1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _DELAYED_CALL_H #define _DELAYED_CALL_H /* * Poor man's closures; I wish we could've done them sanely polymorphic, * but... */ struct delayed_call { void (*fn)(void *); void *arg; }; #define DEFINE_DELAYED_CALL(name) struct delayed_call name = {NULL, NULL} /* I really wish we had closures with sane typechecking... */ static inline void set_delayed_call(struct delayed_call *call, void (*fn)(void *), void *arg) { call->fn = fn; call->arg = arg; } static inline void do_delayed_call(struct delayed_call *call) { if (call->fn) call->fn(call->arg); } static inline void clear_delayed_call(struct delayed_call *call) { call->fn = NULL; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 /* SPDX-License-Identifier: GPL-2.0 */ /* * Task I/O accounting operations */ #ifndef __TASK_IO_ACCOUNTING_OPS_INCLUDED #define __TASK_IO_ACCOUNTING_OPS_INCLUDED #include <linux/sched.h> #ifdef CONFIG_TASK_IO_ACCOUNTING static inline void task_io_account_read(size_t bytes) { current->ioac.read_bytes += bytes; } /* * We approximate number of blocks, because we account bytes only. * A 'block' is 512 bytes */ static inline unsigned long task_io_get_inblock(const struct task_struct *p) { return p->ioac.read_bytes >> 9; } static inline void task_io_account_write(size_t bytes) { current->ioac.write_bytes += bytes; } /* * We approximate number of blocks, because we account bytes only. * A 'block' is 512 bytes */ static inline unsigned long task_io_get_oublock(const struct task_struct *p) { return p->ioac.write_bytes >> 9; } static inline void task_io_account_cancelled_write(size_t bytes) { current->ioac.cancelled_write_bytes += bytes; } static inline void task_io_accounting_init(struct task_io_accounting *ioac) { memset(ioac, 0, sizeof(*ioac)); } static inline void task_blk_io_accounting_add(struct task_io_accounting *dst, struct task_io_accounting *src) { dst->read_bytes += src->read_bytes; dst->write_bytes += src->write_bytes; dst->cancelled_write_bytes += src->cancelled_write_bytes; } #else static inline void task_io_account_read(size_t bytes) { } static inline unsigned long task_io_get_inblock(const struct task_struct *p) { return 0; } static inline void task_io_account_write(size_t bytes) { } static inline unsigned long task_io_get_oublock(const struct task_struct *p) { return 0; } static inline void task_io_account_cancelled_write(size_t bytes) { } static inline void task_io_accounting_init(struct task_io_accounting *ioac) { } static inline void task_blk_io_accounting_add(struct task_io_accounting *dst, struct task_io_accounting *src) { } #endif /* CONFIG_TASK_IO_ACCOUNTING */ #ifdef CONFIG_TASK_XACCT static inline void task_chr_io_accounting_add(struct task_io_accounting *dst, struct task_io_accounting *src) { dst->rchar += src->rchar; dst->wchar += src->wchar; dst->syscr += src->syscr; dst->syscw += src->syscw; } #else static inline void task_chr_io_accounting_add(struct task_io_accounting *dst, struct task_io_accounting *src) { } #endif /* CONFIG_TASK_XACCT */ static inline void task_io_accounting_add(struct task_io_accounting *dst, struct task_io_accounting *src) { task_chr_io_accounting_add(dst, src); task_blk_io_accounting_add(dst, src); } #endif /* __TASK_IO_ACCOUNTING_OPS_INCLUDED */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 /* SPDX-License-Identifier: GPL-2.0 */ /* * workqueue.h --- work queue handling for Linux. */ #ifndef _LINUX_WORKQUEUE_H #define _LINUX_WORKQUEUE_H #include <linux/timer.h> #include <linux/linkage.h> #include <linux/bitops.h> #include <linux/lockdep.h> #include <linux/threads.h> #include <linux/atomic.h> #include <linux/cpumask.h> #include <linux/rcupdate.h> struct workqueue_struct; struct work_struct; typedef void (*work_func_t)(struct work_struct *work); void delayed_work_timer_fn(struct timer_list *t); /* * The first word is the work queue pointer and the flags rolled into * one */ #define work_data_bits(work) ((unsigned long *)(&(work)->data)) enum { WORK_STRUCT_PENDING_BIT = 0, /* work item is pending execution */ WORK_STRUCT_DELAYED_BIT = 1, /* work item is delayed */ WORK_STRUCT_PWQ_BIT = 2, /* data points to pwq */ WORK_STRUCT_LINKED_BIT = 3, /* next work is linked to this one */ #ifdef CONFIG_DEBUG_OBJECTS_WORK WORK_STRUCT_STATIC_BIT = 4, /* static initializer (debugobjects) */ WORK_STRUCT_COLOR_SHIFT = 5, /* color for workqueue flushing */ #else WORK_STRUCT_COLOR_SHIFT = 4, /* color for workqueue flushing */ #endif WORK_STRUCT_COLOR_BITS = 4, WORK_STRUCT_PENDING = 1 << WORK_STRUCT_PENDING_BIT, WORK_STRUCT_DELAYED = 1 << WORK_STRUCT_DELAYED_BIT, WORK_STRUCT_PWQ = 1 << WORK_STRUCT_PWQ_BIT, WORK_STRUCT_LINKED = 1 << WORK_STRUCT_LINKED_BIT, #ifdef CONFIG_DEBUG_OBJECTS_WORK WORK_STRUCT_STATIC = 1 << WORK_STRUCT_STATIC_BIT, #else WORK_STRUCT_STATIC = 0, #endif /* * The last color is no color used for works which don't * participate in workqueue flushing. */ WORK_NR_COLORS = (1 << WORK_STRUCT_COLOR_BITS) - 1, WORK_NO_COLOR = WORK_NR_COLORS, /* not bound to any CPU, prefer the local CPU */ WORK_CPU_UNBOUND = NR_CPUS, /* * Reserve 8 bits off of pwq pointer w/ debugobjects turned off. * This makes pwqs aligned to 256 bytes and allows 15 workqueue * flush colors. */ WORK_STRUCT_FLAG_BITS = WORK_STRUCT_COLOR_SHIFT + WORK_STRUCT_COLOR_BITS, /* data contains off-queue information when !WORK_STRUCT_PWQ */ WORK_OFFQ_FLAG_BASE = WORK_STRUCT_COLOR_SHIFT, __WORK_OFFQ_CANCELING = WORK_OFFQ_FLAG_BASE, WORK_OFFQ_CANCELING = (1 << __WORK_OFFQ_CANCELING), /* * When a work item is off queue, its high bits point to the last * pool it was on. Cap at 31 bits and use the highest number to * indicate that no pool is associated. */ WORK_OFFQ_FLAG_BITS = 1, WORK_OFFQ_POOL_SHIFT = WORK_OFFQ_FLAG_BASE + WORK_OFFQ_FLAG_BITS, WORK_OFFQ_LEFT = BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT, WORK_OFFQ_POOL_BITS = WORK_OFFQ_LEFT <= 31 ? WORK_OFFQ_LEFT : 31, WORK_OFFQ_POOL_NONE = (1LU << WORK_OFFQ_POOL_BITS) - 1, /* convenience constants */ WORK_STRUCT_FLAG_MASK = (1UL << WORK_STRUCT_FLAG_BITS) - 1, WORK_STRUCT_WQ_DATA_MASK = ~WORK_STRUCT_FLAG_MASK, WORK_STRUCT_NO_POOL = (unsigned long)WORK_OFFQ_POOL_NONE << WORK_OFFQ_POOL_SHIFT, /* bit mask for work_busy() return values */ WORK_BUSY_PENDING = 1 << 0, WORK_BUSY_RUNNING = 1 << 1, /* maximum string length for set_worker_desc() */ WORKER_DESC_LEN = 24, }; struct work_struct { atomic_long_t data; struct list_head entry; work_func_t func; #ifdef CONFIG_LOCKDEP struct lockdep_map lockdep_map; #endif }; #define WORK_DATA_INIT() ATOMIC_LONG_INIT((unsigned long)WORK_STRUCT_NO_POOL) #define WORK_DATA_STATIC_INIT() \ ATOMIC_LONG_INIT((unsigned long)(WORK_STRUCT_NO_POOL | WORK_STRUCT_STATIC)) struct delayed_work { struct work_struct work; struct timer_list timer; /* target workqueue and CPU ->timer uses to queue ->work */ struct workqueue_struct *wq; int cpu; }; struct rcu_work { struct work_struct work; struct rcu_head rcu; /* target workqueue ->rcu uses to queue ->work */ struct workqueue_struct *wq; }; /** * struct workqueue_attrs - A struct for workqueue attributes. * * This can be used to change attributes of an unbound workqueue. */ struct workqueue_attrs { /** * @nice: nice level */ int nice; /** * @cpumask: allowed CPUs */ cpumask_var_t cpumask; /** * @no_numa: disable NUMA affinity * * Unlike other fields, ``no_numa`` isn't a property of a worker_pool. It * only modifies how :c:func:`apply_workqueue_attrs` select pools and thus * doesn't participate in pool hash calculations or equality comparisons. */ bool no_numa; }; static inline struct delayed_work *to_delayed_work(struct work_struct *work) { return container_of(work, struct delayed_work, work); } static inline struct rcu_work *to_rcu_work(struct work_struct *work) { return container_of(work, struct rcu_work, work); } struct execute_work { struct work_struct work; }; #ifdef CONFIG_LOCKDEP /* * NB: because we have to copy the lockdep_map, setting _key * here is required, otherwise it could get initialised to the * copy of the lockdep_map! */ #define __WORK_INIT_LOCKDEP_MAP(n, k) \ .lockdep_map = STATIC_LOCKDEP_MAP_INIT(n, k), #else #define __WORK_INIT_LOCKDEP_MAP(n, k) #endif #define __WORK_INITIALIZER(n, f) { \ .data = WORK_DATA_STATIC_INIT(), \ .entry = { &(n).entry, &(n).entry }, \ .func = (f), \ __WORK_INIT_LOCKDEP_MAP(#n, &(n)) \ } #define __DELAYED_WORK_INITIALIZER(n, f, tflags) { \ .work = __WORK_INITIALIZER((n).work, (f)), \ .timer = __TIMER_INITIALIZER(delayed_work_timer_fn,\ (tflags) | TIMER_IRQSAFE), \ } #define DECLARE_WORK(n, f) \ struct work_struct n = __WORK_INITIALIZER(n, f) #define DECLARE_DELAYED_WORK(n, f) \ struct delayed_work n = __DELAYED_WORK_INITIALIZER(n, f, 0) #define DECLARE_DEFERRABLE_WORK(n, f) \ struct delayed_work n = __DELAYED_WORK_INITIALIZER(n, f, TIMER_DEFERRABLE) #ifdef CONFIG_DEBUG_OBJECTS_WORK extern void __init_work(struct work_struct *work, int onstack); extern void destroy_work_on_stack(struct work_struct *work); extern void destroy_delayed_work_on_stack(struct delayed_work *work); static inline unsigned int work_static(struct work_struct *work) { return *work_data_bits(work) & WORK_STRUCT_STATIC; } #else static inline void __init_work(struct work_struct *work, int onstack) { } static inline void destroy_work_on_stack(struct work_struct *work) { } static inline void destroy_delayed_work_on_stack(struct delayed_work *work) { } static inline unsigned int work_static(struct work_struct *work) { return 0; } #endif /* * initialize all of a work item in one go * * NOTE! No point in using "atomic_long_set()": using a direct * assignment of the work data initializer allows the compiler * to generate better code. */ #ifdef CONFIG_LOCKDEP #define __INIT_WORK(_work, _func, _onstack) \ do { \ static struct lock_class_key __key; \ \ __init_work((_work), _onstack); \ (_work)->data = (atomic_long_t) WORK_DATA_INIT(); \ lockdep_init_map(&(_work)->lockdep_map, "(work_completion)"#_work, &__key, 0); \ INIT_LIST_HEAD(&(_work)->entry); \ (_work)->func = (_func); \ } while (0) #else #define __INIT_WORK(_work, _func, _onstack) \ do { \ __init_work((_work), _onstack); \ (_work)->data = (atomic_long_t) WORK_DATA_INIT(); \ INIT_LIST_HEAD(&(_work)->entry); \ (_work)->func = (_func); \ } while (0) #endif #define INIT_WORK(_work, _func) \ __INIT_WORK((_work), (_func), 0) #define INIT_WORK_ONSTACK(_work, _func) \ __INIT_WORK((_work), (_func), 1) #define __INIT_DELAYED_WORK(_work, _func, _tflags) \ do { \ INIT_WORK(&(_work)->work, (_func)); \ __init_timer(&(_work)->timer, \ delayed_work_timer_fn, \ (_tflags) | TIMER_IRQSAFE); \ } while (0) #define __INIT_DELAYED_WORK_ONSTACK(_work, _func, _tflags) \ do { \ INIT_WORK_ONSTACK(&(_work)->work, (_func)); \ __init_timer_on_stack(&(_work)->timer, \ delayed_work_timer_fn, \ (_tflags) | TIMER_IRQSAFE); \ } while (0) #define INIT_DELAYED_WORK(_work, _func) \ __INIT_DELAYED_WORK(_work, _func, 0) #define INIT_DELAYED_WORK_ONSTACK(_work, _func) \ __INIT_DELAYED_WORK_ONSTACK(_work, _func, 0) #define INIT_DEFERRABLE_WORK(_work, _func) \ __INIT_DELAYED_WORK(_work, _func, TIMER_DEFERRABLE) #define INIT_DEFERRABLE_WORK_ONSTACK(_work, _func) \ __INIT_DELAYED_WORK_ONSTACK(_work, _func, TIMER_DEFERRABLE) #define INIT_RCU_WORK(_work, _func) \ INIT_WORK(&(_work)->work, (_func)) #define INIT_RCU_WORK_ONSTACK(_work, _func) \ INIT_WORK_ONSTACK(&(_work)->work, (_func)) /** * work_pending - Find out whether a work item is currently pending * @work: The work item in question */ #define work_pending(work) \ test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) /** * delayed_work_pending - Find out whether a delayable work item is currently * pending * @w: The work item in question */ #define delayed_work_pending(w) \ work_pending(&(w)->work) /* * Workqueue flags and constants. For details, please refer to * Documentation/core-api/workqueue.rst. */ enum { WQ_UNBOUND = 1 << 1, /* not bound to any cpu */ WQ_FREEZABLE = 1 << 2, /* freeze during suspend */ WQ_MEM_RECLAIM = 1 << 3, /* may be used for memory reclaim */ WQ_HIGHPRI = 1 << 4, /* high priority */ WQ_CPU_INTENSIVE = 1 << 5, /* cpu intensive workqueue */ WQ_SYSFS = 1 << 6, /* visible in sysfs, see wq_sysfs_register() */ /* * Per-cpu workqueues are generally preferred because they tend to * show better performance thanks to cache locality. Per-cpu * workqueues exclude the scheduler from choosing the CPU to * execute the worker threads, which has an unfortunate side effect * of increasing power consumption. * * The scheduler considers a CPU idle if it doesn't have any task * to execute and tries to keep idle cores idle to conserve power; * however, for example, a per-cpu work item scheduled from an * interrupt handler on an idle CPU will force the scheduler to * excute the work item on that CPU breaking the idleness, which in * turn may lead to more scheduling choices which are sub-optimal * in terms of power consumption. * * Workqueues marked with WQ_POWER_EFFICIENT are per-cpu by default * but become unbound if workqueue.power_efficient kernel param is * specified. Per-cpu workqueues which are identified to * contribute significantly to power-consumption are identified and * marked with this flag and enabling the power_efficient mode * leads to noticeable power saving at the cost of small * performance disadvantage. * * http://thread.gmane.org/gmane.linux.kernel/1480396 */ WQ_POWER_EFFICIENT = 1 << 7, __WQ_DRAINING = 1 << 16, /* internal: workqueue is draining */ __WQ_ORDERED = 1 << 17, /* internal: workqueue is ordered */ __WQ_LEGACY = 1 << 18, /* internal: create*_workqueue() */ __WQ_ORDERED_EXPLICIT = 1 << 19, /* internal: alloc_ordered_workqueue() */ WQ_MAX_ACTIVE = 512, /* I like 512, better ideas? */ WQ_MAX_UNBOUND_PER_CPU = 4, /* 4 * #cpus for unbound wq */ WQ_DFL_ACTIVE = WQ_MAX_ACTIVE / 2, }; /* unbound wq's aren't per-cpu, scale max_active according to #cpus */ #define WQ_UNBOUND_MAX_ACTIVE \ max_t(int, WQ_MAX_ACTIVE, num_possible_cpus() * WQ_MAX_UNBOUND_PER_CPU) /* * System-wide workqueues which are always present. * * system_wq is the one used by schedule[_delayed]_work[_on](). * Multi-CPU multi-threaded. There are users which expect relatively * short queue flush time. Don't queue works which can run for too * long. * * system_highpri_wq is similar to system_wq but for work items which * require WQ_HIGHPRI. * * system_long_wq is similar to system_wq but may host long running * works. Queue flushing might take relatively long. * * system_unbound_wq is unbound workqueue. Workers are not bound to * any specific CPU, not concurrency managed, and all queued works are * executed immediately as long as max_active limit is not reached and * resources are available. * * system_freezable_wq is equivalent to system_wq except that it's * freezable. * * *_power_efficient_wq are inclined towards saving power and converted * into WQ_UNBOUND variants if 'wq_power_efficient' is enabled; otherwise, * they are same as their non-power-efficient counterparts - e.g. * system_power_efficient_wq is identical to system_wq if * 'wq_power_efficient' is disabled. See WQ_POWER_EFFICIENT for more info. */ extern struct workqueue_struct *system_wq; extern struct workqueue_struct *system_highpri_wq; extern struct workqueue_struct *system_long_wq; extern struct workqueue_struct *system_unbound_wq; extern struct workqueue_struct *system_freezable_wq; extern struct workqueue_struct *system_power_efficient_wq; extern struct workqueue_struct *system_freezable_power_efficient_wq; /** * alloc_workqueue - allocate a workqueue * @fmt: printf format for the name of the workqueue * @flags: WQ_* flags * @max_active: max in-flight work items, 0 for default * remaining args: args for @fmt * * Allocate a workqueue with the specified parameters. For detailed * information on WQ_* flags, please refer to * Documentation/core-api/workqueue.rst. * * RETURNS: * Pointer to the allocated workqueue on success, %NULL on failure. */ struct workqueue_struct *alloc_workqueue(const char *fmt, unsigned int flags, int max_active, ...); /** * alloc_ordered_workqueue - allocate an ordered workqueue * @fmt: printf format for the name of the workqueue * @flags: WQ_* flags (only WQ_FREEZABLE and WQ_MEM_RECLAIM are meaningful) * @args...: args for @fmt * * Allocate an ordered workqueue. An ordered workqueue executes at * most one work item at any given time in the queued order. They are * implemented as unbound workqueues with @max_active of one. * * RETURNS: * Pointer to the allocated workqueue on success, %NULL on failure. */ #define alloc_ordered_workqueue(fmt, flags, args...) \ alloc_workqueue(fmt, WQ_UNBOUND | __WQ_ORDERED | \ __WQ_ORDERED_EXPLICIT | (flags), 1, ##args) #define create_workqueue(name) \ alloc_workqueue("%s", __WQ_LEGACY | WQ_MEM_RECLAIM, 1, (name)) #define create_freezable_workqueue(name) \ alloc_workqueue("%s", __WQ_LEGACY | WQ_FREEZABLE | WQ_UNBOUND | \ WQ_MEM_RECLAIM, 1, (name)) #define create_singlethread_workqueue(name) \ alloc_ordered_workqueue("%s", __WQ_LEGACY | WQ_MEM_RECLAIM, name) extern void destroy_workqueue(struct workqueue_struct *wq); struct workqueue_attrs *alloc_workqueue_attrs(void); void free_workqueue_attrs(struct workqueue_attrs *attrs); int apply_workqueue_attrs(struct workqueue_struct *wq, const struct workqueue_attrs *attrs); int workqueue_set_unbound_cpumask(cpumask_var_t cpumask); extern bool queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work); extern bool queue_work_node(int node, struct workqueue_struct *wq, struct work_struct *work); extern bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, struct delayed_work *work, unsigned long delay); extern bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, struct delayed_work *dwork, unsigned long delay); extern bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork); extern void flush_workqueue(struct workqueue_struct *wq); extern void drain_workqueue(struct workqueue_struct *wq); extern int schedule_on_each_cpu(work_func_t func); int execute_in_process_context(work_func_t fn, struct execute_work *); extern bool flush_work(struct work_struct *work); extern bool cancel_work_sync(struct work_struct *work); extern bool flush_delayed_work(struct delayed_work *dwork); extern bool cancel_delayed_work(struct delayed_work *dwork); extern bool cancel_delayed_work_sync(struct delayed_work *dwork); extern bool flush_rcu_work(struct rcu_work *rwork); extern void workqueue_set_max_active(struct workqueue_struct *wq, int max_active); extern struct work_struct *current_work(void); extern bool current_is_workqueue_rescuer(void); extern bool workqueue_congested(int cpu, struct workqueue_struct *wq); extern unsigned int work_busy(struct work_struct *work); extern __printf(1, 2) void set_worker_desc(const char *fmt, ...); extern void print_worker_info(const char *log_lvl, struct task_struct *task); extern void show_workqueue_state(void); extern void wq_worker_comm(char *buf, size_t size, struct task_struct *task); /** * queue_work - queue work on a workqueue * @wq: workqueue to use * @work: work to queue * * Returns %false if @work was already on a queue, %true otherwise. * * We queue the work to the CPU on which it was submitted, but if the CPU dies * it can be processed by another CPU. * * Memory-ordering properties: If it returns %true, guarantees that all stores * preceding the call to queue_work() in the program order will be visible from * the CPU which will execute @work by the time such work executes, e.g., * * { x is initially 0 } * * CPU0 CPU1 * * WRITE_ONCE(x, 1); [ @work is being executed ] * r0 = queue_work(wq, work); r1 = READ_ONCE(x); * * Forbids: r0 == true && r1 == 0 */ static inline bool queue_work(struct workqueue_struct *wq, struct work_struct *work) { return queue_work_on(WORK_CPU_UNBOUND, wq, work); } /** * queue_delayed_work - queue work on a workqueue after delay * @wq: workqueue to use * @dwork: delayable work to queue * @delay: number of jiffies to wait before queueing * * Equivalent to queue_delayed_work_on() but tries to use the local CPU. */ static inline bool queue_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork, unsigned long delay) { return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay); } /** * mod_delayed_work - modify delay of or queue a delayed work * @wq: workqueue to use * @dwork: work to queue * @delay: number of jiffies to wait before queueing * * mod_delayed_work_on() on local CPU. */ static inline bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork, unsigned long delay) { return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay); } /** * schedule_work_on - put work task on a specific cpu * @cpu: cpu to put the work task on * @work: job to be done * * This puts a job on a specific cpu */ static inline bool schedule_work_on(int cpu, struct work_struct *work) { return queue_work_on(cpu, system_wq, work); } /** * schedule_work - put work task in global workqueue * @work: job to be done * * Returns %false if @work was already on the kernel-global workqueue and * %true otherwise. * * This puts a job in the kernel-global workqueue if it was not already * queued and leaves it in the same position on the kernel-global * workqueue otherwise. * * Shares the same memory-ordering properties of queue_work(), cf. the * DocBook header of queue_work(). */ static inline bool schedule_work(struct work_struct *work) { return queue_work(system_wq, work); } /** * flush_scheduled_work - ensure that any scheduled work has run to completion. * * Forces execution of the kernel-global workqueue and blocks until its * completion. * * Think twice before calling this function! It's very easy to get into * trouble if you don't take great care. Either of the following situations * will lead to deadlock: * * One of the work items currently on the workqueue needs to acquire * a lock held by your code or its caller. * * Your code is running in the context of a work routine. * * They will be detected by lockdep when they occur, but the first might not * occur very often. It depends on what work items are on the workqueue and * what locks they need, which you have no control over. * * In most situations flushing the entire workqueue is overkill; you merely * need to know that a particular work item isn't queued and isn't running. * In such cases you should use cancel_delayed_work_sync() or * cancel_work_sync() instead. */ static inline void flush_scheduled_work(void) { flush_workqueue(system_wq); } /** * schedule_delayed_work_on - queue work in global workqueue on CPU after delay * @cpu: cpu to use * @dwork: job to be done * @delay: number of jiffies to wait * * After waiting for a given time this puts a job in the kernel-global * workqueue on the specified CPU. */ static inline bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay) { return queue_delayed_work_on(cpu, system_wq, dwork, delay); } /** * schedule_delayed_work - put work task in global workqueue after delay * @dwork: job to be done * @delay: number of jiffies to wait or 0 for immediate execution * * After waiting for a given time this puts a job in the kernel-global * workqueue. */ static inline bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay) { return queue_delayed_work(system_wq, dwork, delay); } #ifndef CONFIG_SMP static inline long work_on_cpu(int cpu, long (*fn)(void *), void *arg) { return fn(arg); } static inline long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg) { return fn(arg); } #else long work_on_cpu(int cpu, long (*fn)(void *), void *arg); long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg); #endif /* CONFIG_SMP */ #ifdef CONFIG_FREEZER extern void freeze_workqueues_begin(void); extern bool freeze_workqueues_busy(void); extern void thaw_workqueues(void); #endif /* CONFIG_FREEZER */ #ifdef CONFIG_SYSFS int workqueue_sysfs_register(struct workqueue_struct *wq); #else /* CONFIG_SYSFS */ static inline int workqueue_sysfs_register(struct workqueue_struct *wq) { return 0; } #endif /* CONFIG_SYSFS */ #ifdef CONFIG_WQ_WATCHDOG void wq_watchdog_touch(int cpu); #else /* CONFIG_WQ_WATCHDOG */ static inline void wq_watchdog_touch(int cpu) { } #endif /* CONFIG_WQ_WATCHDOG */ #ifdef CONFIG_SMP int workqueue_prepare_cpu(unsigned int cpu); int workqueue_online_cpu(unsigned int cpu); int workqueue_offline_cpu(unsigned int cpu); #endif void __init workqueue_init_early(void); void __init workqueue_init(void); #endif
1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 // SPDX-License-Identifier: GPL-2.0-only /* * linux/fs/namespace.c * * (C) Copyright Al Viro 2000, 2001 * * Based on code from fs/super.c, copyright Linus Torvalds and others. * Heavily rewritten. */ #include <linux/syscalls.h> #include <linux/export.h> #include <linux/capability.h> #include <linux/mnt_namespace.h> #include <linux/user_namespace.h> #include <linux/namei.h> #include <linux/security.h> #include <linux/cred.h> #include <linux/idr.h> #include <linux/init.h> /* init_rootfs */ #include <linux/fs_struct.h> /* get_fs_root et.al. */ #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ #include <linux/file.h> #include <linux/uaccess.h> #include <linux/proc_ns.h> #include <linux/magic.h> #include <linux/memblock.h> #include <linux/task_work.h> #include <linux/sched/task.h> #include <uapi/linux/mount.h> #include <linux/fs_context.h> #include <linux/shmem_fs.h> #include "pnode.h" #include "internal.h" /* Maximum number of mounts in a mount namespace */ unsigned int sysctl_mount_max __read_mostly = 100000; static unsigned int m_hash_mask __read_mostly; static unsigned int m_hash_shift __read_mostly; static unsigned int mp_hash_mask __read_mostly; static unsigned int mp_hash_shift __read_mostly; static __initdata unsigned long mhash_entries; static int __init set_mhash_entries(char *str) { if (!str) return 0; mhash_entries = simple_strtoul(str, &str, 0); return 1; } __setup("mhash_entries=", set_mhash_entries); static __initdata unsigned long mphash_entries; static int __init set_mphash_entries(char *str) { if (!str) return 0; mphash_entries = simple_strtoul(str, &str, 0); return 1; } __setup("mphash_entries=", set_mphash_entries); static u64 event; static DEFINE_IDA(mnt_id_ida); static DEFINE_IDA(mnt_group_ida); static struct hlist_head *mount_hashtable __read_mostly; static struct hlist_head *mountpoint_hashtable __read_mostly; static struct kmem_cache *mnt_cache __read_mostly; static DECLARE_RWSEM(namespace_sem); static HLIST_HEAD(unmounted); /* protected by namespace_sem */ static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */ /* /sys/fs */ struct kobject *fs_kobj; EXPORT_SYMBOL_GPL(fs_kobj); /* * vfsmount lock may be taken for read to prevent changes to the * vfsmount hash, ie. during mountpoint lookups or walking back * up the tree. * * It should be taken for write in all cases where the vfsmount * tree or hash is modified or when a vfsmount structure is modified. */ __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock); static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry) { unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); tmp += ((unsigned long)dentry / L1_CACHE_BYTES); tmp = tmp + (tmp >> m_hash_shift); return &mount_hashtable[tmp & m_hash_mask]; } static inline struct hlist_head *mp_hash(struct dentry *dentry) { unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES); tmp = tmp + (tmp >> mp_hash_shift); return &mountpoint_hashtable[tmp & mp_hash_mask]; } static int mnt_alloc_id(struct mount *mnt) { int res = ida_alloc(&mnt_id_ida, GFP_KERNEL); if (res < 0) return res; mnt->mnt_id = res; return 0; } static void mnt_free_id(struct mount *mnt) { ida_free(&mnt_id_ida, mnt->mnt_id); } /* * Allocate a new peer group ID */ static int mnt_alloc_group_id(struct mount *mnt) { int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL); if (res < 0) return res; mnt->mnt_group_id = res; return 0; } /* * Release a peer group ID */ void mnt_release_group_id(struct mount *mnt) { ida_free(&mnt_group_ida, mnt->mnt_group_id); mnt->mnt_group_id = 0; } /* * vfsmount lock must be held for read */ static inline void mnt_add_count(struct mount *mnt, int n) { #ifdef CONFIG_SMP this_cpu_add(mnt->mnt_pcp->mnt_count, n); #else preempt_disable(); mnt->mnt_count += n; preempt_enable(); #endif } /* * vfsmount lock must be held for write */ int mnt_get_count(struct mount *mnt) { #ifdef CONFIG_SMP int count = 0; int cpu; for_each_possible_cpu(cpu) { count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; } return count; #else return mnt->mnt_count; #endif } static struct mount *alloc_vfsmnt(const char *name) { struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); if (mnt) { int err; err = mnt_alloc_id(mnt); if (err) goto out_free_cache; if (name) { mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL); if (!mnt->mnt_devname) goto out_free_id; } #ifdef CONFIG_SMP mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); if (!mnt->mnt_pcp) goto out_free_devname; this_cpu_add(mnt->mnt_pcp->mnt_count, 1); #else mnt->mnt_count = 1; mnt->mnt_writers = 0; #endif INIT_HLIST_NODE(&mnt->mnt_hash); INIT_LIST_HEAD(&mnt->mnt_child); INIT_LIST_HEAD(&mnt->mnt_mounts); INIT_LIST_HEAD(&mnt->mnt_list); INIT_LIST_HEAD(&mnt->mnt_expire); INIT_LIST_HEAD(&mnt->mnt_share); INIT_LIST_HEAD(&mnt->mnt_slave_list); INIT_LIST_HEAD(&mnt->mnt_slave); INIT_HLIST_NODE(&mnt->mnt_mp_list); INIT_LIST_HEAD(&mnt->mnt_umounting); INIT_HLIST_HEAD(&mnt->mnt_stuck_children); } return mnt; #ifdef CONFIG_SMP out_free_devname: kfree_const(mnt->mnt_devname); #endif out_free_id: mnt_free_id(mnt); out_free_cache: kmem_cache_free(mnt_cache, mnt); return NULL; } /* * Most r/o checks on a fs are for operations that take * discrete amounts of time, like a write() or unlink(). * We must keep track of when those operations start * (for permission checks) and when they end, so that * we can determine when writes are able to occur to * a filesystem. */ /* * __mnt_is_readonly: check whether a mount is read-only * @mnt: the mount to check for its write status * * This shouldn't be used directly ouside of the VFS. * It does not guarantee that the filesystem will stay * r/w, just that it is right *now*. This can not and * should not be used in place of IS_RDONLY(inode). * mnt_want/drop_write() will _keep_ the filesystem * r/w. */ bool __mnt_is_readonly(struct vfsmount *mnt) { return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb); } EXPORT_SYMBOL_GPL(__mnt_is_readonly); static inline void mnt_inc_writers(struct mount *mnt) { #ifdef CONFIG_SMP this_cpu_inc(mnt->mnt_pcp->mnt_writers); #else mnt->mnt_writers++; #endif } static inline void mnt_dec_writers(struct mount *mnt) { #ifdef CONFIG_SMP this_cpu_dec(mnt->mnt_pcp->mnt_writers); #else mnt->mnt_writers--; #endif } static unsigned int mnt_get_writers(struct mount *mnt) { #ifdef CONFIG_SMP unsigned int count = 0; int cpu; for_each_possible_cpu(cpu) { count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; } return count; #else return mnt->mnt_writers; #endif } static int mnt_is_readonly(struct vfsmount *mnt) { if (mnt->mnt_sb->s_readonly_remount) return 1; /* Order wrt setting s_flags/s_readonly_remount in do_remount() */ smp_rmb(); return __mnt_is_readonly(mnt); } /* * Most r/o & frozen checks on a fs are for operations that take discrete * amounts of time, like a write() or unlink(). We must keep track of when * those operations start (for permission checks) and when they end, so that we * can determine when writes are able to occur to a filesystem. */ /** * __mnt_want_write - get write access to a mount without freeze protection * @m: the mount on which to take a write * * This tells the low-level filesystem that a write is about to be performed to * it, and makes sure that writes are allowed (mnt it read-write) before * returning success. This operation does not protect against filesystem being * frozen. When the write operation is finished, __mnt_drop_write() must be * called. This is effectively a refcount. */ int __mnt_want_write(struct vfsmount *m) { struct mount *mnt = real_mount(m); int ret = 0; preempt_disable(); mnt_inc_writers(mnt); /* * The store to mnt_inc_writers must be visible before we pass * MNT_WRITE_HOLD loop below, so that the slowpath can see our * incremented count after it has set MNT_WRITE_HOLD. */ smp_mb(); while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) cpu_relax(); /* * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will * be set to match its requirements. So we must not load that until * MNT_WRITE_HOLD is cleared. */ smp_rmb(); if (mnt_is_readonly(m)) { mnt_dec_writers(mnt); ret = -EROFS; } preempt_enable(); return ret; } /** * mnt_want_write - get write access to a mount * @m: the mount on which to take a write * * This tells the low-level filesystem that a write is about to be performed to * it, and makes sure that writes are allowed (mount is read-write, filesystem * is not frozen) before returning success. When the write operation is * finished, mnt_drop_write() must be called. This is effectively a refcount. */ int mnt_want_write(struct vfsmount *m) { int ret; sb_start_write(m->mnt_sb); ret = __mnt_want_write(m); if (ret) sb_end_write(m->mnt_sb); return ret; } EXPORT_SYMBOL_GPL(mnt_want_write); /** * mnt_clone_write - get write access to a mount * @mnt: the mount on which to take a write * * This is effectively like mnt_want_write, except * it must only be used to take an extra write reference * on a mountpoint that we already know has a write reference * on it. This allows some optimisation. * * After finished, mnt_drop_write must be called as usual to * drop the reference. */ int mnt_clone_write(struct vfsmount *mnt) { /* superblock may be r/o */ if (__mnt_is_readonly(mnt)) return -EROFS; preempt_disable(); mnt_inc_writers(real_mount(mnt)); preempt_enable(); return 0; } EXPORT_SYMBOL_GPL(mnt_clone_write); /** * __mnt_want_write_file - get write access to a file's mount * @file: the file who's mount on which to take a write * * This is like __mnt_want_write, but it takes a file and can * do some optimisations if the file is open for write already */ int __mnt_want_write_file(struct file *file) { if (!