reclm=%d cyclic=%d " "start=0x%lx end=0x%lx cgroup_ino=%lu", __entry->name, __entry->nr_to_write, __entry->pages_skipped, __entry->sync_mode, __entry->for_kupdate, __entry->for_background, __entry->for_reclaim, __entry->range_cyclic, __entry->range_start, __entry->range_end, (unsigned long)__entry->cgroup_ino ) ) #define DEFINE_WBC_EVENT(name) \ DEFINE_EVENT(wbc_class, name, \ TP_PROTO(struct writeback_control *wbc, struct backing_dev_info *bdi), \ TP_ARGS(wbc, bdi)) DEFINE_WBC_EVENT(wbc_writepage); TRACE_EVENT(writeback_queue_io, TP_PROTO(struct bdi_writeback *wb, struct wb_writeback_work *work, unsigned long dirtied_before, int moved), TP_ARGS(wb, work, dirtied_before, moved), TP_STRUCT__entry( __array(char, name, 32) __field(unsigned long, older) __field(long, age) __field(int, moved) __field(int, reason) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(wb->bdi), 32); __entry->older = dirtied_before; __entry->age = (jiffies - dirtied_before) * 1000 / HZ; __entry->moved = moved; __entry->reason = work->reason; __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); ), TP_printk("bdi %s: older=%lu age=%ld enqueue=%d reason=%s cgroup_ino=%lu", __entry->name, __entry->older, /* dirtied_before in jiffies */ __entry->age, /* dirtied_before in relative milliseconds */ __entry->moved, __print_symbolic(__entry->reason, WB_WORK_REASON), (unsigned long)__entry->cgroup_ino ) ); TRACE_EVENT(global_dirty_state, TP_PROTO(unsigned long background_thresh, unsigned long dirty_thresh ), TP_ARGS(background_thresh, dirty_thresh ), TP_STRUCT__entry( __field(unsigned long, nr_dirty) __field(unsigned long, nr_writeback) __field(unsigned long, background_thresh) __field(unsigned long, dirty_thresh) __field(unsigned long, dirty_limit) __field(unsigned long, nr_dirtied) __field(unsigned long, nr_written) ), TP_fast_assign( __entry->nr_dirty = global_node_page_state(NR_FILE_DIRTY); __entry->nr_writeback = global_node_page_state(NR_WRITEBACK); __entry->nr_dirtied = global_node_page_state(NR_DIRTIED); __entry->nr_written = global_node_page_state(NR_WRITTEN); __entry->background_thresh = background_thresh; __entry->dirty_thresh = dirty_thresh; __entry->dirty_limit = global_wb_domain.dirty_limit; ), TP_printk("dirty=%lu writeback=%lu " "bg_thresh=%lu thresh=%lu limit=%lu " "dirtied=%lu written=%lu", __entry->nr_dirty, __entry->nr_writeback, __entry->background_thresh, __entry->dirty_thresh, __entry->dirty_limit, __entry->nr_dirtied, __entry->nr_written ) ); #define KBps(x) ((x) << (PAGE_SHIFT - 10)) TRACE_EVENT(bdi_dirty_ratelimit, TP_PROTO(struct bdi_writeback *wb, unsigned long dirty_rate, unsigned long task_ratelimit), TP_ARGS(wb, dirty_rate, task_ratelimit), TP_STRUCT__entry( __array(char, bdi, 32) __field(unsigned long, write_bw) __field(unsigned long, avg_write_bw) __field(unsigned long, dirty_rate) __field(unsigned long, dirty_ratelimit) __field(unsigned long, task_ratelimit) __field(unsigned long, balanced_dirty_ratelimit) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->bdi, bdi_dev_name(wb->bdi), 32); __entry->write_bw = KBps(wb->write_bandwidth); __entry->avg_write_bw = KBps(wb->avg_write_bandwidth); __entry->dirty_rate = KBps(dirty_rate); __entry->dirty_ratelimit = KBps(wb->dirty_ratelimit); __entry->task_ratelimit = KBps(task_ratelimit); __entry->balanced_dirty_ratelimit = KBps(wb->balanced_dirty_ratelimit); __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); ), TP_printk("bdi %s: " "write_bw=%lu awrite_bw=%lu dirty_rate=%lu " "dirty_ratelimit=%lu task_ratelimit=%lu " "balanced_dirty_ratelimit=%lu cgroup_ino=%lu", __entry->bdi, __entry->write_bw, /* write bandwidth */ __entry->avg_write_bw, /* avg write bandwidth */ __entry->dirty_rate, /* bdi dirty rate */ __entry->dirty_ratelimit, /* base ratelimit */ __entry->task_ratelimit, /* ratelimit with position control */ __entry->balanced_dirty_ratelimit, /* the balanced ratelimit */ (unsigned long)__entry->cgroup_ino ) ); TRACE_EVENT(balance_dirty_pages, TP_PROTO(struct bdi_writeback *wb, unsigned long thresh, unsigned long bg_thresh, unsigned long dirty, unsigned long bdi_thresh, unsigned long bdi_dirty, unsigned long dirty_ratelimit, unsigned long task_ratelimit, unsigned long dirtied, unsigned long period, long pause, unsigned long start_time), TP_ARGS(wb, thresh, bg_thresh, dirty, bdi_thresh, bdi_dirty, dirty_ratelimit, task_ratelimit, dirtied, period, pause, start_time), TP_STRUCT__entry( __array( char, bdi, 32) __field(unsigned long, limit) __field(unsigned long, setpoint) __field(unsigned long, dirty) __field(unsigned long, bdi_setpoint) __field(unsigned long, bdi_dirty) __field(unsigned long, dirty_ratelimit) __field(unsigned long, task_ratelimit) __field(unsigned int, dirtied) __field(unsigned int, dirtied_pause) __field(unsigned long, paused) __field( long, pause) __field(unsigned long, period) __field( long, think) __field(ino_t, cgroup_ino) ), TP_fast_assign( unsigned long freerun = (thresh + bg_thresh) / 2; strscpy_pad(__entry->bdi, bdi_dev_name(wb->bdi), 32); __entry->limit = global_wb_domain.dirty_limit; __entry->setpoint = (global_wb_domain.dirty_limit + freerun) / 2; __entry->dirty = dirty; __entry->bdi_setpoint = __entry->setpoint * bdi_thresh / (thresh + 1); __entry->bdi_dirty = bdi_dirty; __entry->dirty_ratelimit = KBps(dirty_ratelimit); __entry->task_ratelimit = KBps(task_ratelimit); __entry->dirtied = dirtied; __entry->dirtied_pause = current->nr_dirtied_pause; __entry->think = current->dirty_paused_when == 0 ? 0 : (long)(jiffies - current->dirty_paused_when) * 1000/HZ; __entry->period = period * 1000 / HZ; __entry->pause = pause * 1000 / HZ; __entry->paused = (jiffies - start_time) * 1000 / HZ; __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); ), TP_printk("bdi %s: " "limit=%lu setpoint=%lu dirty=%lu " "bdi_setpoint=%lu bdi_dirty=%lu " "dirty_ratelimit=%lu task_ratelimit=%lu " "dirtied=%u dirtied_pause=%u " "paused=%lu pause=%ld period=%lu think=%ld cgroup_ino=%lu", __entry->bdi, __entry->limit, __entry->setpoint, __entry->dirty, __entry->bdi_setpoint, __entry->bdi_dirty, __entry->dirty_ratelimit, __entry->task_ratelimit, __entry->dirtied, __entry->dirtied_pause, __entry->paused, /* ms */ __entry->pause, /* ms */ __entry->period, /* ms */ __entry->think, /* ms */ (unsigned long)__entry->cgroup_ino ) ); TRACE_EVENT(writeback_sb_inodes_requeue, TP_PROTO(struct inode *inode), TP_ARGS(inode), TP_STRUCT__entry( __array(char, name, 32) __field(ino_t, ino) __field(unsigned long, state) __field(unsigned long, dirtied_when) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(inode_to_bdi(inode)), 32); __entry->ino = inode->i_ino; __entry->state = inode->i_state; __entry->dirtied_when = inode->dirtied_when; __entry->cgroup_ino = __trace_wb_assign_cgroup(inode_to_wb(inode)); ), TP_printk("bdi %s: ino=%lu state=%s dirtied_when=%lu age=%lu cgroup_ino=%lu", __entry->name, (unsigned long)__entry->ino, show_inode_state(__entry->state), __entry->dirtied_when, (jiffies - __entry->dirtied_when) / HZ, (unsigned long)__entry->cgroup_ino ) ); DECLARE_EVENT_CLASS(writeback_congest_waited_template, TP_PROTO(unsigned int usec_timeout, unsigned int usec_delayed), TP_ARGS(usec_timeout, usec_delayed), TP_STRUCT__entry( __field( unsigned int, usec_timeout ) __field( unsigned int, usec_delayed ) ), TP_fast_assign( __entry->usec_timeout = usec_timeout; __entry->usec_delayed = usec_delayed; ), TP_printk("usec_timeout=%u usec_delayed=%u", __entry->usec_timeout, __entry->usec_delayed) ); DEFINE_EVENT(writeback_congest_waited_template, writeback_congestion_wait, TP_PROTO(unsigned int usec_timeout, unsigned int usec_delayed), TP_ARGS(usec_timeout, usec_delayed) ); DEFINE_EVENT(writeback_congest_waited_template, writeback_wait_iff_congested, TP_PROTO(unsigned int usec_timeout, unsigned int usec_delayed), TP_ARGS(usec_timeout, usec_delayed) ); DECLARE_EVENT_CLASS(writeback_single_inode_template, TP_PROTO(struct inode *inode, struct writeback_control *wbc, unsigned long nr_to_write ), TP_ARGS(inode, wbc, nr_to_write), TP_STRUCT__entry( __array(char, name, 32) __field(ino_t, ino) __field(unsigned long, state) __field(unsigned long, dirtied_when) __field(unsigned