1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Linux NET3: Internet Group Management Protocol [IGMP] * * Authors: * Alan Cox <alan@lxorguk.ukuu.org.uk> * * Extended to talk the BSD extended IGMP protocol of mrouted 3.6 */ #ifndef _LINUX_IGMP_H #define _LINUX_IGMP_H #include <linux/skbuff.h> #include <linux/timer.h> #include <linux/in.h> #include <linux/ip.h> #include <linux/refcount.h> #include <uapi/linux/igmp.h> static inline struct igmphdr *igmp_hdr(const struct sk_buff *skb) { return (struct igmphdr *)skb_transport_header(skb); } static inline struct igmpv3_report * igmpv3_report_hdr(const struct sk_buff *skb) { return (struct igmpv3_report *)skb_transport_header(skb); } static inline struct igmpv3_query * igmpv3_query_hdr(const struct sk_buff *skb) { return (struct igmpv3_query *)skb_transport_header(skb); } struct ip_sf_socklist { unsigned int sl_max; unsigned int sl_count; struct rcu_head rcu; __be32 sl_addr[]; }; #define IP_SFLSIZE(count) (sizeof(struct ip_sf_socklist) + \ (count) * sizeof(__be32)) #define IP_SFBLOCK 10 /* allocate this many at once */ /* ip_mc_socklist is real list now. Speed is not argument; this list never used in fast path code */ struct ip_mc_socklist { struct ip_mc_socklist __rcu *next_rcu; struct ip_mreqn multi; unsigned int sfmode; /* MCAST_{INCLUDE,EXCLUDE} */ struct ip_sf_socklist __rcu *sflist; struct rcu_head rcu; }; struct ip_sf_list { struct ip_sf_list *sf_next; unsigned long sf_count[2]; /* include/exclude counts */ __be32 sf_inaddr; unsigned char sf_gsresp; /* include in g & s response? */ unsigned char sf_oldin; /* change state */ unsigned char sf_crcount; /* retrans. left to send */ }; struct ip_mc_list { struct in_device *interface; __be32 multiaddr; unsigned int sfmode; struct ip_sf_list *sources; struct ip_sf_list *tomb; unsigned long sfcount[2]; union { struct ip_mc_list *next; struct ip_mc_list __rcu *next_rcu; }; struct ip_mc_list __rcu *next_hash; struct timer_list timer; int users; refcount_t refcnt; spinlock_t lock; char tm_running; char reporter; char unsolicit_count; char loaded; unsigned char gsquery; /* check source marks? */ unsigned char crcount; struct rcu_head rcu; }; /* V3 exponential field decoding */ #define IGMPV3_MASK(value, nb) ((nb)>=32 ? (value) : ((1<<(nb))-1) & (value)) #define IGMPV3_EXP(thresh, nbmant, nbexp, value) \ ((value) < (thresh) ? (value) : \ ((IGMPV3_MASK(value, nbmant) | (1<<(nbmant))) << \ (IGMPV3_MASK((value) >> (nbmant), nbexp) + (nbexp)))) #define IGMPV3_QQIC(value) IGMPV3_EXP(0x80, 4, 3, value) #define IGMPV3_MRC(value) IGMPV3_EXP(0x80, 4, 3, value) static inline int ip_mc_may_pull(struct sk_buff *skb, unsigned int len) { if (skb_transport_offset(skb) + ip_transport_len(skb) < len) return 0; return pskb_may_pull(skb, len); } extern int ip_check_mc_rcu(struct in_device *dev, __be32 mc_addr, __be32 src_addr, u8 proto); extern int igmp_rcv(struct sk_buff *); extern int ip_mc_join_group(struct sock *sk, struct ip_mreqn *imr); extern int ip_mc_join_group_ssm(struct sock *sk, struct ip_mreqn *imr, unsigned int mode); extern int ip_mc_leave_group(struct sock *sk, struct ip_mreqn *imr); extern void ip_mc_drop_socket(struct sock *sk); extern int ip_mc_source(int add, int omode, struct sock *sk, struct ip_mreq_source *mreqs, int ifindex); extern int ip_mc_msfilter(struct sock *sk, struct ip_msfilter *msf,int ifindex); extern int ip_mc_msfget(struct sock *sk, struct ip_msfilter *msf, struct ip_msfilter __user *optval, int __user *optlen); extern int ip_mc_gsfget(struct sock *sk, struct group_filter *gsf, struct sockaddr_storage __user *p); extern int ip_mc_sf_allow(struct sock *sk, __be32 local, __be32 rmt, int dif, int sdif); extern void ip_mc_init_dev(struct in_device *); extern void ip_mc_destroy_dev(struct in_device *); extern void ip_mc_up(struct in_device *); extern void ip_mc_down(struct in_device *); extern void ip_mc_unmap(struct in_device *); extern void ip_mc_remap(struct in_device *); extern void __ip_mc_dec_group(struct in_device *in_dev, __be32 addr, gfp_t gfp); static inline void ip_mc_dec_group(struct in_device *in_dev, __be32 addr) { return __ip_mc_dec_group(in_dev, addr, GFP_KERNEL); } extern void __ip_mc_inc_group(struct in_device *in_dev, __be32 addr, gfp_t gfp); extern void ip_mc_inc_group(struct in_device *in_dev, __be32 addr); int ip_mc_check_igmp(struct sk_buff *skb); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_VMSTAT_H #define _LINUX_VMSTAT_H #include <linux/types.h> #include <linux/percpu.h> #include <linux/mmzone.h> #include <linux/vm_event_item.h> #include <linux/atomic.h> #include <linux/static_key.h> #include <linux/mmdebug.h> extern int sysctl_stat_interval; #ifdef CONFIG_NUMA #define ENABLE_NUMA_STAT 1 #define DISABLE_NUMA_STAT 0 extern int sysctl_vm_numa_stat; DECLARE_STATIC_KEY_TRUE(vm_numa_stat_key); int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write, void *buffer, size_t *length, loff_t *ppos); #endif struct reclaim_stat { unsigned nr_dirty; unsigned nr_unqueued_dirty; unsigned nr_congested; unsigned nr_writeback; unsigned nr_immediate; unsigned nr_pageout; unsigned nr_activate[ANON_AND_FILE]; unsigned nr_ref_keep; unsigned nr_unmap_fail; unsigned nr_lazyfree_fail; }; enum writeback_stat_item { NR_DIRTY_THRESHOLD, NR_DIRTY_BG_THRESHOLD, NR_VM_WRITEBACK_STAT_ITEMS, }; #ifdef CONFIG_VM_EVENT_COUNTERS /* * Light weight per cpu counter implementation. * * Counters should only be incremented and no critical kernel component * should rely on the counter values. * * Counters are handled completely inline. On many platforms the code * generated will simply be the increment of a global address. */ struct vm_event_state { unsigned long event[NR_VM_EVENT_ITEMS]; }; DECLARE_PER_CPU(struct vm_event_state, vm_event_states); /* * vm counters are allowed to be racy. Use raw_cpu_ops to avoid the * local_irq_disable overhead. */ static inline void __count_vm_event(enum vm_event_item item) { raw_cpu_inc(vm_event_states.event[item]); } static inline void count_vm_event(enum vm_event_item item) { this_cpu_inc(vm_event_states.event[item]); } static inline void __count_vm_events(enum vm_event_item item, long delta) { raw_cpu_add(vm_event_states.event[item], delta); } static inline void count_vm_events(enum vm_event_item item, long delta) { this_cpu_add(vm_event_states.event[item], delta); } extern void all_vm_events(unsigned long *); extern void vm_events_fold_cpu(int cpu); #else /* Disable counters */ static inline void count_vm_event(enum vm_event_item item) { } static inline void count_vm_events(enum vm_event_item item, long delta) { } static inline void __count_vm_event(enum vm_event_item item) { } static inline void __count_vm_events(enum vm_event_item item, long delta) { } static inline void all_vm_events(unsigned long *ret) { } static inline void vm_events_fold_cpu(int cpu) { } #endif /* CONFIG_VM_EVENT_COUNTERS */ #ifdef CONFIG_NUMA_BALANCING #define count_vm_numa_event(x) count_vm_event(x) #define count_vm_numa_events(x, y) count_vm_events(x, y) #else #define count_vm_numa_event(x) do {} while (0) #define count_vm_numa_events(x, y) do { (void)(y); } while (0) #endif /* CONFIG_NUMA_BALANCING */ #ifdef CONFIG_DEBUG_TLBFLUSH #define count_vm_tlb_event(x) count_vm_event(x) #define count_vm_tlb_events(x, y) count_vm_events(x, y) #else #define count_vm_tlb_event(x) do {} while (0) #define count_vm_tlb_events(x, y) do { (void)(y); } while (0) #endif #ifdef CONFIG_DEBUG_VM_VMACACHE #define count_vm_vmacache_event(x) count_vm_event(x) #else #define count_vm_vmacache_event(x) do {} while (0) #endif #define __count_zid_vm_events(item, zid, delta) \ __count_vm_events(item##_NORMAL - ZONE_NORMAL + zid, delta) /* * Zone and node-based page accounting with per cpu differentials. */ extern atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS]; extern atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS]; extern atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS]; #ifdef CONFIG_NUMA static inline void zone_numa_state_add(long x, struct zone *zone, enum numa_stat_item item) { atomic_long_add(x, &zone->vm_numa_stat[item]); atomic_long_add(x, &vm_numa_stat[item]); } static inline unsigned long global_numa_state(enum numa_stat_item item) { long x = atomic_long_read(&vm_numa_stat[item]); return x; } static inline unsigned long zone_numa_state_snapshot(struct zone *zone, enum numa_stat_item item) { long x = atomic_long_read(&zone->vm_numa_stat[item]); int cpu; for_each_online_cpu(cpu) x += per_cpu_ptr(zone->pageset, cpu)->vm_numa_stat_diff[item]; return x; } #endif /* CONFIG_NUMA */ static inline void zone_page_state_add(long x, struct zone *zone, enum zone_stat_item item) { atomic_long_add(x, &zone->vm_stat[item]); atomic_long_add(x, &vm_zone_stat[item]); } static inline void node_page_state_add(long x, struct pglist_data *pgdat, enum node_stat_item item) { atomic_long_add(x, &pgdat->vm_stat[item]); atomic_long_add(x, &vm_node_stat[item]); } static inline unsigned long global_zone_page_state(enum zone_stat_item item) { long x = atomic_long_read(&vm_zone_stat[item]); #ifdef CONFIG_SMP if (x < 0) x = 0; #endif return x; } static inline unsigned long global_node_page_state_pages(enum node_stat_item item) { long x = atomic_long_read(&vm_node_stat[item]); #ifdef CONFIG_SMP if (x < 0) x = 0; #endif return x; } static inline unsigned long global_node_page_state(enum node_stat_item item) { VM_WARN_ON_ONCE(vmstat_item_in_bytes(item)); return global_node_page_state_pages(item); } static inline unsigned long zone_page_state(struct zone *zone, enum zone_stat_item item) { long x = atomic_long_read(&zone->vm_stat[item]); #ifdef CONFIG_SMP if (x < 0) x = 0; #endif return x; } /* * More accurate version that also considers the currently pending * deltas. For that we need to loop over all cpus to find the current * deltas. There is no synchronization so the result cannot be * exactly accurate either. */ static inline unsigned long zone_page_state_snapshot(struct zone *zone, enum zone_stat_item item) { long x = atomic_long_read(&zone->vm_stat[item]); #ifdef CONFIG_SMP int cpu; for_each_online_cpu(cpu) x += per_cpu_ptr(zone->pageset, cpu)->vm_stat_diff[item]; if (x < 0) x = 0; #endif return x; } #ifdef CONFIG_NUMA extern void __inc_numa_state(struct zone *zone, enum numa_stat_item item); extern unsigned long sum_zone_node_page_state(int node, enum zone_stat_item item); extern unsigned long sum_zone_numa_state(int node, enum numa_stat_item item); extern unsigned long node_page_state(struct pglist_data *pgdat, enum node_stat_item item); extern unsigned long node_page_state_pages(struct pglist_data *pgdat, enum node_stat_item item); #else #define sum_zone_node_page_state(node, item) global_zone_page_state(item) #define node_page_state(node, item) global_node_page_state(item) #define node_page_state_pages(node, item) global_node_page_state_pages(item) #endif /* CONFIG_NUMA */ #ifdef CONFIG_SMP void __mod_zone_page_state(struct zone *, enum zone_stat_item item, long); void __inc_zone_page_state(struct page *, enum zone_stat_item); void __dec_zone_page_state(struct page *, enum zone_stat_item); void __mod_node_page_state(struct pglist_data *, enum node_stat_item item, long); void __inc_node_page_state(struct page *, enum node_stat_item); void __dec_node_page_state(struct page *, enum node_stat_item); void mod_zone_page_state(struct zone *, enum zone_stat_item, long); void inc_zone_page_state(struct page *, enum zone_stat_item); void dec_zone_page_state(struct page *, enum zone_stat_item); void mod_node_page_state(struct pglist_data *, enum node_stat_item, long); void inc_node_page_state(struct page *, enum node_stat_item); void dec_node_page_state(struct page *, enum node_stat_item); extern void inc_node_state(struct pglist_data *, enum node_stat_item); extern void __inc_zone_state(struct zone *, enum zone_stat_item); extern void __inc_node_state(struct pglist_data *, enum node_stat_item); extern void dec_zone_state(struct zone *, enum zone_stat_item); extern void __dec_zone_state(struct zone *, enum zone_stat_item); extern void __dec_node_state(struct pglist_data *, enum node_stat_item); void quiet_vmstat(void); void cpu_vm_stats_fold(int cpu); void refresh_zone_stat_thresholds(void); struct ctl_table; int vmstat_refresh(struct ctl_table *, int write, void *buffer, size_t *lenp, loff_t *ppos); void drain_zonestat(struct zone *zone, struct per_cpu_pageset *); int calculate_pressure_threshold(struct zone *zone); int calculate_normal_threshold(struct zone *zone); void set_pgdat_percpu_threshold(pg_data_t *pgdat, int (*calculate_pressure)(struct zone *)); #else /* CONFIG_SMP */ /* * We do not maintain differentials in a single processor configuration. * The functions directly modify the zone and global counters. */ static inline void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item, long delta) { zone_page_state_add(delta, zone, item); } static inline void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, int delta) { if (vmstat_item_in_bytes(item)) { VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1)); delta >>= PAGE_SHIFT; } node_page_state_add(delta, pgdat, item); } static inline void __inc_zone_state(struct zone *zone, enum zone_stat_item item) { atomic_long_inc(&zone->vm_stat[item]); atomic_long_inc(&vm_zone_stat[item]); } static inline void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) { atomic_long_inc(&pgdat->vm_stat[item]); atomic_long_inc(&vm_node_stat[item]); } static inline void __dec_zone_state(struct zone *zone, enum zone_stat_item item) { atomic_long_dec(&zone->vm_stat[item]); atomic_long_dec(&vm_zone_stat[item]); } static inline void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item) { atomic_long_dec(&pgdat->vm_stat[item]); atomic_long_dec(&vm_node_stat[item]); } static inline void __inc_zone_page_state(struct page *page, enum zone_stat_item item) { __inc_zone_state(page_zone(page), item); } static inline void __inc_node_page_state(struct page *page, enum node_stat_item item) { __inc_node_state(page_pgdat(page), item); } static inline void __dec_zone_page_state(struct page *page, enum zone_stat_item item) { __dec_zone_state(page_zone(page), item); } static inline void __dec_node_page_state(struct page *page, enum node_stat_item item) { __dec_node_state(page_pgdat(page), item); } /* * We only use atomic operations to update counters. So there is no need to * disable interrupts. */ #define inc_zone_page_state __inc_zone_page_state #define dec_zone_page_state __dec_zone_page_state #define mod_zone_page_state __mod_zone_page_state #define inc_node_page_state __inc_node_page_state #define dec_node_page_state __dec_node_page_state #define mod_node_page_state __mod_node_page_state #define inc_zone_state __inc_zone_state #define inc_node_state __inc_node_state #define dec_zone_state __dec_zone_state #define set_pgdat_percpu_threshold(pgdat, callback) { } static inline void refresh_zone_stat_thresholds(void) { } static inline void cpu_vm_stats_fold(int cpu) { } static inline void quiet_vmstat(void) { } static inline void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset) { } #endif /* CONFIG_SMP */ static inline void __mod_zone_freepage_state(struct zone *zone, int nr_pages, int migratetype) { __mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages); if (is_migrate_cma(migratetype)) __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages); } extern const char * const vmstat_text[]; static inline const char *zone_stat_name(enum zone_stat_item item) { return vmstat_text[item]; } #ifdef CONFIG_NUMA static inline const char *numa_stat_name(enum numa_stat_item item) { return vmstat_text[NR_VM_ZONE_STAT_ITEMS + item]; } #endif /* CONFIG_NUMA */ static inline const char *node_stat_name(enum node_stat_item item) { return vmstat_text[NR_VM_ZONE_STAT_ITEMS + NR_VM_NUMA_STAT_ITEMS + item]; } static inline const char *lru_list_name(enum lru_list lru) { return node_stat_name(NR_LRU_BASE + lru) + 3; // skip "nr_" } static inline const char *writeback_stat_name(enum writeback_stat_item item) { return vmstat_text[NR_VM_ZONE_STAT_ITEMS + NR_VM_NUMA_STAT_ITEMS + NR_VM_NODE_STAT_ITEMS + item]; } #if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG) static inline const char *vm_event_name(enum vm_event_item item) { return vmstat_text[NR_VM_ZONE_STAT_ITEMS + NR_VM_NUMA_STAT_ITEMS + NR_VM_NODE_STAT_ITEMS + NR_VM_WRITEBACK_STAT_ITEMS + item]; } #endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */ #endif /* _LINUX_VMSTAT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 /* SPDX-License-Identifier: GPL-2.0-only */ /* * include/linux/idr.h * * 2002-10-18 written by Jim Houston jim.houston@ccur.com * Copyright (C) 2002 by Concurrent Computer Corporation * * Small id to pointer translation service avoiding fixed sized * tables. */ #ifndef __IDR_H__ #define __IDR_H__ #include <linux/radix-tree.h> #include <linux/gfp.h> #include <linux/percpu.h> struct idr { struct radix_tree_root idr_rt; unsigned int idr_base; unsigned int idr_next; }; /* * The IDR API does not expose the tagging functionality of the radix tree * to users. Use tag 0 to track whether a node has free space below it. */ #define IDR_FREE 0 /* Set the IDR flag and the IDR_FREE tag */ #define IDR_RT_MARKER (ROOT_IS_IDR | (__force gfp_t) \ (1 << (ROOT_TAG_SHIFT + IDR_FREE))) #define IDR_INIT_BASE(name, base) { \ .idr_rt = RADIX_TREE_INIT(name, IDR_RT_MARKER), \ .idr_base = (base), \ .idr_next = 0, \ } /** * IDR_INIT() - Initialise an IDR. * @name: Name of IDR. * * A freshly-initialised IDR contains no IDs. */ #define IDR_INIT(name) IDR_INIT_BASE(name, 0) /** * DEFINE_IDR() - Define a statically-allocated IDR. * @name: Name of IDR. * * An IDR defined using this macro is ready for use with no additional * initialisation required. It contains no IDs. */ #define DEFINE_IDR(name) struct idr name = IDR_INIT(name) /** * idr_get_cursor - Return the current position of the cyclic allocator * @idr: idr handle * * The value returned is the value that will be next returned from * idr_alloc_cyclic() if it is free (otherwise the search will start from * this position). */ static inline unsigned int idr_get_cursor(const struct idr *idr) { return READ_ONCE(idr->idr_next); } /** * idr_set_cursor - Set the current position of the cyclic allocator * @idr: idr handle * @val: new position * * The next call to idr_alloc_cyclic() will return @val if it is free * (otherwise the search will start from this position). */ static inline void idr_set_cursor(struct idr *idr, unsigned int val) { WRITE_ONCE(idr->idr_next, val); } /** * DOC: idr sync * idr synchronization (stolen from radix-tree.h) * * idr_find() is able to be called locklessly, using RCU. The caller must * ensure calls to this function are made within rcu_read_lock() regions. * Other readers (lock-free or otherwise) and modifications may be running * concurrently. * * It is still required that the caller manage the synchronization and * lifetimes of the items. So if RCU lock-free lookups are used, typically * this would mean that the items have their own locks, or are amenable to * lock-free access; and that the items are freed by RCU (or only freed after * having been deleted from the idr tree *and* a synchronize_rcu() grace * period). */ #define idr_lock(idr) xa_lock(&(idr)->idr_rt) #define idr_unlock(idr) xa_unlock(&(idr)->idr_rt) #define idr_lock_bh(idr) xa_lock_bh(&(idr)->idr_rt) #define idr_unlock_bh(idr) xa_unlock_bh(&(idr)->idr_rt) #define idr_lock_irq(idr) xa_lock_irq(&(idr)->idr_rt) #define idr_unlock_irq(idr) xa_unlock_irq(&(idr)->idr_rt) #define idr_lock_irqsave(idr, flags) \ xa_lock_irqsave(&(idr)->idr_rt, flags) #define idr_unlock_irqrestore(idr, flags) \ xa_unlock_irqrestore(&(idr)->idr_rt, flags) void idr_preload(gfp_t gfp_mask); int idr_alloc(struct idr *, void *ptr, int start, int end, gfp_t); int __must_check idr_alloc_u32(struct idr *, void *ptr, u32 *id, unsigned long max, gfp_t); int idr_alloc_cyclic(struct idr *, void *ptr, int start, int end, gfp_t); void *idr_remove(struct idr *, unsigned long id); void *idr_find(const struct idr *, unsigned long id); int idr_for_each(const struct idr *, int (*fn)(int id, void *p, void *data), void *data); void *idr_get_next(struct idr *, int *nextid); void *idr_get_next_ul(struct idr *, unsigned long *nextid); void *idr_replace(struct idr *, void *, unsigned long id); void idr_destroy(struct idr *); /** * idr_init_base() - Initialise an IDR. * @idr: IDR handle. * @base: The base value for the IDR. * * This variation of idr_init() creates an IDR which will allocate IDs * starting at %base. */ static inline void idr_init_base(struct idr *idr, int base) { INIT_RADIX_TREE(&idr->idr_rt, IDR_RT_MARKER); idr->idr_base = base; idr->idr_next = 0; } /** * idr_init() - Initialise an IDR. * @idr: IDR handle. * * Initialise a dynamically allocated IDR. To initialise a * statically allocated IDR, use DEFINE_IDR(). */ static inline void idr_init(struct idr *idr) { idr_init_base(idr, 0); } /** * idr_is_empty() - Are there any IDs allocated? * @idr: IDR handle. * * Return: %true if any IDs have been allocated from this IDR. */ static inline bool idr_is_empty(const struct idr *idr) { return radix_tree_empty(&idr->idr_rt) && radix_tree_tagged(&idr->idr_rt, IDR_FREE); } /** * idr_preload_end - end preload section started with idr_preload() * * Each idr_preload() should be matched with an invocation of this * function. See idr_preload() for details. */ static inline void idr_preload_end(void) { local_unlock(&radix_tree_preloads.lock); } /** * idr_for_each_entry() - Iterate over an IDR's elements of a given type. * @idr: IDR handle. * @entry: The type * to use as cursor * @id: Entry ID. * * @entry and @id do not need to be initialized before the loop, and * after normal termination @entry is left with the value NULL. This * is convenient for a "not found" value. */ #define idr_for_each_entry(idr, entry, id) \ for (id = 0; ((entry) = idr_get_next(idr, &(id))) != NULL; id += 1U) /** * idr_for_each_entry_ul() - Iterate over an IDR's elements of a given type. * @idr: IDR handle. * @entry: The type * to use as cursor. * @tmp: A temporary placeholder for ID. * @id: Entry ID. * * @entry and @id do not need to be initialized before the loop, and * after normal termination @entry is left with the value NULL. This * is convenient for a "not found" value. */ #define idr_for_each_entry_ul(idr, entry, tmp, id) \ for (tmp = 0, id = 0; \ tmp <= id && ((entry) = idr_get_next_ul(idr, &(id))) != NULL; \ tmp = id, ++id) /** * idr_for_each_entry_continue() - Continue iteration over an IDR's elements of a given type * @idr: IDR handle. * @entry: The type * to use as a cursor. * @id: Entry ID. * * Continue to iterate over entries, continuing after the current position. */ #define idr_for_each_entry_continue(idr, entry, id) \ for ((entry) = idr_get_next((idr), &(id)); \ entry; \ ++id, (entry) = idr_get_next((idr), &(id))) /** * idr_for_each_entry_continue_ul() - Continue iteration over an IDR's elements of a given type * @idr: IDR handle. * @entry: The type * to use as a cursor. * @tmp: A temporary placeholder for ID. * @id: Entry ID. * * Continue to iterate over entries, continuing after the current position. */ #define idr_for_each_entry_continue_ul(idr, entry, tmp, id) \ for (tmp = id; \ tmp <= id && ((entry) = idr_get_next_ul(idr, &(id))) != NULL; \ tmp = id, ++id) /* * IDA - ID Allocator, use when translation from id to pointer isn't necessary. */ #define IDA_CHUNK_SIZE 128 /* 128 bytes per chunk */ #define IDA_BITMAP_LONGS (IDA_CHUNK_SIZE / sizeof(long)) #define IDA_BITMAP_BITS (IDA_BITMAP_LONGS * sizeof(long) * 8) struct ida_bitmap { unsigned long bitmap[IDA_BITMAP_LONGS]; }; struct ida { struct xarray xa; }; #define IDA_INIT_FLAGS (XA_FLAGS_LOCK_IRQ | XA_FLAGS_ALLOC) #define IDA_INIT(name) { \ .xa = XARRAY_INIT(name, IDA_INIT_FLAGS) \ } #define DEFINE_IDA(name) struct ida name = IDA_INIT(name) int ida_alloc_range(struct ida *, unsigned int min, unsigned int max, gfp_t); void ida_free(struct ida *, unsigned int id); void ida_destroy(struct ida *ida); /** * ida_alloc() - Allocate an unused ID. * @ida: IDA handle. * @gfp: Memory allocation flags. * * Allocate an ID between 0 and %INT_MAX, inclusive. * * Context: Any context. It is safe to call this function without * locking in your code. * Return: The allocated ID, or %-ENOMEM if memory could not be allocated, * or %-ENOSPC if there are no free IDs. */ static inline int ida_alloc(struct ida *ida, gfp_t gfp) { return ida_alloc_range(ida, 0, ~0, gfp); } /** * ida_alloc_min() - Allocate an unused ID. * @ida: IDA handle. * @min: Lowest ID to allocate. * @gfp: Memory allocation flags. * * Allocate an ID between @min and %INT_MAX, inclusive. * * Context: Any context. It is safe to call this function without * locking in your code. * Return: The allocated ID, or %-ENOMEM if memory could not be allocated, * or %-ENOSPC if there are no free IDs. */ static inline int ida_alloc_min(struct ida *ida, unsigned int min, gfp_t gfp) { return ida_alloc_range(ida, min, ~0, gfp); } /** * ida_alloc_max() - Allocate an unused ID. * @ida: IDA handle. * @max: Highest ID to allocate. * @gfp: Memory allocation flags. * * Allocate an ID between 0 and @max, inclusive. * * Context: Any context. It is safe to call this function without * locking in your code. * Return: The allocated ID, or %-ENOMEM if memory could not be allocated, * or %-ENOSPC if there are no free IDs. */ static inline int ida_alloc_max(struct ida *ida, unsigned int max, gfp_t gfp) { return ida_alloc_range(ida, 0, max, gfp); } static inline void ida_init(struct ida *ida) { xa_init_flags(&ida->xa, IDA_INIT_FLAGS); } /* * ida_simple_get() and ida_simple_remove() are deprecated. Use * ida_alloc() and ida_free() instead respectively. */ #define ida_simple_get(ida, start, end, gfp) \ ida_alloc_range(ida, start, (end) - 1, gfp) #define ida_simple_remove(ida, id) ida_free(ida, id) static inline bool ida_is_empty(const struct ida *ida) { return xa_empty(&ida->xa); } #endif /* __IDR_H__ */
1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_NET_SCM_H #define __LINUX_NET_SCM_H #include <linux/limits.h> #include <linux/net.h> #include <linux/cred.h> #include <linux/security.h> #include <linux/pid.h> #include <linux/nsproxy.h> #include <linux/sched/signal.h> /* Well, we should have at least one descriptor open * to accept passed FDs 8) */ #define SCM_MAX_FD 253 struct scm_creds { u32 pid; kuid_t uid; kgid_t gid; }; struct scm_fp_list { short count; short max; struct user_struct *user; struct file *fp[SCM_MAX_FD]; }; struct scm_cookie { struct pid *pid; /* Skb credentials */ struct scm_fp_list *fp; /* Passed files */ struct scm_creds creds; /* Skb credentials */ #ifdef CONFIG_SECURITY_NETWORK u32 secid; /* Passed security ID */ #endif }; void scm_detach_fds(struct msghdr *msg, struct scm_cookie *scm); void scm_detach_fds_compat(struct msghdr *msg, struct scm_cookie *scm); int __scm_send(struct socket *sock, struct msghdr *msg, struct scm_cookie *scm); void __scm_destroy(struct scm_cookie *scm); struct scm_fp_list *scm_fp_dup(struct scm_fp_list *fpl); #ifdef CONFIG_SECURITY_NETWORK static __inline__ void unix_get_peersec_dgram(struct socket *sock, struct scm_cookie *scm) { security_socket_getpeersec_dgram(sock, NULL, &scm->secid); } #else static __inline__ void unix_get_peersec_dgram(struct socket *sock, struct scm_cookie *scm) { } #endif /* CONFIG_SECURITY_NETWORK */ static __inline__ void scm_set_cred(struct scm_cookie *scm, struct pid *pid, kuid_t uid, kgid_t gid) { scm->pid = get_pid(pid); scm->creds.pid = pid_vnr(pid); scm->creds.uid = uid; scm->creds.gid = gid; } static __inline__ void scm_destroy_cred(struct scm_cookie *scm) { put_pid(scm->pid); scm->pid = NULL; } static __inline__ void scm_destroy(struct scm_cookie *scm) { scm_destroy_cred(scm); if (scm->fp) __scm_destroy(scm); } static __inline__ int scm_send(struct socket *sock, struct msghdr *msg, struct scm_cookie *scm, bool forcecreds) { memset(scm, 0, sizeof(*scm)); scm->creds.uid = INVALID_UID; scm->creds.gid = INVALID_GID; if (forcecreds) scm_set_cred(scm, task_tgid(current), current_uid(), current_gid()); unix_get_peersec_dgram(sock, scm); if (msg->msg_controllen <= 0) return 0; return __scm_send(sock, msg, scm); } #ifdef CONFIG_SECURITY_NETWORK static inline void scm_passec(struct socket *sock, struct msghdr *msg, struct scm_cookie *scm) { char *secdata; u32 seclen; int err; if (test_bit(SOCK_PASSSEC, &sock->flags)) { err = security_secid_to_secctx(scm->secid, &secdata, &seclen); if (!err) { put_cmsg(msg, SOL_SOCKET, SCM_SECURITY, seclen, secdata); security_release_secctx(secdata, seclen); } } } #else static inline void scm_passec(struct socket *sock, struct msghdr *msg, struct scm_cookie *scm) { } #endif /* CONFIG_SECURITY_NETWORK */ static __inline__ void scm_recv(struct socket *sock, struct msghdr *msg, struct scm_cookie *scm, int flags) { if (!msg->msg_control) { if (test_bit(SOCK_PASSCRED, &sock->flags) || scm->fp) msg->msg_flags |= MSG_CTRUNC; scm_destroy(scm); return; } if (test_bit(SOCK_PASSCRED, &sock->flags)) { struct user_namespace *current_ns = current_user_ns(); struct ucred ucreds = { .pid = scm->creds.pid, .uid = from_kuid_munged(current_ns, scm->creds.uid), .gid = from_kgid_munged(current_ns, scm->creds.gid), }; put_cmsg(msg, SOL_SOCKET, SCM_CREDENTIALS, sizeof(ucreds), &ucreds); } scm_destroy_cred(scm); scm_passec(sock, msg, scm); if (!scm->fp) return; scm_detach_fds(msg, scm); } #endif /* __LINUX_NET_SCM_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 /* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright 2019 Google LLC */ #ifndef __LINUX_BLK_CRYPTO_H #define __LINUX_BLK_CRYPTO_H #include <linux/types.h> enum blk_crypto_mode_num { BLK_ENCRYPTION_MODE_INVALID, BLK_ENCRYPTION_MODE_AES_256_XTS, BLK_ENCRYPTION_MODE_AES_128_CBC_ESSIV, BLK_ENCRYPTION_MODE_ADIANTUM, BLK_ENCRYPTION_MODE_MAX, }; #define BLK_CRYPTO_MAX_KEY_SIZE 64 /** * struct blk_crypto_config - an inline encryption key's crypto configuration * @crypto_mode: encryption algorithm this key is for * @data_unit_size: the data unit size for all encryption/decryptions with this * key. This is the size in bytes of each individual plaintext and * ciphertext. This is always a power of 2. It might be e.g. the * filesystem block size or the disk sector size. * @dun_bytes: the maximum number of bytes of DUN used when using this key */ struct blk_crypto_config { enum blk_crypto_mode_num crypto_mode; unsigned int data_unit_size; unsigned int dun_bytes; }; /** * struct blk_crypto_key - an inline encryption key * @crypto_cfg: the crypto configuration (like crypto_mode, key size) for this * key * @data_unit_size_bits: log2 of data_unit_size * @size: size of this key in bytes (determined by @crypto_cfg.crypto_mode) * @raw: the raw bytes of this key. Only the first @size bytes are used. * * A blk_crypto_key is immutable once created, and many bios can reference it at * the same time. It must not be freed until all bios using it have completed * and it has been evicted from all devices on which it may have been used. */ struct blk_crypto_key { struct blk_crypto_config crypto_cfg; unsigned int data_unit_size_bits; unsigned int size; u8 raw[BLK_CRYPTO_MAX_KEY_SIZE]; }; #define BLK_CRYPTO_MAX_IV_SIZE 32 #define BLK_CRYPTO_DUN_ARRAY_SIZE (BLK_CRYPTO_MAX_IV_SIZE / sizeof(u64)) /** * struct bio_crypt_ctx - an inline encryption context * @bc_key: the key, algorithm, and data unit size to use * @bc_dun: the data unit number (starting IV) to use * * A bio_crypt_ctx specifies that the contents of the bio will be encrypted (for * write requests) or decrypted (for read requests) inline by the storage device * or controller, or by the crypto API fallback. */ struct bio_crypt_ctx { const struct blk_crypto_key *bc_key; u64 bc_dun[BLK_CRYPTO_DUN_ARRAY_SIZE]; }; #include <linux/blk_types.h> #include <linux/blkdev.h> struct request; struct request_queue; #ifdef CONFIG_BLK_INLINE_ENCRYPTION static inline bool bio_has_crypt_ctx(struct bio *bio) { return bio->bi_crypt_context; } void bio_crypt_set_ctx(struct bio *bio, const struct blk_crypto_key *key, const u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE], gfp_t gfp_mask); bool bio_crypt_dun_is_contiguous(const struct bio_crypt_ctx *bc, unsigned int bytes, const u64 next_dun[BLK_CRYPTO_DUN_ARRAY_SIZE]); int blk_crypto_init_key(struct blk_crypto_key *blk_key, const u8 *raw_key, enum blk_crypto_mode_num crypto_mode, unsigned int dun_bytes, unsigned int data_unit_size); int blk_crypto_start_using_key(const struct blk_crypto_key *key, struct request_queue *q); int blk_crypto_evict_key(struct request_queue *q, const struct blk_crypto_key *key); bool blk_crypto_config_supported(struct request_queue *q, const struct blk_crypto_config *cfg); #else /* CONFIG_BLK_INLINE_ENCRYPTION */ static inline bool bio_has_crypt_ctx(struct bio *bio) { return false; } #endif /* CONFIG_BLK_INLINE_ENCRYPTION */ int __bio_crypt_clone(struct bio *dst, struct bio *src, gfp_t gfp_mask); /** * bio_crypt_clone - clone bio encryption context * @dst: destination bio * @src: source bio * @gfp_mask: memory allocation flags * * If @src has an encryption context, clone it to @dst. * * Return: 0 on success, -ENOMEM if out of memory. -ENOMEM is only possible if * @gfp_mask doesn't include %__GFP_DIRECT_RECLAIM. */ static inline int bio_crypt_clone(struct bio *dst, struct bio *src, gfp_t gfp_mask) { if (bio_has_crypt_ctx(src)) return __bio_crypt_clone(dst, src, gfp_mask); return 0; } #endif /* __LINUX_BLK_CRYPTO_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 /* SPDX-License-Identifier: GPL-2.0 */ /* * Filesystem access notification for Linux * * Copyright (C) 2008 Red Hat, Inc., Eric Paris <eparis@redhat.com> */ #ifndef __LINUX_FSNOTIFY_BACKEND_H #define __LINUX_FSNOTIFY_BACKEND_H #ifdef __KERNEL__ #include <linux/idr.h> /* inotify uses this */ #include <linux/fs.h> /* struct inode */ #include <linux/list.h> #include <linux/path.h> /* struct path */ #include <linux/spinlock.h> #include <linux/types.h> #include <linux/atomic.h> #include <linux/user_namespace.h> #include <linux/refcount.h> /* * IN_* from inotfy.h lines up EXACTLY with FS_*, this is so we can easily * convert between them. dnotify only needs conversion at watch creation * so no perf loss there. fanotify isn't defined yet, so it can use the * wholes if it needs more events. */ #define FS_ACCESS 0x00000001 /* File was accessed */ #define FS_MODIFY 0x00000002 /* File was modified */ #define FS_ATTRIB 0x00000004 /* Metadata changed */ #define FS_CLOSE_WRITE 0x00000008 /* Writtable file was closed */ #define FS_CLOSE_NOWRITE 0x00000010 /* Unwrittable file closed */ #define FS_OPEN 0x00000020 /* File was opened */ #define FS_MOVED_FROM 0x00000040 /* File was moved from X */ #define FS_MOVED_TO 0x00000080 /* File was moved to Y */ #define FS_CREATE 0x00000100 /* Subfile was created */ #define FS_DELETE 0x00000200 /* Subfile was deleted */ #define FS_DELETE_SELF 0x00000400 /* Self was deleted */ #define FS_MOVE_SELF 0x00000800 /* Self was moved */ #define FS_OPEN_EXEC 0x00001000 /* File was opened for exec */ #define FS_UNMOUNT 0x00002000 /* inode on umount fs */ #define FS_Q_OVERFLOW 0x00004000 /* Event queued overflowed */ #define FS_IN_IGNORED 0x00008000 /* last inotify event here */ #define FS_OPEN_PERM 0x00010000 /* open event in an permission hook */ #define FS_ACCESS_PERM 0x00020000 /* access event in a permissions hook */ #define FS_OPEN_EXEC_PERM 0x00040000 /* open/exec event in a permission hook */ #define FS_EXCL_UNLINK 0x04000000 /* do not send events if object is unlinked */ /* * Set on inode mark that cares about things that happen to its children. * Always set for dnotify and inotify. * Set on inode/sb/mount marks that care about parent/name info. */ #define FS_EVENT_ON_CHILD 0x08000000 #define FS_DN_RENAME 0x10000000 /* file renamed */ #define FS_DN_MULTISHOT 0x20000000 /* dnotify multishot */ #define FS_ISDIR 0x40000000 /* event occurred against dir */ #define FS_IN_ONESHOT 0x80000000 /* only send event once */ #define FS_MOVE (FS_MOVED_FROM | FS_MOVED_TO) /* * Directory entry modification events - reported only to directory * where entry is modified and not to a watching parent. * The watching parent may get an FS_ATTRIB|FS_EVENT_ON_CHILD event * when a directory entry inside a child subdir changes. */ #define ALL_FSNOTIFY_DIRENT_EVENTS (FS_CREATE | FS_DELETE | FS_MOVE) #define ALL_FSNOTIFY_PERM_EVENTS (FS_OPEN_PERM | FS_ACCESS_PERM | \ FS_OPEN_EXEC_PERM) /* * This is a list of all events that may get sent to a parent that is watching * with flag FS_EVENT_ON_CHILD based on fs event on a child of that directory. */ #define FS_EVENTS_POSS_ON_CHILD (ALL_FSNOTIFY_PERM_EVENTS | \ FS_ACCESS | FS_MODIFY | FS_ATTRIB | \ FS_CLOSE_WRITE | FS_CLOSE_NOWRITE | \ FS_OPEN | FS_OPEN_EXEC) /* * This is a list of all events that may get sent with the parent inode as the * @to_tell argument of fsnotify(). * It may include events that can be sent to an inode/sb/mount mark, but cannot * be sent to a parent watching children. */ #define FS_EVENTS_POSS_TO_PARENT (FS_EVENTS_POSS_ON_CHILD) /* Events that can be reported to backends */ #define ALL_FSNOTIFY_EVENTS (ALL_FSNOTIFY_DIRENT_EVENTS | \ FS_EVENTS_POSS_ON_CHILD | \ FS_DELETE_SELF | FS_MOVE_SELF | FS_DN_RENAME | \ FS_UNMOUNT | FS_Q_OVERFLOW | FS_IN_IGNORED) /* Extra flags that may be reported with event or control handling of events */ #define ALL_FSNOTIFY_FLAGS (FS_EXCL_UNLINK | FS_ISDIR | FS_IN_ONESHOT | \ FS_DN_MULTISHOT | FS_EVENT_ON_CHILD) #define ALL_FSNOTIFY_BITS (ALL_FSNOTIFY_EVENTS | ALL_FSNOTIFY_FLAGS) struct fsnotify_group; struct fsnotify_event; struct fsnotify_mark; struct fsnotify_event_private_data; struct fsnotify_fname; struct fsnotify_iter_info; struct mem_cgroup; /* * Each group much define these ops. The fsnotify infrastructure will call * these operations for each relevant group. * * handle_event - main call for a group to handle an fs event * @group: group to notify * @mask: event type and flags * @data: object that event happened on * @data_type: type of object for fanotify_data_XXX() accessors * @dir: optional directory associated with event - * if @file_name is not NULL, this is the directory that * @file_name is relative to * @file_name: optional file name associated with event * @cookie: inotify rename cookie * @iter_info: array of marks from this group that are interested in the event * * handle_inode_event - simple variant of handle_event() for groups that only * have inode marks and don't have ignore mask * @mark: mark to notify * @mask: event type and flags * @inode: inode that event happened on * @dir: optional directory associated with event - * if @file_name is not NULL, this is the directory that * @file_name is relative to. * @file_name: optional file name associated with event * @cookie: inotify rename cookie * * free_group_priv - called when a group refcnt hits 0 to clean up the private union * freeing_mark - called when a mark is being destroyed for some reason. The group * MUST be holding a reference on each mark and that reference must be * dropped in this function. inotify uses this function to send * userspace messages that marks have been removed. */ struct fsnotify_ops { int (*handle_event)(struct fsnotify_group *group, u32 mask, const void *data, int data_type, struct inode *dir, const struct qstr *file_name, u32 cookie, struct fsnotify_iter_info *iter_info); int (*handle_inode_event)(struct fsnotify_mark *mark, u32 mask, struct inode *inode, struct inode *dir, const struct qstr *file_name, u32 cookie); void (*free_group_priv)(struct fsnotify_group *group); void (*freeing_mark)(struct fsnotify_mark *mark, struct fsnotify_group *group); void (*free_event)(struct fsnotify_event *event); /* called on final put+free to free memory */ void (*free_mark)(struct fsnotify_mark *mark); }; /* * all of the information about the original object we want to now send to * a group. If you want to carry more info from the accessing task to the * listener this structure is where you need to be adding fields. */ struct fsnotify_event { struct list_head list; unsigned long objectid; /* identifier for queue merges */ }; /* * A group is a "thing" that wants to receive notification about filesystem * events. The mask holds the subset of event types this group cares about. * refcnt on a group is up to the implementor and at any moment if it goes 0 * everything will be cleaned up. */ struct fsnotify_group { const struct fsnotify_ops *ops; /* how this group handles things */ /* * How the refcnt is used is up to each group. When the refcnt hits 0 * fsnotify will clean up all of the resources associated with this group. * As an example, the dnotify group will always have a refcnt=1 and that * will never change. Inotify, on the other hand, has a group per * inotify_init() and the refcnt will hit 0 only when that fd has been * closed. */ refcount_t refcnt; /* things with interest in this group */ /* needed to send notification to userspace */ spinlock_t notification_lock; /* protect the notification_list */ struct list_head notification_list; /* list of event_holder this group needs to send to userspace */ wait_queue_head_t notification_waitq; /* read() on the notification file blocks on this waitq */ unsigned int q_len; /* events on the queue */ unsigned int max_events; /* maximum events allowed on the list */ /* * Valid fsnotify group priorities. Events are send in order from highest * priority to lowest priority. We default to the lowest priority. */ #define FS_PRIO_0 0 /* normal notifiers, no permissions */ #define FS_PRIO_1 1 /* fanotify content based access control */ #define FS_PRIO_2 2 /* fanotify pre-content access */ unsigned int priority; bool shutdown; /* group is being shut down, don't queue more events */ /* stores all fastpath marks assoc with this group so they can be cleaned on unregister */ struct mutex mark_mutex; /* protect marks_list */ atomic_t num_marks; /* 1 for each mark and 1 for not being * past the point of no return when freeing * a group */ atomic_t user_waits; /* Number of tasks waiting for user * response */ struct list_head marks_list; /* all inode marks for this group */ struct fasync_struct *fsn_fa; /* async notification */ struct fsnotify_event *overflow_event; /* Event we queue when the * notification list is too * full */ struct mem_cgroup *memcg; /* memcg to charge allocations */ /* groups can define private fields here or use the void *private */ union { void *private; #ifdef CONFIG_INOTIFY_USER struct inotify_group_private_data { spinlock_t idr_lock; struct idr idr; struct ucounts *ucounts; } inotify_data; #endif #ifdef CONFIG_FANOTIFY struct fanotify_group_private_data { /* allows a group to block waiting for a userspace response */ struct list_head access_list; wait_queue_head_t access_waitq; int flags; /* flags from fanotify_init() */ int f_flags; /* event_f_flags from fanotify_init() */ unsigned int max_marks; struct user_struct *user; } fanotify_data; #endif /* CONFIG_FANOTIFY */ }; }; /* When calling fsnotify tell it if the data is a path or inode */ enum fsnotify_data_type { FSNOTIFY_EVENT_NONE, FSNOTIFY_EVENT_PATH, FSNOTIFY_EVENT_INODE, }; static inline struct inode *fsnotify_data_inode(const void *data, int data_type) { switch (data_type) { case FSNOTIFY_EVENT_INODE: return (struct inode *)data; case FSNOTIFY_EVENT_PATH: return d_inode(((const struct path *)data)->dentry); default: return NULL; } } static inline const struct path *fsnotify_data_path(const void *data, int data_type) { switch (data_type) { case FSNOTIFY_EVENT_PATH: return data; default: return NULL; } } enum fsnotify_obj_type { FSNOTIFY_OBJ_TYPE_INODE, FSNOTIFY_OBJ_TYPE_PARENT, FSNOTIFY_OBJ_TYPE_VFSMOUNT, FSNOTIFY_OBJ_TYPE_SB, FSNOTIFY_OBJ_TYPE_COUNT, FSNOTIFY_OBJ_TYPE_DETACHED = FSNOTIFY_OBJ_TYPE_COUNT }; #define FSNOTIFY_OBJ_TYPE_INODE_FL (1U << FSNOTIFY_OBJ_TYPE_INODE) #define FSNOTIFY_OBJ_TYPE_PARENT_FL (1U << FSNOTIFY_OBJ_TYPE_PARENT) #define FSNOTIFY_OBJ_TYPE_VFSMOUNT_FL (1U << FSNOTIFY_OBJ_TYPE_VFSMOUNT) #define FSNOTIFY_OBJ_TYPE_SB_FL (1U << FSNOTIFY_OBJ_TYPE_SB) #define FSNOTIFY_OBJ_ALL_TYPES_MASK ((1U << FSNOTIFY_OBJ_TYPE_COUNT) - 1) static inline bool fsnotify_valid_obj_type(unsigned int type) { return (type < FSNOTIFY_OBJ_TYPE_COUNT); } struct fsnotify_iter_info { struct fsnotify_mark *marks[FSNOTIFY_OBJ_TYPE_COUNT]; unsigned int report_mask; int srcu_idx; }; static inline bool fsnotify_iter_should_report_type( struct fsnotify_iter_info *iter_info, int type) { return (iter_info->report_mask & (1U << type)); } static inline void fsnotify_iter_set_report_type( struct fsnotify_iter_info *iter_info, int type) { iter_info->report_mask |= (1U << type); } static inline void fsnotify_iter_set_report_type_mark( struct fsnotify_iter_info *iter_info, int type, struct fsnotify_mark *mark) { iter_info->marks[type] = mark; iter_info->report_mask |= (1U << type); } #define FSNOTIFY_ITER_FUNCS(name, NAME) \ static inline struct fsnotify_mark *fsnotify_iter_##name##_mark( \ struct fsnotify_iter_info *iter_info) \ { \ return (iter_info->report_mask & FSNOTIFY_OBJ_TYPE_##NAME##_FL) ? \ iter_info->marks[FSNOTIFY_OBJ_TYPE_##NAME] : NULL; \ } FSNOTIFY_ITER_FUNCS(inode, INODE) FSNOTIFY_ITER_FUNCS(parent, PARENT) FSNOTIFY_ITER_FUNCS(vfsmount, VFSMOUNT) FSNOTIFY_ITER_FUNCS(sb, SB) #define fsnotify_foreach_obj_type(type) \ for (type = 0; type < FSNOTIFY_OBJ_TYPE_COUNT; type++) /* * fsnotify_connp_t is what we embed in objects which connector can be attached * to. fsnotify_connp_t * is how we refer from connector back to object. */ struct fsnotify_mark_connector; typedef struct fsnotify_mark_connector __rcu *fsnotify_connp_t; /* * Inode/vfsmount/sb point to this structure which tracks all marks attached to * the inode/vfsmount/sb. The reference to inode/vfsmount/sb is held by this * structure. We destroy this structure when there are no more marks attached * to it. The structure is protected by fsnotify_mark_srcu. */ struct fsnotify_mark_connector { spinlock_t lock; unsigned short type; /* Type of object [lock] */ #define FSNOTIFY_CONN_FLAG_HAS_FSID 0x01 unsigned short flags; /* flags [lock] */ __kernel_fsid_t fsid; /* fsid of filesystem containing object */ union { /* Object pointer [lock] */ fsnotify_connp_t *obj; /* Used listing heads to free after srcu period expires */ struct fsnotify_mark_connector *destroy_next; }; struct hlist_head list; }; /* * A mark is simply an object attached to an in core inode which allows an * fsnotify listener to indicate they are either no longer interested in events * of a type matching mask or only interested in those events. * * These are flushed when an inode is evicted from core and may be flushed * when the inode is modified (as seen by fsnotify_access). Some fsnotify * users (such as dnotify) will flush these when the open fd is closed and not * at inode eviction or modification. * * Text in brackets is showing the lock(s) protecting modifications of a * particular entry. obj_lock means either inode->i_lock or * mnt->mnt_root->d_lock depending on the mark type. */ struct fsnotify_mark { /* Mask this mark is for [mark->lock, group->mark_mutex] */ __u32 mask; /* We hold one for presence in g_list. Also one ref for each 'thing' * in kernel that found and may be using this mark. */ refcount_t refcnt; /* Group this mark is for. Set on mark creation, stable until last ref * is dropped */ struct fsnotify_group *group; /* List of marks by group->marks_list. Also reused for queueing * mark into destroy_list when it's waiting for the end of SRCU period * before it can be freed. [group->mark_mutex] */ struct list_head g_list; /* Protects inode / mnt pointers, flags, masks */ spinlock_t lock; /* List of marks for inode / vfsmount [connector->lock, mark ref] */ struct hlist_node obj_list; /* Head of list of marks for an object [mark ref] */ struct fsnotify_mark_connector *connector; /* Events types to ignore [mark->lock, group->mark_mutex] */ __u32 ignored_mask; #define FSNOTIFY_MARK_FLAG_IGNORED_SURV_MODIFY 0x01 #define FSNOTIFY_MARK_FLAG_ALIVE 0x02 #define FSNOTIFY_MARK_FLAG_ATTACHED 0x04 unsigned int flags; /* flags [mark->lock] */ }; #ifdef CONFIG_FSNOTIFY /* called from the vfs helpers */ /* main fsnotify call to send events */ extern int fsnotify(__u32 mask, const void *data, int data_type, struct inode *dir, const struct qstr *name, struct inode *inode, u32 cookie); extern int __fsnotify_parent(struct dentry *dentry, __u32 mask, const void *data, int data_type); extern void __fsnotify_inode_delete(struct inode *inode); extern void __fsnotify_vfsmount_delete(struct vfsmount *mnt); extern void fsnotify_sb_delete(struct super_block *sb); extern u32 fsnotify_get_cookie(void); static inline __u32 fsnotify_parent_needed_mask(__u32 mask) { /* FS_EVENT_ON_CHILD is set on marks that want parent/name info */ if (!