(file->f_mode & FMODE_WRITER)) return __mnt_want_write(file->f_path.mnt); else return mnt_clone_write(file->f_path.mnt); } /** * mnt_want_write_file - get write access to a file's mount * @file: the file who's mount on which to take a write * * This is like mnt_want_write, but it takes a file and can * do some optimisations if the file is open for write already */ int mnt_want_write_file(struct file *file) { int ret; sb_start_write(file_inode(file)->i_sb); ret = __mnt_want_write_file(file); if (ret) sb_end_write(file_inode(file)->i_sb); return ret; } EXPORT_SYMBOL_GPL(mnt_want_write_file); /** * __mnt_drop_write - give up write access to a mount * @mnt: the mount on which to give up write access * * Tells the low-level filesystem that we are done * performing writes to it. Must be matched with * __mnt_want_write() call above. */ void __mnt_drop_write(struct vfsmount *mnt) { preempt_disable(); mnt_dec_writers(real_mount(mnt)); preempt_enable(); } /** * mnt_drop_write - give up write access to a mount * @mnt: the mount on which to give up write access * * Tells the low-level filesystem that we are done performing writes to it and * also allows filesystem to be frozen again. Must be matched with * mnt_want_write() call above. */ void mnt_drop_write(struct vfsmount *mnt) { __mnt_drop_write(mnt); sb_end_write(mnt->mnt_sb); } EXPORT_SYMBOL_GPL(mnt_drop_write); void __mnt_drop_write_file(struct file *file) { __mnt_drop_write(file->f_path.mnt); } void mnt_drop_write_file(struct file *file) { __mnt_drop_write_file(file); sb_end_write(file_inode(file)->i_sb); } EXPORT_SYMBOL(mnt_drop_write_file); static int mnt_make_readonly(struct mount *mnt) { int ret = 0; lock_mount_hash(); mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; /* * After storing MNT_WRITE_HOLD, we'll read the counters. This store * should be visible before we do. */ smp_mb(); /* * With writers on hold, if this value is zero, then there are * definitely no active writers (although held writers may subsequently * increment the count, they'll have to wait, and decrement it after * seeing MNT_READONLY). * * It is OK to have counter incremented on one CPU and decremented on * another: the sum will add up correctly. The danger would be when we * sum up each counter, if we read a counter before it is incremented, * but then read another CPU's count which it has been subsequently * decremented from -- we would see more decrements than we should. * MNT_WRITE_HOLD protects against this scenario, because * mnt_want_write first increments count, then smp_mb, then spins on * MNT_WRITE_HOLD, so it can't be decremented by another CPU while * we're counting up here. */ if (mnt_get_writers(mnt) > 0) ret = -EBUSY; else mnt->mnt.mnt_flags |= MNT_READONLY; /* * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers * that become unheld will see MNT_READONLY. */ smp_wmb(); mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; unlock_mount_hash(); return ret; } static int __mnt_unmake_readonly(struct mount *mnt) { lock_mount_hash(); mnt->mnt.mnt_flags &= ~MNT_READONLY; unlock_mount_hash(); return 0; } int sb_prepare_remount_readonly(struct super_block *sb) { struct mount *mnt; int err = 0; /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ if (atomic_long_read(&sb->s_remove_count)) return -EBUSY; lock_mount_hash(); list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; smp_mb(); if (mnt_get_writers(mnt) > 0) { err = -EBUSY; break; } } } if (!err && atomic_long_read(&sb->s_remove_count)) err = -EBUSY; if (!err) { sb->s_readonly_remount = 1; smp_wmb(); } list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; } unlock_mount_hash(); return err; } static void free_vfsmnt(struct mount *mnt) { kfree_const(mnt->mnt_devname); #ifdef CONFIG_SMP free_percpu(mnt->mnt_pcp); #endif kmem_cache_free(mnt_cache, mnt); } static void delayed_free_vfsmnt(struct rcu_head *head) { free_vfsmnt(container_of(head, struct mount, mnt_rcu)); } /* call under rcu_read_lock */ int __legitimize_mnt(struct vfsmount *bastard, unsigned seq) { struct mount *mnt; if (read_seqretry(&mount_lock, seq)) return 1; if (bastard == NULL) return 0; mnt = real_mount(bastard); mnt_add_count(mnt, 1); smp_mb(); // see mntput_no_expire() if (likely(!read_seqretry(&mount_lock, seq))) return 0; if (bastard->mnt_flags & MNT_SYNC_UMOUNT) { mnt_add_count(mnt, -1); return 1; } lock_mount_hash(); if (unlikely(bastard->mnt_flags & MNT_DOOMED)) { mnt_add_count(mnt, -1); unlock_mount_hash(); return 1; } unlock_mount_hash(); /* caller will mntput() */ return -1; } /* call under rcu_read_lock */ bool legitimize_mnt(struct vfsmount *bastard, unsigned seq) { int res = __legitimize_mnt(bastard, seq); if (likely(!res)) return true; if (unlikely(res < 0)) { rcu_read_unlock(); mntput(bastard); rcu_read_lock(); } return false; } /* * find the first mount at @dentry on vfsmount @mnt. * call under rcu_read_lock() */ struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) { struct hlist_head *head = m_hash(mnt, dentry); struct mount *p; hlist_for_each_entry_rcu(p, head, mnt_hash) if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) return p; return NULL; } /* * lookup_mnt - Return the first child mount mounted at path * * "First" means first mounted chronologically. If you create the * following mounts: * * mount /dev/sda1 /mnt * mount /dev/sda2 /mnt * mount /dev/sda3 /mnt * * Then lookup_mnt() on the base /mnt dentry in the root mount will * return successively the root dentry and vfsmount of /dev/sda1, then * /dev/sda2, then /dev/sda3, then NULL. * * lookup_mnt takes a reference to the found vfsmount. */ struct vfsmount *lookup_mnt(const struct path *path) { struct mount *child_mnt; struct vfsmount *m; unsigned seq; rcu_read_lock(); do { seq = read_seqbegin(&mount_lock); child_mnt = __lookup_mnt(path->mnt, path->dentry); m = child_mnt ? &child_mnt->mnt : NULL; } while (!legitimize_mnt(m, seq)); rcu_read_unlock(); return m; } static inline void lock_ns_list(struct mnt_namespace *ns) { spin_lock(&ns->ns_lock); } static inline void unlock_ns_list(struct mnt_namespace *ns) { spin_unlock(&ns->ns_lock); } static inline bool mnt_is_cursor(struct mount *mnt) { return mnt->mnt.mnt_flags & MNT_CURSOR; } /* * __is_local_mountpoint - Test to see if dentry is a mountpoint in the * current mount namespace. * * The common case is dentries are not mountpoints at all and that * test is handled inline. For the slow case when we are actually * dealing with a mountpoint of some kind, walk through all of the * mounts in the current mount namespace and test to see if the dentry * is a mountpoint. * * The mount_hashtable is not usable in the context because we * need to identify all mounts that may be in the current mount * namespace not just a mount that happens to have some specified * parent mount. */ bool __is_local_mountpoint(struct dentry *dentry) { struct mnt_namespace *ns = current->nsproxy->mnt_ns; struct mount *mnt; bool is_covered = false; down_read(&namespace_sem); lock_ns_list(ns); list_for_each_entry(mnt, &ns->list, mnt_list) { if (mnt_is_cursor(mnt)) continue; is_covered = (mnt->mnt_mountpoint == dentry); if (is_covered) break; } unlock_ns_list(ns); up_read(&namespace_sem); return is_covered; } static struct mountpoint *lookup_mountpoint(struct dentry *dentry) { struct hlist_head *chain = mp_hash(dentry); struct mountpoint *mp; hlist_for_each_entry(mp, chain, m_hash) { if (mp->m_dentry == dentry) { mp->m_count++; return mp; } } return NULL; } static struct mountpoint *get_mountpoint(struct dentry *dentry) { struct mountpoint *mp, *new = NULL; int ret; if (d_mountpoint(dentry)) { /* might be worth a WARN_ON() */ if (d_unlinked(dentry)) return ERR_PTR(-ENOENT); mountpoint: read_seqlock_excl(&mount_lock); mp = lookup_mountpoint(dentry); read_sequnlock_excl(&mount_lock); if (mp) goto done; } if (!new) new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL); if (!new) return ERR_PTR(-ENOMEM); /* Exactly one processes may set d_mounted */ ret = d_set_mounted(dentry); /* Someone else set d_mounted? */ if (ret == -EBUSY) goto mountpoint; /* The dentry is not available as a mountpoint? */ mp = ERR_PTR(ret); if (ret) goto done; /* Add the new mountpoint to the hash table */ read_seqlock_excl(&mount_lock); new->m_dentry = dget(dentry); new->m_count = 1; hlist_add_head(&new->m_hash, mp_hash(dentry)); INIT_HLIST_HEAD(&new->m_list); read_sequnlock_excl(&mount_lock); mp = new; new = NULL; done: kfree(new); return mp; } /* * vfsmount lock must be held. Additionally, the caller is responsible * for serializing calls for given disposal list. */ static void __put_mountpoint(struct mountpoint *mp, struct list_head *list) { if (!--mp->m_count) { struct dentry *dentry = mp->m_dentry; BUG_ON(!hlist_empty(&mp->m_list)); spin_lock(&dentry->d_lock); dentry->d_flags &= ~DCACHE_MOUNTED; spin_unlock(&dentry->d_lock); dput_to_list(dentry, list); hlist_del(&mp->m_hash); kfree(mp); } } /* called with namespace_lock and vfsmount lock */ static void put_mountpoint(struct mountpoint *mp) { __put_mountpoint(mp, &ex_mountpoints); } static inline int check_mnt(struct mount *mnt) { return mnt->mnt_ns == current->nsproxy->mnt_ns; } /* * vfsmount lock must be held for write */ static void touch_mnt_namespace(struct mnt_namespace *ns) { if (ns) { ns->event = ++event; wake_up_interruptible(&ns->poll); } } /* * vfsmount lock must be held for write */ static void __touch_mnt_namespace(struct mnt_namespace *ns) { if (ns && ns->event != event) { ns->event = event; wake_up_interruptible(&ns->poll); } } /* * vfsmount lock must be held for write */ static struct mountpoint *unhash_mnt(struct mount *mnt) { struct mountpoint *mp; mnt->mnt_parent = mnt; mnt->mnt_mountpoint = mnt->mnt.mnt_root; list_del_init(&mnt->mnt_child); hlist_del_init_rcu(&mnt->mnt_hash); hlist_del_init(&mnt->mnt_mp_list); mp = mnt->mnt_mp; mnt->mnt_mp = NULL; return mp; } /* * vfsmount lock must be held for write */ static void umount_mnt(struct mount *mnt) { put_mountpoint(unhash_mnt(mnt)); } /* * vfsmount lock must be held for write */ void mnt_set_mountpoint(struct mount *mnt, struct mountpoint *mp, struct mount *child_mnt) { mp->m_count++; mnt_add_count(mnt, 1); /* essentially, that's mntget */ child_mnt->mnt_mountpoint = mp->m_dentry; child_mnt->mnt_parent = mnt; child_mnt->mnt_mp = mp; hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list); } static void __attach_mnt(struct mount *mnt, struct mount *parent) { hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mnt->mnt_mountpoint)); list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); } /* * vfsmount lock must be held for write */ static void attach_mnt(struct mount *mnt, struct mount *parent, struct mountpoint *mp) { mnt_set_mountpoint(parent, mp, mnt); __attach_mnt(mnt, parent); } void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt) { struct mountpoint *old_mp = mnt->mnt_mp; struct mount *old_parent = mnt->mnt_parent; list_del_init(&mnt->mnt_child); hlist_del_init(&mnt->mnt_mp_list); hlist_del_init_rcu(&mnt->mnt_hash); attach_mnt(mnt, parent, mp); put_mountpoint(old_mp); mnt_add_count(old_parent, -1); } /* * vfsmount lock must be held for write */ static void commit_tree(struct mount *mnt) { struct mount *parent = mnt->mnt_parent; struct mount *m; LIST_HEAD(head); struct mnt_namespace *n = parent->mnt_ns; BUG_ON(parent == mnt); list_add_tail(&head, &mnt->mnt_list); list_for_each_entry(m, &head, mnt_list) m->mnt_ns = n; list_splice(&head, n->list.prev); n->mounts += n->pending_mounts; n->pending_mounts = 0; __attach_mnt(mnt, parent); touch_mnt_namespace(n); } static struct mount *next_mnt(struct mount *p, struct mount *root) { struct list_head *next = p->mnt_mounts.next; if (next == &p->mnt_mounts) { while (1) { if (p == root) return NULL; next = p->mnt_child.next; if (next != &p->mnt_parent->mnt_mounts) break; p = p->mnt_parent; } } return list_entry(next, struct mount, mnt_child); } static struct mount *skip_mnt_tree(struct mount *p) { struct list_head *prev = p->mnt_mounts.prev; while (prev != &p->mnt_mounts) { p = list_entry(prev, struct mount, mnt_child); prev = p->mnt_mounts.prev; } return p; } /** * vfs_create_mount - Create a mount for a configured superblock * @fc: The configuration context with the superblock attached * * Create a mount to an already configured superblock. If necessary, the * caller should invoke vfs_get_tree() before calling this. * * Note that this does not attach the mount to anything. */ struct vfsmount *vfs_create_mount(struct fs_context *fc) { struct mount *mnt; if (!fc->root) return ERR_PTR(-EINVAL); mnt = alloc_vfsmnt(fc->source ?: "none"); if (!mnt) return ERR_PTR(-ENOMEM); if (fc->sb_flags & SB_KERNMOUNT) mnt->mnt.mnt_flags = MNT_INTERNAL; atomic_inc(&fc->root->d_sb->s_active); mnt->mnt.mnt_sb = fc->root->d_sb; mnt->mnt.mnt_root = dget(fc->root); mnt->mnt_mountpoint = mnt->mnt.mnt_root; mnt->mnt_parent = mnt; lock_mount_hash(); list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts); unlock_mount_hash(); return &mnt->mnt; } EXPORT_SYMBOL(vfs_create_mount); struct vfsmount *fc_mount(struct fs_context *fc) { int err = vfs_get_tree(fc); if (!err) { up_write(&fc->root->d_sb->s_umount); return vfs_create_mount(fc); } return ERR_PTR(err); } EXPORT_SYMBOL(fc_mount); struct vfsmount *vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data) { struct fs_context *fc; struct vfsmount *mnt; int ret = 0; if (!type) return ERR_PTR(-EINVAL); fc = fs_context_for_mount(type, flags); if (IS_ERR(fc)) return ERR_CAST(fc); if (name) ret = vfs_parse_fs_string(fc, "source", name, strlen(name)); if (!ret) ret = parse_monolithic_mount_data(fc, data); if (!ret) mnt = fc_mount(fc); else mnt = ERR_PTR(ret); put_fs_context(fc); return mnt; } EXPORT_SYMBOL_GPL(vfs_kern_mount); struct vfsmount * vfs_submount(const struct dentry *mountpoint, struct file_system_type *type, const char *name, void *data) { /* Until it is worked out how to pass the user namespace * through from the parent mount to the submount don't support * unprivileged mounts with submounts. */ if (mountpoint->d_sb->s_user_ns != &init_user_ns) return ERR_PTR(-EPERM); return vfs_kern_mount(type, SB_SUBMOUNT, name, data); } EXPORT_SYMBOL_GPL(vfs_submount); static struct mount *clone_mnt(struct mount *old, struct dentry *root, int flag) { struct super_block *sb = old->mnt.mnt_sb; struct mount *mnt; int err; mnt = alloc_vfsmnt(old->mnt_devname); if (!mnt) return ERR_PTR(-ENOMEM); if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE)) mnt->mnt_group_id = 0; /* not a peer of original */ else mnt->mnt_group_id = old->mnt_group_id; if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { err = mnt_alloc_group_id(mnt); if (err) goto out_free; } mnt->mnt.mnt_flags = old->mnt.mnt_flags; mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL); atomic_inc(&sb->s_active); mnt->mnt.mnt_sb = sb; mnt->mnt.mnt_root = dget(root); mnt->mnt_mountpoint = mnt->mnt.mnt_root; mnt->mnt_parent = mnt; lock_mount_hash(); list_add_tail(&mnt->mnt_instance, &sb->s_mounts); unlock_mount_hash(); if ((flag & CL_SLAVE) || ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) { list_add(&mnt->mnt_slave, &old->mnt_slave_list); mnt->mnt_master = old; CLEAR_MNT_SHARED(mnt); } else if (!(flag & CL_PRIVATE)) { if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) list_add(&mnt->mnt_share, &old->mnt_share); if (IS_MNT_SLAVE(old)) list_add(&mnt->mnt_slave, &old->mnt_slave); mnt->mnt_master = old->mnt_master; } else { CLEAR_MNT_SHARED(mnt); } if (flag & CL_MAKE_SHARED) set_mnt_shared(mnt); /* stick the duplicate mount on the same expiry list * as the original if that was on one */ if (flag & CL_EXPIRE) { if (!list_empty(&old->mnt_expire)) list_add(&mnt->mnt_expire, &old->mnt_expire); } return mnt; out_free: mnt_free_id(mnt); free_vfsmnt(mnt); return ERR_PTR(err); } static void cleanup_mnt(struct mount *mnt) { struct hlist_node *p; struct mount *m; /* * The warning here probably indicates that somebody messed * up a mnt_want/drop_write() pair. If this happens, the * filesystem was probably unable to make r/w->r/o transitions. * The locking used to deal with mnt_count decrement provides barriers, * so mnt_get_writers() below is safe. */ WARN_ON(mnt_get_writers(mnt)); if (unlikely(mnt->mnt_pins.first)) mnt_pin_kill(mnt); hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) { hlist_del(&m->mnt_umount); mntput(&m->mnt); } fsnotify_vfsmount_delete(&mnt->mnt); dput(mnt->mnt.mnt_root); deactivate_super(mnt->mnt.mnt_sb); mnt_free_id(mnt); call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt); } static void __cleanup_mnt(struct rcu_head *head) { cleanup_mnt(container_of(head, struct mount, mnt_rcu)); } static LLIST_HEAD(delayed_mntput_list); static void delayed_mntput(struct work_struct *unused) { struct llist_node *node = llist_del_all(&delayed_mntput_list); struct mount *m, *t; llist_for_each_entry_safe(m, t, node, mnt_llist) cleanup_mnt(m); } static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput); static void mntput_no_expire(struct mount *mnt) { LIST_HEAD(list); int count; rcu_read_lock(); if (likely(READ_ONCE(mnt->mnt_ns))) { /* * Since we don't do lock_mount_hash() here, * ->mnt_ns can change under us. However, if it's * non-NULL, then there's a reference that won't * be dropped until after an RCU delay done after * turning ->mnt_ns NULL. So if we observe it * non-NULL under rcu_read_lock(), the reference * we are dropping is not the final one. */ mnt_add_count(mnt, -1); rcu_read_unlock(); return; } lock_mount_hash(); /* * make sure that if __legitimize_mnt() has not seen us grab * mount_lock, we'll see their refcount increment here. */ smp_mb(); mnt_add_count(mnt, -1); count = mnt_get_count(mnt); if (count != 0) { WARN_ON(count < 0); rcu_read_unlock(); unlock_mount_hash(); return; } if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) { rcu_read_unlock(); unlock_mount_hash(); return; } mnt->mnt.mnt_flags |= MNT_DOOMED; rcu_read_unlock(); list_del(&mnt->mnt_instance); if (unlikely(!list_empty(&mnt->mnt_mounts))) { struct mount *p, *tmp; list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) { __put_mountpoint(unhash_mnt(p), &list); hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children); } } unlock_mount_hash(); shrink_dentry_list(&list); if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) { struct task_struct *task = current; if (likely(!(task->flags & PF_KTHREAD))) { init_task_work(&mnt->mnt_rcu, __cleanup_mnt); if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME)) return; } if (llist_add(&mnt->mnt_llist, &delayed_mntput_list)) schedule_delayed_work(&delayed_mntput_work, 1); return; } cleanup_mnt(mnt); } void mntput(struct vfsmount *mnt) { if (mnt) { struct mount *m = real_mount(mnt); /* avoid cacheline pingpong, hope gcc doesn't get "smart" */ if (unlikely(m->mnt_expiry_mark)) m->mnt_expiry_mark = 0; mntput_no_expire(m); } } EXPORT_SYMBOL(mntput); struct vfsmount *mntget(struct vfsmount *mnt) { if (mnt) mnt_add_count(real_mount(mnt), 1); return mnt; } EXPORT_SYMBOL(mntget); /* path_is_mountpoint() - Check if path is a mount in the current * namespace. * * d_mountpoint() can only be used reliably to establish if a dentry is * not mounted in any namespace and that common case is handled inline. * d_mountpoint() isn't aware of the possibility there may be multiple * mounts using a given dentry in a different namespace. This function * checks if the passed in path is a mountpoint rather than the dentry * alone. */ bool path_is_mountpoint(const struct path *path) { unsigned seq; bool res; if (!d_mountpoint(path->dentry)) return false; rcu_read_lock(); do { seq = read_seqbegin(&mount_lock); res = __path_is_mountpoint(path); } while (read_seqretry(&mount_lock, seq)); rcu_read_unlock(); return res; } EXPORT_SYMBOL(path_is_mountpoint); struct vfsmount *mnt_clone_internal(const struct path *path) { struct mount *p; p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE); if (IS_ERR(p)) return ERR_CAST(p); p->mnt.mnt_flags |= MNT_INTERNAL; return &p->mnt; } #ifdef CONFIG_PROC_FS static struct mount *mnt_list_next(struct mnt_namespace *ns, struct list_head *p) { struct mount *mnt, *ret = NULL; lock_ns_list(ns); list_for_each_continue(p, &ns->list) { mnt = list_entry(p, typeof(*mnt), mnt_list); if (!mnt_is_cursor(mnt)) { ret = mnt; break; } } unlock_ns_list(ns); return ret; } /* iterator; we want it to have access to namespace_sem, thus here... */ static void *m_start(struct seq_file *m, loff_t *pos) { struct proc_mounts *p = m->private; struct list_head *prev; down_read(&namespace_sem); if (!*pos) { prev = &p->ns->list; } else { prev = &p->cursor.mnt_list; /* Read after we'd reached the end? */ if (list_empty(prev)) return NULL; } return mnt_list_next(p->ns, prev); } static void *m_next(struct seq_file *m, void *v, loff_t *pos) { struct proc_mounts *p = m->private; struct mount *mnt = v; ++*pos; return mnt_list_next(p->ns, &mnt->mnt_list); } static void m_stop(struct seq_file *m, void *v) { struct proc_mounts *p = m->private; struct mount *mnt = v; lock_ns_list(p->ns); if (mnt) list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list); else list_del_init(&p->cursor.mnt_list); unlock_ns_list(p->ns); up_read(&namespace_sem); } static int m_show(struct seq_file *m, void *v) { struct proc_mounts *p = m->private; struct mount *r = v; return p->show(m, &r->mnt); } const struct seq_operations mounts_op = { .start = m_start, .next = m_next, .stop = m_stop, .show = m_show, }; void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor) { down_read(&namespace_sem); lock_ns_list(ns); list_del(&cursor->mnt_list); unlock_ns_list(ns); up_read(&namespace_sem); } #endif /* CONFIG_PROC_FS */ /** * may_umount_tree - check if a mount tree is busy * @mnt: root of mount tree * * This is called to check if a tree of mounts has any * open files, pwds, chroots or sub mounts that are * busy. */ int may_umount_tree(struct vfsmount *m) { struct mount *mnt = real_mount(m); int actual_refs = 0; int minimum_refs = 0; struct mount *p; BUG_ON(!m); /* write lock needed for mnt_get_count */ lock_mount_hash(); for (p = mnt; p; p = next_mnt(p, mnt)) { actual_refs += mnt_get_count(p); minimum_refs += 2; } unlock_mount_hash(); if (actual_refs > minimum_refs) return 0; return 1; } EXPORT_SYMBOL(may_umount_tree); /** * may_umount - check if a mount point is busy * @mnt: root of mount * * This is called to check if a mount point has any * open files, pwds, chroots or sub mounts. If the * mount has sub mounts this will return busy * regardless of whether the sub mounts are busy. * * Doesn't take quota and stuff into account. IOW, in some cases it will * give false negatives. The main reason why it's here is that we need * a non-destructive way to look for easily umountable filesystems. */ int may_umount(struct vfsmount *mnt) { int ret = 1; down_read(&namespace_sem); lock_mount_hash(); if (propagate_mount_busy(real_mount(mnt), 2)) ret = 0; unlock_mount_hash(); up_read(&namespace_sem); return ret; } EXPORT_SYMBOL(may_umount); static void namespace_unlock(void) { struct hlist_head head; struct hlist_node *p; struct mount *m; LIST_HEAD(list); hlist_move_list(&unmounted, &head); list_splice_init(&ex_mountpoints, &list); up_write(&namespace_sem); shrink_dentry_list(&list); if (likely(hlist_empty(&head))) return; synchronize_rcu_expedited(); hlist_for_each_entry_safe(m, p, &head, mnt_umount) { hlist_del(&m->mnt_umount); mntput(&m->mnt); } } static inline void namespace_lock(void) { down_write(&namespace_sem); } enum umount_tree_flags { UMOUNT_SYNC = 1, UMOUNT_PROPAGATE = 2, UMOUNT_CONNECTED = 4, }; static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how) { /* Leaving mounts connected is only valid for lazy umounts */ if (how & UMOUNT_SYNC) return true; /* A mount without a parent has nothing to be connected to */ if (!mnt_has_parent(mnt)) return true; /* Because the reference counting rules change when mounts are * unmounted and connected, umounted mounts may not be * connected to mounted mounts. */ if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT)) return true; /* Has it been requested that the mount remain connected? */ if (how & UMOUNT_CONNECTED) return false; /* Is the mount locked such that it needs to remain connected? */ if (IS_MNT_LOCKED(mnt)) return false; /* By default disconnect the mount */ return true; } /* * mount_lock must be held * namespace_sem must be held for write */ static void umount_tree(struct mount *mnt, enum umount_tree_flags how) { LIST_HEAD(tmp_list); struct mount *p; if (how & UMOUNT_PROPAGATE) propagate_mount_unlock(mnt); /* Gather the mounts to umount */ for (p = mnt; p; p = next_mnt(p, mnt)) { p->mnt.mnt_flags |= MNT_UMOUNT; list_move(&p->mnt_list, &tmp_list); } /* Hide the mounts from mnt_mounts */ list_for_each_entry(p, &tmp_list, mnt_list) { list_del_init(&p->mnt_child); } /* Add propogated mounts to the tmp_list */ if (how & UMOUNT_PROPAGATE) propagate_umount(&tmp_list); while (!list_empty(&tmp_list)) { struct mnt_namespace *ns; bool disconnect; p = list_first_entry(&tmp_list, struct mount, mnt_list); list_del_init(&p->mnt_expire); list_del_init(&p->mnt_list); ns = p->mnt_ns; if (ns) { ns->mounts--; __touch_mnt_namespace(ns); } p->mnt_ns = NULL; if (how & UMOUNT_SYNC) p->mnt.mnt_flags |= MNT_SYNC_UMOUNT; disconnect = disconnect_mount(p, how); if (mnt_has_parent(p)) { mnt_add_count(p->mnt_parent, -1); if (!disconnect) { /* Don't forget about p */ list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts); } else { umount_mnt(p); } } change_mnt_propagation(p, MS_PRIVATE); if (disconnect) hlist_add_head(&p->mnt_umount, &unmounted); } } static void shrink_submounts(struct mount *mnt); static int do_umount_root(struct super_block *sb) { int ret = 0; down_write(&sb->s_umount); if (!sb_rdonly(sb)) { struct fs_context *fc; fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY, SB_RDONLY); if (IS_ERR(fc)) { ret = PTR_ERR(fc); } else { ret = parse_monolithic_mount_data(fc, NULL); if (!ret) ret = reconfigure_super(fc); put_fs_context(fc); } } up_write(&sb->s_umount); return ret; } static int do_umount(struct mount *mnt, int flags) { struct super_block *sb = mnt->mnt.mnt_sb; int retval; retval = security_sb_umount(&mnt->mnt, flags); if (retval) return retval; /* * Allow userspace to request a mountpoint be expired rather than * unmounting unconditionally. Unmount only happens if: * (1) the mark is already set (the mark is cleared by mntput()) * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] */ if (flags & MNT_EXPIRE) { if (&mnt->mnt == current->fs->root.mnt || flags & (MNT_FORCE | MNT_DETACH)) return -EINVAL; /* * probably don't strictly need the lock here if we examined * all race cases, but it's a slowpath. */ lock_mount_hash(); if (mnt_get_count(mnt) != 2) { unlock_mount_hash(); return -EBUSY; } unlock_mount_hash(); if (!xchg(&mnt->mnt_expiry_mark, 1)) return -EAGAIN; } /* * If we may have to abort operations to get out of this * mount, and they will themselves hold resources we must * allow the fs to do things. In the Unix tradition of * 'Gee thats tricky lets do it in userspace' the umount_begin * might fail to complete on the first run through as other tasks * must return, and the like. Thats for the mount program to worry * about for the moment. */ if (flags & MNT_FORCE && sb->s_op->umount_begin) { sb->s_op->umount_begin(sb); } /* * No sense to grab the lock for this test, but test itself looks * somewhat bogus. Suggestions for better replacement? * Ho-hum... In principle, we might treat that as umount + switch * to rootfs. GC would eventually take care of the old vfsmount. * Actually it makes sense, especially if rootfs would contain a * /reboot - static binary that would close all descriptors and * call reboot(9). Then init(8) could umount root and exec /reboot. */ if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { /* * Special case for "unmounting" root ... * we just try to remount it readonly. */ if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) return -EPERM; return do_umount_root(sb); } namespace_lock(); lock_mount_hash(); /* Recheck MNT_LOCKED with the locks held */ retval = -EINVAL; if (mnt->mnt.mnt_flags & MNT_LOCKED) goto out; event++; if (flags & MNT_DETACH) { if (!list_empty(&mnt->mnt_list)) umount_tree(mnt, UMOUNT_PROPAGATE); retval = 0; } else { shrink_submounts(mnt); retval = -EBUSY; if (!propagate_mount_busy(mnt, 2)) { if (!list_empty(&mnt->mnt_list)) umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); retval = 0; } } out: unlock_mount_hash(); namespace_unlock(); return retval; } /* * __detach_mounts - lazily unmount all mounts on the specified dentry * * During unlink, rmdir, and d_drop it is possible to loose the path * to an existing mountpoint, and wind up leaking the mount. * detach_mounts allows lazily unmounting those mounts instead of * leaking them. * * The caller may hold dentry->d_inode->i_mutex. */ void __detach_mounts(struct dentry *dentry) { struct mountpoint *mp; struct mount *mnt; namespace_lock(); lock_mount_hash(); mp = lookup_mountpoint(dentry); if (!mp) goto out_unlock; event++; while (!hlist_empty(&mp->m_list)) { mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list); if (mnt->mnt.mnt_flags & MNT_UMOUNT) { umount_mnt(mnt); hlist_add_head(&mnt->mnt_umount, &unmounted); } else umount_tree(mnt, UMOUNT_CONNECTED); } put_mountpoint(mp); out_unlock: unlock_mount_hash(); namespace_unlock(); } /* * Is the caller allowed to modify his namespace? */ static inline bool may_mount(void) { return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); } #ifdef CONFIG_MANDATORY_FILE_LOCKING static bool may_mandlock(void) { pr_warn_once("======================================================\n" "WARNING: the mand mount option is being deprecated and\n" " will be removed in v5.15!\n" "======================================================\n"); return capable(CAP_SYS_ADMIN); } #else static inline bool may_mandlock(void) { pr_warn("VFS: \"mand\" mount option not supported"); return false; } #endif static int can_umount(const struct path *path, int flags) { struct mount *mnt = real_mount(path->mnt); if (!may_mount()) return -EPERM; if (path->dentry != path->mnt->mnt_root) return -EINVAL; if (!check_mnt(mnt)) return -EINVAL; if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */ return -EINVAL; if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN)) return -EPERM; return 0; } // caller is responsible for flags being sane int path_umount(struct path *path, int flags) { struct mount *mnt = real_mount(path->mnt); int ret; ret = can_umount(path, flags); if (!ret) ret = do_umount(mnt, flags); /* we mustn't call path_put() as that would clear mnt_expiry_mark */ dput(path->dentry); mntput_no_expire(mnt); return ret; } static int ksys_umount(char __user *name, int flags) { int lookup_flags = LOOKUP_MOUNTPOINT; struct path path; int ret; // basic validity checks done first if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) return -EINVAL; if (!(flags & UMOUNT_NOFOLLOW)) lookup_flags |= LOOKUP_FOLLOW; ret = user_path_at(AT_FDCWD, name, lookup_flags, &path); if (ret) return ret; return path_umount(&path, flags); } SYSCALL_DEFINE2(umount, char __user *, name, int, flags) { return ksys_umount(name, flags); } #ifdef __ARCH_WANT_SYS_OLDUMOUNT /* * The 2.0 compatible umount. No flags. */ SYSCALL_DEFINE1(oldumount, char __user *, name) { return ksys_umount(name, 0); } #endif static bool is_mnt_ns_file(struct dentry *dentry) { /* Is this a proxy for a mount namespace? */ return dentry->d_op == &ns_dentry_operations && dentry->d_fsdata == &mntns_operations; } static struct mnt_namespace *to_mnt_ns(struct ns_common *ns) { return container_of(ns, struct mnt_namespace, ns); } struct ns_common *from_mnt_ns(struct mnt_namespace *mnt) { return &mnt->ns; } static bool mnt_ns_loop(struct dentry *dentry) { /* Could bind mounting the mount namespace inode cause a * mount namespace loop? */ struct mnt_namespace *mnt_ns; if (!is_mnt_ns_file(dentry)) return false; mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode)); return current->nsproxy->mnt_ns->seq >= mnt_ns->seq; } struct mount *copy_tree(struct mount *mnt, struct dentry *dentry, int flag) { struct mount *res, *p, *q, *r, *parent; if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt)) return ERR_PTR(-EINVAL); if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry)) return ERR_PTR(-EINVAL); res = q = clone_mnt(mnt, dentry, flag); if (IS_ERR(q)) return q; q->mnt_mountpoint = mnt->mnt_mountpoint; p = mnt; list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { struct mount *s; if (!is_subdir(r->mnt_mountpoint, dentry)) continue; for (s = r; s; s = next_mnt(s, r)) { if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(s)) { if (s->mnt.mnt_flags & MNT_LOCKED) { /* Both unbindable and locked. */ q = ERR_PTR(-EPERM); goto out; } else { s = skip_mnt_tree(s); continue; } } if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(s->mnt.mnt_root)) { s = skip_mnt_tree(s); continue; } while (p != s->mnt_parent) { p = p->mnt_parent; q = q->mnt_parent; } p = s; parent = q; q = clone_mnt(p, p->mnt.mnt_root, flag); if (IS_ERR(q)) goto out; lock_mount_hash(); list_add_tail(&q->mnt_list, &res->mnt_list); attach_mnt(q, parent, p->mnt_mp); unlock_mount_hash(); } } return res; out: if (res) { lock_mount_hash(); umount_tree(res, UMOUNT_SYNC); unlock_mount_hash(); } return q; } /* Caller should check returned pointer for errors */ struct vfsmount *collect_mounts(const struct path *path) { struct mount *tree; namespace_lock(); if (!check_mnt(real_mount(path->mnt))) tree = ERR_PTR(-EINVAL); else tree = copy_tree(real_mount(path->mnt), path->dentry, CL_COPY_ALL | CL_PRIVATE); namespace_unlock(); if (IS_ERR(tree)) return ERR_CAST(tree); return &tree->mnt; } static void free_mnt_ns(struct mnt_namespace *); static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool); void dissolve_on_fput(struct vfsmount *mnt) { struct mnt_namespace *ns; namespace_lock(); lock_mount_hash(); ns = real_mount(mnt)->mnt_ns; if (ns) { if (is_anon_ns(ns)) umount_tree(real_mount(mnt), UMOUNT_CONNECTED); else ns = NULL; } unlock_mount_hash(); namespace_unlock(); if (ns) free_mnt_ns(ns); } void drop_collected_mounts(struct vfsmount *mnt) { namespace_lock(); lock_mount_hash(); umount_tree(real_mount(mnt), 0); unlock_mount_hash(); namespace_unlock(); } static bool has_locked_children(struct mount *mnt, struct dentry *dentry) { struct mount *child; list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { if (!is_subdir(child->mnt_mountpoint, dentry)) continue; if (child->mnt.mnt_flags & MNT_LOCKED) return true; } return false; } /** * clone_private_mount - create a private clone of a path * * This creates a new vfsmount, which will be the clone of @path. The new will * not be attached anywhere in the namespace and will be private (i.e. changes * to the originating mount won't be propagated into this). * * Release with mntput(). */ struct vfsmount *clone_private_mount(const struct path *path) { struct mount *old_mnt = real_mount(path->mnt); struct mount *new_mnt; down_read(&namespace_sem); if (IS_MNT_UNBINDABLE(old_mnt)) goto invalid; if (!check_mnt(old_mnt)) goto invalid; if (has_locked_children(old_mnt, path->dentry)) goto invalid; new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE); up_read(&namespace_sem); if (IS_ERR(new_mnt)) return ERR_CAST(new_mnt); /* Longterm mount to be removed by kern_unmount*() */ new_mnt->mnt_ns = MNT_NS_INTERNAL; return &new_mnt->mnt; invalid: up_read(&namespace_sem); return ERR_PTR(-EINVAL); } EXPORT_SYMBOL_GPL(clone_private_mount); int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, struct vfsmount *root) { struct mount *mnt; int res = f(root, arg); if (res) return res; list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { res = f(&mnt->mnt, arg); if (res) return res; } return 0; } static void lock_mnt_tree(struct mount *mnt) { struct mount *p; for (p = mnt; p; p = next_mnt(p, mnt)) { int flags = p->mnt.mnt_flags; /* Don't allow unprivileged users to change mount flags */ flags |= MNT_LOCK_ATIME; if (flags & MNT_READONLY) flags |= MNT_LOCK_READONLY; if (flags & MNT_NODEV) flags |= MNT_LOCK_NODEV; if (flags & MNT_NOSUID) flags |= MNT_LOCK_NOSUID; if (flags & MNT_NOEXEC) flags |= MNT_LOCK_NOEXEC; /* Don't allow unprivileged users to reveal what is under a mount */ if (list_empty(&p->mnt_expire)) flags |= MNT_LOCKED; p->mnt.mnt_flags = flags; } } static void cleanup_group_ids(struct mount *mnt, struct mount *end) { struct mount *p; for (p = mnt; p != end; p = next_mnt(p, mnt)) { if (p->mnt_group_id && !IS_MNT_SHARED(p)) mnt_release_group_id(p); } } static int invent_group_ids(struct mount *mnt, bool recurse) { struct mount *p; for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { int err = mnt_alloc_group_id(p); if (err) { cleanup_group_ids(mnt, p); return err; } } } return 0; } int count_mounts(struct mnt_namespace *ns, struct mount *mnt) { unsigned int max = READ_ONCE(sysctl_mount_max); unsigned int mounts = 0, old, pending, sum; struct mount *p; for (p = mnt; p; p = next_mnt(p, mnt)) mounts++; old = ns->mounts; pending = ns->pending_mounts; sum = old + pending; if ((old > sum) || (pending > sum) || (max < sum) || (mounts > (max - sum))) return -ENOSPC; ns->pending_mounts = pending + mounts; return 0; } /* * @source_mnt : mount tree to be attached * @nd : place the mount tree @source_mnt is attached * @parent_nd : if non-null, detach the source_mnt from its parent and * store the parent mount and mountpoint dentry. * (done when source_mnt is moved) * * NOTE: in the table below explains the semantics when a source mount * of a given type is attached to a destination mount of a given type. * --------------------------------------------------------------------------- * | BIND MOUNT OPERATION | * |************************************************************************** * | source-->| shared | private | slave | unbindable | * | dest | | | | | * | | | | | | | * | v | | | | | * |************************************************************************** * | shared | shared (++) | shared (+) | shared(+++)| invalid | * | | | | | | * |non-shared| shared (+) | private | slave (*) | invalid | * *************************************************************************** * A bind operation clones the source mount and mounts the clone on the * destination mount. * * (++) the cloned mount is propagated to all the mounts in the propagation * tree of the destination mount and the cloned mount is added to * the peer group of the source mount. * (+) the cloned mount is created under the destination mount and is marked * as shared. The cloned mount is added to the peer group of the source * mount. * (+++) the mount is propagated to all the mounts in the propagation tree * of the destination mount and the cloned mount is made slave * of the same master as that of the source mount. The cloned mount * is marked as 'shared and slave'. * (*) the cloned mount is made a slave of the same master as that of the * source mount. * * --------------------------------------------------------------------------- * | MOVE MOUNT OPERATION | * |************************************************************************** * | source-->| shared | private | slave | unbindable | * | dest | | | | | * | | | | | | | * | v | | | | | * |************************************************************************** * | shared | shared (+) | shared (+) | shared(+++) | invalid | * | | | | | | * |non-shared| shared (+*) | private | slave (*) | unbindable | * *************************************************************************** * * (+) the mount is moved to the destination. And is then propagated to * all the mounts in the propagation tree of the destination mount. * (+*) the mount is moved to the destination. * (+++) the mount is moved to the destination and is then propagated to * all the mounts belonging to the destination mount's propagation tree. * the mount is marked as 'shared and slave'. * (*) the mount continues to be a slave at the new location. * * if the source mount is a tree, the operations explained above is * applied to each mount in the tree. * Must be called without spinlocks held, since this function can sleep * in allocations. */ static int attach_recursive_mnt(struct mount *source_mnt, struct mount *dest_mnt, struct mountpoint *dest_mp, bool moving) { struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; HLIST_HEAD(tree_list); struct mnt_namespace *ns = dest_mnt->mnt_ns; struct mountpoint *smp; struct mount *child, *p; struct hlist_node *n; int err; /* Preallocate a mountpoint in case the new mounts need * to be tucked under other mounts. */ smp = get_mountpoint(source_mnt->mnt.mnt_root); if (IS_ERR(smp)) return PTR_ERR(smp); /* Is there space to add these mounts to the mount namespace? */ if (!moving) { err = count_mounts(ns, source_mnt); if (err) goto out; } if (IS_MNT_SHARED(dest_mnt)) { err = invent_group_ids(source_mnt, true); if (err) goto out; err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list); lock_mount_hash(); if (err) goto out_cleanup_ids; for (p = source_mnt; p; p = next_mnt(p, source_mnt)) set_mnt_shared(p); } else { lock_mount_hash(); } if (moving) { unhash_mnt(source_mnt); attach_mnt(source_mnt, dest_mnt, dest_mp); touch_mnt_namespace(source_mnt->mnt_ns); } else { if (source_mnt->mnt_ns) { /* move from anon - the caller will destroy */ list_del_init(&source_mnt->mnt_ns->list); } mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt); commit_tree(source_mnt); } hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) { struct mount *q; hlist_del_init(&child->mnt_hash); q = __lookup_mnt(&child->mnt_parent->mnt, child->mnt_mountpoint); if (q) mnt_change_mountpoint(child, smp, q); /* Notice when we are propagating across user namespaces */ if (child->mnt_parent->mnt_ns->user_ns != user_ns) lock_mnt_tree(child); child->mnt.mnt_flags &= ~MNT_LOCKED; commit_tree(child); } put_mountpoint(smp); unlock_mount_hash(); return 0; out_cleanup_ids: while (!hlist_empty(&tree_list)) { child = hlist_entry(tree_list.first, struct mount, mnt_hash); child->mnt_parent->mnt_ns->pending_mounts = 0; umount_tree(child, UMOUNT_SYNC); } unlock_mount_hash(); cleanup_group_ids(source_mnt, NULL); out: ns->pending_mounts = 0; read_seqlock_excl(&mount_lock); put_mountpoint(smp); read_sequnlock_excl(&mount_lock); return err; } static struct mountpoint *lock_mount(struct path *path) { struct vfsmount *mnt; struct dentry *dentry = path->dentry; retry: inode_lock(dentry->d_inode); if (unlikely(cant_mount(dentry))) { inode_unlock(dentry->d_inode); return ERR_PTR(-ENOENT); } namespace_lock(); mnt = lookup_mnt(path); if (likely(!mnt)) { struct mountpoint *mp = get_mountpoint(dentry); if (IS_ERR(mp)) { namespace_unlock(); inode_unlock(dentry->d_inode); return mp; } return mp; } namespace_unlock(); inode_unlock(path->dentry->d_inode); path_put(path); path->mnt = mnt; dentry = path->dentry = dget(mnt->mnt_root); goto retry; } static void unlock_mount(struct mountpoint *where) { struct dentry *dentry = where->m_dentry; read_seqlock_excl(&mount_lock); put_mountpoint(where); read_sequnlock_excl(&mount_lock); namespace_unlock(); inode_unlock(dentry->d_inode); } static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp) { if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER) return -EINVAL; if (d_is_dir(mp->m_dentry) != d_is_dir(mnt->mnt.mnt_root)) return -ENOTDIR; return attach_recursive_mnt(mnt, p, mp, false); } /* * Sanity check the flags to change_mnt_propagation. */ static int flags_to_propagation_type(int ms_flags) { int type = ms_flags & ~(MS_REC | MS_SILENT); /* Fail if any non-propagation flags are set */ if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) return 0; /* Only one propagation flag should be set */ if (!is_power_of_2(type)) return 0; return type; } /* * recursively change the type of the mountpoint. */ static int do_change_type(struct path *path, int ms_flags) { struct mount *m; struct mount *mnt = real_mount(path->mnt); int recurse = ms_flags & MS_REC; int type; int err = 0; if (path->dentry != path->mnt->mnt_root) return -EINVAL; type = flags_to_propagation_type(ms_flags); if (!type) return -EINVAL; namespace_lock(); if (type == MS_SHARED) { err = invent_group_ids(mnt, recurse); if (err) goto out_unlock; } lock_mount_hash(); for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) change_mnt_propagation(m, type); unlock_mount_hash(); out_unlock: namespace_unlock(); return err; } static struct mount *__do_loopback(struct path *old_path, int recurse) { struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt); if (IS_MNT_UNBINDABLE(old)) return mnt; if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations) return mnt; if (!recurse && has_locked_children(old, old_path->dentry)) return mnt; if (recurse) mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE); else mnt = clone_mnt(old, old_path->dentry, 0); if (!IS_ERR(mnt)) mnt->mnt.mnt_flags &= ~MNT_LOCKED; return mnt; } /* * do loopback mount. */ static int do_loopback(struct path *path, const char *old_name, int recurse) { struct path old_path; struct mount *mnt = NULL, *parent; struct mountpoint *mp; int err; if (!old_name || !