long, writeback_index) __field(long, nr_to_write) __field(unsigned long, wrote) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(inode_to_bdi(inode)), 32); __entry->ino = inode->i_ino; __entry->state = inode->i_state; __entry->dirtied_when = inode->dirtied_when; __entry->writeback_index = inode->i_mapping->writeback_index; __entry->nr_to_write = nr_to_write; __entry->wrote = nr_to_write - wbc->nr_to_write; __entry->cgroup_ino = __trace_wbc_assign_cgroup(wbc); ), TP_printk("bdi %s: ino=%lu state=%s dirtied_when=%lu age=%lu " "index=%lu to_write=%ld wrote=%lu cgroup_ino=%lu", __entry->name, (unsigned long)__entry->ino, show_inode_state(__entry->state), __entry->dirtied_when, (jiffies - __entry->dirtied_when) / HZ, __entry->writeback_index, __entry->nr_to_write, __entry->wrote, (unsigned long)__entry->cgroup_ino ) ); DEFINE_EVENT(writeback_single_inode_template, writeback_single_inode_start, TP_PROTO(struct inode *inode, struct writeback_control *wbc, unsigned long nr_to_write), TP_ARGS(inode, wbc, nr_to_write) ); DEFINE_EVENT(writeback_single_inode_template, writeback_single_inode, TP_PROTO(struct inode *inode, struct writeback_control *wbc, unsigned long nr_to_write), TP_ARGS(inode, wbc, nr_to_write) ); DECLARE_EVENT_CLASS(writeback_inode_template, TP_PROTO(struct inode *inode), TP_ARGS(inode), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field(unsigned long, state ) __field( __u16, mode ) __field(unsigned long, dirtied_when ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->state = inode->i_state; __entry->mode = inode->i_mode; __entry->dirtied_when = inode->dirtied_when; ), TP_printk("dev %d,%d ino %lu dirtied %lu state %s mode 0%o", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long)__entry->ino, __entry->dirtied_when, show_inode_state(__entry->state), __entry->mode) ); DEFINE_EVENT(writeback_inode_template, writeback_lazytime, TP_PROTO(struct inode *inode), TP_ARGS(inode) ); DEFINE_EVENT(writeback_inode_template, writeback_lazytime_iput, TP_PROTO(struct inode *inode), TP_ARGS(inode) ); DEFINE_EVENT(writeback_inode_template, writeback_dirty_inode_enqueue, TP_PROTO(struct inode *inode), TP_ARGS(inode) ); /* * Inode writeback list tracking. */ DEFINE_EVENT(writeback_inode_template, sb_mark_inode_writeback, TP_PROTO(struct inode *inode), TP_ARGS(inode) ); DEFINE_EVENT(writeback_inode_template, sb_clear_inode_writeback, TP_PROTO(struct inode *inode), TP_ARGS(inode) ); #endif /* _TRACE_WRITEBACK_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. NET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Definitions for the Ethernet handlers. * * Version: @(#)eth.h 1.0.4 05/13/93 * * Authors: Ross Biro * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> * * Relocated to include/linux where it belongs by Alan Cox * <gw4pts@gw4pts.ampr.org> */ #ifndef _LINUX_ETHERDEVICE_H #define _LINUX_ETHERDEVICE_H #include <linux/if_ether.h> #include <linux/netdevice.h> #include <linux/random.h> #include <linux/crc32.h> #include <asm/unaligned.h> #include <asm/bitsperlong.h> #ifdef __KERNEL__ struct device; int eth_platform_get_mac_address(struct device *dev, u8 *mac_addr); unsigned char *arch_get_platform_mac_address(void); int nvmem_get_mac_address(struct device *dev, void *addrbuf); u32 eth_get_headlen(const struct net_device *dev, void *data, unsigned int len); __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev); extern const struct header_ops eth_header_ops; int eth_header(struct sk_buff *skb, struct net_device *dev, unsigned short type, const void *daddr, const void *saddr, unsigned len); int eth_header_parse(const struct sk_buff *skb, unsigned char *haddr); int eth_header_cache(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); void eth_header_cache_update(struct hh_cache *hh, const struct net_device *dev, const unsigned char *haddr); __be16 eth_header_parse_protocol(const struct sk_buff *skb); int eth_prepare_mac_addr_change(struct net_device *dev, void *p); void eth_commit_mac_addr_change(struct net_device *dev, void *p); int eth_mac_addr(struct net_device *dev, void *p); int eth_validate_addr(struct net_device *dev); struct net_device *alloc_etherdev_mqs(int sizeof_priv, unsigned int txqs, unsigned int rxqs); #define alloc_etherdev(sizeof_priv) alloc_etherdev_mq(sizeof_priv, 1) #define alloc_etherdev_mq(sizeof_priv, count) alloc_etherdev_mqs(sizeof_priv, count, count) struct net_device *devm_alloc_etherdev_mqs(struct device *dev, int sizeof_priv, unsigned int txqs, unsigned int rxqs); #define devm_alloc_etherdev(dev, sizeof_priv) devm_alloc_etherdev_mqs(dev, sizeof_priv, 1, 1) struct sk_buff *eth_gro_receive(struct list_head *head, struct sk_buff *skb); int eth_gro_complete(struct sk_buff *skb, int nhoff); /* Reserved Ethernet Addresses per IEEE 802.1Q */ static const u8 eth_reserved_addr_base[ETH_ALEN] __aligned(2) = { 0x01, 0x80, 0xc2, 0x00, 0x00, 0x00 }; #define eth_stp_addr eth_reserved_addr_base /** * is_link_local_ether_addr - Determine if given Ethernet address is link-local * @addr: Pointer to a six-byte array containing the Ethernet address * * Return true if address is link local reserved addr (01:80:c2:00:00:0X) per * IEEE 802.1Q 8.6.3 Frame filtering. * * Please note: addr must be aligned to u16. */ static inline bool is_link_local_ether_addr(const u8 *addr) { __be16 *a = (__be16 *)addr; static const __be16 *b = (const __be16 *)eth_reserved_addr_base; static const __be16 m = cpu_to_be16(0xfff0); #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) return (((*(const u32 *)addr) ^ (*(const u32 *)b)) | (__force int)((a[2] ^ b[2]) & m)) == 0; #else return ((a[0] ^ b[0]) | (a[1] ^ b[1]) | ((a[2] ^ b[2]) & m)) == 0; #endif } /** * is_zero_ether_addr - Determine if give Ethernet address is all zeros. * @addr: Pointer to a six-byte array containing the Ethernet address * * Return true if the address is all zeroes. * * Please note: addr must be aligned to u16. */ static inline bool is_zero_ether_addr(const u8 *addr) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) return ((*(const u32 *)addr) | (*(const u16 *)(addr + 4))) == 0; #else return (*(const u16 *)(addr + 0) | *(const u16 *)(addr + 2) | *(const u16 *)(addr + 4)) == 0; #endif } /** * is_multicast_ether_addr - Determine if the Ethernet address is a multicast. * @addr: Pointer to a six-byte array containing the Ethernet address * * Return true if the address is a multicast address. * By definition the broadcast address is also a multicast address. */ static inline bool is_multicast_ether_addr(const u8 *addr) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) u32 a = *(const u32 *)addr; #else u16 a = *(const u16 *)addr; #endif #ifdef __BIG_ENDIAN return 0x01 & (a >> ((sizeof(a) * 8) - 8)); #else return 0x01 & a; #endif } static inline bool is_multicast_ether_addr_64bits(const u8 addr[6+2]) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 #ifdef __BIG_ENDIAN return 0x01 & ((*(const u64 *)addr) >> 56); #else return 0x01 & (*(const u64 *)addr); #endif #else return is_multicast_ether_addr(addr); #endif } /** * is_local_ether_addr - Determine if the Ethernet address is locally-assigned one (IEEE 802). * @addr: Pointer to a six-byte array containing the Ethernet address * * Return true if the address is a local address. */ static inline bool is_local_ether_addr(const u8 *addr) { return 0x02 & addr[0]; } /** * is_broadcast_ether_addr - Determine if the Ethernet address is broadcast * @addr: Pointer to a six-byte array containing the Ethernet address * * Return true if the address is the broadcast address. * * Please note: addr must be aligned to u16. */ static inline bool is_broadcast_ether_addr(const u8 *addr) { return (*(const u16 *)(addr + 0) & *(const u16 *)(addr + 2) & *(const u16 *)(addr + 4)) == 0xffff; } /** * is_unicast_ether_addr - Determine if the Ethernet address is unicast * @addr: Pointer to a six-byte array containing the Ethernet address * * Return true if the address is a unicast address. */ static inline bool is_unicast_ether_addr(const u8 *addr) { return !is_multicast_ether_addr(addr); } /** * is_valid_ether_addr - Determine if the given Ethernet address is valid * @addr: Pointer to a six-byte array containing the Ethernet address * * Check that the Ethernet address (MAC) is not 00:00:00:00:00:00, is not * a multicast address, and is not FF:FF:FF:FF:FF:FF. * * Return true if the address is valid. * * Please note: addr must be aligned to u16. */ static inline bool is_valid_ether_addr(const u8 *addr) { /* FF:FF:FF:FF:FF:FF is a multicast address so we don't need to * explicitly check for it here. */ return !is_multicast_ether_addr(addr) && !is_zero_ether_addr(addr); } /** * eth_proto_is_802_3 - Determine if a given Ethertype/length is a protocol * @proto: Ethertype/length value to be tested * * Check that the value from the Ethertype/length field is a valid Ethertype. * * Return true if the valid is an 802.3 supported Ethertype. */ static inline bool eth_proto_is_802_3(__be16 proto) { #ifndef __BIG_ENDIAN /* if CPU is little endian mask off bits representing LSB */ proto &= htons(0xFF00); #endif /* cast both to u16 and compare since LSB can be ignored */ return (__force u16)proto >= (__force u16)htons(ETH_P_802_3_MIN); } /** * eth_random_addr - Generate software assigned random Ethernet address * @addr: Pointer to a six-byte array containing the Ethernet address * * Generate a random Ethernet address (MAC) that is not multicast * and has the local assigned bit set. */ static inline void eth_random_addr(u8 *addr) { get_random_bytes(addr, ETH_ALEN); addr[0] &= 0xfe; /* clear multicast bit */ addr[0] |= 0x02; /* set local assignment bit (IEEE802) */ } #define random_ether_addr(addr) eth_random_addr(addr) /** * eth_broadcast_addr - Assign broadcast address * @addr: Pointer to a six-byte array containing the Ethernet address * * Assign the broadcast address to the given address array. */ static inline void eth_broadcast_addr(u8 *addr) { memset(addr, 0xff, ETH_ALEN); } /** * eth_zero_addr - Assign zero address * @addr: Pointer to a six-byte array containing the Ethernet address * * Assign the zero address to the given address array. */ static inline void eth_zero_addr(u8 *addr) { memset(addr, 0x00, ETH_ALEN); } /** * eth_hw_addr_random - Generate software assigned random Ethernet and * set device flag * @dev: pointer to net_device structure * * Generate a random Ethernet address (MAC) to be used by a net device * and set addr_assign_type so the state can be read by sysfs and be * used by userspace. */ static inline void eth_hw_addr_random(struct net_device *dev) { dev->addr_assign_type = NET_ADDR_RANDOM; eth_random_addr(dev->dev_addr); } /** * eth_hw_addr_crc - Calculate CRC from netdev_hw_addr * @ha: pointer to hardware address * * Calculate CRC from a hardware address as basis for filter hashes. */ static inline u32 eth_hw_addr_crc(struct netdev_hw_addr *ha) { return ether_crc(ETH_ALEN, ha->addr); } /** * ether_addr_copy - Copy an Ethernet address * @dst: Pointer to a six-byte array Ethernet address destination * @src: Pointer to a six-byte array Ethernet address source * * Please note: dst & src must both be aligned to u16. */ static inline void ether_addr_copy(u8 *dst, const u8 *src) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) *(u32 *)dst = *(const u32 *)src; *(u16 *)(dst + 4) = *(const u16 *)(src + 4); #else u16 *a = (u16 *)dst; const u16 *b = (const u16 *)src; a[0] = b[0]; a[1] = b[1]; a[2] = b[2]; #endif } /** * eth_hw_addr_inherit - Copy dev_addr from another net_device * @dst: pointer to net_device to copy dev_addr to * @src: pointer to net_device to copy dev_addr from * * Copy the Ethernet address from one net_device to another along with * the address attributes (addr_assign_type). */ static inline void eth_hw_addr_inherit(struct net_device *dst, struct net_device *src) { dst->addr_assign_type = src->addr_assign_type; ether_addr_copy(dst->dev_addr, src->dev_addr); } /** * ether_addr_equal - Compare two Ethernet addresses * @addr1: Pointer to a six-byte array containing the Ethernet address * @addr2: Pointer other six-byte array containing the Ethernet address * * Compare two Ethernet addresses, returns true if equal * * Please note: addr1 & addr2 must both be aligned to u16. */ static inline bool ether_addr_equal(const u8 *addr1, const u8 *addr2) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) u32 fold = ((*(const u32 *)addr1) ^ (*(const u32 *)addr2)) | ((*(const u16 *)(addr1 + 4)) ^ (*(const u16 *)(addr2 + 4))); return fold == 0; #else const u16 *a = (const u16 *)addr1; const u16 *b = (const u16 *)addr2; return ((a[0] ^ b[0]) | (a[1] ^ b[1]) | (a[2] ^ b[2])) == 0; #endif } /** * ether_addr_equal_64bits - Compare two Ethernet addresses * @addr1: Pointer to an array of 8 bytes * @addr2: Pointer to an other array of 8 bytes * * Compare two Ethernet addresses, returns true if equal, false otherwise. * * The function doesn't need any conditional branches and possibly uses * word memory accesses on CPU allowing cheap unaligned memory reads. * arrays = { byte1, byte2, byte3, byte4, byte5, byte6, pad1, pad2 } * * Please note that alignment of addr1 & addr2 are only guaranteed to be 16 bits. */ static inline bool ether_addr_equal_64bits(const u8 addr1[6+2], const u8 addr2[6+2]) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 u64 fold = (*(const u64 *)addr1) ^ (*(const u64 *)addr2); #ifdef __BIG_ENDIAN return (fold >> 16) == 0; #else return (fold << 16) == 0; #endif #else return ether_addr_equal(addr1, addr2); #endif } /** * ether_addr_equal_unaligned - Compare two not u16 aligned Ethernet addresses * @addr1: Pointer to a six-byte array containing the Ethernet address * @addr2: Pointer other six-byte array containing the Ethernet address * * Compare two Ethernet addresses, returns true if equal * * Please note: Use only when any Ethernet address may not be u16 aligned. */ static inline bool ether_addr_equal_unaligned(const u8 *addr1, const u8 *addr2) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) return ether_addr_equal(addr1, addr2); #else return memcmp(addr1, addr2, ETH_ALEN) == 0; #endif } /** * ether_addr_equal_masked - Compare two Ethernet addresses with a mask * @addr1: Pointer to a six-byte array containing the 1st Ethernet address * @addr2: Pointer to a six-byte array containing the 2nd Ethernet address * @mask: Pointer to a six-byte array containing the Ethernet address bitmask * * Compare two Ethernet addresses with a mask, returns true if for every bit * set in the bitmask the equivalent bits in the ethernet addresses are equal. * Using a mask with all bits set is a slower ether_addr_equal. */ static inline bool ether_addr_equal_masked(const u8 *addr1, const u8 *addr2, const u8 *mask) { int i; for (i = 0; i < ETH_ALEN; i++) { if ((addr1[i] ^ addr2[i]) & mask[i]) return false; } return true; } /** * ether_addr_to_u64 - Convert an Ethernet address into a u64 value. * @addr: Pointer to a six-byte array containing the Ethernet address * * Return a u64 value of the address */ static inline u64 ether_addr_to_u64(const u8 *addr) { u64 u = 0; int i; for (i = 0; i < ETH_ALEN; i++) u = u << 8 | addr[i]; return u; } /** * u64_to_ether_addr - Convert a u64 to an Ethernet address. * @u: u64 to convert to an Ethernet MAC address * @addr: Pointer to a six-byte array to contain the Ethernet address */ static inline void u64_to_ether_addr(u64 u, u8 *addr) { int i; for (i = ETH_ALEN - 1; i >= 0; i--) { addr[i] = u & 0xff; u = u >> 8; } } /** * eth_addr_dec - Decrement the given MAC address * * @addr: Pointer to a six-byte array containing Ethernet address to decrement */ static inline void eth_addr_dec(u8 *addr) { u64 u = ether_addr_to_u64(addr); u--; u64_to_ether_addr(u, addr); } /** * eth_addr_inc() - Increment the given MAC address. * @addr: Pointer to a six-byte array containing Ethernet address to increment. */ static inline void eth_addr_inc(u8 *addr) { u64 u = ether_addr_to_u64(addr); u++; u64_to_ether_addr(u, addr); } /** * is_etherdev_addr - Tell if given Ethernet address belongs to the device. * @dev: Pointer to a device structure * @addr: Pointer to a six-byte array containing the Ethernet address * * Compare passed address with all addresses of the device. Return true if the * address if one of the device addresses. * * Note that this function calls ether_addr_equal_64bits() so take care of * the right padding. */ static