1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_DESC_H #define _ASM_X86_DESC_H #include <asm/desc_defs.h> #include <asm/ldt.h> #include <asm/mmu.h> #include <asm/fixmap.h> #include <asm/irq_vectors.h> #include <asm/cpu_entry_area.h> #include <linux/smp.h> #include <linux/percpu.h> static inline void fill_ldt(struct desc_struct *desc, const struct user_desc *info) { desc->limit0 = info->limit & 0x0ffff; desc->base0 = (info->base_addr & 0x0000ffff); desc->base1 = (info->base_addr & 0x00ff0000) >> 16; desc->type = (info->read_exec_only ^ 1) << 1; desc->type |= info->contents << 2; /* Set the ACCESS bit so it can be mapped RO */ desc->type |= 1; desc->s = 1; desc->dpl = 0x3; desc->p = info->seg_not_present ^ 1; desc->limit1 = (info->limit & 0xf0000) >> 16; desc->avl = info->useable; desc->d = info->seg_32bit; desc->g = info->limit_in_pages; desc->base2 = (info->base_addr & 0xff000000) >> 24; /* * Don't allow setting of the lm bit. It would confuse * user_64bit_mode and would get overridden by sysret anyway. */ desc->l = 0; } struct gdt_page { struct desc_struct gdt[GDT_ENTRIES]; } __attribute__((aligned(PAGE_SIZE))); DECLARE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page); /* Provide the original GDT */ static inline struct desc_struct *get_cpu_gdt_rw(unsigned int cpu) { return per_cpu(gdt_page, cpu).gdt; } /* Provide the current original GDT */ static inline struct desc_struct *get_current_gdt_rw(void) { return this_cpu_ptr(&gdt_page)->gdt; } /* Provide the fixmap address of the remapped GDT */ static inline struct desc_struct *get_cpu_gdt_ro(int cpu) { return (struct desc_struct *)&get_cpu_entry_area(cpu)->gdt; } /* Provide the current read-only GDT */ static inline struct desc_struct *get_current_gdt_ro(void) { return get_cpu_gdt_ro(smp_processor_id()); } /* Provide the physical address of the GDT page. */ static inline phys_addr_t get_cpu_gdt_paddr(unsigned int cpu) { return per_cpu_ptr_to_phys(get_cpu_gdt_rw(cpu)); } static inline void pack_gate(gate_desc *gate, unsigned type, unsigned long func, unsigned dpl, unsigned ist, unsigned seg) { gate->offset_low = (u16) func; gate->bits.p = 1; gate->bits.dpl = dpl; gate->bits.zero = 0; gate->bits.type = type; gate->offset_middle = (u16) (func >> 16); #ifdef CONFIG_X86_64 gate->segment = __KERNEL_CS; gate->bits.ist = ist; gate->reserved = 0; gate->offset_high = (u32) (func >> 32); #else gate->segment = seg; gate->bits.ist = 0; #endif } static inline int desc_empty(const void *ptr) { const u32 *desc = ptr; return !(desc[0] | desc[1]); } #ifdef CONFIG_PARAVIRT_XXL #include <asm/paravirt.h> #else #define load_TR_desc() native_load_tr_desc() #define load_gdt(dtr) native_load_gdt(dtr) #define load_idt(dtr) native_load_idt(dtr) #define load_tr(tr) asm volatile("ltr %0"::"m" (tr)) #define load_ldt(ldt) asm volatile("lldt %0"::"m" (ldt)) #define store_gdt(dtr) native_store_gdt(dtr) #define store_tr(tr) (tr = native_store_tr()) #define load_TLS(t, cpu) native_load_tls(t, cpu) #define set_ldt native_set_ldt #define write_ldt_entry(dt, entry, desc) native_write_ldt_entry(dt, entry, desc) #define write_gdt_entry(dt, entry, desc, type) native_write_gdt_entry(dt, entry, desc, type) #define write_idt_entry(dt, entry, g) native_write_idt_entry(dt, entry, g) static inline void paravirt_alloc_ldt(struct desc_struct *ldt, unsigned entries) { } static inline void paravirt_free_ldt(struct desc_struct *ldt, unsigned entries) { } #endif /* CONFIG_PARAVIRT_XXL */ #define store_ldt(ldt) asm("sldt %0" : "=m"(ldt)) static inline void native_write_idt_entry(gate_desc *idt, int entry, const gate_desc *gate) { memcpy(&idt[entry], gate, sizeof(*gate)); } static inline void native_write_ldt_entry(struct desc_struct *ldt, int entry, const void *desc) { memcpy(&ldt[entry], desc, 8); } static inline void native_write_gdt_entry(struct desc_struct *gdt, int entry, const void *desc, int type) { unsigned int size; switch (type) { case DESC_TSS: size = sizeof(tss_desc); break; case DESC_LDT: size = sizeof(ldt_desc); break; default: size = sizeof(*gdt); break; } memcpy(&gdt[entry], desc, size); } static inline void set_tssldt_descriptor(void *d, unsigned long addr, unsigned type, unsigned size) { struct ldttss_desc *desc = d; memset(desc, 0, sizeof(*desc)); desc->limit0 = (u16) size; desc->base0 = (u16) addr; desc->base1 = (addr >> 16) & 0xFF; desc->type = type; desc->p = 1; desc->limit1 = (size >> 16) & 0xF; desc->base2 = (addr >> 24) & 0xFF; #ifdef CONFIG_X86_64 desc->base3 = (u32) (addr >> 32); #endif } static inline void __set_tss_desc(unsigned cpu, unsigned int entry, struct x86_hw_tss *addr) { struct desc_struct *d = get_cpu_gdt_rw(cpu); tss_desc tss; set_tssldt_descriptor(&tss, (unsigned long)addr, DESC_TSS, __KERNEL_TSS_LIMIT); write_gdt_entry(d, entry, &tss, DESC_TSS); } #define set_tss_desc(cpu, addr) __set_tss_desc(cpu, GDT_ENTRY_TSS, addr) static inline void native_set_ldt(const void *addr, unsigned int entries) { if (likely(entries == 0)) asm volatile("lldt %w0"::"q" (0)); else { unsigned cpu = smp_processor_id(); ldt_desc ldt; set_tssldt_descriptor(&ldt, (unsigned long)addr, DESC_LDT, entries * LDT_ENTRY_SIZE - 1); write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_LDT, &ldt, DESC_LDT); asm volatile("lldt %w0"::"q" (GDT_ENTRY_LDT*8)); } } static inline void native_load_gdt(const struct desc_ptr *dtr) { asm volatile("lgdt %0"::"m" (*dtr)); } static __always_inline void native_load_idt(const struct desc_ptr *dtr) { asm volatile("lidt %0"::"m" (*dtr)); } static inline void native_store_gdt(struct desc_ptr *dtr) { asm volatile("sgdt %0":"=m" (*dtr)); } static inline void store_idt(struct desc_ptr *dtr) { asm volatile("sidt %0":"=m" (*dtr)); } /* * The LTR instruction marks the TSS GDT entry as busy. On 64-bit, the GDT is * a read-only remapping. To prevent a page fault, the GDT is switched to the * original writeable version when needed. */ #ifdef CONFIG_X86_64 static inline void native_load_tr_desc(void) { struct desc_ptr gdt; int cpu = raw_smp_processor_id(); bool restore = 0; struct desc_struct *fixmap_gdt; native_store_gdt(&gdt); fixmap_gdt = get_cpu_gdt_ro(cpu); /* * If the current GDT is the read-only fixmap, swap to the original * writeable version. Swap back at the end. */ if (gdt.address == (unsigned long)fixmap_gdt) { load_direct_gdt(cpu); restore = 1; } asm volatile("ltr %w0"::"q" (GDT_ENTRY_TSS*8)); if (restore) load_fixmap_gdt(cpu); } #else static inline void native_load_tr_desc(void) { asm volatile("ltr %w0"::"q" (GDT_ENTRY_TSS*8)); } #endif static inline unsigned long native_store_tr(void) { unsigned long tr; asm volatile("str %0":"=r" (tr)); return tr; } static inline void native_load_tls(struct thread_struct *t, unsigned int cpu) { struct desc_struct *gdt = get_cpu_gdt_rw(cpu); unsigned int i; for (i = 0; i < GDT_ENTRY_TLS_ENTRIES; i++) gdt[GDT_ENTRY_TLS_MIN + i] = t->tls_array[i]; } DECLARE_PER_CPU(bool, __tss_limit_invalid); static inline void force_reload_TR(void) { struct desc_struct *d = get_current_gdt_rw(); tss_desc tss; memcpy(&tss, &d[GDT_ENTRY_TSS], sizeof(tss_desc)); /* * LTR requires an available TSS, and the TSS is currently * busy. Make it be available so that LTR will work. */ tss.type = DESC_TSS; write_gdt_entry(d, GDT_ENTRY_TSS, &tss, DESC_TSS); load_TR_desc(); this_cpu_write(__tss_limit_invalid, false); } /* * Call this if you need the TSS limit to be correct, which should be the case * if and only if you have TIF_IO_BITMAP set or you're switching to a task * with TIF_IO_BITMAP set. */ static inline void refresh_tss_limit(void) { DEBUG_LOCKS_WARN_ON(preemptible()); if (unlikely(this_cpu_read(__tss_limit_invalid))) force_reload_TR(); } /* * If you do something evil that corrupts the cached TSS limit (I'm looking * at you, VMX exits), call this function. * * The optimization here is that the TSS limit only matters for Linux if the * IO bitmap is in use. If the TSS limit gets forced to its minimum value, * everything works except that IO bitmap will be ignored and all CPL 3 IO * instructions will #GP, which is exactly what we want for normal tasks. */ static inline void invalidate_tss_limit(void) { DEBUG_LOCKS_WARN_ON(preemptible()); if (unlikely(test_thread_flag(TIF_IO_BITMAP))) force_reload_TR(); else this_cpu_write(__tss_limit_invalid, true); } /* This intentionally ignores lm, since 32-bit apps don't have that field. */ #define LDT_empty(info) \ ((info)->base_addr == 0 && \ (info)->limit == 0 && \ (info)->contents == 0 && \ (info)->read_exec_only == 1 && \ (info)->seg_32bit == 0 && \ (info)->limit_in_pages == 0 && \ (info)->seg_not_present == 1 && \ (info)->useable == 0) /* Lots of programs expect an all-zero user_desc to mean "no segment at all". */ static inline bool LDT_zero(const struct user_desc *info) { return (info->base_addr == 0 && info->limit == 0 && info->contents == 0 && info->read_exec_only == 0 && info->seg_32bit == 0 && info->limit_in_pages == 0 && info->seg_not_present == 0 && info->useable == 0); } static inline void clear_LDT(void) { set_ldt(NULL, 0); } static inline unsigned long get_desc_base(const struct desc_struct *desc) { return (unsigned)(desc->base0 | ((desc->base1) << 16) | ((desc->base2) << 24)); } static inline void set_desc_base(struct desc_struct *desc, unsigned long base) { desc->base0 = base & 0xffff; desc->base1 = (base >> 16) & 0xff; desc->base2 = (base >> 24) & 0xff; } static inline unsigned long get_desc_limit(const struct desc_struct *desc) { return desc->limit0 | (desc->limit1 << 16); } static inline void set_desc_limit(struct desc_struct *desc, unsigned long limit) { desc->limit0 = limit & 0xffff; desc->limit1 = (limit >> 16) & 0xf; } void alloc_intr_gate(unsigned int n, const void *addr); static inline void init_idt_data(struct idt_data *data, unsigned int n, const void *addr) { BUG_ON(n > 0xFF); memset(data, 0, sizeof(*data)); data->vector = n; data->addr = addr; data->segment = __KERNEL_CS; data->bits.type = GATE_INTERRUPT; data->bits.p = 1; } static inline void idt_init_desc(gate_desc *gate, const struct idt_data *d) { unsigned long addr = (unsigned long) d->addr; gate->offset_low = (u16) addr; gate->segment = (u16) d->segment; gate->bits = d->bits; gate->offset_middle = (u16) (addr >> 16); #ifdef CONFIG_X86_64 gate->offset_high = (u32) (addr >> 32); gate->reserved = 0; #endif } extern unsigned long system_vectors[]; extern void load_current_idt(void); extern void idt_setup_early_handler(void); extern void idt_setup_early_traps(void); extern void idt_setup_traps(void); extern void idt_setup_apic_and_irq_gates(void); extern bool idt_is_f00f_address(unsigned long address); #ifdef CONFIG_X86_64 extern void idt_setup_early_pf(void); extern void idt_setup_ist_traps(void); #else static inline void idt_setup_early_pf(void) { } static inline void idt_setup_ist_traps(void) { } #endif extern void idt_invalidate(void *addr); #endif /* _ASM_X86_DESC_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 /* SPDX-License-Identifier: GPL-2.0 */ /* File: linux/xattr.h Extended attributes handling. Copyright (C) 2001 by Andreas Gruenbacher <a.gruenbacher@computer.org> Copyright (c) 2001-2002 Silicon Graphics, Inc. All Rights Reserved. Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> */ #ifndef _LINUX_XATTR_H #define _LINUX_XATTR_H #include <linux/slab.h> #include <linux/types.h> #include <linux/spinlock.h> #include <linux/mm.h> #include <uapi/linux/xattr.h> struct inode; struct dentry; /* * struct xattr_handler: When @name is set, match attributes with exactly that * name. When @prefix is set instead, match attributes with that prefix and * with a non-empty suffix. */ struct xattr_handler { const char *name; const char *prefix; int flags; /* fs private flags */ bool (*list)(struct dentry *dentry); int (*get)(const struct xattr_handler *, struct dentry *dentry, struct inode *inode, const char *name, void *buffer, size_t size); int (*set)(const struct xattr_handler *, struct dentry *dentry, struct inode *inode, const char *name, const void *buffer, size_t size, int flags); }; const char *xattr_full_name(const struct xattr_handler *, const char *); struct xattr { const char *name; void *value; size_t value_len; }; ssize_t __vfs_getxattr(struct dentry *, struct inode *, const char *, void *, size_t); ssize_t vfs_getxattr(struct dentry *, const char *, void *, size_t); ssize_t vfs_listxattr(struct dentry *d, char *list, size_t size); int __vfs_setxattr(struct dentry *, struct inode *, const char *, const void *, size_t, int); int __vfs_setxattr_noperm(struct dentry *, const char *, const void *, size_t, int); int __vfs_setxattr_locked(struct dentry *, const char *, const void *, size_t, int, struct inode **); int vfs_setxattr(struct dentry *, const char *, const void *, size_t, int); int __vfs_removexattr(struct dentry *, const char *); int __vfs_removexattr_locked(struct dentry *, const char *, struct inode **); int vfs_removexattr(struct dentry *, const char *); ssize_t generic_listxattr(struct dentry *dentry, char *buffer, size_t buffer_size); ssize_t vfs_getxattr_alloc(struct dentry *dentry, const char *name, char **xattr_value, size_t size, gfp_t flags); int xattr_supported_namespace(struct inode *inode, const char *prefix); static inline const char *xattr_prefix(const struct xattr_handler *handler) { return handler->prefix ?: handler->name; } struct simple_xattrs { struct list_head head; spinlock_t lock; }; struct simple_xattr { struct list_head list; char *name; size_t size; char value[]; }; /* * initialize the simple_xattrs structure */ static inline void simple_xattrs_init(struct simple_xattrs *xattrs) { INIT_LIST_HEAD(&xattrs->head); spin_lock_init(&xattrs->lock); } /* * free all the xattrs */ static inline void simple_xattrs_free(struct simple_xattrs *xattrs) { struct simple_xattr *xattr, *node; list_for_each_entry_safe(xattr, node, &xattrs->head, list) { kfree(xattr->name); kvfree(xattr); } } struct simple_xattr *simple_xattr_alloc(const void *value, size_t size); int simple_xattr_get(struct simple_xattrs *xattrs, const char *name, void *buffer, size_t size); int simple_xattr_set(struct simple_xattrs *xattrs, const char *name, const void *value, size_t size, int flags, ssize_t *removed_size); ssize_t simple_xattr_list(struct inode *inode, struct simple_xattrs *xattrs, char *buffer, size_t size); void simple_xattr_list_add(struct simple_xattrs *xattrs, struct simple_xattr *new_xattr); #endif /* _LINUX_XATTR_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SCHED_CPUTIME_H #define _LINUX_SCHED_CPUTIME_H #include <linux/sched/signal.h> /* * cputime accounting APIs: */ #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE #include <asm/cputime.h> #ifndef cputime_to_nsecs # define cputime_to_nsecs(__ct) \ (cputime_to_usecs(__ct) * NSEC_PER_USEC) #endif #endif /* CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */ #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN extern void task_cputime(struct task_struct *t, u64 *utime, u64 *stime); extern u64 task_gtime(struct task_struct *t); #else static inline void task_cputime(struct task_struct *t, u64 *utime, u64 *stime) { *utime = t->utime; *stime = t->stime; } static inline u64 task_gtime(struct task_struct *t) { return t->gtime; } #endif #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME static inline void task_cputime_scaled(struct task_struct *t, u64 *utimescaled, u64 *stimescaled) { *utimescaled = t->utimescaled; *stimescaled = t->stimescaled; } #else static inline void task_cputime_scaled(struct task_struct *t, u64 *utimescaled, u64 *stimescaled) { task_cputime(t, utimescaled, stimescaled); } #endif extern void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st); extern void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st); extern void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev, u64 *ut, u64 *st); /* * Thread group CPU time accounting. */ void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); void thread_group_sample_cputime(struct task_struct *tsk, u64 *samples); /* * The following are functions that support scheduler-internal time accounting. * These functions are generally called at the timer tick. None of this depends * on CONFIG_SCHEDSTATS. */ /** * get_running_cputimer - return &tsk->signal->cputimer if cputimers are active * * @tsk: Pointer to target task. */ #ifdef CONFIG_POSIX_TIMERS static inline struct thread_group_cputimer *get_running_cputimer(struct task_struct *tsk) { struct thread_group_cputimer *cputimer = &tsk->signal->cputimer; /* * Check whether posix CPU timers are active. If not the thread * group accounting is not active either. Lockless check. */ if (!READ_ONCE(tsk->signal->posix_cputimers.timers_active)) return NULL; /* * After we flush the task's sum_exec_runtime to sig->sum_sched_runtime * in __exit_signal(), we won't account to the signal struct further * cputime consumed by that task, even though the task can still be * ticking after __exit_signal(). * * In order to keep a consistent behaviour between thread group cputime * and thread group cputimer accounting, lets also ignore the cputime * elapsing after __exit_signal() in any thread group timer running. * * This makes sure that POSIX CPU clocks and timers are synchronized, so * that a POSIX CPU timer won't expire while the corresponding POSIX CPU * clock delta is behind the expiring timer value. */ if (unlikely(!tsk->sighand)) return NULL; return cputimer; } #else static inline struct thread_group_cputimer *get_running_cputimer(struct task_struct *tsk) { return NULL; } #endif /** * account_group_user_time - Maintain utime for a thread group. * * @tsk: Pointer to task structure. * @cputime: Time value by which to increment the utime field of the * thread_group_cputime structure. * * If thread group time is being maintained, get the structure for the * running CPU and update the utime field there. */ static inline void account_group_user_time(struct task_struct *tsk, u64 cputime) { struct thread_group_cputimer *cputimer = get_running_cputimer(tsk); if (!cputimer) return; atomic64_add(cputime, &cputimer->cputime_atomic.utime); } /** * account_group_system_time - Maintain stime for a thread group. * * @tsk: Pointer to task structure. * @cputime: Time value by which to increment the stime field of the * thread_group_cputime structure. * * If thread group time is being maintained, get the structure for the * running CPU and update the stime field there. */ static inline void account_group_system_time(struct task_struct *tsk, u64 cputime) { struct thread_group_cputimer *cputimer = get_running_cputimer(tsk); if (!cputimer) return; atomic64_add(cputime, &cputimer->cputime_atomic.stime); } /** * account_group_exec_runtime - Maintain exec runtime for a thread group. * * @tsk: Pointer to task structure. * @ns: Time value by which to increment the sum_exec_runtime field * of the thread_group_cputime structure. * * If thread group time is being maintained, get the structure for the * running CPU and update the sum_exec_runtime field there. */ static inline void account_group_exec_runtime(struct task_struct *tsk, unsigned long long ns) { struct thread_group_cputimer *cputimer = get_running_cputimer(tsk); if (!cputimer) return; atomic64_add(ns, &cputimer->cputime_atomic.sum_exec_runtime); } static inline void prev_cputime_init(struct prev_cputime *prev) { #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE prev->utime = prev->stime = 0; raw_spin_lock_init(&prev->lock); #endif } extern unsigned long long task_sched_runtime(struct task_struct *task); #endif /* _LINUX_SCHED_CPUTIME_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM writeback #if !defined(_TRACE_WRITEBACK_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_WRITEBACK_H #include <linux/tracepoint.h> #include <linux/backing-dev.h> #include <linux/writeback.h> #define show_inode_state(state) \ __print_flags(state, "|", \ {I_DIRTY_SYNC, "I_DIRTY_SYNC"}, \ {I_DIRTY_DATASYNC, "I_DIRTY_DATASYNC"}, \ {I_DIRTY_PAGES, "I_DIRTY_PAGES"}, \ {I_NEW, "I_NEW"}, \ {I_WILL_FREE, "I_WILL_FREE"}, \ {I_FREEING, "I_FREEING"}, \ {I_CLEAR, "I_CLEAR"}, \ {I_SYNC, "I_SYNC"}, \ {I_DIRTY_TIME, "I_DIRTY_TIME"}, \ {I_REFERENCED, "I_REFERENCED"} \ ) /* enums need to be exported to user space */ #undef EM #undef EMe #define EM(a,b) TRACE_DEFINE_ENUM(a); #define EMe(a,b) TRACE_DEFINE_ENUM(a); #define WB_WORK_REASON \ EM( WB_REASON_BACKGROUND, "background") \ EM( WB_REASON_VMSCAN, "vmscan") \ EM( WB_REASON_SYNC, "sync") \ EM( WB_REASON_PERIODIC, "periodic") \ EM( WB_REASON_LAPTOP_TIMER, "laptop_timer") \ EM( WB_REASON_FS_FREE_SPACE, "fs_free_space") \ EMe(WB_REASON_FORKER_THREAD, "forker_thread") WB_WORK_REASON /* * Now redefine the EM() and EMe() macros to map the enums to the strings * that will be printed in the output. */ #undef EM #undef EMe #define EM(a,b) { a, b }, #define EMe(a,b) { a, b } struct wb_writeback_work; DECLARE_EVENT_CLASS(writeback_page_template, TP_PROTO(struct page *page, struct address_space *mapping), TP_ARGS(page, mapping), TP_STRUCT__entry ( __array(char, name, 32) __field(ino_t, ino) __field(pgoff_t, index) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(mapping ? inode_to_bdi(mapping->host) : NULL), 32); __entry->ino = mapping ? mapping->host->i_ino : 0; __entry->index = page->index; ), TP_printk("bdi %s: ino=%lu index=%lu", __entry->name, (unsigned long)__entry->ino, __entry->index ) ); DEFINE_EVENT(writeback_page_template, writeback_dirty_page, TP_PROTO(struct page *page, struct address_space *mapping), TP_ARGS(page, mapping) ); DEFINE_EVENT(writeback_page_template, wait_on_page_writeback, TP_PROTO(struct page *page, struct address_space *mapping), TP_ARGS(page, mapping) ); DECLARE_EVENT_CLASS(writeback_dirty_inode_template, TP_PROTO(struct inode *inode, int flags), TP_ARGS(inode, flags), TP_STRUCT__entry ( __array(char, name, 32) __field(ino_t, ino) __field(unsigned long, state) __field(unsigned long, flags) ), TP_fast_assign( struct backing_dev_info *bdi = inode_to_bdi(inode); /* may be called for files on pseudo FSes w/ unregistered bdi */ strscpy_pad(__entry->name, bdi_dev_name(bdi), 32); __entry->ino = inode->i_ino; __entry->state = inode->i_state; __entry->flags = flags; ), TP_printk("bdi %s: ino=%lu state=%s flags=%s", __entry->name, (unsigned long)__entry->ino, show_inode_state(__entry->state), show_inode_state(__entry->flags) ) ); DEFINE_EVENT(writeback_dirty_inode_template, writeback_mark_inode_dirty, TP_PROTO(struct inode *inode, int flags), TP_ARGS(inode, flags) ); DEFINE_EVENT(writeback_dirty_inode_template, writeback_dirty_inode_start, TP_PROTO(struct inode *inode, int flags), TP_ARGS(inode, flags) ); DEFINE_EVENT(writeback_dirty_inode_template, writeback_dirty_inode, TP_PROTO(struct inode *inode, int flags), TP_ARGS(inode, flags) ); #ifdef CREATE_TRACE_POINTS #ifdef CONFIG_CGROUP_WRITEBACK static inline ino_t __trace_wb_assign_cgroup(struct bdi_writeback *wb) { return cgroup_ino(wb->memcg_css->cgroup); } static inline ino_t __trace_wbc_assign_cgroup(struct writeback_control *wbc) { if (wbc->wb) return __trace_wb_assign_cgroup(wbc->wb); else return 1; } #else /* CONFIG_CGROUP_WRITEBACK */ static inline ino_t __trace_wb_assign_cgroup(struct bdi_writeback *wb) { return 1; } static inline ino_t __trace_wbc_assign_cgroup(struct writeback_control *wbc) { return 1; } #endif /* CONFIG_CGROUP_WRITEBACK */ #endif /* CREATE_TRACE_POINTS */ #ifdef CONFIG_CGROUP_WRITEBACK TRACE_EVENT(inode_foreign_history, TP_PROTO(struct inode *inode, struct writeback_control *wbc, unsigned int history), TP_ARGS(inode, wbc, history), TP_STRUCT__entry( __array(char, name, 32) __field(ino_t, ino) __field(ino_t, cgroup_ino) __field(unsigned int, history) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(inode_to_bdi(inode)), 32); __entry->ino = inode->i_ino; __entry->cgroup_ino = __trace_wbc_assign_cgroup(wbc); __entry->history = history; ), TP_printk("bdi %s: ino=%lu cgroup_ino=%lu history=0x%x", __entry->name, (unsigned long)__entry->ino, (unsigned long)__entry->cgroup_ino, __entry->history ) ); TRACE_EVENT(inode_switch_wbs, TP_PROTO(struct inode *inode, struct bdi_writeback *old_wb, struct bdi_writeback *new_wb), TP_ARGS(inode, old_wb, new_wb), TP_STRUCT__entry( __array(char, name, 32) __field(ino_t, ino) __field(ino_t, old_cgroup_ino) __field(ino_t, new_cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(old_wb->bdi), 32); __entry->ino = inode->i_ino; __entry->old_cgroup_ino = __trace_wb_assign_cgroup(old_wb); __entry->new_cgroup_ino = __trace_wb_assign_cgroup(new_wb); ), TP_printk("bdi %s: ino=%lu old_cgroup_ino=%lu new_cgroup_ino=%lu", __entry->name, (unsigned long)__entry->ino, (unsigned long)__entry->old_cgroup_ino, (unsigned long)__entry->new_cgroup_ino ) ); TRACE_EVENT(track_foreign_dirty, TP_PROTO(struct page *page, struct bdi_writeback *wb), TP_ARGS(page, wb), TP_STRUCT__entry( __array(char, name, 32) __field(u64, bdi_id) __field(ino_t, ino) __field(unsigned int, memcg_id) __field(ino_t, cgroup_ino) __field(ino_t, page_cgroup_ino) ), TP_fast_assign( struct address_space *mapping = page_mapping(page); struct inode *inode = mapping ? mapping->host : NULL; strscpy_pad(__entry->name, bdi_dev_name(wb->bdi), 32); __entry->bdi_id = wb->bdi->id; __entry->ino = inode ? inode->i_ino : 0; __entry->memcg_id = wb->memcg_css->id; __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); __entry->page_cgroup_ino = cgroup_ino(page->mem_cgroup->css.cgroup); ), TP_printk("bdi %s[%llu]: ino=%lu memcg_id=%u cgroup_ino=%lu page_cgroup_ino=%lu", __entry->name, __entry->bdi_id, (unsigned long)__entry->ino, __entry->memcg_id, (unsigned long)__entry->cgroup_ino, (unsigned long)__entry->page_cgroup_ino ) ); TRACE_EVENT(flush_foreign, TP_PROTO(struct bdi_writeback *wb, unsigned int frn_bdi_id, unsigned int frn_memcg_id), TP_ARGS(wb, frn_bdi_id, frn_memcg_id), TP_STRUCT__entry( __array(char, name, 32) __field(ino_t, cgroup_ino) __field(unsigned int, frn_bdi_id) __field(unsigned int, frn_memcg_id) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(wb->bdi), 32); __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); __entry->frn_bdi_id = frn_bdi_id; __entry->frn_memcg_id = frn_memcg_id; ), TP_printk("bdi %s: cgroup_ino=%lu frn_bdi_id=%u frn_memcg_id=%u", __entry->name, (unsigned long)__entry->cgroup_ino, __entry->frn_bdi_id, __entry->frn_memcg_id ) ); #endif DECLARE_EVENT_CLASS(writeback_write_inode_template, TP_PROTO(struct inode *inode, struct writeback_control *wbc), TP_ARGS(inode, wbc), TP_STRUCT__entry ( __array(char, name, 32) __field(ino_t, ino) __field(int, sync_mode) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(inode_to_bdi(inode)), 32); __entry->ino = inode->i_ino; __entry->sync_mode = wbc->sync_mode; __entry->cgroup_ino = __trace_wbc_assign_cgroup(wbc); ), TP_printk("bdi %s: ino=%lu sync_mode=%d cgroup_ino=%lu", __entry->name, (unsigned long)__entry->ino, __entry->sync_mode, (unsigned long)__entry->cgroup_ino ) ); DEFINE_EVENT(writeback_write_inode_template, writeback_write_inode_start, TP_PROTO(struct inode *inode, struct writeback_control *wbc), TP_ARGS(inode, wbc) ); DEFINE_EVENT(writeback_write_inode_template, writeback_write_inode, TP_PROTO(struct inode *inode, struct writeback_control *wbc), TP_ARGS(inode, wbc) ); DECLARE_EVENT_CLASS(writeback_work_class, TP_PROTO(struct bdi_writeback *wb, struct wb_writeback_work *work), TP_ARGS(wb, work), TP_STRUCT__entry( __array(char, name, 32) __field(long, nr_pages) __field(dev_t, sb_dev) __field(int, sync_mode) __field(int, for_kupdate) __field(int, range_cyclic) __field(int, for_background) __field(int, reason) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(wb->bdi), 