(mask & FS_EVENT_ON_CHILD)) return 0; /* * This object might be watched by a mark that cares about parent/name * info, does it care about the specific set of events that can be * reported with parent/name info? */ return mask & FS_EVENTS_POSS_TO_PARENT; } static inline int fsnotify_inode_watches_children(struct inode *inode) { /* FS_EVENT_ON_CHILD is set if the inode may care */ if (!(inode->i_fsnotify_mask & FS_EVENT_ON_CHILD)) return 0; /* this inode might care about child events, does it care about the * specific set of events that can happen on a child? */ return inode->i_fsnotify_mask & FS_EVENTS_POSS_ON_CHILD; } /* * Update the dentry with a flag indicating the interest of its parent to receive * filesystem events when those events happens to this dentry->d_inode. */ static inline void fsnotify_update_flags(struct dentry *dentry) { assert_spin_locked(&dentry->d_lock); /* * Serialisation of setting PARENT_WATCHED on the dentries is provided * by d_lock. If inotify_inode_watched changes after we have taken * d_lock, the following __fsnotify_update_child_dentry_flags call will * find our entry, so it will spin until we complete here, and update * us with the new state. */ if (fsnotify_inode_watches_children(dentry->d_parent->d_inode)) dentry->d_flags |= DCACHE_FSNOTIFY_PARENT_WATCHED; else dentry->d_flags &= ~DCACHE_FSNOTIFY_PARENT_WATCHED; } /* called from fsnotify listeners, such as fanotify or dnotify */ /* create a new group */ extern struct fsnotify_group *fsnotify_alloc_group(const struct fsnotify_ops *ops); /* get reference to a group */ extern void fsnotify_get_group(struct fsnotify_group *group); /* drop reference on a group from fsnotify_alloc_group */ extern void fsnotify_put_group(struct fsnotify_group *group); /* group destruction begins, stop queuing new events */ extern void fsnotify_group_stop_queueing(struct fsnotify_group *group); /* destroy group */ extern void fsnotify_destroy_group(struct fsnotify_group *group); /* fasync handler function */ extern int fsnotify_fasync(int fd, struct file *file, int on); /* Free event from memory */ extern void fsnotify_destroy_event(struct fsnotify_group *group, struct fsnotify_event *event); /* attach the event to the group notification queue */ extern int fsnotify_add_event(struct fsnotify_group *group, struct fsnotify_event *event, int (*merge)(struct list_head *, struct fsnotify_event *)); /* Queue overflow event to a notification group */ static inline void fsnotify_queue_overflow(struct fsnotify_group *group) { fsnotify_add_event(group, group->overflow_event, NULL); } /* true if the group notification queue is empty */ extern bool fsnotify_notify_queue_is_empty(struct fsnotify_group *group); /* return, but do not dequeue the first event on the notification queue */ extern struct fsnotify_event *fsnotify_peek_first_event(struct fsnotify_group *group); /* return AND dequeue the first event on the notification queue */ extern struct fsnotify_event *fsnotify_remove_first_event(struct fsnotify_group *group); /* Remove event queued in the notification list */ extern void fsnotify_remove_queued_event(struct fsnotify_group *group, struct fsnotify_event *event); /* functions used to manipulate the marks attached to inodes */ /* Get mask of events for a list of marks */ extern __u32 fsnotify_conn_mask(struct fsnotify_mark_connector *conn); /* Calculate mask of events for a list of marks */ extern void fsnotify_recalc_mask(struct fsnotify_mark_connector *conn); extern void fsnotify_init_mark(struct fsnotify_mark *mark, struct fsnotify_group *group); /* Find mark belonging to given group in the list of marks */ extern struct fsnotify_mark *fsnotify_find_mark(fsnotify_connp_t *connp, struct fsnotify_group *group); /* Get cached fsid of filesystem containing object */ extern int fsnotify_get_conn_fsid(const struct fsnotify_mark_connector *conn, __kernel_fsid_t *fsid); /* attach the mark to the object */ extern int fsnotify_add_mark(struct fsnotify_mark *mark, fsnotify_connp_t *connp, unsigned int type, int allow_dups, __kernel_fsid_t *fsid); extern int fsnotify_add_mark_locked(struct fsnotify_mark *mark, fsnotify_connp_t *connp, unsigned int type, int allow_dups, __kernel_fsid_t *fsid); /* attach the mark to the inode */ static inline int fsnotify_add_inode_mark(struct fsnotify_mark *mark, struct inode *inode, int allow_dups) { return fsnotify_add_mark(mark, &inode->i_fsnotify_marks, FSNOTIFY_OBJ_TYPE_INODE, allow_dups, NULL); } static inline int fsnotify_add_inode_mark_locked(struct fsnotify_mark *mark, struct inode *inode, int allow_dups) { return fsnotify_add_mark_locked(mark, &inode->i_fsnotify_marks, FSNOTIFY_OBJ_TYPE_INODE, allow_dups, NULL); } /* given a group and a mark, flag mark to be freed when all references are dropped */ extern void fsnotify_destroy_mark(struct fsnotify_mark *mark, struct fsnotify_group *group); /* detach mark from inode / mount list, group list, drop inode reference */ extern void fsnotify_detach_mark(struct fsnotify_mark *mark); /* free mark */ extern void fsnotify_free_mark(struct fsnotify_mark *mark); /* Wait until all marks queued for destruction are destroyed */ extern void fsnotify_wait_marks_destroyed(void); /* run all the marks in a group, and clear all of the marks attached to given object type */ extern void fsnotify_clear_marks_by_group(struct fsnotify_group *group, unsigned int type); /* run all the marks in a group, and clear all of the vfsmount marks */ static inline void fsnotify_clear_vfsmount_marks_by_group(struct fsnotify_group *group) { fsnotify_clear_marks_by_group(group, FSNOTIFY_OBJ_TYPE_VFSMOUNT_FL); } /* run all the marks in a group, and clear all of the inode marks */ static inline void fsnotify_clear_inode_marks_by_group(struct fsnotify_group *group) { fsnotify_clear_marks_by_group(group, FSNOTIFY_OBJ_TYPE_INODE_FL); } /* run all the marks in a group, and clear all of the sn marks */ static inline void fsnotify_clear_sb_marks_by_group(struct fsnotify_group *group) { fsnotify_clear_marks_by_group(group, FSNOTIFY_OBJ_TYPE_SB_FL); } extern void fsnotify_get_mark(struct fsnotify_mark *mark); extern void fsnotify_put_mark(struct fsnotify_mark *mark); extern void fsnotify_finish_user_wait(struct fsnotify_iter_info *iter_info); extern bool fsnotify_prepare_user_wait(struct fsnotify_iter_info *iter_info); static inline void fsnotify_init_event(struct fsnotify_event *event, unsigned long objectid) { INIT_LIST_HEAD(&event->list); event->objectid = objectid; } #else static inline int fsnotify(__u32 mask, const void *data, int data_type, struct inode *dir, const struct qstr *name, struct inode *inode, u32 cookie) { return 0; } static inline int __fsnotify_parent(struct dentry *dentry, __u32 mask, const void *data, int data_type) { return 0; } static inline void __fsnotify_inode_delete(struct inode *inode) {} static inline void __fsnotify_vfsmount_delete(struct vfsmount *mnt) {} static inline void fsnotify_sb_delete(struct super_block *sb) {} static inline void fsnotify_update_flags(struct dentry *dentry) {} static inline u32 fsnotify_get_cookie(void) { return 0; } static inline void fsnotify_unmount_inodes(struct super_block *sb) {} #endif /* CONFIG_FSNOTIFY */ #endif /* __KERNEL __ */ #endif /* __LINUX_FSNOTIFY_BACKEND_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _SOCK_REUSEPORT_H #define _SOCK_REUSEPORT_H #include <linux/filter.h> #include <linux/skbuff.h> #include <linux/types.h> #include <linux/spinlock.h> #include <net/sock.h> extern spinlock_t reuseport_lock; struct sock_reuseport { struct rcu_head rcu; u16 max_socks; /* length of socks */ u16 num_socks; /* elements in socks */ /* The last synq overflow event timestamp of this * reuse->socks[] group. */ unsigned int synq_overflow_ts; /* ID stays the same even after the size of socks[] grows. */ unsigned int reuseport_id; unsigned int bind_inany:1; unsigned int has_conns:1; struct bpf_prog __rcu *prog; /* optional BPF sock selector */ struct sock *socks[]; /* array of sock pointers */ }; extern int reuseport_alloc(struct sock *sk, bool bind_inany); extern int reuseport_add_sock(struct sock *sk, struct sock *sk2, bool bind_inany); extern void reuseport_detach_sock(struct sock *sk); extern struct sock *reuseport_select_sock(struct sock *sk, u32 hash, struct sk_buff *skb, int hdr_len); extern int reuseport_attach_prog(struct sock *sk, struct bpf_prog *prog); extern int reuseport_detach_prog(struct sock *sk); static inline bool reuseport_has_conns(struct sock *sk, bool set) { struct sock_reuseport *reuse; bool ret = false; rcu_read_lock(); reuse = rcu_dereference(sk->sk_reuseport_cb); if (reuse) { if (set) reuse->has_conns = 1; ret = reuse->has_conns; } rcu_read_unlock(); return ret; } #endif /* _SOCK_REUSEPORT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __NET_LWTUNNEL_H #define __NET_LWTUNNEL_H 1 #include <linux/lwtunnel.h> #include <linux/netdevice.h> #include <linux/skbuff.h> #include <linux/types.h> #include <net/route.h> #define LWTUNNEL_HASH_BITS 7 #define LWTUNNEL_HASH_SIZE (1 << LWTUNNEL_HASH_BITS) /* lw tunnel state flags */ #define LWTUNNEL_STATE_OUTPUT_REDIRECT BIT(0) #define LWTUNNEL_STATE_INPUT_REDIRECT BIT(1) #define LWTUNNEL_STATE_XMIT_REDIRECT BIT(2) enum { LWTUNNEL_XMIT_DONE, LWTUNNEL_XMIT_CONTINUE, }; struct lwtunnel_state { __u16 type; __u16 flags; __u16 headroom; atomic_t refcnt; int (*orig_output)(struct net *net, struct sock *sk, struct sk_buff *skb); int (*orig_input)(struct sk_buff *); struct rcu_head rcu; __u8 data[]; }; struct lwtunnel_encap_ops { int (*build_state)(struct net *net, struct nlattr *encap, unsigned int family, const void *cfg, struct lwtunnel_state **ts, struct netlink_ext_ack *extack); void (*destroy_state)(struct lwtunnel_state *lws); int (*output)(struct net *net, struct sock *sk, struct sk_buff *skb); int (*input)(struct sk_buff *skb); int (*fill_encap)(struct sk_buff *skb, struct lwtunnel_state *lwtstate); int (*get_encap_size)(struct lwtunnel_state *lwtstate); int (*cmp_encap)(struct lwtunnel_state *a, struct lwtunnel_state *b); int (*xmit)(struct sk_buff *skb); struct module *owner; }; #ifdef CONFIG_LWTUNNEL void lwtstate_free(struct lwtunnel_state *lws); static inline struct lwtunnel_state * lwtstate_get(struct lwtunnel_state *lws) { if (lws) atomic_inc(&lws->refcnt); return lws; } static inline void lwtstate_put(struct lwtunnel_state *lws) { if (!lws) return; if (atomic_dec_and_test(&lws->refcnt)) lwtstate_free(lws); } static inline bool lwtunnel_output_redirect(struct lwtunnel_state *lwtstate) { if (lwtstate && (lwtstate->flags & LWTUNNEL_STATE_OUTPUT_REDIRECT)) return true; return false; } static inline bool lwtunnel_input_redirect(struct lwtunnel_state *lwtstate) { if (lwtstate && (lwtstate->flags & LWTUNNEL_STATE_INPUT_REDIRECT)) return true; return false; } static inline bool lwtunnel_xmit_redirect(struct lwtunnel_state *lwtstate) { if (lwtstate && (lwtstate->flags & LWTUNNEL_STATE_XMIT_REDIRECT)) return true; return false; } static inline unsigned int lwtunnel_headroom(struct lwtunnel_state *lwtstate, unsigned int mtu) { if ((lwtunnel_xmit_redirect(lwtstate) || lwtunnel_output_redirect(lwtstate)) && lwtstate->headroom < mtu) return lwtstate->headroom; return 0; } int lwtunnel_encap_add_ops(const struct lwtunnel_encap_ops *op, unsigned int num); int lwtunnel_encap_del_ops(const struct lwtunnel_encap_ops *op, unsigned int num); int lwtunnel_valid_encap_type(u16 encap_type, struct netlink_ext_ack *extack); int lwtunnel_valid_encap_type_attr(struct nlattr *attr, int len, struct netlink_ext_ack *extack); int lwtunnel_build_state(struct net *net, u16 encap_type, struct nlattr *encap, unsigned int family, const void *cfg, struct lwtunnel_state **lws, struct netlink_ext_ack *extack); int lwtunnel_fill_encap(struct sk_buff *skb, struct lwtunnel_state *lwtstate, int encap_attr, int encap_type_attr); int lwtunnel_get_encap_size(struct lwtunnel_state *lwtstate); struct lwtunnel_state *lwtunnel_state_alloc(int hdr_len); int lwtunnel_cmp_encap(struct lwtunnel_state *a, struct lwtunnel_state *b); int lwtunnel_output(struct net *net, struct sock *sk, struct sk_buff *skb); int lwtunnel_input(struct sk_buff *skb); int lwtunnel_xmit(struct sk_buff *skb); int bpf_lwt_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len, bool ingress); static inline void lwtunnel_set_redirect(struct dst_entry *dst) { if (lwtunnel_output_redirect(dst->lwtstate)) { dst->lwtstate->orig_output = dst->output; dst->output = lwtunnel_output; } if (lwtunnel_input_redirect(dst->lwtstate)) { dst->lwtstate->orig_input = dst->input; dst->input = lwtunnel_input; } } #else static inline void lwtstate_free(struct lwtunnel_state *lws) { } static inline struct lwtunnel_state * lwtstate_get(struct lwtunnel_state *lws) { return lws; } static inline void lwtstate_put(struct lwtunnel_state *lws) { } static inline bool lwtunnel_output_redirect(struct lwtunnel_state *lwtstate) { return false; } static inline bool lwtunnel_input_redirect(struct lwtunnel_state *lwtstate) { return false; } static inline bool lwtunnel_xmit_redirect(struct lwtunnel_state *lwtstate) { return false; } static inline void lwtunnel_set_redirect(struct dst_entry *dst) { } static inline unsigned int lwtunnel_headroom(struct lwtunnel_state *lwtstate, unsigned int mtu) { return 0; } static inline int lwtunnel_encap_add_ops(const struct lwtunnel_encap_ops *op, unsigned int num) { return -EOPNOTSUPP; } static inline int lwtunnel_encap_del_ops(const struct lwtunnel_encap_ops *op, unsigned int num) { return -EOPNOTSUPP; } static inline int lwtunnel_valid_encap_type(u16 encap_type, struct netlink_ext_ack *extack) { NL_SET_ERR_MSG(extack, "CONFIG_LWTUNNEL is not enabled in this kernel"); return -EOPNOTSUPP; } static inline int lwtunnel_valid_encap_type_attr(struct nlattr *attr, int len, struct netlink_ext_ack *extack) { /* return 0 since we are not walking attr looking for * RTA_ENCAP_TYPE attribute on nexthops. */ return 0; } static inline int lwtunnel_build_state(struct net *net, u16 encap_type, struct nlattr *encap, unsigned int family, const void *cfg, struct lwtunnel_state **lws, struct netlink_ext_ack *extack) { return -EOPNOTSUPP; } static inline int lwtunnel_fill_encap(struct sk_buff *skb, struct lwtunnel_state *lwtstate, int encap_attr, int encap_type_attr) { return 0; } static inline int lwtunnel_get_encap_size(struct lwtunnel_state *lwtstate) { return 0; } static inline struct lwtunnel_state *lwtunnel_state_alloc(int hdr_len) { return NULL; } static inline int lwtunnel_cmp_encap(struct lwtunnel_state *a, struct lwtunnel_state *b) { return 0; } static inline int lwtunnel_output(struct net *net, struct sock *sk, struct sk_buff *skb) { return -EOPNOTSUPP; } static inline int lwtunnel_input(struct sk_buff *skb) { return -EOPNOTSUPP; } static inline int lwtunnel_xmit(struct sk_buff *skb) { return -EOPNOTSUPP; } #endif /* CONFIG_LWTUNNEL */ #define MODULE_ALIAS_RTNL_LWT(encap_type) MODULE_ALIAS("rtnl-lwt-" __stringify(encap_type)) #endif /* __NET_LWTUNNEL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 /* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright (C) 2014 Felix Fietkau <nbd@nbd.name> * Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com> */ #ifndef _LINUX_BITFIELD_H #define _LINUX_BITFIELD_H #include <linux/build_bug.h> #include <asm/byteorder.h> /* * Bitfield access macros * * FIELD_{GET,PREP} macros take as first parameter shifted mask * from which they extract the base mask and shift amount. * Mask must be a compilation time constant. * * Example: * * #define REG_FIELD_A GENMASK(6, 0) * #define REG_FIELD_B BIT(7) * #define REG_FIELD_C GENMASK(15, 8) * #define REG_FIELD_D GENMASK(31, 16) * * Get: * a = FIELD_GET(REG_FIELD_A, reg); * b = FIELD_GET(REG_FIELD_B, reg); * * Set: * reg = FIELD_PREP(REG_FIELD_A, 1) | * FIELD_PREP(REG_FIELD_B, 0) | * FIELD_PREP(REG_FIELD_C, c) | * FIELD_PREP(REG_FIELD_D, 0x40); * * Modify: * reg &= ~REG_FIELD_C; * reg |= FIELD_PREP(REG_FIELD_C, c); */ #define __bf_shf(x) (__builtin_ffsll(x) - 1) #define __BF_FIELD_CHECK(_mask, _reg, _val, _pfx) \ ({ \ BUILD_BUG_ON_MSG(!__builtin_constant_p(_mask), \ _pfx "mask is not constant"); \ BUILD_BUG_ON_MSG((_mask) == 0, _pfx "mask is zero"); \ BUILD_BUG_ON_MSG(__builtin_constant_p(_val) ? \ ~((_mask) >> __bf_shf(_mask)) & (_val) : 0, \ _pfx "value too large for the field"); \ BUILD_BUG_ON_MSG((_mask) > (typeof(_reg))~0ull, \ _pfx "type of reg too small for mask"); \ __BUILD_BUG_ON_NOT_POWER_OF_2((_mask) + \ (1ULL << __bf_shf(_mask))); \ }) /** * FIELD_MAX() - produce the maximum value representable by a field * @_mask: shifted mask defining the field's length and position * * FIELD_MAX() returns the maximum value that can be held in the field * specified by @_mask. */ #define FIELD_MAX(_mask) \ ({ \ __BF_FIELD_CHECK(_mask, 0ULL, 0ULL, "FIELD_MAX: "); \ (typeof(_mask))((_mask) >> __bf_shf(_mask)); \ }) /** * FIELD_FIT() - check if value fits in the field * @_mask: shifted mask defining the field's length and position * @_val: value to test against the field * * Return: true if @_val can fit inside @_mask, false if @_val is too big. */ #define FIELD_FIT(_mask, _val) \ ({ \ __BF_FIELD_CHECK(_mask, 0ULL, 0ULL, "FIELD_FIT: "); \ !((((typeof(_mask))_val) << __bf_shf(_mask)) & ~(_mask)); \ }) /** * FIELD_PREP() - prepare a bitfield element * @_mask: shifted mask defining the field's length and position * @_val: value to put in the field * * FIELD_PREP() masks and shifts up the value. The result should * be combined with other fields of the bitfield using logical OR. */ #define FIELD_PREP(_mask, _val) \ ({ \ __BF_FIELD_CHECK(_mask, 0ULL, _val, "FIELD_PREP: "); \ ((typeof(_mask))(_val) << __bf_shf(_mask)) & (_mask); \ }) /** * FIELD_GET() - extract a bitfield element * @_mask: shifted mask defining the field's length and position * @_reg: value of entire bitfield * * FIELD_GET() extracts the field specified by @_mask from the * bitfield passed in as @_reg by masking and shifting it down. */ #define FIELD_GET(_mask, _reg) \ ({ \ __BF_FIELD_CHECK(_mask, _reg, 0U, "FIELD_GET: "); \ (typeof(_mask))(((_reg) & (_mask)) >> __bf_shf(_mask)); \ }) extern void __compiletime_error("value doesn't fit into mask") __field_overflow(void); extern void __compiletime_error("bad bitfield mask") __bad_mask(void); static __always_inline u64 field_multiplier(u64 field) { if ((field | (field - 1)) & ((field | (field - 1)) + 1)) __bad_mask(); return field & -field; } static __always_inline u64 field_mask(u64 field) { return field / field_multiplier(field); } #define field_max(field) ((typeof(field))field_mask(field)) #define ____MAKE_OP(type,base,to,from) \ static __always_inline __##type type##_encode_bits(base v, base field) \ { \ if (__builtin_constant_p(v) && (v & ~field_mask(field))) \ __field_overflow(); \ return to((v & field_mask(field)) * field_multiplier(field)); \ } \ static __always_inline __##type type##_replace_bits(__##type old, \ base val, base field) \ { \ return (old & ~to(field)) | type##_encode_bits(val, field); \ } \ static __always_inline void type##p_replace_bits(__##type *p, \ base val, base field) \ { \ *p = (*p & ~to(field)) | type##_encode_bits(val, field); \ } \ static __always_inline base type##_get_bits(__##type v, base field) \ { \ return (from(v) & field)/field_multiplier(field); \ } #define __MAKE_OP(size) \ ____MAKE_OP(le##size,u##size,cpu_to_le##size,le##size##_to_cpu) \ ____MAKE_OP(be##size,u##size,cpu_to_be##size,be##size##_to_cpu) \ ____MAKE_OP(u##size,u##size,,) ____MAKE_OP(u8,u8,,) __MAKE_OP(16) __MAKE_OP(32) __MAKE_OP(64) #undef __MAKE_OP #undef ____MAKE_OP #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_BLOCKGROUP_LOCK_H #define _LINUX_BLOCKGROUP_LOCK_H /* * Per-blockgroup locking for ext2 and ext3. * * Simple hashed spinlocking. */ #include <linux/spinlock.h> #include <linux/cache.h> #ifdef CONFIG_SMP #define NR_BG_LOCKS (4 << ilog2(NR_CPUS < 32 ? NR_CPUS : 32)) #else #define NR_BG_LOCKS 1 #endif struct bgl_lock { spinlock_t lock; } ____cacheline_aligned_in_smp; struct blockgroup_lock { struct bgl_lock locks[NR_BG_LOCKS]; }; static inline void bgl_lock_init(struct blockgroup_lock *bgl) { int i; for (i = 0; i < NR_BG_LOCKS; i++) spin_lock_init(&bgl->locks[i].lock); } static inline spinlock_t * bgl_lock_ptr(struct blockgroup_lock *bgl, unsigned int block_group) { return &bgl->locks[block_group & (NR_BG_LOCKS-1)].lock; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 /* SPDX-License-Identifier: GPL-2.0 */ /* * fs-verity: read-only file-based authenticity protection * * This header declares the interface between the fs/verity/ support layer and * filesystems that support fs-verity. * * Copyright 2019 Google LLC */ #ifndef _LINUX_FSVERITY_H #define _LINUX_FSVERITY_H #include <linux/fs.h> #include <uapi/linux/fsverity.h> /* Verity operations for filesystems */ struct fsverity_operations { /** * Begin enabling verity on the given file. * * @filp: a readonly file descriptor for the file * * The filesystem must do any needed filesystem-specific preparations * for enabling verity, e.g. evicting inline data. It also must return * -EBUSY if verity is already being enabled on the given file. * * i_rwsem is held for write. * * Return: 0 on success, -errno on failure */ int (*begin_enable_verity)(struct file *filp); /** * End enabling verity on the given file. * * @filp: a readonly file descriptor for the file * @desc: the verity descriptor to write, or NULL on failure * @desc_size: size of verity descriptor, or 0 on failure * @merkle_tree_size: total bytes the Merkle tree took up * * If desc == NULL, then enabling verity failed and the filesystem only * must do any necessary cleanups. Else, it must also store the given * verity descriptor to a fs-specific location associated with the inode * and do any fs-specific actions needed to mark the inode as a verity * inode, e.g. setting a bit in the on-disk inode. The filesystem is * also responsible for setting the S_VERITY flag in the VFS inode. * * i_rwsem is held for write, but it may have been dropped between * ->begin_enable_verity() and ->end_enable_verity(). * * Return: 0 on success, -errno on failure */ int (*end_enable_verity)(struct file *filp, const void *desc, size_t desc_size, u64 merkle_tree_size); /** * Get the verity descriptor of the given inode. * * @inode: an inode with the S_VERITY flag set * @buf: buffer in which to place the verity descriptor * @bufsize: size of @buf, or 0 to retrieve the size only * * If bufsize == 0, then the size of the verity descriptor is returned. * Otherwise the verity descriptor is written to 'buf' and its actual * size is returned; -ERANGE is returned if it's too large. This may be * called by multiple processes concurrently on the same inode. * * Return: the size on success, -errno on failure */ int (*get_verity_descriptor)(struct inode *inode, void *buf, size_t bufsize); /** * Read a Merkle tree page of the given inode. * * @inode: the inode * @index: 0-based index of the page within the Merkle tree * @num_ra_pages: The number of Merkle tree pages that should be * prefetched starting at @index if the page at @index * isn't already cached. Implementations may ignore this * argument; it's only a performance optimization. * * This can be called at any time on an open verity file, as well as * between ->begin_enable_verity() and ->end_enable_verity(). It may be * called by multiple processes concurrently, even with the same page. * * Note that this must retrieve a *page*, not necessarily a *block*. * * Return: the page on success, ERR_PTR() on failure */ struct page *(*read_merkle_tree_page)(struct inode *inode, pgoff_t index, unsigned long num_ra_pages); /** * Write a Merkle tree block to the given inode. * * @inode: the inode for which the Merkle tree is being built * @buf: block to write * @index: 0-based index of the block within the Merkle tree * @log_blocksize: log base 2 of the Merkle tree block size * * This is only called between ->begin_enable_verity() and * ->end_enable_verity(). * * Return: 0 on success, -errno on failure */ int (*write_merkle_tree_block)(struct inode *inode, const void *buf, u64 index, int log_blocksize); }; #ifdef CONFIG_FS_VERITY static inline struct fsverity_info *fsverity_get_info(const struct inode *inode) { /* * Pairs with the cmpxchg_release() in fsverity_set_info(). * I.e., another task may publish ->i_verity_info concurrently, * executing a RELEASE barrier. We need to use smp_load_acquire() here * to safely ACQUIRE the memory the other task published. */ return smp_load_acquire(&inode->i_verity_info); } /* enable.c */ int fsverity_ioctl_enable(struct file *filp, const void __user *arg); /* measure.c */ int fsverity_ioctl_measure(struct file *filp, void __user *arg); /* open.c */ int fsverity_file_open(struct inode *inode, struct file *filp); int fsverity_prepare_setattr(struct dentry *dentry, struct iattr *attr); void fsverity_cleanup_inode(struct inode *inode); /* verify.c */ bool fsverity_verify_page(struct page *page); void fsverity_verify_bio(struct bio *bio); void fsverity_enqueue_verify_work(struct work_struct *work); #else /* !CONFIG_FS_VERITY */ static inline struct fsverity_info *fsverity_get_info(const struct inode *inode) { return NULL; } /* enable.c */ static inline int fsverity_ioctl_enable(struct file *filp, const void __user *arg) { return -EOPNOTSUPP; } /* measure.c */ static inline int fsverity_ioctl_measure(struct file *filp, void __user *arg) { return -EOPNOTSUPP; } /* open.c */ static inline int fsverity_file_open(struct inode *inode, struct file *filp) { return IS_VERITY(inode) ? -EOPNOTSUPP : 0; } static inline int fsverity_prepare_setattr(struct dentry *dentry, struct iattr *attr) { return IS_VERITY(d_inode(dentry)) ? -EOPNOTSUPP : 0; } static inline void fsverity_cleanup_inode(struct inode *inode) { } /* verify.c */ static inline bool fsverity_verify_page(struct page *page) { WARN_ON(1); return false; } static inline void fsverity_verify_bio(struct bio *bio) { WARN_ON(1); } static inline void fsverity_enqueue_verify_work(struct work_struct *work) { WARN_ON(1); } #endif /* !CONFIG_FS_VERITY */ /** * fsverity_active() - do reads from the inode need to go through fs-verity? * @inode: inode to check * * This checks whether ->i_verity_info has been set. * * Filesystems call this from ->readpages() to check whether the pages need to * be verified or not. Don't use IS_VERITY() for this purpose; it's subject to * a race condition where the file is being read concurrently with * FS_IOC_ENABLE_VERITY completing. (S_VERITY is set before ->i_verity_info.) * * Return: true if reads need to go through fs-verity, otherwise false */ static inline bool fsverity_active(const struct inode *inode) { return fsverity_get_info(inode) != NULL; } #endif /* _LINUX_FSVERITY_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __CFG802154_RDEV_OPS #define __CFG802154_RDEV_OPS #include <net/cfg802154.h> #include "core.h" #include "trace.h" static inline struct net_device * rdev_add_virtual_intf_deprecated(struct cfg802154_registered_device *rdev, const char *name, unsigned char name_assign_type, int type) { return rdev->ops->add_virtual_intf_deprecated(&rdev->wpan_phy, name, name_assign_type, type); } static inline void rdev_del_virtual_intf_deprecated(struct cfg802154_registered_device *rdev, struct net_device *dev) { rdev->ops->del_virtual_intf_deprecated(&rdev->wpan_phy, dev); } static inline int rdev_suspend(struct cfg802154_registered_device *rdev) { int ret; trace_802154_rdev_suspend(&rdev->wpan_phy); ret = rdev->ops->suspend(&rdev->wpan_phy); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_resume(struct cfg802154_registered_device *rdev) { int ret; trace_802154_rdev_resume(&rdev->wpan_phy); ret = rdev->ops->resume(&rdev->wpan_phy); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_add_virtual_intf(struct cfg802154_registered_device *rdev, char *name, unsigned char name_assign_type, enum nl802154_iftype type, __le64 extended_addr) { int ret; trace_802154_rdev_add_virtual_intf(&rdev->wpan_phy, name, type, extended_addr); ret = rdev->ops->add_virtual_intf(&rdev->wpan_phy, name, name_assign_type, type, extended_addr); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_del_virtual_intf(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev) { int ret; trace_802154_rdev_del_virtual_intf(&rdev->wpan_phy, wpan_dev); ret = rdev->ops->del_virtual_intf(&rdev->wpan_phy, wpan_dev); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_set_channel(struct cfg802154_registered_device *rdev, u8 page, u8 channel) { int ret; trace_802154_rdev_set_channel(&rdev->wpan_phy, page, channel); ret = rdev->ops->set_channel(&rdev->wpan_phy, page, channel); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_set_cca_mode(struct cfg802154_registered_device *rdev, const struct wpan_phy_cca *cca) { int ret; trace_802154_rdev_set_cca_mode(&rdev->wpan_phy, cca); ret = rdev->ops->set_cca_mode(&rdev->wpan_phy, cca); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_set_cca_ed_level(struct cfg802154_registered_device *rdev, s32 ed_level) { int ret; trace_802154_rdev_set_cca_ed_level(&rdev->wpan_phy, ed_level); ret = rdev->ops->set_cca_ed_level(&rdev->wpan_phy, ed_level); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_set_tx_power(struct cfg802154_registered_device *rdev, s32 power) { int ret; trace_802154_rdev_set_tx_power(&rdev->wpan_phy, power); ret = rdev->ops->set_tx_power(&rdev->wpan_phy, power); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_set_pan_id(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, __le16 pan_id) { int ret; trace_802154_rdev_set_pan_id(&rdev->wpan_phy, wpan_dev, pan_id); ret = rdev->ops->set_pan_id(&rdev->wpan_phy, wpan_dev, pan_id); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_set_short_addr(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, __le16 short_addr) { int ret; trace_802154_rdev_set_short_addr(&rdev->wpan_phy, wpan_dev, short_addr); ret = rdev->ops->set_short_addr(&rdev->wpan_phy, wpan_dev, short_addr); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_set_backoff_exponent(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, u8 min_be, u8 max_be) { int ret; trace_802154_rdev_set_backoff_exponent(&rdev->wpan_phy, wpan_dev, min_be, max_be); ret = rdev->ops->set_backoff_exponent(&rdev->wpan_phy, wpan_dev, min_be, max_be); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_set_max_csma_backoffs(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, u8 max_csma_backoffs) { int ret; trace_802154_rdev_set_csma_backoffs(&rdev->wpan_phy, wpan_dev, max_csma_backoffs); ret = rdev->ops->set_max_csma_backoffs(&rdev->wpan_phy, wpan_dev, max_csma_backoffs); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_set_max_frame_retries(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, s8 max_frame_retries) { int ret; trace_802154_rdev_set_max_frame_retries(&rdev->wpan_phy, wpan_dev, max_frame_retries); ret = rdev->ops->set_max_frame_retries(&rdev->wpan_phy, wpan_dev, max_frame_retries); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_set_lbt_mode(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, bool mode) { int ret; trace_802154_rdev_set_lbt_mode(&rdev->wpan_phy, wpan_dev, mode); ret = rdev->ops->set_lbt_mode(&rdev->wpan_phy, wpan_dev, mode); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_set_ackreq_default(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, bool ackreq) { int ret; trace_802154_rdev_set_ackreq_default(&rdev->wpan_phy, wpan_dev, ackreq); ret = rdev->ops->set_ackreq_default(&rdev->wpan_phy, wpan_dev, ackreq); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } #ifdef CONFIG_IEEE802154_NL802154_EXPERIMENTAL /* TODO this is already a nl802154, so move into ieee802154 */ static inline void rdev_get_llsec_table(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, struct ieee802154_llsec_table **table) { rdev->ops->get_llsec_table(&rdev->wpan_phy, wpan_dev, table); } static inline void rdev_lock_llsec_table(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev) { rdev->ops->lock_llsec_table(&rdev->wpan_phy, wpan_dev); } static inline void rdev_unlock_llsec_table(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev) { rdev->ops->unlock_llsec_table(&rdev->wpan_phy, wpan_dev); } static inline int rdev_get_llsec_params(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, struct ieee802154_llsec_params *params) { return rdev->ops->get_llsec_params(&rdev->wpan_phy, wpan_dev, params); } static inline int rdev_set_llsec_params(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, const struct ieee802154_llsec_params *params, u32 changed) { return rdev->ops->set_llsec_params(&rdev->wpan_phy, wpan_dev, params, changed); } static inline int rdev_add_llsec_key(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, const struct ieee802154_llsec_key_id *id, const struct ieee802154_llsec_key *key) { return rdev->ops->add_llsec_key(&rdev->wpan_phy, wpan_dev, id, key); } static inline int rdev_del_llsec_key(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, const struct ieee802154_llsec_key_id *id) { return rdev->ops->del_llsec_key(&rdev->wpan_phy, wpan_dev, id); } static inline int rdev_add_seclevel(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, const struct ieee802154_llsec_seclevel *sl) { return rdev->ops->add_seclevel(&rdev->wpan_phy, wpan_dev, sl); } static inline int rdev_del_seclevel(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, const struct ieee802154_llsec_seclevel *sl) { return rdev->ops->del_seclevel(&rdev->wpan_phy, wpan_dev, sl); } static inline int rdev_add_device(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, const struct ieee802154_llsec_device *dev_desc) { return rdev->ops->add_device(&rdev->wpan_phy, wpan_dev, dev_desc); } static inline int rdev_del_device(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, __le64 extended_addr) { return rdev->ops->del_device(&rdev->wpan_phy, wpan_dev, extended_addr); } static inline int rdev_add_devkey(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, __le64 extended_addr, const struct ieee802154_llsec_device_key *devkey) { return rdev->ops->add_devkey(&rdev->wpan_phy, wpan_dev, extended_addr, devkey); } static inline int rdev_del_devkey(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, __le64 extended_addr, const struct ieee802154_llsec_device_key *devkey) { return rdev->ops->del_devkey(&rdev->wpan_phy, wpan_dev, extended_addr, devkey); } #endif /* CONFIG_IEEE802154_NL802154_EXPERIMENTAL */ #endif /* __CFG802154_RDEV_OPS */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 /* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright (c) 2008 Intel Corporation * Author: Matthew Wilcox <willy@linux.intel.com> * * Please see kernel/locking/semaphore.c for documentation of these functions */ #ifndef __LINUX_SEMAPHORE_H #define __LINUX_SEMAPHORE_H #include <linux/list.h> #include <linux/spinlock.h> /* Please don't access any members of this structure directly */ struct semaphore { raw_spinlock_t lock; unsigned int count; struct list_head wait_list; }; #define __SEMAPHORE_INITIALIZER(name, n) \ { \ .lock = __RAW_SPIN_LOCK_UNLOCKED((name).lock), \ .count = n, \ .wait_list = LIST_HEAD_INIT((name).wait_list), \ } #define DEFINE_SEMAPHORE(name) \ struct semaphore name = __SEMAPHORE_INITIALIZER(name, 1) static inline void sema_init(struct semaphore *sem, int val) { static struct lock_class_key __key; *sem = (struct semaphore) __SEMAPHORE_INITIALIZER(*sem, val); lockdep_init_map(&sem->lock.dep_map, "semaphore->lock", &__key, 0); } extern void down(struct semaphore *sem); extern int __must_check down_interruptible(struct semaphore *sem); extern int __must_check down_killable(struct semaphore *sem); extern int __must_check down_trylock(struct semaphore *sem); extern int __must_check down_timeout(struct semaphore *sem, long jiffies); extern void up(struct semaphore *sem); #endif /* __LINUX_SEMAPHORE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 /* SPDX-License-Identifier: GPL-2.0 */ /** * lib/minmax.c: windowed min/max tracker by Kathleen Nichols. * */ #ifndef MINMAX_H #define MINMAX_H #include <linux/types.h> /* A single data point for our parameterized min-max tracker */ struct minmax_sample { u32 t; /* time measurement was taken */ u32 v; /* value measured */ }; /* State for the parameterized min-max tracker */ struct minmax { struct minmax_sample s[3]; }; static inline u32 minmax_get(const struct minmax *m) { return m->s[0].v; } static inline u32 minmax_reset(struct minmax *m, u32 t, u32 meas) { struct minmax_sample val = { .t = t, .v = meas }; m->s[2] = m->s[1] = m->s[0] = val; return m->s[0].v; } u32 minmax_running_max(struct minmax *m, u32 win, u32 t, u32 meas); u32 minmax_running_min(struct minmax *m, u32 win, u32 t, u32 meas); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 /* SPDX-License-Identifier: GPL-2.0 */ /* * A security identifier table (sidtab) is a lookup table * of security context structures indexed by SID value. * * Original author: Stephen Smalley, <sds@tycho.nsa.gov> * Author: Ondrej Mosnacek, <omosnacek@gmail.com> * * Copyright (C) 2018 Red Hat, Inc. */ #ifndef _SS_SIDTAB_H_ #define _SS_SIDTAB_H_ #include <linux/spinlock_types.h> #include <linux/log2.h> #include <linux/hashtable.h> #include "context.h" struct sidtab_entry { u32 sid; u32 hash; struct context context; #if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0 struct sidtab_str_cache __rcu *cache; #endif struct hlist_node list; }; union sidtab_entry_inner { struct sidtab_node_inner *ptr_inner; struct sidtab_node_leaf *ptr_leaf; }; /* align node size to page boundary */ #define SIDTAB_NODE_ALLOC_SHIFT PAGE_SHIFT #define SIDTAB_NODE_ALLOC_SIZE PAGE_SIZE #define size_to_shift(size) ((size) == 1 ? 1 : (const_ilog2((size) - 1) + 1)) #define SIDTAB_INNER_SHIFT \ (SIDTAB_NODE_ALLOC_SHIFT - size_to_shift(sizeof(union sidtab_entry_inner))) #define SIDTAB_INNER_ENTRIES ((size_t)1 << SIDTAB_INNER_SHIFT) #define SIDTAB_LEAF_ENTRIES \ (SIDTAB_NODE_ALLOC_SIZE / sizeof(struct sidtab_entry)) #define SIDTAB_MAX_BITS 32 #define SIDTAB_MAX U32_MAX /* ensure enough tree levels for SIDTAB_MAX entries */ #define SIDTAB_MAX_LEVEL \ DIV_ROUND_UP(SIDTAB_MAX_BITS - size_to_shift(SIDTAB_LEAF_ENTRIES), \ SIDTAB_INNER_SHIFT) struct sidtab_node_leaf { struct sidtab_entry entries[SIDTAB_LEAF_ENTRIES]; }; struct sidtab_node_inner { union sidtab_entry_inner entries[SIDTAB_INNER_ENTRIES]; }; struct sidtab_isid_entry { int set; struct sidtab_entry entry; }; struct sidtab_convert_params { int (*func)(struct context *oldc, struct context *newc, void *args); void *args; struct sidtab *target; }; #define SIDTAB_HASH_BITS CONFIG_SECURITY_SELINUX_SIDTAB_HASH_BITS #define SIDTAB_HASH_BUCKETS (1 << SIDTAB_HASH_BITS) struct sidtab { /* * lock-free read access only for as many items as a prior read of * 'count' */ union sidtab_entry_inner roots[SIDTAB_MAX_LEVEL + 1]; /* * access atomically via {READ|WRITE}_ONCE(); only increment under * spinlock */ u32 count; /* access only under spinlock */ struct sidtab_convert_params *convert; bool frozen; spinlock_t lock; #if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0 /* SID -> context string cache */ u32 cache_free_slots; struct list_head cache_lru_list; spinlock_t cache_lock; #endif /* index == SID - 1 (no entry for SECSID_NULL) */ struct sidtab_isid_entry isids[SECINITSID_NUM]; /* Hash table for fast reverse context-to-sid lookups. */ DECLARE_HASHTABLE(context_to_sid, SIDTAB_HASH_BITS); }; int sidtab_init(struct sidtab *s); int sidtab_set_initial(struct sidtab *s, u32 sid, struct context *context); struct sidtab_entry *sidtab_search_entry(struct sidtab *s, u32 sid); struct sidtab_entry *sidtab_search_entry_force(struct sidtab *s, u32 sid); static inline struct context *sidtab_search(struct sidtab *s, u32 sid) { struct sidtab_entry *entry = sidtab_search_entry(s, sid); return entry ? &entry->context : NULL; } static inline struct context *sidtab_search_force(struct sidtab *s, u32 sid) { struct sidtab_entry *entry = sidtab_search_entry_force(s, sid); return entry ? &entry->context : NULL; } int sidtab_convert(struct sidtab *s, struct sidtab_convert_params *params); void sidtab_cancel_convert(struct sidtab *s); void sidtab_freeze_begin(struct sidtab *s, unsigned long *flags) __acquires(&s->lock); void sidtab_freeze_end(struct sidtab *s, unsigned long *flags) __releases(&s->lock); int sidtab_context_to_sid(struct sidtab *s, struct context *context, u32 *sid); void sidtab_destroy(struct sidtab *s); int sidtab_hash_stats(struct sidtab *sidtab, char *page); #if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0 void sidtab_sid2str_put(struct sidtab *s, struct sidtab_entry *entry, const char *str, u32 str_len); int sidtab_sid2str_get(struct sidtab *s, struct sidtab_entry *entry, char **out, u32 *out_len); #else static inline void sidtab_sid2str_put(struct sidtab *s, struct sidtab_entry *entry, const char *str, u32 str_len) { } static inline int sidtab_sid2str_get(struct sidtab *s, struct sidtab_entry *entry, char **out, u32 *out_len) { return -ENOENT; } #endif /* CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0 */ #endif /* _SS_SIDTAB_H_ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_MIN_HEAP_H #define _LINUX_MIN_HEAP_H #include <linux/bug.h> #include <linux/string.h> #include <linux/types.h> /** * struct min_heap - Data structure to hold a min-heap. * @data: Start of array holding the heap elements. * @nr: Number of elements currently in the heap. * @size: Maximum number of elements that can be held in current storage. */ struct min_heap { void *data; int nr; int size; }; /** * struct min_heap_callbacks - Data/functions to customise the min_heap. * @elem_size: The nr of each element in bytes. * @less: Partial order function for this heap. * @swp: Swap elements function. */ struct min_heap_callbacks { int elem_size; bool (*less)(const void *lhs, const void *rhs); void (*swp)(void *lhs, void *rhs); }; /* Sift the element at pos down the heap. */ static __always_inline void min_heapify(struct min_heap *heap, int pos, const struct min_heap_callbacks *func) { void *left, *right, *parent, *smallest; void *data = heap->data; for (;;) { if (pos * 2 + 1 >= heap->nr) break; left = data + ((pos * 2 + 1) * func->elem_size); parent = data + (pos * func->elem_size); smallest = parent; if (func->less(left, smallest)) smallest = left; if (pos * 2 + 2 < heap->nr) { right = data + ((pos * 2 + 2) * func->elem_size); if (func->less(right, smallest)) smallest = right; } if (smallest == parent) break; func->swp(smallest, parent); if (smallest == left) pos = (pos * 2) + 1; else pos = (pos * 2) + 2; } } /* Floyd's approach to heapification that is O(nr). */ static __always_inline void min_heapify_all(struct min_heap *heap, const struct min_heap_callbacks *func) { int i; for (i = heap->nr / 2; i >= 0; i--) min_heapify(heap, i, func); } /* Remove minimum element from the heap, O(log2(nr)). */ static __always_inline void min_heap_pop(struct min_heap *heap, const struct min_heap_callbacks *func) { void *data = heap->data; if (WARN_ONCE(heap->nr <= 0, "Popping an empty heap")) return; /* Place last element at the root (position 0) and then sift down. */ heap->nr--; memcpy(data, data + (heap->nr * func->elem_size), func->elem_size); min_heapify(heap, 0, func); } /* * Remove the minimum element and then push the given element. The * implementation performs 1 sift (O(log2(nr))) and is therefore more * efficient than a pop followed by a push that does 2. */ static __always_inline void min_heap_pop_push(struct min_heap *heap, const void *element, const struct min_heap_callbacks *func) { memcpy(heap->data, element, func->elem_size); min_heapify(heap, 0, func); } /* Push an element on to the heap, O(log2(nr)). */ static __always_inline void min_heap_push(struct min_heap *heap, const void *element, const struct min_heap_callbacks *func) { void *data = heap->data; void *child, *parent; int pos; if (WARN_ONCE(heap->nr >= heap->size, "Pushing on a full heap")) return; /* Place at the end of data. */ pos = heap->nr; memcpy(data + (pos * func->elem_size), element, func->elem_size); heap->nr++; /* Sift child at pos up. */ for (; pos > 0; pos = (pos - 1) / 2) { child = data + (pos * func->elem_size); parent = data + ((pos - 1) / 2) * func->elem_size; if (func->less(parent, child)) break; func->swp(parent, child); } } #endif /* _LINUX_MIN_HEAP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * acpi.h - ACPI Interface * * Copyright (C) 2001 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> */ #ifndef _LINUX_ACPI_H #define _LINUX_ACPI_H #include <linux/errno.h> #include <linux/ioport.h> /* for struct resource */ #include <linux/irqdomain.h> #include <linux/resource_ext.h> #include <linux/device.h> #include <linux/property.h> #include <linux/uuid.h> #ifndef _LINUX #define _LINUX #endif #include <acpi/acpi.h> #ifdef CONFIG_ACPI #include <linux/list.h> #include <linux/mod_devicetable.h> #include <linux/dynamic_debug.h> #include <linux/module.h> #include <linux/mutex.h> #include <acpi/acpi_bus.h> #include <acpi/acpi_drivers.h> #include <acpi/acpi_numa.h> #include <acpi/acpi_io.h> #include <asm/acpi.h> static inline acpi_handle acpi_device_handle(struct acpi_device *adev) { return adev ? adev->handle : NULL; } #define ACPI_COMPANION(dev) to_acpi_device_node((dev)->fwnode) #define ACPI_COMPANION_SET(dev, adev) set_primary_fwnode(dev, (adev) ? \ acpi_fwnode_handle(adev) : NULL) #define ACPI_HANDLE(dev) acpi_device_handle(ACPI_COMPANION(dev)) #define ACPI_HANDLE_FWNODE(fwnode) \ acpi_device_handle(to_acpi_device_node(fwnode)) static inline struct fwnode_handle *acpi_alloc_fwnode_static(void) { struct fwnode_handle *fwnode; fwnode = kzalloc(sizeof(struct fwnode_handle), GFP_KERNEL); if (!fwnode) return NULL; fwnode->ops = &acpi_static_fwnode_ops; return fwnode; } static inline void acpi_free_fwnode_static(struct fwnode_handle *fwnode) { if (WARN_ON(!is_acpi_static_node(fwnode))) return; kfree(fwnode); } /** * ACPI_DEVICE_CLASS - macro used to describe an ACPI device with * the PCI-defined class-code information * * @_cls : the class, subclass, prog-if triple for this device * @_msk : the class mask for this device * * This macro is used to create a struct acpi_device_id that matches a * specific PCI class. The .id and .driver_data fields will be left * initialized with the default value. */ #define ACPI_DEVICE_CLASS(_cls, _msk) .cls = (_cls), .cls_msk = (_msk), static inline bool has_acpi_companion(struct device *dev) { return is_acpi_device_node(dev->fwnode); } static inline void acpi_preset_companion(struct device *dev, struct acpi_device *parent, u64 addr) { ACPI_COMPANION_SET(dev, acpi_find_child_device(parent, addr, false)); } static inline const char *acpi_dev_name(struct acpi_device *adev) { return dev_name(&adev->dev); } struct device *acpi_get_first_physical_node(struct acpi_device *adev); enum acpi_irq_model_id { ACPI_IRQ_MODEL_PIC = 0, ACPI_IRQ_MODEL_IOAPIC, ACPI_IRQ_MODEL_IOSAPIC, ACPI_IRQ_MODEL_PLATFORM, ACPI_IRQ_MODEL_GIC, ACPI_IRQ_MODEL_COUNT }; extern enum acpi_irq_model_id acpi_irq_model; enum