inline bool is_etherdev_addr(const struct net_device *dev, const u8 addr[6 + 2]) { struct netdev_hw_addr *ha; bool res = false; rcu_read_lock(); for_each_dev_addr(dev, ha) { res = ether_addr_equal_64bits(addr, ha->addr); if (res) break; } rcu_read_unlock(); return res; } #endif /* __KERNEL__ */ /** * compare_ether_header - Compare two Ethernet headers * @a: Pointer to Ethernet header * @b: Pointer to Ethernet header * * Compare two Ethernet headers, returns 0 if equal. * This assumes that the network header (i.e., IP header) is 4-byte * aligned OR the platform can handle unaligned access. This is the * case for all packets coming into netif_receive_skb or similar * entry points. */ static inline unsigned long compare_ether_header(const void *a, const void *b) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 unsigned long fold; /* * We want to compare 14 bytes: * [a0 ... a13] ^ [b0 ... b13] * Use two long XOR, ORed together, with an overlap of two bytes. * [a0 a1 a2 a3 a4 a5 a6 a7 ] ^ [b0 b1 b2 b3 b4 b5 b6 b7 ] | * [a6 a7 a8 a9 a10 a11 a12 a13] ^ [b6 b7 b8 b9 b10 b11 b12 b13] * This means the [a6 a7] ^ [b6 b7] part is done two times. */ fold = *(unsigned long *)a ^ *(unsigned long *)b; fold |= *(unsigned long *)(a + 6) ^ *(unsigned long *)(b + 6); return fold; #else u32 *a32 = (u32 *)((u8 *)a + 2); u32 *b32 = (u32 *)((u8 *)b + 2); return (*(u16 *)a ^ *(u16 *)b) | (a32[0] ^ b32[0]) | (a32[1] ^ b32[1]) | (a32[2] ^ b32[2]); #endif } /** * eth_skb_pad - Pad buffer to mininum number of octets for Ethernet frame * @skb: Buffer to pad * * An Ethernet frame should have a minimum size of 60 bytes. This function * takes short frames and pads them with zeros up to the 60 byte limit. */ static inline int eth_skb_pad(struct sk_buff *skb) { return skb_put_padto(skb, ETH_ZLEN); } #endif /* _LINUX_ETHERDEVICE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_PID_NS_H #define _LINUX_PID_NS_H #include <linux/sched.h> #include <linux/bug.h> #include <linux/mm.h> #include <linux/workqueue.h> #include <linux/threads.h> #include <linux/nsproxy.h> #include <linux/kref.h> #include <linux/ns_common.h> #include <linux/idr.h> /* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */ #define MAX_PID_NS_LEVEL 32 struct fs_pin; struct pid_namespace { struct kref kref; struct idr idr; struct rcu_head rcu; unsigned int pid_allocated; struct task_struct *child_reaper; struct kmem_cache *pid_cachep; unsigned int level; struct pid_namespace *parent; #ifdef CONFIG_BSD_PROCESS_ACCT struct fs_pin *bacct; #endif struct user_namespace *user_ns; struct ucounts *ucounts; int reboot; /* group exit code if this pidns was rebooted */ struct ns_common ns; } __randomize_layout; extern struct pid_namespace init_pid_ns; #define PIDNS_ADDING (1U << 31) #ifdef CONFIG_PID_NS static inline struct pid_namespace *get_pid_ns(struct pid_namespace *ns) { if (ns != &init_pid_ns) kref_get(&ns->kref); return ns; } extern struct pid_namespace *copy_pid_ns(unsigned long flags, struct user_namespace *user_ns, struct pid_namespace *ns); extern void zap_pid_ns_processes(struct pid_namespace *pid_ns); extern int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd); extern void put_pid_ns(struct pid_namespace *ns); #else /* !CONFIG_PID_NS */ #include <linux/err.h> static inline struct pid_namespace *get_pid_ns(struct pid_namespace *ns) { return ns; } static inline struct pid_namespace *copy_pid_ns(unsigned long flags, struct user_namespace *user_ns, struct pid_namespace *ns) { if (flags & CLONE_NEWPID) ns = ERR_PTR(-EINVAL); return ns; } static inline void put_pid_ns(struct pid_namespace *ns) { } static inline void zap_pid_ns_processes(struct pid_namespace *ns) { BUG(); } static inline int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd) { return 0; } #endif /* CONFIG_PID_NS */ extern struct pid_namespace *task_active_pid_ns(struct task_struct *tsk); void pidhash_init(void); void pid_idr_init(void); #endif /* _LINUX_PID_NS_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* Integer base 2 logarithm calculation * * Copyright (C) 2006 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) */ #ifndef _LINUX_LOG2_H #define _LINUX_LOG2_H #include <linux/types.h> #include <linux/bitops.h> /* * non-constant log of base 2 calculators * - the arch may override these in asm/bitops.h if they can be implemented * more efficiently than using fls() and fls64() * - the arch is not required to handle n==0 if implementing the fallback */ #ifndef CONFIG_ARCH_HAS_ILOG2_U32 static inline __attribute__((const)) int __ilog2_u32(u32 n) { return fls(n) - 1; } #endif #ifndef CONFIG_ARCH_HAS_ILOG2_U64 static inline __attribute__((const)) int __ilog2_u64(u64 n) { return fls64(n) - 1; } #endif /** * is_power_of_2() - check if a value is a power of two * @n: the value to check * * Determine whether some value is a power of two, where zero is * *not* considered a power of two. * Return: true if @n is a power of 2, otherwise false. */ static inline __attribute__((const)) bool is_power_of_2(unsigned long n) { return (n != 0 && ((n & (n - 1)) == 0)); } /** * __roundup_pow_of_two() - round up to nearest power of two * @n: value to round up */ static inline __attribute__((const)) unsigned long __roundup_pow_of_two(unsigned long n) { return 1UL << fls_long(n - 1); } /** * __rounddown_pow_of_two() - round down to nearest power of two * @n: value to round down */ static inline __attribute__((const)) unsigned long __rounddown_pow_of_two(unsigned long n) { return 1UL << (fls_long(n) - 1); } /** * const_ilog2 - log base 2 of 32-bit or a 64-bit constant unsigned value * @n: parameter * * Use this where sparse expects a true constant expression, e.g. for array * indices. */ #define const_ilog2(n) \ ( \ __builtin_constant_p(n) ? ( \ (n) < 2 ? 0 : \ (n) & (1ULL << 63) ? 63 : \ (n) & (1ULL << 62) ? 62 : \ (n) & (1ULL << 61) ? 61 : \ (n) & (1ULL << 60) ? 60 : \ (n) & (1ULL << 59) ? 59 : \ (n) & (1ULL << 58) ? 58 : \ (n) & (1ULL << 57) ? 57 : \ (n) & (1ULL << 56) ? 56 : \ (n) & (1ULL << 55) ? 55 : \ (n) & (1ULL << 54) ? 54 : \ (n) & (1ULL << 53) ? 53 : \ (n) & (1ULL << 52) ? 52 : \ (n) & (1ULL << 51) ? 51 : \ (n) & (1ULL << 50) ? 50 : \ (n) & (1ULL << 49) ? 49 : \ (n) & (1ULL << 48) ? 48 : \ (n) & (1ULL << 47) ? 47 : \ (n) & (1ULL << 46) ? 46 : \ (n) & (1ULL << 45) ? 45 : \ (n) & (1ULL << 44) ? 44 : \ (n) & (1ULL << 43) ? 43 : \ (n) & (1ULL << 42) ? 42 : \ (n) & (1ULL << 41) ? 41 : \ (n) & (1ULL << 40) ? 40 : \ (n) & (1ULL << 39) ? 39 : \ (n) & (1ULL << 38) ? 38 : \ (n) & (1ULL << 37) ? 37 : \ (n) & (1ULL << 36) ? 36 : \ (n) & (1ULL << 35) ? 35 : \ (n) & (1ULL << 34) ? 34 : \ (n) & (1ULL << 33) ? 33 : \ (n) & (1ULL << 32) ? 32 : \ (n) & (1ULL << 31) ? 31 : \ (n) & (1ULL << 30) ? 30 : \ (n) & (1ULL << 29) ? 29 : \ (n) & (1ULL << 28) ? 28 : \ (n) & (1ULL << 27) ? 27 : \ (n) & (1ULL << 26) ? 26 : \ (n) & (1ULL << 25) ? 25 : \ (n) & (1ULL << 24) ? 24 : \ (n) & (1ULL << 23) ? 23 : \ (n) & (1ULL << 22) ? 22 : \ (n) & (1ULL << 21) ? 21 : \ (n) & (1ULL << 20) ? 20 : \ (n) & (1ULL << 19) ? 19 : \ (n) & (1ULL << 18) ? 18 : \ (n) & (1ULL << 17) ? 17 : \ (n) & (1ULL << 16) ? 16 : \ (n) & (1ULL << 15) ? 15 : \ (n) & (1ULL << 14) ? 14 : \ (n) & (1ULL << 13) ? 13 : \ (n) & (1ULL << 12) ? 12 : \ (n) & (1ULL << 11) ? 11 : \ (n) & (1ULL << 10) ? 10 : \ (n) & (1ULL << 9) ? 9 : \ (n) & (1ULL << 8) ? 8 : \ (n) & (1ULL << 7) ? 7 : \ (n) & (1ULL << 6) ? 6 : \ (n) & (1ULL << 5) ? 5 : \ (n) & (1ULL << 4) ? 4 : \ (n) & (1ULL << 3) ? 3 : \ (n) & (1ULL << 2) ? 2 : \ 1) : \ -1) /** * ilog2 - log base 2 of 32-bit or a 64-bit unsigned value * @n: parameter * * constant-capable log of base 2 calculation * - this can be used to initialise global variables from constant data, hence * the massive ternary operator construction * * selects the appropriately-sized optimised version depending on sizeof(n) */ #define ilog2(n) \ ( \ __builtin_constant_p(n) ? \ const_ilog2(n) : \ (sizeof(n) <= 4) ? \ __ilog2_u32(n) : \ __ilog2_u64(n) \ ) /** * roundup_pow_of_two - round the given value up to nearest power of two * @n: parameter * * round the given value up to the nearest power of two * - the result is undefined when n == 0 * - this can be used to initialise global variables from constant data */ #define roundup_pow_of_two(n) \ ( \ __builtin_constant_p(n) ? ( \ ((n) == 1) ? 