32); __entry->nr_pages = work->nr_pages; __entry->sb_dev = work->sb ? work->sb->s_dev : 0; __entry->sync_mode = work->sync_mode; __entry->for_kupdate = work->for_kupdate; __entry->range_cyclic = work->range_cyclic; __entry->for_background = work->for_background; __entry->reason = work->reason; __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); ), TP_printk("bdi %s: sb_dev %d:%d nr_pages=%ld sync_mode=%d " "kupdate=%d range_cyclic=%d background=%d reason=%s cgroup_ino=%lu", __entry->name, MAJOR(__entry->sb_dev), MINOR(__entry->sb_dev), __entry->nr_pages, __entry->sync_mode, __entry->for_kupdate, __entry->range_cyclic, __entry->for_background, __print_symbolic(__entry->reason, WB_WORK_REASON), (unsigned long)__entry->cgroup_ino ) ); #define DEFINE_WRITEBACK_WORK_EVENT(name) \ DEFINE_EVENT(writeback_work_class, name, \ TP_PROTO(struct bdi_writeback *wb, struct wb_writeback_work *work), \ TP_ARGS(wb, work)) DEFINE_WRITEBACK_WORK_EVENT(writeback_queue); DEFINE_WRITEBACK_WORK_EVENT(writeback_exec); DEFINE_WRITEBACK_WORK_EVENT(writeback_start); DEFINE_WRITEBACK_WORK_EVENT(writeback_written); DEFINE_WRITEBACK_WORK_EVENT(writeback_wait); TRACE_EVENT(writeback_pages_written, TP_PROTO(long pages_written), TP_ARGS(pages_written), TP_STRUCT__entry( __field(long, pages) ), TP_fast_assign( __entry->pages = pages_written; ), TP_printk("%ld", __entry->pages) ); DECLARE_EVENT_CLASS(writeback_class, TP_PROTO(struct bdi_writeback *wb), TP_ARGS(wb), TP_STRUCT__entry( __array(char, name, 32) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(wb->bdi), 32); __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); ), TP_printk("bdi %s: cgroup_ino=%lu", __entry->name, (unsigned long)__entry->cgroup_ino ) ); #define DEFINE_WRITEBACK_EVENT(name) \ DEFINE_EVENT(writeback_class, name, \ TP_PROTO(struct bdi_writeback *wb), \ TP_ARGS(wb)) DEFINE_WRITEBACK_EVENT(writeback_wake_background); TRACE_EVENT(writeback_bdi_register, TP_PROTO(struct backing_dev_info *bdi), TP_ARGS(bdi), TP_STRUCT__entry( __array(char, name, 32) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(bdi), 32); ), TP_printk("bdi %s", __entry->name ) ); DECLARE_EVENT_CLASS(wbc_class, TP_PROTO(struct writeback_control *wbc, struct backing_dev_info *bdi), TP_ARGS(wbc, bdi), TP_STRUCT__entry( __array(char, name, 32) __field(long, nr_to_write) __field(long, pages_skipped) __field(int, sync_mode) __field(int, for_kupdate) __field(int, for_background) __field(int, for_reclaim) __field(int, range_cyclic) __field(long, range_start) __field(long, range_end) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(bdi), 32); __entry->nr_to_write = wbc->nr_to_write; __entry->pages_skipped = wbc->pages_skipped; __entry->sync_mode = wbc->sync_mode; __entry->for_kupdate = wbc->for_kupdate; __entry->for_background = wbc->for_background; __entry->for_reclaim = wbc->for_reclaim; __entry->range_cyclic = wbc->range_cyclic; __entry->range_start = (long)wbc->range_start; __entry->range_end = (long)wbc->range_end; __entry->cgroup_ino = __trace_wbc_assign_cgroup(wbc); ), TP_printk("bdi %s: towrt=%ld skip=%ld mode=%d kupd=%d " "bgrd=%d reclm=%d cyclic=%d " "start=0x%lx end=0x%lx cgroup_ino=%lu", __entry->name, __entry->nr_to_write, __entry->pages_skipped, __entry->sync_mode, __entry->for_kupdate, __entry->for_background, __entry->for_reclaim, __entry->range_cyclic, __entry->range_start, __entry->range_end, (unsigned long)__entry->cgroup_ino ) ) #define DEFINE_WBC_EVENT(name) \ DEFINE_EVENT(wbc_class, name, \ TP_PROTO(struct writeback_control *wbc, struct backing_dev_info *bdi), \ TP_ARGS(wbc, bdi)) DEFINE_WBC_EVENT(wbc_writepage); TRACE_EVENT(writeback_queue_io, TP_PROTO(struct bdi_writeback *wb, struct wb_writeback_work *work, unsigned long dirtied_before, int moved), TP_ARGS(wb, work, dirtied_before, moved), TP_STRUCT__entry( __array(char, name, 32) __field(unsigned long, older) __field(long, age) __field(int, moved) __field(int, reason) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(wb->bdi), 32); __entry->older = dirtied_before; __entry->age = (jiffies - dirtied_before) * 1000 / HZ; __entry->moved = moved; __entry->reason = work->reason; __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); ), TP_printk("bdi %s: older=%lu age=%ld enqueue=%d reason=%s cgroup_ino=%lu", __entry->name, __entry->older, /* dirtied_before in jiffies */ __entry->age, /* dirtied_before in relative milliseconds */ __entry->moved, __print_symbolic(__entry->reason, WB_WORK_REASON), (unsigned long)__entry->cgroup_ino ) ); TRACE_EVENT(global_dirty_state, TP_PROTO(unsigned long background_thresh, unsigned long dirty_thresh ), TP_ARGS(background_thresh, dirty_thresh ), TP_STRUCT__entry( __field(unsigned long, nr_dirty) __field(unsigned long, nr_writeback) __field(unsigned long, background_thresh) __field(unsigned long, dirty_thresh) __field(unsigned long, dirty_limit) __field(unsigned long, nr_dirtied) __field(unsigned long, nr_written) ), TP_fast_assign( __entry->nr_dirty = global_node_page_state(NR_FILE_DIRTY); __entry->nr_writeback = global_node_page_state(NR_WRITEBACK); __entry->nr_dirtied = global_node_page_state(NR_DIRTIED); __entry->nr_written = global_node_page_state(NR_WRITTEN); __entry->background_thresh = background_thresh; __entry->dirty_thresh = dirty_thresh; __entry->dirty_limit = global_wb_domain.dirty_limit; ), TP_printk("dirty=%lu writeback=%lu " "bg_thresh=%lu thresh=%lu limit=%lu " "dirtied=%lu written=%lu", __entry->nr_dirty, __entry->nr_writeback, __entry->background_thresh, __entry->dirty_thresh, __entry->dirty_limit, __entry->nr_dirtied, __entry->nr_written ) ); #define KBps(x) ((x) << (PAGE_SHIFT - 10)) TRACE_EVENT(bdi_dirty_ratelimit, TP_PROTO(struct bdi_writeback *wb, unsigned long dirty_rate, unsigned long task_ratelimit), TP_ARGS(wb, dirty_rate, task_ratelimit), TP_STRUCT__entry( __array(char, bdi, 32) __field(unsigned long, write_bw) __field(unsigned long, avg_write_bw) __field(unsigned long, dirty_rate) __field(unsigned long, dirty_ratelimit) __field(unsigned long, task_ratelimit) __field(unsigned long, balanced_dirty_ratelimit) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->bdi, bdi_dev_name(wb->bdi), 32); __entry->write_bw = KBps(wb->write_bandwidth); __entry->avg_write_bw = KBps(wb->avg_write_bandwidth); __entry->dirty_rate = KBps(dirty_rate); __entry->dirty_ratelimit = KBps(wb->dirty_ratelimit); __entry->task_ratelimit = KBps(task_ratelimit); __entry->balanced_dirty_ratelimit = KBps(wb->balanced_dirty_ratelimit); __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); ), TP_printk("bdi %s: " "write_bw=%lu awrite_bw=%lu dirty_rate=%lu " "dirty_ratelimit=%lu task_ratelimit=%lu " "balanced_dirty_ratelimit=%lu cgroup_ino=%lu", __entry->bdi, __entry->write_bw, /* write bandwidth */ __entry->avg_write_bw, /* avg write bandwidth */ __entry->dirty_rate, /* bdi dirty rate */ __entry->dirty_ratelimit, /* base ratelimit */ __entry->task_ratelimit, /* ratelimit with position control */ __entry->balanced_dirty_ratelimit, /* the balanced ratelimit */ (unsigned long)__entry->cgroup_ino ) ); TRACE_EVENT(balance_dirty_pages, TP_PROTO(struct bdi_writeback *wb, unsigned long thresh, unsigned long bg_thresh, unsigned long dirty, unsigned long bdi_thresh, unsigned long bdi_dirty, unsigned long dirty_ratelimit, unsigned long task_ratelimit, unsigned long dirtied, unsigned long period, long pause, unsigned long start_time), TP_ARGS(wb, thresh, bg_thresh, dirty, bdi_thresh, bdi_dirty, dirty_ratelimit, task_ratelimit, dirtied, period, pause, start_time), TP_STRUCT__entry( __array( char, bdi, 32) __field(unsigned long, limit) __field(unsigned long, setpoint) __field(unsigned long, dirty) __field(unsigned long, bdi_setpoint) __field(unsigned long, bdi_dirty) __field(unsigned long, dirty_ratelimit) __field(unsigned long, task_ratelimit) __field(unsigned int, dirtied) __field(unsigned int, dirtied_pause) __field(unsigned long, paused) __field( long, pause) __field(unsigned long, period) __field( long, think) __field(ino_t, cgroup_ino) ), TP_fast_assign( unsigned long freerun = (thresh + bg_thresh) / 2; strscpy_pad(__entry->bdi, bdi_dev_name(wb->bdi), 32); __entry->limit = global_wb_domain.dirty_limit; __entry->setpoint = (global_wb_domain.dirty_limit + freerun) / 2; __entry->dirty = dirty; __entry->bdi_setpoint = __entry->setpoint * bdi_thresh / (thresh + 1); __entry->bdi_dirty = bdi_dirty; __entry->dirty_ratelimit = KBps(dirty_ratelimit); __entry->task_ratelimit = KBps(task_ratelimit); __entry->dirtied = dirtied; __entry->dirtied_pause = current->nr_dirtied_pause; __entry->think = current->dirty_paused_when == 0 ? 0 : (long)(jiffies - current->dirty_paused_when) * 1000/HZ; __entry->period = period * 1000 / HZ; __entry->pause = pause * 1000 / HZ; __entry->paused = (jiffies - start_time) * 1000 / HZ; __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); ), TP_printk("bdi %s: " "limit=%lu setpoint=%lu dirty=%lu " "bdi_setpoint=%lu bdi_dirty=%lu " "dirty_ratelimit=%lu task_ratelimit=%lu " "dirtied=%u dirtied_pause=%u " "paused=%lu pause=%ld period=%lu think=%ld cgroup_ino=%lu", __entry->bdi, __entry->limit, __entry->setpoint, __entry->dirty, __entry->bdi_setpoint, __entry->bdi_dirty, __entry->dirty_ratelimit, __entry->task_ratelimit, __entry->dirtied, __entry->dirtied_pause, __entry->paused, /* ms */ __entry->pause, /* ms */ __entry->period, /* ms */ __entry->think, /* ms */ (unsigned long)__entry->cgroup_ino ) ); TRACE_EVENT(writeback_sb_inodes_requeue, TP_PROTO(struct inode *inode), TP_ARGS(inode), TP_STRUCT__entry( __array(char, name, 32) __field(ino_t, ino) __field(unsigned long, state) __field(unsigned long, dirtied_when) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(inode_to_bdi(inode)), 32); __entry->ino = inode->i_ino; __entry->state = inode->i_state; __entry->dirtied_when = inode->dirtied_when; __entry->cgroup_ino = __trace_wb_assign_cgroup(inode_to_wb(inode)); ), TP_printk("bdi %s: ino=%lu state=%s dirtied_when=%lu age=%lu cgroup_ino=%lu", __entry->name, (unsigned long)__entry->ino, show_inode_state(__entry->state), __entry->dirtied_when, (jiffies - __entry->dirtied_when) / HZ, (unsigned long)__entry->cgroup_ino ) ); DECLARE_EVENT_CLASS(writeback_congest_waited_template, TP_PROTO(unsigned int usec_timeout, unsigned int usec_delayed), TP_ARGS(usec_timeout, usec_delayed), TP_STRUCT__entry( __field( unsigned int, usec_timeout ) __field( unsigned int, usec_delayed ) ), TP_fast_assign( __entry->usec_timeout = usec_timeout; __entry->usec_delayed = usec_delayed; ), TP_printk("usec_timeout=%u usec_delayed=%u", __entry->usec_timeout, __entry->usec_delayed) ); DEFINE_EVENT(writeback_congest_waited_template, writeback_congestion_wait, TP_PROTO(unsigned int usec_timeout, unsigned int usec_delayed), TP_ARGS(usec_timeout, usec_delayed) ); DEFINE_EVENT(writeback_congest_waited_template, writeback_wait_iff_congested, TP_PROTO(unsigned int usec_timeout, unsigned int usec_delayed), TP_ARGS(usec_timeout, usec_delayed) ); DECLARE_EVENT_CLASS(writeback_single_inode_template, TP_PROTO(struct inode *inode, struct writeback_control *wbc, unsigned long nr_to_write ), TP_ARGS(inode, wbc, nr_to_write), TP_STRUCT__entry( __array(char, name, 32) __field(ino_t, ino) __field(unsigned long, state) __field(unsigned long, dirtied_when) __field(unsigned long, writeback_index) __field(long, nr_to_write) __field(unsigned long, wrote) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(inode_to_bdi(inode)), 32); __entry->ino = inode->i_ino; __entry->state = inode->i_state; __entry->dirtied_when = inode->dirtied_when; __entry->writeback_index = inode->i_mapping->writeback_index; __entry->nr_to_write = nr_to_write; __entry->wrote = nr_to_write - wbc->nr_to_write; __entry->cgroup_ino = __trace_wbc_assign_cgroup(wbc); ), TP_printk("bdi %s: ino=%lu state=%s dirtied_when=%lu age=%lu " "index=%lu to_write=%ld wrote=%lu cgroup_ino=%lu", __entry->name, (unsigned long)__entry->ino, show_inode_state(__entry->state), __entry->dirtied_when, (jiffies - __entry->dirtied_when) / HZ, __entry->writeback_index, __entry->nr_to_write, __entry->wrote, (unsigned long)__entry->cgroup_ino ) ); DEFINE_EVENT(writeback_single_inode_template, writeback_single_inode_start, TP_PROTO(struct inode *inode, struct writeback_control *wbc, unsigned long nr_to_write), TP_ARGS(inode, wbc, nr_to_write) ); DEFINE_EVENT(writeback_single_inode_template, writeback_single_inode, TP_PROTO(struct inode *inode, struct writeback_control *wbc, unsigned long nr_to_write), TP_ARGS(inode, wbc, nr_to_write) ); DECLARE_EVENT_CLASS(writeback_inode_template, TP_PROTO(struct inode *inode), TP_ARGS(inode), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field(unsigned long, state ) __field( __u16, mode ) __field(unsigned long, dirtied_when ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->state = inode->i_state; __entry->mode = inode->i_mode; __entry->dirtied_when = inode->dirtied_when; ), TP_printk("dev %d,%d ino %lu dirtied %lu state %s mode 0%o", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long)__entry->ino, __entry->dirtied_when, show_inode_state(__entry->state), __entry->mode) ); DEFINE_EVENT(writeback_inode_template, writeback_lazytime, TP_PROTO(struct inode *inode), TP_ARGS(inode) ); DEFINE_EVENT(writeback_inode_template, writeback_lazytime_iput, TP_PROTO(struct inode *inode), TP_ARGS(inode) ); DEFINE_EVENT(writeback_inode_template, writeback_dirty_inode_enqueue, TP_PROTO(struct inode *inode), TP_ARGS(inode) ); /* * Inode writeback list tracking. */ DEFINE_EVENT(writeback_inode_template, sb_mark_inode_writeback, TP_PROTO(struct inode *inode), TP_ARGS(inode) ); DEFINE_EVENT(writeback_inode_template, sb_clear_inode_writeback, TP_PROTO(struct inode *inode), TP_ARGS(inode) ); #endif /* _TRACE_WRITEBACK_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_LOCAL_LOCK_H # error "Do not include directly, include linux/local_lock.h" #endif #include <linux/percpu-defs.h> #include <linux/lockdep.h> typedef struct { #ifdef CONFIG_DEBUG_LOCK_ALLOC struct lockdep_map dep_map; struct task_struct *owner; #endif } local_lock_t; #ifdef CONFIG_DEBUG_LOCK_ALLOC # define LOCAL_LOCK_DEBUG_INIT(lockname) \ .dep_map = { \ .name = #lockname, \ .wait_type_inner = LD_WAIT_CONFIG, \ .lock_type = LD_LOCK_PERCPU, \ }, \ .owner = NULL, static inline void local_lock_acquire(local_lock_t *l) { lock_map_acquire(&l->dep_map); DEBUG_LOCKS_WARN_ON(l->owner); l->owner = current; } static inline void local_lock_release(local_lock_t *l) { DEBUG_LOCKS_WARN_ON(l->owner != current); l->owner = NULL; lock_map_release(&l->dep_map); } static inline void local_lock_debug_init(local_lock_t *l) { l->owner = NULL; } #else /* CONFIG_DEBUG_LOCK_ALLOC */ # define LOCAL_LOCK_DEBUG_INIT(lockname) static inline void local_lock_acquire(local_lock_t *l) { } static inline void local_lock_release(local_lock_t *l) { } static inline void local_lock_debug_init(local_lock_t *l) { } #endif /* !CONFIG_DEBUG_LOCK_ALLOC */ #define INIT_LOCAL_LOCK(lockname) { LOCAL_LOCK_DEBUG_INIT(lockname) } #define __local_lock_init(lock) \ do { \ static struct lock_class_key __key; \ \ debug_check_no_locks_freed((void *)lock, sizeof(*lock));\ lockdep_init_map_type(&(lock)->dep_map, #lock, &__key, \ 0, LD_WAIT_CONFIG, LD_WAIT_INV, \ LD_LOCK_PERCPU); \ local_lock_debug_init(lock); \ } while (0) #define __local_lock(lock) \ do { \ preempt_disable(); \ local_lock_acquire(this_cpu_ptr(lock)); \ } while (0) #define __local_lock_irq(lock) \ do { \ local_irq_disable(); \ local_lock_acquire(this_cpu_ptr(lock)); \ } while (0) #define __local_lock_irqsave(lock, flags) \ do { \ local_irq_save(flags); \ local_lock_acquire(this_cpu_ptr(lock)); \ } while (0) #define __local_unlock(lock) \ do { \ local_lock_release(this_cpu_ptr(lock)); \ preempt_enable(); \ } while (0) #define __local_unlock_irq(lock) \ do { \ local_lock_release(this_cpu_ptr(lock)); \ local_irq_enable(); \ } while (0) #define __local_unlock_irqrestore(lock, flags) \ do { \ local_lock_release(this_cpu_ptr(lock)); \ local_irq_restore(flags); \ } while (0)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_MMAN_H #define _LINUX_MMAN_H #include <linux/mm.h> #include <linux/percpu_counter.h> #include <linux/atomic.h> #include <uapi/linux/mman.h> /* * Arrange for legacy / undefined architecture specific flags to be * ignored by mmap handling code. */ #ifndef MAP_32BIT #define MAP_32BIT 0 #endif #ifndef MAP_HUGE_2MB #define MAP_HUGE_2MB 0 #endif #ifndef MAP_HUGE_1GB #define MAP_HUGE_1GB 0 #endif #ifndef MAP_UNINITIALIZED #define MAP_UNINITIALIZED 0 #endif #ifndef MAP_SYNC #define MAP_SYNC 0 #endif /* * The historical set of flags that all mmap implementations implicitly * support when a ->mmap_validate() op is not provided in file_operations. */ #define LEGACY_MAP_MASK (MAP_SHARED \ | MAP_PRIVATE \ | MAP_FIXED \ | MAP_ANONYMOUS \ | MAP_DENYWRITE \ | MAP_EXECUTABLE \ | MAP_UNINITIALIZED \ | MAP_GROWSDOWN \ | MAP_LOCKED \ | MAP_NORESERVE \ | MAP_POPULATE \ | MAP_NONBLOCK \ | MAP_STACK \ | MAP_HUGETLB \ | MAP_32BIT \ | MAP_HUGE_2MB \ | MAP_HUGE_1GB) extern int sysctl_overcommit_memory; extern int sysctl_overcommit_ratio; extern unsigned long sysctl_overcommit_kbytes; extern struct percpu_counter vm_committed_as; #ifdef CONFIG_SMP extern s32 vm_committed_as_batch; extern void mm_compute_batch(int overcommit_policy); #else #define vm_committed_as_batch 0 static inline void mm_compute_batch(int overcommit_policy) { } #endif unsigned long vm_memory_committed(void); static inline void vm_acct_memory(long pages) { percpu_counter_add_batch(&vm_committed_as, pages, vm_committed_as_batch); } static inline void vm_unacct_memory(long pages) { vm_acct_memory(-pages); } /* * Allow architectures to handle additional protection and flag bits. The * overriding macros must be defined in the arch-specific asm/mman.h file. */ #ifndef arch_calc_vm_prot_bits #define arch_calc_vm_prot_bits(prot, pkey) 0 #endif #ifndef arch_calc_vm_flag_bits #define arch_calc_vm_flag_bits(flags) 0 #endif #ifndef arch_vm_get_page_prot #define arch_vm_get_page_prot(vm_flags) __pgprot(0) #endif #ifndef arch_validate_prot /* * This is called from mprotect(). PROT_GROWSDOWN and PROT_GROWSUP have * already been masked out. * * Returns true if the prot flags are valid */ static inline bool arch_validate_prot(unsigned long prot, unsigned long addr) { return (prot & ~(PROT_READ | PROT_WRITE | PROT_EXEC | PROT_SEM)) == 0; } #define arch_validate_prot arch_validate_prot #endif #ifndef arch_validate_flags /* * This is called from mmap() and mprotect() with the updated vma->vm_flags. * * Returns true if the VM_* flags are valid. */ static inline bool arch_validate_flags(unsigned long flags) { return true; } #define arch_validate_flags arch_validate_flags #endif /* * Optimisation macro. It is equivalent to: * (x & bit1) ? bit2 : 0 * but this version is faster. * ("bit1" and "bit2" must be single bits) */ #define _calc_vm_trans(x, bit1, bit2) \ ((!(bit1) || !(bit2)) ? 0 : \ ((bit1) <= (bit2) ? ((x) & (bit1)) * ((bit2) / (bit1)) \ : ((x) & (bit1)) / ((bit1) / (bit2)))) /* * Combine the mmap "prot" argument into "vm_flags" used internally. */ static inline unsigned long calc_vm_prot_bits(unsigned long prot, unsigned long pkey) { return _calc_vm_trans(prot, PROT_READ, VM_READ ) | _calc_vm_trans(prot, PROT_WRITE, VM_WRITE) | _calc_vm_trans(prot, PROT_EXEC, VM_EXEC) | arch_calc_vm_prot_bits(prot, pkey); } /* * Combine the mmap "flags" argument into "vm_flags" used internally. */ static inline unsigned long calc_vm_flag_bits(unsigned long flags) { return _calc_vm_trans(flags, MAP_GROWSDOWN, VM_GROWSDOWN ) | _calc_vm_trans(flags, MAP_DENYWRITE, VM_DENYWRITE ) | _calc_vm_trans(flags, MAP_LOCKED, VM_LOCKED ) | _calc_vm_trans(flags, MAP_SYNC, VM_SYNC ) | arch_calc_vm_flag_bits(flags); } unsigned long vm_commit_limit(void); #endif /* _LINUX_MMAN_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _FAT_H #define _FAT_H #include <linux/buffer_head.h> #include <linux/nls.h> #include <linux/hash.h> #include <linux/ratelimit.h> #include <linux/msdos_fs.h> /* * vfat shortname flags */ #define VFAT_SFN_DISPLAY_LOWER 0x0001 /* convert to lowercase for display */ #define VFAT_SFN_DISPLAY_WIN95 0x0002 /* emulate win95 rule for display */ #define VFAT_SFN_DISPLAY_WINNT 0x0004 /* emulate winnt rule for display */ #define VFAT_SFN_CREATE_WIN95 0x0100 /* emulate win95 rule for create */ #define VFAT_SFN_CREATE_WINNT 0x0200 /* emulate winnt rule for create */ #define FAT_ERRORS_CONT 1 /* ignore error and continue */ #define FAT_ERRORS_PANIC 2 /* panic on error */ #define FAT_ERRORS_RO 3 /* remount r/o on error */ #define FAT_NFS_STALE_RW 1 /* NFS RW support, can cause ESTALE */ #define FAT_NFS_NOSTALE_RO 2 /* NFS RO support, no ESTALE issue */ struct fat_mount_options { kuid_t fs_uid; kgid_t fs_gid; unsigned short fs_fmask; unsigned short fs_dmask; unsigned short codepage; /* Codepage for shortname conversions */ int time_offset; /* Offset of timestamps from UTC (in minutes) */ char *iocharset; /* Charset used for filename input/display */ unsigned short shortname; /* flags for shortname display/create rule */ unsigned char name_check; /* r = relaxed, n = normal, s = strict */ unsigned char errors; /* On error: continue, panic, remount-ro */ unsigned char nfs; /* NFS support: nostale_ro, stale_rw */ unsigned short allow_utime;/* permission for setting the [am]time */ unsigned quiet:1, /* set = fake successful chmods and chowns */ showexec:1, /* set = only set x bit for com/exe/bat */ sys_immutable:1, /* set = system files are immutable */ dotsOK:1, /* set = hidden and system files are named '.filename' */ isvfat:1, /* 0=no vfat long filename support, 1=vfat support */ utf8:1, /* Use of UTF-8 character set (Default) */ unicode_xlate:1, /* create escape sequences for unhandled Unicode */ numtail:1, /* Does first alias have a numeric '~1' type tail? */ flush:1, /* write things quickly */ nocase:1, /* Does this need case conversion? 0=need case conversion*/ usefree:1, /* Use free_clusters for FAT32 */ tz_set:1, /* Filesystem timestamps' offset set */ rodir:1, /* allow ATTR_RO for directory */ discard:1, /* Issue discard requests on deletions */ dos1xfloppy:1; /* Assume default BPB for DOS 1.x floppies */ }; #define FAT_HASH_BITS 8 #define FAT_HASH_SIZE (1UL << FAT_HASH_BITS) /* * MS-DOS file system in-core superblock data */ struct msdos_sb_info { unsigned short sec_per_clus; /* sectors/cluster */ unsigned short cluster_bits; /* log2(cluster_size) */ unsigned int cluster_size; /* cluster size */ unsigned char fats, fat_bits; /* number of FATs, FAT bits (12,16 or 32) */ unsigned short fat_start; unsigned long fat_length; /* FAT start & length (sec.) */ unsigned long dir_start; unsigned short dir_entries; /* root dir start & entries */ unsigned long data_start; /* first data sector */ unsigned long max_cluster; /* maximum cluster number */ unsigned long root_cluster; /* first cluster of the root directory */ unsigned long fsinfo_sector; /* sector number of FAT32 fsinfo */ struct mutex fat_lock; struct mutex nfs_build_inode_lock; struct mutex s_lock; unsigned int prev_free; /* previously allocated cluster number */ unsigned int free_clusters; /* -1 if undefined */ unsigned int free_clus_valid; /* is free_clusters valid? */ struct fat_mount_options options; struct nls_table *nls_disk; /* Codepage used on disk */ struct nls_table *nls_io; /* Charset used for input and display */ const void *dir_ops; /* Opaque; default directory operations */ int dir_per_block; /* dir entries per block */ int dir_per_block_bits; /* log2(dir_per_block) */ unsigned int vol_id; /*volume ID*/ int fatent_shift; const struct fatent_operations *fatent_ops; struct inode *fat_inode; struct inode *fsinfo_inode; struct ratelimit_state ratelimit; spinlock_t inode_hash_lock; struct hlist_head inode_hashtable[FAT_HASH_SIZE]; spinlock_t dir_hash_lock; struct hlist_head dir_hashtable[FAT_HASH_SIZE]; unsigned int dirty; /* fs state before mount */ struct rcu_head rcu; }; #define FAT_CACHE_VALID 0 /* special case for valid cache */ /* * MS-DOS file system inode data in memory */ struct msdos_inode_info { spinlock_t cache_lru_lock; struct list_head cache_lru; int nr_caches; /* for avoiding the race between fat_free() and fat_get_cluster() */ unsigned int cache_valid_id; /* NOTE: mmu_private is 64bits, so must hold ->i_mutex to access */ loff_t mmu_private; /* physically allocated size */ int i_start; /* first cluster or 0 */ int i_logstart; /* logical first cluster */ int i_attrs; /* unused attribute bits */ loff_t i_pos; /* on-disk position of directory entry or 0 */ struct hlist_node i_fat_hash; /* hash by i_location */ struct hlist_node i_dir_hash; /* hash by i_logstart */ struct rw_semaphore truncate_lock; /* protect bmap against truncate */ struct inode vfs_inode; }; struct fat_slot_info { loff_t i_pos; /* on-disk position of directory entry */ loff_t slot_off; /* offset for slot or de start */ int nr_slots; /* number of slots + 1(de) in filename */ struct msdos_dir_entry *de; struct buffer_head *bh; }; static inline struct msdos_sb_info *MSDOS_SB(struct super_block *sb) { return sb->s_fs_info; } /* * Functions that determine the variant of the FAT file system (i.e., * whether this is FAT12, FAT16 or FAT32. */ static inline bool is_fat12(const struct msdos_sb_info *sbi) { return sbi->fat_bits == 12; } static inline bool is_fat16(const struct msdos_sb_info *sbi) { return sbi->fat_bits == 16; } static inline bool is_fat32(const struct msdos_sb_info *sbi) { return sbi->fat_bits == 32; } /* Maximum number of clusters */ static inline u32 max_fat(struct super_block *sb) { struct msdos_sb_info *sbi = MSDOS_SB(sb); return is_fat32(sbi) ? MAX_FAT32 : is_fat16(sbi) ? MAX_FAT16 : MAX_FAT12; } static inline struct msdos_inode_info *MSDOS_I(struct inode *inode) { return container_of(inode, struct msdos_inode_info, vfs_inode); } /* * If ->i_mode can't hold S_IWUGO (i.e. ATTR_RO), we use ->i_attrs to * save ATTR_RO instead of ->i_mode. * * If it's directory and !sbi->options.rodir, ATTR_RO isn't read-only * bit, it's just used as flag for app. */ static inline int fat_mode_can_hold_ro(struct inode *inode) { struct msdos_sb_info *sbi = MSDOS_SB(inode->i_sb); umode_t mask; if (S_ISDIR(inode->i_mode)) { if (!sbi->options.rodir) return 0; mask = ~sbi->options.fs_dmask; } else mask = ~sbi->options.fs_fmask; if (!(mask & S_IWUGO)) return 0; return 1; } /* Convert attribute bits and a mask to the UNIX mode. */ static inline umode_t fat_make_mode(struct msdos_sb_info *sbi, u8 attrs, umode_t mode) { if (attrs & ATTR_RO && !((attrs & ATTR_DIR) && !sbi->options.rodir)) mode &= ~S_IWUGO; if (attrs & ATTR_DIR) return (mode & ~sbi->options.fs_dmask) | S_IFDIR; else return (mode & ~sbi->options.fs_fmask) | S_IFREG; } /* Return the FAT attribute byte for this inode */ static inline u8 fat_make_attrs(struct inode *inode) { u8 attrs = MSDOS_I(inode)->i_attrs; if (S_ISDIR(inode->i_mode)) attrs |= ATTR_DIR; if (fat_mode_can_hold_ro(inode) && !