acpi_interrupt_id { ACPI_INTERRUPT_PMI = 1, ACPI_INTERRUPT_INIT, ACPI_INTERRUPT_CPEI, ACPI_INTERRUPT_COUNT }; #define ACPI_SPACE_MEM 0 enum acpi_address_range_id { ACPI_ADDRESS_RANGE_MEMORY = 1, ACPI_ADDRESS_RANGE_RESERVED = 2, ACPI_ADDRESS_RANGE_ACPI = 3, ACPI_ADDRESS_RANGE_NVS = 4, ACPI_ADDRESS_RANGE_COUNT }; /* Table Handlers */ union acpi_subtable_headers { struct acpi_subtable_header common; struct acpi_hmat_structure hmat; }; typedef int (*acpi_tbl_table_handler)(struct acpi_table_header *table); typedef int (*acpi_tbl_entry_handler)(union acpi_subtable_headers *header, const unsigned long end); /* Debugger support */ struct acpi_debugger_ops { int (*create_thread)(acpi_osd_exec_callback function, void *context); ssize_t (*write_log)(const char *msg); ssize_t (*read_cmd)(char *buffer, size_t length); int (*wait_command_ready)(bool single_step, char *buffer, size_t length); int (*notify_command_complete)(void); }; struct acpi_debugger { const struct acpi_debugger_ops *ops; struct module *owner; struct mutex lock; }; #ifdef CONFIG_ACPI_DEBUGGER int __init acpi_debugger_init(void); int acpi_register_debugger(struct module *owner, const struct acpi_debugger_ops *ops); void acpi_unregister_debugger(const struct acpi_debugger_ops *ops); int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context); ssize_t acpi_debugger_write_log(const char *msg); ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length); int acpi_debugger_wait_command_ready(void); int acpi_debugger_notify_command_complete(void); #else static inline int acpi_debugger_init(void) { return -ENODEV; } static inline int acpi_register_debugger(struct module *owner, const struct acpi_debugger_ops *ops) { return -ENODEV; } static inline void acpi_unregister_debugger(const struct acpi_debugger_ops *ops) { } static inline int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context) { return -ENODEV; } static inline int acpi_debugger_write_log(const char *msg) { return -ENODEV; } static inline int acpi_debugger_read_cmd(char *buffer, u32 buffer_length) { return -ENODEV; } static inline int acpi_debugger_wait_command_ready(void) { return -ENODEV; } static inline int acpi_debugger_notify_command_complete(void) { return -ENODEV; } #endif #define BAD_MADT_ENTRY(entry, end) ( \ (!entry) || (unsigned long)entry + sizeof(*entry) > end || \ ((struct acpi_subtable_header *)entry)->length < sizeof(*entry)) struct acpi_subtable_proc { int id; acpi_tbl_entry_handler handler; int count; }; void __iomem *__acpi_map_table(unsigned long phys, unsigned long size); void __acpi_unmap_table(void __iomem *map, unsigned long size); int early_acpi_boot_init(void); int acpi_boot_init (void); void acpi_boot_table_prepare (void); void acpi_boot_table_init (void); int acpi_mps_check (void); int acpi_numa_init (void); int acpi_locate_initial_tables (void); void acpi_reserve_initial_tables (void); void acpi_table_init_complete (void); int acpi_table_init (void); int acpi_table_parse(char *id, acpi_tbl_table_handler handler); int __init acpi_table_parse_entries(char *id, unsigned long table_size, int entry_id, acpi_tbl_entry_handler handler, unsigned int max_entries); int __init acpi_table_parse_entries_array(char *id, unsigned long table_size, struct acpi_subtable_proc *proc, int proc_num, unsigned int max_entries); int acpi_table_parse_madt(enum acpi_madt_type id, acpi_tbl_entry_handler handler, unsigned int max_entries); int acpi_parse_mcfg (struct acpi_table_header *header); void acpi_table_print_madt_entry (struct acpi_subtable_header *madt); /* the following numa functions are architecture-dependent */ void acpi_numa_slit_init (struct acpi_table_slit *slit); #if defined(CONFIG_X86) || defined(CONFIG_IA64) void acpi_numa_processor_affinity_init (struct acpi_srat_cpu_affinity *pa); #else static inline void acpi_numa_processor_affinity_init(struct acpi_srat_cpu_affinity *pa) { } #endif void acpi_numa_x2apic_affinity_init(struct acpi_srat_x2apic_cpu_affinity *pa); #ifdef CONFIG_ARM64 void acpi_numa_gicc_affinity_init(struct acpi_srat_gicc_affinity *pa); #else static inline void acpi_numa_gicc_affinity_init(struct acpi_srat_gicc_affinity *pa) { } #endif int acpi_numa_memory_affinity_init (struct acpi_srat_mem_affinity *ma); #ifndef PHYS_CPUID_INVALID typedef u32 phys_cpuid_t; #define PHYS_CPUID_INVALID (phys_cpuid_t)(-1) #endif static inline bool invalid_logical_cpuid(u32 cpuid) { return (int)cpuid < 0; } static inline bool invalid_phys_cpuid(phys_cpuid_t phys_id) { return phys_id == PHYS_CPUID_INVALID; } /* Validate the processor object's proc_id */ bool acpi_duplicate_processor_id(int proc_id); /* Processor _CTS control */ struct acpi_processor_power; #ifdef CONFIG_ACPI_PROCESSOR_CSTATE bool acpi_processor_claim_cst_control(void); int acpi_processor_evaluate_cst(acpi_handle handle, u32 cpu, struct acpi_processor_power *info); #else static inline bool acpi_processor_claim_cst_control(void) { return false; } static inline int acpi_processor_evaluate_cst(acpi_handle handle, u32 cpu, struct acpi_processor_power *info) { return -ENODEV; } #endif #ifdef CONFIG_ACPI_HOTPLUG_CPU /* Arch dependent functions for cpu hotplug support */ int acpi_map_cpu(acpi_handle handle, phys_cpuid_t physid, u32 acpi_id, int *pcpu); int acpi_unmap_cpu(int cpu); #endif /* CONFIG_ACPI_HOTPLUG_CPU */ #ifdef CONFIG_ACPI_HOTPLUG_IOAPIC int acpi_get_ioapic_id(acpi_handle handle, u32 gsi_base, u64 *phys_addr); #endif int acpi_register_ioapic(acpi_handle handle, u64 phys_addr, u32 gsi_base); int acpi_unregister_ioapic(acpi_handle handle, u32 gsi_base); int acpi_ioapic_registered(acpi_handle handle, u32 gsi_base); void acpi_irq_stats_init(void); extern u32 acpi_irq_handled; extern u32 acpi_irq_not_handled; extern unsigned int acpi_sci_irq; extern bool acpi_no_s5; #define INVALID_ACPI_IRQ ((unsigned)-1) static inline bool acpi_sci_irq_valid(void) { return acpi_sci_irq != INVALID_ACPI_IRQ; } extern int sbf_port; extern unsigned long acpi_realmode_flags; int acpi_register_gsi (struct device *dev, u32 gsi, int triggering, int polarity); int acpi_gsi_to_irq (u32 gsi, unsigned int *irq); int acpi_isa_irq_to_gsi (unsigned isa_irq, u32 *gsi); void acpi_set_irq_model(enum acpi_irq_model_id model, struct fwnode_handle *fwnode); struct irq_domain *acpi_irq_create_hierarchy(unsigned int flags, unsigned int size, struct fwnode_handle *fwnode, const struct irq_domain_ops *ops, void *host_data); #ifdef CONFIG_X86_IO_APIC extern int acpi_get_override_irq(u32 gsi, int *trigger, int *polarity); #else static inline int acpi_get_override_irq(u32 gsi, int *trigger, int *polarity) { return -1; } #endif /* * This function undoes the effect of one call to acpi_register_gsi(). * If this matches the last registration, any IRQ resources for gsi * are freed. */ void acpi_unregister_gsi (u32 gsi); struct pci_dev; int acpi_pci_irq_enable (struct pci_dev *dev); void acpi_penalize_isa_irq(int irq, int active); bool acpi_isa_irq_available(int irq); #ifdef CONFIG_PCI void acpi_penalize_sci_irq(int irq, int trigger, int polarity); #else static inline void acpi_penalize_sci_irq(int irq, int trigger, int polarity) { } #endif void acpi_pci_irq_disable (struct pci_dev *dev); extern int ec_read(u8 addr, u8 *val); extern int ec_write(u8 addr, u8 val); extern int ec_transaction(u8 command, const u8 *wdata, unsigned wdata_len, u8 *rdata, unsigned rdata_len); extern acpi_handle ec_get_handle(void); extern bool acpi_is_pnp_device(struct acpi_device *); #if defined(CONFIG_ACPI_WMI) || defined(CONFIG_ACPI_WMI_MODULE) typedef void (*wmi_notify_handler) (u32 value, void *context); extern acpi_status wmi_evaluate_method(const char *guid, u8 instance, u32 method_id, const struct acpi_buffer *in, struct acpi_buffer *out); extern acpi_status wmi_query_block(const char *guid, u8 instance, struct acpi_buffer *out); extern acpi_status wmi_set_block(const char *guid, u8 instance, const struct acpi_buffer *in); extern acpi_status wmi_install_notify_handler(const char *guid, wmi_notify_handler handler, void *data); extern acpi_status wmi_remove_notify_handler(const char *guid); extern acpi_status wmi_get_event_data(u32 event, struct acpi_buffer *out); extern bool wmi_has_guid(const char *guid); extern char *wmi_get_acpi_device_uid(const char *guid); #endif /* CONFIG_ACPI_WMI */ #define ACPI_VIDEO_OUTPUT_SWITCHING 0x0001 #define ACPI_VIDEO_DEVICE_POSTING 0x0002 #define ACPI_VIDEO_ROM_AVAILABLE 0x0004 #define ACPI_VIDEO_BACKLIGHT 0x0008 #define ACPI_VIDEO_BACKLIGHT_FORCE_VENDOR 0x0010 #define ACPI_VIDEO_BACKLIGHT_FORCE_VIDEO 0x0020 #define ACPI_VIDEO_OUTPUT_SWITCHING_FORCE_VENDOR 0x0040 #define ACPI_VIDEO_OUTPUT_SWITCHING_FORCE_VIDEO 0x0080 #define ACPI_VIDEO_BACKLIGHT_DMI_VENDOR 0x0100 #define ACPI_VIDEO_BACKLIGHT_DMI_VIDEO 0x0200 #define ACPI_VIDEO_OUTPUT_SWITCHING_DMI_VENDOR 0x0400 #define ACPI_VIDEO_OUTPUT_SWITCHING_DMI_VIDEO 0x0800 extern char acpi_video_backlight_string[]; extern long acpi_is_video_device(acpi_handle handle); extern int acpi_blacklisted(void); extern void acpi_osi_setup(char *str); extern bool acpi_osi_is_win8(void); #ifdef CONFIG_ACPI_NUMA int acpi_map_pxm_to_node(int pxm); int acpi_get_node(acpi_handle handle); /** * pxm_to_online_node - Map proximity ID to online node * @pxm: ACPI proximity ID * * This is similar to pxm_to_node(), but always returns an online * node. When the mapped node from a given proximity ID is offline, it * looks up the node distance table and returns the nearest online node. * * ACPI device drivers, which are called after the NUMA initialization has * completed in the kernel, can call this interface to obtain their device * NUMA topology from ACPI tables. Such drivers do not have to deal with * offline nodes. A node may be offline when SRAT memory entry does not exist, * or NUMA is disabled, ex. "numa=off" on x86. */ static inline int pxm_to_online_node(int pxm) { int node = pxm_to_node(pxm); return numa_map_to_online_node(node); } #else static inline int pxm_to_online_node(int pxm) { return 0; } static inline int acpi_map_pxm_to_node(int pxm) { return 0; } static inline int acpi_get_node(acpi_handle handle) { return 0; } #endif extern int acpi_paddr_to_node(u64 start_addr, u64 size); extern int pnpacpi_disabled; #define PXM_INVAL (-1) bool acpi_dev_resource_memory(struct acpi_resource *ares, struct resource *res); bool acpi_dev_resource_io(struct acpi_resource *ares, struct resource *res); bool acpi_dev_resource_address_space(struct acpi_resource *ares, struct resource_win *win); bool acpi_dev_resource_ext_address_space(struct acpi_resource *ares, struct resource_win *win); unsigned long acpi_dev_irq_flags(u8 triggering, u8 polarity, u8 shareable); unsigned int acpi_dev_get_irq_type(int triggering, int polarity); bool acpi_dev_resource_interrupt(struct acpi_resource *ares, int index, struct resource *res); void acpi_dev_free_resource_list(struct list_head *list); int acpi_dev_get_resources(struct acpi_device *adev, struct list_head *list, int (*preproc)(struct acpi_resource *, void *), void *preproc_data); int acpi_dev_get_dma_resources(struct acpi_device *adev, struct list_head *list); int acpi_dev_filter_resource_type(struct acpi_resource *ares, unsigned long types); static inline int acpi_dev_filter_resource_type_cb(struct acpi_resource *ares, void *arg) { return acpi_dev_filter_resource_type(ares, (unsigned long)arg); } struct acpi_device *acpi_resource_consumer(struct resource *res); int acpi_check_resource_conflict(const struct resource *res); int acpi_check_region(resource_size_t start, resource_size_t n, const char *name); acpi_status acpi_release_memory(acpi_handle handle, struct resource *res, u32 level); int acpi_resources_are_enforced(void); #ifdef CONFIG_HIBERNATION void __init acpi_no_s4_hw_signature(void); #endif #ifdef CONFIG_PM_SLEEP void __init acpi_old_suspend_ordering(void); void __init acpi_nvs_nosave(void); void __init acpi_nvs_nosave_s3(void); void __init acpi_sleep_no_blacklist(void); #endif /* CONFIG_PM_SLEEP */ int acpi_register_wakeup_handler( int wake_irq, bool (*wakeup)(void *context), void *context); void acpi_unregister_wakeup_handler( bool (*wakeup)(void *context), void *context); struct acpi_osc_context { char *uuid_str; /* UUID string */ int rev; struct acpi_buffer cap; /* list of DWORD capabilities */ struct acpi_buffer ret; /* free by caller if success */ }; acpi_status acpi_run_osc(acpi_handle handle, struct acpi_osc_context *context); /* Indexes into _OSC Capabilities Buffer (DWORDs 2 & 3 are device-specific) */ #define OSC_QUERY_DWORD 0 /* DWORD 1 */ #define OSC_SUPPORT_DWORD 1 /* DWORD 2 */ #define OSC_CONTROL_DWORD 2 /* DWORD 3 */ /* _OSC Capabilities DWORD 1: Query/Control and Error Returns (generic) */ #define OSC_QUERY_ENABLE 0x00000001 /* input */ #define OSC_REQUEST_ERROR 0x00000002 /* return */ #define OSC_INVALID_UUID_ERROR 0x00000004 /* return */ #define OSC_INVALID_REVISION_ERROR 0x00000008 /* return */ #define OSC_CAPABILITIES_MASK_ERROR 0x00000010 /* return */ /* Platform-Wide Capabilities _OSC: Capabilities DWORD 2: Support Field */ #define OSC_SB_PAD_SUPPORT 0x00000001 #define OSC_SB_PPC_OST_SUPPORT 0x00000002 #define OSC_SB_PR3_SUPPORT 0x00000004 #define OSC_SB_HOTPLUG_OST_SUPPORT 0x00000008 #define OSC_SB_APEI_SUPPORT 0x00000010 #define OSC_SB_CPC_SUPPORT 0x00000020 #define OSC_SB_CPCV2_SUPPORT 0x00000040 #define OSC_SB_PCLPI_SUPPORT 0x00000080 #define OSC_SB_OSLPI_SUPPORT 0x00000100 #define OSC_SB_CPC_DIVERSE_HIGH_SUPPORT 0x00001000 #define OSC_SB_GENERIC_INITIATOR_SUPPORT 0x00002000 extern bool osc_sb_apei_support_acked; extern bool osc_pc_lpi_support_confirmed; /* PCI Host Bridge _OSC: Capabilities DWORD 2: Support Field */ #define OSC_PCI_EXT_CONFIG_SUPPORT 0x00000001 #define OSC_PCI_ASPM_SUPPORT 0x00000002 #define OSC_PCI_CLOCK_PM_SUPPORT 0x00000004 #define OSC_PCI_SEGMENT_GROUPS_SUPPORT 0x00000008 #define OSC_PCI_MSI_SUPPORT 0x00000010 #define OSC_PCI_EDR_SUPPORT 0x00000080 #define OSC_PCI_HPX_TYPE_3_SUPPORT 0x00000100 #define OSC_PCI_SUPPORT_MASKS 0x0000019f /* PCI Host Bridge _OSC: Capabilities DWORD 3: Control Field */ #define OSC_PCI_EXPRESS_NATIVE_HP_CONTROL 0x00000001 #define OSC_PCI_SHPC_NATIVE_HP_CONTROL 0x00000002 #define OSC_PCI_EXPRESS_PME_CONTROL 0x00000004 #define OSC_PCI_EXPRESS_AER_CONTROL 0x00000008 #define OSC_PCI_EXPRESS_CAPABILITY_CONTROL 0x00000010 #define OSC_PCI_EXPRESS_LTR_CONTROL 0x00000020 #define OSC_PCI_EXPRESS_DPC_CONTROL 0x00000080 #define OSC_PCI_CONTROL_MASKS 0x000000bf #define ACPI_GSB_ACCESS_ATTRIB_QUICK 0x00000002 #define ACPI_GSB_ACCESS_ATTRIB_SEND_RCV 0x00000004 #define ACPI_GSB_ACCESS_ATTRIB_BYTE 0x00000006 #define ACPI_GSB_ACCESS_ATTRIB_WORD 0x00000008 #define ACPI_GSB_ACCESS_ATTRIB_BLOCK 0x0000000A #define ACPI_GSB_ACCESS_ATTRIB_MULTIBYTE 0x0000000B #define ACPI_GSB_ACCESS_ATTRIB_WORD_CALL 0x0000000C #define ACPI_GSB_ACCESS_ATTRIB_BLOCK_CALL 0x0000000D #define ACPI_GSB_ACCESS_ATTRIB_RAW_BYTES 0x0000000E #define ACPI_GSB_ACCESS_ATTRIB_RAW_PROCESS 0x0000000F extern acpi_status acpi_pci_osc_control_set(acpi_handle handle, u32 *mask, u32 req); /* Enable _OST when all relevant hotplug operations are enabled */ #if defined(CONFIG_ACPI_HOTPLUG_CPU) && \ defined(CONFIG_ACPI_HOTPLUG_MEMORY) && \ defined(CONFIG_ACPI_CONTAINER) #define ACPI_HOTPLUG_OST #endif /* _OST Source Event Code (OSPM Action) */ #define ACPI_OST_EC_OSPM_SHUTDOWN 0x100 #define ACPI_OST_EC_OSPM_EJECT 0x103 #define ACPI_OST_EC_OSPM_INSERTION 0x200 /* _OST General Processing Status Code */ #define ACPI_OST_SC_SUCCESS 0x0 #define ACPI_OST_SC_NON_SPECIFIC_FAILURE 0x1 #define ACPI_OST_SC_UNRECOGNIZED_NOTIFY 0x2 /* _OST OS Shutdown Processing (0x100) Status Code */ #define ACPI_OST_SC_OS_SHUTDOWN_DENIED 0x80 #define ACPI_OST_SC_OS_SHUTDOWN_IN_PROGRESS 0x81 #define ACPI_OST_SC_OS_SHUTDOWN_COMPLETED 0x82 #define ACPI_OST_SC_OS_SHUTDOWN_NOT_SUPPORTED 0x83 /* _OST Ejection Request (0x3, 0x103) Status Code */ #define ACPI_OST_SC_EJECT_NOT_SUPPORTED 0x80 #define ACPI_OST_SC_DEVICE_IN_USE 0x81 #define ACPI_OST_SC_DEVICE_BUSY 0x82 #define ACPI_OST_SC_EJECT_DEPENDENCY_BUSY 0x83 #define ACPI_OST_SC_EJECT_IN_PROGRESS 0x84 /* _OST Insertion Request (0x200) Status Code */ #define ACPI_OST_SC_INSERT_IN_PROGRESS 0x80 #define ACPI_OST_SC_DRIVER_LOAD_FAILURE 0x81 #define ACPI_OST_SC_INSERT_NOT_SUPPORTED 0x82 enum acpi_predicate { all_versions, less_than_or_equal, equal, greater_than_or_equal, }; /* Table must be terminted by a NULL entry */ struct acpi_platform_list { char oem_id[ACPI_OEM_ID_SIZE+1]; char oem_table_id[ACPI_OEM_TABLE_ID_SIZE+1]; u32 oem_revision; char *table; enum acpi_predicate pred; char *reason; u32 data; }; int acpi_match_platform_list(const struct acpi_platform_list *plat); extern void acpi_early_init(void); extern void acpi_subsystem_init(void); extern void arch_post_acpi_subsys_init(void); extern int acpi_nvs_register(__u64 start, __u64 size); extern int acpi_nvs_for_each_region(int (*func)(__u64, __u64, void *), void *data); const struct acpi_device_id *acpi_match_device(const struct acpi_device_id *ids, const struct device *dev); const void *acpi_device_get_match_data(const struct device *dev); extern bool acpi_driver_match_device(struct device *dev, const struct device_driver *drv); int acpi_device_uevent_modalias(struct device *, struct kobj_uevent_env *); int acpi_device_modalias(struct device *, char *, int); void acpi_walk_dep_device_list(acpi_handle handle); struct platform_device *acpi_create_platform_device(struct acpi_device *, struct property_entry *); #define ACPI_PTR(_ptr) (_ptr) static inline void acpi_device_set_enumerated(struct acpi_device *adev) { adev->flags.visited = true; } static inline void acpi_device_clear_enumerated(struct acpi_device *adev) { adev->flags.visited = false; } enum acpi_reconfig_event { ACPI_RECONFIG_DEVICE_ADD = 0, ACPI_RECONFIG_DEVICE_REMOVE, }; int acpi_reconfig_notifier_register(struct notifier_block *nb); int acpi_reconfig_notifier_unregister(struct notifier_block *nb); #ifdef CONFIG_ACPI_GTDT int acpi_gtdt_init(struct acpi_table_header *table, int *platform_timer_count); int acpi_gtdt_map_ppi(int type); bool acpi_gtdt_c3stop(int type); int acpi_arch_timer_mem_init(struct arch_timer_mem *timer_mem, int *timer_count); #endif #ifndef ACPI_HAVE_ARCH_SET_ROOT_POINTER static inline void acpi_arch_set_root_pointer(u64 addr) { } #endif #ifndef ACPI_HAVE_ARCH_GET_ROOT_POINTER static inline u64 acpi_arch_get_root_pointer(void) { return 0; } #endif #else /* !CONFIG_ACPI */ #define acpi_disabled 1 #define ACPI_COMPANION(dev) (NULL) #define ACPI_COMPANION_SET(dev, adev) do { } while (0) #define ACPI_HANDLE(dev) (NULL) #define ACPI_HANDLE_FWNODE(fwnode) (NULL) #define ACPI_DEVICE_CLASS(_cls, _msk) .cls = (0), .cls_msk = (0), #include <acpi/acpi_numa.h> struct fwnode_handle; static inline bool acpi_dev_found(const char *hid) { return false; } static inline bool acpi_dev_present(const char *hid, const char *uid, s64 hrv) { return false; } struct acpi_device; static inline bool acpi_dev_hid_uid_match(struct acpi_device *adev, const char *hid2, const char *uid2) { return false; } static inline struct acpi_device * acpi_dev_get_first_match_dev(const char *hid, const char *uid, s64 hrv) { return NULL; } static inline void acpi_dev_put(struct acpi_device *adev) {} static inline bool is_acpi_node(struct fwnode_handle *fwnode) { return false; } static inline bool is_acpi_device_node(struct fwnode_handle *fwnode) { return false; } static inline struct acpi_device *to_acpi_device_node(struct fwnode_handle *fwnode) { return NULL; } static inline bool is_acpi_data_node(struct fwnode_handle *fwnode) { return false; } static inline struct acpi_data_node *to_acpi_data_node(struct fwnode_handle *fwnode) { return NULL; } static inline bool acpi_data_node_match(struct fwnode_handle *fwnode, const char *name) { return false; } static inline struct fwnode_handle *acpi_fwnode_handle(struct acpi_device *adev) { return NULL; } static inline bool has_acpi_companion(struct device *dev) { return false; } static inline void acpi_preset_companion(struct device *dev, struct acpi_device *parent, u64 addr) { } static inline const char *acpi_dev_name(struct acpi_device *adev) { return NULL; } static inline struct device *acpi_get_first_physical_node(struct acpi_device *adev) { return NULL; } static inline void acpi_early_init(void) { } static inline void acpi_subsystem_init(void) { } static inline int early_acpi_boot_init(void) { return 0; } static inline int acpi_boot_init(void) { return 0; } static inline void acpi_boot_table_prepare(void) { } static inline void acpi_boot_table_init(void) { } static inline int acpi_mps_check(void) { return 0; } static inline int acpi_check_resource_conflict(struct resource *res) { return 0; } static inline int acpi_check_region(resource_size_t start, resource_size_t n, const char *name) { return 0; } struct acpi_table_header; static inline int acpi_table_parse(char *id, int (*handler)(struct acpi_table_header *)) { return -ENODEV; } static inline int acpi_nvs_register(__u64 start, __u64 size) { return 0; } static inline int acpi_nvs_for_each_region(int (*func)(__u64, __u64, void *), void *data) { return 0; } struct acpi_device_id; static inline const struct acpi_device_id *acpi_match_device( const struct acpi_device_id *ids, const struct device *dev) { return NULL; } static inline const void *acpi_device_get_match_data(const struct device *dev) { return NULL; } static inline bool acpi_driver_match_device(struct device *dev, const struct device_driver *drv) { return false; } static inline union acpi_object *acpi_evaluate_dsm(acpi_handle handle, const guid_t *guid, u64 rev, u64 func, union acpi_object *argv4) { return NULL; } static inline int acpi_device_uevent_modalias(struct device *dev, struct kobj_uevent_env *env) { return -ENODEV; } static inline int acpi_device_modalias(struct device *dev, char *buf, int size) { return -ENODEV; } static inline struct platform_device * acpi_create_platform_device(struct acpi_device *adev, struct property_entry *properties) { return NULL; } static inline bool acpi_dma_supported(struct acpi_device *adev) { return false; } static inline enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev) { return DEV_DMA_NOT_SUPPORTED; } static inline int acpi_dma_get_range(struct device *dev, u64 *dma_addr, u64 *offset, u64 *size) { return -ENODEV; } static inline int acpi_dma_configure(struct device *dev, enum dev_dma_attr attr) { return 0; } static inline int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr, const u32 *input_id) { return 0; } #define ACPI_PTR(_ptr) (NULL) static inline void acpi_device_set_enumerated(struct acpi_device *adev) { } static inline void acpi_device_clear_enumerated(struct acpi_device *adev) { } static inline int acpi_reconfig_notifier_register(struct notifier_block *nb) { return -EINVAL; } static inline int acpi_reconfig_notifier_unregister(struct notifier_block *nb) { return -EINVAL; } static inline struct acpi_device *acpi_resource_consumer(struct resource *res) { return NULL; } static inline int acpi_register_wakeup_handler(int wake_irq, bool (*wakeup)(void *context), void *context) { return -ENXIO; } static inline void acpi_unregister_wakeup_handler( bool (*wakeup)(void *context), void *context) { } #endif /* !CONFIG_ACPI */ #ifdef CONFIG_ACPI_HOTPLUG_IOAPIC int acpi_ioapic_add(acpi_handle root); #else static inline int acpi_ioapic_add(acpi_handle root) { return 0; } #endif #ifdef CONFIG_ACPI void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state, u32 pm1a_ctrl, u32 pm1b_ctrl)); acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control, u32 pm1b_control); void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state, u32 val_a, u32 val_b)); acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a, u32 val_b); #ifndef CONFIG_IA64 void arch_reserve_mem_area(acpi_physical_address addr, size_t size); #else static inline void arch_reserve_mem_area(acpi_physical_address addr, size_t size) { } #endif /* CONFIG_X86 */ #else #define acpi_os_set_prepare_sleep(func, pm1a_ctrl, pm1b_ctrl) do { } while (0) #endif #if defined(CONFIG_ACPI) && defined(CONFIG_PM) int acpi_dev_suspend(struct device *dev, bool wakeup); int acpi_dev_resume(struct device *dev); int acpi_subsys_runtime_suspend(struct device *dev); int acpi_subsys_runtime_resume(struct device *dev); int acpi_dev_pm_attach(struct device *dev, bool power_on); #else static inline int acpi_subsys_runtime_suspend(struct device *dev) { return 0; } static inline int acpi_subsys_runtime_resume(struct device *dev) { return 0; } static inline int acpi_dev_pm_attach(struct device *dev, bool power_on) { return 0; } #endif #if defined(CONFIG_ACPI) && defined(CONFIG_PM_SLEEP) int acpi_subsys_prepare(struct device *dev); void acpi_subsys_complete(struct device *dev); int acpi_subsys_suspend_late(struct device *dev); int acpi_subsys_suspend_noirq(struct device *dev); int acpi_subsys_suspend(struct device *dev); int acpi_subsys_freeze(struct device *dev); int acpi_subsys_poweroff(struct device *dev); void acpi_ec_mark_gpe_for_wake(void); void acpi_ec_set_gpe_wake_mask(u8 action); #else static inline int acpi_subsys_prepare(struct device *dev) { return 0; } static inline void acpi_subsys_complete(struct device *dev) {} static inline int acpi_subsys_suspend_late(struct device *dev) { return 0; } static inline int acpi_subsys_suspend_noirq(struct device *dev) { return 0; } static inline int acpi_subsys_suspend(struct device *dev) { return 0; } static inline int acpi_subsys_freeze(struct device *dev) { return 0; } static inline int acpi_subsys_poweroff(struct device *dev) { return 0; } static inline void acpi_ec_mark_gpe_for_wake(void) {} static inline void acpi_ec_set_gpe_wake_mask(u8 action) {} #endif #ifdef CONFIG_ACPI __printf(3, 4) void acpi_handle_printk(const char *level, acpi_handle handle, const char *fmt, ...); #else /* !CONFIG_ACPI */ static inline __printf(3, 4) void acpi_handle_printk(const char *level, void *handle, const char *fmt, ...) {} #endif /* !CONFIG_ACPI */ #if defined(CONFIG_ACPI) && defined(CONFIG_DYNAMIC_DEBUG) __printf(3, 4) void __acpi_handle_debug(struct _ddebug *descriptor, acpi_handle handle, const char *fmt, ...); #endif /* * acpi_handle_<level>: Print message with ACPI prefix and object path * * These interfaces acquire the global namespace mutex to obtain an object * path. In interrupt context, it shows the object path as <n/a>. */ #define acpi_handle_emerg(handle, fmt, ...) \ acpi_handle_printk(KERN_EMERG, handle, fmt, ##__VA_ARGS__) #define acpi_handle_alert(handle, fmt, ...) \ acpi_handle_printk(KERN_ALERT, handle, fmt, ##__VA_ARGS__) #define acpi_handle_crit(handle, fmt, ...) \ acpi_handle_printk(KERN_CRIT, handle, fmt, ##__VA_ARGS__) #define acpi_handle_err(handle, fmt, ...) \ acpi_handle_printk(KERN_ERR, handle, fmt, ##__VA_ARGS__) #define acpi_handle_warn(handle, fmt, ...) \ acpi_handle_printk(KERN_WARNING, handle, fmt, ##__VA_ARGS__) #define acpi_handle_notice(handle, fmt, ...) \ acpi_handle_printk(KERN_NOTICE, handle, fmt, ##__VA_ARGS__) #define acpi_handle_info(handle, fmt, ...) \ acpi_handle_printk(KERN_INFO, handle, fmt, ##__VA_ARGS__) #if defined(DEBUG) #define acpi_handle_debug(handle, fmt, ...) \ acpi_handle_printk(KERN_DEBUG, handle, fmt, ##__VA_ARGS__) #else #if defined(CONFIG_DYNAMIC_DEBUG) #define acpi_handle_debug(handle, fmt, ...) \ _dynamic_func_call(fmt, __acpi_handle_debug, \ handle, pr_fmt(fmt), ##__VA_ARGS__) #else #define acpi_handle_debug(handle, fmt, ...) \ ({ \ if (0) \ acpi_handle_printk(KERN_DEBUG, handle, fmt, ##__VA_ARGS__); \ 0; \ }) #endif #endif #if defined(CONFIG_ACPI) && defined(CONFIG_GPIOLIB) bool acpi_gpio_get_irq_resource(struct acpi_resource *ares, struct acpi_resource_gpio **agpio); int acpi_dev_gpio_irq_get_by(struct acpi_device *adev, const char *name, int index); #else static inline bool acpi_gpio_get_irq_resource(struct acpi_resource *ares, struct acpi_resource_gpio **agpio) { return false; } static inline int acpi_dev_gpio_irq_get_by(struct acpi_device *adev, const char *name, int index) { return -ENXIO; } #endif static inline int acpi_dev_gpio_irq_get(struct acpi_device *adev, int index) { return acpi_dev_gpio_irq_get_by(adev, NULL, index); } /* Device properties */ #ifdef CONFIG_ACPI int acpi_dev_get_property(const struct acpi_device *adev, const char *name, acpi_object_type type, const union acpi_object **obj); int __acpi_node_get_property_reference(const struct fwnode_handle *fwnode, const char *name, size_t index, size_t num_args, struct fwnode_reference_args *args); static inline int acpi_node_get_property_reference( const struct fwnode_handle *fwnode, const char *name, size_t index, struct fwnode_reference_args *args) { return __acpi_node_get_property_reference(fwnode, name, index, NR_FWNODE_REFERENCE_ARGS, args); } static inline bool acpi_dev_has_props(const struct acpi_device *adev) { return !list_empty(&adev->data.properties); } struct acpi_device_properties * acpi_data_add_props(struct acpi_device_data *data, const guid_t *guid, const union acpi_object *properties); int acpi_node_prop_get(const struct fwnode_handle *fwnode, const char *propname, void **valptr); int acpi_dev_prop_read_single(struct acpi_device *adev, const char *propname, enum dev_prop_type proptype, void *val); int acpi_node_prop_read(const struct fwnode_handle *fwnode, const char *propname, enum dev_prop_type proptype, void *val, size_t nval); int acpi_dev_prop_read(const struct acpi_device *adev, const char *propname, enum dev_prop_type proptype, void *val, size_t nval); struct fwnode_handle *acpi_get_next_subnode(const struct fwnode_handle *fwnode, struct fwnode_handle *child); struct fwnode_handle *acpi_node_get_parent(const struct fwnode_handle *fwnode); struct acpi_probe_entry; typedef bool (*acpi_probe_entry_validate_subtbl)(struct acpi_subtable_header *, struct acpi_probe_entry *); #define ACPI_TABLE_ID_LEN 5 /** * struct acpi_probe_entry - boot-time probing entry * @id: ACPI table name * @type: Optional subtable type to match * (if @id contains subtables) * @subtable_valid: Optional callback to check the validity of * the subtable * @probe_table: Callback to the driver being probed when table * match is successful * @probe_subtbl: Callback to the driver being probed when table and * subtable match (and optional callback is successful) * @driver_data: Sideband data provided back to the driver */ struct acpi_probe_entry { __u8 id[ACPI_TABLE_ID_LEN]; __u8 type; acpi_probe_entry_validate_subtbl subtable_valid; union { acpi_tbl_table_handler probe_table; acpi_tbl_entry_handler probe_subtbl; }; kernel_ulong_t driver_data; }; #define ACPI_DECLARE_PROBE_ENTRY(table, name, table_id, subtable, \ valid, data, fn) \ static const struct acpi_probe_entry __acpi_probe_##name \ __used __section("__" #table "_acpi_probe_table") = { \ .id = table_id, \ .type = subtable, \ .subtable_valid = valid, \ .probe_table = fn, \ .driver_data = data, \ } #define ACPI_DECLARE_SUBTABLE_PROBE_ENTRY(table, name, table_id, \ subtable, valid, data, fn) \ static const struct acpi_probe_entry __acpi_probe_##name \ __used __section("__" #table "_acpi_probe_table") = { \ .id = table_id, \ .type = subtable, \ .subtable_valid = valid, \ .probe_subtbl = fn, \ .driver_data = data, \ } #define ACPI_PROBE_TABLE(name) __##name##_acpi_probe_table #define ACPI_PROBE_TABLE_END(name) __##name##_acpi_probe_table_end int __acpi_probe_device_table(struct acpi_probe_entry *start, int nr); #define acpi_probe_device_table(t) \ ({ \ extern struct acpi_probe_entry ACPI_PROBE_TABLE(t), \ ACPI_PROBE_TABLE_END(t); \ __acpi_probe_device_table(&ACPI_PROBE_TABLE(t), \ (&ACPI_PROBE_TABLE_END(t) - \ &ACPI_PROBE_TABLE(t))); \ }) #else static inline int acpi_dev_get_property(struct acpi_device *adev, const char *name, acpi_object_type type, const union acpi_object **obj) { return -ENXIO; } static inline int __acpi_node_get_property_reference(const struct fwnode_handle *fwnode, const char *name, size_t index, size_t num_args, struct fwnode_reference_args *args) { return -ENXIO; } static inline int acpi_node_get_property_reference(const struct fwnode_handle *fwnode, const char *name, size_t index, struct fwnode_reference_args *args) { return -ENXIO; } static inline int acpi_node_prop_get(const struct fwnode_handle *fwnode, const char *propname, void **valptr) { return -ENXIO; } static inline int acpi_dev_prop_read_single(const struct acpi_device *adev, const char *propname, enum dev_prop_type proptype, void *val) { return -ENXIO; } static inline int acpi_node_prop_read(const struct fwnode_handle *fwnode, const char *propname, enum dev_prop_type proptype, void *val, size_t nval) { return -ENXIO; } static inline int acpi_dev_prop_read(const struct acpi_device *adev, const char *propname, enum dev_prop_type proptype, void *val, size_t nval) { return -ENXIO; } static inline struct fwnode_handle * acpi_get_next_subnode(const struct fwnode_handle *fwnode, struct fwnode_handle *child) { return NULL; } static inline struct fwnode_handle * acpi_node_get_parent(const struct fwnode_handle *fwnode) { return NULL; } static inline struct fwnode_handle * acpi_graph_get_next_endpoint(const struct fwnode_handle *fwnode, struct fwnode_handle *prev) { return ERR_PTR(-ENXIO); } static inline int acpi_graph_get_remote_endpoint(const struct fwnode_handle *fwnode, struct fwnode_handle **remote, struct fwnode_handle **port, struct fwnode_handle **endpoint) { return -ENXIO; } #define ACPI_DECLARE_PROBE_ENTRY(table, name, table_id, subtable, valid, data, fn) \ static const void * __acpi_table_##name[] \ __attribute__((unused)) \ = { (void *) table_id, \ (void *) subtable, \ (void *) valid, \ (void *) fn, \ (void *) data } #define acpi_probe_device_table(t) ({ int __r = 0; __r;}) #endif #ifdef CONFIG_ACPI_TABLE_UPGRADE void acpi_table_upgrade(void); #else static inline void acpi_table_upgrade(void) { } #endif #if defined(CONFIG_ACPI) && defined(CONFIG_ACPI_WATCHDOG) extern bool acpi_has_watchdog(void); #else static inline bool acpi_has_watchdog(void) { return false; } #endif #ifdef CONFIG_ACPI_SPCR_TABLE extern bool qdf2400_e44_present; int acpi_parse_spcr(bool enable_earlycon, bool enable_console); #else static inline int acpi_parse_spcr(bool enable_earlycon, bool enable_console) { return 0; } #endif #if IS_ENABLED(CONFIG_ACPI_GENERIC_GSI) int acpi_irq_get(acpi_handle handle, unsigned int index, struct resource *res); #else static inline int acpi_irq_get(acpi_handle handle, unsigned int index, struct resource *res) { return -EINVAL; } #endif #ifdef CONFIG_ACPI_LPIT int lpit_read_residency_count_address(u64 *address); #else static inline int lpit_read_residency_count_address(u64 *address) { return -EINVAL; } #endif #ifdef CONFIG_ACPI_PPTT int acpi_pptt_cpu_is_thread(unsigned int cpu); int find_acpi_cpu_topology(unsigned int cpu, int level); int find_acpi_cpu_topology_package(unsigned int cpu); int find_acpi_cpu_topology_hetero_id(unsigned int cpu); int find_acpi_cpu_cache_topology(unsigned int cpu, int level); #else static inline int acpi_pptt_cpu_is_thread(unsigned int cpu) { return -EINVAL; } static inline int find_acpi_cpu_topology(unsigned int cpu, int level) { return -EINVAL; } static inline int find_acpi_cpu_topology_package(unsigned int cpu) { return -EINVAL; } static inline int find_acpi_cpu_topology_hetero_id(unsigned int cpu) { return -EINVAL; } static inline int find_acpi_cpu_cache_topology(unsigned int cpu, int level) { return -EINVAL; } #endif #ifdef CONFIG_ACPI extern int acpi_platform_notify(struct device *dev, enum kobject_action action); #else static inline int acpi_platform_notify(struct device *dev, enum kobject_action action) { return 0; } #endif #endif /*_LINUX_ACPI_H*/
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 #ifndef _LINUX_HASH_H #define _LINUX_HASH_H /* Fast hashing routine for ints, longs and pointers. (C) 2002 Nadia Yvette Chambers, IBM */ #include <asm/types.h> #include <linux/compiler.h> /* * The "GOLDEN_RATIO_PRIME" is used in ifs/btrfs/brtfs_inode.h and * fs/inode.c. It's not actually prime any more (the previous primes * were actively bad for hashing), but the name remains. */ #if BITS_PER_LONG == 32 #define GOLDEN_RATIO_PRIME GOLDEN_RATIO_32 #define hash_long(val, bits) hash_32(val, bits) #elif BITS_PER_LONG == 64 #define hash_long(val, bits) hash_64(val, bits) #define GOLDEN_RATIO_PRIME GOLDEN_RATIO_64 #else #error Wordsize not 32 or 64 #endif /* * This hash multiplies the input by a large odd number and takes the * high bits. Since multiplication propagates changes to the most * significant end only, it is essential that the high bits of the * product be used for the hash value. * * Chuck Lever verified the effectiveness of this technique: * http://www.citi.umich.edu/techreports/reports/citi-tr-00-1.pdf * * Although a random odd number will do, it turns out that the golden * ratio phi = (sqrt(5)-1)/2, or its negative, has particularly nice * properties. (See Knuth vol 3, section 6.4, exercise 9.) * * These are the negative, (1 - phi) = phi**2 = (3 - sqrt(5))/2, * which is very slightly easier to multiply by and makes no * difference to the hash distribution. */ #define GOLDEN_RATIO_32 0x61C88647 #define GOLDEN_RATIO_64 0x61C8864680B583EBull #ifdef CONFIG_HAVE_ARCH_HASH /* This header may use the GOLDEN_RATIO_xx constants */ #include <asm/hash.h> #endif /* * The _generic versions exist only so lib/test_hash.c can compare * the arch-optimized versions with the generic. * * Note that if you change these, any <asm/hash.h> that aren't updated * to match need to have their HAVE_ARCH_* define values updated so the * self-test will not false-positive. */ #ifndef HAVE_ARCH__HASH_32 #define __hash_32 __hash_32_generic #endif static inline u32 __hash_32_generic(u32 val) { return val * GOLDEN_RATIO_32; } #ifndef HAVE_ARCH_HASH_32 #define hash_32 hash_32_generic #endif static inline u32 hash_32_generic(u32 val, unsigned int bits) { /* High bits are more random, so use them. */ return __hash_32(val) >> (32 - bits); } #ifndef HAVE_ARCH_HASH_64 #define hash_64 hash_64_generic #endif static __always_inline u32 hash_64_generic(u64 val, unsigned int bits) { #if BITS_PER_LONG == 64 /* 64x64-bit multiply is efficient on all 64-bit processors */ return val * GOLDEN_RATIO_64 >> (64 - bits); #else /* Hash 64 bits using only 32x32-bit multiply. */ return hash_32((u32)val ^ __hash_32(val >> 32), bits); #endif } static inline u32 hash_ptr(const void *ptr, unsigned int bits) { return hash_long((unsigned long)ptr, bits); } /* This really should be called fold32_ptr; it does no hashing to speak of. */ static inline u32 hash32_ptr(const void *ptr) { unsigned long val = (unsigned long)ptr; #if BITS_PER_LONG == 64 val ^= (val >> 32); #endif return (u32)val; } #endif /* _LINUX_HASH_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 /* SPDX-License-Identifier: GPL-2.0 */ /* * Connection state tracking for netfilter. This is separated from, * but required by, the (future) NAT layer; it can also be used by an iptables * extension. * * 16 Dec 2003: Yasuyuki Kozakai @USAGI <yasuyuki.kozakai@toshiba.co.jp> * - generalize L3 protocol dependent part. * * Derived from include/linux/netfiter_ipv4/ip_conntrack.h */ #ifndef _NF_CONNTRACK_H #define _NF_CONNTRACK_H #include <linux/bitops.h> #include <linux/compiler.h> #include <linux/netfilter/nf_conntrack_common.h> #include <linux/netfilter/nf_conntrack_tcp.h> #include <linux/netfilter/nf_conntrack_dccp.h> #include <linux/netfilter/nf_conntrack_sctp.h> #include <linux/netfilter/nf_conntrack_proto_gre.h> #include <net/netfilter/nf_conntrack_tuple.h> struct nf_ct_udp { unsigned long stream_ts; }; /* per conntrack: protocol private data */ union nf_conntrack_proto { /* insert conntrack proto private data here */ struct nf_ct_dccp dccp; struct ip_ct_sctp sctp; struct ip_ct_tcp tcp; struct nf_ct_udp udp; struct nf_ct_gre gre; unsigned int tmpl_padto; }; union nf_conntrack_expect_proto { /* insert expect proto private data here */ }; struct nf_conntrack_net { unsigned int users4; unsigned int users6; unsigned int users_bridge; }; #include <linux/types.h> #include <linux/skbuff.h> #include <net/netfilter/ipv4/nf_conntrack_ipv4.h> #include <net/netfilter/ipv6/nf_conntrack_ipv6.h> struct nf_conn { /* Usage count in here is 1 for hash table, 1 per skb, * plus 1 for any connection(s) we are `master' for * * Hint, SKB address this struct and refcnt via skb->_nfct and * helpers nf_conntrack_get() and nf_conntrack_put(). * Helper nf_ct_put() equals nf_conntrack_put() by dec refcnt, * beware nf_ct_get() is different and don't inc refcnt. */ struct nf_conntrack ct_general; spinlock_t lock; /* jiffies32 when this ct is considered dead */ u32 timeout; #ifdef CONFIG_NF_CONNTRACK_ZONES struct nf_conntrack_zone zone; #endif /* XXX should I move this to the tail ? - Y.K */ /* These are my tuples; original and reply */ struct nf_conntrack_tuple_hash tuplehash[IP_CT_DIR_MAX]; /* Have we seen traffic both ways yet? (bitset) */ unsigned long status; u16 cpu; possible_net_t ct_net; #if IS_ENABLED(CONFIG_NF_NAT) struct hlist_node nat_bysource; #endif /* all members below initialized via memset */ struct { } __nfct_init_offset; /* If we were expected by an expectation, this will be it */ struct nf_conn *master; #if defined(CONFIG_NF_CONNTRACK_MARK) u_int32_t mark; #endif #ifdef CONFIG_NF_CONNTRACK_SECMARK u_int32_t secmark; #endif /* Extensions */ struct nf_ct_ext *ext; /* Storage reserved for other modules, must be the last member */ union nf_conntrack_proto proto; }; static inline struct nf_conn * nf_ct_tuplehash_to_ctrack(const struct nf_conntrack_tuple_hash *hash) { return container_of(hash, struct nf_conn, tuplehash[hash->tuple.dst.dir]); } static inline u_int16_t nf_ct_l3num(const struct nf_conn *ct) { return ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.l3num; } static inline u_int8_t nf_ct_protonum(const struct nf_conn *ct) { return ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.protonum; } #define nf_ct_tuple(ct, dir) (&(ct)->tuplehash[dir].tuple) /* get master conntrack via master expectation */ #define master_ct(conntr) (conntr->master) extern struct net init_net; static inline struct net *nf_ct_net(const struct nf_conn *ct) { return read_pnet(&ct->ct_net); } /* Alter reply tuple (maybe alter helper). */ void nf_conntrack_alter_reply(struct nf_conn *ct, const struct nf_conntrack_tuple *newreply); /* Is this tuple taken? (ignoring any belonging to the given conntrack). */ int nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple, const struct nf_conn *ignored_conntrack); /* Return conntrack_info and tuple hash for given skb. */ static inline struct nf_conn * nf_ct_get(const struct sk_buff *skb, enum ip_conntrack_info *ctinfo) { unsigned long nfct = skb_get_nfct(skb); *ctinfo = nfct & NFCT_INFOMASK; return (struct nf_conn *)(nfct & NFCT_PTRMASK); } /* decrement reference count on a conntrack */ static inline void nf_ct_put(struct nf_conn *ct) { WARN_ON(!ct); nf_conntrack_put(&ct->ct_general); } /* Protocol module loading */ int nf_ct_l3proto_try_module_get(unsigned short l3proto); void nf_ct_l3proto_module_put(unsigned short l3proto); /* load module; enable/disable conntrack in this namespace */ int nf_ct_netns_get(struct net *net, u8 nfproto); void nf_ct_netns_put(struct net *net, u8 nfproto); /* * Allocate a hashtable of hlist_head (if nulls == 0), * or hlist_nulls_head (if nulls == 1) */ void *nf_ct_alloc_hashtable(unsigned int *sizep, int nulls); int nf_conntrack_hash_check_insert(struct nf_conn *ct); bool nf_ct_delete(struct nf_conn *ct, u32 pid, int report); bool nf_ct_get_tuplepr(const struct sk_buff *skb, unsigned int nhoff, u_int16_t l3num, struct net *net, struct nf_conntrack_tuple *tuple); void __nf_ct_refresh_acct(struct nf_conn *ct, enum ip_conntrack_info ctinfo, const struct sk_buff *skb, u32 extra_jiffies, bool do_acct); /* Refresh conntrack for this many jiffies and do accounting */ static inline void nf_ct_refresh_acct(struct nf_conn *ct, enum ip_conntrack_info ctinfo, const struct sk_buff *skb, u32 extra_jiffies) { __nf_ct_refresh_acct(ct, ctinfo, skb, extra_jiffies, true); } /* Refresh conntrack for this many jiffies */ static inline void nf_ct_refresh(struct nf_conn *ct, const struct sk_buff *skb, u32 extra_jiffies) { __nf_ct_refresh_acct(ct, 0, skb, extra_jiffies, false); } /* kill conntrack and do accounting */ bool nf_ct_kill_acct(struct nf_conn *ct, enum ip_conntrack_info ctinfo, const struct sk_buff *skb); /* kill conntrack without accounting */ static inline bool nf_ct_kill(struct nf_conn *ct) { return nf_ct_delete(ct, 0, 0); } /* Set all unconfirmed conntrack as dying */ void nf_ct_unconfirmed_destroy(struct net *); /* Iterate over all conntracks: if iter returns true, it's deleted. */ void nf_ct_iterate_cleanup_net(struct net *net, int (*iter)(struct nf_conn *i, void *data), void *data, u32 portid, int report); /* also set unconfirmed conntracks as dying. Only use in module exit path. */ void nf_ct_iterate_destroy(int (*iter)(struct nf_conn *i, void *data), void *data); struct nf_conntrack_zone; void nf_conntrack_free(struct nf_conn *ct); struct nf_conn *nf_conntrack_alloc(struct net *net, const struct nf_conntrack_zone *zone, const struct nf_conntrack_tuple *orig, const struct nf_conntrack_tuple *repl, gfp_t gfp); static inline int nf_ct_is_template(const struct nf_conn *ct) { return test_bit(IPS_TEMPLATE_BIT, &ct->status); } /* It's confirmed if it is, or has been in the hash table. */ static inline int nf_ct_is_confirmed(const struct nf_conn *ct) { return test_bit(IPS_CONFIRMED_BIT, &ct->status); } static inline int nf_ct_is_dying(const struct nf_conn *ct) { return test_bit(IPS_DYING_BIT, &ct->status); } /* Packet is received from loopback */ static inline bool nf_is_loopback_packet(const struct sk_buff *skb) { return skb->dev && skb->skb_iif && skb->dev->flags & IFF_LOOPBACK; } #define nfct_time_stamp ((u32)(jiffies)) /* jiffies until ct expires, 0 if already expired */ static inline unsigned long nf_ct_expires(const struct nf_conn *ct) { s32 timeout = READ_ONCE(ct->timeout) - nfct_time_stamp; return timeout > 0 ? timeout : 0; } static inline bool nf_ct_is_expired(const struct nf_conn *ct) { return (__s32)(READ_ONCE(ct->timeout) - nfct_time_stamp) <= 0; } /* use after obtaining a reference count */ static inline bool nf_ct_should_gc(const struct nf_conn *ct) { return nf_ct_is_expired(ct) && nf_ct_is_confirmed(ct) && !nf_ct_is_dying(ct); } #define NF_CT_DAY (86400 * HZ) /* Set an arbitrary timeout large enough not to ever expire, this save * us a check for the IPS_OFFLOAD_BIT from the packet path via * nf_ct_is_expired(). */ static inline void nf_ct_offload_timeout(struct nf_conn *ct) { if (nf_ct_expires(ct) < NF_CT_DAY / 2) WRITE_ONCE(ct->timeout, nfct_time_stamp + NF_CT_DAY); } struct kernel_param; int nf_conntrack_set_hashsize(const char *val, const struct kernel_param *kp); int nf_conntrack_hash_resize(unsigned int hashsize); extern struct hlist_nulls_head *nf_conntrack_hash; extern unsigned int nf_conntrack_htable_size; extern seqcount_spinlock_t nf_conntrack_generation; extern unsigned int nf_conntrack_max; /* must be called with rcu read lock held */ static inline void nf_conntrack_get_ht(struct hlist_nulls_head **hash, unsigned int *hsize) { struct hlist_nulls_head *hptr; unsigned int sequence, hsz; do { sequence = read_seqcount_begin(&nf_conntrack_generation); hsz = nf_conntrack_htable_size; hptr = nf_conntrack_hash; } while (read_seqcount_retry(&nf_conntrack_generation, sequence)); *hash = hptr; *hsize = hsz; } struct nf_conn *nf_ct_tmpl_alloc(struct net *net, const struct nf_conntrack_zone *zone, gfp_t flags); void nf_ct_tmpl_free(struct nf_conn *tmpl); u32 nf_ct_get_id(const struct nf_conn *ct); static inline void nf_ct_set(struct sk_buff *skb, struct nf_conn *ct, enum ip_conntrack_info info) { skb_set_nfct(skb, (unsigned long)ct | info); } #define NF_CT_STAT_INC(net, count) __this_cpu_inc((net)->ct.stat->count) #define NF_CT_STAT_INC_ATOMIC(net, count) this_cpu_inc((net)->ct.stat->count) #define NF_CT_STAT_ADD_ATOMIC(net, count, v) this_cpu_add((net)->ct.stat->count, (v)) #define MODULE_ALIAS_NFCT_HELPER(helper) \ MODULE_ALIAS("nfct-helper-" helper) #endif /* _NF_CONNTRACK_H */