*old_name) return -EINVAL; err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); if (err) return err; err = -EINVAL; if (mnt_ns_loop(old_path.dentry)) goto out; mp = lock_mount(path); if (IS_ERR(mp)) { err = PTR_ERR(mp); goto out; } parent = real_mount(path->mnt); if (!check_mnt(parent)) goto out2; mnt = __do_loopback(&old_path, recurse); if (IS_ERR(mnt)) { err = PTR_ERR(mnt); goto out2; } err = graft_tree(mnt, parent, mp); if (err) { lock_mount_hash(); umount_tree(mnt, UMOUNT_SYNC); unlock_mount_hash(); } out2: unlock_mount(mp); out: path_put(&old_path); return err; } static struct file *open_detached_copy(struct path *path, bool recursive) { struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true); struct mount *mnt, *p; struct file *file; if (IS_ERR(ns)) return ERR_CAST(ns); namespace_lock(); mnt = __do_loopback(path, recursive); if (IS_ERR(mnt)) { namespace_unlock(); free_mnt_ns(ns); return ERR_CAST(mnt); } lock_mount_hash(); for (p = mnt; p; p = next_mnt(p, mnt)) { p->mnt_ns = ns; ns->mounts++; } ns->root = mnt; list_add_tail(&ns->list, &mnt->mnt_list); mntget(&mnt->mnt); unlock_mount_hash(); namespace_unlock(); mntput(path->mnt); path->mnt = &mnt->mnt; file = dentry_open(path, O_PATH, current_cred()); if (IS_ERR(file)) dissolve_on_fput(path->mnt); else file->f_mode |= FMODE_NEED_UNMOUNT; return file; } SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags) { struct file *file; struct path path; int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; bool detached = flags & OPEN_TREE_CLONE; int error; int fd; BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC); if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE | AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE | OPEN_TREE_CLOEXEC)) return -EINVAL; if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE) return -EINVAL; if (flags & AT_NO_AUTOMOUNT) lookup_flags &= ~LOOKUP_AUTOMOUNT; if (flags & AT_SYMLINK_NOFOLLOW) lookup_flags &= ~LOOKUP_FOLLOW; if (flags & AT_EMPTY_PATH) lookup_flags |= LOOKUP_EMPTY; if (detached && !may_mount()) return -EPERM; fd = get_unused_fd_flags(flags & O_CLOEXEC); if (fd < 0) return fd; error = user_path_at(dfd, filename, lookup_flags, &path); if (unlikely(error)) { file = ERR_PTR(error); } else { if (detached) file = open_detached_copy(&path, flags & AT_RECURSIVE); else file = dentry_open(&path, O_PATH, current_cred()); path_put(&path); } if (IS_ERR(file)) { put_unused_fd(fd); return PTR_ERR(file); } fd_install(fd, file); return fd; } /* * Don't allow locked mount flags to be cleared. * * No locks need to be held here while testing the various MNT_LOCK * flags because those flags can never be cleared once they are set. */ static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags) { unsigned int fl = mnt->mnt.mnt_flags; if ((fl & MNT_LOCK_READONLY) && !(mnt_flags & MNT_READONLY)) return false; if ((fl & MNT_LOCK_NODEV) && !(mnt_flags & MNT_NODEV)) return false; if ((fl & MNT_LOCK_NOSUID) && !(mnt_flags & MNT_NOSUID)) return false; if ((fl & MNT_LOCK_NOEXEC) && !(mnt_flags & MNT_NOEXEC)) return false; if ((fl & MNT_LOCK_ATIME) && ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) return false; return true; } static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags) { bool readonly_request = (mnt_flags & MNT_READONLY); if (readonly_request == __mnt_is_readonly(&mnt->mnt)) return 0; if (readonly_request) return mnt_make_readonly(mnt); return __mnt_unmake_readonly(mnt); } /* * Update the user-settable attributes on a mount. The caller must hold * sb->s_umount for writing. */ static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags) { lock_mount_hash(); mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK; mnt->mnt.mnt_flags = mnt_flags; touch_mnt_namespace(mnt->mnt_ns); unlock_mount_hash(); } static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt) { struct super_block *sb = mnt->mnt_sb; if (!__mnt_is_readonly(mnt) && (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) { char *buf = (char *)__get_free_page(GFP_KERNEL); char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM); struct tm tm; time64_to_tm(sb->s_time_max, 0, &tm); pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n", sb->s_type->name, is_mounted(mnt) ? "remounted" : "mounted", mntpath, tm.tm_year+1900, (unsigned long long)sb->s_time_max); free_page((unsigned long)buf); } } /* * Handle reconfiguration of the mountpoint only without alteration of the * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND * to mount(2). */ static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags) { struct super_block *sb = path->mnt->mnt_sb; struct mount *mnt = real_mount(path->mnt); int ret; if (!check_mnt(mnt)) return -EINVAL; if (path->dentry != mnt->mnt.mnt_root) return -EINVAL; if (!can_change_locked_flags(mnt, mnt_flags)) return -EPERM; down_write(&sb->s_umount); ret = change_mount_ro_state(mnt, mnt_flags); if (ret == 0) set_mount_attributes(mnt, mnt_flags); up_write(&sb->s_umount); mnt_warn_timestamp_expiry(path, &mnt->mnt); return ret; } /* * change filesystem flags. dir should be a physical root of filesystem. * If you've mounted a non-root directory somewhere and want to do remount * on it - tough luck. */ static int do_remount(struct path *path, int ms_flags, int sb_flags, int mnt_flags, void *data) { int err; struct super_block *sb = path->mnt->mnt_sb; struct mount *mnt = real_mount(path->mnt); struct fs_context *fc; if (!check_mnt(mnt)) return -EINVAL; if (path->dentry != path->mnt->mnt_root) return -EINVAL; if (!can_change_locked_flags(mnt, mnt_flags)) return -EPERM; fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK); if (IS_ERR(fc)) return PTR_ERR(fc); fc->oldapi = true; err = parse_monolithic_mount_data(fc, data); if (!err) { down_write(&sb->s_umount); err = -EPERM; if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) { err = reconfigure_super(fc); if (!err) set_mount_attributes(mnt, mnt_flags); } up_write(&sb->s_umount); } mnt_warn_timestamp_expiry(path, &mnt->mnt); put_fs_context(fc); return err; } static inline int tree_contains_unbindable(struct mount *mnt) { struct mount *p; for (p = mnt; p; p = next_mnt(p, mnt)) { if (IS_MNT_UNBINDABLE(p)) return 1; } return 0; } /* * Check that there aren't references to earlier/same mount namespaces in the * specified subtree. Such references can act as pins for mount namespaces * that aren't checked by the mount-cycle checking code, thereby allowing * cycles to be made. */ static bool check_for_nsfs_mounts(struct mount *subtree) { struct mount *p; bool ret = false; lock_mount_hash(); for (p = subtree; p; p = next_mnt(p, subtree)) if (mnt_ns_loop(p->mnt.mnt_root)) goto out; ret = true; out: unlock_mount_hash(); return ret; } static int do_move_mount(struct path *old_path, struct path *new_path) { struct mnt_namespace *ns; struct mount *p; struct mount *old; struct mount *parent; struct mountpoint *mp, *old_mp; int err; bool attached; mp = lock_mount(new_path); if (IS_ERR(mp)) return PTR_ERR(mp); old = real_mount(old_path->mnt); p = real_mount(new_path->mnt); parent = old->mnt_parent; attached = mnt_has_parent(old); old_mp = old->mnt_mp; ns = old->mnt_ns; err = -EINVAL; /* The mountpoint must be in our namespace. */ if (!check_mnt(p)) goto out; /* The thing moved must be mounted... */ if (!is_mounted(&old->mnt)) goto out; /* ... and either ours or the root of anon namespace */ if (!(attached ? check_mnt(old) : is_anon_ns(ns))) goto out; if (old->mnt.mnt_flags & MNT_LOCKED) goto out; if (old_path->dentry != old_path->mnt->mnt_root) goto out; if (d_is_dir(new_path->dentry) != d_is_dir(old_path->dentry)) goto out; /* * Don't move a mount residing in a shared parent. */ if (attached && IS_MNT_SHARED(parent)) goto out; /* * Don't move a mount tree containing unbindable mounts to a destination * mount which is shared. */ if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) goto out; err = -ELOOP; if (!check_for_nsfs_mounts(old)) goto out; for (; mnt_has_parent(p); p = p->mnt_parent) if (p == old) goto out; err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp, attached); if (err) goto out; /* if the mount is moved, it should no longer be expire * automatically */ list_del_init(&old->mnt_expire); if (attached) put_mountpoint(old_mp); out: unlock_mount(mp); if (!err) { if (attached) mntput_no_expire(parent); else free_mnt_ns(ns); } return err; } static int do_move_mount_old(struct path *path, const char *old_name) { struct path old_path; int err; if (!old_name || !*old_name) return -EINVAL; err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); if (err) return err; err = do_move_mount(&old_path, path); path_put(&old_path); return err; } /* * add a mount into a namespace's mount tree */ static int do_add_mount(struct mount *newmnt, struct mountpoint *mp, struct path *path, int mnt_flags) { struct mount *parent = real_mount(path->mnt); mnt_flags &= ~MNT_INTERNAL_FLAGS; if (unlikely(!check_mnt(parent))) { /* that's acceptable only for automounts done in private ns */ if (!(mnt_flags & MNT_SHRINKABLE)) return -EINVAL; /* ... and for those we'd better have mountpoint still alive */ if (!parent->mnt_ns) return -EINVAL; } /* Refuse the same filesystem on the same mount point */ if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && path->mnt->mnt_root == path->dentry) return -EBUSY; if (d_is_symlink(newmnt->mnt.mnt_root)) return -EINVAL; newmnt->mnt.mnt_flags = mnt_flags; return graft_tree(newmnt, parent, mp); } static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags); /* * Create a new mount using a superblock configuration and request it * be added to the namespace tree. */ static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint, unsigned int mnt_flags) { struct vfsmount *mnt; struct mountpoint *mp; struct super_block *sb = fc->root->d_sb; int error; error = security_sb_kern_mount(sb); if (!error && mount_too_revealing(sb, &mnt_flags)) error = -EPERM; if (unlikely(error)) { fc_drop_locked(fc); return error; } up_write(&sb->s_umount); mnt = vfs_create_mount(fc); if (IS_ERR(mnt)) return PTR_ERR(mnt); mnt_warn_timestamp_expiry(mountpoint, mnt); mp = lock_mount(mountpoint); if (IS_ERR(mp)) { mntput(mnt); return PTR_ERR(mp); } error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags); unlock_mount(mp); if (error < 0) mntput(mnt); return error; } /* * create a new mount for userspace and request it to be added into the * namespace's tree */ static int do_new_mount(struct path *path, const char *fstype, int sb_flags, int mnt_flags, const char *name, void *data) { struct file_system_type *type; struct fs_context *fc; const char *subtype = NULL; int err = 0; if (!fstype) return -EINVAL; type = get_fs_type(fstype); if (!type) return -ENODEV; if (type->fs_flags & FS_HAS_SUBTYPE) { subtype = strchr(fstype, '.'); if (subtype) { subtype++; if (!*subtype) { put_filesystem(type); return -EINVAL; } } } fc = fs_context_for_mount(type, sb_flags); put_filesystem(type); if (IS_ERR(fc)) return PTR_ERR(fc); if (subtype) err = vfs_parse_fs_string(fc, "subtype", subtype, strlen(subtype)); if (!err && name) err = vfs_parse_fs_string(fc, "source", name, strlen(name)); if (!err) err = parse_monolithic_mount_data(fc, data); if (!err && !mount_capable(fc)) err = -EPERM; if (!err) err = vfs_get_tree(fc); if (!err) err = do_new_mount_fc(fc, path, mnt_flags); put_fs_context(fc); return err; } int finish_automount(struct vfsmount *m, struct path *path) { struct dentry *dentry = path->dentry; struct mountpoint *mp; struct mount *mnt; int err; if (!m) return 0; if (IS_ERR(m)) return PTR_ERR(m); mnt = real_mount(m); /* The new mount record should have at least 2 refs to prevent it being * expired before we get a chance to add it */ BUG_ON(mnt_get_count(mnt) < 2); if (m->mnt_sb == path->mnt->mnt_sb && m->mnt_root == dentry) { err = -ELOOP; goto discard; } /* * we don't want to use lock_mount() - in this case finding something * that overmounts our mountpoint to be means "quitely drop what we've * got", not "try to mount it on top". */ inode_lock(dentry->d_inode); namespace_lock(); if (unlikely(cant_mount(dentry))) { err = -ENOENT; goto discard_locked; } rcu_read_lock(); if (unlikely(__lookup_mnt(path->mnt, dentry))) { rcu_read_unlock(); err = 0; goto discard_locked; } rcu_read_unlock(); mp = get_mountpoint(dentry); if (IS_ERR(mp)) { err = PTR_ERR(mp); goto discard_locked; } err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE); unlock_mount(mp); if (unlikely(err)) goto discard; mntput(m); return 0; discard_locked: namespace_unlock(); inode_unlock(dentry->d_inode); discard: /* remove m from any expiration list it may be on */ if (!list_empty(&mnt->mnt_expire)) { namespace_lock(); list_del_init(&mnt->mnt_expire); namespace_unlock(); } mntput(m); mntput(m); return err; } /** * mnt_set_expiry - Put a mount on an expiration list * @mnt: The mount to list. * @expiry_list: The list to add the mount to. */ void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) { namespace_lock(); list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); namespace_unlock(); } EXPORT_SYMBOL(mnt_set_expiry); /* * process a list of expirable mountpoints with the intent of discarding any * mountpoints that aren't in use and haven't been touched since last we came * here */ void mark_mounts_for_expiry(struct list_head *mounts) { struct mount *mnt, *next; LIST_HEAD(graveyard); if (list_empty(mounts)) return; namespace_lock(); lock_mount_hash(); /* extract from the expiration list every vfsmount that matches the * following criteria: * - only referenced by its parent vfsmount * - still marked for expiry (marked on the last call here; marks are * cleared by mntput()) */ list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { if (!xchg(&mnt->mnt_expiry_mark, 1) || propagate_mount_busy(mnt, 1)) continue; list_move(&mnt->mnt_expire, &graveyard); } while (!list_empty(&graveyard)) { mnt = list_first_entry(&graveyard, struct mount, mnt_expire); touch_mnt_namespace(mnt->mnt_ns); umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); } unlock_mount_hash(); namespace_unlock(); } EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); /* * Ripoff of 'select_parent()' * * search the list of submounts for a given mountpoint, and move any * shrinkable submounts to the 'graveyard' list. */ static int select_submounts(struct mount *parent, struct list_head *graveyard) { struct mount *this_parent = parent; struct list_head *next; int found = 0; repeat: next = this_parent->mnt_mounts.next; resume: while (next != &this_parent->mnt_mounts) { struct list_head *tmp = next; struct mount *mnt = list_entry(tmp, struct mount, mnt_child); next = tmp->next; if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) continue; /* * Descend a level if the d_mounts list is non-empty. */ if (!list_empty(&mnt->mnt_mounts)) { this_parent = mnt; goto repeat; } if (!propagate_mount_busy(mnt, 1)) { list_move_tail(&mnt->mnt_expire, graveyard); found++; } } /* * All done at this level ... ascend and resume the search */ if (this_parent != parent) { next = this_parent->mnt_child.next; this_parent = this_parent->mnt_parent; goto resume; } return found; } /* * process a list of expirable mountpoints with the intent of discarding any * submounts of a specific parent mountpoint * * mount_lock must be held for write */ static void shrink_submounts(struct mount *mnt) { LIST_HEAD(graveyard); struct mount *m; /* extract submounts of 'mountpoint' from the expiration list */ while (select_submounts(mnt, &graveyard)) { while (!list_empty(&graveyard)) { m = list_first_entry(&graveyard, struct mount, mnt_expire); touch_mnt_namespace(m->mnt_ns); umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC); } } } static void *copy_mount_options(const void __user * data) { char *copy; unsigned left, offset; if (!data) return NULL; copy = kmalloc(PAGE_SIZE, GFP_KERNEL); if (!copy) return ERR_PTR(-ENOMEM); left = copy_from_user(copy, data, PAGE_SIZE); /* * Not all architectures have an exact copy_from_user(). Resort to * byte at a time. */ offset = PAGE_SIZE - left; while (left) { char c; if (get_user(c, (const char __user *)data + offset)) break; copy[offset] = c; left--; offset++; } if (left == PAGE_SIZE) { kfree(copy); return ERR_PTR(-EFAULT); } return copy; } static char *copy_mount_string(const void __user *data) { return data ? strndup_user(data, PATH_MAX) : NULL; } /* * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to * be given to the mount() call (ie: read-only, no-dev, no-suid etc). * * data is a (void *) that can point to any structure up to * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent * information (or be NULL). * * Pre-0.97 versions of mount() didn't have a flags word. * When the flags word was introduced its top half was required * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. * Therefore, if this magic number is present, it carries no information * and must be discarded. */ int path_mount(const char *dev_name, struct path *path, const char *type_page, unsigned long flags, void *data_page) { unsigned int mnt_flags = 0, sb_flags; int ret; /* Discard magic */ if ((flags & MS_MGC_MSK) == MS_MGC_VAL) flags &= ~MS_MGC_MSK; /* Basic sanity checks */ if (data_page) ((char *)data_page)[PAGE_SIZE - 1] = 0; if (flags & MS_NOUSER) return -EINVAL; ret = security_sb_mount(dev_name, path, type_page, flags, data_page); if (ret) return ret; if (!may_mount()) return -EPERM; if ((flags & SB_MANDLOCK) && !may_mandlock()) return -EPERM; /* Default to relatime unless overriden */ if (!(flags & MS_NOATIME)) mnt_flags |= MNT_RELATIME; /* Separate the per-mountpoint flags */ if (flags & MS_NOSUID) mnt_flags |= MNT_NOSUID; if (flags & MS_NODEV) mnt_flags |= MNT_NODEV; if (flags & MS_NOEXEC) mnt_flags |= MNT_NOEXEC; if (flags & MS_NOATIME) mnt_flags |= MNT_NOATIME; if (flags & MS_NODIRATIME) mnt_flags |= MNT_NODIRATIME; if (flags & MS_STRICTATIME) mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); if (flags & MS_RDONLY) mnt_flags |= MNT_READONLY; if (flags & MS_NOSYMFOLLOW) mnt_flags |= MNT_NOSYMFOLLOW; /* The default atime for remount is preservation */ if ((flags & MS_REMOUNT) && ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME | MS_STRICTATIME)) == 0)) { mnt_flags &= ~MNT_ATIME_MASK; mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK; } sb_flags = flags & (SB_RDONLY | SB_SYNCHRONOUS | SB_MANDLOCK | SB_DIRSYNC | SB_SILENT | SB_POSIXACL | SB_LAZYTIME | SB_I_VERSION); if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND)) return do_reconfigure_mnt(path, mnt_flags); if (flags & MS_REMOUNT) return do_remount(path, flags, sb_flags, mnt_flags, data_page); if (flags & MS_BIND) return do_loopback(path, dev_name, flags & MS_REC); if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) return do_change_type(path, flags); if (flags & MS_MOVE) return do_move_mount_old(path, dev_name); return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name, data_page); } long do_mount(const char *dev_name, const char __user *dir_name, const char *type_page, unsigned long flags, void *data_page) { struct path path; int ret; ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path); if (ret) return ret; ret = path_mount(dev_name, &path, type_page, flags, data_page); path_put(&path); return ret; } static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns) { return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES); } static void dec_mnt_namespaces(struct ucounts *ucounts) { dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES); } static void free_mnt_ns(struct mnt_namespace *ns) { if (!is_anon_ns(ns)) ns_free_inum(&ns->ns); dec_mnt_namespaces(ns->ucounts); put_user_ns(ns->user_ns); kfree(ns); } /* * Assign a sequence number so we can detect when we attempt to bind * mount a reference to an older mount namespace into the current * mount namespace, preventing reference counting loops. A 64bit * number incrementing at 10Ghz will take 12,427 years to wrap which * is effectively never, so we can ignore the possibility. */ static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1); static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon) { struct mnt_namespace *new_ns; struct ucounts *ucounts; int ret; ucounts = inc_mnt_namespaces(user_ns); if (!ucounts) return ERR_PTR(-ENOSPC); new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL); if (!new_ns) { dec_mnt_namespaces(ucounts); return ERR_PTR(-ENOMEM); } if (!anon) { ret = ns_alloc_inum(&new_ns->ns); if (ret) { kfree(new_ns); dec_mnt_namespaces(ucounts); return ERR_PTR(ret); } } new_ns->ns.ops = &mntns_operations; if (!anon) new_ns->seq = atomic64_add_return(1, &mnt_ns_seq); atomic_set(&new_ns->count, 1); INIT_LIST_HEAD(&new_ns->list); init_waitqueue_head(&new_ns->poll); spin_lock_init(&new_ns->ns_lock); new_ns->user_ns = get_user_ns(user_ns); new_ns->ucounts = ucounts; return new_ns; } __latent_entropy struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, struct user_namespace *user_ns, struct fs_struct *new_fs) { struct mnt_namespace *new_ns; struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; struct mount *p, *q; struct mount *old; struct mount *new; int copy_flags; BUG_ON(!ns); if (likely(!(flags & CLONE_NEWNS))) { get_mnt_ns(ns); return ns; } old = ns->root; new_ns = alloc_mnt_ns(user_ns, false); if (IS_ERR(new_ns)) return new_ns; namespace_lock(); /* First pass: copy the tree topology */ copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE; if (user_ns != ns->user_ns) copy_flags |= CL_SHARED_TO_SLAVE; new = copy_tree(old, old->mnt.mnt_root, copy_flags); if (IS_ERR(new)) { namespace_unlock(); free_mnt_ns(new_ns); return ERR_CAST(new); } if (user_ns != ns->user_ns) { lock_mount_hash(); lock_mnt_tree(new); unlock_mount_hash(); } new_ns->root = new; list_add_tail(&new_ns->list, &new->mnt_list); /* * Second pass: switch the tsk->fs->* elements and mark new vfsmounts * as belonging to new namespace. We have already acquired a private * fs_struct, so tsk->fs->lock is not needed. */ p = old; q = new; while (p) { q->mnt_ns = new_ns; new_ns->mounts++; if (new_fs) { if (&p->mnt == new_fs->root.mnt) { new_fs->root.mnt = mntget(&q->mnt); rootmnt = &p->mnt; } if (&p->mnt == new_fs->pwd.mnt) { new_fs->pwd.mnt = mntget(&q->mnt); pwdmnt = &p->mnt; } } p = next_mnt(p, old); q = next_mnt(q, new); if (!q) break; while (p->mnt.mnt_root != q->mnt.mnt_root) p = next_mnt(p, old); } namespace_unlock(); if (rootmnt) mntput(rootmnt); if (pwdmnt) mntput(pwdmnt); return new_ns; } struct dentry *mount_subtree(struct vfsmount *m, const char *name) { struct mount *mnt = real_mount(m); struct mnt_namespace *ns; struct super_block *s; struct path path; int err; ns = alloc_mnt_ns(&init_user_ns, true); if (IS_ERR(ns)) { mntput(m); return ERR_CAST(ns); } mnt->mnt_ns = ns; ns->root = mnt; ns->mounts++; list_add(&mnt->mnt_list, &ns->list); err = vfs_path_lookup(m->mnt_root, m, name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); put_mnt_ns(ns); if (err) return ERR_PTR(err); /* trade a vfsmount reference for active sb one */ s = path.mnt->mnt_sb; atomic_inc(&s->s_active); mntput(path.mnt); /* lock the sucker */ down_write(&s->s_umount); /* ... and return the root of (sub)tree on it */ return path.dentry; } EXPORT_SYMBOL(mount_subtree); SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, char __user *, type, unsigned long, flags, void __user *, data) { int ret; char *kernel_type; char *kernel_dev; void *options; kernel_type = copy_mount_string(type); ret = PTR_ERR(kernel_type); if (IS_ERR(kernel_type)) goto out_type; kernel_dev = copy_mount_string(dev_name); ret = PTR_ERR(kernel_dev); if (IS_ERR(kernel_dev)) goto out_dev; options = copy_mount_options(data); ret = PTR_ERR(options); if (IS_ERR(options)) goto out_data; ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options); kfree(options); out_data: kfree(kernel_dev); out_dev: kfree(kernel_type); out_type: return ret; } /* * Create a kernel mount representation for a new, prepared superblock * (specified by fs_fd) and attach to an open_tree-like file descriptor. */ SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags, unsigned int, attr_flags) { struct mnt_namespace *ns; struct fs_context *fc; struct file *file; struct path newmount; struct mount *mnt; struct fd f; unsigned int mnt_flags = 0; long ret; if (!may_mount()) return -EPERM; if ((flags & ~(FSMOUNT_CLOEXEC)) != 0) return -EINVAL; if (attr_flags & ~(MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV | MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME)) return -EINVAL; if (attr_flags & MOUNT_ATTR_RDONLY) mnt_flags |= MNT_READONLY; if (attr_flags & MOUNT_ATTR_NOSUID) mnt_flags |= MNT_NOSUID; if (attr_flags & MOUNT_ATTR_NODEV) mnt_flags |= MNT_NODEV; if (attr_flags & MOUNT_ATTR_NOEXEC) mnt_flags |= MNT_NOEXEC; if (attr_flags & MOUNT_ATTR_NODIRATIME) mnt_flags |= MNT_NODIRATIME; switch (attr_flags & MOUNT_ATTR__ATIME) { case MOUNT_ATTR_STRICTATIME: break; case MOUNT_ATTR_NOATIME: mnt_flags |= MNT_NOATIME; break; case MOUNT_ATTR_RELATIME: mnt_flags |= MNT_RELATIME; break; default: return -EINVAL; } f = fdget(fs_fd); if (!f.file) return -EBADF; ret = -EINVAL; if (f.file->f_op != &fscontext_fops) goto err_fsfd; fc = f.file->private_data; ret = mutex_lock_interruptible(&fc->uapi_mutex); if (ret < 0) goto err_fsfd; /* There must be a valid superblock or we can't mount it */ ret = -EINVAL; if (!fc->root) goto err_unlock; ret = -EPERM; if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) { pr_warn("VFS: Mount too revealing\n"); goto err_unlock; } ret = -EBUSY; if (fc->phase != FS_CONTEXT_AWAITING_MOUNT) goto err_unlock; ret = -EPERM; if ((fc->sb_flags & SB_MANDLOCK) && !may_mandlock()) goto err_unlock; newmount.mnt = vfs_create_mount(fc); if (IS_ERR(newmount.mnt)) { ret = PTR_ERR(newmount.mnt); goto err_unlock; } newmount.dentry = dget(fc->root); newmount.mnt->mnt_flags = mnt_flags; /* We've done the mount bit - now move the file context into more or * less the same state as if we'd done an fspick(). We don't want to * do any memory allocation or anything like that at this point as we * don't want to have to handle any errors incurred. */ vfs_clean_context(fc); ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true); if (IS_ERR(ns)) { ret = PTR_ERR(ns); goto err_path; } mnt = real_mount(newmount.mnt); mnt->mnt_ns = ns; ns->root = mnt; ns->mounts = 1; list_add(&mnt->mnt_list, &ns->list); mntget(newmount.mnt); /* Attach to an apparent O_PATH fd with a note that we need to unmount * it, not just simply put it. */ file = dentry_open(&newmount, O_PATH, fc->cred); if (IS_ERR(file)) { dissolve_on_fput(newmount.mnt); ret = PTR_ERR(file); goto err_path; } file->f_mode |= FMODE_NEED_UNMOUNT; ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0); if (ret >= 0) fd_install(ret, file); else fput(file); err_path: path_put(&newmount); err_unlock: mutex_unlock(&fc->uapi_mutex); err_fsfd: fdput(f); return ret; } /* * Move a mount from one place to another. In combination with * fsopen()/fsmount() this is used to install a new mount and in combination * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy * a mount subtree. * * Note the flags value is a combination of MOVE_MOUNT_* flags. */ SYSCALL_DEFINE5(move_mount, int, from_dfd, const char __user *, from_pathname, int, to_dfd, const char __user *, to_pathname, unsigned int, flags) { struct path from_path, to_path; unsigned int lflags; int ret = 0; if (!may_mount()) return -EPERM; if (flags & ~MOVE_MOUNT__MASK) return -EINVAL; /* If someone gives a pathname, they aren't permitted to move * from an fd that requires unmount as we can't get at the flag * to clear it afterwards. */ lflags = 0; if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW; if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY; ret = user_path_at(from_dfd, from_pathname, lflags, &from_path); if (ret < 0) return ret; lflags = 0; if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW; if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY; ret = user_path_at(to_dfd, to_pathname, lflags, &to_path); if (ret < 0) goto out_from; ret = security_move_mount(&from_path, &to_path); if (ret < 0) goto out_to; ret = do_move_mount(&from_path, &to_path); out_to: path_put(&to_path); out_from: path_put(&from_path); return ret; } /* * Return true if path is reachable from root * * namespace_sem or mount_lock is held */ bool is_path_reachable(struct mount *mnt, struct dentry *dentry, const struct path *root) { while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { dentry = mnt->mnt_mountpoint; mnt = mnt->mnt_parent; } return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); } bool path_is_under(const struct path *path1, const struct path *path2) { bool res; read_seqlock_excl(&mount_lock); res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); read_sequnlock_excl(&mount_lock); return res; } EXPORT_SYMBOL(path_is_under); /* * pivot_root Semantics: * Moves the root file system of the current process to the directory put_old, * makes new_root as the new root file system of the current process, and sets * root/cwd of all processes which had them on the current root to new_root. * * Restrictions: * The new_root and put_old must be directories, and must not be on the * same file system as the current process root. The put_old must be * underneath new_root, i.e. adding a non-zero number of /.. to the string * pointed to by put_old must yield the same directory as new_root. No other * file system may be mounted on put_old. After all, new_root is a mountpoint. * * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives * in this situation. * * Notes: * - we don't move root/cwd if they are not at the root (reason: if something * cared enough to change them, it's probably wrong to force them elsewhere) * - it's okay to pick a root that isn't the root of a file system, e.g. * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root * first. */ SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, const char __user *, put_old) { struct path new, old, root; struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent; struct mountpoint *old_mp, *root_mp; int error; if (!may_mount()) return -EPERM; error = user_path_at(AT_FDCWD, new_root, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new); if (error) goto out0; error = user_path_at(AT_FDCWD, put_old, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old); if (error) goto out1; error = security_sb_pivotroot(&old, &new); if (error) goto out2; get_fs_root(current->fs, &root); old_mp = lock_mount(&old); error = PTR_ERR(old_mp); if (IS_ERR(old_mp)) goto out3; error = -EINVAL; new_mnt = real_mount(new.mnt); root_mnt = real_mount(root.mnt); old_mnt = real_mount(old.mnt); ex_parent = new_mnt->mnt_parent; root_parent = root_mnt->mnt_parent; if (IS_MNT_SHARED(old_mnt) || IS_MNT_SHARED(ex_parent) || IS_MNT_SHARED(root_parent)) goto out4; if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) goto out4; if (new_mnt->mnt.mnt_flags & MNT_LOCKED) goto out4; error = -ENOENT; if (d_unlinked(new.dentry)) goto out4; error = -EBUSY; if (new_mnt == root_mnt || old_mnt == root_mnt) goto out4; /* loop, on the same file system */ error = -EINVAL; if (root.mnt->mnt_root != root.dentry) goto out4; /* not a mountpoint */ if (!mnt_has_parent(root_mnt)) goto out4; /* not attached */ if (new.mnt->mnt_root != new.dentry) goto out4; /* not a mountpoint */ if (!mnt_has_parent(new_mnt)) goto out4; /* not attached */ /* make sure we can reach put_old from new_root */ if (!is_path_reachable(old_mnt, old.dentry, &new)) goto out4; /* make certain new is below the root */ if (!is_path_reachable(new_mnt, new.dentry, &root)) goto out4; lock_mount_hash(); umount_mnt(new_mnt); root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */ if (root_mnt->mnt.mnt_flags & MNT_LOCKED) { new_mnt->mnt.mnt_flags |= MNT_LOCKED; root_mnt->mnt.mnt_flags &= ~MNT_LOCKED; } /* mount old root on put_old */ attach_mnt(root_mnt, old_mnt, old_mp); /* mount new_root on / */ attach_mnt(new_mnt, root_parent, root_mp); mnt_add_count(root_parent, -1); touch_mnt_namespace(current->nsproxy->mnt_ns); /* A moved mount should not expire automatically */ list_del_init(&new_mnt->mnt_expire); put_mountpoint(root_mp); unlock_mount_hash(); chroot_fs_refs(&root, &new); error = 0; out4: unlock_mount(old_mp); if (!error) mntput_no_expire(ex_parent); out3: path_put(&root); out2: path_put(&old); out1: path_put(&new); out0: return error; } static void __init init_mount_tree(void) { struct vfsmount *mnt; struct mount *m; struct mnt_namespace *ns; struct path root; mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL); if (IS_ERR(mnt)) panic("Can't create rootfs"); ns = alloc_mnt_ns(&init_user_ns, false); if (IS_ERR(ns)) panic("Can't allocate initial namespace"); m = real_mount(mnt); m->mnt_ns = ns; ns->root = m; ns->mounts = 1; list_add(&m->mnt_list, &ns->list); init_task.nsproxy->mnt_ns = ns; get_mnt_ns(ns); root.mnt = mnt; root.dentry = mnt->mnt_root; mnt->mnt_flags |= MNT_LOCKED; set_fs_pwd(current->fs, &root); set_fs_root(current->fs, &root); } void __init mnt_init(void) { int err; mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); mount_hashtable = alloc_large_system_hash("Mount-cache", sizeof(struct hlist_head), mhash_entries, 19, HASH_ZERO, &m_hash_shift, &m_hash_mask, 0, 0); mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache", sizeof(struct hlist_head), mphash_entries, 19, HASH_ZERO, &mp_hash_shift, &mp_hash_mask, 0, 0); if (!mount_hashtable || !mountpoint_hashtable) panic("Failed to allocate mount hash table\n"); kernfs_init(); err = sysfs_init(); if (err) printk(KERN_WARNING "%s: sysfs_init error: %d\n", __func__, err); fs_kobj = kobject_create_and_add("fs", NULL); if (!fs_kobj) printk(KERN_WARNING "%s: kobj create error\n", __func__); shmem_init(); init_rootfs(); init_mount_tree(); } void put_mnt_ns(struct mnt_namespace *ns) { if (!atomic_dec_and_test(&ns->count)) return; drop_collected_mounts(&ns->root->mnt); free_mnt_ns(ns); } struct vfsmount *kern_mount(struct file_system_type *type) { struct vfsmount *mnt; mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL); if (!IS_ERR(mnt)) { /* * it is a longterm mount, don't release mnt until * we unmount before file sys is unregistered */ real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; } return mnt; } EXPORT_SYMBOL_GPL(kern_mount); void kern_unmount(struct vfsmount *mnt) { /* release long term mount so mount point can be released */ if (!IS_ERR_OR_NULL(mnt)) { real_mount(mnt)->mnt_ns = NULL; synchronize_rcu(); /* yecchhh... */ mntput(mnt); } } EXPORT_SYMBOL(kern_unmount); void kern_unmount_array(struct vfsmount *mnt[], unsigned int num) { unsigned int i; for (i = 0; i < num; i++) if (mnt[i]) real_mount(mnt[i])->mnt_ns = NULL; synchronize_rcu_expedited(); for (i = 0; i < num; i++) mntput(mnt[i]); } EXPORT_SYMBOL(kern_unmount_array); bool our_mnt(struct vfsmount *mnt) { return check_mnt(real_mount(mnt)); } bool current_chrooted(void) { /* Does the current process have a non-standard root */ struct path ns_root; struct path fs_root; bool chrooted; /* Find the namespace root */ ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt; ns_root.dentry = ns_root.mnt->mnt_root; path_get(&ns_root); while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root)) ; get_fs_root(current->fs, &fs_root); chrooted = !path_equal(&fs_root, &ns_root); path_put(&fs_root); path_put(&ns_root); return chrooted; } static bool mnt_already_visible(struct mnt_namespace *ns, const struct super_block *sb, int *new_mnt_flags) { int new_flags = *new_mnt_flags; struct mount *mnt; bool visible = false; down_read(&namespace_sem); lock_ns_list(ns); list_for_each_entry(mnt, &ns->list, mnt_list) { struct mount *child; int mnt_flags; if (mnt_is_cursor(mnt)) continue; if (mnt->mnt.mnt_sb->s_type != sb->s_type) continue; /* This mount is not fully visible if it's root directory * is not the root directory of the filesystem. */ if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root) continue; /* A local view of the mount flags */ mnt_flags = mnt->mnt.mnt_flags; /* Don't miss readonly hidden in the superblock flags */ if (sb_rdonly(mnt->mnt.mnt_sb)) mnt_flags |= MNT_LOCK_READONLY; /* Verify the mount flags are equal to or more permissive * than the proposed new mount. */ if ((mnt_flags & MNT_LOCK_READONLY) && !(new_flags & MNT_READONLY)) continue; if ((mnt_flags & MNT_LOCK_ATIME) && ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK))) continue; /* This mount is not fully visible if there are any * locked child mounts that cover anything except for * empty directories. */ list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { struct inode *inode = child->mnt_mountpoint->d_inode; /* Only worry about locked mounts */ if (!(child->mnt.mnt_flags & MNT_LOCKED)) continue; /* Is the directory permanetly empty? */ if (!is_empty_dir_inode(inode)) goto next; } /* Preserve the locked attributes */ *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \ MNT_LOCK_ATIME); visible = true; goto found; next: ; } found: unlock_ns_list(ns); up_read(&namespace_sem); return visible; } static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags) { const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV; struct mnt_namespace *ns = current->nsproxy->mnt_ns; unsigned long s_iflags; if (ns->user_ns == &init_user_ns) return false; /* Can this filesystem be too revealing? */ s_iflags = sb->s_iflags; if (!(s_iflags & SB_I_USERNS_VISIBLE)) return false; if ((s_iflags & required_iflags) != required_iflags) { WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n", required_iflags); return true; } return !mnt_already_visible(ns, sb, new_mnt_flags); } bool mnt_may_suid(struct vfsmount *mnt) { /* * Foreign mounts (accessed via fchdir or through /proc * symlinks) are always treated as if they are nosuid. This * prevents namespaces from trusting potentially unsafe * suid/sgid bits, file caps, or security labels that originate * in other namespaces. */ return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) && current_in_userns(mnt->mnt_sb->s_user_ns); } static struct ns_common *mntns_get(struct task_struct *task) { struct ns_common *ns = NULL; struct nsproxy *nsproxy; task_lock(task); nsproxy = task->nsproxy; if (nsproxy) { ns = &nsproxy->mnt_ns->ns; get_mnt_ns(to_mnt_ns(ns)); } task_unlock(task); return ns; } static void mntns_put(struct ns_common *ns) { put_mnt_ns(to_mnt_ns(ns)); } static int mntns_install(struct nsset *nsset, struct ns_common *ns) { struct nsproxy *nsproxy = nsset->nsproxy; struct fs_struct *fs = nsset->fs; struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns; struct user_namespace *user_ns = nsset->cred->user_ns; struct path root; int err; if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || !ns_capable(user_ns, CAP_SYS_CHROOT) || !ns_capable(user_ns, CAP_SYS_ADMIN)) return -EPERM; if (is_anon_ns(mnt_ns)) return -EINVAL; if (fs->users != 1) return -EINVAL; get_mnt_ns(mnt_ns); old_mnt_ns = nsproxy->mnt_ns; nsproxy->mnt_ns = mnt_ns; /* Find the root */ err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt, "/", LOOKUP_DOWN, &root); if (err) { /* revert to old namespace */ nsproxy->mnt_ns = old_mnt_ns; put_mnt_ns(mnt_ns); return err; } put_mnt_ns(old_mnt_ns); /* Update the pwd and root */ set_fs_pwd(fs, &root); set_fs_root(fs, &root); path_put(&root); return 0; } static struct user_namespace *mntns_owner(struct ns_common *ns) { return to_mnt_ns(ns)->user_ns; } const struct proc_ns_operations mntns_operations = { .name = "mnt", .type = CLONE_NEWNS, .get = mntns_get, .put = mntns_put, .install = mntns_install, .owner = mntns_owner, };