(inode->i_mode & S_IWUGO)) attrs |= ATTR_RO; return attrs; } static inline void fat_save_attrs(struct inode *inode, u8 attrs) { if (fat_mode_can_hold_ro(inode)) MSDOS_I(inode)->i_attrs = attrs & ATTR_UNUSED; else MSDOS_I(inode)->i_attrs = attrs & (ATTR_UNUSED | ATTR_RO); } static inline unsigned char fat_checksum(const __u8 *name) { unsigned char s = name[0]; s = (s<<7) + (s>>1) + name[1]; s = (s<<7) + (s>>1) + name[2]; s = (s<<7) + (s>>1) + name[3]; s = (s<<7) + (s>>1) + name[4]; s = (s<<7) + (s>>1) + name[5]; s = (s<<7) + (s>>1) + name[6]; s = (s<<7) + (s>>1) + name[7]; s = (s<<7) + (s>>1) + name[8]; s = (s<<7) + (s>>1) + name[9]; s = (s<<7) + (s>>1) + name[10]; return s; } static inline sector_t fat_clus_to_blknr(struct msdos_sb_info *sbi, int clus) { return ((sector_t)clus - FAT_START_ENT) * sbi->sec_per_clus + sbi->data_start; } static inline void fat_get_blknr_offset(struct msdos_sb_info *sbi, loff_t i_pos, sector_t *blknr, int *offset) { *blknr = i_pos >> sbi->dir_per_block_bits; *offset = i_pos & (sbi->dir_per_block - 1); } static inline loff_t fat_i_pos_read(struct msdos_sb_info *sbi, struct inode *inode) { loff_t i_pos; #if BITS_PER_LONG == 32 spin_lock(&sbi->inode_hash_lock); #endif i_pos = MSDOS_I(inode)->i_pos; #if BITS_PER_LONG == 32 spin_unlock(&sbi->inode_hash_lock); #endif return i_pos; } static inline void fat16_towchar(wchar_t *dst, const __u8 *src, size_t len) { #ifdef __BIG_ENDIAN while (len--) { *dst++ = src[0] | (src[1] << 8); src += 2; } #else memcpy(dst, src, len * 2); #endif } static inline int fat_get_start(const struct msdos_sb_info *sbi, const struct msdos_dir_entry *de) { int cluster = le16_to_cpu(de->start); if (is_fat32(sbi)) cluster |= (le16_to_cpu(de->starthi) << 16); return cluster; } static inline void fat_set_start(struct msdos_dir_entry *de, int cluster) { de->start = cpu_to_le16(cluster); de->starthi = cpu_to_le16(cluster >> 16); } static inline void fatwchar_to16(__u8 *dst, const wchar_t *src, size_t len) { #ifdef __BIG_ENDIAN while (len--) { dst[0] = *src & 0x00FF; dst[1] = (*src & 0xFF00) >> 8; dst += 2; src++; } #else memcpy(dst, src, len * 2); #endif } /* fat/cache.c */ extern void fat_cache_inval_inode(struct inode *inode); extern int fat_get_cluster(struct inode *inode, int cluster, int *fclus, int *dclus); extern int fat_get_mapped_cluster(struct inode *inode, sector_t sector, sector_t last_block, unsigned long *mapped_blocks, sector_t *bmap); extern int fat_bmap(struct inode *inode, sector_t sector, sector_t *phys, unsigned long *mapped_blocks, int create, bool from_bmap); /* fat/dir.c */ extern const struct file_operations fat_dir_operations; extern int fat_search_long(struct inode *inode, const unsigned char *name, int name_len, struct fat_slot_info *sinfo); extern int fat_dir_empty(struct inode *dir); extern int fat_subdirs(struct inode *dir); extern int fat_scan(struct inode *dir, const unsigned char *name, struct fat_slot_info *sinfo); extern int fat_scan_logstart(struct inode *dir, int i_logstart, struct fat_slot_info *sinfo); extern int fat_get_dotdot_entry(struct inode *dir, struct buffer_head **bh, struct msdos_dir_entry **de); extern int fat_alloc_new_dir(struct inode *dir, struct timespec64 *ts); extern int fat_add_entries(struct inode *dir, void *slots, int nr_slots, struct fat_slot_info *sinfo); extern int fat_remove_entries(struct inode *dir, struct fat_slot_info *sinfo); /* fat/fatent.c */ struct fat_entry { int entry; union { u8 *ent12_p[2]; __le16 *ent16_p; __le32 *ent32_p; } u; int nr_bhs; struct buffer_head *bhs[2]; struct inode *fat_inode; }; static inline void fatent_init(struct fat_entry *fatent) { fatent->nr_bhs = 0; fatent->entry = 0; fatent->u.ent32_p = NULL; fatent->bhs[0] = fatent->bhs[1] = NULL; fatent->fat_inode = NULL; } static inline void fatent_set_entry(struct fat_entry *fatent, int entry) { fatent->entry = entry; fatent->u.ent32_p = NULL; } static inline void fatent_brelse(struct fat_entry *fatent) { int i; fatent->u.ent32_p = NULL; for (i = 0; i < fatent->nr_bhs; i++) brelse(fatent->bhs[i]); fatent->nr_bhs = 0; fatent->bhs[0] = fatent->bhs[1] = NULL; fatent->fat_inode = NULL; } static inline bool fat_valid_entry(struct msdos_sb_info *sbi, int entry) { return FAT_START_ENT <= entry && entry < sbi->max_cluster; } extern void fat_ent_access_init(struct super_block *sb); extern int fat_ent_read(struct inode *inode, struct fat_entry *fatent, int entry); extern int fat_ent_write(struct inode *inode, struct fat_entry *fatent, int new, int wait); extern int fat_alloc_clusters(struct inode *inode, int *cluster, int nr_cluster); extern int fat_free_clusters(struct inode *inode, int cluster); extern int fat_count_free_clusters(struct super_block *sb); extern int fat_trim_fs(struct inode *inode, struct fstrim_range *range); /* fat/file.c */ extern long fat_generic_ioctl(struct file *filp, unsigned int cmd, unsigned long arg); extern const struct file_operations fat_file_operations; extern const struct inode_operations fat_file_inode_operations; extern int fat_setattr(struct dentry *dentry, struct iattr *attr); extern void fat_truncate_blocks(struct inode *inode, loff_t offset); extern int fat_getattr(const struct path *path, struct kstat *stat, u32 request_mask, unsigned int flags); extern int fat_file_fsync(struct file *file, loff_t start, loff_t end, int datasync); /* fat/inode.c */ extern int fat_block_truncate_page(struct inode *inode, loff_t from); extern void fat_attach(struct inode *inode, loff_t i_pos); extern void fat_detach(struct inode *inode); extern struct inode *fat_iget(struct super_block *sb, loff_t i_pos); extern struct inode *fat_build_inode(struct super_block *sb, struct msdos_dir_entry *de, loff_t i_pos); extern int fat_sync_inode(struct inode *inode); extern int fat_fill_super(struct super_block *sb, void *data, int silent, int isvfat, void (*setup)(struct super_block *)); extern int fat_fill_inode(struct inode *inode, struct msdos_dir_entry *de); extern int fat_flush_inodes(struct super_block *sb, struct inode *i1, struct inode *i2); static inline unsigned long fat_dir_hash(int logstart) { return hash_32(logstart, FAT_HASH_BITS); } extern int fat_add_cluster(struct inode *inode); /* fat/misc.c */ extern __printf(3, 4) __cold void __fat_fs_error(struct super_block *sb, int report, const char *fmt, ...); #define fat_fs_error(sb, fmt, args...) \ __fat_fs_error(sb, 1, fmt , ## args) #define fat_fs_error_ratelimit(sb, fmt, args...) \ __fat_fs_error(sb, __ratelimit(&MSDOS_SB(sb)->ratelimit), fmt , ## args) __printf(3, 4) __cold void fat_msg(struct super_block *sb, const char *level, const char *fmt, ...); #define fat_msg_ratelimit(sb, level, fmt, args...) \ do { \ if (__ratelimit(&MSDOS_SB(sb)->ratelimit)) \ fat_msg(sb, level, fmt, ## args); \ } while (0) extern int fat_clusters_flush(struct super_block *sb); extern int fat_chain_add(struct inode *inode, int new_dclus, int nr_cluster); extern void fat_time_fat2unix(struct msdos_sb_info *sbi, struct timespec64 *ts, __le16 __time, __le16 __date, u8 time_cs); extern void fat_time_unix2fat(struct msdos_sb_info *sbi, struct timespec64 *ts, __le16 *time, __le16 *date, u8 *time_cs); extern int fat_truncate_time(struct inode *inode, struct timespec64 *now, int flags); extern int fat_update_time(struct inode *inode, struct timespec64 *now, int flags); extern int fat_sync_bhs(struct buffer_head **bhs, int nr_bhs); int fat_cache_init(void); void fat_cache_destroy(void); /* fat/nfs.c */ extern const struct export_operations fat_export_ops; extern const struct export_operations fat_export_ops_nostale; /* helper for printk */ typedef unsigned long long llu; #endif /* !_FAT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 /* SPDX-License-Identifier: GPL-2.0 */ /* * linux/ipc/util.h * Copyright (C) 1999 Christoph Rohland * * ipc helper functions (c) 1999 Manfred Spraul <manfred@colorfullife.com> * namespaces support. 2006 OpenVZ, SWsoft Inc. * Pavel Emelianov <xemul@openvz.org> */ #ifndef _IPC_UTIL_H #define _IPC_UTIL_H #include <linux/unistd.h> #include <linux/err.h> #include <linux/ipc_namespace.h> /* * The IPC ID contains 2 separate numbers - index and sequence number. * By default, * bits 0-14: index (32k, 15 bits) * bits 15-30: sequence number (64k, 16 bits) * * When IPCMNI extension mode is turned on, the composition changes: * bits 0-23: index (16M, 24 bits) * bits 24-30: sequence number (128, 7 bits) */ #define IPCMNI_SHIFT 15 #define IPCMNI_EXTEND_SHIFT 24 #define IPCMNI_EXTEND_MIN_CYCLE (RADIX_TREE_MAP_SIZE * RADIX_TREE_MAP_SIZE) #define IPCMNI (1 << IPCMNI_SHIFT) #define IPCMNI_EXTEND (1 << IPCMNI_EXTEND_SHIFT) #ifdef CONFIG_SYSVIPC_SYSCTL extern int ipc_mni; extern int ipc_mni_shift; extern int ipc_min_cycle; #define ipcmni_seq_shift() ipc_mni_shift #define IPCMNI_IDX_MASK ((1 << ipc_mni_shift) - 1) #else /* CONFIG_SYSVIPC_SYSCTL */ #define ipc_mni IPCMNI #define ipc_min_cycle ((int)RADIX_TREE_MAP_SIZE) #define ipcmni_seq_shift() IPCMNI_SHIFT #define IPCMNI_IDX_MASK ((1 << IPCMNI_SHIFT) - 1) #endif /* CONFIG_SYSVIPC_SYSCTL */ void sem_init(void); void msg_init(void); void shm_init(void); struct ipc_namespace; struct pid_namespace; #ifdef CONFIG_POSIX_MQUEUE extern void mq_clear_sbinfo(struct ipc_namespace *ns); extern void mq_put_mnt(struct ipc_namespace *ns); #else static inline void mq_clear_sbinfo(struct ipc_namespace *ns) { } static inline void mq_put_mnt(struct ipc_namespace *ns) { } #endif #ifdef CONFIG_SYSVIPC void sem_init_ns(struct ipc_namespace *ns); void msg_init_ns(struct ipc_namespace *ns); void shm_init_ns(struct ipc_namespace *ns); void sem_exit_ns(struct ipc_namespace *ns); void msg_exit_ns(struct ipc_namespace *ns); void shm_exit_ns(struct ipc_namespace *ns); #else static inline void sem_init_ns(struct ipc_namespace *ns) { } static inline void msg_init_ns(struct ipc_namespace *ns) { } static inline void shm_init_ns(struct ipc_namespace *ns) { } static inline void sem_exit_ns(struct ipc_namespace *ns) { } static inline void msg_exit_ns(struct ipc_namespace *ns) { } static inline void shm_exit_ns(struct ipc_namespace *ns) { } #endif /* * Structure that holds the parameters needed by the ipc operations * (see after) */ struct ipc_params { key_t key; int flg; union { size_t size; /* for shared memories */ int nsems; /* for semaphores */ } u; /* holds the getnew() specific param */ }; /* * Structure that holds some ipc operations. This structure is used to unify * the calls to sys_msgget(), sys_semget(), sys_shmget() * . routine to call to create a new ipc object. Can be one of newque, * newary, newseg * . routine to call to check permissions for a new ipc object. * Can be one of security_msg_associate, security_sem_associate, * security_shm_associate * . routine to call for an extra check if needed */ struct ipc_ops { int (*getnew)(struct ipc_namespace *, struct ipc_params *); int (*associate)(struct kern_ipc_perm *, int); int (*more_checks)(struct kern_ipc_perm *, struct ipc_params *); }; struct seq_file; struct ipc_ids; void ipc_init_ids(struct ipc_ids *ids); #ifdef CONFIG_PROC_FS void __init ipc_init_proc_interface(const char *path, const char *header, int ids, int (*show)(struct seq_file *, void *)); struct pid_namespace *ipc_seq_pid_ns(struct seq_file *); #else #define ipc_init_proc_interface(path, header, ids, show) do {} while (0) #endif #define IPC_SEM_IDS 0 #define IPC_MSG_IDS 1 #define IPC_SHM_IDS 2 #define ipcid_to_idx(id) ((id) & IPCMNI_IDX_MASK) #define ipcid_to_seqx(id) ((id) >> ipcmni_seq_shift()) #define ipcid_seq_max() (INT_MAX >> ipcmni_seq_shift()) /* must be called with ids->rwsem acquired for writing */ int ipc_addid(struct ipc_ids *, struct kern_ipc_perm *, int); /* must be called with both locks acquired. */ void ipc_rmid(struct ipc_ids *, struct kern_ipc_perm *); /* must be called with both locks acquired. */ void ipc_set_key_private(struct ipc_ids *, struct kern_ipc_perm *); /* must be called with ipcp locked */ int ipcperms(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp, short flg); /** * ipc_get_maxidx - get the highest assigned index * @ids: ipc identifier set * * Called with ipc_ids.rwsem held for reading. */ static inline int ipc_get_maxidx(struct ipc_ids *ids) { if (ids->in_use == 0) return -1; if (ids->in_use == ipc_mni) return ipc_mni - 1; return ids->max_idx; } /* * For allocation that need to be freed by RCU. * Objects are reference counted, they start with reference count 1. * getref increases the refcount, the putref call that reduces the recount * to 0 schedules the rcu destruction. Caller must guarantee locking. * * refcount is initialized by ipc_addid(), before that point call_rcu() * must be used. */ bool ipc_rcu_getref(struct kern_ipc_perm *ptr); void ipc_rcu_putref(struct kern_ipc_perm *ptr, void (*func)(struct rcu_head *head)); struct kern_ipc_perm *ipc_obtain_object_idr(struct ipc_ids *ids, int id); void kernel_to_ipc64_perm(struct kern_ipc_perm *in, struct ipc64_perm *out); void ipc64_perm_to_ipc_perm(struct ipc64_perm *in, struct ipc_perm *out); int ipc_update_perm(struct ipc64_perm *in, struct kern_ipc_perm *out); struct kern_ipc_perm *ipcctl_obtain_check(struct ipc_namespace *ns, struct ipc_ids *ids, int id, int cmd, struct ipc64_perm *perm, int extra_perm); static inline void ipc_update_pid(struct pid **pos, struct pid *pid) { struct pid *old = *pos; if (old != pid) { *pos = get_pid(pid); put_pid(old); } } #ifdef CONFIG_ARCH_WANT_IPC_PARSE_VERSION int ipc_parse_version(int *cmd); #endif extern void free_msg(struct msg_msg *msg); extern struct msg_msg *load_msg(const void __user *src, size_t len); extern struct msg_msg *copy_msg(struct msg_msg *src, struct msg_msg *dst); extern int store_msg(void __user *dest, struct msg_msg *msg, size_t len); static inline int ipc_checkid(struct kern_ipc_perm *ipcp, int id) { return ipcid_to_seqx(id) != ipcp->seq; } static inline void ipc_lock_object(struct kern_ipc_perm *perm) { spin_lock(&perm->lock); } static inline void ipc_unlock_object(struct kern_ipc_perm *perm) { spin_unlock(&perm->lock); } static inline void ipc_assert_locked_object(struct kern_ipc_perm *perm) { assert_spin_locked(&perm->lock); } static inline void ipc_unlock(struct kern_ipc_perm *perm) { ipc_unlock_object(perm); rcu_read_unlock(); } /* * ipc_valid_object() - helper to sort out IPC_RMID races for codepaths * where the respective ipc_ids.rwsem is not being held down. * Checks whether the ipc object is still around or if it's gone already, as * ipc_rmid() may have already freed the ID while the ipc lock was spinning. * Needs to be called with kern_ipc_perm.lock held -- exception made for one * checkpoint case at sys_semtimedop() as noted in code commentary. */ static inline bool ipc_valid_object(struct kern_ipc_perm *perm) { return !perm->deleted; } struct kern_ipc_perm *ipc_obtain_object_check(struct ipc_ids *ids, int id); int ipcget(struct ipc_namespace *ns, struct ipc_ids *ids, const struct ipc_ops *ops, struct ipc_params *params); void free_ipcs(struct ipc_namespace *ns, struct ipc_ids *ids, void (*free)(struct ipc_namespace *, struct kern_ipc_perm *)); static inline int sem_check_semmni(struct ipc_namespace *ns) { /* * Check semmni range [0, ipc_mni] * semmni is the last element of sem_ctls[4] array */ return ((ns->sem_ctls[3] < 0) || (ns->sem_ctls[3] > ipc_mni)) ? -ERANGE : 0; } #ifdef CONFIG_COMPAT #include <linux/compat.h> struct compat_ipc_perm { key_t key; __compat_uid_t uid; __compat_gid_t gid; __compat_uid_t cuid; __compat_gid_t cgid; compat_mode_t mode; unsigned short seq; }; void to_compat_ipc_perm(struct compat_ipc_perm *, struct ipc64_perm *); void to_compat_ipc64_perm(struct compat_ipc64_perm *, struct ipc64_perm *); int get_compat_ipc_perm(struct ipc64_perm *, struct compat_ipc_perm __user *); int get_compat_ipc64_perm(struct ipc64_perm *, struct compat_ipc64_perm __user *); static inline int compat_ipc_parse_version(int *cmd) { int version = *cmd & IPC_64; *cmd &= ~IPC_64; return version; } long compat_ksys_old_semctl(int semid, int semnum, int cmd, int arg); long compat_ksys_old_msgctl(int msqid, int cmd, void __user *uptr); long compat_ksys_msgrcv(int msqid, compat_uptr_t msgp, compat_ssize_t msgsz, compat_long_t msgtyp, int msgflg); long compat_ksys_msgsnd(int msqid, compat_uptr_t msgp, compat_ssize_t msgsz, int msgflg); long compat_ksys_old_shmctl(int shmid, int cmd, void __user *uptr); #endif #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * AEAD: Authenticated Encryption with Associated Data * * Copyright (c) 2007-2015 Herbert Xu <herbert@gondor.apana.org.au> */ #ifndef _CRYPTO_INTERNAL_AEAD_H #define _CRYPTO_INTERNAL_AEAD_H #include <crypto/aead.h> #include <crypto/algapi.h> #include <linux/stddef.h> #include <linux/types.h> struct rtattr; struct aead_instance { void (*free)(struct aead_instance *inst); union { struct { char head[offsetof(struct aead_alg, base)]; struct crypto_instance base; } s; struct aead_alg alg; }; }; struct crypto_aead_spawn { struct crypto_spawn base; }; struct aead_queue { struct crypto_queue base; }; static inline void *crypto_aead_ctx(struct crypto_aead *tfm) { return crypto_tfm_ctx(&tfm->base); } static inline struct crypto_instance *aead_crypto_instance( struct aead_instance *inst) { return container_of(&inst->alg.base, struct crypto_instance, alg); } static inline struct aead_instance *aead_instance(struct crypto_instance *inst) { return container_of(&inst->alg, struct aead_instance, alg.base); } static inline struct aead_instance *aead_alg_instance(struct crypto_aead *aead) { return aead_instance(crypto_tfm_alg_instance(&aead->base)); } static inline void *aead_instance_ctx(struct aead_instance *inst) { return crypto_instance_ctx(aead_crypto_instance(inst)); } static inline void *aead_request_ctx(struct aead_request *req) { return req->__ctx; } static inline void aead_request_complete(struct aead_request *req, int err) { req->base.complete(&req->base, err); } static inline u32 aead_request_flags(struct aead_request *req) { return req->base.flags; } static inline struct aead_request *aead_request_cast( struct crypto_async_request *req) { return container_of(req, struct aead_request, base); } int crypto_grab_aead(struct crypto_aead_spawn *spawn, struct crypto_instance *inst, const char *name, u32 type, u32 mask); static inline void crypto_drop_aead(struct crypto_aead_spawn *spawn) { crypto_drop_spawn(&spawn->base); } static inline struct aead_alg *crypto_spawn_aead_alg( struct crypto_aead_spawn *spawn) { return container_of(spawn->base.alg, struct aead_alg, base); } static inline struct crypto_aead *crypto_spawn_aead( struct crypto_aead_spawn *spawn) { return crypto_spawn_tfm2(&spawn->base); } static inline void crypto_aead_set_reqsize(struct crypto_aead *aead, unsigned int reqsize) { aead->reqsize = reqsize; } static inline void aead_init_queue(struct aead_queue *queue, unsigned int max_qlen) { crypto_init_queue(&queue->base, max_qlen); } static inline int aead_enqueue_request(struct aead_queue *queue, struct aead_request *request) { return crypto_enqueue_request(&queue->base, &request->base); } static inline struct aead_request *aead_dequeue_request( struct aead_queue *queue) { struct crypto_async_request *req; req = crypto_dequeue_request(&queue->base); return req ? container_of(req, struct aead_request, base) : NULL; } static inline struct aead_request *aead_get_backlog(struct aead_queue *queue) { struct crypto_async_request *req; req = crypto_get_backlog(&queue->base); return req ? container_of(req, struct aead_request, base) : NULL; } static inline unsigned int crypto_aead_alg_chunksize(struct aead_alg *alg) { return alg->chunksize; } /** * crypto_aead_chunksize() - obtain chunk size * @tfm: cipher handle * * The block size is set to one for ciphers such as CCM. However, * you still need to provide incremental updates in multiples of * the underlying block size as the IV does not have sub-block * granularity. This is known in this API as the chunk size. * * Return: chunk size in bytes */ static inline unsigned int crypto_aead_chunksize(struct crypto_aead *tfm) { return crypto_aead_alg_chunksize(crypto_aead_alg(tfm)); } int crypto_register_aead(struct aead_alg *alg); void crypto_unregister_aead(struct aead_alg *alg); int crypto_register_aeads(struct aead_alg *algs, int count); void crypto_unregister_aeads(struct aead_alg *algs, int count); int aead_register_instance(struct crypto_template *tmpl, struct aead_instance *inst); #endif /* _CRYPTO_INTERNAL_AEAD_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Authors: Lotsa people, from code originally in tcp */ #ifndef _INET_HASHTABLES_H #define _INET_HASHTABLES_H #include <linux/interrupt.h> #include <linux/ip.h> #include <linux/ipv6.h> #include <linux/list.h> #include <linux/slab.h> #include <linux/socket.h> #include <linux/spinlock.h> #include <linux/types.h> #include <linux/wait.h> #include <net/inet_connection_sock.h> #include <net/inet_sock.h> #include <net/sock.h> #include <net/route.h> #include <net/tcp_states.h> #include <net/netns/hash.h> #include <linux/refcount.h> #include <asm/byteorder.h> /* This is for all connections with a full identity, no wildcards. * The 'e' prefix stands for Establish, but we really put all sockets * but LISTEN ones. */ struct inet_ehash_bucket { struct hlist_nulls_head chain; }; /* There are a few simple rules, which allow for local port reuse by * an application. In essence: * * 1) Sockets bound to different interfaces may share a local port. * Failing that, goto test 2. * 2) If all sockets have sk->sk_reuse set, and none of them are in * TCP_LISTEN state, the port may be shared. * Failing that, goto test 3. * 3) If all sockets are bound to a specific inet_sk(sk)->rcv_saddr local * address, and none of them are the same, the port may be * shared. * Failing this, the port cannot be shared. * * The interesting point, is test #2. This is what an FTP server does * all day. To optimize this case we use a specific flag bit defined * below. As we add sockets to a bind bucket list, we perform a * check of: (newsk->sk_reuse && (newsk->sk_state != TCP_LISTEN)) * As long as all sockets added to a bind bucket pass this test, * the flag bit will be set. * The resulting situation is that tcp_v[46]_verify_bind() can just check * for this flag bit, if it is set and the socket trying to bind has * sk->sk_reuse set, we don't even have to walk the owners list at all, * we return that it is ok to bind this socket to the requested local port. * * Sounds like a lot of work, but it is worth it. In a more naive * implementation (ie. current FreeBSD etc.) the entire list of ports * must be walked for each data port opened by an ftp server. Needless * to say, this does not scale at all. With a couple thousand FTP * users logged onto your box, isn't it nice to know that new data * ports are created in O(1) time? I thought so. ;-) -DaveM */ #define FASTREUSEPORT_ANY 1 #define FASTREUSEPORT_STRICT 2 struct inet_bind_bucket { possible_net_t ib_net; int l3mdev; unsigned short port; signed char fastreuse; signed char fastreuseport; kuid_t fastuid; #if IS_ENABLED(CONFIG_IPV6) struct in6_addr fast_v6_rcv_saddr; #endif __be32 fast_rcv_saddr; unsigned short fast_sk_family; bool fast_ipv6_only; struct hlist_node node; struct hlist_head owners; }; static inline struct net *ib_net(struct inet_bind_bucket *ib) { return read_pnet(&ib->ib_net); } #define inet_bind_bucket_for_each(tb, head) \ hlist_for_each_entry(tb, head, node) struct inet_bind_hashbucket { spinlock_t lock; struct hlist_head chain; }; /* Sockets can be hashed in established or listening table. * We must use different 'nulls' end-of-chain value for all hash buckets : * A socket might transition from ESTABLISH to LISTEN state without * RCU grace period. A lookup in ehash table needs to handle this case. */ #define LISTENING_NULLS_BASE (1U << 29) struct inet_listen_hashbucket { spinlock_t lock; unsigned int count; union { struct hlist_head head; struct hlist_nulls_head nulls_head; }; }; /* This is for listening sockets, thus all sockets which possess wildcards. */ #define INET_LHTABLE_SIZE 32 /* Yes, really, this is all you need. */ struct inet_hashinfo { /* This is for sockets with full identity only. Sockets here will * always be without wildcards and will have the following invariant: * * TCP_ESTABLISHED <= sk->sk_state < TCP_CLOSE * */ struct inet_ehash_bucket *ehash; spinlock_t *ehash_locks; unsigned int ehash_mask; unsigned int ehash_locks_mask; /* Ok, let's try this, I give up, we do need a local binding * TCP hash as well as the others for fast bind/connect. */ struct kmem_cache *bind_bucket_cachep; struct inet_bind_hashbucket *bhash; unsigned int bhash_size; /* The 2nd listener table hashed by local port and address */ unsigned int lhash2_mask; struct inet_listen_hashbucket *lhash2; /* All the above members are written once at bootup and * never written again _or_ are predominantly read-access. * * Now align to a new cache line as all the following members * might be often dirty. */ /* All sockets in TCP_LISTEN state will be in listening_hash. * This is the only table where wildcard'd TCP sockets can * exist. listening_hash is only hashed by local port number. * If lhash2 is initialized, the same socket will also be hashed * to lhash2 by port and address. */ struct inet_listen_hashbucket listening_hash[INET_LHTABLE_SIZE] ____cacheline_aligned_in_smp; }; #define inet_lhash2_for_each_icsk_rcu(__icsk, list) \ hlist_for_each_entry_rcu(__icsk, list, icsk_listen_portaddr_node) static inline struct inet_listen_hashbucket * inet_lhash2_bucket(struct inet_hashinfo *h, u32 hash) { return &h->lhash2[hash & h->lhash2_mask]; } static inline struct inet_ehash_bucket *inet_ehash_bucket( struct inet_hashinfo *hashinfo, unsigned int hash) { return &hashinfo->ehash[hash & hashinfo->ehash_mask]; } static inline spinlock_t *inet_ehash_lockp( struct inet_hashinfo *hashinfo, unsigned int hash) { return &hashinfo->ehash_locks[hash & hashinfo->ehash_locks_mask]; } int inet_ehash_locks_alloc(struct inet_hashinfo *hashinfo); static inline void inet_hashinfo2_free_mod(struct inet_hashinfo *h) { kfree(h->lhash2); h->lhash2 = NULL; } static inline void inet_ehash_locks_free(struct inet_hashinfo *hashinfo) { kvfree(hashinfo->ehash_locks); hashinfo->ehash_locks = NULL; } static inline bool inet_sk_bound_dev_eq(struct net *net, int bound_dev_if, int dif, int sdif) { #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) return inet_bound_dev_eq(!!net->ipv4.sysctl_tcp_l3mdev_accept, bound_dev_if, dif, sdif); #else return inet_bound_dev_eq(true, bound_dev_if, dif, sdif); #endif } struct inet_bind_bucket * inet_bind_bucket_create(struct kmem_cache *cachep, struct net *net, struct inet_bind_hashbucket *head, const unsigned short snum, int l3mdev); void inet_bind_bucket_destroy(struct kmem_cache *cachep, struct inet_bind_bucket *tb); static inline u32 inet_bhashfn(const struct net *net, const __u16 lport, const u32 bhash_size) { return (lport + net_hash_mix(net)) & (bhash_size - 1); } void inet_bind_hash(struct sock *sk, struct inet_bind_bucket *tb, const unsigned short snum); /* These can have wildcards, don't try too hard. */ static inline u32 inet_lhashfn(const struct net *net, const unsigned short num) { return (num + net_hash_mix(net)) & (INET_LHTABLE_SIZE - 1); } static inline int inet_sk_listen_hashfn(const struct sock *sk) { return inet_lhashfn(sock_net(sk), inet_sk(sk)->inet_num); } /* Caller must disable local BH processing. */ int __inet_inherit_port(const struct sock *sk, struct sock *child); void inet_put_port(struct sock *sk); void inet_hashinfo_init(struct inet_hashinfo *h); void inet_hashinfo2_init(struct inet_hashinfo *h, const char *name, unsigned long numentries, int scale, unsigned long low_limit, unsigned long high_limit); int inet_hashinfo2_init_mod(struct inet_hashinfo *h); bool inet_ehash_insert(struct sock *sk, struct sock *osk, bool *found_dup_sk); bool inet_ehash_nolisten(struct sock *sk, struct sock *osk, bool *found_dup_sk); int __inet_hash(struct sock *sk, struct sock *osk); int inet_hash(struct sock *sk); void inet_unhash(struct sock *sk); struct sock *__inet_lookup_listener(struct net *net, struct inet_hashinfo *hashinfo, struct sk_buff *skb, int doff, const __be32 saddr, const __be16 sport, const __be32 daddr, const unsigned short hnum, const int dif, const int sdif); static inline struct sock *inet_lookup_listener(struct net *net, struct inet_hashinfo *hashinfo, struct sk_buff *skb, int doff, __be32 saddr, __be16 sport, __be32 daddr, __be16 dport, int dif, int sdif) { return __inet_lookup_listener(net, hashinfo, skb, doff, saddr, sport, daddr, ntohs(dport), dif, sdif); } /* Socket demux engine toys. */ /* What happens here is ugly; there's a pair of adjacent fields in struct inet_sock; __be16 dport followed by __u16 num. We want to search by pair, so we combine the keys into a single 32bit value and compare with 32bit value read from &...