1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _NET_FLOW_DISSECTOR_H #define _NET_FLOW_DISSECTOR_H #include <linux/types.h> #include <linux/in6.h> #include <linux/siphash.h> #include <linux/string.h> #include <uapi/linux/if_ether.h> struct bpf_prog; struct net; struct sk_buff; /** * struct flow_dissector_key_control: * @thoff: Transport header offset */ struct flow_dissector_key_control { u16 thoff; u16 addr_type; u32 flags; }; #define FLOW_DIS_IS_FRAGMENT BIT(0) #define FLOW_DIS_FIRST_FRAG BIT(1) #define FLOW_DIS_ENCAPSULATION BIT(2) enum flow_dissect_ret { FLOW_DISSECT_RET_OUT_GOOD, FLOW_DISSECT_RET_OUT_BAD, FLOW_DISSECT_RET_PROTO_AGAIN, FLOW_DISSECT_RET_IPPROTO_AGAIN, FLOW_DISSECT_RET_CONTINUE, }; /** * struct flow_dissector_key_basic: * @n_proto: Network header protocol (eg. IPv4/IPv6) * @ip_proto: Transport header protocol (eg. TCP/UDP) */ struct flow_dissector_key_basic { __be16 n_proto; u8 ip_proto; u8 padding; }; struct flow_dissector_key_tags { u32 flow_label; }; struct flow_dissector_key_vlan { union { struct { u16 vlan_id:12, vlan_dei:1, vlan_priority:3; }; __be16 vlan_tci; }; __be16 vlan_tpid; }; struct flow_dissector_mpls_lse { u32 mpls_ttl:8, mpls_bos:1, mpls_tc:3, mpls_label:20; }; #define FLOW_DIS_MPLS_MAX 7 struct flow_dissector_key_mpls { struct flow_dissector_mpls_lse ls[FLOW_DIS_MPLS_MAX]; /* Label Stack */ u8 used_lses; /* One bit set for each Label Stack Entry in use */ }; static inline void dissector_set_mpls_lse(struct flow_dissector_key_mpls *mpls, int lse_index) { mpls->used_lses |= 1 << lse_index; } #define FLOW_DIS_TUN_OPTS_MAX 255 /** * struct flow_dissector_key_enc_opts: * @data: tunnel option data * @len: length of tunnel option data * @dst_opt_type: tunnel option type */ struct flow_dissector_key_enc_opts { u8 data[FLOW_DIS_TUN_OPTS_MAX]; /* Using IP_TUNNEL_OPTS_MAX is desired * here but seems difficult to #include */ u8 len; __be16 dst_opt_type; }; struct flow_dissector_key_keyid { __be32 keyid; }; /** * struct flow_dissector_key_ipv4_addrs: * @src: source ip address * @dst: destination ip address */ struct flow_dissector_key_ipv4_addrs { /* (src,dst) must be grouped, in the same way than in IP header */ __be32 src; __be32 dst; }; /** * struct flow_dissector_key_ipv6_addrs: * @src: source ip address * @dst: destination ip address */ struct flow_dissector_key_ipv6_addrs { /* (src,dst) must be grouped, in the same way than in IP header */ struct in6_addr src; struct in6_addr dst; }; /** * struct flow_dissector_key_tipc: * @key: source node address combined with selector */ struct flow_dissector_key_tipc { __be32 key; }; /** * struct flow_dissector_key_addrs: * @v4addrs: IPv4 addresses * @v6addrs: IPv6 addresses */ struct flow_dissector_key_addrs { union { struct flow_dissector_key_ipv4_addrs v4addrs; struct flow_dissector_key_ipv6_addrs v6addrs; struct flow_dissector_key_tipc tipckey; }; }; /** * flow_dissector_key_arp: * @ports: Operation, source and target addresses for an ARP header * for Ethernet hardware addresses and IPv4 protocol addresses * sip: Sender IP address * tip: Target IP address * op: Operation * sha: Sender hardware address * tpa: Target hardware address */ struct flow_dissector_key_arp { __u32 sip; __u32 tip; __u8 op; unsigned char sha[ETH_ALEN]; unsigned char tha[ETH_ALEN]; }; /** * flow_dissector_key_tp_ports: * @ports: port numbers of Transport header * src: source port number * dst: destination port number */ struct flow_dissector_key_ports { union { __be32 ports; struct { __be16 src; __be16 dst; }; }; }; /** * flow_dissector_key_icmp: * type: ICMP type * code: ICMP code * id: session identifier */ struct flow_dissector_key_icmp { struct { u8 type; u8 code; }; u16 id; }; /** * struct flow_dissector_key_eth_addrs: * @src: source Ethernet address * @dst: destination Ethernet address */ struct flow_dissector_key_eth_addrs { /* (dst,src) must be grouped, in the same way than in ETH header */ unsigned char dst[ETH_ALEN]; unsigned char src[ETH_ALEN]; }; /** * struct flow_dissector_key_tcp: * @flags: flags */ struct flow_dissector_key_tcp { __be16 flags; }; /** * struct flow_dissector_key_ip: * @tos: tos * @ttl: ttl */ struct flow_dissector_key_ip { __u8 tos; __u8 ttl; }; /** * struct flow_dissector_key_meta: * @ingress_ifindex: ingress ifindex * @ingress_iftype: ingress interface type */ struct flow_dissector_key_meta { int ingress_ifindex; u16 ingress_iftype; }; /** * struct flow_dissector_key_ct: * @ct_state: conntrack state after converting with map * @ct_mark: conttrack mark * @ct_zone: conntrack zone * @ct_labels: conntrack labels */ struct flow_dissector_key_ct { u16 ct_state; u16 ct_zone; u32 ct_mark; u32 ct_labels[4]; }; /** * struct flow_dissector_key_hash: * @hash: hash value */ struct flow_dissector_key_hash { u32 hash; }; enum flow_dissector_key_id { FLOW_DISSECTOR_KEY_CONTROL, /* struct flow_dissector_key_control */ FLOW_DISSECTOR_KEY_BASIC, /* struct flow_dissector_key_basic */ FLOW_DISSECTOR_KEY_IPV4_ADDRS, /* struct flow_dissector_key_ipv4_addrs */ FLOW_DISSECTOR_KEY_IPV6_ADDRS, /* struct flow_dissector_key_ipv6_addrs */ FLOW_DISSECTOR_KEY_PORTS, /* struct flow_dissector_key_ports */ FLOW_DISSECTOR_KEY_PORTS_RANGE, /* struct flow_dissector_key_ports */ FLOW_DISSECTOR_KEY_ICMP, /* struct flow_dissector_key_icmp */ FLOW_DISSECTOR_KEY_ETH_ADDRS, /* struct flow_dissector_key_eth_addrs */ FLOW_DISSECTOR_KEY_TIPC, /* struct flow_dissector_key_tipc */ FLOW_DISSECTOR_KEY_ARP, /* struct flow_dissector_key_arp */ FLOW_DISSECTOR_KEY_VLAN, /* struct flow_dissector_key_vlan */ FLOW_DISSECTOR_KEY_FLOW_LABEL, /* struct flow_dissector_key_tags */ FLOW_DISSECTOR_KEY_GRE_KEYID, /* struct flow_dissector_key_keyid */ FLOW_DISSECTOR_KEY_MPLS_ENTROPY, /* struct flow_dissector_key_keyid */ FLOW_DISSECTOR_KEY_ENC_KEYID, /* struct flow_dissector_key_keyid */ FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS, /* struct flow_dissector_key_ipv4_addrs */ FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS, /* struct flow_dissector_key_ipv6_addrs */ FLOW_DISSECTOR_KEY_ENC_CONTROL, /* struct flow_dissector_key_control */ FLOW_DISSECTOR_KEY_ENC_PORTS, /* struct flow_dissector_key_ports */ FLOW_DISSECTOR_KEY_MPLS, /* struct flow_dissector_key_mpls */ FLOW_DISSECTOR_KEY_TCP, /* struct flow_dissector_key_tcp */ FLOW_DISSECTOR_KEY_IP, /* struct flow_dissector_key_ip */ FLOW_DISSECTOR_KEY_CVLAN, /* struct flow_dissector_key_vlan */ FLOW_DISSECTOR_KEY_ENC_IP, /* struct flow_dissector_key_ip */ FLOW_DISSECTOR_KEY_ENC_OPTS, /* struct flow_dissector_key_enc_opts */ FLOW_DISSECTOR_KEY_META, /* struct flow_dissector_key_meta */ FLOW_DISSECTOR_KEY_CT, /* struct flow_dissector_key_ct */ FLOW_DISSECTOR_KEY_HASH, /* struct flow_dissector_key_hash */ FLOW_DISSECTOR_KEY_MAX, }; #define FLOW_DISSECTOR_F_PARSE_1ST_FRAG BIT(0) #define FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL BIT(1) #define FLOW_DISSECTOR_F_STOP_AT_ENCAP BIT(2) struct flow_dissector_key { enum flow_dissector_key_id key_id; size_t offset; /* offset of struct flow_dissector_key_* in target the struct */ }; struct flow_dissector { unsigned int used_keys; /* each bit repesents presence of one key id */ unsigned short int offset[FLOW_DISSECTOR_KEY_MAX]; }; struct flow_keys_basic { struct flow_dissector_key_control control; struct flow_dissector_key_basic basic; }; struct flow_keys { struct flow_dissector_key_control control; #define FLOW_KEYS_HASH_START_FIELD basic struct flow_dissector_key_basic basic __aligned(SIPHASH_ALIGNMENT); struct flow_dissector_key_tags tags; struct flow_dissector_key_vlan vlan; struct flow_dissector_key_vlan cvlan; struct flow_dissector_key_keyid keyid; struct flow_dissector_key_ports ports; struct flow_dissector_key_icmp icmp; /* 'addrs' must be the last member */ struct flow_dissector_key_addrs addrs; }; #define FLOW_KEYS_HASH_OFFSET \ offsetof(struct flow_keys, FLOW_KEYS_HASH_START_FIELD) __be32 flow_get_u32_src(const struct flow_keys *flow); __be32 flow_get_u32_dst(const struct flow_keys *flow); extern struct flow_dissector flow_keys_dissector; extern struct flow_dissector flow_keys_basic_dissector; /* struct flow_keys_digest: * * This structure is used to hold a digest of the full flow keys. This is a * larger "hash" of a flow to allow definitively matching specific flows where * the 32 bit skb->hash is not large enough. The size is limited to 16 bytes so * that it can be used in CB of skb (see sch_choke for an example). */ #define FLOW_KEYS_DIGEST_LEN 16 struct flow_keys_digest { u8 data[FLOW_KEYS_DIGEST_LEN]; }; void make_flow_keys_digest(struct flow_keys_digest *digest, const struct flow_keys *flow); static inline bool flow_keys_have_l4(const struct flow_keys *keys) { return (keys->ports.ports || keys->tags.flow_label); } u32 flow_hash_from_keys(struct flow_keys *keys); void skb_flow_get_icmp_tci(const struct sk_buff *skb, struct flow_dissector_key_icmp *key_icmp, void *data, int thoff, int hlen); static inline bool dissector_uses_key(const struct flow_dissector *flow_dissector, enum flow_dissector_key_id key_id) { return flow_dissector->used_keys & (1 << key_id); } static inline void *skb_flow_dissector_target(struct flow_dissector *flow_dissector, enum flow_dissector_key_id key_id, void *target_container) { return ((char *)target_container) + flow_dissector->offset[key_id]; } struct bpf_flow_dissector { struct bpf_flow_keys *flow_keys; const struct sk_buff *skb; void *data; void *data_end; }; static inline void flow_dissector_init_keys(struct flow_dissector_key_control *key_control, struct flow_dissector_key_basic *key_basic) { memset(key_control, 0, sizeof(*key_control)); memset(key_basic, 0, sizeof(*key_basic)); } #ifdef CONFIG_BPF_SYSCALL int flow_dissector_bpf_prog_attach_check(struct net *net, struct bpf_prog *prog); #endif /* CONFIG_BPF_SYSCALL */ #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 /* SPDX-License-Identifier: GPL-2.0 */ /* File: linux/posix_acl_xattr.h Extended attribute system call representation of Access Control Lists. Copyright (C) 2000 by Andreas Gruenbacher <a.gruenbacher@computer.org> Copyright (C) 2002 SGI - Silicon Graphics, Inc <linux-xfs@oss.sgi.com> */ #ifndef _POSIX_ACL_XATTR_H #define _POSIX_ACL_XATTR_H #include <uapi/linux/xattr.h> #include <uapi/linux/posix_acl_xattr.h> #include <linux/posix_acl.h> static inline size_t posix_acl_xattr_size(int count) { return (sizeof(struct posix_acl_xattr_header) + (count * sizeof(struct posix_acl_xattr_entry))); } static inline int posix_acl_xattr_count(size_t size) { if (size < sizeof(struct posix_acl_xattr_header)) return -1; size -= sizeof(struct posix_acl_xattr_header); if (size % sizeof(struct posix_acl_xattr_entry)) return -1; return size / sizeof(struct posix_acl_xattr_entry); } #ifdef CONFIG_FS_POSIX_ACL void posix_acl_fix_xattr_from_user(void *value, size_t size); void posix_acl_fix_xattr_to_user(void *value, size_t size); #else static inline void posix_acl_fix_xattr_from_user(void *value, size_t size) { } static inline void posix_acl_fix_xattr_to_user(void *value, size_t size) { } #endif struct posix_acl *posix_acl_from_xattr(struct user_namespace *user_ns, const void *value, size_t size); int posix_acl_to_xattr(struct user_namespace *user_ns, const struct posix_acl *acl, void *buffer, size_t size); extern const struct xattr_handler posix_acl_access_xattr_handler; extern const struct xattr_handler posix_acl_default_xattr_handler; #endif /* _POSIX_ACL_XATTR_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM fib6 #if !defined(_TRACE_FIB6_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_FIB6_H #include <linux/in6.h> #include <net/flow.h> #include <net/ip6_fib.h> #include <linux/tracepoint.h> TRACE_EVENT(fib6_table_lookup, TP_PROTO(const struct net *net, const struct fib6_result *res, struct fib6_table *table, const struct flowi6 *flp), TP_ARGS(net, res, table, flp), TP_STRUCT__entry( __field( u32, tb_id ) __field( int, err ) __field( int, oif ) __field( int, iif ) __field( __u8, tos ) __field( __u8, scope ) __field( __u8, flags ) __array( __u8, src, 16 ) __array( __u8, dst, 16 ) __field( u16, sport ) __field( u16, dport ) __field( u8, proto ) __field( u8, rt_type ) __dynamic_array( char, name, IFNAMSIZ ) __array( __u8, gw, 16 ) ), TP_fast_assign( struct in6_addr *in6; __entry->tb_id = table->tb6_id; __entry->err = ip6_rt_type_to_error(res->fib6_type); __entry->oif = flp->flowi6_oif; __entry->iif = flp->flowi6_iif; __entry->tos = ip6_tclass(flp->flowlabel); __entry->scope = flp->flowi6_scope; __entry->flags = flp->flowi6_flags; in6 = (struct in6_addr *)__entry->src; *in6 = flp->saddr; in6 = (struct in6_addr *)__entry->dst; *in6 = flp->daddr; __entry->proto = flp->flowi6_proto; if (__entry->proto == IPPROTO_TCP || __entry->proto == IPPROTO_UDP) { __entry->sport = ntohs(flp->fl6_sport); __entry->dport = ntohs(flp->fl6_dport); } else { __entry->sport = 0; __entry->dport = 0; } if (res->nh && res->nh->fib_nh_dev) { __assign_str(name, res->nh->fib_nh_dev); } else { __assign_str(name, "-"); } if (res->f6i == net->ipv6.fib6_null_entry) { struct in6_addr in6_zero = {}; in6 = (struct in6_addr *)__entry->gw; *in6 = in6_zero; } else if (res->nh) { in6 = (struct in6_addr *)__entry->gw; *in6 = res->nh->fib_nh_gw6; } ), TP_printk("table %3u oif %d iif %d proto %u %pI6c/%u -> %pI6c/%u tos %d scope %d flags %x ==> dev %s gw %pI6c err %d", __entry->tb_id, __entry->oif, __entry->iif, __entry->proto, __entry->src, __entry->sport, __entry->dst, __entry->dport, __entry->tos, __entry->scope, __entry->flags, __get_str(name), __entry->gw, __entry->err) ); #endif /* _TRACE_FIB6_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_PART_STAT_H #define _LINUX_PART_STAT_H #include <linux/genhd.h> struct disk_stats { u64 nsecs[NR_STAT_GROUPS]; unsigned long sectors[NR_STAT_GROUPS]; unsigned long ios[NR_STAT_GROUPS]; unsigned long merges[NR_STAT_GROUPS]; unsigned long io_ticks; local_t in_flight[2]; }; /* * Macros to operate on percpu disk statistics: * * {disk|part|all}_stat_{add|sub|inc|dec}() modify the stat counters and should * be called between disk_stat_lock() and disk_stat_unlock(). * * part_stat_read() can be called at any time. */ #define part_stat_lock() preempt_disable() #define part_stat_unlock() preempt_enable() #define part_stat_get_cpu(part, field, cpu) \ (per_cpu_ptr((part)->dkstats, (cpu))->field) #define part_stat_get(part, field) \ part_stat_get_cpu(part, field, smp_processor_id()) #define part_stat_read(part, field) \ ({ \ typeof((part)->dkstats->field) res = 0; \ unsigned int _cpu; \ for_each_possible_cpu(_cpu) \ res += per_cpu_ptr((part)->dkstats, _cpu)->field; \ res; \ }) static inline void part_stat_set_all(struct hd_struct *part, int value) { int i; for_each_possible_cpu(i) memset(per_cpu_ptr(part->dkstats, i), value, sizeof(struct disk_stats)); } #define part_stat_read_accum(part, field) \ (part_stat_read(part, field[STAT_READ]) + \ part_stat_read(part, field[STAT_WRITE]) + \ part_stat_read(part, field[STAT_DISCARD])) #define __part_stat_add(part, field, addnd) \ __this_cpu_add((part)->dkstats->field, addnd) #define part_stat_add(part, field, addnd) do { \ __part_stat_add((part), field, addnd); \ if ((part)->partno) \ __part_stat_add(&part_to_disk((part))->part0, \ field, addnd); \ } while (0) #define part_stat_dec(gendiskp, field) \ part_stat_add(gendiskp, field, -1) #define part_stat_inc(gendiskp, field) \ part_stat_add(gendiskp, field, 1) #define part_stat_sub(gendiskp, field, subnd) \ part_stat_add(gendiskp, field, -subnd) #define part_stat_local_dec(gendiskp, field) \ local_dec(&(part_stat_get(gendiskp, field))) #define part_stat_local_inc(gendiskp, field) \ local_inc(&(part_stat_get(gendiskp, field))) #define part_stat_local_read(gendiskp, field) \ local_read(&(part_stat_get(gendiskp, field))) #define part_stat_local_read_cpu(gendiskp, field, cpu) \ local_read(&(part_stat_get_cpu(gendiskp, field, cpu))) #endif /* _LINUX_PART_STAT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_TIMEKEEPING_H #define _LINUX_TIMEKEEPING_H #include <linux/errno.h> /* Included from linux/ktime.h */ void timekeeping_init(void); extern int timekeeping_suspended; /* Architecture timer tick functions: */ extern void update_process_times(int user); extern void xtime_update(unsigned long ticks); /* * Get and set timeofday */ extern int do_settimeofday64(const struct timespec64 *ts); extern int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz); /* * ktime_get() family: read the current time in a multitude of ways, * * The default time reference is CLOCK_MONOTONIC, starting at * boot time but not counting the time spent in suspend. * For other references, use the functions with "real", "clocktai", * "boottime" and "raw" suffixes. * * To get the time in a different format, use the ones wit * "ns", "ts64" and "seconds" suffix. * * See Documentation/core-api/timekeeping.rst for more details. */ /* * timespec64 based interfaces */ extern void ktime_get_raw_ts64(struct timespec64 *ts); extern void ktime_get_ts64(struct timespec64 *ts); extern void ktime_get_real_ts64(struct timespec64 *tv); extern void ktime_get_coarse_ts64(struct timespec64 *ts); extern void ktime_get_coarse_real_ts64(struct timespec64 *ts); void getboottime64(struct timespec64 *ts); /* * time64_t base interfaces */ extern time64_t ktime_get_seconds(void); extern time64_t __ktime_get_real_seconds(void); extern time64_t ktime_get_real_seconds(void); /* * ktime_t based interfaces */ enum tk_offsets { TK_OFFS_REAL, TK_OFFS_BOOT, TK_OFFS_TAI, TK_OFFS_MAX, }; extern ktime_t ktime_get(void); extern ktime_t ktime_get_with_offset(enum tk_offsets offs); extern ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs); extern ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs); extern ktime_t ktime_get_raw(void); extern u32 ktime_get_resolution_ns(void); /** * ktime_get_real - get the real (wall-) time in ktime_t format */ static inline ktime_t ktime_get_real(void) { return ktime_get_with_offset(TK_OFFS_REAL); } static inline ktime_t ktime_get_coarse_real(void) { return ktime_get_coarse_with_offset(TK_OFFS_REAL); } /** * ktime_get_boottime - Returns monotonic time since boot in ktime_t format * * This is similar to CLOCK_MONTONIC/ktime_get, but also includes the * time spent in suspend. */ static inline ktime_t ktime_get_boottime(void) { return ktime_get_with_offset(TK_OFFS_BOOT); } static inline ktime_t ktime_get_coarse_boottime(void) { return ktime_get_coarse_with_offset(TK_OFFS_BOOT); } /** * ktime_get_clocktai - Returns the TAI time of day in ktime_t format */ static inline ktime_t ktime_get_clocktai(void) { return ktime_get_with_offset(TK_OFFS_TAI); } static inline ktime_t ktime_get_coarse_clocktai(void) { return ktime_get_coarse_with_offset(TK_OFFS_TAI); } static inline ktime_t ktime_get_coarse(void) { struct timespec64 ts; ktime_get_coarse_ts64(&ts); return timespec64_to_ktime(ts); } static inline u64 ktime_get_coarse_ns(void) { return ktime_to_ns(ktime_get_coarse()); } static inline u64 ktime_get_coarse_real_ns(void) { return ktime_to_ns(ktime_get_coarse_real()); } static inline u64 ktime_get_coarse_boottime_ns(void) { return ktime_to_ns(ktime_get_coarse_boottime()); } static inline u64 ktime_get_coarse_clocktai_ns(void) { return ktime_to_ns(ktime_get_coarse_clocktai()); } /** * ktime_mono_to_real - Convert monotonic time to clock realtime */ static inline ktime_t ktime_mono_to_real(ktime_t mono) { return ktime_mono_to_any(mono, TK_OFFS_REAL); } static inline u64 ktime_get_ns(void) { return ktime_to_ns(ktime_get()); } static inline u64 ktime_get_real_ns(void) { return ktime_to_ns(ktime_get_real()); } static inline u64 ktime_get_boottime_ns(void) { return ktime_to_ns(ktime_get_boottime()); } static inline u64 ktime_get_clocktai_ns(void) { return ktime_to_ns(ktime_get_clocktai()); } static inline u64 ktime_get_raw_ns(void) { return ktime_to_ns(ktime_get_raw()); } extern u64 ktime_get_mono_fast_ns(void); extern u64 ktime_get_raw_fast_ns(void); extern u64 ktime_get_boot_fast_ns(void); extern u64 ktime_get_real_fast_ns(void); /* * timespec64/time64_t interfaces utilizing the ktime based ones * for API completeness, these could be implemented more efficiently * if needed. */ static inline void ktime_get_boottime_ts64(struct timespec64 *ts) { *ts = ktime_to_timespec64(ktime_get_boottime()); } static inline void ktime_get_coarse_boottime_ts64(struct timespec64 *ts) { *ts = ktime_to_timespec64(ktime_get_coarse_boottime()); } static inline time64_t ktime_get_boottime_seconds(void) { return ktime_divns(ktime_get_coarse_boottime(), NSEC_PER_SEC); } static inline void ktime_get_clocktai_ts64(struct timespec64 *ts) { *ts = ktime_to_timespec64(ktime_get_clocktai()); } static inline void ktime_get_coarse_clocktai_ts64(struct timespec64 *ts) { *ts = ktime_to_timespec64(ktime_get_coarse_clocktai()); } static inline time64_t ktime_get_clocktai_seconds(void) { return ktime_divns(ktime_get_coarse_clocktai(), NSEC_PER_SEC); } /* * RTC specific */ extern bool timekeeping_rtc_skipsuspend(void); extern bool timekeeping_rtc_skipresume(void); extern void timekeeping_inject_sleeptime64(const struct timespec64 *delta); /* * struct ktime_timestanps - Simultaneous mono/boot/real timestamps * @mono: Monotonic timestamp * @boot: Boottime timestamp * @real: Realtime timestamp */ struct ktime_timestamps { u64 mono; u64 boot; u64 real; }; /** * struct system_time_snapshot - simultaneous raw/real time capture with * counter value * @cycles: Clocksource counter value to produce the system times * @real: Realtime system time * @raw: Monotonic raw system time * @clock_was_set_seq: The sequence number of clock was set events * @cs_was_changed_seq: The sequence number of clocksource change events */ struct system_time_snapshot { u64 cycles; ktime_t real; ktime_t raw; unsigned int clock_was_set_seq; u8 cs_was_changed_seq; }; /** * struct system_device_crosststamp - system/device cross-timestamp * (synchronized capture) * @device: Device time * @sys_realtime: Realtime simultaneous with device time * @sys_monoraw: Monotonic raw simultaneous with device time */ struct system_device_crosststamp { ktime_t device; ktime_t sys_realtime; ktime_t sys_monoraw; }; /** * struct system_counterval_t - system counter value with the pointer to the * corresponding clocksource * @cycles: System counter value * @cs: Clocksource corresponding to system counter value. Used by * timekeeping code to verify comparibility of two cycle values */ struct system_counterval_t { u64 cycles; struct clocksource *cs; }; /* * Get cross timestamp between system clock and device clock */ extern int get_device_system_crosststamp( int (*get_time_fn)(ktime_t *device_time, struct system_counterval_t *system_counterval, void *ctx), void *ctx, struct system_time_snapshot *history, struct system_device_crosststamp *xtstamp); /* * Simultaneously snapshot realtime and monotonic raw clocks */ extern void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot); /* NMI safe mono/boot/realtime timestamps */ extern void ktime_get_fast_timestamps(struct ktime_timestamps *snap); /* * Persistent clock related interfaces */ extern int persistent_clock_is_local; extern void read_persistent_clock64(struct timespec64 *ts); void read_persistent_wall_and_boot_offset(struct timespec64 *wall_clock, struct timespec64 *boot_offset); extern int update_persistent_clock64(struct timespec64 now); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef INT_BLK_MQ_H #define INT_BLK_MQ_H #include "blk-stat.h" #include "blk-mq-tag.h" struct blk_mq_tag_set; struct blk_mq_ctxs { struct kobject kobj; struct blk_mq_ctx __percpu *queue_ctx; }; /** * struct blk_mq_ctx - State for a software queue facing the submitting CPUs */ struct blk_mq_ctx { struct { spinlock_t lock; struct list_head rq_lists[HCTX_MAX_TYPES]; } ____cacheline_aligned_in_smp; unsigned int cpu; unsigned short index_hw[HCTX_MAX_TYPES]; struct blk_mq_hw_ctx *hctxs[HCTX_MAX_TYPES]; /* incremented at dispatch time */ unsigned long rq_dispatched[2]; unsigned long rq_merged; /* incremented at completion time */ unsigned long ____cacheline_aligned_in_smp rq_completed[2]; struct request_queue *queue; struct blk_mq_ctxs *ctxs; struct kobject kobj; } ____cacheline_aligned_in_smp; void blk_mq_exit_queue(struct request_queue *q); int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr); void blk_mq_wake_waiters(struct request_queue *q); bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *, unsigned int); void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, bool kick_requeue_list); void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list); struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *start); void blk_mq_put_rq_ref(struct request *rq); /* * Internal helpers for allocating/freeing the request map */ void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, unsigned int hctx_idx); void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags); struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, unsigned int hctx_idx, unsigned int nr_tags, unsigned int reserved_tags, unsigned int flags); int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, unsigned int hctx_idx, unsigned int depth); /* * Internal helpers for request insertion into sw queues */ void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, bool at_head); void blk_mq_request_bypass_insert(struct request *rq, bool at_head, bool run_queue); void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, struct list_head *list); /* Used by blk_insert_cloned_request() to issue request directly */ blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last); void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, struct list_head *list); /* * CPU -> queue mappings */ extern int blk_mq_hw_queue_to_node(struct blk_mq_queue_map *qmap, unsigned int); /* * blk_mq_map_queue_type() - map (hctx_type,cpu) to hardware queue * @q: request queue * @type: the hctx type index * @cpu: CPU */ static inline struct blk_mq_hw_ctx *blk_mq_map_queue_type(struct request_queue *q, enum hctx_type type, unsigned int cpu) { return q->queue_hw_ctx[q->tag_set->map[type].mq_map[cpu]]; } /* * blk_mq_map_queue() - map (cmd_flags,type) to hardware queue * @q: request queue * @flags: request command flags * @cpu: cpu ctx */ static inline struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, unsigned int flags, struct blk_mq_ctx *ctx) { enum hctx_type type = HCTX_TYPE_DEFAULT; /* * The caller ensure that if REQ_HIPRI, poll must be enabled. */ if (flags & REQ_HIPRI) type = HCTX_TYPE_POLL; else if ((flags & REQ_OP_MASK) == REQ_OP_READ) type = HCTX_TYPE_READ; return ctx->hctxs[type]; } /* * sysfs helpers */ extern void blk_mq_sysfs_init(struct request_queue *q); extern void blk_mq_sysfs_deinit(struct request_queue *q); extern int __blk_mq_register_dev(struct device *dev, struct request_queue *q); extern int blk_mq_sysfs_register(struct request_queue *q); extern void blk_mq_sysfs_unregister(struct request_queue *q); extern void blk_mq_hctx_kobj_init(struct blk_mq_hw_ctx *hctx); void blk_mq_release(struct request_queue *q); static inline struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q, unsigned int cpu) { return per_cpu_ptr(q->queue_ctx, cpu); } /* * This assumes per-cpu software queueing queues. They could be per-node * as well, for instance. For now this is hardcoded as-is. Note that we don't * care about preemption, since we know the ctx's are persistent. This does * mean that we can't rely on ctx always matching the currently running CPU. */ static inline struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q) { return __blk_mq_get_ctx(q, raw_smp_processor_id()); } struct blk_mq_alloc_data { /* input parameter */ struct request_queue *q; blk_mq_req_flags_t flags; unsigned int shallow_depth; unsigned int cmd_flags; /* input & output parameter */ struct blk_mq_ctx *ctx; struct blk_mq_hw_ctx *hctx; }; static inline bool blk_mq_is_sbitmap_shared(unsigned int flags) { return flags & BLK_MQ_F_TAG_HCTX_SHARED; } static inline struct blk_mq_tags *blk_mq_tags_from_data(struct blk_mq_alloc_data *data) { if (data->q->elevator) return data->hctx->sched_tags; return data->hctx->tags; } static inline bool blk_mq_hctx_stopped(struct blk_mq_hw_ctx *hctx) { return test_bit(BLK_MQ_S_STOPPED, &hctx->state); } static inline bool blk_mq_hw_queue_mapped(struct blk_mq_hw_ctx *hctx) { return hctx->nr_ctx && hctx->tags; } unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part); void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part, unsigned int inflight[2]); static inline void blk_mq_put_dispatch_budget(struct request_queue *q) { if (q->mq_ops->put_budget) q->mq_ops->put_budget(q); } static inline bool blk_mq_get_dispatch_budget(struct request_queue *q) { if (q->mq_ops->get_budget) return q->mq_ops->get_budget(q); return true; } static inline void __blk_mq_inc_active_requests(struct blk_mq_hw_ctx *hctx) { if (blk_mq_is_sbitmap_shared(hctx->flags)) atomic_inc(&hctx->queue->nr_active_requests_shared_sbitmap); else atomic_inc(&hctx->nr_active); } static inline void __blk_mq_dec_active_requests(struct blk_mq_hw_ctx *hctx) { if (blk_mq_is_sbitmap_shared(hctx->flags)) atomic_dec(&hctx->queue->nr_active_requests_shared_sbitmap); else atomic_dec(&hctx->nr_active); } static inline int __blk_mq_active_requests(struct blk_mq_hw_ctx *hctx) { if (blk_mq_is_sbitmap_shared(hctx->flags)) return atomic_read(&hctx->queue->nr_active_requests_shared_sbitmap); return atomic_read(&hctx->nr_active); } static inline void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq) { blk_mq_put_tag(hctx->tags, rq->mq_ctx, rq->tag); rq->tag = BLK_MQ_NO_TAG; if (rq->rq_flags & RQF_MQ_INFLIGHT) { rq->rq_flags &= ~RQF_MQ_INFLIGHT; __blk_mq_dec_active_requests(hctx); } } static inline void blk_mq_put_driver_tag(struct request *rq) { if (rq->tag == BLK_MQ_NO_TAG || rq->internal_tag == BLK_MQ_NO_TAG) return; __blk_mq_put_driver_tag(rq->mq_hctx, rq); } static inline void blk_mq_clear_mq_map(struct blk_mq_queue_map *qmap) { int cpu; for_each_possible_cpu(cpu) qmap->mq_map[cpu] = 0; } /* * blk_mq_plug() - Get caller context plug * @q: request queue * @bio : the bio being submitted by the caller context * * Plugging, by design, may delay the insertion of BIOs into the elevator in * order to increase BIO merging opportunities. This however can cause BIO * insertion order to change from the order in which submit_bio() is being * executed in the case of multiple contexts concurrently issuing BIOs to a * device, even if these context are synchronized to tightly control BIO issuing * order. While this is not a problem with regular block devices, this ordering * change can cause write BIO failures with zoned block devices as these * require sequential write patterns to zones. Prevent this from happening by * ignoring the plug state of a BIO issuing context if the target request queue * is for a zoned block device and the BIO to plug is a write operation. * * Return current->plug if the bio can be plugged and NULL otherwise */ static inline struct blk_plug *blk_mq_plug(struct request_queue *q, struct bio *bio) { /* * For regular block devices or read operations, use the context plug * which may be NULL if blk_start_plug() was not executed. */ if (!blk_queue_is_zoned(q) || !op_is_write(bio_op(bio))) return current->plug; /* Zoned block device write operation case: do not plug the BIO */ return NULL; } /* * For shared tag users, we track the number of currently active users * and attempt to provide a fair share of the tag depth for each of them. */ static inline bool hctx_may_queue(struct blk_mq_hw_ctx *hctx, struct sbitmap_queue *bt) { unsigned int depth, users; if (!hctx || !(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) return true; /* * Don't try dividing an ant */ if (bt->sb.depth == 1) return true; if (blk_mq_is_sbitmap_shared(hctx->flags)) { struct request_queue *q = hctx->queue; struct blk_mq_tag_set *set = q->tag_set; if (!test_bit(QUEUE_FLAG_HCTX_ACTIVE, &q->queue_flags)) return true; users = atomic_read(&set->active_queues_shared_sbitmap); } else { if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state)) return true; users = atomic_read(&hctx->tags->active_queues); } if (!users) return true; /* * Allow at least some tags */ depth = max((bt->sb.depth + users - 1) / users, 4U); return __blk_mq_active_requests(hctx) < depth; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 // SPDX-License-Identifier: GPL-2.0 /* * Common header file for probe-based Dynamic events. * * This code was copied from kernel/trace/trace_kprobe.h written by * Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> * * Updates to make this generic: * Copyright (C) IBM Corporation, 2010-2011 * Author: Srikar Dronamraju */ #include <linux/seq_file.h> #include <linux/slab.h> #include <linux/smp.h> #include <linux/tracefs.h> #include <linux/types.h> #include <linux/string.h> #include <linux/ptrace.h> #include <linux/perf_event.h> #include <linux/kprobes.h> #include <linux/stringify.h> #include <linux/limits.h> #include <linux/uaccess.h> #include <linux/bitops.h> #include <asm/bitsperlong.h> #include "trace.h" #include "trace_output.h" #define MAX_TRACE_ARGS 128 #define MAX_ARGSTR_LEN 63 #define MAX_ARRAY_LEN 64 #define MAX_ARG_NAME_LEN 32 #define MAX_STRING_SIZE PATH_MAX /* Reserved field names */ #define FIELD_STRING_IP "__probe_ip" #define FIELD_STRING_RETIP "__probe_ret_ip" #define FIELD_STRING_FUNC "__probe_func" #undef DEFINE_FIELD #define DEFINE_FIELD(type, item, name, is_signed) \ do { \ ret = trace_define_field(event_call, #type, name, \ offsetof(typeof(field), item), \ sizeof(field.item), is_signed, \ FILTER_OTHER); \ if (ret) \ return ret; \ } while (0) /* Flags for trace_probe */ #define TP_FLAG_TRACE 1 #define TP_FLAG_PROFILE 2 /* data_loc: data location, compatible with u32 */ #define make_data_loc(len, offs) \ (((u32)(len) << 16) | ((u32)(offs) & 0xffff)) #define get_loc_len(dl) ((u32)(dl) >> 16) #define get_loc_offs(dl) ((u32)(dl) & 0xffff) static nokprobe_inline void *get_loc_data(u32 *dl, void *ent) { return (u8 *)ent + get_loc_offs(*dl); } static nokprobe_inline u32 update_data_loc(u32 loc, int consumed) { u32 maxlen = get_loc_len(loc); u32 offset = get_loc_offs(loc); return make_data_loc(maxlen - consumed, offset + consumed); } /* Printing function type */ typedef int (*print_type_func_t)(struct trace_seq *, void *, void *); enum fetch_op { FETCH_OP_NOP = 0, // Stage 1 (load) ops FETCH_OP_REG, /* Register : .param = offset */ FETCH_OP_STACK, /* Stack : .param = index */ FETCH_OP_STACKP, /* Stack pointer */ FETCH_OP_RETVAL, /* Return value */ FETCH_OP_IMM, /* Immediate : .immediate */ FETCH_OP_COMM, /* Current comm */ FETCH_OP_ARG, /* Function argument : .param */ FETCH_OP_FOFFS, /* File offset: .immediate */ FETCH_OP_DATA, /* Allocated data: .data */ // Stage 2 (dereference) op FETCH_OP_DEREF, /* Dereference: .offset */ FETCH_OP_UDEREF, /* User-space Dereference: .offset */ // Stage 3 (store) ops FETCH_OP_ST_RAW, /* Raw: .size */ FETCH_OP_ST_MEM, /* Mem: .offset, .size */ FETCH_OP_ST_UMEM, /* Mem: .offset, .size */ FETCH_OP_ST_STRING, /* String: .offset, .size */ FETCH_OP_ST_USTRING, /* User String: .offset, .size */ // Stage 4 (modify) op FETCH_OP_MOD_BF, /* Bitfield: .basesize, .lshift, .rshift */ // Stage 5 (loop) op FETCH_OP_LP_ARRAY, /* Array: .param = loop count */ FETCH_OP_END, FETCH_NOP_SYMBOL, /* Unresolved Symbol holder */ }; struct fetch_insn { enum fetch_op op; union { unsigned int param; struct { unsigned int size; int offset; }; struct { unsigned char basesize; unsigned char lshift; unsigned char rshift; }; unsigned long immediate; void *data; }; }; /* fetch + deref*N + store + mod + end <= 16, this allows N=12, enough */ #define FETCH_INSN_MAX 16 #define FETCH_TOKEN_COMM (-ECOMM) /* Fetch type information table */ struct fetch_type { const char *name; /* Name of type */ size_t size; /* Byte size of type */ int is_signed; /* Signed flag */ print_type_func_t print; /* Print functions */ const char *fmt; /* Fromat string */ const char *fmttype; /* Name in format file */ }; /* For defining macros, define string/string_size types */ typedef u32 string; typedef u32 string_size; #define PRINT_TYPE_FUNC_NAME(type) print_type_##type #define PRINT_TYPE_FMT_NAME(type) print_type_format_##type /* Printing in basic type function template */ #define DECLARE_BASIC_PRINT_TYPE_FUNC(type) \ int PRINT_TYPE_FUNC_NAME(type)(struct trace_seq *s, void *data, void *ent);\ extern const char PRINT_TYPE_FMT_NAME(type)[] DECLARE_BASIC_PRINT_TYPE_FUNC(u8); DECLARE_BASIC_PRINT_TYPE_FUNC(u16); DECLARE_BASIC_PRINT_TYPE_FUNC(u32); DECLARE_BASIC_PRINT_TYPE_FUNC(u64); DECLARE_BASIC_PRINT_TYPE_FUNC(s8); DECLARE_BASIC_PRINT_TYPE_FUNC(s16); DECLARE_BASIC_PRINT_TYPE_FUNC(s32); DECLARE_BASIC_PRINT_TYPE_FUNC(s64); DECLARE_BASIC_PRINT_TYPE_FUNC(x8); DECLARE_BASIC_PRINT_TYPE_FUNC(x16); DECLARE_BASIC_PRINT_TYPE_FUNC(x32); DECLARE_BASIC_PRINT_TYPE_FUNC(x64); DECLARE_BASIC_PRINT_TYPE_FUNC(string); DECLARE_BASIC_PRINT_TYPE_FUNC(symbol); /* Default (unsigned long) fetch type */ #define __DEFAULT_FETCH_TYPE(t) x##t #define _DEFAULT_FETCH_TYPE(t) __DEFAULT_FETCH_TYPE(t) #define DEFAULT_FETCH_TYPE _DEFAULT_FETCH_TYPE(BITS_PER_LONG) #define DEFAULT_FETCH_TYPE_STR __stringify(DEFAULT_FETCH_TYPE) #define __ADDR_FETCH_TYPE(t) u##t #define _ADDR_FETCH_TYPE(t) __ADDR_FETCH_TYPE(t) #define ADDR_FETCH_TYPE _ADDR_FETCH_TYPE(BITS_PER_LONG) #define __ASSIGN_FETCH_TYPE(_name, ptype, ftype, _size, sign, _fmttype) \ {.name = _name, \ .size = _size, \ .is_signed = sign, \ .print = PRINT_TYPE_FUNC_NAME(ptype), \ .fmt = PRINT_TYPE_FMT_NAME(ptype), \ .fmttype = _fmttype, \ } #define _ASSIGN_FETCH_TYPE(_name, ptype, ftype, _size, sign, _fmttype) \ __ASSIGN_FETCH_TYPE(_name, ptype, ftype, _size, sign, #_fmttype) #define ASSIGN_FETCH_TYPE(ptype, ftype, sign) \ _ASSIGN_FETCH_TYPE(#ptype, ptype, ftype, sizeof(ftype), sign, ptype) /* If ptype is an alias of atype, use this macro (show atype in format) */ #define ASSIGN_FETCH_TYPE_ALIAS(ptype, atype, ftype, sign) \ _ASSIGN_FETCH_TYPE(#ptype, ptype, ftype, sizeof(ftype), sign, atype) #define ASSIGN_FETCH_TYPE_END {} #define MAX_ARRAY_LEN 64 #ifdef CONFIG_KPROBE_EVENTS bool trace_kprobe_on_func_entry(struct trace_event_call *call); bool trace_kprobe_error_injectable(struct trace_event_call *call); #else static inline bool trace_kprobe_on_func_entry(struct trace_event_call *call) { return false; } static inline bool trace_kprobe_error_injectable(struct trace_event_call *call) { return false; } #endif /* CONFIG_KPROBE_EVENTS */ struct probe_arg { struct fetch_insn *code; bool dynamic;/* Dynamic array (string) is used */ unsigned int offset; /* Offset from argument entry */ unsigned int count; /* Array count */ const char *name; /* Name of this argument */ const char *comm; /* Command of this argument */ char *fmt; /* Format string if needed */ const struct fetch_type *type; /* Type of this argument */ }; struct trace_uprobe_filter { rwlock_t rwlock; int nr_systemwide; struct list_head perf_events; }; /* Event call and class holder */ struct trace_probe_event { unsigned int flags; /* For TP_FLAG_* */ struct trace_event_class class; struct trace_event_call call; struct list_head files; struct list_head probes; struct trace_uprobe_filter filter[]; }; struct trace_probe { struct list_head list; struct trace_probe_event *event; ssize_t size; /* trace entry size */ unsigned int nr_args; struct probe_arg args[]; }; struct event_file_link { struct trace_event_file *file; struct list_head list; }; static inline bool trace_probe_test_flag(struct trace_probe *tp, unsigned int flag) { return !!(tp->event->flags & flag); } static inline void trace_probe_set_flag(struct trace_probe *tp, unsigned int flag) { tp->event->flags |= flag; } static inline void trace_probe_clear_flag(struct trace_probe *tp, unsigned int flag) { tp->event->flags &= ~flag; } static inline bool trace_probe_is_enabled(struct trace_probe *tp) { return trace_probe_test_flag(tp, TP_FLAG_TRACE | TP_FLAG_PROFILE); } static inline const char *trace_probe_name(struct trace_probe *tp) { return trace_event_name(&tp->event->call); } static inline const char *trace_probe_group_name(struct trace_probe *tp) { return tp->event->call.class->system; } static inline struct trace_event_call * trace_probe_event_call(struct trace_probe *tp) { return &tp->event->call; } static inline struct trace_probe_event * trace_probe_event_from_call(struct trace_event_call *event_call) { return container_of(event_call, struct trace_probe_event, call); } static inline struct trace_probe * trace_probe_primary_from_call(struct trace_event_call *call) { struct trace_probe_event *tpe = trace_probe_event_from_call(call); return list_first_entry(&tpe->probes, struct trace_probe, list); } static inline struct list_head *trace_probe_probe_list(struct trace_probe *tp) { return &tp->event->probes; } static inline bool trace_probe_has_sibling(struct trace_probe *tp) { struct list_head *list = trace_probe_probe_list(tp); return !list_empty(list) && !list_is_singular(list); } static inline int trace_probe_unregister_event_call(struct trace_probe *tp) { /* tp->event is unregistered in trace_remove_event_call() */ return trace_remove_event_call(&tp->event->call); } static inline bool trace_probe_has_single_file(struct trace_probe *tp) { return !!list_is_singular(&tp->event->files); } int trace_probe_init(struct trace_probe *tp, const char *event, const char *group, bool alloc_filter); void trace_probe_cleanup(struct trace_probe *tp); int trace_probe_append(struct trace_probe *tp, struct trace_probe *to); void trace_probe_unlink(struct trace_probe *tp); int trace_probe_register_event_call(struct trace_probe *tp); int trace_probe_add_file(struct trace_probe *tp, struct trace_event_file *file); int trace_probe_remove_file(struct trace_probe *tp, struct trace_event_file *file); struct event_file_link *trace_probe_get_file_link(struct trace_probe *tp, struct trace_event_file *file); int trace_probe_compare_arg_type(struct trace_probe *a, struct trace_probe *b); bool trace_probe_match_command_args(struct trace_probe *tp, int argc, const char **argv); #define trace_probe_for_each_link(pos, tp) \ list_for_each_entry(pos, &(tp)->event->files, list) #define trace_probe_for_each_link_rcu(pos, tp) \ list_for_each_entry_rcu(pos, &(tp)->event->files, list) #define TPARG_FL_RETURN BIT(0) #define TPARG_FL_KERNEL BIT(1) #define TPARG_FL_FENTRY BIT(2) #define TPARG_FL_MASK GENMASK(2, 0) extern int traceprobe_parse_probe_arg(struct trace_probe *tp, int i, char *arg, unsigned int flags); extern int traceprobe_update_arg(struct probe_arg *arg); extern void traceprobe_free_probe_arg(struct probe_arg *arg); extern int traceprobe_split_symbol_offset(char *symbol, long *offset); int traceprobe_parse_event_name(const char **pevent, const char **pgroup, char *buf, int offset); extern int traceprobe_set_print_fmt(struct trace_probe *tp, bool is_return); #ifdef CONFIG_PERF_EVENTS extern struct trace_event_call * create_local_trace_kprobe(char *func, void *addr, unsigned long offs, bool is_return); extern void destroy_local_trace_kprobe(struct trace_event_call *event_call); extern struct trace_event_call * create_local_trace_uprobe(char *name, unsigned long offs, unsigned long ref_ctr_offset, bool is_return); extern void destroy_local_trace_uprobe(struct trace_event_call *event_call); #endif extern int traceprobe_define_arg_fields(struct trace_event_call *event_call, size_t offset, struct trace_probe *tp); #undef ERRORS #define ERRORS \ C(FILE_NOT_FOUND, "Failed to find the given file"), \ C(NO_REGULAR_FILE, "Not a regular file"), \ C(BAD_REFCNT, "Invalid reference counter offset"), \ C(REFCNT_OPEN_BRACE, "Reference counter brace is not closed"), \ C(BAD_REFCNT_SUFFIX, "Reference counter has wrong suffix"), \ C(BAD_UPROBE_OFFS, "Invalid uprobe offset"), \ C(MAXACT_NO_KPROBE, "Maxactive is not for kprobe"), \ C(BAD_MAXACT, "Invalid maxactive number"), \ C(MAXACT_TOO_BIG, "Maxactive is too big"), \ C(BAD_PROBE_ADDR, "Invalid probed address or symbol"), \ C(BAD_RETPROBE, "Retprobe address must be an function entry"), \ C(BAD_ADDR_SUFFIX, "Invalid probed address suffix"), \ C(NO_GROUP_NAME, "Group name is not specified"), \ C(GROUP_TOO_LONG, "Group name is too long"), \ C(BAD_GROUP_NAME, "Group name must follow the same rules as C identifiers"), \ C(NO_EVENT_NAME, "Event name is not specified"), \ C(EVENT_TOO_LONG, "Event name is too long"), \ C(BAD_EVENT_NAME, "Event name must follow the same rules as C identifiers"), \ C(EVENT_EXIST, "Given group/event name is already used by another event"), \ C(RETVAL_ON_PROBE, "$retval is not available on probe"), \ C(BAD_STACK_NUM, "Invalid stack number"), \ C(BAD_ARG_NUM, "Invalid argument number"), \ C(BAD_VAR, "Invalid $-valiable specified"), \ C(BAD_REG_NAME, "Invalid register name"), \ C(BAD_MEM_ADDR, "Invalid memory address"), \ C(BAD_IMM, "Invalid immediate value"), \ C(IMMSTR_NO_CLOSE, "String is not closed with '\"'"), \ C(FILE_ON_KPROBE, "File offset is not available with kprobe"), \ C(BAD_FILE_OFFS, "Invalid file offset value"), \ C(SYM_ON_UPROBE, "Symbol is not available with uprobe"), \ C(TOO_MANY_OPS, "Dereference is too much nested"), \ C(DEREF_NEED_BRACE, "Dereference needs a brace"), \ C(BAD_DEREF_OFFS, "Invalid dereference offset"), \ C(DEREF_OPEN_BRACE, "Dereference brace is not closed"), \ C(COMM_CANT_DEREF, "$comm can not be dereferenced"), \ C(BAD_FETCH_ARG, "Invalid fetch argument"), \ C(ARRAY_NO_CLOSE, "Array is not closed"), \ C(BAD_ARRAY_SUFFIX, "Array has wrong suffix"), \ C(BAD_ARRAY_NUM, "Invalid array size"), \ C(ARRAY_TOO_BIG, "Array number is too big"), \ C(BAD_TYPE, "Unknown type is specified"), \ C(BAD_STRING, "String accepts only memory argument"), \ C(BAD_BITFIELD, "Invalid bitfield"), \ C(ARG_NAME_TOO_LONG, "Argument name is too long"), \ C(NO_ARG_NAME, "Argument name is not specified"), \ C(BAD_ARG_NAME, "Argument name must follow the same rules as C identifiers"), \ C(USED_ARG_NAME, "This argument name is already used"), \ C(ARG_TOO_LONG, "Argument expression is too long"), \ C(NO_ARG_BODY, "No argument expression"), \ C(BAD_INSN_BNDRY, "Probe point is not an instruction boundary"),\ C(FAIL_REG_PROBE, "Failed to register probe event"),\ C(DIFF_PROBE_TYPE, "Probe type is different from existing probe"),\ C(DIFF_ARG_TYPE, "Argument type or name is different from existing probe"),\ C(SAME_PROBE, "There is already the exact same probe event"), #undef C #define C(a, b) TP_ERR_##a /* Define TP_ERR_ */ enum { ERRORS }; /* Error text is defined in trace_probe.c */ struct trace_probe_log { const char *subsystem; const char **argv; int argc; int index; }; void trace_probe_log_init(const char *subsystem, int argc, const char **argv); void trace_probe_log_set_index(int index); void trace_probe_log_clear(void); void __trace_probe_log_err(int offset, int err); #define trace_probe_log_err(offs, err) \ __trace_probe_log_err(offs, TP_ERR_##err)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_TASK_WORK_H #define _LINUX_TASK_WORK_H #include <linux/list.h> #include <linux/sched.h> typedef void (*task_work_func_t)(struct callback_head *); static inline void init_task_work(struct callback_head *twork, task_work_func_t func) { twork->func = func; } enum task_work_notify_mode { TWA_NONE, TWA_RESUME, TWA_SIGNAL, }; int task_work_add(struct task_struct *task, struct callback_head *twork, enum task_work_notify_mode mode); struct callback_head *task_work_cancel(struct task_struct *, task_work_func_t); void task_work_run(void); static inline void exit_task_work(struct task_struct *task) { task_work_run(); } #endif /* _LINUX_TASK_WORK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __NET_FRAG_H__ #define __NET_FRAG_H__ #include <linux/rhashtable-types.h> #include <linux/completion.h> /* Per netns frag queues directory */ struct fqdir { /* sysctls */ long high_thresh; long low_thresh; int timeout; int max_dist; struct inet_frags *f; struct net *net; bool dead; struct rhashtable rhashtable ____cacheline_aligned_in_smp; /* Keep atomic mem on separate cachelines in structs that include it */ atomic_long_t mem ____cacheline_aligned_in_smp; struct work_struct destroy_work; }; /** * fragment queue flags * * @INET_FRAG_FIRST_IN: first fragment has arrived * @INET_FRAG_LAST_IN: final fragment has arrived * @INET_FRAG_COMPLETE: frag queue has been processed and is due for destruction * @INET_FRAG_HASH_DEAD: inet_frag_kill() has not removed fq from rhashtable */ enum { INET_FRAG_FIRST_IN = BIT(0), INET_FRAG_LAST_IN = BIT(1), INET_FRAG_COMPLETE = BIT(2), INET_FRAG_HASH_DEAD = BIT(3), }; struct frag_v4_compare_key { __be32 saddr; __be32 daddr; u32 user; u32 vif; __be16 id; u16 protocol; }; struct frag_v6_compare_key { struct in6_addr saddr; struct in6_addr daddr; u32 user; __be32 id; u32 iif; }; /** * struct inet_frag_queue - fragment queue * * @node: rhash node * @key: keys identifying this frag. * @timer: queue expiration timer * @lock: spinlock protecting this frag * @refcnt: reference count of the queue * @rb_fragments: received fragments rb-tree root * @fragments_tail: received fragments tail * @last_run_head: the head of the last "run". see ip_fragment.c * @stamp: timestamp of the last received fragment * @len: total length of the original datagram * @meat: length of received fragments so far * @flags: fragment queue flags * @max_size: maximum received fragment size * @fqdir: pointer to struct fqdir * @rcu: rcu head for freeing deferall */ struct inet_frag_queue { struct rhash_head node; union { struct frag_v4_compare_key v4; struct frag_v6_compare_key v6; } key; struct timer_list timer; spinlock_t lock; refcount_t refcnt; struct rb_root rb_fragments; struct sk_buff *fragments_tail; struct sk_buff *last_run_head; ktime_t stamp; int len; int meat; __u8 flags; u16 max_size; struct fqdir *fqdir; struct rcu_head rcu; }; struct inet_frags { unsigned int qsize; void (*constructor)(struct inet_frag_queue *q, const void *arg); void (*destructor)(struct inet_frag_queue *); void (*frag_expire)(struct timer_list *t); struct kmem_cache *frags_cachep; const char *frags_cache_name; struct rhashtable_params rhash_params; refcount_t refcnt; struct completion completion; }; int inet_frags_init(struct inet_frags *); void inet_frags_fini(struct inet_frags *); int fqdir_init(struct fqdir **fqdirp, struct inet_frags *f, struct net *net); static inline void fqdir_pre_exit(struct fqdir *fqdir) { fqdir->high_thresh = 0; /* prevent creation of new frags */ fqdir->dead = true; } void fqdir_exit(struct fqdir *fqdir); void inet_frag_kill(struct inet_frag_queue *q); void inet_frag_destroy(struct inet_frag_queue *q); struct inet_frag_queue *inet_frag_find(struct fqdir *fqdir, void *key); /* Free all skbs in the queue; return the sum of their truesizes. */ unsigned int inet_frag_rbtree_purge(struct rb_root *root); static inline void inet_frag_put(struct inet_frag_queue *q) { if (refcount_dec_and_test(&q->refcnt)) inet_frag_destroy(q); } /* Memory Tracking Functions. */ static inline long frag_mem_limit(const struct fqdir *fqdir) { return atomic_long_read(&fqdir->mem); } static inline void sub_frag_mem_limit(struct fqdir *fqdir, long val) { atomic_long_sub(val, &fqdir->mem); } static inline void add_frag_mem_limit(struct fqdir *fqdir, long val) { atomic_long_add(val, &fqdir->mem); } /* RFC 3168 support : * We want to check ECN values of all fragments, do detect invalid combinations. * In ipq->ecn, we store the OR value of each ip4_frag_ecn() fragment value. */ #define IPFRAG_ECN_NOT_ECT 0x01 /* one frag had ECN_NOT_ECT */ #define IPFRAG_ECN_ECT_1 0x02 /* one frag had ECN_ECT_1 */ #define IPFRAG_ECN_ECT_0 0x04 /* one frag had ECN_ECT_0 */ #define IPFRAG_ECN_CE 0x08 /* one frag had ECN_CE */ extern const u8 ip_frag_ecn_table[16]; /* Return values of inet_frag_queue_insert() */ #define IPFRAG_OK 0 #define IPFRAG_DUP 1 #define IPFRAG_OVERLAP 2 int inet_frag_queue_insert(struct inet_frag_queue *q, struct sk_buff *skb, int offset, int end); void *inet_frag_reasm_prepare(struct inet_frag_queue *q, struct sk_buff *skb, struct sk_buff *parent); void inet_frag_reasm_finish(struct inet_frag_queue *q, struct sk_buff *head, void *reasm_data, bool try_coalesce); struct sk_buff *inet_frag_pull_head(struct inet_frag_queue *q); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 /* gf128mul.h - GF(2^128) multiplication functions * * Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. * Copyright (c) 2006 Rik Snel <rsnel@cube.dyndns.org> * * Based on Dr Brian Gladman's (GPL'd) work published at * http://fp.gladman.plus.com/cryptography_technology/index.htm * See the original copyright notice below. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. */ /* --------------------------------------------------------------------------- Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. All rights reserved. LICENSE TERMS The free distribution and use of this software in both source and binary form is allowed (with or without changes) provided that: 1. distributions of this source code include the above copyright notice, this list of conditions and the following disclaimer; 2. distributions in binary form include the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other associated materials; 3. the copyright holder's name is not used to endorse products built using this software without specific written permission. ALTERNATIVELY, provided that this notice is retained in full, this product may be distributed under the terms of the GNU General Public License (GPL), in which case the provisions of the GPL apply INSTEAD OF those given above. DISCLAIMER This software is provided 'as is' with no explicit or implied warranties in respect of its properties, including, but not limited to, correctness and/or fitness for purpose. --------------------------------------------------------------------------- Issue Date: 31/01/2006 An implementation of field multiplication in Galois Field GF(2^128) */ #ifndef _CRYPTO_GF128MUL_H #define _CRYPTO_GF128MUL_H #include <asm/byteorder.h> #include <crypto/b128ops.h> #include <linux/slab.h> /* Comment by Rik: * * For some background on GF(2^128) see for example: * http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-revised-spec.pdf * * The elements of GF(2^128) := GF(2)[X]/(X^128-X^7-X^2-X^1-1) can * be mapped to computer memory in a variety of ways. Let's examine * three common cases. * * Take a look at the 16 binary octets below in memory order. The msb's * are left and the lsb's are right. char b[16] is an array and b[0] is * the first octet. * * 10000000 00000000 00000000 00000000 .... 00000000 00000000 00000000 * b[0] b[1] b[2] b[3] b[13] b[14] b[15] * * Every bit is a coefficient of some power of X. We can store the bits * in every byte in little-endian order and the bytes themselves also in * little endian order. I will call this lle (little-little-endian). * The above buffer represents the polynomial 1, and X^7+X^2+X^1+1 looks * like 11100001 00000000 .... 00000000 = { 0xE1, 0x00, }. * This format was originally implemented in gf128mul and is used * in GCM (Galois/Counter mode) and in ABL (Arbitrary Block Length). * * Another convention says: store the bits in bigendian order and the * bytes also. This is bbe (big-big-endian). Now the buffer above * represents X^127. X^7+X^2+X^1+1 looks like 00000000 .... 10000111, * b[15] = 0x87 and the rest is 0. LRW uses this convention and bbe * is partly implemented. * * Both of the above formats are easy to implement on big-endian * machines. * * XTS and EME (the latter of which is patent encumbered) use the ble * format (bits are stored in big endian order and the bytes in little * endian). The above buffer represents X^7 in this case and the * primitive polynomial is b[0] = 0x87. * * The common machine word-size is smaller than 128 bits, so to make * an efficient implementation we must split into machine word sizes. * This implementation uses 64-bit words for the moment. Machine * endianness comes into play. The lle format in relation to machine * endianness is discussed below by the original author of gf128mul Dr * Brian Gladman. * * Let's look at the bbe and ble format on a little endian machine. * * bbe on a little endian machine u32 x[4]: * * MS x[0] LS MS x[1] LS * ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls * 103..96 111.104 119.112 127.120 71...64 79...72 87...80 95...88 * * MS x[2] LS MS x[3] LS * ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls * 39...32 47...40 55...48 63...56 07...00 15...08 23...16 31...24 * * ble on a little endian machine * * MS x[0] LS MS x[1] LS * ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls * 31...24 23...16 15...08 07...00 63...56 55...48 47...40 39...32 * * MS x[2] LS MS x[3] LS * ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls * 95...88 87...80 79...72 71...64 127.120 199.112 111.104 103..96 * * Multiplications in GF(2^128) are mostly bit-shifts, so you see why * ble (and lbe also) are easier to implement on a little-endian * machine than on a big-endian machine. The converse holds for bbe * and lle. * * Note: to have good alignment, it seems to me that it is sufficient * to keep elements of GF(2^128) in type u64[2]. On 32-bit wordsize * machines this will automatically aligned to wordsize and on a 64-bit * machine also. */ /* Multiply a GF(2^128) field element by x. Field elements are held in arrays of bytes in which field bits 8n..8n + 7 are held in byte[n], with lower indexed bits placed in the more numerically significant bit positions within bytes. On little endian machines the bit indexes translate into the bit positions within four 32-bit words in the following way MS x[0] LS MS x[1] LS ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls 24...31 16...23 08...15 00...07 56...63 48...55 40...47 32...39 MS x[2] LS MS x[3] LS ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls 88...95 80...87 72...79 64...71 120.127 112.119 104.111 96..103 On big endian machines the bit indexes translate into the bit positions within four 32-bit words in the following way MS x[0] LS MS x[1] LS ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls 00...07 08...15 16...23 24...31 32...39 40...47 48...55 56...63 MS x[2] LS MS x[3] LS ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls 64...71 72...79 80...87 88...95 96..103 104.111 112.119 120.127 */ /* A slow generic version of gf_mul, implemented for lle and bbe * It multiplies a and b and puts the result in a */ void gf128mul_lle(be128 *a, const be128 *b); void gf128mul_bbe(be128 *a, const be128 *b); /* * The following functions multiply a field element by x in * the polynomial field representation. They use 64-bit word operations * to gain speed but compensate for machine endianness and hence work * correctly on both styles of machine. * * They are defined here for performance. */ static inline u64 gf128mul_mask_from_bit(u64 x, int which) { /* a constant-time version of 'x & ((u64)1 << which) ? (u64)-1 : 0' */ return ((s64)(x << (63 - which)) >> 63); } static inline void gf128mul_x_lle(be128 *r, const be128 *x) { u64 a = be64_to_cpu(x->a); u64 b = be64_to_cpu(x->b); /* equivalent to gf128mul_table_le[(b << 7) & 0xff] << 48 * (see crypto/gf128mul.c): */ u64 _tt = gf128mul_mask_from_bit(b, 0) & ((u64)0xe1 << 56); r->b = cpu_to_be64((b >> 1) | (a << 63)); r->a = cpu_to_be64((a >> 1) ^ _tt); } static inline void gf128mul_x_bbe(be128 *r, const be128 *x) { u64 a = be64_to_cpu(x->a); u64 b = be64_to_cpu(x->b); /* equivalent to gf128mul_table_be[a >> 63] (see crypto/gf128mul.c): */ u64 _tt = gf128mul_mask_from_bit(a, 63) & 0x87; r->a = cpu_to_be64((a << 1) | (b >> 63)); r->b = cpu_to_be64((b << 1) ^ _tt); } /* needed by XTS */ static inline void gf128mul_x_ble(le128 *r, const le128 *x) { u64 a = le64_to_cpu(x->a); u64 b = le64_to_cpu(x->b); /* equivalent to gf128mul_table_be[b >> 63] (see crypto/gf128mul.c): */ u64 _tt = gf128mul_mask_from_bit(a, 63) & 0x87; r->a = cpu_to_le64((a << 1) | (b >> 63)); r->b = cpu_to_le64((b << 1) ^ _tt); } /* 4k table optimization */ struct gf128mul_4k { be128 t[256]; }; struct gf128mul_4k *gf128mul_init_4k_lle(const be128 *g); struct gf128mul_4k *gf128mul_init_4k_bbe(const be128 *g); void gf128mul_4k_lle(be128 *a, const struct gf128mul_4k *t); void gf128mul_4k_bbe(be128 *a, const struct gf128mul_4k *t); void gf128mul_x8_ble(le128 *r, const le128 *x); static inline void gf128mul_free_4k(struct gf128mul_4k *t) { kfree_sensitive(t); } /* 64k table optimization, implemented for bbe */ struct gf128mul_64k { struct gf128mul_4k *t[16]; }; /* First initialize with the constant factor with which you * want to multiply and then call gf128mul_64k_bbe with the other * factor in the first argument, and the table in the second. * Afterwards, the result is stored in *a. */ struct gf128mul_64k *gf128mul_init_64k_bbe(const be128 *g); void gf128mul_free_64k(struct gf128mul_64k *t); void gf128mul_64k_bbe(be128 *a, const struct gf128mul_64k *t); #endif /* _CRYPTO_GF128MUL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 /* SPDX-License-Identifier: GPL-2.0 */ /* * workqueue.h --- work queue handling for Linux. */ #ifndef _LINUX_WORKQUEUE_H #define _LINUX_WORKQUEUE_H #include <linux/timer.h> #include <linux/linkage.h> #include <linux/bitops.h> #include <linux/lockdep.h> #include <linux/threads.h> #include <linux/atomic.h> #include <linux/cpumask.h> #include <linux/rcupdate.h> struct workqueue_struct; struct work_struct; typedef void (*work_func_t)(struct work_struct *work); void delayed_work_timer_fn(struct timer_list *t); /* * The first word is the work queue pointer and the flags rolled into * one */ #define work_data_bits(work) ((unsigned long *)(&(work)->data)) enum { WORK_STRUCT_PENDING_BIT = 0, /* work item is pending execution */ WORK_STRUCT_DELAYED_BIT = 1, /* work item is delayed */ WORK_STRUCT_PWQ_BIT = 2, /* data points to pwq */ WORK_STRUCT_LINKED_BIT = 3, /* next work is linked to this one */ #ifdef CONFIG_DEBUG_OBJECTS_WORK WORK_STRUCT_STATIC_BIT = 4, /* static initializer (debugobjects) */ WORK_STRUCT_COLOR_SHIFT = 5, /* color for workqueue flushing */ #else WORK_STRUCT_COLOR_SHIFT = 4, /* color for workqueue flushing */ #endif WORK_STRUCT_COLOR_BITS = 4, WORK_STRUCT_PENDING = 1 << WORK_STRUCT_PENDING_BIT, WORK_STRUCT_DELAYED = 1 << WORK_STRUCT_DELAYED_BIT, WORK_STRUCT_PWQ = 1 << WORK_STRUCT_PWQ_BIT, WORK_STRUCT_LINKED = 1 << WORK_STRUCT_LINKED_BIT, #ifdef CONFIG_DEBUG_OBJECTS_WORK WORK_STRUCT_STATIC = 1 << WORK_STRUCT_STATIC_BIT, #else WORK_STRUCT_STATIC = 0, #endif /* * The last color is no color used for works which don't * participate in workqueue flushing. */ WORK_NR_COLORS = (1 << WORK_STRUCT_COLOR_BITS) - 1, WORK_NO_COLOR = WORK_NR_COLORS, /* not bound to any CPU, prefer the local CPU */ WORK_CPU_UNBOUND = NR_CPUS, /* * Reserve 8 bits off of pwq pointer w/ debugobjects turned off. * This makes pwqs aligned to 256 bytes and allows 15 workqueue * flush colors. */ WORK_STRUCT_FLAG_BITS = WORK_STRUCT_COLOR_SHIFT + WORK_STRUCT_COLOR_BITS, /* data contains off-queue information when !WORK_STRUCT_PWQ */ WORK_OFFQ_FLAG_BASE = WORK_STRUCT_COLOR_SHIFT, __WORK_OFFQ_CANCELING = WORK_OFFQ_FLAG_BASE, WORK_OFFQ_CANCELING = (1 << __WORK_OFFQ_CANCELING), /* * When a work item is off queue, its high bits point to the last * pool it was on. Cap at 31 bits and use the highest number to * indicate that no pool is associated. */ WORK_OFFQ_FLAG_BITS = 1, WORK_OFFQ_POOL_SHIFT = WORK_OFFQ_FLAG_BASE + WORK_OFFQ_FLAG_BITS, WORK_OFFQ_LEFT = BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT, WORK_OFFQ_POOL_BITS = WORK_OFFQ_LEFT <= 31 ? WORK_OFFQ_LEFT : 31, WORK_OFFQ_POOL_NONE = (1LU << WORK_OFFQ_POOL_BITS) - 1, /* convenience constants */ WORK_STRUCT_FLAG_MASK = (1UL << WORK_STRUCT_FLAG_BITS) - 1, WORK_STRUCT_WQ_DATA_MASK = ~WORK_STRUCT_FLAG_MASK, WORK_STRUCT_NO_POOL = (unsigned long)WORK_OFFQ_POOL_NONE << WORK_OFFQ_POOL_SHIFT, /* bit mask for work_busy() return values */ WORK_BUSY_PENDING = 1 << 0, WORK_BUSY_RUNNING = 1 << 1, /* maximum string length for set_worker_desc() */ WORKER_DESC_LEN = 24, }; struct work_struct { atomic_long_t data; struct list_head entry; work_func_t func; #ifdef CONFIG_LOCKDEP struct lockdep_map lockdep_map; #endif }; #define WORK_DATA_INIT() ATOMIC_LONG_INIT((unsigned long)WORK_STRUCT_NO_POOL) #define WORK_DATA_STATIC_INIT() \ ATOMIC_LONG_INIT((unsigned long)(WORK_STRUCT_NO_POOL | WORK_STRUCT_STATIC)) struct delayed_work { struct work_struct work; struct timer_list timer; /* target workqueue and CPU ->timer uses to queue ->work */ struct workqueue_struct *wq; int cpu; }; struct rcu_work { struct work_struct work; struct rcu_head rcu; /* target workqueue ->rcu uses to queue ->work */ struct workqueue_struct *wq; }; /** * struct workqueue_attrs - A struct for workqueue attributes. * * This can be used to change attributes of an unbound workqueue. */ struct workqueue_attrs { /** * @nice: nice level */ int nice; /** * @cpumask: allowed CPUs */ cpumask_var_t cpumask; /** * @no_numa: disable NUMA affinity * * Unlike other fields, ``no_numa`` isn't a property of a worker_pool. It * only modifies how :c:func:`apply_workqueue_attrs` select pools and thus * doesn't participate in pool hash calculations or equality comparisons. */ bool no_numa; }; static inline struct delayed_work *to_delayed_work(struct work_struct *work) { return container_of(work, struct delayed_work, work); } static inline struct rcu_work *to_rcu_work(struct work_struct *work) { return container_of(work, struct rcu_work, work); } struct execute_work { struct work_struct work; }; #ifdef CONFIG_LOCKDEP /* * NB: because we have to copy the lockdep_map, setting _key * here is required, otherwise it could get initialised to the * copy of the lockdep_map! */ #define __WORK_INIT_LOCKDEP_MAP(n, k) \ .lockdep_map = STATIC_LOCKDEP_MAP_INIT(n, k), #else #define __WORK_INIT_LOCKDEP_MAP(n, k) #endif #define __WORK_INITIALIZER(n, f) { \ .data = WORK_DATA_STATIC_INIT(), \ .entry = { &(n).entry, &(n).entry }, \ .func = (f), \ __WORK_INIT_LOCKDEP_MAP(#n, &(n)) \ } #define __DELAYED_WORK_INITIALIZER(n, f, tflags) { \ .work = __WORK_INITIALIZER((n).work, (f)), \ .timer = __TIMER_INITIALIZER(delayed_work_timer_fn,\ (tflags) | TIMER_IRQSAFE), \ } #define DECLARE_WORK(n, f) \ struct work_struct n = __WORK_INITIALIZER(n, f) #define DECLARE_DELAYED_WORK(n, f) \ struct delayed_work n = __DELAYED_WORK_INITIALIZER(n, f, 0) #define DECLARE_DEFERRABLE_WORK(n, f) \ struct delayed_work n = __DELAYED_WORK_INITIALIZER(n, f, TIMER_DEFERRABLE) #ifdef CONFIG_DEBUG_OBJECTS_WORK extern void __init_work(struct work_struct *work, int onstack); extern void destroy_work_on_stack(struct work_struct *work); extern void destroy_delayed_work_on_stack(struct delayed_work *work); static inline unsigned int work_static(struct work_struct *work) { return *work_data_bits(work) & WORK_STRUCT_STATIC; } #else static inline void __init_work(struct work_struct *work, int onstack) { } static inline void destroy_work_on_stack(struct work_struct *work) { } static inline void destroy_delayed_work_on_stack(struct delayed_work *work) { } static inline unsigned int work_static(struct work_struct *work) { return 0; } #endif /* * initialize all of a work item in one go * * NOTE! No point in using "atomic_long_set()": using a direct * assignment of the work data initializer allows the compiler * to generate better code. */ #ifdef CONFIG_LOCKDEP #define __INIT_WORK(_work, _func, _onstack) \ do { \ static struct lock_class_key __key; \ \ __init_work((_work), _onstack); \ (_work)->data = (atomic_long_t) WORK_DATA_INIT(); \ lockdep_init_map(&(_work)->lockdep_map, "(work_completion)"#_work, &__key, 0); \ INIT_LIST_HEAD(&(_work)->entry); \ (_work)->func = (_func); \ } while (0) #else #define __INIT_WORK(_work, _func, _onstack) \ do { \ __init_work((_work), _onstack); \ (_work)->data = (atomic_long_t) WORK_DATA_INIT(); \ INIT_LIST_HEAD(&(_work)->entry); \ (_work)->func = (_func); \ } while (0) #endif #define INIT_WORK(_work, _func) \ __INIT_WORK((_work), (_func), 0) #define INIT_WORK_ONSTACK(_work, _func) \ __INIT_WORK((_work), (_func), 1) #define __INIT_DELAYED_WORK(_work, _func, _tflags) \ do { \ INIT_WORK(&(_work)->work, (_func)); \ __init_timer(&(_work)->timer, \ delayed_work_timer_fn, \ (_tflags) | TIMER_IRQSAFE); \ } while (0) #define __INIT_DELAYED_WORK_ONSTACK(_work, _func, _tflags) \ do { \ INIT_WORK_ONSTACK(&(_work)->work, (_func)); \ __init_timer_on_stack(&(_work)->timer, \ delayed_work_timer_fn, \ (_tflags) | TIMER_IRQSAFE); \ } while (0) #define INIT_DELAYED_WORK(_work, _func) \ __INIT_DELAYED_WORK(_work, _func, 0) #define INIT_DELAYED_WORK_ONSTACK(_work, _func) \ __INIT_DELAYED_WORK_ONSTACK(_work, _func, 0) #define INIT_DEFERRABLE_WORK(_work, _func) \ __INIT_DELAYED_WORK(_work, _func, TIMER_DEFERRABLE) #define INIT_DEFERRABLE_WORK_ONSTACK(_work, _func) \ __INIT_DELAYED_WORK_ONSTACK(_work, _func, TIMER_DEFERRABLE) #define INIT_RCU_WORK(_work, _func) \ INIT_WORK(&(_work)->work, (_func)) #define INIT_RCU_WORK_ONSTACK(_work, _func) \ INIT_WORK_ONSTACK(&(_work)->work, (_func)) /** * work_pending - Find out whether a work item is currently pending * @work: The work item in question */ #define work_pending(work) \ test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) /** * delayed_work_pending - Find out whether a delayable work item is currently * pending * @w: The work item in question */ #define delayed_work_pending(w) \ work_pending(&(w)->work) /* * Workqueue flags and constants. For details, please refer to * Documentation/core-api/workqueue.rst. */ enum { WQ_UNBOUND = 1 << 1, /* not bound to any cpu */ WQ_FREEZABLE = 1 << 2, /* freeze during suspend */ WQ_MEM_RECLAIM = 1 << 3, /* may be used for memory reclaim */ WQ_HIGHPRI = 1 << 4, /* high priority */ WQ_CPU_INTENSIVE = 1 << 5, /* cpu intensive workqueue */ WQ_SYSFS = 1 << 6, /* visible in sysfs, see wq_sysfs_register() */ /* * Per-cpu workqueues are generally preferred because they tend to * show better performance thanks to cache locality. Per-cpu * workqueues exclude the scheduler from choosing the CPU to * execute the worker threads, which has an unfortunate side effect * of increasing power consumption. * * The scheduler considers a CPU idle if it doesn't have any task * to execute and tries to keep idle cores idle to conserve power; * however, for example, a per-cpu work item scheduled from an * interrupt handler on an idle CPU will force the scheduler to * excute the work item on that CPU breaking the idleness, which in * turn may lead to more scheduling choices which are sub-optimal * in terms of power consumption. * * Workqueues marked with WQ_POWER_EFFICIENT are per-cpu by default * but become unbound if workqueue.power_efficient kernel param is * specified. Per-cpu workqueues which are identified to * contribute significantly to power-consumption are identified and * marked with this flag and enabling the power_efficient mode * leads to noticeable power saving at the cost of small * performance disadvantage. * * http://thread.gmane.org/gmane.linux.kernel/1480396 */ WQ_POWER_EFFICIENT = 1 << 7, __WQ_DRAINING = 1 << 16, /* internal: workqueue is draining */ __WQ_ORDERED = 1 << 17, /* internal: workqueue is ordered */ __WQ_LEGACY = 1 << 18, /* internal: create*_workqueue() */ __WQ_ORDERED_EXPLICIT = 1 << 19, /* internal: alloc_ordered_workqueue() */ WQ_MAX_ACTIVE = 512, /* I like 512, better ideas? */ WQ_MAX_UNBOUND_PER_CPU = 4, /* 4 * #cpus for unbound wq */ WQ_DFL_ACTIVE = WQ_MAX_ACTIVE / 2, }; /* unbound wq's aren't per-cpu, scale max_active according to #cpus */ #define WQ_UNBOUND_MAX_ACTIVE \ max_t(int, WQ_MAX_ACTIVE, num_possible_cpus() * WQ_MAX_UNBOUND_PER_CPU) /* * System-wide workqueues which are always present. * * system_wq is the one used by schedule[_delayed]_work[_on](). * Multi-CPU multi-threaded. There are users which expect relatively * short queue flush time. Don't queue works which can run for too * long. * * system_highpri_wq is similar to system_wq but for work items which * require WQ_HIGHPRI. * * system_long_wq is similar to system_wq but may host long running * works. Queue flushing might take relatively long. * * system_unbound_wq is unbound workqueue. Workers are not bound to * any specific CPU, not concurrency managed, and all queued works are * executed immediately as long as max_active limit is not reached and * resources are available. * * system_freezable_wq is equivalent to system_wq except that it's * freezable. * * *_power_efficient_wq are inclined towards saving power and converted * into WQ_UNBOUND variants if 'wq_power_efficient' is enabled; otherwise, * they are same as their non-power-efficient counterparts - e.g. * system_power_efficient_wq is identical to system_wq if * 'wq_power_efficient' is disabled. See WQ_POWER_EFFICIENT for more info. */ extern struct workqueue_struct *system_wq; extern struct workqueue_struct *system_highpri_wq; extern struct workqueue_struct *system_long_wq; extern struct workqueue_struct *system_unbound_wq; extern struct workqueue_struct *system_freezable_wq; extern struct workqueue_struct *system_power_efficient_wq; extern struct workqueue_struct *system_freezable_power_efficient_wq; /** * alloc_workqueue - allocate a workqueue * @fmt: printf format for the name of the workqueue * @flags: WQ_* flags * @max_active: max in-flight work items, 0 for default * remaining args: args for @fmt * * Allocate a workqueue with the specified parameters. For detailed * information on WQ_* flags, please refer to * Documentation/core-api/workqueue.rst. * * RETURNS: * Pointer to the allocated workqueue on success, %NULL on failure. */ struct workqueue_struct *alloc_workqueue(const char *fmt, unsigned int flags, int max_active, ...); /** * alloc_ordered_workqueue - allocate an ordered workqueue * @fmt: printf format for the name of the workqueue * @flags: WQ_* flags (only WQ_FREEZABLE and WQ_MEM_RECLAIM are meaningful) * @args...: args for @fmt * * Allocate an ordered workqueue. An ordered workqueue executes at * most one work item at any given time in the queued order. They are * implemented as unbound workqueues with @max_active of one. * * RETURNS: * Pointer to the allocated workqueue on success, %NULL on failure. */ #define alloc_ordered_workqueue(fmt, flags, args...) \ alloc_workqueue(fmt, WQ_UNBOUND | __WQ_ORDERED | \ __WQ_ORDERED_EXPLICIT | (flags), 1, ##args) #define create_workqueue(name) \ alloc_workqueue("%s", __WQ_LEGACY | WQ_MEM_RECLAIM, 1, (name)) #define create_freezable_workqueue(name) \ alloc_workqueue("%s", __WQ_LEGACY | WQ_FREEZABLE | WQ_UNBOUND | \ WQ_MEM_RECLAIM, 1, (name)) #define create_singlethread_workqueue(name) \ alloc_ordered_workqueue("%s", __WQ_LEGACY | WQ_MEM_RECLAIM, name) extern void destroy_workqueue(struct workqueue_struct *wq); struct workqueue_attrs *alloc_workqueue_attrs(void); void free_workqueue_attrs(struct workqueue_attrs *attrs); int apply_workqueue_attrs(struct workqueue_struct *wq, const struct workqueue_attrs *attrs); int workqueue_set_unbound_cpumask(cpumask_var_t cpumask); extern bool queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work); extern bool queue_work_node(int node, struct workqueue_struct *wq, struct work_struct *work); extern bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, struct delayed_work *work, unsigned long delay); extern bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, struct delayed_work *dwork, unsigned long delay); extern bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork); extern void flush_workqueue(struct workqueue_struct *wq); extern void drain_workqueue(struct workqueue_struct *wq); extern int schedule_on_each_cpu(work_func_t func); int execute_in_process_context(work_func_t fn, struct execute_work *); extern bool flush_work(struct work_struct *work); extern bool cancel_work_sync(struct work_struct *work); extern bool flush_delayed_work(struct delayed_work *dwork); extern bool cancel_delayed_work(struct delayed_work *dwork); extern bool cancel_delayed_work_sync(struct delayed_work *dwork); extern bool flush_rcu_work(struct rcu_work *rwork); extern void workqueue_set_max_active(struct workqueue_struct *wq, int max_active); extern struct work_struct *current_work(void); extern bool current_is_workqueue_rescuer(void); extern bool workqueue_congested(int cpu, struct workqueue_struct *wq); extern unsigned int work_busy(struct work_struct *work); extern __printf(1, 2) void set_worker_desc(const char *fmt, ...); extern void print_worker_info(const char *log_lvl, struct task_struct *task); extern void show_workqueue_state(void); extern void wq_worker_comm(char *buf, size_t size, struct task_struct *task); /** * queue_work - queue work on a workqueue * @wq: workqueue to use * @work: work to queue * * Returns %false if @work was already on a queue, %true otherwise. * * We queue the work to the CPU on which it was submitted, but if the CPU dies * it can be processed by another CPU. * * Memory-ordering properties: If it returns %true, guarantees that all stores * preceding the call to queue_work() in the program order will be visible from * the CPU which will execute @work by the time such work executes, e.g., * * { x is initially 0 } * * CPU0 CPU1 * * WRITE_ONCE(x, 1); [ @work is being executed ] * r0 = queue_work(wq, work); r1 = READ_ONCE(x); * * Forbids: r0 == true && r1 == 0 */ static inline bool queue_work(struct workqueue_struct *wq, struct work_struct *work) { return queue_work_on(WORK_CPU_UNBOUND, wq, work); } /** * queue_delayed_work - queue work on a workqueue after delay * @wq: workqueue to use * @dwork: delayable work to queue * @delay: number of jiffies to wait before queueing * * Equivalent to queue_delayed_work_on() but tries to use the local CPU. */ static inline bool queue_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork, unsigned long delay) { return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay); } /** * mod_delayed_work - modify delay of or queue a delayed work * @wq: workqueue to use * @dwork: work to queue * @delay: number of jiffies to wait before queueing * * mod_delayed_work_on() on local CPU. */ static inline bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork, unsigned long delay) { return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay); } /** * schedule_work_on - put work task on a specific cpu * @cpu: cpu to put the work task on * @work: job to be done * * This puts a job on a specific cpu */ static inline bool schedule_work_on(int cpu, struct work_struct *work) { return queue_work_on(cpu, system_wq, work); } /** * schedule_work - put work task in global workqueue * @work: job to be done * * Returns %false if @work was already on the kernel-global workqueue and * %true otherwise. * * This puts a job in the kernel-global workqueue if it was not already * queued and leaves it in the same position on the kernel-global * workqueue otherwise. * * Shares the same memory-ordering properties of queue_work(), cf. the * DocBook header of queue_work(). */ static inline bool schedule_work(struct work_struct *work) { return queue_work(system_wq, work); } /** * flush_scheduled_work - ensure that any scheduled work has run to completion. * * Forces execution of the kernel-global workqueue and blocks until its * completion. * * Think twice before calling this function! It's very easy to get into * trouble if you don't take great care. Either of the following situations * will lead to deadlock: * * One of the work items currently on the workqueue needs to acquire * a lock held by your code or its caller. * * Your code is running in the context of a work routine. * * They will be detected by lockdep when they occur, but the first might not * occur very often. It depends on what work items are on the workqueue and * what locks they need, which you have no control over. * * In most situations flushing the entire workqueue is overkill; you merely * need to know that a particular work item isn't queued and isn't running. * In such cases you should use cancel_delayed_work_sync() or * cancel_work_sync() instead. */ static inline void flush_scheduled_work(void) { flush_workqueue(system_wq); } /** * schedule_delayed_work_on - queue work in global workqueue on CPU after delay * @cpu: cpu to use * @dwork: job to be done * @delay: number of jiffies to wait * * After waiting for a given time this puts a job in the kernel-global * workqueue on the specified CPU. */ static inline bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay) { return queue_delayed_work_on(cpu, system_wq, dwork, delay); } /** * schedule_delayed_work - put work task in global workqueue after delay * @dwork: job to be done * @delay: number of jiffies to wait or 0 for immediate execution * * After waiting for a given time this puts a job in the kernel-global * workqueue. */ static inline bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay) { return queue_delayed_work(system_wq, dwork, delay); } #ifndef CONFIG_SMP static inline long work_on_cpu(int cpu, long (*fn)(void *), void *arg) { return fn(arg); } static inline long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg) { return fn(arg); } #else long work_on_cpu(int cpu, long (*fn)(void *), void *arg); long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg); #endif /* CONFIG_SMP */ #ifdef CONFIG_FREEZER extern void freeze_workqueues_begin(void); extern bool freeze_workqueues_busy(void); extern void thaw_workqueues(void); #endif /* CONFIG_FREEZER */ #ifdef CONFIG_SYSFS int workqueue_sysfs_register(struct workqueue_struct *wq); #else /* CONFIG_SYSFS */ static inline int workqueue_sysfs_register(struct workqueue_struct *wq) { return 0; } #endif /* CONFIG_SYSFS */ #ifdef CONFIG_WQ_WATCHDOG void wq_watchdog_touch(int cpu); #else /* CONFIG_WQ_WATCHDOG */ static inline void wq_watchdog_touch(int cpu) { } #endif /* CONFIG_WQ_WATCHDOG */ #ifdef CONFIG_SMP int workqueue_prepare_cpu(unsigned int cpu); int workqueue_online_cpu(unsigned int cpu); int workqueue_offline_cpu(unsigned int cpu); #endif void __init workqueue_init_early(void); void __init workqueue_init(void); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 /* SPDX-License-Identifier: GPL-2.0-only */ #ifndef LLIST_H #define LLIST_H /* * Lock-less NULL terminated single linked list * * Cases where locking is not needed: * If there are multiple producers and multiple consumers, llist_add can be * used in producers and llist_del_all can be used in consumers simultaneously * without locking. Also a single consumer can use llist_del_first while * multiple producers simultaneously use llist_add, without any locking. * * Cases where locking is needed: * If we have multiple consumers with llist_del_first used in one consumer, and * llist_del_first or llist_del_all used in other consumers, then a lock is * needed. This is because llist_del_first depends on list->first->next not * changing, but without lock protection, there's no way to be sure about that * if a preemption happens in the middle of the delete operation and on being * preempted back, the list->first is the same as before causing the cmpxchg in * llist_del_first to succeed. For example, while a llist_del_first operation * is in progress in one consumer, then a llist_del_first, llist_add, * llist_add (or llist_del_all, llist_add, llist_add) sequence in another * consumer may cause violations. * * This can be summarized as follows: * * | add | del_first | del_all * add | - | - | - * del_first | | L | L * del_all | | | - * * Where, a particular row's operation can happen concurrently with a column's * operation, with "-" being no lock needed, while "L" being lock is needed. * * The list entries deleted via llist_del_all can be traversed with * traversing function such as llist_for_each etc. But the list * entries can not be traversed safely before deleted from the list. * The order of deleted entries is from the newest to the oldest added * one. If you want to traverse from the oldest to the newest, you * must reverse the order by yourself before traversing. * * The basic atomic operation of this list is cmpxchg on long. On * architectures that don't have NMI-safe cmpxchg implementation, the * list can NOT be used in NMI handlers. So code that uses the list in * an NMI handler should depend on CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG. * * Copyright 2010,2011 Intel Corp. * Author: Huang Ying <ying.huang@intel.com> */ #include <linux/atomic.h> #include <linux/kernel.h> struct llist_head { struct llist_node *first; }; struct llist_node { struct llist_node *next; }; #define LLIST_HEAD_INIT(name) { NULL } #define LLIST_HEAD(name) struct llist_head name = LLIST_HEAD_INIT(name) /** * init_llist_head - initialize lock-less list head * @head: the head for your lock-less list */ static inline void init_llist_head(struct llist_head *list) { list->first = NULL; } /** * llist_entry - get the struct of this entry * @ptr: the &struct llist_node pointer. * @type: the type of the struct this is embedded in. * @member: the name of the llist_node within the struct. */ #define llist_entry(ptr, type, member) \ container_of(ptr, type, member) /** * member_address_is_nonnull - check whether the member address is not NULL * @ptr: the object pointer (struct type * that contains the llist_node) * @member: the name of the llist_node within the struct. * * This macro is conceptually the same as * &ptr->member != NULL * but it works around the fact that compilers can decide that taking a member * address is never a NULL pointer. * * Real objects that start at a high address and have a member at NULL are * unlikely to exist, but such pointers may be returned e.g. by the * container_of() macro. */ #define member_address_is_nonnull(ptr, member) \ ((uintptr_t)(ptr) + offsetof(typeof(*(ptr)), member) != 0) /** * llist_for_each - iterate over some deleted entries of a lock-less list * @pos: the &struct llist_node to use as a loop cursor * @node: the first entry of deleted list entries * * In general, some entries of the lock-less list can be traversed * safely only after being deleted from list, so start with an entry * instead of list head. * * If being used on entries deleted from lock-less list directly, the * traverse order is from the newest to the oldest added entry. If * you want to traverse from the oldest to the newest, you must * reverse the order by yourself before traversing. */ #define llist_for_each(pos, node) \ for ((pos) = (node); pos; (pos) = (pos)->next) /** * llist_for_each_safe - iterate over some deleted entries of a lock-less list * safe against removal of list entry * @pos: the &struct llist_node to use as a loop cursor * @n: another &struct llist_node to use as temporary storage * @node: the first entry of deleted list entries * * In general, some entries of the lock-less list can be traversed * safely only after being deleted from list, so start with an entry * instead of list head. * * If being used on entries deleted from lock-less list directly, the * traverse order is from the newest to the oldest added entry. If * you want to traverse from the oldest to the newest, you must * reverse the order by yourself before traversing. */ #define llist_for_each_safe(pos, n, node) \ for ((pos) = (node); (pos) && ((n) = (pos)->next, true); (pos) = (n)) /** * llist_for_each_entry - iterate over some deleted entries of lock-less list of given type * @pos: the type * to use as a loop cursor. * @node: the fist entry of deleted list entries. * @member: the name of the llist_node with the struct. * * In general, some entries of the lock-less list can be traversed * safely only after being removed from list, so start with an entry * instead of list head. * * If being used on entries deleted from lock-less list directly, the * traverse order is from the newest to the oldest added entry. If * you want to traverse from the oldest to the newest, you must * reverse the order by yourself before traversing. */ #define llist_for_each_entry(pos, node, member) \ for ((pos) = llist_entry((node), typeof(*(pos)), member); \ member_address_is_nonnull(pos, member); \ (pos) = llist_entry((pos)->member.next, typeof(*(pos)), member)) /** * llist_for_each_entry_safe - iterate over some deleted entries of lock-less list of given type * safe against removal of list entry * @pos: the type * to use as a loop cursor. * @n: another type * to use as temporary storage * @node: the first entry of deleted list entries. * @member: the name of the llist_node with the struct. * * In general, some entries of the lock-less list can be traversed * safely only after being removed from list, so start with an entry * instead of list head. * * If being used on entries deleted from lock-less list directly, the * traverse order is from the newest to the oldest added entry. If * you want to traverse from the oldest to the newest, you must * reverse the order by yourself before traversing. */ #define llist_for_each_entry_safe(pos, n, node, member) \ for (pos = llist_entry((node), typeof(*pos), member); \ member_address_is_nonnull(pos, member) && \ (n = llist_entry(pos->member.next, typeof(*n), member), true); \ pos = n) /** * llist_empty - tests whether a lock-less list is empty * @head: the list to test * * Not guaranteed to be accurate or up to date. Just a quick way to * test whether the list is empty without deleting something from the * list. */ static inline bool llist_empty(const struct llist_head *head) { return READ_ONCE(head->first) == NULL; } static inline struct llist_node *llist_next(struct llist_node *node) { return node->next; } extern bool llist_add_batch(struct llist_node *new_first, struct llist_node *new_last, struct llist_head *head); /** * llist_add - add a new entry * @new: new entry to be added * @head: the head for your lock-less list * * Returns true if the list was empty prior to adding this entry. */ static inline bool llist_add(struct llist_node *new, struct llist_head *head) { return llist_add_batch(new, new, head); } /** * llist_del_all - delete all entries from lock-less list * @head: the head of lock-less list to delete all entries * * If list is empty, return NULL, otherwise, delete all entries and * return the pointer to the first entry. The order of entries * deleted is from the newest to the oldest added one. */ static inline struct llist_node *llist_del_all(struct llist_head *head) { return xchg(&head->first, NULL); } extern struct llist_node *llist_del_first(struct llist_head *head); struct llist_node *llist_reverse_order(struct llist_node *head); #endif /* LLIST_H */
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 /* SPDX-License-Identifier: GPL-2.0 */ /* rwsem.h: R/W semaphores, public interface * * Written by David Howells (dhowells@redhat.com). * Derived from asm-i386/semaphore.h */ #ifndef _LINUX_RWSEM_H #define _LINUX_RWSEM_H #include <linux/linkage.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/list.h> #include <linux/spinlock.h> #include <linux/atomic.h> #include <linux/err.h> #ifdef CONFIG_RWSEM_SPIN_ON_OWNER #include <linux/osq_lock.h> #endif /* * For an uncontended rwsem, count and owner are the only fields a task * needs to touch when acquiring the rwsem. So they are put next to each * other to increase the chance that they will share the same cacheline. * * In a contended rwsem, the owner is likely the most frequently accessed * field in the structure as the optimistic waiter that holds the osq lock * will spin on owner. For an embedded rwsem, other hot fields in the * containing structure should be moved further away from the rwsem to * reduce the chance that they will share the same cacheline causing * cacheline bouncing problem. */ struct rw_semaphore { atomic_long_t count; /* * Write owner or one of the read owners as well flags regarding * the current state of the rwsem. Can be used as a speculative * check to see if the write owner is running on the cpu. */ atomic_long_t owner; #ifdef CONFIG_RWSEM_SPIN_ON_OWNER struct optimistic_spin_queue osq; /* spinner MCS lock */ #endif raw_spinlock_t wait_lock; struct list_head wait_list; #ifdef CONFIG_DEBUG_RWSEMS void *magic; #endif #ifdef CONFIG_DEBUG_LOCK_ALLOC struct lockdep_map dep_map; #endif }; /* In all implementations count != 0 means locked */ static inline int rwsem_is_locked(struct rw_semaphore *sem) { return atomic_long_read(&sem->count) != 0; } #define RWSEM_UNLOCKED_VALUE 0L #define __RWSEM_COUNT_INIT(name) .count = ATOMIC_LONG_INIT(RWSEM_UNLOCKED_VALUE) /* Common initializer macros and functions */ #ifdef CONFIG_DEBUG_LOCK_ALLOC # define __RWSEM_DEP_MAP_INIT(lockname) \ .dep_map = { \ .name = #lockname, \ .wait_type_inner = LD_WAIT_SLEEP, \ }, #else # define __RWSEM_DEP_MAP_INIT(lockname) #endif #ifdef CONFIG_DEBUG_RWSEMS # define __RWSEM_DEBUG_INIT(lockname) .magic = &lockname, #else # define __RWSEM_DEBUG_INIT(lockname) #endif #ifdef CONFIG_RWSEM_SPIN_ON_OWNER #define __RWSEM_OPT_INIT(lockname) .osq = OSQ_LOCK_UNLOCKED, #else #define __RWSEM_OPT_INIT(lockname) #endif #define __RWSEM_INITIALIZER(name) \ { __RWSEM_COUNT_INIT(name), \ .owner = ATOMIC_LONG_INIT(0), \ __RWSEM_OPT_INIT(name) \ .wait_lock = __RAW_SPIN_LOCK_UNLOCKED(name.wait_lock),\ .wait_list = LIST_HEAD_INIT((name).wait_list), \ __RWSEM_DEBUG_INIT(name) \ __RWSEM_DEP_MAP_INIT(name) } #define DECLARE_RWSEM(name) \ struct rw_semaphore name = __RWSEM_INITIALIZER(name) extern void __init_rwsem(struct rw_semaphore *sem, const char *name, struct lock_class_key *key); #define init_rwsem(sem) \ do { \ static struct lock_class_key __key; \ \ __init_rwsem((sem), #sem, &__key); \ } while (0) /* * This is the same regardless of which rwsem implementation that is being used. * It is just a heuristic meant to be called by somebody alreadying holding the * rwsem to see if somebody from an incompatible type is wanting access to the * lock. */ static inline int rwsem_is_contended(struct rw_semaphore *sem) { return !list_empty(&sem->wait_list); } /* * lock for reading */ extern void down_read(struct rw_semaphore *sem); extern int __must_check down_read_interruptible(struct rw_semaphore *sem); extern int __must_check down_read_killable(struct rw_semaphore *sem); /* * trylock for reading -- returns 1 if successful, 0 if contention */ extern int down_read_trylock(struct rw_semaphore *sem); /* * lock for writing */ extern void down_write(struct rw_semaphore *sem); extern int __must_check down_write_killable(struct rw_semaphore *sem); /* * trylock for writing -- returns 1 if successful, 0 if contention */ extern int down_write_trylock(struct rw_semaphore *sem); /* * release a read lock */ extern void up_read(struct rw_semaphore *sem); /* * release a write lock */ extern void up_write(struct rw_semaphore *sem); /* * downgrade write lock to read lock */ extern void downgrade_write(struct rw_semaphore *sem); #ifdef CONFIG_DEBUG_LOCK_ALLOC /* * nested locking. NOTE: rwsems are not allowed to recurse * (which occurs if the same task tries to acquire the same * lock instance multiple times), but multiple locks of the * same lock class might be taken, if the order of the locks * is always the same. This ordering rule can be expressed * to lockdep via the _nested() APIs, but enumerating the * subclasses that are used. (If the nesting relationship is * static then another method for expressing nested locking is * the explicit definition of lock class keys and the use of * lockdep_set_class() at lock initialization time. * See Documentation/locking/lockdep-design.rst for more details.) */ extern void down_read_nested(struct rw_semaphore *sem, int subclass); extern int __must_check down_read_killable_nested(struct rw_semaphore *sem, int subclass); extern void down_write_nested(struct rw_semaphore *sem, int subclass); extern int down_write_killable_nested(struct rw_semaphore *sem, int subclass); extern void _down_write_nest_lock(struct rw_semaphore *sem, struct lockdep_map *nest_lock); # define down_write_nest_lock(sem, nest_lock) \ do { \ typecheck(struct lockdep_map *, &(nest_lock)->dep_map); \ _down_write_nest_lock(sem, &(nest_lock)->dep_map); \ } while (0); /* * Take/release a lock when not the owner will release it. * * [ This API should be avoided as much as possible - the * proper abstraction for this case is completions. ] */ extern void down_read_non_owner(struct rw_semaphore *sem); extern void up_read_non_owner(struct rw_semaphore *sem); #else # define down_read_nested(sem, subclass) down_read(sem) # define down_read_killable_nested(sem, subclass) down_read_killable(sem) # define down_write_nest_lock(sem, nest_lock) down_write(sem) # define down_write_nested(sem, subclass) down_write(sem) # define down_write_killable_nested(sem, subclass) down_write_killable(sem) # define down_read_non_owner(sem) down_read(sem) # define up_read_non_owner(sem) up_read(sem) #endif #endif /* _LINUX_RWSEM_H */