1 : \ (1UL << (ilog2((n) - 1) + 1)) \ ) : \ __roundup_pow_of_two(n) \ ) /** * rounddown_pow_of_two - round the given value down to nearest power of two * @n: parameter * * round the given value down to the nearest power of two * - the result is undefined when n == 0 * - this can be used to initialise global variables from constant data */ #define rounddown_pow_of_two(n) \ ( \ __builtin_constant_p(n) ? ( \ (1UL << ilog2(n))) : \ __rounddown_pow_of_two(n) \ ) static inline __attribute_const__ int __order_base_2(unsigned long n) { return n > 1 ? ilog2(n - 1) + 1 : 0; } /** * order_base_2 - calculate the (rounded up) base 2 order of the argument * @n: parameter * * The first few values calculated by this routine: * ob2(0) = 0 * ob2(1) = 0 * ob2(2) = 1 * ob2(3) = 2 * ob2(4) = 2 * ob2(5) = 3 * ... and so on. */ #define order_base_2(n) \ ( \ __builtin_constant_p(n) ? ( \ ((n) == 0 || (n) == 1) ? 0 : \ ilog2((n) - 1) + 1) : \ __order_base_2(n) \ ) static inline __attribute__((const)) int __bits_per(unsigned long n) { if (n < 2) return 1; if (is_power_of_2(n)) return order_base_2(n) + 1; return order_base_2(n); } /** * bits_per - calculate the number of bits required for the argument * @n: parameter * * This is constant-capable and can be used for compile time * initializations, e.g bitfields. * * The first few values calculated by this routine: * bf(0) = 1 * bf(1) = 1 * bf(2) = 2 * bf(3) = 2 * bf(4) = 3 * ... and so on. */ #define bits_per(n) \ ( \ __builtin_constant_p(n) ? ( \ ((n) == 0 || (n) == 1) \ ? 1 : ilog2(n) + 1 \ ) : \ __bits_per(n) \ ) #endif /* _LINUX_LOG2_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM percpu #if !defined(_TRACE_PERCPU_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_PERCPU_H #include <linux/tracepoint.h> TRACE_EVENT(percpu_alloc_percpu, TP_PROTO(bool reserved, bool is_atomic, size_t size, size_t align, void *base_addr, int off, void __percpu *ptr), TP_ARGS(reserved, is_atomic, size, align, base_addr, off, ptr), TP_STRUCT__entry( __field( bool, reserved ) __field( bool, is_atomic ) __field( size_t, size ) __field( size_t, align ) __field( void *, base_addr ) __field( int, off ) __field( void __percpu *, ptr ) ), TP_fast_assign( __entry->reserved = reserved; __entry->is_atomic = is_atomic; __entry->size = size; __entry->align = align; __entry->base_addr = base_addr; __entry->off = off; __entry->ptr = ptr; ), TP_printk("reserved=%d is_atomic=%d size=%zu align=%zu base_addr=%p off=%d ptr=%p", __entry->reserved, __entry->is_atomic, __entry->size, __entry->align, __entry->base_addr, __entry->off, __entry->ptr) ); TRACE_EVENT(percpu_free_percpu, TP_PROTO(void *base_addr, int off, void __percpu *ptr), TP_ARGS(base_addr, off, ptr), TP_STRUCT__entry( __field( void *, base_addr ) __field( int, off ) __field( void __percpu *, ptr ) ), TP_fast_assign( __entry->base_addr = base_addr; __entry->off = off; __entry->ptr = ptr; ), TP_printk("base_addr=%p off=%d ptr=%p", __entry->base_addr, __entry->off, __entry->ptr) ); TRACE_EVENT(percpu_alloc_percpu_fail, TP_PROTO(bool reserved, bool is_atomic, size_t size, size_t align), TP_ARGS(reserved, is_atomic, size, align), TP_STRUCT__entry( __field( bool, reserved ) __field( bool, is_atomic ) __field( size_t, size ) __field( size_t, align ) ), TP_fast_assign( __entry->reserved = reserved; __entry->is_atomic = is_atomic; __entry->size = size; __entry->align = align; ), TP_printk("reserved=%d is_atomic=%d size=%zu align=%zu", __entry->reserved, __entry->is_atomic, __entry->size, __entry->align) ); TRACE_EVENT(percpu_create_chunk, TP_PROTO(void *base_addr), TP_ARGS(base_addr), TP_STRUCT__entry( __field( void *, base_addr ) ), TP_fast_assign( __entry->base_addr = base_addr; ), TP_printk("base_addr=%p", __entry->base_addr) ); TRACE_EVENT(percpu_destroy_chunk, TP_PROTO(void *base_addr), TP_ARGS(base_addr), TP_STRUCT__entry( __field( void *, base_addr ) ), TP_fast_assign( __entry->base_addr = base_addr; ), TP_printk("base_addr=%p", __entry->base_addr) ); #endif /* _TRACE_PERCPU_H */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 /* SPDX-License-Identifier: GPL-2.0-only */ /* * fs/kernfs/kernfs-internal.h - kernfs internal header file * * Copyright (c) 2001-3 Patrick Mochel * Copyright (c) 2007 SUSE Linux Products GmbH * Copyright (c) 2007, 2013 Tejun Heo <teheo@suse.de> */ #ifndef __KERNFS_INTERNAL_H #define __KERNFS_INTERNAL_H #include <linux/lockdep.h> #include <linux/fs.h> #include <linux/mutex.h> #include <linux/xattr.h> #include <linux/kernfs.h> #include <linux/fs_context.h> struct kernfs_iattrs { kuid_t ia_uid; kgid_t ia_gid; struct timespec64 ia_atime; struct timespec64 ia_mtime; struct timespec64 ia_ctime; struct simple_xattrs xattrs; atomic_t nr_user_xattrs; atomic_t user_xattr_size; }; /* +1 to avoid triggering overflow warning when negating it */ #define KN_DEACTIVATED_BIAS (INT_MIN + 1) /* KERNFS_TYPE_MASK and types are defined in include/linux/kernfs.h */ /** * kernfs_root - find out the kernfs_root a kernfs_node belongs to * @kn: kernfs_node of interest * * Return the kernfs_root @kn belongs to. */ static inline struct kernfs_root *kernfs_root(struct kernfs_node *kn) { /* if parent exists, it's always a dir; otherwise, @sd is a dir */ if (kn->parent) kn = kn->parent; return kn->dir.root; } /* * mount.c */ struct kernfs_super_info { struct super_block *sb; /* * The root associated with this super_block. Each super_block is * identified by the root and ns it's associated with. */ struct kernfs_root *root; /* * Each sb is associated with one namespace tag, currently the * network namespace of the task which mounted this kernfs * instance. If multiple tags become necessary, make the following * an array and compare kernfs_node tag against every entry. */ const void *ns; /* anchored at kernfs_root->supers, protected by kernfs_mutex */ struct list_head node; }; #define kernfs_info(SB) ((struct kernfs_super_info *)(SB->s_fs_info)) static inline struct kernfs_node *kernfs_dentry_node(struct dentry *dentry) { if (d_really_is_negative(dentry)) return NULL; return d_inode(dentry)->i_private; } extern const struct super_operations kernfs_sops; extern struct kmem_cache *kernfs_node_cache, *kernfs_iattrs_cache; /* * inode.c */ extern const struct xattr_handler *kernfs_xattr_handlers[]; void kernfs_evict_inode(struct inode *inode); int kernfs_iop_permission(struct inode *inode, int mask); int kernfs_iop_setattr(struct dentry *dentry, struct iattr *iattr); int kernfs_iop_getattr(const struct path *path, struct kstat *stat, u32 request_mask, unsigned int query_flags); ssize_t kernfs_iop_listxattr(struct dentry *dentry, char *buf, size_t size); int __kernfs_setattr(struct kernfs_node *kn, const struct iattr *iattr); /* * dir.c */ extern struct mutex kernfs_mutex; extern const struct dentry_operations kernfs_dops; extern const struct file_operations kernfs_dir_fops; extern const struct inode_operations kernfs_dir_iops; struct kernfs_node *kernfs_get_active(struct kernfs_node *kn); void kernfs_put_active(struct kernfs_node *kn); int kernfs_add_one(struct kernfs_node *kn); struct kernfs_node *kernfs_new_node(struct kernfs_node *parent, const char *name, umode_t mode, kuid_t uid, kgid_t gid, unsigned flags); /* * file.c */ extern const struct file_operations kernfs_file_fops; void kernfs_drain_open_files(struct kernfs_node *kn); /* * symlink.c */ extern const struct inode_operations kernfs_symlink_iops; #endif /* __KERNFS_INTERNAL_H */