->dport. Let's at least make sure that it's not mixed with anything else... On 64bit targets we combine comparisons with pair of adjacent __be32 fields in the same way. */ #ifdef __BIG_ENDIAN #define INET_COMBINED_PORTS(__sport, __dport) \ ((__force __portpair)(((__force __u32)(__be16)(__sport) << 16) | (__u32)(__dport))) #else /* __LITTLE_ENDIAN */ #define INET_COMBINED_PORTS(__sport, __dport) \ ((__force __portpair)(((__u32)(__dport) << 16) | (__force __u32)(__be16)(__sport))) #endif #if (BITS_PER_LONG == 64) #ifdef __BIG_ENDIAN #define INET_ADDR_COOKIE(__name, __saddr, __daddr) \ const __addrpair __name = (__force __addrpair) ( \ (((__force __u64)(__be32)(__saddr)) << 32) | \ ((__force __u64)(__be32)(__daddr))) #else /* __LITTLE_ENDIAN */ #define INET_ADDR_COOKIE(__name, __saddr, __daddr) \ const __addrpair __name = (__force __addrpair) ( \ (((__force __u64)(__be32)(__daddr)) << 32) | \ ((__force __u64)(__be32)(__saddr))) #endif /* __BIG_ENDIAN */ #define INET_MATCH(__sk, __net, __cookie, __saddr, __daddr, __ports, __dif, __sdif) \ (((__sk)->sk_portpair == (__ports)) && \ ((__sk)->sk_addrpair == (__cookie)) && \ (((__sk)->sk_bound_dev_if == (__dif)) || \ ((__sk)->sk_bound_dev_if == (__sdif))) && \ net_eq(sock_net(__sk), (__net))) #else /* 32-bit arch */ #define INET_ADDR_COOKIE(__name, __saddr, __daddr) \ const int __name __deprecated __attribute__((unused)) #define INET_MATCH(__sk, __net, __cookie, __saddr, __daddr, __ports, __dif, __sdif) \ (((__sk)->sk_portpair == (__ports)) && \ ((__sk)->sk_daddr == (__saddr)) && \ ((__sk)->sk_rcv_saddr == (__daddr)) && \ (((__sk)->sk_bound_dev_if == (__dif)) || \ ((__sk)->sk_bound_dev_if == (__sdif))) && \ net_eq(sock_net(__sk), (__net))) #endif /* 64-bit arch */ /* Sockets in TCP_CLOSE state are _always_ taken out of the hash, so we need * not check it for lookups anymore, thanks Alexey. -DaveM */ struct sock *__inet_lookup_established(struct net *net, struct inet_hashinfo *hashinfo, const __be32 saddr, const __be16 sport, const __be32 daddr, const u16 hnum, const int dif, const int sdif); static inline struct sock * inet_lookup_established(struct net *net, struct inet_hashinfo *hashinfo, const __be32 saddr, const __be16 sport, const __be32 daddr, const __be16 dport, const int dif) { return __inet_lookup_established(net, hashinfo, saddr, sport, daddr, ntohs(dport), dif, 0); } static inline struct sock *__inet_lookup(struct net *net, struct inet_hashinfo *hashinfo, struct sk_buff *skb, int doff, const __be32 saddr, const __be16 sport, const __be32 daddr, const __be16 dport, const int dif, const int sdif, bool *refcounted) { u16 hnum = ntohs(dport); struct sock *sk; sk = __inet_lookup_established(net, hashinfo, saddr, sport, daddr, hnum, dif, sdif); *refcounted = true; if (sk) return sk; *refcounted = false; return __inet_lookup_listener(net, hashinfo, skb, doff, saddr, sport, daddr, hnum, dif, sdif); } static inline struct sock *inet_lookup(struct net *net, struct inet_hashinfo *hashinfo, struct sk_buff *skb, int doff, const __be32 saddr, const __be16 sport, const __be32 daddr, const __be16 dport, const int dif) { struct sock *sk; bool refcounted; sk = __inet_lookup(net, hashinfo, skb, doff, saddr, sport, daddr, dport, dif, 0, &refcounted); if (sk && !refcounted && !refcount_inc_not_zero(&sk->sk_refcnt)) sk = NULL; return sk; } static inline struct sock *__inet_lookup_skb(struct inet_hashinfo *hashinfo, struct sk_buff *skb, int doff, const __be16 sport, const __be16 dport, const int sdif, bool *refcounted) { struct sock *sk = skb_steal_sock(skb, refcounted); const struct iphdr *iph = ip_hdr(skb); if (sk) return sk; return __inet_lookup(dev_net(skb_dst(skb)->dev), hashinfo, skb, doff, iph->saddr, sport, iph->daddr, dport, inet_iif(skb), sdif, refcounted); } u32 inet6_ehashfn(const struct net *net, const struct in6_addr *laddr, const u16 lport, const struct in6_addr *faddr, const __be16 fport); static inline void sk_daddr_set(struct sock *sk, __be32 addr) { sk->sk_daddr = addr; /* alias of inet_daddr */ #if IS_ENABLED(CONFIG_IPV6) ipv6_addr_set_v4mapped(addr, &sk->sk_v6_daddr); #endif } static inline void sk_rcv_saddr_set(struct sock *sk, __be32 addr) { sk->sk_rcv_saddr = addr; /* alias of inet_rcv_saddr */ #if IS_ENABLED(CONFIG_IPV6) ipv6_addr_set_v4mapped(addr, &sk->sk_v6_rcv_saddr); #endif } int __inet_hash_connect(struct inet_timewait_death_row *death_row, struct sock *sk, u32 port_offset, int (*check_established)(struct inet_timewait_death_row *, struct sock *, __u16, struct inet_timewait_sock **)); int inet_hash_connect(struct inet_timewait_death_row *death_row, struct sock *sk); #endif /* _INET_HASHTABLES_H */
1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 // SPDX-License-Identifier: GPL-2.0-only /* Kernel thread helper functions. * Copyright (C) 2004 IBM Corporation, Rusty Russell. * Copyright (C) 2009 Red Hat, Inc. * * Creation is done via kthreadd, so that we get a clean environment * even if we're invoked from userspace (think modprobe, hotplug cpu, * etc.). */ #include <uapi/linux/sched/types.h> #include <linux/mm.h> #include <linux/mmu_context.h> #include <linux/sched.h> #include <linux/sched/mm.h> #include <linux/sched/task.h> #include <linux/kthread.h> #include <linux/completion.h> #include <linux/err.h> #include <linux/cgroup.h> #include <linux/cpuset.h> #include <linux/unistd.h> #include <linux/file.h> #include <linux/export.h> #include <linux/mutex.h> #include <linux/slab.h> #include <linux/freezer.h> #include <linux/ptrace.h> #include <linux/uaccess.h> #include <linux/numa.h> #include <linux/sched/isolation.h> #include <trace/events/sched.h> static DEFINE_SPINLOCK(kthread_create_lock); static LIST_HEAD(kthread_create_list); struct task_struct *kthreadd_task; struct kthread_create_info { /* Information passed to kthread() from kthreadd. */ int (*threadfn)(void *data); void *data; int node; /* Result passed back to kthread_create() from kthreadd. */ struct task_struct *result; struct completion *done; struct list_head list; }; struct kthread { unsigned long flags; unsigned int cpu; int (*threadfn)(void *); void *data; mm_segment_t oldfs; struct completion parked; struct completion exited; #ifdef CONFIG_BLK_CGROUP struct cgroup_subsys_state *blkcg_css; #endif }; enum KTHREAD_BITS { KTHREAD_IS_PER_CPU = 0, KTHREAD_SHOULD_STOP, KTHREAD_SHOULD_PARK, }; static inline void set_kthread_struct(void *kthread) { /* * We abuse ->set_child_tid to avoid the new member and because it * can't be wrongly copied by copy_process(). We also rely on fact * that the caller can't exec, so PF_KTHREAD can't be cleared. */ current->set_child_tid = (__force void __user *)kthread; } static inline struct kthread *to_kthread(struct task_struct *k) { WARN_ON(!(k->flags & PF_KTHREAD)); return (__force void *)k->set_child_tid; } /* * Variant of to_kthread() that doesn't assume @p is a kthread. * * Per construction; when: * * (p->flags & PF_KTHREAD) && p->set_child_tid * * the task is both a kthread and struct kthread is persistent. However * PF_KTHREAD on it's own is not, kernel_thread() can exec() (See umh.c and * begin_new_exec()). */ static inline struct kthread *__to_kthread(struct task_struct *p) { void *kthread = (__force void *)p->set_child_tid; if (kthread && !(p->flags & PF_KTHREAD)) kthread = NULL; return kthread; } void free_kthread_struct(struct task_struct *k) { struct kthread *kthread; /* * Can be NULL if this kthread was created by kernel_thread() * or if kmalloc() in kthread() failed. */ kthread = to_kthread(k); #ifdef CONFIG_BLK_CGROUP WARN_ON_ONCE(kthread && kthread->blkcg_css); #endif kfree(kthread); } /** * kthread_should_stop - should this kthread return now? * * When someone calls kthread_stop() on your kthread, it will be woken * and this will return true. You should then return, and your return * value will be passed through to kthread_stop(). */ bool kthread_should_stop(void) { return test_bit(KTHREAD_SHOULD_STOP, &to_kthread(current)->flags); } EXPORT_SYMBOL(kthread_should_stop); bool __kthread_should_park(struct task_struct *k) { return test_bit(KTHREAD_SHOULD_PARK, &to_kthread(k)->flags); } EXPORT_SYMBOL_GPL(__kthread_should_park); /** * kthread_should_park - should this kthread park now? * * When someone calls kthread_park() on your kthread, it will be woken * and this will return true. You should then do the necessary * cleanup and call kthread_parkme() * * Similar to kthread_should_stop(), but this keeps the thread alive * and in a park position. kthread_unpark() "restarts" the thread and * calls the thread function again. */ bool kthread_should_park(void) { return __kthread_should_park(current); } EXPORT_SYMBOL_GPL(kthread_should_park); /** * kthread_freezable_should_stop - should this freezable kthread return now? * @was_frozen: optional out parameter, indicates whether %current was frozen * * kthread_should_stop() for freezable kthreads, which will enter * refrigerator if necessary. This function is safe from kthread_stop() / * freezer deadlock and freezable kthreads should use this function instead * of calling try_to_freeze() directly. */ bool kthread_freezable_should_stop(bool *was_frozen) { bool frozen = false; might_sleep(); if (unlikely(freezing(current))) frozen = __refrigerator(true); if (was_frozen) *was_frozen = frozen; return kthread_should_stop(); } EXPORT_SYMBOL_GPL(kthread_freezable_should_stop); /** * kthread_func - return the function specified on kthread creation * @task: kthread task in question * * Returns NULL if the task is not a kthread. */ void *kthread_func(struct task_struct *task) { struct kthread *kthread = __to_kthread(task); if (kthread) return kthread->threadfn; return NULL; } EXPORT_SYMBOL_GPL(kthread_func); /** * kthread_data - return data value specified on kthread creation * @task: kthread task in question * * Return the data value specified when kthread @task was created. * The caller is responsible for ensuring the validity of @task when * calling this function. */ void *kthread_data(struct task_struct *task) { return to_kthread(task)->data; } EXPORT_SYMBOL_GPL(kthread_data); /** * kthread_probe_data - speculative version of kthread_data() * @task: possible kthread task in question * * @task could be a kthread task. Return the data value specified when it * was created if accessible. If @task isn't a kthread task or its data is * inaccessible for any reason, %NULL is returned. This function requires * that @task itself is safe to dereference. */ void *kthread_probe_data(struct task_struct *task) { struct kthread *kthread = __to_kthread(task); void *data = NULL; if (kthread) copy_from_kernel_nofault(&data, &kthread->data, sizeof(data)); return data; } static void __kthread_parkme(struct kthread *self) { for (;;) { /* * TASK_PARKED is a special state; we must serialize against * possible pending wakeups to avoid store-store collisions on * task->state. * * Such a collision might possibly result in the task state * changin from TASK_PARKED and us failing the * wait_task_inactive() in kthread_park(). */ set_special_state(TASK_PARKED); if (!test_bit(KTHREAD_SHOULD_PARK, &self->flags)) break; /* * Thread is going to call schedule(), do not preempt it, * or the caller of kthread_park() may spend more time in * wait_task_inactive(). */ preempt_disable(); complete(&self->parked); schedule_preempt_disabled(); preempt_enable(); } __set_current_state(TASK_RUNNING); } void kthread_parkme(void) { __kthread_parkme(to_kthread(current)); } EXPORT_SYMBOL_GPL(kthread_parkme); static int kthread(void *_create) { /* Copy data: it's on kthread's stack */ struct kthread_create_info *create = _create; int (*threadfn)(void *data) = create->threadfn; void *data = create->data; struct completion *done; struct kthread *self; int ret; self = kzalloc(sizeof(*self), GFP_KERNEL); set_kthread_struct(self); /* If user was SIGKILLed, I release the structure. */ done = xchg(&create->done, NULL); if (!done) { kfree(create); do_exit(-EINTR); } if (!self) { create->result = ERR_PTR(-ENOMEM); complete(done); do_exit(-ENOMEM); } self->threadfn = threadfn; self->data = data; init_completion(&self->exited); init_completion(&self->parked); current->vfork_done = &self->exited; /* OK, tell user we're spawned, wait for stop or wakeup */ __set_current_state(TASK_UNINTERRUPTIBLE); create->result = current; /* * Thread is going to call schedule(), do not preempt it, * or the creator may spend more time in wait_task_inactive(). */ preempt_disable(); complete(done); schedule_preempt_disabled(); preempt_enable(); ret = -EINTR; if (!test_bit(KTHREAD_SHOULD_STOP, &self->flags)) { cgroup_kthread_ready(); __kthread_parkme(self); ret = threadfn(data); } do_exit(ret); } /* called from do_fork() to get node information for about to be created task */ int tsk_fork_get_node(struct task_struct *tsk) { #ifdef CONFIG_NUMA if (tsk == kthreadd_task) return tsk->pref_node_fork; #endif return NUMA_NO_NODE; } static void create_kthread(struct kthread_create_info *create) { int pid; #ifdef CONFIG_NUMA current->pref_node_fork = create->node; #endif /* We want our own signal handler (we take no signals by default). */ pid = kernel_thread(kthread, create, CLONE_FS | CLONE_FILES | SIGCHLD); if (pid < 0) { /* If user was SIGKILLed, I release the structure. */ struct completion *done = xchg(&create->done, NULL); if (!done) { kfree(create); return; } create->result = ERR_PTR(pid); complete(done); } } static __printf(4, 0) struct task_struct *__kthread_create_on_node(int (*threadfn)(void *data), void *data, int node, const char namefmt[], va_list args) { DECLARE_COMPLETION_ONSTACK(done); struct task_struct *task; struct kthread_create_info *create = kmalloc(sizeof(*create), GFP_KERNEL); if (!create) return ERR_PTR(-ENOMEM); create->threadfn = threadfn; create->data = data; create->node = node; create->done = &done; spin_lock(&kthread_create_lock); list_add_tail(&create->list, &kthread_create_list); spin_unlock(&kthread_create_lock); wake_up_process(kthreadd_task); /* * Wait for completion in killable state, for I might be chosen by * the OOM killer while kthreadd is trying to allocate memory for * new kernel thread. */ if (unlikely(wait_for_completion_killable(&done))) { /* * If I was SIGKILLed before kthreadd (or new kernel thread) * calls complete(), leave the cleanup of this structure to * that thread. */ if (xchg(&create->done, NULL)) return ERR_PTR(-EINTR); /* * kthreadd (or new kernel thread) will call complete() * shortly. */ wait_for_completion(&done); } task = create->result; if (!IS_ERR(task)) { static const struct sched_param param = { .sched_priority = 0 }; char name[TASK_COMM_LEN]; /* * task is already visible to other tasks, so updating * COMM must be protected. */ vsnprintf(name, sizeof(name), namefmt, args); set_task_comm(task, name); /* * root may have changed our (kthreadd's) priority or CPU mask. * The kernel thread should not inherit these properties. */ sched_setscheduler_nocheck(task, SCHED_NORMAL, &param); set_cpus_allowed_ptr(task, housekeeping_cpumask(HK_FLAG_KTHREAD)); } kfree(create); return task; } /** * kthread_create_on_node - create a kthread. * @threadfn: the function to run until signal_pending(current). * @data: data ptr for @threadfn. * @node: task and thread structures for the thread are allocated on this node * @namefmt: printf-style name for the thread. * * Description: This helper function creates and names a kernel * thread. The thread will be stopped: use wake_up_process() to start * it. See also kthread_run(). The new thread has SCHED_NORMAL policy and * is affine to all CPUs. * * If thread is going to be bound on a particular cpu, give its node * in @node, to get NUMA affinity for kthread stack, or else give NUMA_NO_NODE. * When woken, the thread will run @threadfn() with @data as its * argument. @threadfn() can either call do_exit() directly if it is a * standalone thread for which no one will call kthread_stop(), or * return when 'kthread_should_stop()' is true (which means * kthread_stop() has been called). The return value should be zero * or a negative error number; it will be passed to kthread_stop(). * * Returns a task_struct or ERR_PTR(-ENOMEM) or ERR_PTR(-EINTR). */ struct task_struct *kthread_create_on_node(int (*threadfn)(void *data), void *data, int node, const char namefmt[], ...) { struct task_struct *task; va_list args; va_start(args, namefmt); task = __kthread_create_on_node(threadfn, data, node, namefmt, args); va_end(args); return task; } EXPORT_SYMBOL(kthread_create_on_node); static void __kthread_bind_mask(struct task_struct *p, const struct cpumask *mask, long state) { unsigned long flags; if (!wait_task_inactive(p, state)) { WARN_ON(1); return; } /* It's safe because the task is inactive. */ raw_spin_lock_irqsave(&p->pi_lock, flags); do_set_cpus_allowed(p, mask); p->flags |= PF_NO_SETAFFINITY; raw_spin_unlock_irqrestore(&p->pi_lock, flags); } static void __kthread_bind(struct task_struct *p, unsigned int cpu, long state) { __kthread_bind_mask(p, cpumask_of(cpu), state); } void kthread_bind_mask(struct task_struct *p, const struct cpumask *mask) { __kthread_bind_mask(p, mask, TASK_UNINTERRUPTIBLE); } /** * kthread_bind - bind a just-created kthread to a cpu. * @p: thread created by kthread_create(). * @cpu: cpu (might not be online, must be possible) for @k to run on. * * Description: This function is equivalent to set_cpus_allowed(), * except that @cpu doesn't need to be online, and the thread must be * stopped (i.e., just returned from kthread_create()). */ void kthread_bind(struct task_struct *p, unsigned int cpu) { __kthread_bind(p, cpu, TASK_UNINTERRUPTIBLE); } EXPORT_SYMBOL(kthread_bind); /** * kthread_create_on_cpu - Create a cpu bound kthread * @threadfn: the function to run until signal_pending(current). * @data: data ptr for @threadfn. * @cpu: The cpu on which the thread should be bound, * @namefmt: printf-style name for the thread. Format is restricted * to "name.*%u". Code fills in cpu number. * * Description: This helper function creates and names a kernel thread */ struct task_struct *kthread_create_on_cpu(int (*threadfn)(void *data), void *data, unsigned int cpu, const char *namefmt) { struct task_struct *p; p = kthread_create_on_node(threadfn, data, cpu_to_node(cpu), namefmt, cpu); if (IS_ERR(p)) return p; kthread_bind(p, cpu); /* CPU hotplug need to bind once again when unparking the thread. */ to_kthread(p)->cpu = cpu; return p; } void kthread_set_per_cpu(struct task_struct *k, int cpu) { struct kthread *kthread = to_kthread(k); if (!kthread) return; WARN_ON_ONCE(!(k->flags & PF_NO_SETAFFINITY)); if (cpu < 0) { clear_bit(KTHREAD_IS_PER_CPU, &kthread->flags); return; } kthread->cpu = cpu; set_bit(KTHREAD_IS_PER_CPU, &kthread->flags); } bool kthread_is_per_cpu(struct task_struct *p) { struct kthread *kthread = __to_kthread(p); if (!kthread) return false; return test_bit(KTHREAD_IS_PER_CPU, &kthread->flags); } /** * kthread_unpark - unpark a thread created by kthread_create(). * @k: thread created by kthread_create(). * * Sets kthread_should_park() for @k to return false, wakes it, and * waits for it to return. If the thread is marked percpu then its * bound to the cpu again. */ void kthread_unpark(struct task_struct *k) { struct kthread *kthread = to_kthread(k); /* * Newly created kthread was parked when the CPU was offline. * The binding was lost and we need to set it again. */ if (test_bit(KTHREAD_IS_PER_CPU, &kthread->flags)) __kthread_bind(k, kthread->cpu, TASK_PARKED); clear_bit(KTHREAD_SHOULD_PARK, &kthread->flags); /* * __kthread_parkme() will either see !SHOULD_PARK or get the wakeup. */ wake_up_state(k, TASK_PARKED); } EXPORT_SYMBOL_GPL(kthread_unpark); /** * kthread_park - park a thread created by kthread_create(). * @k: thread created by kthread_create(). * * Sets kthread_should_park() for @k to return true, wakes it, and * waits for it to return. This can also be called after kthread_create() * instead of calling wake_up_process(): the thread will park without * calling threadfn(). * * Returns 0 if the thread is parked, -ENOSYS if the thread exited. * If called by the kthread itself just the park bit is set. */ int kthread_park(struct task_struct *k) { struct kthread *kthread = to_kthread(k); if (WARN_ON(k->flags & PF_EXITING)) return -ENOSYS; if (WARN_ON_ONCE(test_bit(KTHREAD_SHOULD_PARK, &kthread->flags))) return -EBUSY; set_bit(KTHREAD_SHOULD_PARK, &kthread->flags); if (k != current) { wake_up_process(k); /* * Wait for __kthread_parkme() to complete(), this means we * _will_ have TASK_PARKED and are about to call schedule(). */ wait_for_completion(&kthread->parked); /* * Now wait for that schedule() to complete and the task to * get scheduled out. */ WARN_ON_ONCE(!wait_task_inactive(k, TASK_PARKED)); } return 0; } EXPORT_SYMBOL_GPL(kthread_park); /** * kthread_stop - stop a thread created by kthread_create(). * @k: thread created by kthread_create(). * * Sets kthread_should_stop() for @k to return true, wakes it, and * waits for it to exit. This can also be called after kthread_create() * instead of calling wake_up_process(): the thread will exit without * calling threadfn(). * * If threadfn() may call do_exit() itself, the caller must ensure * task_struct can't go away. * * Returns the result of threadfn(), or %-EINTR if wake_up_process() * was never called. */ int kthread_stop(struct task_struct *k) { struct kthread *kthread; int ret; trace_sched_kthread_stop(k); get_task_struct(k); kthread = to_kthread(k); set_bit(KTHREAD_SHOULD_STOP, &kthread->flags); kthread_unpark(k); wake_up_process(k); wait_for_completion(&kthread->exited); ret = k->exit_code; put_task_struct(k); trace_sched_kthread_stop_ret(ret); return ret; } EXPORT_SYMBOL(kthread_stop); int kthreadd(void *unused) { struct task_struct *tsk = current; /* Setup a clean context for our children to inherit. */ set_task_comm(tsk, "kthreadd"); ignore_signals(tsk); set_cpus_allowed_ptr(tsk, housekeeping_cpumask(HK_FLAG_KTHREAD)); set_mems_allowed(node_states[N_MEMORY]); current->flags |= PF_NOFREEZE; cgroup_init_kthreadd(); for (;;) { set_current_state(TASK_INTERRUPTIBLE); if (list_empty(&kthread_create_list)) schedule(); __set_current_state(TASK_RUNNING); spin_lock(&kthread_create_lock); while (!list_empty(&kthread_create_list)) { struct kthread_create_info *create; create = list_entry(kthread_create_list.next, struct kthread_create_info, list); list_del_init(&create->list); spin_unlock(&kthread_create_lock); create_kthread(create); spin_lock(&kthread_create_lock); } spin_unlock(&kthread_create_lock); } return 0; } void __kthread_init_worker(struct kthread_worker *worker, const char *name, struct lock_class_key *key) { memset(worker, 0, sizeof(struct kthread_worker)); raw_spin_lock_init(&worker->lock); lockdep_set_class_and_name(&worker->lock, key, name); INIT_LIST_HEAD(&worker->work_list); INIT_LIST_HEAD(&worker->delayed_work_list); } EXPORT_SYMBOL_GPL(__kthread_init_worker); /** * kthread_worker_fn - kthread function to process kthread_worker * @worker_ptr: pointer to initialized kthread_worker * * This function implements the main cycle of kthread worker. It processes * work_list until it is stopped with kthread_stop(). It sleeps when the queue * is empty. * * The works are not allowed to keep any locks, disable preemption or interrupts * when they finish. There is defined a safe point for freezing when one work * finishes and before a new one is started. * * Also the works must not be handled by more than one worker at the same time, * see also kthread_queue_work(). */ int kthread_worker_fn(void *worker_ptr) { struct kthread_worker *worker = worker_ptr; struct kthread_work *work; /* * FIXME: Update the check and remove the assignment when all kthread * worker users are created using kthread_create_worker*() functions. */ WARN_ON(worker->task && worker->task != current); worker->task = current; if (worker->flags & KTW_FREEZABLE) set_freezable(); repeat: set_current_state(TASK_INTERRUPTIBLE); /* mb paired w/ kthread_stop */ if (kthread_should_stop()) { __set_current_state(TASK_RUNNING); raw_spin_lock_irq(&worker->lock); worker->task = NULL; raw_spin_unlock_irq(&worker->lock); return 0; } work = NULL; raw_spin_lock_irq(&worker->lock); if (!list_empty(&worker->work_list)) { work = list_first_entry(&worker->work_list, struct kthread_work, node); list_del_init(&work->node); } worker->current_work = work; raw_spin_unlock_irq(&worker->lock); if (work) { __set_current_state(TASK_RUNNING); work->func(work); } else if (!freezing(current)) schedule(); try_to_freeze(); cond_resched(); goto repeat; } EXPORT_SYMBOL_GPL(kthread_worker_fn); static __printf(3, 0) struct kthread_worker * __kthread_create_worker(int cpu, unsigned int flags, const char namefmt[], va_list args) { struct kthread_worker *worker; struct task_struct *task; int node = NUMA_NO_NODE; worker = kzalloc(sizeof(*worker), GFP_KERNEL); if (!worker) return ERR_PTR(-ENOMEM); kthread_init_worker(worker); if (cpu >= 0) node = cpu_to_node(cpu); task = __kthread_create_on_node(kthread_worker_fn, worker, node, namefmt, args); if (IS_ERR(task)) goto fail_task; if (cpu >= 0) kthread_bind(task, cpu); worker->flags = flags; worker->task = task; wake_up_process(task); return worker; fail_task: kfree(worker); return ERR_CAST(task); } /** * kthread_create_worker - create a kthread worker * @flags: flags modifying the default behavior of the worker * @namefmt: printf-style name for the kthread worker (task). * * Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM) * when the needed structures could not get allocated, and ERR_PTR(-EINTR) * when the worker was SIGKILLed. */ struct kthread_worker * kthread_create_worker(unsigned int flags, const char namefmt[], ...) { struct kthread_worker *worker; va_list args; va_start(args, namefmt); worker = __kthread_create_worker(-1, flags, namefmt, args); va_end(args); return worker; } EXPORT_SYMBOL(kthread_create_worker); /** * kthread_create_worker_on_cpu - create a kthread worker and bind it * to a given CPU and the associated NUMA node. * @cpu: CPU number * @flags: flags modifying the default behavior of the worker * @namefmt: printf-style name for the kthread worker (task). * * Use a valid CPU number if you want to bind the kthread worker * to the given CPU and the associated NUMA node. * * A good practice is to add the cpu number also into the worker name. * For example, use kthread_create_worker_on_cpu(cpu, "helper/%d", cpu). * * Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM) * when the needed structures could not get allocated, and ERR_PTR(-EINTR) * when the worker was SIGKILLed. */ struct kthread_worker * kthread_create_worker_on_cpu(int cpu, unsigned int flags, const char namefmt[], ...) { struct kthread_worker *worker; va_list args; va_start(args, namefmt); worker = __kthread_create_worker(cpu, flags, namefmt, args); va_end(args); return worker; } EXPORT_SYMBOL(kthread_create_worker_on_cpu); /* * Returns true when the work could