1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 // SPDX-License-Identifier: GPL-2.0 /* * preemptoff and irqoff tracepoints * * Copyright (C) Joel Fernandes (Google) <joel@joelfernandes.org> */ #include <linux/kallsyms.h> #include <linux/uaccess.h> #include <linux/module.h> #include <linux/ftrace.h> #include <linux/kprobes.h> #include "trace.h" #define CREATE_TRACE_POINTS #include <trace/events/preemptirq.h> #ifdef CONFIG_TRACE_IRQFLAGS /* Per-cpu variable to prevent redundant calls when IRQs already off */ static DEFINE_PER_CPU(int, tracing_irq_cpu); /* * Like trace_hardirqs_on() but without the lockdep invocation. This is * used in the low level entry code where the ordering vs. RCU is important * and lockdep uses a staged approach which splits the lockdep hardirq * tracking into a RCU on and a RCU off section. */ void trace_hardirqs_on_prepare(void) { if (this_cpu_read(tracing_irq_cpu)) { if (!in_nmi()) trace_irq_enable(CALLER_ADDR0, CALLER_ADDR1); tracer_hardirqs_on(CALLER_ADDR0, CALLER_ADDR1); this_cpu_write(tracing_irq_cpu, 0); } } EXPORT_SYMBOL(trace_hardirqs_on_prepare); NOKPROBE_SYMBOL(trace_hardirqs_on_prepare); void trace_hardirqs_on(void) { if (this_cpu_read(tracing_irq_cpu)) { if (!in_nmi()) trace_irq_enable_rcuidle(CALLER_ADDR0, CALLER_ADDR1); tracer_hardirqs_on(CALLER_ADDR0, CALLER_ADDR1); this_cpu_write(tracing_irq_cpu, 0); } lockdep_hardirqs_on_prepare(CALLER_ADDR0); lockdep_hardirqs_on(CALLER_ADDR0); } EXPORT_SYMBOL(trace_hardirqs_on); NOKPROBE_SYMBOL(trace_hardirqs_on); /* * Like trace_hardirqs_off() but without the lockdep invocation. This is * used in the low level entry code where the ordering vs. RCU is important * and lockdep uses a staged approach which splits the lockdep hardirq * tracking into a RCU on and a RCU off section. */ void trace_hardirqs_off_finish(void) { if (!this_cpu_read(tracing_irq_cpu)) { this_cpu_write(tracing_irq_cpu, 1); tracer_hardirqs_off(CALLER_ADDR0, CALLER_ADDR1); if (!in_nmi()) trace_irq_disable(CALLER_ADDR0, CALLER_ADDR1); } } EXPORT_SYMBOL(trace_hardirqs_off_finish); NOKPROBE_SYMBOL(trace_hardirqs_off_finish); void trace_hardirqs_off(void) { lockdep_hardirqs_off(CALLER_ADDR0); if (!this_cpu_read(tracing_irq_cpu)) { this_cpu_write(tracing_irq_cpu, 1); tracer_hardirqs_off(CALLER_ADDR0, CALLER_ADDR1); if (!in_nmi()) trace_irq_disable_rcuidle(CALLER_ADDR0, CALLER_ADDR1); } } EXPORT_SYMBOL(trace_hardirqs_off); NOKPROBE_SYMBOL(trace_hardirqs_off); __visible void trace_hardirqs_on_caller(unsigned long caller_addr) { if (this_cpu_read(tracing_irq_cpu)) { if (!in_nmi()) trace_irq_enable_rcuidle(CALLER_ADDR0, caller_addr); tracer_hardirqs_on(CALLER_ADDR0, caller_addr); this_cpu_write(tracing_irq_cpu, 0); } lockdep_hardirqs_on_prepare(CALLER_ADDR0); lockdep_hardirqs_on(CALLER_ADDR0); } EXPORT_SYMBOL(trace_hardirqs_on_caller); NOKPROBE_SYMBOL(trace_hardirqs_on_caller); __visible void trace_hardirqs_off_caller(unsigned long caller_addr) { lockdep_hardirqs_off(CALLER_ADDR0); if (!this_cpu_read(tracing_irq_cpu)) { this_cpu_write(tracing_irq_cpu, 1); tracer_hardirqs_off(CALLER_ADDR0, caller_addr); if (!in_nmi()) trace_irq_disable_rcuidle(CALLER_ADDR0, caller_addr); } } EXPORT_SYMBOL(trace_hardirqs_off_caller); NOKPROBE_SYMBOL(trace_hardirqs_off_caller); #endif /* CONFIG_TRACE_IRQFLAGS */ #ifdef CONFIG_TRACE_PREEMPT_TOGGLE void trace_preempt_on(unsigned long a0, unsigned long a1) { if (!in_nmi()) trace_preempt_enable_rcuidle(a0, a1); tracer_preempt_on(a0, a1); } void trace_preempt_off(unsigned long a0, unsigned long a1) { if (!in_nmi()) trace_preempt_disable_rcuidle(a0, a1); tracer_preempt_off(a0, a1); } #endif
1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 /* SPDX-License-Identifier: GPL-2.0 */ /* * Variant of atomic_t specialized for reference counts. * * The interface matches the atomic_t interface (to aid in porting) but only * provides the few functions one should use for reference counting. * * Saturation semantics * ==================== * * refcount_t differs from atomic_t in that the counter saturates at * REFCOUNT_SATURATED and will not move once there. This avoids wrapping the * counter and causing 'spurious' use-after-free issues. In order to avoid the * cost associated with introducing cmpxchg() loops into all of the saturating * operations, we temporarily allow the counter to take on an unchecked value * and then explicitly set it to REFCOUNT_SATURATED on detecting that underflow * or overflow has occurred. Although this is racy when multiple threads * access the refcount concurrently, by placing REFCOUNT_SATURATED roughly * equidistant from 0 and INT_MAX we minimise the scope for error: * * INT_MAX REFCOUNT_SATURATED UINT_MAX * 0 (0x7fff_ffff) (0xc000_0000) (0xffff_ffff) * +--------------------------------+----------------+----------------+ * <---------- bad value! ----------> * * (in a signed view of the world, the "bad value" range corresponds to * a negative counter value). * * As an example, consider a refcount_inc() operation that causes the counter * to overflow: * * int old = atomic_fetch_add_relaxed(r); * // old is INT_MAX, refcount now INT_MIN (0x8000_0000) * if (old < 0) * atomic_set(r, REFCOUNT_SATURATED); * * If another thread also performs a refcount_inc() operation between the two * atomic operations, then the count will continue to edge closer to 0. If it * reaches a value of 1 before /any/ of the threads reset it to the saturated * value, then a concurrent refcount_dec_and_test() may erroneously free the * underlying object. * Linux limits the maximum number of tasks to PID_MAX_LIMIT, which is currently * 0x400000 (and can't easily be raised in the future beyond FUTEX_TID_MASK). * With the current PID limit, if no batched refcounting operations are used and * the attacker can't repeatedly trigger kernel oopses in the middle of refcount * operations, this makes it impossible for a saturated refcount to leave the * saturation range, even if it is possible for multiple uses of the same * refcount to nest in the context of a single task: * * (UINT_MAX+1-REFCOUNT_SATURATED) / PID_MAX_LIMIT = * 0x40000000 / 0x400000 = 0x100 = 256 * * If hundreds of references are added/removed with a single refcounting * operation, it may potentially be possible to leave the saturation range; but * given the precise timing details involved with the round-robin scheduling of * each thread manipulating the refcount and the need to hit the race multiple * times in succession, there doesn't appear to be a practical avenue of attack * even if using refcount_add() operations with larger increments. * * Memory ordering * =============== * * Memory ordering rules are slightly relaxed wrt regular atomic_t functions * and provide only what is strictly required for refcounts. * * The increments are fully relaxed; these will not provide ordering. The * rationale is that whatever is used to obtain the object we're increasing the * reference count on will provide the ordering. For locked data structures, * its the lock acquire, for RCU/lockless data structures its the dependent * load. * * Do note that inc_not_zero() provides a control dependency which will order * future stores against the inc, this ensures we'll never modify the object * if we did not in fact acquire a reference. * * The decrements will provide release order, such that all the prior loads and * stores will be issued before, it also provides a control dependency, which * will order us against the subsequent free(). * * The control dependency is against the load of the cmpxchg (ll/sc) that * succeeded. This means the stores aren't fully ordered, but this is fine * because the 1->0 transition indicates no concurrency. * * Note that the allocator is responsible for ordering things between free() * and alloc(). * * The decrements dec_and_test() and sub_and_test() also provide acquire * ordering on success. * */ #ifndef _LINUX_REFCOUNT_H #define _LINUX_REFCOUNT_H #include <linux/atomic.h> #include <linux/bug.h> #include <linux/compiler.h> #include <linux/limits.h> #include <linux/spinlock_types.h> struct mutex; /** * struct refcount_t - variant of atomic_t specialized for reference counts * @refs: atomic_t counter field * * The counter saturates at REFCOUNT_SATURATED and will not move once * there. This avoids wrapping the counter and causing 'spurious' * use-after-free bugs. */ typedef struct refcount_struct { atomic_t refs; } refcount_t; #define REFCOUNT_INIT(n) { .refs = ATOMIC_INIT(n), } #define REFCOUNT_MAX INT_MAX #define REFCOUNT_SATURATED (INT_MIN / 2) enum refcount_saturation_type { REFCOUNT_ADD_NOT_ZERO_OVF, REFCOUNT_ADD_OVF, REFCOUNT_ADD_UAF, REFCOUNT_SUB_UAF, REFCOUNT_DEC_LEAK, }; void refcount_warn_saturate(refcount_t *r, enum refcount_saturation_type t); /** * refcount_set - set a refcount's value * @r: the refcount * @n: value to which the refcount will be set */ static inline void refcount_set(refcount_t *r, int n) { atomic_set(&r->refs, n); } /** * refcount_read - get a refcount's value * @r: the refcount * * Return: the refcount's value */ static inline unsigned int refcount_read(const refcount_t *r) { return atomic_read(&r->refs); } static inline __must_check bool __refcount_add_not_zero(int i, refcount_t *r, int *oldp) { int old = refcount_read(r); do { if (!old) break; } while (!atomic_try_cmpxchg_relaxed(&r->refs, &old, old + i)); if (oldp) *oldp = old; if (unlikely(old < 0 || old + i < 0)) refcount_warn_saturate(r, REFCOUNT_ADD_NOT_ZERO_OVF); return old; } /** * refcount_add_not_zero - add a value to a refcount unless it is 0 * @i: the value to add to the refcount * @r: the refcount * * Will saturate at REFCOUNT_SATURATED and WARN. * * Provides no memory ordering, it is assumed the caller has guaranteed the * object memory to be stable (RCU, etc.). It does provide a control dependency * and thereby orders future stores. See the comment on top. * * Use of this function is not recommended for the normal reference counting * use case in which references are taken and released one at a time. In these * cases, refcount_inc(), or one of its variants, should instead be used to * increment a reference count. * * Return: false if the passed refcount is 0, true otherwise */ static inline __must_check bool refcount_add_not_zero(int i, refcount_t *r) { return __refcount_add_not_zero(i, r, NULL); } static inline void __refcount_add(int i, refcount_t *r, int *oldp) { int old = atomic_fetch_add_relaxed(i, &r->refs); if (oldp) *oldp = old; if (unlikely(!old)) refcount_warn_saturate(r, REFCOUNT_ADD_UAF); else if (unlikely(old < 0 || old + i < 0)) refcount_warn_saturate(r, REFCOUNT_ADD_OVF); } /** * refcount_add - add a value to a refcount * @i: the value to add to the refcount * @r: the refcount * * Similar to atomic_add(), but will saturate at REFCOUNT_SATURATED and WARN. * * Provides no memory ordering, it is assumed the caller has guaranteed the * object memory to be stable (RCU, etc.). It does provide a control dependency * and thereby orders future stores. See the comment on top. * * Use of this function is not recommended for the normal reference counting * use case in which references are taken and released one at a time. In these * cases, refcount_inc(), or one of its variants, should instead be used to * increment a reference count. */ static inline void refcount_add(int i, refcount_t *r) { __refcount_add(i, r, NULL); } static inline __must_check bool __refcount_inc_not_zero(refcount_t *r, int *oldp) { return __refcount_add_not_zero(1, r, oldp); } /** * refcount_inc_not_zero - increment a refcount unless it is 0 * @r: the refcount to increment * * Similar to atomic_inc_not_zero(), but will saturate at REFCOUNT_SATURATED * and WARN. * * Provides no memory ordering, it is assumed the caller has guaranteed the * object memory to be stable (RCU, etc.). It does provide a control dependency * and thereby orders future stores. See the comment on top. * * Return: true if the increment was successful, false otherwise */ static inline __must_check bool refcount_inc_not_zero(refcount_t *r) { return __refcount_inc_not_zero(r, NULL); } static inline void __refcount_inc(refcount_t *r, int *oldp) { __refcount_add(1, r, oldp); } /** * refcount_inc - increment a refcount * @r: the refcount to increment * * Similar to atomic_inc(), but will saturate at REFCOUNT_SATURATED and WARN. * * Provides no memory ordering, it is assumed the caller already has a * reference on the object. * * Will WARN if the refcount is 0, as this represents a possible use-after-free * condition. */ static inline void refcount_inc(refcount_t *r) { __refcount_inc(r, NULL); } static inline __must_check bool __refcount_sub_and_test(int i, refcount_t *r, int *oldp) { int old = atomic_fetch_sub_release(i, &r->refs); if (oldp) *oldp = old; if (old == i) { smp_acquire__after_ctrl_dep(); return true; } if (unlikely(old < 0 || old - i < 0)) refcount_warn_saturate(r, REFCOUNT_SUB_UAF); return false; } /** * refcount_sub_and_test - subtract from a refcount and test if it is 0 * @i: amount to subtract from the refcount * @r: the refcount * * Similar to atomic_dec_and_test(), but it will WARN, return false and * ultimately leak on underflow and will fail to decrement when saturated * at REFCOUNT_SATURATED. * * Provides release memory ordering, such that prior loads and stores are done * before, and provides an acquire ordering on success such that free() * must come after. * * Use of this function is not recommended for the normal reference counting * use case in which references are taken and released one at a time. In these * cases, refcount_dec(), or one of its variants, should instead be used to * decrement a reference count. * * Return: true if the resulting refcount is 0, false otherwise */ static inline __must_check bool refcount_sub_and_test(int i, refcount_t *r) { return __refcount_sub_and_test(i, r, NULL); } static inline __must_check bool __refcount_dec_and_test(refcount_t *r, int *oldp) { return __refcount_sub_and_test(1, r, oldp); } /** * refcount_dec_and_test - decrement a refcount and test if it is 0 * @r: the refcount * * Similar to atomic_dec_and_test(), it will WARN on underflow and fail to * decrement when saturated at REFCOUNT_SATURATED. * * Provides release memory ordering, such that prior loads and stores are done * before, and provides an acquire ordering on success such that free() * must come after. * * Return: true if the resulting refcount is 0, false otherwise */ static inline __must_check bool refcount_dec_and_test(refcount_t *r) { return __refcount_dec_and_test(r, NULL); } static inline void __refcount_dec(refcount_t *r, int *oldp) { int old = atomic_fetch_sub_release(1, &r->refs); if (oldp) *oldp = old; if (unlikely(old <= 1)) refcount_warn_saturate(r, REFCOUNT_DEC_LEAK); } /** * refcount_dec - decrement a refcount * @r: the refcount * * Similar to atomic_dec(), it will WARN on underflow and fail to decrement * when saturated at REFCOUNT_SATURATED. * * Provides release memory ordering, such that prior loads and stores are done * before. */ static inline void refcount_dec(refcount_t *r) { __refcount_dec(r, NULL); } extern __must_check bool refcount_dec_if_one(refcount_t *r); extern __must_check bool refcount_dec_not_one(refcount_t *r); extern __must_check bool refcount_dec_and_mutex_lock(refcount_t *r, struct mutex *lock); extern __must_check bool refcount_dec_and_lock(refcount_t *r, spinlock_t *lock); extern __must_check bool refcount_dec_and_lock_irqsave(refcount_t *r, spinlock_t *lock, unsigned long *flags); #endif /* _LINUX_REFCOUNT_H */
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_GENERIC_SECTIONS_H_ #define _ASM_GENERIC_SECTIONS_H_ /* References to section boundaries */ #include <linux/compiler.h> #include <linux/types.h> /* * Usage guidelines: * _text, _data: architecture specific, don't use them in arch-independent code * [_stext, _etext]: contains .text.* sections, may also contain .rodata.* * and/or .init.* sections * [_sdata, _edata]: contains .data.* sections, may also contain .rodata.* * and/or .init.* sections. * [__start_rodata, __end_rodata]: contains .rodata.* sections * [__start_ro_after_init, __end_ro_after_init]: * contains .data..ro_after_init section * [__init_begin, __init_end]: contains .init.* sections, but .init.text.* * may be out of this range on some architectures. * [_sinittext, _einittext]: contains .init.text.* sections * [__bss_start, __bss_stop]: contains BSS sections * * Following global variables are optional and may be unavailable on some * architectures and/or kernel configurations. * _text, _data * __kprobes_text_start, __kprobes_text_end * __entry_text_start, __entry_text_end * __ctors_start, __ctors_end * __irqentry_text_start, __irqentry_text_end * __softirqentry_text_start, __softirqentry_text_end * __start_opd, __end_opd */ extern char _text[], _stext[], _etext[]; extern char _data[], _sdata[], _edata[]; extern char __bss_start[], __bss_stop[]; extern char __init_begin[], __init_end[]; extern char _sinittext[], _einittext[]; extern char __start_ro_after_init[], __end_ro_after_init[]; extern char _end[]; extern char __per_cpu_load[], __per_cpu_start[], __per_cpu_end[]; extern char __kprobes_text_start[], __kprobes_text_end[]; extern char __entry_text_start[], __entry_text_end[]; extern char __start_rodata[], __end_rodata[]; extern char __irqentry_text_start[], __irqentry_text_end[]; extern char __softirqentry_text_start[], __softirqentry_text_end[]; extern char __start_once[], __end_once[]; /* Start and end of .ctors section - used for constructor calls. */ extern char __ctors_start[], __ctors_end[]; /* Start and end of .opd section - used for function descriptors. */ extern char __start_opd[], __end_opd[]; /* Start and end of instrumentation protected text section */ extern char __noinstr_text_start[], __noinstr_text_end[]; extern __visible const void __nosave_begin, __nosave_end; /* Function descriptor handling (if any). Override in asm/sections.h */ #ifndef dereference_function_descriptor #define dereference_function_descriptor(p) ((void *)(p)) #define dereference_kernel_function_descriptor(p) ((void *)(p)) #endif /* random extra sections (if any). Override * in asm/sections.h */ #ifndef arch_is_kernel_text static inline int arch_is_kernel_text(unsigned long addr) { return 0; } #endif #ifndef arch_is_kernel_data static inline int arch_is_kernel_data(unsigned long addr) { return 0; } #endif /* * Check if an address is part of freed initmem. This is needed on architectures * with virt == phys kernel mapping, for code that wants to check if an address * is part of a static object within [_stext, _end]. After initmem is freed, * memory can be allocated from it, and such allocations would then have * addresses within the range [_stext, _end]. */ #ifndef arch_is_kernel_initmem_freed static inline int arch_is_kernel_initmem_freed(unsigned long addr) { return 0; } #endif /** * memory_contains - checks if an object is contained within a memory region * @begin: virtual address of the beginning of the memory region * @end: virtual address of the end of the memory region * @virt: virtual address of the memory object * @size: size of the memory object * * Returns: true if the object specified by @virt and @size is entirely * contained within the memory region defined by @begin and @end, false * otherwise. */ static inline bool memory_contains(void *begin, void *end, void *virt, size_t size) { return virt >= begin && virt + size <= end; } /** * memory_intersects - checks if the region occupied by an object intersects * with another memory region * @begin: virtual address of the beginning of the memory regien * @end: virtual address of the end of the memory region * @virt: virtual address of the memory object * @size: size of the memory object * * Returns: true if an object's memory region, specified by @virt and @size, * intersects with the region specified by @begin and @end, false otherwise. */ static inline bool memory_intersects(void *begin, void *end, void *virt, size_t size) { void *vend = virt + size; return (virt >= begin && virt < end) || (vend >= begin && vend < end); } /** * init_section_contains - checks if an object is contained within the init * section * @virt: virtual address of the memory object * @size: size of the memory object * * Returns: true if the object specified by @virt and @size is entirely * contained within the init section, false otherwise. */ static inline bool init_section_contains(void *virt, size_t size) { return memory_contains(__init_begin, __init_end, virt, size); } /** * init_section_intersects - checks if the region occupied by an object * intersects with the init section * @virt: virtual address of the memory object * @size: size of the memory object * * Returns: true if an object's memory region, specified by @virt and @size, * intersects with the init section, false otherwise. */ static inline bool init_section_intersects(void *virt, size_t size) { return memory_intersects(__init_begin, __init_end, virt, size); } /** * is_kernel_rodata - checks if the pointer address is located in the * .rodata section * * @addr: address to check * * Returns: true if the address is located in .rodata, false otherwise. */ static inline bool is_kernel_rodata(unsigned long addr) { return addr >= (unsigned long)__start_rodata && addr < (unsigned long)__end_rodata; } #endif /* _ASM_GENERIC_SECTIONS_H_ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 /* SPDX-License-Identifier: GPL-2.0 */ #include <linux/fs.h> #include <linux/buffer_head.h> #include <linux/exportfs.h> #include <linux/iso_fs.h> #include <asm/unaligned.h> enum isofs_file_format { isofs_file_normal = 0, isofs_file_sparse = 1, isofs_file_compressed = 2, }; /* * iso fs inode data in memory */ struct iso_inode_info { unsigned long i_iget5_block; unsigned long i_iget5_offset; unsigned int i_first_extent; unsigned char i_file_format; unsigned char i_format_parm[3]; unsigned long i_next_section_block; unsigned long i_next_section_offset; off_t i_section_size; struct inode vfs_inode; }; /* * iso9660 super-block data in memory */ struct isofs_sb_info { unsigned long s_ninodes; unsigned long s_nzones; unsigned long s_firstdatazone; unsigned long s_log_zone_size; unsigned long s_max_size; int s_rock_offset; /* offset of SUSP fields within SU area */ s32 s_sbsector; unsigned char s_joliet_level; unsigned char s_mapping; unsigned char s_check; unsigned char s_session; unsigned int s_high_sierra:1; unsigned int s_rock:2; unsigned int s_cruft:1; /* Broken disks with high byte of length * containing junk */ unsigned int s_nocompress:1; unsigned int s_hide:1; unsigned int s_showassoc:1; unsigned int s_overriderockperm:1; unsigned int s_uid_set:1; unsigned int s_gid_set:1; umode_t s_fmode; umode_t s_dmode; kgid_t s_gid; kuid_t s_uid; struct nls_table *s_nls_iocharset; /* Native language support table */ }; #define ISOFS_INVALID_MODE ((umode_t) -1) static inline struct isofs_sb_info *ISOFS_SB(struct super_block *sb) { return sb->s_fs_info; } static inline struct iso_inode_info *ISOFS_I(struct inode *inode) { return container_of(inode, struct iso_inode_info, vfs_inode); } static inline int isonum_711(u8 *p) { return *p; } static inline int isonum_712(s8 *p) { return *p; } static inline unsigned int isonum_721(u8 *p) { return get_unaligned_le16(p); } static inline unsigned int isonum_722(u8 *p) { return get_unaligned_be16(p); } static inline unsigned int isonum_723(u8 *p) { /* Ignore bigendian datum due to broken mastering programs */ return get_unaligned_le16(p); } static inline unsigned int isonum_731(u8 *p) { return get_unaligned_le32(p); } static inline unsigned int isonum_732(u8 *p) { return get_unaligned_be32(p); } static inline unsigned int isonum_733(u8 *p) { /* Ignore bigendian datum due to broken mastering programs */ return get_unaligned_le32(p); } extern int iso_date(u8 *, int); struct inode; /* To make gcc happy */ extern int parse_rock_ridge_inode(struct iso_directory_record *, struct inode *, int relocated); extern int get_rock_ridge_filename(struct iso_directory_record *, char *, struct inode *); extern int isofs_name_translate(struct iso_directory_record *, char *, struct inode *); int get_joliet_filename(struct iso_directory_record *, unsigned char *, struct inode *); int get_acorn_filename(struct iso_directory_record *, char *, struct inode *); extern struct dentry *isofs_lookup(struct inode *, struct dentry *, unsigned int flags); extern struct buffer_head *isofs_bread(struct inode *, sector_t); extern int isofs_get_blocks(struct inode *, sector_t, struct buffer_head **, unsigned long); struct inode *__isofs_iget(struct super_block *sb, unsigned long block, unsigned long offset, int relocated); static inline struct inode *isofs_iget(struct super_block *sb, unsigned long block, unsigned long offset) { return __isofs_iget(sb, block, offset, 0); } static inline struct inode *isofs_iget_reloc(struct super_block *sb, unsigned long block, unsigned long offset) { return __isofs_iget(sb, block, offset, 1); } /* Because the inode number is no longer relevant to finding the * underlying meta-data for an inode, we are free to choose a more * convenient 32-bit number as the inode number. The inode numbering * scheme was recommended by Sergey Vlasov and Eric Lammerts. */ static inline unsigned long isofs_get_ino(unsigned long block, unsigned long offset, unsigned long bufbits) { return (block << (bufbits - 5)) | (offset >> 5); } /* Every directory can have many redundant directory entries scattered * throughout the directory tree. First there is the directory entry * with the name of the directory stored in the parent directory. * Then, there is the "." directory entry stored in the directory * itself. Finally, there are possibly many ".." directory entries * stored in all the subdirectories. * * In order for the NFS get_parent() method to work and for the * general consistency of the dcache, we need to make sure the * "i_iget5_block" and "i_iget5_offset" all point to exactly one of * the many redundant entries for each directory. We normalize the * block and offset by always making them point to the "." directory. * * Notice that we do not use the entry for the directory with the name * that is located in the parent directory. Even though choosing this * first directory is more natural, it is much easier to find the "." * entry in the NFS get_parent() method because it is implicitly * encoded in the "extent + ext_attr_length" fields of _all_ the * redundant entries for the directory. Thus, it can always be * reached regardless of which directory entry you have in hand. * * This works because the "." entry is simply the first directory * record when you start reading the file that holds all the directory * records, and this file starts at "extent + ext_attr_length" blocks. * Because the "." entry is always the first entry listed in the * directories file, the normalized "offset" value is always 0. * * You should pass the directory entry in "de". On return, "block" * and "offset" will hold normalized values. Only directories are * affected making it safe to call even for non-directory file * types. */ static inline void isofs_normalize_block_and_offset(struct iso_directory_record* de, unsigned long *block, unsigned long *offset) { /* Only directories are normalized. */ if (de->flags[0] & 2) { *offset = 0; *block = (unsigned long)isonum_733(de->extent) + (unsigned long)isonum_711(de->ext_attr_length); } } extern const struct inode_operations isofs_dir_inode_operations; extern const struct file_operations isofs_dir_operations; extern const struct address_space_operations isofs_symlink_aops; extern const struct export_operations isofs_export_ops;
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 /* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright 2002-2005, Instant802 Networks, Inc. * Copyright 2005, Devicescape Software, Inc. * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> * Copyright 2013-2015 Intel Mobile Communications GmbH * Copyright (C) 2018-2020 Intel Corporation */ #ifndef IEEE80211_I_H #define IEEE80211_I_H #include <linux/kernel.h> #include <linux/device.h> #include <linux/if_ether.h> #include <linux/interrupt.h> #include <linux/list.h> #include <linux/netdevice.h> #include <linux/skbuff.h> #include <linux/workqueue.h> #include <linux/types.h> #include <linux/spinlock.h> #include <linux/etherdevice.h> #include <linux/leds.h> #include <linux/idr.h> #include <linux/rhashtable.h> #include <net/ieee80211_radiotap.h> #include <net/cfg80211.h> #include <net/mac80211.h> #include <net/fq.h> #include "key.h" #include "sta_info.h" #include "debug.h" extern const struct cfg80211_ops mac80211_config_ops; struct ieee80211_local; /* Maximum number of broadcast/multicast frames to buffer when some of the * associated stations are using power saving. */ #define AP_MAX_BC_BUFFER 128 /* Maximum number of frames buffered to all STAs, including multicast frames. * Note: increasing this limit increases the potential memory requirement. Each * frame can be up to about 2 kB long. */ #define TOTAL_MAX_TX_BUFFER 512 /* Required encryption head and tailroom */ #define IEEE80211_ENCRYPT_HEADROOM 8 #define IEEE80211_ENCRYPT_TAILROOM 18 /* power level hasn't been configured (or set to automatic) */ #define IEEE80211_UNSET_POWER_LEVEL INT_MIN /* * Some APs experience problems when working with U-APSD. Decreasing the * probability of that happening by using legacy mode for all ACs but VO isn't * enough. * * Cisco 4410N originally forced us to enable VO by default only because it * treated non-VO ACs as legacy. * * However some APs (notably Netgear R7000) silently reclassify packets to * different ACs. Since u-APSD ACs require trigger frames for frame retrieval * clients would never see some frames (e.g. ARP responses) or would fetch them * accidentally after a long time. * * It makes little sense to enable u-APSD queues by default because it needs * userspace applications to be aware of it to actually take advantage of the * possible additional powersavings. Implicitly depending on driver autotrigger * frame support doesn't make much sense. */ #define IEEE80211_DEFAULT_UAPSD_QUEUES 0 #define IEEE80211_DEFAULT_MAX_SP_LEN \ IEEE80211_WMM_IE_STA_QOSINFO_SP_ALL extern const u8 ieee80211_ac_to_qos_mask[IEEE80211_NUM_ACS]; #define IEEE80211_DEAUTH_FRAME_LEN (24 /* hdr */ + 2 /* reason */) #define IEEE80211_MAX_NAN_INSTANCE_ID 255 struct ieee80211_bss { u32 device_ts_beacon, device_ts_presp; bool wmm_used; bool uapsd_supported; #define IEEE80211_MAX_SUPP_RATES 32 u8 supp_rates[IEEE80211_MAX_SUPP_RATES]; size_t supp_rates_len; struct ieee80211_rate *beacon_rate; u32 vht_cap_info; /* * During association, we save an ERP value from a probe response so * that we can feed ERP info to the driver when handling the * association completes. these fields probably won't be up-to-date * otherwise, you probably don't want to use them. */ bool has_erp_value; u8 erp_value; /* Keep track of the corruption of the last beacon/probe response. */ u8 corrupt_data; /* Keep track of what bits of information we have valid info for. */ u8 valid_data; }; /** * enum ieee80211_corrupt_data_flags - BSS data corruption flags * @IEEE80211_BSS_CORRUPT_BEACON: last beacon frame received was corrupted * @IEEE80211_BSS_CORRUPT_PROBE_RESP: last probe response received was corrupted * * These are bss flags that are attached to a bss in the * @corrupt_data field of &struct ieee80211_bss. */ enum ieee80211_bss_corrupt_data_flags { IEEE80211_BSS_CORRUPT_BEACON = BIT(0), IEEE80211_BSS_CORRUPT_PROBE_RESP = BIT(1) }; /** * enum ieee80211_valid_data_flags - BSS valid data flags * @IEEE80211_BSS_VALID_WMM: WMM/UAPSD data was gathered from non-corrupt IE * @IEEE80211_BSS_VALID_RATES: Supported rates were gathered from non-corrupt IE * @IEEE80211_BSS_VALID_ERP: ERP flag was gathered from non-corrupt IE * * These are bss flags that are attached to a bss in the * @valid_data field of &struct ieee80211_bss. They show which parts * of the data structure were received as a result of an un-corrupted * beacon/probe response. */ enum ieee80211_bss_valid_data_flags { IEEE80211_BSS_VALID_WMM = BIT(1), IEEE80211_BSS_VALID_RATES = BIT(2), IEEE80211_BSS_VALID_ERP = BIT(3) }; typedef unsigned __bitwise ieee80211_tx_result; #define TX_CONTINUE ((__force ieee80211_tx_result) 0u) #define TX_DROP ((__force ieee80211_tx_result) 1u) #define TX_QUEUED ((__force ieee80211_tx_result) 2u) #define IEEE80211_TX_UNICAST BIT(1) #define IEEE80211_TX_PS_BUFFERED BIT(2) struct ieee80211_tx_data { struct sk_buff *skb; struct sk_buff_head skbs; struct ieee80211_local *local; struct ieee80211_sub_if_data *sdata; struct sta_info *sta; struct ieee80211_key *key; struct ieee80211_tx_rate rate; unsigned int flags; }; typedef unsigned __bitwise ieee80211_rx_result; #define RX_CONTINUE ((__force ieee80211_rx_result) 0u) #define RX_DROP_UNUSABLE ((__force ieee80211_rx_result) 1u) #define RX_DROP_MONITOR ((__force ieee80211_rx_result) 2u) #define RX_QUEUED ((__force ieee80211_rx_result) 3u) /** * enum ieee80211_packet_rx_flags - packet RX flags * @IEEE80211_RX_AMSDU: a-MSDU packet * @IEEE80211_RX_MALFORMED_ACTION_FRM: action frame is malformed * @IEEE80211_RX_DEFERRED_RELEASE: frame was subjected to receive reordering * * These are per-frame flags that are attached to a frame in the * @rx_flags field of &struct ieee80211_rx_status. */ enum ieee80211_packet_rx_flags { IEEE80211_RX_AMSDU = BIT(3), IEEE80211_RX_MALFORMED_ACTION_FRM = BIT(4), IEEE80211_RX_DEFERRED_RELEASE = BIT(5), }; /** * enum ieee80211_rx_flags - RX data flags * * @IEEE80211_RX_CMNTR: received on cooked monitor already * @IEEE80211_RX_BEACON_REPORTED: This frame was already reported * to cfg80211_report_obss_beacon(). * * These flags are used across handling multiple interfaces * for a single frame. */ enum ieee80211_rx_flags { IEEE80211_RX_CMNTR = BIT(0), IEEE80211_RX_BEACON_REPORTED = BIT(1), }; struct ieee80211_rx_data { struct list_head *list; struct sk_buff *skb; struct ieee80211_local *local; struct ieee80211_sub_if_data *sdata; struct sta_info *sta; struct ieee80211_key *key; unsigned int flags; /* * Index into sequence numbers array, 0..16 * since the last (16) is used for non-QoS, * will be 16 on non-QoS frames. */ int seqno_idx; /* * Index into the security IV/PN arrays, 0..16 * since the last (16) is used for CCMP-encrypted * management frames, will be set to 16 on mgmt * frames and 0 on non-QoS frames. */ int security_idx; union { struct { u32 iv32; u16 iv16; } tkip; struct { u8 pn[IEEE80211_CCMP_PN_LEN]; } ccm_gcm; }; }; struct ieee80211_csa_settings { const u16 *counter_offsets_beacon; const u16 *counter_offsets_presp; int n_counter_offsets_beacon; int n_counter_offsets_presp; u8 count; }; struct beacon_data { u8 *head, *tail; int head_len, tail_len; struct ieee80211_meshconf_ie *meshconf; u16 cntdwn_counter_offsets[IEEE80211_MAX_CNTDWN_COUNTERS_NUM]; u8 cntdwn_current_counter; struct rcu_head rcu_head; }; struct probe_resp { struct rcu_head rcu_head; int len; u16 cntdwn_counter_offsets[IEEE80211_MAX_CNTDWN_COUNTERS_NUM]; u8 data[]; }; struct fils_discovery_data { struct rcu_head rcu_head; int len; u8 data[]; }; struct unsol_bcast_probe_resp_data { struct rcu_head rcu_head; int len; u8 data[]; }; struct ps_data { /* yes, this looks ugly, but guarantees that we can later use * bitmap_empty :) * NB: don't touch this bitmap, use sta_info_{set,clear}_tim_bit */ u8 tim[sizeof(unsigned long) * BITS_TO_LONGS(IEEE80211_MAX_AID + 1)] __aligned(__alignof__(unsigned long)); struct sk_buff_head bc_buf; atomic_t num_sta_ps; /* number of stations in PS mode */ int dtim_count; bool dtim_bc_mc; }; struct ieee80211_if_ap { struct beacon_data __rcu *beacon; struct probe_resp __rcu *probe_resp; struct fils_discovery_data __rcu *fils_discovery; struct unsol_bcast_probe_resp_data __rcu *unsol_bcast_probe_resp; /* to be used after channel switch. */ struct cfg80211_beacon_data *next_beacon; struct list_head vlans; /* write-protected with RTNL and local->mtx */ struct ps_data ps; atomic_t num_mcast_sta; /* number of stations receiving multicast */ bool multicast_to_unicast; }; struct ieee80211_if_wds { struct sta_info *sta; u8 remote_addr[ETH_ALEN]; }; struct ieee80211_if_vlan { struct list_head list; /* write-protected with RTNL and local->mtx */ /* used for all tx if the VLAN is configured to 4-addr mode */ struct sta_info __rcu *sta; atomic_t num_mcast_sta; /* number of stations receiving multicast */ }; struct mesh_stats { __u32 fwded_mcast; /* Mesh forwarded multicast frames */ __u32 fwded_unicast; /* Mesh forwarded unicast frames */ __u32 fwded_frames; /* Mesh total forwarded frames */ __u32 dropped_frames_ttl; /* Not transmitted since mesh_ttl == 0*/ __u32 dropped_frames_no_route; /* Not transmitted, no route found */ __u32 dropped_frames_congestion;/* Not forwarded due to congestion */ }; #define PREQ_Q_F_START 0x1 #define PREQ_Q_F_REFRESH 0x2 struct mesh_preq_queue { struct list_head list; u8 dst[ETH_ALEN]; u8 flags; }; struct ieee80211_roc_work { struct list_head list; struct ieee80211_sub_if_data *sdata; struct ieee80211_channel *chan; bool started, abort, hw_begun, notified; bool on_channel; unsigned long start_time; u32 duration, req_duration; struct sk_buff *frame; u64 cookie, mgmt_tx_cookie; enum ieee80211_roc_type type; }; /* flags used in struct ieee80211_if_managed.flags */ enum ieee80211_sta_flags { IEEE80211_STA_CONNECTION_POLL = BIT(1), IEEE80211_STA_CONTROL_PORT = BIT(2), IEEE80211_STA_DISABLE_HT = BIT(4), IEEE80211_STA_MFP_ENABLED = BIT(6), IEEE80211_STA_UAPSD_ENABLED = BIT(7), IEEE80211_STA_NULLFUNC_ACKED = BIT(8), IEEE80211_STA_RESET_SIGNAL_AVE = BIT(9), IEEE80211_STA_DISABLE_40MHZ = BIT(10), IEEE80211_STA_DISABLE_VHT = BIT(11), IEEE80211_STA_DISABLE_80P80MHZ = BIT(12), IEEE80211_STA_DISABLE_160MHZ = BIT(13), IEEE80211_STA_DISABLE_WMM = BIT(14), IEEE80211_STA_ENABLE_RRM = BIT(15), IEEE80211_STA_DISABLE_HE = BIT(16), }; struct ieee80211_mgd_auth_data { struct cfg80211_bss *bss; unsigned long timeout; int tries; u16 algorithm, expected_transaction; u8 key[WLAN_KEY_LEN_WEP104]; u8 key_len, key_idx; bool done; bool peer_confirmed; bool timeout_started; u16 sae_trans, sae_status; size_t data_len; u8 data[]; }; struct ieee80211_mgd_assoc_data { struct cfg80211_bss *bss; const u8 *supp_rates; unsigned long timeout; int tries; u16 capability; u8 prev_bssid[ETH_ALEN]; u8 ssid[IEEE80211_MAX_SSID_LEN]; u8 ssid_len; u8 supp_rates_len; bool wmm, uapsd; bool need_beacon; bool synced; bool timeout_started; u8 ap_ht_param; struct ieee80211_vht_cap ap_vht_cap; u8 fils_nonces[2 * FILS_NONCE_LEN]; u8 fils_kek[FILS_MAX_KEK_LEN]; size_t fils_kek_len; size_t ie_len; u8 ie[]; }; struct ieee80211_sta_tx_tspec { /* timestamp of the first packet in the time slice */ unsigned long time_slice_start; u32 admitted_time; /* in usecs, unlike over the air */ u8 tsid; s8 up; /* signed to be able to invalidate with -1 during teardown */ /* consumed TX time in microseconds in the time slice */ u32 consumed_tx_time; enum { TX_TSPEC_ACTION_NONE = 0, TX_TSPEC_ACTION_DOWNGRADE, TX_TSPEC_ACTION_STOP_DOWNGRADE, } action; bool downgraded; }; DECLARE_EWMA(beacon_signal, 4, 4) struct ieee80211_if_managed { struct timer_list timer; struct timer_list conn_mon_timer; struct timer_list bcn_mon_timer; struct timer_list chswitch_timer; struct work_struct monitor_work; struct work_struct chswitch_work; struct work_struct beacon_connection_loss_work; struct work_struct csa_connection_drop_work; unsigned long beacon_timeout; unsigned long probe_timeout; int probe_send_count; bool nullfunc_failed; bool connection_loss; struct cfg80211_bss *associated; struct ieee80211_mgd_auth_data *auth_data; struct ieee80211_mgd_assoc_data *assoc_data; u8 bssid[ETH_ALEN] __aligned(2); bool powersave; /* powersave requested for this iface */ bool broken_ap; /* AP is broken -- turn off powersave */ bool have_beacon; u8 dtim_period; enum ieee80211_smps_mode req_smps, /* requested smps mode */ driver_smps_mode; /* smps mode request */ struct work_struct request_smps_work; unsigned int flags; bool csa_waiting_bcn; bool csa_ignored_same_chan; bool beacon_crc_valid; u32 beacon_crc; bool status_acked; bool status_received; __le16 status_fc; enum { IEEE80211_MFP_DISABLED, IEEE80211_MFP_OPTIONAL, IEEE80211_MFP_REQUIRED } mfp; /* management frame protection */ /* * Bitmask of enabled u-apsd queues, * IEEE80211_WMM_IE_STA_QOSINFO_AC_BE & co. Needs a new association * to take effect. */ unsigned int uapsd_queues; /* * Maximum number of buffered frames AP can deliver during a * service period, IEEE80211_WMM_IE_STA_QOSINFO_SP_ALL or similar. * Needs a new association to take effect. */ unsigned int uapsd_max_sp_len; int wmm_last_param_set; int mu_edca_last_param_set; u8 use_4addr; s16 p2p_noa_index; struct ewma_beacon_signal ave_beacon_signal; /* * Number of Beacon frames used in ave_beacon_signal. This can be used * to avoid generating less reliable cqm events that would be based * only on couple of received frames. */ unsigned int count_beacon_signal; /* Number of times beacon loss was invoked. */ unsigned int beacon_loss_count; /* * Last Beacon frame signal strength average (ave_beacon_signal / 16) * that triggered a cqm event. 