1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 /* SPDX-License-Identifier: GPL-2.0 */ /* * Variant of atomic_t specialized for reference counts. * * The interface matches the atomic_t interface (to aid in porting) but only * provides the few functions one should use for reference counting. * * Saturation semantics * ==================== * * refcount_t differs from atomic_t in that the counter saturates at * REFCOUNT_SATURATED and will not move once there. This avoids wrapping the * counter and causing 'spurious' use-after-free issues. In order to avoid the * cost associated with introducing cmpxchg() loops into all of the saturating * operations, we temporarily allow the counter to take on an unchecked value * and then explicitly set it to REFCOUNT_SATURATED on detecting that underflow * or overflow has occurred. Although this is racy when multiple threads * access the refcount concurrently, by placing REFCOUNT_SATURATED roughly * equidistant from 0 and INT_MAX we minimise the scope for error: * * INT_MAX REFCOUNT_SATURATED UINT_MAX * 0 (0x7fff_ffff) (0xc000_0000) (0xffff_ffff) * +--------------------------------+----------------+----------------+ * <---------- bad value! ----------> * * (in a signed view of the world, the "bad value" range corresponds to * a negative counter value). * * As an example, consider a refcount_inc() operation that causes the counter * to overflow: * * int old = atomic_fetch_add_relaxed(r); * // old is INT_MAX, refcount now INT_MIN (0x8000_0000) * if (old < 0) * atomic_set(r, REFCOUNT_SATURATED); * * If another thread also performs a refcount_inc() operation between the two * atomic operations, then the count will continue to edge closer to 0. If it * reaches a value of 1 before /any/ of the threads reset it to the saturated * value, then a concurrent refcount_dec_and_test() may erroneously free the * underlying object. * Linux limits the maximum number of tasks to PID_MAX_LIMIT, which is currently * 0x400000 (and can't easily be raised in the future beyond FUTEX_TID_MASK). * With the current PID limit, if no batched refcounting operations are used and * the attacker can't repeatedly trigger kernel oopses in the middle of refcount * operations, this makes it impossible for a saturated refcount to leave the * saturation range, even if it is possible for multiple uses of the same * refcount to nest in the context of a single task: * * (UINT_MAX+1-REFCOUNT_SATURATED) / PID_MAX_LIMIT = * 0x40000000 / 0x400000 = 0x100 = 256 * * If hundreds of references are added/removed with a single refcounting * operation, it may potentially be possible to leave the saturation range; but * given the precise timing details involved with the round-robin scheduling of * each thread manipulating the refcount and the need to hit the race multiple * times in succession, there doesn't appear to be a practical avenue of attack * even if using refcount_add() operations with larger increments. * * Memory ordering * =============== * * Memory ordering rules are slightly relaxed wrt regular atomic_t functions * and provide only what is strictly required for refcounts. * * The increments are fully relaxed; these will not provide ordering. The * rationale is that whatever is used to obtain the object we're increasing the * reference count on will provide the ordering. For locked data structures, * its the lock acquire, for RCU/lockless data structures its the dependent * load. * * Do note that inc_not_zero() provides a control dependency which will order * future stores against the inc, this ensures we'll never modify the object * if we did not in fact acquire a reference. * * The decrements will provide release order, such that all the prior loads and * stores will be issued before, it also provides a control dependency, which * will order us against the subsequent free(). * * The control dependency is against the load of the cmpxchg (ll/sc) that * succeeded. This means the stores aren't fully ordered, but this is fine * because the 1->0 transition indicates no concurrency. * * Note that the allocator is responsible for ordering things between free() * and alloc(). * * The decrements dec_and_test() and sub_and_test() also provide acquire * ordering on success. * */ #ifndef _LINUX_REFCOUNT_H #define _LINUX_REFCOUNT_H #include <linux/atomic.h> #include <linux/bug.h> #include <linux/compiler.h> #include <linux/limits.h> #include <linux/spinlock_types.h> struct mutex; /** * struct refcount_t - variant of atomic_t specialized for reference counts * @refs: atomic_t counter field * * The counter saturates at REFCOUNT_SATURATED and will not move once * there. This avoids wrapping the counter and causing 'spurious' * use-after-free bugs. */ typedef struct refcount_struct { atomic_t refs; } refcount_t; #define REFCOUNT_INIT(n) { .refs = ATOMIC_INIT(n), } #define REFCOUNT_MAX INT_MAX #define REFCOUNT_SATURATED (INT_MIN / 2) enum refcount_saturation_type { REFCOUNT_ADD_NOT_ZERO_OVF, REFCOUNT_ADD_OVF, REFCOUNT_ADD_UAF, REFCOUNT_SUB_UAF, REFCOUNT_DEC_LEAK, }; void refcount_warn_saturate(refcount_t *r, enum refcount_saturation_type t); /** * refcount_set - set a refcount's value * @r: the refcount * @n: value to which the refcount will be set */ static inline void refcount_set(refcount_t *r, int n) { atomic_set(&r->refs, n); } /** * refcount_read - get a refcount's value * @r: the refcount * * Return: the refcount's value */ static inline unsigned int refcount_read(const refcount_t *r) { return atomic_read(&r->refs); } static inline __must_check bool __refcount_add_not_zero(int i, refcount_t *r, int *oldp) { int old = refcount_read(r); do { if (!old) break; } while (!atomic_try_cmpxchg_relaxed(&r->refs, &old, old + i)); if (oldp) *oldp = old; if (unlikely(old < 0 || old + i < 0)) refcount_warn_saturate(r, REFCOUNT_ADD_NOT_ZERO_OVF); return old; } /** * refcount_add_not_zero - add a value to a refcount unless it is 0 * @i: the value to add to the refcount * @r: the refcount * * Will saturate at REFCOUNT_SATURATED and WARN. * * Provides no memory ordering, it is assumed the caller has guaranteed the * object memory to be stable (RCU, etc.). It does provide a control dependency * and thereby orders future stores. See the comment on top. * * Use of this function is not recommended for the normal reference counting * use case in which references are taken and released one at a time. In these * cases, refcount_inc(), or one of its variants, should instead be used to * increment a reference count. * * Return: false if the passed refcount is 0, true otherwise */ static inline __must_check bool refcount_add_not_zero(int i, refcount_t *r) { return __refcount_add_not_zero(i, r, NULL); } static inline void __refcount_add(int i, refcount_t *r, int *oldp) { int old = atomic_fetch_add_relaxed(i, &r->refs); if (oldp) *oldp = old; if (unlikely(!old)) refcount_warn_saturate(r, REFCOUNT_ADD_UAF); else if (unlikely(old < 0 || old + i < 0)) refcount_warn_saturate(r, REFCOUNT_ADD_OVF); } /** * refcount_add - add a value to a refcount * @i: the value to add to the refcount * @r: the refcount * * Similar to atomic_add(), but will saturate at REFCOUNT_SATURATED and WARN. * * Provides no memory ordering, it is assumed the caller has guaranteed the * object memory to be stable (RCU, etc.). It does provide a control dependency * and thereby orders future stores. See the comment on top. * * Use of this function is not recommended for the normal reference counting * use case in which references are taken and released one at a time. In these * cases, refcount_inc(), or one of its variants, should instead be used to * increment a reference count. */ static inline void refcount_add(int i, refcount_t *r) { __refcount_add(i, r, NULL); } static inline __must_check bool __refcount_inc_not_zero(refcount_t *r, int *oldp) { return __refcount_add_not_zero(1, r, oldp); } /** * refcount_inc_not_zero - increment a refcount unless it is 0 * @r: the refcount to increment * * Similar to atomic_inc_not_zero(), but will saturate at REFCOUNT_SATURATED * and WARN. * * Provides no memory ordering, it is assumed the caller has guaranteed the * object memory to be stable (RCU, etc.). It does provide a control dependency * and thereby orders future stores. See the comment on top. * * Return: true if the increment was successful, false otherwise */ static inline __must_check bool refcount_inc_not_zero(refcount_t *r) { return __refcount_inc_not_zero(r, NULL); } static inline void __refcount_inc(refcount_t *r, int *oldp) { __refcount_add(1, r, oldp); } /** * refcount_inc - increment a refcount * @r: the refcount to increment * * Similar to atomic_inc(), but will saturate at REFCOUNT_SATURATED and WARN. * * Provides no memory ordering, it is assumed the caller already has a * reference on the object. * * Will WARN if the refcount is 0, as this represents a possible use-after-free * condition. */ static inline void refcount_inc(refcount_t *r) { __refcount_inc(r, NULL); } static inline __must_check bool __refcount_sub_and_test(int i, refcount_t *r, int *oldp) { int old = atomic_fetch_sub_release(i, &r->refs); if (oldp) *oldp = old; if (old == i) { smp_acquire__after_ctrl_dep(); return true; } if (unlikely(old < 0 || old - i < 0)) refcount_warn_saturate(r, REFCOUNT_SUB_UAF); return false; } /** * refcount_sub_and_test - subtract from a refcount and test if it is 0 * @i: amount to subtract from the refcount * @r: the refcount * * Similar to atomic_dec_and_test(), but it will WARN, return false and * ultimately leak on underflow and will fail to decrement when saturated * at REFCOUNT_SATURATED. * * Provides release memory ordering, such that prior loads and stores are done * before, and provides an acquire ordering on success such that free() * must come after. * * Use of this function is not recommended for the normal reference counting * use case in which references are taken and released one at a time. In these * cases, refcount_dec(), or one of its variants, should instead be used to * decrement a reference count. * * Return: true if the resulting refcount is 0, false otherwise */ static inline __must_check bool refcount_sub_and_test(int i, refcount_t *r) { return __refcount_sub_and_test(i, r, NULL); } static inline __must_check bool __refcount_dec_and_test(refcount_t *r, int *oldp) { return __refcount_sub_and_test(1, r, oldp); } /** * refcount_dec_and_test - decrement a refcount and test if it is 0 * @r: the refcount * * Similar to atomic_dec_and_test(), it will WARN on underflow and fail to * decrement when saturated at REFCOUNT_SATURATED. * * Provides release memory ordering, such that prior loads and stores are done * before, and provides an acquire ordering on success such that free() * must come after. * * Return: true if the resulting refcount is 0, false otherwise */ static inline __must_check bool refcount_dec_and_test(refcount_t *r) { return __refcount_dec_and_test(r, NULL); } static inline void __refcount_dec(refcount_t *r, int *oldp) { int old = atomic_fetch_sub_release(1, &r->refs); if (oldp) *oldp = old; if (unlikely(old <= 1)) refcount_warn_saturate(r, REFCOUNT_DEC_LEAK); } /** * refcount_dec - decrement a refcount * @r: the refcount * * Similar to atomic_dec(), it will WARN on underflow and fail to decrement * when saturated at REFCOUNT_SATURATED. * * Provides release memory ordering, such that prior loads and stores are done * before. */ static inline void refcount_dec(refcount_t *r) { __refcount_dec(r, NULL); } extern __must_check bool refcount_dec_if_one(refcount_t *r); extern __must_check bool refcount_dec_not_one(refcount_t *r); extern __must_check bool refcount_dec_and_mutex_lock(refcount_t *r, struct mutex *lock); extern __must_check bool refcount_dec_and_lock(refcount_t *r, spinlock_t *lock); extern __must_check bool refcount_dec_and_lock_irqsave(refcount_t *r, spinlock_t *lock, unsigned long *flags); #endif /* _LINUX_REFCOUNT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 /* SPDX-License-Identifier: GPL-2.0+ */ /* * Sleepable Read-Copy Update mechanism for mutual exclusion * * Copyright (C) IBM Corporation, 2006 * Copyright (C) Fujitsu, 2012 * * Author: Paul McKenney <paulmck@linux.ibm.com> * Lai Jiangshan <laijs@cn.fujitsu.com> * * For detailed explanation of Read-Copy Update mechanism see - * Documentation/RCU/ *.txt * */ #ifndef _LINUX_SRCU_H #define _LINUX_SRCU_H #include <linux/mutex.h> #include <linux/rcupdate.h> #include <linux/workqueue.h> #include <linux/rcu_segcblist.h> struct srcu_struct; #ifdef CONFIG_DEBUG_LOCK_ALLOC int __init_srcu_struct(struct srcu_struct *ssp, const char *name, struct lock_class_key *key); #define init_srcu_struct(ssp) \ ({ \ static struct lock_class_key __srcu_key; \ \ __init_srcu_struct((ssp), #ssp, &__srcu_key); \ }) #define __SRCU_DEP_MAP_INIT(srcu_name) .dep_map = { .name = #srcu_name }, #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ int init_srcu_struct(struct srcu_struct *ssp); #define __SRCU_DEP_MAP_INIT(srcu_name) #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ #ifdef CONFIG_TINY_SRCU #include <linux/srcutiny.h> #elif defined(CONFIG_TREE_SRCU) #include <linux/srcutree.h> #elif defined(CONFIG_SRCU) #error "Unknown SRCU implementation specified to kernel configuration" #else /* Dummy definition for things like notifiers. Actual use gets link error. */ struct srcu_struct { }; #endif void call_srcu(struct srcu_struct *ssp, struct rcu_head *head, void (*func)(struct rcu_head *head)); void cleanup_srcu_struct(struct srcu_struct *ssp); int __srcu_read_lock(struct srcu_struct *ssp) __acquires(ssp); void __srcu_read_unlock(struct srcu_struct *ssp, int idx) __releases(ssp); void synchronize_srcu(struct srcu_struct *ssp); unsigned long get_state_synchronize_srcu(struct srcu_struct *ssp); unsigned long start_poll_synchronize_srcu(struct srcu_struct *ssp); bool poll_state_synchronize_srcu(struct srcu_struct *ssp, unsigned long cookie); #ifdef CONFIG_DEBUG_LOCK_ALLOC /** * srcu_read_lock_held - might we be in SRCU read-side critical section? * @ssp: The srcu_struct structure to check * * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an SRCU * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC, * this assumes we are in an SRCU read-side critical section unless it can * prove otherwise. * * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot * and while lockdep is disabled. * * Note that SRCU is based on its own statemachine and it doesn't * relies on normal RCU, it can be called from the CPU which * is in the idle loop from an RCU point of view or offline. */ static inline int srcu_read_lock_held(const struct srcu_struct *ssp) { if (!debug_lockdep_rcu_enabled()) return 1; return lock_is_held(&ssp->dep_map); } #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ static inline int srcu_read_lock_held(const struct srcu_struct *ssp) { return 1; } #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ /** * srcu_dereference_check - fetch SRCU-protected pointer for later dereferencing * @p: the pointer to fetch and protect for later dereferencing * @ssp: pointer to the srcu_struct, which is used to check that we * really are in an SRCU read-side critical section. * @c: condition to check for update-side use * * If PROVE_RCU is enabled, invoking this outside of an RCU read-side * critical section will result in an RCU-lockdep splat, unless @c evaluates * to 1. The @c argument will normally be a logical expression containing * lockdep_is_held() calls. */ #define srcu_dereference_check(p, ssp, c) \ __rcu_dereference_check((p), (c) || srcu_read_lock_held(ssp), __rcu) /** * srcu_dereference - fetch SRCU-protected pointer for later dereferencing * @p: the pointer to fetch and protect for later dereferencing * @ssp: pointer to the srcu_struct, which is used to check that we * really are in an SRCU read-side critical section. * * Makes rcu_dereference_check() do the dirty work. If PROVE_RCU * is enabled, invoking this outside of an RCU read-side critical * section will result in an RCU-lockdep splat. */ #define srcu_dereference(p, ssp) srcu_dereference_check((p), (ssp), 0) /** * srcu_dereference_notrace - no tracing and no lockdep calls from here * @p: the pointer to fetch and protect for later dereferencing * @ssp: pointer to the srcu_struct, which is used to check that we * really are in an SRCU read-side critical section. */ #define srcu_dereference_notrace(p, ssp) srcu_dereference_check((p), (ssp), 1) /** * srcu_read_lock - register a new reader for an SRCU-protected structure. * @ssp: srcu_struct in which to register the new reader. * * Enter an SRCU read-side critical section. Note that SRCU read-side * critical sections may be nested. However, it is illegal to * call anything that waits on an SRCU grace period for the same * srcu_struct, whether directly or indirectly. Please note that * one way to indirectly wait on an SRCU grace period is to acquire * a mutex that is held elsewhere while calling synchronize_srcu() or * synchronize_srcu_expedited(). * * Note that srcu_read_lock() and the matching srcu_read_unlock() must * occur in the same context, for example, it is illegal to invoke * srcu_read_unlock() in an irq handler if the matching srcu_read_lock() * was invoked in process context. */ static inline int srcu_read_lock(struct srcu_struct *ssp) __acquires(ssp) { int retval; retval = __srcu_read_lock(ssp); rcu_lock_acquire(&(ssp)->dep_map); return retval; } /* Used by tracing, cannot be traced and cannot invoke lockdep. */ static inline notrace int srcu_read_lock_notrace(struct srcu_struct *ssp) __acquires(ssp) { int retval; retval = __srcu_read_lock(ssp); return retval; } /** * srcu_read_unlock - unregister a old reader from an SRCU-protected structure. * @ssp: srcu_struct in which to unregister the old reader. * @idx: return value from corresponding srcu_read_lock(). * * Exit an SRCU read-side critical section. */ static inline void srcu_read_unlock(struct srcu_struct *ssp, int idx) __releases(ssp) { WARN_ON_ONCE(idx & ~0x1); rcu_lock_release(&(ssp)->dep_map); __srcu_read_unlock(ssp, idx); } /* Used by tracing, cannot be traced and cannot call lockdep. */ static inline notrace void srcu_read_unlock_notrace(struct srcu_struct *ssp, int idx) __releases(ssp) { __srcu_read_unlock(ssp, idx); } /** * smp_mb__after_srcu_read_unlock - ensure full ordering after srcu_read_unlock * * Converts the preceding srcu_read_unlock into a two-way memory barrier. * * Call this after srcu_read_unlock, to guarantee that all memory operations * that occur after smp_mb__after_srcu_read_unlock will appear to happen after * the preceding srcu_read_unlock. */ static inline void smp_mb__after_srcu_read_unlock(void) { /* __srcu_read_unlock has smp_mb() internally so nothing to do here. */ } #endif
1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_PID_H #define _LINUX_PID_H #include <linux/rculist.h> #include <linux/wait.h> #include <linux/refcount.h> enum pid_type { PIDTYPE_PID, PIDTYPE_TGID, PIDTYPE_PGID, PIDTYPE_SID, PIDTYPE_MAX, }; /* * What is struct pid? * * A struct pid is the kernel's internal notion of a process identifier. * It refers to individual tasks, process groups, and sessions. While * there are processes attached to it the struct pid lives in a hash * table, so it and then the processes that it refers to can be found * quickly from the numeric pid value. The attached processes may be * quickly accessed by following pointers from struct pid. * * Storing pid_t values in the kernel and referring to them later has a * problem. The process originally with that pid may have exited and the * pid allocator wrapped, and another process could have come along * and been assigned that pid. * * Referring to user space processes by holding a reference to struct * task_struct has a problem. When the user space process exits * the now useless task_struct is still kept. A task_struct plus a * stack consumes around 10K of low kernel memory. More precisely * this is THREAD_SIZE + sizeof(struct task_struct). By comparison * a struct pid is about 64 bytes. * * Holding a reference to struct pid solves both of these problems. * It is small so holding a reference does not consume a lot of * resources, and since a new struct pid is allocated when the numeric pid * value is reused (when pids wrap around) we don't mistakenly refer to new * processes. */ /* * struct upid is used to get the id of the struct pid, as it is * seen in particular namespace. Later the struct pid is found with * find_pid_ns() using the int nr and struct pid_namespace *ns. */ struct upid { int nr; struct pid_namespace *ns; }; struct pid { refcount_t count; unsigned int level; spinlock_t lock; /* lists of tasks that use this pid */ struct hlist_head tasks[PIDTYPE_MAX]; struct hlist_head inodes; /* wait queue for pidfd notifications */ wait_queue_head_t wait_pidfd; struct rcu_head rcu; struct upid numbers[1]; }; extern struct pid init_struct_pid; extern const struct file_operations pidfd_fops; struct file; extern struct pid *pidfd_pid(const struct file *file); struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags); static inline struct pid *get_pid(struct pid *pid) { if (pid) refcount_inc(&pid->count); return pid; } extern void put_pid(struct pid *pid); extern struct task_struct *pid_task(struct pid *pid, enum pid_type); static inline bool pid_has_task(struct pid *pid, enum pid_type type) { return !hlist_empty(&pid->tasks[type]); } extern struct task_struct *get_pid_task(struct pid *pid, enum pid_type); extern struct pid *get_task_pid(struct task_struct *task, enum pid_type type); /* * these helpers must be called with the tasklist_lock write-held. */ extern void attach_pid(struct task_struct *task, enum pid_type); extern void detach_pid(struct task_struct *task, enum pid_type); extern void change_pid(struct task_struct *task, enum pid_type, struct pid *pid); extern void exchange_tids(struct task_struct *task, struct task_struct *old); extern void transfer_pid(struct task_struct *old, struct task_struct *new, enum pid_type); struct pid_namespace; extern struct pid_namespace init_pid_ns; extern int pid_max; extern int pid_max_min, pid_max_max; /* * look up a PID in the hash table. Must be called with the tasklist_lock * or rcu_read_lock() held. * * find_pid_ns() finds the pid in the namespace specified * find_vpid() finds the pid by its virtual id, i.e. in the current namespace * * see also find_task_by_vpid() set in include/linux/sched.h */ extern struct pid *find_pid_ns(int nr, struct pid_namespace *ns); extern struct pid *find_vpid(int nr); /* * Lookup a PID in the hash table, and return with it's count elevated. */ extern struct pid *find_get_pid(int nr); extern struct pid *find_ge_pid(int nr, struct pid_namespace *); extern struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid, size_t set_tid_size); extern void free_pid(struct pid *pid); extern void disable_pid_allocation(struct pid_namespace *ns); /* * ns_of_pid() returns the pid namespace in which the specified pid was * allocated. * * NOTE: * ns_of_pid() is expected to be called for a process (task) that has * an attached 'struct pid' (see attach_pid(), detach_pid()) i.e @pid * is expected to be non-NULL. If @pid is NULL, caller should handle * the resulting NULL pid-ns. */ static inline struct pid_namespace *ns_of_pid(struct pid *pid) { struct pid_namespace *ns = NULL; if (pid) ns = pid->numbers[pid->level].ns; return ns; } /* * is_child_reaper returns true if the pid is the init process * of the current namespace. As this one could be checked before * pid_ns->child_reaper is assigned in copy_process, we check * with the pid number. */ static inline bool is_child_reaper(struct pid *pid) { return pid->numbers[pid->level].nr == 1; } /* * the helpers to get the pid's id seen from different namespaces * * pid_nr() : global id, i.e. the id seen from the init namespace; * pid_vnr() : virtual id, i.e. the id seen from the pid namespace of * current. * pid_nr_ns() : id seen from the ns specified. * * see also task_xid_nr() etc in include/linux/sched.h */ static inline pid_t pid_nr(struct pid *pid) { pid_t nr = 0; if (pid) nr = pid->numbers[0].nr; return nr; } pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns); pid_t pid_vnr(struct pid *pid); #define do_each_pid_task(pid, type, task) \ do { \ if ((pid) != NULL) \ hlist_for_each_entry_rcu((task), \ &(pid)->tasks[type], pid_links[type]) { /* * Both old and new leaders may be attached to * the same pid in the middle of de_thread(). */ #define while_each_pid_task(pid, type, task) \ if (type == PIDTYPE_PID) \ break; \ } \ } while (0) #define do_each_pid_thread(pid, type, task) \ do_each_pid_task(pid, type, task) { \ struct task_struct *tg___ = task; \ for_each_thread(tg___, task) { #define while_each_pid_thread(pid, type, task) \ } \ task = tg___; \ } while_each_pid_task(pid, type, task) #endif /* _LINUX_PID_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 /* SPDX-License-Identifier: GPL-2.0 */ /* thread_info.h: common low-level thread information accessors * * Copyright (C) 2002 David Howells (dhowells@redhat.com) * - Incorporating suggestions made by Linus Torvalds */ #ifndef _LINUX_THREAD_INFO_H #define _LINUX_THREAD_INFO_H #include <linux/types.h> #include <linux/bug.h> #include <linux/restart_block.h> #include <linux/errno.h> #ifdef CONFIG_THREAD_INFO_IN_TASK /* * For CONFIG_THREAD_INFO_IN_TASK kernels we need <asm/current.h> for the * definition of current, but for !CONFIG_THREAD_INFO_IN_TASK kernels, * including <asm/current.h> can cause a circular dependency on some platforms. */ #include <asm/current.h> #define current_thread_info() ((struct thread_info *)current) #endif #include <linux/bitops.h> /* * For per-arch arch_within_stack_frames() implementations, defined in * asm/thread_info.h. */ enum { BAD_STACK = -1, NOT_STACK = 0, GOOD_FRAME, GOOD_STACK, }; #include <asm/thread_info.h> #ifdef __KERNEL__ #ifndef arch_set_restart_data #define arch_set_restart_data(restart) do { } while (0) #endif static inline long set_restart_fn(struct restart_block *restart, long (*fn)(struct restart_block *)) { restart->fn = fn; arch_set_restart_data(restart); return -ERESTART_RESTARTBLOCK; } #ifndef THREAD_ALIGN #define THREAD_ALIGN THREAD_SIZE #endif #define THREADINFO_GFP (GFP_KERNEL_ACCOUNT | __GFP_ZERO) /* * flag set/clear/test wrappers * - pass TIF_xxxx constants to these functions */ static inline void set_ti_thread_flag(struct thread_info *ti, int flag) { set_bit(flag, (unsigned long *)&ti->flags); } static inline void clear_ti_thread_flag(struct thread_info *ti, int flag) { clear_bit(flag, (unsigned long *)&ti->flags); } static inline void update_ti_thread_flag(struct thread_info *ti, int flag, bool value) { if (value) set_ti_thread_flag(ti, flag); else clear_ti_thread_flag(ti, flag); } static inline int test_and_set_ti_thread_flag(struct thread_info *ti, int flag) { return test_and_set_bit(flag, (unsigned long *)&ti->flags); } static inline int test_and_clear_ti_thread_flag(struct thread_info *ti, int flag) { return test_and_clear_bit(flag, (unsigned long *)&ti->flags); } static inline int test_ti_thread_flag(struct thread_info *ti, int flag) { return test_bit(flag, (unsigned long *)&ti->flags); } #define set_thread_flag(flag) \ set_ti_thread_flag(current_thread_info(), flag) #define clear_thread_flag(flag) \ clear_ti_thread_flag(current_thread_info(), flag) #define update_thread_flag(flag, value) \ update_ti_thread_flag(current_thread_info(), flag, value) #define test_and_set_thread_flag(flag) \ test_and_set_ti_thread_flag(current_thread_info(), flag) #define test_and_clear_thread_flag(flag) \ test_and_clear_ti_thread_flag(current_thread_info(), flag) #define test_thread_flag(flag) \ test_ti_thread_flag(current_thread_info(), flag) #define tif_need_resched() test_thread_flag(TIF_NEED_RESCHED) #ifndef CONFIG_HAVE_ARCH_WITHIN_STACK_FRAMES static inline int arch_within_stack_frames(const void * const stack, const void * const stackend, const void *obj, unsigned long len) { return 0; } #endif #ifdef CONFIG_HARDENED_USERCOPY extern void __check_object_size(const void *ptr, unsigned long n, bool to_user); static __always_inline void check_object_size(const void *ptr, unsigned long n, bool to_user) { if (!__builtin_constant_p(n)) __check_object_size(ptr, n, to_user); } #else static inline void check_object_size(const void *ptr, unsigned long n, bool to_user) { } #endif /* CONFIG_HARDENED_USERCOPY */ extern void __compiletime_error("copy source size is too small") __bad_copy_from(void); extern void __compiletime_error("copy destination size is too small") __bad_copy_to(void); static inline void copy_overflow(int size, unsigned long count) { WARN(1, "Buffer overflow detected (%d < %lu)!\n", size, count); } static __always_inline __must_check bool check_copy_size(const void *addr, size_t bytes, bool is_source) { int sz = __compiletime_object_size(addr); if (unlikely(sz >= 0 && sz < bytes)) { if (!__builtin_constant_p(bytes)) copy_overflow(sz, bytes); else if (is_source) __bad_copy_from(); else __bad_copy_to(); return false; } if (WARN_ON_ONCE(bytes > INT_MAX)) return false; check_object_size(addr, bytes, is_source); return true; } #ifndef arch_setup_new_exec static inline void arch_setup_new_exec(void) { } #endif #endif /* __KERNEL__ */ #endif /* _LINUX_THREAD_INFO_H */
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_PROCESSOR_H #define _ASM_X86_PROCESSOR_H #include <asm/processor-flags.h> /* Forward declaration, a strange C thing */ struct task_struct; struct mm_struct; struct io_bitmap; struct vm86; #include <asm/math_emu.h> #include <asm/segment.h> #include <asm/types.h> #include <uapi/asm/sigcontext.h> #include <asm/current.h> #include <asm/cpufeatures.h> #include <asm/page.h> #include <asm/pgtable_types.h> #include <asm/percpu.h> #include <asm/msr.h> #include <asm/desc_defs.h> #include <asm/nops.h> #include <asm/special_insns.h> #include <asm/fpu/types.h> #include <asm/unwind_hints.h> #include <asm/vmxfeatures.h> #include <asm/vdso/processor.h> #include <linux/personality.h> #include <linux/cache.h> #include <linux/threads.h> #include <linux/math64.h> #include <linux/err.h> #include <linux/irqflags.h> #include <linux/mem_encrypt.h> /* * We handle most unaligned accesses in hardware. On the other hand * unaligned DMA can be quite expensive on some Nehalem processors. * * Based on this we disable the IP header alignment in network drivers. */ #define NET_IP_ALIGN 0 #define HBP_NUM 4 /* * These alignment constraints are for performance in the vSMP case, * but in the task_struct case we must also meet hardware imposed * alignment requirements of the FPU state: */ #ifdef CONFIG_X86_VSMP # define ARCH_MIN_TASKALIGN (1 << INTERNODE_CACHE_SHIFT) # define ARCH_MIN_MMSTRUCT_ALIGN (1 << INTERNODE_CACHE_SHIFT) #else # define ARCH_MIN_TASKALIGN __alignof__(union fpregs_state) # define ARCH_MIN_MMSTRUCT_ALIGN 0 #endif enum tlb_infos { ENTRIES, NR_INFO }; extern u16 __read_mostly tlb_lli_4k[NR_INFO]; extern u16 __read_mostly tlb_lli_2m[NR_INFO]; extern u16 __read_mostly tlb_lli_4m[NR_INFO]; extern u16 __read_mostly tlb_lld_4k[NR_INFO]; extern u16 __read_mostly tlb_lld_2m[NR_INFO]; extern u16 __read_mostly tlb_lld_4m[NR_INFO]; extern u16 __read_mostly tlb_lld_1g[NR_INFO]; /* * CPU type and hardware bug flags. Kept separately for each CPU. * Members of this structure are referenced in head_32.S, so think twice * before touching them. [mj] */ struct cpuinfo_x86 { __u8 x86; /* CPU family */ __u8 x86_vendor; /* CPU vendor */ __u8 x86_model; __u8 x86_stepping; #ifdef CONFIG_X86_64 /* Number of 4K pages in DTLB/ITLB combined(in pages): */ int x86_tlbsize; #endif #ifdef CONFIG_X86_VMX_FEATURE_NAMES __u32 vmx_capability[NVMXINTS]; #endif __u8 x86_virt_bits; __u8 x86_phys_bits; /* CPUID returned core id bits: */ __u8 x86_coreid_bits; __u8 cu_id; /* Max extended CPUID function supported: */ __u32 extended_cpuid_level; /* Maximum supported CPUID level, -1=no CPUID: */ int cpuid_level; /* * Align to size of unsigned long because the x86_capability array * is passed to bitops which require the alignment. Use unnamed * union to enforce the array is aligned to size of unsigned long. */ union { __u32 x86_capability[NCAPINTS + NBUGINTS]; unsigned long x86_capability_alignment; }; char x86_vendor_id[16]; char x86_model_id[64]; /* in KB - valid for CPUS which support this call: */ unsigned int x86_cache_size; int x86_cache_alignment; /* In bytes */ /* Cache QoS architectural values, valid only on the BSP: */ int x86_cache_max_rmid; /* max index */ int x86_cache_occ_scale; /* scale to bytes */ int x86_cache_mbm_width_offset; int x86_power; unsigned long loops_per_jiffy; /* cpuid returned max cores value: */ u16 x86_max_cores; u16 apicid; u16 initial_apicid; u16 x86_clflush_size; /* number of cores as seen by the OS: */ u16 booted_cores; /* Physical processor id: */ u16 phys_proc_id; /* Logical processor id: */ u16 logical_proc_id; /* Core id: */ u16 cpu_core_id; u16 cpu_die_id; u16 logical_die_id; /* Index into per_cpu list: */ u16 cpu_index; u32 microcode; /* Address space bits used by the cache internally */ u8 x86_cache_bits; unsigned initialized : 1; } __randomize_layout; struct cpuid_regs { u32 eax, ebx, ecx, edx; }; enum cpuid_regs_idx { CPUID_EAX = 0, CPUID_EBX, CPUID_ECX, CPUID_EDX, }; #define X86_VENDOR_INTEL 0 #define X86_VENDOR_CYRIX 1 #define X86_VENDOR_AMD 2 #define X86_VENDOR_UMC 3 #define X86_VENDOR_CENTAUR 5 #define X86_VENDOR_TRANSMETA 7 #define X86_VENDOR_NSC 8 #define X86_VENDOR_HYGON 9 #define X86_VENDOR_ZHAOXIN 10 #define X86_VENDOR_NUM 11 #define X86_VENDOR_UNKNOWN 0xff /* * capabilities of CPUs */ extern struct cpuinfo_x86 boot_cpu_data; extern struct cpuinfo_x86 new_cpu_data; extern __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS]; extern __u32 cpu_caps_set[NCAPINTS + NBUGINTS]; #ifdef CONFIG_SMP DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info); #define cpu_data(cpu) per_cpu(cpu_info, cpu) #else #define cpu_info boot_cpu_data #define cpu_data(cpu) boot_cpu_data #endif extern const struct seq_operations cpuinfo_op; #define cache_line_size() (boot_cpu_data.x86_cache_alignment) extern void cpu_detect(struct cpuinfo_x86 *c); static inline unsigned long long l1tf_pfn_limit(void) { return BIT_ULL(boot_cpu_data.x86_cache_bits - 1 - PAGE_SHIFT); } extern void early_cpu_init(void); extern void identify_boot_cpu(void); extern void identify_secondary_cpu(struct cpuinfo_x86 *); extern void print_cpu_info(struct cpuinfo_x86 *); void print_cpu_msr(struct cpuinfo_x86 *); #ifdef CONFIG_X86_32 extern int have_cpuid_p(void); #else static inline int have_cpuid_p(void) { return 1; } #endif static inline void native_cpuid(unsigned int *eax, unsigned int *ebx, unsigned int *ecx, unsigned int *edx) { /* ecx is often an input as well as an output. */ asm volatile("cpuid" : "=a" (*eax), "=b" (*ebx), "=c" (*ecx), "=d" (*edx) : "0" (*eax), "2" (*ecx) : "memory"); } #define native_cpuid_reg(reg) \ static inline unsigned int native_cpuid_##reg(unsigned int op) \ { \ unsigned int eax = op, ebx, ecx = 0, edx; \ \ native_cpuid(&eax, &ebx, &ecx, &edx); \ \ return reg; \ } /* * Native CPUID functions returning a single datum. */ native_cpuid_reg(eax) native_cpuid_reg(ebx) native_cpuid_reg(ecx) native_cpuid_reg(edx) /* * Friendlier CR3 helpers. */ static inline unsigned long read_cr3_pa(void) { return __read_cr3() & CR3_ADDR_MASK; } static inline unsigned long native_read_cr3_pa(void) { return __native_read_cr3() & CR3_ADDR_MASK; } static inline void load_cr3(pgd_t *pgdir) { write_cr3(__sme_pa(pgdir)); } /* * Note that while the legacy 'TSS' name comes from 'Task State Segment', * on modern x86 CPUs the TSS also holds information important to 64-bit mode, * unrelated to the task-switch mechanism: */ #ifdef CONFIG_X86_32 /* This is the TSS defined by the hardware. */ struct x86_hw_tss { unsigned short back_link, __blh; unsigned long sp0; unsigned short ss0, __ss0h; unsigned long sp1; /* * We don't use ring 1, so ss1 is a convenient scratch space in * the same cacheline as sp0. We use ss1 to cache the value in * MSR_IA32_SYSENTER_CS. When we context switch * MSR_IA32_SYSENTER_CS, we first check if the new value being * written matches ss1, and, if it's not, then we wrmsr the new * value and update ss1. * * The only reason we context switch MSR_IA32_SYSENTER_CS is * that we set it to zero in vm86 tasks to avoid corrupting the * stack if we were to go through the sysenter path from vm86 * mode. */ unsigned short ss1; /* MSR_IA32_SYSENTER_CS */ unsigned short __ss1h; unsigned long sp2; unsigned short ss2, __ss2h; unsigned long __cr3; unsigned long ip; unsigned long flags; unsigned long ax; unsigned long cx; unsigned long dx; unsigned long bx; unsigned long sp; unsigned long bp; unsigned long si; unsigned long di; unsigned short es, __esh; unsigned short cs, __csh; unsigned short ss, __ssh; unsigned short ds, __dsh; unsigned short fs, __fsh; unsigned short gs, __gsh; unsigned short ldt, __ldth; unsigned short trace; unsigned short io_bitmap_base; } __attribute__((packed)); #else struct x86_hw_tss { u32 reserved1; u64 sp0; /* * We store cpu_current_top_of_stack in sp1 so it's always accessible. * Linux does not use ring 1, so sp1 is not otherwise needed. */ u64 sp1; /* * Since Linux does not use ring 2, the 'sp2' slot is unused by * hardware. entry_SYSCALL_64 uses it as scratch space to stash * the user RSP value. */ u64 sp2; u64 reserved2; u64 ist[7]; u32 reserved3; u32 reserved4; u16 reserved5; u16 io_bitmap_base; } __attribute__((packed)); #endif /* * IO-bitmap sizes: */ #define IO_BITMAP_BITS 65536 #define IO_BITMAP_BYTES (IO_BITMAP_BITS / BITS_PER_BYTE) #define IO_BITMAP_LONGS (IO_BITMAP_BYTES / sizeof(long)) #define IO_BITMAP_OFFSET_VALID_MAP \ (offsetof(struct tss_struct, io_bitmap.bitmap) - \ offsetof(struct tss_struct, x86_tss)) #define IO_BITMAP_OFFSET_VALID_ALL \ (offsetof(struct tss_struct, io_bitmap.mapall) - \ offsetof(struct tss_struct, x86_tss)) #ifdef CONFIG_X86_IOPL_IOPERM /* * sizeof(unsigned long) coming from an extra "long" at the end of the * iobitmap. The limit is inclusive, i.e. the last valid byte. */ # define __KERNEL_TSS_LIMIT \ (IO_BITMAP_OFFSET_VALID_ALL + IO_BITMAP_BYTES + \ sizeof(unsigned long) - 1) #else # define __KERNEL_TSS_LIMIT \ (offsetof(struct tss_struct, x86_tss) + sizeof(struct x86_hw_tss) - 1) #endif /* Base offset outside of TSS_LIMIT so unpriviledged IO causes #GP */ #define IO_BITMAP_OFFSET_INVALID (__KERNEL_TSS_LIMIT + 1) struct entry_stack { char stack[PAGE_SIZE]; }; struct entry_stack_page { struct entry_stack stack; } __aligned(PAGE_SIZE); /* * All IO bitmap related data stored in the TSS: */ struct x86_io_bitmap { /* The sequence number of the last active bitmap. */ u64 prev_sequence; /* * Store the dirty size of the last io bitmap offender. The next * one will have to do the cleanup as the switch out to a non io * bitmap user will just set x86_tss.io_bitmap_base to a value * outside of the TSS limit. So for sane tasks there is no need to * actually touch the io_bitmap at all. */ unsigned int prev_max; /* * The extra 1 is there because the CPU will access an * additional byte beyond the end of the IO permission * bitmap. The extra byte must be all 1 bits, and must * be within the limit. */ unsigned long bitmap[IO_BITMAP_LONGS + 1]; /* * Special I/O bitmap to emulate IOPL(3). All bytes zero, * except the additional byte at the end. */ unsigned long mapall[IO_BITMAP_LONGS + 1]; }; struct tss_struct { /* * The fixed hardware portion. This must not cross a page boundary * at risk of violating the SDM's advice and potentially triggering * errata. */ struct x86_hw_tss x86_tss; struct x86_io_bitmap io_bitmap; } __aligned(PAGE_SIZE); DECLARE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw); /* Per CPU interrupt stacks */ struct irq_stack { char stack[IRQ_STACK_SIZE]; } __aligned(IRQ_STACK_SIZE); DECLARE_PER_CPU(struct irq_stack *, hardirq_stack_ptr); #ifdef CONFIG_X86_32 DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack); #else /* The RO copy can't be accessed with this_cpu_xyz(), so use the RW copy. */ #define cpu_current_top_of_stack cpu_tss_rw.x86_tss.sp1 #endif #ifdef CONFIG_X86_64 struct fixed_percpu_data { /* * GCC hardcodes the stack canary as %gs:40. Since the * irq_stack is the object at %gs:0, we reserve the bottom * 48 bytes of the irq stack for the canary. */ char gs_base[40]; unsigned long stack_canary; }; DECLARE_PER_CPU_FIRST(struct fixed_percpu_data, fixed_percpu_data) __visible; DECLARE_INIT_PER_CPU(fixed_percpu_data); static inline unsigned long cpu_kernelmode_gs_base(int cpu) { return (unsigned long)per_cpu(fixed_percpu_data.gs_base, cpu); } DECLARE_PER_CPU(unsigned int, irq_count); extern asmlinkage void ignore_sysret(void); /* Save actual FS/GS selectors and bases to current->thread */ void current_save_fsgs(void); #else /* X86_64 */ #ifdef CONFIG_STACKPROTECTOR /* * Make sure stack canary segment base is cached-aligned: * "For Intel Atom processors, avoid non zero segment base address * that is not aligned to cache line boundary at all cost." * (Optim Ref Manual Assembly/Compiler Coding Rule 15.) */ struct stack_canary { char __pad[20]; /* canary at %gs:20 */ unsigned long canary; }; DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary); #endif /* Per CPU softirq stack pointer */ DECLARE_PER_CPU(struct irq_stack *, softirq_stack_ptr); #endif /* X86_64 */ extern unsigned int fpu_kernel_xstate_size; extern unsigned int fpu_user_xstate_size; struct perf_event; struct thread_struct { /* Cached TLS descriptors: */ struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES]; #ifdef CONFIG_X86_32 unsigned long sp0; #endif unsigned long sp; #ifdef CONFIG_X86_32 unsigned long sysenter_cs; #else unsigned short es; unsigned short ds; unsigned short fsindex; unsigned short gsindex; #endif #ifdef CONFIG_X86_64 unsigned long fsbase; unsigned long gsbase; #else /* * XXX: this could presumably be unsigned short. Alternatively, * 32-bit kernels could be taught to use fsindex instead. */ unsigned long fs; unsigned long gs; #endif /* Save middle states of ptrace breakpoints */ struct perf_event *ptrace_bps[HBP_NUM]; /* Debug status used for traps, single steps, etc... */ unsigned long virtual_dr6; /* Keep track of the exact dr7 value set by the user */ unsigned long ptrace_dr7; /* Fault info: */ unsigned long cr2; unsigned long trap_nr; unsigned long error_code; #ifdef CONFIG_VM86 /* Virtual 86 mode info */ struct vm86 *vm86; #endif /* IO permissions: */ struct io_bitmap *io_bitmap; /* * IOPL. Priviledge level dependent I/O permission which is * emulated via the I/O bitmap to prevent user space from disabling * interrupts. */ unsigned long iopl_emul; unsigned int iopl_warn:1; unsigned int sig_on_uaccess_err:1; /* Floating point and extended processor state */ struct fpu fpu; /* * WARNING: 'fpu' is dynamically-sized. It *MUST* be at * the end. */ }; /* Whitelist the FPU state from the task_struct for hardened usercopy. */ static inline void arch_thread_struct_whitelist(unsigned long *offset, unsigned long *size) { *offset = offsetof(struct thread_struct, fpu.state); *size = fpu_kernel_xstate_size; } static inline void native_load_sp0(unsigned long sp0) { this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0); } static __always_inline void native_swapgs(void) { #ifdef CONFIG_X86_64 asm volatile("swapgs" ::: "memory"); #endif } static inline unsigned long current_top_of_stack(void) { /* * We can't read directly from tss.sp0: sp0 on x86_32 is special in * and around vm86 mode and sp0 on x86_64 is special because of the * entry trampoline. */ return this_cpu_read_stable(cpu_current_top_of_stack); } static inline bool on_thread_stack(void) { return (unsigned long)(current_top_of_stack() - current_stack_pointer) < THREAD_SIZE; } #ifdef CONFIG_PARAVIRT_XXL #include <asm/paravirt.h> #else #define __cpuid native_cpuid static inline void load_sp0(unsigned long sp0) { native_load_sp0(sp0); } #endif /* CONFIG_PARAVIRT_XXL */ /* Free all resources held by a thread. */ extern void release_thread(struct task_struct *); unsigned long get_wchan(struct task_struct *p); /* * Generic CPUID function * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx * resulting in stale register contents being returned. */ static inline void cpuid(unsigned int op, unsigned int *eax, unsigned int *ebx, unsigned int *ecx, unsigned int *edx) { *eax = op; *ecx = 0; __cpuid(eax, ebx, ecx, edx); } /* Some CPUID calls want 'count' to be placed in ecx */ static inline void cpuid_count(unsigned int op, int count, unsigned int *eax, unsigned int *ebx, unsigned int *ecx, unsigned int *edx) { *eax = op; *ecx = count; __cpuid(eax, ebx, ecx, edx); } /* * CPUID functions returning a single datum */ static inline unsigned int cpuid_eax(unsigned int op) { unsigned int eax, ebx, ecx, edx; cpuid(op, &eax, &ebx, &ecx, &edx); return eax; } static inline unsigned int cpuid_ebx(unsigned int op) { unsigned int eax, ebx, ecx, edx; cpuid(op, &eax, &ebx, &ecx, &edx); return ebx; } static inline unsigned int cpuid_ecx(unsigned int op) { unsigned int eax, ebx, ecx, edx; cpuid(op, &eax, &ebx, &ecx, &edx); return ecx; } static inline unsigned int cpuid_edx(unsigned int op) { unsigned int eax, ebx, ecx, edx; cpuid(op, &eax, &ebx, &ecx, &edx); return edx; } extern void select_idle_routine(const struct cpuinfo_x86 *c); extern void amd_e400_c1e_apic_setup(void); extern unsigned long boot_option_idle_override; enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT, IDLE_POLL}; extern void enable_sep_cpu(void); extern int sysenter_setup(void); /* Defined in head.S */ extern struct desc_ptr early_gdt_descr; extern void switch_to_new_gdt(int); extern void load_direct_gdt(int); extern void load_fixmap_gdt(int); extern void load_percpu_segment(int); extern void cpu_init(void); extern void cpu_init_exception_handling(void); extern void cr4_init(void); static inline unsigned long get_debugctlmsr(void) { unsigned long debugctlmsr = 0; #ifndef CONFIG_X86_DEBUGCTLMSR if (boot_cpu_data.x86 < 6) return 0; #endif rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr); return debugctlmsr; } static inline void update_debugctlmsr(unsigned long debugctlmsr) { #ifndef CONFIG_X86_DEBUGCTLMSR if (boot_cpu_data.x86 < 6) return; #endif wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr); } extern void set_task_blockstep(struct task_struct *task, bool on); /* Boot loader type from the setup header: */ extern int bootloader_type; extern int bootloader_version; extern char ignore_fpu_irq; #define HAVE_ARCH_PICK_MMAP_LAYOUT 1 #define ARCH_HAS_PREFETCHW #define ARCH_HAS_SPINLOCK_PREFETCH #ifdef CONFIG_X86_32 # define BASE_PREFETCH "" # define ARCH_HAS_PREFETCH #else # define BASE_PREFETCH "prefetcht0 %P1" #endif /* * Prefetch instructions for Pentium III (+) and AMD Athlon (+) * * It's not worth to care about 3dnow prefetches for the K6 * because they are microcoded there and very slow. */ static inline void prefetch(const void *x) { alternative_input(BASE_PREFETCH, "prefetchnta %P1", X86_FEATURE_XMM, "m" (*(const char *)x)); } /* * 3dnow prefetch to get an exclusive cache line. * Useful for spinlocks to avoid one state transition in the * cache coherency protocol: */ static __always_inline void prefetchw(const void *x) { alternative_input(BASE_PREFETCH, "prefetchw %P1", X86_FEATURE_3DNOWPREFETCH, "m" (*(const char *)x)); } static inline void spin_lock_prefetch(const void *x) { prefetchw(x); } #define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \ TOP_OF_KERNEL_STACK_PADDING) #define task_top_of_stack(task) ((unsigned long)(task_pt_regs(task) + 1)) #define task_pt_regs(task) \ ({ \ unsigned long __ptr = (unsigned long)task_stack_page(task); \ __ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; \ ((struct pt_regs *)__ptr) - 