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_UNALIGNED_ACCESS_OK_H #define _LINUX_UNALIGNED_ACCESS_OK_H #include <linux/kernel.h> #include <asm/byteorder.h> static __always_inline u16 get_unaligned_le16(const void *p) { return le16_to_cpup((__le16 *)p); } static __always_inline u32 get_unaligned_le32(const void *p) { return le32_to_cpup((__le32 *)p); } static __always_inline u64 get_unaligned_le64(const void *p) { return le64_to_cpup((__le64 *)p); } static __always_inline u16 get_unaligned_be16(const void *p) { return be16_to_cpup((__be16 *)p); } static __always_inline u32 get_unaligned_be32(const void *p) { return be32_to_cpup((__be32 *)p); } static __always_inline u64 get_unaligned_be64(const void *p) { return be64_to_cpup((__be64 *)p); } static __always_inline void put_unaligned_le16(u16 val, void *p) { *((__le16 *)p) = cpu_to_le16(val); } static __always_inline void put_unaligned_le32(u32 val, void *p) { *((__le32 *)p) = cpu_to_le32(val); } static __always_inline void put_unaligned_le64(u64 val, void *p) { *((__le64 *)p) = cpu_to_le64(val); } static __always_inline void put_unaligned_be16(u16 val, void *p) { *((__be16 *)p) = cpu_to_be16(val); } static __always_inline void put_unaligned_be32(u32 val, void *p) { *((__be32 *)p) = cpu_to_be32(val); } static __always_inline void put_unaligned_be64(u64 val, void *p) { *((__be64 *)p) = cpu_to_be64(val); } #endif /* _LINUX_UNALIGNED_ACCESS_OK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM block #if !defined(_TRACE_BLOCK_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_BLOCK_H #include <linux/blktrace_api.h> #include <linux/blkdev.h> #include <linux/buffer_head.h> #include <linux/tracepoint.h> #define RWBS_LEN 8 DECLARE_EVENT_CLASS(block_buffer, TP_PROTO(struct buffer_head *bh), TP_ARGS(bh), TP_STRUCT__entry ( __field( dev_t, dev ) __field( sector_t, sector ) __field( size_t, size ) ), TP_fast_assign( __entry->dev = bh->b_bdev->bd_dev; __entry->sector = bh->b_blocknr; __entry->size = bh->b_size; ), TP_printk("%d,%d sector=%llu size=%zu", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long long)__entry->sector, __entry->size ) ); /** * block_touch_buffer - mark a buffer accessed * @bh: buffer_head being touched * * Called from touch_buffer(). */ DEFINE_EVENT(block_buffer, block_touch_buffer, TP_PROTO(struct buffer_head *bh), TP_ARGS(bh) ); /** * block_dirty_buffer - mark a buffer dirty * @bh: buffer_head being dirtied * * Called from mark_buffer_dirty(). */ DEFINE_EVENT(block_buffer, block_dirty_buffer, TP_PROTO(struct buffer_head *bh), TP_ARGS(bh) ); /** * block_rq_requeue - place block IO request back on a queue * @q: queue holding operation * @rq: block IO operation request * * The block operation request @rq is being placed back into queue * @q. For some reason the request was not completed and needs to be * put back in the queue. */ TRACE_EVENT(block_rq_requeue, TP_PROTO(struct request_queue *q, struct request *rq), TP_ARGS(q, rq), TP_STRUCT__entry( __field( dev_t, dev ) __field( sector_t, sector ) __field( unsigned int, nr_sector ) __array( char, rwbs, RWBS_LEN ) __dynamic_array( char, cmd, 1 ) ), TP_fast_assign( __entry->dev = rq->rq_disk ? disk_devt(rq->rq_disk) : 0; __entry->sector = blk_rq_trace_sector(rq); __entry->nr_sector = blk_rq_trace_nr_sectors(rq); blk_fill_rwbs(__entry->rwbs, rq->cmd_flags, blk_rq_bytes(rq)); __get_str(cmd)[0] = '\0'; ), TP_printk("%d,%d %s (%s) %llu + %u [%d]", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->rwbs, __get_str(cmd), (unsigned long long)__entry->sector, __entry->nr_sector, 0) ); /** * block_rq_complete - block IO operation completed by device driver * @rq: block operations request * @error: status code * @nr_bytes: number of completed bytes * * The block_rq_complete tracepoint event indicates that some portion * of operation request has been completed by the device driver. If * the @rq->bio is %NULL, then there is absolutely no additional work to * do for the request. If @rq->bio is non-NULL then there is * additional work required to complete the request. */ TRACE_EVENT(block_rq_complete, TP_PROTO(struct request *rq, int error, unsigned int nr_bytes), TP_ARGS(rq, error, nr_bytes), TP_STRUCT__entry( __field( dev_t, dev ) __field( sector_t, sector ) __field( unsigned int, nr_sector ) __field( int, error ) __array( char, rwbs, RWBS_LEN ) __dynamic_array( char, cmd, 1 ) ), TP_fast_assign( __entry->dev = rq->rq_disk ? disk_devt(rq->rq_disk) : 0; __entry->sector = blk_rq_pos(rq); __entry->nr_sector = nr_bytes >> 9; __entry->error = error; blk_fill_rwbs(__entry->rwbs, rq->cmd_flags, nr_bytes); __get_str(cmd)[0] = '\0'; ), TP_printk("%d,%d %s (%s) %llu + %u [%d]", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->rwbs, __get_str(cmd), (unsigned long long)__entry->sector, __entry->nr_sector, __entry->error) ); DECLARE_EVENT_CLASS(block_rq, TP_PROTO(struct request_queue *q, struct request *rq), TP_ARGS(q, rq), TP_STRUCT__entry( __field( dev_t, dev ) __field( sector_t, sector ) __field( unsigned int, nr_sector ) __field( unsigned int, bytes ) __array( char, rwbs, RWBS_LEN ) __array( char, comm, TASK_COMM_LEN ) __dynamic_array( char, cmd, 1 ) ), TP_fast_assign( __entry->dev = rq->rq_disk ? disk_devt(rq->rq_disk) : 0; __entry->sector = blk_rq_trace_sector(rq); __entry->nr_sector = blk_rq_trace_nr_sectors(rq); __entry->bytes = blk_rq_bytes(rq); blk_fill_rwbs(__entry->rwbs, rq->cmd_flags, blk_rq_bytes(rq)); __get_str(cmd)[0] = '\0'; memcpy(__entry->comm, current->comm, TASK_COMM_LEN); ), TP_printk("%d,%d %s %u (%s) %llu + %u [%s]", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->rwbs, __entry->bytes, __get_str(cmd), (unsigned long long)__entry->sector, __entry->nr_sector, __entry->comm) ); /** * block_rq_insert - insert block operation request into queue * @q: target queue * @rq: block IO operation request * * Called immediately before block operation request @rq is inserted * into queue @q. The fields in the operation request @rq struct can * be examined to determine which device and sectors the pending * operation would access. */ DEFINE_EVENT(block_rq, block_rq_insert, TP_PROTO(struct request_queue *q, struct request *rq), TP_ARGS(q, rq) ); /** * block_rq_issue - issue pending block IO request operation to device driver * @q: queue holding operation * @rq: block IO operation operation request * * Called when block operation request @rq from queue @q is sent to a * device driver for processing. */ DEFINE_EVENT(block_rq, block_rq_issue, TP_PROTO(struct request_queue *q, struct request *rq), TP_ARGS(q, rq) ); /** * block_rq_merge - merge request with another one in the elevator * @q: queue holding operation * @rq: block IO operation operation request * * Called when block operation request @rq from queue @q is merged to another * request queued in the elevator. */ DEFINE_EVENT(block_rq, block_rq_merge, TP_PROTO(struct request_queue *q, struct request *rq), TP_ARGS(q, rq) ); /** * block_bio_bounce - used bounce buffer when processing block operation * @q: queue holding the block operation * @bio: block operation * * A bounce buffer was used to handle the block operation @bio in @q. * This occurs when hardware limitations prevent a direct transfer of * data between the @bio data memory area and the IO device. Use of a * bounce buffer requires extra copying of data and decreases * performance. */ TRACE_EVENT(block_bio_bounce, TP_PROTO(struct request_queue *q, struct bio *bio), TP_ARGS(q, bio), TP_STRUCT__entry( __field( dev_t, dev ) __field( sector_t, sector ) __field( unsigned int, nr_sector ) __array( char, rwbs, RWBS_LEN ) __array( char, comm, TASK_COMM_LEN ) ), TP_fast_assign( __entry->dev = bio_dev(bio); __entry->sector = bio->bi_iter.bi_sector; __entry->nr_sector = bio_sectors(bio); blk_fill_rwbs(__entry->rwbs, bio->bi_opf, bio->bi_iter.bi_size); memcpy(__entry->comm, current->comm, TASK_COMM_LEN); ), TP_printk("%d,%d %s %llu + %u [%s]", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->rwbs, (unsigned long long)__entry->sector, __entry->nr_sector, __entry->comm) ); /** * block_bio_complete - completed all work on the block operation * @q: queue holding the block operation * @bio: block operation completed * * This tracepoint indicates there is no further work to do on this * block IO operation @bio. */ TRACE_EVENT(block_bio_complete, TP_PROTO(struct request_queue *q, struct bio *bio), TP_ARGS(q, bio), TP_STRUCT__entry( __field( dev_t, dev ) __field( sector_t, sector ) __field( unsigned, nr_sector ) __field( int, error ) __array( char, rwbs, RWBS_LEN) ), TP_fast_assign( __entry->dev = bio_dev(bio); __entry->sector = bio->bi_iter.bi_sector; __entry->nr_sector = bio_sectors(bio); __entry->error = blk_status_to_errno(bio->bi_status); blk_fill_rwbs(__entry->rwbs, bio->bi_opf, bio->bi_iter.bi_size); ), TP_printk("%d,%d %s %llu + %u [%d]", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->rwbs, (unsigned long long)__entry->sector, __entry->nr_sector, __entry->error) ); DECLARE_EVENT_CLASS(block_bio_merge, TP_PROTO(struct request_queue *q, struct request *rq, struct bio *bio), TP_ARGS(q, rq, bio), TP_STRUCT__entry( __field( dev_t, dev ) __field( sector_t, sector ) __field( unsigned int, nr_sector ) __array( char, rwbs, RWBS_LEN ) __array( char, comm, TASK_COMM_LEN ) ), TP_fast_assign( __entry->dev = bio_dev(bio); __entry->sector = bio->bi_iter.bi_sector; __entry->nr_sector = bio_sectors(bio); blk_fill_rwbs(__entry->rwbs, bio->bi_opf, bio->bi_iter.bi_size); memcpy(__entry->comm, current->comm, TASK_COMM_LEN); ), TP_printk("%d,%d %s %llu + %u [%s]", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->rwbs, (unsigned long long)__entry->sector, __entry->nr_sector, __entry->comm) ); /** * block_bio_backmerge - merging block operation to the end of an existing operation * @q: queue holding operation * @rq: request bio is being merged into * @bio: new block operation to merge * * Merging block request @bio to the end of an existing block request * in queue @q. */ DEFINE_EVENT(block_bio_merge, block_bio_backmerge, TP_PROTO(struct request_queue *q, struct request *rq, struct bio *bio), TP_ARGS(q, rq, bio) ); /** * block_bio_frontmerge - merging block operation to the beginning of an existing operation * @q: queue holding operation * @rq: request bio is being merged into * @bio: new block operation to merge * * Merging block IO operation @bio to the beginning of an existing block * operation in queue @q. */ DEFINE_EVENT(block_bio_merge, block_bio_frontmerge, TP_PROTO(struct request_queue *q, struct request *rq, struct bio *bio), TP_ARGS(q, rq, bio) ); /** * block_bio_queue - putting new block IO operation in queue * @q: queue holding operation * @bio: new block operation * * About to place the block IO operation @bio into queue @q. */ TRACE_EVENT(block_bio_queue, TP_PROTO(struct request_queue *q, struct bio *bio), TP_ARGS(q, bio), TP_STRUCT__entry( __field( dev_t, dev ) __field( sector_t, sector ) __field( unsigned int, nr_sector ) __array( char, rwbs, RWBS_LEN ) __array( char, comm, TASK_COMM_LEN ) ), TP_fast_assign( __entry->dev = bio_dev(bio); __entry->sector = bio->bi_iter.bi_sector; __entry->nr_sector = bio_sectors(bio); blk_fill_rwbs(__entry->rwbs, bio->bi_opf, bio->bi_iter.bi_size); memcpy(__entry->comm, current->comm, TASK_COMM_LEN); ), TP_printk("%d,%d %s %llu + %u [%s]", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->rwbs, (unsigned long long)__entry->sector, __entry->nr_sector, __entry->comm) ); DECLARE_EVENT_CLASS(block_get_rq, TP_PROTO(struct request_queue *q, struct bio *bio, int rw), TP_ARGS(q, bio, rw), TP_STRUCT__entry( __field( dev_t, dev ) __field( sector_t, sector ) __field( unsigned int, nr_sector ) __array( char, rwbs, RWBS_LEN ) __array( char, comm, TASK_COMM_LEN ) ), TP_fast_assign( __entry->dev = bio ? bio_dev(bio) : 0; __entry->sector = bio ? bio->bi_iter.bi_sector : 0; __entry->nr_sector = bio ? bio_sectors(bio) : 0; blk_fill_rwbs(__entry->rwbs, bio ? bio->bi_opf : 0, __entry->nr_sector); memcpy(__entry->comm, current->comm, TASK_COMM_LEN); ), TP_printk("%d,%d %s %llu + %u [%s]", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->rwbs, (unsigned long long)__entry->sector, __entry->nr_sector, __entry->comm) ); /** * block_getrq - get a free request entry in queue for block IO operations * @q: queue for operations * @bio: pending block IO operation (can be %NULL) * @rw: low bit indicates a read (%0) or a write (%1) * * A request struct for queue @q has been allocated to handle the * block IO operation @bio. */ DEFINE_EVENT(block_get_rq, block_getrq, TP_PROTO(struct request_queue *q, struct bio *bio, int rw), TP_ARGS(q, bio, rw) ); /** * block_sleeprq - waiting to get a free request entry in queue for block IO operation * @q: queue for operation * @bio: pending block IO operation (can be %NULL) * @rw: low bit indicates a read (%0) or a write (%1) * * In the case where a request struct cannot be provided for queue @q * the process needs to wait for an request struct to become * available. This tracepoint event is generated each time the * process goes to sleep waiting for request struct become available. */ DEFINE_EVENT(block_get_rq, block_sleeprq, TP_PROTO(struct request_queue *q, struct bio *bio, int rw), TP_ARGS(q, bio, rw) ); /** * block_plug - keep operations requests in request queue * @q: request queue to plug * * Plug the request queue @q. Do not allow block operation requests * to be sent to the device driver. Instead, accumulate requests in * the queue to improve throughput performance of the block device. */ TRACE_EVENT(block_plug, TP_PROTO(struct request_queue *q), TP_ARGS(q), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) ), TP_fast_assign( memcpy(__entry->comm, current->comm, TASK_COMM_LEN); ), TP_printk("[%s]", __entry->comm) ); DECLARE_EVENT_CLASS(block_unplug, TP_PROTO(struct request_queue *q, unsigned int depth, bool explicit), TP_ARGS(q, depth, explicit), TP_STRUCT__entry( __field( int, nr_rq ) __array( char, comm, TASK_COMM_LEN ) ), TP_fast_assign( __entry->nr_rq = depth; memcpy(__entry->comm, current->comm, TASK_COMM_LEN); ), TP_printk("[%s] %d", __entry->comm, __entry->nr_rq) ); /** * block_unplug - release of operations requests in request queue * @q: request queue to unplug * @depth: number of requests just added to the queue * @explicit: whether this was an explicit unplug, or one from schedule() * * Unplug request queue @q because device driver is scheduled to work * on elements in the request queue. */ DEFINE_EVENT(block_unplug, block_unplug, TP_PROTO(struct request_queue *q, unsigned int depth, bool explicit), TP_ARGS(q, depth, explicit) ); /** * block_split - split a single bio struct into two bio structs * @q: queue containing the bio * @bio: block operation being split * @new_sector: The starting sector for the new bio * * The bio request @bio in request queue @q needs to be split into two * bio requests. The newly created @bio request starts at * @new_sector. This split may be required due to hardware limitation * such as operation crossing device boundaries in a RAID system. */ TRACE_EVENT(block_split, TP_PROTO(struct request_queue *q, struct bio *bio, unsigned int new_sector), TP_ARGS(q, bio, new_sector), TP_STRUCT__entry( __field( dev_t, dev ) __field( sector_t, sector ) __field( sector_t, new_sector ) __array( char, rwbs, RWBS_LEN ) __array( char, comm, TASK_COMM_LEN ) ), TP_fast_assign( __entry->dev = bio_dev(bio); __entry->sector = bio->bi_iter.bi_sector; __entry->new_sector = new_sector; blk_fill_rwbs(__entry->rwbs, bio->bi_opf, bio->bi_iter.bi_size); memcpy(__entry->comm, current->comm, TASK_COMM_LEN); ), TP_printk("%d,%d %s %llu / %llu [%s]", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->rwbs, (unsigned long long)__entry->sector, (unsigned long long)__entry->new_sector, __entry->comm) ); /** * block_bio_remap - map request for a logical device to the raw device * @q: queue holding the operation * @bio: revised operation * @dev: device for the operation * @from: original sector for the operation * * An operation for a logical device has been mapped to the * raw block device. */ TRACE_EVENT(block_bio_remap, TP_PROTO(struct request_queue *q, struct bio *bio, dev_t dev, sector_t from), TP_ARGS(q, bio, dev, from), TP_STRUCT__entry( __field( dev_t, dev ) __field( sector_t, sector ) __field( unsigned int, nr_sector ) __field( dev_t, old_dev ) __field( sector_t, old_sector ) __array( char, rwbs, RWBS_LEN) ), TP_fast_assign( __entry->dev = bio_dev(bio); __entry->sector = bio->bi_iter.bi_sector; __entry->nr_sector = bio_sectors(bio); __entry->old_dev = dev; __entry->old_sector = from; blk_fill_rwbs(__entry->rwbs, bio->bi_opf, bio->bi_iter.bi_size); ), TP_printk("%d,%d %s %llu + %u <- (%d,%d) %llu", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->rwbs, (unsigned long long)__entry->sector, __entry->nr_sector, MAJOR(__entry->old_dev), MINOR(__entry->old_dev), (unsigned long long)__entry->old_sector) ); /** * block_rq_remap - map request for a block operation request * @q: queue holding the operation * @rq: block IO operation request * @dev: device for the operation * @from: original sector for the operation * * The block operation request @rq in @q has been remapped. The block * operation request @rq holds the current information and @from hold * the original sector. */ TRACE_EVENT(block_rq_remap, TP_PROTO(struct request_queue *q, struct request *rq, dev_t dev, sector_t from), TP_ARGS(q, rq, dev, from), TP_STRUCT__entry( __field( dev_t, dev ) __field( sector_t, sector ) __field( unsigned int, nr_sector ) __field( dev_t, old_dev ) __field( sector_t, old_sector ) __field( unsigned int, nr_bios ) __array( char, rwbs, RWBS_LEN) ), TP_fast_assign( __entry->dev = disk_devt(rq->rq_disk); __entry->sector = blk_rq_pos(rq); __entry->nr_sector = blk_rq_sectors(rq); __entry->old_dev = dev; __entry->old_sector = from; __entry->nr_bios = blk_rq_count_bios(rq); blk_fill_rwbs(__entry->rwbs, rq->cmd_flags, blk_rq_bytes(rq)); ), TP_printk("%d,%d %s %llu + %u <- (%d,%d) %llu %u", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->rwbs, (unsigned long long)__entry->sector, __entry->nr_sector, MAJOR(__entry->old_dev), MINOR(__entry->old_dev), (unsigned long long)__entry->old_sector, __entry->nr_bios) ); #endif /* _TRACE_BLOCK_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 /* SPDX-License-Identifier: GPL-2.0 */ /* File: linux/xattr.h Extended attributes handling. Copyright (C) 2001 by Andreas Gruenbacher <a.gruenbacher@computer.org> Copyright (c) 2001-2002 Silicon Graphics, Inc. All Rights Reserved. Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> */ #ifndef _LINUX_XATTR_H #define _LINUX_XATTR_H #include <linux/slab.h> #include <linux/types.h> #include <linux/spinlock.h> #include <linux/mm.h> #include <uapi/linux/xattr.h> struct inode; struct dentry; /* * struct xattr_handler: When @name is set, match attributes with exactly that * name. When @prefix is set instead, match attributes with that prefix and * with a non-empty suffix. */ struct xattr_handler { const char *name; const char *prefix; int flags; /* fs private flags */ bool (*list)(struct dentry *dentry); int (*get)(const struct xattr_handler *, struct dentry *dentry, struct inode *inode, const char *name, void *buffer, size_t size); int (*set)(const struct xattr_handler *, struct dentry *dentry, struct inode *inode, const char *name, const void *buffer, size_t size, int flags); }; const char *xattr_full_name(const struct xattr_handler *, const char *); struct xattr { const char *name; void *value; size_t value_len; }; ssize_t __vfs_getxattr(struct dentry *, struct inode *, const char *, void *, size_t); ssize_t vfs_getxattr(struct dentry *, const char *, void *, size_t); ssize_t vfs_listxattr(struct dentry *d, char *list, size_t size); int __vfs_setxattr(struct dentry *, struct inode *, const char *, const void *, size_t, int); int __vfs_setxattr_noperm(struct dentry *, const char *, const void *, size_t, int); int __vfs_setxattr_locked(struct dentry *, const char *, const void *, size_t, int, struct inode **); int vfs_setxattr(struct dentry *, const char *, const void *, size_t, int); int __vfs_removexattr(struct dentry *, const char *); int __vfs_removexattr_locked(struct dentry *, const char *, struct inode **); int vfs_removexattr(struct dentry *, const char *); ssize_t generic_listxattr(struct dentry *dentry, char *buffer, size_t buffer_size); ssize_t vfs_getxattr_alloc(struct dentry *dentry, const char *name, char **xattr_value, size_t size, gfp_t flags); int xattr_supported_namespace(struct inode *inode, const char *prefix); static inline const char *xattr_prefix(const struct xattr_handler *handler) { return handler->prefix ?: handler->name; } struct simple_xattrs { struct list_head head; spinlock_t lock; }; struct simple_xattr { struct list_head list; char *name; size_t size; char value[]; }; /* * initialize the simple_xattrs structure */ static inline void simple_xattrs_init(struct simple_xattrs *xattrs) { INIT_LIST_HEAD(&xattrs->head); spin_lock_init(&xattrs->lock); } /* * free all the xattrs */ static inline void simple_xattrs_free(struct simple_xattrs *xattrs) { struct simple_xattr *xattr, *node; list_for_each_entry_safe(xattr, node, &xattrs->head, list) { kfree(xattr->name); kvfree(xattr); } } struct simple_xattr *simple_xattr_alloc(const void *value, size_t size); int simple_xattr_get(struct simple_xattrs *xattrs, const char *name, void *buffer, size_t size); int simple_xattr_set(struct simple_xattrs *xattrs, const char *name, const void *value, size_t size, int flags, ssize_t *removed_size); ssize_t simple_xattr_list(struct inode *inode, struct simple_xattrs *xattrs, char *buffer, size_t size); void simple_xattr_list_add(struct simple_xattrs *xattrs, struct simple_xattr *new_xattr); #endif /* _LINUX_XATTR_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 /* * Performance events x86 architecture header * * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar * Copyright (C) 2009 Jaswinder Singh Rajput * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com> * Copyright (C) 2009 Google, Inc., Stephane Eranian * * For licencing details see kernel-base/COPYING */ #include <linux/perf_event.h> #include <asm/intel_ds.h> /* To enable MSR tracing please use the generic trace points. */ /* * | NHM/WSM | SNB | * register ------------------------------- * | HT | no HT | HT | no HT | *----------------------------------------- * offcore | core | core | cpu | core | * lbr_sel | core | core | cpu | core | * ld_lat | cpu | core | cpu | core | *----------------------------------------- * * Given that there is a small number of shared regs, * we can pre-allocate their slot in the per-cpu * per-core reg tables. */ enum extra_reg_type { EXTRA_REG_NONE = -1, /* not used */ EXTRA_REG_RSP_0 = 0, /* offcore_response_0 */ EXTRA_REG_RSP_1 = 1, /* offcore_response_1 */ EXTRA_REG_LBR = 2, /* lbr_select */ EXTRA_REG_LDLAT = 3, /* ld_lat_threshold */ EXTRA_REG_FE = 4, /* fe_* */ EXTRA_REG_MAX /* number of entries needed */ }; struct event_constraint { union { unsigned long idxmsk[BITS_TO_LONGS(X86_PMC_IDX_MAX)]; u64 idxmsk64; }; u64 code; u64 cmask; int weight; int overlap; int flags; unsigned int size; }; static inline bool constraint_match(struct event_constraint *c, u64 ecode) { return ((ecode & c->cmask) - c->code) <= (u64)c->size; } /* * struct hw_perf_event.flags flags */ #define PERF_X86_EVENT_PEBS_LDLAT 0x0001 /* ld+ldlat data address sampling */ #define PERF_X86_EVENT_PEBS_ST 0x0002 /* st data address sampling */ #define PERF_X86_EVENT_PEBS_ST_HSW 0x0004 /* haswell style datala, store */ #define PERF_X86_EVENT_PEBS_LD_HSW 0x0008 /* haswell style datala, load */ #define PERF_X86_EVENT_PEBS_NA_HSW 0x0010 /* haswell style datala, unknown */ #define PERF_X86_EVENT_EXCL 0x0020 /* HT exclusivity on counter */ #define PERF_X86_EVENT_DYNAMIC 0x0040 /* dynamic alloc'd constraint */ #define PERF_X86_EVENT_RDPMC_ALLOWED 0x0080 /* grant rdpmc permission */ #define PERF_X86_EVENT_EXCL_ACCT 0x0100 /* accounted EXCL event */ #define PERF_X86_EVENT_AUTO_RELOAD 0x0200 /* use PEBS auto-reload */ #define PERF_X86_EVENT_LARGE_PEBS 0x0400 /* use large PEBS */ #define PERF_X86_EVENT_PEBS_VIA_PT 0x0800 /* use PT buffer for PEBS */ #define PERF_X86_EVENT_PAIR 0x1000 /* Large Increment per Cycle */ #define PERF_X86_EVENT_LBR_SELECT 0x2000 /* Save/Restore MSR_LBR_SELECT */ #define PERF_X86_EVENT_TOPDOWN 0x4000 /* Count Topdown slots/metrics events */ static inline bool is_topdown_count(struct perf_event *event) { return event->hw.flags & PERF_X86_EVENT_TOPDOWN; } static inline bool is_metric_event(struct perf_event *event) { u64 config = event->attr.config; return ((config & ARCH_PERFMON_EVENTSEL_EVENT) == 0) && ((config & INTEL_ARCH_EVENT_MASK) >= INTEL_TD_METRIC_RETIRING) && ((config & INTEL_ARCH_EVENT_MASK) <= INTEL_TD_METRIC_MAX); } static inline bool is_slots_event(struct perf_event *event) { return (event->attr.config & INTEL_ARCH_EVENT_MASK) == INTEL_TD_SLOTS; } static inline bool is_topdown_event(struct perf_event *event) { return is_metric_event(event) || is_slots_event(event); } struct amd_nb { int nb_id; /* NorthBridge id */ int refcnt; /* reference count */ struct perf_event *owners[X86_PMC_IDX_MAX]; struct event_constraint event_constraints[X86_PMC_IDX_MAX]; }; #define PEBS_COUNTER_MASK ((1ULL << MAX_PEBS_EVENTS) - 1) #define PEBS_PMI_AFTER_EACH_RECORD BIT_ULL(60) #define PEBS_OUTPUT_OFFSET 61 #define PEBS_OUTPUT_MASK (3ull << PEBS_OUTPUT_OFFSET) #define PEBS_OUTPUT_PT (1ull << PEBS_OUTPUT_OFFSET) #define PEBS_VIA_PT_MASK (PEBS_OUTPUT_PT | PEBS_PMI_AFTER_EACH_RECORD) /* * Flags PEBS can handle without an PMI. * * TID can only be handled by flushing at context switch. * REGS_USER can be handled for events limited to ring 3. * */ #define LARGE_PEBS_FLAGS \ (PERF_SAMPLE_IP | PERF_SAMPLE_TID | PERF_SAMPLE_ADDR | \ PERF_SAMPLE_ID | PERF_SAMPLE_CPU | PERF_SAMPLE_STREAM_ID | \ PERF_SAMPLE_DATA_SRC | PERF_SAMPLE_IDENTIFIER | \ PERF_SAMPLE_TRANSACTION | PERF_SAMPLE_PHYS_ADDR | \ PERF_SAMPLE_REGS_INTR | PERF_SAMPLE_REGS_USER | \ PERF_SAMPLE_PERIOD) #define PEBS_GP_REGS \ ((1ULL << PERF_REG_X86_AX) | \ (1ULL << PERF_REG_X86_BX) | \ (1ULL << PERF_REG_X86_CX) | \ (1ULL << PERF_REG_X86_DX) | \ (1ULL << PERF_REG_X86_DI) | \ (1ULL << PERF_REG_X86_SI) | \ (1ULL << PERF_REG_X86_SP) | \ (1ULL << PERF_REG_X86_BP) | \ (1ULL << PERF_REG_X86_IP) | \ (1ULL << PERF_REG_X86_FLAGS) | \ (1ULL << PERF_REG_X86_R8) | \ (1ULL << PERF_REG_X86_R9) | \ (1ULL << PERF_REG_X86_R10) | \ (1ULL << PERF_REG_X86_R11) | \ (1ULL << PERF_REG_X86_R12) | \ (1ULL << PERF_REG_X86_R13) | \ (1ULL << PERF_REG_X86_R14) | \ (1ULL << PERF_REG_X86_R15)) /* * Per register state. */ struct er_account { raw_spinlock_t lock; /* per-core: protect structure */ u64 config; /* extra MSR config */ u64 reg; /* extra MSR number */ atomic_t ref; /* reference count */ }; /* * Per core/cpu state * * Used to coordinate shared registers between HT threads or * among events on a single PMU. */ struct intel_shared_regs { struct er_account regs[EXTRA_REG_MAX]; int refcnt; /* per-core: #HT threads */ unsigned core_id; /* per-core: core id */ }; enum intel_excl_state_type { INTEL_EXCL_UNUSED = 0, /* counter is unused */ INTEL_EXCL_SHARED = 1, /* counter can be used by both threads */ INTEL_EXCL_EXCLUSIVE = 2, /* counter can be used by one thread only */ }; struct intel_excl_states { enum intel_excl_state_type state[X86_PMC_IDX_MAX]; bool sched_started; /* true if scheduling has started */ }; struct intel_excl_cntrs { raw_spinlock_t lock; struct intel_excl_states states[2]; union { u16 has_exclusive[2]; u32 exclusive_present; }; int refcnt; /* per-core: #HT threads */ unsigned core_id; /* per-core: core id */ }; struct x86_perf_task_context; #define MAX_LBR_ENTRIES 32 enum { LBR_FORMAT_32 = 0x00, LBR_FORMAT_LIP = 0x01, LBR_FORMAT_EIP = 0x02, LBR_FORMAT_EIP_FLAGS = 0x03, LBR_FORMAT_EIP_FLAGS2 = 0x04, LBR_FORMAT_INFO = 0x05, LBR_FORMAT_TIME = 0x06, LBR_FORMAT_MAX_KNOWN = LBR_FORMAT_TIME, }; enum { X86_PERF_KFREE_SHARED = 0, X86_PERF_KFREE_EXCL = 1, X86_PERF_KFREE_MAX }; struct cpu_hw_events { /* * Generic x86 PMC bits */ struct perf_event *events[X86_PMC_IDX_MAX]; /* in counter order */ unsigned long active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)]; unsigned long running[BITS_TO_LONGS(X86_PMC_IDX_MAX)]; int enabled; int n_events; /* the # of events in the below arrays */ int n_added; /* the # last events in the below arrays; they've never been enabled yet */ int n_txn; /* the # last events in the below arrays; added in the current transaction */ int n_txn_pair; int n_txn_metric; int assign[X86_PMC_IDX_MAX]; /* event to counter assignment */ u64 tags[X86_PMC_IDX_MAX]; struct perf_event *event_list[X86_PMC_IDX_MAX]; /* in enabled order */ struct event_constraint *event_constraint[X86_PMC_IDX_MAX]; int n_excl; /* the number of exclusive events */ unsigned int txn_flags; int is_fake; /* * Intel DebugStore bits */ struct debug_store *ds; void *ds_pebs_vaddr; void *ds_bts_vaddr; u64 pebs_enabled; int n_pebs; int n_large_pebs; int n_pebs_via_pt; int pebs_output; /* Current super set of events hardware configuration */ u64 pebs_data_cfg; u64 active_pebs_data_cfg; int pebs_record_size; /* * Intel LBR bits */ int lbr_users; int lbr_pebs_users; struct perf_branch_stack lbr_stack; struct perf_branch_entry lbr_entries[MAX_LBR_ENTRIES]; union { struct er_account *lbr_sel; struct er_account *lbr_ctl; }; u64 br_sel; void *last_task_ctx; int last_log_id; int lbr_select; void *lbr_xsave; /* * Intel host/guest exclude bits */ u64 intel_ctrl_guest_mask; u64 intel_ctrl_host_mask; struct perf_guest_switch_msr guest_switch_msrs[X86_PMC_IDX_MAX]; /* * Intel checkpoint mask */ u64 intel_cp_status; /* * manage shared (per-core, per-cpu) registers * used on Intel NHM/WSM/SNB */ struct intel_shared_regs *shared_regs; /* * manage exclusive counter access between hyperthread */ struct event_constraint *constraint_list; /* in enable order */ struct intel_excl_cntrs *excl_cntrs; int excl_thread_id; /* 0 or 1 */ /* * SKL TSX_FORCE_ABORT shadow */ u64 tfa_shadow; /* * Perf Metrics */ /* number of accepted metrics events */ int n_metric; /* * AMD specific bits */ struct amd_nb *amd_nb; /* Inverted mask of bits to clear in the perf_ctr ctrl registers */ u64 perf_ctr_virt_mask; int n_pair; /* Large increment events */ void *kfree_on_online[X86_PERF_KFREE_MAX]; struct pmu *pmu; }; #define __EVENT_CONSTRAINT_RANGE(c, e, n, m, w, o, f) { \ { .idxmsk64 = (n) }, \ .code = (c), \ .size = (e) - (c), \ .cmask = (m), \ .weight = (w), \ .overlap = (o), \ .flags = f, \ } #define __EVENT_CONSTRAINT(c, n, m, w, o, f) \ __EVENT_CONSTRAINT_RANGE(c, c, n, m, w, o, f) #define EVENT_CONSTRAINT(c, n, m) \ __EVENT_CONSTRAINT(c, n, m, HWEIGHT(n), 0, 0) /* * The constraint_match() function only works for 'simple' event codes * and not for extended (AMD64_EVENTSEL_EVENT) events codes. */ #define EVENT_CONSTRAINT_RANGE(c, e, n, m) \ __EVENT_CONSTRAINT_RANGE(c, e, n, m, HWEIGHT(n), 0, 0) #define INTEL_EXCLEVT_CONSTRAINT(c, n) \ __EVENT_CONSTRAINT(c, n, ARCH_PERFMON_EVENTSEL_EVENT, HWEIGHT(n),\ 0, PERF_X86_EVENT_EXCL) /* * The overlap flag marks event constraints with overlapping counter * masks. This is the case if the counter mask of such an event is not * a subset of any other counter mask of a constraint with an equal or * higher weight, e.g.: * * c_overlaps = EVENT_CONSTRAINT_OVERLAP(0, 0x09, 0); * c_another1 = EVENT_CONSTRAINT(0, 0x07, 0); * c_another2 = EVENT_CONSTRAINT(0, 0x38, 0); * * The event scheduler may not select the correct counter in the first * cycle because it needs to know which subsequent events will be * scheduled. It may fail to schedule the events then. So we set the * overlap flag for such constraints to give the scheduler a hint which * events to select for counter rescheduling. * * Care must be taken as the rescheduling algorithm is O(n!) which * will increase scheduling cycles for an over-committed system * dramatically. The number of such EVENT_CONSTRAINT_OVERLAP() macros * and its counter masks must be kept at a minimum. */ #define EVENT_CONSTRAINT_OVERLAP(c, n, m) \ __EVENT_CONSTRAINT(c, n, m, HWEIGHT(n), 1, 0) /* * Constraint on the Event code. */ #define INTEL_EVENT_CONSTRAINT(c, n) \ EVENT_CONSTRAINT(c, n, ARCH_PERFMON_EVENTSEL_EVENT) /* * Constraint on a range of Event codes */ #define INTEL_EVENT_CONSTRAINT_RANGE(c, e, n) \ EVENT_CONSTRAINT_RANGE(c, e, n, ARCH_PERFMON_EVENTSEL_EVENT) /* * Constraint on the Event code + UMask + fixed-mask * * filter mask to validate fixed counter events. * the following filters disqualify for fixed counters: * - inv * - edge * - cnt-mask * - in_tx * - in_tx_checkpointed * The other filters are supported by fixed counters. * The any-thread option is supported starting with v3. */ #define FIXED_EVENT_FLAGS (X86_RAW_EVENT_MASK|HSW_IN_TX|HSW_IN_TX_CHECKPOINTED) #define FIXED_EVENT_CONSTRAINT(c, n) \ EVENT_CONSTRAINT(c, (1ULL << (32+n)), FIXED_EVENT_FLAGS) /* * The special metric counters do not actually exist. They are calculated from * the combination of the FxCtr3 + MSR_PERF_METRICS. * * The special metric counters are mapped to a dummy offset for the scheduler. * The sharing between multiple users of the same metric without multiplexing * is not allowed, even though the hardware supports that in principle. */ #define METRIC_EVENT_CONSTRAINT(c, n) \ EVENT_CONSTRAINT(c, (1ULL << (INTEL_PMC_IDX_METRIC_BASE + n)), \ INTEL_ARCH_EVENT_MASK) /* * Constraint on the Event code + UMask */ #define INTEL_UEVENT_CONSTRAINT(c, n) \ EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK) /* Constraint on specific umask bit only + event */ #define INTEL_UBIT_EVENT_CONSTRAINT(c, n) \ EVENT_CONSTRAINT(c, n, ARCH_PERFMON_EVENTSEL_EVENT|(c)) /* Like UEVENT_CONSTRAINT, but match flags too */ #define INTEL_FLAGS_UEVENT_CONSTRAINT(c, n) \ EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS) #define INTEL_EXCLUEVT_CONSTRAINT(c, n) \ __EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK, \ HWEIGHT(n), 0, PERF_X86_EVENT_EXCL) #define INTEL_PLD_CONSTRAINT(c, n) \ __EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \ HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_LDLAT) #define INTEL_PST_CONSTRAINT(c, n) \ __EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \ HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_ST) /* Event constraint, but match on all event flags too. */ #define INTEL_FLAGS_EVENT_CONSTRAINT(c, n) \ EVENT_CONSTRAINT(c, n, ARCH_PERFMON_EVENTSEL_EVENT|X86_ALL_EVENT_FLAGS) #define INTEL_FLAGS_EVENT_CONSTRAINT_RANGE(c, e, n) \ EVENT_CONSTRAINT_RANGE(c, e, n, ARCH_PERFMON_EVENTSEL_EVENT|X86_ALL_EVENT_FLAGS) /* Check only flags, but allow all event/umask */ #define INTEL_ALL_EVENT_CONSTRAINT(code, n) \ EVENT_CONSTRAINT(code, n, X86_ALL_EVENT_FLAGS) /* Check flags and event code, and set the HSW store flag */ #define INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_ST(code, n) \ __EVENT_CONSTRAINT(code, n, \ ARCH_PERFMON_EVENTSEL_EVENT|X86_ALL_EVENT_FLAGS, \ HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_ST_HSW) /* Check flags and event code, and set the HSW load flag */ #define INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(code, n) \ __EVENT_CONSTRAINT(code, n, \ ARCH_PERFMON_EVENTSEL_EVENT|X86_ALL_EVENT_FLAGS, \ HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_LD_HSW) #define INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(code, end, n) \ __EVENT_CONSTRAINT_RANGE(code, end, n, \ ARCH_PERFMON_EVENTSEL_EVENT|X86_ALL_EVENT_FLAGS, \ HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_LD_HSW) #define INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(code, n) \ __EVENT_CONSTRAINT(code, n, \ ARCH_PERFMON_EVENTSEL_EVENT|X86_ALL_EVENT_FLAGS, \ HWEIGHT(n), 0, \ PERF_X86_EVENT_PEBS_LD_HSW|PERF_X86_EVENT_EXCL) /* Check flags and event code/umask, and set the HSW store flag */ #define INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(code, n) \ __EVENT_CONSTRAINT(code, n, \ INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \ HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_ST_HSW) #define INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(code, n) \ __EVENT_CONSTRAINT(code, n, \ INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \ HWEIGHT(n), 0, \ PERF_X86_EVENT_PEBS_ST_HSW|PERF_X86_EVENT_EXCL) /* Check flags and event code/umask, and set the HSW load flag */ #define INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(code, n) \ __EVENT_CONSTRAINT(code, n, \ INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \ HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_LD_HSW) #define INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(code, n) \ __EVENT_CONSTRAINT(code, n, \ INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \ HWEIGHT(n), 0, \ PERF_X86_EVENT_PEBS_LD_HSW|PERF_X86_EVENT_EXCL) /* Check flags and event code/umask, and set the HSW N/A flag */ #define INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(code, n) \ __EVENT_CONSTRAINT(code, n, \ INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \ HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_NA_HSW) /* * We define the end marker as having a weight of -1 * to enable blacklisting of events using a counter bitmask * of zero and thus a weight of zero. * The end marker has a weight that cannot possibly be * obtained from counting the bits in the bitmask. */ #define EVENT_CONSTRAINT_END { .weight = -1 } /* * Check for end marker with weight == -1 */ #define for_each_event_constraint(e, c) \ for ((e) = (c); (e)->weight != -1; (e)++) /* * Extra registers for specific events. * * Some events need large masks and require external MSRs. * Those extra MSRs end up being shared for all events on * a PMU and sometimes between PMU of sibling HT threads. * In either case, the kernel needs to handle conflicting * accesses to those extra, shared, regs. The data structure * to manage those registers is stored in cpu_hw_event. */ struct extra_reg { unsigned int event; unsigned int msr; u64 config_mask; u64 valid_mask; int idx; /* per_xxx->regs[] reg index */ bool extra_msr_access; }; #define EVENT_EXTRA_REG(e, ms, m, vm, i) { \ .event = (e), \ .msr = (ms), \ .config_mask = (m), \ .valid_mask = (vm), \ .idx = EXTRA_REG_##i, \ .extra_msr_access = true, \ } #define INTEL_EVENT_EXTRA_REG(event, msr, vm, idx) \ EVENT_EXTRA_REG(event, msr, ARCH_PERFMON_EVENTSEL_EVENT, vm, idx) #define INTEL_UEVENT_EXTRA_REG(event, msr, vm, idx) \ EVENT_EXTRA_REG(event, msr, ARCH_PERFMON_EVENTSEL_EVENT | \ ARCH_PERFMON_EVENTSEL_UMASK, vm, idx) #define INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(c) \ INTEL_UEVENT_EXTRA_REG(c, \ MSR_PEBS_LD_LAT_THRESHOLD, \ 0xffff, \ LDLAT) #define EVENT_EXTRA_END EVENT_EXTRA_REG(0, 0, 0, 0, RSP_0) union perf_capabilities { struct { u64 lbr_format:6; u64 pebs_trap:1; u64 pebs_arch_reg:1; u64 pebs_format:4; u64 smm_freeze:1; /* * PMU supports separate counter range for writing * values > 32bit. */ u64 full_width_write:1; u64 pebs_baseline:1; u64 perf_metrics:1; u64 pebs_output_pt_available:1; u64 anythread_deprecated:1; }; u64 capabilities; }; struct x86_pmu_quirk { struct x86_pmu_quirk *next; void (*func)(void); }; union x86_pmu_config { struct { u64 event:8, umask:8, usr:1, os:1, edge:1, pc:1, interrupt:1, __reserved1:1, en:1, inv:1, cmask:8, event2:4, __reserved2:4, go:1, ho:1; } bits; u64 value; }; #define X86_CONFIG(args...) ((union x86_pmu_config){.bits = {args}}).value enum { x86_lbr_exclusive_lbr, x86_lbr_exclusive_bts, x86_lbr_exclusive_pt, x86_lbr_exclusive_max, }; /* * struct x86_pmu - generic x86 pmu */ struct x86_pmu { /* * Generic x86 PMC bits */ const char *name; int version; int (*handle_irq)(struct pt_regs *); void (*disable_all)(void); void (*enable_all)(int added); void (*enable)(struct perf_event *); void (*disable)(struct perf_event *); void (*add)(struct perf_event *); void (*del)(struct perf_event *); void (*read)(struct perf_event *event); int (*hw_config)(struct perf_event *event); int (*schedule_events)(struct cpu_hw_events *cpuc, int n, int *assign); unsigned eventsel; unsigned perfctr; int (*addr_offset)(int index, bool eventsel); int (*rdpmc_index)(int index); u64 (*event_map)(int); int max_events; int num_counters; int num_counters_fixed; int cntval_bits; u64 cntval_mask; union { unsigned long events_maskl; unsigned long events_mask[BITS_TO_LONGS(ARCH_PERFMON_EVENTS_COUNT)]; }; int events_mask_len; int apic; u64 max_period; struct event_constraint * (*get_event_constraints)(struct cpu_hw_events *cpuc, int idx, struct perf_event *event); void (*put_event_constraints)(struct cpu_hw_events *cpuc, struct perf_event *event); void (*start_scheduling)(struct cpu_hw_events *cpuc); void (*commit_scheduling)(struct cpu_hw_events *cpuc, int idx, int cntr); void (*stop_scheduling)(struct cpu_hw_events *cpuc); struct event_constraint *event_constraints; struct x86_pmu_quirk *quirks; int perfctr_second_write; u64 (*limit_period)(struct perf_event *event, u64 l); /* PMI handler bits */ unsigned int late_ack :1, enabled_ack :1, counter_freezing :1; /* * sysfs attrs */ int attr_rdpmc_broken; int attr_rdpmc; struct attribute **format_attrs; ssize_t (*events_sysfs_show)(char *page, u64 config); const struct attribute_group **attr_update; unsigned long attr_freeze_on_smi; /* * CPU Hotplug hooks */ int (*cpu_prepare)(int cpu); void (*cpu_starting)(int cpu); void (*cpu_dying)(int cpu); void (*cpu_dead)(int cpu); void (*check_microcode)(void); void (*sched_task)(struct perf_event_context *ctx, bool sched_in); /* * Intel Arch Perfmon v2+ */ u64 intel_ctrl; union perf_capabilities intel_cap; /* * Intel DebugStore bits */ unsigned int bts :1, bts_active :1, pebs :1, pebs_active :1, pebs_broken :1, pebs_prec_dist :1, pebs_no_tlb :1, pebs_no_isolation :1; int pebs_record_size; int pebs_buffer_size; int max_pebs_events; void (*drain_pebs)(struct pt_regs *regs, struct perf_sample_data *data); struct event_constraint *pebs_constraints; void (*pebs_aliases)(struct perf_event *event); unsigned long large_pebs_flags; u64 rtm_abort_event; /* * Intel LBR */ unsigned int lbr_tos, lbr_from, lbr_to, lbr_info, lbr_nr; /* LBR base regs and size */ union { u64 lbr_sel_mask; /* LBR_SELECT valid bits */ u64 lbr_ctl_mask; /* LBR_CTL valid bits */ }; union { const int *lbr_sel_map; /* lbr_select mappings */ int *lbr_ctl_map; /* LBR_CTL mappings */ }; bool lbr_double_abort; /* duplicated lbr aborts */ bool lbr_pt_coexist; /* (LBR|BTS) may coexist with PT */ /* * Intel Architectural LBR CPUID Enumeration */ unsigned int lbr_depth_mask:8; unsigned int lbr_deep_c_reset:1; unsigned int lbr_lip:1; unsigned int lbr_cpl:1; unsigned int lbr_filter:1; unsigned int lbr_call_stack:1; unsigned int lbr_mispred:1; unsigned int lbr_timed_lbr:1; unsigned int lbr_br_type:1; void (*lbr_reset)(void); void (*lbr_read)(struct cpu_hw_events *cpuc); void (*lbr_save)(void *ctx); void (*lbr_restore)(void *ctx); /* * Intel PT/LBR/BTS are exclusive */ atomic_t lbr_exclusive[x86_lbr_exclusive_max]; /* * Intel perf metrics */ u64 (*update_topdown_event)(struct perf_event *event); int (*set_topdown_event_period)(struct perf_event *event); /* * perf task context (i.e. struct perf_event_context::task_ctx_data) * switch helper to bridge calls from perf/core to perf/x86. * See struct pmu::swap_task_ctx() usage for examples; */ void (*swap_task_ctx)(struct perf_event_context *prev, struct perf_event_context *next); /* * AMD bits */ unsigned int amd_nb_constraints : 1; u64 perf_ctr_pair_en; /* * Extra registers for events */ struct extra_reg *extra_regs; unsigned int flags; /* * Intel host/guest support (KVM) */ struct perf_guest_switch_msr *(*guest_get_msrs)(int *nr); /* * Check period value for PERF_EVENT_IOC_PERIOD ioctl. */ int (*check_period) (struct perf_event *event, u64 period); int (*aux_output_match) (struct perf_event *event); }; struct x86_perf_task_context_opt { int lbr_callstack_users; int lbr_stack_state; int log_id; }; struct x86_perf_task_context { u64 lbr_sel; int tos; int valid_lbrs; struct x86_perf_task_context_opt opt; struct lbr_entry lbr[MAX_LBR_ENTRIES]; }; struct x86_perf_task_context_arch_lbr { struct x86_perf_task_context_opt opt; struct lbr_entry entries[]; }; /* * Add padding to guarantee the 64-byte alignment of the state buffer. * * The structure is dynamically allocated. The size of the LBR state may vary * based on the number of LBR registers. * * Do not put anything after the LBR state. */ struct x86_perf_task_context_arch_lbr_xsave { struct x86_perf_task_context_opt opt; union { struct xregs_state xsave; struct { struct fxregs_state i387; struct xstate_header header; struct arch_lbr_state lbr; } __attribute__ ((packed, aligned (XSAVE_ALIGNMENT))); }; }; #define x86_add_quirk(func_) \ do { \ static struct x86_pmu_quirk __quirk __initdata = { \ .func = func_, \ }; \ __quirk.next = x86_pmu.quirks; \ x86_pmu.quirks = &__quirk; \ } while (0) /* * x86_pmu flags */ #define PMU_FL_NO_HT_SHARING 0x1 /* no hyper-threading resource sharing */ #define PMU_FL_HAS_RSP_1 0x2 /* has 2 equivalent offcore_rsp regs */ #define PMU_FL_EXCL_CNTRS 0x4 /* has exclusive counter requirements */ #define PMU_FL_EXCL_ENABLED 0x8 /* exclusive counter active */ #define PMU_FL_PEBS_ALL 0x10 /* all events are valid PEBS events */ #define PMU_FL_TFA 0x20 /* deal with TSX force abort */ #define PMU_FL_PAIR 0x40 /* merge counters for large incr. events */ #define EVENT_VAR(_id) event_attr_##_id #define EVENT_PTR(_id) &event_attr_##_id.attr.attr #define EVENT_ATTR(_name, _id) \ static struct perf_pmu_events_attr EVENT_VAR(_id) = { \ .attr = __ATTR(_name, 0444, events_sysfs_show, NULL), \ .id = PERF_COUNT_HW_##_id, \ .event_str = NULL, \ }; #define EVENT_ATTR_STR(_name, v, str) \ static struct perf_pmu_events_attr event_attr_##v = { \ .attr = __ATTR(_name, 0444, events_sysfs_show, NULL), \ .id = 0, \ .event_str = str, \ }; #define EVENT_ATTR_STR_HT(_name, v, noht, ht) \ static struct perf_pmu_events_ht_attr event_attr_##v = { \ .attr = __ATTR(_name, 0444, events_ht_sysfs_show, NULL),\ .id = 0, \ .event_str_noht = noht, \ .event_str_ht = ht, \ } struct pmu *x86_get_pmu(unsigned int cpu); extern struct x86_pmu x86_pmu __read_mostly; static __always_inline struct x86_perf_task_context_opt *task_context_opt(void *ctx) { if (static_cpu_has(X86_FEATURE_ARCH_LBR)) return &((struct x86_perf_task_context_arch_lbr *)ctx)->opt; return &((struct x86_perf_task_context *)ctx)->opt; } static inline bool x86_pmu_has_lbr_callstack(void) { return x86_pmu.lbr_sel_map && x86_pmu.lbr_sel_map[PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT] > 0; } DECLARE_PER_CPU(struct cpu_hw_events, cpu_hw_events); int x86_perf_event_set_period(struct perf_event *event); /* * Generalized hw caching related hw_event table, filled * in on a per model basis. A value of 0 means * 'not supported', -1 means 'hw_event makes no sense on * this CPU', any other value means the raw hw_event * ID. */ #define C(x) PERF_COUNT_HW_CACHE_##x extern u64 __read_mostly hw_cache_event_ids [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX]; extern u64 __read_mostly hw_cache_extra_regs [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX]; u64 x86_perf_event_update(struct perf_event *event); static inline unsigned int x86_pmu_config_addr(int index) { return x86_pmu.eventsel + (x86_pmu.addr_offset ? x86_pmu.addr_offset(index, true) : index); } static inline unsigned int x86_pmu_event_addr(int index) { return x86_pmu.perfctr + (x86_pmu.addr_offset ? x86_pmu.addr_offset(index, false) : index); } static inline int x86_pmu_rdpmc_index(int index) { return x86_pmu.rdpmc_index ? x86_pmu.rdpmc_index(index) : index; } int x86_add_exclusive(unsigned int what); void x86_del_exclusive(unsigned int what); int x86_reserve_hardware(void); void x86_release_hardware(void); int x86_pmu_max_precise(void); void hw_perf_lbr_event_destroy(struct perf_event *event); int x86_setup_perfctr(struct perf_event *event); int x86_pmu_hw_config(struct perf_event *event); void x86_pmu_disable_all(void); static inline bool is_counter_pair(struct hw_perf_event *hwc) { return hwc->flags & PERF_X86_EVENT_PAIR; } static inline void __x86_pmu_enable_event(struct hw_perf_event *hwc, u64 enable_mask) { u64 disable_mask = __this_cpu_read(cpu_hw_events.perf_ctr_virt_mask); if (hwc->extra_reg.reg) wrmsrl(hwc->extra_reg.reg, hwc->extra_reg.config); /* * Add enabled Merge event on next counter * if large increment event being enabled on this counter */ if (is_counter_pair(hwc)) wrmsrl(x86_pmu_config_addr(hwc->idx + 1), x86_pmu.perf_ctr_pair_en); wrmsrl(hwc->config_base, (hwc->config | enable_mask) & ~disable_mask); } void x86_pmu_enable_all(int added); int perf_assign_events(struct event_constraint **constraints, int n, int wmin, int wmax, int gpmax, int *assign); int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign); void x86_pmu_stop(struct perf_event *event, int flags); static inline void x86_pmu_disable_event(struct perf_event *event) { u64 disable_mask = __this_cpu_read(cpu_hw_events.perf_ctr_virt_mask); struct hw_perf_event *hwc = &event->hw; wrmsrl(hwc->config_base, hwc->config & ~disable_mask); if (is_counter_pair(hwc)) wrmsrl(x86_pmu_config_addr(hwc->idx + 1), 0); } void x86_pmu_enable_event(struct perf_event *event); int x86_pmu_handle_irq(struct pt_regs *regs); extern struct event_constraint emptyconstraint; extern struct event_constraint unconstrained; static inline bool kernel_ip(unsigned long ip) { #ifdef CONFIG_X86_32 return ip > PAGE_OFFSET; #else return (long)ip < 0; #endif } /* * Not all PMUs provide the right context information to place the reported IP * into full context. Specifically segment registers are typically not * supplied. * * Assuming the address is a linear address (it is for IBS), we fake the CS and * vm86 mode using the known zero-based code segment and 'fix up' the registers * to reflect this. * * Intel PEBS/LBR appear to typically provide the effective address, nothing * much we can do about that but pray and treat it like a linear address. */ static inline void set_linear_ip(struct pt_regs *regs, unsigned long ip) { regs->cs = kernel_ip(ip) ? __KERNEL_CS : __USER_CS; if (regs->flags & X86_VM_MASK) regs->flags ^= (PERF_EFLAGS_VM | X86_VM_MASK); regs->ip = ip; } ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event); ssize_t intel_event_sysfs_show(char *page, u64 config); ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page); ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr, char *page); #ifdef CONFIG_CPU_SUP_AMD int amd_pmu_init(void); #else /* CONFIG_CPU_SUP_AMD */ static inline int amd_pmu_init(void) { return 0; } #endif /* CONFIG_CPU_SUP_AMD */ static inline int is_pebs_pt(struct perf_event *event) { return !!(event->hw.flags & PERF_X86_EVENT_PEBS_VIA_PT); } #ifdef CONFIG_CPU_SUP_INTEL static inline bool intel_pmu_has_bts_period(struct perf_event *event, u64 period) { struct hw_perf_event *hwc = &event->hw; unsigned int hw_event, bts_event; if (event->attr.freq) return false; hw_event = hwc->config & INTEL_ARCH_EVENT_MASK; bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS); return hw_event == bts_event && period == 1; } static inline bool intel_pmu_has_bts(struct perf_event *event) { struct hw_perf_event *hwc = &event->hw; return intel_pmu_has_bts_period(event, hwc->sample_period); } int intel_pmu_save_and_restart(struct perf_event *event); struct event_constraint * x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx, struct perf_event *event); extern int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu); extern void intel_cpuc_finish(struct cpu_hw_events *cpuc); int intel_pmu_init(void); void init_debug_store_on_cpu(int cpu); void fini_debug_store_on_cpu(int cpu); void release_ds_buffers(void); void reserve_ds_buffers(void); void release_lbr_buffers(void); void reserve_lbr_buffers(void); extern struct event_constraint bts_constraint; extern struct event_constraint vlbr_constraint; void intel_pmu_enable_bts(u64 config); void intel_pmu_disable_bts(void); int intel_pmu_drain_bts_buffer(void); extern struct event_constraint intel_core2_pebs_event_constraints[]; extern struct event_constraint intel_atom_pebs_event_constraints[]; extern struct event_constraint intel_slm_pebs_event_constraints[]; extern struct event_constraint intel_glm_pebs_event_constraints[]; extern struct event_constraint intel_glp_pebs_event_constraints[]; extern struct event_constraint intel_nehalem_pebs_event_constraints[]; extern struct event_constraint intel_westmere_pebs_event_constraints[]; extern struct event_constraint intel_snb_pebs_event_constraints[]; extern struct event_constraint intel_ivb_pebs_event_constraints[]; extern struct event_constraint intel_hsw_pebs_event_constraints[]; extern struct event_constraint intel_bdw_pebs_event_constraints[]; extern struct event_constraint intel_skl_pebs_event_constraints[]; extern struct event_constraint intel_icl_pebs_event_constraints[]; struct event_constraint *intel_pebs_constraints(struct perf_event *event); void intel_pmu_pebs_add(struct perf_event *event); void intel_pmu_pebs_del(struct perf_event *event); void intel_pmu_pebs_enable(struct perf_event *event); void intel_pmu_pebs_disable(struct perf_event *event); void intel_pmu_pebs_enable_all(void); void intel_pmu_pebs_disable_all(void); void intel_pmu_pebs_sched_task(struct perf_event_context *ctx, bool sched_in); void intel_pmu_auto_reload_read(struct perf_event *event); void intel_pmu_store_pebs_lbrs(struct lbr_entry *lbr); void intel_ds_init(void); void intel_pmu_lbr_swap_task_ctx(struct perf_event_context *prev, struct perf_event_context *next); void intel_pmu_lbr_sched_task(struct perf_event_context *ctx, bool sched_in); u64 lbr_from_signext_quirk_wr(u64 val); void intel_pmu_lbr_reset(void); void intel_pmu_lbr_reset_32(void); void intel_pmu_lbr_reset_64(void); void intel_pmu_lbr_add(struct perf_event *event); void intel_pmu_lbr_del(struct perf_event *event); void intel_pmu_lbr_enable_all(bool pmi); void intel_pmu_lbr_disable_all(void); void intel_pmu_lbr_read(void); void intel_pmu_lbr_read_32(struct cpu_hw_events *cpuc); void intel_pmu_lbr_read_64(struct cpu_hw_events *cpuc); void intel_pmu_lbr_save(void *ctx); void intel_pmu_lbr_restore(void *ctx); void intel_pmu_lbr_init_core(void); void intel_pmu_lbr_init_nhm(void); void intel_pmu_lbr_init_atom(void); void intel_pmu_lbr_init_slm(void); void intel_pmu_lbr_init_snb(void); void intel_pmu_lbr_init_hsw(void); void intel_pmu_lbr_init_skl(void); void intel_pmu_lbr_init_knl(void); void intel_pmu_arch_lbr_init(void); void intel_pmu_pebs_data_source_nhm(void); void intel_pmu_pebs_data_source_skl(bool pmem); int intel_pmu_setup_lbr_filter(struct perf_event *event); void intel_pt_interrupt(void); int intel_bts_interrupt(void); void intel_bts_enable_local(void); void intel_bts_disable_local(void); int p4_pmu_init(void); int p6_pmu_init(void); int knc_pmu_init(void); static inline int is_ht_workaround_enabled(void) { return !!(x86_pmu.flags & PMU_FL_EXCL_ENABLED); } #else /* CONFIG_CPU_SUP_INTEL */ static inline void reserve_ds_buffers(void) { } static inline void release_ds_buffers(void) { } static inline void release_lbr_buffers(void) { } static inline void reserve_lbr_buffers(void) { } static inline int intel_pmu_init(void) { return 0; } static inline int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu) { return 0; } static inline void intel_cpuc_finish(struct cpu_hw_events *cpuc) { } static inline int is_ht_workaround_enabled(void) { return 0; } #endif /* CONFIG_CPU_SUP_INTEL */ #if ((defined CONFIG_CPU_SUP_CENTAUR) || (defined CONFIG_CPU_SUP_ZHAOXIN)) int zhaoxin_pmu_init(void); #else static inline int zhaoxin_pmu_init(void) { return 0; } #endif /*CONFIG_CPU_SUP_CENTAUR or CONFIG_CPU_SUP_ZHAOXIN*/
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_PROCESSOR_H #define _ASM_X86_PROCESSOR_H #include <asm/processor-flags.h> /* Forward declaration, a strange C thing */ struct task_struct; struct mm_struct; struct io_bitmap; struct vm86; #include <asm/math_emu.h> #include <asm/segment.h> #include <asm/types.h> #include <uapi/asm/sigcontext.h> #include <asm/current.h> #include <asm/cpufeatures.h> #include <asm/page.h> #include <asm/pgtable_types.h> #include <asm/percpu.h> #include <asm/msr.h> #include <asm/desc_defs.h> #include <asm/nops.h> #include <asm/special_insns.h> #include <asm/fpu/types.h> #include <asm/unwind_hints.h> #include <asm/vmxfeatures.h> #include <asm/vdso/processor.h> #include <linux/personality.h> #include <linux/cache.h> #include <linux/threads.h> #include <linux/math64.h> #include <linux/err.h> #include <linux/irqflags.h> #include <linux/mem_encrypt.h> /* * We handle most unaligned accesses in hardware. On the other hand * unaligned DMA can be quite expensive on some Nehalem processors. * * Based on this we disable the IP header alignment in network drivers. */ #define NET_IP_ALIGN 0 #define HBP_NUM 4 /* * These alignment constraints are for performance in the vSMP case, * but in the task_struct case we must also meet hardware imposed * alignment requirements of the FPU state: */ #ifdef CONFIG_X86_VSMP # define ARCH_MIN_TASKALIGN (1 << INTERNODE_CACHE_SHIFT) # define ARCH_MIN_MMSTRUCT_ALIGN (1 << INTERNODE_CACHE_SHIFT) #else # define ARCH_MIN_TASKALIGN __alignof__(union fpregs_state) # define ARCH_MIN_MMSTRUCT_ALIGN 0 #endif enum tlb_infos { ENTRIES, NR_INFO }; extern u16 __read_mostly tlb_lli_4k[NR_INFO]; extern u16 __read_mostly tlb_lli_2m[NR_INFO]; extern u16 __read_mostly tlb_lli_4m[NR_INFO]; extern u16 __read_mostly tlb_lld_4k[NR_INFO]; extern u16 __read_mostly tlb_lld_2m[NR_INFO]; extern u16 __read_mostly tlb_lld_4m[NR_INFO]; extern u16 __read_mostly tlb_lld_1g[NR_INFO]; /* * CPU type and hardware bug flags. Kept separately for each CPU. * Members of this structure are referenced in head_32.S, so think twice * before touching them. [mj] */ struct cpuinfo_x86 { __u8 x86; /* CPU family */ __u8 x86_vendor; /* CPU vendor */ __u8 x86_model; __u8 x86_stepping; #ifdef CONFIG_X86_64 /* Number of 4K pages in DTLB/ITLB combined(in pages): */ int x86_tlbsize; #endif #ifdef CONFIG_X86_VMX_FEATURE_NAMES __u32 vmx_capability[NVMXINTS]; #endif __u8 x86_virt_bits; __u8 x86_phys_bits; /* CPUID returned core id bits: */ __u8 x86_coreid_bits; __u8 cu_id; /* Max extended CPUID function supported: */ __u32 extended_cpuid_level; /* Maximum supported CPUID level, -1=no CPUID: */ int cpuid_level; /* * Align to size of unsigned long because the x86_capability array * is passed to bitops which require the alignment. Use unnamed * union to enforce the array is aligned to size of unsigned long. */ union { __u32 x86_capability[NCAPINTS + NBUGINTS]; unsigned long x86_capability_alignment; }; char x86_vendor_id[16]; char x86_model_id[64]; /* in KB - valid for CPUS which support this call: */ unsigned int x86_cache_size; int x86_cache_alignment; /* In bytes */ /* Cache QoS architectural values, valid only on the BSP: */ int x86_cache_max_rmid; /* max index */ int x86_cache_occ_scale; /* scale to bytes */ int x86_cache_mbm_width_offset; int x86_power; unsigned long loops_per_jiffy; /* cpuid returned max cores value: */ u16 x86_max_cores; u16 apicid; u16 initial_apicid; u16 x86_clflush_size; /* number of cores as seen by the OS: */ u16 booted_cores; /* Physical processor id: */ u16 phys_proc_id; /* Logical processor id: */ u16 logical_proc_id; /* Core id: */ u16 cpu_core_id; u16 cpu_die_id; u16 logical_die_id; /* Index into per_cpu list: */ u16 cpu_index; u32 microcode; /* Address space bits used by the cache internally */ u8 x86_cache_bits; unsigned initialized : 1; } __randomize_layout; struct cpuid_regs { u32 eax, ebx, ecx, edx; }; enum cpuid_regs_idx { CPUID_EAX = 0, CPUID_EBX, CPUID_ECX, CPUID_EDX, }; #define X86_VENDOR_INTEL 0 #define X86_VENDOR_CYRIX 1 #define X86_VENDOR_AMD 2 #define X86_VENDOR_UMC 3 #define X86_VENDOR_CENTAUR 5 #define X86_VENDOR_TRANSMETA 7 #define X86_VENDOR_NSC 8 #define X86_VENDOR_HYGON 9 #define X86_VENDOR_ZHAOXIN 10 #define X86_VENDOR_NUM 11 #define X86_VENDOR_UNKNOWN 0xff /* * capabilities of CPUs */ extern struct cpuinfo_x86 boot_cpu_data; extern struct cpuinfo_x86 new_cpu_data; extern __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS]; extern __u32 cpu_caps_set[NCAPINTS + NBUGINTS]; #ifdef CONFIG_SMP DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info); #define cpu_data(cpu) per_cpu(cpu_info, cpu) #else #define cpu_info boot_cpu_data #define cpu_data(cpu) boot_cpu_data #endif extern const struct seq_operations cpuinfo_op; #define cache_line_size() (boot_cpu_data.x86_cache_alignment) extern void cpu_detect(struct cpuinfo_x86 *c); static inline unsigned long long l1tf_pfn_limit(void) { return BIT_ULL(boot_cpu_data.x86_cache_bits - 1 - PAGE_SHIFT); } extern void early_cpu_init(void); extern void identify_boot_cpu(void); extern void identify_secondary_cpu(struct cpuinfo_x86 *); extern void print_cpu_info(struct cpuinfo_x86 *); void print_cpu_msr(struct cpuinfo_x86 *); #ifdef CONFIG_X86_32 extern int have_cpuid_p(void); #else static inline int have_cpuid_p(void) { return 1; } #endif static inline void native_cpuid(unsigned int *eax, unsigned int *ebx, unsigned int *ecx, unsigned int *edx) { /* ecx is often an input as well as an output. */ asm volatile("cpuid" : "=a" (*eax), "=b" (*ebx), "=c" (*ecx), "=d" (*edx) : "0" (*eax), "2" (*ecx) : "memory"); } #define native_cpuid_reg(reg) \ static inline unsigned int native_cpuid_##reg(unsigned int op) \ { \ unsigned int eax = op, ebx, ecx = 0, edx; \ \ native_cpuid(&eax, &ebx, &ecx, &edx); \ \ return reg; \ } /* * Native CPUID functions returning a single datum. */ native_cpuid_reg(eax) native_cpuid_reg(ebx) native_cpuid_reg(ecx) native_cpuid_reg(edx) /* * Friendlier CR3 helpers. */ static inline unsigned long read_cr3_pa(void) { return __read_cr3() & CR3_ADDR_MASK; } static inline unsigned long native_read_cr3_pa(void) { return __native_read_cr3() & CR3_ADDR_MASK; } static inline void load_cr3(pgd_t *pgdir) { write_cr3(__sme_pa(pgdir)); } /* * Note that while the legacy 'TSS' name comes from 'Task State Segment', * on modern x86 CPUs the TSS also holds information important to 64-bit mode, * unrelated to the task-switch mechanism: */ #ifdef CONFIG_X86_32 /* This is the TSS defined by the hardware. */ struct x86_hw_tss { unsigned short back_link, __blh; unsigned long sp0; unsigned short ss0, __ss0h; unsigned long sp1; /* * We don't use ring 1, so ss1 is a convenient scratch space in * the same cacheline as sp0. We use ss1 to cache the value in * MSR_IA32_SYSENTER_CS. When we context switch * MSR_IA32_SYSENTER_CS, we first check if the new value being * written matches ss1, and, if it's not, then we wrmsr the new * value and update ss1. * * The only reason we context switch MSR_IA32_SYSENTER_CS is * that we set it to zero in vm86 tasks to avoid corrupting the * stack if we were to go through the sysenter path from vm86 * mode. */ unsigned short ss1; /* MSR_IA32_SYSENTER_CS */ unsigned short __ss1h; unsigned long sp2; unsigned short ss2, __ss2h; unsigned long __cr3; unsigned long ip; unsigned long flags; unsigned long ax; unsigned long cx; unsigned long dx; unsigned long bx; unsigned long sp; unsigned long bp; unsigned long si; unsigned long di; unsigned short es, __esh; unsigned short cs, __csh; unsigned short ss, __ssh; unsigned short ds, __dsh; unsigned short fs, __fsh; unsigned short gs, __gsh; unsigned short ldt, __ldth; unsigned short trace; unsigned short io_bitmap_base; } __attribute__((packed)); #else struct x86_hw_tss { u32 reserved1; u64 sp0; /* * We store cpu_current_top_of_stack in sp1 so it's always accessible. * Linux does not use ring 1, so sp1 is not otherwise needed. */ u64 sp1; /* * Since Linux does not use ring 2, the 'sp2' slot is unused by * hardware. entry_SYSCALL_64 uses it as scratch space to stash * the user RSP value. */ u64 sp2; u64 reserved2; u64 ist[7]; u32 reserved3; u32 reserved4; u16 reserved5; u16 io_bitmap_base; } __attribute__((packed)); #endif /* * IO-bitmap sizes: */ #define IO_BITMAP_BITS 65536 #define IO_BITMAP_BYTES (IO_BITMAP_BITS / BITS_PER_BYTE) #define IO_BITMAP_LONGS (IO_BITMAP_BYTES / sizeof(long)) #define IO_BITMAP_OFFSET_VALID_MAP \ (offsetof(struct tss_struct, io_bitmap.bitmap) - \ offsetof(struct tss_struct, x86_tss)) #define IO_BITMAP_OFFSET_VALID_ALL \ (offsetof(struct tss_struct, io_bitmap.mapall) - \ offsetof(struct tss_struct, x86_tss)) #ifdef CONFIG_X86_IOPL_IOPERM /* * sizeof(unsigned long) coming from an extra "long" at the end of the * iobitmap. The limit is inclusive, i.e. the last valid byte. */ # define __KERNEL_TSS_LIMIT \ (IO_BITMAP_OFFSET_VALID_ALL + IO_BITMAP_BYTES + \ sizeof(unsigned long) - 1) #else # define __KERNEL_TSS_LIMIT \ (offsetof(struct tss_struct, x86_tss) + sizeof(struct x86_hw_tss) - 1) #endif /* Base offset outside of TSS_LIMIT so unpriviledged IO causes #GP */ #define IO_BITMAP_OFFSET_INVALID (__KERNEL_TSS_LIMIT + 1) struct entry_stack { char stack[PAGE_SIZE]; }; struct entry_stack_page { struct entry_stack stack; } __aligned(PAGE_SIZE); /* * All IO bitmap related data stored in the TSS: */ struct x86_io_bitmap { /* The sequence number of the last active bitmap. */ u64 prev_sequence; /* * Store the dirty size of the last io bitmap offender. The next * one will have to do the cleanup as the switch out to a non io * bitmap user will just set x86_tss.io_bitmap_base to a value * outside of the TSS limit. So for sane tasks there is no need to * actually touch the io_bitmap at all. */ unsigned int prev_max; /* * The extra 1 is there because the CPU will access an * additional byte beyond the end of the IO permission * bitmap. The extra byte must be all 1 bits, and must * be within the limit. */ unsigned long bitmap[IO_BITMAP_LONGS + 1]; /* * Special I/O bitmap to emulate IOPL(3). All bytes zero, * except the additional byte at the end. */ unsigned long mapall[IO_BITMAP_LONGS + 1]; }; struct tss_struct { /* * The fixed hardware portion. This must not cross a page boundary * at risk of violating the SDM's advice and potentially triggering * errata. */ struct x86_hw_tss x86_tss; struct x86_io_bitmap io_bitmap; } __aligned(PAGE_SIZE); DECLARE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw); /* Per CPU interrupt stacks */ struct irq_stack { char stack[IRQ_STACK_SIZE]; } __aligned(IRQ_STACK_SIZE); DECLARE_PER_CPU(struct irq_stack *, hardirq_stack_ptr); #ifdef CONFIG_X86_32 DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack); #else /* The RO copy can't be accessed with this_cpu_xyz(), so use the RW copy. */ #define cpu_current_top_of_stack cpu_tss_rw.x86_tss.sp1 #endif #ifdef CONFIG_X86_64 struct fixed_percpu_data { /* * GCC hardcodes the stack canary as %gs:40. Since the * irq_stack is the object at %gs:0, we reserve the bottom * 48 bytes of the irq stack for the canary. */ char gs_base[40]; unsigned long stack_canary; }; DECLARE_PER_CPU_FIRST(struct fixed_percpu_data, fixed_percpu_data) __visible; DECLARE_INIT_PER_CPU(fixed_percpu_data); static inline unsigned long cpu_kernelmode_gs_base(int cpu) { return (unsigned long)per_cpu(fixed_percpu_data.gs_base, cpu); } DECLARE_PER_CPU(unsigned int, irq_count); extern asmlinkage void ignore_sysret(void); /* Save actual FS/GS selectors and bases to current->thread */ void current_save_fsgs(void); #else /* X86_64 */ #ifdef CONFIG_STACKPROTECTOR /* * Make sure stack canary segment base is cached-aligned: * "For Intel Atom processors, avoid non zero segment base address * that is not aligned to cache line boundary at all cost." * (Optim Ref Manual Assembly/Compiler Coding Rule 15.) */ struct stack_canary { char __pad[20]; /* canary at %gs:20 */ unsigned long canary; }; DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary); #endif /* Per CPU softirq stack pointer */ DECLARE_PER_CPU(struct irq_stack *, softirq_stack_ptr); #endif /* X86_64 */ extern unsigned int fpu_kernel_xstate_size; extern unsigned int fpu_user_xstate_size; struct perf_event; struct thread_struct { /* Cached TLS descriptors: */ struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES]; #ifdef CONFIG_X86_32 unsigned long sp0; #endif unsigned long sp; #ifdef CONFIG_X86_32 unsigned long sysenter_cs; #else unsigned short es; unsigned short ds; unsigned short fsindex; unsigned short gsindex; #endif #ifdef CONFIG_X86_64 unsigned long fsbase; unsigned long gsbase; #else /* * XXX: this could presumably be unsigned short. Alternatively, * 32-bit kernels could be taught to use fsindex instead. */ unsigned long fs; unsigned long gs; #endif /* Save middle states of ptrace breakpoints */ struct perf_event *ptrace_bps[HBP_NUM]; /* Debug status used for traps, single steps, etc... */ unsigned long virtual_dr6; /* Keep track of the exact dr7 value set by the user */ unsigned long ptrace_dr7; /* Fault info: */ unsigned long cr2; unsigned long trap_nr; unsigned long error_code; #ifdef CONFIG_VM86 /* Virtual 86 mode info */ struct vm86 *vm86; #endif /* IO permissions: */ struct io_bitmap *io_bitmap; /* * IOPL. Priviledge level dependent I/O permission which is * emulated via the I/O bitmap to prevent user space from disabling * interrupts. */ unsigned long iopl_emul; unsigned int iopl_warn:1; unsigned int sig_on_uaccess_err:1; /* Floating point and extended processor state */ struct fpu fpu; /* * WARNING: 'fpu' is dynamically-sized. It *MUST* be at * the end. */ }; /* Whitelist the FPU state from the task_struct for hardened usercopy. */ static inline void arch_thread_struct_whitelist(unsigned long *offset, unsigned long *size) { *offset = offsetof(struct thread_struct, fpu.state); *size = fpu_kernel_xstate_size; } static inline void native_load_sp0(unsigned long sp0) { this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0); } static __always_inline void native_swapgs(void) { #ifdef CONFIG_X86_64 asm volatile("swapgs" ::: "memory"); #endif } static inline unsigned long current_top_of_stack(void) { /* * We can't read directly from tss.sp0: sp0 on x86_32 is special in * and around vm86 mode and sp0 on x86_64 is special because of the * entry trampoline. */ return this_cpu_read_stable(cpu_current_top_of_stack); } static inline bool on_thread_stack(void) { return (unsigned long)(current_top_of_stack() - current_stack_pointer) < THREAD_SIZE; } #ifdef CONFIG_PARAVIRT_XXL #include <asm/paravirt.h> #else #define __cpuid native_cpuid static inline void load_sp0(unsigned long sp0) { native_load_sp0(sp0); } #endif /* CONFIG_PARAVIRT_XXL */ /* Free all resources held by a thread. */ extern void release_thread(struct task_struct *); unsigned long get_wchan(struct task_struct *p); /* * Generic CPUID function * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx * resulting in stale register contents being returned. */ static inline void cpuid(unsigned int op, unsigned int *eax, unsigned int *ebx, unsigned int *ecx, unsigned int *edx) { *eax = op; *ecx = 0; __cpuid(eax, ebx, ecx, edx); } /* Some CPUID calls want 'count' to be placed in ecx */ static inline void cpuid_count(unsigned int op, int count, unsigned int *eax, unsigned int *ebx, unsigned int *ecx, unsigned int *edx) { *eax = op; *ecx = count; __cpuid(eax, ebx, ecx, edx); } /* * CPUID functions returning a single datum */ static inline unsigned int cpuid_eax(unsigned int op) { unsigned int eax, ebx, ecx, edx; cpuid(op, &eax, &ebx, &ecx, &edx); return eax; } static inline unsigned int cpuid_ebx(unsigned int op) { unsigned int eax, ebx, ecx, edx; cpuid(op, &eax, &ebx, &ecx, &edx); return ebx; } static inline unsigned int cpuid_ecx(unsigned int op) { unsigned int eax, ebx, ecx, edx; cpuid(op, &eax, &ebx, &ecx, &edx); return ecx; } static inline unsigned int cpuid_edx(unsigned int op) { unsigned int eax, ebx, ecx, edx; cpuid(op, &eax, &ebx, &ecx, &edx); return edx; } extern void select_idle_routine(const struct cpuinfo_x86 *c); extern void amd_e400_c1e_apic_setup(void); extern unsigned long boot_option_idle_override; enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT, IDLE_POLL}; extern void enable_sep_cpu(void); extern int sysenter_setup(void); /* Defined in head.S */ extern struct desc_ptr early_gdt_descr; extern void switch_to_new_gdt(int); extern void load_direct_gdt(int); extern void load_fixmap_gdt(int); extern void load_percpu_segment(int); extern void cpu_init(void); extern void cpu_init_exception_handling(void); extern void cr4_init(void); static inline unsigned long get_debugctlmsr(void) { unsigned long debugctlmsr = 0; #ifndef CONFIG_X86_DEBUGCTLMSR if (boot_cpu_data.x86 < 6) return 0; #endif rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr); return debugctlmsr; } static inline void update_debugctlmsr(unsigned long debugctlmsr) { #ifndef CONFIG_X86_DEBUGCTLMSR if (boot_cpu_data.x86 < 6) return; #endif wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr); } extern void set_task_blockstep(struct task_struct *task, bool on); /* Boot loader type from the setup header: */ extern int bootloader_type; extern int bootloader_version; extern char ignore_fpu_irq; #define HAVE_ARCH_PICK_MMAP_LAYOUT 1 #define ARCH_HAS_PREFETCHW #define ARCH_HAS_SPINLOCK_PREFETCH #ifdef CONFIG_X86_32 # define BASE_PREFETCH "" # define ARCH_HAS_PREFETCH #else # define BASE_PREFETCH "prefetcht0 %P1" #endif /* * Prefetch instructions for Pentium III (+) and AMD Athlon (+) * * It's not worth to care about 3dnow prefetches for the K6 * because they are microcoded there and very slow. */ static inline void prefetch(const void *x) { alternative_input(BASE_PREFETCH, "prefetchnta %P1", X86_FEATURE_XMM, "m" (*(const char *)x)); } /* * 3dnow prefetch to get an exclusive cache line. * Useful for spinlocks to avoid one state transition in the * cache coherency protocol: */ static __always_inline void prefetchw(const void *x) { alternative_input(BASE_PREFETCH, "prefetchw %P1", X86_FEATURE_3DNOWPREFETCH, "m" (*(const char *)x)); } static inline void spin_lock_prefetch(const void *x) { prefetchw(x); } #define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \ TOP_OF_KERNEL_STACK_PADDING) #define task_top_of_stack(task) ((unsigned long)(task_pt_regs(task) + 1)) #define task_pt_regs(task) \ ({ \ unsigned long __ptr = (unsigned long)task_stack_page(task); \ __ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; \ ((struct pt_regs *)__ptr) - 1; \ }) #ifdef CONFIG_X86_32 #define INIT_THREAD { \ .sp0 = TOP_OF_INIT_STACK, \ .sysenter_cs = __KERNEL_CS, \ } #define KSTK_ESP(task) (task_pt_regs(task)->sp) #else #define INIT_THREAD { } extern unsigned long KSTK_ESP(struct task_struct *task); #endif /* CONFIG_X86_64 */ extern void start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp); /* * This decides where the kernel will search for a free chunk of vm * space during mmap's. */ #define __TASK_UNMAPPED_BASE(task_size) (PAGE_ALIGN(task_size / 3)) #define TASK_UNMAPPED_BASE __TASK_UNMAPPED_BASE(TASK_SIZE_LOW) #define KSTK_EIP(task) (task_pt_regs(task)->ip) /* Get/set a process' ability to use the timestamp counter instruction */ #define GET_TSC_CTL(adr) get_tsc_mode((adr)) #define SET_TSC_CTL(val) set_tsc_mode((val)) extern int get_tsc_mode(unsigned long adr); extern int set_tsc_mode(unsigned int val); DECLARE_PER_CPU(u64, msr_misc_features_shadow); #ifdef CONFIG_CPU_SUP_AMD extern u16 amd_get_nb_id(int cpu); extern u32 amd_get_nodes_per_socket(void); #else static inline u16 amd_get_nb_id(int cpu) { return 0; } static inline u32 amd_get_nodes_per_socket(void) { return 0; } #endif static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves) { uint32_t base, eax, signature[3]; for (base = 0x40000000; base < 0x40010000; base += 0x100) { cpuid(base, &eax, &signature[0], &signature[1], &signature[2]); if (!memcmp(sig, signature, 12) && (leaves == 0 || ((eax - base) >= leaves))) return base; } return 0; } extern unsigned long arch_align_stack(unsigned long sp); void free_init_pages(const char *what, unsigned long begin, unsigned long end); extern void free_kernel_image_pages(const char *what, void *begin, void *end); void default_idle(void); #ifdef CONFIG_XEN bool xen_set_default_idle(void); #else #define xen_set_default_idle 0 #endif void stop_this_cpu(void *dummy); void microcode_check(void); enum l1tf_mitigations { L1TF_MITIGATION_OFF, L1TF_MITIGATION_FLUSH_NOWARN, L1TF_MITIGATION_FLUSH, L1TF_MITIGATION_FLUSH_NOSMT, L1TF_MITIGATION_FULL, L1TF_MITIGATION_FULL_FORCE }; extern enum l1tf_mitigations l1tf_mitigation; enum mds_mitigations { MDS_MITIGATION_OFF, MDS_MITIGATION_FULL, MDS_MITIGATION_VMWERV, }; #endif /* _ASM_X86_PROCESSOR_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * NetLabel Network Address Lists * * This file contains network address list functions used to manage ordered * lists of network addresses for use by the NetLabel subsystem. The NetLabel * system manages static and dynamic label mappings for network protocols such * as CIPSO and RIPSO. * * Author: Paul Moore <paul@paul-moore.com> */ /* * (c) Copyright Hewlett-Packard Development Company, L.P., 2008 */ #ifndef _NETLABEL_ADDRLIST_H #define _NETLABEL_ADDRLIST_H #include <linux/types.h> #include <linux/rcupdate.h> #include <linux/list.h> #include <linux/in6.h> #include <linux/audit.h> /** * struct netlbl_af4list - NetLabel IPv4 address list * @addr: IPv4 address * @mask: IPv4 address mask * @valid: valid flag * @list: list structure, used internally */ struct netlbl_af4list { __be32 addr; __be32 mask; u32 valid; struct list_head list; }; /** * struct netlbl_af6list - NetLabel IPv6 address list * @addr: IPv6 address * @mask: IPv6 address mask * @valid: valid flag * @list: list structure, used internally */ struct netlbl_af6list { struct in6_addr addr; struct in6_addr mask; u32 valid; struct list_head list; }; #define __af4list_entry(ptr) container_of(ptr, struct netlbl_af4list, list) static inline struct netlbl_af4list *__af4list_valid(struct list_head *s, struct list_head *h) { struct list_head *i = s; struct netlbl_af4list *n = __af4list_entry(s); while (i != h && !n->valid) { i = i->next; n = __af4list_entry(i); } return n; } static inline struct netlbl_af4list *__af4list_valid_rcu(struct list_head *s, struct list_head *h) { struct list_head *i = s; struct netlbl_af4list *n = __af4list_entry(s); while (i != h && !n->valid) { i = rcu_dereference(list_next_rcu(i)); n = __af4list_entry(i); } return n; } #define netlbl_af4list_foreach(iter, head) \ for (iter = __af4list_valid((head)->next, head); \ &iter->list != (head); \ iter = __af4list_valid(iter->list.next, head)) #define netlbl_af4list_foreach_rcu(iter, head) \ for (iter = __af4list_valid_rcu((head)->next, head); \ &iter->list != (head); \ iter = __af4list_valid_rcu(iter->list.next, head)) #define netlbl_af4list_foreach_safe(iter, tmp, head) \ for (iter = __af4list_valid((head)->next, head), \ tmp = __af4list_valid(iter->list.next, head); \ &iter->list != (head); \ iter = tmp, tmp = __af4list_valid(iter->list.next, head)) int netlbl_af4list_add(struct netlbl_af4list *entry, struct list_head *head); struct netlbl_af4list *netlbl_af4list_remove(__be32 addr, __be32 mask, struct list_head *head); void netlbl_af4list_remove_entry(struct netlbl_af4list *entry); struct netlbl_af4list *netlbl_af4list_search(__be32 addr, struct list_head *head); struct netlbl_af4list *netlbl_af4list_search_exact(__be32 addr, __be32 mask, struct list_head *head); #ifdef CONFIG_AUDIT void netlbl_af4list_audit_addr(struct audit_buffer *audit_buf, int src, const char *dev, __be32 addr, __be32 mask); #else static inline void netlbl_af4list_audit_addr(struct audit_buffer *audit_buf, int src, const char *dev, __be32 addr, __be32 mask) { } #endif #if IS_ENABLED(CONFIG_IPV6) #define __af6list_entry(ptr) container_of(ptr, struct netlbl_af6list, list) static inline struct netlbl_af6list *__af6list_valid(struct list_head *s, struct list_head *h) { struct list_head *i = s; struct netlbl_af6list *n = __af6list_entry(s); while (i != h && !n->valid) { i = i->next; n = __af6list_entry(i); } return n; } static inline struct netlbl_af6list *__af6list_valid_rcu(struct list_head *s, struct list_head *h) { struct list_head *i = s; struct netlbl_af6list *n = __af6list_entry(s); while (i != h && !n->valid) { i = rcu_dereference(list_next_rcu(i)); n = __af6list_entry(i); } return n; } #define netlbl_af6list_foreach(iter, head) \ for (iter = __af6list_valid((head)->next, head); \ &iter->list != (head); \ iter = __af6list_valid(iter->list.next, head)) #define netlbl_af6list_foreach_rcu(iter, head) \ for (iter = __af6list_valid_rcu((head)->next, head); \ &iter->list != (head); \ iter = __af6list_valid_rcu(iter->list.next, head)) #define netlbl_af6list_foreach_safe(iter, tmp, head) \ for (iter = __af6list_valid((head)->next, head), \ tmp = __af6list_valid(iter->list.next, head); \ &iter->list != (head); \ iter = tmp, tmp = __af6list_valid(iter->list.next, head)) int netlbl_af6list_add(struct netlbl_af6list *entry, struct list_head *head); struct netlbl_af6list *netlbl_af6list_remove(const struct in6_addr *addr, const struct in6_addr *mask, struct list_head *head); void netlbl_af6list_remove_entry(struct netlbl_af6list *entry); struct netlbl_af6list *netlbl_af6list_search(const struct in6_addr *addr, struct list_head *head); struct netlbl_af6list *netlbl_af6list_search_exact(const struct in6_addr *addr, const struct in6_addr *mask, struct list_head *head); #ifdef CONFIG_AUDIT void netlbl_af6list_audit_addr(struct audit_buffer *audit_buf, int src, const char *dev, const struct in6_addr *addr, const struct in6_addr *mask); #else static inline void netlbl_af6list_audit_addr(struct audit_buffer *audit_buf, int src, const char *dev, const struct in6_addr *addr, const struct in6_addr *mask) { } #endif #endif /* IPV6 */ #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __NET_RTNH_H #define __NET_RTNH_H #include <linux/rtnetlink.h> #include <net/netlink.h> static inline int rtnh_ok(const struct rtnexthop *rtnh, int remaining) { return remaining >= (int)sizeof(*rtnh) && rtnh->rtnh_len >= sizeof(*rtnh) && rtnh->rtnh_len <= remaining; } static inline struct rtnexthop *rtnh_next(const struct rtnexthop *rtnh, int *remaining) { int totlen = NLA_ALIGN(rtnh->rtnh_len); *remaining -= totlen; return (struct rtnexthop *) ((char *) rtnh + totlen); } static inline struct nlattr *rtnh_attrs(const struct rtnexthop *rtnh) { return (struct nlattr *) ((char *) rtnh + NLA_ALIGN(sizeof(*rtnh))); } static inline int rtnh_attrlen(const struct rtnexthop *rtnh) { return rtnh->rtnh_len - NLA_ALIGN(sizeof(*rtnh)); } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM ext4 #if !defined(_TRACE_EXT4_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_EXT4_H #include <linux/writeback.h> #include <linux/tracepoint.h> struct ext4_allocation_context; struct ext4_allocation_request; struct ext4_extent; struct ext4_prealloc_space; struct ext4_inode_info; struct mpage_da_data; struct ext4_map_blocks; struct extent_status; struct ext4_fsmap; struct partial_cluster; #define EXT4_I(inode) (container_of(inode, struct ext4_inode_info, vfs_inode)) #define show_mballoc_flags(flags) __print_flags(flags, "|", \ { EXT4_MB_HINT_MERGE, "HINT_MERGE" }, \ { EXT4_MB_HINT_RESERVED, "HINT_RESV" }, \ { EXT4_MB_HINT_METADATA, "HINT_MDATA" }, \ { EXT4_MB_HINT_FIRST, "HINT_FIRST" }, \ { EXT4_MB_HINT_BEST, "HINT_BEST" }, \ { EXT4_MB_HINT_DATA, "HINT_DATA" }, \ { EXT4_MB_HINT_NOPREALLOC, "HINT_NOPREALLOC" }, \ { EXT4_MB_HINT_GROUP_ALLOC, "HINT_GRP_ALLOC" }, \ { EXT4_MB_HINT_GOAL_ONLY, "HINT_GOAL_ONLY" }, \ { EXT4_MB_HINT_TRY_GOAL, "HINT_TRY_GOAL" }, \ { EXT4_MB_DELALLOC_RESERVED, "DELALLOC_RESV" }, \ { EXT4_MB_STREAM_ALLOC, "STREAM_ALLOC" }, \ { EXT4_MB_USE_ROOT_BLOCKS, "USE_ROOT_BLKS" }, \ { EXT4_MB_USE_RESERVED, "USE_RESV" }, \ { EXT4_MB_STRICT_CHECK, "STRICT_CHECK" }) #define show_map_flags(flags) __print_flags(flags, "|", \ { EXT4_GET_BLOCKS_CREATE, "CREATE" }, \ { EXT4_GET_BLOCKS_UNWRIT_EXT, "UNWRIT" }, \ { EXT4_GET_BLOCKS_DELALLOC_RESERVE, "DELALLOC" }, \ { EXT4_GET_BLOCKS_PRE_IO, "PRE_IO" }, \ { EXT4_GET_BLOCKS_CONVERT, "CONVERT" }, \ { EXT4_GET_BLOCKS_METADATA_NOFAIL, "METADATA_NOFAIL" }, \ { EXT4_GET_BLOCKS_NO_NORMALIZE, "NO_NORMALIZE" }, \ { EXT4_GET_BLOCKS_CONVERT_UNWRITTEN, "CONVERT_UNWRITTEN" }, \ { EXT4_GET_BLOCKS_ZERO, "ZERO" }, \ { EXT4_GET_BLOCKS_IO_SUBMIT, "IO_SUBMIT" }, \ { EXT4_EX_NOCACHE, "EX_NOCACHE" }) /* * __print_flags() requires that all enum values be wrapped in the * TRACE_DEFINE_ENUM macro so that the enum value can be encoded in the ftrace * ring buffer. */ TRACE_DEFINE_ENUM(BH_New); TRACE_DEFINE_ENUM(BH_Mapped); TRACE_DEFINE_ENUM(BH_Unwritten); TRACE_DEFINE_ENUM(BH_Boundary); #define show_mflags(flags) __print_flags(flags, "", \ { EXT4_MAP_NEW, "N" }, \ { EXT4_MAP_MAPPED, "M" }, \ { EXT4_MAP_UNWRITTEN, "U" }, \ { EXT4_MAP_BOUNDARY, "B" }) #define show_free_flags(flags) __print_flags(flags, "|", \ { EXT4_FREE_BLOCKS_METADATA, "METADATA" }, \ { EXT4_FREE_BLOCKS_FORGET, "FORGET" }, \ { EXT4_FREE_BLOCKS_VALIDATED, "VALIDATED" }, \ { EXT4_FREE_BLOCKS_NO_QUOT_UPDATE, "NO_QUOTA" }, \ { EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER,"1ST_CLUSTER" },\ { EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER, "LAST_CLUSTER" }) TRACE_DEFINE_ENUM(ES_WRITTEN_B); TRACE_DEFINE_ENUM(ES_UNWRITTEN_B); TRACE_DEFINE_ENUM(ES_DELAYED_B); TRACE_DEFINE_ENUM(ES_HOLE_B); TRACE_DEFINE_ENUM(ES_REFERENCED_B); #define show_extent_status(status) __print_flags(status, "", \ { EXTENT_STATUS_WRITTEN, "W" }, \ { EXTENT_STATUS_UNWRITTEN, "U" }, \ { EXTENT_STATUS_DELAYED, "D" }, \ { EXTENT_STATUS_HOLE, "H" }, \ { EXTENT_STATUS_REFERENCED, "R" }) #define show_falloc_mode(mode) __print_flags(mode, "|", \ { FALLOC_FL_KEEP_SIZE, "KEEP_SIZE"}, \ { FALLOC_FL_PUNCH_HOLE, "PUNCH_HOLE"}, \ { FALLOC_FL_NO_HIDE_STALE, "NO_HIDE_STALE"}, \ { FALLOC_FL_COLLAPSE_RANGE, "COLLAPSE_RANGE"}, \ { FALLOC_FL_ZERO_RANGE, "ZERO_RANGE"}) #define show_fc_reason(reason) \ __print_symbolic(reason, \ { EXT4_FC_REASON_XATTR, "XATTR"}, \ { EXT4_FC_REASON_CROSS_RENAME, "CROSS_RENAME"}, \ { EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, "JOURNAL_FLAG_CHANGE"}, \ { EXT4_FC_REASON_NOMEM, "NO_MEM"}, \ { EXT4_FC_REASON_SWAP_BOOT, "SWAP_BOOT"}, \ { EXT4_FC_REASON_RESIZE, "RESIZE"}, \ { EXT4_FC_REASON_RENAME_DIR, "RENAME_DIR"}, \ { EXT4_FC_REASON_FALLOC_RANGE, "FALLOC_RANGE"}, \ { EXT4_FC_REASON_INODE_JOURNAL_DATA, "INODE_JOURNAL_DATA"}) TRACE_EVENT(ext4_other_inode_update_time, TP_PROTO(struct inode *inode, ino_t orig_ino), TP_ARGS(inode, orig_ino), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( ino_t, orig_ino ) __field( uid_t, uid ) __field( gid_t, gid ) __field( __u16, mode ) ), TP_fast_assign( __entry->orig_ino = orig_ino; __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->uid = i_uid_read(inode); __entry->gid = i_gid_read(inode); __entry->mode = inode->i_mode; ), TP_printk("dev %d,%d orig_ino %lu ino %lu mode 0%o uid %u gid %u", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->orig_ino, (unsigned long) __entry->ino, __entry->mode, __entry->uid, __entry->gid) ); TRACE_EVENT(ext4_free_inode, TP_PROTO(struct inode *inode), TP_ARGS(inode), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( uid_t, uid ) __field( gid_t, gid ) __field( __u64, blocks ) __field( __u16, mode ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->uid = i_uid_read(inode); __entry->gid = i_gid_read(inode); __entry->blocks = inode->i_blocks; __entry->mode = inode->i_mode; ), TP_printk("dev %d,%d ino %lu mode 0%o uid %u gid %u blocks %llu", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->mode, __entry->uid, __entry->gid, __entry->blocks) ); TRACE_EVENT(ext4_request_inode, TP_PROTO(struct inode *dir, int mode), TP_ARGS(dir, mode), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, dir ) __field( __u16, mode ) ), TP_fast_assign( __entry->dev = dir->i_sb->s_dev; __entry->dir = dir->i_ino; __entry->mode = mode; ), TP_printk("dev %d,%d dir %lu mode 0%o", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->dir, __entry->mode) ); TRACE_EVENT(ext4_allocate_inode, TP_PROTO(struct inode *inode, struct inode *dir, int mode), TP_ARGS(inode, dir, mode), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( ino_t, dir ) __field( __u16, mode ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->dir = dir->i_ino; __entry->mode = mode; ), TP_printk("dev %d,%d ino %lu dir %lu mode 0%o", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, (unsigned long) __entry->dir, __entry->mode) ); TRACE_EVENT(ext4_evict_inode, TP_PROTO(struct inode *inode), TP_ARGS(inode), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( int, nlink ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->nlink = inode->i_nlink; ), TP_printk("dev %d,%d ino %lu nlink %d", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->nlink) ); TRACE_EVENT(ext4_drop_inode, TP_PROTO(struct inode *inode, int drop), TP_ARGS(inode, drop), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( int, drop ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->drop = drop; ), TP_printk("dev %d,%d ino %lu drop %d", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->drop) ); TRACE_EVENT(ext4_nfs_commit_metadata, TP_PROTO(struct inode *inode), TP_ARGS(inode), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; ), TP_printk("dev %d,%d ino %lu", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino) ); TRACE_EVENT(ext4_mark_inode_dirty, TP_PROTO(struct inode *inode, unsigned long IP), TP_ARGS(inode, IP), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field(unsigned long, ip ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->ip = IP; ), TP_printk("dev %d,%d ino %lu caller %pS", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, (void *)__entry->ip) ); TRACE_EVENT(ext4_begin_ordered_truncate, TP_PROTO(struct inode *inode, loff_t new_size), TP_ARGS(inode, new_size), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( loff_t, new_size ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->new_size = new_size; ), TP_printk("dev %d,%d ino %lu new_size %lld", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->new_size) ); DECLARE_EVENT_CLASS(ext4__write_begin, TP_PROTO(struct inode *inode, loff_t pos, unsigned int len, unsigned int flags), TP_ARGS(inode, pos, len, flags), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( loff_t, pos ) __field( unsigned int, len ) __field( unsigned int, flags ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->pos = pos; __entry->len = len; __entry->flags = flags; ), TP_printk("dev %d,%d ino %lu pos %lld len %u flags %u", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->pos, __entry->len, __entry->flags) ); DEFINE_EVENT(ext4__write_begin, ext4_write_begin, TP_PROTO(struct inode *inode, loff_t pos, unsigned int len, unsigned int flags), TP_ARGS(inode, pos, len, flags) ); DEFINE_EVENT(ext4__write_begin, ext4_da_write_begin, TP_PROTO(struct inode *inode, loff_t pos, unsigned int len, unsigned int flags), TP_ARGS(inode, pos, len, flags) ); DECLARE_EVENT_CLASS(ext4__write_end, TP_PROTO(struct inode *inode, loff_t pos, unsigned int len, unsigned int copied), TP_ARGS(inode, pos, len, copied), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( loff_t, pos ) __field( unsigned int, len ) __field( unsigned int, copied ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->pos = pos; __entry->len = len; __entry->copied = copied; ), TP_printk("dev %d,%d ino %lu pos %lld len %u copied %u", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->pos, __entry->len, __entry->copied) ); DEFINE_EVENT(ext4__write_end, ext4_write_end, TP_PROTO(struct inode *inode, loff_t pos, unsigned int len, unsigned int copied), TP_ARGS(inode, pos, len, copied) ); DEFINE_EVENT(ext4__write_end, ext4_journalled_write_end, TP_PROTO(struct inode *inode, loff_t pos, unsigned int len, unsigned int copied), TP_ARGS(inode, pos, len, copied) ); DEFINE_EVENT(ext4__write_end, ext4_da_write_end, TP_PROTO(struct inode *inode, loff_t pos, unsigned int len, unsigned int copied), TP_ARGS(inode, pos, len, copied) ); TRACE_EVENT(ext4_writepages, TP_PROTO(struct inode *inode, struct writeback_control *wbc), TP_ARGS(inode, wbc), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( long, nr_to_write ) __field( long, pages_skipped ) __field( loff_t, range_start ) __field( loff_t, range_end ) __field( pgoff_t, writeback_index ) __field( int, sync_mode ) __field( char, for_kupdate ) __field( char, range_cyclic ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->nr_to_write = wbc->nr_to_write; __entry->pages_skipped = wbc->pages_skipped; __entry->range_start = wbc->range_start; __entry->range_end = wbc->range_end; __entry->writeback_index = inode->i_mapping->writeback_index; __entry->sync_mode = wbc->sync_mode; __entry->for_kupdate = wbc->for_kupdate; __entry->range_cyclic = wbc->range_cyclic; ), TP_printk("dev %d,%d ino %lu nr_to_write %ld pages_skipped %ld " "range_start %lld range_end %lld sync_mode %d " "for_kupdate %d range_cyclic %d writeback_index %lu", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->nr_to_write, __entry->pages_skipped, __entry->range_start, __entry->range_end, __entry->sync_mode, __entry->for_kupdate, __entry->range_cyclic, (unsigned long) __entry->writeback_index) ); TRACE_EVENT(ext4_da_write_pages, TP_PROTO(struct inode *inode, pgoff_t first_page, struct writeback_control *wbc), TP_ARGS(inode, first_page, wbc), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( pgoff_t, first_page ) __field( long, nr_to_write ) __field( int, sync_mode ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->first_page = first_page; __entry->nr_to_write = wbc->nr_to_write; __entry->sync_mode = wbc->sync_mode; ), TP_printk("dev %d,%d ino %lu first_page %lu nr_to_write %ld " "sync_mode %d", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->first_page, __entry->nr_to_write, __entry->sync_mode) ); TRACE_EVENT(ext4_da_write_pages_extent, TP_PROTO(struct inode *inode, struct ext4_map_blocks *map), TP_ARGS(inode, map), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( __u64, lblk ) __field( __u32, len ) __field( __u32, flags ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->lblk = map->m_lblk; __entry->len = map->m_len; __entry->flags = map->m_flags; ), TP_printk("dev %d,%d ino %lu lblk %llu len %u flags %s", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->lblk, __entry->len, show_mflags(__entry->flags)) ); TRACE_EVENT(ext4_writepages_result, TP_PROTO(struct inode *inode, struct writeback_control *wbc, int ret, int pages_written), TP_ARGS(inode, wbc, ret, pages_written), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( int, ret ) __field( int, pages_written ) __field( long, pages_skipped ) __field( pgoff_t, writeback_index ) __field( int, sync_mode ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->ret = ret; __entry->pages_written = pages_written; __entry->pages_skipped = wbc->pages_skipped; __entry->writeback_index = inode->i_mapping->writeback_index; __entry->sync_mode = wbc->sync_mode; ), TP_printk("dev %d,%d ino %lu ret %d pages_written %d pages_skipped %ld " "sync_mode %d writeback_index %lu", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->ret, __entry->pages_written, __entry->pages_skipped, __entry->sync_mode, (unsigned long) __entry->writeback_index) ); DECLARE_EVENT_CLASS(ext4__page_op, TP_PROTO(struct page *page), TP_ARGS(page), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( pgoff_t, index ) ), TP_fast_assign( __entry->dev = page->mapping->host->i_sb->s_dev; __entry->ino = page->mapping->host->i_ino; __entry->index = page->index; ), TP_printk("dev %d,%d ino %lu page_index %lu", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, (unsigned long) __entry->index) ); DEFINE_EVENT(ext4__page_op, ext4_writepage, TP_PROTO(struct page *page), TP_ARGS(page) ); DEFINE_EVENT(ext4__page_op, ext4_readpage, TP_PROTO(struct page *page), TP_ARGS(page) ); DEFINE_EVENT(ext4__page_op, ext4_releasepage, TP_PROTO(struct page *page), TP_ARGS(page) ); DECLARE_EVENT_CLASS(ext4_invalidatepage_op, TP_PROTO(struct page *page, unsigned int offset, unsigned int length), TP_ARGS(page, offset, length), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( pgoff_t, index ) __field( unsigned int, offset ) __field( unsigned int, length ) ), TP_fast_assign( __entry->dev = page->mapping->host->i_sb->s_dev; __entry->ino = page->mapping->host->i_ino; __entry->index = page->index; __entry->offset = offset; __entry->length = length; ), TP_printk("dev %d,%d ino %lu page_index %lu offset %u length %u", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, (unsigned long) __entry->index, __entry->offset, __entry->length) ); DEFINE_EVENT(ext4_invalidatepage_op, ext4_invalidatepage, TP_PROTO(struct page *page, unsigned int offset, unsigned int length), TP_ARGS(page, offset, length) ); DEFINE_EVENT(ext4_invalidatepage_op, ext4_journalled_invalidatepage, TP_PROTO(struct page *page, unsigned int offset, unsigned int length), TP_ARGS(page, offset, length) ); TRACE_EVENT(ext4_discard_blocks, TP_PROTO(struct super_block *sb, unsigned long long blk, unsigned long long count), TP_ARGS(sb, blk, count), TP_STRUCT__entry( __field( dev_t, dev ) __field( __u64, blk ) __field( __u64, count ) ), TP_fast_assign( __entry->dev = sb->s_dev; __entry->blk = blk; __entry->count = count; ), TP_printk("dev %d,%d blk %llu count %llu", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->blk, __entry->count) ); DECLARE_EVENT_CLASS(ext4__mb_new_pa, TP_PROTO(struct ext4_allocation_context *ac, struct ext4_prealloc_space *pa), TP_ARGS(ac, pa), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( __u64, pa_pstart ) __field( __u64, pa_lstart ) __field( __u32, pa_len ) ), TP_fast_assign( __entry->dev = ac->ac_sb->s_dev; __entry->ino = ac->ac_inode->i_ino; __entry->pa_pstart = pa->pa_pstart; __entry->pa_lstart = pa->pa_lstart; __entry->pa_len = pa->pa_len; ), TP_printk("dev %d,%d ino %lu pstart %llu len %u lstart %llu", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->pa_pstart, __entry->pa_len, __entry->pa_lstart) ); DEFINE_EVENT(ext4__mb_new_pa, ext4_mb_new_inode_pa, TP_PROTO(struct ext4_allocation_context *ac, struct ext4_prealloc_space *pa), TP_ARGS(ac, pa) ); DEFINE_EVENT(ext4__mb_new_pa, ext4_mb_new_group_pa, TP_PROTO(struct ext4_allocation_context *ac, struct ext4_prealloc_space *pa), TP_ARGS(ac, pa) ); TRACE_EVENT(ext4_mb_release_inode_pa, TP_PROTO(struct ext4_prealloc_space *pa, unsigned long long block, unsigned int count), TP_ARGS(pa, block, count), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( __u64, block ) __field( __u32, count ) ), TP_fast_assign( __entry->dev = pa->pa_inode->i_sb->s_dev; __entry->ino = pa->pa_inode->i_ino; __entry->block = block; __entry->count = count; ), TP_printk("dev %d,%d ino %lu block %llu count %u", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->block, __entry->count) ); TRACE_EVENT(ext4_mb_release_group_pa, TP_PROTO(struct super_block *sb, struct ext4_prealloc_space *pa), TP_ARGS(sb, pa), TP_STRUCT__entry( __field( dev_t, dev ) __field( __u64, pa_pstart ) __field( __u32, pa_len ) ), TP_fast_assign( __entry->dev = sb->s_dev; __entry->pa_pstart = pa->pa_pstart; __entry->pa_len = pa->pa_len; ), TP_printk("dev %d,%d pstart %llu len %u", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->pa_pstart, __entry->pa_len) ); TRACE_EVENT(ext4_discard_preallocations, TP_PROTO(struct inode *inode, unsigned int len, unsigned int needed), TP_ARGS(inode, len, needed), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( unsigned int, len ) __field( unsigned int, needed ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->len = len; __entry->needed = needed; ), TP_printk("dev %d,%d ino %lu len: %u needed %u", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->len, __entry->needed) ); TRACE_EVENT(ext4_mb_discard_preallocations, TP_PROTO(struct super_block *sb, int needed), TP_ARGS(sb, needed), TP_STRUCT__entry( __field( dev_t, dev ) __field( int, needed ) ), TP_fast_assign( __entry->dev = sb->s_dev; __entry->needed = needed; ), TP_printk("dev %d,%d needed %d", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->needed) ); TRACE_EVENT(ext4_request_blocks, TP_PROTO(struct ext4_allocation_request *ar), TP_ARGS(ar), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( unsigned int, len ) __field( __u32, logical ) __field( __u32, lleft ) __field( __u32, lright ) __field( __u64, goal ) __field( __u64, pleft ) __field( __u64, pright ) __field( unsigned int, flags ) ), TP_fast_assign( __entry->dev = ar->inode->i_sb->s_dev; __entry->ino = ar->inode->i_ino; __entry->len = ar->len; __entry->logical = ar->logical; __entry->goal = ar->goal; __entry->lleft = ar->lleft; __entry->lright = ar->lright; __entry->pleft = ar->pleft; __entry->pright = ar->pright; __entry->flags = ar->flags; ), TP_printk("dev %d,%d ino %lu flags %s len %u lblk %u goal %llu " "lleft %u lright %u pleft %llu pright %llu ", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, show_mballoc_flags(__entry->flags), __entry->len, __entry->logical, __entry->goal, __entry->lleft, __entry->lright, __entry->pleft, __entry->pright) ); TRACE_EVENT(ext4_allocate_blocks, TP_PROTO(struct ext4_allocation_request *ar, unsigned long long block), TP_ARGS(ar, block), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( __u64, block ) __field( unsigned int, len ) __field( __u32, logical ) __field( __u32, lleft ) __field( __u32, lright ) __field( __u64, goal ) __field( __u64, pleft ) __field( __u64, pright ) __field( unsigned int, flags ) ), TP_fast_assign( __entry->dev = ar->inode->i_sb->s_dev; __entry->ino = ar->inode->i_ino; __entry->block = block; __entry->len = ar->len; __entry->logical = ar->logical; __entry->goal = ar->goal; __entry->lleft = ar->lleft; __entry->lright = ar->lright; __entry->pleft = ar->pleft; __entry->pright = ar->pright; __entry->flags = ar->flags; ), TP_printk("dev %d,%d ino %lu flags %s len %u block %llu lblk %u " "goal %llu lleft %u lright %u pleft %llu pright %llu", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, show_mballoc_flags(__entry->flags), __entry->len, __entry->block, __entry->logical, __entry->goal, __entry->lleft, __entry->lright, __entry->pleft, __entry->pright) ); TRACE_EVENT(ext4_free_blocks, TP_PROTO(struct inode *inode, __u64 block, unsigned long count, int flags), TP_ARGS(inode, block, count, flags), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( __u64, block ) __field( unsigned long, count ) __field( int, flags ) __field( __u16, mode ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->block = block; __entry->count = count; __entry->flags = flags; __entry->mode = inode->i_mode; ), TP_printk("dev %d,%d ino %lu mode 0%o block %llu count %lu flags %s", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->mode, __entry->block, __entry->count, show_free_flags(__entry->flags)) ); TRACE_EVENT(ext4_sync_file_enter, TP_PROTO(struct file *file, int datasync), TP_ARGS(file, datasync), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( ino_t, parent ) __field( int, datasync ) ), TP_fast_assign( struct dentry *dentry = file->f_path.dentry; __entry->dev = dentry->d_sb->s_dev; __entry->ino = d_inode(dentry)->i_ino; __entry->datasync = datasync; __entry->parent = d_inode(dentry->d_parent)->i_ino; ), TP_printk("dev %d,%d ino %lu parent %lu datasync %d ", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, (unsigned long) __entry->parent, __entry->datasync) ); TRACE_EVENT(ext4_sync_file_exit, TP_PROTO(struct inode *inode, int ret), TP_ARGS(inode, ret), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( int, ret ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->ret = ret; ), TP_printk("dev %d,%d ino %lu ret %d", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->ret) ); TRACE_EVENT(ext4_sync_fs, TP_PROTO(struct super_block *sb, int wait), TP_ARGS(sb, wait), TP_STRUCT__entry( __field( dev_t, dev ) __field( int, wait ) ), TP_fast_assign( __entry->dev = sb->s_dev; __entry->wait = wait; ), TP_printk("dev %d,%d wait %d", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->wait) ); TRACE_EVENT(ext4_alloc_da_blocks, TP_PROTO(struct inode *inode), TP_ARGS(inode), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( unsigned int, data_blocks ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->data_blocks = EXT4_I(inode)->i_reserved_data_blocks; ), TP_printk("dev %d,%d ino %lu reserved_data_blocks %u", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->data_blocks) ); TRACE_EVENT(ext4_mballoc_alloc, TP_PROTO(struct ext4_allocation_context *ac), TP_ARGS(ac), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( __u32, orig_logical ) __field( int, orig_start ) __field( __u32, orig_group ) __field( int, orig_len ) __field( __u32, goal_logical ) __field( int, goal_start ) __field( __u32, goal_group ) __field( int, goal_len ) __field( __u32, result_logical ) __field( int, result_start ) __field( __u32, result_group ) __field( int, result_len ) __field( __u16, found ) __field( __u16, groups ) __field( __u16, buddy ) __field( __u16, flags ) __field( __u16, tail ) __field( __u8, cr ) ), TP_fast_assign( __entry->dev = ac->ac_inode->i_sb->s_dev; __entry->ino = ac->ac_inode->i_ino; __entry->orig_logical = ac->ac_o_ex.fe_logical; __entry->orig_start = ac->ac_o_ex.fe_start; __entry->orig_group = ac->ac_o_ex.fe_group; __entry->orig_len = ac->ac_o_ex.fe_len; __entry->goal_logical = ac->ac_g_ex.fe_logical; __entry->goal_start = ac->ac_g_ex.fe_start; __entry->goal_group = ac->ac_g_ex.fe_group; __entry->goal_len = ac->ac_g_ex.fe_len; __entry->result_logical = ac->ac_f_ex.fe_logical; __entry->result_start = ac->ac_f_ex.fe_start; __entry->result_group = ac->ac_f_ex.fe_group; __entry->result_len = ac->ac_f_ex.fe_len; __entry->found = ac->ac_found; __entry->flags = ac->ac_flags; __entry->groups = ac->ac_groups_scanned; __entry->buddy = ac->ac_buddy; __entry->tail = ac->ac_tail; __entry->cr = ac->ac_criteria; ), TP_printk("dev %d,%d inode %lu orig %u/%d/%u@%u goal %u/%d/%u@%u " "result %u/%d/%u@%u blks %u grps %u cr %u flags %s " "tail %u broken %u", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->orig_group, __entry->orig_start, __entry->orig_len, __entry->orig_logical, __entry->goal_group, __entry->goal_start, __entry->goal_len, __entry->goal_logical, __entry->result_group, __entry->result_start, __entry->result_len, __entry->result_logical, __entry->found, __entry->groups, __entry->cr, show_mballoc_flags(__entry->flags), __entry->tail, __entry->buddy ? 