0 indicates that no event has been * generated for the current association. */ int last_cqm_event_signal; /* * State variables for keeping track of RSSI of the AP currently * connected to and informing driver when RSSI has gone * below/above a certain threshold. */ int rssi_min_thold, rssi_max_thold; int last_ave_beacon_signal; struct ieee80211_ht_cap ht_capa; /* configured ht-cap over-rides */ struct ieee80211_ht_cap ht_capa_mask; /* Valid parts of ht_capa */ struct ieee80211_vht_cap vht_capa; /* configured VHT overrides */ struct ieee80211_vht_cap vht_capa_mask; /* Valid parts of vht_capa */ struct ieee80211_s1g_cap s1g_capa; /* configured S1G overrides */ struct ieee80211_s1g_cap s1g_capa_mask; /* valid s1g_capa bits */ /* TDLS support */ u8 tdls_peer[ETH_ALEN] __aligned(2); struct delayed_work tdls_peer_del_work; struct sk_buff *orig_teardown_skb; /* The original teardown skb */ struct sk_buff *teardown_skb; /* A copy to send through the AP */ spinlock_t teardown_lock; /* To lock changing teardown_skb */ bool tdls_chan_switch_prohibited; bool tdls_wider_bw_prohibited; /* WMM-AC TSPEC support */ struct ieee80211_sta_tx_tspec tx_tspec[IEEE80211_NUM_ACS]; /* Use a separate work struct so that we can do something here * while the sdata->work is flushing the queues, for example. * otherwise, in scenarios where we hardly get any traffic out * on the BE queue, but there's a lot of VO traffic, we might * get stuck in a downgraded situation and flush takes forever. */ struct delayed_work tx_tspec_wk; /* Information elements from the last transmitted (Re)Association * Request frame. */ u8 *assoc_req_ies; size_t assoc_req_ies_len; }; struct ieee80211_if_ibss { struct timer_list timer; struct work_struct csa_connection_drop_work; unsigned long last_scan_completed; u32 basic_rates; bool fixed_bssid; bool fixed_channel; bool privacy; bool control_port; bool userspace_handles_dfs; u8 bssid[ETH_ALEN] __aligned(2); u8 ssid[IEEE80211_MAX_SSID_LEN]; u8 ssid_len, ie_len; u8 *ie; struct cfg80211_chan_def chandef; unsigned long ibss_join_req; /* probe response/beacon for IBSS */ struct beacon_data __rcu *presp; struct ieee80211_ht_cap ht_capa; /* configured ht-cap over-rides */ struct ieee80211_ht_cap ht_capa_mask; /* Valid parts of ht_capa */ spinlock_t incomplete_lock; struct list_head incomplete_stations; enum { IEEE80211_IBSS_MLME_SEARCH, IEEE80211_IBSS_MLME_JOINED, } state; }; /** * struct ieee80211_if_ocb - OCB mode state * * @housekeeping_timer: timer for periodic invocation of a housekeeping task * @wrkq_flags: OCB deferred task action * @incomplete_lock: delayed STA insertion lock * @incomplete_stations: list of STAs waiting for delayed insertion * @joined: indication if the interface is connected to an OCB network */ struct ieee80211_if_ocb { struct timer_list housekeeping_timer; unsigned long wrkq_flags; spinlock_t incomplete_lock; struct list_head incomplete_stations; bool joined; }; /** * struct ieee80211_mesh_sync_ops - Extensible synchronization framework interface * * these declarations define the interface, which enables * vendor-specific mesh synchronization * */ struct ieee802_11_elems; struct ieee80211_mesh_sync_ops { void (*rx_bcn_presp)(struct ieee80211_sub_if_data *sdata, u16 stype, struct ieee80211_mgmt *mgmt, struct ieee802_11_elems *elems, struct ieee80211_rx_status *rx_status); /* should be called with beacon_data under RCU read lock */ void (*adjust_tsf)(struct ieee80211_sub_if_data *sdata, struct beacon_data *beacon); /* add other framework functions here */ }; struct mesh_csa_settings { struct rcu_head rcu_head; struct cfg80211_csa_settings settings; }; struct ieee80211_if_mesh { struct timer_list housekeeping_timer; struct timer_list mesh_path_timer; struct timer_list mesh_path_root_timer; unsigned long wrkq_flags; unsigned long mbss_changed; bool userspace_handles_dfs; u8 mesh_id[IEEE80211_MAX_MESH_ID_LEN]; size_t mesh_id_len; /* Active Path Selection Protocol Identifier */ u8 mesh_pp_id; /* Active Path Selection Metric Identifier */ u8 mesh_pm_id; /* Congestion Control Mode Identifier */ u8 mesh_cc_id; /* Synchronization Protocol Identifier */ u8 mesh_sp_id; /* Authentication Protocol Identifier */ u8 mesh_auth_id; /* Local mesh Sequence Number */ u32 sn; /* Last used PREQ ID */ u32 preq_id; atomic_t mpaths; /* Timestamp of last SN update */ unsigned long last_sn_update; /* Time when it's ok to send next PERR */ unsigned long next_perr; /* Timestamp of last PREQ sent */ unsigned long last_preq; struct mesh_rmc *rmc; spinlock_t mesh_preq_queue_lock; struct mesh_preq_queue preq_queue; int preq_queue_len; struct mesh_stats mshstats; struct mesh_config mshcfg; atomic_t estab_plinks; u32 mesh_seqnum; bool accepting_plinks; int num_gates; struct beacon_data __rcu *beacon; const u8 *ie; u8 ie_len; enum { IEEE80211_MESH_SEC_NONE = 0x0, IEEE80211_MESH_SEC_AUTHED = 0x1, IEEE80211_MESH_SEC_SECURED = 0x2, } security; bool user_mpm; /* Extensible Synchronization Framework */ const struct ieee80211_mesh_sync_ops *sync_ops; s64 sync_offset_clockdrift_max; spinlock_t sync_offset_lock; /* mesh power save */ enum nl80211_mesh_power_mode nonpeer_pm; int ps_peers_light_sleep; int ps_peers_deep_sleep; struct ps_data ps; /* Channel Switching Support */ struct mesh_csa_settings __rcu *csa; enum { IEEE80211_MESH_CSA_ROLE_NONE, IEEE80211_MESH_CSA_ROLE_INIT, IEEE80211_MESH_CSA_ROLE_REPEATER, } csa_role; u8 chsw_ttl; u16 pre_value; /* offset from skb->data while building IE */ int meshconf_offset; struct mesh_table *mesh_paths; struct mesh_table *mpp_paths; /* Store paths for MPP&MAP */ int mesh_paths_generation; int mpp_paths_generation; }; #ifdef CONFIG_MAC80211_MESH #define IEEE80211_IFSTA_MESH_CTR_INC(msh, name) \ do { (msh)->mshstats.name++; } while (0) #else #define IEEE80211_IFSTA_MESH_CTR_INC(msh, name) \ do { } while (0) #endif /** * enum ieee80211_sub_if_data_flags - virtual interface flags * * @IEEE80211_SDATA_ALLMULTI: interface wants all multicast packets * @IEEE80211_SDATA_OPERATING_GMODE: operating in G-only mode * @IEEE80211_SDATA_DONT_BRIDGE_PACKETS: bridge packets between * associated stations and deliver multicast frames both * back to wireless media and to the local net stack. * @IEEE80211_SDATA_DISCONNECT_RESUME: Disconnect after resume. * @IEEE80211_SDATA_IN_DRIVER: indicates interface was added to driver */ enum ieee80211_sub_if_data_flags { IEEE80211_SDATA_ALLMULTI = BIT(0), IEEE80211_SDATA_OPERATING_GMODE = BIT(2), IEEE80211_SDATA_DONT_BRIDGE_PACKETS = BIT(3), IEEE80211_SDATA_DISCONNECT_RESUME = BIT(4), IEEE80211_SDATA_IN_DRIVER = BIT(5), }; /** * enum ieee80211_sdata_state_bits - virtual interface state bits * @SDATA_STATE_RUNNING: virtual interface is up & running; this * mirrors netif_running() but is separate for interface type * change handling while the interface is up * @SDATA_STATE_OFFCHANNEL: This interface is currently in offchannel * mode, so queues are stopped * @SDATA_STATE_OFFCHANNEL_BEACON_STOPPED: Beaconing was stopped due * to offchannel, reset when offchannel returns */ enum ieee80211_sdata_state_bits { SDATA_STATE_RUNNING, SDATA_STATE_OFFCHANNEL, SDATA_STATE_OFFCHANNEL_BEACON_STOPPED, }; /** * enum ieee80211_chanctx_mode - channel context configuration mode * * @IEEE80211_CHANCTX_SHARED: channel context may be used by * multiple interfaces * @IEEE80211_CHANCTX_EXCLUSIVE: channel context can be used * only by a single interface. This can be used for example for * non-fixed channel IBSS. */ enum ieee80211_chanctx_mode { IEEE80211_CHANCTX_SHARED, IEEE80211_CHANCTX_EXCLUSIVE }; /** * enum ieee80211_chanctx_replace_state - channel context replacement state * * This is used for channel context in-place reservations that require channel * context switch/swap. * * @IEEE80211_CHANCTX_REPLACE_NONE: no replacement is taking place * @IEEE80211_CHANCTX_WILL_BE_REPLACED: this channel context will be replaced * by a (not yet registered) channel context pointed by %replace_ctx. * @IEEE80211_CHANCTX_REPLACES_OTHER: this (not yet registered) channel context * replaces an existing channel context pointed to by %replace_ctx. */ enum ieee80211_chanctx_replace_state { IEEE80211_CHANCTX_REPLACE_NONE, IEEE80211_CHANCTX_WILL_BE_REPLACED, IEEE80211_CHANCTX_REPLACES_OTHER, }; struct ieee80211_chanctx { struct list_head list; struct rcu_head rcu_head; struct list_head assigned_vifs; struct list_head reserved_vifs; enum ieee80211_chanctx_replace_state replace_state; struct ieee80211_chanctx *replace_ctx; enum ieee80211_chanctx_mode mode; bool driver_present; struct ieee80211_chanctx_conf conf; }; struct mac80211_qos_map { struct cfg80211_qos_map qos_map; struct rcu_head rcu_head; }; enum txq_info_flags { IEEE80211_TXQ_STOP, IEEE80211_TXQ_AMPDU, IEEE80211_TXQ_NO_AMSDU, IEEE80211_TXQ_STOP_NETIF_TX, }; /** * struct txq_info - per tid queue * * @tin: contains packets split into multiple flows * @def_flow: used as a fallback flow when a packet destined to @tin hashes to * a fq_flow which is already owned by a different tin * @def_cvars: codel vars for @def_flow * @frags: used to keep fragments created after dequeue * @schedule_order: used with ieee80211_local->active_txqs * @schedule_round: counter to prevent infinite loops on TXQ scheduling */ struct txq_info { struct fq_tin tin; struct fq_flow def_flow; struct codel_vars def_cvars; struct codel_stats cstats; struct sk_buff_head frags; struct list_head schedule_order; u16 schedule_round; unsigned long flags; /* keep last! */ struct ieee80211_txq txq; }; struct ieee80211_if_mntr { u32 flags; u8 mu_follow_addr[ETH_ALEN] __aligned(2); struct list_head list; }; /** * struct ieee80211_if_nan - NAN state * * @conf: current NAN configuration * @func_ids: a bitmap of available instance_id's */ struct ieee80211_if_nan { struct cfg80211_nan_conf conf; /* protects function_inst_ids */ spinlock_t func_lock; struct idr function_inst_ids; }; struct ieee80211_sub_if_data { struct list_head list; struct wireless_dev wdev; /* keys */ struct list_head key_list; /* count for keys needing tailroom space allocation */ int crypto_tx_tailroom_needed_cnt; int crypto_tx_tailroom_pending_dec; struct delayed_work dec_tailroom_needed_wk; struct net_device *dev; struct ieee80211_local *local; unsigned int flags; unsigned long state; char name[IFNAMSIZ]; struct ieee80211_fragment_cache frags; /* TID bitmap for NoAck policy */ u16 noack_map; /* bit field of ACM bits (BIT(802.1D tag)) */ u8 wmm_acm; struct ieee80211_key __rcu *keys[NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS + NUM_DEFAULT_BEACON_KEYS]; struct ieee80211_key __rcu *default_unicast_key; struct ieee80211_key __rcu *default_multicast_key; struct ieee80211_key __rcu *default_mgmt_key; struct ieee80211_key __rcu *default_beacon_key; u16 sequence_number; __be16 control_port_protocol; bool control_port_no_encrypt; bool control_port_no_preauth; bool control_port_over_nl80211; int encrypt_headroom; atomic_t num_tx_queued; struct ieee80211_tx_queue_params tx_conf[IEEE80211_NUM_ACS]; struct mac80211_qos_map __rcu *qos_map; struct work_struct csa_finalize_work; bool csa_block_tx; /* write-protected by sdata_lock and local->mtx */ struct cfg80211_chan_def csa_chandef; struct list_head assigned_chanctx_list; /* protected by chanctx_mtx */ struct list_head reserved_chanctx_list; /* protected by chanctx_mtx */ /* context reservation -- protected with chanctx_mtx */ struct ieee80211_chanctx *reserved_chanctx; struct cfg80211_chan_def reserved_chandef; bool reserved_radar_required; bool reserved_ready; /* used to reconfigure hardware SM PS */ struct work_struct recalc_smps; struct work_struct work; struct sk_buff_head skb_queue; u8 needed_rx_chains; enum ieee80211_smps_mode smps_mode; int user_power_level; /* in dBm */ int ap_power_level; /* in dBm */ bool radar_required; struct delayed_work dfs_cac_timer_work; /* * AP this belongs to: self in AP mode and * corresponding AP in VLAN mode, NULL for * all others (might be needed later in IBSS) */ struct ieee80211_if_ap *bss; /* bitmap of allowed (non-MCS) rate indexes for rate control */ u32 rc_rateidx_mask[NUM_NL80211_BANDS]; bool rc_has_mcs_mask[NUM_NL80211_BANDS]; u8 rc_rateidx_mcs_mask[NUM_NL80211_BANDS][IEEE80211_HT_MCS_MASK_LEN]; bool rc_has_vht_mcs_mask[NUM_NL80211_BANDS]; u16 rc_rateidx_vht_mcs_mask[NUM_NL80211_BANDS][NL80211_VHT_NSS_MAX]; /* Beacon frame (non-MCS) rate (as a bitmap) */ u32 beacon_rateidx_mask[NUM_NL80211_BANDS]; bool beacon_rate_set; union { struct ieee80211_if_ap ap; struct ieee80211_if_wds wds; struct ieee80211_if_vlan vlan; struct ieee80211_if_managed mgd; struct ieee80211_if_ibss ibss; struct ieee80211_if_mesh mesh; struct ieee80211_if_ocb ocb; struct ieee80211_if_mntr mntr; struct ieee80211_if_nan nan; } u; #ifdef CONFIG_MAC80211_DEBUGFS struct { struct dentry *subdir_stations; struct dentry *default_unicast_key; struct dentry *default_multicast_key; struct dentry *default_mgmt_key; struct dentry *default_beacon_key; } debugfs; #endif /* must be last, dynamically sized area in this! */ struct ieee80211_vif vif; }; static inline struct ieee80211_sub_if_data *vif_to_sdata(struct ieee80211_vif *p) { return container_of(p, struct ieee80211_sub_if_data, vif); } static inline void sdata_lock(struct ieee80211_sub_if_data *sdata) __acquires(&sdata->wdev.mtx) { mutex_lock(&sdata->wdev.mtx); __acquire(&sdata->wdev.mtx); } static inline void sdata_unlock(struct ieee80211_sub_if_data *sdata) __releases(&sdata->wdev.mtx) { mutex_unlock(&sdata->wdev.mtx); __release(&sdata->wdev.mtx); } #define sdata_dereference(p, sdata) \ rcu_dereference_protected(p, lockdep_is_held(&sdata->wdev.mtx)) static inline void sdata_assert_lock(struct ieee80211_sub_if_data *sdata) { lockdep_assert_held(&sdata->wdev.mtx); } static inline int ieee80211_chandef_get_shift(struct cfg80211_chan_def *chandef) { switch (chandef->width) { case NL80211_CHAN_WIDTH_5: return 2; case NL80211_CHAN_WIDTH_10: return 1; default: return 0; } } static inline int ieee80211_vif_get_shift(struct ieee80211_vif *vif) { struct ieee80211_chanctx_conf *chanctx_conf; int shift = 0; rcu_read_lock(); chanctx_conf = rcu_dereference(vif->chanctx_conf); if (chanctx_conf) shift = ieee80211_chandef_get_shift(&chanctx_conf->def); rcu_read_unlock(); return shift; } enum { IEEE80211_RX_MSG = 1, IEEE80211_TX_STATUS_MSG = 2, }; enum queue_stop_reason { IEEE80211_QUEUE_STOP_REASON_DRIVER, IEEE80211_QUEUE_STOP_REASON_PS, IEEE80211_QUEUE_STOP_REASON_CSA, IEEE80211_QUEUE_STOP_REASON_AGGREGATION, IEEE80211_QUEUE_STOP_REASON_SUSPEND, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, IEEE80211_QUEUE_STOP_REASON_OFFCHANNEL, IEEE80211_QUEUE_STOP_REASON_FLUSH, IEEE80211_QUEUE_STOP_REASON_TDLS_TEARDOWN, IEEE80211_QUEUE_STOP_REASON_RESERVE_TID, IEEE80211_QUEUE_STOP_REASON_IFTYPE_CHANGE, IEEE80211_QUEUE_STOP_REASONS, }; #ifdef CONFIG_MAC80211_LEDS struct tpt_led_trigger { char name[32]; const struct ieee80211_tpt_blink *blink_table; unsigned int blink_table_len; struct timer_list timer; struct ieee80211_local *local; unsigned long prev_traffic; unsigned long tx_bytes, rx_bytes; unsigned int active, want; bool running; }; #endif /** * mac80211 scan flags - currently active scan mode * * @SCAN_SW_SCANNING: We're currently in the process of scanning but may as * well be on the operating channel * @SCAN_HW_SCANNING: The hardware is scanning for us, we have no way to * determine if we are on the operating channel or not * @SCAN_ONCHANNEL_SCANNING: Do a software scan on only the current operating * channel. This should not interrupt normal traffic. * @SCAN_COMPLETED: Set for our scan work function when the driver reported * that the scan completed. * @SCAN_ABORTED: Set for our scan work function when the driver reported * a scan complete for an aborted scan. * @SCAN_HW_CANCELLED: Set for our scan work function when the scan is being * cancelled. */ enum { SCAN_SW_SCANNING, SCAN_HW_SCANNING, SCAN_ONCHANNEL_SCANNING, SCAN_COMPLETED, SCAN_ABORTED, SCAN_HW_CANCELLED, }; /** * enum mac80211_scan_state - scan state machine states * * @SCAN_DECISION: Main entry point to the scan state machine, this state * determines if we should keep on scanning or switch back to the * operating channel * @SCAN_SET_CHANNEL: Set the next channel to be scanned * @SCAN_SEND_PROBE: Send probe requests and wait for probe responses * @SCAN_SUSPEND: Suspend the scan and go back to operating channel to * send out data * @SCAN_RESUME: Resume the scan and scan the next channel * @SCAN_ABORT: Abort the scan and go back to operating channel */ enum mac80211_scan_state { SCAN_DECISION, SCAN_SET_CHANNEL, SCAN_SEND_PROBE, SCAN_SUSPEND, SCAN_RESUME, SCAN_ABORT, }; struct ieee80211_local { /* embed the driver visible part. * don't cast (use the static inlines below), but we keep * it first anyway so they become a no-op */ struct ieee80211_hw hw; struct fq fq; struct codel_vars *cvars; struct codel_params cparams; /* protects active_txqs and txqi->schedule_order */ spinlock_t active_txq_lock[IEEE80211_NUM_ACS]; struct list_head active_txqs[IEEE80211_NUM_ACS]; u16 schedule_round[IEEE80211_NUM_ACS]; u16 airtime_flags; u32 aql_txq_limit_low[IEEE80211_NUM_ACS]; u32 aql_txq_limit_high[IEEE80211_NUM_ACS]; u32 aql_threshold; atomic_t aql_total_pending_airtime; const struct ieee80211_ops *ops; /* * private workqueue to mac80211. mac80211 makes this accessible * via ieee80211_queue_work() */ struct workqueue_struct *workqueue; unsigned long queue_stop_reasons[IEEE80211_MAX_QUEUES]; int q_stop_reasons[IEEE80211_MAX_QUEUES][IEEE80211_QUEUE_STOP_REASONS]; /* also used to protect ampdu_ac_queue and amdpu_ac_stop_refcnt */ spinlock_t queue_stop_reason_lock; int open_count; int monitors, cooked_mntrs; /* number of interfaces with corresponding FIF_ flags */ int fif_fcsfail, fif_plcpfail, fif_control, fif_other_bss, fif_pspoll, fif_probe_req; bool probe_req_reg; bool rx_mcast_action_reg; unsigned int filter_flags; /* FIF_* */ bool wiphy_ciphers_allocated; bool use_chanctx; /* protects the aggregated multicast list and filter calls */ spinlock_t filter_lock; /* used for uploading changed mc list */ struct work_struct reconfig_filter; /* aggregated multicast list */ struct netdev_hw_addr_list mc_list; bool tim_in_locked_section; /* see ieee80211_beacon_get() */ /* * suspended is true if we finished all the suspend _and_ we have * not yet come up from resume. This is to be used by mac80211 * to ensure driver sanity during suspend and mac80211's own * sanity. It can eventually be used for WoW as well. */ bool suspended; /* * Resuming is true while suspended, but when we're reprogramming the * hardware -- at that time it's allowed to use ieee80211_queue_work() * again even though some other parts of the stack are still suspended * and we still drop received frames to avoid waking the stack. */ bool resuming; /* * quiescing is true during the suspend process _only_ to * ease timer cancelling etc. */ bool quiescing; /* device is started */ bool started; /* device is during a HW reconfig */ bool in_reconfig; /* wowlan is enabled -- don't reconfig on resume */ bool wowlan; struct work_struct radar_detected_work; /* number of RX chains the hardware has */ u8 rx_chains; /* bitmap of which sbands were copied */ u8 sband_allocated; int tx_headroom; /* required headroom for hardware/radiotap */ /* Tasklet and skb queue to process calls from IRQ mode. All frames * added to skb_queue will be processed, but frames in * skb_queue_unreliable may be dropped if the total length of these * queues increases over the limit. */ #define IEEE80211_IRQSAFE_QUEUE_LIMIT 128 struct tasklet_struct tasklet; struct sk_buff_head skb_queue; struct sk_buff_head skb_queue_unreliable; spinlock_t rx_path_lock; /* Station data */ /* * The mutex only protects the list, hash table and * counter, reads are done with RCU. */ struct mutex sta_mtx; spinlock_t tim_lock; unsigned long num_sta; struct list_head sta_list; struct rhltable sta_hash; struct timer_list sta_cleanup; int sta_generation; struct sk_buff_head pending[IEEE80211_MAX_QUEUES]; struct tasklet_struct tx_pending_tasklet; struct tasklet_struct wake_txqs_tasklet; atomic_t agg_queue_stop[IEEE80211_MAX_QUEUES]; /* number of interfaces with allmulti RX */ atomic_t iff_allmultis; struct rate_control_ref *rate_ctrl; struct arc4_ctx wep_tx_ctx; struct arc4_ctx wep_rx_ctx; u32 wep_iv; /* see iface.c */ struct list_head interfaces; struct list_head mon_list; /* only that are IFF_UP && !cooked */ struct mutex iflist_mtx; /* * Key mutex, protects sdata's key_list and sta_info's * key pointers and ptk_idx (write access, they're RCU.) */ struct mutex key_mtx; /* mutex for scan and work locking */ struct mutex mtx; /* Scanning and BSS list */ unsigned long scanning; struct cfg80211_ssid scan_ssid; struct cfg80211_scan_request *int_scan_req; struct cfg80211_scan_request __rcu *scan_req; struct ieee80211_scan_request *hw_scan_req; struct cfg80211_chan_def scan_chandef; enum nl80211_band hw_scan_band; int scan_channel_idx; int scan_ies_len; int hw_scan_ies_bufsize; struct cfg80211_scan_info scan_info; struct work_struct sched_scan_stopped_work; struct ieee80211_sub_if_data __rcu *sched_scan_sdata; struct cfg80211_sched_scan_request __rcu *sched_scan_req; u8 scan_addr[ETH_ALEN]; unsigned long leave_oper_channel_time; enum mac80211_scan_state next_scan_state; struct delayed_work scan_work; struct ieee80211_sub_if_data __rcu *scan_sdata; /* For backward compatibility only -- do not use */ struct cfg80211_chan_def _oper_chandef; /* Temporary remain-on-channel for off-channel operations */ struct ieee80211_channel *tmp_channel; /* channel contexts */ struct list_head chanctx_list; struct mutex chanctx_mtx; #ifdef CONFIG_MAC80211_LEDS struct led_trigger tx_led, rx_led, assoc_led, radio_led; struct led_trigger tpt_led; atomic_t tx_led_active, rx_led_active, assoc_led_active; atomic_t radio_led_active, tpt_led_active; struct tpt_led_trigger *tpt_led_trigger; #endif #ifdef CONFIG_MAC80211_DEBUG_COUNTERS /* SNMP counters */ /* dot11CountersTable */ u32 dot11TransmittedFragmentCount; u32 dot11MulticastTransmittedFrameCount; u32 dot11FailedCount; u32 dot11RetryCount; u32 dot11MultipleRetryCount; u32 dot11FrameDuplicateCount; u32 dot11ReceivedFragmentCount; u32 dot11MulticastReceivedFrameCount; u32 dot11TransmittedFrameCount; /* TX/RX handler statistics */ unsigned int tx_handlers_drop; unsigned int tx_handlers_queued; unsigned int tx_handlers_drop_wep; unsigned int tx_handlers_drop_not_assoc; unsigned int tx_handlers_drop_unauth_port; unsigned int rx_handlers_drop; unsigned int rx_handlers_queued; unsigned int rx_handlers_drop_nullfunc; unsigned int rx_handlers_drop_defrag; unsigned int tx_expand_skb_head; unsigned int tx_expand_skb_head_cloned; unsigned int rx_expand_skb_head_defrag; unsigned int rx_handlers_fragments; unsigned int tx_status_drop; #define I802_DEBUG_INC(c) (c)++ #else /* CONFIG_MAC80211_DEBUG_COUNTERS */ #define I802_DEBUG_INC(c) do { } while (0) #endif /* CONFIG_MAC80211_DEBUG_COUNTERS */ int total_ps_buffered; /* total number of all buffered unicast and * multicast packets for power saving stations */ bool pspolling; /* * PS can only be enabled when we have exactly one managed * interface (and monitors) in PS, this then points there. */ struct ieee80211_sub_if_data *ps_sdata; struct work_struct dynamic_ps_enable_work; struct work_struct dynamic_ps_disable_work; struct timer_list dynamic_ps_timer; struct notifier_block ifa_notifier; struct notifier_block ifa6_notifier; /* * The dynamic ps timeout configured from user space via WEXT - * this will override whatever chosen by mac80211 internally. */ int dynamic_ps_forced_timeout; int user_power_level; /* in dBm, for all interfaces */ enum ieee80211_smps_mode smps_mode; struct work_struct restart_work; #ifdef CONFIG_MAC80211_DEBUGFS struct local_debugfsdentries { struct dentry *rcdir; struct dentry *keys; } debugfs; bool force_tx_status; #endif /* * Remain-on-channel support */ struct delayed_work roc_work; struct list_head roc_list; struct work_struct hw_roc_start, hw_roc_done; unsigned long hw_roc_start_time; u64 roc_cookie_counter; struct idr ack_status_frames; spinlock_t ack_status_lock; struct ieee80211_sub_if_data __rcu *p2p_sdata; /* virtual monitor interface */ struct ieee80211_sub_if_data __rcu *monitor_sdata; struct cfg80211_chan_def monitor_chandef; /* extended capabilities provided by mac80211 */ u8 ext_capa[8]; /* TDLS channel switch */ struct work_struct tdls_chsw_work; struct sk_buff_head skb_queue_tdls_chsw; }; static inline struct ieee80211_sub_if_data * IEEE80211_DEV_TO_SUB_IF(struct net_device *dev) { return netdev_priv(dev); } static inline struct ieee80211_sub_if_data * IEEE80211_WDEV_TO_SUB_IF(struct wireless_dev *wdev) { return container_of(wdev, struct ieee80211_sub_if_data, wdev); } static inline struct ieee80211_supported_band * ieee80211_get_sband(struct ieee80211_sub_if_data *sdata) { struct ieee80211_local *local = sdata->local; struct ieee80211_chanctx_conf *chanctx_conf; enum nl80211_band band; rcu_read_lock(); chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); if (!chanctx_conf) { rcu_read_unlock(); return NULL; } band = chanctx_conf->def.chan->band; rcu_read_unlock(); return local->hw.wiphy->bands[band]; } /* this struct holds the value parsing from channel switch IE */ struct ieee80211_csa_ie { struct cfg80211_chan_def chandef; u8 mode; u8 count; u8 ttl; u16 pre_value; u16 reason_code; u32 max_switch_time; }; /* Parsed Information Elements */ struct ieee802_11_elems { const u8 *ie_start; size_t total_len; /* pointers to IEs */ const struct ieee80211_tdls_lnkie *lnk_id; const struct ieee80211_ch_switch_timing *ch_sw_timing; const u8 *ext_capab; const u8 *ssid; const u8 *supp_rates; const u8 *ds_params; const struct ieee80211_tim_ie *tim; const u8 *challenge; const u8 *rsn; const u8 *rsnx; const u8 *erp_info; const u8 *ext_supp_rates; const u8 *wmm_info; const u8 *wmm_param; const struct ieee80211_ht_cap *ht_cap_elem; const struct ieee80211_ht_operation *ht_operation; const struct ieee80211_vht_cap *vht_cap_elem; const struct ieee80211_vht_operation *vht_operation; const struct ieee80211_meshconf_ie *mesh_config; const u8 *he_cap; const struct ieee80211_he_operation *he_operation; const struct ieee80211_he_spr *he_spr; const struct ieee80211_mu_edca_param_set *mu_edca_param_set; const struct ieee80211_he_6ghz_capa *he_6ghz_capa; const u8 *uora_element; const u8 *mesh_id; const u8 *peering; const __le16 *awake_window; const u8 *preq; const u8 *prep; const u8 *perr; const struct ieee80211_rann_ie *rann; const struct ieee80211_channel_sw_ie *ch_switch_ie; const struct ieee80211_ext_chansw_ie *ext_chansw_ie; const struct ieee80211_wide_bw_chansw_ie *wide_bw_chansw_ie; const u8 *max_channel_switch_time; const u8 *country_elem; const u8 *pwr_constr_elem; const u8 *cisco_dtpc_elem; const struct ieee80211_timeout_interval_ie *timeout_int; const u8 *opmode_notif; const struct ieee80211_sec_chan_offs_ie *sec_chan_offs; struct ieee80211_mesh_chansw_params_ie *mesh_chansw_params_ie; const struct ieee80211_bss_max_idle_period_ie *max_idle_period_ie; const struct ieee80211_multiple_bssid_configuration *mbssid_config_ie; const struct ieee80211_bssid_index *bssid_index; u8 max_bssid_indicator; u8 dtim_count; u8 dtim_period; const struct ieee80211_addba_ext_ie *addba_ext_ie; const struct ieee80211_s1g_cap *s1g_capab; const struct ieee80211_s1g_oper_ie *s1g_oper; const struct ieee80211_s1g_bcn_compat_ie *s1g_bcn_compat; const struct ieee80211_aid_response_ie *aid_resp; /* length of them, respectively */ u8 ext_capab_len; u8 ssid_len; u8 supp_rates_len; u8 tim_len; u8 challenge_len; u8 rsn_len; u8 rsnx_len; u8 ext_supp_rates_len; u8 wmm_info_len; u8 wmm_param_len; u8 he_cap_len; u8 mesh_id_len; u8 peering_len; u8 preq_len; u8 prep_len; u8 perr_len; u8 country_elem_len; u8 bssid_index_len; /* whether a parse error occurred while retrieving these elements */ bool parse_error; }; static inline struct ieee80211_local *hw_to_local( struct ieee80211_hw *hw) { return container_of(hw, struct ieee80211_local, hw); } static inline struct txq_info *to_txq_info(struct ieee80211_txq *txq) { return container_of(txq, struct txq_info, txq); } static inline bool txq_has_queue(struct ieee80211_txq *txq) { struct txq_info *txqi = to_txq_info(txq); return !(skb_queue_empty(&txqi->frags) && !txqi->tin.backlog_packets); } static inline int ieee80211_bssid_match(const u8 *raddr, const u8 *addr) { return ether_addr_equal(raddr, addr) || is_broadcast_ether_addr(raddr); } static inline bool ieee80211_have_rx_timestamp(struct ieee80211_rx_status *status) { WARN_ON_ONCE(status->flag & RX_FLAG_MACTIME_START && status->flag & RX_FLAG_MACTIME_END); if (status->flag & (RX_FLAG_MACTIME_START | RX_FLAG_MACTIME_END)) return true; /* can't handle non-legacy preamble yet */ if (status->flag & RX_FLAG_MACTIME_PLCP_START && status->encoding == RX_ENC_LEGACY) return true; return false; } void ieee80211_vif_inc_num_mcast(struct ieee80211_sub_if_data *sdata); void ieee80211_vif_dec_num_mcast(struct ieee80211_sub_if_data *sdata); /* This function returns the number of multicast stations connected to this * interface. It returns -1 if that number is not tracked, that is for netdevs * not in AP or AP_VLAN mode or when using 4addr. */ static inline int ieee80211_vif_get_num_mcast_if(struct ieee80211_sub_if_data *sdata) { if (sdata->vif.type == NL80211_IFTYPE_AP) return atomic_read(&sdata->u.ap.num_mcast_sta); if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) return atomic_read(&sdata->u.vlan.num_mcast_sta); return -1; } u64 ieee80211_calculate_rx_timestamp(struct ieee80211_local *local, struct ieee80211_rx_status *status, unsigned int mpdu_len, unsigned int mpdu_offset); int ieee80211_hw_config(struct ieee80211_local *local, u32 changed); void ieee80211_tx_set_protected(struct ieee80211_tx_data *tx); void ieee80211_bss_info_change_notify(struct ieee80211_sub_if_data *sdata, u32 changed); void ieee80211_configure_filter(struct ieee80211_local *local); u32 ieee80211_reset_erp_info(struct ieee80211_sub_if_data *sdata); u64 ieee80211_mgmt_tx_cookie(struct ieee80211_local *local); int ieee80211_attach_ack_skb(struct ieee80211_local *local, struct sk_buff *skb, u64 *cookie, gfp_t gfp); void ieee80211_check_fast_rx(struct sta_info *sta); void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata); void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata); void ieee80211_clear_fast_rx(struct sta_info *sta); /* STA code */ void ieee80211_sta_setup_sdata(struct ieee80211_sub_if_data *sdata); int ieee80211_mgd_auth(struct ieee80211_sub_if_data *sdata, struct cfg80211_auth_request *req); int ieee80211_mgd_assoc(struct ieee80211_sub_if_data *sdata, struct cfg80211_assoc_request *req); int ieee80211_mgd_deauth(struct ieee80211_sub_if_data *sdata, struct cfg80211_deauth_request *req); int ieee80211_mgd_disassoc(struct ieee80211_sub_if_data *sdata, struct cfg80211_disassoc_request *req); void ieee80211_send_pspoll(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata); void ieee80211_recalc_ps(struct ieee80211_local *local); void ieee80211_recalc_ps_vif(struct ieee80211_sub_if_data *sdata); int ieee80211_set_arp_filter(struct ieee80211_sub_if_data *sdata); void ieee80211_sta_work(struct ieee80211_sub_if_data *sdata); void ieee80211_sta_rx_queued_mgmt(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb); void ieee80211_sta_rx_queued_ext(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb); void ieee80211_sta_reset_beacon_monitor(struct ieee80211_sub_if_data *sdata); void ieee80211_sta_reset_conn_monitor(struct ieee80211_sub_if_data *sdata); void ieee80211_mgd_stop(struct ieee80211_sub_if_data *sdata); void ieee80211_mgd_conn_tx_status(struct ieee80211_sub_if_data *sdata, __le16 fc, bool acked); void ieee80211_mgd_quiesce(struct ieee80211_sub_if_data *sdata); void ieee80211_sta_restart(struct ieee80211_sub_if_data *sdata); void ieee80211_sta_handle_tspec_ac_params(struct ieee80211_sub_if_data *sdata); /* IBSS code */ void ieee80211_ibss_notify_scan_completed(struct ieee80211_local *local); void ieee80211_ibss_setup_sdata(struct ieee80211_sub_if_data *sdata); void ieee80211_ibss_rx_no_sta(struct ieee80211_sub_if_data *sdata, const u8 *bssid, const u8 *addr, u32 supp_rates); int ieee80211_ibss_join(struct ieee80211_sub_if_data *sdata, struct cfg80211_ibss_params *params); int ieee80211_ibss_leave(struct ieee80211_sub_if_data *sdata); void ieee80211_ibss_work(struct ieee80211_sub_if_data *sdata); void ieee80211_ibss_rx_queued_mgmt(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb); int ieee80211_ibss_csa_beacon(struct ieee80211_sub_if_data *sdata, struct cfg80211_csa_settings *csa_settings); int ieee80211_ibss_finish_csa(struct ieee80211_sub_if_data *sdata); void ieee80211_ibss_stop(struct ieee80211_sub_if_data *sdata); /* OCB code */ void ieee80211_ocb_work(struct ieee80211_sub_if_data *sdata); void ieee80211_ocb_rx_no_sta(struct ieee80211_sub_if_data *sdata, const u8 *bssid, const u8 *addr, u32 supp_rates); void ieee80211_ocb_setup_sdata(struct ieee80211_sub_if_data *sdata); int ieee80211_ocb_join(struct ieee80211_sub_if_data *sdata, struct ocb_setup *setup); int ieee80211_ocb_leave(struct ieee80211_sub_if_data *sdata); /* mesh code */ void ieee80211_mesh_work(struct ieee80211_sub_if_data *sdata); void ieee80211_mesh_rx_queued_mgmt(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb); int ieee80211_mesh_csa_beacon(struct ieee80211_sub_if_data *sdata, struct cfg80211_csa_settings *csa_settings); int ieee80211_mesh_finish_csa(struct ieee80211_sub_if_data *sdata); /* scan/BSS handling */ void ieee80211_scan_work(struct work_struct *work); int ieee80211_request_ibss_scan(struct ieee80211_sub_if_data *sdata, const u8 *ssid, u8 ssid_len, struct ieee80211_channel **channels, unsigned int n_channels, enum nl80211_bss_scan_width scan_width); int ieee80211_request_scan(struct ieee80211_sub_if_data *sdata, struct cfg80211_scan_request *req); void ieee80211_scan_cancel(struct ieee80211_local *local); void ieee80211_run_deferred_scan(struct ieee80211_local *local); void ieee80211_scan_rx(struct ieee80211_local *local, struct sk_buff *skb); void ieee80211_mlme_notify_scan_completed(struct ieee80211_local *local); struct ieee80211_bss * ieee80211_bss_info_update(struct ieee80211_local *local, struct ieee80211_rx_status *rx_status, struct ieee80211_mgmt *mgmt, size_t len, struct ieee80211_channel *channel); void ieee80211_rx_bss_put(struct ieee80211_local *local, struct ieee80211_bss *bss); /* scheduled scan handling */ int __ieee80211_request_sched_scan_start(struct ieee80211_sub_if_data *sdata, struct cfg80211_sched_scan_request *req); int ieee80211_request_sched_scan_start(struct ieee80211_sub_if_data *sdata, struct cfg80211_sched_scan_request *req); int ieee80211_request_sched_scan_stop(struct ieee80211_local *local); void ieee80211_sched_scan_end(struct ieee80211_local *local); void ieee80211_sched_scan_stopped_work(struct work_struct *work); /* off-channel/mgmt-tx */ void ieee80211_offchannel_stop_vifs(struct ieee80211_local *local); void ieee80211_offchannel_return(struct ieee80211_local *local); void ieee80211_roc_setup(struct ieee80211_local *local); void ieee80211_start_next_roc(struct ieee80211_local *local); void ieee80211_roc_purge(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata); int ieee80211_remain_on_channel(struct wiphy *wiphy, struct wireless_dev *wdev, struct ieee80211_channel *chan, unsigned int duration, u64 *cookie); int ieee80211_cancel_remain_on_channel(struct wiphy *wiphy, struct wireless_dev *wdev, u64 cookie); int ieee80211_mgmt_tx(struct wiphy *wiphy, struct wireless_dev *wdev, struct cfg80211_mgmt_tx_params *params, u64 *cookie); int ieee80211_mgmt_tx_cancel_wait(struct wiphy *wiphy, struct wireless_dev *wdev, u64 cookie); /* channel switch handling */ void ieee80211_csa_finalize_work(struct work_struct *work); int ieee80211_channel_switch(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_csa_settings *params); /* interface handling */ #define MAC80211_SUPPORTED_FEATURES_TX (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | \ NETIF_F_HW_CSUM | NETIF_F_SG | \ NETIF_F_HIGHDMA | NETIF_F_GSO_SOFTWARE) #define MAC80211_SUPPORTED_FEATURES_RX (NETIF_F_RXCSUM) #define MAC80211_SUPPORTED_FEATURES (MAC80211_SUPPORTED_FEATURES_TX | \ MAC80211_SUPPORTED_FEATURES_RX) int ieee80211_iface_init(void); void ieee80211_iface_exit(void); int ieee80211_if_add(struct ieee80211_local *local, const char *name, unsigned char name_assign_type, struct wireless_dev **new_wdev, enum nl80211_iftype type, struct vif_params *params); int ieee80211_if_change_type(struct ieee80211_sub_if_data *sdata, enum nl80211_iftype type); void ieee80211_if_remove(struct ieee80211_sub_if_data *sdata); void ieee80211_remove_interfaces(struct ieee80211_local *local); u32 ieee80211_idle_off(struct ieee80211_local *local); void ieee80211_recalc_idle(struct ieee80211_local *local); void ieee80211_adjust_monitor_flags(struct ieee80211_sub_if_data *sdata, const int offset); int ieee80211_do_open(struct wireless_dev *wdev, bool coming_up); void ieee80211_sdata_stop(struct ieee80211_sub_if_data *sdata); int ieee80211_add_virtual_monitor(struct ieee80211_local *local); void ieee80211_del_virtual_monitor(struct ieee80211_local *local); bool __ieee80211_recalc_txpower(struct ieee80211_sub_if_data *sdata); void ieee80211_recalc_txpower(struct ieee80211_sub_if_data *sdata, bool update_bss); void ieee80211_recalc_offload(struct ieee80211_local *local); static inline bool ieee80211_sdata_running(struct ieee80211_sub_if_data *sdata) { return test_bit(SDATA_STATE_RUNNING, &sdata->state); } /* tx handling */ void ieee80211_clear_tx_pending(struct ieee80211_local *local); void ieee80211_tx_pending(unsigned long data); netdev_tx_t ieee80211_monitor_start_xmit(struct sk_buff *skb, struct net_device *dev); netdev_tx_t ieee80211_subif_start_xmit(struct sk_buff *skb, struct net_device *dev); netdev_tx_t ieee80211_subif_start_xmit_8023(struct sk_buff *skb, struct net_device *dev); void __ieee80211_subif_start_xmit(struct sk_buff *skb, struct net_device *dev, u32 info_flags, u32 ctrl_flags, u64 *cookie); void ieee80211_purge_tx_queue(struct ieee80211_hw *hw, struct sk_buff_head *skbs); struct sk_buff * ieee80211_build_data_template(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, u32 info_flags); void ieee80211_tx_monitor(struct ieee80211_local *local, struct sk_buff *skb, struct ieee80211_supported_band *sband, int retry_count, int shift, bool send_to_cooked, struct ieee80211_tx_status *status); void ieee80211_check_fast_xmit(struct sta_info *sta); void ieee80211_check_fast_xmit_all(struct ieee80211_local *local); void ieee80211_check_fast_xmit_iface(struct ieee80211_sub_if_data *sdata); void ieee80211_clear_fast_xmit(struct sta_info *sta); int ieee80211_tx_control_port(struct wiphy *wiphy, struct net_device *dev, const u8 *buf, size_t len, const u8 *dest, __be16 proto, bool unencrypted, u64 *cookie); int ieee80211_probe_mesh_link(struct wiphy *wiphy, struct net_device *dev, const u8 *buf, size_t len); /* HT */ void ieee80211_apply_htcap_overrides(struct ieee80211_sub_if_data *sdata, struct ieee80211_sta_ht_cap *ht_cap); bool ieee80211_ht_cap_ie_to_sta_ht_cap(struct ieee80211_sub_if_data *sdata, struct ieee80211_supported_band *sband, const struct ieee80211_ht_cap *ht_cap_ie, struct sta_info *sta); void ieee80211_send_delba(struct ieee80211_sub_if_data *sdata, const u8 *da, u16 tid, u16 initiator, u16 reason_code); int ieee80211_send_smps_action(struct ieee80211_sub_if_data *sdata, enum ieee80211_smps_mode smps, const u8 *da, const u8 *bssid); void ieee80211_request_smps_ap_work(struct work_struct *work); void ieee80211_request_smps_mgd_work(struct work_struct *work); bool ieee80211_smps_is_restrictive(enum ieee80211_smps_mode smps_mode_old, enum ieee80211_smps_mode smps_mode_new); void ___ieee80211_stop_rx_ba_session(struct sta_info *sta, u16 tid, u16 initiator, u16 reason, bool stop); void __ieee80211_stop_rx_ba_session(struct sta_info *sta, u16 tid, u16 initiator, u16 reason, bool stop); void ___ieee80211_start_rx_ba_session(struct sta_info *sta, u8 dialog_token, u16 timeout, u16 start_seq_num, u16 ba_policy, u16 tid, u16 buf_size, bool tx, bool auto_seq, const struct ieee80211_addba_ext_ie *addbaext); void ieee80211_sta_tear_down_BA_sessions(struct sta_info *sta, enum ieee80211_agg_stop_reason reason); void ieee80211_process_delba(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, struct ieee80211_mgmt *mgmt, size_t len); void ieee80211_process_addba_resp(struct ieee80211_local *local, struct sta_info *sta, struct ieee80211_mgmt *mgmt, size_t len); void ieee80211_process_addba_request(struct ieee80211_local *local, struct sta_info *sta, struct ieee80211_mgmt *mgmt, size_t len); int __ieee80211_stop_tx_ba_session(struct sta_info *sta, u16 tid, enum ieee80211_agg_stop_reason reason); int ___ieee80211_stop_tx_ba_session(struct sta_info *sta, u16 tid, enum ieee80211_agg_stop_reason reason); void ieee80211_start_tx_ba_cb(struct sta_info *sta, int tid, struct tid_ampdu_tx *tid_tx); void ieee80211_stop_tx_ba_cb(struct sta_info *sta, int tid, struct tid_ampdu_tx *tid_tx); void ieee80211_ba_session_work(struct work_struct *work); void ieee80211_tx_ba_session_handle_start(struct sta_info *sta, int tid); void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid); u8 ieee80211_mcs_to_chains(const struct ieee80211_mcs_info *mcs); enum nl80211_smps_mode ieee80211_smps_mode_to_smps_mode(enum ieee80211_smps_mode smps); /* VHT */ void ieee80211_vht_cap_ie_to_sta_vht_cap(struct ieee80211_sub_if_data *sdata, struct ieee80211_supported_band *sband, const struct ieee80211_vht_cap *vht_cap_ie, struct sta_info *sta); enum ieee80211_sta_rx_bandwidth ieee80211_sta_cap_rx_bw(struct sta_info *sta); enum ieee80211_sta_rx_bandwidth ieee80211_sta_cur_vht_bw(struct sta_info *sta); void ieee80211_sta_set_rx_nss(struct sta_info *sta); enum ieee80211_sta_rx_bandwidth ieee80211_chan_width_to_rx_bw(enum nl80211_chan_width width); enum nl80211_chan_width ieee80211_sta_cap_chan_bw(struct sta_info *sta); void ieee80211_sta_set_rx_nss(struct sta_info *sta); void ieee80211_process_mu_groups(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgmt *mgmt); u32 __ieee80211_vht_handle_opmode(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, u8 opmode, enum nl80211_band band); void ieee80211_vht_handle_opmode(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, u8 opmode, enum nl80211_band band); void ieee80211_apply_vhtcap_overrides(struct ieee80211_sub_if_data *sdata, struct ieee80211_sta_vht_cap *vht_cap); void ieee80211_get_vht_mask_from_cap(__le16 vht_cap, u16 vht_mask[NL80211_VHT_NSS_MAX]); enum nl80211_chan_width ieee80211_sta_rx_bw_to_chan_width(struct sta_info *sta); /* HE */ void ieee80211_he_cap_ie_to_sta_he_cap(struct ieee80211_sub_if_data *sdata, struct ieee80211_supported_band *sband, const u8 *he_cap_ie, u8 he_cap_len, const struct ieee80211_he_6ghz_capa *he_6ghz_capa, struct sta_info *sta); void ieee80211_he_spr_ie_to_bss_conf(struct ieee80211_vif *vif, const struct ieee80211_he_spr *he_spr_ie_elem); void ieee80211_he_op_ie_to_bss_conf(struct ieee80211_vif *vif, const struct ieee80211_he_operation *he_op_ie_elem); /* S1G */ void ieee80211_s1g_sta_rate_init(struct sta_info *sta); /* Spectrum management */ void ieee80211_process_measurement_req(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgmt *mgmt, size_t len); /** * ieee80211_parse_ch_switch_ie - parses channel switch IEs * @sdata: the sdata of the interface which has received the frame * @elems: parsed 802.11 elements received with the frame * @current_band: indicates the current band * @vht_cap_info: VHT capabilities of the transmitter * @sta_flags: contains information about own capabilities and restrictions * to decide which channel switch announcements can be accepted. Only the * following subset of &enum ieee80211_sta_flags are evaluated: * %IEEE80211_STA_DISABLE_HT, %IEEE80211_STA_DISABLE_VHT, * %IEEE80211_STA_DISABLE_40MHZ, %IEEE80211_STA_DISABLE_80P80MHZ, * %IEEE80211_STA_DISABLE_160MHZ. * @bssid: the currently connected bssid (for reporting) * @csa_ie: parsed 802.11 csa elements on count, mode, chandef and mesh ttl. All of them will be filled with if success only. * Return: 0 on success, <0 on error and >0 if there is nothing to parse. */ int ieee80211_parse_ch_switch_ie(struct ieee80211_sub_if_data *sdata, struct ieee802_11_elems *elems, enum nl80211_band current_band, u32 vht_cap_info, u32 sta_flags, u8 *bssid, struct ieee80211_csa_ie *csa_ie); /* Suspend/resume and hw reconfiguration */ int ieee80211_reconfig(struct ieee80211_local *local); void ieee80211_stop_device(struct ieee80211_local *local); int __ieee80211_suspend(struct ieee80211_hw *hw, struct cfg80211_wowlan *wowlan); static inline int __ieee80211_resume(struct ieee80211_hw *hw) { struct ieee80211_local *local = hw_to_local(hw); WARN(test_bit(SCAN_HW_SCANNING, &local->scanning) && !test_bit(SCAN_COMPLETED, &local->scanning), "%s: resume with hardware scan still in progress\n", wiphy_name(hw->wiphy)); return ieee80211_reconfig(hw_to_local(hw)); } /* utility functions/constants */ extern const void *const mac80211_wiphy_privid; /* for wiphy privid */ int ieee80211_frame_duration(enum nl80211_band band, size_t len, int rate, int erp, int short_preamble, int shift); void ieee80211_regulatory_limit_wmm_params(struct ieee80211_sub_if_data *sdata, struct ieee80211_tx_queue_params *qparam, int ac); void ieee80211_set_wmm_default(struct ieee80211_sub_if_data *sdata, bool bss_notify, bool enable_qos); void ieee80211_xmit(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, struct sk_buff *skb); void __ieee80211_tx_skb_tid_band(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, int tid, enum nl80211_band band); /* sta_out needs to be checked for ERR_PTR() before using */ int ieee80211_lookup_ra_sta(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, struct sta_info **sta_out); static inline void ieee80211_tx_skb_tid_band(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, int tid, enum nl80211_band band) { rcu_read_lock(); __ieee80211_tx_skb_tid_band(sdata, skb, tid, band); rcu_read_unlock(); } static inline void ieee80211_tx_skb_tid(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, int tid) { struct ieee80211_chanctx_conf *chanctx_conf; rcu_read_lock(); chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); if (WARN_ON(!chanctx_conf)) { rcu_read_unlock(); kfree_skb(skb); return; } __ieee80211_tx_skb_tid_band(sdata, skb, tid, chanctx_conf->def.chan->band); rcu_read_unlock(); } static inline void ieee80211_tx_skb(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb) { /* Send all internal mgmt frames on VO. Accordingly set TID to 7. */ ieee80211_tx_skb_tid(sdata, skb, 7); } u32 ieee802_11_parse_elems_crc(const u8 *start, size_t len, bool action, struct ieee802_11_elems *elems, u64 filter, u32 crc, u8 *transmitter_bssid, u8 *bss_bssid); static inline void ieee802_11_parse_elems(const u8 *start, size_t len, bool action, struct ieee802_11_elems *elems, u8 *transmitter_bssid, u8 *bss_bssid) { ieee802_11_parse_elems_crc(start, len, action, elems, 0, 0, transmitter_bssid, bss_bssid); } extern const int ieee802_1d_to_ac[8]; static inline int ieee80211_ac_from_tid(int tid) { return ieee802_1d_to_ac[tid & 7]; } void ieee80211_dynamic_ps_enable_work(struct work_struct *work); void ieee80211_dynamic_ps_disable_work(struct work_struct *work); void ieee80211_dynamic_ps_timer(struct timer_list *t); void ieee80211_send_nullfunc(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, bool powersave); void ieee80211_send_4addr_nullfunc(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata); void ieee80211_sta_tx_notify(struct ieee80211_sub_if_data *sdata, struct ieee80211_hdr *hdr, bool ack, u16 tx_time); void ieee80211_wake_queues_by_reason(struct ieee80211_hw *hw, unsigned long queues, enum queue_stop_reason reason, bool refcounted); void ieee80211_stop_vif_queues(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, enum queue_stop_reason reason); void ieee80211_wake_vif_queues(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, enum queue_stop_reason reason); void ieee80211_stop_queues_by_reason(struct ieee80211_hw *hw, unsigned long queues, enum queue_stop_reason reason, bool refcounted); void ieee80211_wake_queue_by_reason(struct ieee80211_hw *hw, int queue, enum queue_stop_reason reason, bool refcounted); void ieee80211_stop_queue_by_reason(struct ieee80211_hw *hw, int queue, enum queue_stop_reason reason, bool refcounted); void ieee80211_propagate_queue_wake(struct ieee80211_local *local, int queue); void ieee80211_add_pending_skb(struct ieee80211_local *local, struct sk_buff *skb); void ieee80211_add_pending_skbs(struct ieee80211_local *local, struct sk_buff_head *skbs); void ieee80211_flush_queues(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, bool drop); void __ieee80211_flush_queues(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, unsigned int queues, bool drop); static inline bool ieee80211_can_run_worker(struct ieee80211_local *local) { /* * It's unsafe to try to do any work during reconfigure flow. * When the flow ends the work will be requeued. */ if (local->in_reconfig) return false; /* * If quiescing is set, we are racing with __ieee80211_suspend. * __ieee80211_suspend flushes the workers after setting quiescing, * and we check quiescing / suspended before enqueing new workers. * We should abort the worker to avoid the races below. */ if (local->quiescing) return false; /* * We might already be suspended if the following scenario occurs: * __ieee80211_suspend Control path * * if (local->quiescing) * return; * local->quiescing = true; * flush_workqueue(); * queue_work(...); * local->suspended = true; * local->quiescing = false; * worker starts running... */ if (local->suspended) return false; return true; } int ieee80211_txq_setup_flows(struct ieee80211_local *local); void ieee80211_txq_set_params(struct ieee80211_local *local); void ieee80211_txq_teardown_flows(struct ieee80211_local *local); void ieee80211_txq_init(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, struct txq_info *txq, int tid); void ieee80211_txq_purge(struct ieee80211_local *local, struct txq_info *txqi); void ieee80211_txq_remove_vlan(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata); void ieee80211_fill_txq_stats(struct cfg80211_txq_stats *txqstats, struct txq_info *txqi); void ieee80211_wake_txqs(unsigned long data); void ieee80211_send_auth(struct ieee80211_sub_if_data *sdata, u16 transaction, u16 auth_alg, u16 status, const u8 *extra, size_t extra_len, const u8 *bssid, const u8 *da, const u8 *key, u8 key_len, u8 key_idx, u32 tx_flags); void ieee80211_send_deauth_disassoc(struct ieee80211_sub_if_data *sdata, const u8 *da, const u8 *bssid, u16 stype, u16 reason, bool send_frame, u8 *frame_buf); enum { IEEE80211_PROBE_FLAG_DIRECTED = BIT(0), IEEE80211_PROBE_FLAG_MIN_CONTENT = BIT(1), IEEE80211_PROBE_FLAG_RANDOM_SN = BIT(2), }; int ieee80211_build_preq_ies(struct ieee80211_sub_if_data *sdata, u8 *buffer, size_t buffer_len, struct ieee80211_scan_ies *ie_desc, const u8 *ie, size_t ie_len, u8 bands_used, u32 *rate_masks, struct cfg80211_chan_def *chandef, u32 flags); struct sk_buff *ieee80211_build_probe_req(struct ieee80211_sub_if_data *sdata, const u8 *src, const u8 *dst, u32 ratemask, struct ieee80211_channel *chan, const u8 *ssid, size_t ssid_len, const u8 *ie, size_t ie_len, u32 flags); u32 ieee80211_sta_get_rates(struct ieee80211_sub_if_data *sdata, struct ieee802_11_elems *elems, enum nl80211_band band, u32 *basic_rates); int __ieee80211_request_smps_mgd(struct ieee80211_sub_if_data *sdata, enum ieee80211_smps_mode smps_mode); void ieee80211_recalc_smps(struct ieee80211_sub_if_data *sdata); void ieee80211_recalc_min_chandef(struct ieee80211_sub_if_data *sdata); size_t ieee80211_ie_split_vendor(const u8 *ies, size_t ielen, size_t offset); u8 *ieee80211_ie_build_ht_cap(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, u16 cap); u8 *ieee80211_ie_build_ht_oper(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, const struct cfg80211_chan_def *chandef, u16 prot_mode, bool rifs_mode); void ieee80211_ie_build_wide_bw_cs(u8 *pos, const struct cfg80211_chan_def *chandef); u8 *ieee80211_ie_build_vht_cap(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, u32 cap); u8 *ieee80211_ie_build_vht_oper(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, const struct cfg80211_chan_def *chandef); u8 ieee80211_ie_len_he_cap(struct ieee80211_sub_if_data *sdata, u8 iftype); u8 *ieee80211_ie_build_he_cap(u8 *pos, const struct ieee80211_sta_he_cap *he_cap, u8 *end); void ieee80211_ie_build_he_6ghz_cap(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb); u8 *ieee80211_ie_build_he_oper(u8 *pos, struct cfg80211_chan_def *chandef); int ieee80211_parse_bitrates(struct cfg80211_chan_def *chandef, const struct ieee80211_supported_band *sband, const u8 *srates, int srates_len, u32 *rates); int ieee80211_add_srates_ie(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, bool need_basic, enum nl80211_band band); int ieee80211_add_ext_srates_ie(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, bool need_basic, enum nl80211_band band); u8 *ieee80211_add_wmm_info_ie(u8 *buf, u8 qosinfo); void ieee80211_add_s1g_capab_ie(struct ieee80211_sub_if_data *sdata, struct ieee80211_sta_s1g_cap *caps, struct sk_buff *skb); void ieee80211_add_aid_request_ie(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb); /* channel management */ bool ieee80211_chandef_ht_oper(const struct ieee80211_ht_operation *ht_oper, struct cfg80211_chan_def *chandef); bool ieee80211_chandef_vht_oper(struct ieee80211_hw *hw, u32 vht_cap_info, const struct ieee80211_vht_operation *oper, const struct ieee80211_ht_operation *htop, struct cfg80211_chan_def *chandef); bool ieee80211_chandef_he_6ghz_oper(struct ieee80211_sub_if_data *sdata, const struct ieee80211_he_operation *he_oper, struct cfg80211_chan_def *chandef); bool ieee80211_chandef_s1g_oper(const struct ieee80211_s1g_oper_ie *oper, struct cfg80211_chan_def *chandef); u32 ieee80211_chandef_downgrade(struct cfg80211_chan_def *c); int __must_check ieee80211_vif_use_channel(struct ieee80211_sub_if_data *sdata, const struct cfg80211_chan_def *chandef, enum ieee80211_chanctx_mode mode); int __must_check ieee80211_vif_reserve_chanctx(struct ieee80211_sub_if_data *sdata, const struct cfg80211_chan_def *chandef, enum ieee80211_chanctx_mode mode, bool radar_required); int __must_check ieee80211_vif_use_reserved_context(struct ieee80211_sub_if_data *sdata); int ieee80211_vif_unreserve_chanctx(struct ieee80211_sub_if_data *sdata); int __must_check ieee80211_vif_change_bandwidth(struct ieee80211_sub_if_data *sdata, const struct cfg80211_chan_def *chandef, u32 *changed); void ieee80211_vif_release_channel(struct ieee80211_sub_if_data *sdata); void ieee80211_vif_vlan_copy_chanctx(struct ieee80211_sub_if_data *sdata); void ieee80211_vif_copy_chanctx_to_vlans(struct ieee80211_sub_if_data *sdata, bool clear); int ieee80211_chanctx_refcount(struct ieee80211_local *local, struct ieee80211_chanctx *ctx); void ieee80211_recalc_smps_chanctx(struct ieee80211_local *local, struct ieee80211_chanctx *chanctx); void ieee80211_recalc_chanctx_min_def(struct ieee80211_local *local, struct ieee80211_chanctx *ctx); bool ieee80211_is_radar_required(struct ieee80211_local *local); void ieee80211_dfs_cac_timer(unsigned long data); void ieee80211_dfs_cac_timer_work(struct work_struct *work); void ieee80211_dfs_cac_cancel(struct ieee80211_local *local); void ieee80211_dfs_radar_detected_work(struct work_struct *work); int ieee80211_send_action_csa(struct ieee80211_sub_if_data *sdata, struct cfg80211_csa_settings *csa_settings); bool ieee80211_cs_valid(const struct ieee80211_cipher_scheme *cs); bool ieee80211_cs_list_valid(const struct ieee80211_cipher_scheme *cs, int n); const struct ieee80211_cipher_scheme * ieee80211_cs_get(struct ieee80211_local *local, u32 cipher, enum nl80211_iftype iftype); int ieee80211_cs_headroom(struct ieee80211_local *local, struct cfg80211_crypto_settings *crypto, enum nl80211_iftype iftype); void ieee80211_recalc_dtim(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata); int ieee80211_check_combinations(struct ieee80211_sub_if_data *sdata, const struct cfg80211_chan_def *chandef, enum ieee80211_chanctx_mode chanmode, u8 radar_detect); int ieee80211_max_num_channels(struct ieee80211_local *local); enum nl80211_chan_width ieee80211_get_sta_bw(struct ieee80211_sta *sta); void ieee80211_recalc_chanctx_chantype(struct ieee80211_local *local, struct ieee80211_chanctx *ctx); /* TDLS */ int ieee80211_tdls_mgmt(struct wiphy *wiphy, struct net_device *dev, const u8 *peer, u8 action_code, u8 dialog_token, u16 status_code, u32 peer_capability, bool initiator, const u8 *extra_ies, size_t extra_ies_len); int ieee80211_tdls_oper(struct wiphy *wiphy, struct net_device *dev, const u8 *peer, enum nl80211_tdls_operation oper); void ieee80211_tdls_peer_del_work(struct work_struct *wk); int ieee80211_tdls_channel_switch(struct wiphy *wiphy, struct net_device *dev, const u8 *addr, u8 oper_class, struct cfg80211_chan_def *chandef); void ieee80211_tdls_cancel_channel_switch(struct wiphy *wiphy, struct net_device *dev, const u8 *addr); void ieee80211_teardown_tdls_peers(struct ieee80211_sub_if_data *sdata); void ieee80211_tdls_chsw_work(struct work_struct *wk); void ieee80211_tdls_handle_disconnect(struct ieee80211_sub_if_data *sdata, const u8 *peer, u16 reason); const char *ieee80211_get_reason_code_string(u16 reason_code); u16 ieee80211_encode_usf(int val); u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len, enum nl80211_iftype type); extern const struct ethtool_ops ieee80211_ethtool_ops; u32 ieee80211_calc_expected_tx_airtime(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *pubsta, int len, bool ampdu); #ifdef CONFIG_MAC80211_NOINLINE #define debug_noinline noinline #else #define debug_noinline #endif void ieee80211_init_frag_cache(struct ieee80211_fragment_cache *cache); void ieee80211_destroy_frag_cache(struct ieee80211_fragment_cache *cache); #endif /* IEEE80211_I_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */ #ifndef _UAPI_LINUX_BYTEORDER_LITTLE_ENDIAN_H #define _UAPI_LINUX_BYTEORDER_LITTLE_ENDIAN_H #ifndef __LITTLE_ENDIAN #define __LITTLE_ENDIAN 1234 #endif #ifndef __LITTLE_ENDIAN_BITFIELD #define __LITTLE_ENDIAN_BITFIELD #endif #include <linux/types.h> #include <linux/swab.h> #define __constant_htonl(x) ((__force __be32)___constant_swab32((x))) #define __constant_ntohl(x) ___constant_swab32((__force __be32)(x)) #define __constant_htons(x) ((__force __be16)___constant_swab16((x))) #define __constant_ntohs(x) ___constant_swab16((__force __be16)(x)) #define __constant_cpu_to_le64(x) ((__force __le64)(__u64)(x)) #define __constant_le64_to_cpu(x) ((__force __u64)(__le64)(x)) #define __constant_cpu_to_le32(x) ((__force __le32)(__u32)(x)) #define __constant_le32_to_cpu(x) ((__force __u32)(__le32)(x)) #define __constant_cpu_to_le16(x) ((__force __le16)(__u16)(x)) #define __constant_le16_to_cpu(x) ((__force __u16)(__le16)(x)) #define __constant_cpu_to_be64(x) ((__force __be64)___constant_swab64((x))) #define __constant_be64_to_cpu(x) ___constant_swab64((__force __u64)(__be64)(x)) #define __constant_cpu_to_be32(x) ((__force __be32)___constant_swab32((x))) #define __constant_be32_to_cpu(x) ___constant_swab32((__force __u32)(__be32)(x)) #define __constant_cpu_to_be16(x) ((__force __be16)___constant_swab16((x))) #define __constant_be16_to_cpu(x) ___constant_swab16((__force __u16)(__be16)(x)) #define __cpu_to_le64(x) ((__force __le64)(__u64)(x)) #define __le64_to_cpu(x) ((__force __u64)(__le64)(x)) #define __cpu_to_le32(x) ((__force __le32)(__u32)(x)) #define __le32_to_cpu(x) ((__force __u32)(__le32)(x)) #define __cpu_to_le16(x) ((__force __le16)(__u16)(x)) #define __le16_to_cpu(x) ((__force __u16)(__le16)(x)) #define __cpu_to_be64(x) ((__force __be64)__swab64((x))) #define __be64_to_cpu(x) __swab64((__force __u64)(__be64)(x)) #define __cpu_to_be32(x) ((__force __be32)__swab32((x))) #define __be32_to_cpu(x) __swab32((__force __u32)(__be32)(x)) #define __cpu_to_be16(x) ((__force __be16)__swab16((x))) #define __be16_to_cpu(x) __swab16((__force __u16)(__be16)(x)) static __always_inline __le64 __cpu_to_le64p(const __u64 *p) { return (__force __le64)*p; } static __always_inline __u64 __le64_to_cpup(const __le64 *p) { return (__force __u64)*p; } static __always_inline __le32 __cpu_to_le32p(const __u32 *p) { return (__force __le32)*p; } static __always_inline __u32 __le32_to_cpup(const __le32 *p) { return (__force __u32)*p; } static __always_inline __le16 __cpu_to_le16p(const __u16 *p) { return (__force __le16)*p; } static __always_inline __u16 __le16_to_cpup(const __le16 *p) { return (__force __u16)*p; } static __always_inline __be64 __cpu_to_be64p(const __u64 *p) { return (__force __be64)__swab64p(p); } static __always_inline __u64 __be64_to_cpup(const __be64 *p) { return __swab64p((__u64 *)p); } static __always_inline __be32 __cpu_to_be32p(const __u32 *p) { return (__force __be32)__swab32p(p); } static __always_inline __u32 __be32_to_cpup(const __be32 *p) { return __swab32p((__u32 *)p); } static __always_inline __be16 __cpu_to_be16p(const __u16 *p) { return (__force __be16)__swab16p(p); } static __always_inline __u16 __be16_to_cpup(const __be16 *p) { return __swab16p((__u16 *)p); } #define __cpu_to_le64s(x) do { (void)(x); } while (0) #define __le64_to_cpus(x) do { (void)(x); } while (0) #define __cpu_to_le32s(x) do { (void)(x); } while (0) #define __le32_to_cpus(x) do { (void)(x); } while (0) #define __cpu_to_le16s(x) do { (void)(x); } while (0) #define __le16_to_cpus(x) do { (void)(x); } while (0) #define __cpu_to_be64s(x) __swab64s((x)) #define __be64_to_cpus(x) __swab64s((x)) #define __cpu_to_be32s(x) __swab32s((x)) #define __be32_to_cpus(x) __swab32s((x)) #define __cpu_to_be16s(x) __swab16s((x)) #define __be16_to_cpus(x) __swab16s((x)) #endif /* _UAPI_LINUX_BYTEORDER_LITTLE_ENDIAN_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Copyright 1997-1998 Transmeta Corporation - All Rights Reserved * Copyright 2005-2006 Ian Kent <raven@themaw.net> */ /* Internal header file for autofs */ #include <linux/auto_fs.h> #include <linux/auto_dev-ioctl.h> #include <linux/kernel.h> #include <linux/slab.h> #include <linux/time.h> #include <linux/string.h> #include <linux/wait.h> #include <linux/sched.h> #include <linux/sched/signal.h> #include <linux/mount.h> #include <linux/namei.h> #include <linux/uaccess.h> #include <linux/mutex.h> #include <linux/spinlock.h> #include <linux/list.h> #include <linux/completion.h> #include <linux/file.h> #include <linux/magic.h> /* This is the range of ioctl() numbers we claim as ours */ #define AUTOFS_IOC_FIRST AUTOFS_IOC_READY #define AUTOFS_IOC_COUNT 32 #define AUTOFS_DEV_IOCTL_IOC_FIRST (AUTOFS_DEV_IOCTL_VERSION) #define AUTOFS_DEV_IOCTL_IOC_COUNT \ (AUTOFS_DEV_IOCTL_ISMOUNTPOINT_CMD - AUTOFS_DEV_IOCTL_VERSION_CMD) #ifdef pr_fmt #undef pr_fmt #endif #define pr_fmt(fmt) KBUILD_MODNAME ":pid:%d:%s: " fmt, current->pid, __func__ extern struct file_system_type autofs_fs_type; /* * Unified info structure. This is pointed to by both the dentry and * inode structures. Each file in the filesystem has an instance of this * structure. It holds a reference to the dentry, so dentries are never * flushed while the file exists. All name lookups are dealt with at the * dentry level, although the filesystem can interfere in the validation * process. Readdir is implemented by traversing the dentry lists. */ struct autofs_info { struct dentry *dentry; struct inode *inode; int flags; struct completion expire_complete; struct list_head active; struct list_head expiring; struct autofs_sb_info *sbi; unsigned long last_used; int count; kuid_t uid; kgid_t gid; struct rcu_head rcu; }; #define AUTOFS_INF_EXPIRING (1<<0) /* dentry in the process of expiring */ #define AUTOFS_INF_WANT_EXPIRE (1<<1) /* the dentry is being considered * for expiry, so RCU_walk is * not permitted. If it progresses to * actual expiry attempt, the flag is * not cleared when EXPIRING is set - * in that case it gets cleared only * when it comes to clearing EXPIRING. */ #define AUTOFS_INF_PENDING (1<<2) /* dentry pending mount */ struct autofs_wait_queue { wait_queue_head_t queue; struct autofs_wait_queue *next; autofs_wqt_t wait_queue_token; /* We use the following to see what we are waiting for */ struct qstr name; u32 dev; u64 ino; kuid_t uid; kgid_t gid; pid_t pid; pid_t tgid; /* This is for status reporting upon return */ int status; unsigned int wait_ctr; }; #define AUTOFS_SBI_MAGIC 0x6d4a556d #define AUTOFS_SBI_CATATONIC 0x0001 #define AUTOFS_SBI_STRICTEXPIRE 0x0002 #define AUTOFS_SBI_IGNORE 0x0004 struct autofs_sb_info { u32 magic; int pipefd; struct file *pipe; struct pid *oz_pgrp; int version; int sub_version; int min_proto; int max_proto; unsigned int flags; unsigned long exp_timeout; unsigned int type; struct super_block *sb; struct mutex wq_mutex; struct mutex pipe_mutex; spinlock_t fs_lock; struct autofs_wait_queue *queues; /* Wait queue pointer */ spinlock_t lookup_lock; struct list_head active_list; struct list_head expiring_list; struct rcu_head rcu; }; static inline struct autofs_sb_info *autofs_sbi(struct super_block *sb) { return (struct autofs_sb_info *)(sb->s_fs_info); } static inline struct autofs_info *autofs_dentry_ino(struct dentry *dentry) { return (struct autofs_info *)(dentry->d_fsdata); } /* autofs_oz_mode(): do we see the man behind the curtain? (The * processes which do manipulations for us in user space sees the raw * filesystem without "magic".) */ static inline int autofs_oz_mode(struct autofs_sb_info *sbi) { return ((sbi->flags & AUTOFS_SBI_CATATONIC) || task_pgrp(current) == sbi->oz_pgrp); } struct inode *autofs_get_inode(struct super_block *, umode_t); void autofs_free_ino(struct autofs_info *); /* Expiration */ int is_autofs_dentry(struct dentry *); int autofs_expire_wait(const struct path *path, int rcu_walk); int autofs_expire_run(struct super_block *, struct vfsmount *, struct autofs_sb_info *, struct autofs_packet_expire __user *); int autofs_do_expire_multi(struct super_block *sb, struct vfsmount *mnt, struct autofs_sb_info *sbi, unsigned int how); int autofs_expire_multi(struct super_block *, struct vfsmount *, struct autofs_sb_info *, int __user *); /* Device node initialization */ int autofs_dev_ioctl_init(void); void autofs_dev_ioctl_exit(void); /* Operations structures */ extern const struct inode_operations autofs_symlink_inode_operations; extern const struct inode_operations autofs_dir_inode_operations; extern const struct file_operations autofs_dir_operations; extern const struct file_operations autofs_root_operations; extern const struct dentry_operations autofs_dentry_operations; /* VFS automount flags management functions */ static inline void __managed_dentry_set_managed(struct dentry *dentry) { dentry->d_flags |= (DCACHE_NEED_AUTOMOUNT|DCACHE_MANAGE_TRANSIT); } static inline void managed_dentry_set_managed(struct dentry *dentry) { spin_lock(&dentry->d_lock); __managed_dentry_set_managed(dentry); spin_unlock(&dentry->d_lock); } static inline void __managed_dentry_clear_managed(struct dentry *dentry) { dentry->d_flags &= ~(DCACHE_NEED_AUTOMOUNT|DCACHE_MANAGE_TRANSIT); } static inline void managed_dentry_clear_managed(struct dentry *dentry) { spin_lock(&dentry->d_lock); __managed_dentry_clear_managed(dentry); spin_unlock(&dentry->d_lock); } /* Initializing function */ int autofs_fill_super(struct super_block *, void *, int); struct autofs_info *autofs_new_ino(struct autofs_sb_info *); void autofs_clean_ino(struct autofs_info *); static inline int autofs_prepare_pipe(struct file *pipe) { if (!(pipe->f_mode & FMODE_CAN_WRITE)) return -EINVAL; if (!S_ISFIFO(file_inode(pipe)->i_mode)) return -EINVAL; /* We want a packet pipe */ pipe->f_flags |= O_DIRECT; /* We don't expect -EAGAIN */ pipe->f_flags &= ~O_NONBLOCK; return 0; } /* Queue management functions */ int autofs_wait(struct autofs_sb_info *, const struct path *, enum autofs_notify); int autofs_wait_release(struct autofs_sb_info *, autofs_wqt_t, int); void autofs_catatonic_mode(struct autofs_sb_info *); static inline u32 autofs_get_dev(struct autofs_sb_info *sbi) { return new_encode_dev(sbi->sb->s_dev); } static inline u64 autofs_get_ino(struct autofs_sb_info *sbi) { return d_inode(sbi->sb->s_root)->i_ino; } static inline void __autofs_add_expiring(struct dentry *dentry) { struct autofs_sb_info *sbi = autofs_sbi(dentry->d_sb); struct autofs_info *ino = autofs_dentry_ino(dentry); if (ino) { if (list_empty(&ino->expiring)) list_add(&ino->expiring, &sbi->expiring_list); } } static inline void autofs_add_expiring(struct dentry *dentry) { struct autofs_sb_info *sbi = autofs_sbi(dentry->d_sb); struct autofs_info *ino = autofs_dentry_ino(dentry); if (ino) { spin_lock(&sbi->lookup_lock); if (list_empty(&ino->expiring)) list_add(&ino->expiring, &sbi->expiring_list); spin_unlock(&sbi->lookup_lock); } } static inline void autofs_del_expiring(struct dentry *dentry) { struct autofs_sb_info *sbi = autofs_sbi(dentry->d_sb); struct autofs_info *ino = autofs_dentry_ino(dentry); if (ino) { spin_lock(&sbi->lookup_lock); if (!list_empty(&ino->expiring)) list_del_init(&ino->expiring); spin_unlock(&sbi->lookup_lock); } } void autofs_kill_sb(struct super_block *);
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM sched #if !defined(_TRACE_SCHED_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_SCHED_H #include <linux/sched/numa_balancing.h> #include <linux/tracepoint.h> #include <linux/binfmts.h> /* * Tracepoint for calling kthread_stop, performed to end a kthread: */ TRACE_EVENT(sched_kthread_stop, TP_PROTO(struct task_struct *t), TP_ARGS(t), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) __field( pid_t, pid ) ), TP_fast_assign( memcpy(__entry->comm, t->comm, TASK_COMM_LEN); __entry->pid = t->pid; ), TP_printk("comm=%s pid=%d", __entry->comm, __entry->pid) ); /* * Tracepoint for the return value of the kthread stopping: */ TRACE_EVENT(sched_kthread_stop_ret, TP_PROTO(int ret), TP_ARGS(ret), TP_STRUCT__entry( __field( int, ret ) ), TP_fast_assign( __entry->ret = ret; ), TP_printk("ret=%d", __entry->ret) ); /* * Tracepoint for waking up a task: */ DECLARE_EVENT_CLASS(sched_wakeup_template, TP_PROTO(struct task_struct *p), TP_ARGS(__perf_task(p)), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) __field( pid_t, pid ) __field( int, prio ) __field( int, success ) __field( int, target_cpu ) ), TP_fast_assign( memcpy(__entry->comm, p->comm, TASK_COMM_LEN); __entry->pid = p->pid; __entry->prio = p->prio; /* XXX SCHED_DEADLINE */ __entry->success = 1; /* rudiment, kill when possible */ __entry->target_cpu = task_cpu(p); ), TP_printk("comm=%s pid=%d prio=%d target_cpu=%03d", __entry->comm, __entry->pid, __entry->prio, __entry->target_cpu) ); /* * Tracepoint called when waking a task; this tracepoint is guaranteed to be * called from the waking context. */ DEFINE_EVENT(sched_wakeup_template, sched_waking, TP_PROTO(struct task_struct *p), TP_ARGS(p)); /* * Tracepoint called when the task is actually woken; p->state == TASK_RUNNNG. * It is not always called from the waking context. */ DEFINE_EVENT(sched_wakeup_template, sched_wakeup, TP_PROTO(struct task_struct *p), TP_ARGS(p)); /* * Tracepoint for waking up a new task: */ DEFINE_EVENT(sched_wakeup_template, sched_wakeup_new, TP_PROTO(struct task_struct *p), TP_ARGS(p)); #ifdef CREATE_TRACE_POINTS static inline long __trace_sched_switch_state(bool preempt, struct task_struct *p) { unsigned int state; #ifdef CONFIG_SCHED_DEBUG BUG_ON(p != current); #endif /* CONFIG_SCHED_DEBUG */ /* * Preemption ignores task state, therefore preempted tasks are always * RUNNING (we will not have dequeued if state != RUNNING). */ if (preempt) return TASK_REPORT_MAX; /* * task_state_index() uses fls() and returns a value from 0-8 range. * Decrement it by 1 (except TASK_RUNNING state i.e 0) before using * it for left shift operation to get the correct task->state * mapping. */ state = task_state_index(p); return state ? (1 << (state - 1)) : state; } #endif /* CREATE_TRACE_POINTS */ /* * Tracepoint for task switches, performed by the scheduler: */ TRACE_EVENT(sched_switch, TP_PROTO(bool preempt, struct task_struct *prev, struct task_struct *next), TP_ARGS(preempt, prev, next), TP_STRUCT__entry( __array( char, prev_comm, TASK_COMM_LEN ) __field( pid_t, prev_pid ) __field( int, prev_prio ) __field( long, prev_state ) __array( char, next_comm, TASK_COMM_LEN ) __field( pid_t, next_pid ) __field( int, next_prio ) ), TP_fast_assign( memcpy(__entry->next_comm, next->comm, TASK_COMM_LEN); __entry->prev_pid = prev->pid; __entry->prev_prio = prev->prio; __entry->prev_state = __trace_sched_switch_state(preempt, prev); memcpy(__entry->prev_comm, prev->comm, TASK_COMM_LEN); __entry->next_pid = next->pid; __entry->next_prio = next->prio; /* XXX SCHED_DEADLINE */ ), TP_printk("prev_comm=%s prev_pid=%d prev_prio=%d prev_state=%s%s ==> next_comm=%s next_pid=%d next_prio=%d", __entry->prev_comm, __entry->prev_pid, __entry->prev_prio, (__entry->prev_state & (TASK_REPORT_MAX - 1)) ? __print_flags(__entry->prev_state & (TASK_REPORT_MAX - 1), "|", { TASK_INTERRUPTIBLE, "S" }, { TASK_UNINTERRUPTIBLE, "D" }, { __TASK_STOPPED, "T" }, { __TASK_TRACED, "t" }, { EXIT_DEAD, "X" }, { EXIT_ZOMBIE, "Z" }, { TASK_PARKED, "P" }, { TASK_DEAD, "I" }) : "R", __entry->prev_state & TASK_REPORT_MAX ? "+" : "", __entry->next_comm, __entry->next_pid, __entry->next_prio) ); /* * Tracepoint for a task being migrated: */ TRACE_EVENT(sched_migrate_task, TP_PROTO(struct task_struct *p, int dest_cpu), TP_ARGS(p, dest_cpu), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) __field( pid_t, pid ) __field( int, prio ) __field( int, orig_cpu ) __field( int, dest_cpu ) ), TP_fast_assign( memcpy(__entry->comm, p->comm, TASK_COMM_LEN); __entry->pid = p->pid; __entry->prio = p->prio; /* XXX SCHED_DEADLINE */ __entry->orig_cpu = task_cpu(p); __entry->dest_cpu = dest_cpu; ), TP_printk("comm=%s pid=%d prio=%d orig_cpu=%d dest_cpu=%d", __entry->comm, __entry->pid, __entry->prio, __entry->orig_cpu, __entry->dest_cpu) ); DECLARE_EVENT_CLASS(sched_process_template, TP_PROTO(struct task_struct *p), TP_ARGS(p), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) __field( pid_t, pid ) __field( int, prio ) ), TP_fast_assign( memcpy(__entry->comm, p->comm, TASK_COMM_LEN); __entry->pid = p->pid; __entry->prio = p->prio; /* XXX SCHED_DEADLINE */ ), TP_printk("comm=%s pid=%d prio=%d", __entry->comm, __entry->pid, __entry->prio) ); /* * Tracepoint for freeing a task: */ DEFINE_EVENT(sched_process_template, sched_process_free, TP_PROTO(struct task_struct *p), TP_ARGS(p)); /* * Tracepoint for a task exiting: */ DEFINE_EVENT(sched_process_template, sched_process_exit, TP_PROTO(struct task_struct *p), TP_ARGS(p)); /* * Tracepoint for waiting on task to unschedule: */ DEFINE_EVENT(sched_process_template, sched_wait_task, TP_PROTO(struct task_struct *p), TP_ARGS(p)); /* * Tracepoint for a waiting task: */ TRACE_EVENT(sched_process_wait, TP_PROTO(struct pid *pid), TP_ARGS(pid), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) __field( pid_t, pid ) __field( int, prio ) ), TP_fast_assign( memcpy(__entry->comm, current->comm, TASK_COMM_LEN); __entry->pid = pid_nr(pid); __entry->prio = current->prio; /* XXX SCHED_DEADLINE */ ), TP_printk("comm=%s pid=%d prio=%d", __entry->comm, __entry->pid, __entry->prio) ); /* * Tracepoint for do_fork: */ TRACE_EVENT(sched_process_fork, TP_PROTO(struct task_struct *parent, struct task_struct *child), TP_ARGS(parent, child), TP_STRUCT__entry( __array( char, parent_comm, TASK_COMM_LEN ) __field( pid_t, parent_pid ) __array( char, child_comm, TASK_COMM_LEN ) __field( pid_t, child_pid ) ), TP_fast_assign( memcpy(__entry->parent_comm, parent->comm, TASK_COMM_LEN); __entry->parent_pid = parent->pid; memcpy(__entry->child_comm, child->comm, TASK_COMM_LEN); __entry->child_pid = child->pid; ), TP_printk("comm=%s pid=%d child_comm=%s child_pid=%d", __entry->parent_comm, __entry->parent_pid, __entry->child_comm, __entry->child_pid) ); /* * Tracepoint for exec: */ TRACE_EVENT(sched_process_exec, TP_PROTO(struct task_struct *p, pid_t old_pid, struct linux_binprm *bprm), TP_ARGS(p, old_pid, bprm), TP_STRUCT__entry( __string( filename, bprm->filename ) __field( pid_t, pid ) __field( pid_t, old_pid ) ), TP_fast_assign( __assign_str(filename, bprm->filename); __entry->pid = p->pid; __entry->old_pid = old_pid; ), TP_printk("filename=%s pid=%d old_pid=%d", __get_str(filename), __entry->pid, __entry->old_pid) ); #ifdef CONFIG_SCHEDSTATS #define DEFINE_EVENT_SCHEDSTAT DEFINE_EVENT #define DECLARE_EVENT_CLASS_SCHEDSTAT DECLARE_EVENT_CLASS #else #define DEFINE_EVENT_SCHEDSTAT DEFINE_EVENT_NOP #define DECLARE_EVENT_CLASS_SCHEDSTAT DECLARE_EVENT_CLASS_NOP #endif /* * XXX the below sched_stat tracepoints only apply to SCHED_OTHER/BATCH/IDLE * adding sched_stat support to SCHED_FIFO/RR would be welcome. */ DECLARE_EVENT_CLASS_SCHEDSTAT(sched_stat_template, TP_PROTO(struct task_struct *tsk, u64 delay), TP_ARGS(__perf_task(tsk), __perf_count(delay)), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) __field( pid_t, pid ) __field( u64, delay ) ), TP_fast_assign( memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN); __entry->pid = tsk->pid; __entry->delay = delay; ), TP_printk("comm=%s pid=%d delay=%Lu [ns]", __entry->comm, __entry->pid, (unsigned long long)__entry->delay) ); /* * Tracepoint for accounting wait time (time the task is runnable * but not actually running due to scheduler contention). */ DEFINE_EVENT_SCHEDSTAT(sched_stat_template, sched_stat_wait, TP_PROTO(struct task_struct *tsk, u64 delay), TP_ARGS(tsk, delay)); /* * Tracepoint for accounting sleep time (time the task is not runnable, * including iowait, see below). */ DEFINE_EVENT_SCHEDSTAT(sched_stat_template, sched_stat_sleep, TP_PROTO(struct task_struct *tsk, u64 delay), TP_ARGS(tsk, delay)); /* * Tracepoint for accounting iowait time (time the task is not runnable * due to waiting on IO to complete). */ DEFINE_EVENT_SCHEDSTAT(sched_stat_template, sched_stat_iowait, TP_PROTO(struct task_struct *tsk, u64 delay), TP_ARGS(tsk, delay)); /* * Tracepoint for accounting blocked time (time the task is in uninterruptible). */ DEFINE_EVENT_SCHEDSTAT(sched_stat_template, sched_stat_blocked, TP_PROTO(struct task_struct *tsk, u64 delay), TP_ARGS(tsk, delay)); /* * Tracepoint for accounting runtime (time the task is executing * on a CPU). */ DECLARE_EVENT_CLASS(sched_stat_runtime, TP_PROTO(struct task_struct *tsk, u64 runtime, u64 vruntime), TP_ARGS(tsk, __perf_count(runtime), vruntime), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) __field( pid_t, pid ) __field( u64, runtime ) __field( u64, vruntime ) ), TP_fast_assign( memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN); __entry->pid = tsk->pid; __entry->runtime = runtime; __entry->vruntime = vruntime; ), TP_printk("comm=%s pid=%d runtime=%Lu [ns] vruntime=%Lu [ns]", __entry->comm, __entry->pid, (unsigned long long)__entry->runtime, (unsigned long long)__entry->vruntime) ); DEFINE_EVENT(sched_stat_runtime, sched_stat_runtime, TP_PROTO(struct task_struct *tsk, u64 runtime, u64 vruntime), TP_ARGS(tsk, runtime, vruntime)); /* * Tracepoint for showing priority inheritance modifying a tasks * priority. */ TRACE_EVENT(sched_pi_setprio, TP_PROTO(struct task_struct *tsk, struct task_struct *pi_task), TP_ARGS(tsk, pi_task), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) __field( pid_t, pid ) __field( int, oldprio ) __field( int, newprio ) ), TP_fast_assign( memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN); __entry->pid = tsk->pid; __entry->oldprio = tsk->prio; __entry->newprio = pi_task ? min(tsk->normal_prio, pi_task->prio) : tsk->normal_prio; /* XXX SCHED_DEADLINE bits missing */ ), TP_printk("comm=%s pid=%d oldprio=%d newprio=%d", __entry->comm, __entry->pid, __entry->oldprio, __entry->newprio) ); #ifdef CONFIG_DETECT_HUNG_TASK TRACE_EVENT(sched_process_hang, TP_PROTO(struct task_struct *tsk), TP_ARGS(tsk), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) __field( pid_t, pid ) ), TP_fast_assign( memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN); __entry->pid = tsk->pid; ), TP_printk("comm=%s pid=%d", __entry->comm, __entry->pid) ); #endif /* CONFIG_DETECT_HUNG_TASK */ /* * Tracks migration of tasks from one runqueue to another. Can be used to * detect if automatic NUMA balancing is bouncing between nodes. */ TRACE_EVENT(sched_move_numa, TP_PROTO(struct task_struct *tsk, int src_cpu, int dst_cpu), TP_ARGS(tsk, src_cpu, dst_cpu), TP_STRUCT__entry( __field( pid_t, pid ) __field( pid_t, tgid ) __field( pid_t, ngid ) __field( int, src_cpu ) __field( int, src_nid ) __field( int, dst_cpu ) __field( int, dst_nid ) ), TP_fast_assign( __entry->pid = task_pid_nr(tsk); __entry->tgid = task_tgid_nr(tsk); __entry->ngid = task_numa_group_id(tsk); __entry->src_cpu = src_cpu; __entry->src_nid = cpu_to_node(src_cpu); __entry->dst_cpu = dst_cpu; __entry->dst_nid = cpu_to_node(dst_cpu); ), TP_printk("pid=%d tgid=%d ngid=%d src_cpu=%d src_nid=%d dst_cpu=%d dst_nid=%d", __entry->pid, __entry->tgid, __entry->ngid, __entry->src_cpu, __entry->src_nid, __entry->dst_cpu, __entry->dst_nid) ); DECLARE_EVENT_CLASS(sched_numa_pair_template, TP_PROTO(struct task_struct *src_tsk, int src_cpu, struct task_struct *dst_tsk, int dst_cpu), TP_ARGS(src_tsk, src_cpu, dst_tsk, dst_cpu), TP_STRUCT__entry( __field( pid_t, src_pid ) __field( pid_t, src_tgid ) __field( pid_t, src_ngid ) __field( int, src_cpu ) __field( int, src_nid ) __field( pid_t, dst_pid ) __field( pid_t, dst_tgid ) __field( pid_t, dst_ngid ) __field( int, dst_cpu ) __field( int, dst_nid ) ), TP_fast_assign( __entry->src_pid = task_pid_nr(src_tsk); __entry->src_tgid = task_tgid_nr(src_tsk); __entry->src_ngid = task_numa_group_id(src_tsk); __entry->src_cpu = src_cpu; __entry->src_nid = cpu_to_node(src_cpu); __entry->dst_pid = dst_tsk ? task_pid_nr(dst_tsk) : 0; __entry->dst_tgid = dst_tsk ? task_tgid_nr(dst_tsk) : 0; __entry->dst_ngid = dst_tsk ? task_numa_group_id(dst_tsk) : 0; __entry->dst_cpu = dst_cpu; __entry->dst_nid = dst_cpu >= 0 ? cpu_to_node(dst_cpu) : -1; ), TP_printk("src_pid=%d src_tgid=%d src_ngid=%d src_cpu=%d src_nid=%d dst_pid=%d dst_tgid=%d dst_ngid=%d dst_cpu=%d dst_nid=%d", __entry->src_pid, __entry->src_tgid, __entry->src_ngid, __entry->src_cpu, __entry->src_nid, __entry->dst_pid, __entry->dst_tgid, __entry->dst_ngid, __entry->dst_cpu, __entry->dst_nid) ); DEFINE_EVENT(sched_numa_pair_template, sched_stick_numa, TP_PROTO(struct task_struct *src_tsk, int src_cpu, struct task_struct *dst_tsk, int dst_cpu), TP_ARGS(src_tsk, src_cpu, dst_tsk, dst_cpu) ); DEFINE_EVENT(sched_numa_pair_template, sched_swap_numa, TP_PROTO(struct task_struct *src_tsk, int src_cpu, struct task_struct *dst_tsk, int dst_cpu), TP_ARGS(src_tsk, src_cpu, dst_tsk, dst_cpu) ); /* * Tracepoint for waking a polling cpu without an IPI. */ TRACE_EVENT(sched_wake_idle_without_ipi, TP_PROTO(int cpu), TP_ARGS(cpu), TP_STRUCT__entry( __field( int, cpu ) ), TP_fast_assign( __entry->cpu = cpu; ), TP_printk("cpu=%d", __entry->cpu) ); /* * Following tracepoints are not exported in tracefs and provide hooking * mechanisms only for testing and debugging purposes. * * Postfixed with _tp to make them easily identifiable in the code. */ DECLARE_TRACE(pelt_cfs_tp, TP_PROTO(struct cfs_rq *cfs_rq), TP_ARGS(cfs_rq)); DECLARE_TRACE(pelt_rt_tp, TP_PROTO(struct rq *rq), TP_ARGS(rq)); DECLARE_TRACE(pelt_dl_tp, TP_PROTO(struct rq *rq), TP_ARGS(rq)); DECLARE_TRACE(pelt_thermal_tp, TP_PROTO(struct rq *rq), TP_ARGS(rq)); DECLARE_TRACE(pelt_irq_tp, TP_PROTO(struct rq *rq), TP_ARGS(rq)); DECLARE_TRACE(pelt_se_tp, TP_PROTO(struct sched_entity *se), TP_ARGS(se)); DECLARE_TRACE(sched_cpu_capacity_tp, TP_PROTO(struct rq *rq), TP_ARGS(rq)); DECLARE_TRACE(sched_overutilized_tp, TP_PROTO(struct root_domain *rd, bool overutilized), TP_ARGS(rd, overutilized)); DECLARE_TRACE(sched_util_est_cfs_tp, TP_PROTO(struct cfs_rq *cfs_rq), TP_ARGS(cfs_rq)); DECLARE_TRACE(sched_util_est_se_tp, TP_PROTO(struct sched_entity *se), TP_ARGS(se)); DECLARE_TRACE(sched_update_nr_running_tp, TP_PROTO(struct rq *rq, int change), TP_ARGS(rq, change)); #endif /* _TRACE_SCHED_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 /* SPDX-License-Identifier: GPL-2.0 */ /* * NFS internal definitions */ #include "nfs4_fs.h" #include <linux/fs_context.h> #include <linux/security.h> #include <linux/crc32.h> #include <linux/sunrpc/addr.h> #include <linux/nfs_page.h> #include <linux/wait_bit.h> #define NFS_SB_MASK (SB_RDONLY|SB_NOSUID|SB_NODEV|SB_NOEXEC|SB_SYNCHRONOUS) extern const struct export_operations nfs_export_ops; struct nfs_string; struct nfs_pageio_descriptor; static inline void nfs_attr_check_mountpoint(struct super_block *parent, struct nfs_fattr *fattr) { if (!nfs_fsid_equal(&NFS_SB(parent)->fsid, &fattr->fsid)) fattr->valid |= NFS_ATTR_FATTR_MOUNTPOINT; } static inline int nfs_attr_use_mounted_on_fileid(struct nfs_fattr *fattr) { if (((fattr->valid & NFS_ATTR_FATTR_MOUNTED_ON_FILEID) == 0) || (((fattr->valid & NFS_ATTR_FATTR_MOUNTPOINT) == 0) && ((fattr->valid & NFS_ATTR_FATTR_V4_REFERRAL) == 0))) return 0; return 1; } static inline bool nfs_lookup_is_soft_revalidate(const struct dentry *dentry) { if (!(NFS_SB(dentry->d_sb)->flags & NFS_MOUNT_SOFTREVAL)) return false; if (!d_is_positive(dentry) || !NFS_FH(d_inode(dentry))->size) return false; return true; } /* * Note: RFC 1813 doesn't limit the number of auth flavors that * a server can return, so make something up. */ #define NFS_MAX_SECFLAVORS (12) /* * Value used if the user did not specify a port value. */ #define NFS_UNSPEC_PORT (-1) #define NFS_UNSPEC_RETRANS (UINT_MAX) #define NFS_UNSPEC_TIMEO (UINT_MAX) /* * Maximum number of pages that readdir can use for creating * a vmapped array of pages. */ #define NFS_MAX_READDIR_PAGES 8 struct nfs_client_initdata { unsigned long init_flags; const char *hostname; /* Hostname of the server */ const struct sockaddr *addr; /* Address of the server */ const char *nodename; /* Hostname of the client */ const char *ip_addr; /* IP address of the client */ size_t addrlen; struct nfs_subversion *nfs_mod; int proto; u32 minorversion; unsigned int nconnect; struct net *net; const struct rpc_timeout *timeparms; const struct cred *cred; }; /* * In-kernel mount arguments */ struct nfs_fs_context { bool internal; bool skip_reconfig_option_check; bool need_mount; bool sloppy; unsigned int flags; /* NFS{,4}_MOUNT_* flags */ unsigned int rsize, wsize; unsigned int timeo, retrans; unsigned int acregmin, acregmax; unsigned int acdirmin, acdirmax; unsigned int namlen; unsigned int options; unsigned int bsize; struct nfs_auth_info auth_info; rpc_authflavor_t selected_flavor; char *client_address; unsigned int version; unsigned int minorversion; char *fscache_uniq; unsigned short protofamily; unsigned short mountfamily; struct { union { struct sockaddr address; struct sockaddr_storage _address; }; size_t addrlen; char *hostname; u32 version; int port; unsigned short protocol; } mount_server; struct { union { struct sockaddr address; struct sockaddr_storage _address; }; size_t addrlen; char *hostname; char *export_path; int port; unsigned short protocol; unsigned short nconnect; unsigned short export_path_len; } nfs_server; struct nfs_fh *mntfh; struct nfs_server *server; struct nfs_subversion *nfs_mod; /* Information for a cloned mount. */ struct nfs_clone_mount { struct super_block *sb; struct dentry *dentry; struct nfs_fattr *fattr; unsigned int inherited_bsize; } clone_data; }; #define nfs_errorf(fc, fmt, ...) ((fc)->log.log ? \ errorf(fc, fmt, ## __VA_ARGS__) : \ ({ dprintk(fmt "\n", ## __VA_ARGS__); })) #define nfs_ferrorf(fc, fac, fmt, ...) ((fc)->log.log ? \ errorf(fc, fmt, ## __VA_ARGS__) : \ ({ dfprintk(fac, fmt "\n", ## __VA_ARGS__); })) #define nfs_invalf(fc, fmt, ...) ((fc)->log.log ? \ invalf(fc, fmt, ## __VA_ARGS__) : \ ({ dprintk(fmt "\n", ## __VA_ARGS__); -EINVAL; })) #define nfs_finvalf(fc, fac, fmt, ...) ((fc)->log.log ? \ invalf(fc, fmt, ## __VA_ARGS__) : \ ({ dfprintk(fac, fmt "\n", ## __VA_ARGS__); -EINVAL; })) #define nfs_warnf(fc, fmt, ...) ((fc)->log.log ? \ warnf(fc, fmt, ## __VA_ARGS__) : \ ({ dprintk(fmt "\n", ## __VA_ARGS__); })) #define nfs_fwarnf(fc, fac, fmt, ...) ((fc)->log.log ? \ warnf(fc, fmt, ## __VA_ARGS__) : \ ({ dfprintk(fac, fmt "\n", ## __VA_ARGS__); })) static inline struct nfs_fs_context *nfs_fc2context(const struct fs_context *fc) { return fc->fs_private; } /* mount_clnt.c */ struct nfs_mount_request { struct sockaddr *sap; size_t salen; char *hostname; char *dirpath; u32 version; unsigned short protocol; struct nfs_fh *fh; int noresvport; unsigned int *auth_flav_len; rpc_authflavor_t *auth_flavs; struct net *net; }; extern int nfs_mount(struct nfs_mount_request *info); extern void nfs_umount(const struct nfs_mount_request *info); /* client.c */ extern const struct rpc_program nfs_program; extern void nfs_clients_init(struct net *net); extern void nfs_clients_exit(struct net *net); extern struct nfs_client *nfs_alloc_client(const struct nfs_client_initdata *); int nfs_create_rpc_client(struct nfs_client *, const struct nfs_client_initdata *, rpc_authflavor_t); struct nfs_client *nfs_get_client(const struct nfs_client_initdata *); int nfs_probe_fsinfo(struct nfs_server *server, struct nfs_fh *, struct nfs_fattr *); void nfs_server_insert_lists(struct nfs_server *); void nfs_server_remove_lists(struct nfs_server *); void nfs_init_timeout_values(struct rpc_timeout *to, int proto, int timeo, int retrans); int nfs_init_server_rpcclient(struct nfs_server *, const struct rpc_timeout *t, rpc_authflavor_t); struct nfs_server *nfs_alloc_server(void); void nfs_server_copy_userdata(struct nfs_server *, struct nfs_server *); extern void nfs_put_client(struct nfs_client *); extern void nfs_free_client(struct nfs_client *); extern struct nfs_client *nfs4_find_client_ident(struct net *, int); extern struct nfs_client * nfs4_find_client_sessionid(struct net *, const struct sockaddr *, struct nfs4_sessionid *, u32); extern struct nfs_server *nfs_create_server(struct fs_context *); extern struct nfs_server *nfs4_create_server(struct fs_context *); extern struct nfs_server *nfs4_create_referral_server(struct fs_context *); extern int nfs4_update_server(struct nfs_server *server, const char *hostname, struct sockaddr *sap, size_t salen, struct net *net); extern void nfs_free_server(struct nfs_server *server); extern struct nfs_server *nfs_clone_server(struct nfs_server *, struct nfs_fh *, struct nfs_fattr *, rpc_authflavor_t); extern bool nfs_client_init_is_complete(const struct nfs_client *clp); extern int nfs_client_init_status(const struct nfs_client *clp); extern int nfs_wait_client_init_complete(const struct nfs_client *clp); extern void nfs_mark_client_ready(struct nfs_client *clp, int state); extern struct nfs_client *nfs4_set_ds_client(struct nfs_server *mds_srv, const struct sockaddr *ds_addr, int ds_addrlen, int ds_proto, unsigned int ds_timeo, unsigned int ds_retrans, u32 minor_version); extern struct rpc_clnt *nfs4_find_or_create_ds_client(struct nfs_client *, struct inode *); extern struct nfs_client *nfs3_set_ds_client(struct nfs_server *mds_srv, const struct sockaddr *ds_addr, int ds_addrlen, int ds_proto, unsigned int ds_timeo, unsigned int ds_retrans); #ifdef CONFIG_PROC_FS extern int __init nfs_fs_proc_init(void); extern void nfs_fs_proc_exit(void); extern int nfs_fs_proc_net_init(struct net *net); extern void nfs_fs_proc_net_exit(struct net *net); #else static inline int nfs_fs_proc_net_init(struct net *net) { return 0; } static inline void nfs_fs_proc_net_exit(struct net *net) { } static inline int nfs_fs_proc_init(void) { return 0; } static inline void nfs_fs_proc_exit(void) { } #endif /* callback_xdr.c */ extern const struct svc_version nfs4_callback_version1; extern const struct svc_version nfs4_callback_version4; /* fs_context.c */ extern struct file_system_type nfs_fs_type; /* pagelist.c */ extern int __init nfs_init_nfspagecache(void); extern void nfs_destroy_nfspagecache(void); extern int __init nfs_init_readpagecache(void); extern void nfs_destroy_readpagecache(void); extern int __init nfs_init_writepagecache(void); extern void nfs_destroy_writepagecache(void); extern int __init nfs_init_directcache(void); extern void nfs_destroy_directcache(void); extern void nfs_pgheader_init(struct nfs_pageio_descriptor *desc, struct nfs_pgio_header *hdr, void (*release)(struct nfs_pgio_header *hdr)); void nfs_set_pgio_error(struct nfs_pgio_header *hdr, int error, loff_t pos); int nfs_iocounter_wait(struct nfs_lock_context *l_ctx); extern const struct nfs_pageio_ops nfs_pgio_rw_ops; struct nfs_pgio_header *nfs_pgio_header_alloc(const struct nfs_rw_ops *); void nfs_pgio_header_free(struct nfs_pgio_header *); int nfs_generic_pgio(struct nfs_pageio_descriptor *, struct nfs_pgio_header *); int nfs_initiate_pgio(struct rpc_clnt *clnt, struct nfs_pgio_header *hdr, const struct cred *cred, const struct nfs_rpc_ops *rpc_ops, const struct rpc_call_ops *call_ops, int how, int flags); void nfs_free_request(struct nfs_page *req); struct nfs_pgio_mirror * nfs_pgio_current_mirror(struct nfs_pageio_descriptor *desc); static inline bool nfs_match_open_context(const struct nfs_open_context *ctx1, const struct nfs_open_context *ctx2) { return cred_fscmp(ctx1->cred, ctx2->cred) == 0 && ctx1->state == ctx2->state; } /* nfs2xdr.c */ extern const struct rpc_procinfo nfs_procedures[]; extern int nfs2_decode_dirent(struct xdr_stream *, struct nfs_entry *, bool); /* nfs3xdr.c */ extern const struct rpc_procinfo nfs3_procedures[]; extern int nfs3_decode_dirent(struct xdr_stream *, struct nfs_entry *, bool); /* nfs4xdr.c */ #if IS_ENABLED(CONFIG_NFS_V4) extern int nfs4_decode_dirent(struct xdr_stream *, struct nfs_entry *, bool); #endif #ifdef CONFIG_NFS_V4_1 extern const u32 nfs41_maxread_overhead; extern const u32 nfs41_maxwrite_overhead; extern const u32 nfs41_maxgetdevinfo_overhead; #endif /* nfs4proc.c */ #if IS_ENABLED(CONFIG_NFS_V4) extern const struct rpc_procinfo nfs4_procedures[]; #endif #ifdef CONFIG_NFS_V4_SECURITY_LABEL extern struct nfs4_label *nfs4_label_alloc(struct nfs_server *server, gfp_t flags); static inline struct nfs4_label * nfs4_label_copy(struct nfs4_label *dst, struct nfs4_label *src) { if (!dst || !src) return NULL; if (src->len > NFS4_MAXLABELLEN) return NULL; dst->lfs = src->lfs; dst->pi = src->pi; dst->len = src->len; memcpy(dst->label, src->label, src->len); return dst; } static inline void nfs4_label_free(struct nfs4_label *label) { if (label) { kfree(label->label); kfree(label); } return; } static inline void nfs_zap_label_cache_locked(struct nfs_inode *nfsi) { if (nfs_server_capable(&nfsi->vfs_inode, NFS_CAP_SECURITY_LABEL)) nfsi->cache_validity |= NFS_INO_INVALID_LABEL; } #else static inline struct nfs4_label *nfs4_label_alloc(struct nfs_server *server, gfp_t flags) { return NULL; } static inline void nfs4_label_free(void *label) {} static inline void nfs_zap_label_cache_locked(struct nfs_inode *nfsi) { } static inline struct nfs4_label * nfs4_label_copy(struct nfs4_label *dst, struct nfs4_label *src) { return NULL; } #endif /* CONFIG_NFS_V4_SECURITY_LABEL */ /* proc.c */ void nfs_close_context(struct nfs_open_context *ctx, int is_sync); extern struct nfs_client *nfs_init_client(struct nfs_client *clp, const struct nfs_client_initdata *); /* dir.c */ extern void nfs_advise_use_readdirplus(struct inode *dir); extern void nfs_force_use_readdirplus(struct inode *dir); extern unsigned long nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc); extern unsigned long nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc); struct dentry *nfs_lookup(struct inode *, struct dentry *, unsigned int); int nfs_create(struct inode *, struct dentry *, umode_t, bool); int nfs_mkdir(struct inode *, struct dentry *, umode_t); int nfs_rmdir(struct inode *, struct dentry *); int nfs_unlink(struct inode *, struct dentry *); int nfs_symlink(struct inode *, struct dentry *, const char *); int nfs_link(struct dentry *, struct inode *, struct dentry *); int nfs_mknod(struct inode *, struct dentry *, umode_t, dev_t); int nfs_rename(struct inode *, struct dentry *, struct inode *, struct dentry *, unsigned int); /* file.c */ int nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync); loff_t nfs_file_llseek(struct file *, loff_t, int); ssize_t nfs_file_read(struct kiocb *, struct iov_iter *); int nfs_file_mmap(struct file *, struct vm_area_struct *); ssize_t nfs_file_write(struct kiocb *, struct iov_iter *); int nfs_file_release(struct inode *, struct file *); int nfs_lock(struct file *, int, struct file_lock *); int nfs_flock(struct