1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 /* SPDX-License-Identifier: GPL-2.0+ */ /* * Read-Copy Update mechanism for mutual exclusion * * Copyright IBM Corporation, 2001 * * Author: Dipankar Sarma <dipankar@in.ibm.com> * * Based on the original work by Paul McKenney <paulmck@vnet.ibm.com> * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. * Papers: * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) * * For detailed explanation of Read-Copy Update mechanism see - * http://lse.sourceforge.net/locking/rcupdate.html * */ #ifndef __LINUX_RCUPDATE_H #define __LINUX_RCUPDATE_H #include <linux/types.h> #include <linux/compiler.h> #include <linux/atomic.h> #include <linux/irqflags.h> #include <linux/preempt.h> #include <linux/bottom_half.h> #include <linux/lockdep.h> #include <asm/processor.h> #include <linux/cpumask.h> #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b)) #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b)) #define ulong2long(a) (*(long *)(&(a))) #define USHORT_CMP_GE(a, b) (USHRT_MAX / 2 >= (unsigned short)((a) - (b))) #define USHORT_CMP_LT(a, b) (USHRT_MAX / 2 < (unsigned short)((a) - (b))) /* Exported common interfaces */ void call_rcu(struct rcu_head *head, rcu_callback_t func); void rcu_barrier_tasks(void); void rcu_barrier_tasks_rude(void); void synchronize_rcu(void); #ifdef CONFIG_PREEMPT_RCU void __rcu_read_lock(void); void __rcu_read_unlock(void); /* * Defined as a macro as it is a very low level header included from * areas that don't even know about current. This gives the rcu_read_lock() * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other * types of kernel builds, the rcu_read_lock() nesting depth is unknowable. */ #define rcu_preempt_depth() (current->rcu_read_lock_nesting) #else /* #ifdef CONFIG_PREEMPT_RCU */ #ifdef CONFIG_TINY_RCU #define rcu_read_unlock_strict() do { } while (0) #else void rcu_read_unlock_strict(void); #endif static inline void __rcu_read_lock(void) { preempt_disable(); } static inline void __rcu_read_unlock(void) { preempt_enable(); rcu_read_unlock_strict(); } static inline int rcu_preempt_depth(void) { return 0; } #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ /* Internal to kernel */ void rcu_init(void); extern int rcu_scheduler_active __read_mostly; void rcu_sched_clock_irq(int user); void rcu_report_dead(unsigned int cpu); void rcutree_migrate_callbacks(int cpu); #ifdef CONFIG_TASKS_RCU_GENERIC void rcu_init_tasks_generic(void); #else static inline void rcu_init_tasks_generic(void) { } #endif #ifdef CONFIG_RCU_STALL_COMMON void rcu_sysrq_start(void); void rcu_sysrq_end(void); #else /* #ifdef CONFIG_RCU_STALL_COMMON */ static inline void rcu_sysrq_start(void) { } static inline void rcu_sysrq_end(void) { } #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */ #ifdef CONFIG_NO_HZ_FULL void rcu_user_enter(void); void rcu_user_exit(void); #else static inline void rcu_user_enter(void) { } static inline void rcu_user_exit(void) { } #endif /* CONFIG_NO_HZ_FULL */ #ifdef CONFIG_RCU_NOCB_CPU void rcu_init_nohz(void); void rcu_nocb_flush_deferred_wakeup(void); #else /* #ifdef CONFIG_RCU_NOCB_CPU */ static inline void rcu_init_nohz(void) { } static inline void rcu_nocb_flush_deferred_wakeup(void) { } #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ /** * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers * @a: Code that RCU needs to pay attention to. * * RCU read-side critical sections are forbidden in the inner idle loop, * that is, between the rcu_idle_enter() and the rcu_idle_exit() -- RCU * will happily ignore any such read-side critical sections. However, * things like powertop need tracepoints in the inner idle loop. * * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU()) * will tell RCU that it needs to pay attention, invoke its argument * (in this example, calling the do_something_with_RCU() function), * and then tell RCU to go back to ignoring this CPU. It is permissible * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is * on the order of a million or so, even on 32-bit systems). It is * not legal to block within RCU_NONIDLE(), nor is it permissible to * transfer control either into or out of RCU_NONIDLE()'s statement. */ #define RCU_NONIDLE(a) \ do { \ rcu_irq_enter_irqson(); \ do { a; } while (0); \ rcu_irq_exit_irqson(); \ } while (0) /* * Note a quasi-voluntary context switch for RCU-tasks's benefit. * This is a macro rather than an inline function to avoid #include hell. */ #ifdef CONFIG_TASKS_RCU_GENERIC # ifdef CONFIG_TASKS_RCU # define rcu_tasks_classic_qs(t, preempt) \ do { \ if (!(preempt) && READ_ONCE((t)->rcu_tasks_holdout)) \ WRITE_ONCE((t)->rcu_tasks_holdout, false); \ } while (0) void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func); void synchronize_rcu_tasks(void); # else # define rcu_tasks_classic_qs(t, preempt) do { } while (0) # define call_rcu_tasks call_rcu # define synchronize_rcu_tasks synchronize_rcu # endif # ifdef CONFIG_TASKS_TRACE_RCU # define rcu_tasks_trace_qs(t) \ do { \ if (!likely(READ_ONCE((t)->trc_reader_checked)) && \ !unlikely(READ_ONCE((t)->trc_reader_nesting))) { \ smp_store_release(&(t)->trc_reader_checked, true); \ smp_mb(); /* Readers partitioned by store. */ \ } \ } while (0) # else # define rcu_tasks_trace_qs(t) do { } while (0) # endif #define rcu_tasks_qs(t, preempt) \ do { \ rcu_tasks_classic_qs((t), (preempt)); \ rcu_tasks_trace_qs((t)); \ } while (0) # ifdef CONFIG_TASKS_RUDE_RCU void call_rcu_tasks_rude(struct rcu_head *head, rcu_callback_t func); void synchronize_rcu_tasks_rude(void); # endif #define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t, false) void exit_tasks_rcu_start(void); void exit_tasks_rcu_finish(void); #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */ #define rcu_tasks_qs(t, preempt) do { } while (0) #define rcu_note_voluntary_context_switch(t) do { } while (0) #define call_rcu_tasks call_rcu #define synchronize_rcu_tasks synchronize_rcu static inline void exit_tasks_rcu_start(void) { } static inline void exit_tasks_rcu_finish(void) { } #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */ /** * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU * * This macro resembles cond_resched(), except that it is defined to * report potential quiescent states to RCU-tasks even if the cond_resched() * machinery were to be shut off, as some advocate for PREEMPTION kernels. */ #define cond_resched_tasks_rcu_qs() \ do { \ rcu_tasks_qs(current, false); \ cond_resched(); \ } while (0) /* * Infrastructure to implement the synchronize_() primitives in * TREE_RCU and rcu_barrier_() primitives in TINY_RCU. */ #if defined(CONFIG_TREE_RCU) #include <linux/rcutree.h> #elif defined(CONFIG_TINY_RCU) #include <linux/rcutiny.h> #else #error "Unknown RCU implementation specified to kernel configuration" #endif /* * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls * are needed for dynamic initialization and destruction of rcu_head * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for * dynamic initialization and destruction of statically allocated rcu_head * structures. However, rcu_head structures allocated dynamically in the * heap don't need any initialization. */ #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD void init_rcu_head(struct rcu_head *head); void destroy_rcu_head(struct rcu_head *head); void init_rcu_head_on_stack(struct rcu_head *head); void destroy_rcu_head_on_stack(struct rcu_head *head); #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ static inline void init_rcu_head(struct rcu_head *head) { } static inline void destroy_rcu_head(struct rcu_head *head) { } static inline void init_rcu_head_on_stack(struct rcu_head *head) { } static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { } #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) bool rcu_lockdep_current_cpu_online(void); #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ static inline bool rcu_lockdep_current_cpu_online(void) { return true; } #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ #ifdef CONFIG_DEBUG_LOCK_ALLOC static inline void rcu_lock_acquire(struct lockdep_map *map) { lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_); } static inline void rcu_lock_release(struct lockdep_map *map) { lock_release(map, _THIS_IP_); } extern struct lockdep_map rcu_lock_map; extern struct lockdep_map rcu_bh_lock_map; extern struct lockdep_map rcu_sched_lock_map; extern struct lockdep_map rcu_callback_map; int debug_lockdep_rcu_enabled(void); int rcu_read_lock_held(void); int rcu_read_lock_bh_held(void); int rcu_read_lock_sched_held(void); int rcu_read_lock_any_held(void); #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ # define rcu_lock_acquire(a) do { } while (0) # define rcu_lock_release(a) do { } while (0) static inline int rcu_read_lock_held(void) { return 1; } static inline int rcu_read_lock_bh_held(void) { return 1; } static inline int rcu_read_lock_sched_held(void) { return !preemptible(); } static inline int rcu_read_lock_any_held(void) { return !preemptible(); } #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ #ifdef CONFIG_PROVE_RCU /** * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met * @c: condition to check * @s: informative message */ #define RCU_LOCKDEP_WARN(c, s) \ do { \ static bool __section(".data.unlikely") __warned; \ if ((c) && debug_lockdep_rcu_enabled() && !