not be queued at the moment. * It happens when it is already pending in a worker list * or when it is being cancelled. */ static inline bool queuing_blocked(struct kthread_worker *worker, struct kthread_work *work) { lockdep_assert_held(&worker->lock); return !list_empty(&work->node) || work->canceling; } static void kthread_insert_work_sanity_check(struct kthread_worker *worker, struct kthread_work *work) { lockdep_assert_held(&worker->lock); WARN_ON_ONCE(!list_empty(&work->node)); /* Do not use a work with >1 worker, see kthread_queue_work() */ WARN_ON_ONCE(work->worker && work->worker != worker); } /* insert @work before @pos in @worker */ static void kthread_insert_work(struct kthread_worker *worker, struct kthread_work *work, struct list_head *pos) { kthread_insert_work_sanity_check(worker, work); list_add_tail(&work->node, pos); work->worker = worker; if (!worker->current_work && likely(worker->task)) wake_up_process(worker->task); } /** * kthread_queue_work - queue a kthread_work * @worker: target kthread_worker * @work: kthread_work to queue * * Queue @work to work processor @task for async execution. @task * must have been created with kthread_worker_create(). Returns %true * if @work was successfully queued, %false if it was already pending. * * Reinitialize the work if it needs to be used by another worker. * For example, when the worker was stopped and started again. */ bool kthread_queue_work(struct kthread_worker *worker, struct kthread_work *work) { bool ret = false; unsigned long flags; raw_spin_lock_irqsave(&worker->lock, flags); if (!queuing_blocked(worker, work)) { kthread_insert_work(worker, work, &worker->work_list); ret = true; } raw_spin_unlock_irqrestore(&worker->lock, flags); return ret; } EXPORT_SYMBOL_GPL(kthread_queue_work); /** * kthread_delayed_work_timer_fn - callback that queues the associated kthread * delayed work when the timer expires. * @t: pointer to the expired timer * * The format of the function is defined by struct timer_list. * It should have been called from irqsafe timer with irq already off. */ void kthread_delayed_work_timer_fn(struct timer_list *t) { struct kthread_delayed_work *dwork = from_timer(dwork, t, timer); struct kthread_work *work = &dwork->work; struct kthread_worker *worker = work->worker; unsigned long flags; /* * This might happen when a pending work is reinitialized. * It means that it is used a wrong way. */ if (WARN_ON_ONCE(!worker)) return; raw_spin_lock_irqsave(&worker->lock, flags); /* Work must not be used with >1 worker, see kthread_queue_work(). */ WARN_ON_ONCE(work->worker != worker); /* Move the work from worker->delayed_work_list. */ WARN_ON_ONCE(list_empty(&work->node)); list_del_init(&work->node); if (!work->canceling) kthread_insert_work(worker, work, &worker->work_list); raw_spin_unlock_irqrestore(&worker->lock, flags); } EXPORT_SYMBOL(kthread_delayed_work_timer_fn); static void __kthread_queue_delayed_work(struct kthread_worker *worker, struct kthread_delayed_work *dwork, unsigned long delay) { struct timer_list *timer = &dwork->timer; struct kthread_work *work = &dwork->work; WARN_ON_ONCE(timer->function != kthread_delayed_work_timer_fn); /* * If @delay is 0, queue @dwork->work immediately. This is for * both optimization and correctness. The earliest @timer can * expire is on the closest next tick and delayed_work users depend * on that there's no such delay when @delay is 0. */ if (!delay) { kthread_insert_work(worker, work, &worker->work_list); return; } /* Be paranoid and try to detect possible races already now. */ kthread_insert_work_sanity_check(worker, work); list_add(&work->node, &worker->delayed_work_list); work->worker = worker; timer->expires = jiffies + delay; add_timer(timer); } /** * kthread_queue_delayed_work - queue the associated kthread work * after a delay. * @worker: target kthread_worker * @dwork: kthread_delayed_work to queue * @delay: number of jiffies to wait before queuing * * If the work has not been pending it starts a timer that will queue * the work after the given @delay. If @delay is zero, it queues the * work immediately. * * Return: %false if the @work has already been pending. It means that * either the timer was running or the work was queued. It returns %true * otherwise. */ bool kthread_queue_delayed_work(struct kthread_worker *worker, struct kthread_delayed_work *dwork, unsigned long delay) { struct kthread_work *work = &dwork->work; unsigned long flags; bool ret = false; raw_spin_lock_irqsave(&worker->lock, flags); if (!queuing_blocked(worker, work)) { __kthread_queue_delayed_work(worker, dwork, delay); ret = true; } raw_spin_unlock_irqrestore(&worker->lock, flags); return ret; } EXPORT_SYMBOL_GPL(kthread_queue_delayed_work); struct kthread_flush_work { struct kthread_work work; struct completion done; }; static void kthread_flush_work_fn(struct kthread_work *work) { struct kthread_flush_work *fwork = container_of(work, struct kthread_flush_work, work); complete(&fwork->done); } /** * kthread_flush_work - flush a kthread_work * @work: work to flush * * If @work is queued or executing, wait for it to finish execution. */ void kthread_flush_work(struct kthread_work *work) { struct kthread_flush_work fwork = { KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn), COMPLETION_INITIALIZER_ONSTACK(fwork.done), }; struct kthread_worker *worker; bool noop = false; worker = work->worker; if (!worker) return; raw_spin_lock_irq(&worker->lock); /* Work must not be used with >1 worker, see kthread_queue_work(). */ WARN_ON_ONCE(work->worker != worker); if (!list_empty(&work->node)) kthread_insert_work(worker, &fwork.work, work->node.next); else if (worker->current_work == work) kthread_insert_work(worker, &fwork.work, worker->work_list.next); else noop = true; raw_spin_unlock_irq(&worker->lock); if (!noop) wait_for_completion(&fwork.done); } EXPORT_SYMBOL_GPL(kthread_flush_work); /* * Make sure that the timer is neither set nor running and could * not manipulate the work list_head any longer. * * The function is called under worker->lock. The lock is temporary * released but the timer can't be set again in the meantime. */ static void kthread_cancel_delayed_work_timer(struct kthread_work *work, unsigned long *flags) { struct kthread_delayed_work *dwork = container_of(work, struct kthread_delayed_work, work); struct kthread_worker *worker = work->worker; /* * del_timer_sync() must be called to make sure that the timer * callback is not running. The lock must be temporary released * to avoid a deadlock with the callback. In the meantime, * any queuing is blocked by setting the canceling counter. */ work->canceling++; raw_spin_unlock_irqrestore(&worker->lock, *flags); del_timer_sync(&dwork->timer); raw_spin_lock_irqsave(&worker->lock, *flags); work->canceling--; } /* * This function removes the work from the worker queue. * * It is called under worker->lock. The caller must make sure that * the timer used by delayed work is not running, e.g. by calling * kthread_cancel_delayed_work_timer(). * * The work might still be in use when this function finishes. See the * current_work proceed by the worker. * * Return: %true if @work was pending and successfully canceled, * %false if @work was not pending */ static bool __kthread_cancel_work(struct kthread_work *work) { /* * Try to remove the work from a worker list. It might either * be from worker->work_list or from worker->delayed_work_list. */ if (!list_empty(&work->node)) { list_del_init(&work->node); return true; } return false; } /** * kthread_mod_delayed_work - modify delay of or queue a kthread delayed work * @worker: kthread worker to use * @dwork: kthread delayed work to queue * @delay: number of jiffies to wait before queuing * * If @dwork is idle, equivalent to kthread_queue_delayed_work(). Otherwise, * modify @dwork's timer so that it expires after @delay. If @delay is zero, * @work is guaranteed to be queued immediately. * * Return: %false if @dwork was idle and queued, %true otherwise. * * A special case is when the work is being canceled in parallel. * It might be caused either by the real kthread_cancel_delayed_work_sync() * or yet another kthread_mod_delayed_work() call. We let the other command * win and return %true here. The return value can be used for reference * counting and the number of queued works stays the same. Anyway, the caller * is supposed to synchronize these operations a reasonable way. * * This function is safe to call from any context including IRQ handler. * See __kthread_cancel_work() and kthread_delayed_work_timer_fn() * for details. */ bool kthread_mod_delayed_work(struct kthread_worker *worker, struct kthread_delayed_work *dwork, unsigned long delay) { struct kthread_work *work = &dwork->work; unsigned long flags; int ret; raw_spin_lock_irqsave(&worker->lock, flags); /* Do not bother with canceling when never queued. */ if (!work->worker) { ret = false; goto fast_queue; } /* Work must not be used with >1 worker, see kthread_queue_work() */ WARN_ON_ONCE(work->worker != worker); /* * Temporary cancel the work but do not fight with another command * that is canceling the work as well. * * It is a bit tricky because of possible races with another * mod_delayed_work() and cancel_delayed_work() callers. * * The timer must be canceled first because worker->lock is released * when doing so. But the work can be removed from the queue (list) * only when it can be queued again so that the return value can * be used for reference counting. */ kthread_cancel_delayed_work_timer(work, &flags); if (work->canceling) { /* The number of works in the queue does not change. */ ret = true; goto out; } ret = __kthread_cancel_work(work); fast_queue: __kthread_queue_delayed_work(worker, dwork, delay); out: raw_spin_unlock_irqrestore(&worker->lock, flags); return ret; } EXPORT_SYMBOL_GPL(kthread_mod_delayed_work); static bool __kthread_cancel_work_sync(struct kthread_work *work, bool is_dwork) { struct kthread_worker *worker = work->worker; unsigned long flags; int ret = false; if (!worker) goto out; raw_spin_lock_irqsave(&worker->lock, flags); /* Work must not be used with >1 worker, see kthread_queue_work(). */ WARN_ON_ONCE(work->worker != worker); if (is_dwork) kthread_cancel_delayed_work_timer(work, &flags); ret = __kthread_cancel_work(work); if (worker->current_work != work) goto out_fast; /* * The work is in progress and we need to wait with the lock released. * In the meantime, block any queuing by setting the canceling counter. */ work->canceling++; raw_spin_unlock_irqrestore(&worker->lock, flags); kthread_flush_work(work); raw_spin_lock_irqsave(&worker->lock, flags); work->canceling--; out_fast: raw_spin_unlock_irqrestore(&worker->lock, flags); out: return ret; } /** * kthread_cancel_work_sync - cancel a kthread work and wait for it to finish * @work: the kthread work to cancel * * Cancel @work and wait for its execution to finish. This function * can be used even if the work re-queues itself. On return from this * function, @work is guaranteed to be not pending or executing on any CPU. * * kthread_cancel_work_sync(&delayed_work->work) must not be used for * delayed_work's. Use kthread_cancel_delayed_work_sync() instead. * * The caller must ensure that the worker on which @work was last * queued can't be destroyed before this function returns. * * Return: %true if @work was pending, %false otherwise. */ bool kthread_cancel_work_sync(struct kthread_work *work) { return __kthread_cancel_work_sync(work, false); } EXPORT_SYMBOL_GPL(kthread_cancel_work_sync); /** * kthread_cancel_delayed_work_sync - cancel a kthread delayed work and * wait for it to finish. * @dwork: the kthread delayed work to cancel * * This is kthread_cancel_work_sync() for delayed works. * * Return: %true if @dwork was pending, %false otherwise. */ bool kthread_cancel_delayed_work_sync(struct kthread_delayed_work *dwork) { return __kthread_cancel_work_sync(&dwork->work, true); } EXPORT_SYMBOL_GPL(kthread_cancel_delayed_work_sync); /** * kthread_flush_worker - flush all current works on a kthread_worker * @worker: worker to flush * * Wait until all currently executing or pending works on @worker are * finished. */ void kthread_flush_worker(struct kthread_worker *worker) { struct kthread_flush_work fwork = { KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn), COMPLETION_INITIALIZER_ONSTACK(fwork.done), }; kthread_queue_work(worker, &fwork.work); wait_for_completion(&fwork.done); } EXPORT_SYMBOL_GPL(kthread_flush_worker); /** * kthread_destroy_worker - destroy a kthread worker * @worker: worker to be destroyed * * Flush and destroy @worker. The simple flush is enough because the kthread * worker API is used only in trivial scenarios. There are no multi-step state * machines needed. */ void kthread_destroy_worker(struct kthread_worker *worker) { struct task_struct *task; task = worker->task; if (WARN_ON(!task)) return; kthread_flush_worker(worker); kthread_stop(task); WARN_ON(!list_empty(&worker->work_list)); kfree(worker); } EXPORT_SYMBOL(kthread_destroy_worker); /** * kthread_use_mm - make the calling kthread operate on an address space * @mm: address space to operate on */ void kthread_use_mm(struct mm_struct *mm) { struct mm_struct *active_mm; struct task_struct *tsk = current; WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD)); WARN_ON_ONCE(tsk->mm); task_lock(tsk); /* Hold off tlb flush IPIs while switching mm's */ local_irq_disable(); active_mm = tsk->active_mm; if (active_mm != mm) { mmgrab(mm); tsk->active_mm = mm; } tsk->mm = mm; switch_mm_irqs_off(active_mm, mm, tsk); local_irq_enable(); task_unlock(tsk); #ifdef finish_arch_post_lock_switch finish_arch_post_lock_switch(); #endif if (active_mm != mm) mmdrop(active_mm); to_kthread(tsk)->oldfs = force_uaccess_begin(); } EXPORT_SYMBOL_GPL(kthread_use_mm); /** * kthread_unuse_mm - reverse the effect of kthread_use_mm() * @mm: address space to operate on */ void kthread_unuse_mm(struct mm_struct *mm) { struct task_struct *tsk = current; WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD)); WARN_ON_ONCE(!tsk->mm); force_uaccess_end(to_kthread(tsk)->oldfs); task_lock(tsk); sync_mm_rss(mm); local_irq_disable(); tsk->mm = NULL; /* active_mm is still 'mm' */ enter_lazy_tlb(mm, tsk); local_irq_enable(); task_unlock(tsk); } EXPORT_SYMBOL_GPL(kthread_unuse_mm); #ifdef CONFIG_BLK_CGROUP /** * kthread_associate_blkcg - associate blkcg to current kthread * @css: the cgroup info * * Current thread must be a kthread. The thread is running jobs on behalf of * other threads. In some cases, we expect the jobs attach cgroup info of * original threads instead of that of current thread. This function stores * original thread's cgroup info in current kthread context for later * retrieval. */ void kthread_associate_blkcg(struct cgroup_subsys_state *css) { struct kthread *kthread; if (!(current->flags & PF_KTHREAD)) return; kthread = to_kthread(current); if (!kthread) return; if (kthread->blkcg_css) { css_put(kthread->blkcg_css); kthread->blkcg_css = NULL; } if (css) { css_get(css); kthread->blkcg_css = css; } } EXPORT_SYMBOL(kthread_associate_blkcg); /** * kthread_blkcg - get associated blkcg css of current kthread * * Current thread must be a kthread. */ struct cgroup_subsys_state *kthread_blkcg(void) { struct kthread *kthread; if (current->flags & PF_KTHREAD) { kthread = to_kthread(current); if (kthread) return kthread->blkcg_css; } return NULL; } EXPORT_SYMBOL(kthread_blkcg); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _KERNEL_PRINTK_RINGBUFFER_H #define _KERNEL_PRINTK_RINGBUFFER_H #include <linux/atomic.h> #include <linux/dev_printk.h> /* * Meta information about each stored message. * * All fields are set by the printk code except for @seq, which is * set by the ringbuffer code. */ struct printk_info { u64 seq; /* sequence number */ u64 ts_nsec; /* timestamp in nanoseconds */ u16 text_len; /* length of text message */ u8 facility; /* syslog facility */ u8 flags:5; /* internal record flags */ u8 level:3; /* syslog level */ u32 caller_id; /* thread id or processor id */ struct dev_printk_info dev_info; }; /* * A structure providing the buffers, used by writers and readers. * * Writers: * Using prb_rec_init_wr(), a writer sets @text_buf_size before calling * prb_reserve(). On success, prb_reserve() sets @info and @text_buf to * buffers reserved for that writer. * * Readers: * Using prb_rec_init_rd(), a reader sets all fields before calling * prb_read_valid(). Note that the reader provides the @info and @text_buf, * buffers. On success, the struct pointed to by @info will be filled and * the char array pointed to by @text_buf will be filled with text data. */ struct printk_record { struct printk_info *info; char *text_buf; unsigned int text_buf_size; }; /* Specifies the logical position and span of a data block. */ struct prb_data_blk_lpos { unsigned long begin; unsigned long next; }; /* * A descriptor: the complete meta-data for a record. * * @state_var: A bitwise combination of descriptor ID and descriptor state. */ struct prb_desc { atomic_long_t state_var; struct prb_data_blk_lpos text_blk_lpos; }; /* A ringbuffer of "ID + data" elements. */ struct prb_data_ring { unsigned int size_bits; char *data; atomic_long_t head_lpos; atomic_long_t tail_lpos; }; /* A ringbuffer of "struct prb_desc" elements. */ struct prb_desc_ring { unsigned int count_bits; struct prb_desc *descs; struct printk_info *infos; atomic_long_t head_id; atomic_long_t tail_id; }; /* * The high level structure representing the printk ringbuffer. * * @fail: Count of failed prb_reserve() calls where not even a data-less * record was created. */ struct printk_ringbuffer { struct prb_desc_ring desc_ring; struct prb_data_ring text_data_ring; atomic_long_t fail; }; /* * Used by writers as a reserve/commit handle. * * @rb: Ringbuffer where the entry is reserved. * @irqflags: Saved irq flags to restore on entry commit. * @id: ID of the reserved descriptor. * @text_space: Total occupied buffer space in the text data ring, including * ID, alignment padding, and wrapping data blocks. * * This structure is an opaque handle for writers. Its contents are only * to be used by the ringbuffer implementation. */ struct prb_reserved_entry { struct printk_ringbuffer *rb; unsigned long irqflags; unsigned long id; unsigned int text_space; }; /* The possible responses of a descriptor state-query. */ enum desc_state { desc_miss = -1, /* ID mismatch (pseudo state) */ desc_reserved = 0x0, /* reserved, in use by writer */ desc_committed = 0x1, /* committed by writer, could get reopened */ desc_finalized = 0x2, /* committed, no further modification allowed */ desc_reusable = 0x3, /* free, not yet used by any writer */ }; #define _DATA_SIZE(sz_bits) (1UL << (sz_bits)) #define _DESCS_COUNT(ct_bits) (1U << (ct_bits)) #define DESC_SV_BITS (sizeof(unsigned long) * 8) #define DESC_FLAGS_SHIFT (DESC_SV_BITS - 2) #define DESC_FLAGS_MASK (3UL << DESC_FLAGS_SHIFT) #define DESC_STATE(sv) (3UL & (sv >> DESC_FLAGS_SHIFT)) #define DESC_SV(id, state) (((unsigned long)state << DESC_FLAGS_SHIFT) | id) #define DESC_ID_MASK (~DESC_FLAGS_MASK) #define DESC_ID(sv) ((sv) & DESC_ID_MASK) #define FAILED_LPOS 0x1 #define NO_LPOS 0x3 #define FAILED_BLK_LPOS \ { \ .begin = FAILED_LPOS, \ .next = FAILED_LPOS, \ } /* * Descriptor Bootstrap * * The descriptor array is minimally initialized to allow immediate usage * by readers and writers. The requirements that the descriptor array * initialization must satisfy: * * Req1 * The tail must point to an existing (committed or reusable) descriptor. * This is required by the implementation of prb_first_seq(). * * Req2 * Readers must see that the ringbuffer is initially empty. * * Req3 * The first record reserved by a writer is assigned sequence number 0. * * To satisfy Req1, the tail initially points to a descriptor that is * minimally initialized (having no data block, i.e. data-less with the * data block's lpos @begin and @next values set to FAILED_LPOS). * * To satisfy Req2, the initial tail descriptor is initialized to the * reusable state. Readers recognize reusable descriptors as existing * records, but skip over them. * * To satisfy Req3, the last descriptor in the array is used as the initial * head (and tail) descriptor. This allows the first record reserved by a * writer (head + 1) to be the first descriptor in the array. (Only the first * descriptor in the array could have a valid sequence number of 0.) * * The first time a descriptor is reserved, it is assigned a sequence number * with the value of the array index. A "first time reserved" descriptor can * be recognized because it has a sequence number of 0 but does not have an * index of 0. (Only the first descriptor in the array could have a valid * sequence number of 0.) After the first reservation, all future reservations * (recycling) simply involve incrementing the sequence number by the array * count. * * Hack #1 * Only the first descriptor in the array is allowed to have the sequence * number 0. In this case it is not possible to recognize if it is being * reserved the first time (set to index value) or has been reserved * previously (increment by the array count). This is handled by _always_ * incrementing the sequence number by the array count when reserving the * first descriptor in the array. In order to satisfy Req3, the sequence * number of the first descriptor in the array is initialized to minus * the array count. Then, upon the first reservation, it is incremented * to 0, thus satisfying Req3. * * Hack #2 * prb_first_seq() can be called at any time by readers to retrieve the * sequence number of the tail descriptor. However, due to Req2 and Req3, * initially there are no records to report the sequence number of * (sequence numbers are u64 and there is nothing less than 0). To handle * this, the sequence number of the initial tail descriptor is initialized * to 0. Technically this is incorrect, because there is no record with * sequence number 0 (yet) and the tail descriptor is not the first * descriptor in the array. But it allows prb_read_valid() to correctly * report the existence of a record for _any_ given sequence number at all * times. Bootstrapping is complete when the tail is pushed the first * time, thus finally pointing to the first descriptor reserved by a * writer, which has the assigned sequence number 0. */ /* * Initiating Logical Value Overflows * * Both logical position (lpos) and ID values can be mapped to array indexes * but may experience overflows during the lifetime of the system. To ensure * that printk_ringbuffer can handle the overflows for these types, initial * values are chosen that map to the correct initial array indexes, but will * result in overflows soon. * * BLK0_LPOS * The initial @head_lpos and @tail_lpos for data rings. It is at index * 0 and the lpos value is such that it will overflow on the first wrap. * * DESC0_ID * The initial @head_id and @tail_id for the desc ring. It is at the last * index of the descriptor array (see Req3 above) and the ID value is such * that it will overflow on the second wrap. */ #define BLK0_LPOS(sz_bits) (-(_DATA_SIZE(sz_bits))) #define DESC0_ID(ct_bits) DESC_ID(-(_DESCS_COUNT(ct_bits) + 1)) #define DESC0_SV(ct_bits) DESC_SV(DESC0_ID(ct_bits), desc_reusable) /* * Define a ringbuffer with an external text data buffer. The same as * DEFINE_PRINTKRB() but requires specifying an external buffer for the * text data. * * Note: The specified external buffer must be of the size: * 2 ^ (descbits + avgtextbits) */ #define _DEFINE_PRINTKRB(name, descbits, avgtextbits, text_buf) \ static struct prb_desc _##name##_descs[_DESCS_COUNT(descbits)] = { \ /* the initial head and tail */ \ [_DESCS_COUNT(descbits) - 1] = { \ /* reusable */ \ .state_var = ATOMIC_INIT(DESC0_SV(descbits)), \ /* no associated data block */ \ .text_blk_lpos = FAILED_BLK_LPOS, \ }, \ }; \ static struct printk_info _##name##_infos[_DESCS_COUNT(descbits)] = { \ /* this will be the first record reserved by a writer */ \ [0] = { \ /* will be incremented to 0 on the first reservation */ \ .seq = -(u64)_DESCS_COUNT(descbits), \ }, \ /* the initial head and tail */ \ [_DESCS_COUNT(descbits) - 1] = { \ /* reports the first seq value during the bootstrap phase */ \ .seq = 0, \ }, \ }; \ static struct printk_ringbuffer name = { \ .desc_ring = { \ .count_bits = descbits, \ .descs = &_##name##_descs[0], \ .infos = &_##name##_infos[0], \ .head_id = ATOMIC_INIT(DESC0_ID(descbits)), \ .tail_id = ATOMIC_INIT(DESC0_ID(descbits)), \ }, \ .text_data_ring = { \ .size_bits = (avgtextbits) + (descbits), \ .data = text_buf, \ .head_lpos = ATOMIC_LONG_INIT(BLK0_LPOS((avgtextbits) + (descbits))), \ .tail_lpos = ATOMIC_LONG_INIT(BLK0_LPOS((avgtextbits) + (descbits))), \ }, \ .fail = ATOMIC_LONG_INIT(0), \ } /** * DEFINE_PRINTKRB() - Define a ringbuffer. * * @name: The name of the ringbuffer variable. * @descbits: The number of descriptors as a power-of-2 value. * @avgtextbits: The average text data size per record as a power-of-2 value. * * This is a macro for defining a ringbuffer and all internal structures * such that it is ready for immediate use. See _DEFINE_PRINTKRB() for a * variant where the text data buffer can be specified externally. */ #define DEFINE_PRINTKRB(name, descbits, avgtextbits) \ static char _##name##_text[1U << ((avgtextbits) + (descbits))] \ __aligned(__alignof__(unsigned long)); \ _DEFINE_PRINTKRB(name, descbits, avgtextbits, &_##name##_text[0]) /* Writer Interface */ /** * prb_rec_init_wd() - Initialize a buffer for writing records. * * @r: The record to initialize. * @text_buf_size: The needed text buffer size. */ static inline void prb_rec_init_wr(struct printk_record *r, unsigned int text_buf_size) { r->info = NULL; r->text_buf = NULL; r->text_buf_size = text_buf_size; } bool prb_reserve(struct prb_reserved_entry *e, struct printk_ringbuffer *rb, struct printk_record *r); bool prb_reserve_in_last(struct prb_reserved_entry *e, struct printk_ringbuffer *rb, struct printk_record *r, u32 caller_id, unsigned int max_size); void prb_commit(struct prb_reserved_entry *e); void prb_final_commit(struct prb_reserved_entry *e); void prb_init(struct printk_ringbuffer *rb, char *text_buf, unsigned int text_buf_size, struct prb_desc *descs, unsigned int descs_count_bits, struct printk_info *infos); unsigned int prb_record_text_space(struct prb_reserved_entry *e); /* Reader Interface */ /** * prb_rec_init_rd() - Initialize a buffer for reading records. * * @r: The record to initialize. * @info: A buffer to store record meta-data. * @text_buf: A buffer to store text data. * @text_buf_size: The size of @text_buf. * * Initialize all the fields that a reader is interested in. All arguments * (except @r) are optional. Only record data for arguments that are * non-NULL or non-zero will be read. */ static inline void prb_rec_init_rd(struct printk_record *r, struct printk_info *info, char *text_buf, unsigned int text_buf_size) { r->info = info; r->text_buf = text_buf; r->text_buf_size = text_buf_size; } /** * prb_for_each_record() - Iterate over the records of a ringbuffer. * * @from: The sequence number to begin with. * @rb: The ringbuffer to iterate over. * @s: A u64 to store the sequence number on each iteration. * @r: A printk_record to store the record on each iteration. * * This is a macro for conveniently iterating over a ringbuffer. * Note that @s may not be the sequence number of the record on each * iteration. For the sequence number, @r->info->seq should be checked. * * Context: Any context. */ #define