file *, int, struct file_lock *); int nfs_check_flags(int); /* inode.c */ extern struct workqueue_struct *nfsiod_workqueue; extern struct inode *nfs_alloc_inode(struct super_block *sb); extern void nfs_free_inode(struct inode *); extern int nfs_write_inode(struct inode *, struct writeback_control *); extern int nfs_drop_inode(struct inode *); extern void nfs_clear_inode(struct inode *); extern void nfs_evict_inode(struct inode *); void nfs_zap_acl_cache(struct inode *inode); extern bool nfs_check_cache_invalid(struct inode *, unsigned long); extern int nfs_wait_bit_killable(struct wait_bit_key *key, int mode); extern int nfs_wait_atomic_killable(atomic_t *p, unsigned int mode); /* super.c */ extern const struct super_operations nfs_sops; bool nfs_auth_info_match(const struct nfs_auth_info *, rpc_authflavor_t); int nfs_try_get_tree(struct fs_context *); int nfs_get_tree_common(struct fs_context *); void nfs_kill_super(struct super_block *); extern struct rpc_stat nfs_rpcstat; extern int __init register_nfs_fs(void); extern void __exit unregister_nfs_fs(void); extern bool nfs_sb_active(struct super_block *sb); extern void nfs_sb_deactive(struct super_block *sb); extern int nfs_client_for_each_server(struct nfs_client *clp, int (*fn)(struct nfs_server *, void *), void *data); /* io.c */ extern void nfs_start_io_read(struct inode *inode); extern void nfs_end_io_read(struct inode *inode); extern void nfs_start_io_write(struct inode *inode); extern void nfs_end_io_write(struct inode *inode); extern void nfs_start_io_direct(struct inode *inode); extern void nfs_end_io_direct(struct inode *inode); static inline bool nfs_file_io_is_buffered(struct nfs_inode *nfsi) { return test_bit(NFS_INO_ODIRECT, &nfsi->flags) == 0; } /* namespace.c */ #define NFS_PATH_CANONICAL 1 extern char *nfs_path(char **p, struct dentry *dentry, char *buffer, ssize_t buflen, unsigned flags); extern struct vfsmount *nfs_d_automount(struct path *path); int nfs_submount(struct fs_context *, struct nfs_server *); int nfs_do_submount(struct fs_context *); /* getroot.c */ extern int nfs_get_root(struct super_block *s, struct fs_context *fc); #if IS_ENABLED(CONFIG_NFS_V4) extern int nfs4_get_rootfh(struct nfs_server *server, struct nfs_fh *mntfh, bool); #endif struct nfs_pgio_completion_ops; /* read.c */ extern void nfs_pageio_init_read(struct nfs_pageio_descriptor *pgio, struct inode *inode, bool force_mds, const struct nfs_pgio_completion_ops *compl_ops); extern void nfs_read_prepare(struct rpc_task *task, void *calldata); extern void nfs_pageio_reset_read_mds(struct nfs_pageio_descriptor *pgio); /* super.c */ void nfs_umount_begin(struct super_block *); int nfs_statfs(struct dentry *, struct kstatfs *); int nfs_show_options(struct seq_file *, struct dentry *); int nfs_show_devname(struct seq_file *, struct dentry *); int nfs_show_path(struct seq_file *, struct dentry *); int nfs_show_stats(struct seq_file *, struct dentry *); int nfs_reconfigure(struct fs_context *); /* write.c */ extern void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio, struct inode *inode, int ioflags, bool force_mds, const struct nfs_pgio_completion_ops *compl_ops); extern void nfs_pageio_reset_write_mds(struct nfs_pageio_descriptor *pgio); extern void nfs_commit_free(struct nfs_commit_data *p); extern void nfs_write_prepare(struct rpc_task *task, void *calldata); extern void nfs_commit_prepare(struct rpc_task *task, void *calldata); extern int nfs_initiate_commit(struct rpc_clnt *clnt, struct nfs_commit_data *data, const struct nfs_rpc_ops *nfs_ops, const struct rpc_call_ops *call_ops, int how, int flags); extern void nfs_init_commit(struct nfs_commit_data *data, struct list_head *head, struct pnfs_layout_segment *lseg, struct nfs_commit_info *cinfo); int nfs_scan_commit_list(struct list_head *src, struct list_head *dst, struct nfs_commit_info *cinfo, int max); unsigned long nfs_reqs_to_commit(struct nfs_commit_info *); int nfs_scan_commit(struct inode *inode, struct list_head *dst, struct nfs_commit_info *cinfo); void nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg, struct nfs_commit_info *cinfo, u32 ds_commit_idx); int nfs_write_need_commit(struct nfs_pgio_header *); void nfs_writeback_update_inode(struct nfs_pgio_header *hdr); int nfs_generic_commit_list(struct inode *inode, struct list_head *head, int how, struct nfs_commit_info *cinfo); void nfs_retry_commit(struct list_head *page_list, struct pnfs_layout_segment *lseg, struct nfs_commit_info *cinfo, u32 ds_commit_idx); void nfs_commitdata_release(struct nfs_commit_data *data); void nfs_request_add_commit_list(struct nfs_page *req, struct nfs_commit_info *cinfo); void nfs_request_add_commit_list_locked(struct nfs_page *req, struct list_head *dst, struct nfs_commit_info *cinfo); void nfs_request_remove_commit_list(struct nfs_page *req, struct nfs_commit_info *cinfo); void nfs_init_cinfo(struct nfs_commit_info *cinfo, struct inode *inode, struct nfs_direct_req *dreq); int nfs_key_timeout_notify(struct file *filp, struct inode *inode); bool nfs_ctx_key_to_expire(struct nfs_open_context *ctx, struct inode *inode); void nfs_pageio_stop_mirroring(struct nfs_pageio_descriptor *pgio); int nfs_filemap_write_and_wait_range(struct address_space *mapping, loff_t lstart, loff_t lend); #ifdef CONFIG_NFS_V4_1 static inline void pnfs_bucket_clear_pnfs_ds_commit_verifiers(struct pnfs_commit_bucket *buckets, unsigned int nbuckets) { unsigned int i; for (i = 0; i < nbuckets; i++) buckets[i].direct_verf.committed = NFS_INVALID_STABLE_HOW; } static inline void nfs_clear_pnfs_ds_commit_verifiers(struct pnfs_ds_commit_info *cinfo) { struct pnfs_commit_array *array; rcu_read_lock(); list_for_each_entry_rcu(array, &cinfo->commits, cinfo_list) pnfs_bucket_clear_pnfs_ds_commit_verifiers(array->buckets, array->nbuckets); rcu_read_unlock(); } #else static inline void nfs_clear_pnfs_ds_commit_verifiers(struct pnfs_ds_commit_info *cinfo) { } #endif #ifdef CONFIG_MIGRATION extern int nfs_migrate_page(struct address_space *, struct page *, struct page *, enum migrate_mode); #endif static inline int nfs_write_verifier_cmp(const struct nfs_write_verifier *v1, const struct nfs_write_verifier *v2) { return memcmp(v1->data, v2->data, sizeof(v1->data)); } static inline bool nfs_write_match_verf(const struct nfs_writeverf *verf, struct nfs_page *req) { return verf->committed > NFS_UNSTABLE && !nfs_write_verifier_cmp(&req->wb_verf, &verf->verifier); } /* unlink.c */ extern struct rpc_task * nfs_async_rename(struct inode *old_dir, struct inode *new_dir, struct dentry *old_dentry, struct dentry *new_dentry, void (*complete)(struct rpc_task *, struct nfs_renamedata *)); extern int nfs_sillyrename(struct inode *dir, struct dentry *dentry); /* direct.c */ void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo, struct nfs_direct_req *dreq); extern ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq); /* nfs4proc.c */ extern struct nfs_client *nfs4_init_client(struct nfs_client *clp, const struct nfs_client_initdata *); extern int nfs40_walk_client_list(struct nfs_client *clp, struct nfs_client **result, const struct cred *cred); extern int nfs41_walk_client_list(struct nfs_client *clp, struct nfs_client **result, const struct cred *cred); extern void nfs4_test_session_trunk(struct rpc_clnt *clnt, struct rpc_xprt *xprt, void *data); static inline struct inode *nfs_igrab_and_active(struct inode *inode) { struct super_block *sb = inode->i_sb; if (sb && nfs_sb_active(sb)) { if (igrab(inode)) return inode; nfs_sb_deactive(sb); } return NULL; } static inline void nfs_iput_and_deactive(struct inode *inode) { if (inode != NULL) { struct super_block *sb = inode->i_sb; iput(inode); nfs_sb_deactive(sb); } } /* * Determine the device name as a string */ static inline char *nfs_devname(struct dentry *dentry, char *buffer, ssize_t buflen) { char *dummy; return nfs_path(&dummy, dentry, buffer, buflen, NFS_PATH_CANONICAL); } /* * Determine the actual block size (and log2 thereof) */ static inline unsigned long nfs_block_bits(unsigned long bsize, unsigned char *nrbitsp) { /* make sure blocksize is a power of two */ if ((bsize & (bsize - 1)) || nrbitsp) { unsigned char nrbits; for (nrbits = 31; nrbits && !(bsize & (1 << nrbits)); nrbits--) ; bsize = 1 << nrbits; if (nrbitsp) *nrbitsp = nrbits; } return bsize; } /* * Calculate the number of 512byte blocks used. */ static inline blkcnt_t nfs_calc_block_size(u64 tsize) { blkcnt_t used = (tsize + 511) >> 9; return (used > ULONG_MAX) ? ULONG_MAX : used; } /* * Compute and set NFS server blocksize */ static inline unsigned long nfs_block_size(unsigned long bsize, unsigned char *nrbitsp) { if (bsize < NFS_MIN_FILE_IO_SIZE) bsize = NFS_DEF_FILE_IO_SIZE; else if (bsize >= NFS_MAX_FILE_IO_SIZE) bsize = NFS_MAX_FILE_IO_SIZE; return nfs_block_bits(bsize, nrbitsp); } /* * Determine the maximum file size for a superblock */ static inline void nfs_super_set_maxbytes(struct super_block *sb, __u64 maxfilesize) { sb->s_maxbytes = (loff_t)maxfilesize; if (sb->s_maxbytes > MAX_LFS_FILESIZE || sb->s_maxbytes <= 0) sb->s_maxbytes = MAX_LFS_FILESIZE; } /* * Record the page as unstable (an extra writeback period) and mark its * inode as dirty. */ static inline void nfs_mark_page_unstable(struct page *page, struct nfs_commit_info *cinfo) { if (!cinfo->dreq) { struct inode *inode = page_file_mapping(page)->host; /* This page is really still in write-back - just that the * writeback is happening on the server now. */ inc_node_page_state(page, NR_WRITEBACK); inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK); __mark_inode_dirty(inode, I_DIRTY_DATASYNC); } } /* * Determine the number of bytes of data the page contains */ static inline unsigned int nfs_page_length(struct page *page) { loff_t i_size = i_size_read(page_file_mapping(page)->host); if (i_size > 0) { pgoff_t index = page_index(page); pgoff_t end_index = (i_size - 1) >> PAGE_SHIFT; if (index < end_index) return PAGE_SIZE; if (index == end_index) return ((i_size - 1) & ~PAGE_MASK) + 1; } return 0; } /* * Convert a umode to a dirent->d_type */ static inline unsigned char nfs_umode_to_dtype(umode_t mode) { return (mode >> 12) & 15; } /* * Determine the number of pages in an array of length 'len' and * with a base offset of 'base' */ static inline unsigned int nfs_page_array_len(unsigned int base, size_t len) { return ((unsigned long)len + (unsigned long)base + PAGE_SIZE - 1) >> PAGE_SHIFT; } /* * Convert a struct timespec64 into a 64-bit change attribute * * This does approximately the same thing as timespec64_to_ns(), * but for calculation efficiency, we multiply the seconds by * 1024*1024*1024. */ static inline u64 nfs_timespec_to_change_attr(const struct timespec64 *ts) { return ((u64)ts->tv_sec << 30) + ts->tv_nsec; } #ifdef CONFIG_CRC32 /** * nfs_fhandle_hash - calculate the crc32 hash for the filehandle * @fh - pointer to filehandle * * returns a crc32 hash for the filehandle that is compatible with * the one displayed by "wireshark". */ static inline u32 nfs_fhandle_hash(const struct nfs_fh *fh) { return ~crc32_le(0xFFFFFFFF, &fh->data[0], fh->size); } static inline u32 nfs_stateid_hash(const nfs4_stateid *stateid) { return ~crc32_le(0xFFFFFFFF, &stateid->other[0], NFS4_STATEID_OTHER_SIZE); } #else static inline u32 nfs_fhandle_hash(const struct nfs_fh *fh) { return 0; } static inline u32 nfs_stateid_hash(nfs4_stateid *stateid) { return 0; } #endif static inline bool nfs_error_is_fatal(int err) { switch (err) { case -ERESTARTSYS: case -EINTR: case -EACCES: case -EDQUOT: case -EFBIG: case -EIO: case -ENOSPC: case -EROFS: case -ESTALE: case -E2BIG: case -ENOMEM: case -ETIMEDOUT: return true; default: return false; } } static inline bool nfs_error_is_fatal_on_server(int err) { switch (err) { case 0: case -ERESTARTSYS: case -EINTR: return false; } return nfs_error_is_fatal(err); } /* * Select between a default port value and a user-specified port value. * If a zero value is set, then autobind will be used. */ static inline void nfs_set_port(struct sockaddr *sap, int *port, const unsigned short default_port) { if (*port == NFS_UNSPEC_PORT) *port = default_port; rpc_set_port(sap, *port); }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _SCSI_SCSI_DEVICE_H #define _SCSI_SCSI_DEVICE_H #include <linux/list.h> #include <linux/spinlock.h> #include <linux/workqueue.h> #include <linux/blkdev.h> #include <scsi/scsi.h> #include <linux/atomic.h> struct device; struct request_queue; struct scsi_cmnd; struct scsi_lun; struct scsi_sense_hdr; typedef __u64 __bitwise blist_flags_t; #define SCSI_SENSE_BUFFERSIZE 96 struct scsi_mode_data { __u32 length; __u16 block_descriptor_length; __u8 medium_type; __u8 device_specific; __u8 header_length; __u8 longlba:1; }; /* * sdev state: If you alter this, you also need to alter scsi_sysfs.c * (for the ascii descriptions) and the state model enforcer: * scsi_lib:scsi_device_set_state(). */ enum scsi_device_state { SDEV_CREATED = 1, /* device created but not added to sysfs * Only internal commands allowed (for inq) */ SDEV_RUNNING, /* device properly configured * All commands allowed */ SDEV_CANCEL, /* beginning to delete device * Only error handler commands allowed */ SDEV_DEL, /* device deleted * no commands allowed */ SDEV_QUIESCE, /* Device quiescent. No block commands * will be accepted, only specials (which * originate in the mid-layer) */ SDEV_OFFLINE, /* Device offlined (by error handling or * user request */ SDEV_TRANSPORT_OFFLINE, /* Offlined by transport class error handler */ SDEV_BLOCK, /* Device blocked by scsi lld. No * scsi commands from user or midlayer * should be issued to the scsi * lld. */ SDEV_CREATED_BLOCK, /* same as above but for created devices */ }; enum scsi_scan_mode { SCSI_SCAN_INITIAL = 0, SCSI_SCAN_RESCAN, SCSI_SCAN_MANUAL, }; enum scsi_device_event { SDEV_EVT_MEDIA_CHANGE = 1, /* media has changed */ SDEV_EVT_INQUIRY_CHANGE_REPORTED, /* 3F 03 UA reported */ SDEV_EVT_CAPACITY_CHANGE_REPORTED, /* 2A 09 UA reported */ SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED, /* 38 07 UA reported */ SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED, /* 2A 01 UA reported */ SDEV_EVT_LUN_CHANGE_REPORTED, /* 3F 0E UA reported */ SDEV_EVT_ALUA_STATE_CHANGE_REPORTED, /* 2A 06 UA reported */ SDEV_EVT_POWER_ON_RESET_OCCURRED, /* 29 00 UA reported */ SDEV_EVT_FIRST = SDEV_EVT_MEDIA_CHANGE, SDEV_EVT_LAST = SDEV_EVT_POWER_ON_RESET_OCCURRED, SDEV_EVT_MAXBITS = SDEV_EVT_LAST + 1 }; struct scsi_event { enum scsi_device_event evt_type; struct list_head node; /* put union of data structures, for non-simple event types, * here */ }; /** * struct scsi_vpd - SCSI Vital Product Data * @rcu: For kfree_rcu(). * @len: Length in bytes of @data. * @data: VPD data as defined in various T10 SCSI standard documents. */ struct scsi_vpd { struct rcu_head rcu; int len; unsigned char data[]; }; struct scsi_device { struct Scsi_Host *host; struct request_queue *request_queue; /* the next two are protected by the host->host_lock */ struct list_head siblings; /* list of all devices on this host */ struct list_head same_target_siblings; /* just the devices sharing same target id */ atomic_t device_busy; /* commands actually active on LLDD */ atomic_t device_blocked; /* Device returned QUEUE_FULL. */ atomic_t restarts; spinlock_t list_lock; struct list_head starved_entry; unsigned short queue_depth; /* How deep of a queue we want */ unsigned short max_queue_depth; /* max queue depth */ unsigned short last_queue_full_depth; /* These two are used by */ unsigned short last_queue_full_count; /* scsi_track_queue_full() */ unsigned long last_queue_full_time; /* last queue full time */ unsigned long queue_ramp_up_period; /* ramp up period in jiffies */ #define SCSI_DEFAULT_RAMP_UP_PERIOD (120 * HZ) unsigned long last_queue_ramp_up; /* last queue ramp up time */ unsigned int id, channel; u64 lun; unsigned int manufacturer; /* Manufacturer of device, for using * vendor-specific cmd's */ unsigned sector_size; /* size in bytes */ void *hostdata; /* available to low-level driver */ unsigned char type; char scsi_level; char inq_periph_qual; /* PQ from INQUIRY data */ struct mutex inquiry_mutex; unsigned char inquiry_len; /* valid bytes in 'inquiry' */ unsigned char * inquiry; /* INQUIRY response data */ const char * vendor; /* [back_compat] point into 'inquiry' ... */ const char * model; /* ... after scan; point to static string */ const char * rev; /* ... "nullnullnullnull" before scan */ #define SCSI_VPD_PG_LEN 255 struct scsi_vpd __rcu *vpd_pg0; struct scsi_vpd __rcu *vpd_pg83; struct scsi_vpd __rcu *vpd_pg80; struct scsi_vpd __rcu *vpd_pg89; unsigned char current_tag; /* current tag */ struct scsi_target *sdev_target; /* used only for single_lun */ blist_flags_t sdev_bflags; /* black/white flags as also found in * scsi_devinfo.[hc]. For now used only to * pass settings from slave_alloc to scsi * core. */ unsigned int eh_timeout; /* Error handling timeout */ unsigned removable:1; unsigned changed:1; /* Data invalid due to media change */ unsigned busy:1; /* Used to prevent races */ unsigned lockable:1; /* Able to prevent media removal */ unsigned locked:1; /* Media removal disabled */ unsigned borken:1; /* Tell the Seagate driver to be * painfully slow on this device */ unsigned disconnect:1; /* can disconnect */ unsigned soft_reset:1; /* Uses soft reset option */ unsigned sdtr:1; /* Device supports SDTR messages */ unsigned wdtr:1; /* Device supports WDTR messages */ unsigned ppr:1; /* Device supports PPR messages */ unsigned tagged_supported:1; /* Supports SCSI-II tagged queuing */ unsigned simple_tags:1; /* simple queue tag messages are enabled */ unsigned was_reset:1; /* There was a bus reset on the bus for * this device */ unsigned expecting_cc_ua:1; /* Expecting a CHECK_CONDITION/UNIT_ATTN * because we did a bus reset. */ unsigned use_10_for_rw:1; /* first try 10-byte read / write */ unsigned use_10_for_ms:1; /* first try 10-byte mode sense/select */ unsigned set_dbd_for_ms:1; /* Set "DBD" field in mode sense */ unsigned no_report_opcodes:1; /* no REPORT SUPPORTED OPERATION CODES */ unsigned no_write_same:1; /* no WRITE SAME command */ unsigned use_16_for_rw:1; /* Use read/write(16) over read/write(10) */ unsigned skip_ms_page_8:1; /* do not use MODE SENSE page 0x08 */ unsigned skip_ms_page_3f:1; /* do not use MODE SENSE page 0x3f */ unsigned skip_vpd_pages:1; /* do not read VPD pages */ unsigned try_vpd_pages:1; /* attempt to read VPD pages */ unsigned use_192_bytes_for_3f:1; /* ask for 192 bytes from page 0x3f */ unsigned no_start_on_add:1; /* do not issue start on add */ unsigned allow_restart:1; /* issue START_UNIT in error handler */ unsigned manage_start_stop:1; /* Let HLD (sd) manage start/stop */ unsigned start_stop_pwr_cond:1; /* Set power cond. in START_STOP_UNIT */ unsigned no_uld_attach:1; /* disable connecting to upper level drivers */ unsigned select_no_atn:1; unsigned fix_capacity:1; /* READ_CAPACITY is too high by 1 */ unsigned guess_capacity:1; /* READ_CAPACITY might be too high by 1 */ unsigned retry_hwerror:1; /* Retry HARDWARE_ERROR */ unsigned last_sector_bug:1; /* do not use multisector accesses on SD_LAST_BUGGY_SECTORS */ unsigned no_read_disc_info:1; /* Avoid READ_DISC_INFO cmds */ unsigned no_read_capacity_16:1; /* Avoid READ_CAPACITY_16 cmds */ unsigned try_rc_10_first:1; /* Try READ_CAPACACITY_10 first */ unsigned security_supported:1; /* Supports Security Protocols */ unsigned is_visible:1; /* is the device visible in sysfs */ unsigned wce_default_on:1; /* Cache is ON by default */ unsigned no_dif:1; /* T10 PI (DIF) should be disabled */ unsigned broken_fua:1; /* Don't set FUA bit */ unsigned lun_in_cdb:1; /* Store LUN bits in CDB[1] */ unsigned unmap_limit_for_ws:1; /* Use the UNMAP limit for WRITE SAME */ unsigned rpm_autosuspend:1; /* Enable runtime autosuspend at device * creation time */ bool offline_already; /* Device offline message logged */ atomic_t disk_events_disable_depth; /* disable depth for disk events */ DECLARE_BITMAP(supported_events, SDEV_EVT_MAXBITS); /* supported events */ DECLARE_BITMAP(pending_events, SDEV_EVT_MAXBITS); /* pending events */ struct list_head event_list; /* asserted events */ struct work_struct event_work; unsigned int max_device_blocked; /* what device_blocked counts down from */ #define SCSI_DEFAULT_DEVICE_BLOCKED 3 atomic_t iorequest_cnt; atomic_t iodone_cnt; atomic_t ioerr_cnt; struct device sdev_gendev, sdev_dev; struct execute_work ew; /* used to get process context on put */ struct work_struct requeue_work; struct scsi_device_handler *handler; void *handler_data; size_t dma_drain_len; void *dma_drain_buf; unsigned char access_state; struct mutex state_mutex; enum scsi_device_state sdev_state; struct task_struct *quiesced_by; unsigned long sdev_data[]; } __attribute__((aligned(sizeof(unsigned long)))); #define to_scsi_device(d) \ container_of(d, struct scsi_device, sdev_gendev) #define class_to_sdev(d) \ container_of(d, struct scsi_device, sdev_dev) #define transport_class_to_sdev(class_dev) \ to_scsi_device(class_dev->parent) #define sdev_dbg(sdev, fmt, a...) \ dev_dbg(&(sdev)->sdev_gendev, fmt, ##a) /* * like scmd_printk, but the device name is passed in * as a string pointer */ __printf(4, 5) void sdev_prefix_printk(const char *, const struct scsi_device *, const char *, const char *, ...); #define sdev_printk(l, sdev, fmt, a...) \ sdev_prefix_printk(l, sdev, NULL, fmt, ##a) __printf(3, 4) void scmd_printk(const char *, const struct scsi_cmnd *, const char *, ...); #define scmd_dbg(scmd, fmt, a...) \ do { \ if ((scmd)->request->rq_disk) \ sdev_dbg((scmd)->device, "[%s] " fmt, \ (scmd)->request->rq_disk->disk_name, ##a);\ else \ sdev_dbg((scmd)->device, fmt, ##a); \ } while (0) enum scsi_target_state { STARGET_CREATED = 1, STARGET_RUNNING, STARGET_REMOVE, STARGET_CREATED_REMOVE, STARGET_DEL, }; /* * scsi_target: representation of a scsi target, for now, this is only * used for single_lun devices. If no one has active IO to the target, * starget_sdev_user is NULL, else it points to the active sdev. */ struct scsi_target { struct scsi_device *starget_sdev_user; struct list_head siblings; struct list_head devices; struct device dev; struct kref reap_ref; /* last put renders target invisible */ unsigned int channel; unsigned int id; /* target id ... replace * scsi_device.id eventually */ unsigned int create:1; /* signal that it needs to be added */ unsigned int single_lun:1; /* Indicates we should only * allow I/O to one of the luns * for the device at a time. */ unsigned int pdt_1f_for_no_lun:1; /* PDT = 0x1f * means no lun present. */ unsigned int no_report_luns:1; /* Don't use * REPORT LUNS for scanning. */ unsigned int expecting_lun_change:1; /* A device has reported * a 3F/0E UA, other devices on * the same target will also. */ /* commands actually active on LLD. */ atomic_t target_busy; atomic_t target_blocked; /* * LLDs should set this in the slave_alloc host template callout. * If set to zero then there is not limit. */ unsigned int can_queue; unsigned int max_target_blocked; #define SCSI_DEFAULT_TARGET_BLOCKED 3 char scsi_level; enum scsi_target_state state; void *hostdata; /* available to low-level driver */ unsigned long starget_data[]; /* for the transport */ /* starget_data must be the last element!!!! */ } __attribute__((aligned(sizeof(unsigned long)))); #define to_scsi_target(d) container_of(d, struct scsi_target, dev) static inline struct scsi_target *scsi_target(struct scsi_device *sdev) { return to_scsi_target(sdev->sdev_gendev.parent); } #define transport_class_to_starget(class_dev) \ to_scsi_target(class_dev->parent) #define starget_printk(prefix, starget, fmt, a...) \ dev_printk(prefix, &(starget)->dev, fmt, ##a) extern struct scsi_device *__scsi_add_device(struct Scsi_Host *, uint, uint, u64, void *hostdata); extern int scsi_add_device(struct Scsi_Host *host, uint channel, uint target, u64 lun); extern int scsi_register_device_handler(struct scsi_device_handler *scsi_dh); extern void scsi_remove_device(struct scsi_device *); extern int scsi_unregister_device_handler(struct scsi_device_handler *scsi_dh); void scsi_attach_vpd(struct scsi_device *sdev); extern struct scsi_device *scsi_device_from_queue(struct request_queue *q); extern int __must_check scsi_device_get(struct scsi_device *); extern void scsi_device_put(struct scsi_device *); extern struct scsi_device *scsi_device_lookup(struct Scsi_Host *, uint, uint, u64); extern struct scsi_device *__scsi_device_lookup(struct Scsi_Host *, uint, uint, u64); extern struct scsi_device *scsi_device_lookup_by_target(struct scsi_target *, u64); extern struct scsi_device *__scsi_device_lookup_by_target(struct scsi_target *, u64); extern void starget_for_each_device(struct scsi_target *, void *, void (*fn)(struct scsi_device *, void *)); extern void __starget_for_each_device(struct scsi_target *, void *, void (*fn)(struct scsi_device *, void *)); /* only exposed to implement shost_for_each_device */ extern struct scsi_device *__scsi_iterate_devices(struct Scsi_Host *, struct scsi_device *); /** * shost_for_each_device - iterate over all devices of a host * @sdev: the &struct scsi_device to use as a cursor * @shost: the &struct scsi_host to iterate over * * Iterator that returns each device attached to @shost. This loop * takes a reference on each device and releases it at the end. If * you break out of the loop, you must call scsi_device_put(sdev). */ #define shost_for_each_device(sdev, shost) \ for ((sdev) = __scsi_iterate_devices((shost), NULL); \ (sdev); \ (sdev) = __scsi_iterate_devices((shost), (sdev))) /** * __shost_for_each_device - iterate over all devices of a host (UNLOCKED) * @sdev: the &struct scsi_device to use as a cursor * @shost: the &struct scsi_host to iterate over * * Iterator that returns each device attached to @shost. It does _not_ * take a reference on the scsi_device, so the whole loop must be * protected by shost->host_lock. * * Note: The only reason to use this is because you need to access the * device list in interrupt context. Otherwise you really want to use * shost_for_each_device instead. */ #define __shost_for_each_device(sdev, shost) \ list_for_each_entry((sdev), &((shost)->__devices), siblings) extern int scsi_change_queue_depth(struct scsi_device *, int); extern int scsi_track_queue_full(struct scsi_device *, int); extern int scsi_set_medium_removal(struct scsi_device *, char); extern int scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, unsigned char *buffer, int len, int timeout, int retries, struct scsi_mode_data *data, struct scsi_sense_hdr *); extern int scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, unsigned char *buffer, int len, int timeout, int retries, struct scsi_mode_data *data, struct scsi_sense_hdr *); extern int scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, struct scsi_sense_hdr *sshdr); extern int scsi_get_vpd_page(struct scsi_device *, u8 page, unsigned char *buf, int buf_len); extern int scsi_report_opcode(struct scsi_device *sdev, unsigned char *buffer, unsigned int len, unsigned char opcode); extern int scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state); extern struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, gfp_t gfpflags); extern void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt); extern void sdev_evt_send_simple(struct scsi_device *sdev, enum scsi_device_event evt_type, gfp_t gfpflags); extern int scsi_device_quiesce(struct scsi_device *sdev); extern void scsi_device_resume(struct scsi_device *sdev); extern void scsi_target_quiesce(struct scsi_target *); extern void scsi_target_resume(struct scsi_target *); extern void scsi_scan_target(struct device *parent, unsigned int channel, unsigned int id, u64 lun, enum scsi_scan_mode rescan); extern void scsi_target_reap(struct scsi_target *); extern void scsi_target_block(struct device *); extern void scsi_target_unblock(struct device *, enum scsi_device_state); extern void scsi_remove_target(struct device *); extern const char *scsi_device_state_name(enum scsi_device_state); extern int scsi_is_sdev_device(const struct device *); extern int scsi_is_target_device(const struct device *); extern void scsi_sanitize_inquiry_string(unsigned char *s, int len); extern int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, int data_direction, void *buffer, unsigned bufflen, unsigned char *sense, struct scsi_sense_hdr *sshdr, int timeout, int retries, u64 flags, req_flags_t rq_flags, int *resid); /* Make sure any sense buffer is the correct size. */ #define scsi_execute(sdev, cmd, data_direction, buffer, bufflen, sense, \ sshdr, timeout, retries, flags, rq_flags, resid) \ ({ \ BUILD_BUG_ON((sense) != NULL && \ sizeof(sense) != SCSI_SENSE_BUFFERSIZE); \ __scsi_execute(sdev, cmd, data_direction, buffer, bufflen, \ sense, sshdr, timeout, retries, flags, rq_flags, \ resid); \ }) static inline int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd, int data_direction, void *buffer, unsigned bufflen, struct scsi_sense_hdr *sshdr, int timeout, int retries, int *resid) { return scsi_execute(sdev, cmd, data_direction, buffer, bufflen, NULL, sshdr, timeout, retries, 0, 0, resid); } extern void sdev_disable_disk_events(struct scsi_device *sdev); extern void sdev_enable_disk_events(struct scsi_device *sdev); extern int scsi_vpd_lun_id(struct scsi_device *, char *, size_t); extern int scsi_vpd_tpg_id(struct scsi_device *, int *); #ifdef CONFIG_PM extern int scsi_autopm_get_device(struct scsi_device *); extern void scsi_autopm_put_device(struct scsi_device *); #else static inline int scsi_autopm_get_device(struct scsi_device *d) { return 0; } static inline void scsi_autopm_put_device(struct scsi_device *d) {} #endif /* CONFIG_PM */ static inline int __must_check scsi_device_reprobe(struct scsi_device *sdev) { return device_reprobe(&sdev->sdev_gendev); } static inline unsigned int sdev_channel(struct scsi_device *sdev) { return sdev->channel; } static inline unsigned int sdev_id(struct scsi_device *sdev) { return sdev->id; } #define scmd_id(scmd) sdev_id((scmd)->device) #define scmd_channel(scmd) sdev_channel((scmd)->device) /* * checks for positions of the SCSI state machine */ static inline int scsi_device_online(struct scsi_device *sdev) { return (sdev->sdev_state != SDEV_OFFLINE && sdev->sdev_state != SDEV_TRANSPORT_OFFLINE && sdev->sdev_state != SDEV_DEL); } static inline int scsi_device_blocked(struct scsi_device *sdev) { return sdev->sdev_state == SDEV_BLOCK || sdev->sdev_state == SDEV_CREATED_BLOCK; } static inline int scsi_device_created(struct scsi_device *sdev) { return sdev->sdev_state == SDEV_CREATED || sdev->sdev_state == SDEV_CREATED_BLOCK; } int scsi_internal_device_block_nowait(struct scsi_device *sdev); int scsi_internal_device_unblock_nowait(struct scsi_device *sdev, enum scsi_device_state new_state); /* accessor functions for the SCSI parameters */ static inline int scsi_device_sync(struct scsi_device *sdev) { return sdev->sdtr; } static inline int scsi_device_wide(struct scsi_device *sdev) { return sdev->wdtr; } static inline int scsi_device_dt(struct scsi_device *sdev) { return sdev->ppr; } static inline int scsi_device_dt_only(struct scsi_device *sdev) { if (sdev->inquiry_len < 57) return 0; return (sdev->inquiry[56] & 0x0c) == 0x04; } static inline int scsi_device_ius(struct scsi_device *sdev) { if (sdev->inquiry_len < 57) return 0; return sdev->inquiry[56] & 0x01; } static inline int scsi_device_qas(struct scsi_device *sdev) { if (sdev->inquiry_len < 57) return 0; return sdev->inquiry[56] & 0x02; } static inline int scsi_device_enclosure(struct scsi_device *sdev) { return sdev->inquiry ? (sdev->inquiry[6] & (1<<6)) : 1; } static inline int scsi_device_protection(struct scsi_device *sdev) { if (sdev->no_dif) return 0; return sdev->scsi_level > SCSI_2 && sdev->inquiry[5] & (1<<0); } static inline int scsi_device_tpgs(struct scsi_device *sdev) { return sdev->inquiry ? (sdev->inquiry[5] >> 4) & 0x3 : 0; } /** * scsi_device_supports_vpd - test if a device supports VPD pages * @sdev: the &struct scsi_device to test * * If the 'try_vpd_pages' flag is set it takes precedence. * Otherwise we will assume VPD pages are supported if the * SCSI level is at least SPC-3 and 'skip_vpd_pages' is not set. */ static inline int scsi_device_supports_vpd(struct scsi_device *sdev) { /* Attempt VPD inquiry if the device blacklist explicitly calls * for it. */ if (sdev->try_vpd_pages) return 1; /* * Although VPD inquiries can go to SCSI-2 type devices, * some USB ones crash on receiving them, and the pages * we currently ask for are mandatory for SPC-2 and beyond */ if (sdev->scsi_level >= SCSI_SPC_2 && !sdev->skip_vpd_pages) return 1; return 0; } #define MODULE_ALIAS_SCSI_DEVICE(type) \ MODULE_ALIAS("scsi:t-" __stringify(type) "*") #define SCSI_DEVICE_MODALIAS_FMT "scsi:t-0x%02x" #endif /* _SCSI_SCSI_DEVICE_H */
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 // SPDX-License-Identifier: GPL-2.0-only /* * mm/percpu.c - percpu memory allocator * * Copyright (C) 2009 SUSE Linux Products GmbH * Copyright (C) 2009 Tejun Heo <tj@kernel.org> * * Copyright (C) 2017 Facebook Inc. * Copyright (C) 2017 Dennis Zhou <dennis@kernel.org> * * The percpu allocator handles both static and dynamic areas. Percpu * areas are allocated in chunks which are divided into units. There is * a 1-to-1 mapping for units to possible cpus. These units are grouped * based on NUMA properties of the machine. * * c0 c1 c2 * ------------------- ------------------- ------------ * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u * ------------------- ...... ------------------- .... ------------ * * Allocation is done by offsets into a unit's address space. Ie., an * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0, * c1:u1, c1:u2, etc. On NUMA machines, the mapping may be non-linear * and even sparse. Access is handled by configuring percpu base * registers according to the cpu to unit mappings and offsetting the * base address using pcpu_unit_size. * * There is special consideration for the first chunk which must handle * the static percpu variables in the kernel image as allocation services * are not online yet. In short, the first chunk is structured like so: * * <Static | [Reserved] | Dynamic> * * The static data is copied from the original section managed by the * linker. The reserved section, if non-zero, primarily manages static * percpu variables from kernel modules. Finally, the dynamic section * takes care of normal allocations. * * The allocator organizes chunks into lists according to free size and * memcg-awareness. To make a percpu allocation memcg-aware the __GFP_ACCOUNT * flag should be passed. All memcg-aware allocations are sharing one set * of chunks and all unaccounted allocations and allocations performed * by processes belonging to the root memory cgroup are using the second set. * * The allocator tries to allocate from the fullest chunk first. Each chunk * is managed by a bitmap with metadata blocks. The allocation map is updated * on every allocation and free to reflect the current state while the boundary * map is only updated on allocation. Each metadata block contains * information to help mitigate the need to iterate over large portions * of the bitmap. The reverse mapping from page to chunk is stored in * the page's index. Lastly, units are lazily backed and grow in unison. * * There is a unique conversion that goes on here between bytes and bits. * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE. The chunk * tracks the number of pages it is responsible for in nr_pages. Helper * functions are used to convert from between the bytes, bits, and blocks. * All hints are managed in bits unless explicitly stated. * * To use this allocator, arch code should do the following: * * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate * regular address to percpu pointer and back if they need to be * different from the default * * - use pcpu_setup_first_chunk() during percpu area initialization to * setup the first chunk containing the kernel static percpu area */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/bitmap.h> #include <linux/memblock.h> #include <linux/err.h> #include <linux/lcm.h> #include <linux/list.h> #include <linux/log2.h> #include <linux/mm.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/percpu.h> #include <linux/pfn.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/vmalloc.h> #include <linux/workqueue.h> #include <linux/kmemleak.h> #include <linux/sched.h> #include <linux/sched/mm.h> #include <linux/memcontrol.h> #include <asm/cacheflush.h> #include <asm/sections.h> #include <asm/tlbflush.h> #include <asm/io.h> #define CREATE_TRACE_POINTS #include <trace/events/percpu.h> #include "percpu-internal.h" /* the slots are sorted by free bytes left, 1-31 bytes share the same slot */ #define PCPU_SLOT_BASE_SHIFT 5 /* chunks in slots below this are subject to being sidelined on failed alloc */ #define PCPU_SLOT_FAIL_THRESHOLD 3 #define PCPU_EMPTY_POP_PAGES_LOW 2 #define PCPU_EMPTY_POP_PAGES_HIGH 4 #ifdef CONFIG_SMP /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */ #ifndef __addr_to_pcpu_ptr #define __addr_to_pcpu_ptr(addr) \ (void __percpu *)((unsigned long)(addr) - \ (unsigned long)pcpu_base_addr + \ (unsigned long)__per_cpu_start) #endif #ifndef __pcpu_ptr_to_addr #define __pcpu_ptr_to_addr(ptr) \ (void __force *)((unsigned long)(ptr) + \ (unsigned long)pcpu_base_addr - \ (unsigned long)__per_cpu_start) #endif #else /* CONFIG_SMP */ /* on UP, it's always identity mapped */ #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr) #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr) #endif /* CONFIG_SMP */ static int pcpu_unit_pages __ro_after_init; static int pcpu_unit_size __ro_after_init; static int pcpu_nr_units __ro_after_init; static int pcpu_atom_size __ro_after_init; int pcpu_nr_slots __ro_after_init; static size_t pcpu_chunk_struct_size __ro_after_init; /* cpus with the lowest and highest unit addresses */ static unsigned int pcpu_low_unit_cpu __ro_after_init; static unsigned int pcpu_high_unit_cpu __ro_after_init; /* the address of the first chunk which starts with the kernel static area */ void *pcpu_base_addr __ro_after_init; EXPORT_SYMBOL_GPL(pcpu_base_addr); static const int *pcpu_unit_map __ro_after_init; /* cpu -> unit */ const unsigned long *pcpu_unit_offsets __ro_after_init; /* cpu -> unit offset */ /* group information, used for vm allocation */ static int pcpu_nr_groups __ro_after_init; static const unsigned long *pcpu_group_offsets __ro_after_init; static const size_t *pcpu_group_sizes __ro_after_init; /* * The first chunk which always exists. Note that unlike other * chunks, this one can be allocated and mapped in several different * ways and thus often doesn't live in the vmalloc area. */ struct pcpu_chunk *pcpu_first_chunk __ro_after_init; /* * Optional reserved chunk. This chunk reserves part of the first * chunk and serves it for reserved allocations. When the reserved * region doesn't exist, the following variable is NULL. */ struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init; DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */ static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop, map ext */ struct list_head *pcpu_chunk_lists __ro_after_init; /* chunk list slots */ /* chunks which need their map areas extended, protected by pcpu_lock */ static LIST_HEAD(pcpu_map_extend_chunks); /* * The number of empty populated pages by chunk type, protected by pcpu_lock. * The reserved chunk doesn't contribute to the count. */ int pcpu_nr_empty_pop_pages[PCPU_NR_CHUNK_TYPES]; /* * The number of populated pages in use by the allocator, protected by * pcpu_lock. This number is kept per a unit per chunk (i.e. when a page gets * allocated/deallocated, it is allocated/deallocated in all units of a chunk * and increments/decrements this count by 1). */ static unsigned long pcpu_nr_populated; /* * Balance work is used to populate or destroy chunks asynchronously. We * try to keep the number of populated free pages between * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one * empty chunk. */ static void pcpu_balance_workfn(struct work_struct *work); static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn); static bool pcpu_async_enabled __read_mostly; static bool pcpu_atomic_alloc_failed; static void pcpu_schedule_balance_work(void) { if (pcpu_async_enabled) schedule_work(&pcpu_balance_work); } /** * pcpu_addr_in_chunk - check if the address is served from this chunk * @chunk: chunk of interest * @addr: percpu address * * RETURNS: * True if the address is served from this chunk. */ static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr) { void *start_addr, *end_addr; if (!chunk) return false; start_addr = chunk->base_addr + chunk->start_offset; end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE - chunk->end_offset; return addr >= start_addr && addr < end_addr; } static int __pcpu_size_to_slot(int size) { int highbit = fls(size); /* size is in bytes */ return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1); } static int pcpu_size_to_slot(int size) { if (size == pcpu_unit_size) return pcpu_nr_slots - 1; return __pcpu_size_to_slot(size); } static int pcpu_chunk_slot(const struct pcpu_chunk *chunk) { const struct pcpu_block_md *chunk_md = &chunk->chunk_md; if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE || chunk_md->contig_hint == 0) return 0; return pcpu_size_to_slot(chunk_md->contig_hint * PCPU_MIN_ALLOC_SIZE); } /* set the pointer to a chunk in a page struct */ static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu) { page->index = (unsigned long)pcpu; } /* obtain pointer to a chunk from a page struct */ static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page) { return (struct pcpu_chunk *)page->index; } static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx) { return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx; } static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx) { return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT); } static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk, unsigned int cpu, int page_idx) { return (unsigned long)chunk->base_addr + pcpu_unit_page_offset(cpu, page_idx); } /* * The following are helper functions to help access bitmaps and convert * between bitmap offsets to address offsets. */ static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index) { return chunk->alloc_map + (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG); } static unsigned long pcpu_off_to_block_index(int off) { return off / PCPU_BITMAP_BLOCK_BITS; } static unsigned long pcpu_off_to_block_off(int off) { return off & (PCPU_BITMAP_BLOCK_BITS - 1); } static unsigned long pcpu_block_off_to_off(int index, int off) { return index * PCPU_BITMAP_BLOCK_BITS + off; } /* * pcpu_next_hint - determine which hint to use * @block: block of interest * @alloc_bits: size of allocation * * This determines if we should scan based on the scan_hint or first_free. * In general, we want to scan from first_free to fulfill allocations by * first fit. However, if we know a scan_hint at position scan_hint_start * cannot fulfill an allocation, we can begin scanning from there knowing * the contig_hint will be our fallback. */ static int pcpu_next_hint(struct pcpu_block_md *block, int alloc_bits) { /* * The three conditions below determine if we can skip past the * scan_hint. First, does the scan hint exist. Second, is the * contig_hint after the scan_hint (possibly not true iff * contig_hint == scan_hint). Third, is the allocation request * larger than the scan_hint. */ if (block->scan_hint && block->contig_hint_start > block->scan_hint_start && alloc_bits > block->scan_hint) return block->scan_hint_start + block->scan_hint; return block->first_free; } /** * pcpu_next_md_free_region - finds the next hint free area * @chunk: chunk of interest * @bit_off: chunk offset * @bits: size of free area * * Helper function for pcpu_for_each_md_free_region. It checks * block->contig_hint and performs aggregation across blocks to find the * next hint. It modifies bit_off and bits in-place to be consumed in the * loop. */ static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off, int *bits) { int i = pcpu_off_to_block_index(*bit_off); int block_off = pcpu_off_to_block_off(*bit_off); struct pcpu_block_md *block; *bits = 0; for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk); block++, i++) { /* handles contig area across blocks */ if (*bits) { *bits += block->left_free; if (block->left_free == PCPU_BITMAP_BLOCK_BITS) continue; return; } /* * This checks three things. First is there a contig_hint to * check. Second, have we checked this hint before by * comparing the block_off. Third, is this the same as the * right contig hint. In the last case, it spills over into * the next block and should be handled by the contig area * across blocks code. */ *bits = block->contig_hint; if (*bits && block->contig_hint_start >= block_off && *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) { *bit_off = pcpu_block_off_to_off(i, block->contig_hint_start); return; } /* reset to satisfy the second predicate above */ block_off = 0; *bits = block->right_free; *bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free; } } /** * pcpu_next_fit_region - finds fit areas for a given allocation request * @chunk: chunk of interest * @alloc_bits: size of allocation * @align: alignment of area (max PAGE_SIZE) * @bit_off: chunk offset * @bits: size of free area * * Finds the next free region that is viable for use with a given size and * alignment. This only returns if there is a valid area to be used for this * allocation. block->first_free is returned if the allocation request fits * within the block to see if the request can be fulfilled prior to the contig * hint. */ static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits, int align, int *bit_off, int *bits) { int i = pcpu_off_to_block_index(*bit_off); int block_off = pcpu_off_to_block_off(*bit_off); struct pcpu_block_md *block; *bits = 0; for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk); block++, i++) { /* handles contig area across blocks */ if (*bits) { *bits += block->left_free; if (*bits >= alloc_bits) return; if (block->left_free == PCPU_BITMAP_BLOCK_BITS) continue; } /* check block->contig_hint */ *bits = ALIGN(block->contig_hint_start, align) - block->contig_hint_start; /* * This uses the block offset to determine if this has been * checked in the prior iteration. */ if (block->contig_hint && block->contig_hint_start >= block_off && block->contig_hint >= *bits + alloc_bits) { int start = pcpu_next_hint(block, alloc_bits); *bits += alloc_bits + block->contig_hint_start - start; *bit_off = pcpu_block_off_to_off(i, start); return; } /* reset to satisfy the second predicate above */ block_off = 0; *bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free, align); *bits = PCPU_BITMAP_BLOCK_BITS - *bit_off; *bit_off = pcpu_block_off_to_off(i, *bit_off); if (*bits >= alloc_bits) return; } /* no valid offsets were found - fail condition */ *bit_off = pcpu_chunk_map_bits(chunk); } /* * Metadata free area iterators. These perform aggregation of free areas * based on the metadata blocks and return the offset @bit_off and size in * bits of the free area @bits. pcpu_for_each_fit_region only returns when * a fit is found for the allocation request. */ #define pcpu_for_each_md_free_region(chunk, bit_off, bits) \ for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits)); \ (bit_off) < pcpu_chunk_map_bits((chunk)); \ (bit_off) += (bits) + 1, \ pcpu_next_md_free_region((chunk), &(bit_off), &(bits))) #define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) \ for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \ &(bits)); \ (bit_off) < pcpu_chunk_map_bits((chunk)); \ (bit_off) += (bits), \ pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \ &(bits))) /** * pcpu_mem_zalloc - allocate memory * @size: bytes to allocate * @gfp: allocation flags * * Allocate @size bytes. If @size is smaller than PAGE_SIZE, * kzalloc() is used; otherwise, the equivalent of vzalloc() is used. * This is to facilitate passing through whitelisted flags. The * returned memory is always zeroed. * * RETURNS: * Pointer to the allocated area on success, NULL on failure. */ static void *pcpu_mem_zalloc(size_t size, gfp_t gfp) { if (WARN_ON_ONCE(!slab_is_available())) return NULL; if (size <= PAGE_SIZE) return kzalloc(size, gfp); else return __vmalloc(size, gfp | __GFP_ZERO); } /** * pcpu_mem_free - free memory * @ptr: memory to free * * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc(). */ static void pcpu_mem_free(void *ptr) { kvfree(ptr); } static void __pcpu_chunk_move(struct pcpu_chunk *chunk, int slot, bool move_front) { if (chunk != pcpu_reserved_chunk) { struct list_head *pcpu_slot; pcpu_slot = pcpu_chunk_list(pcpu_chunk_type(chunk)); if (move_front) list_move(&chunk->list, &pcpu_slot[slot]); else list_move_tail(&chunk->list, &pcpu_slot[slot]); } } static void pcpu_chunk_move(struct pcpu_chunk *chunk, int slot) { __pcpu_chunk_move(chunk, slot, true); } /** * pcpu_chunk_relocate - put chunk in the appropriate chunk slot * @chunk: chunk of interest * @oslot: the previous slot it was on * * This function is called after an allocation or free changed @chunk. * New slot according to the changed state is determined and @chunk is * moved to the slot. Note that the reserved chunk is never put on * chunk slots. * * CONTEXT: * pcpu_lock. */ static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot) { int nslot = pcpu_chunk_slot(chunk); if (oslot != nslot) __pcpu_chunk_move(chunk, nslot, oslot < nslot); } /* * pcpu_update_empty_pages - update empty page counters * @chunk: chunk of interest * @nr: nr of empty pages * * This is used to keep track of the empty pages now based on the premise * a md_block covers a page. The hint update functions recognize if a block * is made full or broken to calculate deltas for keeping track of free pages. */ static inline void pcpu_update_empty_pages(struct pcpu_chunk *chunk, int nr) { chunk->nr_empty_pop_pages += nr; if (chunk != pcpu_reserved_chunk) pcpu_nr_empty_pop_pages[pcpu_chunk_type(chunk)] += nr; } /* * pcpu_region_overlap - determines if two regions overlap * @a: start of first region, inclusive * @b: end of first region, exclusive * @x: start of second region, inclusive * @y: end of second region, exclusive * * This is used to determine if the hint region [a, b) overlaps with the * allocated region [x, y). */ static inline bool pcpu_region_overlap(int a, int b, int x, int y) { return (a < y) && (x < b); } /** * pcpu_block_update - updates a block given a free area * @block: block of interest * @start: start offset in block * @end: end offset in block * * Updates a block given a known free area. The region [start, end) is * expected to be the entirety of the free area within a block. Chooses * the best starting offset if the contig hints are equal. */ static void pcpu_block_update(struct pcpu_block_md *block, int start, int end) { int contig = end - start; block->first_free = min(block->first_free, start); if (start == 0) block->left_free = contig; if (end == block->nr_bits) block->right_free = contig; if (contig > block->contig_hint) { /* promote the old contig_hint to be the new scan_hint */ if (start > block->contig_hint_start) { if (block->contig_hint > block->scan_hint) { block->scan_hint_start = block->contig_hint_start; block->scan_hint = block->contig_hint; } else if (start < block->scan_hint_start) { /* * The old contig_hint == scan_hint. But, the * new contig is larger so hold the invariant * scan_hint_start < contig_hint_start. */ block->scan_hint = 0; } } else { block->scan_hint = 0; } block->contig_hint_start = start; block->contig_hint = contig; } else if (contig == block->contig_hint) { if (block->contig_hint_start && (!start || __ffs(start) > __ffs(block->contig_hint_start))) { /* start has a better alignment so use it */ block->contig_hint_start = start; if (start < block->scan_hint_start && block->contig_hint > block->scan_hint) block->scan_hint = 0; } else if (start > block->scan_hint_start || block->contig_hint > block->scan_hint) { /* * Knowing contig == contig_hint, update the scan_hint * if it is farther than or larger than the current * scan_hint. */ block->scan_hint_start = start; block->scan_hint = contig; } } else { /* * The region is smaller than the contig_hint. So only update * the scan_hint if it is larger than or equal and farther than * the current scan_hint. */ if ((start < block->contig_hint_start && (contig > block->scan_hint || (contig == block->scan_hint && start > block->scan_hint_start)))) { block->scan_hint_start = start; block->scan_hint = contig; } } } /* * pcpu_block_update_scan - update a block given a free area from a scan * @chunk: chunk of interest * @bit_off: chunk offset * @bits: size of free area * * Finding the final allocation spot first goes through pcpu_find_block_fit() * to find a block that can hold the allocation and then pcpu_alloc_area() * where a scan is used. When allocations require specific alignments, * we can inadvertently create holes which will not be seen in the alloc * or free paths. * * This takes a given free area hole and updates a block as it may change the * scan_hint. We need to scan backwards to ensure we don't miss free bits * from alignment. */ static void pcpu_block_update_scan(struct pcpu_chunk *chunk, int bit_off, int bits) { int s_off = pcpu_off_to_block_off(bit_off); int e_off = s_off + bits; int s_index, l_bit; struct pcpu_block_md *block; if (e_off > PCPU_BITMAP_BLOCK_BITS) return; s_index = pcpu_off_to_block_index(bit_off); block = chunk->md_blocks + s_index; /* scan backwards in case of alignment skipping free bits */ l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), s_off); s_off = (s_off == l_bit) ? 