__warned) { \ __warned = true; \ lockdep_rcu_suspicious(__FILE__, __LINE__, s); \ } \ } while (0) #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU) static inline void rcu_preempt_sleep_check(void) { RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map), "Illegal context switch in RCU read-side critical section"); } #else /* #ifdef CONFIG_PROVE_RCU */ static inline void rcu_preempt_sleep_check(void) { } #endif /* #else #ifdef CONFIG_PROVE_RCU */ #define rcu_sleep_check() \ do { \ rcu_preempt_sleep_check(); \ RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \ "Illegal context switch in RCU-bh read-side critical section"); \ RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \ "Illegal context switch in RCU-sched read-side critical section"); \ } while (0) #else /* #ifdef CONFIG_PROVE_RCU */ #define RCU_LOCKDEP_WARN(c, s) do { } while (0) #define rcu_sleep_check() do { } while (0) #endif /* #else #ifdef CONFIG_PROVE_RCU */ /* * Helper functions for rcu_dereference_check(), rcu_dereference_protected() * and rcu_assign_pointer(). Some of these could be folded into their * callers, but they are left separate in order to ease introduction of * multiple pointers markings to match different RCU implementations * (e.g., __srcu), should this make sense in the future. */ #ifdef __CHECKER__ #define rcu_check_sparse(p, space) \ ((void)(((typeof(*p) space *)p) == p)) #else /* #ifdef __CHECKER__ */ #define rcu_check_sparse(p, space) #endif /* #else #ifdef __CHECKER__ */ #define __rcu_access_pointer(p, space) \ ({ \ typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \ rcu_check_sparse(p, space); \ ((typeof(*p) __force __kernel *)(_________p1)); \ }) #define __rcu_dereference_check(p, c, space) \ ({ \ /* Dependency order vs. p above. */ \ typeof(*p) *________p1 = (typeof(*p) *__force)READ_ONCE(p); \ RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \ rcu_check_sparse(p, space); \ ((typeof(*p) __force __kernel *)(________p1)); \ }) #define __rcu_dereference_protected(p, c, space) \ ({ \ RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \ rcu_check_sparse(p, space); \ ((typeof(*p) __force __kernel *)(p)); \ }) #define rcu_dereference_raw(p) \ ({ \ /* Dependency order vs. p above. */ \ typeof(p) ________p1 = READ_ONCE(p); \ ((typeof(*p) __force __kernel *)(________p1)); \ }) /** * RCU_INITIALIZER() - statically initialize an RCU-protected global variable * @v: The value to statically initialize with. */ #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v) /** * rcu_assign_pointer() - assign to RCU-protected pointer * @p: pointer to assign to * @v: value to assign (publish) * * Assigns the specified value to the specified RCU-protected * pointer, ensuring that any concurrent RCU readers will see * any prior initialization. * * Inserts memory barriers on architectures that require them * (which is most of them), and also prevents the compiler from * reordering the code that initializes the structure after the pointer * assignment. More importantly, this call documents which pointers * will be dereferenced by RCU read-side code. * * In some special cases, you may use RCU_INIT_POINTER() instead * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due * to the fact that it does not constrain either the CPU or the compiler. * That said, using RCU_INIT_POINTER() when you should have used * rcu_assign_pointer() is a very bad thing that results in * impossible-to-diagnose memory corruption. So please be careful. * See the RCU_INIT_POINTER() comment header for details. * * Note that rcu_assign_pointer() evaluates each of its arguments only * once, appearances notwithstanding. One of the "extra" evaluations * is in typeof() and the other visible only to sparse (__CHECKER__), * neither of which actually execute the argument. As with most cpp * macros, this execute-arguments-only-once property is important, so * please be careful when making changes to rcu_assign_pointer() and the * other macros that it invokes. */ #define rcu_assign_pointer(p, v) \ do { \ uintptr_t _r_a_p__v = (uintptr_t)(v); \ rcu_check_sparse(p, __rcu); \ \ if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL) \ WRITE_ONCE((p), (typeof(p))(_r_a_p__v)); \ else \ smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \ } while (0) /** * rcu_replace_pointer() - replace an RCU pointer, returning its old value * @rcu_ptr: RCU pointer, whose old value is returned * @ptr: regular pointer * @c: the lockdep conditions under which the dereference will take place * * Perform a replacement, where @rcu_ptr is an RCU-annotated * pointer and @c is the lockdep argument that is passed to the * rcu_dereference_protected() call used to read that pointer. The old * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr. */ #define rcu_replace_pointer(rcu_ptr, ptr, c) \ ({ \ typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c)); \ rcu_assign_pointer((rcu_ptr), (ptr)); \ __tmp; \ }) /** * rcu_access_pointer() - fetch RCU pointer with no dereferencing * @p: The pointer to read * * Return the value of the specified RCU-protected pointer, but omit the * lockdep checks for being in an RCU read-side critical section. This is * useful when the value of this pointer is accessed, but the pointer is * not dereferenced, for example, when testing an RCU-protected pointer * against NULL. Although rcu_access_pointer() may also be used in cases * where update-side locks prevent the value of the pointer from changing, * you should instead use rcu_dereference_protected() for this use case. * * It is also permissible to use rcu_access_pointer() when read-side * access to the pointer was removed at least one grace period ago, as * is the case in the context of the RCU callback that is freeing up * the data, or after a synchronize_rcu() returns. This can be useful * when tearing down multi-linked structures after a grace period * has elapsed. */ #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu) /** * rcu_dereference_check() - rcu_dereference with debug checking * @p: The pointer to read, prior to dereferencing * @c: The conditions under which the dereference will take place * * Do an rcu_dereference(), but check that the conditions under which the * dereference will take place are correct. Typically the conditions * indicate the various locking conditions that should be held at that * point. The check should return true if the conditions are satisfied. * An implicit check for being in an RCU read-side critical section * (rcu_read_lock()) is included. * * For example: * * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock)); * * could be used to indicate to lockdep that foo->bar may only be dereferenced * if either rcu_read_lock() is held, or that the lock required to replace * the bar struct at foo->bar is held. * * Note that the list of conditions may also include indications of when a lock * need not be held, for example during initialisation or destruction of the * target struct: * * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) || * atomic_read(&foo->usage) == 0); * * Inserts memory barriers on architectures that require them * (currently only the Alpha), prevents the compiler from refetching * (and from merging fetches), and, more importantly, documents exactly * which pointers are protected by RCU and checks that the pointer is * annotated as __rcu. */ #define rcu_dereference_check(p, c) \ __rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu) /** * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking * @p: The pointer to read, prior to dereferencing * @c: The conditions under which the