1; \ }) #ifdef CONFIG_X86_32 #define INIT_THREAD { \ .sp0 = TOP_OF_INIT_STACK, \ .sysenter_cs = __KERNEL_CS, \ } #define KSTK_ESP(task) (task_pt_regs(task)->sp) #else #define INIT_THREAD { } extern unsigned long KSTK_ESP(struct task_struct *task); #endif /* CONFIG_X86_64 */ extern void start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp); /* * This decides where the kernel will search for a free chunk of vm * space during mmap's. */ #define __TASK_UNMAPPED_BASE(task_size) (PAGE_ALIGN(task_size / 3)) #define TASK_UNMAPPED_BASE __TASK_UNMAPPED_BASE(TASK_SIZE_LOW) #define KSTK_EIP(task) (task_pt_regs(task)->ip) /* Get/set a process' ability to use the timestamp counter instruction */ #define GET_TSC_CTL(adr) get_tsc_mode((adr)) #define SET_TSC_CTL(val) set_tsc_mode((val)) extern int get_tsc_mode(unsigned long adr); extern int set_tsc_mode(unsigned int val); DECLARE_PER_CPU(u64, msr_misc_features_shadow); #ifdef CONFIG_CPU_SUP_AMD extern u16 amd_get_nb_id(int cpu); extern u32 amd_get_nodes_per_socket(void); #else static inline u16 amd_get_nb_id(int cpu) { return 0; } static inline u32 amd_get_nodes_per_socket(void) { return 0; } #endif static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves) { uint32_t base, eax, signature[3]; for (base = 0x40000000; base < 0x40010000; base += 0x100) { cpuid(base, &eax, &signature[0], &signature[1], &signature[2]); if (!memcmp(sig, signature, 12) && (leaves == 0 || ((eax - base) >= leaves))) return base; } return 0; } extern unsigned long arch_align_stack(unsigned long sp); void free_init_pages(const char *what, unsigned long begin, unsigned long end); extern void free_kernel_image_pages(const char *what, void *begin, void *end); void default_idle(void); #ifdef CONFIG_XEN bool xen_set_default_idle(void); #else #define xen_set_default_idle 0 #endif void stop_this_cpu(void *dummy); void microcode_check(void); enum l1tf_mitigations { L1TF_MITIGATION_OFF, L1TF_MITIGATION_FLUSH_NOWARN, L1TF_MITIGATION_FLUSH, L1TF_MITIGATION_FLUSH_NOSMT, L1TF_MITIGATION_FULL, L1TF_MITIGATION_FULL_FORCE }; extern enum l1tf_mitigations l1tf_mitigation; enum mds_mitigations { MDS_MITIGATION_OFF, MDS_MITIGATION_FULL, MDS_MITIGATION_VMWERV, }; #endif /* _ASM_X86_PROCESSOR_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* include/asm-generic/tlb.h * * Generic TLB shootdown code * * Copyright 2001 Red Hat, Inc. * Based on code from mm/memory.c Copyright Linus Torvalds and others. * * Copyright 2011 Red Hat, Inc., Peter Zijlstra */ #ifndef _ASM_GENERIC__TLB_H #define _ASM_GENERIC__TLB_H #include <linux/mmu_notifier.h> #include <linux/swap.h> #include <linux/hugetlb_inline.h> #include <asm/tlbflush.h> #include <asm/cacheflush.h> /* * Blindly accessing user memory from NMI context can be dangerous * if we're in the middle of switching the current user task or switching * the loaded mm. */ #ifndef nmi_uaccess_okay # define nmi_uaccess_okay() true #endif #ifdef CONFIG_MMU /* * Generic MMU-gather implementation. * * The mmu_gather data structure is used by the mm code to implement the * correct and efficient ordering of freeing pages and TLB invalidations. * * This correct ordering is: * * 1) unhook page * 2) TLB invalidate page * 3) free page * * That is, we must never free a page before we have ensured there are no live * translations left to it. Otherwise it might be possible to observe (or * worse, change) the page content after it has been reused. * * The mmu_gather API consists of: * * - tlb_gather_mmu() / tlb_finish_mmu(); start and finish a mmu_gather * * Finish in particular will issue a (final) TLB invalidate and free * all (remaining) queued pages. * * - tlb_start_vma() / tlb_end_vma(); marks the start / end of a VMA * * Defaults to flushing at tlb_end_vma() to reset the range; helps when * there's large holes between the VMAs. * * - tlb_remove_table() * * tlb_remove_table() is the basic primitive to free page-table directories * (__p*_free_tlb()). In it's most primitive form it is an alias for * tlb_remove_page() below, for when page directories are pages and have no * additional constraints. * * See also MMU_GATHER_TABLE_FREE and MMU_GATHER_RCU_TABLE_FREE. * * - tlb_remove_page() / __tlb_remove_page() * - tlb_remove_page_size() / __tlb_remove_page_size() * * __tlb_remove_page_size() is the basic primitive that queues a page for * freeing. __tlb_remove_page() assumes PAGE_SIZE. Both will return a * boolean indicating if the queue is (now) full and a call to * tlb_flush_mmu() is required. * * tlb_remove_page() and tlb_remove_page_size() imply the call to * tlb_flush_mmu() when required and has no return value. * * - tlb_change_page_size() * * call before __tlb_remove_page*() to set the current page-size; implies a * possible tlb_flush_mmu() call. * * - tlb_flush_mmu() / tlb_flush_mmu_tlbonly() * * tlb_flush_mmu_tlbonly() - does the TLB invalidate (and resets * related state, like the range) * * tlb_flush_mmu() - in addition to the above TLB invalidate, also frees * whatever pages are still batched. * * - mmu_gather::fullmm * * A flag set by tlb_gather_mmu() to indicate we're going to free * the entire mm; this allows a number of optimizations. * * - We can ignore tlb_{start,end}_vma(); because we don't * care about ranges. Everything will be shot down. * * - (RISC) architectures that use ASIDs can cycle to a new ASID * and delay the invalidation until ASID space runs out. * * - mmu_gather::need_flush_all * * A flag that can be set by the arch code if it wants to force * flush the entire TLB irrespective of the range. For instance * x86-PAE needs this when changing top-level entries. * * And allows the architecture to provide and implement tlb_flush(): * * tlb_flush() may, in addition to the above mentioned mmu_gather fields, make * use of: * * - mmu_gather::start / mmu_gather::end * * which provides the range that needs to be flushed to cover the pages to * be freed. * * - mmu_gather::freed_tables * * set when we freed page table pages * * - tlb_get_unmap_shift() / tlb_get_unmap_size() * * returns the smallest TLB entry size unmapped in this range. * * If an architecture does not provide tlb_flush() a default implementation * based on flush_tlb_range() will be used, unless MMU_GATHER_NO_RANGE is * specified, in which case we'll default to flush_tlb_mm(). * * Additionally there are a few opt-in features: * * MMU_GATHER_PAGE_SIZE * * This ensures we call tlb_flush() every time tlb_change_page_size() actually * changes the size and provides mmu_gather::page_size to tlb_flush(). * * This might be useful if your architecture has size specific TLB * invalidation instructions. * * MMU_GATHER_TABLE_FREE * * This provides tlb_remove_table(), to be used instead of tlb_remove_page() * for page directores (__p*_free_tlb()). * * Useful if your architecture has non-page page directories. * * When used, an architecture is expected to provide __tlb_remove_table() * which does the actual freeing of these pages. * * MMU_GATHER_RCU_TABLE_FREE * * Like MMU_GATHER_TABLE_FREE, and adds semi-RCU semantics to the free (see * comment below). * * Useful if your architecture doesn't use IPIs for remote TLB invalidates * and therefore doesn't naturally serialize with software page-table walkers. * * MMU_GATHER_NO_RANGE * * Use this if your architecture lacks an efficient flush_tlb_range(). * * MMU_GATHER_NO_GATHER * * If the option is set the mmu_gather will not track individual pages for * delayed page free anymore. A platform that enables the option needs to * provide its own implementation of the __tlb_remove_page_size() function to * free pages. * * This is useful if your architecture already flushes TLB entries in the * various ptep_get_and_clear() functions. */ #ifdef CONFIG_MMU_GATHER_TABLE_FREE struct mmu_table_batch { #ifdef CONFIG_MMU_GATHER_RCU_TABLE_FREE struct rcu_head rcu; #endif unsigned int nr; void *tables[0]; }; #define MAX_TABLE_BATCH \ ((PAGE_SIZE - sizeof(struct mmu_table_batch)) / sizeof(void *)) extern void tlb_remove_table(struct mmu_gather *tlb, void *table); #else /* !CONFIG_MMU_GATHER_HAVE_TABLE_FREE */ /* * Without MMU_GATHER_TABLE_FREE the architecture is assumed to have page based * page directories and we can use the normal page batching to free them. */ #define tlb_remove_table(tlb, page) tlb_remove_page((tlb), (page)) #endif /* CONFIG_MMU_GATHER_TABLE_FREE */ #ifdef CONFIG_MMU_GATHER_RCU_TABLE_FREE /* * This allows an architecture that does not use the linux page-tables for * hardware to skip the TLBI when freeing page tables. */ #ifndef tlb_needs_table_invalidate #define tlb_needs_table_invalidate() (true) #endif #else #ifdef tlb_needs_table_invalidate #error tlb_needs_table_invalidate() requires MMU_GATHER_RCU_TABLE_FREE #endif #endif /* CONFIG_MMU_GATHER_RCU_TABLE_FREE */ #ifndef CONFIG_MMU_GATHER_NO_GATHER /* * If we can't allocate a page to make a big batch of page pointers * to work on, then just handle a few from the on-stack structure. */ #define MMU_GATHER_BUNDLE 8 struct mmu_gather_batch { struct mmu_gather_batch *next; unsigned int nr; unsigned int max; struct page *pages[0]; }; #define MAX_GATHER_BATCH \ ((PAGE_SIZE - sizeof(struct mmu_gather_batch)) / sizeof(void *)) /* * Limit the maximum number of mmu_gather batches to reduce a risk of soft * lockups for non-preemptible kernels on huge machines when a lot of memory * is zapped during unmapping. * 10K pages freed at once should be safe even without a preemption point. */ #define MAX_GATHER_BATCH_COUNT (10000UL/MAX_GATHER_BATCH) extern bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size); #endif /* * struct mmu_gather is an opaque type used by the mm code for passing around * any data needed by arch specific code for tlb_remove_page. */ struct mmu_gather { struct mm_struct *mm; #ifdef CONFIG_MMU_GATHER_TABLE_FREE struct mmu_table_batch *batch; #endif unsigned long start; unsigned long end; /* * we are in the middle of an operation to clear * a full mm and can make some optimizations */ unsigned int fullmm : 1; /* * we have performed an operation which * requires a complete flush of the tlb */ unsigned int need_flush_all : 1; /* * we have removed page directories */ unsigned int freed_tables : 1; /* * at which levels have we cleared entries? */ unsigned int cleared_ptes : 1; unsigned int cleared_pmds : 1; unsigned int cleared_puds : 1; unsigned int cleared_p4ds : 1; /* * tracks VM_EXEC | VM_HUGETLB in tlb_start_vma */ unsigned int vma_exec : 1; unsigned int vma_huge : 1; unsigned int batch_count; #ifndef CONFIG_MMU_GATHER_NO_GATHER struct mmu_gather_batch *active; struct mmu_gather_batch local; struct page *__pages[MMU_GATHER_BUNDLE]; #ifdef CONFIG_MMU_GATHER_PAGE_SIZE unsigned int page_size; #endif #endif }; void tlb_flush_mmu(struct mmu_gather *tlb); static inline void __tlb_adjust_range(struct mmu_gather *tlb, unsigned long address, unsigned int range_size) { tlb->start = min(tlb->start, address); tlb->end = max(tlb->end, address + range_size); } static inline void __tlb_reset_range(struct mmu_gather *tlb) { if (tlb->fullmm) { tlb->start = tlb->end = ~0; } else { tlb->start = TASK_SIZE; tlb->end = 0; } tlb->freed_tables = 0; tlb->cleared_ptes = 0; tlb->cleared_pmds = 0; tlb->cleared_puds = 0; tlb->cleared_p4ds = 0; /* * Do not reset mmu_gather::vma_* fields here, we do not * call into tlb_start_vma() again to set them if there is an * intermediate flush. */ } #ifdef CONFIG_MMU_GATHER_NO_RANGE #if defined(tlb_flush) || defined(tlb_start_vma) || defined(tlb_end_vma) #error MMU_GATHER_NO_RANGE relies on default tlb_flush(), tlb_start_vma() and tlb_end_vma() #endif /* * When an architecture does not have efficient means of range flushing TLBs * there is no point in doing intermediate flushes on tlb_end_vma() to keep the * range small. We equally don't have to worry about page granularity or other * things. * * All we need to do is issue a full flush for any !0 range. */ static inline void tlb_flush(struct mmu_gather *tlb) { if (tlb->end) flush_tlb_mm(tlb->mm); } static inline void tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma) { } #define tlb_end_vma tlb_end_vma static inline void tlb_end_vma(struct mmu_gather *tlb, struct vm_area_struct *vma) { } #else /* CONFIG_MMU_GATHER_NO_RANGE */ #ifndef tlb_flush #if defined(tlb_start_vma) || defined(tlb_end_vma) #error Default tlb_flush() relies on default tlb_start_vma() and tlb_end_vma() #endif /* * When an architecture does not provide its own tlb_flush() implementation * but does have a reasonably efficient flush_vma_range() implementation * use that. */ static inline void tlb_flush(struct mmu_gather *tlb) { if (tlb->fullmm || tlb->need_flush_all) { flush_tlb_mm(tlb->mm); } else if (tlb->end) { struct vm_area_struct vma = { .vm_mm = tlb->mm, .vm_flags = (tlb->vma_exec ? VM_EXEC : 0) | (tlb->vma_huge ? VM_HUGETLB : 0), }; flush_tlb_range(&vma, tlb->start, tlb->end); } } static inline void tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma) { /* * flush_tlb_range() implementations that look at VM_HUGETLB (tile, * mips-4k) flush only large pages. * * flush_tlb_range() implementations that flush I-TLB also flush D-TLB * (tile, xtensa, arm), so it's ok to just add VM_EXEC to an existing * range. * * We rely on tlb_end_vma() to issue a flush, such that when we reset * these values the batch is empty. */ tlb->vma_huge = is_vm_hugetlb_page(vma); tlb->vma_exec = !!(vma->vm_flags & VM_EXEC); } #else static inline void tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma) { } #endif #endif /* CONFIG_MMU_GATHER_NO_RANGE */ static inline void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb) { /* * Anything calling __tlb_adjust_range() also sets at least one of * these bits. */ if (!(tlb->freed_tables || tlb->cleared_ptes || tlb->cleared_pmds || tlb->cleared_puds || tlb->cleared_p4ds)) return; tlb_flush(tlb); mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end); __tlb_reset_range(tlb); } static inline void tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size) { if (__tlb_remove_page_size(tlb, page, page_size)) tlb_flush_mmu(tlb); } static inline bool __tlb_remove_page(struct mmu_gather *tlb, struct page *page) { return __tlb_remove_page_size(tlb, page, PAGE_SIZE); } /* tlb_remove_page * Similar to __tlb_remove_page but will call tlb_flush_mmu() itself when * required. */ static inline void tlb_remove_page(struct mmu_gather *tlb, struct page *page) { return tlb_remove_page_size(tlb, page, PAGE_SIZE); } static inline void tlb_change_page_size(struct mmu_gather *tlb, unsigned int page_size) { #ifdef CONFIG_MMU_GATHER_PAGE_SIZE if (tlb->page_size && tlb->page_size != page_size) { if (!tlb->fullmm && !tlb->need_flush_all) tlb_flush_mmu(tlb); } tlb->page_size = page_size; #endif } static inline unsigned long tlb_get_unmap_shift(struct mmu_gather *tlb) { if (tlb->cleared_ptes) return PAGE_SHIFT; if (tlb->cleared_pmds) return PMD_SHIFT; if (tlb->cleared_puds) return PUD_SHIFT; if (tlb->cleared_p4ds) return P4D_SHIFT; return PAGE_SHIFT; } static inline unsigned long tlb_get_unmap_size(struct mmu_gather *tlb) { return 1UL << tlb_get_unmap_shift(tlb); } /* * In the case of tlb vma handling, we can optimise these away in the * case where we're doing a full MM flush. When we're doing a munmap, * the vmas are adjusted to only cover the region to be torn down. */ #ifndef tlb_start_vma static inline void tlb_start_vma(struct mmu_gather *tlb, struct vm_area_struct *vma) { if (tlb->fullmm) return; tlb_update_vma_flags(tlb, vma); flush_cache_range(vma, vma->vm_start, vma->vm_end); } #endif #ifndef tlb_end_vma static inline void tlb_end_vma(struct mmu_gather *tlb, struct vm_area_struct *vma) { if (tlb->fullmm) return; /* * Do a TLB flush and reset the range at VMA boundaries; this avoids * the ranges growing with the unused space between consecutive VMAs, * but also the mmu_gather::vma_* flags from tlb_start_vma() rely on * this. */ tlb_flush_mmu_tlbonly(tlb); } #endif /* * tlb_flush_{pte|pmd|pud|p4d}_range() adjust the tlb->start and tlb->end, * and set corresponding cleared_*. */ static inline void tlb_flush_pte_range(struct mmu_gather *tlb, unsigned long address, unsigned long size) { __tlb_adjust_range(tlb, address, size); tlb->cleared_ptes = 1; } static inline void tlb_flush_pmd_range(struct mmu_gather *tlb, unsigned long address, unsigned long size) { __tlb_adjust_range(tlb, address, size); tlb->cleared_pmds = 1; } static inline void tlb_flush_pud_range(struct mmu_gather *tlb, unsigned long address, unsigned long size) { __tlb_adjust_range(tlb, address, size); tlb->cleared_puds = 1; } static inline void tlb_flush_p4d_range(struct mmu_gather *tlb, unsigned long address, unsigned long size) { __tlb_adjust_range(tlb, address, size); tlb->cleared_p4ds = 1; } #ifndef __tlb_remove_tlb_entry #define __tlb_remove_tlb_entry(tlb, ptep, address) do { } while (0) #endif /** * tlb_remove_tlb_entry - remember a pte unmapping for later tlb invalidation. * * Record the fact that pte's were really unmapped by updating the range, * so we can later optimise away the tlb invalidate. This helps when * userspace is unmapping already-unmapped pages, which happens quite a lot. */ #define tlb_remove_tlb_entry(tlb, ptep, address) \ do { \ tlb_flush_pte_range(tlb, address, PAGE_SIZE); \ __tlb_remove_tlb_entry(tlb, ptep, address); \ } while (0) #define tlb_remove_huge_tlb_entry(h, tlb, ptep, address) \ do { \ unsigned long _sz = huge_page_size(h); \ if (_sz == PMD_SIZE) \ tlb_flush_pmd_range(tlb, address, _sz); \ else if (_sz == PUD_SIZE) \ tlb_flush_pud_range(tlb, address, _sz); \ __tlb_remove_tlb_entry(tlb, ptep, address); \ } while (0) /** * tlb_remove_pmd_tlb_entry - remember a pmd mapping for later tlb invalidation * This is a nop so far, because only x86 needs it. */ #ifndef __tlb_remove_pmd_tlb_entry #define __tlb_remove_pmd_tlb_entry(tlb, pmdp, address) do {} while (0) #endif #define tlb_remove_pmd_tlb_entry(tlb, pmdp, address) \ do { \ tlb_flush_pmd_range(tlb, address, HPAGE_PMD_SIZE); \ __tlb_remove_pmd_tlb_entry(tlb, pmdp, address); \ } while (0) /** * tlb_remove_pud_tlb_entry - remember a pud mapping for later tlb * invalidation. This is a nop so far, because only x86 needs it. */ #ifndef __tlb_remove_pud_tlb_entry #define __tlb_remove_pud_tlb_entry(tlb, pudp, address) do {} while (0) #endif #define tlb_remove_pud_tlb_entry(tlb, pudp, address) \ do { \ tlb_flush_pud_range(tlb, address, HPAGE_PUD_SIZE); \ __tlb_remove_pud_tlb_entry(tlb, pudp, address); \ } while (0) /* * For things like page tables caches (ie caching addresses "inside" the * page tables, like x86 does), for legacy reasons, flushing an * individual page had better flush the page table caches behind it. This * is definitely how x86 works, for example. And if you have an * architected non-legacy page table cache (which I'm not aware of * anybody actually doing), you're going to have some architecturally * explicit flushing for that, likely *separate* from a regular TLB entry * flush, and thus you'd need more than just some range expansion.. * * So if we ever find an architecture * that would want something that odd, I think it is up to that * architecture to do its own odd thing, not cause pain for others * http://lkml.kernel.org/r/CA+55aFzBggoXtNXQeng5d_mRoDnaMBE5Y+URs+PHR67nUpMtaw@mail.gmail.com * * For now w.r.t page table cache, mark the range_size as PAGE_SIZE */ #ifndef pte_free_tlb #define pte_free_tlb(tlb, ptep, address) \ do { \ tlb_flush_pmd_range(tlb, address, PAGE_SIZE); \ tlb->freed_tables = 1; \ __pte_free_tlb(tlb, ptep, address); \ } while (0) #endif #ifndef pmd_free_tlb #define pmd_free_tlb(tlb, pmdp, address) \ do { \ tlb_flush_pud_range(tlb, address, PAGE_SIZE); \ tlb->freed_tables = 1; \ __pmd_free_tlb(tlb, pmdp, address); \ } while (0) #endif #ifndef pud_free_tlb #define pud_free_tlb(tlb, pudp, address) \ do { \ tlb_flush_p4d_range(tlb, address, PAGE_SIZE); \ tlb->freed_tables = 1; \ __pud_free_tlb(tlb, pudp, address); \ } while (0) #endif #ifndef p4d_free_tlb #define p4d_free_tlb(tlb, pudp, address) \ do { \ __tlb_adjust_range(tlb, address, PAGE_SIZE); \ tlb->freed_tables = 1; \ __p4d_free_tlb(tlb, pudp, address); \ } while (0) #endif #endif /* CONFIG_MMU */ #endif /* _ASM_GENERIC__TLB_H */
1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 // SPDX-License-Identifier: GPL-2.0-only /* * linux/fs/file_table.c * * Copyright (C) 1991, 1992 Linus Torvalds * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu) */ #include <linux/string.h> #include <linux/slab.h> #include <linux/file.h> #include <linux/fdtable.h> #include <linux/init.h> #include <linux/module.h> #include <linux/fs.h> #include <linux/security.h> #include <linux/cred.h> #include <linux/eventpoll.h> #include <linux/rcupdate.h> #include <linux/mount.h> #include <linux/capability.h> #include <linux/cdev.h> #include <linux/fsnotify.h> #include <linux/sysctl.h> #include <linux/percpu_counter.h> #include <linux/percpu.h> #include <linux/task_work.h> #include <linux/ima.h> #include <linux/swap.h> #include <linux/atomic.h> #include "internal.h" /* sysctl tunables... */ struct files_stat_struct files_stat = { .max_files = NR_FILE }; /* SLAB cache for file structures */ static struct kmem_cache *filp_cachep __read_mostly; static struct percpu_counter nr_files __cacheline_aligned_in_smp; static void file_free_rcu(struct rcu_head *head) { struct file *f = container_of(head, struct file, f_u.fu_rcuhead); put_cred(f->f_cred); kmem_cache_free(filp_cachep, f); } static inline void file_free(struct file *f) { security_file_free(f); if (!(f->f_mode & FMODE_NOACCOUNT)) percpu_counter_dec(&nr_files); call_rcu(&f->f_u.fu_rcuhead, file_free_rcu); } /* * Return the total number of open files in the system */ static long get_nr_files(void) { return percpu_counter_read_positive(&nr_files); } /* * Return the maximum number of open files in the system */ unsigned long get_max_files(void) { return files_stat.max_files; } EXPORT_SYMBOL_GPL(get_max_files); /* * Handle nr_files sysctl */ #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS) int proc_nr_files(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { files_stat.nr_files = get_nr_files(); return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); } #else int proc_nr_files(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { return -ENOSYS; } #endif static struct file *__alloc_file(int flags, const struct cred *cred) { struct file *f; int error; f = kmem_cache_zalloc(filp_cachep, GFP_KERNEL); if (unlikely(!f)) return ERR_PTR(-ENOMEM); f->f_cred = get_cred(cred); error = security_file_alloc(f); if (unlikely(error)) { file_free_rcu(&f->f_u.fu_rcuhead); return ERR_PTR(error); } atomic_long_set(&f->f_count, 1); rwlock_init(&f->f_owner.lock); spin_lock_init(&f->f_lock); mutex_init(&f->f_pos_lock); eventpoll_init_file(f); f->f_flags = flags; f->f_mode = OPEN_FMODE(flags); /* f->f_version: 0 */ return f; } /* Find an unused file structure and return a pointer to it. * Returns an error pointer if some error happend e.g. we over file * structures limit, run out of memory or operation is not permitted. * * Be very careful using this. You are responsible for * getting write access to any mount that you might assign * to this filp, if it is opened for write. If this is not * done, you will imbalance int the mount's writer count * and a warning at __fput() time. */ struct file *alloc_empty_file(int flags, const struct cred *cred) { static long old_max; struct file *f; /* * Privileged users can go above max_files */ if (get_nr_files() >= files_stat.max_files && !capable(CAP_SYS_ADMIN)) { /* * percpu_counters are inaccurate. Do an expensive check before * we go and fail. */ if (percpu_counter_sum_positive(&nr_files) >= files_stat.max_files) goto over; } f = __alloc_file(flags, cred); if (!IS_ERR(f)) percpu_counter_inc(&nr_files); return f; over: /* Ran out of filps - report that */ if (get_nr_files() > old_max) { pr_info("VFS: file-max limit %lu reached\n", get_max_files()); old_max = get_nr_files(); } return ERR_PTR(-ENFILE); } /* * Variant of alloc_empty_file() that doesn't check and modify nr_files. * * Should not be used unless there's a very good reason to do so. */ struct file *alloc_empty_file_noaccount(int flags, const struct cred *cred) { struct file *f = __alloc_file(flags, cred); if (!IS_ERR(f)) f->f_mode |= FMODE_NOACCOUNT; return f; } /** * alloc_file - allocate and initialize a 'struct file' * * @path: the (dentry, vfsmount) pair for the new file * @flags: O_... flags with which the new file will be opened * @fop: the 'struct file_operations' for the new file */ static struct file *alloc_file(const struct path *path, int flags, const struct file_operations *fop) { struct file *file; file = alloc_empty_file(flags, current_cred()); if (IS_ERR(file)) return file; file->f_path = *path; file->f_inode = path->dentry->d_inode; file->f_mapping = path->dentry->d_inode->i_mapping; file->f_wb_err = filemap_sample_wb_err(file->f_mapping); file->f_sb_err = file_sample_sb_err(file); if ((file->f_mode & FMODE_READ) && likely(fop->read || fop->read_iter)) file->f_mode |= FMODE_CAN_READ; if ((file->f_mode & FMODE_WRITE) && likely(fop->write || fop->write_iter)) file->f_mode |= FMODE_CAN_WRITE; file->f_mode |= FMODE_OPENED; file->f_op = fop; if ((file->f_mode & (FMODE_READ | FMODE_WRITE)) == FMODE_READ) i_readcount_inc(path->dentry->d_inode); return file; } struct file *alloc_file_pseudo(struct inode *inode, struct vfsmount *mnt, const char *name, int flags, const struct file_operations *fops) { static const struct dentry_operations anon_ops = { .d_dname = simple_dname }; struct qstr this = QSTR_INIT(name, strlen(name)); struct path path; struct file *file; path.dentry = d_alloc_pseudo(mnt->mnt_sb, &this); if (!path.dentry) return ERR_PTR(-ENOMEM); if (!mnt->mnt_sb->s_d_op) d_set_d_op(path.dentry, &anon_ops); path.mnt = mntget(mnt); d_instantiate(path.dentry, inode); file = alloc_file(&path, flags, fops); if (IS_ERR(file)) { ihold(inode); path_put(&path); } return file; } EXPORT_SYMBOL(alloc_file_pseudo); struct file *alloc_file_clone(struct file *base, int flags, const struct file_operations *fops) { struct file *f = alloc_file(&base->f_path, flags, fops); if (!IS_ERR(f)) { path_get(&f->f_path); f->f_mapping = base->f_mapping; } return f; } /* the real guts of fput() - releasing the last reference to file */ static void __fput(struct file *file) { struct dentry *dentry = file->f_path.dentry; struct vfsmount *mnt = file->f_path.mnt; struct inode *inode = file->f_inode; fmode_t mode = file->f_mode; if (unlikely(!(file->f_mode & FMODE_OPENED))) goto out; might_sleep(); fsnotify_close(file); /* * The function eventpoll_release() should be the first called * in the file cleanup chain. */ eventpoll_release(file); locks_remove_file(file); ima_file_free(file); if (unlikely(file->f_flags & FASYNC)) { if (file->f_op->fasync) file->f_op->fasync(-1, file, 0); } if (file->f_op->release) file->f_op->release(inode, file); if (unlikely(S_ISCHR(inode->i_mode) && inode->i_cdev != NULL && !(mode & FMODE_PATH))) { cdev_put(inode->i_cdev); } fops_put(file->f_op); put_pid(file->f_owner.pid); if ((mode & (FMODE_READ | FMODE_WRITE)) == FMODE_READ) i_readcount_dec(inode); if (mode & FMODE_WRITER) { put_write_access(inode); __mnt_drop_write(mnt); } dput(dentry); if (unlikely(mode & FMODE_NEED_UNMOUNT)) dissolve_on_fput(mnt); mntput(mnt); out: file_free(file); } static LLIST_HEAD(delayed_fput_list); static void delayed_fput(struct work_struct *unused) { struct llist_node *node = llist_del_all(&delayed_fput_list); struct file *f, *t; llist_for_each_entry_safe(f, t, node, f_u.fu_llist) __fput(f); } static void ____fput(struct callback_head *work) { __fput(container_of(work, struct file, f_u.fu_rcuhead)); } /* * If kernel thread really needs to have the final fput() it has done * to complete, call this. The only user right now is the boot - we * *do* need to make sure our writes to binaries on initramfs has * not left us with opened struct file waiting for __fput() - execve() * won't work without that. Please, don't add more callers without * very good reasons; in particular, never call that with locks * held and never call that from a thread that might need to do * some work on any kind of umount. */ void flush_delayed_fput(void) { delayed_fput(NULL); } EXPORT_SYMBOL_GPL(flush_delayed_fput); static DECLARE_DELAYED_WORK(delayed_fput_work, delayed_fput); void fput_many(struct file *file, unsigned int refs) { if (atomic_long_sub_and_test(refs, &file->f_count)) { struct task_struct *task = current; if (likely(!in_interrupt() && !(task->flags & PF_KTHREAD))) { init_task_work(&file->f_u.fu_rcuhead, ____fput); if (!task_work_add(task, &file->f_u.fu_rcuhead, TWA_RESUME)) return; /* * After this task has run exit_task_work(), * task_work_add() will fail. Fall through to delayed * fput to avoid leaking *file. */ } if (llist_add(&file->f_u.fu_llist, &delayed_fput_list)) schedule_delayed_work(&delayed_fput_work, 1); } } void fput(struct file *file) { fput_many(file, 1); } /* * synchronous analog of fput(); for kernel threads that might be needed * in some umount() (and thus can't use flush_delayed_fput() without * risking deadlocks), need to wait for completion of __fput() and know * for this specific struct file it won't involve anything that would * need them. Use only if you really need it - at the very least, * don't blindly convert fput() by kernel thread to that. */ void __fput_sync(struct file *file) { if (atomic_long_dec_and_test(&file->f_count)) { struct task_struct *task = current; BUG_ON(!(task->flags & PF_KTHREAD)); __fput(file); } } EXPORT_SYMBOL(fput); void __init files_init(void) { filp_cachep = kmem_cache_create("filp", sizeof(struct file), 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT, NULL); percpu_counter_init(&nr_files, 0, GFP_KERNEL); } /* * One file with associated inode and dcache is very roughly 1K. Per default * do not use more than 10% of our memory for files. */ void __init files_maxfiles_init(void) { unsigned long n; unsigned long nr_pages = totalram_pages(); unsigned long memreserve = (nr_pages - nr_free_pages()) * 3/2; memreserve = min(memreserve, nr_pages - 1); n = ((nr_pages - memreserve) * (PAGE_SIZE / 1024)) / 10; files_stat.max_files = max_t(unsigned long, n, NR_FILE); }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _SCSI_SCSI_HOST_H #define _SCSI_SCSI_HOST_H #include <linux/device.h> #include <linux/list.h> #include <linux/types.h> #include <linux/workqueue.h> #include <linux/mutex.h> #include <linux/seq_file.h> #include <linux/blk-mq.h> #include <scsi/scsi.h> struct block_device; struct completion; struct module; struct scsi_cmnd; struct scsi_device; struct scsi_host_cmd_pool; struct scsi_target; struct Scsi_Host; struct scsi_host_cmd_pool; struct scsi_transport_template; #define SG_ALL SG_CHUNK_SIZE #define MODE_UNKNOWN 0x00 #define MODE_INITIATOR 0x01 #define MODE_TARGET 0x02 struct scsi_host_template { struct module *module; const char *name; /* * The info function will return whatever useful information the * developer sees fit. If not provided, then the name field will * be used instead. * * Status: OPTIONAL */ const char *(* info)(struct Scsi_Host *); /* * Ioctl interface * * Status: OPTIONAL */ int (*ioctl)(struct scsi_device *dev, unsigned int cmd, void __user *arg); #ifdef CONFIG_COMPAT /* * Compat handler. Handle 32bit ABI. * When unknown ioctl is passed return -ENOIOCTLCMD. * * Status: OPTIONAL */ int (*compat_ioctl)(struct scsi_device *dev, unsigned int cmd, void __user *arg); #endif int (*init_cmd_priv)(struct Scsi_Host *shost, struct scsi_cmnd *cmd); int (*exit_cmd_priv)(struct Scsi_Host *shost, struct scsi_cmnd *cmd); /* * The queuecommand function is used to queue up a scsi * command block to the LLDD. When the driver finished * processing the command the done callback is invoked. * * If queuecommand returns 0, then the driver has accepted the * command. It must also push it to the HBA if the scsi_cmnd * flag SCMD_LAST is set, or if the driver does not implement * commit_rqs. The done() function must be called on the command * when the driver has finished with it. (you may call done on the * command before queuecommand returns, but in this case you * *must* return 0 from queuecommand). * * Queuecommand may also reject the command, in which case it may * not touch the command and must not call done() for it. * * There are two possible rejection returns: * * SCSI_MLQUEUE_DEVICE_BUSY: Block this device temporarily, but * allow commands to other devices serviced by this host. * * SCSI_MLQUEUE_HOST_BUSY: Block all devices served by this * host temporarily. * * For compatibility, any other non-zero return is treated the * same as SCSI_MLQUEUE_HOST_BUSY. * * NOTE: "temporarily" means either until the next command for# * this device/host completes, or a period of time determined by * I/O pressure in the system if there are no other outstanding * commands. * * STATUS: REQUIRED */ int (* queuecommand)(struct Scsi_Host *, struct scsi_cmnd *); /* * The commit_rqs function is used to trigger a hardware * doorbell after some requests have been queued with * queuecommand, when an error is encountered before sending * the request with SCMD_LAST set. * * STATUS: OPTIONAL */ void (*commit_rqs)(struct Scsi_Host *, u16); /* * This is an error handling strategy routine. You don't need to * define one of these if you don't want to - there is a default * routine that is present that should work in most cases. For those * driver authors that have the inclination and ability to write their * own strategy routine, this is where it is specified. Note - the * strategy routine is *ALWAYS* run in the context of the kernel eh * thread. Thus you are guaranteed to *NOT* be in an interrupt * handler when you execute this, and you are also guaranteed to * *NOT* have any other commands being queued while you are in the * strategy routine. When you return from this function, operations * return to normal. * * See scsi_error.c scsi_unjam_host for additional comments about * what this function should and should not be attempting to do. * * Status: REQUIRED (at least one of them) */ int (* eh_abort_handler)(struct scsi_cmnd *); int (* eh_device_reset_handler)(struct scsi_cmnd *); int (* eh_target_reset_handler)(struct scsi_cmnd *); int (* eh_bus_reset_handler)(struct scsi_cmnd *); int (* eh_host_reset_handler)(struct scsi_cmnd *); /* * Before the mid layer attempts to scan for a new device where none * currently exists, it will call this entry in your driver. Should * your driver need to allocate any structs or perform any other init * items in order to send commands to a currently unused target/lun * combo, then this is where you can perform those allocations. This * is specifically so that drivers won't have to perform any kind of * "is this a new device" checks in their queuecommand routine, * thereby making the hot path a bit quicker. * * Return values: 0 on success, non-0 on failure * * Deallocation: If we didn't find any devices at this ID, you will * get an immediate call to slave_destroy(). If we find something * here then you will get a call to slave_configure(), then the * device will be used for however long it is kept around, then when * the device is removed from the system (or * possibly at reboot * time), you will then get a call to slave_destroy(). This is * assuming you implement slave_configure and slave_destroy. * However, if you allocate memory and hang it off the device struct, * then you must implement the slave_destroy() routine at a minimum * in order to avoid leaking memory * each time a device is tore down. * * Status: OPTIONAL */ int (* slave_alloc)(struct scsi_device *); /* * Once the device has responded to an INQUIRY and we know the * device is online, we call into the low level driver with the * struct scsi_device *. If the low level device driver implements * this function, it *must* perform the task of setting the queue * depth on the device. All other tasks are optional and depend * on what the driver supports and various implementation details. * * Things currently recommended to be handled at this time include: * * 1. Setting the device queue depth. Proper setting of this is * described in the comments for scsi_change_queue_depth. * 2. Determining if the device supports the various synchronous * negotiation protocols. The device struct will already have * responded to INQUIRY and the results of the standard items * will have been shoved into the various device flag bits, eg. * device->sdtr will be true if the device supports SDTR messages. * 3. Allocating command structs that the device will need. * 4. Setting the default timeout on this device (if needed). * 5. Anything else the low level driver might want to do on a device * specific setup basis... * 6. Return 0 on success, non-0 on error. The device will be marked * as offline on error so that no access will occur. If you return * non-0, your slave_destroy routine will never get called for this * device, so don't leave any loose memory hanging around, clean * up after yourself before returning non-0 * * Status: OPTIONAL */ int (* slave_configure)(struct scsi_device *); /* * Immediately prior to deallocating the device and after all activity * has ceased the mid layer calls this point so that the low level * driver may completely detach itself from the scsi device and vice * versa. The low level driver is responsible for freeing any memory * it allocated in the slave_alloc or slave_configure calls. * * Status: OPTIONAL */ void (* slave_destroy)(struct scsi_device *); /* * Before the mid layer attempts to scan for a new device attached * to a target where no target currently exists, it will call this * entry in your driver. Should your driver need to allocate any * structs or perform any other init items in order to send commands * to a currently unused target, then this is where you can perform * those allocations. * * Return values: 0 on success, non-0 on failure * * Status: OPTIONAL */ int (* target_alloc)(struct scsi_target *); /* * Immediately prior to deallocating the target structure, and * after all activity to attached scsi devices has ceased, the * midlayer calls this point so that the driver may deallocate * and terminate any references to the target. * * Status: OPTIONAL */ void (* target_destroy)(struct scsi_target *); /* * If a host has the ability to discover targets on its own instead * of scanning the entire bus, it can fill in this function and * call scsi_scan_host(). This function will be called periodically * until it returns 1 with the scsi_host and the elapsed time of * the scan in jiffies. * * Status: OPTIONAL */ int (* scan_finished)(struct Scsi_Host *, unsigned long); /* * If the host wants to be called before the scan starts, but * after the midlayer has set up ready for the scan, it can fill * in this function. * * Status: OPTIONAL */ void (* scan_start)(struct Scsi_Host *); /* * Fill in this function to allow the queue depth of this host * to be changeable (on a per device basis). Returns either * the current queue depth setting (may be different from what * was passed in) or an error. An error should only be * returned if the requested depth is legal but the driver was * unable to set it. If the requested depth is illegal, the * driver should set and return the closest legal queue depth. * * Status: OPTIONAL */ int (* change_queue_depth)(struct scsi_device *, int); /* * This functions lets the driver expose the queue mapping * to the block layer. * * Status: OPTIONAL */ int (* map_queues)(struct Scsi_Host *shost); /* * Check if scatterlists need to be padded for DMA draining. * * Status: OPTIONAL */ bool (* dma_need_drain)(struct request *rq); /* * This function determines the BIOS parameters for a given * harddisk. These tend to be numbers that are made up by * the host adapter. Parameters: * size, device, list (heads, sectors, cylinders) * * Status: OPTIONAL */ int (* bios_param)(struct scsi_device *, struct block_device *, sector_t, int []); /* * This function is called when one or more partitions on the * device reach beyond the end of the device. * * Status: OPTIONAL */ void (*unlock_native_capacity)(struct scsi_device *); /* * Can be used to export driver statistics and other infos to the * world outside the kernel ie. userspace and it also provides an * interface to feed the driver with information. * * Status: OBSOLETE */ int (*show_info)(struct seq_file *, struct Scsi_Host *); int (*write_info)(struct Scsi_Host *, char *, int); /* * This is an optional routine that allows the transport to become * involved when a scsi io timer fires. The return value tells the * timer routine how to finish the io timeout handling. * * Status: OPTIONAL */ enum blk_eh_timer_return (*eh_timed_out)(struct scsi_cmnd *); /* This is an optional routine that allows transport to initiate * LLD adapter or firmware reset using sysfs attribute. * * Return values: 0 on success, -ve value on failure. * * Status: OPTIONAL */ int (*host_reset)(struct Scsi_Host *shost, int reset_type); #define SCSI_ADAPTER_RESET 1 #define SCSI_FIRMWARE_RESET 2 /* * Name of proc directory */ const char *proc_name; /* * Used to store the procfs directory if a driver implements the * show_info method. */ struct proc_dir_entry *proc_dir; /* * This determines if we will use a non-interrupt driven * or an interrupt driven scheme. It is set to the maximum number * of simultaneous commands a single hw queue in HBA will accept. */ int can_queue; /* * In many instances, especially where disconnect / reconnect are * supported, our host also has an ID on the SCSI bus. If this is * the case, then it must be reserved. Please set this_id to -1 if * your setup is in single initiator mode, and the host lacks an * ID. */ int this_id; /* * This determines the degree to which the host adapter is capable * of scatter-gather. */ unsigned short sg_tablesize; unsigned short sg_prot_tablesize; /* * Set this if the host adapter has limitations beside segment count. */ unsigned int max_sectors; /* * Maximum size in bytes of a single segment. */ unsigned int max_segment_size; /* * DMA scatter gather segment boundary limit. A segment crossing this * boundary will be split in two. */ unsigned long dma_boundary; unsigned long virt_boundary_mask; /* * This specifies "machine infinity" for host templates which don't * limit the transfer size. Note this limit represents an absolute * maximum, and may be over the transfer limits allowed for * individual devices (e.g. 256 for SCSI-1). */ #define SCSI_DEFAULT_MAX_SECTORS 1024 /* * True if this host adapter can make good use of linked commands. * This will allow more than one command to be queued to a given * unit on a given host. Set this to the maximum number of command * blocks to be provided for each device. Set this to 1 for one * command block per lun, 2 for two, etc. Do not set this to 0. * You should make sure that the host adapter will do the right thing * before you try setting this above 1. */ short cmd_per_lun; /* * present contains counter indicating how many boards of this * type were found when we did the scan. */ unsigned char present; /* If use block layer to manage tags, this is tag allocation policy */ int tag_alloc_policy; /* * Track QUEUE_FULL events and reduce queue depth on demand. */ unsigned track_queue_depth:1; /* * This specifies the mode that a LLD supports. */ unsigned supported_mode:2; /* * True if this host adapter uses unchecked DMA onto an ISA bus. */ unsigned unchecked_isa_dma:1; /* * True for emulated SCSI host adapters (e.g. ATAPI). */ unsigned emulated:1; /* * True if the low-level driver performs its own reset-settle delays. */ unsigned skip_settle_delay:1; /* True if the controller does not support WRITE SAME */ unsigned no_write_same:1; /* True if the host uses host-wide tagspace */ unsigned host_tagset:1; /* * Countdown for host blocking with no commands outstanding. */ unsigned int max_host_blocked; /* * Default value for the blocking. If the queue is empty, * host_blocked counts down in the request_fn until it restarts * host operations as zero is reached. * * FIXME: This should probably be a value in the template */ #define SCSI_DEFAULT_HOST_BLOCKED 7 /* * Pointer to the sysfs class properties for this host, NULL terminated. */ struct device_attribute **shost_attrs; /* * Pointer to the SCSI device properties for this host, NULL terminated. */ struct device_attribute **sdev_attrs; /* * Pointer to the SCSI device attribute groups for this host, * NULL terminated. */ const struct attribute_group **sdev_groups; /* * Vendor Identifier associated with the host * * Note: When specifying vendor_id, be sure to read the * Vendor Type and ID formatting requirements specified in * scsi_netlink.h */ u64 vendor_id; /* * Additional per-command data allocated for the driver. */ unsigned int cmd_size; struct scsi_host_cmd_pool *cmd_pool; /* Delay for runtime autosuspend */ int rpm_autosuspend_delay; }; /* * Temporary #define for host lock push down. Can be removed when all * drivers have been updated to take advantage of unlocked * queuecommand. * */ #define DEF_SCSI_QCMD(func_name) \ int func_name(struct Scsi_Host *shost, struct scsi_cmnd *cmd) \ { \ unsigned long irq_flags; \ int rc; \ spin_lock_irqsave(shost->host_lock, irq_flags); \ rc = func_name##_lck (cmd, cmd->scsi_done); \ spin_unlock_irqrestore(shost->host_lock, irq_flags); \ return rc; \ } /* * shost state: If you alter this, you also need to alter scsi_sysfs.c * (for the ascii descriptions) and the state model enforcer: * scsi_host_set_state() */ enum scsi_host_state { SHOST_CREATED = 1, SHOST_RUNNING, SHOST_CANCEL, SHOST_DEL, SHOST_RECOVERY, SHOST_CANCEL_RECOVERY, SHOST_DEL_RECOVERY, }; struct Scsi_Host { /* * __devices is protected by the host_lock, but you should * usually use scsi_device_lookup / shost_for_each_device * to access it and don't care about locking yourself. * In the rare case of being in irq context you can use * their __ prefixed variants with the lock held. NEVER * access this list directly from a driver. */ struct list_head __devices; struct list_head __targets; struct list_head starved_list; spinlock_t default_lock; spinlock_t *host_lock; struct mutex scan_mutex;/* serialize scanning activity */ struct list_head eh_cmd_q; struct task_struct * ehandler; /* Error recovery thread. */ struct completion * eh_action; /* Wait for specific actions on the host. */ wait_queue_head_t host_wait; struct scsi_host_template *hostt; struct scsi_transport_template *transportt; /* Area to keep a shared tag map */ struct blk_mq_tag_set tag_set; atomic_t host_blocked; unsigned int host_failed; /* commands that failed. protected by host_lock */ unsigned int host_eh_scheduled; /* EH scheduled without command */ unsigned int host_no; /* Used for IOCTL_GET_IDLUN, /proc/scsi et al. */ /* next two fields are used to bound the time spent in error handling */ int eh_deadline; unsigned long last_reset; /* * These three parameters can be used to allow for wide scsi, * and for host adapters that support multiple busses * The last two should be set to 1 more than the actual max id * or lun (e.g. 8 for SCSI parallel systems). */ unsigned int max_channel; unsigned int max_id; u64 max_lun; /* * This is a unique identifier that must be assigned so that we * have some way of identifying each detected host adapter properly * and uniquely. For hosts that do not support more than one card * in the system at one time, this does not need to be set. It is * initialized to 0 in scsi_register. */ unsigned int unique_id; /* * The maximum length of SCSI commands that this host can accept. * Probably 12 for most host adapters, but could be 16 for others. * or 260 if the driver supports variable length cdbs. * For drivers that don't set this field, a value of 12 is * assumed. */ unsigned short max_cmd_len; int this_id; int can_queue; short cmd_per_lun; short unsigned int sg_tablesize; short unsigned int