1 << __entry->buddy : 0) ); TRACE_EVENT(ext4_mballoc_prealloc, TP_PROTO(struct ext4_allocation_context *ac), TP_ARGS(ac), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( __u32, orig_logical ) __field( int, orig_start ) __field( __u32, orig_group ) __field( int, orig_len ) __field( __u32, result_logical ) __field( int, result_start ) __field( __u32, result_group ) __field( int, result_len ) ), TP_fast_assign( __entry->dev = ac->ac_inode->i_sb->s_dev; __entry->ino = ac->ac_inode->i_ino; __entry->orig_logical = ac->ac_o_ex.fe_logical; __entry->orig_start = ac->ac_o_ex.fe_start; __entry->orig_group = ac->ac_o_ex.fe_group; __entry->orig_len = ac->ac_o_ex.fe_len; __entry->result_logical = ac->ac_b_ex.fe_logical; __entry->result_start = ac->ac_b_ex.fe_start; __entry->result_group = ac->ac_b_ex.fe_group; __entry->result_len = ac->ac_b_ex.fe_len; ), TP_printk("dev %d,%d inode %lu orig %u/%d/%u@%u result %u/%d/%u@%u", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->orig_group, __entry->orig_start, __entry->orig_len, __entry->orig_logical, __entry->result_group, __entry->result_start, __entry->result_len, __entry->result_logical) ); DECLARE_EVENT_CLASS(ext4__mballoc, TP_PROTO(struct super_block *sb, struct inode *inode, ext4_group_t group, ext4_grpblk_t start, ext4_grpblk_t len), TP_ARGS(sb, inode, group, start, len), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( int, result_start ) __field( __u32, result_group ) __field( int, result_len ) ), TP_fast_assign( __entry->dev = sb->s_dev; __entry->ino = inode ? inode->i_ino : 0; __entry->result_start = start; __entry->result_group = group; __entry->result_len = len; ), TP_printk("dev %d,%d inode %lu extent %u/%d/%d ", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->result_group, __entry->result_start, __entry->result_len) ); DEFINE_EVENT(ext4__mballoc, ext4_mballoc_discard, TP_PROTO(struct super_block *sb, struct inode *inode, ext4_group_t group, ext4_grpblk_t start, ext4_grpblk_t len), TP_ARGS(sb, inode, group, start, len) ); DEFINE_EVENT(ext4__mballoc, ext4_mballoc_free, TP_PROTO(struct super_block *sb, struct inode *inode, ext4_group_t group, ext4_grpblk_t start, ext4_grpblk_t len), TP_ARGS(sb, inode, group, start, len) ); TRACE_EVENT(ext4_forget, TP_PROTO(struct inode *inode, int is_metadata, __u64 block), TP_ARGS(inode, is_metadata, block), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( __u64, block ) __field( int, is_metadata ) __field( __u16, mode ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->block = block; __entry->is_metadata = is_metadata; __entry->mode = inode->i_mode; ), TP_printk("dev %d,%d ino %lu mode 0%o is_metadata %d block %llu", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->mode, __entry->is_metadata, __entry->block) ); TRACE_EVENT(ext4_da_update_reserve_space, TP_PROTO(struct inode *inode, int used_blocks, int quota_claim), TP_ARGS(inode, used_blocks, quota_claim), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( __u64, i_blocks ) __field( int, used_blocks ) __field( int, reserved_data_blocks ) __field( int, quota_claim ) __field( __u16, mode ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->i_blocks = inode->i_blocks; __entry->used_blocks = used_blocks; __entry->reserved_data_blocks = EXT4_I(inode)->i_reserved_data_blocks; __entry->quota_claim = quota_claim; __entry->mode = inode->i_mode; ), TP_printk("dev %d,%d ino %lu mode 0%o i_blocks %llu used_blocks %d " "reserved_data_blocks %d quota_claim %d", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->mode, __entry->i_blocks, __entry->used_blocks, __entry->reserved_data_blocks, __entry->quota_claim) ); TRACE_EVENT(ext4_da_reserve_space, TP_PROTO(struct inode *inode), TP_ARGS(inode), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( __u64, i_blocks ) __field( int, reserved_data_blocks ) __field( __u16, mode ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->i_blocks = inode->i_blocks; __entry->reserved_data_blocks = EXT4_I(inode)->i_reserved_data_blocks; __entry->mode = inode->i_mode; ), TP_printk("dev %d,%d ino %lu mode 0%o i_blocks %llu " "reserved_data_blocks %d", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->mode, __entry->i_blocks, __entry->reserved_data_blocks) ); TRACE_EVENT(ext4_da_release_space, TP_PROTO(struct inode *inode, int freed_blocks), TP_ARGS(inode, freed_blocks), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( __u64, i_blocks ) __field( int, freed_blocks ) __field( int, reserved_data_blocks ) __field( __u16, mode ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->i_blocks = inode->i_blocks; __entry->freed_blocks = freed_blocks; __entry->reserved_data_blocks = EXT4_I(inode)->i_reserved_data_blocks; __entry->mode = inode->i_mode; ), TP_printk("dev %d,%d ino %lu mode 0%o i_blocks %llu freed_blocks %d " "reserved_data_blocks %d", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->mode, __entry->i_blocks, __entry->freed_blocks, __entry->reserved_data_blocks) ); DECLARE_EVENT_CLASS(ext4__bitmap_load, TP_PROTO(struct super_block *sb, unsigned long group), TP_ARGS(sb, group), TP_STRUCT__entry( __field( dev_t, dev ) __field( __u32, group ) ), TP_fast_assign( __entry->dev = sb->s_dev; __entry->group = group; ), TP_printk("dev %d,%d group %u", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->group) ); DEFINE_EVENT(ext4__bitmap_load, ext4_mb_bitmap_load, TP_PROTO(struct super_block *sb, unsigned long group), TP_ARGS(sb, group) ); DEFINE_EVENT(ext4__bitmap_load, ext4_mb_buddy_bitmap_load, TP_PROTO(struct super_block *sb, unsigned long group), TP_ARGS(sb, group) ); DEFINE_EVENT(ext4__bitmap_load, ext4_load_inode_bitmap, TP_PROTO(struct super_block *sb, unsigned long group), TP_ARGS(sb, group) ); TRACE_EVENT(ext4_read_block_bitmap_load, TP_PROTO(struct super_block *sb, unsigned long group, bool prefetch), TP_ARGS(sb, group, prefetch), TP_STRUCT__entry( __field( dev_t, dev ) __field( __u32, group ) __field( bool, prefetch ) ), TP_fast_assign( __entry->dev = sb->s_dev; __entry->group = group; __entry->prefetch = prefetch; ), TP_printk("dev %d,%d group %u prefetch %d", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->group, __entry->prefetch) ); TRACE_EVENT(ext4_direct_IO_enter, TP_PROTO(struct inode *inode, loff_t offset, unsigned long len, int rw), TP_ARGS(inode, offset, len, rw), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( loff_t, pos ) __field( unsigned long, len ) __field( int, rw ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->pos = offset; __entry->len = len; __entry->rw = rw; ), TP_printk("dev %d,%d ino %lu pos %lld len %lu rw %d", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->pos, __entry->len, __entry->rw) ); TRACE_EVENT(ext4_direct_IO_exit, TP_PROTO(struct inode *inode, loff_t offset, unsigned long len, int rw, int ret), TP_ARGS(inode, offset, len, rw, ret), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( loff_t, pos ) __field( unsigned long, len ) __field( int, rw ) __field( int, ret ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->pos = offset; __entry->len = len; __entry->rw = rw; __entry->ret = ret; ), TP_printk("dev %d,%d ino %lu pos %lld len %lu rw %d ret %d", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->pos, __entry->len, __entry->rw, __entry->ret) ); DECLARE_EVENT_CLASS(ext4__fallocate_mode, TP_PROTO(struct inode *inode, loff_t offset, loff_t len, int mode), TP_ARGS(inode, offset, len, mode), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( loff_t, offset ) __field( loff_t, len ) __field( int, mode ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->offset = offset; __entry->len = len; __entry->mode = mode; ), TP_printk("dev %d,%d ino %lu offset %lld len %lld mode %s", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->offset, __entry->len, show_falloc_mode(__entry->mode)) ); DEFINE_EVENT(ext4__fallocate_mode, ext4_fallocate_enter, TP_PROTO(struct inode *inode, loff_t offset, loff_t len, int mode), TP_ARGS(inode, offset, len, mode) ); DEFINE_EVENT(ext4__fallocate_mode, ext4_punch_hole, TP_PROTO(struct inode *inode, loff_t offset, loff_t len, int mode), TP_ARGS(inode, offset, len, mode) ); DEFINE_EVENT(ext4__fallocate_mode, ext4_zero_range, TP_PROTO(struct inode *inode, loff_t offset, loff_t len, int mode), TP_ARGS(inode, offset, len, mode) ); TRACE_EVENT(ext4_fallocate_exit, TP_PROTO(struct inode *inode, loff_t offset, unsigned int max_blocks, int ret), TP_ARGS(inode, offset, max_blocks, ret), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( loff_t, pos ) __field( unsigned int, blocks ) __field( int, ret ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->pos = offset; __entry->blocks = max_blocks; __entry->ret = ret; ), TP_printk("dev %d,%d ino %lu pos %lld blocks %u ret %d", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->pos, __entry->blocks, __entry->ret) ); TRACE_EVENT(ext4_unlink_enter, TP_PROTO(struct inode *parent, struct dentry *dentry), TP_ARGS(parent, dentry), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( ino_t, parent ) __field( loff_t, size ) ), TP_fast_assign( __entry->dev = dentry->d_sb->s_dev; __entry->ino = d_inode(dentry)->i_ino; __entry->parent = parent->i_ino; __entry->size = d_inode(dentry)->i_size; ), TP_printk("dev %d,%d ino %lu size %lld parent %lu", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->size, (unsigned long) __entry->parent) ); TRACE_EVENT(ext4_unlink_exit, TP_PROTO(struct dentry *dentry, int ret), TP_ARGS(dentry, ret), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( int, ret ) ), TP_fast_assign( __entry->dev = dentry->d_sb->s_dev; __entry->ino = d_inode(dentry)->i_ino; __entry->ret = ret; ), TP_printk("dev %d,%d ino %lu ret %d", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->ret) ); DECLARE_EVENT_CLASS(ext4__truncate, TP_PROTO(struct inode *inode), TP_ARGS(inode), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( __u64, blocks ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->blocks = inode->i_blocks; ), TP_printk("dev %d,%d ino %lu blocks %llu", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->blocks) ); DEFINE_EVENT(ext4__truncate, ext4_truncate_enter, TP_PROTO(struct inode *inode), TP_ARGS(inode) ); DEFINE_EVENT(ext4__truncate, ext4_truncate_exit, TP_PROTO(struct inode *inode), TP_ARGS(inode) ); /* 'ux' is the unwritten extent. */ TRACE_EVENT(ext4_ext_convert_to_initialized_enter, TP_PROTO(struct inode *inode, struct ext4_map_blocks *map, struct ext4_extent *ux), TP_ARGS(inode, map, ux), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( ext4_lblk_t, m_lblk ) __field( unsigned, m_len ) __field( ext4_lblk_t, u_lblk ) __field( unsigned, u_len ) __field( ext4_fsblk_t, u_pblk ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->m_lblk = map->m_lblk; __entry->m_len = map->m_len; __entry->u_lblk = le32_to_cpu(ux->ee_block); __entry->u_len = ext4_ext_get_actual_len(ux); __entry->u_pblk = ext4_ext_pblock(ux); ), TP_printk("dev %d,%d ino %lu m_lblk %u m_len %u u_lblk %u u_len %u " "u_pblk %llu", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->m_lblk, __entry->m_len, __entry->u_lblk, __entry->u_len, __entry->u_pblk) ); /* * 'ux' is the unwritten extent. * 'ix' is the initialized extent to which blocks are transferred. */ TRACE_EVENT(ext4_ext_convert_to_initialized_fastpath, TP_PROTO(struct inode *inode, struct ext4_map_blocks *map, struct ext4_extent *ux, struct ext4_extent *ix), TP_ARGS(inode, map, ux, ix), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( ext4_lblk_t, m_lblk ) __field( unsigned, m_len ) __field( ext4_lblk_t, u_lblk ) __field( unsigned, u_len ) __field( ext4_fsblk_t, u_pblk ) __field( ext4_lblk_t, i_lblk ) __field( unsigned, i_len ) __field( ext4_fsblk_t, i_pblk ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->m_lblk = map->m_lblk; __entry->m_len = map->m_len; __entry->u_lblk = le32_to_cpu(ux->ee_block); __entry->u_len = ext4_ext_get_actual_len(ux); __entry->u_pblk = ext4_ext_pblock(ux); __entry->i_lblk = le32_to_cpu(ix->ee_block); __entry->i_len = ext4_ext_get_actual_len(ix); __entry->i_pblk = ext4_ext_pblock(ix); ), TP_printk("dev %d,%d ino %lu m_lblk %u m_len %u " "u_lblk %u u_len %u u_pblk %llu " "i_lblk %u i_len %u i_pblk %llu ", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->m_lblk, __entry->m_len, __entry->u_lblk, __entry->u_len, __entry->u_pblk, __entry->i_lblk, __entry->i_len, __entry->i_pblk) ); DECLARE_EVENT_CLASS(ext4__map_blocks_enter, TP_PROTO(struct inode *inode, ext4_lblk_t lblk, unsigned int len, unsigned int flags), TP_ARGS(inode, lblk, len, flags), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( ext4_lblk_t, lblk ) __field( unsigned int, len ) __field( unsigned int, flags ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->lblk = lblk; __entry->len = len; __entry->flags = flags; ), TP_printk("dev %d,%d ino %lu lblk %u len %u flags %s", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->lblk, __entry->len, show_map_flags(__entry->flags)) ); DEFINE_EVENT(ext4__map_blocks_enter, ext4_ext_map_blocks_enter, TP_PROTO(struct inode *inode, ext4_lblk_t lblk, unsigned len, unsigned flags), TP_ARGS(inode, lblk, len, flags) ); DEFINE_EVENT(ext4__map_blocks_enter, ext4_ind_map_blocks_enter, TP_PROTO(struct inode *inode, ext4_lblk_t lblk, unsigned len, unsigned flags), TP_ARGS(inode, lblk, len, flags) ); DECLARE_EVENT_CLASS(ext4__map_blocks_exit, TP_PROTO(struct inode *inode, unsigned flags, struct ext4_map_blocks *map, int ret), TP_ARGS(inode, flags, map, ret), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( unsigned int, flags ) __field( ext4_fsblk_t, pblk ) __field( ext4_lblk_t, lblk ) __field( unsigned int, len ) __field( unsigned int, mflags ) __field( int, ret ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->flags = flags; __entry->pblk = map->m_pblk; __entry->lblk = map->m_lblk; __entry->len = map->m_len; __entry->mflags = map->m_flags; __entry->ret = ret; ), TP_printk("dev %d,%d ino %lu flags %s lblk %u pblk %llu len %u " "mflags %s ret %d", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, show_map_flags(__entry->flags), __entry->lblk, __entry->pblk, __entry->len, show_mflags(__entry->mflags), __entry->ret) ); DEFINE_EVENT(ext4__map_blocks_exit, ext4_ext_map_blocks_exit, TP_PROTO(struct inode *inode, unsigned flags, struct ext4_map_blocks *map, int ret), TP_ARGS(inode, flags, map, ret) ); DEFINE_EVENT(ext4__map_blocks_exit, ext4_ind_map_blocks_exit, TP_PROTO(struct inode *inode, unsigned flags, struct ext4_map_blocks *map, int ret), TP_ARGS(inode, flags, map, ret) ); TRACE_EVENT(ext4_ext_load_extent, TP_PROTO(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk), TP_ARGS(inode, lblk, pblk), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( ext4_fsblk_t, pblk ) __field( ext4_lblk_t, lblk ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->pblk = pblk; __entry->lblk = lblk; ), TP_printk("dev %d,%d ino %lu lblk %u pblk %llu", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->lblk, __entry->pblk) ); TRACE_EVENT(ext4_load_inode, TP_PROTO(struct super_block *sb, unsigned long ino), TP_ARGS(sb, ino), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) ), TP_fast_assign( __entry->dev = sb->s_dev; __entry->ino = ino; ), TP_printk("dev %d,%d ino %ld", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino) ); TRACE_EVENT(ext4_journal_start, TP_PROTO(struct super_block *sb, int blocks, int rsv_blocks, int revoke_creds, unsigned long IP), TP_ARGS(sb, blocks, rsv_blocks, revoke_creds, IP), TP_STRUCT__entry( __field( dev_t, dev ) __field(unsigned long, ip ) __field( int, blocks ) __field( int, rsv_blocks ) __field( int, revoke_creds ) ), TP_fast_assign( __entry->dev = sb->s_dev; __entry->ip = IP; __entry->blocks = blocks; __entry->rsv_blocks = rsv_blocks; __entry->revoke_creds = revoke_creds; ), TP_printk("dev %d,%d blocks %d, rsv_blocks %d, revoke_creds %d, " "caller %pS", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->blocks, __entry->rsv_blocks, __entry->revoke_creds, (void *)__entry->ip) ); TRACE_EVENT(ext4_journal_start_reserved, TP_PROTO(struct super_block *sb, int blocks, unsigned long IP), TP_ARGS(sb, blocks, IP), TP_STRUCT__entry( __field( dev_t, dev ) __field(unsigned long, ip ) __field( int, blocks ) ), TP_fast_assign( __entry->dev = sb->s_dev; __entry->ip = IP; __entry->blocks = blocks; ), TP_printk("dev %d,%d blocks, %d caller %pS", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->blocks, (void *)__entry->ip) ); DECLARE_EVENT_CLASS(ext4__trim, TP_PROTO(struct super_block *sb, ext4_group_t group, ext4_grpblk_t start, ext4_grpblk_t len), TP_ARGS(sb, group, start, len), TP_STRUCT__entry( __field( int, dev_major ) __field( int, dev_minor ) __field( __u32, group ) __field( int, start ) __field( int, len ) ), TP_fast_assign( __entry->dev_major = MAJOR(sb->s_dev); __entry->dev_minor = MINOR(sb->s_dev); __entry->group = group; __entry->start = start; __entry->len = len; ), TP_printk("dev %d,%d group %u, start %d, len %d", __entry->dev_major, __entry->dev_minor, __entry->group, __entry->start, __entry->len) ); DEFINE_EVENT(ext4__trim, ext4_trim_extent, TP_PROTO(struct super_block *sb, ext4_group_t group, ext4_grpblk_t start, ext4_grpblk_t len), TP_ARGS(sb, group, start, len) ); DEFINE_EVENT(ext4__trim, ext4_trim_all_free, TP_PROTO(struct super_block *sb, ext4_group_t group, ext4_grpblk_t start, ext4_grpblk_t len), TP_ARGS(sb, group, start, len) ); TRACE_EVENT(ext4_ext_handle_unwritten_extents, TP_PROTO(struct inode *inode, struct ext4_map_blocks *map, int flags, unsigned int allocated, ext4_fsblk_t newblock), TP_ARGS(inode, map, flags, allocated, newblock), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( int, flags ) __field( ext4_lblk_t, lblk ) __field( ext4_fsblk_t, pblk ) __field( unsigned int, len ) __field( unsigned int, allocated ) __field( ext4_fsblk_t, newblk ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->flags = flags; __entry->lblk = map->m_lblk; __entry->pblk = map->m_pblk; __entry->len = map->m_len; __entry->allocated = allocated; __entry->newblk = newblock; ), TP_printk("dev %d,%d ino %lu m_lblk %u m_pblk %llu m_len %u flags %s " "allocated %d newblock %llu", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, (unsigned) __entry->lblk, (unsigned long long) __entry->pblk, __entry->len, show_map_flags(__entry->flags), (unsigned int) __entry->allocated, (unsigned long long) __entry->newblk) ); TRACE_EVENT(ext4_get_implied_cluster_alloc_exit, TP_PROTO(struct super_block *sb, struct ext4_map_blocks *map, int ret), TP_ARGS(sb, map, ret), TP_STRUCT__entry( __field( dev_t, dev ) __field( unsigned int, flags ) __field( ext4_lblk_t, lblk ) __field( ext4_fsblk_t, pblk ) __field( unsigned int, len ) __field( int, ret ) ), TP_fast_assign( __entry->dev = sb->s_dev; __entry->flags = map->m_flags; __entry->lblk = map->m_lblk; __entry->pblk = map->m_pblk; __entry->len = map->m_len; __entry->ret = ret; ), TP_printk("dev %d,%d m_lblk %u m_pblk %llu m_len %u m_flags %s ret %d", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->lblk, (unsigned long long) __entry->pblk, __entry->len, show_mflags(__entry->flags), __entry->ret) ); TRACE_EVENT(ext4_ext_put_in_cache, TP_PROTO(struct inode *inode, ext4_lblk_t lblk, unsigned int len, ext4_fsblk_t start), TP_ARGS(inode, lblk, len, start), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( ext4_lblk_t, lblk ) __field( unsigned int, len ) __field( ext4_fsblk_t, start ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->lblk = lblk; __entry->len = len; __entry->start = start; ), TP_printk("dev %d,%d ino %lu lblk %u len %u start %llu", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, (unsigned) __entry->lblk, __entry->len, (unsigned long long) __entry->start) ); TRACE_EVENT(ext4_ext_in_cache, TP_PROTO(struct inode *inode, ext4_lblk_t lblk, int ret), TP_ARGS(inode, lblk, ret), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( ext4_lblk_t, lblk ) __field( int, ret ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->lblk = lblk; __entry->ret = ret; ), TP_printk("dev %d,%d ino %lu lblk %u ret %d", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, (unsigned) __entry->lblk, __entry->ret) ); TRACE_EVENT(ext4_find_delalloc_range, TP_PROTO(struct inode *inode, ext4_lblk_t from, ext4_lblk_t to, int reverse, int found, ext4_lblk_t found_blk), TP_ARGS(inode, from, to, reverse, found, found_blk), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( ext4_lblk_t, from ) __field( ext4_lblk_t, to ) __field( int, reverse ) __field( int, found ) __field( ext4_lblk_t, found_blk ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->from = from; __entry->to = to; __entry->reverse = reverse; __entry->found = found; __entry->found_blk = found_blk; ), TP_printk("dev %d,%d ino %lu from %u to %u reverse %d found %d " "(blk = %u)", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, (unsigned) __entry->from, (unsigned) __entry->to, __entry->reverse, __entry->found, (unsigned) __entry->found_blk) ); TRACE_EVENT(ext4_get_reserved_cluster_alloc, TP_PROTO(struct inode *inode, ext4_lblk_t lblk, unsigned int len), TP_ARGS(inode, lblk, len), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( ext4_lblk_t, lblk ) __field( unsigned int, len ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->lblk = lblk; __entry->len = len; ), TP_printk("dev %d,%d ino %lu lblk %u len %u", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, (unsigned) __entry->lblk, __entry->len) ); TRACE_EVENT(ext4_ext_show_extent, TP_PROTO(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, unsigned short len), TP_ARGS(inode, lblk, pblk, len), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( ext4_fsblk_t, pblk ) __field( ext4_lblk_t, lblk ) __field( unsigned short, len ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->pblk = pblk; __entry->lblk = lblk; __entry->len = len; ), TP_printk("dev %d,%d ino %lu lblk %u pblk %llu len %u", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, (unsigned) __entry->lblk, (unsigned long long) __entry->pblk, (unsigned short) __entry->len) ); TRACE_EVENT(ext4_remove_blocks, TP_PROTO(struct inode *inode, struct ext4_extent *ex, ext4_lblk_t from, ext4_fsblk_t to, struct partial_cluster *pc), TP_ARGS(inode, ex, from, to, pc), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( ext4_lblk_t, from ) __field( ext4_lblk_t, to ) __field( ext4_fsblk_t, ee_pblk ) __field( ext4_lblk_t, ee_lblk ) __field( unsigned short, ee_len ) __field( ext4_fsblk_t, pc_pclu ) __field( ext4_lblk_t, pc_lblk ) __field( int, pc_state) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->from = from; __entry->to = to; __entry->ee_pblk = ext4_ext_pblock(ex); __entry->ee_lblk = le32_to_cpu(ex->ee_block); __entry->ee_len = ext4_ext_get_actual_len(ex); __entry->pc_pclu = pc->pclu; __entry->pc_lblk = pc->lblk; __entry->pc_state = pc->state; ), TP_printk("dev %d,%d ino %lu extent [%u(%llu), %u]" "from %u to %u partial [pclu %lld lblk %u state %d]", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, (unsigned) __entry->ee_lblk, (unsigned long long) __entry->ee_pblk, (unsigned short) __entry->ee_len, (unsigned) __entry->from, (unsigned) __entry->to, (long long) __entry->pc_pclu, (unsigned int) __entry->pc_lblk, (int) __entry->pc_state) ); TRACE_EVENT(ext4_ext_rm_leaf, TP_PROTO(struct inode *inode, ext4_lblk_t start, struct ext4_extent *ex, struct partial_cluster *pc), TP_ARGS(inode, start, ex, pc), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( ext4_lblk_t, start ) __field( ext4_lblk_t, ee_lblk ) __field( ext4_fsblk_t, ee_pblk ) __field( short, ee_len ) __field( ext4_fsblk_t, pc_pclu ) __field( ext4_lblk_t, pc_lblk ) __field( int, pc_state) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->start = start; __entry->ee_lblk = le32_to_cpu(ex->ee_block); __entry->ee_pblk = ext4_ext_pblock(ex); __entry->ee_len = ext4_ext_get_actual_len(ex); __entry->pc_pclu = pc->pclu; __entry->pc_lblk = pc->lblk; __entry->pc_state = pc->state; ), TP_printk("dev %d,%d ino %lu start_lblk %u last_extent [%u(%llu), %u]" "partial [pclu %lld lblk %u state %d]", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, (unsigned) __entry->start, (unsigned) __entry->ee_lblk, (unsigned long long) __entry->ee_pblk, (unsigned short) __entry->ee_len, (long long) __entry->pc_pclu, (unsigned int) __entry->pc_lblk, (int) __entry->pc_state) ); TRACE_EVENT(ext4_ext_rm_idx, TP_PROTO(struct inode *inode, ext4_fsblk_t pblk), TP_ARGS(inode, pblk), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( ext4_fsblk_t, pblk ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->pblk = pblk; ), TP_printk("dev %d,%d ino %lu index_pblk %llu", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, (unsigned long long) __entry->pblk) ); TRACE_EVENT(ext4_ext_remove_space, TP_PROTO(struct inode *inode, ext4_lblk_t start, ext4_lblk_t end, int depth), TP_ARGS(inode, start, end, depth), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( ext4_lblk_t, start ) __field( ext4_lblk_t, end ) __field( int, depth ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->start = start; __entry->end = end; __entry->depth = depth; ), TP_printk("dev %d,%d ino %lu since %u end %u depth %d", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, (unsigned) __entry->start, (unsigned) __entry->end, __entry->depth) ); TRACE_EVENT(ext4_ext_remove_space_done, TP_PROTO(struct inode *inode, ext4_lblk_t start, ext4_lblk_t end, int depth, struct partial_cluster *pc, __le16 eh_entries), TP_ARGS(inode, start, end, depth, pc, eh_entries), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( ext4_lblk_t, start ) __field( ext4_lblk_t, end ) __field( int, depth ) __field( ext4_fsblk_t, pc_pclu ) __field( ext4_lblk_t, pc_lblk ) __field( int, pc_state ) __field( unsigned short, eh_entries ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->start = start; __entry->end = end; __entry->depth = depth; __entry->pc_pclu = pc->pclu; __entry->pc_lblk = pc->lblk; __entry->pc_state = pc->state; __entry->eh_entries = le16_to_cpu(eh_entries); ), TP_printk("dev %d,%d ino %lu since %u end %u depth %d " "partial [pclu %lld lblk %u state %d] " "remaining_entries %u", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, (unsigned) __entry->start, (unsigned) __entry->end, __entry->depth, (long long) __entry->pc_pclu, (unsigned int) __entry->pc_lblk, (int) __entry->pc_state, (unsigned short) __entry->eh_entries) ); DECLARE_EVENT_CLASS(ext4__es_extent, TP_PROTO(struct inode *inode, struct extent_status *es), TP_ARGS(inode, es), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( ext4_lblk_t, lblk ) __field( ext4_lblk_t, len ) __field( ext4_fsblk_t, pblk ) __field( char, status ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->lblk = es->es_lblk; __entry->len = es->es_len; __entry->pblk = ext4_es_show_pblock(es); __entry->status = ext4_es_status(es); ), TP_printk("dev %d,%d ino %lu es [%u/%u) mapped %llu status %s", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->lblk, __entry->len, __entry->pblk, show_extent_status(__entry->status)) ); DEFINE_EVENT(ext4__es_extent, ext4_es_insert_extent, TP_PROTO(struct inode *inode, struct extent_status *es), TP_ARGS(inode, es) ); DEFINE_EVENT(ext4__es_extent, ext4_es_cache_extent, TP_PROTO(struct inode *inode, struct extent_status *es), TP_ARGS(inode, es) ); TRACE_EVENT(ext4_es_remove_extent, TP_PROTO(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len), TP_ARGS(inode, lblk, len), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( loff_t, lblk ) __field( loff_t, len ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->lblk = lblk; __entry->len = len; ), TP_printk("dev %d,%d ino %lu es [%lld/%lld)", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->lblk, __entry->len) ); TRACE_EVENT(ext4_es_find_extent_range_enter, TP_PROTO(struct inode *inode, ext4_lblk_t lblk), TP_ARGS(inode, lblk), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( ext4_lblk_t, lblk ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->lblk = lblk; ), TP_printk("dev %d,%d ino %lu lblk %u", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->lblk) ); TRACE_EVENT(ext4_es_find_extent_range_exit, TP_PROTO(struct inode *inode, struct extent_status *es), TP_ARGS(inode, es), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( ext4_lblk_t, lblk ) __field( ext4_lblk_t, len ) __field( ext4_fsblk_t, pblk ) __field( char, status ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->lblk = es->es_lblk; __entry->len = es->es_len; __entry->pblk = ext4_es_show_pblock(es); __entry->status = ext4_es_status(es); ), TP_printk("dev %d,%d ino %lu es [%u/%u) mapped %llu status %s", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->lblk, __entry->len, __entry->pblk, show_extent_status(__entry->status)) ); TRACE_EVENT(ext4_es_lookup_extent_enter, TP_PROTO(struct inode *inode, ext4_lblk_t lblk), TP_ARGS(inode, lblk), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( ext4_lblk_t, lblk ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->lblk = lblk; ), TP_printk("dev %d,%d ino %lu lblk %u", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->lblk) ); TRACE_EVENT(ext4_es_lookup_extent_exit, TP_PROTO(struct inode *inode, struct extent_status *es, int found), TP_ARGS(inode, es, found), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( ext4_lblk_t, lblk ) __field( ext4_lblk_t, len ) __field( ext4_fsblk_t, pblk ) __field( char, status ) __field( int, found ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->lblk = es->es_lblk; __entry->len = es->es_len; __entry->pblk = ext4_es_show_pblock(es); __entry->status = ext4_es_status(es); __entry->found = found; ), TP_printk("dev %d,%d ino %lu found %d [%u/%u) %llu %s", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->found, __entry->lblk, __entry->len, __entry->found ? __entry->pblk : 0, show_extent_status(__entry->found ? __entry->status : 0)) ); DECLARE_EVENT_CLASS(ext4__es_shrink_enter, TP_PROTO(struct super_block *sb, int nr_to_scan, int cache_cnt), TP_ARGS(sb, nr_to_scan, cache_cnt), TP_STRUCT__entry( __field( dev_t, dev ) __field( int, nr_to_scan ) __field( int, cache_cnt ) ), TP_fast_assign( __entry->dev = sb->s_dev; __entry->nr_to_scan = nr_to_scan; __entry->cache_cnt = cache_cnt; ), TP_printk("dev %d,%d nr_to_scan %d cache_cnt %d", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->nr_to_scan, __entry->cache_cnt) ); DEFINE_EVENT(ext4__es_shrink_enter, ext4_es_shrink_count, TP_PROTO(struct super_block *sb, int nr_to_scan, int cache_cnt), TP_ARGS(sb, nr_to_scan, cache_cnt) ); DEFINE_EVENT(ext4__es_shrink_enter, ext4_es_shrink_scan_enter, TP_PROTO(struct super_block *sb, int nr_to_scan, int cache_cnt), TP_ARGS(sb, nr_to_scan, cache_cnt) ); TRACE_EVENT(ext4_es_shrink_scan_exit, TP_PROTO(struct super_block *sb, int nr_shrunk, int cache_cnt), TP_ARGS(sb, nr_shrunk, cache_cnt), TP_STRUCT__entry( __field( dev_t, dev ) __field( int, nr_shrunk ) __field( int, cache_cnt ) ), TP_fast_assign( __entry->dev = sb->s_dev; __entry->nr_shrunk = nr_shrunk; __entry->cache_cnt = cache_cnt; ), TP_printk("dev %d,%d nr_shrunk %d cache_cnt %d", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->nr_shrunk, __entry->cache_cnt) ); TRACE_EVENT(ext4_collapse_range, TP_PROTO(struct inode *inode, loff_t offset, loff_t len), TP_ARGS(inode, offset, len), TP_STRUCT__entry( __field(dev_t, dev) __field(ino_t, ino) __field(loff_t, offset) __field(loff_t, len) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->offset = offset; __entry->len = len; ), TP_printk("dev %d,%d ino %lu offset %lld len %lld", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->offset, __entry->len) ); TRACE_EVENT(ext4_insert_range, TP_PROTO(struct inode *inode, loff_t offset, loff_t len), TP_ARGS(inode, offset, len), TP_STRUCT__entry( __field(dev_t, dev) __field(ino_t, ino) __field(loff_t, offset) __field(loff_t, len) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->offset = offset; __entry->len = len; ), TP_printk("dev %d,%d ino %lu offset %lld len %lld", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->offset, __entry->len) ); TRACE_EVENT(ext4_es_shrink, TP_PROTO(struct super_block *sb, int nr_shrunk, u64 scan_time, int nr_skipped, int retried), TP_ARGS(sb, nr_shrunk, scan_time, nr_skipped, retried), TP_STRUCT__entry( __field( dev_t, dev ) __field( int, nr_shrunk ) __field( unsigned long long, scan_time ) __field( int, nr_skipped ) __field( int, retried ) ), TP_fast_assign( __entry->dev = sb->s_dev; __entry->nr_shrunk = nr_shrunk; __entry->scan_time = div_u64(scan_time, 1000); __entry->nr_skipped = nr_skipped; __entry->retried = retried; ), TP_printk("dev %d,%d nr_shrunk %d, scan_time %llu " "nr_skipped %d retried %d", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->nr_shrunk, __entry->scan_time, __entry->nr_skipped, __entry->retried) ); TRACE_EVENT(ext4_es_insert_delayed_block, TP_PROTO(struct inode *inode, struct extent_status *es, bool allocated), TP_ARGS(inode, es, allocated), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( ext4_lblk_t, lblk ) __field( ext4_lblk_t, len ) __field( ext4_fsblk_t, pblk ) __field( char, status ) __field( bool, allocated ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->lblk = es->es_lblk; __entry->len = es->es_len; __entry->pblk = ext4_es_show_pblock(es); __entry->status = ext4_es_status(es); __entry->allocated = allocated; ), TP_printk("dev %d,%d ino %lu es [%u/%u) mapped %llu status %s " "allocated %d", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->lblk, __entry->len, __entry->pblk, show_extent_status(__entry->status), __entry->allocated) ); /* fsmap traces */ DECLARE_EVENT_CLASS(ext4_fsmap_class, TP_PROTO(struct super_block *sb, u32 keydev, u32 agno, u64 bno, u64 len, u64 owner), TP_ARGS(sb, keydev, agno, bno, len, owner), TP_STRUCT__entry( __field(dev_t, dev) __field(dev_t, keydev) __field(u32, agno) __field(u64, bno) __field(u64, len) __field(u64, owner) ), TP_fast_assign( __entry->dev = sb->s_bdev->bd_dev; __entry->keydev = new_decode_dev(keydev); __entry->agno = agno; __entry->bno = bno; __entry->len = len; __entry->owner = owner; ), TP_printk("dev %d:%d keydev %d:%d agno %u bno %llu len %llu owner %lld\n", MAJOR(__entry->dev), MINOR(__entry->dev), MAJOR(__entry->keydev), MINOR(__entry->keydev), __entry->agno, __entry->bno, __entry->len, __entry->owner) ) #define DEFINE_FSMAP_EVENT(name) \ DEFINE_EVENT(ext4_fsmap_class, name, \ TP_PROTO(struct super_block *sb, u32 keydev, u32 agno, u64 bno, u64 len, \ u64 owner), \ TP_ARGS(sb, keydev, agno, bno, len, owner)) DEFINE_FSMAP_EVENT(ext4_fsmap_low_key); DEFINE_FSMAP_EVENT(ext4_fsmap_high_key); DEFINE_FSMAP_EVENT(ext4_fsmap_mapping); DECLARE_EVENT_CLASS(ext4_getfsmap_class, TP_PROTO(struct super_block *sb, struct ext4_fsmap *fsmap), TP_ARGS(sb, fsmap), TP_STRUCT__entry( __field(dev_t, dev) __field(dev_t, keydev) __field(u64, block) __field(u64, len) __field(u64, owner) __field(u64, flags) ), TP_fast_assign( __entry->dev = sb->s_bdev->bd_dev; __entry->keydev = new_decode_dev(fsmap->fmr_device); __entry->block = fsmap->fmr_physical; __entry->len = fsmap->fmr_length; __entry->owner = fsmap->fmr_owner; __entry->flags = fsmap->fmr_flags; ), TP_printk("dev %d:%d keydev %d:%d block %llu len %llu owner %lld flags 0x%llx\n", MAJOR(__entry->dev), MINOR(__entry->dev), MAJOR(__entry->keydev), MINOR(__entry->keydev), __entry->block, __entry->len, __entry->owner, __entry->flags) ) #define DEFINE_GETFSMAP_EVENT(name) \ DEFINE_EVENT(ext4_getfsmap_class, name, \ TP_PROTO(struct super_block *sb, struct ext4_fsmap *fsmap), \ TP_ARGS(sb, fsmap)) DEFINE_GETFSMAP_EVENT(ext4_getfsmap_low_key); DEFINE_GETFSMAP_EVENT(ext4_getfsmap_high_key); DEFINE_GETFSMAP_EVENT(ext4_getfsmap_mapping); TRACE_EVENT(ext4_shutdown, TP_PROTO(struct super_block *sb, unsigned long flags), TP_ARGS(sb, flags), TP_STRUCT__entry( __field( dev_t, dev ) __field( unsigned, flags ) ), TP_fast_assign( __entry->dev = sb->s_dev; __entry->flags = flags; ), TP_printk("dev %d,%d flags %u", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->flags) ); TRACE_EVENT(ext4_error, TP_PROTO(struct super_block *sb, const char *function, unsigned int line), TP_ARGS(sb, function, line), TP_STRUCT__entry( __field( dev_t, dev ) __field( const char *, function ) __field( unsigned, line ) ), TP_fast_assign( __entry->dev = sb->s_dev; __entry->function = function; __entry->line = line; ), TP_printk("dev %d,%d function %s line %u", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->function, __entry->line) ); TRACE_EVENT(ext4_prefetch_bitmaps, TP_PROTO(struct super_block *sb, ext4_group_t group, ext4_group_t next, unsigned int prefetch_ios), TP_ARGS(sb, group, next, prefetch_ios), TP_STRUCT__entry( __field( dev_t, dev ) __field( __u32, group ) __field( __u32, next ) __field( __u32, ios ) ), TP_fast_assign( __entry->dev = sb->s_dev; __entry->group = group; __entry->next = next; __entry->ios = prefetch_ios; ), TP_printk("dev %d,%d group %u next %u ios %u", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->group, __entry->next, __entry->ios) ); TRACE_EVENT(ext4_lazy_itable_init, TP_PROTO(struct super_block *sb, ext4_group_t group), TP_ARGS(sb, group), TP_STRUCT__entry( __field( dev_t, dev ) __field( __u32, group ) ), TP_fast_assign( __entry->dev = sb->s_dev; __entry->group = group; ), TP_printk("dev %d,%d group %u", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->group) ); TRACE_EVENT(ext4_fc_replay_scan, TP_PROTO(struct super_block *sb, int error, int off), TP_ARGS(sb, error, off), TP_STRUCT__entry( __field(dev_t, dev) __field(int, error) __field(int, off) ), TP_fast_assign( __entry->dev = sb->s_dev; __entry->error = error; __entry->off = off; ), TP_printk("FC scan pass on dev %d,%d: error %d, off %d", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->error, __entry->off) ); TRACE_EVENT(ext4_fc_replay, TP_PROTO(struct super_block *sb, int tag, int ino, int priv1, int priv2), TP_ARGS(sb, tag, ino, priv1, priv2), TP_STRUCT__entry( __field(dev_t, dev) __field(int, tag) __field(int, ino) __field(int, priv1) __field(int, priv2) ), TP_fast_assign( __entry->dev = sb->s_dev; __entry->tag = tag; __entry->ino = ino; __entry->priv1 = priv1; __entry->priv2 = priv2; ), TP_printk("FC Replay %d,%d: tag %d, ino %d, data1 %d, data2 %d", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->tag, __entry->ino, __entry->priv1, __entry->priv2) ); TRACE_EVENT(ext4_fc_commit_start, TP_PROTO(struct super_block *sb), TP_ARGS(sb), TP_STRUCT__entry( __field(dev_t, dev) ), TP_fast_assign( __entry->dev = sb->s_dev; ), TP_printk("fast_commit started on dev %d,%d", MAJOR(__entry->dev), MINOR(__entry->dev)) ); TRACE_EVENT(ext4_fc_commit_stop, TP_PROTO(struct super_block *sb, int nblks, int reason), TP_ARGS(sb, nblks, reason), TP_STRUCT__entry( __field(dev_t, dev) __field(int, nblks) __field(int, reason) __field(int, num_fc) __field(int, num_fc_ineligible) __field(int, nblks_agg) ), TP_fast_assign( __entry->dev = sb->s_dev; __entry->nblks = nblks; __entry->reason = reason; __entry->num_fc = EXT4_SB(sb)->s_fc_stats.fc_num_commits; __entry->num_fc_ineligible = EXT4_SB(sb)->s_fc_stats.fc_ineligible_commits; __entry->nblks_agg = EXT4_SB(sb)->s_fc_stats.fc_numblks; ), TP_printk("fc on [%d,%d] nblks %d, reason %d, fc = %d, ineligible = %d, agg_nblks %d", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->nblks, __entry->reason, __entry->num_fc, __entry->num_fc_ineligible, __entry->nblks_agg) ); #define FC_REASON_NAME_STAT(reason) \ show_fc_reason(reason), \ __entry->sbi->s_fc_stats.fc_ineligible_reason_count[reason] TRACE_EVENT(ext4_fc_stats, TP_PROTO(struct super_block *sb), TP_ARGS(sb), TP_STRUCT__entry( __field(dev_t, dev) __field(struct ext4_sb_info *, sbi) __field(int, count) ), TP_fast_assign( __entry->dev = sb->s_dev; __entry->sbi = EXT4_SB(sb); ), TP_printk("dev %d:%d fc ineligible reasons:\n" "%s:%d, %s:%d, %s:%d, %s:%d, %s:%d, %s:%d, %s:%d, %s:%d, %s:%d; " "num_commits:%ld, ineligible: %ld, numblks: %ld", MAJOR(__entry->dev), MINOR(__entry->dev), FC_REASON_NAME_STAT(EXT4_FC_REASON_XATTR), FC_REASON_NAME_STAT(EXT4_FC_REASON_CROSS_RENAME), FC_REASON_NAME_STAT(EXT4_FC_REASON_JOURNAL_FLAG_CHANGE), FC_REASON_NAME_STAT(EXT4_FC_REASON_NOMEM), FC_REASON_NAME_STAT(EXT4_FC_REASON_SWAP_BOOT), FC_REASON_NAME_STAT(EXT4_FC_REASON_RESIZE), FC_REASON_NAME_STAT(EXT4_FC_REASON_RENAME_DIR), FC_REASON_NAME_STAT(EXT4_FC_REASON_FALLOC_RANGE), FC_REASON_NAME_STAT(EXT4_FC_REASON_INODE_JOURNAL_DATA), __entry->sbi->s_fc_stats.fc_num_commits, __entry->sbi->s_fc_stats.fc_ineligible_commits, __entry->sbi->s_fc_stats.fc_numblks) ); #define