0 : l_bit + 1; pcpu_block_update(block, s_off, e_off); } /** * pcpu_chunk_refresh_hint - updates metadata about a chunk * @chunk: chunk of interest * @full_scan: if we should scan from the beginning * * Iterates over the metadata blocks to find the largest contig area. * A full scan can be avoided on the allocation path as this is triggered * if we broke the contig_hint. In doing so, the scan_hint will be before * the contig_hint or after if the scan_hint == contig_hint. This cannot * be prevented on freeing as we want to find the largest area possibly * spanning blocks. */ static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk, bool full_scan) { struct pcpu_block_md *chunk_md = &chunk->chunk_md; int bit_off, bits; /* promote scan_hint to contig_hint */ if (!full_scan && chunk_md->scan_hint) { bit_off = chunk_md->scan_hint_start + chunk_md->scan_hint; chunk_md->contig_hint_start = chunk_md->scan_hint_start; chunk_md->contig_hint = chunk_md->scan_hint; chunk_md->scan_hint = 0; } else { bit_off = chunk_md->first_free; chunk_md->contig_hint = 0; } bits = 0; pcpu_for_each_md_free_region(chunk, bit_off, bits) pcpu_block_update(chunk_md, bit_off, bit_off + bits); } /** * pcpu_block_refresh_hint * @chunk: chunk of interest * @index: index of the metadata block * * Scans over the block beginning at first_free and updates the block * metadata accordingly. */ static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index) { struct pcpu_block_md *block = chunk->md_blocks + index; unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index); unsigned int rs, re, start; /* region start, region end */ /* promote scan_hint to contig_hint */ if (block->scan_hint) { start = block->scan_hint_start + block->scan_hint; block->contig_hint_start = block->scan_hint_start; block->contig_hint = block->scan_hint; block->scan_hint = 0; } else { start = block->first_free; block->contig_hint = 0; } block->right_free = 0; /* iterate over free areas and update the contig hints */ bitmap_for_each_clear_region(alloc_map, rs, re, start, PCPU_BITMAP_BLOCK_BITS) pcpu_block_update(block, rs, re); } /** * pcpu_block_update_hint_alloc - update hint on allocation path * @chunk: chunk of interest * @bit_off: chunk offset * @bits: size of request * * Updates metadata for the allocation path. The metadata only has to be * refreshed by a full scan iff the chunk's contig hint is broken. Block level * scans are required if the block's contig hint is broken. */ static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off, int bits) { struct pcpu_block_md *chunk_md = &chunk->chunk_md; int nr_empty_pages = 0; struct pcpu_block_md *s_block, *e_block, *block; int s_index, e_index; /* block indexes of the freed allocation */ int s_off, e_off; /* block offsets of the freed allocation */ /* * Calculate per block offsets. * The calculation uses an inclusive range, but the resulting offsets * are [start, end). e_index always points to the last block in the * range. */ s_index = pcpu_off_to_block_index(bit_off); e_index = pcpu_off_to_block_index(bit_off + bits - 1); s_off = pcpu_off_to_block_off(bit_off); e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1; s_block = chunk->md_blocks + s_index; e_block = chunk->md_blocks + e_index; /* * Update s_block. * block->first_free must be updated if the allocation takes its place. * If the allocation breaks the contig_hint, a scan is required to * restore this hint. */ if (s_block->contig_hint == PCPU_BITMAP_BLOCK_BITS) nr_empty_pages++; if (s_off == s_block->first_free) s_block->first_free = find_next_zero_bit( pcpu_index_alloc_map(chunk, s_index), PCPU_BITMAP_BLOCK_BITS, s_off + bits); if (pcpu_region_overlap(s_block->scan_hint_start, s_block->scan_hint_start + s_block->scan_hint, s_off, s_off + bits)) s_block->scan_hint = 0; if (pcpu_region_overlap(s_block->contig_hint_start, s_block->contig_hint_start + s_block->contig_hint, s_off, s_off + bits)) { /* block contig hint is broken - scan to fix it */ if (!s_off) s_block->left_free = 0; pcpu_block_refresh_hint(chunk, s_index); } else { /* update left and right contig manually */ s_block->left_free = min(s_block->left_free, s_off); if (s_index == e_index) s_block->right_free = min_t(int, s_block->right_free, PCPU_BITMAP_BLOCK_BITS - e_off); else s_block->right_free = 0; } /* * Update e_block. */ if (s_index != e_index) { if (e_block->contig_hint == PCPU_BITMAP_BLOCK_BITS) nr_empty_pages++; /* * When the allocation is across blocks, the end is along * the left part of the e_block. */ e_block->first_free = find_next_zero_bit( pcpu_index_alloc_map(chunk, e_index), PCPU_BITMAP_BLOCK_BITS, e_off); if (e_off == PCPU_BITMAP_BLOCK_BITS) { /* reset the block */ e_block++; } else { if (e_off > e_block->scan_hint_start) e_block->scan_hint = 0; e_block->left_free = 0; if (e_off > e_block->contig_hint_start) { /* contig hint is broken - scan to fix it */ pcpu_block_refresh_hint(chunk, e_index); } else { e_block->right_free = min_t(int, e_block->right_free, PCPU_BITMAP_BLOCK_BITS - e_off); } } /* update in-between md_blocks */ nr_empty_pages += (e_index - s_index - 1); for (block = s_block + 1; block < e_block; block++) { block->scan_hint = 0; block->contig_hint = 0; block->left_free = 0; block->right_free = 0; } } if (nr_empty_pages) pcpu_update_empty_pages(chunk, -nr_empty_pages); if (pcpu_region_overlap(chunk_md->scan_hint_start, chunk_md->scan_hint_start + chunk_md->scan_hint, bit_off, bit_off + bits)) chunk_md->scan_hint = 0; /* * The only time a full chunk scan is required is if the chunk * contig hint is broken. Otherwise, it means a smaller space * was used and therefore the chunk contig hint is still correct. */ if (pcpu_region_overlap(chunk_md->contig_hint_start, chunk_md->contig_hint_start + chunk_md->contig_hint, bit_off, bit_off + bits)) pcpu_chunk_refresh_hint(chunk, false); } /** * pcpu_block_update_hint_free - updates the block hints on the free path * @chunk: chunk of interest * @bit_off: chunk offset * @bits: size of request * * Updates metadata for the allocation path. This avoids a blind block * refresh by making use of the block contig hints. If this fails, it scans * forward and backward to determine the extent of the free area. This is * capped at the boundary of blocks. * * A chunk update is triggered if a page becomes free, a block becomes free, * or the free spans across blocks. This tradeoff is to minimize iterating * over the block metadata to update chunk_md->contig_hint. * chunk_md->contig_hint may be off by up to a page, but it will never be more * than the available space. If the contig hint is contained in one block, it * will be accurate. */ static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off, int bits) { int nr_empty_pages = 0; struct pcpu_block_md *s_block, *e_block, *block; int s_index, e_index; /* block indexes of the freed allocation */ int s_off, e_off; /* block offsets of the freed allocation */ int start, end; /* start and end of the whole free area */ /* * Calculate per block offsets. * The calculation uses an inclusive range, but the resulting offsets * are [start, end). e_index always points to the last block in the * range. */ s_index = pcpu_off_to_block_index(bit_off); e_index = pcpu_off_to_block_index(bit_off + bits - 1); s_off = pcpu_off_to_block_off(bit_off); e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1; s_block = chunk->md_blocks + s_index; e_block = chunk->md_blocks + e_index; /* * Check if the freed area aligns with the block->contig_hint. * If it does, then the scan to find the beginning/end of the * larger free area can be avoided. * * start and end refer to beginning and end of the free area * within each their respective blocks. This is not necessarily * the entire free area as it may span blocks past the beginning * or end of the block. */ start = s_off; if (s_off == s_block->contig_hint + s_block->contig_hint_start) { start = s_block->contig_hint_start; } else { /* * Scan backwards to find the extent of the free area. * find_last_bit returns the starting bit, so if the start bit * is returned, that means there was no last bit and the * remainder of the chunk is free. */ int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), start); start = (start == l_bit) ? 0 : l_bit + 1; } end = e_off; if (e_off == e_block->contig_hint_start) end = e_block->contig_hint_start + e_block->contig_hint; else end = find_next_bit(pcpu_index_alloc_map(chunk, e_index), PCPU_BITMAP_BLOCK_BITS, end); /* update s_block */ e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS; if (!start && e_off == PCPU_BITMAP_BLOCK_BITS) nr_empty_pages++; pcpu_block_update(s_block, start, e_off); /* freeing in the same block */ if (s_index != e_index) { /* update e_block */ if (end == PCPU_BITMAP_BLOCK_BITS) nr_empty_pages++; pcpu_block_update(e_block, 0, end); /* reset md_blocks in the middle */ nr_empty_pages += (e_index - s_index - 1); for (block = s_block + 1; block < e_block; block++) { block->first_free = 0; block->scan_hint = 0; block->contig_hint_start = 0; block->contig_hint = PCPU_BITMAP_BLOCK_BITS; block->left_free = PCPU_BITMAP_BLOCK_BITS; block->right_free = PCPU_BITMAP_BLOCK_BITS; } } if (nr_empty_pages) pcpu_update_empty_pages(chunk, nr_empty_pages); /* * Refresh chunk metadata when the free makes a block free or spans * across blocks. The contig_hint may be off by up to a page, but if * the contig_hint is contained in a block, it will be accurate with * the else condition below. */ if (((end - start) >= PCPU_BITMAP_BLOCK_BITS) || s_index != e_index) pcpu_chunk_refresh_hint(chunk, true); else pcpu_block_update(&chunk->chunk_md, pcpu_block_off_to_off(s_index, start), end); } /** * pcpu_is_populated - determines if the region is populated * @chunk: chunk of interest * @bit_off: chunk offset * @bits: size of area * @next_off: return value for the next offset to start searching * * For atomic allocations, check if the backing pages are populated. * * RETURNS: * Bool if the backing pages are populated. * next_index is to skip over unpopulated blocks in pcpu_find_block_fit. */ static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits, int *next_off) { unsigned int page_start, page_end, rs, re; page_start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE); page_end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE); rs = page_start; bitmap_next_clear_region(chunk->populated, &rs, &re, page_end); if (rs >= page_end) return true; *next_off = re * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE; return false; } /** * pcpu_find_block_fit - finds the block index to start searching * @chunk: chunk of interest * @alloc_bits: size of request in allocation units * @align: alignment of area (max PAGE_SIZE bytes) * @pop_only: use populated regions only * * Given a chunk and an allocation spec, find the offset to begin searching * for a free region. This iterates over the bitmap metadata blocks to * find an offset that will be guaranteed to fit the requirements. It is * not quite first fit as if the allocation does not fit in the contig hint * of a block or chunk, it is skipped. This errs on the side of caution * to prevent excess iteration. Poor alignment can cause the allocator to * skip over blocks and chunks that have valid free areas. * * RETURNS: * The offset in the bitmap to begin searching. * -1 if no offset is found. */ static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits, size_t align, bool pop_only) { struct pcpu_block_md *chunk_md = &chunk->chunk_md; int bit_off, bits, next_off; /* * Check to see if the allocation can fit in the chunk's contig hint. * This is an optimization to prevent scanning by assuming if it * cannot fit in the global hint, there is memory pressure and creating * a new chunk would happen soon. */ bit_off = ALIGN(chunk_md->contig_hint_start, align) - chunk_md->contig_hint_start; if (bit_off + alloc_bits > chunk_md->contig_hint) return -1; bit_off = pcpu_next_hint(chunk_md, alloc_bits); bits = 0; pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) { if (!pop_only || pcpu_is_populated(chunk, bit_off, bits, &next_off)) break; bit_off = next_off; bits = 0; } if (bit_off == pcpu_chunk_map_bits(chunk)) return -1; return bit_off; } /* * pcpu_find_zero_area - modified from bitmap_find_next_zero_area_off() * @map: the address to base the search on * @size: the bitmap size in bits * @start: the bitnumber to start searching at * @nr: the number of zeroed bits we're looking for * @align_mask: alignment mask for zero area * @largest_off: offset of the largest area skipped * @largest_bits: size of the largest area skipped * * The @align_mask should be one less than a power of 2. * * This is a modified version of bitmap_find_next_zero_area_off() to remember * the largest area that was skipped. This is imperfect, but in general is * good enough. The largest remembered region is the largest failed region * seen. This does not include anything we possibly skipped due to alignment. * pcpu_block_update_scan() does scan backwards to try and recover what was * lost to alignment. While this can cause scanning to miss earlier possible * free areas, smaller allocations will eventually fill those holes. */ static unsigned long pcpu_find_zero_area(unsigned long *map, unsigned long size, unsigned long start, unsigned long nr, unsigned long align_mask, unsigned long *largest_off, unsigned long *largest_bits) { unsigned long index, end, i, area_off, area_bits; again: index = find_next_zero_bit(map, size, start); /* Align allocation */ index = __ALIGN_MASK(index, align_mask); area_off = index; end = index + nr; if (end > size) return end; i = find_next_bit(map, end, index); if (i < end) { area_bits = i - area_off; /* remember largest unused area with best alignment */ if (area_bits > *largest_bits || (area_bits == *largest_bits && *largest_off && (!area_off || __ffs(area_off) > __ffs(*largest_off)))) { *largest_off = area_off; *largest_bits = area_bits; } start = i + 1; goto again; } return index; } /** * pcpu_alloc_area - allocates an area from a pcpu_chunk * @chunk: chunk of interest * @alloc_bits: size of request in allocation units * @align: alignment of area (max PAGE_SIZE) * @start: bit_off to start searching * * This function takes in a @start offset to begin searching to fit an * allocation of @alloc_bits with alignment @align. It needs to scan * the allocation map because if it fits within the block's contig hint, * @start will be block->first_free. This is an attempt to fill the * allocation prior to breaking the contig hint. The allocation and * boundary maps are updated accordingly if it confirms a valid * free area. * * RETURNS: * Allocated addr offset in @chunk on success. * -1 if no matching area is found. */ static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits, size_t align, int start) { struct pcpu_block_md *chunk_md = &chunk->chunk_md; size_t align_mask = (align) ? (align - 1) : 0; unsigned long area_off = 0, area_bits = 0; int bit_off, end, oslot; lockdep_assert_held(&pcpu_lock); oslot = pcpu_chunk_slot(chunk); /* * Search to find a fit. */ end = min_t(int, start + alloc_bits + PCPU_BITMAP_BLOCK_BITS, pcpu_chunk_map_bits(chunk)); bit_off = pcpu_find_zero_area(chunk->alloc_map, end, start, alloc_bits, align_mask, &area_off, &area_bits); if (bit_off >= end) return -1; if (area_bits) pcpu_block_update_scan(chunk, area_off, area_bits); /* update alloc map */ bitmap_set(chunk->alloc_map, bit_off, alloc_bits); /* update boundary map */ set_bit(bit_off, chunk->bound_map); bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1); set_bit(bit_off + alloc_bits, chunk->bound_map); chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE; /* update first free bit */ if (bit_off == chunk_md->first_free) chunk_md->first_free = find_next_zero_bit( chunk->alloc_map, pcpu_chunk_map_bits(chunk), bit_off + alloc_bits); pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits); pcpu_chunk_relocate(chunk, oslot); return bit_off * PCPU_MIN_ALLOC_SIZE; } /** * pcpu_free_area - frees the corresponding offset * @chunk: chunk of interest * @off: addr offset into chunk * * This function determines the size of an allocation to free using * the boundary bitmap and clears the allocation map. * * RETURNS: * Number of freed bytes. */ static int pcpu_free_area(struct pcpu_chunk *chunk, int off) { struct pcpu_block_md *chunk_md = &chunk->chunk_md; int bit_off, bits, end, oslot, freed; lockdep_assert_held(&pcpu_lock); pcpu_stats_area_dealloc(chunk); oslot = pcpu_chunk_slot(chunk); bit_off = off / PCPU_MIN_ALLOC_SIZE; /* find end index */ end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk), bit_off + 1); bits = end - bit_off; bitmap_clear(chunk->alloc_map, bit_off, bits); freed = bits * PCPU_MIN_ALLOC_SIZE; /* update metadata */ chunk->free_bytes += freed; /* update first free bit */ chunk_md->first_free = min(chunk_md->first_free, bit_off); pcpu_block_update_hint_free(chunk, bit_off, bits); pcpu_chunk_relocate(chunk, oslot); return freed; } static void pcpu_init_md_block(struct pcpu_block_md *block, int nr_bits) { block->scan_hint = 0; block->contig_hint = nr_bits; block->left_free = nr_bits; block->right_free = nr_bits; block->first_free = 0; block->nr_bits = nr_bits; } static void pcpu_init_md_blocks(struct pcpu_chunk *chunk) { struct pcpu_block_md *md_block; /* init the chunk's block */ pcpu_init_md_block(&chunk->chunk_md, pcpu_chunk_map_bits(chunk)); for (md_block = chunk->md_blocks; md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk); md_block++) pcpu_init_md_block(md_block, PCPU_BITMAP_BLOCK_BITS); } /** * pcpu_alloc_first_chunk - creates chunks that serve the first chunk * @tmp_addr: the start of the region served * @map_size: size of the region served * * This is responsible for creating the chunks that serve the first chunk. The * base_addr is page aligned down of @tmp_addr while the region end is page * aligned up. Offsets are kept track of to determine the region served. All * this is done to appease the bitmap allocator in avoiding partial blocks. * * RETURNS: * Chunk serving the region at @tmp_addr of @map_size. */ static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr, int map_size) { struct pcpu_chunk *chunk; unsigned long aligned_addr, lcm_align; int start_offset, offset_bits, region_size, region_bits; size_t alloc_size; /* region calculations */ aligned_addr = tmp_addr & PAGE_MASK; start_offset = tmp_addr - aligned_addr; /* * Align the end of the region with the LCM of PAGE_SIZE and * PCPU_BITMAP_BLOCK_SIZE. One of these constants is a multiple of * the other. */ lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE); region_size = ALIGN(start_offset + map_size, lcm_align); /* allocate chunk */ alloc_size = struct_size(chunk, populated, BITS_TO_LONGS(region_size >> PAGE_SHIFT)); chunk = memblock_alloc(alloc_size, SMP_CACHE_BYTES); if (!chunk) panic("%s: Failed to allocate %zu bytes\n", __func__, alloc_size); INIT_LIST_HEAD(&chunk->list); chunk->base_addr = (void *)aligned_addr; chunk->start_offset = start_offset; chunk->end_offset = region_size - chunk->start_offset - map_size; chunk->nr_pages = region_size >> PAGE_SHIFT; region_bits = pcpu_chunk_map_bits(chunk); alloc_size = BITS_TO_LONGS(region_bits) * sizeof(chunk->alloc_map[0]); chunk->alloc_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES); if (!chunk->alloc_map) panic("%s: Failed to allocate %zu bytes\n", __func__, alloc_size); alloc_size = BITS_TO_LONGS(region_bits + 1) * sizeof(chunk->bound_map[0]); chunk->bound_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES); if (!chunk->bound_map) panic("%s: Failed to allocate %zu bytes\n", __func__, alloc_size); alloc_size = pcpu_chunk_nr_blocks(chunk) * sizeof(chunk->md_blocks[0]); chunk->md_blocks = memblock_alloc(alloc_size, SMP_CACHE_BYTES); if (!chunk->md_blocks) panic("%s: Failed to allocate %zu bytes\n", __func__, alloc_size); #ifdef CONFIG_MEMCG_KMEM /* first chunk isn't memcg-aware */ chunk->obj_cgroups = NULL; #endif pcpu_init_md_blocks(chunk); /* manage populated page bitmap */ chunk->immutable = true; bitmap_fill(chunk->populated, chunk->nr_pages); chunk->nr_populated = chunk->nr_pages; chunk->nr_empty_pop_pages = chunk->nr_pages; chunk->free_bytes = map_size; if (chunk->start_offset) { /* hide the beginning of the bitmap */ offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE; bitmap_set(chunk->alloc_map, 0, offset_bits); set_bit(0, chunk->bound_map); set_bit(offset_bits, chunk->bound_map); chunk->chunk_md.first_free = offset_bits; pcpu_block_update_hint_alloc(chunk, 0, offset_bits); } if (chunk->end_offset) { /* hide the end of the bitmap */ offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE; bitmap_set(chunk->alloc_map, pcpu_chunk_map_bits(chunk) - offset_bits, offset_bits); set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE, chunk->bound_map); set_bit(region_bits, chunk->bound_map); pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk) - offset_bits, offset_bits); } return chunk; } static struct pcpu_chunk *pcpu_alloc_chunk(enum pcpu_chunk_type type, gfp_t gfp) { struct pcpu_chunk *chunk; int region_bits; chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size, gfp); if (!chunk) return NULL; INIT_LIST_HEAD(&chunk->list); chunk->nr_pages = pcpu_unit_pages; region_bits = pcpu_chunk_map_bits(chunk); chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) * sizeof(chunk->alloc_map[0]), gfp); if (!chunk->alloc_map) goto alloc_map_fail; chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) * sizeof(chunk->bound_map[0]), gfp); if (!chunk->bound_map) goto bound_map_fail; chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) * sizeof(chunk->md_blocks[0]), gfp); if (!chunk->md_blocks) goto md_blocks_fail; #ifdef CONFIG_MEMCG_KMEM if (pcpu_is_memcg_chunk(type)) { chunk->obj_cgroups = pcpu_mem_zalloc(pcpu_chunk_map_bits(chunk) * sizeof(struct obj_cgroup *), gfp); if (!chunk->obj_cgroups) goto objcg_fail; } #endif pcpu_init_md_blocks(chunk); /* init metadata */ chunk->free_bytes = chunk->nr_pages * PAGE_SIZE; return chunk; #ifdef CONFIG_MEMCG_KMEM objcg_fail: pcpu_mem_free(chunk->md_blocks); #endif md_blocks_fail: pcpu_mem_free(chunk->bound_map); bound_map_fail: pcpu_mem_free(chunk->alloc_map); alloc_map_fail: pcpu_mem_free(chunk); return NULL; } static void pcpu_free_chunk(struct pcpu_chunk *chunk) { if (!chunk) return; #ifdef CONFIG_MEMCG_KMEM pcpu_mem_free(chunk->obj_cgroups); #endif pcpu_mem_free(chunk->md_blocks); pcpu_mem_free(chunk->bound_map); pcpu_mem_free(chunk->alloc_map); pcpu_mem_free(chunk); } /** * pcpu_chunk_populated - post-population bookkeeping * @chunk: pcpu_chunk which got populated * @page_start: the start page * @page_end: the end page * * Pages in [@page_start,@page_end) have been populated to @chunk. Update * the bookkeeping information accordingly. Must be called after each * successful population. * * If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it * is to serve an allocation in that area. */ static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start, int page_end) { int nr = page_end - page_start; lockdep_assert_held(&pcpu_lock); bitmap_set(chunk->populated, page_start, nr); chunk->nr_populated += nr; pcpu_nr_populated += nr; pcpu_update_empty_pages(chunk, nr); } /** * pcpu_chunk_depopulated - post-depopulation bookkeeping * @chunk: pcpu_chunk which got depopulated * @page_start: the start page * @page_end: the end page * * Pages in [@page_start,@page_end) have been depopulated from @chunk. * Update the bookkeeping information accordingly. Must be called after * each successful depopulation. */ static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk, int page_start, int page_end) { int nr = page_end - page_start; lockdep_assert_held(&pcpu_lock); bitmap_clear(chunk->populated, page_start, nr); chunk->nr_populated -= nr; pcpu_nr_populated -= nr; pcpu_update_empty_pages(chunk, -nr); } /* * Chunk management implementation. * * To allow different implementations, chunk alloc/free and * [de]population are implemented in a separate file which is pulled * into this file and compiled together. The following functions * should be implemented. * * pcpu_populate_chunk - populate the specified range of a chunk * pcpu_depopulate_chunk - depopulate the specified range of a chunk * pcpu_create_chunk - create a new chunk * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop * pcpu_addr_to_page - translate address to physical address * pcpu_verify_alloc_info - check alloc_info is acceptable during init */ static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int page_start, int page_end, gfp_t gfp); static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int page_start, int page_end); static struct pcpu_chunk *pcpu_create_chunk(enum pcpu_chunk_type type, gfp_t gfp); static void pcpu_destroy_chunk(struct pcpu_chunk *chunk); static struct page *pcpu_addr_to_page(void *addr); static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai); #ifdef CONFIG_NEED_PER_CPU_KM #include "percpu-km.c" #else #include "percpu-vm.c" #endif /** * pcpu_chunk_addr_search - determine chunk containing specified address * @addr: address for which the chunk needs to be determined. * * This is an internal function that handles all but static allocations. * Static percpu address values should never be passed into the allocator. * * RETURNS: * The address of the found chunk. */ static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) { /* is it in the dynamic region (first chunk)? */ if (pcpu_addr_in_chunk(pcpu_first_chunk, addr)) return pcpu_first_chunk; /* is it in the reserved region? */ if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr)) return pcpu_reserved_chunk; /* * The address is relative to unit0 which might be unused and * thus unmapped. Offset the address to the unit space of the * current processor before looking it up in the vmalloc * space. Note that any possible cpu id can be used here, so * there's no need to worry about preemption or cpu hotplug. */ addr += pcpu_unit_offsets[raw_smp_processor_id()]; return pcpu_get_page_chunk(pcpu_addr_to_page(addr)); } #ifdef CONFIG_MEMCG_KMEM static enum pcpu_chunk_type pcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp, struct obj_cgroup **objcgp) { struct obj_cgroup *objcg; if (!memcg_kmem_enabled() || !(gfp & __GFP_ACCOUNT)) return PCPU_CHUNK_ROOT; objcg = get_obj_cgroup_from_current(); if (!objcg) return PCPU_CHUNK_ROOT; if (obj_cgroup_charge(objcg, gfp, size * num_possible_cpus())) { obj_cgroup_put(objcg); return PCPU_FAIL_ALLOC; } *objcgp = objcg; return PCPU_CHUNK_MEMCG; } static void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg, struct pcpu_chunk *chunk, int off, size_t size) { if (!objcg) return; if (chunk) { chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT] = objcg; rcu_read_lock(); mod_memcg_state(obj_cgroup_memcg(objcg), MEMCG_PERCPU_B, size * num_possible_cpus()); rcu_read_unlock(); } else { obj_cgroup_uncharge(objcg, size * num_possible_cpus()); obj_cgroup_put(objcg); } } static void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size) { struct obj_cgroup *objcg; if (!pcpu_is_memcg_chunk(pcpu_chunk_type(chunk))) return; objcg = chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT]; chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT] = NULL; obj_cgroup_uncharge(objcg, size * num_possible_cpus()); rcu_read_lock(); mod_memcg_state(obj_cgroup_memcg(objcg), MEMCG_PERCPU_B, -(size * num_possible_cpus())); rcu_read_unlock(); obj_cgroup_put(objcg); } #else /* CONFIG_MEMCG_KMEM */ static enum pcpu_chunk_type pcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp, struct obj_cgroup **objcgp) { return PCPU_CHUNK_ROOT; } static void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg, struct pcpu_chunk *chunk, int off, size_t size) { } static void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size) { } #endif /* CONFIG_MEMCG_KMEM */ /** * pcpu_alloc - the percpu allocator * @size: size of area to allocate in bytes * @align: alignment of area (max PAGE_SIZE) * @reserved: allocate from the reserved chunk if available * @gfp: allocation flags * * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN * then no warning will be triggered on invalid or failed allocation * requests. * * RETURNS: * Percpu pointer to the allocated area on success, NULL on failure. */ static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved, gfp_t gfp) { gfp_t pcpu_gfp; bool is_atomic; bool do_warn; enum pcpu_chunk_type type; struct list_head *pcpu_slot; struct obj_cgroup *objcg = NULL; static int warn_limit = 10; struct pcpu_chunk *chunk, *next; const char *err; int slot, off, cpu, ret; unsigned long flags; void __percpu *ptr; size_t bits, bit_align; gfp = current_gfp_context(gfp); /* whitelisted flags that can be passed to the backing allocators */ pcpu_gfp = gfp & (GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN); is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL; do_warn = !(gfp & __GFP_NOWARN); /* * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE, * therefore alignment must be a minimum of that many bytes. * An allocation may have internal fragmentation from rounding up * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes. */ if (unlikely(align < PCPU_MIN_ALLOC_SIZE)) align = PCPU_MIN_ALLOC_SIZE; size = ALIGN(size, PCPU_MIN_ALLOC_SIZE); bits = size >> PCPU_MIN_ALLOC_SHIFT; bit_align = align >> PCPU_MIN_ALLOC_SHIFT; if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE || !is_power_of_2(align))) { WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n", size, align); return NULL; } type = pcpu_memcg_pre_alloc_hook(size, gfp, &objcg); if (unlikely(type == PCPU_FAIL_ALLOC)) return NULL; pcpu_slot = pcpu_chunk_list(type); if (!is_atomic) { /* * pcpu_balance_workfn() allocates memory under this mutex, * and it may wait for memory reclaim. Allow current task * to become OOM victim, in case of memory pressure. */ if (gfp & __GFP_NOFAIL) { mutex_lock(&pcpu_alloc_mutex); } else if (mutex_lock_killable(&pcpu_alloc_mutex)) { pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size); return NULL; } } spin_lock_irqsave(&pcpu_lock, flags); /* serve reserved allocations from the reserved chunk if available */ if (reserved && pcpu_reserved_chunk) { chunk = pcpu_reserved_chunk; off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic); if (off < 0) { err = "alloc from reserved chunk failed"; goto fail_unlock; } off = pcpu_alloc_area(chunk, bits, bit_align, off); if (off >= 0) goto area_found; err = "alloc from reserved chunk failed"; goto fail_unlock; } restart: /* search through normal chunks */ for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) { list_for_each_entry_safe(chunk, next, &pcpu_slot[slot], list) { off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic); if (off < 0) { if (slot < PCPU_SLOT_FAIL_THRESHOLD) pcpu_chunk_move(chunk, 0); continue; } off = pcpu_alloc_area(chunk, bits, bit_align, off); if (off >= 0) goto area_found; } } spin_unlock_irqrestore(&pcpu_lock, flags); /* * No space left. Create a new chunk. We don't want multiple * tasks to create chunks simultaneously. Serialize and create iff * there's still no empty chunk after grabbing the mutex. */ if (is_atomic) { err = "atomic alloc failed, no space left"; goto fail; } if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) { chunk = pcpu_create_chunk(type, pcpu_gfp); if (!chunk) { err = "failed to allocate new chunk"; goto fail; } spin_lock_irqsave(&pcpu_lock, flags); pcpu_chunk_relocate(chunk, -1); } else { spin_lock_irqsave(&pcpu_lock, flags); } goto restart; area_found: pcpu_stats_area_alloc(chunk, size); spin_unlock_irqrestore(&pcpu_lock, flags); /* populate if not all pages are already there */ if (!is_atomic) { unsigned int page_start, page_end, rs, re; page_start = PFN_DOWN(off); page_end = PFN_UP(off + size); bitmap_for_each_clear_region(chunk->populated, rs, re, page_start, page_end) { WARN_ON(chunk->immutable); ret = pcpu_populate_chunk(chunk, rs, re, pcpu_gfp); spin_lock_irqsave(&pcpu_lock, flags); if (ret) { pcpu_free_area(chunk, off); err = "failed to populate"; goto fail_unlock; } pcpu_chunk_populated(chunk, rs, re); spin_unlock_irqrestore(&pcpu_lock, flags); } mutex_unlock(&pcpu_alloc_mutex); } if (pcpu_nr_empty_pop_pages[type] < PCPU_EMPTY_POP_PAGES_LOW) pcpu_schedule_balance_work(); /* clear the areas and return address relative to base address */ for_each_possible_cpu(cpu) memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size); ptr = __addr_to_pcpu_ptr(chunk->base_addr + off); kmemleak_alloc_percpu(ptr, size, gfp); trace_percpu_alloc_percpu(reserved, is_atomic, size, align, chunk->base_addr, off, ptr); pcpu_memcg_post_alloc_hook(objcg, chunk, off, size); return ptr; fail_unlock: spin_unlock_irqrestore(&pcpu_lock, flags); fail: trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align); if (!is_atomic && do_warn && warn_limit) { pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n", size, align, is_atomic, err); dump_stack(); if (!--warn_limit) pr_info("limit reached, disable warning\n"); } if (is_atomic) { /* see the flag handling in pcpu_blance_workfn() */ pcpu_atomic_alloc_failed = true; pcpu_schedule_balance_work(); } else { mutex_unlock(&pcpu_alloc_mutex); } pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size); return NULL; } /** * __alloc_percpu_gfp - allocate dynamic percpu area * @size: size of area to allocate in bytes * @align: alignment of area (max PAGE_SIZE) * @gfp: allocation flags * * Allocate zero-filled percpu area of @size bytes aligned at @align. If * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can * be called from any context but is a lot more likely to fail. If @gfp * has __GFP_NOWARN then no warning will be triggered on invalid or failed * allocation requests. * * RETURNS: * Percpu pointer to the allocated area on success, NULL on failure. */ void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp) { return pcpu_alloc(size, align, false, gfp); } EXPORT_SYMBOL_GPL(__alloc_percpu_gfp); /** * __alloc_percpu - allocate dynamic percpu area * @size: size of area to allocate in bytes * @align: alignment of area (max PAGE_SIZE) * * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL). */ void __percpu *__alloc_percpu(size_t size, size_t align) { return pcpu_alloc(size, align, false, GFP_KERNEL); } EXPORT_SYMBOL_GPL(__alloc_percpu); /** * __alloc_reserved_percpu - allocate reserved percpu area * @size: size of area to allocate in bytes * @align: alignment of area (max PAGE_SIZE) * * Allocate zero-filled percpu area of @size bytes aligned at @align * from reserved percpu area if arch has set it up; otherwise, * allocation is served from the same dynamic area. Might sleep. * Might trigger writeouts. * * CONTEXT: * Does GFP_KERNEL allocation. * * RETURNS: * Percpu pointer to the allocated area on success, NULL on failure. */ void __percpu *__alloc_reserved_percpu(size_t size, size_t align) { return pcpu_alloc(size, align, true, GFP_KERNEL); } /** * __pcpu_balance_workfn - manage the amount of free chunks and populated pages * @type: chunk type * * Reclaim all fully free chunks except for the first one. This is also * responsible for maintaining the pool of empty populated pages. However, * it is possible that this is called when physical memory is scarce causing * OOM killer to be triggered. We should avoid doing so until an actual * allocation causes the failure as it is possible that requests can be * serviced from already backed regions. */ static void __pcpu_balance_workfn(enum pcpu_chunk_type type) { /* gfp flags passed to underlying allocators */ const gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN; LIST_HEAD(to_free); struct list_head *pcpu_slot = pcpu_chunk_list(type); struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1]; struct pcpu_chunk *chunk, *next; int slot, nr_to_pop, ret; /* * There's no reason to keep around multiple unused chunks and VM * areas can be scarce. Destroy all free chunks except for one. */ mutex_lock(&pcpu_alloc_mutex); spin_lock_irq(&pcpu_lock); list_for_each_entry_safe(chunk, next, free_head, list) { WARN_ON(chunk->immutable); /* spare the first one */ if (chunk == list_first_entry(free_head, struct pcpu_chunk, list)) continue; list_move(&chunk->list, &to_free); } spin_unlock_irq(&pcpu_lock); list_for_each_entry_safe(chunk, next, &to_free, list) { unsigned int rs, re; bitmap_for_each_set_region(chunk->populated, rs, re, 0, chunk->nr_pages) { pcpu_depopulate_chunk(chunk, rs, re); spin_lock_irq(&pcpu_lock); pcpu_chunk_depopulated(chunk, rs, re); spin_unlock_irq(&pcpu_lock); } pcpu_destroy_chunk(chunk); cond_resched(); } /* * Ensure there are certain number of free populated pages for * atomic allocs. Fill up from the most packed so that atomic * allocs don't increase fragmentation. If atomic allocation * failed previously, always populate the maximum amount. This * should prevent atomic allocs larger than PAGE_SIZE from keeping * failing indefinitely; however, large atomic allocs are not * something we support properly and can be highly unreliable and * inefficient. */ retry_pop: if (pcpu_atomic_alloc_failed) { nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH; /* best effort anyway, don't worry about synchronization */ pcpu_atomic_alloc_failed = false; } else { nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH - pcpu_nr_empty_pop_pages[type], 0, PCPU_EMPTY_POP_PAGES_HIGH); } for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) { unsigned int nr_unpop = 0, rs, re; if (!nr_to_pop) break; spin_lock_irq(&pcpu_lock); list_for_each_entry(chunk, &pcpu_slot[slot], list) { nr_unpop = chunk->nr_pages - chunk->nr_populated; if (nr_unpop) break; } spin_unlock_irq(&pcpu_lock); if (!nr_unpop) continue; /* @chunk can't go away while pcpu_alloc_mutex is held */ bitmap_for_each_clear_region(chunk->populated, rs, re, 0, chunk->nr_pages) { int nr = min_t(int, re - rs, nr_to_pop); ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp); if (!ret) { nr_to_pop -= nr; spin_lock_irq(&pcpu_lock); pcpu_chunk_populated(chunk, rs, rs + nr); spin_unlock_irq(&pcpu_lock); } else { nr_to_pop = 0; } if (!nr_to_pop) break; } } if (nr_to_pop) { /* ran out of chunks to populate, create a new one and retry */ chunk = pcpu_create_chunk(type, gfp); if (chunk) { spin_lock_irq(&pcpu_lock); pcpu_chunk_relocate(chunk, -1); spin_unlock_irq(&pcpu_lock); goto retry_pop; } } mutex_unlock(&pcpu_alloc_mutex); } /** * pcpu_balance_workfn - manage the amount of free chunks and populated pages * @work: unused * * Call __pcpu_balance_workfn() for each chunk type. */ static void pcpu_balance_workfn(struct work_struct *work) { enum pcpu_chunk_type type; for (type = 0; type < PCPU_NR_CHUNK_TYPES; type++) __pcpu_balance_workfn(type); } /** * free_percpu - free percpu area * @ptr: pointer to area to free * * Free percpu area @ptr. * * CONTEXT: * Can be called from atomic context. */ void free_percpu(void __percpu *ptr) { void *addr; struct pcpu_chunk *chunk; unsigned long flags; int size, off; bool need_balance = false; struct list_head *pcpu_slot; if (!ptr) return; kmemleak_free_percpu(ptr); addr = __pcpu_ptr_to_addr(ptr); spin_lock_irqsave(&pcpu_lock, flags); chunk = pcpu_chunk_addr_search(addr); off = addr - chunk->base_addr; size = pcpu_free_area(chunk, off); pcpu_slot = pcpu_chunk_list(pcpu_chunk_type(chunk)); pcpu_memcg_free_hook(chunk, off, size); /* if there are more than one fully free chunks, wake up grim reaper */ if (chunk->free_bytes == pcpu_unit_size) { struct pcpu_chunk *pos; list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list) if (pos != chunk) { need_balance = true; break; } } trace_percpu_free_percpu(chunk->base_addr, off, ptr); spin_unlock_irqrestore(&pcpu_lock, flags); if (need_balance) pcpu_schedule_balance_work(); } EXPORT_SYMBOL_GPL(free_percpu); bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr) { #ifdef CONFIG_SMP const size_t static_size = __per_cpu_end - __per_cpu_start; void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); unsigned int cpu; for_each_possible_cpu(cpu) { void *start = per_cpu_ptr(base, cpu); void *va = (void *)addr; if (va >= start && va < start + static_size) { if (can_addr) { *can_addr = (unsigned long) (va - start); *can_addr += (unsigned long) per_cpu_ptr(base, get_boot_cpu_id()); } return true; } } #endif /* on UP, can't distinguish from other static vars, always false */ return false; } /** * is_kernel_percpu_address - test whether address is from static percpu area * @addr: address to test * * Test whether @addr belongs to in-kernel static percpu area. Module * static percpu areas are not considered. For those, use * is_module_percpu_address(). * * RETURNS: * %true if @addr is from in-kernel static percpu area, %false otherwise. */ bool is_kernel_percpu_address(unsigned long addr) { return __is_kernel_percpu_address(addr, NULL); } /** * per_cpu_ptr_to_phys - convert translated percpu address to physical address * @addr: the address to be converted to physical address * * Given @addr which is dereferenceable address obtained via one of * percpu access macros, this function translates it into its physical * address. The caller is responsible for ensuring @addr stays valid * until this function finishes. * * percpu allocator has special setup for the first chunk, which currently * supports either embedding in linear address space or vmalloc mapping, * and, from the second one, the backing allocator (currently either vm or * km) provides translation. * * The addr can be translated simply without checking if it falls into the * first chunk. But the current code reflects better how percpu allocator * actually works, and the verification can discover both bugs in percpu * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current * code. * * RETURNS: * The physical address for @addr. */ phys_addr_t per_cpu_ptr_to_phys(void *addr) { void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); bool in_first_chunk = false; unsigned long first_low, first_high; unsigned int cpu; /* * The following test on unit_low/high isn't strictly * necessary but will speed up lookups of addresses which * aren't in the first chunk. * * The address check is against full chunk sizes. pcpu_base_addr * points to the beginning of the first chunk including the * static region. Assumes good intent as the first chunk may * not be full (ie. < pcpu_unit_pages in size). */ first_low = (unsigned long)pcpu_base_addr + pcpu_unit_page_offset(pcpu_low_unit_cpu, 0); first_high = (unsigned long)pcpu_base_addr + pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages); if ((unsigned long)addr >= first_low && (unsigned long)addr < first_high) { for_each_possible_cpu(cpu) { void *start = per_cpu_ptr(base, cpu); if (addr >= start && addr < start + pcpu_unit_size) { in_first_chunk = true; break; } } } if (in_first_chunk) { if (!is_vmalloc_addr(addr)) return __pa(addr); else return page_to_phys(vmalloc_to_page(addr)) + offset_in_page(addr); } else return page_to_phys(pcpu_addr_to_page(addr)) + offset_in_page(addr); } /** * pcpu_alloc_alloc_info - allocate percpu allocation info * @nr_groups: the number of groups * @nr_units: the number of units * * Allocate ai which is large enough for @nr_groups groups containing * @nr_units units. The returned ai's groups[0].cpu_map points to the * cpu_map array which is long enough for @nr_units and filled with * NR_CPUS. It's the caller's responsibility to initialize cpu_map * pointer of other groups. * * RETURNS: * Pointer to the allocated pcpu_alloc_info on success, NULL on * failure. */ struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, int nr_units) { struct pcpu_alloc_info *ai; size_t base_size, ai_size; void *ptr; int unit; base_size = ALIGN(struct_size(ai, groups, nr_groups), __alignof__(ai->groups[0].cpu_map[0])); ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]); ptr = memblock_alloc(PFN_ALIGN(ai_size), PAGE_SIZE); if (!ptr) return NULL; ai = ptr; ptr += base_size; ai->groups[0].cpu_map = ptr; for (unit = 0; unit < nr_units; unit++) ai->groups[0].cpu_map[unit] = NR_CPUS; ai->nr_groups = nr_groups; ai->__ai_size = PFN_ALIGN(ai_size); return ai; } /** * pcpu_free_alloc_info - free percpu allocation info * @ai: pcpu_alloc_info to free * * Free @ai which was allocated by pcpu_alloc_alloc_info(). */ void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai) { memblock_free_early(__pa(ai), ai->__ai_size); } /** * pcpu_dump_alloc_info - print out information about pcpu_alloc_info * @lvl: loglevel * @ai: allocation info to dump * * Print out information about @ai using loglevel @lvl. */ static void pcpu_dump_alloc_info(const char *lvl, const struct pcpu_alloc_info *ai) { int group_width = 1, cpu_width = 1, width; char empty_str[] = "--------"; int alloc = 0, alloc_end = 0; int group, v; int upa, apl; /* units per alloc, allocs per line */ v = ai->nr_groups; while (v /= 10) group_width++; v = num_possible_cpus(); while (v /= 10) cpu_width++; empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0'; upa = ai->alloc_size / ai->unit_size; width = upa * (cpu_width + 1) + group_width + 3; apl = rounddown_pow_of_two(max(60 / width, 1)); printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu", lvl, ai->static_size, ai->reserved_size, ai->dyn_size, ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size); for (group = 0; group < ai->nr_groups; group++) { const struct pcpu_group_info *gi = &ai->groups[group]; int unit = 0, unit_end = 0; BUG_ON(gi->nr_units % upa); for (alloc_end += gi->nr_units / upa; alloc < alloc_end; alloc++) { if (!