sg_prot_tablesize; unsigned int max_sectors; unsigned int max_segment_size; unsigned long dma_boundary; unsigned long virt_boundary_mask; /* * In scsi-mq mode, the number of hardware queues supported by the LLD. * * Note: it is assumed that each hardware queue has a queue depth of * can_queue. In other words, the total queue depth per host * is nr_hw_queues * can_queue. However, for when host_tagset is set, * the total queue depth is can_queue. */ unsigned nr_hw_queues; unsigned active_mode:2; unsigned unchecked_isa_dma:1; /* * Host has requested that no further requests come through for the * time being. */ unsigned host_self_blocked:1; /* * Host uses correct SCSI ordering not PC ordering. The bit is * set for the minority of drivers whose authors actually read * the spec ;). */ unsigned reverse_ordering:1; /* Task mgmt function in progress */ unsigned tmf_in_progress:1; /* Asynchronous scan in progress */ unsigned async_scan:1; /* Don't resume host in EH */ unsigned eh_noresume:1; /* The controller does not support WRITE SAME */ unsigned no_write_same:1; /* True if the host uses host-wide tagspace */ unsigned host_tagset:1; /* Host responded with short (<36 bytes) INQUIRY result */ unsigned short_inquiry:1; /* The transport requires the LUN bits NOT to be stored in CDB[1] */ unsigned no_scsi2_lun_in_cdb:1; /* * Optional work queue to be utilized by the transport */ char work_q_name[20]; struct workqueue_struct *work_q; /* * Task management function work queue */ struct workqueue_struct *tmf_work_q; /* * Value host_blocked counts down from */ unsigned int max_host_blocked; /* Protection Information */ unsigned int prot_capabilities; unsigned char prot_guard_type; /* legacy crap */ unsigned long base; unsigned long io_port; unsigned char n_io_port; unsigned char dma_channel; unsigned int irq; enum scsi_host_state shost_state; /* ldm bits */ struct device shost_gendev, shost_dev; /* * Points to the transport data (if any) which is allocated * separately */ void *shost_data; /* * Points to the physical bus device we'd use to do DMA * Needed just in case we have virtual hosts. */ struct device *dma_dev; /* * We should ensure that this is aligned, both for better performance * and also because some compilers (m68k) don't automatically force * alignment to a long boundary. */ unsigned long hostdata[] /* Used for storage of host specific stuff */ __attribute__ ((aligned (sizeof(unsigned long)))); }; #define class_to_shost(d) \ container_of(d, struct Scsi_Host, shost_dev) #define shost_printk(prefix, shost, fmt, a...) \ dev_printk(prefix, &(shost)->shost_gendev, fmt, ##a) static inline void *shost_priv(struct Scsi_Host *shost) { return (void *)shost->hostdata; } int scsi_is_host_device(const struct device *); static inline struct Scsi_Host *dev_to_shost(struct device *dev) { while (!scsi_is_host_device(dev)) { if (!dev->parent) return NULL; dev = dev->parent; } return container_of(dev, struct Scsi_Host, shost_gendev); } static inline int scsi_host_in_recovery(struct Scsi_Host *shost) { return shost->shost_state == SHOST_RECOVERY || shost->shost_state == SHOST_CANCEL_RECOVERY || shost->shost_state == SHOST_DEL_RECOVERY || shost->tmf_in_progress; } extern int scsi_queue_work(struct Scsi_Host *, struct work_struct *); extern void scsi_flush_work(struct Scsi_Host *); extern struct Scsi_Host *scsi_host_alloc(struct scsi_host_template *, int); extern int __must_check scsi_add_host_with_dma(struct Scsi_Host *, struct device *, struct device *); extern void scsi_scan_host(struct Scsi_Host *); extern void scsi_rescan_device(struct device *); extern void scsi_remove_host(struct Scsi_Host *); extern struct Scsi_Host *scsi_host_get(struct Scsi_Host *); extern int scsi_host_busy(struct Scsi_Host *shost); extern void scsi_host_put(struct Scsi_Host *t); extern struct Scsi_Host *scsi_host_lookup(unsigned short); extern const char *scsi_host_state_name(enum scsi_host_state); extern void scsi_host_complete_all_commands(struct Scsi_Host *shost, int status); static inline int __must_check scsi_add_host(struct Scsi_Host *host, struct device *dev) { return scsi_add_host_with_dma(host, dev, dev); } static inline struct device *scsi_get_device(struct Scsi_Host *shost) { return shost->shost_gendev.parent; } /** * scsi_host_scan_allowed - Is scanning of this host allowed * @shost: Pointer to Scsi_Host. **/ static inline int scsi_host_scan_allowed(struct Scsi_Host *shost) { return shost->shost_state == SHOST_RUNNING || shost->shost_state == SHOST_RECOVERY; } extern void scsi_unblock_requests(struct Scsi_Host *); extern void scsi_block_requests(struct Scsi_Host *); extern int scsi_host_block(struct Scsi_Host *shost); extern int scsi_host_unblock(struct Scsi_Host *shost, int new_state); void scsi_host_busy_iter(struct Scsi_Host *, bool (*fn)(struct scsi_cmnd *, void *, bool), void *priv); struct class_container; /* * These two functions are used to allocate and free a pseudo device * which will connect to the host adapter itself rather than any * physical device. You must deallocate when you are done with the * thing. This physical pseudo-device isn't real and won't be available * from any high-level drivers. */ extern void scsi_free_host_dev(struct scsi_device *); extern struct scsi_device *scsi_get_host_dev(struct Scsi_Host *); /* * DIF defines the exchange of protection information between * initiator and SBC block device. * * DIX defines the exchange of protection information between OS and * initiator. */ enum scsi_host_prot_capabilities { SHOST_DIF_TYPE1_PROTECTION = 1 << 0, /* T10 DIF Type 1 */ SHOST_DIF_TYPE2_PROTECTION = 1 << 1, /* T10 DIF Type 2 */ SHOST_DIF_TYPE3_PROTECTION = 1 << 2, /* T10 DIF Type 3 */ SHOST_DIX_TYPE0_PROTECTION = 1 << 3, /* DIX between OS and HBA only */ SHOST_DIX_TYPE1_PROTECTION = 1 << 4, /* DIX with DIF Type 1 */ SHOST_DIX_TYPE2_PROTECTION = 1 << 5, /* DIX with DIF Type 2 */ SHOST_DIX_TYPE3_PROTECTION = 1 << 6, /* DIX with DIF Type 3 */ }; /* * SCSI hosts which support the Data Integrity Extensions must * indicate their capabilities by setting the prot_capabilities using * this call. */ static inline void scsi_host_set_prot(struct Scsi_Host *shost, unsigned int mask) { shost->prot_capabilities = mask; } static inline unsigned int scsi_host_get_prot(struct Scsi_Host *shost) { return shost->prot_capabilities; } static inline int scsi_host_prot_dma(struct Scsi_Host *shost) { return shost->prot_capabilities >= SHOST_DIX_TYPE0_PROTECTION; } static inline unsigned int scsi_host_dif_capable(struct Scsi_Host *shost, unsigned int target_type) { static unsigned char cap[] = { 0, SHOST_DIF_TYPE1_PROTECTION, SHOST_DIF_TYPE2_PROTECTION, SHOST_DIF_TYPE3_PROTECTION }; if (target_type >= ARRAY_SIZE(cap)) return 0; return shost->prot_capabilities & cap[target_type] ? target_type : 0; } static inline unsigned int scsi_host_dix_capable(struct Scsi_Host *shost, unsigned int target_type) { #if defined(CONFIG_BLK_DEV_INTEGRITY) static unsigned char cap[] = { SHOST_DIX_TYPE0_PROTECTION, SHOST_DIX_TYPE1_PROTECTION, SHOST_DIX_TYPE2_PROTECTION, SHOST_DIX_TYPE3_PROTECTION }; if (target_type >= ARRAY_SIZE(cap)) return 0; return shost->prot_capabilities & cap[target_type]; #endif return 0; } /* * All DIX-capable initiators must support the T10-mandated CRC * checksum. Controllers can optionally implement the IP checksum * scheme which has much lower impact on system performance. Note * that the main rationale for the checksum is to match integrity * metadata with data. Detecting bit errors are a job for ECC memory * and buses. */ enum scsi_host_guard_type { SHOST_DIX_GUARD_CRC = 1 << 0, SHOST_DIX_GUARD_IP = 1 << 1, }; static inline void scsi_host_set_guard(struct Scsi_Host *shost, unsigned char type) { shost->prot_guard_type = type; } static inline unsigned char scsi_host_get_guard(struct Scsi_Host *shost) { return shost->prot_guard_type; } extern int scsi_host_set_state(struct Scsi_Host *, enum scsi_host_state); #endif /* _SCSI_SCSI_HOST_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 /* SPDX-License-Identifier: GPL-2.0 */ /* * Definitions of structures and functions for quota formats using trie */ #ifndef _LINUX_DQBLK_QTREE_H #define _LINUX_DQBLK_QTREE_H #include <linux/types.h> /* Numbers of blocks needed for updates - we count with the smallest * possible block size (1024) */ #define QTREE_INIT_ALLOC 4 #define QTREE_INIT_REWRITE 2 #define QTREE_DEL_ALLOC 0 #define QTREE_DEL_REWRITE 6 struct dquot; struct kqid; /* Operations */ struct qtree_fmt_operations { void (*mem2disk_dqblk)(void *disk, struct dquot *dquot); /* Convert given entry from in memory format to disk one */ void (*disk2mem_dqblk)(struct dquot *dquot, void *disk); /* Convert given entry from disk format to in memory one */ int (*is_id)(void *disk, struct dquot *dquot); /* Is this structure for given id? */ }; /* Inmemory copy of version specific information */ struct qtree_mem_dqinfo { struct super_block *dqi_sb; /* Sb quota is on */ int dqi_type; /* Quota type */ unsigned int dqi_blocks; /* # of blocks in quota file */ unsigned int dqi_free_blk; /* First block in list of free blocks */ unsigned int dqi_free_entry; /* First block with free entry */ unsigned int dqi_blocksize_bits; /* Block size of quota file */ unsigned int dqi_entry_size; /* Size of quota entry in quota file */ unsigned int dqi_usable_bs; /* Space usable in block for quota data */ unsigned int dqi_qtree_depth; /* Precomputed depth of quota tree */ const struct qtree_fmt_operations *dqi_ops; /* Operations for entry manipulation */ }; int qtree_write_dquot(struct qtree_mem_dqinfo *info, struct dquot *dquot); int qtree_read_dquot(struct qtree_mem_dqinfo *info, struct dquot *dquot); int qtree_delete_dquot(struct qtree_mem_dqinfo *info, struct dquot *dquot); int qtree_release_dquot(struct qtree_mem_dqinfo *info, struct dquot *dquot); int qtree_entry_unused(struct qtree_mem_dqinfo *info, char *disk); static inline int qtree_depth(struct qtree_mem_dqinfo *info) { unsigned int epb = info->dqi_usable_bs >> 2; unsigned long long entries = epb; int i; for (i = 1; entries < (1ULL << 32); i++) entries *= epb; return i; } int qtree_get_next_id(struct qtree_mem_dqinfo *info, struct kqid *qid); #endif /* _LINUX_DQBLK_QTREE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 /* SPDX-License-Identifier: GPL-2.0 */ /* * Operations on the network namespace */ #ifndef __NET_NET_NAMESPACE_H #define __NET_NET_NAMESPACE_H #include <linux/atomic.h> #include <linux/refcount.h> #include <linux/workqueue.h> #include <linux/list.h> #include <linux/sysctl.h> #include <linux/uidgid.h> #include <net/flow.h> #include <net/netns/core.h> #include <net/netns/mib.h> #include <net/netns/unix.h> #include <net/netns/packet.h> #include <net/netns/ipv4.h> #include <net/netns/ipv6.h> #include <net/netns/nexthop.h> #include <net/netns/ieee802154_6lowpan.h> #include <net/netns/sctp.h> #include <net/netns/dccp.h> #include <net/netns/netfilter.h> #include <net/netns/x_tables.h> #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) #include <net/netns/conntrack.h> #endif #include <net/netns/nftables.h> #include <net/netns/xfrm.h> #include <net/netns/mpls.h> #include <net/netns/can.h> #include <net/netns/xdp.h> #include <net/netns/bpf.h> #include <linux/ns_common.h> #include <linux/idr.h> #include <linux/skbuff.h> #include <linux/notifier.h> struct user_namespace; struct proc_dir_entry; struct net_device; struct sock; struct ctl_table_header; struct net_generic; struct uevent_sock; struct netns_ipvs; struct bpf_prog; #define NETDEV_HASHBITS 8 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS) struct net { /* First cache line can be often dirtied. * Do not place here read-mostly fields. */ refcount_t passive; /* To decide when the network * namespace should be freed. */ refcount_t count; /* To decided when the network * namespace should be shut down. */ spinlock_t rules_mod_lock; unsigned int dev_unreg_count; unsigned int dev_base_seq; /* protected by rtnl_mutex */ int ifindex; spinlock_t nsid_lock; atomic_t fnhe_genid; struct list_head list; /* list of network namespaces */ struct list_head exit_list; /* To linked to call pernet exit * methods on dead net ( * pernet_ops_rwsem read locked), * or to unregister pernet ops * (pernet_ops_rwsem write locked). */ struct llist_node cleanup_list; /* namespaces on death row */ #ifdef CONFIG_KEYS struct key_tag *key_domain; /* Key domain of operation tag */ #endif struct user_namespace *user_ns; /* Owning user namespace */ struct ucounts *ucounts; struct idr netns_ids; struct ns_common ns; struct list_head dev_base_head; struct proc_dir_entry *proc_net; struct proc_dir_entry *proc_net_stat; #ifdef CONFIG_SYSCTL struct ctl_table_set sysctls; #endif struct sock *rtnl; /* rtnetlink socket */ struct sock *genl_sock; struct uevent_sock *uevent_sock; /* uevent socket */ struct hlist_head *dev_name_head; struct hlist_head *dev_index_head; struct raw_notifier_head netdev_chain; /* Note that @hash_mix can be read millions times per second, * it is critical that it is on a read_mostly cache line. */ u32 hash_mix; struct net_device *loopback_dev; /* The loopback */ /* core fib_rules */ struct list_head rules_ops; struct netns_core core; struct netns_mib mib; struct netns_packet packet; struct netns_unix unx; struct netns_nexthop nexthop; struct netns_ipv4 ipv4; #if IS_ENABLED(CONFIG_IPV6) struct netns_ipv6 ipv6; #endif #if IS_ENABLED(CONFIG_IEEE802154_6LOWPAN) struct netns_ieee802154_lowpan ieee802154_lowpan; #endif #if defined(CONFIG_IP_SCTP) || defined(CONFIG_IP_SCTP_MODULE) struct netns_sctp sctp; #endif #if defined(CONFIG_IP_DCCP) || defined(CONFIG_IP_DCCP_MODULE) struct netns_dccp dccp; #endif #ifdef CONFIG_NETFILTER struct netns_nf nf; struct netns_xt xt; #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) struct netns_ct ct; #endif #if defined(CONFIG_NF_TABLES) || defined(CONFIG_NF_TABLES_MODULE) struct netns_nftables nft; #endif #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6) struct netns_nf_frag nf_frag; struct ctl_table_header *nf_frag_frags_hdr; #endif struct sock *nfnl; struct sock *nfnl_stash; #if IS_ENABLED(CONFIG_NETFILTER_NETLINK_ACCT) struct list_head nfnl_acct_list; #endif #if IS_ENABLED(CONFIG_NF_CT_NETLINK_TIMEOUT) struct list_head nfct_timeout_list; #endif #endif #ifdef CONFIG_WEXT_CORE struct sk_buff_head wext_nlevents; #endif struct net_generic __rcu *gen; /* Used to store attached BPF programs */ struct netns_bpf bpf; /* Note : following structs are cache line aligned */ #ifdef CONFIG_XFRM struct netns_xfrm xfrm; #endif atomic64_t net_cookie; /* written once */ #if IS_ENABLED(CONFIG_IP_VS) struct netns_ipvs *ipvs; #endif #if IS_ENABLED(CONFIG_MPLS) struct netns_mpls mpls; #endif #if IS_ENABLED(CONFIG_CAN) struct netns_can can; #endif #ifdef CONFIG_XDP_SOCKETS struct netns_xdp xdp; #endif #if IS_ENABLED(CONFIG_CRYPTO_USER) struct sock *crypto_nlsk; #endif struct sock *diag_nlsk; } __randomize_layout; #include <linux/seq_file_net.h> /* Init's network namespace */ extern struct net init_net; #ifdef CONFIG_NET_NS struct net *copy_net_ns(unsigned long flags, struct user_namespace *user_ns, struct net *old_net); void net_ns_get_ownership(const struct net *net, kuid_t *uid, kgid_t *gid); void net_ns_barrier(void); struct ns_common *get_net_ns(struct ns_common *ns); #else /* CONFIG_NET_NS */ #include <linux/sched.h> #include <linux/nsproxy.h> static inline struct net *copy_net_ns(unsigned long flags, struct user_namespace *user_ns, struct net *old_net) { if (flags & CLONE_NEWNET) return ERR_PTR(-EINVAL); return old_net; } static inline void net_ns_get_ownership(const struct net *net, kuid_t *uid, kgid_t *gid) { *uid = GLOBAL_ROOT_UID; *gid = GLOBAL_ROOT_GID; } static inline void net_ns_barrier(void) {} static inline struct ns_common *get_net_ns(struct ns_common *ns) { return ERR_PTR(-EINVAL); } #endif /* CONFIG_NET_NS */ extern struct list_head net_namespace_list; struct net *get_net_ns_by_pid(pid_t pid); struct net *get_net_ns_by_fd(int fd); u64 __net_gen_cookie(struct net *net); #ifdef CONFIG_SYSCTL void ipx_register_sysctl(void); void ipx_unregister_sysctl(void); #else #define ipx_register_sysctl() #define ipx_unregister_sysctl() #endif #ifdef CONFIG_NET_NS void __put_net(struct net *net); static inline struct net *get_net(struct net *net) { refcount_inc(&net->count); return net; } static inline struct net *maybe_get_net(struct net *net) { /* Used when we know struct net exists but we * aren't guaranteed a previous reference count * exists. If the reference count is zero this * function fails and returns NULL. */ if (!refcount_inc_not_zero(&net->count)) net = NULL; return net; } static inline void put_net(struct net *net) { if (refcount_dec_and_test(&net->count)) __put_net(net); } static inline int net_eq(const struct net *net1, const struct net *net2) { return net1 == net2; } static inline int check_net(const struct net *net) { return refcount_read(&net->count) != 0; } void net_drop_ns(void *); #else static inline struct net *get_net(struct net *net) { return net; } static inline void put_net(struct net *net) { } static inline struct net *maybe_get_net(struct net *net) { return net; } static inline int net_eq(const struct net *net1, const struct net *net2) { return 1; } static inline int check_net(const struct net *net) { return 1; } #define net_drop_ns NULL #endif typedef struct { #ifdef CONFIG_NET_NS struct net *net; #endif } possible_net_t; static inline void write_pnet(possible_net_t *pnet, struct net *net) { #ifdef CONFIG_NET_NS pnet->net = net; #endif } static inline struct net *read_pnet(const possible_net_t *pnet) { #ifdef CONFIG_NET_NS return pnet->net; #else return &init_net; #endif } /* Protected by net_rwsem */ #define for_each_net(VAR) \ list_for_each_entry(VAR, &net_namespace_list, list) #define for_each_net_continue_reverse(VAR) \ list_for_each_entry_continue_reverse(VAR, &net_namespace_list, list) #define for_each_net_rcu(VAR) \ list_for_each_entry_rcu(VAR, &net_namespace_list, list) #ifdef CONFIG_NET_NS #define __net_init #define __net_exit #define __net_initdata #define __net_initconst #else #define __net_init __init #define __net_exit __ref #define __net_initdata __initdata #define __net_initconst __initconst #endif int peernet2id_alloc(struct net *net, struct net *peer, gfp_t gfp); int peernet2id(const struct net *net, struct net *peer); bool peernet_has_id(const struct net *net, struct net *peer); struct net *get_net_ns_by_id(const struct net *net, int id); struct pernet_operations { struct list_head list; /* * Below methods are called without any exclusive locks. * More than one net may be constructed and destructed * in parallel on several cpus. Every pernet_operations * have to keep in mind all other pernet_operations and * to introduce a locking, if they share common resources. * * The only time they are called with exclusive lock is * from register_pernet_subsys(), unregister_pernet_subsys() * register_pernet_device() and unregister_pernet_device(). * * Exit methods using blocking RCU primitives, such as * synchronize_rcu(), should be implemented via exit_batch. * Then, destruction of a group of net requires single * synchronize_rcu() related to these pernet_operations, * instead of separate synchronize_rcu() for every net. * Please, avoid synchronize_rcu() at all, where it's possible. * * Note that a combination of pre_exit() and exit() can * be used, since a synchronize_rcu() is guaranteed between * the calls. */ int (*init)(struct net *net); void (*pre_exit)(struct net *net); void (*exit)(struct net *net); void (*exit_batch)(struct list_head *net_exit_list); unsigned int *id; size_t size; }; /* * Use these carefully. If you implement a network device and it * needs per network namespace operations use device pernet operations, * otherwise use pernet subsys operations. * * Network interfaces need to be removed from a dying netns _before_ * subsys notifiers can be called, as most of the network code cleanup * (which is done from subsys notifiers) runs with the assumption that * dev_remove_pack has been called so no new packets will arrive during * and after the cleanup functions have been called. dev_remove_pack * is not per namespace so instead the guarantee of no more packets * arriving in a network namespace is provided by ensuring that all * network devices and all sockets have left the network namespace * before the cleanup methods are called. * * For the longest time the ipv4 icmp code was registered as a pernet * device which caused kernel oops, and panics during network * namespace cleanup. So please don't get this wrong. */ int register_pernet_subsys(struct pernet_operations *); void unregister_pernet_subsys(struct pernet_operations *); int register_pernet_device(struct pernet_operations *); void unregister_pernet_device(struct pernet_operations *); struct ctl_table; struct ctl_table_header; #ifdef CONFIG_SYSCTL int net_sysctl_init(void); struct ctl_table_header *register_net_sysctl(struct net *net, const char *path, struct ctl_table *table); void unregister_net_sysctl_table(struct ctl_table_header *header); #else static inline int net_sysctl_init(void) { return 0; } static inline struct ctl_table_header *register_net_sysctl(struct net *net, const char *path, struct ctl_table *table) { return NULL; } static inline void unregister_net_sysctl_table(struct ctl_table_header *header) { } #endif static inline int rt_genid_ipv4(const struct net *net) { return atomic_read(&net->ipv4.rt_genid); } #if IS_ENABLED(CONFIG_IPV6) static inline int rt_genid_ipv6(const struct net *net) { return atomic_read(&net->ipv6.fib6_sernum); } #endif static inline void rt_genid_bump_ipv4(struct net *net) { atomic_inc(&net->ipv4.rt_genid); } extern void (*__fib6_flush_trees)(struct net *net); static inline void rt_genid_bump_ipv6(struct net *net) { if (__fib6_flush_trees) __fib6_flush_trees(net); } #if IS_ENABLED(CONFIG_IEEE802154_6LOWPAN) static inline struct netns_ieee802154_lowpan * net_ieee802154_lowpan(struct net *net) { return &net->ieee802154_lowpan; } #endif /* For callers who don't really care about whether it's IPv4 or IPv6 */ static inline void rt_genid_bump_all(struct net *net) { rt_genid_bump_ipv4(net); rt_genid_bump_ipv6(net); } static inline int fnhe_genid(const struct net *net) { return atomic_read(&net->fnhe_genid); } static inline void fnhe_genid_bump(struct net *net) { atomic_inc(&net->fnhe_genid); } #endif /* __NET_NET_NAMESPACE_H */
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_UACCESS_H__ #define __LINUX_UACCESS_H__ #include <linux/fault-inject-usercopy.h> #include <linux/instrumented.h> #include <linux/minmax.h> #include <linux/sched.h> #include <linux/thread_info.h> #include <asm/uaccess.h> #ifdef CONFIG_SET_FS /* * Force the uaccess routines to be wired up for actual userspace access, * overriding any possible set_fs(KERNEL_DS) still lingering around. Undone * using force_uaccess_end below. */ static inline mm_segment_t force_uaccess_begin(void) { mm_segment_t fs = get_fs(); set_fs(USER_DS); return fs; } static inline void force_uaccess_end(mm_segment_t oldfs) { set_fs(oldfs); } #else /* CONFIG_SET_FS */ typedef struct { /* empty dummy */ } mm_segment_t; #ifndef TASK_SIZE_MAX #define TASK_SIZE_MAX TASK_SIZE #endif #define uaccess_kernel() (false) #define user_addr_max() (TASK_SIZE_MAX) static inline mm_segment_t force_uaccess_begin(void) { return (mm_segment_t) { }; } static inline void force_uaccess_end(mm_segment_t oldfs) { } #endif /* CONFIG_SET_FS */ /* * Architectures should provide two primitives (raw_copy_{to,from}_user()) * and get rid of their private instances of copy_{to,from}_user() and * __copy_{to,from}_user{,_inatomic}(). * * raw_copy_{to,from}_user(to, from, size) should copy up to size bytes and * return the amount left to copy. They should assume that access_ok() has * already been checked (and succeeded); they should *not* zero-pad anything. * No KASAN or object size checks either - those belong here. * * Both of these functions should attempt to copy size bytes starting at from * into the area starting at to. They must not fetch or store anything * outside of those areas. Return value must be between 0 (everything * copied successfully) and size (nothing copied). * * If raw_copy_{to,from}_user(to, from, size) returns N, size - N bytes starting * at to must become equal to the bytes fetched from the corresponding area * starting at from. All data past to + size - N must be left unmodified. * * If copying succeeds, the return value must be 0. If some data cannot be * fetched, it is permitted to copy less than had been fetched; the only * hard requirement is that not storing anything at all (i.e. returning size) * should happen only when nothing could be copied. In other words, you don't * have to squeeze as much as possible - it is allowed, but not necessary. * * For raw_copy_from_user() to always points to kernel memory and no faults * on store should happen. Interpretation of from is affected by set_fs(). * For raw_copy_to_user() it's the other way round. * * Both can be inlined - it's up to architectures whether it wants to bother * with that. They should not be used directly; they are used to implement * the 6 functions (copy_{to,from}_user(), __copy_{to,from}_user_inatomic()) * that are used instead. Out of those, __... ones are inlined. Plain * copy_{to,from}_user() might or might not be inlined. If you want them * inlined, have asm/uaccess.h define INLINE_COPY_{TO,FROM}_USER. * * NOTE: only copy_from_user() zero-pads the destination in case of short copy. * Neither __copy_from_user() nor __copy_from_user_inatomic() zero anything * at all; their callers absolutely must check the return value. * * Biarch ones should also provide raw_copy_in_user() - similar to the above, * but both source and destination are __user pointers (affected by set_fs() * as usual) and both source and destination can trigger faults. */ static __always_inline __must_check unsigned long __copy_from_user_inatomic(void *to, const void __user *from, unsigned long n) { instrument_copy_from_user(to, from, n); check_object_size(to, n, false); return raw_copy_from_user(to, from, n); } static __always_inline __must_check unsigned long __copy_from_user(void *to, const void __user *from, unsigned long n) { might_fault(); if (should_fail_usercopy()) return n; instrument_copy_from_user(to, from, n); check_object_size(to, n, false); return raw_copy_from_user(to, from, n); } /** * __copy_to_user_inatomic: - Copy a block of data into user space, with less checking. * @to: Destination address, in user space. * @from: Source address, in kernel space. * @n: Number of bytes to copy. * * Context: User context only. * * Copy data from kernel space to user space. Caller must check * the specified block with access_ok() before calling this function. * The caller should also make sure he pins the user space address * so that we don't result in page fault and sleep. */ static __always_inline __must_check unsigned long __copy_to_user_inatomic(void __user *to, const void *from, unsigned long n) { if (should_fail_usercopy()) return n; instrument_copy_to_user(to, from, n); check_object_size(from, n, true); return raw_copy_to_user(to, from, n); } static __always_inline __must_check unsigned long __copy_to_user(void __user *to, const void *from, unsigned long n) { might_fault(); if (should_fail_usercopy()) return n; instrument_copy_to_user(to, from, n); check_object_size(from, n, true); return raw_copy_to_user(to, from, n); } #ifdef INLINE_COPY_FROM_USER static inline __must_check unsigned long _copy_from_user(void *to, const void __user *from, unsigned long n) { unsigned long res = n; might_fault(); if (!should_fail_usercopy() && likely(access_ok(from, n))) { instrument_copy_from_user(to, from, n); res = raw_copy_from_user(to, from, n); } if (unlikely(res)) memset(to + (n - res), 0, res); return res; } #else extern __must_check unsigned long _copy_from_user(void *, const void __user *, unsigned long); #endif #ifdef INLINE_COPY_TO_USER static inline __must_check unsigned long _copy_to_user(void __user *to, const void *from, unsigned long n) { might_fault(); if (should_fail_usercopy()) return n; if (access_ok(to, n)) { instrument_copy_to_user(to, from, n); n = raw_copy_to_user(to, from, n); } return n; } #else extern __must_check unsigned long _copy_to_user(void __user *, const void *, unsigned long); #endif static __always_inline unsigned long __must_check copy_from_user(void *to, const void __user *from, unsigned long n) { if (likely(check_copy_size(to, n, false))) n = _copy_from_user(to, from, n); return n; } static __always_inline unsigned long __must_check copy_to_user(void __user *to, const void *from, unsigned long n) { if (likely(check_copy_size(from, n, true))) n = _copy_to_user(to, from, n); return n; } #ifdef CONFIG_COMPAT static __always_inline unsigned long __must_check copy_in_user(void __user *to, const void __user *from, unsigned long n) { might_fault(); if (access_ok(to, n) && access_ok(from, n)) n = raw_copy_in_user(to, from, n); return n; } #endif #ifndef copy_mc_to_kernel /* * Without arch opt-in this generic copy_mc_to_kernel() will not handle * #MC (or arch equivalent) during source read. */ static inline unsigned long __must_check copy_mc_to_kernel(void *dst, const void *src, size_t cnt) { memcpy(dst, src, cnt); return 0; } #endif static __always_inline void pagefault_disabled_inc(void) { current->pagefault_disabled++; } static __always_inline void pagefault_disabled_dec(void) { current->pagefault_disabled--; } /* * These routines enable/disable the pagefault handler. If disabled, it will * not take any locks and go straight to the fixup table. * * User access methods will not sleep when called from a pagefault_disabled() * environment. */ static inline void pagefault_disable(void) { pagefault_disabled_inc(); /* * make sure to have issued the store before a pagefault * can hit. */ barrier(); } static inline void pagefault_enable(void) { /* * make sure to issue those last loads/stores before enabling * the pagefault handler again. */ barrier(); pagefault_disabled_dec(); } /* * Is the pagefault handler disabled? If so, user access methods will not sleep. */ static inline bool pagefault_disabled(void) { return current->pagefault_disabled != 0; } /* * The pagefault handler is in general disabled by pagefault_disable() or * when in irq context (via in_atomic()). * * This function should only be used by the fault handlers. Other users should * stick to pagefault_disabled(). * Please NEVER use preempt_disable() to disable the fault handler. With * !CONFIG_PREEMPT_COUNT, this is like a NOP. So the handler won't be disabled. * in_atomic() will report different values based on !CONFIG_PREEMPT_COUNT. */ #define faulthandler_disabled() (pagefault_disabled() || in_atomic()) #ifndef ARCH_HAS_NOCACHE_UACCESS static inline __must_check unsigned long __copy_from_user_inatomic_nocache(void *to, const void __user *from, unsigned long n) { return __copy_from_user_inatomic(to, from, n); } #endif /* ARCH_HAS_NOCACHE_UACCESS */ extern __must_check int check_zeroed_user(const void __user *from, size_t size); /** * copy_struct_from_user: copy a struct from userspace * @dst: Destination address, in kernel space. This buffer must be @ksize * bytes long. * @ksize: Size of @dst struct. * @src: Source address, in userspace. * @usize: (Alleged) size of @src struct. * * Copies a struct from userspace to kernel space, in a way that guarantees * backwards-compatibility for struct syscall arguments (as long as future * struct extensions are made such that all new fields are *appended* to the * old struct, and zeroed-out new fields have the same meaning as the old * struct). * * @ksize is just sizeof(*dst), and @usize should've been passed by userspace. * The recommended usage is something like the following: * * SYSCALL_DEFINE2(foobar, const struct foo __user *, uarg, size_t, usize) * { * int err; * struct foo karg = {}; * * if (usize > PAGE_SIZE) * return -E2BIG; * if (usize < FOO_SIZE_VER0) * return -EINVAL; * * err = copy_struct_from_user(&karg, sizeof(karg), uarg, usize); * if (err) * return err; * * // ... * } * * There are three cases to consider: * * If @usize == @ksize, then it's copied verbatim. * * If @usize < @ksize, then the userspace has passed an old struct to a * newer kernel. The rest of the trailing bytes in @dst (@ksize - @usize) * are to be zero-filled. * * If @usize > @ksize, then the userspace has passed a new struct to an * older kernel. The trailing bytes unknown to the kernel (@usize - @ksize) * are checked to ensure they are zeroed, otherwise -E2BIG is returned. * * Returns (in all cases, some data may have been copied): * * -E2BIG: (@usize > @ksize) and there are non-zero trailing bytes in @src. * * -EFAULT: access to userspace failed. */ static __always_inline __must_check int copy_struct_from_user(void *dst, size_t ksize, const void __user *src, size_t usize) { size_t size = min(ksize, usize); size_t rest = max(ksize, usize) - size; /* Deal with trailing bytes. */ if (usize < ksize) { memset(dst + size, 0, rest); } else if (usize > ksize) { int ret = check_zeroed_user(src + size, rest); if (ret <= 0) return ret ?: -E2BIG; } /* Copy the interoperable parts of the struct. */ if (copy_from_user(dst, src, size)) return -EFAULT; return 0; } bool copy_from_kernel_nofault_allowed(const void *unsafe_src, size_t size); long copy_from_kernel_nofault(void *dst, const void *src, size_t size); long notrace copy_to_kernel_nofault(void *dst, const void *src, size_t size); long copy_from_user_nofault(void *dst, const void __user *src, size_t size); long notrace copy_to_user_nofault(void __user *dst, const void *src, size_t size); long strncpy_from_kernel_nofault(char *dst, const void *unsafe_addr, long count); long strncpy_from_user_nofault(char *dst, const void __user *unsafe_addr, long count); long strnlen_user_nofault(const void __user *unsafe_addr, long count); /** * get_kernel_nofault(): safely attempt to read from a location * @val: read into this variable * @ptr: address to read from * * Returns 0 on success, or -EFAULT. */ #define get_kernel_nofault(val, ptr) ({ \ const typeof(val) *__gk_ptr = (ptr); \ copy_from_kernel_nofault(&(val), __gk_ptr, sizeof(val));\ }) #ifndef user_access_begin #define user_access_begin(ptr,len) access_ok(ptr, len) #define user_access_end() do { } while (0) #define unsafe_op_wrap(op, err) do { if (unlikely(op)) goto err; } while (0) #define unsafe_get_user(x,p,e) unsafe_op_wrap(__get_user(x,p),e) #define unsafe_put_user(x,p,e) unsafe_op_wrap(__put_user(x,p),e) #define unsafe_copy_to_user(d,s,l,e) unsafe_op_wrap(__copy_to_user(d,s,l),e) static inline unsigned long user_access_save(void) { return 0UL; } static inline void user_access_restore(unsigned long flags) { } #endif #ifndef user_write_access_begin #define user_write_access_begin user_access_begin #define user_write_access_end user_access_end #endif #ifndef user_read_access_begin #define user_read_access_begin user_access_begin #define user_read_access_end user_access_end #endif #ifdef CONFIG_HARDENED_USERCOPY void usercopy_warn(const char *name, const char *detail, bool to_user, unsigned long offset, unsigned long len); void __noreturn usercopy_abort(const char *name, const char *detail, bool to_user, unsigned long offset, unsigned long len); #endif #endif /* __LINUX_UACCESS_H__ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SCHED_TASK_STACK_H #define _LINUX_SCHED_TASK_STACK_H /* * task->stack (kernel stack) handling interfaces: */ #include <linux/sched.h> #include <linux/magic.h> #ifdef CONFIG_THREAD_INFO_IN_TASK /* * When accessing the stack of a non-current task that might exit, use * try_get_task_stack() instead. task_stack_page will return a pointer * that could get freed out from under you. */ static inline void *task_stack_page(const struct task_struct *task) { return task->stack; } #define setup_thread_stack(new,old) do { } while(0) static inline unsigned long *end_of_stack(const struct task_struct *task) { #ifdef CONFIG_STACK_GROWSUP return (unsigned long *)((unsigned long)task->stack + THREAD_SIZE) - 1; #else return task->stack; #endif } #elif !defined(__HAVE_THREAD_FUNCTIONS) #define task_stack_page(task) ((void *)(task)->stack) static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) { *task_thread_info(p) = *task_thread_info(org); task_thread_info(p)->task = p; } /* * Return the address of the last usable long on the stack. * * When the stack grows down, this is just above the thread * info struct. Going any lower will corrupt the threadinfo. * * When the stack grows up, this is the highest address. * Beyond that position, we corrupt data on the next page. */ static inline unsigned long *end_of_stack(struct task_struct *p) { #ifdef CONFIG_STACK_GROWSUP return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1; #else return (unsigned long *)(task_thread_info(p) + 1); #endif } #endif #ifdef CONFIG_THREAD_INFO_IN_TASK static inline void *try_get_task_stack(struct task_struct *tsk) { return refcount_inc_not_zero(&tsk->stack_refcount) ? task_stack_page(tsk) : NULL; } extern void put_task_stack(struct task_struct *tsk); #else static inline void *try_get_task_stack(struct task_struct *tsk) { return task_stack_page(tsk); } static inline void put_task_stack(struct task_struct *tsk) {} #endif #define task_stack_end_corrupted(task) \ (*(end_of_stack(task)) != STACK_END_MAGIC) static inline int object_is_on_stack(const void *obj) { void *stack = task_stack_page(current); return (obj >= stack) && (obj < (stack + THREAD_SIZE)); } extern void thread_stack_cache_init(void); #ifdef CONFIG_DEBUG_STACK_USAGE static inline unsigned long stack_not_used(struct task_struct *p) { unsigned long *n = end_of_stack(p); do { /* Skip over canary */ # ifdef CONFIG_STACK_GROWSUP n--; # else n++; # endif } while (!*n); # ifdef CONFIG_STACK_GROWSUP return (unsigned long)end_of_stack(p) - (unsigned long)n; # else return (unsigned long)n - (unsigned long)end_of_stack(p); # endif } #endif extern void set_task_stack_end_magic(struct task_struct *tsk); #ifndef __HAVE_ARCH_KSTACK_END static inline int kstack_end(void *addr) { /* Reliable end of stack detection: * Some APM bios versions misalign the stack */ return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); } #endif #endif /* _LINUX_SCHED_TASK_STACK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 /* SPDX-License-Identifier: GPL-2.0 */ /* * sysctl.h: General linux system control interface * * Begun 24 March 1995, Stephen Tweedie * **************************************************************** **************************************************************** ** ** WARNING: ** The values in this file are exported to user space via ** the sysctl() binary interface. Do *NOT* change the ** numbering of any existing values here, and do not change ** any numbers within any one set of values. If you have to ** redefine an existing interface, use a new number for it. ** The kernel will then return -ENOTDIR to any application using ** the old binary interface. ** **************************************************************** **************************************************************** */ #ifndef _LINUX_SYSCTL_H #define _LINUX_SYSCTL_H #include <linux/list.h> #include <linux/rcupdate.h> #include <linux/wait.h> #include <linux/rbtree.h> #include <linux/uidgid.h> #include <uapi/linux/sysctl.h> /* For the /proc/sys support */ struct completion; struct ctl_table; struct nsproxy; struct ctl_table_root; struct ctl_table_header; struct ctl_dir; /* Keep the same order as in fs/proc/proc_sysctl.c */ #define SYSCTL_ZERO ((void *)&sysctl_vals[0]) #define SYSCTL_ONE ((void *)&sysctl_vals[1]) #define SYSCTL_INT_MAX ((void *)&sysctl_vals[2]) extern const int sysctl_vals[]; typedef int proc_handler(struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *ppos); int proc_dostring(struct ctl_table *, int, void *, size_t *, loff_t *); int proc_dointvec(struct ctl_table *, int, void *, size_t *, loff_t *); int proc_douintvec(struct ctl_table *, int, void *, size_t *, loff_t *); int proc_dointvec_minmax(struct ctl_table *, int, void *, size_t *, loff_t *); int proc_douintvec_minmax(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos); int proc_dointvec_jiffies(struct ctl_table *, int, void *, size_t *, loff_t *); int proc_dointvec_userhz_jiffies(struct ctl_table *, int, void *, size_t *, loff_t *); int proc_dointvec_ms_jiffies(struct ctl_table *, int, void *, size_t *, loff_t *); int proc_doulongvec_minmax(struct ctl_table *, int, void *, size_t *, loff_t *); int proc_doulongvec_ms_jiffies_minmax(struct ctl_table *table, int, void *, size_t *, loff_t *); int proc_do_large_bitmap(struct ctl_table *, int, void *, size_t *, loff_t *); int proc_do_static_key(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos); /* * Register a set of sysctl names by calling register_sysctl_table * with an initialised array of struct ctl_table's. An entry with * NULL procname terminates the table. table->de will be * set up by the registration and need not be initialised in advance. * * sysctl names can be mirrored automatically under /proc/sys. The * procname supplied controls /proc naming. * * The table's mode will be honoured for proc-fs access. * * Leaf nodes in the sysctl tree will be represented by a single file * under /proc; non-leaf nodes will be represented by directories. A * null procname disables /proc mirroring at this node. * * The data and maxlen fields of the ctl_table * struct enable minimal validation of the values being written to be * performed, and the mode field allows minimal authentication. * * There must be a proc_handler routine for any terminal nodes * mirrored under /proc/sys (non-terminals are handled by a built-in * directory handler). Several default handlers are available to * cover common cases. */ /* Support for userspace poll() to watch for changes */ struct ctl_table_poll { atomic_t event; wait_queue_head_t wait; }; static inline void *proc_sys_poll_event(struct ctl_table_poll *poll) { return (void *)(unsigned long)atomic_read(&poll->event); } #define __CTL_TABLE_POLL_INITIALIZER(name) { \ .event = ATOMIC_INIT(0), \ .wait = __WAIT_QUEUE_HEAD_INITIALIZER(name.wait) } #define DEFINE_CTL_TABLE_POLL(name) \ struct ctl_table_poll name = __CTL_TABLE_POLL_INITIALIZER(name) /* A sysctl table is an array of struct ctl_table: */ struct ctl_table { const char *procname; /* Text ID for /proc/sys, or zero */ void *data; int maxlen; umode_t mode; struct ctl_table *child; /* Deprecated */ proc_handler *proc_handler; /* Callback for text formatting */ struct ctl_table_poll *poll; void *extra1; void *extra2; } __randomize_layout; struct ctl_node { struct rb_node node; struct ctl_table_header *header; }; /* struct ctl_table_header is used to maintain dynamic lists of struct ctl_table trees. */ struct ctl_table_header { union { struct { struct ctl_table *ctl_table; int used; int count; int nreg; }; struct rcu_head rcu; }; struct completion *unregistering; struct ctl_table *ctl_table_arg; struct ctl_table_root *root; struct ctl_table_set *set; struct ctl_dir *parent; struct ctl_node *node; struct hlist_head inodes; /* head for proc_inode->sysctl_inodes */ }; struct ctl_dir { /* Header must be at the start of ctl_dir */ struct ctl_table_header header; struct rb_root root; }; struct ctl_table_set { int (*is_seen)(struct ctl_table_set *); struct ctl_dir dir; }; struct ctl_table_root { struct ctl_table_set default_set; struct ctl_table_set *(*lookup)(struct ctl_table_root *root); void (*set_ownership)(struct ctl_table_header *head, struct ctl_table *table, kuid_t *uid, kgid_t *gid); int (*permissions)(struct ctl_table_header *head, struct ctl_table *table); }; /* struct ctl_path describes where in the hierarchy a table is added */ struct ctl_path { const char *procname; }; #ifdef CONFIG_SYSCTL void proc_sys_poll_notify(struct ctl_table_poll *poll); extern void setup_sysctl_set(struct ctl_table_set *p, struct ctl_table_root *root, int (*is_seen)(struct ctl_table_set *)); extern void retire_sysctl_set(struct ctl_table_set *set); struct ctl_table_header *__register_sysctl_table( struct ctl_table_set *set, const char *path, struct ctl_table *table); struct ctl_table_header *__register_sysctl_paths( struct ctl_table_set *set, const struct ctl_path *path, struct ctl_table *table); struct ctl_table_header *register_sysctl(const char *path, struct ctl_table *table); struct ctl_table_header *register_sysctl_table(struct ctl_table * table); struct ctl_table_header *register_sysctl_paths(const struct ctl_path *path, struct ctl_table *table); void unregister_sysctl_table(struct ctl_table_header * table); extern int sysctl_init(void); void do_sysctl_args(void); extern int pwrsw_enabled; extern int unaligned_enabled; extern int unaligned_dump_stack; extern int no_unaligned_warning; extern struct ctl_table sysctl_mount_point[]; extern struct ctl_table random_table[]; extern struct ctl_table firmware_config_table[]; extern struct ctl_table epoll_table[]; #else /* CONFIG_SYSCTL */ static inline struct ctl_table_header *register_sysctl_table(struct ctl_table * table) { return NULL; } static inline struct ctl_table_header *register_sysctl_paths( const struct ctl_path *path, struct ctl_table *table) { return NULL; } static inline struct ctl_table_header *register_sysctl(const char *path, struct ctl_table *table) { return NULL; } static inline void unregister_sysctl_table(struct ctl_table_header * table) { } static inline void setup_sysctl_set(struct ctl_table_set *p, struct ctl_table_root *root, int (*is_seen)(struct ctl_table_set *)) { } static inline void do_sysctl_args(void) { } #endif /* CONFIG_SYSCTL */ int sysctl_max_threads(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos); #endif /* _LINUX_SYSCTL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 /* SPDX-License-Identifier: GPL-2.0 */ /* * include/linux/eventfd.h * * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org> * */ #ifndef _LINUX_EVENTFD_H #define _LINUX_EVENTFD_H #include <linux/fcntl.h> #include <linux/wait.h> #include <linux/err.h> #include <linux/percpu-defs.h> #include <linux/percpu.h> /* * CAREFUL: Check include/uapi/asm-generic/fcntl.h when defining * new flags, since they might collide with O_* ones. We want * to re-use O_* flags that couldn't possibly have a meaning * from eventfd, in order to leave a free define-space for * shared O_* flags. */ #define EFD_SEMAPHORE (1 << 0) #define EFD_CLOEXEC O_CLOEXEC #define EFD_NONBLOCK O_NONBLOCK #define EFD_SHARED_FCNTL_FLAGS (O_CLOEXEC | O_NONBLOCK) #define EFD_FLAGS_SET (EFD_SHARED_FCNTL_FLAGS | EFD_SEMAPHORE) struct eventfd_ctx; struct file; #ifdef CONFIG_EVENTFD void eventfd_ctx_put(struct eventfd_ctx *ctx); struct file *eventfd_fget(int fd); struct eventfd_ctx *eventfd_ctx_fdget(int fd); struct eventfd_ctx *eventfd_ctx_fileget(struct file *file); __u64 eventfd_signal(struct eventfd_ctx *ctx, __u64 n); int eventfd_ctx_remove_wait_queue(struct eventfd_ctx *ctx, wait_queue_entry_t *wait, __u64 *cnt); DECLARE_PER_CPU(int, eventfd_wake_count); static inline bool eventfd_signal_count(void) { return this_cpu_read(eventfd_wake_count); } #else /* CONFIG_EVENTFD */ /* * Ugly ugly ugly error layer to support modules that uses eventfd but * pretend to work in !CONFIG_EVENTFD configurations. Namely, AIO. */ static inline struct eventfd_ctx *eventfd_ctx_fdget(int fd) { return ERR_PTR(-ENOSYS); } static inline int eventfd_signal(struct eventfd_ctx *ctx, int n) { return -ENOSYS; } static inline void eventfd_ctx_put(struct eventfd_ctx *ctx) { } static inline int eventfd_ctx_remove_wait_queue(struct eventfd_ctx *ctx, wait_queue_entry_t *wait, __u64 *cnt) { return -ENOSYS; } static inline bool eventfd_signal_count(void) { return false; } #endif #endif /* _LINUX_EVENTFD_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 #ifndef __LINUX_MROUTE_BASE_H #define __LINUX_MROUTE_BASE_H #include <linux/netdevice.h> #include <linux/rhashtable-types.h> #include <linux/spinlock.h> #include <net/net_namespace.h> #include <net/sock.h> #include <net/fib_notifier.h> #include <net/ip_fib.h> /** * struct vif_device - interface representor for multicast routing * @dev: network device being used * @bytes_in: statistic; bytes ingressing * @bytes_out: statistic; bytes egresing * @pkt_in: statistic; packets ingressing * @pkt_out: statistic; packets egressing * @rate_limit: Traffic shaping (NI) * @threshold: TTL threshold * @flags: Control flags * @link: Physical interface index * @dev_parent_id: device parent id * @local: Local address * @remote: Remote address for tunnels */ struct vif_device { struct net_device *dev; unsigned long bytes_in, bytes_out; unsigned long pkt_in, pkt_out; unsigned long rate_limit; unsigned char threshold; unsigned short flags; int link; /* Currently only used by ipmr */ struct netdev_phys_item_id dev_parent_id; __be32 local, remote; }; struct vif_entry_notifier_info { struct fib_notifier_info info; struct net_device *dev; unsigned short vif_index; unsigned short vif_flags; u32 tb_id; }; static inline int mr_call_vif_notifier(struct notifier_block *nb, unsigned short family, enum fib_event_type event_type, struct vif_device *vif, unsigned short vif_index, u32 tb_id, struct netlink_ext_ack *extack) { struct vif_entry_notifier_info info = { .info = { .family = family, .extack = extack, }, .dev = vif->dev, .vif_index = vif_index, .vif_flags = vif->flags, .tb_id = tb_id, }; return call_fib_notifier(nb, event_type, &info.info); } static inline int mr_call_vif_notifiers(struct net *net, unsigned short family, enum fib_event_type event_type, struct vif_device *vif, unsigned short vif_index, u32 tb_id, unsigned int *ipmr_seq) { struct vif_entry_notifier_info info = { .info = { .family = family, }, .dev = vif->dev, .vif_index = vif_index, .vif_flags = vif->flags, .tb_id = tb_id, }; ASSERT_RTNL(); (*ipmr_seq)++; return call_fib_notifiers(net, event_type, &info.info); } #ifndef MAXVIFS /* This one is nasty; value is defined in uapi using different symbols for * mroute and morute6 but both map into same 32. */ #define MAXVIFS 32 #endif #define VIF_EXISTS(_mrt, _idx) (!!