prb_for_each_record(from, rb, s, r) \ for ((s) = from; prb_read_valid(rb, s, r); (s) = (r)->info->seq + 1) /** * prb_for_each_info() - Iterate over the meta data of a ringbuffer. * * @from: The sequence number to begin with. * @rb: The ringbuffer to iterate over. * @s: A u64 to store the sequence number on each iteration. * @i: A printk_info to store the record meta data on each iteration. * @lc: An unsigned int to store the text line count of each record. * * This is a macro for conveniently iterating over a ringbuffer. * Note that @s may not be the sequence number of the record on each * iteration. For the sequence number, @r->info->seq should be checked. * * Context: Any context. */ #define prb_for_each_info(from, rb, s, i, lc) \ for ((s) = from; prb_read_valid_info(rb, s, i, lc); (s) = (i)->seq + 1) bool prb_read_valid(struct printk_ringbuffer *rb, u64 seq, struct printk_record *r); bool prb_read_valid_info(struct printk_ringbuffer *rb, u64 seq, struct printk_info *info, unsigned int *line_count); u64 prb_first_valid_seq(struct printk_ringbuffer *rb); u64 prb_next_seq(struct printk_ringbuffer *rb); #endif /* _KERNEL_PRINTK_RINGBUFFER_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM rpm #if !defined(_TRACE_RUNTIME_POWER_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_RUNTIME_POWER_H #include <linux/ktime.h> #include <linux/tracepoint.h> struct device; /* * The rpm_internal events are used for tracing some important * runtime pm internal functions. */ DECLARE_EVENT_CLASS(rpm_internal, TP_PROTO(struct device *dev, int flags), TP_ARGS(dev, flags), TP_STRUCT__entry( __string( name, dev_name(dev) ) __field( int, flags ) __field( int , usage_count ) __field( int , disable_depth ) __field( int , runtime_auto ) __field( int , request_pending ) __field( int , irq_safe ) __field( int , child_count ) ), TP_fast_assign( __assign_str(name, dev_name(dev)); __entry->flags = flags; __entry->usage_count = atomic_read( &dev->power.usage_count); __entry->disable_depth = dev->power.disable_depth; __entry->runtime_auto = dev->power.runtime_auto; __entry->request_pending = dev->power.request_pending; __entry->irq_safe = dev->power.irq_safe; __entry->child_count = atomic_read( &dev->power.child_count); ), TP_printk("%s flags-%x cnt-%-2d dep-%-2d auto-%-1d p-%-1d" " irq-%-1d child-%d", __get_str(name), __entry->flags, __entry->usage_count, __entry->disable_depth, __entry->runtime_auto, __entry->request_pending, __entry->irq_safe, __entry->child_count ) ); DEFINE_EVENT(rpm_internal, rpm_suspend, TP_PROTO(struct device *dev, int flags), TP_ARGS(dev, flags) ); DEFINE_EVENT(rpm_internal, rpm_resume, TP_PROTO(struct device *dev, int flags), TP_ARGS(dev, flags) ); DEFINE_EVENT(rpm_internal, rpm_idle, TP_PROTO(struct device *dev, int flags), TP_ARGS(dev, flags) ); DEFINE_EVENT(rpm_internal, rpm_usage, TP_PROTO(struct device *dev, int flags), TP_ARGS(dev, flags) ); TRACE_EVENT(rpm_return_int, TP_PROTO(struct device *dev, unsigned long ip, int ret), TP_ARGS(dev, ip, ret), TP_STRUCT__entry( __string( name, dev_name(dev)) __field( unsigned long, ip ) __field( int, ret ) ), TP_fast_assign( __assign_str(name, dev_name(dev)); __entry->ip = ip; __entry->ret = ret; ), TP_printk("%pS:%s ret=%d", (void *)__entry->ip, __get_str(name), __entry->ret) ); #endif /* _TRACE_RUNTIME_POWER_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_INETDEVICE_H #define _LINUX_INETDEVICE_H #ifdef __KERNEL__ #include <linux/bitmap.h> #include <linux/if.h> #include <linux/ip.h> #include <linux/netdevice.h> #include <linux/rcupdate.h> #include <linux/timer.h> #include <linux/sysctl.h> #include <linux/rtnetlink.h> #include <linux/refcount.h> struct ipv4_devconf { void *sysctl; int data[IPV4_DEVCONF_MAX]; DECLARE_BITMAP(state, IPV4_DEVCONF_MAX); }; #define MC_HASH_SZ_LOG 9 struct in_device { struct net_device *dev; refcount_t refcnt; int dead; struct in_ifaddr __rcu *ifa_list;/* IP ifaddr chain */ struct ip_mc_list __rcu *mc_list; /* IP multicast filter chain */ struct ip_mc_list __rcu * __rcu *mc_hash; int mc_count; /* Number of installed mcasts */ spinlock_t mc_tomb_lock; struct ip_mc_list *mc_tomb; unsigned long mr_v1_seen; unsigned long mr_v2_seen; unsigned long mr_maxdelay; unsigned long mr_qi; /* Query Interval */ unsigned long mr_qri; /* Query Response Interval */ unsigned char mr_qrv; /* Query Robustness Variable */ unsigned char mr_gq_running; u32 mr_ifc_count; struct timer_list mr_gq_timer; /* general query timer */ struct timer_list mr_ifc_timer; /* interface change timer */ struct neigh_parms *arp_parms; struct ipv4_devconf cnf; struct rcu_head rcu_head; }; #define IPV4_DEVCONF(cnf, attr) ((cnf).data[IPV4_DEVCONF_ ## attr - 1]) #define IPV4_DEVCONF_ALL(net, attr) \ IPV4_DEVCONF((*(net)->ipv4.devconf_all), attr) static inline int ipv4_devconf_get(struct in_device *in_dev, int index) { index--; return in_dev->cnf.data[index]; } static inline void ipv4_devconf_set(struct in_device *in_dev, int index, int val) { index--; set_bit(index, in_dev->cnf.state); in_dev->cnf.data[index] = val; } static inline void ipv4_devconf_setall(struct in_device *in_dev) { bitmap_fill(in_dev->cnf.state, IPV4_DEVCONF_MAX); } #define IN_DEV_CONF_GET(in_dev, attr) \ ipv4_devconf_get((in_dev), IPV4_DEVCONF_ ## attr) #define IN_DEV_CONF_SET(in_dev, attr, val) \ ipv4_devconf_set((in_dev), IPV4_DEVCONF_ ## attr, (val)) #define IN_DEV_ANDCONF(in_dev, attr) \ (IPV4_DEVCONF_ALL(dev_net(in_dev->dev), attr) && \ IN_DEV_CONF_GET((in_dev), attr)) #define IN_DEV_NET_ORCONF(in_dev, net, attr) \ (IPV4_DEVCONF_ALL(net, attr) || \ IN_DEV_CONF_GET((in_dev), attr)) #define IN_DEV_ORCONF(in_dev, attr) \ IN_DEV_NET_ORCONF(in_dev, dev_net(in_dev->dev), attr) #define IN_DEV_MAXCONF(in_dev, attr) \ (max(IPV4_DEVCONF_ALL(dev_net(in_dev->dev), attr), \ IN_DEV_CONF_GET((in_dev), attr))) #define IN_DEV_FORWARD(in_dev) IN_DEV_CONF_GET((in_dev), FORWARDING) #define IN_DEV_MFORWARD(in_dev) IN_DEV_ANDCONF((in_dev), MC_FORWARDING) #define IN_DEV_BFORWARD(in_dev) IN_DEV_ANDCONF((in_dev), BC_FORWARDING) #define IN_DEV_RPFILTER(in_dev) IN_DEV_MAXCONF((in_dev), RP_FILTER) #define IN_DEV_SRC_VMARK(in_dev) IN_DEV_ORCONF((in_dev), SRC_VMARK) #define IN_DEV_SOURCE_ROUTE(in_dev) IN_DEV_ANDCONF((in_dev), \ ACCEPT_SOURCE_ROUTE) #define IN_DEV_ACCEPT_LOCAL(in_dev) IN_DEV_ORCONF((in_dev), ACCEPT_LOCAL) #define IN_DEV_BOOTP_RELAY(in_dev) IN_DEV_ANDCONF((in_dev), BOOTP_RELAY) #define IN_DEV_LOG_MARTIANS(in_dev) IN_DEV_ORCONF((in_dev), LOG_MARTIANS) #define IN_DEV_PROXY_ARP(in_dev) IN_DEV_ORCONF((in_dev), PROXY_ARP) #define IN_DEV_PROXY_ARP_PVLAN(in_dev) IN_DEV_CONF_GET(in_dev, PROXY_ARP_PVLAN) #define IN_DEV_SHARED_MEDIA(in_dev) IN_DEV_ORCONF((in_dev), SHARED_MEDIA) #define IN_DEV_TX_REDIRECTS(in_dev) IN_DEV_ORCONF((in_dev), SEND_REDIRECTS) #define IN_DEV_SEC_REDIRECTS(in_dev) IN_DEV_ORCONF((in_dev), \ SECURE_REDIRECTS) #define IN_DEV_IDTAG(in_dev) IN_DEV_CONF_GET(in_dev, TAG) #define IN_DEV_MEDIUM_ID(in_dev) IN_DEV_CONF_GET(in_dev, MEDIUM_ID) #define IN_DEV_PROMOTE_SECONDARIES(in_dev) \ IN_DEV_ORCONF((in_dev), \ PROMOTE_SECONDARIES) #define IN_DEV_ROUTE_LOCALNET(in_dev) IN_DEV_ORCONF(in_dev, ROUTE_LOCALNET) #define IN_DEV_NET_ROUTE_LOCALNET(in_dev, net) \ IN_DEV_NET_ORCONF(in_dev, net, ROUTE_LOCALNET) #define IN_DEV_RX_REDIRECTS(in_dev) \ ((IN_DEV_FORWARD(in_dev) && \ IN_DEV_ANDCONF((in_dev), ACCEPT_REDIRECTS)) \ || (!IN_DEV_FORWARD(in_dev) && \ IN_DEV_ORCONF((in_dev), ACCEPT_REDIRECTS))) #define IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) \ IN_DEV_CONF_GET((in_dev), IGNORE_ROUTES_WITH_LINKDOWN) #define IN_DEV_ARPFILTER(in_dev) IN_DEV_ORCONF((in_dev), ARPFILTER) #define IN_DEV_ARP_ACCEPT(in_dev) IN_DEV_ORCONF((in_dev), ARP_ACCEPT) #define IN_DEV_ARP_ANNOUNCE(in_dev) IN_DEV_MAXCONF((in_dev), ARP_ANNOUNCE) #define IN_DEV_ARP_IGNORE(in_dev) IN_DEV_MAXCONF((in_dev), ARP_IGNORE) #define IN_DEV_ARP_NOTIFY(in_dev) IN_DEV_MAXCONF((in_dev), ARP_NOTIFY) struct in_ifaddr { struct hlist_node hash; struct in_ifaddr __rcu *ifa_next; struct in_device *ifa_dev; struct rcu_head rcu_head; __be32 ifa_local; __be32 ifa_address; __be32 ifa_mask; __u32 ifa_rt_priority; __be32 ifa_broadcast; unsigned char ifa_scope; unsigned char ifa_prefixlen; __u32 ifa_flags; char ifa_label[IFNAMSIZ]; /* In seconds, relative to tstamp. Expiry is at tstamp + HZ * lft. */ __u32 ifa_valid_lft; __u32 ifa_preferred_lft; unsigned long ifa_cstamp; /* created timestamp */ unsigned long ifa_tstamp; /* updated timestamp */ }; struct in_validator_info { __be32 ivi_addr; struct in_device *ivi_dev; struct netlink_ext_ack *extack; }; int register_inetaddr_notifier(struct notifier_block *nb); int unregister_inetaddr_notifier(struct notifier_block *nb); int register_inetaddr_validator_notifier(struct notifier_block *nb); int unregister_inetaddr_validator_notifier(struct notifier_block *nb); void inet_netconf_notify_devconf(struct net *net, int event, int type, int ifindex, struct ipv4_devconf *devconf); struct net_device *__ip_dev_find(struct net *net, __be32 addr, bool devref); static inline struct net_device *ip_dev_find(struct net *net, __be32 addr) { return __ip_dev_find(net, addr, true); } int inet_addr_onlink(struct in_device *in_dev, __be32 a, __be32 b); int devinet_ioctl(struct net *net, unsigned int cmd, struct ifreq *); void devinet_init(void); struct in_device *inetdev_by_index(struct net *, int); __be32 inet_select_addr(const struct net_device *dev, __be32 dst, int scope); __be32 inet_confirm_addr(struct net *net, struct in_device *in_dev, __be32 dst, __be32 local, int scope); struct in_ifaddr *inet_ifa_byprefix(struct in_device *in_dev, __be32 prefix, __be32 mask); struct in_ifaddr *inet_lookup_ifaddr_rcu(struct net *net, __be32 addr); static inline bool inet_ifa_match(__be32 addr, const struct in_ifaddr *ifa) { return !((addr^ifa->ifa_address)&ifa->ifa_mask); } /* * Check if a mask is acceptable. */ static __inline__ bool bad_mask(__be32 mask, __be32 addr) { __u32 hmask; if (addr & (mask = ~mask)) return true; hmask = ntohl(mask); if (hmask & (hmask+1)) return true; return false; } #define in_dev_for_each_ifa_rtnl(ifa, in_dev) \ for (ifa = rtnl_dereference((in_dev)->ifa_list); ifa; \ ifa = rtnl_dereference(ifa->ifa_next)) #define in_dev_for_each_ifa_rcu(ifa, in_dev) \ for (ifa = rcu_dereference((in_dev)->ifa_list); ifa; \ ifa = rcu_dereference(ifa->ifa_next)) static inline struct in_device *__in_dev_get_rcu(const struct net_device *dev) { return rcu_dereference(dev->ip_ptr); } static inline struct in_device *in_dev_get(const struct net_device *dev) { struct in_device *in_dev; rcu_read_lock(); in_dev = __in_dev_get_rcu(dev); if (in_dev) refcount_inc(&in_dev->refcnt); rcu_read_unlock(); return in_dev; } static inline struct in_device *__in_dev_get_rtnl(const struct net_device *dev) { return rtnl_dereference(dev->ip_ptr); } /* called with rcu_read_lock or rtnl held */ static inline bool ip_ignore_linkdown(const struct net_device *dev) { struct in_device *in_dev; bool rc = false; in_dev = rcu_dereference_rtnl(dev->ip_ptr); if (in_dev && IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev)) rc = true; return rc; } static inline struct neigh_parms *__in_dev_arp_parms_get_rcu(const struct net_device *dev) { struct in_device *in_dev = __in_dev_get_rcu(dev); return in_dev ? in_dev->arp_parms : NULL; } void in_dev_finish_destroy(struct in_device *idev); static inline void in_dev_put(struct in_device *idev) { if (refcount_dec_and_test(&idev->refcnt)) in_dev_finish_destroy(idev); } #define __in_dev_put(idev) refcount_dec(&(idev)->refcnt) #define in_dev_hold(idev) refcount_inc(&(idev)->refcnt) #endif /* __KERNEL__ */ static __inline__ __be32 inet_make_mask(int logmask) { if (logmask) return htonl(~((1U<<(32-logmask))-1)); return 0; } static __inline__ int inet_mask_len(__be32 mask) { __u32 hmask = ntohl(mask); if (!hmask) return 0; return 32 - ffz(~hmask); } #endif /* _LINUX_INETDEVICE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __ASM_GENERIC_PGALLOC_H #define __ASM_GENERIC_PGALLOC_H #ifdef CONFIG_MMU #define GFP_PGTABLE_KERNEL (GFP_KERNEL | __GFP_ZERO) #define GFP_PGTABLE_USER (GFP_PGTABLE_KERNEL | __GFP_ACCOUNT) /** * __pte_alloc_one_kernel - allocate a page for PTE-level kernel page table * @mm: the mm_struct of the current context * * This function is intended for architectures that need * anything beyond simple page allocation. * * Return: pointer to the allocated memory or %NULL on error */ static inline pte_t *__pte_alloc_one_kernel(struct mm_struct *mm) { return (pte_t *)__get_free_page(GFP_PGTABLE_KERNEL); } #ifndef __HAVE_ARCH_PTE_ALLOC_ONE_KERNEL /** * pte_alloc_one_kernel - allocate a page for PTE-level kernel page table * @mm: the mm_struct of the current context * * Return: pointer to the allocated memory or %NULL on error */ static inline pte_t *pte_alloc_one_kernel(struct mm_struct *mm) { return __pte_alloc_one_kernel(mm); } #endif /** * pte_free_kernel - free PTE-level kernel page table page * @mm: the mm_struct of the current context * @pte: pointer to the memory containing the page table */ static inline void pte_free_kernel(struct mm_struct *mm, pte_t *pte) { free_page((unsigned long)pte); } /** * __pte_alloc_one - allocate a page for PTE-level user page table * @mm: the mm_struct of the current context * @gfp: GFP flags to use for the allocation * * Allocates a page and runs the pgtable_pte_page_ctor(). * * This function is intended for architectures that need * anything beyond simple page allocation or must have custom GFP flags. * * Return: `struct page` initialized as page table or %NULL on error */ static inline pgtable_t __pte_alloc_one(struct mm_struct *mm, gfp_t gfp) { struct page *pte; pte = alloc_page(gfp); if (!pte) return NULL; if (!pgtable_pte_page_ctor(pte)) { __free_page(pte); return NULL; } return pte; } #ifndef __HAVE_ARCH_PTE_ALLOC_ONE /** * pte_alloc_one - allocate a page for PTE-level user page table * @mm: the mm_struct of the current context * * Allocates a page and runs the pgtable_pte_page_ctor(). * * Return: `struct page` initialized as page table or %NULL on error */ static inline pgtable_t pte_alloc_one(struct mm_struct *mm) { return __pte_alloc_one(mm, GFP_PGTABLE_USER); } #endif /* * Should really implement gc for free page table pages. This could be * done with a reference count in struct page. */ /** * pte_free - free PTE-level user page table page * @mm: the mm_struct of the current context * @pte_page: the `struct page` representing the page table */ static inline void pte_free(struct mm_struct *mm, struct page *pte_page) { pgtable_pte_page_dtor(pte_page); __free_page(pte_page); } #if CONFIG_PGTABLE_LEVELS > 2 #ifndef __HAVE_ARCH_PMD_ALLOC_ONE /** * pmd_alloc_one - allocate a page for PMD-level page table * @mm: the mm_struct of the current context * * Allocates a page and runs the pgtable_pmd_page_ctor(). * Allocations use %GFP_PGTABLE_USER in user context and * %GFP_PGTABLE_KERNEL in kernel context. * * Return: pointer to the allocated memory or %NULL on error */ static inline pmd_t *pmd_alloc_one(struct mm_struct *mm, unsigned long addr) { struct page *page; gfp_t gfp = GFP_PGTABLE_USER; if (mm == &init_mm) gfp = GFP_PGTABLE_KERNEL; page = alloc_pages(gfp, 0); if (!page) return NULL; if (!pgtable_pmd_page_ctor(page)) { __free_pages(page, 0); return NULL; } return (pmd_t *)page_address(page); } #endif #ifndef __HAVE_ARCH_PMD_FREE static inline void pmd_free(struct mm_struct *mm, pmd_t *pmd) { BUG_ON((unsigned long)pmd & (PAGE_SIZE-1)); pgtable_pmd_page_dtor(virt_to_page(pmd)); free_page((unsigned long)pmd); } #endif #endif /* CONFIG_PGTABLE_LEVELS > 2 */ #if CONFIG_PGTABLE_LEVELS > 3 #ifndef __HAVE_ARCH_PUD_ALLOC_ONE /** * pud_alloc_one - allocate a page for PUD-level page table * @mm: the mm_struct of the current context * * Allocates a page using %GFP_PGTABLE_USER for user context and * %GFP_PGTABLE_KERNEL for kernel context. * * Return: pointer to the allocated memory or %NULL on error */ static inline pud_t *pud_alloc_one(struct mm_struct *mm, unsigned long addr) { gfp_t gfp = GFP_PGTABLE_USER; if (mm == &init_mm) gfp = GFP_PGTABLE_KERNEL; return (pud_t *)get_zeroed_page(gfp); } #endif static inline void pud_free(struct mm_struct *mm, pud_t *pud) { BUG_ON((unsigned long)pud & (PAGE_SIZE-1)); free_page((unsigned long)pud); } #endif /* CONFIG_PGTABLE_LEVELS > 3 */ #ifndef __HAVE_ARCH_PGD_FREE static inline void pgd_free(struct mm_struct *mm, pgd_t *pgd) { free_page((unsigned long)pgd); } #endif #endif /* CONFIG_MMU */ #endif /* __ASM_GENERIC_PGALLOC_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 #ifndef __NET_SCHED_CODEL_IMPL_H #define __NET_SCHED_CODEL_IMPL_H /* * Codel - The Controlled-Delay Active Queue Management algorithm * * Copyright (C) 2011-2012 Kathleen Nichols <nichols@pollere.com> * Copyright (C) 2011-2012 Van Jacobson <van@pollere.net> * Copyright (C) 2012 Michael D. Taht <dave.taht@bufferbloat.net> * Copyright (C) 2012,2015 Eric Dumazet <edumazet@google.com> * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The names of the authors may not be used to endorse or promote products * derived from this software without specific prior written permission. * * Alternatively, provided that this notice is retained in full, this * software may be distributed under the terms of the GNU General * Public License ("GPL") version 2, in which case the provisions of the * GPL apply INSTEAD OF those given above. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH * DAMAGE. * */ /* Controlling Queue Delay (CoDel) algorithm * ========================================= * Source : Kathleen Nichols and Van Jacobson * http://queue.acm.org/detail.cfm?id=2209336 * * Implemented on linux by Dave Taht and Eric Dumazet */ static void codel_params_init(struct codel_params *params) { params->interval = MS2TIME(100); params->target = MS2TIME(5); params->ce_threshold = CODEL_DISABLED_THRESHOLD; params->ecn = false; } static void codel_vars_init(struct codel_vars *vars) { memset(vars, 0, sizeof(*vars)); } static void codel_stats_init(struct codel_stats *stats) { stats->maxpacket = 0; } /* * http://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Iterative_methods_for_reciprocal_square_roots * new_invsqrt = (invsqrt / 2) * (3 - count * invsqrt^2) * * Here, invsqrt is a fixed point number (< 1.0), 32bit mantissa, aka Q0.32 */ static void codel_Newton_step(struct codel_vars *vars) { u32 invsqrt = ((u32)vars->rec_inv_sqrt) << REC_INV_SQRT_SHIFT; u32 invsqrt2 = ((u64)invsqrt * invsqrt) >> 32; u64 val = (3LL << 32) - ((u64)vars->count * invsqrt2); val >>= 2; /* avoid overflow in following multiply */ val = (val * invsqrt) >> (32 - 2 + 1); vars->rec_inv_sqrt = val >> REC_INV_SQRT_SHIFT; } /* * CoDel control_law is t + interval/sqrt(count) * We maintain in rec_inv_sqrt the reciprocal value of sqrt(count) to avoid * both sqrt() and divide operation. */ static codel_time_t codel_control_law(codel_time_t t, codel_time_t interval, u32 rec_inv_sqrt) { return t + reciprocal_scale(interval, rec_inv_sqrt << REC_INV_SQRT_SHIFT); } static bool codel_should_drop(const struct sk_buff *skb, void *ctx, struct codel_vars *vars, struct codel_params *params, struct codel_stats *stats, codel_skb_len_t skb_len_func, codel_skb_time_t skb_time_func, u32 *backlog, codel_time_t now) { bool ok_to_drop; u32 skb_len; if (!skb) { vars->first_above_time = 0; return false; } skb_len = skb_len_func(skb); vars->ldelay = now - skb_time_func(skb); if (unlikely(skb_len > stats->maxpacket)) stats->maxpacket = skb_len; if (codel_time_before(vars->ldelay, params->target) || *backlog <= params->mtu) { /* went below - stay below for at least interval */ vars->first_above_time = 0; return false; } ok_to_drop = false; if (vars->first_above_time == 0) { /* just went above from below. If we stay above * for at least interval we'll say it's ok to drop */ vars->first_above_time = now + params->interval; } else if (codel_time_after(now, vars->first_above_time)) { ok_to_drop = true; } return ok_to_drop; } static struct sk_buff *codel_dequeue(void *ctx, u32 *backlog, struct codel_params *params, struct codel_vars *vars, struct codel_stats *stats, codel_skb_len_t skb_len_func, codel_skb_time_t skb_time_func, codel_skb_drop_t drop_func, codel_skb_dequeue_t dequeue_func) { struct sk_buff *skb = dequeue_func(vars, ctx); codel_time_t now; bool drop; if (!skb) { vars->dropping = false; return skb; } now = codel_get_time(); drop = codel_should_drop(skb, ctx, vars, params, stats, skb_len_func, skb_time_func, backlog, now); if (vars->dropping) { if (!drop) { /* sojourn time below target - leave dropping state */ vars->dropping = false; } else if (codel_time_after_eq(now, vars->drop_next)) { /* It's time for the next drop. Drop the current * packet and dequeue the next. The dequeue might * take us out of dropping state. * If not, schedule the next drop. * A large backlog might result in drop rates so high * that the next drop should happen now, * hence the while loop. */ while (vars->dropping && codel_time_after_eq(now, vars->drop_next)) { vars->count++; /* dont care of possible wrap * since there is no more divide */ codel_Newton_step(vars); if (params->ecn && INET_ECN_set_ce(skb)) { stats->ecn_mark++; vars->drop_next = codel_control_law(vars->drop_next, params->interval, vars->rec_inv_sqrt); goto end; } stats->drop_len += skb_len_func(skb); drop_func(skb, ctx); stats->drop_count++; skb = dequeue_func(vars, ctx); if (!codel_should_drop(skb, ctx, vars, params, stats, skb_len_func, skb_time_func, backlog, now)) { /* leave dropping state */ vars->dropping = false; } else { /* and schedule the next drop */ vars->drop_next = codel_control_law(vars->drop_next, params->interval, vars->rec_inv_sqrt); } } } } else if (drop) { u32 delta; if (params->ecn && INET_ECN_set_ce(skb)) { stats->ecn_mark++; } else { stats->drop_len += skb_len_func(skb); drop_func(skb, ctx); stats->drop_count++; skb = dequeue_func(vars, ctx); drop = codel_should_drop(skb, ctx, vars, params, stats, skb_len_func, skb_time_func, backlog, now); } vars->dropping = true; /* if min went above target close to when we last went below it * assume that the drop rate that controlled the queue on the * last cycle is a good starting point to control it now. */ delta = vars->count - vars->lastcount; if (delta > 1 && codel_time_before(now - vars->drop_next, 16 * params->interval)) { vars->count = delta; /* we dont care if rec_inv_sqrt approximation * is not very precise : * Next Newton steps will correct it quadratically. */ codel_Newton_step(vars); } else { vars->count = 1; vars->rec_inv_sqrt = ~0U >> REC_INV_SQRT_SHIFT; } vars->lastcount = vars->count; vars->drop_next = codel_control_law(now, params->interval, vars->rec_inv_sqrt); } end: if (skb && codel_time_after(vars->ldelay, params->ce_threshold) && INET_ECN_set_ce(skb)) stats->ce_mark++; return skb; } #endif
1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_SPINLOCK_H #define __LINUX_SPINLOCK_H /* * include/linux/spinlock.h - generic spinlock/rwlock declarations * * here's the role of the various spinlock/rwlock related include files: * * on SMP builds: * * asm/spinlock_types.h: contains the arch_spinlock_t/arch_rwlock_t and the * initializers * * linux/spinlock_types.h: * defines the generic type and initializers * * asm/spinlock.h: contains the arch_spin_*()/etc. lowlevel * implementations, mostly inline assembly code * * (also included on UP-debug builds:) * * linux/spinlock_api_smp.h: * contains the prototypes for the _spin_*() APIs. * * linux/spinlock.h: builds the final spin_*() APIs. * * on UP builds: * * linux/spinlock_type_up.h: * contains the generic, simplified UP spinlock type. * (which is an empty structure on non-debug builds) * * linux/spinlock_types.h: * defines the generic type and initializers * * linux/spinlock_up.h: * contains the arch_spin_*()/etc. version of UP * builds. (which are NOPs on non-debug, non-preempt * builds) * * (included on UP-non-debug builds:) * * linux/spinlock_api_up.h: * builds the _spin_*() APIs. * * linux/spinlock.h: builds the final spin_*() APIs. */ #include <linux/typecheck.h> #include <linux/preempt.h> #include <linux/linkage.h> #include <linux/compiler.h> #include <linux/irqflags.h> #include <linux/thread_info.h> #include <linux/kernel.h> #include <linux/stringify.h> #include <linux/bottom_half.h> #include <linux/lockdep.h> #include <asm/barrier.h> #include <asm/mmiowb.h> /* * Must define these before including other files, inline functions need them */ #define LOCK_SECTION_NAME ".text..lock."KBUILD_BASENAME #define LOCK_SECTION_START(extra) \ ".subsection 1\n\t" \ extra \ ".ifndef " LOCK_SECTION_NAME "\n\t" \ LOCK_SECTION_NAME ":\n\t" \ ".endif\n" #define LOCK_SECTION_END \ ".previous\n\t" #define __lockfunc __section(".spinlock.text") /* * Pull the arch_spinlock_t and arch_rwlock_t definitions: */ #include <linux/spinlock_types.h> /* * Pull the arch_spin*() functions/declarations (UP-nondebug doesn't need them): */ #ifdef CONFIG_SMP # include <asm/spinlock.h> #else # include <linux/spinlock_up.h> #endif #ifdef CONFIG_DEBUG_SPINLOCK extern void __raw_spin_lock_init(raw_spinlock_t *lock, const char *name, struct lock_class_key *key, short inner); # define raw_spin_lock_init(lock) \ do { \ static struct lock_class_key __key; \ \ __raw_spin_lock_init((lock), #lock, &__key, LD_WAIT_SPIN); \ } while (0) #else # define raw_spin_lock_init(lock) \ do { *(lock) = __RAW_SPIN_LOCK_UNLOCKED(lock); } while (0) #endif #define raw_spin_is_locked(lock) arch_spin_is_locked(&(lock)->raw_lock) #ifdef arch_spin_is_contended #define raw_spin_is_contended(lock) arch_spin_is_contended(&(lock)->raw_lock) #else #define raw_spin_is_contended(lock) (((void)(lock), 0)) #endif /*arch_spin_is_contended*/ /* * smp_mb__after_spinlock() provides the equivalent of a full memory barrier * between program-order earlier lock acquisitions and program-order later * memory accesses. * * This guarantees that the following two properties hold: * * 1) Given the snippet: * * { X = 0; Y = 0; } * * CPU0 CPU1 * * WRITE_ONCE(X, 1); WRITE_ONCE(Y, 1); * spin_lock(S); smp_mb(); * smp_mb__after_spinlock(); r1 = READ_ONCE(X); * r0 = READ_ONCE(Y); * spin_unlock(S); * * it is forbidden that CPU0 does not observe CPU1's store to Y (r0 = 0) * and CPU1 does not observe CPU0's store to X (r1 = 0); see the comments * preceding the call to smp_mb__after_spinlock() in __schedule() and in * try_to_wake_up(). * * 2) Given the snippet: * * { X = 0; Y = 0; } * * CPU0 CPU1 CPU2 * * spin_lock(S); spin_lock(S); r1 = READ_ONCE(Y); * WRITE_ONCE(X, 1); smp_mb__after_spinlock(); smp_rmb(); * spin_unlock(S); r0 = READ_ONCE(X); r2 = READ_ONCE(X); * WRITE_ONCE(Y, 1); * spin_unlock(S); * * it is forbidden that CPU0's critical section executes before CPU1's * critical section (r0 = 1), CPU2 observes CPU1's store to Y (r1 = 1) * and CPU2 does not observe CPU0's store to X (r2 = 0); see the comments * preceding the calls to smp_rmb() in try_to_wake_up() for similar * snippets but "projected" onto two CPUs. * * Property (2) upgrades the lock to an RCsc lock. * * Since most load-store architectures implement ACQUIRE with an smp_mb() after * the LL/SC loop, they need no further barriers. Similarly all our TSO * architectures imply an smp_mb() for each atomic instruction and equally don't * need more. * * Architectures that can implement ACQUIRE better need to take care. */ #ifndef smp_mb__after_spinlock #define smp_mb__after_spinlock() do { } while (0) #endif #ifdef CONFIG_DEBUG_SPINLOCK extern void do_raw_spin_lock(raw_spinlock_t *lock) __acquires(lock); #define do_raw_spin_lock_flags(lock, flags) do_raw_spin_lock(lock) extern