(alloc % apl)) { pr_cont("\n"); printk("%spcpu-alloc: ", lvl); } pr_cont("[%0*d] ", group_width, group); for (unit_end += upa; unit < unit_end; unit++) if (gi->cpu_map[unit] != NR_CPUS) pr_cont("%0*d ", cpu_width, gi->cpu_map[unit]); else pr_cont("%s ", empty_str); } } pr_cont("\n"); } /** * pcpu_setup_first_chunk - initialize the first percpu chunk * @ai: pcpu_alloc_info describing how to percpu area is shaped * @base_addr: mapped address * * Initialize the first percpu chunk which contains the kernel static * percpu area. This function is to be called from arch percpu area * setup path. * * @ai contains all information necessary to initialize the first * chunk and prime the dynamic percpu allocator. * * @ai->static_size is the size of static percpu area. * * @ai->reserved_size, if non-zero, specifies the amount of bytes to * reserve after the static area in the first chunk. This reserves * the first chunk such that it's available only through reserved * percpu allocation. This is primarily used to serve module percpu * static areas on architectures where the addressing model has * limited offset range for symbol relocations to guarantee module * percpu symbols fall inside the relocatable range. * * @ai->dyn_size determines the number of bytes available for dynamic * allocation in the first chunk. The area between @ai->static_size + * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused. * * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE * and equal to or larger than @ai->static_size + @ai->reserved_size + * @ai->dyn_size. * * @ai->atom_size is the allocation atom size and used as alignment * for vm areas. * * @ai->alloc_size is the allocation size and always multiple of * @ai->atom_size. This is larger than @ai->atom_size if * @ai->unit_size is larger than @ai->atom_size. * * @ai->nr_groups and @ai->groups describe virtual memory layout of * percpu areas. Units which should be colocated are put into the * same group. Dynamic VM areas will be allocated according to these * groupings. If @ai->nr_groups is zero, a single group containing * all units is assumed. * * The caller should have mapped the first chunk at @base_addr and * copied static data to each unit. * * The first chunk will always contain a static and a dynamic region. * However, the static region is not managed by any chunk. If the first * chunk also contains a reserved region, it is served by two chunks - * one for the reserved region and one for the dynamic region. They * share the same vm, but use offset regions in the area allocation map. * The chunk serving the dynamic region is circulated in the chunk slots * and available for dynamic allocation like any other chunk. */ void __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, void *base_addr) { size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size; size_t static_size, dyn_size; struct pcpu_chunk *chunk; unsigned long *group_offsets; size_t *group_sizes; unsigned long *unit_off; unsigned int cpu; int *unit_map; int group, unit, i; int map_size; unsigned long tmp_addr; size_t alloc_size; enum pcpu_chunk_type type; #define PCPU_SETUP_BUG_ON(cond) do { \ if (unlikely(cond)) { \ pr_emerg("failed to initialize, %s\n", #cond); \ pr_emerg("cpu_possible_mask=%*pb\n", \ cpumask_pr_args(cpu_possible_mask)); \ pcpu_dump_alloc_info(KERN_EMERG, ai); \ BUG(); \ } \ } while (0) /* sanity checks */ PCPU_SETUP_BUG_ON(ai->nr_groups <= 0); #ifdef CONFIG_SMP PCPU_SETUP_BUG_ON(!ai->static_size); PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start)); #endif PCPU_SETUP_BUG_ON(!base_addr); PCPU_SETUP_BUG_ON(offset_in_page(base_addr)); PCPU_SETUP_BUG_ON(ai->unit_size < size_sum); PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size)); PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE); PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE)); PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE); PCPU_SETUP_BUG_ON(!ai->dyn_size); PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE)); PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) || IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE))); PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0); /* process group information and build config tables accordingly */ alloc_size = ai->nr_groups * sizeof(group_offsets[0]); group_offsets = memblock_alloc(alloc_size, SMP_CACHE_BYTES); if (!group_offsets) panic("%s: Failed to allocate %zu bytes\n", __func__, alloc_size); alloc_size = ai->nr_groups * sizeof(group_sizes[0]); group_sizes = memblock_alloc(alloc_size, SMP_CACHE_BYTES); if (!group_sizes) panic("%s: Failed to allocate %zu bytes\n", __func__, alloc_size); alloc_size = nr_cpu_ids * sizeof(unit_map[0]); unit_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES); if (!unit_map) panic("%s: Failed to allocate %zu bytes\n", __func__, alloc_size); alloc_size = nr_cpu_ids * sizeof(unit_off[0]); unit_off = memblock_alloc(alloc_size, SMP_CACHE_BYTES); if (!unit_off) panic("%s: Failed to allocate %zu bytes\n", __func__, alloc_size); for (cpu = 0; cpu < nr_cpu_ids; cpu++) unit_map[cpu] = UINT_MAX; pcpu_low_unit_cpu = NR_CPUS; pcpu_high_unit_cpu = NR_CPUS; for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) { const struct pcpu_group_info *gi = &ai->groups[group]; group_offsets[group] = gi->base_offset; group_sizes[group] = gi->nr_units * ai->unit_size; for (i = 0; i < gi->nr_units; i++) { cpu = gi->cpu_map[i]; if (cpu == NR_CPUS) continue; PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids); PCPU_SETUP_BUG_ON(!cpu_possible(cpu)); PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX); unit_map[cpu] = unit + i; unit_off[cpu] = gi->base_offset + i * ai->unit_size; /* determine low/high unit_cpu */ if (pcpu_low_unit_cpu == NR_CPUS || unit_off[cpu] < unit_off[pcpu_low_unit_cpu]) pcpu_low_unit_cpu = cpu; if (pcpu_high_unit_cpu == NR_CPUS || unit_off[cpu] > unit_off[pcpu_high_unit_cpu]) pcpu_high_unit_cpu = cpu; } } pcpu_nr_units = unit; for_each_possible_cpu(cpu) PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX); /* we're done parsing the input, undefine BUG macro and dump config */ #undef PCPU_SETUP_BUG_ON pcpu_dump_alloc_info(KERN_DEBUG, ai); pcpu_nr_groups = ai->nr_groups; pcpu_group_offsets = group_offsets; pcpu_group_sizes = group_sizes; pcpu_unit_map = unit_map; pcpu_unit_offsets = unit_off; /* determine basic parameters */ pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT; pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT; pcpu_atom_size = ai->atom_size; pcpu_chunk_struct_size = struct_size(chunk, populated, BITS_TO_LONGS(pcpu_unit_pages)); pcpu_stats_save_ai(ai); /* * Allocate chunk slots. The additional last slot is for * empty chunks. */ pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2; pcpu_chunk_lists = memblock_alloc(pcpu_nr_slots * sizeof(pcpu_chunk_lists[0]) * PCPU_NR_CHUNK_TYPES, SMP_CACHE_BYTES); if (!pcpu_chunk_lists) panic("%s: Failed to allocate %zu bytes\n", __func__, pcpu_nr_slots * sizeof(pcpu_chunk_lists[0]) * PCPU_NR_CHUNK_TYPES); for (type = 0; type < PCPU_NR_CHUNK_TYPES; type++) for (i = 0; i < pcpu_nr_slots; i++) INIT_LIST_HEAD(&pcpu_chunk_list(type)[i]); /* * The end of the static region needs to be aligned with the * minimum allocation size as this offsets the reserved and * dynamic region. The first chunk ends page aligned by * expanding the dynamic region, therefore the dynamic region * can be shrunk to compensate while still staying above the * configured sizes. */ static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE); dyn_size = ai->dyn_size - (static_size - ai->static_size); /* * Initialize first chunk. * If the reserved_size is non-zero, this initializes the reserved * chunk. If the reserved_size is zero, the reserved chunk is NULL * and the dynamic region is initialized here. The first chunk, * pcpu_first_chunk, will always point to the chunk that serves * the dynamic region. */ tmp_addr = (unsigned long)base_addr + static_size; map_size = ai->reserved_size ?: dyn_size; chunk = pcpu_alloc_first_chunk(tmp_addr, map_size); /* init dynamic chunk if necessary */ if (ai->reserved_size) { pcpu_reserved_chunk = chunk; tmp_addr = (unsigned long)base_addr + static_size + ai->reserved_size; map_size = dyn_size; chunk = pcpu_alloc_first_chunk(tmp_addr, map_size); } /* link the first chunk in */ pcpu_first_chunk = chunk; pcpu_nr_empty_pop_pages[PCPU_CHUNK_ROOT] = pcpu_first_chunk->nr_empty_pop_pages; pcpu_chunk_relocate(pcpu_first_chunk, -1); /* include all regions of the first chunk */ pcpu_nr_populated += PFN_DOWN(size_sum); pcpu_stats_chunk_alloc(); trace_percpu_create_chunk(base_addr); /* we're done */ pcpu_base_addr = base_addr; } #ifdef CONFIG_SMP const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = { [PCPU_FC_AUTO] = "auto", [PCPU_FC_EMBED] = "embed", [PCPU_FC_PAGE] = "page", }; enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO; static int __init percpu_alloc_setup(char *str) { if (!str) return -EINVAL; if (0) /* nada */; #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK else if (!strcmp(str, "embed")) pcpu_chosen_fc = PCPU_FC_EMBED; #endif #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK else if (!strcmp(str, "page")) pcpu_chosen_fc = PCPU_FC_PAGE; #endif else pr_warn("unknown allocator %s specified\n", str); return 0; } early_param("percpu_alloc", percpu_alloc_setup); /* * pcpu_embed_first_chunk() is used by the generic percpu setup. * Build it if needed by the arch config or the generic setup is going * to be used. */ #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \ !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA) #define BUILD_EMBED_FIRST_CHUNK #endif /* build pcpu_page_first_chunk() iff needed by the arch config */ #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK) #define BUILD_PAGE_FIRST_CHUNK #endif /* pcpu_build_alloc_info() is used by both embed and page first chunk */ #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK) /** * pcpu_build_alloc_info - build alloc_info considering distances between CPUs * @reserved_size: the size of reserved percpu area in bytes * @dyn_size: minimum free size for dynamic allocation in bytes * @atom_size: allocation atom size * @cpu_distance_fn: callback to determine distance between cpus, optional * * This function determines grouping of units, their mappings to cpus * and other parameters considering needed percpu size, allocation * atom size and distances between CPUs. * * Groups are always multiples of atom size and CPUs which are of * LOCAL_DISTANCE both ways are grouped together and share space for * units in the same group. The returned configuration is guaranteed * to have CPUs on different nodes on different groups and >=75% usage * of allocated virtual address space. * * RETURNS: * On success, pointer to the new allocation_info is returned. On * failure, ERR_PTR value is returned. */ static struct pcpu_alloc_info * __init pcpu_build_alloc_info( size_t reserved_size, size_t dyn_size, size_t atom_size, pcpu_fc_cpu_distance_fn_t cpu_distance_fn) { static int group_map[NR_CPUS] __initdata; static int group_cnt[NR_CPUS] __initdata; const size_t static_size = __per_cpu_end - __per_cpu_start; int nr_groups = 1, nr_units = 0; size_t size_sum, min_unit_size, alloc_size; int upa, max_upa, best_upa; /* units_per_alloc */ int last_allocs, group, unit; unsigned int cpu, tcpu; struct pcpu_alloc_info *ai; unsigned int *cpu_map; /* this function may be called multiple times */ memset(group_map, 0, sizeof(group_map)); memset(group_cnt, 0, sizeof(group_cnt)); /* calculate size_sum and ensure dyn_size is enough for early alloc */ size_sum = PFN_ALIGN(static_size + reserved_size + max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE)); dyn_size = size_sum - static_size - reserved_size; /* * Determine min_unit_size, alloc_size and max_upa such that * alloc_size is multiple of atom_size and is the smallest * which can accommodate 4k aligned segments which are equal to * or larger than min_unit_size. */ min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE); /* determine the maximum # of units that can fit in an allocation */ alloc_size = roundup(min_unit_size, atom_size); upa = alloc_size / min_unit_size; while (alloc_size % upa || (offset_in_page(alloc_size / upa))) upa--; max_upa = upa; /* group cpus according to their proximity */ for_each_possible_cpu(cpu) { group = 0; next_group: for_each_possible_cpu(tcpu) { if (cpu == tcpu) break; if (group_map[tcpu] == group && cpu_distance_fn && (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE || cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) { group++; nr_groups = max(nr_groups, group + 1); goto next_group; } } group_map[cpu] = group; group_cnt[group]++; } /* * Wasted space is caused by a ratio imbalance of upa to group_cnt. * Expand the unit_size until we use >= 75% of the units allocated. * Related to atom_size, which could be much larger than the unit_size. */ last_allocs = INT_MAX; for (upa = max_upa; upa; upa--) { int allocs = 0, wasted = 0; if (alloc_size % upa || (offset_in_page(alloc_size / upa))) continue; for (group = 0; group < nr_groups; group++) { int this_allocs = DIV_ROUND_UP(group_cnt[group], upa); allocs += this_allocs; wasted += this_allocs * upa - group_cnt[group]; } /* * Don't accept if wastage is over 1/3. The * greater-than comparison ensures upa==1 always * passes the following check. */ if (wasted > num_possible_cpus() / 3) continue; /* and then don't consume more memory */ if (allocs > last_allocs) break; last_allocs = allocs; best_upa = upa; } upa = best_upa; /* allocate and fill alloc_info */ for (group = 0; group < nr_groups; group++) nr_units += roundup(group_cnt[group], upa); ai = pcpu_alloc_alloc_info(nr_groups, nr_units); if (!ai) return ERR_PTR(-ENOMEM); cpu_map = ai->groups[0].cpu_map; for (group = 0; group < nr_groups; group++) { ai->groups[group].cpu_map = cpu_map; cpu_map += roundup(group_cnt[group], upa); } ai->static_size = static_size; ai->reserved_size = reserved_size; ai->dyn_size = dyn_size; ai->unit_size = alloc_size / upa; ai->atom_size = atom_size; ai->alloc_size = alloc_size; for (group = 0, unit = 0; group < nr_groups; group++) { struct pcpu_group_info *gi = &ai->groups[group]; /* * Initialize base_offset as if all groups are located * back-to-back. The caller should update this to * reflect actual allocation. */ gi->base_offset = unit * ai->unit_size; for_each_possible_cpu(cpu) if (group_map[cpu] == group) gi->cpu_map[gi->nr_units++] = cpu; gi->nr_units = roundup(gi->nr_units, upa); unit += gi->nr_units; } BUG_ON(unit != nr_units); return ai; } #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */ #if defined(BUILD_EMBED_FIRST_CHUNK) /** * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem * @reserved_size: the size of reserved percpu area in bytes * @dyn_size: minimum free size for dynamic allocation in bytes * @atom_size: allocation atom size * @cpu_distance_fn: callback to determine distance between cpus, optional * @alloc_fn: function to allocate percpu page * @free_fn: function to free percpu page * * This is a helper to ease setting up embedded first percpu chunk and * can be called where pcpu_setup_first_chunk() is expected. * * If this function is used to setup the first chunk, it is allocated * by calling @alloc_fn and used as-is without being mapped into * vmalloc area. Allocations are always whole multiples of @atom_size * aligned to @atom_size. * * This enables the first chunk to piggy back on the linear physical * mapping which often uses larger page size. Please note that this * can result in very sparse cpu->unit mapping on NUMA machines thus * requiring large vmalloc address space. Don't use this allocator if * vmalloc space is not orders of magnitude larger than distances * between node memory addresses (ie. 32bit NUMA machines). * * @dyn_size specifies the minimum dynamic area size. * * If the needed size is smaller than the minimum or specified unit * size, the leftover is returned using @free_fn. * * RETURNS: * 0 on success, -errno on failure. */ int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size, size_t atom_size, pcpu_fc_cpu_distance_fn_t cpu_distance_fn, pcpu_fc_alloc_fn_t alloc_fn, pcpu_fc_free_fn_t free_fn) { void *base = (void *)ULONG_MAX; void **areas = NULL; struct pcpu_alloc_info *ai; size_t size_sum, areas_size; unsigned long max_distance; int group, i, highest_group, rc = 0; ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size, cpu_distance_fn); if (IS_ERR(ai)) return PTR_ERR(ai); size_sum = ai->static_size + ai->reserved_size + ai->dyn_size; areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *)); areas = memblock_alloc(areas_size, SMP_CACHE_BYTES); if (!areas) { rc = -ENOMEM; goto out_free; } /* allocate, copy and determine base address & max_distance */ highest_group = 0; for (group = 0; group < ai->nr_groups; group++) { struct pcpu_group_info *gi = &ai->groups[group]; unsigned int cpu = NR_CPUS; void *ptr; for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++) cpu = gi->cpu_map[i]; BUG_ON(cpu == NR_CPUS); /* allocate space for the whole group */ ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size); if (!ptr) { rc = -ENOMEM; goto out_free_areas; } /* kmemleak tracks the percpu allocations separately */ kmemleak_free(ptr); areas[group] = ptr; base = min(ptr, base); if (ptr > areas[highest_group]) highest_group = group; } max_distance = areas[highest_group] - base; max_distance += ai->unit_size * ai->groups[highest_group].nr_units; /* warn if maximum distance is further than 75% of vmalloc space */ if (max_distance > VMALLOC_TOTAL * 3 / 4) { pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n", max_distance, VMALLOC_TOTAL); #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK /* and fail if we have fallback */ rc = -EINVAL; goto out_free_areas; #endif } /* * Copy data and free unused parts. This should happen after all * allocations are complete; otherwise, we may end up with * overlapping groups. */ for (group = 0; group < ai->nr_groups; group++) { struct pcpu_group_info *gi = &ai->groups[group]; void *ptr = areas[group]; for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) { if (gi->cpu_map[i] == NR_CPUS) { /* unused unit, free whole */ free_fn(ptr, ai->unit_size); continue; } /* copy and return the unused part */ memcpy(ptr, __per_cpu_load, ai->static_size); free_fn(ptr + size_sum, ai->unit_size - size_sum); } } /* base address is now known, determine group base offsets */ for (group = 0; group < ai->nr_groups; group++) { ai->groups[group].base_offset = areas[group] - base; } pr_info("Embedded %zu pages/cpu s%zu r%zu d%zu u%zu\n", PFN_DOWN(size_sum), ai->static_size, ai->reserved_size, ai->dyn_size, ai->unit_size); pcpu_setup_first_chunk(ai, base); goto out_free; out_free_areas: for (group = 0; group < ai->nr_groups; group++) if (areas[group]) free_fn(areas[group], ai->groups[group].nr_units * ai->unit_size); out_free: pcpu_free_alloc_info(ai); if (areas) memblock_free_early(__pa(areas), areas_size); return rc; } #endif /* BUILD_EMBED_FIRST_CHUNK */ #ifdef BUILD_PAGE_FIRST_CHUNK /** * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages * @reserved_size: the size of reserved percpu area in bytes * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE * @free_fn: function to free percpu page, always called with PAGE_SIZE * @populate_pte_fn: function to populate pte * * This is a helper to ease setting up page-remapped first percpu * chunk and can be called where pcpu_setup_first_chunk() is expected. * * This is the basic allocator. Static percpu area is allocated * page-by-page into vmalloc area. * * RETURNS: * 0 on success, -errno on failure. */ int __init pcpu_page_first_chunk(size_t reserved_size, pcpu_fc_alloc_fn_t alloc_fn, pcpu_fc_free_fn_t free_fn, pcpu_fc_populate_pte_fn_t populate_pte_fn) { static struct vm_struct vm; struct pcpu_alloc_info *ai; char psize_str[16]; int unit_pages; size_t pages_size; struct page **pages; int unit, i, j, rc = 0; int upa; int nr_g0_units; snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10); ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL); if (IS_ERR(ai)) return PTR_ERR(ai); BUG_ON(ai->nr_groups != 1); upa = ai->alloc_size/ai->unit_size; nr_g0_units = roundup(num_possible_cpus(), upa); if (WARN_ON(ai->groups[0].nr_units != nr_g0_units)) { pcpu_free_alloc_info(ai); return -EINVAL; } unit_pages = ai->unit_size >> PAGE_SHIFT; /* unaligned allocations can't be freed, round up to page size */ pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() * sizeof(pages[0])); pages = memblock_alloc(pages_size, SMP_CACHE_BYTES); if (!pages) panic("%s: Failed to allocate %zu bytes\n", __func__, pages_size); /* allocate pages */ j = 0; for (unit = 0; unit < num_possible_cpus(); unit++) { unsigned int cpu = ai->groups[0].cpu_map[unit]; for (i = 0; i < unit_pages; i++) { void *ptr; ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE); if (!ptr) { pr_warn("failed to allocate %s page for cpu%u\n", psize_str, cpu); goto enomem; } /* kmemleak tracks the percpu allocations separately */ kmemleak_free(ptr); pages[j++] = virt_to_page(ptr); } } /* allocate vm area, map the pages and copy static data */ vm.flags = VM_ALLOC; vm.size = num_possible_cpus() * ai->unit_size; vm_area_register_early(&vm, PAGE_SIZE); for (unit = 0; unit < num_possible_cpus(); unit++) { unsigned long unit_addr = (unsigned long)vm.addr + unit * ai->unit_size; for (i = 0; i < unit_pages; i++) populate_pte_fn(unit_addr + (i << PAGE_SHIFT)); /* pte already populated, the following shouldn't fail */ rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages], unit_pages); if (rc < 0) panic("failed to map percpu area, err=%d\n", rc); /* * FIXME: Archs with virtual cache should flush local * cache for the linear mapping here - something * equivalent to flush_cache_vmap() on the local cpu. * flush_cache_vmap() can't be used as most supporting * data structures are not set up yet. */ /* copy static data */ memcpy((void *)unit_addr, __per_cpu_load, ai->static_size); } /* we're ready, commit */ pr_info("%d %s pages/cpu s%zu r%zu d%zu\n", unit_pages, psize_str, ai->static_size, ai->reserved_size, ai->dyn_size); pcpu_setup_first_chunk(ai, vm.addr); goto out_free_ar; enomem: while (--j >= 0) free_fn(page_address(pages[j]), PAGE_SIZE); rc = -ENOMEM; out_free_ar: memblock_free_early(__pa(pages), pages_size); pcpu_free_alloc_info(ai); return rc; } #endif /* BUILD_PAGE_FIRST_CHUNK */ #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA /* * Generic SMP percpu area setup. * * The embedding helper is used because its behavior closely resembles * the original non-dynamic generic percpu area setup. This is * important because many archs have addressing restrictions and might * fail if the percpu area is located far away from the previous * location. As an added bonus, in non-NUMA cases, embedding is * generally a good idea TLB-wise because percpu area can piggy back * on the physical linear memory mapping which uses large page * mappings on applicable archs. */ unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; EXPORT_SYMBOL(__per_cpu_offset); static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size, size_t align) { return memblock_alloc_from(size, align, __pa(MAX_DMA_ADDRESS)); } static void __init pcpu_dfl_fc_free(void *ptr, size_t size) { memblock_free_early(__pa(ptr), size); } void __init setup_per_cpu_areas(void) { unsigned long delta; unsigned int cpu; int rc; /* * Always reserve area for module percpu variables. That's * what the legacy allocator did. */ rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL, pcpu_dfl_fc_alloc, pcpu_dfl_fc_free); if (rc < 0) panic("Failed to initialize percpu areas."); delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; for_each_possible_cpu(cpu) __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; } #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */ #else /* CONFIG_SMP */ /* * UP percpu area setup. * * UP always uses km-based percpu allocator with identity mapping. * Static percpu variables are indistinguishable from the usual static * variables and don't require any special preparation. */ void __init setup_per_cpu_areas(void) { const size_t unit_size = roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE, PERCPU_DYNAMIC_RESERVE)); struct pcpu_alloc_info *ai; void *fc; ai = pcpu_alloc_alloc_info(1, 1); fc = memblock_alloc_from(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); if (!ai || !fc) panic("Failed to allocate memory for percpu areas."); /* kmemleak tracks the percpu allocations separately */ kmemleak_free(fc); ai->dyn_size = unit_size; ai->unit_size = unit_size; ai->atom_size = unit_size; ai->alloc_size = unit_size; ai->groups[0].nr_units = 1; ai->groups[0].cpu_map[0] = 0; pcpu_setup_first_chunk(ai, fc); pcpu_free_alloc_info(ai); } #endif /* CONFIG_SMP */ /* * pcpu_nr_pages - calculate total number of populated backing pages * * This reflects the number of pages populated to back chunks. Metadata is * excluded in the number exposed in meminfo as the number of backing pages * scales with the number of cpus and can quickly outweigh the memory used for * metadata. It also keeps this calculation nice and simple. * * RETURNS: * Total number of populated backing pages in use by the allocator. */ unsigned long pcpu_nr_pages(void) { return pcpu_nr_populated * pcpu_nr_units; } /* * Percpu allocator is initialized early during boot when neither slab or * workqueue is available. Plug async management until everything is up * and running. */ static int __init percpu_enable_async(void) { pcpu_async_enabled = true; return 0; } subsys_initcall(percpu_enable_async);
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_HWEIGHT_H #define _ASM_X86_HWEIGHT_H #include <asm/cpufeatures.h> #ifdef CONFIG_64BIT #define REG_IN "D" #define REG_OUT "a" #else #define REG_IN "a" #define REG_OUT "a" #endif static __always_inline unsigned int __arch_hweight32(unsigned int w) { unsigned int res; asm (ALTERNATIVE("call __sw_hweight32", "popcntl %1, %0", X86_FEATURE_POPCNT) : "="REG_OUT (res) : REG_IN (w)); return res; } static inline unsigned int __arch_hweight16(unsigned int w) { return __arch_hweight32(w & 0xffff); } static inline unsigned int __arch_hweight8(unsigned int w) { return __arch_hweight32(w & 0xff); } #ifdef CONFIG_X86_32 static inline unsigned long __arch_hweight64(__u64 w) { return __arch_hweight32((u32)w) + __arch_hweight32((u32)(w >> 32)); } #else static __always_inline unsigned long __arch_hweight64(__u64 w) { unsigned long res; asm (ALTERNATIVE("call __sw_hweight64", "popcntq %1, %0", X86_FEATURE_POPCNT) : "="REG_OUT (res) : REG_IN (w)); return res; } #endif /* CONFIG_X86_32 */ #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 /* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (c) 2009-2019 Christoph Hellwig * * NOTE: none of these tracepoints shall be consider a stable kernel ABI * as they can change at any time. */ #undef TRACE_SYSTEM #define TRACE_SYSTEM iomap #if !defined(_IOMAP_TRACE_H) || defined(TRACE_HEADER_MULTI_READ) #define _IOMAP_TRACE_H #include <linux/tracepoint.h> struct inode; DECLARE_EVENT_CLASS(iomap_readpage_class, TP_PROTO(struct inode *inode, int nr_pages), TP_ARGS(inode, nr_pages), TP_STRUCT__entry( __field(dev_t, dev) __field(u64, ino) __field(int, nr_pages) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->nr_pages = nr_pages; ), TP_printk("dev %d:%d ino 0x%llx nr_pages %d", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->ino, __entry->nr_pages) ) #define DEFINE_READPAGE_EVENT(name) \ DEFINE_EVENT(iomap_readpage_class, name, \ TP_PROTO(struct inode *inode, int nr_pages), \ TP_ARGS(inode, nr_pages)) DEFINE_READPAGE_EVENT(iomap_readpage); DEFINE_READPAGE_EVENT(iomap_readahead); DECLARE_EVENT_CLASS(iomap_range_class, TP_PROTO(struct inode *inode, unsigned long off, unsigned int len), TP_ARGS(inode, off, len), TP_STRUCT__entry( __field(dev_t, dev) __field(u64, ino) __field(loff_t, size) __field(unsigned long, offset) __field(unsigned int, length) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->size = i_size_read(inode); __entry->offset = off; __entry->length = len; ), TP_printk("dev %d:%d ino 0x%llx size 0x%llx offset %lx " "length %x", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->ino, __entry->size, __entry->offset, __entry->length) ) #define DEFINE_RANGE_EVENT(name) \ DEFINE_EVENT(iomap_range_class, name, \ TP_PROTO(struct inode *inode, unsigned long off, unsigned int len),\ TP_ARGS(inode, off, len)) DEFINE_RANGE_EVENT(iomap_writepage); DEFINE_RANGE_EVENT(iomap_releasepage); DEFINE_RANGE_EVENT(iomap_invalidatepage); DEFINE_RANGE_EVENT(iomap_dio_invalidate_fail); #define IOMAP_TYPE_STRINGS \ { IOMAP_HOLE, "HOLE" }, \ { IOMAP_DELALLOC, "DELALLOC" }, \ { IOMAP_MAPPED, "MAPPED" }, \ { IOMAP_UNWRITTEN, "UNWRITTEN" }, \ { IOMAP_INLINE, "INLINE" } #define IOMAP_FLAGS_STRINGS \ { IOMAP_WRITE, "WRITE" }, \ { IOMAP_ZERO, "ZERO" }, \ { IOMAP_REPORT, "REPORT" }, \ { IOMAP_FAULT, "FAULT" }, \ { IOMAP_DIRECT, "DIRECT" }, \ { IOMAP_NOWAIT, "NOWAIT" } #define IOMAP_F_FLAGS_STRINGS \ { IOMAP_F_NEW, "NEW" }, \ { IOMAP_F_DIRTY, "DIRTY" }, \ { IOMAP_F_SHARED, "SHARED" }, \ { IOMAP_F_MERGED, "MERGED" }, \ { IOMAP_F_BUFFER_HEAD, "BH" }, \ { IOMAP_F_SIZE_CHANGED, "SIZE_CHANGED" } DECLARE_EVENT_CLASS(iomap_class, TP_PROTO(struct inode *inode, struct iomap *iomap), TP_ARGS(inode, iomap), TP_STRUCT__entry( __field(dev_t, dev) __field(u64, ino) __field(u64, addr) __field(loff_t, offset) __field(u64, length) __field(u16, type) __field(u16, flags) __field(dev_t, bdev) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->addr = iomap->addr; __entry->offset = iomap->offset; __entry->length = iomap->length; __entry->type = iomap->type; __entry->flags = iomap->flags; __entry->bdev = iomap->bdev ? iomap->bdev->bd_dev : 0; ), TP_printk("dev %d:%d ino 0x%llx bdev %d:%d addr %lld offset %lld " "length %llu type %s flags %s", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->ino, MAJOR(__entry->bdev), MINOR(__entry->bdev), __entry->addr, __entry->offset, __entry->length, __print_symbolic(__entry->type, IOMAP_TYPE_STRINGS), __print_flags(__entry->flags, "|", IOMAP_F_FLAGS_STRINGS)) ) #define DEFINE_IOMAP_EVENT(name) \ DEFINE_EVENT(iomap_class, name, \ TP_PROTO(struct inode *inode, struct iomap *iomap), \ TP_ARGS(inode, iomap)) DEFINE_IOMAP_EVENT(iomap_apply_dstmap); DEFINE_IOMAP_EVENT(iomap_apply_srcmap); TRACE_EVENT(iomap_apply, TP_PROTO(struct inode *inode, loff_t pos, loff_t length, unsigned int flags, const void *ops, void *actor, unsigned long caller), TP_ARGS(inode, pos, length, flags, ops, actor, caller), TP_STRUCT__entry( __field(dev_t, dev) __field(u64, ino) __field(loff_t, pos) __field(loff_t, length) __field(unsigned int, flags) __field(const void *, ops) __field(void *, actor) __field(unsigned long, caller) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->pos = pos; __entry->length = length; __entry->flags = flags; __entry->ops = ops; __entry->actor = actor; __entry->caller = caller; ), TP_printk("dev %d:%d ino 0x%llx pos %lld length %lld flags %s (0x%x) " "ops %ps caller %pS actor %ps", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->ino, __entry->pos, __entry->length, __print_flags(__entry->flags, "|", IOMAP_FLAGS_STRINGS), __entry->flags, __entry->ops, (void *)__entry->caller, __entry->actor) ); #endif /* _IOMAP_TRACE_H */ #undef TRACE_INCLUDE_PATH #define TRACE_INCLUDE_PATH . #define TRACE_INCLUDE_FILE trace #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* Definitions for key type implementations * * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) */ #ifndef _LINUX_KEY_TYPE_H #define _LINUX_KEY_TYPE_H #include <linux/key.h> #include <linux/errno.h> #ifdef CONFIG_KEYS struct kernel_pkey_query; struct kernel_pkey_params; /* * Pre-parsed payload, used by key add, update and instantiate. * * This struct will be cleared and data and datalen will be set with the data * and length parameters from the caller and quotalen will be set from * def_datalen from the key type. Then if the preparse() op is provided by the * key type, that will be called. Then the struct will be passed to the * instantiate() or the update() op. * * If the preparse() op is given, the free_preparse() op will be called to * clear the contents. */ struct key_preparsed_payload { char *description; /* Proposed key description (or NULL) */ union key_payload payload; /* Proposed payload */ const void *data; /* Raw data */ size_t datalen; /* Raw datalen */ size_t quotalen; /* Quota length for proposed payload */ time64_t expiry; /* Expiry time of key */ } __randomize_layout; typedef int (*request_key_actor_t)(struct key *auth_key, void *aux); /* * Preparsed matching criterion. */ struct key_match_data { /* Comparison function, defaults to exact description match, but can be * overridden by type->match_preparse(). Should return true if a match * is found and false if not. */ bool (*cmp)(const struct key *key, const struct key_match_data *match_data); const void *raw_data; /* Raw match data */ void *preparsed; /* For ->match_preparse() to stash stuff */ unsigned lookup_type; /* Type of lookup for this search. */ #define KEYRING_SEARCH_LOOKUP_DIRECT 0x0000 /* Direct lookup by description. */ #define KEYRING_SEARCH_LOOKUP_ITERATE 0x0001 /* Iterative search. */ }; /* * kernel managed key type definition */ struct key_type { /* name of the type */ const char *name; /* default payload length for quota precalculation (optional) * - this can be used instead of calling key_payload_reserve(), that * function only needs to be called if the real datalen is different */ size_t def_datalen; unsigned int flags; #define KEY_TYPE_NET_DOMAIN 0x00000001 /* Keys of this type have a net namespace domain */ /* vet a description */ int (*vet_description)(const char *description); /* Preparse the data blob from userspace that is to be the payload, * generating a proposed description and payload that will be handed to * the instantiate() and update() ops. */ int (*preparse)(struct key_preparsed_payload *prep); /* Free a preparse data structure. */ void (*free_preparse)(struct key_preparsed_payload *prep); /* instantiate a key of this type * - this method should call key_payload_reserve() to determine if the * user's quota will hold the payload */ int (*instantiate)(struct key *key, struct key_preparsed_payload *prep); /* update a key of this type (optional) * - this method should call key_payload_reserve() to recalculate the * quota consumption * - the key must be locked against read when modifying */ int (*update)(struct key *key, struct key_preparsed_payload *prep); /* Preparse the data supplied to ->match() (optional). The * data to be preparsed can be found in match_data->raw_data. * The lookup type can also be set by this function. */ int (*match_preparse)(struct key_match_data *match_data); /* Free preparsed match data (optional). This should be supplied it * ->match_preparse() is supplied. */ void (*match_free)(struct key_match_data *match_data); /* clear some of the data from a key on revokation (optional) * - the key's semaphore will be write-locked by the caller */ void (*revoke)(struct key *key); /* clear the data from a key (optional) */ void (*destroy)(struct key *key); /* describe a key */ void (*describe)(const struct key *key, struct seq_file *p); /* read a key's data (optional) * - permission checks will be done by the caller * - the key's semaphore will be readlocked by the caller * - should return the amount of data that could be read, no matter how * much is copied into the buffer * - shouldn't do the copy if the buffer is NULL */ long (*read)(const struct key *key, char *buffer, size_t buflen); /* handle request_key() for this type instead of invoking * /sbin/request-key (optional) * - key is the key to instantiate * - authkey is the authority to assume when instantiating this key * - op is the operation to be done, usually "create" * - the call must not return until the instantiation process has run * its course */ request_key_actor_t request_key; /* Look up a keyring access restriction (optional) * * - NULL is a valid return value (meaning the requested restriction * is known but will never block addition of a key) * - should return -EINVAL if the restriction is unknown */ struct key_restriction *(*lookup_restriction)(const char *params); /* Asymmetric key accessor functions. */ int (*asym_query)(const struct kernel_pkey_params *params, struct kernel_pkey_query *info); int (*asym_eds_op)(struct kernel_pkey_params *params, const void *in, void *out); int (*asym_verify_signature)(struct kernel_pkey_params *params, const void *in, const void *in2); /* internal fields */ struct list_head link; /* link in types list */ struct lock_class_key lock_class; /* key->sem lock class */ } __randomize_layout; extern struct key_type key_type_keyring; extern int register_key_type(struct key_type *ktype); extern void unregister_key_type(struct key_type *ktype); extern int key_payload_reserve(struct key *key, size_t datalen); extern int key_instantiate_and_link(struct key *key, const void *data, size_t datalen, struct key *keyring, struct key *authkey); extern int key_reject_and_link(struct key *key, unsigned timeout, unsigned error, struct key *keyring, struct key *authkey); extern void complete_request_key(struct key *authkey, int error); static inline int key_negate_and_link(struct key *key, unsigned timeout, struct key *keyring, struct key *authkey) { return key_reject_and_link(key, timeout, ENOKEY, keyring, authkey); } extern int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep); #endif /* CONFIG_KEYS */ #endif /* _LINUX_KEY_TYPE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _KERNEL_EVENTS_INTERNAL_H #define _KERNEL_EVENTS_INTERNAL_H #include <linux/hardirq.h> #include <linux/uaccess.h> #include <linux/refcount.h> /* Buffer handling */ #define RING_BUFFER_WRITABLE 0x01 struct perf_buffer { refcount_t refcount; struct rcu_head rcu_head; #ifdef CONFIG_PERF_USE_VMALLOC struct work_struct work; int page_order; /* allocation order */ #endif int nr_pages; /* nr of data pages */ int overwrite; /* can overwrite itself */ int paused; /* can write into ring buffer */ atomic_t poll; /* POLL_ for wakeups */ local_t head; /* write position */ unsigned int nest; /* nested writers */ local_t events; /* event limit */ local_t wakeup; /* wakeup stamp */ local_t lost; /* nr records lost */ long watermark; /* wakeup watermark */ long aux_watermark; /* poll crap */ spinlock_t event_lock; struct list_head event_list; atomic_t mmap_count; unsigned long mmap_locked; struct user_struct *mmap_user; /* AUX area */ long aux_head; unsigned int aux_nest; long aux_wakeup; /* last aux_watermark boundary crossed by aux_head */ unsigned long aux_pgoff; int aux_nr_pages; int aux_overwrite; atomic_t aux_mmap_count; unsigned long aux_mmap_locked; void (*free_aux)(void *); refcount_t aux_refcount; int aux_in_sampling; void **aux_pages; void *aux_priv; struct perf_event_mmap_page *user_page; void *data_pages[]; }; extern void rb_free(struct perf_buffer *rb); static inline void rb_free_rcu(struct rcu_head *rcu_head) { struct perf_buffer *rb; rb = container_of(rcu_head, struct perf_buffer, rcu_head); rb_free(rb); } static inline void rb_toggle_paused(struct perf_buffer *rb, bool pause) { if (!pause && rb->nr_pages) rb->paused = 0; else rb->paused = 1; } extern struct perf_buffer * rb_alloc(int nr_pages, long watermark, int cpu, int flags); extern void perf_event_wakeup(struct perf_event *event); extern int rb_alloc_aux(struct perf_buffer *rb, struct perf_event *event, pgoff_t pgoff, int nr_pages, long watermark, int flags); extern void rb_free_aux(struct perf_buffer *rb); extern struct perf_buffer *ring_buffer_get(struct perf_event *event); extern void ring_buffer_put(struct perf_buffer *rb); static inline bool rb_has_aux(struct perf_buffer *rb) { return !!rb->aux_nr_pages; } void perf_event_aux_event(struct perf_event *event, unsigned long head, unsigned long size, u64 flags); extern struct page * perf_mmap_to_page(struct perf_buffer *rb, unsigned long pgoff); #ifdef CONFIG_PERF_USE_VMALLOC /* * Back perf_mmap() with vmalloc memory. * * Required for architectures that have d-cache aliasing issues. */ static inline int page_order(struct perf_buffer *rb) { return rb->page_order; } #else static inline int page_order(struct perf_buffer *rb) { return 0; } #endif static inline unsigned long perf_data_size(struct perf_buffer *rb) { return rb->nr_pages << (PAGE_SHIFT + page_order(rb)); } static inline unsigned long perf_aux_size(struct perf_buffer *rb) { return rb->aux_nr_pages << PAGE_SHIFT; } #define __DEFINE_OUTPUT_COPY_BODY(advance_buf, memcpy_func, ...) \ { \ unsigned long size, written; \ \ do { \ size = min(handle->size, len); \ written = memcpy_func(__VA_ARGS__); \ written = size - written; \ \ len -= written; \ handle->addr += written; \ if (advance_buf) \ buf += written; \ handle->size -= written; \ if (!handle->size) { \ struct perf_buffer *rb = handle->rb; \ \ handle->page++; \ handle->page &= rb->nr_pages - 1; \ handle->addr = rb->data_pages[handle->page]; \ handle->size = PAGE_SIZE << page_order(rb); \ } \ } while (len && written == size); \ \ return len; \ } #define DEFINE_OUTPUT_COPY(func_name, memcpy_func) \ static inline unsigned long \ func_name(struct perf_output_handle *handle, \ const void *buf, unsigned long len) \ __DEFINE_OUTPUT_COPY_BODY(true, memcpy_func, handle->addr, buf,