((_mrt)->vif_table[_idx].dev)) /* mfc_flags: * MFC_STATIC - the entry was added statically (not by a routing daemon) * MFC_OFFLOAD - the entry was offloaded to the hardware */ enum { MFC_STATIC = BIT(0), MFC_OFFLOAD = BIT(1), }; /** * struct mr_mfc - common multicast routing entries * @mnode: rhashtable list * @mfc_parent: source interface (iif) * @mfc_flags: entry flags * @expires: unresolved entry expire time * @unresolved: unresolved cached skbs * @last_assert: time of last assert * @minvif: minimum VIF id * @maxvif: maximum VIF id * @bytes: bytes that have passed for this entry * @pkt: packets that have passed for this entry * @wrong_if: number of wrong source interface hits * @lastuse: time of last use of the group (traffic or update) * @ttls: OIF TTL threshold array * @refcount: reference count for this entry * @list: global entry list * @rcu: used for entry destruction * @free: Operation used for freeing an entry under RCU */ struct mr_mfc { struct rhlist_head mnode; unsigned short mfc_parent; int mfc_flags; union { struct { unsigned long expires; struct sk_buff_head unresolved; } unres; struct { unsigned long last_assert; int minvif; int maxvif; unsigned long bytes; unsigned long pkt; unsigned long wrong_if; unsigned long lastuse; unsigned char ttls[MAXVIFS]; refcount_t refcount; } res; } mfc_un; struct list_head list; struct rcu_head rcu; void (*free)(struct rcu_head *head); }; static inline void mr_cache_put(struct mr_mfc *c) { if (refcount_dec_and_test(&c->mfc_un.res.refcount)) call_rcu(&c->rcu, c->free); } static inline void mr_cache_hold(struct mr_mfc *c) { refcount_inc(&c->mfc_un.res.refcount); } struct mfc_entry_notifier_info { struct fib_notifier_info info; struct mr_mfc *mfc; u32 tb_id; }; static inline int mr_call_mfc_notifier(struct notifier_block *nb, unsigned short family, enum fib_event_type event_type, struct mr_mfc *mfc, u32 tb_id, struct netlink_ext_ack *extack) { struct mfc_entry_notifier_info info = { .info = { .family = family, .extack = extack, }, .mfc = mfc, .tb_id = tb_id }; return call_fib_notifier(nb, event_type, &info.info); } static inline int mr_call_mfc_notifiers(struct net *net, unsigned short family, enum fib_event_type event_type, struct mr_mfc *mfc, u32 tb_id, unsigned int *ipmr_seq) { struct mfc_entry_notifier_info info = { .info = { .family = family, }, .mfc = mfc, .tb_id = tb_id }; ASSERT_RTNL(); (*ipmr_seq)++; return call_fib_notifiers(net, event_type, &info.info); } struct mr_table; /** * struct mr_table_ops - callbacks and info for protocol-specific ops * @rht_params: parameters for accessing the MFC hash * @cmparg_any: a hash key to be used for matching on (*,*) routes */ struct mr_table_ops { const struct rhashtable_params *rht_params; void *cmparg_any; }; /** * struct mr_table - a multicast routing table * @list: entry within a list of multicast routing tables * @net: net where this table belongs * @ops: protocol specific operations * @id: identifier of the table * @mroute_sk: socket associated with the table * @ipmr_expire_timer: timer for handling unresolved routes * @mfc_unres_queue: list of unresolved MFC entries * @vif_table: array containing all possible vifs * @mfc_hash: Hash table of all resolved routes for easy lookup * @mfc_cache_list: list of resovled routes for possible traversal * @maxvif: Identifier of highest value vif currently in use * @cache_resolve_queue_len: current size of unresolved queue * @mroute_do_assert: Whether to inform userspace on wrong ingress * @mroute_do_pim: Whether to receive IGMP PIMv1 * @mroute_reg_vif_num: PIM-device vif index */ struct mr_table { struct list_head list; possible_net_t net; struct mr_table_ops ops; u32 id; struct sock __rcu *mroute_sk; struct timer_list ipmr_expire_timer; struct list_head mfc_unres_queue; struct vif_device vif_table[MAXVIFS]; struct rhltable mfc_hash; struct list_head mfc_cache_list; int maxvif; atomic_t cache_resolve_queue_len; bool mroute_do_assert; bool mroute_do_pim; bool mroute_do_wrvifwhole; int mroute_reg_vif_num; }; #ifdef CONFIG_IP_MROUTE_COMMON void vif_device_init(struct vif_device *v, struct net_device *dev, unsigned long rate_limit, unsigned char threshold, unsigned short flags, unsigned short get_iflink_mask); struct mr_table * mr_table_alloc(struct net *net, u32 id, struct mr_table_ops *ops, void (*expire_func)(struct timer_list *t), void (*table_set)(struct mr_table *mrt, struct net *net)); /* These actually return 'struct mr_mfc *', but to avoid need for explicit * castings they simply return void. */ void *mr_mfc_find_parent(struct mr_table *mrt, void *hasharg, int parent); void *mr_mfc_find_any_parent(struct mr_table *mrt, int vifi); void *mr_mfc_find_any(struct mr_table *mrt, int vifi, void *hasharg); int mr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, struct mr_mfc *c, struct rtmsg *rtm); int mr_table_dump(struct mr_table *mrt, struct sk_buff *skb, struct netlink_callback *cb, int (*fill)(struct mr_table *mrt, struct sk_buff *skb, u32 portid, u32 seq, struct mr_mfc *c, int cmd, int flags), spinlock_t *lock, struct fib_dump_filter *filter); int mr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb, struct mr_table *(*iter)(struct net *net, struct mr_table *mrt), int (*fill)(struct mr_table *mrt, struct sk_buff *skb, u32 portid, u32 seq, struct mr_mfc *c, int cmd, int flags), spinlock_t *lock, struct fib_dump_filter *filter); int mr_dump(struct net *net, struct notifier_block *nb, unsigned short family, int (*rules_dump)(struct net *net, struct notifier_block *nb, struct netlink_ext_ack *extack), struct mr_table *(*mr_iter)(struct net *net, struct mr_table *mrt), rwlock_t *mrt_lock, struct netlink_ext_ack *extack); #else static inline void vif_device_init(struct vif_device *v, struct net_device *dev, unsigned long rate_limit, unsigned char threshold, unsigned short flags, unsigned short get_iflink_mask) { } static inline void *mr_mfc_find_parent(struct mr_table *mrt, void *hasharg, int parent) { return NULL; } static inline void *mr_mfc_find_any_parent(struct mr_table *mrt, int vifi) { return NULL; } static inline struct mr_mfc *mr_mfc_find_any(struct mr_table *mrt, int vifi, void *hasharg) { return NULL; } static inline int mr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, struct mr_mfc *c, struct rtmsg *rtm) { return -EINVAL; } static inline int mr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb, struct mr_table *(*iter)(struct net *net, struct mr_table *mrt), int (*fill)(struct mr_table *mrt, struct sk_buff *skb, u32 portid, u32 seq, struct mr_mfc *c, int cmd, int flags), spinlock_t *lock, struct fib_dump_filter *filter) { return -EINVAL; } static inline int mr_dump(struct net *net, struct notifier_block *nb, unsigned short family, int (*rules_dump)(struct net *net, struct notifier_block *nb, struct netlink_ext_ack *extack), struct mr_table *(*mr_iter)(struct net *net, struct mr_table *mrt), rwlock_t *mrt_lock, struct netlink_ext_ack *extack) { return -EINVAL; } #endif static inline void *mr_mfc_find(struct mr_table *mrt, void *hasharg) { return mr_mfc_find_parent(mrt, hasharg, -1); } #ifdef CONFIG_PROC_FS struct mr_vif_iter { struct seq_net_private p; struct mr_table *mrt; int ct; }; struct mr_mfc_iter { struct seq_net_private p; struct mr_table *mrt; struct list_head *cache; /* Lock protecting the mr_table's unresolved queue */ spinlock_t *lock; }; #ifdef CONFIG_IP_MROUTE_COMMON void *mr_vif_seq_idx(struct net *net, struct mr_vif_iter *iter, loff_t pos); void *mr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos); static inline void *mr_vif_seq_start(struct seq_file *seq, loff_t *pos) { return *pos ? mr_vif_seq_idx(seq_file_net(seq), seq->private, *pos - 1) : SEQ_START_TOKEN; } /* These actually return 'struct mr_mfc *', but to avoid need for explicit * castings they simply return void. */ void *mr_mfc_seq_idx(struct net *net, struct mr_mfc_iter *it, loff_t pos); void *mr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos); static inline void *mr_mfc_seq_start(struct seq_file *seq, loff_t *pos, struct mr_table *mrt, spinlock_t *lock) { struct mr_mfc_iter *it = seq->private; it->mrt = mrt; it->cache = NULL; it->lock = lock; return *pos ? mr_mfc_seq_idx(seq_file_net(seq), seq->private, *pos - 1) : SEQ_START_TOKEN; } static inline void mr_mfc_seq_stop(struct seq_file *seq, void *v) { struct mr_mfc_iter *it = seq->private; struct mr_table *mrt = it->mrt; if (it->cache == &mrt->mfc_unres_queue) spin_unlock_bh(it->lock); else if (it->cache == &mrt->mfc_cache_list) rcu_read_unlock(); } #else static inline void *mr_vif_seq_idx(struct net *net, struct mr_vif_iter *iter, loff_t pos) { return NULL; } static inline void *mr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos) { return NULL; } static inline void *mr_vif_seq_start(struct seq_file *seq, loff_t *pos) { return NULL; } static inline void *mr_mfc_seq_idx(struct net *net, struct mr_mfc_iter *it, loff_t pos) { return NULL; } static inline void *mr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos) { return NULL; } static inline void *mr_mfc_seq_start(struct seq_file *seq, loff_t *pos, struct mr_table *mrt, spinlock_t *lock) { return NULL; } static inline void mr_mfc_seq_stop(struct seq_file *seq, void *v) { } #endif #endif #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __NET_SCHED_GENERIC_H #define __NET_SCHED_GENERIC_H #include <linux/netdevice.h> #include <linux/types.h> #include <linux/rcupdate.h> #include <linux/pkt_sched.h> #include <linux/pkt_cls.h> #include <linux/percpu.h> #include <linux/dynamic_queue_limits.h> #include <linux/list.h> #include <linux/refcount.h> #include <linux/workqueue.h> #include <linux/mutex.h> #include <linux/rwsem.h> #include <linux/atomic.h> #include <linux/hashtable.h> #include <net/gen_stats.h> #include <net/rtnetlink.h> #include <net/flow_offload.h> struct Qdisc_ops; struct qdisc_walker; struct tcf_walker; struct module; struct bpf_flow_keys; struct qdisc_rate_table { struct tc_ratespec rate; u32 data[256]; struct qdisc_rate_table *next; int refcnt; }; enum qdisc_state_t { __QDISC_STATE_SCHED, __QDISC_STATE_DEACTIVATED, __QDISC_STATE_MISSED, }; struct qdisc_size_table { struct rcu_head rcu; struct list_head list; struct tc_sizespec szopts; int refcnt; u16 data[]; }; /* similar to sk_buff_head, but skb->prev pointer is undefined. */ struct qdisc_skb_head { struct sk_buff *head; struct sk_buff *tail; __u32 qlen; spinlock_t lock; }; struct Qdisc { int (*enqueue)(struct sk_buff *skb, struct Qdisc *sch, struct sk_buff **to_free); struct sk_buff * (*dequeue)(struct Qdisc *sch); unsigned int flags; #define TCQ_F_BUILTIN 1 #define TCQ_F_INGRESS 2 #define TCQ_F_CAN_BYPASS 4 #define TCQ_F_MQROOT 8 #define TCQ_F_ONETXQUEUE 0x10 /* dequeue_skb() can assume all skbs are for * q->dev_queue : It can test * netif_xmit_frozen_or_stopped() before * dequeueing next packet. * Its true for MQ/MQPRIO slaves, or non * multiqueue device. */ #define TCQ_F_WARN_NONWC (1 << 16) #define TCQ_F_CPUSTATS 0x20 /* run using percpu statistics */ #define TCQ_F_NOPARENT 0x40 /* root of its hierarchy : * qdisc_tree_decrease_qlen() should stop. */ #define TCQ_F_INVISIBLE 0x80 /* invisible by default in dump */ #define TCQ_F_NOLOCK 0x100 /* qdisc does not require locking */ #define TCQ_F_OFFLOADED 0x200 /* qdisc is offloaded to HW */ u32 limit; const struct Qdisc_ops *ops; struct qdisc_size_table __rcu *stab; struct hlist_node hash; u32 handle; u32 parent; struct netdev_queue *dev_queue; struct net_rate_estimator __rcu *rate_est; struct gnet_stats_basic_cpu __percpu *cpu_bstats; struct gnet_stats_queue __percpu *cpu_qstats; int pad; refcount_t refcnt; /* * For performance sake on SMP, we put highly modified fields at the end */ struct sk_buff_head gso_skb ____cacheline_aligned_in_smp; struct qdisc_skb_head q; struct gnet_stats_basic_packed bstats; seqcount_t running; struct gnet_stats_queue qstats; unsigned long state; struct Qdisc *next_sched; struct sk_buff_head skb_bad_txq; spinlock_t busylock ____cacheline_aligned_in_smp; spinlock_t seqlock; /* for NOLOCK qdisc, true if there are no enqueued skbs */ bool empty; struct rcu_head rcu; /* private data */ long privdata[] ____cacheline_aligned; }; static inline void qdisc_refcount_inc(struct Qdisc *qdisc) { if (qdisc->flags & TCQ_F_BUILTIN) return; refcount_inc(&qdisc->refcnt); } /* Intended to be used by unlocked users, when concurrent qdisc release is * possible. */ static inline struct Qdisc *qdisc_refcount_inc_nz(struct Qdisc *qdisc) { if (qdisc->flags & TCQ_F_BUILTIN) return qdisc; if (refcount_inc_not_zero(&qdisc->refcnt)) return qdisc; return NULL; } static inline bool qdisc_is_running(struct Qdisc *qdisc) { if (qdisc->flags & TCQ_F_NOLOCK) return spin_is_locked(&qdisc->seqlock); return (raw_read_seqcount(&qdisc->running) & 1) ? true : false; } static inline bool qdisc_is_percpu_stats(const struct Qdisc *q) { return q->flags & TCQ_F_CPUSTATS; } static inline bool qdisc_is_empty(const struct Qdisc *qdisc) { if (qdisc_is_percpu_stats(qdisc)) return READ_ONCE(qdisc->empty); return !READ_ONCE(qdisc->q.qlen); } static inline bool qdisc_run_begin(struct Qdisc *qdisc) { if (qdisc->flags & TCQ_F_NOLOCK) { if (spin_trylock(&qdisc->seqlock)) goto nolock_empty; /* Paired with smp_mb__after_atomic() to make sure * STATE_MISSED checking is synchronized with clearing * in pfifo_fast_dequeue(). */ smp_mb__before_atomic(); /* If the MISSED flag is set, it means other thread has * set the MISSED flag before second spin_trylock(), so * we can return false here to avoid multi cpus doing * the set_bit() and second spin_trylock() concurrently. */ if (test_bit(__QDISC_STATE_MISSED, &qdisc->state)) return false; /* Set the MISSED flag before the second spin_trylock(), * if the second spin_trylock() return false, it means * other cpu holding the lock will do dequeuing for us * or it will see the MISSED flag set after releasing * lock and reschedule the net_tx_action() to do the * dequeuing. */ set_bit(__QDISC_STATE_MISSED, &qdisc->state); /* spin_trylock() only has load-acquire semantic, so use * smp_mb__after_atomic() to ensure STATE_MISSED is set * before doing the second spin_trylock(). */ smp_mb__after_atomic(); /* Retry again in case other CPU may not see the new flag * after it releases the lock at the end of qdisc_run_end(). */ if (!spin_trylock(&qdisc->seqlock)) return false; nolock_empty: WRITE_ONCE(qdisc->empty, false); } else if (qdisc_is_running(qdisc)) { return false; } /* Variant of write_seqcount_begin() telling lockdep a trylock * was attempted. */ raw_write_seqcount_begin(&qdisc->running); seqcount_acquire(&qdisc->running.dep_map, 0, 1, _RET_IP_); return true; } static inline void qdisc_run_end(struct Qdisc *qdisc) { write_seqcount_end(&qdisc->running); if (qdisc->flags & TCQ_F_NOLOCK) { spin_unlock(&qdisc->seqlock); if (unlikely(test_bit(__QDISC_STATE_MISSED, &qdisc->state))) { clear_bit(__QDISC_STATE_MISSED, &qdisc->state); __netif_schedule(qdisc); } } } static inline bool qdisc_may_bulk(const struct Qdisc *qdisc) { return qdisc->flags & TCQ_F_ONETXQUEUE; } static inline int qdisc_avail_bulklimit(const struct netdev_queue *txq) { #ifdef CONFIG_BQL /* Non-BQL migrated drivers will return 0, too. */ return dql_avail(&txq->dql); #else return 0; #endif } struct Qdisc_class_ops { unsigned int flags; /* Child qdisc manipulation */ struct netdev_queue * (*select_queue)(struct Qdisc *, struct tcmsg *); int (*graft)(struct Qdisc *, unsigned long cl, struct Qdisc *, struct Qdisc **, struct netlink_ext_ack *extack); struct Qdisc * (*leaf)(struct Qdisc *, unsigned long cl); void (*qlen_notify)(struct Qdisc *, unsigned long); /* Class manipulation routines */ unsigned long (*find)(struct Qdisc *, u32 classid); int (*change)(struct Qdisc *, u32, u32, struct nlattr **, unsigned long *, struct netlink_ext_ack *); int (*delete)(struct Qdisc *, unsigned long); void (*walk)(struct Qdisc *, struct qdisc_walker * arg); /* Filter manipulation */ struct tcf_block * (*tcf_block)(struct Qdisc *sch, unsigned long arg, struct netlink_ext_ack *extack); unsigned long (*bind_tcf)(struct Qdisc *, unsigned long, u32 classid); void (*unbind_tcf)(struct Qdisc *, unsigned long); /* rtnetlink specific */ int (*dump)(struct Qdisc *, unsigned long, struct sk_buff *skb, struct tcmsg*); int (*dump_stats)(struct Qdisc *, unsigned long, struct gnet_dump *); }; /* Qdisc_class_ops flag values */ /* Implements API that doesn't require rtnl lock */ enum qdisc_class_ops_flags { QDISC_CLASS_OPS_DOIT_UNLOCKED = 1, }; struct Qdisc_ops { struct Qdisc_ops *next; const struct Qdisc_class_ops *cl_ops; char id[IFNAMSIZ]; int priv_size; unsigned int static_flags; int (*enqueue)(struct sk_buff *skb, struct Qdisc *sch, struct sk_buff **to_free); struct sk_buff * (*dequeue)(struct Qdisc *); struct sk_buff * (*peek)(struct Qdisc *); int (*init)(struct Qdisc *sch, struct nlattr *arg, struct netlink_ext_ack *extack); void (*reset)(struct Qdisc *); void (*destroy)(struct Qdisc *); int (*change)(struct Qdisc *sch, struct nlattr *arg, struct netlink_ext_ack *extack); void (*attach)(struct Qdisc *sch); int (*change_tx_queue_len)(struct Qdisc *, unsigned int); void (*change_real_num_tx)(struct Qdisc *sch, unsigned int new_real_tx); int (*dump)(struct Qdisc *, struct sk_buff *); int (*dump_stats)(struct Qdisc *, struct gnet_dump *); void (*ingress_block_set)(struct Qdisc *sch, u32 block_index); void (*egress_block_set)(struct Qdisc *sch, u32 block_index); u32 (*ingress_block_get)(struct Qdisc *sch); u32 (*egress_block_get)(struct Qdisc *sch); struct module *owner; }; struct tcf_result { union { struct { unsigned long class; u32 classid; }; const struct tcf_proto *goto_tp; /* used in the skb_tc_reinsert function */ struct { bool ingress; struct gnet_stats_queue *qstats; }; }; }; struct tcf_chain; struct tcf_proto_ops { struct list_head head; char kind[IFNAMSIZ]; int (*classify)(struct sk_buff *, const struct tcf_proto *, struct tcf_result *); int (*init)(struct tcf_proto*); void (*destroy)(struct tcf_proto *tp, bool rtnl_held, struct netlink_ext_ack *extack); void* (*get)(struct tcf_proto*, u32 handle); void (*put)(struct tcf_proto *tp, void *f); int (*change)(struct net *net, struct sk_buff *, struct tcf_proto*, unsigned long, u32 handle, struct nlattr **, void **, bool, bool, struct netlink_ext_ack *); int (*delete)(struct tcf_proto *tp, void *arg, bool *last, bool rtnl_held, struct netlink_ext_ack *); bool (*delete_empty)(struct tcf_proto *tp); void (*walk)(struct tcf_proto *tp, struct tcf_walker *arg, bool rtnl_held); int (*reoffload)(struct tcf_proto *tp, bool add, flow_setup_cb_t *cb, void *cb_priv, struct netlink_ext_ack *extack); void (*hw_add)(struct tcf_proto *tp, void *type_data); void (*hw_del)(struct tcf_proto *tp, void *type_data); void (*bind_class)(void *, u32, unsigned long, void *, unsigned long); void * (*tmplt_create)(struct net *net, struct tcf_chain *chain, struct nlattr **tca, struct netlink_ext_ack *extack); void (*tmplt_destroy)(void *tmplt_priv); /* rtnetlink specific */ int (*dump)(struct net*, struct tcf_proto*, void *, struct sk_buff *skb, struct tcmsg*, bool); int (*terse_dump)(struct net *net, struct tcf_proto *tp, void *fh, struct sk_buff *skb, struct tcmsg *t, bool rtnl_held); int (*tmplt_dump)(struct sk_buff *skb, struct net *net, void *tmplt_priv); struct module *owner; int flags; }; /* Classifiers setting TCF_PROTO_OPS_DOIT_UNLOCKED in tcf_proto_ops->flags * are expected to implement tcf_proto_ops->delete_empty(), otherwise race * conditions can occur when filters are inserted/deleted simultaneously. */ enum tcf_proto_ops_flags { TCF_PROTO_OPS_DOIT_UNLOCKED = 1, }; struct tcf_proto { /* Fast access part */ struct tcf_proto __rcu *next; void __rcu *root; /* called under RCU BH lock*/ int (*classify)(struct sk_buff *, const struct tcf_proto *, struct tcf_result *); __be16 protocol; /* All the rest */ u32 prio; void *data; const struct tcf_proto_ops *ops; struct tcf_chain *chain; /* Lock protects tcf_proto shared state and can be used by unlocked * classifiers to protect their private data. */ spinlock_t lock; bool deleting; refcount_t refcnt; struct rcu_head rcu; struct hlist_node destroy_ht_node; }; struct qdisc_skb_cb { struct { unsigned int pkt_len; u16 slave_dev_queue_mapping; u16 tc_classid; }; #define QDISC_CB_PRIV_LEN 20 unsigned char data[QDISC_CB_PRIV_LEN]; u16 mru; }; typedef void tcf_chain_head_change_t(struct tcf_proto *tp_head, void *priv); struct tcf_chain { /* Protects filter_chain. */ struct mutex filter_chain_lock; struct tcf_proto __rcu *filter_chain; struct list_head list; struct tcf_block *block; u32 index; /* chain index */ unsigned int refcnt; unsigned int action_refcnt; bool explicitly_created; bool flushing; const struct tcf_proto_ops *tmplt_ops; void *tmplt_priv; struct rcu_head rcu; }; struct tcf_block { /* Lock protects tcf_block and lifetime-management data of chains * attached to the block (refcnt, action_refcnt, explicitly_created). */ struct mutex lock; struct list_head chain_list; u32 index; /* block index for shared blocks */ u32 classid; /* which class this block belongs to */ refcount_t refcnt; struct net *net; struct Qdisc *q; struct rw_semaphore cb_lock; /* protects cb_list and offload counters */ struct flow_block flow_block; struct list_head owner_list; bool keep_dst; atomic_t offloadcnt; /* Number of oddloaded filters */ unsigned int nooffloaddevcnt; /* Number of devs unable to do offload */ unsigned int lockeddevcnt; /* Number of devs that require rtnl lock. */ struct { struct tcf_chain *chain; struct list_head filter_chain_list; } chain0; struct rcu_head rcu; DECLARE_HASHTABLE(proto_destroy_ht, 7); struct mutex proto_destroy_lock; /* Lock for proto_destroy hashtable. */ }; #ifdef CONFIG_PROVE_LOCKING static inline bool lockdep_tcf_chain_is_locked(struct tcf_chain *chain) { return lockdep_is_held(&chain->filter_chain_lock); } static inline bool lockdep_tcf_proto_is_locked(struct tcf_proto *tp) { return lockdep_is_held(&tp->lock); } #else static inline bool lockdep_tcf_chain_is_locked(struct tcf_block *chain) { return true; } static inline bool lockdep_tcf_proto_is_locked(struct tcf_proto *tp) { return true; } #endif /* #ifdef CONFIG_PROVE_LOCKING */ #define tcf_chain_dereference(p, chain) \ rcu_dereference_protected(p, lockdep_tcf_chain_is_locked(chain)) #define tcf_proto_dereference(p, tp) \ rcu_dereference_protected(p, lockdep_tcf_proto_is_locked(tp)) static inline void qdisc_cb_private_validate(const struct sk_buff *skb, int sz) { struct qdisc_skb_cb *qcb; BUILD_BUG_ON(sizeof(skb->cb) < sizeof(*qcb)); BUILD_BUG_ON(sizeof(qcb->data) < sz); } static inline int qdisc_qlen_cpu(const struct Qdisc *q) { return this_cpu_ptr(q->cpu_qstats)->qlen; } static inline int qdisc_qlen(const struct Qdisc *q) { return q->q.qlen; } static inline int qdisc_qlen_sum(const struct Qdisc *q) { __u32 qlen = q->qstats.qlen; int i; if (qdisc_is_percpu_stats(q)) { for_each_possible_cpu(i) qlen += per_cpu_ptr(q->cpu_qstats, i)->qlen; } else { qlen += q->q.qlen; } return qlen; } static inline struct qdisc_skb_cb *qdisc_skb_cb(const struct sk_buff *skb) { return (struct qdisc_skb_cb *)skb->cb; } static inline spinlock_t *qdisc_lock(struct Qdisc *qdisc) { return &qdisc->q.lock; } static inline struct Qdisc *qdisc_root(const struct Qdisc *qdisc) { struct Qdisc *q = rcu_dereference_rtnl(qdisc->dev_queue->qdisc); return q; } static inline struct Qdisc *qdisc_root_bh(const struct Qdisc *qdisc) { return rcu_dereference_bh(qdisc->dev_queue->qdisc); } static inline struct Qdisc *qdisc_root_sleeping(const struct Qdisc *qdisc) { return qdisc->dev_queue->qdisc_sleeping; } /* The qdisc root lock is a mechanism by which to top level * of a qdisc tree can be locked from any qdisc node in the * forest. This allows changing the configuration of some * aspect of the qdisc tree while blocking out asynchronous * qdisc access in the packet processing paths. * * It is only legal to do this when the root will not change * on us. Otherwise we'll potentially lock the wrong qdisc * root. This is enforced by holding the RTNL semaphore, which * all users of this lock accessor must do. */ static inline spinlock_t *qdisc_root_lock(const struct Qdisc *qdisc) { struct Qdisc *root = qdisc_root(qdisc); ASSERT_RTNL(); return qdisc_lock(root); } static inline spinlock_t *qdisc_root_sleeping_lock(const struct Qdisc *qdisc) { struct Qdisc *root = qdisc_root_sleeping(qdisc); ASSERT_RTNL(); return qdisc_lock(root); } static inline seqcount_t *qdisc_root_sleeping_running(const struct Qdisc *qdisc) { struct Qdisc *root = qdisc_root_sleeping(qdisc); ASSERT_RTNL(); return &root->running; } static inline struct net_device *qdisc_dev(const struct Qdisc *qdisc) { return qdisc->dev_queue->dev; } static inline void sch_tree_lock(const struct Qdisc *q) { spin_lock_bh(qdisc_root_sleeping_lock(q)); } static inline void sch_tree_unlock(const struct Qdisc *q) { spin_unlock_bh(qdisc_root_sleeping_lock(q)); } extern struct Qdisc noop_qdisc; extern struct Qdisc_ops noop_qdisc_ops; extern struct Qdisc_ops pfifo_fast_ops; extern struct Qdisc_ops mq_qdisc_ops; extern struct Qdisc_ops noqueue_qdisc_ops; extern const struct Qdisc_ops *default_qdisc_ops; static inline const struct Qdisc_ops * get_default_qdisc_ops(const struct net_device *dev, int ntx) { return ntx < dev->real_num_tx_queues ? default_qdisc_ops : &pfifo_fast_ops; } struct Qdisc_class_common { u32 classid; struct hlist_node hnode; }; struct Qdisc_class_hash { struct hlist_head *hash; unsigned int hashsize; unsigned int hashmask; unsigned int hashelems; }; static inline unsigned int qdisc_class_hash(u32 id, u32 mask) { id ^= id >> 8; id ^= id >> 4; return id & mask; } static inline struct Qdisc_class_common * qdisc_class_find(const struct Qdisc_class_hash *hash, u32 id) { struct Qdisc_class_common *cl; unsigned int h; if (!id) return NULL; h = qdisc_class_hash(id, hash->hashmask); hlist_for_each_entry(cl, &hash->hash[h], hnode) { if (cl->classid == id) return cl; } return NULL; } static inline int tc_classid_to_hwtc(struct net_device *dev, u32 classid) { u32 hwtc = TC_H_MIN(classid) - TC_H_MIN_PRIORITY; return (hwtc < netdev_get_num_tc(dev)) ? hwtc : -EINVAL; } int qdisc_class_hash_init(struct Qdisc_class_hash *); void qdisc_class_hash_insert(struct Qdisc_class_hash *, struct Qdisc_class_common *); void qdisc_class_hash_remove(struct Qdisc_class_hash *, struct Qdisc_class_common *); void qdisc_class_hash_grow(struct Qdisc *, struct Qdisc_class_hash *); void qdisc_class_hash_destroy(struct Qdisc_class_hash *); int dev_qdisc_change_tx_queue_len(struct net_device *dev); void dev_qdisc_change_real_num_tx(struct net_device *dev, unsigned int new_real_tx); void dev_init_scheduler(struct net_device *dev); void dev_shutdown(struct net_device *dev); void dev_activate(struct net_device *dev); void dev_deactivate(struct net_device *dev); void dev_deactivate_many(struct list_head *head); struct Qdisc *dev_graft_qdisc(struct netdev_queue *dev_queue, struct Qdisc *qdisc); void qdisc_reset(struct Qdisc *qdisc); void qdisc_put(struct Qdisc *qdisc); void qdisc_put_unlocked(struct Qdisc *qdisc); void qdisc_tree_reduce_backlog(struct Qdisc *qdisc, int n, int len); #ifdef CONFIG_NET_SCHED int qdisc_offload_dump_helper(struct Qdisc *q, enum tc_setup_type type, void *type_data); void qdisc_offload_graft_helper(struct net_device *dev, struct Qdisc *sch, struct Qdisc *new, struct Qdisc *old, enum tc_setup_type type, void *type_data, struct netlink_ext_ack *extack); #else static inline int qdisc_offload_dump_helper(struct Qdisc *q, enum tc_setup_type type, void *type_data) { q->flags &= ~TCQ_F_OFFLOADED; return 0; } static inline void qdisc_offload_graft_helper(struct net_device *dev, struct Qdisc *sch, struct Qdisc *new, struct Qdisc *old, enum tc_setup_type type, void *type_data, struct netlink_ext_ack *extack) { } #endif struct Qdisc *qdisc_alloc(struct netdev_queue *dev_queue, const struct Qdisc_ops *ops, struct netlink_ext_ack *extack); void qdisc_free(struct Qdisc *qdisc); struct Qdisc *qdisc_create_dflt(struct netdev_queue *dev_queue, const struct Qdisc_ops *ops, u32 parentid, struct netlink_ext_ack *extack); void __qdisc_calculate_pkt_len(struct sk_buff *skb, const struct qdisc_size_table *stab); int skb_do_redirect(struct sk_buff *); static inline bool skb_at_tc_ingress(const struct sk_buff *skb) { #ifdef CONFIG_NET_CLS_ACT return skb->tc_at_ingress; #else return false; #endif } static inline bool skb_skip_tc_classify(struct sk_buff *skb) { #ifdef CONFIG_NET_CLS_ACT if (skb->tc_skip_classify) { skb->tc_skip_classify = 0; return true; } #endif return false; } /* Reset all TX qdiscs greater than index of a device. */ static inline void qdisc_reset_all_tx_gt(struct net_device *dev, unsigned int i) { struct Qdisc *qdisc; for (; i < dev->num_tx_queues; i++) { qdisc = rtnl_dereference(netdev_get_tx_queue(dev, i)->qdisc); if (qdisc) { spin_lock_bh(qdisc_lock(qdisc)); qdisc_reset(qdisc); spin_unlock_bh(qdisc_lock(qdisc)); } } } /* Are all TX queues of the device empty? */ static inline bool qdisc_all_tx_empty(const struct net_device *dev) { unsigned int i; rcu_read_lock(); for (i = 0; i < dev->num_tx_queues; i++) { struct netdev_queue *txq = netdev_get_tx_queue(dev, i); const struct Qdisc *q = rcu_dereference(txq->qdisc); if (!qdisc_is_empty(q)) { rcu_read_unlock(); return false; } } rcu_read_unlock(); return true; } /* Are any of the TX qdiscs changing? */ static inline bool qdisc_tx_changing(const struct net_device *dev) { unsigned int i; for (i = 0; i < dev->num_tx_queues; i++) { struct netdev_queue *txq = netdev_get_tx_queue(dev, i); if (rcu_access_pointer(txq->qdisc) != txq->qdisc_sleeping) return true; } return false; } /* Is the device using the noop qdisc on all queues? */ static inline bool qdisc_tx_is_noop(const struct net_device *dev) { unsigned int i; for (i = 0; i < dev->num_tx_queues; i++) { struct netdev_queue *txq = netdev_get_tx_queue(dev, i); if (rcu_access_pointer(txq->qdisc) != &noop_qdisc) return false; } return true; } static inline unsigned int qdisc_pkt_len(const struct sk_buff *skb) { return qdisc_skb_cb(skb)->pkt_len; } /* additional qdisc xmit flags (NET_XMIT_MASK in linux/netdevice.h) */ enum net_xmit_qdisc_t { __NET_XMIT_STOLEN = 0x00010000, __NET_XMIT_BYPASS = 0x00020000, }; #ifdef CONFIG_NET_CLS_ACT #define net_xmit_drop_count(e) ((e) & __NET_XMIT_STOLEN ? 0 : 1) #else #define net_xmit_drop_count(e) (1) #endif static inline void qdisc_calculate_pkt_len(struct sk_buff *skb, const struct Qdisc *sch) { #ifdef CONFIG_NET_SCHED struct qdisc_size_table *stab = rcu_dereference_bh(sch->stab); if (stab) __qdisc_calculate_pkt_len(skb, stab); #endif } static inline int qdisc_enqueue(struct sk_buff *skb, struct Qdisc *sch, struct sk_buff **to_free) { qdisc_calculate_pkt_len(skb, sch); return sch->enqueue(skb, sch, to_free); } static inline void _bstats_update(struct gnet_stats_basic_packed *bstats, __u64 bytes, __u32 packets) { bstats->bytes += bytes; bstats->packets += packets; } static inline void bstats_update(struct gnet_stats_basic_packed *bstats, const struct sk_buff *skb) { _bstats_update(bstats, qdisc_pkt_len(skb), skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 1); } static inline void _bstats_cpu_update(struct gnet_stats_basic_cpu *bstats, __u64 bytes, __u32 packets) { u64_stats_update_begin(&bstats->syncp); _bstats_update(&bstats->bstats, bytes, packets); u64_stats_update_end(&bstats->syncp); } static inline void bstats_cpu_update(struct gnet_stats_basic_cpu *bstats, const struct sk_buff *skb) { u64_stats_update_begin(&bstats->syncp); bstats_update(&bstats->bstats, skb); u64_stats_update_end(&bstats->syncp); } static inline void qdisc_bstats_cpu_update(struct Qdisc *sch, const struct sk_buff *skb) { bstats_cpu_update(this_cpu_ptr(sch->cpu_bstats), skb); } static inline void qdisc_bstats_update(struct Qdisc *sch, const struct sk_buff *skb) { bstats_update(&sch->bstats, skb); } static inline void qdisc_qstats_backlog_dec(struct Qdisc *sch, const struct sk_buff *skb) { sch->qstats.backlog -= qdisc_pkt_len(skb); } static inline void qdisc_qstats_cpu_backlog_dec(struct Qdisc *sch, const struct sk_buff *skb) { this_cpu_sub(sch->cpu_qstats->backlog, qdisc_pkt_len(skb)); } static inline void qdisc_qstats_backlog_inc(struct Qdisc *sch, const struct sk_buff *skb) { sch->qstats.backlog += qdisc_pkt_len(skb); } static inline void qdisc_qstats_cpu_backlog_inc(struct Qdisc *sch, const struct sk_buff *skb) { this_cpu_add(sch->cpu_qstats->backlog, qdisc_pkt_len(skb)); } static inline void qdisc_qstats_cpu_qlen_inc(struct Qdisc *sch) { this_cpu_inc(sch->cpu_qstats->qlen); } static inline void qdisc_qstats_cpu_qlen_dec(struct Qdisc *sch) { this_cpu_dec(sch->cpu_qstats->qlen); } static inline void qdisc_qstats_cpu_requeues_inc(struct Qdisc *sch) { this_cpu_inc(sch->cpu_qstats->requeues); } static inline void __qdisc_qstats_drop(struct Qdisc *sch, int count) { sch->qstats.drops += count; } static inline void qstats_drop_inc(struct gnet_stats_queue *qstats) { qstats->drops++; } static inline void qstats_overlimit_inc(struct gnet_stats_queue *qstats) { qstats->overlimits++; } static inline void qdisc_qstats_drop(struct Qdisc *sch) { qstats_drop_inc(&sch->qstats); } static inline void qdisc_qstats_cpu_drop(struct Qdisc *sch) { this_cpu_inc(sch->cpu_qstats->drops); } static inline void qdisc_qstats_overlimit(struct Qdisc *sch) { sch->qstats.overlimits++; } static inline int qdisc_qstats_copy(struct gnet_dump *d, struct Qdisc *sch) { __u32 qlen = qdisc_qlen_sum(sch); return gnet_stats_copy_queue(d, sch->cpu_qstats, &sch->qstats, qlen); } static inline void qdisc_qstats_qlen_backlog(struct Qdisc *sch, __u32 *qlen, __u32 *backlog) { struct gnet_stats_queue qstats = { 0 }; __u32 len = qdisc_qlen_sum(sch); __gnet_stats_copy_queue(&qstats, sch->cpu_qstats, &sch->qstats, len); *qlen = qstats.qlen; *backlog = qstats.backlog; } static inline void qdisc_tree_flush_backlog(struct Qdisc *sch) { __u32 qlen, backlog; qdisc_qstats_qlen_backlog(sch, &qlen, &backlog); qdisc_tree_reduce_backlog(sch, qlen, backlog); } static inline void qdisc_purge_queue(struct Qdisc *sch) { __u32 qlen, backlog; qdisc_qstats_qlen_backlog(sch, &qlen, &backlog); qdisc_reset(sch); qdisc_tree_reduce_backlog(sch, qlen, backlog); } static inline void qdisc_skb_head_init(struct qdisc_skb_head *qh) { qh->head = NULL; qh->tail = NULL; qh->qlen = 0; } static inline void __qdisc_enqueue_tail(struct sk_buff *skb, struct qdisc_skb_head *qh) { struct sk_buff *last = qh->tail; if (last) { skb->next = NULL; last->next = skb; qh->tail = skb; } else { qh->tail = skb; qh->head = skb; } qh->qlen++; } static inline int qdisc_enqueue_tail(struct sk_buff *skb, struct Qdisc *sch) { __qdisc_enqueue_tail(skb, &sch->q); qdisc_qstats_backlog_inc(sch, skb); return NET_XMIT_SUCCESS; } static inline void __qdisc_enqueue_head(struct sk_buff *skb, struct qdisc_skb_head *qh) { skb->next = qh->head; if (!qh->head) qh->tail = skb; qh->head = skb; qh->qlen++; } static inline struct sk_buff *__qdisc_dequeue_head(struct qdisc_skb_head *qh) { struct sk_buff *skb = qh->head; if (likely(skb != NULL)) { qh->head = skb->next; qh->qlen--; if (qh->head == NULL) qh->tail = NULL; skb->next = NULL; } return skb; } static inline struct sk_buff *qdisc_dequeue_head(struct Qdisc *sch) { struct sk_buff *skb = __qdisc_dequeue_head(&sch->q); if (likely(skb != NULL)) { qdisc_qstats_backlog_dec(sch, skb); qdisc_bstats_update(sch, skb); } return skb; } /* Instead of calling kfree_skb() while root qdisc lock is held, * queue the skb for future freeing at end of __dev_xmit_skb() */ static inline void __qdisc_drop(struct sk_buff *skb, struct sk_buff **to_free) { skb->next = *to_free; *to_free = skb; } static inline void __qdisc_drop_all(struct sk_buff *skb, struct sk_buff **to_free) { if (skb->prev) skb->prev->next = *to_free; else skb->next = *to_free; *to_free = skb; } static inline unsigned int __qdisc_queue_drop_head(struct Qdisc *sch, struct qdisc_skb_head *qh, struct sk_buff **to_free) { struct sk_buff *skb = __qdisc_dequeue_head(qh); if (likely(skb != NULL)) { unsigned int len = qdisc_pkt_len(skb); qdisc_qstats_backlog_dec(sch, skb); __qdisc_drop(skb, to_free); return len; } return 0; } static inline struct sk_buff *qdisc_peek_head(struct Qdisc *sch) { const struct qdisc_skb_head *qh = &sch->q; return qh->head; } /* generic pseudo peek method for non-work-conserving qdisc */ static inline struct sk_buff *qdisc_peek_dequeued(struct Qdisc *sch) { struct sk_buff *skb = skb_peek(&sch->gso_skb); /* we can reuse ->gso_skb because peek isn't called for root qdiscs */ if (!skb) { skb = sch->dequeue(sch); if (skb) { __skb_queue_head(&sch->gso_skb, skb); /* it's still part of the queue */ qdisc_qstats_backlog_inc(sch, skb); sch->q.qlen++; } } return skb; } static inline void qdisc_update_stats_at_dequeue(struct Qdisc *sch, struct sk_buff *skb) { if (qdisc_is_percpu_stats(sch)) { qdisc_qstats_cpu_backlog_dec(sch, skb); qdisc_bstats_cpu_update(sch, skb); qdisc_qstats_cpu_qlen_dec(sch); } else { qdisc_qstats_backlog_dec(sch, skb); qdisc_bstats_update(sch, skb); sch->q.qlen--; } } static inline void qdisc_update_stats_at_enqueue(struct Qdisc *sch, unsigned int pkt_len) { if (qdisc_is_percpu_stats(sch)) { qdisc_qstats_cpu_qlen_inc(sch); this_cpu_add(sch->cpu_qstats->backlog, pkt_len); } else { sch->qstats.backlog += pkt_len; sch->q.qlen++; } } /* use instead of qdisc->dequeue() for all qdiscs queried with ->peek() */ static inline struct sk_buff *qdisc_dequeue_peeked(struct Qdisc *sch) { struct sk_buff *skb = skb_peek(&sch->gso_skb); if (skb) { skb = __skb_dequeue(&sch->gso_skb); if (qdisc_is_percpu_stats(sch)) { qdisc_qstats_cpu_backlog_dec(sch, skb); qdisc_qstats_cpu_qlen_dec(sch); } else { qdisc_qstats_backlog_dec(sch, skb); sch->q.qlen--; } } else { skb = sch->dequeue(sch); } return skb; } static inline void __qdisc_reset_queue(struct qdisc_skb_head *qh) { /* * We do not know the backlog in bytes of this list, it * is up to the caller to correct it */ ASSERT_RTNL(); if (qh->qlen) { rtnl_kfree_skbs(qh->head, qh->tail); qh->head = NULL; qh->tail = NULL; qh->qlen = 0; } } static inline void qdisc_reset_queue(struct Qdisc *sch) { __qdisc_reset_queue(&sch->q); sch->qstats.backlog = 0; } static inline struct Qdisc *qdisc_replace(struct Qdisc *sch, struct Qdisc *new, struct Qdisc **pold) { struct Qdisc *old; sch_tree_lock(sch); old = *pold; *pold = new; if (old != NULL) qdisc_purge_queue(old); sch_tree_unlock(sch); return old; } static inline void rtnl_qdisc_drop(struct sk_buff *skb, struct Qdisc *sch) { rtnl_kfree_skbs(skb, skb); qdisc_qstats_drop(sch); } static inline int qdisc_drop_cpu(struct sk_buff *skb, struct Qdisc *sch, struct sk_buff **to_free) { __qdisc_drop(skb, to_free); qdisc_qstats_cpu_drop(sch); return NET_XMIT_DROP; } static inline int qdisc_drop(struct sk_buff *skb, struct Qdisc *sch, struct sk_buff **to_free) { __qdisc_drop(skb, to_free); qdisc_qstats_drop(sch); return NET_XMIT_DROP; } static inline int qdisc_drop_all(struct sk_buff *skb, struct Qdisc *sch, struct sk_buff **to_free) { __qdisc_drop_all(skb, to_free); qdisc_qstats_drop(sch); return NET_XMIT_DROP; } /* Length to Time (L2T) lookup in a qdisc_rate_table, to determine how long it will take to send a packet given its size. */ static inline u32 qdisc_l2t(struct qdisc_rate_table* rtab, unsigned int pktlen) { int slot = pktlen + rtab->rate.cell_align + rtab->rate.overhead; if (slot < 0) slot = 0; slot >>= rtab->rate.cell_log; if (slot > 255) return rtab->data[255]*(slot >> 8) + rtab->data[slot & 0xFF]; return rtab->data[slot]; } struct psched_ratecfg { u64 rate_bytes_ps; /* bytes per second */ u32 mult; u16 overhead; u8 linklayer; u8 shift; }; static inline u64 psched_l2t_ns(const struct psched_ratecfg *r, unsigned int len) { len += r->overhead; if (unlikely(r->linklayer == TC_LINKLAYER_ATM)) return ((u64)(DIV_ROUND_UP(len,48)*53) * r->mult) >> r->shift; return ((u64)len * r->mult) >> r->shift; } void psched_ratecfg_precompute(struct psched_ratecfg *r, const struct tc_ratespec *conf, u64 rate64); static inline void psched_ratecfg_getrate(struct tc_ratespec *res, const struct psched_ratecfg *r) { memset(res, 0, sizeof(*res)); /* legacy struct tc_ratespec has a 32bit @rate field * Qdisc using 64bit rate should add new attributes * in order to maintain compatibility. */ res->rate = min_t(u64, r->rate_bytes_ps, ~0U); res->overhead = r->overhead; res->linklayer = (r->linklayer & TC_LINKLAYER_MASK); } /* Mini Qdisc serves for specific needs of ingress/clsact Qdisc. * The fast path only needs to access filter list and to update stats */ struct mini_Qdisc { struct tcf_proto *filter_list; struct tcf_block *block; struct gnet_stats_basic_cpu __percpu *cpu_bstats; struct gnet_stats_queue __percpu *cpu_qstats; struct rcu_head rcu; }; static inline void mini_qdisc_bstats_cpu_update(struct mini_Qdisc *miniq, const struct sk_buff *skb) { bstats_cpu_update(this_cpu_ptr(miniq->cpu_bstats), skb); } static inline void mini_qdisc_qstats_cpu_drop(struct mini_Qdisc *miniq) { this_cpu_inc(miniq->cpu_qstats->drops); } struct mini_Qdisc_pair { struct mini_Qdisc miniq1; struct mini_Qdisc miniq2; struct mini_Qdisc __rcu **p_miniq; }; void mini_qdisc_pair_swap(struct mini_Qdisc_pair *miniqp, struct tcf_proto *tp_head); void mini_qdisc_pair_init(struct mini_Qdisc_pair *miniqp, struct Qdisc *qdisc, struct mini_Qdisc __rcu **p_miniq); void mini_qdisc_pair_block_init(struct mini_Qdisc_pair *miniqp, struct tcf_block *block); static inline int skb_tc_reinsert(struct sk_buff *skb, struct tcf_result *res) { return res->ingress ? netif_receive_skb(skb) : dev_queue_xmit(skb); } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 /* SPDX-License-Identifier: GPL-2.0 */ /* * Definitions for diskquota-operations. When diskquota is configured these * macros expand to the right source-code. * * Author: Marco van Wieringen <mvw@planets.elm.net> */ #ifndef _LINUX_QUOTAOPS_ #define _LINUX_QUOTAOPS_ #include <linux/fs.h> #define DQUOT_SPACE_WARN 0x1 #define DQUOT_SPACE_RESERVE 0x2 #define DQUOT_SPACE_NOFAIL 0x4 static inline struct quota_info *sb_dqopt(struct super_block *sb) { return &sb->s_dquot; } /* i_mutex must being held */ static inline bool is_quota_modification(struct inode *inode, struct iattr *ia) { return (ia->ia_valid & ATTR_SIZE) || (ia->ia_valid & ATTR_UID && !uid_eq(ia->ia_uid, inode->i_uid)) || (ia->ia_valid & ATTR_GID && !gid_eq(ia->ia_gid, inode->i_gid)); } #if defined(CONFIG_QUOTA) #define quota_error(sb, fmt, args...) \ __quota_error((sb), __func__, fmt , ## args) extern __printf(3, 4) void __quota_error(struct super_block *sb, const char *func, const char *fmt, ...); /* * declaration of quota_function calls in kernel. */ int dquot_initialize(struct inode *inode); bool dquot_initialize_needed(struct inode *inode); void dquot_drop(struct inode *inode); struct dquot *dqget(struct super_block *sb, struct kqid qid); static inline struct dquot *dqgrab(struct dquot *dquot) { /* Make sure someone else has active reference to dquot */ WARN_ON_ONCE(!atomic_read(&dquot->dq_count)); WARN_ON_ONCE(!test_bit(DQ_ACTIVE_B, &dquot->dq_flags)); atomic_inc(&dquot->dq_count); return dquot; } static inline bool dquot_is_busy(struct dquot *dquot) { if (test_bit(DQ_MOD_B, &dquot->dq_flags)) return true; if (atomic_read(&dquot->dq_count) > 1) return true; return false; } void dqput(struct dquot *dquot); int dquot_scan_active(struct super_block *sb, int (*fn)(struct dquot *dquot, unsigned long priv), unsigned long priv); struct dquot *dquot_alloc(struct super_block *sb, int type); void dquot_destroy(struct dquot *dquot); int __dquot_alloc_space(struct inode *inode, qsize_t number, int flags); void __dquot_free_space(struct inode *inode, qsize_t number, int flags); int dquot_alloc_inode(struct inode *inode); int dquot_claim_space_nodirty(struct inode *inode, qsize_t number); void dquot_free_inode(struct inode *inode); void dquot_reclaim_space_nodirty(struct inode *inode, qsize_t number); int dquot_disable(struct super_block *sb, int type, unsigned int flags); /* Suspend quotas on remount RO */ static inline int dquot_suspend(struct super_block *sb, int type) { return dquot_disable(sb, type, DQUOT_SUSPENDED); } int dquot_resume(struct super_block *sb, int type); int dquot_commit(struct dquot *dquot); int dquot_acquire(struct dquot *dquot); int dquot_release(struct dquot *dquot); int dquot_commit_info(struct super_block *sb, int type); int dquot_get_next_id(struct super_block *sb, struct kqid *qid); int dquot_mark_dquot_dirty(struct dquot *dquot); int dquot_file_open(struct inode *inode, struct file *file); int dquot_load_quota_sb(struct super_block *sb, int type, int format_id, unsigned int flags); int dquot_load_quota_inode(struct inode *inode, int type, int format_id, unsigned int flags); int dquot_quota_on(struct super_block *sb, int type, int format_id, const struct path *path); int dquot_quota_on_mount(struct super_block *sb, char *qf_name, int format_id, int type); int dquot_quota_off(struct super_block *sb, int type); int dquot_writeback_dquots(struct super_block *sb, int type); int dquot_quota_sync(struct super_block *sb, int type); int dquot_get_state(struct super_block *sb, struct qc_state *state); int dquot_set_dqinfo(struct super_block *sb, int type, struct qc_info *ii); int dquot_get_dqblk(struct super_block *sb, struct kqid id, struct qc_dqblk *di); int dquot_get_next_dqblk(struct super_block *sb, struct kqid *id, struct qc_dqblk *di); int dquot_set_dqblk(struct super_block *sb, struct kqid id, struct qc_dqblk *di); int __dquot_transfer(struct inode *inode, struct dquot **transfer_to); int dquot_transfer(struct inode *inode, struct iattr *iattr); static inline struct mem_dqinfo *sb_dqinfo(struct super_block *sb, int type) { return sb_dqopt(sb)->info + type; } /* * Functions for checking status of quota */ static inline bool sb_has_quota_usage_enabled(struct super_block *sb, int type) { return sb_dqopt(sb)->flags & dquot_state_flag(DQUOT_USAGE_ENABLED, type); } static inline bool sb_has_quota_limits_enabled(struct super_block *sb, int type) { return sb_dqopt(sb)->flags & dquot_state_flag(DQUOT_LIMITS_ENABLED, type); } static inline bool sb_has_quota_suspended(struct super_block *sb, int type) { return sb_dqopt(sb)->flags & dquot_state_flag(DQUOT_SUSPENDED, type); } static inline unsigned sb_any_quota_suspended(struct super_block *sb) { return dquot_state_types(sb_dqopt(sb)->flags, DQUOT_SUSPENDED); } /* Does kernel know about any quota information for given sb + type? */ static inline bool sb_has_quota_loaded(struct super_block *sb, int type) { /* Currently if anything is on, then quota usage is on as well */ return sb_has_quota_usage_enabled(sb, type); } static inline unsigned sb_any_quota_loaded(struct super_block *sb) { return dquot_state_types(sb_dqopt(sb)->flags, DQUOT_USAGE_ENABLED); } static inline bool sb_has_quota_active(struct super_block *sb, int type) { return sb_has_quota_loaded(sb, type) && !sb_has_quota_suspended(sb, type); } /* * Operations supported for diskquotas. */ extern const struct dquot_operations dquot_operations; extern const struct quotactl_ops dquot_quotactl_sysfile_ops; #else static inline int sb_has_quota_usage_enabled(struct super_block *sb, int type) { return 0; } static inline int sb_has_quota_limits_enabled(struct super_block *sb, int type) { return 0; } static inline int sb_has_quota_suspended(struct super_block *sb, int type) { return 0; } static inline int sb_any_quota_suspended(struct super_block *sb) { return 0; } /* Does kernel know about any quota information for given sb + type? */ static inline int sb_has_quota_loaded(struct super_block *sb, int type) { return 0; } static inline int sb_any_quota_loaded(struct super_block *sb) { return 0; } static inline int sb_has_quota_active(struct super_block *sb, int type) { return 0; } static inline int dquot_initialize(struct inode *inode) { return 0; } static inline bool dquot_initialize_needed(struct inode *inode) { return false; } static inline void dquot_drop(struct inode *inode) { } static inline int dquot_alloc_inode(struct inode *inode) { return 0; } static inline void dquot_free_inode(struct inode *inode) { } static inline int dquot_transfer(struct inode *inode, struct iattr *iattr) { return 0; } static inline int __dquot_alloc_space(struct inode *inode, qsize_t number, int flags) { if (!