int do_raw_spin_trylock(raw_spinlock_t *lock); extern void do_raw_spin_unlock(raw_spinlock_t *lock) __releases(lock); #else static inline void do_raw_spin_lock(raw_spinlock_t *lock) __acquires(lock) { __acquire(lock); arch_spin_lock(&lock->raw_lock); mmiowb_spin_lock(); } #ifndef arch_spin_lock_flags #define arch_spin_lock_flags(lock, flags) arch_spin_lock(lock) #endif static inline void do_raw_spin_lock_flags(raw_spinlock_t *lock, unsigned long *flags) __acquires(lock) { __acquire(lock); arch_spin_lock_flags(&lock->raw_lock, *flags); mmiowb_spin_lock(); } static inline int do_raw_spin_trylock(raw_spinlock_t *lock) { int ret = arch_spin_trylock(&(lock)->raw_lock); if (ret) mmiowb_spin_lock(); return ret; } static inline void do_raw_spin_unlock(raw_spinlock_t *lock) __releases(lock) { mmiowb_spin_unlock(); arch_spin_unlock(&lock->raw_lock); __release(lock); } #endif /* * Define the various spin_lock methods. Note we define these * regardless of whether CONFIG_SMP or CONFIG_PREEMPTION are set. The * various methods are defined as nops in the case they are not * required. */ #define raw_spin_trylock(lock) __cond_lock(lock, _raw_spin_trylock(lock)) #define raw_spin_lock(lock) _raw_spin_lock(lock) #ifdef CONFIG_DEBUG_LOCK_ALLOC # define raw_spin_lock_nested(lock, subclass) \ _raw_spin_lock_nested(lock, subclass) # define raw_spin_lock_nest_lock(lock, nest_lock) \ do { \ typecheck(struct lockdep_map *, &(nest_lock)->dep_map);\ _raw_spin_lock_nest_lock(lock, &(nest_lock)->dep_map); \ } while (0) #else /* * Always evaluate the 'subclass' argument to avoid that the compiler * warns about set-but-not-used variables when building with * CONFIG_DEBUG_LOCK_ALLOC=n and with W=1. */ # define raw_spin_lock_nested(lock, subclass) \ _raw_spin_lock(((void)(subclass), (lock))) # define raw_spin_lock_nest_lock(lock, nest_lock) _raw_spin_lock(lock) #endif #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) #define raw_spin_lock_irqsave(lock, flags) \ do { \ typecheck(unsigned long, flags); \ flags = _raw_spin_lock_irqsave(lock); \ } while (0) #ifdef CONFIG_DEBUG_LOCK_ALLOC #define raw_spin_lock_irqsave_nested(lock, flags, subclass) \ do { \ typecheck(unsigned long, flags); \ flags = _raw_spin_lock_irqsave_nested(lock, subclass); \ } while (0) #else #define raw_spin_lock_irqsave_nested(lock, flags, subclass) \ do { \ typecheck(unsigned long, flags); \ flags = _raw_spin_lock_irqsave(lock); \ } while (0) #endif #else #define raw_spin_lock_irqsave(lock, flags) \ do { \ typecheck(unsigned long, flags); \ _raw_spin_lock_irqsave(lock, flags); \ } while (0) #define raw_spin_lock_irqsave_nested(lock, flags, subclass) \ raw_spin_lock_irqsave(lock, flags) #endif #define raw_spin_lock_irq(lock) _raw_spin_lock_irq(lock) #define raw_spin_lock_bh(lock) _raw_spin_lock_bh(lock) #define raw_spin_unlock(lock) _raw_spin_unlock(lock) #define raw_spin_unlock_irq(lock) _raw_spin_unlock_irq(lock) #define raw_spin_unlock_irqrestore(lock, flags) \ do { \ typecheck(unsigned long, flags); \ _raw_spin_unlock_irqrestore(lock, flags); \ } while (0) #define raw_spin_unlock_bh(lock) _raw_spin_unlock_bh(lock) #define raw_spin_trylock_bh(lock) \ __cond_lock(lock, _raw_spin_trylock_bh(lock)) #define raw_spin_trylock_irq(lock) \ ({ \ local_irq_disable(); \ raw_spin_trylock(lock) ? \ 1 : ({ local_irq_enable(); 0; }); \ }) #define raw_spin_trylock_irqsave(lock, flags) \ ({ \ local_irq_save(flags); \ raw_spin_trylock(lock) ? \ 1 : ({ local_irq_restore(flags); 0; }); \ }) /* Include rwlock functions */ #include <linux/rwlock.h> /* * Pull the _spin_*()/_read_*()/_write_*() functions/declarations: */ #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) # include <linux/spinlock_api_smp.h> #else # include <linux/spinlock_api_up.h> #endif /* * Map the spin_lock functions to the raw variants for PREEMPT_RT=n */ static __always_inline raw_spinlock_t *spinlock_check(spinlock_t *lock) { return &lock->rlock; } #ifdef CONFIG_DEBUG_SPINLOCK # define spin_lock_init(lock) \ do { \ static struct lock_class_key __key; \ \ __raw_spin_lock_init(spinlock_check(lock), \ #lock, &__key, LD_WAIT_CONFIG); \ } while (0) #else # define spin_lock_init(_lock) \ do { \ spinlock_check(_lock); \ *(_lock) = __SPIN_LOCK_UNLOCKED(_lock); \ } while (0) #endif static __always_inline void spin_lock(spinlock_t *lock) { raw_spin_lock(&lock->rlock); } static __always_inline void spin_lock_bh(spinlock_t *lock) { raw_spin_lock_bh(&lock->rlock); } static __always_inline int spin_trylock(spinlock_t *lock) { return raw_spin_trylock(&lock->rlock); } #define spin_lock_nested(lock, subclass) \ do { \ raw_spin_lock_nested(spinlock_check(lock), subclass); \ } while (0) #define spin_lock_nest_lock(lock, nest_lock) \ do { \ raw_spin_lock_nest_lock(spinlock_check(lock), nest_lock); \ } while (0) static __always_inline void spin_lock_irq(spinlock_t *lock) { raw_spin_lock_irq(&lock->rlock); } #define spin_lock_irqsave(lock, flags) \ do { \ raw_spin_lock_irqsave(spinlock_check(lock), flags); \ } while (0) #define spin_lock_irqsave_nested(lock, flags, subclass) \ do { \ raw_spin_lock_irqsave_nested(spinlock_check(lock), flags, subclass); \ } while (0) static __always_inline void spin_unlock(spinlock_t *lock) { raw_spin_unlock(&lock->rlock); } static __always_inline void spin_unlock_bh(spinlock_t *lock) { raw_spin_unlock_bh(&lock->rlock); } static __always_inline void spin_unlock_irq(spinlock_t *lock) { raw_spin_unlock_irq(&lock->rlock); } static __always_inline void spin_unlock_irqrestore(spinlock_t *lock, unsigned long flags) { raw_spin_unlock_irqrestore(&lock->rlock, flags); } static __always_inline int spin_trylock_bh(spinlock_t *lock) { return raw_spin_trylock_bh(&lock->rlock); } static __always_inline int spin_trylock_irq(spinlock_t *lock) { return raw_spin_trylock_irq(&lock->rlock); } #define spin_trylock_irqsave(lock, flags) \ ({ \ raw_spin_trylock_irqsave(spinlock_check(lock), flags); \ }) /** * spin_is_locked() - Check whether a spinlock is locked. * @lock: Pointer to the spinlock. * * This function is NOT required to provide any memory ordering * guarantees; it could be used for debugging purposes or, when * additional synchronization is needed, accompanied with other * constructs (memory barriers) enforcing the synchronization. * * Returns: 1 if @lock is locked, 0 otherwise. * * Note that the function only tells you that the spinlock is * seen to be locked, not that it is locked on your CPU. * * Further, on CONFIG_SMP=n builds with CONFIG_DEBUG_SPINLOCK=n, * the return value is always 0 (see include/linux/spinlock_up.h). * Therefore you should not rely heavily on the return value. */ static __always_inline int spin_is_locked(spinlock_t *lock) { return raw_spin_is_locked(&lock->rlock); } static __always_inline int spin_is_contended(spinlock_t *lock) { return raw_spin_is_contended(&lock->rlock); } #define assert_spin_locked(lock) assert_raw_spin_locked(&(lock)->rlock) /* * Pull the atomic_t declaration: * (asm-mips/atomic.h needs above definitions) */ #include <linux/atomic.h> /** * atomic_dec_and_lock - lock on reaching reference count zero * @atomic: the atomic counter * @lock: the spinlock in question * * Decrements @atomic by 1. If the result is 0, returns true and locks * @lock. Returns false for all other cases. */ extern int _atomic_dec_and_lock(atomic_t *atomic, spinlock_t *lock); #define atomic_dec_and_lock(atomic, lock) \ __cond_lock(lock, _atomic_dec_and_lock(atomic, lock)) extern int _atomic_dec_and_lock_irqsave(atomic_t *atomic, spinlock_t *lock, unsigned long *flags); #define atomic_dec_and_lock_irqsave(atomic, lock, flags) \ __cond_lock(lock, _atomic_dec_and_lock_irqsave(atomic, lock, &(flags))) int __alloc_bucket_spinlocks(spinlock_t **locks, unsigned int *lock_mask, size_t max_size, unsigned int cpu_mult, gfp_t gfp, const char *name, struct lock_class_key *key); #define alloc_bucket_spinlocks(locks, lock_mask, max_size, cpu_mult, gfp) \ ({ \ static struct lock_class_key key; \ int ret; \ \ ret = __alloc_bucket_spinlocks(locks, lock_mask, max_size, \ cpu_mult, gfp, #locks, &key); \ ret; \ }) void free_bucket_spinlocks(spinlock_t *locks); #endif /* __LINUX_SPINLOCK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 /* BlueZ - Bluetooth protocol stack for Linux Copyright (C) 2000-2001 Qualcomm Incorporated Copyright (C) 2009-2010 Gustavo F. Padovan <gustavo@padovan.org> Copyright (C) 2010 Google Inc. Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2 as published by the Free Software Foundation; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS SOFTWARE IS DISCLAIMED. */ #ifndef __L2CAP_H #define __L2CAP_H #include <asm/unaligned.h> #include <linux/atomic.h> /* L2CAP defaults */ #define L2CAP_DEFAULT_MTU 672 #define L2CAP_DEFAULT_MIN_MTU 48 #define L2CAP_DEFAULT_FLUSH_TO 0xFFFF #define L2CAP_EFS_DEFAULT_FLUSH_TO 0xFFFFFFFF #define L2CAP_DEFAULT_TX_WINDOW 63 #define L2CAP_DEFAULT_EXT_WINDOW 0x3FFF #define L2CAP_DEFAULT_MAX_TX 3 #define L2CAP_DEFAULT_RETRANS_TO 2000 /* 2 seconds */ #define L2CAP_DEFAULT_MONITOR_TO 12000 /* 12 seconds */ #define L2CAP_DEFAULT_MAX_PDU_SIZE 1492 /* Sized for AMP packet */ #define L2CAP_DEFAULT_ACK_TO 200 #define L2CAP_DEFAULT_MAX_SDU_SIZE 0xFFFF #define L2CAP_DEFAULT_SDU_ITIME 0xFFFFFFFF #define L2CAP_DEFAULT_ACC_LAT 0xFFFFFFFF #define L2CAP_BREDR_MAX_PAYLOAD 1019 /* 3-DH5 packet */ #define L2CAP_LE_MIN_MTU 23 #define L2CAP_ECRED_CONN_SCID_MAX 5 #define L2CAP_DISC_TIMEOUT msecs_to_jiffies(100) #define L2CAP_DISC_REJ_TIMEOUT msecs_to_jiffies(5000) #define L2CAP_ENC_TIMEOUT msecs_to_jiffies(5000) #define L2CAP_CONN_TIMEOUT msecs_to_jiffies(40000) #define L2CAP_INFO_TIMEOUT msecs_to_jiffies(4000) #define L2CAP_MOVE_TIMEOUT msecs_to_jiffies(4000) #define L2CAP_MOVE_ERTX_TIMEOUT msecs_to_jiffies(60000) #define L2CAP_WAIT_ACK_POLL_PERIOD msecs_to_jiffies(200) #define L2CAP_WAIT_ACK_TIMEOUT msecs_to_jiffies(10000) #define L2CAP_A2MP_DEFAULT_MTU 670 /* L2CAP socket address */ struct sockaddr_l2 { sa_family_t l2_family; __le16 l2_psm; bdaddr_t l2_bdaddr; __le16 l2_cid; __u8 l2_bdaddr_type; }; /* L2CAP socket options */ #define L2CAP_OPTIONS 0x01 struct l2cap_options { __u16 omtu; __u16 imtu; __u16 flush_to; __u8 mode; __u8 fcs; __u8 max_tx; __u16 txwin_size; }; #define L2CAP_CONNINFO 0x02 struct l2cap_conninfo { __u16 hci_handle; __u8 dev_class[3]; }; #define L2CAP_LM 0x03 #define L2CAP_LM_MASTER 0x0001 #define L2CAP_LM_AUTH 0x0002 #define L2CAP_LM_ENCRYPT 0x0004 #define L2CAP_LM_TRUSTED 0x0008 #define L2CAP_LM_RELIABLE 0x0010 #define L2CAP_LM_SECURE 0x0020 #define L2CAP_LM_FIPS 0x0040 /* L2CAP command codes */ #define L2CAP_COMMAND_REJ 0x01 #define L2CAP_CONN_REQ 0x02 #define L2CAP_CONN_RSP 0x03 #define L2CAP_CONF_REQ 0x04 #define L2CAP_CONF_RSP 0x05 #define L2CAP_DISCONN_REQ 0x06 #define L2CAP_DISCONN_RSP 0x07 #define L2CAP_ECHO_REQ 0x08 #define L2CAP_ECHO_RSP 0x09 #define L2CAP_INFO_REQ 0x0a #define L2CAP_INFO_RSP 0x0b #define L2CAP_CREATE_CHAN_REQ 0x0c #define L2CAP_CREATE_CHAN_RSP 0x0d #define L2CAP_MOVE_CHAN_REQ 0x0e #define L2CAP_MOVE_CHAN_RSP 0x0f #define L2CAP_MOVE_CHAN_CFM 0x10 #define L2CAP_MOVE_CHAN_CFM_RSP 0x11 #define L2CAP_CONN_PARAM_UPDATE_REQ 0x12 #define L2CAP_CONN_PARAM_UPDATE_RSP 0x13 #define L2CAP_LE_CONN_REQ 0x14 #define L2CAP_LE_CONN_RSP 0x15 #define L2CAP_LE_CREDITS 0x16 #define L2CAP_ECRED_CONN_REQ 0x17 #define L2CAP_ECRED_CONN_RSP 0x18 #define L2CAP_ECRED_RECONF_REQ 0x19 #define L2CAP_ECRED_RECONF_RSP 0x1a /* L2CAP extended feature mask */ #define L2CAP_FEAT_FLOWCTL 0x00000001 #define L2CAP_FEAT_RETRANS 0x00000002 #define L2CAP_FEAT_BIDIR_QOS 0x00000004 #define L2CAP_FEAT_ERTM 0x00000008 #define L2CAP_FEAT_STREAMING 0x00000010 #define L2CAP_FEAT_FCS 0x00000020 #define L2CAP_FEAT_EXT_FLOW 0x00000040 #define L2CAP_FEAT_FIXED_CHAN 0x00000080 #define L2CAP_FEAT_EXT_WINDOW 0x00000100 #define L2CAP_FEAT_UCD 0x00000200 /* L2CAP checksum option */ #define L2CAP_FCS_NONE 0x00 #define L2CAP_FCS_CRC16 0x01 /* L2CAP fixed channels */ #define L2CAP_FC_SIG_BREDR 0x02 #define L2CAP_FC_CONNLESS 0x04 #define L2CAP_FC_A2MP 0x08 #define L2CAP_FC_ATT 0x10 #define L2CAP_FC_SIG_LE 0x20 #define L2CAP_FC_SMP_LE 0x40 #define L2CAP_FC_SMP_BREDR 0x80 /* L2CAP Control Field bit masks */ #define L2CAP_CTRL_SAR 0xC000 #define L2CAP_CTRL_REQSEQ 0x3F00 #define L2CAP_CTRL_TXSEQ 0x007E #define L2CAP_CTRL_SUPERVISE 0x000C #define L2CAP_CTRL_RETRANS 0x0080 #define L2CAP_CTRL_FINAL 0x0080 #define L2CAP_CTRL_POLL 0x0010 #define L2CAP_CTRL_FRAME_TYPE 0x0001 /* I- or S-Frame */ #define L2CAP_CTRL_TXSEQ_SHIFT 1 #define L2CAP_CTRL_SUPER_SHIFT 2 #define L2CAP_CTRL_POLL_SHIFT 4 #define L2CAP_CTRL_FINAL_SHIFT 7 #define L2CAP_CTRL_REQSEQ_SHIFT 8 #define L2CAP_CTRL_SAR_SHIFT 14 /* L2CAP Extended Control Field bit mask */ #define L2CAP_EXT_CTRL_TXSEQ 0xFFFC0000 #define L2CAP_EXT_CTRL_SAR 0x00030000 #define L2CAP_EXT_CTRL_SUPERVISE 0x00030000 #define L2CAP_EXT_CTRL_REQSEQ 0x0000FFFC #define L2CAP_EXT_CTRL_POLL 0x00040000 #define L2CAP_EXT_CTRL_FINAL 0x00000002 #define L2CAP_EXT_CTRL_FRAME_TYPE 0x00000001 /* I- or S-Frame */ #define L2CAP_EXT_CTRL_FINAL_SHIFT 1 #define L2CAP_EXT_CTRL_REQSEQ_SHIFT 2 #define L2CAP_EXT_CTRL_SAR_SHIFT 16 #define L2CAP_EXT_CTRL_SUPER_SHIFT 16 #define L2CAP_EXT_CTRL_POLL_SHIFT 18 #define L2CAP_EXT_CTRL_TXSEQ_SHIFT 18 /* L2CAP Supervisory Function */ #define L2CAP_SUPER_RR 0x00 #define L2CAP_SUPER_REJ 0x01 #define L2CAP_SUPER_RNR 0x02 #define L2CAP_SUPER_SREJ 0x03 /* L2CAP Segmentation and Reassembly */ #define L2CAP_SAR_UNSEGMENTED 0x00 #define L2CAP_SAR_START 0x01 #define L2CAP_SAR_END 0x02 #define L2CAP_SAR_CONTINUE 0x03 /* L2CAP Command rej. reasons */ #define L2CAP_REJ_NOT_UNDERSTOOD 0x0000 #define L2CAP_REJ_MTU_EXCEEDED 0x0001 #define L2CAP_REJ_INVALID_CID 0x0002 /* L2CAP structures */ struct l2cap_hdr { __le16 len; __le16 cid; } __packed; #define L2CAP_HDR_SIZE 4 #define L2CAP_ENH_HDR_SIZE 6 #define L2CAP_EXT_HDR_SIZE 8 #define L2CAP_FCS_SIZE 2 #define L2CAP_SDULEN_SIZE 2 #define L2CAP_PSMLEN_SIZE 2 #define L2CAP_ENH_CTRL_SIZE 2 #define L2CAP_EXT_CTRL_SIZE 4 struct l2cap_cmd_hdr { __u8 code; __u8 ident; __le16 len; } __packed; #define L2CAP_CMD_HDR_SIZE 4 struct l2cap_cmd_rej_unk { __le16 reason; } __packed; struct l2cap_cmd_rej_mtu { __le16 reason; __le16 max_mtu; } __packed; struct l2cap_cmd_rej_cid { __le16 reason; __le16 scid; __le16 dcid; } __packed; struct l2cap_conn_req { __le16 psm; __le16 scid; } __packed; struct l2cap_conn_rsp { __le16 dcid; __le16 scid; __le16 result; __le16 status; } __packed; /* protocol/service multiplexer (PSM) */ #define L2CAP_PSM_SDP 0x0001 #define L2CAP_PSM_RFCOMM 0x0003 #define L2CAP_PSM_3DSP 0x0021 #define L2CAP_PSM_IPSP 0x0023 /* 6LoWPAN */ #define L2CAP_PSM_DYN_START 0x1001 #define L2CAP_PSM_DYN_END 0xffff #define L2CAP_PSM_AUTO_END 0x10ff #define L2CAP_PSM_LE_DYN_START 0x0080 #define L2CAP_PSM_LE_DYN_END 0x00ff /* channel identifier */ #define L2CAP_CID_SIGNALING 0x0001 #define L2CAP_CID_CONN_LESS 0x0002 #define L2CAP_CID_A2MP 0x0003 #define L2CAP_CID_ATT 0x0004 #define L2CAP_CID_LE_SIGNALING 0x0005 #define L2CAP_CID_SMP 0x0006 #define L2CAP_CID_SMP_BREDR 0x0007 #define L2CAP_CID_DYN_START 0x0040 #define L2CAP_CID_DYN_END 0xffff #define L2CAP_CID_LE_DYN_END 0x007f /* connect/create channel results */ #define L2CAP_CR_SUCCESS 0x0000 #define L2CAP_CR_PEND 0x0001 #define L2CAP_CR_BAD_PSM 0x0002 #define L2CAP_CR_SEC_BLOCK 0x0003 #define L2CAP_CR_NO_MEM 0x0004 #define L2CAP_CR_BAD_AMP 0x0005 #define L2CAP_CR_INVALID_SCID 0x0006 #define L2CAP_CR_SCID_IN_USE 0x0007 /* credit based connect results */ #define L2CAP_CR_LE_SUCCESS 0x0000 #define L2CAP_CR_LE_BAD_PSM 0x0002 #define L2CAP_CR_LE_NO_MEM 0x0004 #define L2CAP_CR_LE_AUTHENTICATION 0x0005 #define L2CAP_CR_LE_AUTHORIZATION 0x0006 #define L2CAP_CR_LE_BAD_KEY_SIZE 0x0007 #define L2CAP_CR_LE_ENCRYPTION 0x0008 #define L2CAP_CR_LE_INVALID_SCID 0x0009 #define L2CAP_CR_LE_SCID_IN_USE 0X000A #define L2CAP_CR_LE_UNACCEPT_PARAMS 0X000B #define L2CAP_CR_LE_INVALID_PARAMS 0X000C /* connect/create channel status */ #define L2CAP_CS_NO_INFO 0x0000 #define L2CAP_CS_AUTHEN_PEND 0x0001 #define L2CAP_CS_AUTHOR_PEND 0x0002 struct l2cap_conf_req { __le16 dcid; __le16 flags; __u8 data[]; } __packed; struct l2cap_conf_rsp { __le16 scid; __le16 flags; __le16 result; __u8 data[]; } __packed; #define L2CAP_CONF_SUCCESS 0x0000 #define L2CAP_CONF_UNACCEPT 0x0001 #define L2CAP_CONF_REJECT 0x0002 #define L2CAP_CONF_UNKNOWN 0x0003 #define L2CAP_CONF_PENDING 0x0004 #define L2CAP_CONF_EFS_REJECT 0x0005 /* configuration req/rsp continuation flag */ #define L2CAP_CONF_FLAG_CONTINUATION 0x0001 struct l2cap_conf_opt { __u8 type; __u8 len; __u8 val[]; } __packed; #define L2CAP_CONF_OPT_SIZE 2 #define L2CAP_CONF_HINT 0x80 #define L2CAP_CONF_MASK 0x7f #define L2CAP_CONF_MTU 0x01 #define L2CAP_CONF_FLUSH_TO 0x02 #define L2CAP_CONF_QOS 0x03 #define L2CAP_CONF_RFC 0x04 #define L2CAP_CONF_FCS 0x05 #define L2CAP_CONF_EFS 0x06 #define L2CAP_CONF_EWS 0x07 #define L2CAP_CONF_MAX_SIZE 22 struct l2cap_conf_rfc { __u8 mode; __u8 txwin_size; __u8 max_transmit; __le16 retrans_timeout; __le16 monitor_timeout; __le16 max_pdu_size; } __packed; #define L2CAP_MODE_BASIC 0x00 #define L2CAP_MODE_RETRANS 0x01 #define L2CAP_MODE_FLOWCTL 0x02 #define L2CAP_MODE_ERTM 0x03 #define L2CAP_MODE_STREAMING 0x04 /* Unlike the above this one doesn't actually map to anything that would * ever be sent over the air. Therefore, use a value that's unlikely to * ever be used in the BR/EDR configuration phase. */ #define L2CAP_MODE_LE_FLOWCTL 0x80 #define L2CAP_MODE_EXT_FLOWCTL 0x81 struct l2cap_conf_efs { __u8 id; __u8 stype; __le16 msdu; __le32 sdu_itime; __le32 acc_lat; __le32 flush_to; } __packed; #define L2CAP_SERV_NOTRAFIC 0x00 #define L2CAP_SERV_BESTEFFORT 0x01 #define L2CAP_SERV_GUARANTEED 0x02 #define L2CAP_BESTEFFORT_ID 0x01 struct l2cap_disconn_req { __le16 dcid; __le16 scid; } __packed; struct l2cap_disconn_rsp { __le16 dcid; __le16 scid; } __packed; struct l2cap_info_req { __le16 type; } __packed; struct l2cap_info_rsp { __le16 type; __le16 result; __u8 data[]; } __packed; struct l2cap_create_chan_req { __le16 psm; __le16 scid; __u8 amp_id; } __packed; struct l2cap_create_chan_rsp { __le16 dcid; __le16 scid; __le16 result; __le16 status; } __packed; struct l2cap_move_chan_req { __le16 icid; __u8 dest_amp_id; } __packed; struct l2cap_move_chan_rsp { __le16 icid; __le16 result; } __packed; #define L2CAP_MR_SUCCESS 0x0000 #define L2CAP_MR_PEND 0x0001 #define L2CAP_MR_BAD_ID 0x0002 #define L2CAP_MR_SAME_ID 0x0003 #define L2CAP_MR_NOT_SUPP 0x0004 #define L2CAP_MR_COLLISION 0x0005 #define L2CAP_MR_NOT_ALLOWED 0x0006 struct l2cap_move_chan_cfm { __le16 icid; __le16 result; } __packed; #define L2CAP_MC_CONFIRMED 0x0000 #define L2CAP_MC_UNCONFIRMED 0x0001 struct l2cap_move_chan_cfm_rsp { __le16 icid; } __packed; /* info type */ #define L2CAP_IT_CL_MTU 0x0001 #define L2CAP_IT_FEAT_MASK 0x0002 #define L2CAP_IT_FIXED_CHAN 0x0003 /* info result */ #define L2CAP_IR_SUCCESS 0x0000 #define L2CAP_IR_NOTSUPP 0x0001 struct l2cap_conn_param_update_req { __le16 min; __le16 max; __le16 latency; __le16 to_multiplier; } __packed; struct l2cap_conn_param_update_rsp { __le16 result; } __packed; /* Connection Parameters result */ #define L2CAP_CONN_PARAM_ACCEPTED 0x0000 #define L2CAP_CONN_PARAM_REJECTED 0x0001 struct l2cap_le_conn_req { __le16 psm; __le16 scid; __le16 mtu; __le16 mps; __le16 credits; } __packed; struct l2cap_le_conn_rsp { __le16 dcid; __le16 mtu; __le16 mps; __le16 credits; __le16 result; } __packed; struct l2cap_le_credits { __le16 cid; __le16 credits; } __packed; #define L2CAP_ECRED_MIN_MTU 64 #define L2CAP_ECRED_MIN_MPS 64 struct l2cap_ecred_conn_req { __le16 psm; __le16 mtu; __le16 mps; __le16 credits; __le16 scid[]; } __packed; struct l2cap_ecred_conn_rsp { __le16 mtu; __le16 mps; __le16 credits; __le16 result; __le16 dcid[]; }; struct l2cap_ecred_reconf_req { __le16 mtu; __le16 mps; __le16 scid[]; } __packed; #define L2CAP_RECONF_SUCCESS 0x0000 #define L2CAP_RECONF_INVALID_MTU 0x0001 #define L2CAP_RECONF_INVALID_MPS 0x0002 struct l2cap_ecred_reconf_rsp { __le16 result; } __packed; /* ----- L2CAP channels and connections ----- */ struct l2cap_seq_list { __u16 head; __u16 tail; __u16 mask; __u16 *list; }; #define L2CAP_SEQ_LIST_CLEAR 0xFFFF #define L2CAP_SEQ_LIST_TAIL 0x8000 struct l2cap_chan { struct l2cap_conn *conn; struct hci_conn *hs_hcon; struct hci_chan *hs_hchan; struct kref kref; atomic_t nesting; __u8 state; bdaddr_t dst; __u8 dst_type; bdaddr_t src; __u8 src_type; __le16 psm; __le16 sport; __u16 dcid; __u16 scid; __u16 imtu; __u16 omtu; __u16 flush_to; __u8 mode; __u8 chan_type; __u8 chan_policy; __u8 sec_level; __u8 ident; __u8 conf_req[64]; __u8 conf_len; __u8 num_conf_req; __u8 num_conf_rsp; __u8 fcs; __u16 tx_win; __u16 tx_win_max; __u16 ack_win; __u8 max_tx; __u16 retrans_timeout; __u16 monitor_timeout; __u16 mps; __u16 tx_credits; __u16 rx_credits; __u8 tx_state; __u8 rx_state; unsigned long conf_state; unsigned long conn_state; unsigned long flags; __u8 remote_amp_id; __u8 local_amp_id; __u8 move_id; __u8 move_state; __u8 move_role; __u16 next_tx_seq; __u16 expected_ack_seq; __u16 expected_tx_seq; __u16 buffer_seq; __u16 srej_save_reqseq; __u16 last_acked_seq; __u16 frames_sent; __u16 unacked_frames; __u8 retry_count; __u16 sdu_len; struct sk_buff *sdu; struct sk_buff *sdu_last_frag; __u16 remote_tx_win; __u8 remote_max_tx; __u16 remote_mps; __u8 local_id; __u8 local_stype; __u16 local_msdu; __u32 local_sdu_itime; __u32 local_acc_lat; __u32 local_flush_to; __u8 remote_id; __u8 remote_stype; __u16 remote_msdu; __u32 remote_sdu_itime; __u32 remote_acc_lat; __u32 remote_flush_to; struct delayed_work chan_timer; struct delayed_work retrans_timer; struct delayed_work monitor_timer; struct delayed_work ack_timer; struct sk_buff *tx_send_head; struct sk_buff_head tx_q; struct sk_buff_head srej_q; struct l2cap_seq_list srej_list; struct l2cap_seq_list retrans_list; struct list_head list; struct list_head global_l; void *data; const struct l2cap_ops *ops; struct mutex lock; }; struct l2cap_ops { char *name; struct l2cap_chan *(*new_connection) (struct l2cap_chan *chan); int (*recv) (struct l2cap_chan * chan, struct sk_buff *skb); void (*teardown) (struct l2cap_chan *chan, int err); void (*close) (struct l2cap_chan *chan); void (*state_change) (struct l2cap_chan *chan, int state, int err); void (*ready) (struct l2cap_chan *chan); void (*defer) (struct l2cap_chan *chan); void (*resume) (struct l2cap_chan *chan); void (*suspend) (struct l2cap_chan *chan); void (*set_shutdown) (struct l2cap_chan *chan); long (*get_sndtimeo) (struct l2cap_chan *chan); struct pid *(*get_peer_pid) (struct l2cap_chan *chan); struct sk_buff *(*alloc_skb) (struct l2cap_chan *chan, unsigned long hdr_len, unsigned long len, int nb); int (*filter) (struct l2cap_chan * chan, struct sk_buff *skb); }; struct l2cap_conn { struct hci_conn *hcon; struct hci_chan *hchan; unsigned int mtu; __u32 feat_mask; __u8 remote_fixed_chan; __u8 local_fixed_chan; __u8 info_state; __u8 info_ident; struct delayed_work info_timer; struct sk_buff *rx_skb; __u32 rx_len; __u8 tx_ident; struct mutex ident_lock; struct sk_buff_head pending_rx; struct work_struct pending_rx_work; struct work_struct id_addr_update_work; __u8 disc_reason; struct l2cap_chan *smp; struct list_head chan_l; struct mutex chan_lock; struct kref ref; struct list_head users; }; struct l2cap_user { struct list_head list; int (*probe) (struct l2cap_conn *conn, struct l2cap_user *user); void (*remove) (struct l2cap_conn *conn, struct l2cap_user *user); }; #define L2CAP_INFO_CL_MTU_REQ_SENT 0x01 #define L2CAP_INFO_FEAT_MASK_REQ_SENT 0x04 #define L2CAP_INFO_FEAT_MASK_REQ_DONE 0x08 #define L2CAP_CHAN_RAW 1 #define L2CAP_CHAN_CONN_LESS 2 #define L2CAP_CHAN_CONN_ORIENTED 3 #define L2CAP_CHAN_FIXED 4 /* ----- L2CAP socket info ----- */ #define l2cap_pi(sk) ((struct l2cap_pinfo *) sk) struct l2cap_pinfo { struct bt_sock bt; struct l2cap_chan *chan; struct sk_buff *rx_busy_skb; }; enum { CONF_REQ_SENT, CONF_INPUT_DONE, CONF_OUTPUT_DONE, CONF_MTU_DONE, CONF_MODE_DONE, CONF_CONNECT_PEND, CONF_RECV_NO_FCS, CONF_STATE2_DEVICE, CONF_EWS_RECV, CONF_LOC_CONF_PEND, CONF_REM_CONF_PEND, CONF_NOT_COMPLETE, }; #define L2CAP_CONF_MAX_CONF_REQ 2 #define L2CAP_CONF_MAX_CONF_RSP 2 enum { CONN_SREJ_SENT, CONN_WAIT_F, CONN_SREJ_ACT, CONN_SEND_PBIT, CONN_REMOTE_BUSY, CONN_LOCAL_BUSY, CONN_REJ_ACT, CONN_SEND_FBIT, CONN_RNR_SENT, }; /* Definitions for flags in l2cap_chan */ enum { FLAG_ROLE_SWITCH, FLAG_FORCE_ACTIVE, FLAG_FORCE_RELIABLE, FLAG_FLUSHABLE, FLAG_EXT_CTRL, FLAG_EFS_ENABLE, FLAG_DEFER_SETUP, FLAG_LE_CONN_REQ_SENT, FLAG_ECRED_CONN_REQ_SENT, FLAG_PENDING_SECURITY, FLAG_HOLD_HCI_CONN, }; /* Lock nesting levels for L2CAP channels. We need these because lockdep * otherwise considers all channels equal and will e.g. complain about a * connection oriented channel triggering SMP procedures or a listening * channel creating and locking a child channel. */ enum { L2CAP_NESTING_SMP, L2CAP_NESTING_NORMAL, L2CAP_NESTING_PARENT, }; enum { L2CAP_TX_STATE_XMIT, L2CAP_TX_STATE_WAIT_F, }; enum { L2CAP_RX_STATE_RECV, L2CAP_RX_STATE_SREJ_SENT, L2CAP_RX_STATE_MOVE, L2CAP_RX_STATE_WAIT_P, L2CAP_RX_STATE_WAIT_F, }; enum { L2CAP_TXSEQ_EXPECTED, L2CAP_TXSEQ_EXPECTED_SREJ, L2CAP_TXSEQ_UNEXPECTED, L2CAP_TXSEQ_UNEXPECTED_SREJ, L2CAP_TXSEQ_DUPLICATE, L2CAP_TXSEQ_DUPLICATE_SREJ, L2CAP_TXSEQ_INVALID, L2CAP_TXSEQ_INVALID_IGNORE, }; enum { L2CAP_EV_DATA_REQUEST, L2CAP_EV_LOCAL_BUSY_DETECTED, L2CAP_EV_LOCAL_BUSY_CLEAR, L2CAP_EV_RECV_REQSEQ_AND_FBIT, L2CAP_EV_RECV_FBIT, L2CAP_EV_RETRANS_TO, L2CAP_EV_MONITOR_TO, L2CAP_EV_EXPLICIT_POLL, L2CAP_EV_RECV_IFRAME, L2CAP_EV_RECV_RR, L2CAP_EV_RECV_REJ, L2CAP_EV_RECV_RNR, L2CAP_EV_RECV_SREJ, L2CAP_EV_RECV_FRAME, }; enum { L2CAP_MOVE_ROLE_NONE, L2CAP_MOVE_ROLE_INITIATOR, L2CAP_MOVE_ROLE_RESPONDER, }; enum { L2CAP_MOVE_STABLE, L2CAP_MOVE_WAIT_REQ, L2CAP_MOVE_WAIT_RSP, L2CAP_MOVE_WAIT_RSP_SUCCESS, L2CAP_MOVE_WAIT_CONFIRM, L2CAP_MOVE_WAIT_CONFIRM_RSP, L2CAP_MOVE_WAIT_LOGICAL_COMP, L2CAP_MOVE_WAIT_LOGICAL_CFM, L2CAP_MOVE_WAIT_LOCAL_BUSY, L2CAP_MOVE_WAIT_PREPARE, }; void l2cap_chan_hold(struct l2cap_chan *c); void l2cap_chan_put(struct l2cap_chan *c); static inline void l2cap_chan_lock(struct l2cap_chan *chan) { mutex_lock_nested(&chan->lock, atomic_read(&chan->nesting)); } static inline void l2cap_chan_unlock(struct l2cap_chan *chan) { mutex_unlock(&chan->lock); } static inline void l2cap_set_timer(struct l2cap_chan *chan, struct delayed_work *work, long timeout) { BT_DBG("chan %p state %s timeout %ld", chan, state_to_string(chan->state), timeout); /* If delayed work cancelled do not hold(chan) since it is already done with previous set_timer */ if (!cancel_delayed_work(work)) l2cap_chan_hold(chan); schedule_delayed_work(work, timeout); } static inline bool l2cap_clear_timer(struct l2cap_chan *chan, struct delayed_work *work) { bool ret; /* put(chan) if delayed work cancelled otherwise it is done in delayed work function */ ret = cancel_delayed_work(work); if (ret) l2cap_chan_put(chan); return ret; } #define __set_chan_timer(c, t) l2cap_set_timer(c, &c->chan_timer, (t)) #define __clear_chan_timer(c) l2cap_clear_timer(c, &c->chan_timer) #define __clear_retrans_timer(c) l2cap_clear_timer(c, &c->retrans_timer) #define __clear_monitor_timer(c) l2cap_clear_timer(c, &c->monitor_timer) #define __set_ack_timer(c) l2cap_set_timer(c, &chan->ack_timer, \ msecs_to_jiffies(L2CAP_DEFAULT_ACK_TO)); #define __clear_ack_timer(c) l2cap_clear_timer(c, &c->ack_timer) static inline int __seq_offset(struct l2cap_chan *chan, __u16 seq1, __u16 seq2) { if (seq1 >= seq2) return seq1 - seq2; else return