dereference will take place * * This is the RCU-bh counterpart to rcu_dereference_check(). */ #define rcu_dereference_bh_check(p, c) \ __rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu) /** * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking * @p: The pointer to read, prior to dereferencing * @c: The conditions under which the dereference will take place * * This is the RCU-sched counterpart to rcu_dereference_check(). */ #define rcu_dereference_sched_check(p, c) \ __rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \ __rcu) /* * The tracing infrastructure traces RCU (we want that), but unfortunately * some of the RCU checks causes tracing to lock up the system. * * The no-tracing version of rcu_dereference_raw() must not call * rcu_read_lock_held(). */ #define rcu_dereference_raw_check(p) __rcu_dereference_check((p), 1, __rcu) /** * rcu_dereference_protected() - fetch RCU pointer when updates prevented * @p: The pointer to read, prior to dereferencing * @c: The conditions under which the dereference will take place * * Return the value of the specified RCU-protected pointer, but omit * the READ_ONCE(). This is useful in cases where update-side locks * prevent the value of the pointer from changing. Please note that this * primitive does *not* prevent the compiler from repeating this reference * or combining it with other references, so it should not be used without * protection of appropriate locks. * * This function is only for update-side use. Using this function * when protected only by rcu_read_lock() will result in infrequent * but very ugly failures. */ #define rcu_dereference_protected(p, c) \ __rcu_dereference_protected((p), (c), __rcu) /** * rcu_dereference() - fetch RCU-protected pointer for dereferencing * @p: The pointer to read, prior to dereferencing * * This is a simple wrapper around rcu_dereference_check(). */ #define rcu_dereference(p) rcu_dereference_check(p, 0) /** * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing * @p: The pointer to read, prior to dereferencing * * Makes rcu_dereference_check() do the dirty work. */ #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0) /** * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing * @p: The pointer to read, prior to dereferencing * * Makes rcu_dereference_check() do the dirty work. */ #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0) /** * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism * @p: The pointer to hand off * * This is simply an identity function, but it documents where a pointer * is handed off from RCU to some other synchronization mechanism, for * example, reference counting or locking. In C11, it would map to * kill_dependency(). It could be used as follows:: * * rcu_read_lock(); * p = rcu_dereference(gp); * long_lived = is_long_lived(p); * if (long_lived) { * if (!atomic_inc_not_zero(p->refcnt)) * long_lived = false; * else * p = rcu_pointer_handoff(p); * } * rcu_read_unlock(); */ #define rcu_pointer_handoff(p) (p) /** * rcu_read_lock() - mark the beginning of an RCU read-side critical section * * When synchronize_rcu() is invoked on one CPU while other CPUs * are within RCU read-side critical sections, then the * synchronize_rcu() is guaranteed to block until after all the other * CPUs exit their critical sections. Similarly, if call_rcu() is invoked * on one CPU while other CPUs are within RCU read-side critical * sections, invocation of the corresponding RCU callback is deferred * until after the all the other CPUs exit their critical sections. * * Note, however, that RCU callbacks are permitted to run concurrently * with new RCU read-side critical sections. One way that this can happen * is via the following sequence of events: (1) CPU 0 enters an RCU * read-side critical section, (2) CPU 1 invokes call_rcu() to register * an RCU callback, (3) CPU 0 exits the RCU read-side critical section, * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU * callback is invoked. This is legal, because the RCU read-side critical * section that was running concurrently with the call_rcu() (and which * therefore might be referencing something that the corresponding RCU * callback would free up) has completed before the corresponding * RCU callback is invoked. * * RCU read-side critical sections may be nested. Any deferred actions * will be deferred until the outermost RCU read-side critical section * completes. * * You can avoid reading and understanding the next paragraph by * following this rule: don't put anything in an rcu_read_lock() RCU * read-side critical section that would block in a !PREEMPTION kernel. * But if you want the full story, read on! * * In non-preemptible RCU implementations (pure TREE_RCU and TINY_RCU), * it is illegal to block while in an RCU read-side critical section. * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION * kernel builds, RCU read-side critical sections may be preempted, * but explicit blocking is illegal. Finally, in preemptible RCU * implementations in real-time (with -rt patchset) kernel builds, RCU * read-side critical sections may be preempted and they may also block, but * only when acquiring spinlocks that are subject to priority inheritance. */ static __always_inline void rcu_read_lock(void) { __rcu_read_lock(); __acquire(RCU); rcu_lock_acquire(&rcu_lock_map); RCU_LOCKDEP_WARN(!rcu_is_watching(), "rcu_read_lock() used illegally while idle"); } /* * So where is rcu_write_lock()? It does not exist, as there is no * way for writers to lock out RCU readers. This is a feature, not * a bug -- this property is what provides RCU's performance benefits. * Of course, writers must coordinate with each other. The normal * spinlock primitives work well for this, but any other technique may be * used as well. RCU does not care how the writers keep out of each * others' way, as long as they do so. */ /** * rcu_read_unlock() - marks the end of an RCU read-side critical section. * * In most situations, rcu_read_unlock() is immune from deadlock. * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock() * is responsible for deboosting, which it does via rt_mutex_unlock(). * Unfortunately, this function acquires the scheduler's runqueue and * priority-inheritance spinlocks. This means that deadlock could result * if the caller of rcu_read_unlock() already holds one of these locks or * any lock that is ever acquired while holding them. * * That said, RCU readers are never priority boosted unless they were * preempted. Therefore, one way to avoid deadlock is to make sure * that preemption never happens within any RCU read-side critical * section whose outermost rcu_read_unlock() is called with one of * rt_mutex_unlock()'s locks held. Such preemption can be avoided in * a number of ways, for example, by invoking preempt_disable() before * critical section's outermost rcu_read_lock(). * * Given that the set of locks acquired by rt_mutex_unlock() might change * at any time, a somewhat more future-proofed approach is to make sure * that that preemption never happens within any RCU read-side critical * section whose outermost rcu_read_unlock() is called with irqs disabled. * This approach relies on the fact that rt_mutex_unlock() currently only * acquires irq-disabled locks. * * The second of these two approaches is best in most situations, * however, the first approach can also be useful, at least to those * developers willing to keep abreast of the set of locks acquired by * rt_mutex_unlock(). * * See rcu_read_lock() for more information. */ static inline void rcu_read_unlock(void) { RCU_LOCKDEP_WARN(!rcu_is_watching(), "rcu_read_unlock() used illegally while idle"); __release(RCU); __rcu_read_unlock(); rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */ } /** * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section * * This is equivalent of rcu_read_lock(), but also disables softirqs. * Note that anything else that disables softirqs can also serve as * an RCU read-side critical section. * * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh() * must occur in the same context, for example, it is illegal to invoke * rcu_read_unlock_bh() from one task if the ma