DEFINE_TRACE_DENTRY_EVENT(__type) \ TRACE_EVENT(ext4_fc_track_##__type, \ TP_PROTO(struct inode *inode, struct dentry *dentry, int ret), \ \ TP_ARGS(inode, dentry, ret), \ \ TP_STRUCT__entry( \ __field(dev_t, dev) \ __field(int, ino) \ __field(int, error) \ ), \ \ TP_fast_assign( \ __entry->dev = inode->i_sb->s_dev; \ __entry->ino = inode->i_ino; \ __entry->error = ret; \ ), \ \ TP_printk("dev %d:%d, inode %d, error %d, fc_%s", \ MAJOR(__entry->dev), MINOR(__entry->dev), \ __entry->ino, __entry->error, \ #__type) \ ) DEFINE_TRACE_DENTRY_EVENT(create); DEFINE_TRACE_DENTRY_EVENT(link); DEFINE_TRACE_DENTRY_EVENT(unlink); TRACE_EVENT(ext4_fc_track_inode, TP_PROTO(struct inode *inode, int ret), TP_ARGS(inode, ret), TP_STRUCT__entry( __field(dev_t, dev) __field(int, ino) __field(int, error) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->error = ret; ), TP_printk("dev %d:%d, inode %d, error %d", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->ino, __entry->error) ); TRACE_EVENT(ext4_fc_track_range, TP_PROTO(struct inode *inode, long start, long end, int ret), TP_ARGS(inode, start, end, ret), TP_STRUCT__entry( __field(dev_t, dev) __field(int, ino) __field(long, start) __field(long, end) __field(int, error) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->start = start; __entry->end = end; __entry->error = ret; ), TP_printk("dev %d:%d, inode %d, error %d, start %ld, end %ld", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->ino, __entry->error, __entry->start, __entry->end) ); #endif /* _TRACE_EXT4_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef PM_TRACE_H #define PM_TRACE_H #include <linux/types.h> #ifdef CONFIG_PM_TRACE #include <asm/pm-trace.h> extern int pm_trace_enabled; extern bool pm_trace_rtc_abused; static inline bool pm_trace_rtc_valid(void) { return !pm_trace_rtc_abused; } static inline int pm_trace_is_enabled(void) { return pm_trace_enabled; } struct device; extern void set_trace_device(struct device *); extern void generate_pm_trace(const void *tracedata, unsigned int user); extern int show_trace_dev_match(char *buf, size_t size); #define TRACE_DEVICE(dev) do { \ if (pm_trace_enabled) \ set_trace_device(dev); \ } while(0) #else static inline bool pm_trace_rtc_valid(void) { return true; } static inline int pm_trace_is_enabled(void) { return 0; } #define TRACE_DEVICE(dev) do { } while (0) #define TRACE_RESUME(dev) do { } while (0) #define TRACE_SUSPEND(dev) do { } while (0) #endif #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_TIMEKEEPING_H #define _LINUX_TIMEKEEPING_H #include <linux/errno.h> /* Included from linux/ktime.h */ void timekeeping_init(void); extern int timekeeping_suspended; /* Architecture timer tick functions: */ extern void update_process_times(int user); extern void xtime_update(unsigned long ticks); /* * Get and set timeofday */ extern int do_settimeofday64(const struct timespec64 *ts); extern int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz); /* * ktime_get() family: read the current time in a multitude of ways, * * The default time reference is CLOCK_MONOTONIC, starting at * boot time but not counting the time spent in suspend. * For other references, use the functions with "real", "clocktai", * "boottime" and "raw" suffixes. * * To get the time in a different format, use the ones wit * "ns", "ts64" and "seconds" suffix. * * See Documentation/core-api/timekeeping.rst for more details. */ /* * timespec64 based interfaces */ extern void ktime_get_raw_ts64(struct timespec64 *ts); extern void ktime_get_ts64(struct timespec64 *ts); extern void ktime_get_real_ts64(struct timespec64 *tv); extern void ktime_get_coarse_ts64(struct timespec64 *ts); extern void ktime_get_coarse_real_ts64(struct timespec64 *ts); void getboottime64(struct timespec64 *ts); /* * time64_t base interfaces */ extern time64_t ktime_get_seconds(void); extern time64_t __ktime_get_real_seconds(void); extern time64_t ktime_get_real_seconds(void); /* * ktime_t based interfaces */ enum tk_offsets { TK_OFFS_REAL, TK_OFFS_BOOT, TK_OFFS_TAI, TK_OFFS_MAX, }; extern ktime_t ktime_get(void); extern ktime_t ktime_get_with_offset(enum tk_offsets offs); extern ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs); extern ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs); extern ktime_t ktime_get_raw(void); extern u32 ktime_get_resolution_ns(void); /** * ktime_get_real - get the real (wall-) time in ktime_t format */ static inline ktime_t ktime_get_real(void) { return ktime_get_with_offset(TK_OFFS_REAL); } static inline ktime_t ktime_get_coarse_real(void) { return ktime_get_coarse_with_offset(TK_OFFS_REAL); } /** * ktime_get_boottime - Returns monotonic time since boot in ktime_t format * * This is similar to CLOCK_MONTONIC/ktime_get, but also includes the * time spent in suspend. */ static inline ktime_t ktime_get_boottime(void) { return ktime_get_with_offset(TK_OFFS_BOOT); } static inline ktime_t ktime_get_coarse_boottime(void) { return ktime_get_coarse_with_offset(TK_OFFS_BOOT); } /** * ktime_get_clocktai - Returns the TAI time of day in ktime_t format */ static inline ktime_t ktime_get_clocktai(void) { return ktime_get_with_offset(TK_OFFS_TAI); } static inline ktime_t ktime_get_coarse_clocktai(void) { return ktime_get_coarse_with_offset(TK_OFFS_TAI); } static inline ktime_t ktime_get_coarse(void) { struct timespec64 ts; ktime_get_coarse_ts64(&ts); return timespec64_to_ktime(ts); } static inline u64 ktime_get_coarse_ns(void) { return ktime_to_ns(ktime_get_coarse()); } static inline u64 ktime_get_coarse_real_ns(void) { return ktime_to_ns(ktime_get_coarse_real()); } static inline u64 ktime_get_coarse_boottime_ns(void) { return ktime_to_ns(ktime_get_coarse_boottime()); } static inline u64 ktime_get_coarse_clocktai_ns(void) { return ktime_to_ns(ktime_get_coarse_clocktai()); } /** * ktime_mono_to_real - Convert monotonic time to clock realtime */ static inline ktime_t ktime_mono_to_real(ktime_t mono) { return ktime_mono_to_any(mono, TK_OFFS_REAL); } static inline u64 ktime_get_ns(void) { return ktime_to_ns(ktime_get()); } static inline u64 ktime_get_real_ns(void) { return ktime_to_ns(ktime_get_real()); } static inline u64 ktime_get_boottime_ns(void) { return ktime_to_ns(ktime_get_boottime()); } static inline u64 ktime_get_clocktai_ns(void) { return ktime_to_ns(ktime_get_clocktai()); } static inline u64 ktime_get_raw_ns(void) { return ktime_to_ns(ktime_get_raw()); } extern u64 ktime_get_mono_fast_ns(void); extern u64 ktime_get_raw_fast_ns(void); extern u64 ktime_get_boot_fast_ns(void); extern u64 ktime_get_real_fast_ns(void); /* * timespec64/time64_t interfaces utilizing the ktime based ones * for API completeness, these could be implemented more efficiently * if needed. */ static inline void ktime_get_boottime_ts64(struct timespec64 *ts) { *ts = ktime_to_timespec64(ktime_get_boottime()); } static inline void ktime_get_coarse_boottime_ts64(struct timespec64 *ts) { *ts = ktime_to_timespec64(ktime_get_coarse_boottime()); } static inline time64_t ktime_get_boottime_seconds(void) { return ktime_divns(ktime_get_coarse_boottime(), NSEC_PER_SEC); } static inline void ktime_get_clocktai_ts64(struct timespec64 *ts) { *ts = ktime_to_timespec64(ktime_get_clocktai()); } static inline void ktime_get_coarse_clocktai_ts64(struct timespec64 *ts) { *ts = ktime_to_timespec64(ktime_get_coarse_clocktai()); } static inline time64_t ktime_get_clocktai_seconds(void) { return ktime_divns(ktime_get_coarse_clocktai(), NSEC_PER_SEC); } /* * RTC specific */ extern bool timekeeping_rtc_skipsuspend(void); extern bool timekeeping_rtc_skipresume(void); extern void timekeeping_inject_sleeptime64(const struct timespec64 *delta); /* * struct ktime_timestanps - Simultaneous mono/boot/real timestamps * @mono: Monotonic timestamp * @boot: Boottime timestamp * @real: Realtime timestamp */ struct ktime_timestamps { u64 mono; u64 boot; u64 real; }; /** * struct system_time_snapshot - simultaneous raw/real time capture with * counter value * @cycles: Clocksource counter value to produce the system times * @real: Realtime system time * @raw: Monotonic raw system time * @clock_was_set_seq: The sequence number of clock was set events * @cs_was_changed_seq: The sequence number of clocksource change events */ struct system_time_snapshot { u64 cycles; ktime_t real; ktime_t raw; unsigned int clock_was_set_seq; u8 cs_was_changed_seq; }; /** * struct system_device_crosststamp - system/device cross-timestamp * (synchronized capture) * @device: Device time * @sys_realtime: Realtime simultaneous with device time * @sys_monoraw: Monotonic raw simultaneous with device time */ struct system_device_crosststamp { ktime_t device; ktime_t sys_realtime; ktime_t sys_monoraw; }; /** * struct system_counterval_t - system counter value with the pointer to the * corresponding clocksource * @cycles: System counter value * @cs: Clocksource corresponding to system counter value. Used by * timekeeping code to verify comparibility of two cycle values */ struct system_counterval_t { u64 cycles; struct clocksource *cs; }; /* * Get cross timestamp between system clock and device clock */ extern int get_device_system_crosststamp( int (*get_time_fn)(ktime_t *device_time, struct system_counterval_t *system_counterval, void *ctx), void *ctx, struct system_time_snapshot *history, struct system_device_crosststamp *xtstamp); /* * Simultaneously snapshot realtime and monotonic raw clocks */ extern void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot); /* NMI safe mono/boot/realtime timestamps */ extern void ktime_get_fast_timestamps(struct ktime_timestamps *snap); /* * Persistent clock related interfaces */ extern int persistent_clock_is_local; extern void read_persistent_clock64(struct timespec64 *ts); void read_persistent_wall_and_boot_offset(struct timespec64 *wall_clock, struct timespec64 *boot_offset); extern int update_persistent_clock64(struct timespec64 now); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_MBCACHE_H #define _LINUX_MBCACHE_H #include <linux/hash.h> #include <linux/list_bl.h> #include <linux/list.h> #include <linux/atomic.h> #include <linux/fs.h> struct mb_cache; struct mb_cache_entry { /* List of entries in cache - protected by cache->c_list_lock */ struct list_head e_list; /* Hash table list - protected by hash chain bitlock */ struct hlist_bl_node e_hash_list; atomic_t e_refcnt; /* Key in hash - stable during lifetime of the entry */ u32 e_key; u32 e_referenced:1; u32 e_reusable:1; /* User provided value - stable during lifetime of the entry */ u64 e_value; }; struct mb_cache *mb_cache_create(int bucket_bits); void mb_cache_destroy(struct mb_cache *cache); int mb_cache_entry_create(struct mb_cache *cache, gfp_t mask, u32 key, u64 value, bool reusable); void __mb_cache_entry_free(struct mb_cache_entry *entry); static inline int mb_cache_entry_put(struct mb_cache *cache, struct mb_cache_entry *entry) { if (!atomic_dec_and_test(&entry->e_refcnt)) return 0; __mb_cache_entry_free(entry); return 1; } void mb_cache_entry_delete(struct mb_cache *cache, u32 key, u64 value); struct mb_cache_entry *mb_cache_entry_get(struct mb_cache *cache, u32 key, u64 value); struct mb_cache_entry *mb_cache_entry_find_first(struct mb_cache *cache, u32 key); struct mb_cache_entry *mb_cache_entry_find_next(struct mb_cache *cache, struct mb_cache_entry *entry); void mb_cache_entry_touch(struct mb_cache *cache, struct mb_cache_entry *entry); #endif /* _LINUX_MBCACHE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _IPV6_FRAG_H #define _IPV6_FRAG_H #include <linux/kernel.h> #include <net/addrconf.h> #include <net/ipv6.h> #include <net/inet_frag.h> enum ip6_defrag_users { IP6_DEFRAG_LOCAL_DELIVER, IP6_DEFRAG_CONNTRACK_IN, __IP6_DEFRAG_CONNTRACK_IN = IP6_DEFRAG_CONNTRACK_IN + USHRT_MAX, IP6_DEFRAG_CONNTRACK_OUT, __IP6_DEFRAG_CONNTRACK_OUT = IP6_DEFRAG_CONNTRACK_OUT + USHRT_MAX, IP6_DEFRAG_CONNTRACK_BRIDGE_IN, __IP6_DEFRAG_CONNTRACK_BRIDGE_IN = IP6_DEFRAG_CONNTRACK_BRIDGE_IN + USHRT_MAX, }; /* * Equivalent of ipv4 struct ip */ struct frag_queue { struct inet_frag_queue q; int iif; __u16 nhoffset; u8 ecn; }; #if IS_ENABLED(CONFIG_IPV6) static inline void ip6frag_init(struct inet_frag_queue *q, const void *a) { struct frag_queue *fq = container_of(q, struct frag_queue, q); const struct frag_v6_compare_key *key = a; q->key.v6 = *key; fq->ecn = 0; } static inline u32 ip6frag_key_hashfn(const void *data, u32 len, u32 seed) { return jhash2(data, sizeof(struct frag_v6_compare_key) / sizeof(u32), seed); } static inline u32 ip6frag_obj_hashfn(const void *data, u32 len, u32 seed) { const struct inet_frag_queue *fq = data; return jhash2((const u32 *)&fq->key.v6, sizeof(struct frag_v6_compare_key) / sizeof(u32), seed); } static inline int ip6frag_obj_cmpfn(struct rhashtable_compare_arg *arg, const void *ptr) { const struct frag_v6_compare_key *key = arg->key; const struct inet_frag_queue *fq = ptr; return !!memcmp(&fq->key, key, sizeof(*key)); } static inline void ip6frag_expire_frag_queue(struct net *net, struct frag_queue *fq) { struct net_device *dev = NULL; struct sk_buff *head; rcu_read_lock(); if (fq->q.fqdir->dead) goto out_rcu_unlock; spin_lock(&fq->q.lock); if (fq->q.flags & INET_FRAG_COMPLETE) goto out; inet_frag_kill(&fq->q); dev = dev_get_by_index_rcu(net, fq->iif); if (!dev) goto out; __IP6_INC_STATS(net, __in6_dev_get(dev), IPSTATS_MIB_REASMFAILS); __IP6_INC_STATS(net, __in6_dev_get(dev), IPSTATS_MIB_REASMTIMEOUT); /* Don't send error if the first segment did not arrive. */ if (!(fq->q.flags & INET_FRAG_FIRST_IN)) goto out; /* sk_buff::dev and sk_buff::rbnode are unionized. So we * pull the head out of the tree in order to be able to * deal with head->dev. */ head = inet_frag_pull_head(&fq->q); if (!head) goto out; head->dev = dev; spin_unlock(&fq->q.lock); icmpv6_send(head, ICMPV6_TIME_EXCEED, ICMPV6_EXC_FRAGTIME, 0); kfree_skb(head); goto out_rcu_unlock; out: spin_unlock(&fq->q.lock); out_rcu_unlock: rcu_read_unlock(); inet_frag_put(&fq->q); } /* Check if the upper layer header is truncated in the first fragment. */ static inline bool ipv6frag_thdr_truncated(struct sk_buff *skb, int start, u8 *nexthdrp) { u8 nexthdr = *nexthdrp; __be16 frag_off; int offset; offset = ipv6_skip_exthdr(skb, start, &nexthdr, &frag_off); if (offset < 0 || (frag_off & htons(IP6_OFFSET))) return false; switch (nexthdr) { case NEXTHDR_TCP: offset += sizeof(struct tcphdr); break; case NEXTHDR_UDP: offset += sizeof(struct udphdr); break; case NEXTHDR_ICMP: offset += sizeof(struct icmp6hdr); break; default: offset += 1; } if (offset > skb->len) return true; return false; } #endif #endif
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM timer #if !defined(_TRACE_TIMER_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_TIMER_H #include <linux/tracepoint.h> #include <linux/hrtimer.h> #include <linux/timer.h> DECLARE_EVENT_CLASS(timer_class, TP_PROTO(struct timer_list *timer), TP_ARGS(timer), TP_STRUCT__entry( __field( void *, timer ) ), TP_fast_assign( __entry->timer = timer; ), TP_printk("timer=%p", __entry->timer) ); /** * timer_init - called when the timer is initialized * @timer: pointer to struct timer_list */ DEFINE_EVENT(timer_class, timer_init, TP_PROTO(struct timer_list *timer), TP_ARGS(timer) ); #define decode_timer_flags(flags) \ __print_flags(flags, "|", \ { TIMER_MIGRATING, "M" }, \ { TIMER_DEFERRABLE, "D" }, \ { TIMER_PINNED, "P" }, \ { TIMER_IRQSAFE, "I" }) /** * timer_start - called when the timer is started * @timer: pointer to struct timer_list * @expires: the timers expiry time */ TRACE_EVENT(timer_start, TP_PROTO(struct timer_list *timer, unsigned long expires, unsigned int flags), TP_ARGS(timer, expires, flags), TP_STRUCT__entry( __field( void *, timer ) __field( void *, function ) __field( unsigned long, expires ) __field( unsigned long, now ) __field( unsigned int, flags ) ), TP_fast_assign( __entry->timer = timer; __entry->function = timer->function; __entry->expires = expires; __entry->now = jiffies; __entry->flags = flags; ), TP_printk("timer=%p function=%ps expires=%lu [timeout=%ld] cpu=%u idx=%u flags=%s", __entry->timer, __entry->function, __entry->expires, (long)__entry->expires - __entry->now, __entry->flags & TIMER_CPUMASK, __entry->flags >> TIMER_ARRAYSHIFT, decode_timer_flags(__entry->flags & TIMER_TRACE_FLAGMASK)) ); /** * timer_expire_entry - called immediately before the timer callback * @timer: pointer to struct timer_list * * Allows to determine the timer latency. */ TRACE_EVENT(timer_expire_entry, TP_PROTO(struct timer_list *timer, unsigned long baseclk), TP_ARGS(timer, baseclk), TP_STRUCT__entry( __field( void *, timer ) __field( unsigned long, now ) __field( void *, function) __field( unsigned long, baseclk ) ), TP_fast_assign( __entry->timer = timer; __entry->now = jiffies; __entry->function = timer->function; __entry->baseclk = baseclk; ), TP_printk("timer=%p function=%ps now=%lu baseclk=%lu", __entry->timer, __entry->function, __entry->now, __entry->baseclk) ); /** * timer_expire_exit - called immediately after the timer callback returns * @timer: pointer to struct timer_list * * When used in combination with the timer_expire_entry tracepoint we can * determine the runtime of the timer callback function. * * NOTE: Do NOT derefernce timer in TP_fast_assign. The pointer might * be invalid. We solely track the pointer. */ DEFINE_EVENT(timer_class, timer_expire_exit, TP_PROTO(struct timer_list *timer), TP_ARGS(timer) ); /** * timer_cancel - called when the timer is canceled * @timer: pointer to struct timer_list */ DEFINE_EVENT(timer_class, timer_cancel, TP_PROTO(struct timer_list *timer), TP_ARGS(timer) ); #define decode_clockid(type) \ __print_symbolic(type, \ { CLOCK_REALTIME, "CLOCK_REALTIME" }, \ { CLOCK_MONOTONIC, "CLOCK_MONOTONIC" }, \ { CLOCK_BOOTTIME, "CLOCK_BOOTTIME" }, \ { CLOCK_TAI, "CLOCK_TAI" }) #define decode_hrtimer_mode(mode) \ __print_symbolic(mode, \ { HRTIMER_MODE_ABS, "ABS" }, \ { HRTIMER_MODE_REL, "REL" }, \ { HRTIMER_MODE_ABS_PINNED, "ABS|PINNED" }, \ { HRTIMER_MODE_REL_PINNED, "REL|PINNED" }, \ { HRTIMER_MODE_ABS_SOFT, "ABS|SOFT" }, \ { HRTIMER_MODE_REL_SOFT, "REL|SOFT" }, \ { HRTIMER_MODE_ABS_PINNED_SOFT, "ABS|PINNED|SOFT" }, \ { HRTIMER_MODE_REL_PINNED_SOFT, "REL|PINNED|SOFT" }) /** * hrtimer_init - called when the hrtimer is initialized * @hrtimer: pointer to struct hrtimer * @clockid: the hrtimers clock * @mode: the hrtimers mode */ TRACE_EVENT(hrtimer_init, TP_PROTO(struct hrtimer *hrtimer, clockid_t clockid, enum hrtimer_mode mode), TP_ARGS(hrtimer, clockid, mode), TP_STRUCT__entry( __field( void *, hrtimer ) __field( clockid_t, clockid ) __field( enum hrtimer_mode, mode ) ), TP_fast_assign( __entry->hrtimer = hrtimer; __entry->clockid = clockid; __entry->mode = mode; ), TP_printk("hrtimer=%p clockid=%s mode=%s", __entry->hrtimer, decode_clockid(__entry->clockid), decode_hrtimer_mode(__entry->mode)) ); /** * hrtimer_start - called when the hrtimer is started * @hrtimer: pointer to struct hrtimer */ TRACE_EVENT(hrtimer_start, TP_PROTO(struct hrtimer *hrtimer, enum hrtimer_mode mode), TP_ARGS(hrtimer, mode), TP_STRUCT__entry( __field( void *, hrtimer ) __field( void *, function ) __field( s64, expires ) __field( s64, softexpires ) __field( enum hrtimer_mode, mode ) ), TP_fast_assign( __entry->hrtimer = hrtimer; __entry->function = hrtimer->function; __entry->expires = hrtimer_get_expires(hrtimer); __entry->softexpires = hrtimer_get_softexpires(hrtimer); __entry->mode = mode; ), TP_printk("hrtimer=%p function=%ps expires=%llu softexpires=%llu " "mode=%s", __entry->hrtimer, __entry->function, (unsigned long long) __entry->expires, (unsigned long long) __entry->softexpires, decode_hrtimer_mode(__entry->mode)) ); /** * hrtimer_expire_entry - called immediately before the hrtimer callback * @hrtimer: pointer to struct hrtimer * @now: pointer to variable which contains current time of the * timers base. * * Allows to determine the timer latency. */ TRACE_EVENT(hrtimer_expire_entry, TP_PROTO(struct hrtimer *hrtimer, ktime_t *now), TP_ARGS(hrtimer, now), TP_STRUCT__entry( __field( void *, hrtimer ) __field( s64, now ) __field( void *, function) ), TP_fast_assign( __entry->hrtimer = hrtimer; __entry->now = *now; __entry->function = hrtimer->function; ), TP_printk("hrtimer=%p function=%ps now=%llu", __entry->hrtimer, __entry->function, (unsigned long long) __entry->now) ); DECLARE_EVENT_CLASS(hrtimer_class, TP_PROTO(struct hrtimer *hrtimer), TP_ARGS(hrtimer), TP_STRUCT__entry( __field( void *, hrtimer ) ), TP_fast_assign( __entry->hrtimer = hrtimer; ), TP_printk("hrtimer=%p", __entry->hrtimer) ); /** * hrtimer_expire_exit - called immediately after the hrtimer callback returns * @hrtimer: pointer to struct hrtimer * * When used in combination with the hrtimer_expire_entry tracepoint we can * determine the runtime of the callback function. */ DEFINE_EVENT(hrtimer_class, hrtimer_expire_exit, TP_PROTO(struct hrtimer *hrtimer), TP_ARGS(hrtimer) ); /** * hrtimer_cancel - called when the hrtimer is canceled * @hrtimer: pointer to struct hrtimer */ DEFINE_EVENT(hrtimer_class, hrtimer_cancel, TP_PROTO(struct hrtimer *hrtimer), TP_ARGS(hrtimer) ); /** * itimer_state - called when itimer is started or canceled * @which: name of the interval timer * @value: the itimers value, itimer is canceled if value->it_value is * zero, otherwise it is started * @expires: the itimers expiry time */ TRACE_EVENT(itimer_state, TP_PROTO(int which, const struct itimerspec64 *const value, unsigned long long expires), TP_ARGS(which, value, expires), TP_STRUCT__entry( __field( int, which ) __field( unsigned long long, expires ) __field( long, value_sec ) __field( long, value_nsec ) __field( long, interval_sec ) __field( long, interval_nsec ) ), TP_fast_assign( __entry->which = which; __entry->expires = expires; __entry->value_sec = value->it_value.tv_sec; __entry->value_nsec = value->it_value.tv_nsec; __entry->interval_sec = value->it_interval.tv_sec; __entry->interval_nsec = value->it_interval.tv_nsec; ), TP_printk("which=%d expires=%llu it_value=%ld.%06ld it_interval=%ld.%06ld", __entry->which, __entry->expires, __entry->value_sec, __entry->value_nsec / NSEC_PER_USEC, __entry->interval_sec, __entry->interval_nsec / NSEC_PER_USEC) ); /** * itimer_expire - called when itimer expires * @which: type of the interval timer * @pid: pid of the process which owns the timer * @now: current time, used to calculate the latency of itimer */ TRACE_EVENT(itimer_expire, TP_PROTO(int which, struct pid *pid, unsigned long long now), TP_ARGS(which, pid, now), TP_STRUCT__entry( __field( int , which ) __field( pid_t, pid ) __field( unsigned long long, now ) ), TP_fast_assign( __entry->which = which; __entry->now = now; __entry->pid = pid_nr(pid); ), TP_printk("which=%d pid=%d now=%llu", __entry->which, (int) __entry->pid, __entry->now) ); #ifdef CONFIG_NO_HZ_COMMON #define TICK_DEP_NAMES \ tick_dep_mask_name(NONE) \ tick_dep_name(POSIX_TIMER) \ tick_dep_name(PERF_EVENTS) \ tick_dep_name(SCHED) \ tick_dep_name(CLOCK_UNSTABLE) \ tick_dep_name_end(RCU) #undef tick_dep_name #undef tick_dep_mask_name #undef tick_dep_name_end /* The MASK will convert to their bits and they need to be processed too */ #define tick_dep_name(sdep) TRACE_DEFINE_ENUM(TICK_DEP_BIT_##sdep); \ TRACE_DEFINE_ENUM(TICK_DEP_MASK_##sdep); #define tick_dep_name_end(sdep) TRACE_DEFINE_ENUM(TICK_DEP_BIT_##sdep); \ TRACE_DEFINE_ENUM(TICK_DEP_MASK_##sdep); /* NONE only has a mask defined for it */ #define tick_dep_mask_name(sdep) TRACE_DEFINE_ENUM(TICK_DEP_MASK_##sdep); TICK_DEP_NAMES #undef tick_dep_name #undef tick_dep_mask_name #undef tick_dep_name_end #define tick_dep_name(sdep) { TICK_DEP_MASK_##sdep, #sdep }, #define tick_dep_mask_name(sdep) { TICK_DEP_MASK_##sdep, #sdep }, #define tick_dep_name_end(sdep) { TICK_DEP_MASK_##sdep, #sdep } #define show_tick_dep_name(val) \ __print_symbolic(val, TICK_DEP_NAMES) TRACE_EVENT(tick_stop, TP_PROTO(int success, int dependency), TP_ARGS(success, dependency), TP_STRUCT__entry( __field( int , success ) __field( int , dependency ) ), TP_fast_assign( __entry->success = success; __entry->dependency = dependency; ), TP_printk("success=%d dependency=%s", __entry->success, \ show_tick_dep_name(__entry->dependency)) ); #endif #endif /* _TRACE_TIMER_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Framework and drivers for configuring and reading different PHYs * Based on code in sungem_phy.c and (long-removed) gianfar_phy.c * * Author: Andy Fleming * * Copyright (c) 2004 Freescale Semiconductor, Inc. */ #ifndef __PHY_H #define __PHY_H #include <linux/compiler.h> #include <linux/spinlock.h> #include <linux/ethtool.h> #include <linux/linkmode.h> #include <linux/netlink.h> #include <linux/mdio.h> #include <linux/mii.h> #include <linux/mii_timestamper.h> #include <linux/module.h> #include <linux/timer.h> #include <linux/workqueue.h> #include <linux/mod_devicetable.h> #include <linux/u64_stats_sync.h> #include <linux/irqreturn.h> #include <linux/iopoll.h> #include <linux/refcount.h> #include <linux/atomic.h> #define PHY_DEFAULT_FEATURES (SUPPORTED_Autoneg | \ SUPPORTED_TP | \ SUPPORTED_MII) #define PHY_10BT_FEATURES (SUPPORTED_10baseT_Half | \ SUPPORTED_10baseT_Full) #define PHY_100BT_FEATURES (SUPPORTED_100baseT_Half | \ SUPPORTED_100baseT_Full) #define PHY_1000BT_FEATURES (SUPPORTED_1000baseT_Half | \ SUPPORTED_1000baseT_Full) extern __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_features) __ro_after_init; extern __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1_features) __ro_after_init; extern __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_features) __ro_after_init; extern __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_fibre_features) __ro_after_init; extern __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_all_ports_features) __ro_after_init; extern __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_features) __ro_after_init; extern __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_fec_features) __ro_after_init; extern __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_full_features) __ro_after_init; #define PHY_BASIC_FEATURES ((unsigned long *)&phy_basic_features) #define PHY_BASIC_T1_FEATURES ((unsigned long *)&phy_basic_t1_features) #define PHY_GBIT_FEATURES ((unsigned long *)&phy_gbit_features) #define PHY_GBIT_FIBRE_FEATURES ((unsigned long *)&phy_gbit_fibre_features) #define PHY_GBIT_ALL_PORTS_FEATURES ((unsigned long *)&phy_gbit_all_ports_features) #define PHY_10GBIT_FEATURES ((unsigned long *)&phy_10gbit_features) #define PHY_10GBIT_FEC_FEATURES ((unsigned long *)&phy_10gbit_fec_features) #define PHY_10GBIT_FULL_FEATURES ((unsigned long *)&phy_10gbit_full_features) extern const int phy_basic_ports_array[3]; extern const int phy_fibre_port_array[1]; extern const int phy_all_ports_features_array[7]; extern const int phy_10_100_features_array[4]; extern const int phy_basic_t1_features_array[2]; extern const int phy_gbit_features_array[2]; extern const int phy_10gbit_features_array[1]; /* * Set phydev->irq to PHY_POLL if interrupts are not supported, * or not desired for this PHY. Set to PHY_IGNORE_INTERRUPT if * the attached driver handles the interrupt */ #define PHY_POLL -1 #define PHY_IGNORE_INTERRUPT -2 #define PHY_IS_INTERNAL 0x00000001 #define PHY_RST_AFTER_CLK_EN 0x00000002 #define PHY_POLL_CABLE_TEST 0x00000004 #define MDIO_DEVICE_IS_PHY 0x80000000 /** * enum phy_interface_t - Interface Mode definitions * * @PHY_INTERFACE_MODE_NA: Not Applicable - don't touch * @PHY_INTERFACE_MODE_INTERNAL: No interface, MAC and PHY combined * @PHY_INTERFACE_MODE_MII: Median-independent interface * @PHY_INTERFACE_MODE_GMII: Gigabit median-independent interface * @PHY_INTERFACE_MODE_SGMII: Serial gigabit media-independent interface * @PHY_INTERFACE_MODE_TBI: Ten Bit Interface * @PHY_INTERFACE_MODE_REVMII: Reverse Media Independent Interface * @PHY_INTERFACE_MODE_RMII: Reduced Media Independent Interface * @PHY_INTERFACE_MODE_RGMII: Reduced gigabit media-independent interface * @PHY_INTERFACE_MODE_RGMII_ID: RGMII with Internal RX+TX delay * @PHY_INTERFACE_MODE_RGMII_RXID: RGMII with Internal RX delay * @PHY_INTERFACE_MODE_RGMII_TXID: RGMII with Internal RX delay * @PHY_INTERFACE_MODE_RTBI: Reduced TBI * @PHY_INTERFACE_MODE_SMII: ??? MII * @PHY_INTERFACE_MODE_XGMII: 10 gigabit media-independent interface * @PHY_INTERFACE_MODE_XLGMII:40 gigabit media-independent interface * @PHY_INTERFACE_MODE_MOCA: Multimedia over Coax * @PHY_INTERFACE_MODE_QSGMII: Quad SGMII * @PHY_INTERFACE_MODE_TRGMII: Turbo RGMII * @PHY_INTERFACE_MODE_1000BASEX: 1000 BaseX * @PHY_INTERFACE_MODE_2500BASEX: 2500 BaseX * @PHY_INTERFACE_MODE_RXAUI: Reduced XAUI * @PHY_INTERFACE_MODE_XAUI: 10 Gigabit Attachment Unit Interface * @PHY_INTERFACE_MODE_10GBASER: 10G BaseR * @PHY_INTERFACE_MODE_USXGMII: Universal Serial 10GE MII * @PHY_INTERFACE_MODE_10GKR: 10GBASE-KR - with Clause 73 AN * @PHY_INTERFACE_MODE_MAX: Book keeping * * Describes the interface between the MAC and PHY. */ typedef enum { PHY_INTERFACE_MODE_NA, PHY_INTERFACE_MODE_INTERNAL, PHY_INTERFACE_MODE_MII, PHY_INTERFACE_MODE_GMII, PHY_INTERFACE_MODE_SGMII, PHY_INTERFACE_MODE_TBI, PHY_INTERFACE_MODE_REVMII, PHY_INTERFACE_MODE_RMII, PHY_INTERFACE_MODE_RGMII, PHY_INTERFACE_MODE_RGMII_ID, PHY_INTERFACE_MODE_RGMII_RXID, PHY_INTERFACE_MODE_RGMII_TXID, PHY_INTERFACE_MODE_RTBI, PHY_INTERFACE_MODE_SMII, PHY_INTERFACE_MODE_XGMII, PHY_INTERFACE_MODE_XLGMII, PHY_INTERFACE_MODE_MOCA, PHY_INTERFACE_MODE_QSGMII, PHY_INTERFACE_MODE_TRGMII, PHY_INTERFACE_MODE_1000BASEX, PHY_INTERFACE_MODE_2500BASEX, PHY_INTERFACE_MODE_RXAUI, PHY_INTERFACE_MODE_XAUI, /* 10GBASE-R, XFI, SFI - single lane 10G Serdes */ PHY_INTERFACE_MODE_10GBASER, PHY_INTERFACE_MODE_USXGMII, /* 10GBASE-KR - with Clause 73 AN */ PHY_INTERFACE_MODE_10GKR, PHY_INTERFACE_MODE_MAX, } phy_interface_t; /* * phy_supported_speeds - return all speeds currently supported by a PHY device */ unsigned int phy_supported_speeds(struct phy_device *phy, unsigned int *speeds, unsigned int size); /** * phy_modes - map phy_interface_t enum to device tree binding of phy-mode * @interface: enum phy_interface_t value * * Description: maps enum &phy_interface_t defined in this file * into the device tree binding of 'phy-mode', so that Ethernet * device driver can get PHY interface from device tree. */ static inline const char *phy_modes(phy_interface_t interface) { switch (interface) { case PHY_INTERFACE_MODE_NA: return ""; case PHY_INTERFACE_MODE_INTERNAL: return "internal"; case PHY_INTERFACE_MODE_MII: return "mii"; case PHY_INTERFACE_MODE_GMII: return "gmii"; case PHY_INTERFACE_MODE_SGMII: return "sgmii"; case PHY_INTERFACE_MODE_TBI: return "tbi"; case PHY_INTERFACE_MODE_REVMII: return "rev-mii"; case PHY_INTERFACE_MODE_RMII: return "rmii"; case PHY_INTERFACE_MODE_RGMII: return "rgmii"; case PHY_INTERFACE_MODE_RGMII_ID: return "rgmii-id"; case PHY_INTERFACE_MODE_RGMII_RXID: return "rgmii-rxid"; case PHY_INTERFACE_MODE_RGMII_TXID: return "rgmii-txid"; case PHY_INTERFACE_MODE_RTBI: return "rtbi"; case PHY_INTERFACE_MODE_SMII: return "smii"; case PHY_INTERFACE_MODE_XGMII: return "xgmii"; case PHY_INTERFACE_MODE_XLGMII: return "xlgmii"; case PHY_INTERFACE_MODE_MOCA: return "moca"; case PHY_INTERFACE_MODE_QSGMII: return "qsgmii"; case PHY_INTERFACE_MODE_TRGMII: return "trgmii"; case PHY_INTERFACE_MODE_1000BASEX: return "1000base-x"; case PHY_INTERFACE_MODE_2500BASEX: return "2500base-x"; case PHY_INTERFACE_MODE_RXAUI: return "rxaui"; case PHY_INTERFACE_MODE_XAUI: return "xaui"; case PHY_INTERFACE_MODE_10GBASER: return "10gbase-r"; case PHY_INTERFACE_MODE_USXGMII: return "usxgmii"; case PHY_INTERFACE_MODE_10GKR: return "10gbase-kr"; default: return "unknown"; } } #define PHY_INIT_TIMEOUT 100000 #define PHY_FORCE_TIMEOUT 10 #define PHY_MAX_ADDR 32 /* Used when trying to connect to a specific phy (mii bus id:phy device id) */ #define PHY_ID_FMT "%s:%02x" #define MII_BUS_ID_SIZE 61 struct device; struct phylink; struct sfp_bus; struct sfp_upstream_ops; struct sk_buff; /** * struct mdio_bus_stats - Statistics counters for MDIO busses * @transfers: Total number of transfers, i.e. @writes + @reads * @errors: Number of MDIO transfers that returned an error * @writes: Number of write transfers * @reads: Number of read transfers * @syncp: Synchronisation for incrementing statistics */ struct mdio_bus_stats { u64_stats_t transfers; u64_stats_t errors; u64_stats_t writes; u64_stats_t reads; /* Must be last, add new statistics above */ struct u64_stats_sync syncp; }; /** * struct phy_package_shared - Shared information in PHY packages * @addr: Common PHY address used to combine PHYs in one package * @refcnt: Number of PHYs connected to this shared data * @flags: Initialization of PHY package * @priv_size: Size of the shared private data @priv * @priv: Driver private data shared across a PHY package * * Represents a shared structure between different phydev's in the same * package, for example a quad PHY. See phy_package_join() and * phy_package_leave(). */ struct phy_package_shared { int addr; refcount_t refcnt; unsigned long flags; size_t priv_size; /* private data pointer */ /* note that this pointer is shared between different phydevs and * the user has to take care of appropriate locking. It is allocated * and freed automatically by phy_package_join() and * phy_package_leave(). */ void *priv; }; /* used as bit number in atomic bitops */ #define PHY_SHARED_F_INIT_DONE 0 #define PHY_SHARED_F_PROBE_DONE 1 /** * struct mii_bus - Represents an MDIO bus * * @owner: Who owns this device * @name: User friendly name for this MDIO device, or driver name * @id: Unique identifier for this bus, typical from bus hierarchy * @priv: Driver private data * * The Bus class for PHYs. Devices which provide access to * PHYs should register using this structure */ struct mii_bus { struct module *owner; const char *name; char id[MII_BUS_ID_SIZE]; void *priv; /** @read: Perform a read transfer on the bus */ int (*read)(struct mii_bus *bus, int addr, int regnum); /** @write: Perform a write transfer on the bus */ int (*write)(struct mii_bus *bus, int addr, int regnum, u16 val); /** @reset: Perform a reset of the bus */ int (*reset)(struct mii_bus *bus); /** @stats: Statistic counters per device on the bus */ struct mdio_bus_stats stats[PHY_MAX_ADDR]; /** * @mdio_lock: A lock to ensure that only one thing can read/write * the MDIO bus at a time */ struct mutex mdio_lock; /** @parent: Parent device of this bus */ struct device *parent; /** @state: State of bus structure */ enum { MDIOBUS_ALLOCATED = 1, MDIOBUS_REGISTERED, MDIOBUS_UNREGISTERED, MDIOBUS_RELEASED, } state; /** @dev: Kernel device representation */ struct device dev; /** @mdio_map: list of all MDIO devices on bus */ struct mdio_device *mdio_map[PHY_MAX_ADDR]; /** @phy_mask: PHY addresses to be ignored when probing */ u32 phy_mask; /** @phy_ignore_ta_mask: PHY addresses to ignore the TA/read failure */ u32 phy_ignore_ta_mask; /** * @irq: An array of interrupts, each PHY's interrupt at the index * matching its address */ int irq[PHY_MAX_ADDR]; /** @reset_delay_us: GPIO reset pulse width in microseconds */ int reset_delay_us; /** @reset_post_delay_us: GPIO reset deassert delay in microseconds */ int reset_post_delay_us; /** @reset_gpiod: Reset GPIO descriptor pointer */ struct gpio_desc *reset_gpiod; /** @probe_capabilities: bus capabilities, used for probing */ enum { MDIOBUS_NO_CAP = 0, MDIOBUS_C22, MDIOBUS_C45, MDIOBUS_C22_C45, } probe_capabilities; /** @shared_lock: protect access to the shared element */ struct mutex shared_lock; /** @shared: shared state across different PHYs */ struct phy_package_shared *shared[PHY_MAX_ADDR]; }; #define to_mii_bus(d) container_of(d, struct mii_bus, dev) struct mii_bus *mdiobus_alloc_size(size_t size); /** * mdiobus_alloc - Allocate an MDIO bus structure * * The internal state of the MDIO bus will be set of MDIOBUS_ALLOCATED ready * for the driver to register the bus. */ static inline struct mii_bus *mdiobus_alloc(void) { return mdiobus_alloc_size(0); } int __mdiobus_register(struct mii_bus *bus, struct module *owner); int __devm_mdiobus_register(struct device *dev, struct mii_bus *bus, struct module *owner); #define mdiobus_register(bus) __mdiobus_register(bus, THIS_MODULE) #define devm_mdiobus_register(dev, bus) \ __devm_mdiobus_register(dev, bus, THIS_MODULE) void mdiobus_unregister(struct mii_bus *bus); void mdiobus_free(struct mii_bus *bus); struct mii_bus *devm_mdiobus_alloc_size(struct device *dev, int sizeof_priv); static inline struct mii_bus *devm_mdiobus_alloc(struct device *dev) { return devm_mdiobus_alloc_size(dev, 0); } struct mii_bus *mdio_find_bus(const char *mdio_name); struct phy_device *mdiobus_scan(struct mii_bus *bus, int addr); #define PHY_INTERRUPT_DISABLED false #define PHY_INTERRUPT_ENABLED true /** * enum phy_state - PHY state machine states: * * @PHY_DOWN: PHY device and driver are not ready for anything. probe * should be called if and only if the PHY is in this state, * given that the PHY device exists. * - PHY driver probe function will set the state to @PHY_READY * * @PHY_READY: PHY is ready to send and receive packets, but the * controller is not. By default, PHYs which do not implement * probe will be set to this state by phy_probe(). * - start will set the state to UP * * @PHY_UP: The PHY and attached device are ready to do work. * Interrupts should be started here. * - timer moves to @PHY_NOLINK or @PHY_RUNNING * * @PHY_NOLINK: PHY is up, but not currently plugged in. * - irq or timer will set @PHY_RUNNING if link comes back * - phy_stop moves to @PHY_HALTED * * @PHY_RUNNING: PHY is currently up, running, and possibly sending * and/or receiving packets * - irq or timer will set @PHY_NOLINK if link goes down * - phy_stop moves to @PHY_HALTED * * @PHY_CABLETEST: PHY is performing a cable test. Packet reception/sending * is not expected to work, carrier will be indicated