(flags & DQUOT_SPACE_RESERVE)) inode_add_bytes(inode, number); return 0; } static inline void __dquot_free_space(struct inode *inode, qsize_t number, int flags) { if (!(flags & DQUOT_SPACE_RESERVE)) inode_sub_bytes(inode, number); } static inline int dquot_claim_space_nodirty(struct inode *inode, qsize_t number) { inode_add_bytes(inode, number); return 0; } static inline int dquot_reclaim_space_nodirty(struct inode *inode, qsize_t number) { inode_sub_bytes(inode, number); return 0; } static inline int dquot_disable(struct super_block *sb, int type, unsigned int flags) { return 0; } static inline int dquot_suspend(struct super_block *sb, int type) { return 0; } static inline int dquot_resume(struct super_block *sb, int type) { return 0; } #define dquot_file_open generic_file_open static inline int dquot_writeback_dquots(struct super_block *sb, int type) { return 0; } #endif /* CONFIG_QUOTA */ static inline int dquot_alloc_space_nodirty(struct inode *inode, qsize_t nr) { return __dquot_alloc_space(inode, nr, DQUOT_SPACE_WARN); } static inline void dquot_alloc_space_nofail(struct inode *inode, qsize_t nr) { __dquot_alloc_space(inode, nr, DQUOT_SPACE_WARN|DQUOT_SPACE_NOFAIL); mark_inode_dirty_sync(inode); } static inline int dquot_alloc_space(struct inode *inode, qsize_t nr) { int ret; ret = dquot_alloc_space_nodirty(inode, nr); if (!ret) { /* * Mark inode fully dirty. Since we are allocating blocks, inode * would become fully dirty soon anyway and it reportedly * reduces lock contention. */ mark_inode_dirty(inode); } return ret; } static inline int dquot_alloc_block_nodirty(struct inode *inode, qsize_t nr) { return dquot_alloc_space_nodirty(inode, nr << inode->i_blkbits); } static inline void dquot_alloc_block_nofail(struct inode *inode, qsize_t nr) { dquot_alloc_space_nofail(inode, nr << inode->i_blkbits); } static inline int dquot_alloc_block(struct inode *inode, qsize_t nr) { return dquot_alloc_space(inode, nr << inode->i_blkbits); } static inline int dquot_prealloc_block_nodirty(struct inode *inode, qsize_t nr) { return __dquot_alloc_space(inode, nr << inode->i_blkbits, 0); } static inline int dquot_prealloc_block(struct inode *inode, qsize_t nr) { int ret; ret = dquot_prealloc_block_nodirty(inode, nr); if (!ret) mark_inode_dirty_sync(inode); return ret; } static inline int dquot_reserve_block(struct inode *inode, qsize_t nr) { return __dquot_alloc_space(inode, nr << inode->i_blkbits, DQUOT_SPACE_WARN|DQUOT_SPACE_RESERVE); } static inline int dquot_claim_block(struct inode *inode, qsize_t nr) { int ret; ret = dquot_claim_space_nodirty(inode, nr << inode->i_blkbits); if (!ret) mark_inode_dirty_sync(inode); return ret; } static inline void dquot_reclaim_block(struct inode *inode, qsize_t nr) { dquot_reclaim_space_nodirty(inode, nr << inode->i_blkbits); mark_inode_dirty_sync(inode); } static inline void dquot_free_space_nodirty(struct inode *inode, qsize_t nr) { __dquot_free_space(inode, nr, 0); } static inline void dquot_free_space(struct inode *inode, qsize_t nr) { dquot_free_space_nodirty(inode, nr); mark_inode_dirty_sync(inode); } static inline void dquot_free_block_nodirty(struct inode *inode, qsize_t nr) { dquot_free_space_nodirty(inode, nr << inode->i_blkbits); } static inline void dquot_free_block(struct inode *inode, qsize_t nr) { dquot_free_space(inode, nr << inode->i_blkbits); } static inline void dquot_release_reservation_block(struct inode *inode, qsize_t nr) { __dquot_free_space(inode, nr << inode->i_blkbits, DQUOT_SPACE_RESERVE); } unsigned int qtype_enforce_flag(int type); #endif /* _LINUX_QUOTAOPS_ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 /* SPDX-License-Identifier: GPL-2.0 */ /* * Definitions and Declarations for tuple. * * 16 Dec 2003: Yasuyuki Kozakai @USAGI <yasuyuki.kozakai@toshiba.co.jp> * - generalize L3 protocol dependent part. * * Derived from include/linux/netfiter_ipv4/ip_conntrack_tuple.h */ #ifndef _NF_CONNTRACK_TUPLE_H #define _NF_CONNTRACK_TUPLE_H #include <linux/netfilter/x_tables.h> #include <linux/netfilter/nf_conntrack_tuple_common.h> #include <linux/list_nulls.h> /* A `tuple' is a structure containing the information to uniquely identify a connection. ie. if two packets have the same tuple, they are in the same connection; if not, they are not. We divide the structure along "manipulatable" and "non-manipulatable" lines, for the benefit of the NAT code. */ #define NF_CT_TUPLE_L3SIZE ARRAY_SIZE(((union nf_inet_addr *)NULL)->all) /* The manipulable part of the tuple. */ struct nf_conntrack_man { union nf_inet_addr u3; union nf_conntrack_man_proto u; /* Layer 3 protocol */ u_int16_t l3num; }; /* This contains the information to distinguish a connection. */ struct nf_conntrack_tuple { struct nf_conntrack_man src; /* These are the parts of the tuple which are fixed. */ struct { union nf_inet_addr u3; union { /* Add other protocols here. */ __be16 all; struct { __be16 port; } tcp; struct { __be16 port; } udp; struct { u_int8_t type, code; } icmp; struct { __be16 port; } dccp; struct { __be16 port; } sctp; struct { __be16 key; } gre; } u; /* The protocol. */ u_int8_t protonum; /* The direction (for tuplehash) */ u_int8_t dir; } dst; }; struct nf_conntrack_tuple_mask { struct { union nf_inet_addr u3; union nf_conntrack_man_proto u; } src; }; static inline void nf_ct_dump_tuple_ip(const struct nf_conntrack_tuple *t) { #ifdef DEBUG printk("tuple %p: %u %pI4:%hu -> %pI4:%hu\n", t, t->dst.protonum, &t->src.u3.ip, ntohs(t->src.u.all), &t->dst.u3.ip, ntohs(t->dst.u.all)); #endif } static inline void nf_ct_dump_tuple_ipv6(const struct nf_conntrack_tuple *t) { #ifdef DEBUG printk("tuple %p: %u %pI6 %hu -> %pI6 %hu\n", t, t->dst.protonum, t->src.u3.all, ntohs(t->src.u.all), t->dst.u3.all, ntohs(t->dst.u.all)); #endif } static inline void nf_ct_dump_tuple(const struct nf_conntrack_tuple *t) { switch (t->src.l3num) { case AF_INET: nf_ct_dump_tuple_ip(t); break; case AF_INET6: nf_ct_dump_tuple_ipv6(t); break; } } /* If we're the first tuple, it's the original dir. */ #define NF_CT_DIRECTION(h) \ ((enum ip_conntrack_dir)(h)->tuple.dst.dir) /* Connections have two entries in the hash table: one for each way */ struct nf_conntrack_tuple_hash { struct hlist_nulls_node hnnode; struct nf_conntrack_tuple tuple; }; static inline bool __nf_ct_tuple_src_equal(const struct nf_conntrack_tuple *t1, const struct nf_conntrack_tuple *t2) { return (nf_inet_addr_cmp(&t1->src.u3, &t2->src.u3) && t1->src.u.all == t2->src.u.all && t1->src.l3num == t2->src.l3num); } static inline bool __nf_ct_tuple_dst_equal(const struct nf_conntrack_tuple *t1, const struct nf_conntrack_tuple *t2) { return (nf_inet_addr_cmp(&t1->dst.u3, &t2->dst.u3) && t1->dst.u.all == t2->dst.u.all && t1->dst.protonum == t2->dst.protonum); } static inline bool nf_ct_tuple_equal(const struct nf_conntrack_tuple *t1, const struct nf_conntrack_tuple *t2) { return __nf_ct_tuple_src_equal(t1, t2) && __nf_ct_tuple_dst_equal(t1, t2); } static inline bool nf_ct_tuple_mask_equal(const struct nf_conntrack_tuple_mask *m1, const struct nf_conntrack_tuple_mask *m2) { return (nf_inet_addr_cmp(&m1->src.u3, &m2->src.u3) && m1->src.u.all == m2->src.u.all); } static inline bool nf_ct_tuple_src_mask_cmp(const struct nf_conntrack_tuple *t1, const struct nf_conntrack_tuple *t2, const struct nf_conntrack_tuple_mask *mask) { int count; for (count = 0; count < NF_CT_TUPLE_L3SIZE; count++) { if ((t1->src.u3.all[count] ^ t2->src.u3.all[count]) & mask->src.u3.all[count]) return false; } if ((t1->src.u.all ^ t2->src.u.all) & mask->src.u.all) return false; if (t1->src.l3num != t2->src.l3num || t1->dst.protonum != t2->dst.protonum) return false; return true; } static inline bool nf_ct_tuple_mask_cmp(const struct nf_conntrack_tuple *t, const struct nf_conntrack_tuple *tuple, const struct nf_conntrack_tuple_mask *mask) { return nf_ct_tuple_src_mask_cmp(t, tuple, mask) && __nf_ct_tuple_dst_equal(t, tuple); } #endif /* _NF_CONNTRACK_TUPLE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * inet6 interface/address list definitions * Linux INET6 implementation * * Authors: * Pedro Roque <roque@di.fc.ul.pt> */ #ifndef _NET_IF_INET6_H #define _NET_IF_INET6_H #include <net/snmp.h> #include <linux/ipv6.h> #include <linux/refcount.h> /* inet6_dev.if_flags */ #define IF_RA_OTHERCONF 0x80 #define IF_RA_MANAGED 0x40 #define IF_RA_RCVD 0x20 #define IF_RS_SENT 0x10 #define IF_READY 0x80000000 /* prefix flags */ #define IF_PREFIX_ONLINK 0x01 #define IF_PREFIX_AUTOCONF 0x02 enum { INET6_IFADDR_STATE_PREDAD, INET6_IFADDR_STATE_DAD, INET6_IFADDR_STATE_POSTDAD, INET6_IFADDR_STATE_ERRDAD, INET6_IFADDR_STATE_DEAD, }; struct inet6_ifaddr { struct in6_addr addr; __u32 prefix_len; __u32 rt_priority; /* In seconds, relative to tstamp. Expiry is at tstamp + HZ * lft. */ __u32 valid_lft; __u32 prefered_lft; refcount_t refcnt; spinlock_t lock; int state; __u32 flags; __u8 dad_probes; __u8 stable_privacy_retry; __u16 scope; __u64 dad_nonce; unsigned long cstamp; /* created timestamp */ unsigned long tstamp; /* updated timestamp */ struct delayed_work dad_work; struct inet6_dev *idev; struct fib6_info *rt; struct hlist_node addr_lst; struct list_head if_list; struct list_head tmp_list; struct inet6_ifaddr *ifpub; int regen_count; bool tokenized; struct rcu_head rcu; struct in6_addr peer_addr; }; struct ip6_sf_socklist { unsigned int sl_max; unsigned int sl_count; struct in6_addr sl_addr[]; }; #define IP6_SFLSIZE(count) (sizeof(struct ip6_sf_socklist) + \ (count) * sizeof(struct in6_addr)) #define IP6_SFBLOCK 10 /* allocate this many at once */ struct ipv6_mc_socklist { struct in6_addr addr; int ifindex; unsigned int sfmode; /* MCAST_{INCLUDE,EXCLUDE} */ struct ipv6_mc_socklist __rcu *next; rwlock_t sflock; struct ip6_sf_socklist *sflist; struct rcu_head rcu; }; struct ip6_sf_list { struct ip6_sf_list *sf_next; struct in6_addr sf_addr; unsigned long sf_count[2]; /* include/exclude counts */ unsigned char sf_gsresp; /* include in g & s response? */ unsigned char sf_oldin; /* change state */ unsigned char sf_crcount; /* retrans. left to send */ }; #define MAF_TIMER_RUNNING 0x01 #define MAF_LAST_REPORTER 0x02 #define MAF_LOADED 0x04 #define MAF_NOREPORT 0x08 #define MAF_GSQUERY 0x10 struct ifmcaddr6 { struct in6_addr mca_addr; struct inet6_dev *idev; struct ifmcaddr6 *next; struct ip6_sf_list *mca_sources; struct ip6_sf_list *mca_tomb; unsigned int mca_sfmode; unsigned char mca_crcount; unsigned long mca_sfcount[2]; struct timer_list mca_timer; unsigned int mca_flags; int mca_users; refcount_t mca_refcnt; spinlock_t mca_lock; unsigned long mca_cstamp; unsigned long mca_tstamp; }; /* Anycast stuff */ struct ipv6_ac_socklist { struct in6_addr acl_addr; int acl_ifindex; struct ipv6_ac_socklist *acl_next; }; struct ifacaddr6 { struct in6_addr aca_addr; struct fib6_info *aca_rt; struct ifacaddr6 *aca_next; struct hlist_node aca_addr_lst; int aca_users; refcount_t aca_refcnt; unsigned long aca_cstamp; unsigned long aca_tstamp; struct rcu_head rcu; }; #define IFA_HOST IPV6_ADDR_LOOPBACK #define IFA_LINK IPV6_ADDR_LINKLOCAL #define IFA_SITE IPV6_ADDR_SITELOCAL struct ipv6_devstat { struct proc_dir_entry *proc_dir_entry; DEFINE_SNMP_STAT(struct ipstats_mib, ipv6); DEFINE_SNMP_STAT_ATOMIC(struct icmpv6_mib_device, icmpv6dev); DEFINE_SNMP_STAT_ATOMIC(struct icmpv6msg_mib_device, icmpv6msgdev); }; struct inet6_dev { struct net_device *dev; struct list_head addr_list; struct ifmcaddr6 *mc_list; struct ifmcaddr6 *mc_tomb; spinlock_t mc_lock; unsigned char mc_qrv; /* Query Robustness Variable */ unsigned char mc_gq_running; unsigned char mc_ifc_count; unsigned char mc_dad_count; unsigned long mc_v1_seen; /* Max time we stay in MLDv1 mode */ unsigned long mc_qi; /* Query Interval */ unsigned long mc_qri; /* Query Response Interval */ unsigned long mc_maxdelay; struct timer_list mc_gq_timer; /* general query timer */ struct timer_list mc_ifc_timer; /* interface change timer */ struct timer_list mc_dad_timer; /* dad complete mc timer */ struct ifacaddr6 *ac_list; rwlock_t lock; refcount_t refcnt; __u32 if_flags; int dead; u32 desync_factor; struct list_head tempaddr_list; struct in6_addr token; struct neigh_parms *nd_parms; struct ipv6_devconf cnf; struct ipv6_devstat stats; struct timer_list rs_timer; __s32 rs_interval; /* in jiffies */ __u8 rs_probes; unsigned long tstamp; /* ipv6InterfaceTable update timestamp */ struct rcu_head rcu; }; static inline void ipv6_eth_mc_map(const struct in6_addr *addr, char *buf) { /* * +-------+-------+-------+-------+-------+-------+ * | 33 | 33 | DST13 | DST14 | DST15 | DST16 | * +-------+-------+-------+-------+-------+-------+ */ buf[0]= 0x33; buf[1]= 0x33; memcpy(buf + 2, &addr->s6_addr32[3], sizeof(__u32)); } static inline void ipv6_arcnet_mc_map(const struct in6_addr *addr, char *buf) { buf[0] = 0x00; } static inline void ipv6_ib_mc_map(const struct in6_addr *addr, const unsigned char *broadcast, char *buf) { unsigned char scope = broadcast[5] & 0xF; buf[0] = 0; /* Reserved */ buf[1] = 0xff; /* Multicast QPN */ buf[2] = 0xff; buf[3] = 0xff; buf[4] = 0xff; buf[5] = 0x10 | scope; /* scope from broadcast address */ buf[6] = 0x60; /* IPv6 signature */ buf[7] = 0x1b; buf[8] = broadcast[8]; /* P_Key */ buf[9] = broadcast[9]; memcpy(buf + 10, addr->s6_addr + 6, 10); } static inline int ipv6_ipgre_mc_map(const struct in6_addr *addr, const unsigned char *broadcast, char *buf) { if ((broadcast[0] | broadcast[1] | broadcast[2] | broadcast[3]) != 0) { memcpy(buf, broadcast, 4); } else { /* v4mapped? */ if ((addr->s6_addr32[0] | addr->s6_addr32[1] | (addr->s6_addr32[2] ^ htonl(0x0000ffff))) != 0) return -EINVAL; memcpy(buf, &addr->s6_addr32[3], 4); } return 0; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM writeback #if !defined(_TRACE_WRITEBACK_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_WRITEBACK_H #include <linux/tracepoint.h> #include <linux/backing-dev.h> #include <linux/writeback.h> #define show_inode_state(state) \ __print_flags(state, "|", \ {I_DIRTY_SYNC, "I_DIRTY_SYNC"}, \ {I_DIRTY_DATASYNC, "I_DIRTY_DATASYNC"}, \ {I_DIRTY_PAGES, "I_DIRTY_PAGES"}, \ {I_NEW, "I_NEW"}, \ {I_WILL_FREE, "I_WILL_FREE"}, \ {I_FREEING, "I_FREEING"}, \ {I_CLEAR, "I_CLEAR"}, \ {I_SYNC, "I_SYNC"}, \ {I_DIRTY_TIME, "I_DIRTY_TIME"}, \ {I_REFERENCED, "I_REFERENCED"} \ ) /* enums need to be exported to user space */ #undef EM #undef EMe #define EM(a,b) TRACE_DEFINE_ENUM(a); #define EMe(a,b) TRACE_DEFINE_ENUM(a); #define WB_WORK_REASON \ EM( WB_REASON_BACKGROUND, "background") \ EM( WB_REASON_VMSCAN, "vmscan") \ EM( WB_REASON_SYNC, "sync") \ EM( WB_REASON_PERIODIC, "periodic") \ EM( WB_REASON_LAPTOP_TIMER, "laptop_timer") \ EM( WB_REASON_FS_FREE_SPACE, "fs_free_space") \ EMe(WB_REASON_FORKER_THREAD, "forker_thread") WB_WORK_REASON /* * Now redefine the EM() and EMe() macros to map the enums to the strings * that will be printed in the output. */ #undef EM #undef EMe #define EM(a,b) { a, b }, #define EMe(a,b) { a, b } struct wb_writeback_work; DECLARE_EVENT_CLASS(writeback_page_template, TP_PROTO(struct page *page, struct address_space *mapping), TP_ARGS(page, mapping), TP_STRUCT__entry ( __array(char, name, 32) __field(ino_t, ino) __field(pgoff_t, index) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(mapping ? inode_to_bdi(mapping->host) : NULL), 32); __entry->ino = mapping ? mapping->host->i_ino : 0; __entry->index = page->index; ), TP_printk("bdi %s: ino=%lu index=%lu", __entry->name, (unsigned long)__entry->ino, __entry->index ) ); DEFINE_EVENT(writeback_page_template, writeback_dirty_page, TP_PROTO(struct page *page, struct address_space *mapping), TP_ARGS(page, mapping) ); DEFINE_EVENT(writeback_page_template, wait_on_page_writeback, TP_PROTO(struct page *page, struct address_space *mapping), TP_ARGS(page, mapping) ); DECLARE_EVENT_CLASS(writeback_dirty_inode_template, TP_PROTO(struct inode *inode, int flags), TP_ARGS(inode, flags), TP_STRUCT__entry ( __array(char, name, 32) __field(ino_t, ino) __field(unsigned long, state) __field(unsigned long, flags) ), TP_fast_assign( struct backing_dev_info *bdi = inode_to_bdi(inode); /* may be called for files on pseudo FSes w/ unregistered bdi */ strscpy_pad(__entry->name, bdi_dev_name(bdi), 32); __entry->ino = inode->i_ino; __entry->state = inode->i_state; __entry->flags = flags; ), TP_printk("bdi %s: ino=%lu state=%s flags=%s", __entry->name, (unsigned long)__entry->ino, show_inode_state(__entry->state), show_inode_state(__entry->flags) ) ); DEFINE_EVENT(writeback_dirty_inode_template, writeback_mark_inode_dirty, TP_PROTO(struct inode *inode, int flags), TP_ARGS(inode, flags) ); DEFINE_EVENT(writeback_dirty_inode_template, writeback_dirty_inode_start, TP_PROTO(struct inode *inode, int flags), TP_ARGS(inode, flags) ); DEFINE_EVENT(writeback_dirty_inode_template, writeback_dirty_inode, TP_PROTO(struct inode *inode, int flags), TP_ARGS(inode, flags) ); #ifdef CREATE_TRACE_POINTS #ifdef CONFIG_CGROUP_WRITEBACK static inline ino_t __trace_wb_assign_cgroup(struct bdi_writeback *wb) { return cgroup_ino(wb->memcg_css->cgroup); } static inline ino_t __trace_wbc_assign_cgroup(struct writeback_control *wbc) { if (wbc->wb) return __trace_wb_assign_cgroup(wbc->wb); else return 1; } #else /* CONFIG_CGROUP_WRITEBACK */ static inline ino_t __trace_wb_assign_cgroup(struct bdi_writeback *wb) { return 1; } static inline ino_t __trace_wbc_assign_cgroup(struct writeback_control *wbc) { return 1; } #endif /* CONFIG_CGROUP_WRITEBACK */ #endif /* CREATE_TRACE_POINTS */ #ifdef CONFIG_CGROUP_WRITEBACK TRACE_EVENT(inode_foreign_history, TP_PROTO(struct inode *inode, struct writeback_control *wbc, unsigned int history), TP_ARGS(inode, wbc, history), TP_STRUCT__entry( __array(char, name, 32) __field(ino_t, ino) __field(ino_t, cgroup_ino) __field(unsigned int, history) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(inode_to_bdi(inode)), 32); __entry->ino = inode->i_ino; __entry->cgroup_ino = __trace_wbc_assign_cgroup(wbc); __entry->history = history; ), TP_printk("bdi %s: ino=%lu cgroup_ino=%lu history=0x%x", __entry->name, (unsigned long)__entry->ino, (unsigned long)__entry->cgroup_ino, __entry->history ) ); TRACE_EVENT(inode_switch_wbs, TP_PROTO(struct inode *inode, struct bdi_writeback *old_wb, struct bdi_writeback *new_wb), TP_ARGS(inode, old_wb, new_wb), TP_STRUCT__entry( __array(char, name, 32) __field(ino_t, ino) __field(ino_t, old_cgroup_ino) __field(ino_t, new_cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(old_wb->bdi), 32); __entry->ino = inode->i_ino; __entry->old_cgroup_ino = __trace_wb_assign_cgroup(old_wb); __entry->new_cgroup_ino = __trace_wb_assign_cgroup(new_wb); ), TP_printk("bdi %s: ino=%lu old_cgroup_ino=%lu new_cgroup_ino=%lu", __entry->name, (unsigned long)__entry->ino, (unsigned long)__entry->old_cgroup_ino, (unsigned long)__entry->new_cgroup_ino ) ); TRACE_EVENT(track_foreign_dirty, TP_PROTO(struct page *page, struct bdi_writeback *wb), TP_ARGS(page, wb), TP_STRUCT__entry( __array(char, name, 32) __field(u64, bdi_id) __field(ino_t, ino) __field(unsigned int, memcg_id) __field(ino_t, cgroup_ino) __field(ino_t, page_cgroup_ino) ), TP_fast_assign( struct address_space *mapping = page_mapping(page); struct inode *inode = mapping ? mapping->host : NULL; strscpy_pad(__entry->name, bdi_dev_name(wb->bdi), 32); __entry->bdi_id = wb->bdi->id; __entry->ino = inode ? inode->i_ino : 0; __entry->memcg_id = wb->memcg_css->id; __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); __entry->page_cgroup_ino = cgroup_ino(page->mem_cgroup->css.cgroup); ), TP_printk("bdi %s[%llu]: ino=%lu memcg_id=%u cgroup_ino=%lu page_cgroup_ino=%lu", __entry->name, __entry->bdi_id, (unsigned long)__entry->ino, __entry->memcg_id, (unsigned long)__entry->cgroup_ino, (unsigned long)__entry->page_cgroup_ino ) ); TRACE_EVENT(flush_foreign, TP_PROTO(struct bdi_writeback *wb, unsigned int frn_bdi_id, unsigned int frn_memcg_id), TP_ARGS(wb, frn_bdi_id, frn_memcg_id), TP_STRUCT__entry( __array(char, name, 32) __field(ino_t, cgroup_ino) __field(unsigned int, frn_bdi_id) __field(unsigned int, frn_memcg_id) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(wb->bdi), 32); __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); __entry->frn_bdi_id = frn_bdi_id; __entry->frn_memcg_id = frn_memcg_id; ), TP_printk("bdi %s: cgroup_ino=%lu frn_bdi_id=%u frn_memcg_id=%u", __entry->name, (unsigned long)__entry->cgroup_ino, __entry->frn_bdi_id, __entry->frn_memcg_id ) ); #endif DECLARE_EVENT_CLASS(writeback_write_inode_template, TP_PROTO(struct inode *inode, struct writeback_control *wbc), TP_ARGS(inode, wbc), TP_STRUCT__entry ( __array(char, name, 32) __field(ino_t, ino) __field(int, sync_mode) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(inode_to_bdi(inode)), 32); __entry->ino = inode->i_ino; __entry->sync_mode = wbc->sync_mode; __entry->cgroup_ino = __trace_wbc_assign_cgroup(wbc); ), TP_printk("bdi %s: ino=%lu sync_mode=%d cgroup_ino=%lu", __entry->name, (unsigned long)__entry->ino, __entry->sync_mode, (unsigned long)__entry->cgroup_ino ) ); DEFINE_EVENT(writeback_write_inode_template, writeback_write_inode_start, TP_PROTO(struct inode *inode, struct writeback_control *wbc), TP_ARGS(inode, wbc) ); DEFINE_EVENT(writeback_write_inode_template, writeback_write_inode, TP_PROTO(struct inode *inode, struct writeback_control *wbc), TP_ARGS(inode, wbc) ); DECLARE_EVENT_CLASS(writeback_work_class, TP_PROTO(struct bdi_writeback *wb, struct wb_writeback_work *work), TP_ARGS(wb, work), TP_STRUCT__entry( __array(char, name, 32) __field(long, nr_pages) __field(dev_t, sb_dev) __field(int, sync_mode) __field(int, for_kupdate) __field(int, range_cyclic) __field(int, for_background) __field(int, reason) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(wb->bdi), 32); __entry->nr_pages = work->nr_pages; __entry->sb_dev = work->sb ? work->sb->s_dev : 0; __entry->sync_mode = work->sync_mode; __entry->for_kupdate = work->for_kupdate; __entry->range_cyclic = work->range_cyclic; __entry->for_background = work->for_background; __entry->reason = work->reason; __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); ), TP_printk("bdi %s: sb_dev %d:%d nr_pages=%ld sync_mode=%d " "kupdate=%d range_cyclic=%d background=%d reason=%s cgroup_ino=%lu", __entry->name, MAJOR(__entry->sb_dev), MINOR(__entry->sb_dev), __entry->nr_pages, __entry->sync_mode, __entry->for_kupdate, __entry->range_cyclic, __entry->for_background, __print_symbolic(__entry->reason, WB_WORK_REASON), (unsigned long)__entry->cgroup_ino ) ); #define DEFINE_WRITEBACK_WORK_EVENT(name) \ DEFINE_EVENT(writeback_work_class, name, \ TP_PROTO(struct bdi_writeback *wb, struct wb_writeback_work *work), \ TP_ARGS(wb, work)) DEFINE_WRITEBACK_WORK_EVENT(writeback_queue); DEFINE_WRITEBACK_WORK_EVENT(writeback_exec); DEFINE_WRITEBACK_WORK_EVENT(writeback_start); DEFINE_WRITEBACK_WORK_EVENT(writeback_written); DEFINE_WRITEBACK_WORK_EVENT(writeback_wait); TRACE_EVENT(writeback_pages_written, TP_PROTO(long pages_written), TP_ARGS(pages_written), TP_STRUCT__entry( __field(long, pages) ), TP_fast_assign( __entry->pages = pages_written; ), TP_printk("%ld", __entry->pages) ); DECLARE_EVENT_CLASS(writeback_class, TP_PROTO(struct bdi_writeback *wb), TP_ARGS(wb), TP_STRUCT__entry( __array(char, name, 32) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(wb->bdi), 32); __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); ), TP_printk("bdi %s: cgroup_ino=%lu", __entry->name, (unsigned long)__entry->cgroup_ino ) ); #define DEFINE_WRITEBACK_EVENT(name) \ DEFINE_EVENT(writeback_class, name, \ TP_PROTO(struct bdi_writeback *wb), \ TP_ARGS(wb)) DEFINE_WRITEBACK_EVENT(writeback_wake_background); TRACE_EVENT(writeback_bdi_register, TP_PROTO(struct backing_dev_info *bdi), TP_ARGS(bdi), TP_STRUCT__entry( __array(char, name, 32) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(bdi), 32); ), TP_printk("bdi %s", __entry->name ) ); DECLARE_EVENT_CLASS(wbc_class, TP_PROTO(struct writeback_control *wbc, struct backing_dev_info *bdi), TP_ARGS(wbc, bdi), TP_STRUCT__entry( __array(char, name, 32) __field(long, nr_to_write) __field(long, pages_skipped) __field(int, sync_mode) __field(int, for_kupdate) __field(int, for_background) __field(int, for_reclaim) __field(int, range_cyclic) __field(long, range_start) __field(long, range_end) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(bdi), 32); __entry->nr_to_write = wbc->nr_to_write; __entry->pages_skipped = wbc->pages_skipped; __entry->sync_mode = wbc->sync_mode; __entry->for_kupdate = wbc->for_kupdate; __entry->for_background = wbc->for_background; __entry->for_reclaim = wbc->for_reclaim; __entry->range_cyclic = wbc->range_cyclic; __entry->range_start = (long)wbc->range_start; __entry->range_end = (long)wbc->range_end; __entry->cgroup_ino = __trace_wbc_assign_cgroup(wbc); ), TP_printk("bdi %s: towrt=%ld skip=%ld mode=%d kupd=%d " "bgrd=%d reclm=%d cyclic=%d " "start=0x%lx end=0x%lx cgroup_ino=%lu", __entry->name, __entry->nr_to_write, __entry->pages_skipped, __entry->sync_mode, __entry->for_kupdate, __entry->for_background, __entry->for_reclaim, __entry->range_cyclic, __entry->range_start, __entry->range_end, (unsigned long)__entry->cgroup_ino ) ) #define DEFINE_WBC_EVENT(name) \ DEFINE_EVENT(wbc_class, name, \ TP_PROTO(struct writeback_control *wbc, struct backing_dev_info *bdi), \ TP_ARGS(wbc, bdi)) DEFINE_WBC_EVENT(wbc_writepage); TRACE_EVENT(writeback_queue_io, TP_PROTO(struct bdi_writeback *wb, struct wb_writeback_work *work, unsigned long dirtied_before, int moved), TP_ARGS(wb, work, dirtied_before, moved), TP_STRUCT__entry( __array(char, name, 32) __field(unsigned long, older) __field(long, age) __field(int, moved) __field(int, reason) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(wb->bdi), 32); __entry->older = dirtied_before; __entry->age = (jiffies - dirtied_before) * 1000 / HZ; __entry->moved = moved; __entry->reason = work->reason; __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); ), TP_printk("bdi %s: older=%lu age=%ld enqueue=%d reason=%s cgroup_ino=%lu", __entry->name, __entry->older, /* dirtied_before in jiffies */ __entry->age, /* dirtied_before in relative milliseconds */ __entry->moved, __print_symbolic(__entry->reason, WB_WORK_REASON), (unsigned long)__entry->cgroup_ino ) ); TRACE_EVENT(global_dirty_state, TP_PROTO(unsigned long background_thresh, unsigned long dirty_thresh ), TP_ARGS(background_thresh, dirty_thresh ), TP_STRUCT__entry( __field(unsigned long, nr_dirty) __field(unsigned long, nr_writeback) __field(unsigned long, background_thresh) __field(unsigned long, dirty_thresh) __field(unsigned long, dirty_limit) __field(unsigned long, nr_dirtied) __field(unsigned long, nr_written) ), TP_fast_assign( __entry->nr_dirty = global_node_page_state(NR_FILE_DIRTY); __entry->nr_writeback = global_node_page_state(NR_WRITEBACK); __entry->nr_dirtied = global_node_page_state(NR_DIRTIED); __entry->nr_written = global_node_page_state(NR_WRITTEN); __entry->background_thresh = background_thresh; __entry->dirty_thresh = dirty_thresh; __entry->dirty_limit = global_wb_domain.dirty_limit; ), TP_printk("dirty=%lu writeback=%lu " "bg_thresh=%lu thresh=%lu limit=%lu " "dirtied=%lu written=%lu", __entry->nr_dirty, __entry->nr_writeback, __entry->background_thresh, __entry->dirty_thresh, __entry->dirty_limit, __entry->nr_dirtied, __entry->nr_written ) ); #define KBps(x) ((x) << (PAGE_SHIFT - 10)) TRACE_EVENT(bdi_dirty_ratelimit, TP_PROTO(struct bdi_writeback *wb, unsigned long dirty_rate, unsigned long task_ratelimit), TP_ARGS(wb, dirty_rate, task_ratelimit), TP_STRUCT__entry( __array(char, bdi, 32) __field(unsigned long, write_bw) __field(unsigned long, avg_write_bw) __field(unsigned long, dirty_rate) __field(unsigned long, dirty_ratelimit) __field(unsigned long, task_ratelimit) __field(unsigned long, balanced_dirty_ratelimit) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->bdi, bdi_dev_name(wb->bdi), 32); __entry->write_bw = KBps(wb->write_bandwidth); __entry->avg_write_bw = KBps(wb->avg_write_bandwidth); __entry->dirty_rate = KBps(dirty_rate); __entry->dirty_ratelimit = KBps(wb->dirty_ratelimit); __entry->task_ratelimit = KBps(task_ratelimit); __entry->balanced_dirty_ratelimit = KBps(wb->balanced_dirty_ratelimit); __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); ), TP_printk("bdi %s: " "write_bw=%lu awrite_bw=%lu dirty_rate=%lu " "dirty_ratelimit=%lu task_ratelimit=%lu " "balanced_dirty_ratelimit=%lu cgroup_ino=%lu", __entry->bdi, __entry->write_bw, /* write bandwidth */ __entry->avg_write_bw, /* avg write bandwidth */ __entry->dirty_rate, /* bdi dirty rate */ __entry->dirty_ratelimit, /* base ratelimit */ __entry->task_ratelimit, /* ratelimit with position control */ __entry->balanced_dirty_ratelimit, /* the balanced ratelimit */ (unsigned long)__entry->cgroup_ino ) ); TRACE_EVENT(balance_dirty_pages, TP_PROTO(struct bdi_writeback *wb, unsigned long thresh, unsigned long bg_thresh, unsigned long dirty, unsigned long bdi_thresh, unsigned long bdi_dirty, unsigned long dirty_ratelimit, unsigned long task_ratelimit, unsigned long dirtied, unsigned long period, long pause, unsigned long start_time), TP_ARGS(wb, thresh, bg_thresh, dirty, bdi_thresh, bdi_dirty, dirty_ratelimit, task_ratelimit, dirtied, period, pause, start_time), TP_STRUCT__entry( __array( char, bdi, 32) __field(unsigned long, limit) __field(unsigned long, setpoint) __field(unsigned long, dirty) __field(unsigned long, bdi_setpoint) __field(unsigned long, bdi_dirty) __field(unsigned long, dirty_ratelimit) __field(unsigned long, task_ratelimit) __field(unsigned int, dirtied) __field(unsigned int, dirtied_pause) __field(unsigned long, paused) __field( long, pause) __field(unsigned long, period) __field( long, think) __field(ino_t, cgroup_ino) ), TP_fast_assign( unsigned long freerun = (thresh + bg_thresh) / 2; strscpy_pad(__entry->bdi, bdi_dev_name(wb->bdi), 32); __entry->limit = global_wb_domain.dirty_limit; __entry->setpoint = (global_wb_domain.dirty_limit + freerun) / 2; __entry->dirty = dirty; __entry->bdi_setpoint = __entry->setpoint * bdi_thresh / (thresh + 1); __entry->bdi_dirty = bdi_dirty; __entry->dirty_ratelimit = KBps(dirty_ratelimit); __entry->task_ratelimit = KBps(task_ratelimit); __entry->dirtied = dirtied; __entry->dirtied_pause = current->nr_dirtied_pause; __entry->think = current->dirty_paused_when == 0 ? 0 : (long)(jiffies - current->dirty_paused_when) * 1000/HZ; __entry->period = period * 1000 / HZ; __entry->pause = pause * 1000 / HZ; __entry->paused = (jiffies - start_time) * 1000 / HZ; __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); ), TP_printk("bdi %s: " "limit=%lu setpoint=%lu dirty=%lu " "bdi_setpoint=%lu bdi_dirty=%lu " "dirty_ratelimit=%lu task_ratelimit=%lu " "dirtied=%u dirtied_pause=%u " "paused=%lu pause=%ld period=%lu think=%ld cgroup_ino=%lu", __entry->bdi, __entry->limit, __entry->setpoint, __entry->dirty, __entry->bdi_setpoint, __entry->bdi_dirty, __entry->dirty_ratelimit, __entry->task_ratelimit, __entry->dirtied, __entry->dirtied_pause, __entry->paused, /* ms */ __entry->pause, /* ms */ __entry->period, /* ms */ __entry->think, /* ms */ (unsigned long)__entry->cgroup_ino ) ); TRACE_EVENT(writeback_sb_inodes_requeue, TP_PROTO(struct inode *inode), TP_ARGS(inode), TP_STRUCT__entry( __array(char, name, 32) __field(ino_t, ino) __field(unsigned long, state) __field(unsigned long, dirtied_when) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(inode_to_bdi(inode)), 32); __entry->ino = inode->i_ino; __entry->state = inode->i_state; __entry->dirtied_when = inode->dirtied_when; __entry->cgroup_ino = __trace_wb_assign_cgroup(inode_to_wb(inode)); ), TP_printk("bdi %s: ino=%lu state=%s dirtied_when=%lu age=%lu cgroup_ino=%lu", __entry->name, (unsigned long)__entry->ino, show_inode_state(__entry->state), __entry->dirtied_when, (jiffies - __entry->dirtied_when) / HZ, (unsigned long)__entry->cgroup_ino ) ); DECLARE_EVENT_CLASS(writeback_congest_waited_template, TP_PROTO(unsigned int usec_timeout, unsigned int usec_delayed), TP_ARGS(usec_timeout, usec_delayed), TP_STRUCT__entry( __field( unsigned int, usec_timeout ) __field( unsigned int, usec_delayed ) ), TP_fast_assign( __entry->usec_timeout = usec_timeout; __entry->usec_delayed = usec_delayed; ), TP_printk("usec_timeout=%u usec_delayed=%u", __entry->usec_timeout, __entry->usec_delayed) ); DEFINE_EVENT(writeback_congest_waited_template, writeback_congestion_wait, TP_PROTO(unsigned int usec_timeout, unsigned int usec_delayed), TP_ARGS(usec_timeout, usec_delayed) ); DEFINE_EVENT(writeback_congest_waited_template, writeback_wait_iff_congested, TP_PROTO(unsigned int usec_timeout, unsigned int usec_delayed), TP_ARGS(usec_timeout, usec_delayed) ); DECLARE_EVENT_CLASS(writeback_single_inode_template, TP_PROTO(struct inode *inode, struct writeback_control *wbc, unsigned long nr_to_write ), TP_ARGS(inode, wbc, nr_to_write), TP_STRUCT__entry( __array(char, name, 32) __field(ino_t, ino) __field(unsigned long, state) __field(unsigned long, dirtied_when) __field(unsigned long, writeback_index) __field(long, nr_to_write) __field(unsigned long, wrote) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(inode_to_bdi(inode)), 32); __entry->ino = inode->i_ino; __entry->state = inode->i_state; __entry->dirtied_when = inode->dirtied_when; __entry->writeback_index = inode->i_mapping->writeback_index; __entry->nr_to_write = nr_to_write; __entry->wrote = nr_to_write - wbc->nr_to_write; __entry->cgroup_ino = __trace_wbc_assign_cgroup(wbc); ), TP_printk("bdi %s: ino=%lu state=%s dirtied_when=%lu age=%lu " "index=%lu to_write=%ld wrote=%lu cgroup_ino=%lu", __entry->name, (unsigned long)__entry->ino, show_inode_state(__entry->state), __entry->dirtied_when, (jiffies - __entry->dirtied_when) / HZ, __entry->writeback_index, __entry->nr_to_write, __entry->wrote, (unsigned long)__entry->cgroup_ino ) ); DEFINE_EVENT(writeback_single_inode_template, writeback_single_inode_start, TP_PROTO(struct inode *inode, struct writeback_control *wbc, unsigned long nr_to_write), TP_ARGS(inode, wbc, nr_to_write) ); DEFINE_EVENT(writeback_single_inode_template, writeback_single_inode, TP_PROTO(struct inode *inode, struct writeback_control *wbc, unsigned long nr_to_write), TP_ARGS(inode, wbc, nr_to_write) ); DECLARE_EVENT_CLASS(writeback_inode_template, TP_PROTO(struct inode *inode), TP_ARGS(inode), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field(unsigned long, state ) __field( __u16, mode ) __field(unsigned long, dirtied_when ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->state = inode->i_state; __entry->mode = inode->i_mode; __entry->dirtied_when = inode->dirtied_when; ), TP_printk("dev %d,%d ino %lu dirtied %lu state %s mode 0%o", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long)__entry->ino, __entry->dirtied_when, show_inode_state(__entry->state), __entry->mode) ); DEFINE_EVENT(writeback_inode_template, writeback_lazytime, TP_PROTO(struct inode *inode), TP_ARGS(inode) ); DEFINE_EVENT(writeback_inode_template, writeback_lazytime_iput, TP_PROTO(struct inode *inode), TP_ARGS(inode) ); DEFINE_EVENT(writeback_inode_template, writeback_dirty_inode_enqueue, TP_PROTO(struct inode *inode), TP_ARGS(inode) ); /* * Inode writeback list tracking. */ DEFINE_EVENT(writeback_inode_template, sb_mark_inode_writeback, TP_PROTO(struct inode *inode), TP_ARGS(inode) ); DEFINE_EVENT(writeback_inode_template, sb_clear_inode_writeback, TP_PROTO(struct inode *inode), TP_ARGS(inode) ); #endif /* _TRACE_WRITEBACK_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_COMPLETION_H #define __LINUX_COMPLETION_H /* * (C) Copyright 2001 Linus Torvalds * * Atomic wait-for-completion handler data structures. * See kernel/sched/completion.c for details. */ #include <linux/swait.h> /* * struct completion - structure used to maintain state for a "completion" * * This is the opaque structure used to maintain the state for a "completion". * Completions currently use a FIFO to queue threads that have to wait for * the "completion" event. * * See also: complete(), wait_for_completion() (and friends _timeout, * _interruptible, _interruptible_timeout, and _killable), init_completion(), * reinit_completion(), and macros DECLARE_COMPLETION(), * DECLARE_COMPLETION_ONSTACK(). */ struct completion { unsigned int done; struct swait_queue_head wait; }; #define init_completion_map(x, m) __init_completion(x) #define init_completion(x) __init_completion(x) static inline void complete_acquire(struct completion *x) {} static inline void complete_release(struct completion *x) {} #define COMPLETION_INITIALIZER(work) \ { 0, __SWAIT_QUEUE_HEAD_INITIALIZER((work).wait) } #define COMPLETION_INITIALIZER_ONSTACK_MAP(work, map) \ (*({ init_completion_map(&(work), &(map)); &(work); })) #define COMPLETION_INITIALIZER_ONSTACK(work) \ (*({ init_completion(&work); &work; })) /** * DECLARE_COMPLETION - declare and initialize a completion structure * @work: identifier for the completion structure * * This macro declares and initializes a completion structure. Generally used * for static declarations. You should use the _ONSTACK variant for automatic * variables. */ #define DECLARE_COMPLETION(work) \ struct completion work = COMPLETION_INITIALIZER(work) /* * Lockdep needs to run a non-constant initializer for on-stack * completions - so we use the _ONSTACK() variant for those that * are on the kernel stack: */ /** * DECLARE_COMPLETION_ONSTACK - declare and initialize a completion structure * @work: identifier for the completion structure * * This macro declares and initializes a completion structure on the kernel * stack. */ #ifdef CONFIG_LOCKDEP # define DECLARE_COMPLETION_ONSTACK(work) \ struct completion work = COMPLETION_INITIALIZER_ONSTACK(work) # define DECLARE_COMPLETION_ONSTACK_MAP(work, map) \ struct completion work = COMPLETION_INITIALIZER_ONSTACK_MAP(work, map) #else # define DECLARE_COMPLETION_ONSTACK(work) DECLARE_COMPLETION(work) # define DECLARE_COMPLETION_ONSTACK_MAP(work, map) DECLARE_COMPLETION(work) #endif /** * init_completion - Initialize a dynamically allocated completion * @x: pointer to completion structure that is to be initialized * * This inline function will initialize a dynamically created completion * structure. */ static inline void __init_completion(struct completion *x) { x->done = 0; init_swait_queue_head(&x->wait); } /** * reinit_completion - reinitialize a completion structure * @x: pointer to completion structure that is to be reinitialized * * This inline function should be used to reinitialize a completion structure so it can * be reused. This is especially important after complete_all() is used. */ static inline void reinit_completion(struct completion *x) { x->done = 0; } extern void wait_for_completion(struct completion *); extern void wait_for_completion_io(struct completion *); extern int wait_for_completion_interruptible(struct completion *x); extern int wait_for_completion_killable(struct completion *x); extern unsigned long wait_for_completion_timeout(struct completion *x, unsigned long timeout); extern unsigned long wait_for_completion_io_timeout(struct completion *x, unsigned long timeout); extern long wait_for_completion_interruptible_timeout( struct completion *x, unsigned long timeout); extern long wait_for_completion_killable_timeout( struct completion *x, unsigned long timeout); extern bool try_wait_for_completion(struct completion *x); extern bool completion_done(struct completion *x); extern void complete(struct completion *); extern void complete_all(struct completion *); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _NET_FLOW_DISSECTOR_H #define _NET_FLOW_DISSECTOR_H #include <linux/types.h> #include <linux/in6.h> #include <linux/siphash.h> #include <linux/string.h> #include <uapi/linux/if_ether.h> struct bpf_prog; struct net; struct sk_buff; /** * struct flow_dissector_key_control: * @thoff: Transport header offset */ struct flow_dissector_key_control { u16 thoff; u16 addr_type; u32 flags; }; #define FLOW_DIS_IS_FRAGMENT BIT(0) #define FLOW_DIS_FIRST_FRAG BIT(1) #define FLOW_DIS_ENCAPSULATION BIT(2) enum flow_dissect_ret { FLOW_DISSECT_RET_OUT_GOOD, FLOW_DISSECT_RET_OUT_BAD, FLOW_DISSECT_RET_PROTO_AGAIN, FLOW_DISSECT_RET_IPPROTO_AGAIN, FLOW_DISSECT_RET_CONTINUE, }; /** * struct flow_dissector_key_basic: * @n_proto: Network header protocol (eg. IPv4/IPv6) * @ip_proto: Transport header protocol (eg. TCP/UDP) */ struct flow_dissector_key_basic { __be16 n_proto; u8 ip_proto; u8 padding; }; struct flow_dissector_key_tags { u32 flow_label; }; struct flow_dissector_key_vlan { union { struct { u16 vlan_id:12, vlan_dei:1, vlan_priority:3; }; __be16 vlan_tci; }; __be16 vlan_tpid; }; struct flow_dissector_mpls_lse { u32 mpls_ttl:8, mpls_bos:1, mpls_tc:3, mpls_label:20; }; #define FLOW_DIS_MPLS_MAX 7 struct flow_dissector_key_mpls { struct flow_dissector_mpls_lse ls[FLOW_DIS_MPLS_MAX]; /* Label Stack */ u8 used_lses; /* One bit set for each Label Stack Entry in use */ }; static inline void dissector_set_mpls_lse(struct flow_dissector_key_mpls *mpls, int lse_index) { mpls->used_lses |= 1 << lse_index; } #define FLOW_DIS_TUN_OPTS_MAX 255 /** * struct flow_dissector_key_enc_opts: * @data: tunnel option data * @len: length of tunnel option data * @dst_opt_type: tunnel option type */ struct flow_dissector_key_enc_opts { u8 data[FLOW_DIS_TUN_OPTS_MAX]; /* Using IP_TUNNEL_OPTS_MAX is desired * here but seems difficult to #include */ u8 len; __be16 dst_opt_type; }; struct flow_dissector_key_keyid { __be32 keyid; }; /** * struct flow_dissector_key_ipv4_addrs: * @src: source ip address * @dst: destination ip address */ struct flow_dissector_key_ipv4_addrs { /* (src,dst) must be grouped, in the same way than in IP header */ __be32 src; __be32 dst; }; /** * struct flow_dissector_key_ipv6_addrs: * @src: source ip address * @dst: destination ip address */ struct flow_dissector_key_ipv6_addrs { /* (src,dst) must be grouped, in the same way than in IP header */ struct in6_addr src; struct in6_addr dst; }; /** * struct flow_dissector_key_tipc: * @key: source node address combined with selector */ struct flow_dissector_key_tipc { __be32 key; }; /** * struct flow_dissector_key_addrs: * @v4addrs: IPv4 addresses * @v6addrs: IPv6 addresses */ struct flow_dissector_key_addrs { union { struct flow_dissector_key_ipv4_addrs v4addrs; struct flow_dissector_key_ipv6_addrs v6addrs; struct flow_dissector_key_tipc tipckey; }; }; /** * flow_dissector_key_arp: * @ports: Operation, source and target addresses for an ARP header * for Ethernet hardware addresses and IPv4 protocol addresses * sip: Sender IP address * tip: Target IP address * op: Operation * sha: Sender hardware address * tpa: Target hardware address */ struct flow_dissector_key_arp { __u32 sip; __u32 tip; __u8 op; unsigned char sha[ETH_ALEN]; unsigned char tha[ETH_ALEN]; }; /** * flow_dissector_key_tp_ports: * @ports: port numbers of Transport header * src: source port number * dst: destination port number */ struct flow_dissector_key_ports { union { __be32 ports; struct { __be16 src; __be16 dst; }; }; }; /** * flow_dissector_key_icmp: * type: ICMP type * code: ICMP code * id: session identifier */ struct flow_dissector_key_icmp { struct { u8 type; u8 code; }; u16 id; }; /** * struct flow_dissector_key_eth_addrs: * @src: source Ethernet address * @dst: destination Ethernet address */ struct flow_dissector_key_eth_addrs { /* (dst,src) must be grouped, in the same way than in ETH header */ unsigned char dst[ETH_ALEN]; unsigned char src[ETH_ALEN]; }; /** * struct flow_dissector_key_tcp: * @flags: flags */ struct flow_dissector_key_tcp { __be16 flags; }; /** * struct flow_dissector_key_ip: * @tos: tos * @ttl: ttl */ struct flow_dissector_key_ip { __u8 tos; __u8 ttl; }; /** * struct flow_dissector_key_meta: * @ingress_ifindex: ingress ifindex * @ingress_iftype: ingress interface type */ struct flow_dissector_key_meta { int ingress_ifindex; u16 ingress_iftype; }; /** * struct flow_dissector_key_ct: * @ct_state: conntrack state after converting with map * @ct_mark: conttrack mark * @ct_zone: conntrack zone * @ct_labels: conntrack labels */ struct flow_dissector_key_ct { u16 ct_state; u16 ct_zone; u32 ct_mark; u32 ct_labels[4]; }; /** * struct flow_dissector_key_hash: * @hash: hash value */ struct flow_dissector_key_hash { u32 hash; }; enum flow_dissector_key_id { FLOW_DISSECTOR_KEY_CONTROL, /* struct flow_dissector_key_control */ FLOW_DISSECTOR_KEY_BASIC, /* struct flow_dissector_key_basic */ FLOW_DISSECTOR_KEY_IPV4_ADDRS, /* struct flow_dissector_key_ipv4_addrs */ FLOW_DISSECTOR_KEY_IPV6_ADDRS, /* struct flow_dissector_key_ipv6_addrs */ FLOW_DISSECTOR_KEY_PORTS, /* struct flow_dissector_key_ports */ FLOW_DISSECTOR_KEY_PORTS_RANGE, /* struct flow_dissector_key_ports */ FLOW_DISSECTOR_KEY_ICMP, /* struct flow_dissector_key_icmp */ FLOW_DISSECTOR_KEY_ETH_ADDRS, /* struct flow_dissector_key_eth_addrs */ FLOW_DISSECTOR_KEY_TIPC, /* struct flow_dissector_key_tipc */ FLOW_DISSECTOR_KEY_ARP, /* struct flow_dissector_key_arp */ FLOW_DISSECTOR_KEY_VLAN, /* struct flow_dissector_key_vlan */ FLOW_DISSECTOR_KEY_FLOW_LABEL, /* struct flow_dissector_key_tags */ FLOW_DISSECTOR_KEY_GRE_KEYID, /* struct flow_dissector_key_keyid */ FLOW_DISSECTOR_KEY_MPLS_ENTROPY, /* struct flow_dissector_key_keyid */ FLOW_DISSECTOR_KEY_ENC_KEYID, /* struct flow_dissector_key_keyid */ FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS, /* struct flow_dissector_key_ipv4_addrs */ FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS, /* struct