chan->tx_win_max + 1 - seq2 + seq1; } static inline __u16 __next_seq(struct l2cap_chan *chan, __u16 seq) { return (seq + 1) % (chan->tx_win_max + 1); } static inline struct l2cap_chan *l2cap_chan_no_new_connection(struct l2cap_chan *chan) { return NULL; } static inline int l2cap_chan_no_recv(struct l2cap_chan *chan, struct sk_buff *skb) { return -ENOSYS; } static inline struct sk_buff *l2cap_chan_no_alloc_skb(struct l2cap_chan *chan, unsigned long hdr_len, unsigned long len, int nb) { return ERR_PTR(-ENOSYS); } static inline void l2cap_chan_no_teardown(struct l2cap_chan *chan, int err) { } static inline void l2cap_chan_no_close(struct l2cap_chan *chan) { } static inline void l2cap_chan_no_ready(struct l2cap_chan *chan) { } static inline void l2cap_chan_no_state_change(struct l2cap_chan *chan, int state, int err) { } static inline void l2cap_chan_no_defer(struct l2cap_chan *chan) { } static inline void l2cap_chan_no_suspend(struct l2cap_chan *chan) { } static inline void l2cap_chan_no_resume(struct l2cap_chan *chan) { } static inline void l2cap_chan_no_set_shutdown(struct l2cap_chan *chan) { } static inline long l2cap_chan_no_get_sndtimeo(struct l2cap_chan *chan) { return 0; } extern bool disable_ertm; extern bool enable_ecred; int l2cap_init_sockets(void); void l2cap_cleanup_sockets(void); bool l2cap_is_socket(struct socket *sock); void __l2cap_le_connect_rsp_defer(struct l2cap_chan *chan); void __l2cap_ecred_conn_rsp_defer(struct l2cap_chan *chan); void __l2cap_connect_rsp_defer(struct l2cap_chan *chan); int l2cap_add_psm(struct l2cap_chan *chan, bdaddr_t *src, __le16 psm); int l2cap_add_scid(struct l2cap_chan *chan, __u16 scid); struct l2cap_chan *l2cap_chan_create(void); void l2cap_chan_close(struct l2cap_chan *chan, int reason); int l2cap_chan_connect(struct l2cap_chan *chan, __le16 psm, u16 cid, bdaddr_t *dst, u8 dst_type); int l2cap_chan_reconfigure(struct l2cap_chan *chan, __u16 mtu); int l2cap_chan_send(struct l2cap_chan *chan, struct msghdr *msg, size_t len); void l2cap_chan_busy(struct l2cap_chan *chan, int busy); int l2cap_chan_check_security(struct l2cap_chan *chan, bool initiator); void l2cap_chan_set_defaults(struct l2cap_chan *chan); int l2cap_ertm_init(struct l2cap_chan *chan); void l2cap_chan_add(struct l2cap_conn *conn, struct l2cap_chan *chan); void __l2cap_chan_add(struct l2cap_conn *conn, struct l2cap_chan *chan); typedef void (*l2cap_chan_func_t)(struct l2cap_chan *chan, void *data); void l2cap_chan_list(struct l2cap_conn *conn, l2cap_chan_func_t func, void *data); void l2cap_chan_del(struct l2cap_chan *chan, int err); void l2cap_send_conn_req(struct l2cap_chan *chan); void l2cap_move_start(struct l2cap_chan *chan); void l2cap_logical_cfm(struct l2cap_chan *chan, struct hci_chan *hchan, u8 status); void __l2cap_physical_cfm(struct l2cap_chan *chan, int result); struct l2cap_conn *l2cap_conn_get(struct l2cap_conn *conn); void l2cap_conn_put(struct l2cap_conn *conn); int l2cap_register_user(struct l2cap_conn *conn, struct l2cap_user *user); void l2cap_unregister_user(struct l2cap_conn *conn, struct l2cap_user *user); #endif /* __L2CAP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __VDSO_MATH64_H #define __VDSO_MATH64_H static __always_inline u32 __iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder) { u32 ret = 0; while (dividend >= divisor) { /* The following asm() prevents the compiler from optimising this loop into a modulo operation. */ asm("" : "+rm"(dividend)); dividend -= divisor; ret++; } *remainder = dividend; return ret; } #endif /* __VDSO_MATH64_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM udp #if !defined(_TRACE_UDP_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_UDP_H #include <linux/udp.h> #include <linux/tracepoint.h> TRACE_EVENT(udp_fail_queue_rcv_skb, TP_PROTO(int rc, struct sock *sk), TP_ARGS(rc, sk), TP_STRUCT__entry( __field(int, rc) __field(__u16, lport) ), TP_fast_assign( __entry->rc = rc; __entry->lport = inet_sk(sk)->inet_num; ), TP_printk("rc=%d port=%hu", __entry->rc, __entry->lport) ); #endif /* _TRACE_UDP_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_PAGE_REF_H #define _LINUX_PAGE_REF_H #include <linux/atomic.h> #include <linux/mm_types.h> #include <linux/page-flags.h> #include <linux/tracepoint-defs.h> DECLARE_TRACEPOINT(page_ref_set); DECLARE_TRACEPOINT(page_ref_mod); DECLARE_TRACEPOINT(page_ref_mod_and_test); DECLARE_TRACEPOINT(page_ref_mod_and_return); DECLARE_TRACEPOINT(page_ref_mod_unless); DECLARE_TRACEPOINT(page_ref_freeze); DECLARE_TRACEPOINT(page_ref_unfreeze); #ifdef CONFIG_DEBUG_PAGE_REF /* * Ideally we would want to use the trace_<tracepoint>_enabled() helper * functions. But due to include header file issues, that is not * feasible. Instead we have to open code the static key functions. * * See trace_##name##_enabled(void) in include/linux/tracepoint.h */ #define page_ref_tracepoint_active(t) tracepoint_enabled(t) extern void __page_ref_set(struct page *page, int v); extern void __page_ref_mod(struct page *page, int v); extern void __page_ref_mod_and_test(struct page *page, int v, int ret); extern void __page_ref_mod_and_return(struct page *page, int v, int ret); extern void __page_ref_mod_unless(struct page *page, int v, int u); extern void __page_ref_freeze(struct page *page, int v, int ret); extern void __page_ref_unfreeze(struct page *page, int v); #else #define page_ref_tracepoint_active(t) false static inline void __page_ref_set(struct page *page, int v) { } static inline void __page_ref_mod(struct page *page, int v) { } static inline void __page_ref_mod_and_test(struct page *page, int v, int ret) { } static inline void __page_ref_mod_and_return(struct page *page, int v, int ret) { } static inline void __page_ref_mod_unless(struct page *page, int v, int u) { } static inline void __page_ref_freeze(struct page *page, int v, int ret) { } static inline void __page_ref_unfreeze(struct page *page, int v) { } #endif static inline int page_ref_count(struct page *page) { return atomic_read(&page->_refcount); } static inline int page_count(struct page *page) { return atomic_read(&compound_head(page)->_refcount); } static inline void set_page_count(struct page *page, int v) { atomic_set(&page->_refcount, v); if (page_ref_tracepoint_active(page_ref_set)) __page_ref_set(page, v); } /* * Setup the page count before being freed into the page allocator for * the first time (boot or memory hotplug) */ static inline void init_page_count(struct page *page) { set_page_count(page, 1); } static inline void page_ref_add(struct page *page, int nr) { atomic_add(nr, &page->_refcount); if (page_ref_tracepoint_active(page_ref_mod)) __page_ref_mod(page, nr); } static inline void page_ref_sub(struct page *page, int nr) { atomic_sub(nr, &page->_refcount); if (page_ref_tracepoint_active(page_ref_mod)) __page_ref_mod(page, -nr); } static inline int page_ref_sub_return(struct page *page, int nr) { int ret = atomic_sub_return(nr, &page->_refcount); if (page_ref_tracepoint_active(page_ref_mod_and_return)) __page_ref_mod_and_return(page, -nr, ret); return ret; } static inline void page_ref_inc(struct page *page) { atomic_inc(&page->_refcount); if (page_ref_tracepoint_active(page_ref_mod)) __page_ref_mod(page, 1); } static inline void page_ref_dec(struct page *page) { atomic_dec(&page->_refcount); if (page_ref_tracepoint_active(page_ref_mod)) __page_ref_mod(page, -1); } static inline int page_ref_sub_and_test(struct page *page, int nr) { int ret = atomic_sub_and_test(nr, &page->_refcount); if (page_ref_tracepoint_active(page_ref_mod_and_test)) __page_ref_mod_and_test(page, -nr, ret); return ret; } static inline int page_ref_inc_return(struct page *page) { int ret = atomic_inc_return(&page->_refcount); if (page_ref_tracepoint_active(page_ref_mod_and_return)) __page_ref_mod_and_return(page, 1, ret); return ret; } static inline int page_ref_dec_and_test(struct page *page) { int ret = atomic_dec_and_test(&page->_refcount); if (page_ref_tracepoint_active(page_ref_mod_and_test)) __page_ref_mod_and_test(page, -1, ret); return ret; } static inline int page_ref_dec_return(struct page *page) { int ret = atomic_dec_return(&page->_refcount); if (page_ref_tracepoint_active(page_ref_mod_and_return)) __page_ref_mod_and_return(page, -1, ret); return ret; } static inline int page_ref_add_unless(struct page *page, int nr, int u) { int ret = atomic_add_unless(&page->_refcount, nr, u); if (page_ref_tracepoint_active(page_ref_mod_unless)) __page_ref_mod_unless(page, nr, ret); return ret; } static inline int page_ref_freeze(struct page *page, int count) { int ret = likely(atomic_cmpxchg(&page->_refcount, count, 0) == count); if (page_ref_tracepoint_active(page_ref_freeze)) __page_ref_freeze(page, count, ret); return ret; } static inline void page_ref_unfreeze(struct page *page, int count) { VM_BUG_ON_PAGE(page_count(page) != 0, page); VM_BUG_ON(count == 0); atomic_set_release(&page->_refcount, count); if (page_ref_tracepoint_active(page_ref_unfreeze)) __page_ref_unfreeze(page, count); } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef BLK_MQ_H #define BLK_MQ_H #include <linux/blkdev.h> #include <linux/sbitmap.h> #include <linux/srcu.h> struct blk_mq_tags; struct blk_flush_queue; /** * struct blk_mq_hw_ctx - State for a hardware queue facing the hardware * block device */ struct blk_mq_hw_ctx { struct { /** @lock: Protects the dispatch list. */ spinlock_t lock; /** * @dispatch: Used for requests that are ready to be * dispatched to the hardware but for some reason (e.g. lack of * resources) could not be sent to the hardware. As soon as the * driver can send new requests, requests at this list will * be sent first for a fairer dispatch. */ struct list_head dispatch; /** * @state: BLK_MQ_S_* flags. Defines the state of the hw * queue (active, scheduled to restart, stopped). */ unsigned long state; } ____cacheline_aligned_in_smp; /** * @run_work: Used for scheduling a hardware queue run at a later time. */ struct delayed_work run_work; /** @cpumask: Map of available CPUs where this hctx can run. */ cpumask_var_t cpumask; /** * @next_cpu: Used by blk_mq_hctx_next_cpu() for round-robin CPU * selection from @cpumask. */ int next_cpu; /** * @next_cpu_batch: Counter of how many works left in the batch before * changing to the next CPU. */ int next_cpu_batch; /** @flags: BLK_MQ_F_* flags. Defines the behaviour of the queue. */ unsigned long flags; /** * @sched_data: Pointer owned by the IO scheduler attached to a request * queue. It's up to the IO scheduler how to use this pointer. */ void *sched_data; /** * @queue: Pointer to the request queue that owns this hardware context. */ struct request_queue *queue; /** @fq: Queue of requests that need to perform a flush operation. */ struct blk_flush_queue *fq; /** * @driver_data: Pointer to data owned by the block driver that created * this hctx */ void *driver_data; /** * @ctx_map: Bitmap for each software queue. If bit is on, there is a * pending request in that software queue. */ struct sbitmap ctx_map; /** * @dispatch_from: Software queue to be used when no scheduler was * selected. */ struct blk_mq_ctx *dispatch_from; /** * @dispatch_busy: Number used by blk_mq_update_dispatch_busy() to * decide if the hw_queue is busy using Exponential Weighted Moving * Average algorithm. */ unsigned int dispatch_busy; /** @type: HCTX_TYPE_* flags. Type of hardware queue. */ unsigned short type; /** @nr_ctx: Number of software queues. */ unsigned short nr_ctx; /** @ctxs: Array of software queues. */ struct blk_mq_ctx **ctxs; /** @dispatch_wait_lock: Lock for dispatch_wait queue. */ spinlock_t dispatch_wait_lock; /** * @dispatch_wait: Waitqueue to put requests when there is no tag * available at the moment, to wait for another try in the future. */ wait_queue_entry_t dispatch_wait; /** * @wait_index: Index of next available dispatch_wait queue to insert * requests. */ atomic_t wait_index; /** * @tags: Tags owned by the block driver. A tag at this set is only * assigned when a request is dispatched from a hardware queue. */ struct blk_mq_tags *tags; /** * @sched_tags: Tags owned by I/O scheduler. If there is an I/O * scheduler associated with a request queue, a tag is assigned when * that request is allocated. Else, this member is not used. */ struct blk_mq_tags *sched_tags; /** @queued: Number of queued requests. */ unsigned long queued; /** @run: Number of dispatched requests. */ unsigned long run; #define BLK_MQ_MAX_DISPATCH_ORDER 7 /** @dispatched: Number of dispatch requests by queue. */ unsigned long dispatched[BLK_MQ_MAX_DISPATCH_ORDER]; /** @numa_node: NUMA node the storage adapter has been connected to. */ unsigned int numa_node; /** @queue_num: Index of this hardware queue. */ unsigned int queue_num; /** * @nr_active: Number of active requests. Only used when a tag set is * shared across request queues. */ atomic_t nr_active; /** * @elevator_queued: Number of queued requests on hctx. */ atomic_t elevator_queued; /** @cpuhp_online: List to store request if CPU is going to die */ struct hlist_node cpuhp_online; /** @cpuhp_dead: List to store request if some CPU die. */ struct hlist_node cpuhp_dead; /** @kobj: Kernel object for sysfs. */ struct kobject kobj; /** @poll_considered: Count times blk_poll() was called. */ unsigned long poll_considered; /** @poll_invoked: Count how many requests blk_poll() polled. */ unsigned long poll_invoked; /** @poll_success: Count how many polled requests were completed. */ unsigned long poll_success; #ifdef CONFIG_BLK_DEBUG_FS /** * @debugfs_dir: debugfs directory for this hardware queue. Named * as cpu<cpu_number>. */ struct dentry *debugfs_dir; /** @sched_debugfs_dir: debugfs directory for the scheduler. */ struct dentry *sched_debugfs_dir; #endif /** * @hctx_list: if this hctx is not in use, this is an entry in * q->unused_hctx_list. */ struct list_head hctx_list; /** * @srcu: Sleepable RCU. Use as lock when type of the hardware queue is * blocking (BLK_MQ_F_BLOCKING). Must be the last member - see also * blk_mq_hw_ctx_size(). */ struct srcu_struct srcu[]; }; /** * struct blk_mq_queue_map - Map software queues to hardware queues * @mq_map: CPU ID to hardware queue index map. This is an array * with nr_cpu_ids elements. Each element has a value in the range * [@queue_offset, @queue_offset + @nr_queues). * @nr_queues: Number of hardware queues to map CPU IDs onto. * @queue_offset: First hardware queue to map onto. Used by the PCIe NVMe * driver to map each hardware queue type (enum hctx_type) onto a distinct * set of hardware queues. */ struct blk_mq_queue_map { unsigned int *mq_map; unsigned int nr_queues; unsigned int queue_offset; }; /** * enum hctx_type - Type of hardware queue * @HCTX_TYPE_DEFAULT: All I/O not otherwise accounted for. * @HCTX_TYPE_READ: Just for READ I/O. * @HCTX_TYPE_POLL: Polled I/O of any kind. * @HCTX_MAX_TYPES: Number of types of hctx. */ enum hctx_type { HCTX_TYPE_DEFAULT, HCTX_TYPE_READ, HCTX_TYPE_POLL, HCTX_MAX_TYPES, }; /** * struct blk_mq_tag_set - tag set that can be shared between request queues * @map: One or more ctx -> hctx mappings. One map exists for each * hardware queue type (enum hctx_type) that the driver wishes * to support. There are no restrictions on maps being of the * same size, and it's perfectly legal to share maps between * types. * @nr_maps: Number of elements in the @map array. A number in the range * [1, HCTX_MAX_TYPES]. * @ops: Pointers to functions that implement block driver behavior. * @nr_hw_queues: Number of hardware queues supported by the block driver that * owns this data structure. * @queue_depth: Number of tags per hardware queue, reserved tags included. * @reserved_tags: Number of tags to set aside for BLK_MQ_REQ_RESERVED tag * allocations. * @cmd_size: Number of additional bytes to allocate per request. The block * driver owns these additional bytes. * @numa_node: NUMA node the storage adapter has been connected to. * @timeout: Request processing timeout in jiffies. * @flags: Zero or more BLK_MQ_F_* flags. * @driver_data: Pointer to data owned by the block driver that created this * tag set. * @active_queues_shared_sbitmap: * number of active request queues per tag set. * @__bitmap_tags: A shared tags sbitmap, used over all hctx's * @__breserved_tags: * A shared reserved tags sbitmap, used over all hctx's * @tags: Tag sets. One tag set per hardware queue. Has @nr_hw_queues * elements. * @tag_list_lock: Serializes tag_list accesses. * @tag_list: List of the request queues that use this tag set. See also * request_queue.tag_set_list. */ struct blk_mq_tag_set { struct blk_mq_queue_map map[HCTX_MAX_TYPES]; unsigned int nr_maps; const struct blk_mq_ops *ops; unsigned int nr_hw_queues; unsigned int queue_depth; unsigned int reserved_tags; unsigned int cmd_size; int numa_node; unsigned int timeout; unsigned int flags; void *driver_data; atomic_t active_queues_shared_sbitmap; struct sbitmap_queue __bitmap_tags; struct sbitmap_queue __breserved_tags; struct blk_mq_tags **tags; struct mutex tag_list_lock; struct list_head tag_list; }; /** * struct blk_mq_queue_data - Data about a request inserted in a queue * * @rq: Request pointer. * @last: If it is the last request in the queue. */ struct blk_mq_queue_data { struct request *rq; bool last; }; typedef bool (busy_iter_fn)(struct blk_mq_hw_ctx *, struct request *, void *, bool); typedef bool (busy_tag_iter_fn)(struct request *, void *, bool); /** * struct blk_mq_ops - Callback functions that implements block driver * behaviour. */ struct blk_mq_ops { /** * @queue_rq: Queue a new request from block IO. */ blk_status_t (*queue_rq)(struct blk_mq_hw_ctx *, const struct blk_mq_queue_data *); /** * @commit_rqs: If a driver uses bd->last to judge when to submit * requests to hardware, it must define this function. In case of errors * that make us stop issuing further requests, this hook serves the * purpose of kicking the hardware (which the last request otherwise * would have done). */ void (*commit_rqs)(struct blk_mq_hw_ctx *); /** * @get_budget: Reserve budget before queue request, once .queue_rq is * run, it is driver's responsibility to release the * reserved budget. Also we have to handle failure case * of .get_budget for avoiding I/O deadlock. */ bool (*get_budget)(struct request_queue *); /** * @put_budget: Release the reserved budget. */ void (*put_budget)(struct request_queue *); /** * @timeout: Called on request timeout. */ enum blk_eh_timer_return (*timeout)(struct request *, bool); /** * @poll: Called to poll for completion of a specific tag. */ int (*poll)(struct blk_mq_hw_ctx *); /** * @complete: Mark the request as complete. */ void (*complete)(struct request *); /** * @init_hctx: Called when the block layer side of a hardware queue has * been set up, allowing the driver to allocate/init matching * structures. */ int (*init_hctx)(struct blk_mq_hw_ctx *, void *, unsigned int); /** * @exit_hctx: Ditto for exit/teardown. */ void (*exit_hctx)(struct blk_mq_hw_ctx *, unsigned int); /** * @init_request: Called for every command allocated by the block layer * to allow the driver to set up driver specific data. * * Tag greater than or equal to queue_depth is for setting up * flush request. */ int (*init_request)(struct blk_mq_tag_set *set, struct request *, unsigned int, unsigned int); /** * @exit_request: Ditto for exit/teardown. */ void (*exit_request)(struct blk_mq_tag_set *set, struct request *, unsigned int); /** * @initialize_rq_fn: Called from inside blk_get_request(). */ void (*initialize_rq_fn)(struct request *rq); /** * @cleanup_rq: Called before freeing one request which isn't completed * yet, and usually for freeing the driver private data. */ void (*cleanup_rq)(struct request *); /** * @busy: If set, returns whether or not this queue currently is busy. */ bool (*busy)(struct request_queue *); /** * @map_queues: This allows drivers specify their own queue mapping by * overriding the setup-time function that builds the mq_map. */ int (*map_queues)(struct blk_mq_tag_set *set); #ifdef CONFIG_BLK_DEBUG_FS /** * @show_rq: Used by the debugfs implementation to show driver-specific * information about a request. */ void (*show_rq)(struct seq_file *m, struct request *rq); #endif }; enum { BLK_MQ_F_SHOULD_MERGE = 1 << 0, BLK_MQ_F_TAG_QUEUE_SHARED = 1 << 1, /* * Set when this device requires underlying blk-mq device for * completing IO: */ BLK_MQ_F_STACKING = 1 << 2, BLK_MQ_F_TAG_HCTX_SHARED = 1 << 3, BLK_MQ_F_BLOCKING = 1 << 5, BLK_MQ_F_NO_SCHED = 1 << 6, BLK_MQ_F_ALLOC_POLICY_START_BIT = 8, BLK_MQ_F_ALLOC_POLICY_BITS = 1, BLK_MQ_S_STOPPED = 0, BLK_MQ_S_TAG_ACTIVE = 1, BLK_MQ_S_SCHED_RESTART = 2, /* hw queue is inactive after all its CPUs become offline */ BLK_MQ_S_INACTIVE = 3, BLK_MQ_MAX_DEPTH = 10240, BLK_MQ_CPU_WORK_BATCH = 8, }; #define BLK_MQ_FLAG_TO_ALLOC_POLICY(flags) \ ((flags >> BLK_MQ_F_ALLOC_POLICY_START_BIT) & \ ((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1)) #define BLK_ALLOC_POLICY_TO_MQ_FLAG(policy) \ ((policy & ((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1)) \ << BLK_MQ_F_ALLOC_POLICY_START_BIT) struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *); struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set, void *queuedata); struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, struct request_queue *q, bool elevator_init); struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set, const struct blk_mq_ops *ops, unsigned int queue_depth, unsigned int set_flags); void blk_mq_unregister_dev(struct device *, struct request_queue *); int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set); void blk_mq_free_tag_set(struct blk_mq_tag_set *set); void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule); void blk_mq_free_request(struct request *rq); bool blk_mq_queue_inflight(struct request_queue *q); enum { /* return when out of requests */ BLK_MQ_REQ_NOWAIT = (__force blk_mq_req_flags_t)(1 << 0), /* allocate from reserved pool */ BLK_MQ_REQ_RESERVED = (__force blk_mq_req_flags_t)(1 << 1), /* set RQF_PM */ BLK_MQ_REQ_PM = (__force blk_mq_req_flags_t)(1 << 2), }; struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op, blk_mq_req_flags_t flags); struct request *blk_mq_alloc_request_hctx(struct request_queue *q, unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx); struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag); enum { BLK_MQ_UNIQUE_TAG_BITS = 16, BLK_MQ_UNIQUE_TAG_MASK = (1 << BLK_MQ_UNIQUE_TAG_BITS) - 1, }; u32 blk_mq_unique_tag(struct request *rq); static inline u16 blk_mq_unique_tag_to_hwq(u32 unique_tag) { return unique_tag >> BLK_MQ_UNIQUE_TAG_BITS; } static inline u16 blk_mq_unique_tag_to_tag(u32 unique_tag) { return unique_tag & BLK_MQ_UNIQUE_TAG_MASK; } /** * blk_mq_rq_state() - read the current MQ_RQ_* state of a request * @rq: target request. */ static inline enum mq_rq_state blk_mq_rq_state(struct request *rq) { return READ_ONCE(rq->state); } static inline int blk_mq_request_started(struct request *rq) { return blk_mq_rq_state(rq) != MQ_RQ_IDLE; } static inline int blk_mq_request_completed(struct request *rq) { return blk_mq_rq_state(rq) == MQ_RQ_COMPLETE; } void blk_mq_start_request(struct request *rq); void blk_mq_end_request(struct request *rq, blk_status_t error); void __blk_mq_end_request(struct request *rq, blk_status_t error); void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list); void blk_mq_kick_requeue_list(struct request_queue *q); void blk_mq_delay_kick_requeue_list(struct request_queue *q, unsigned long msecs); void blk_mq_complete_request(struct request *rq); bool blk_mq_complete_request_remote(struct request *rq); bool blk_mq_queue_stopped(struct request_queue *q); void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx); void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx); void blk_mq_stop_hw_queues(struct request_queue *q); void blk_mq_start_hw_queues(struct request_queue *q); void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async); void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async); void blk_mq_quiesce_queue(struct request_queue *q); void blk_mq_unquiesce_queue(struct request_queue *q); void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs); void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async); void blk_mq_run_hw_queues(struct request_queue *q, bool async); void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs); void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset, busy_tag_iter_fn *fn, void *priv); void blk_mq_tagset_wait_completed_request(struct blk_mq_tag_set *tagset); void blk_mq_freeze_queue(struct request_queue *q); void blk_mq_unfreeze_queue(struct request_queue *q); void blk_freeze_queue_start(struct request_queue *q); void blk_mq_freeze_queue_wait(struct request_queue *q); int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, unsigned long timeout); int blk_mq_map_queues(struct blk_mq_queue_map *qmap); void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues); void blk_mq_quiesce_queue_nowait(struct request_queue *q); unsigned int blk_mq_rq_cpu(struct request *rq); bool __blk_should_fake_timeout(struct request_queue *q); static inline bool blk_should_fake_timeout(struct request_queue *q) { if (IS_ENABLED(CONFIG_FAIL_IO_TIMEOUT) && test_bit(QUEUE_FLAG_FAIL_IO, &q->queue_flags)) return __blk_should_fake_timeout(q); return false; } /** * blk_mq_rq_from_pdu - cast a PDU to a request * @pdu: the PDU (Protocol Data Unit) to be casted * * Return: request * * Driver command data is immediately after the request. So subtract request * size to get back to the original request. */ static inline struct request *blk_mq_rq_from_pdu(void *pdu) { return pdu - sizeof(struct request); } /** * blk_mq_rq_to_pdu - cast a request to a PDU * @rq: the request to be casted * * Return: pointer to the PDU * * Driver command data is immediately after the request. So add request to get * the PDU. */ static inline void *blk_mq_rq_to_pdu(struct request *rq) { return rq + 1; } #define queue_for_each_hw_ctx(q, hctx, i) \ for ((i) = 0; (i) < (q)->nr_hw_queues && \ ({ hctx = (q)->queue_hw_ctx[i]; 1; }); (i)++) #define hctx_for_each_ctx(hctx, ctx, i) \ for ((i) = 0; (i) < (hctx)->nr_ctx && \ ({ ctx = (hctx)->ctxs[(i)]; 1; }); (i)++) static inline blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq) { if (rq->tag != -1) return rq->tag | (hctx->queue_num << BLK_QC_T_SHIFT); return rq->internal_tag | (hctx->queue_num << BLK_QC_T_SHIFT) | BLK_QC_T_INTERNAL; } static inline void blk_mq_cleanup_rq(struct request *rq) { if (rq->q->mq_ops->cleanup_rq) rq->q->mq_ops->cleanup_rq(rq); } blk_qc_t blk_mq_submit_bio(struct bio *bio); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 /* SPDX-License-Identifier: GPL-2.0-only */ #ifndef _NET_ETHTOOL_NETLINK_H #define _NET_ETHTOOL_NETLINK_H #include <linux/ethtool_netlink.h> #include <linux/netdevice.h> #include <net/genetlink.h> #include <net/sock.h> struct ethnl_req_info; int ethnl_parse_header_dev_get(struct ethnl_req_info *req_info, const struct nlattr *nest, struct net *net, struct netlink_ext_ack *extack, bool require_dev); int ethnl_fill_reply_header(struct sk_buff *skb, struct net_device *dev, u16 attrtype); struct sk_buff *ethnl_reply_init(size_t payload, struct net_device *dev, u8 cmd, u16 hdr_attrtype, struct genl_info *info, void **ehdrp); void *ethnl_dump_put(struct sk_buff *skb, struct netlink_callback *cb, u8 cmd); void *ethnl_bcastmsg_put(struct sk_buff *skb, u8 cmd); int ethnl_multicast(struct sk_buff *skb, struct net_device *dev); /** * ethnl_strz_size() - calculate attribute length for fixed size string * @s: ETH_GSTRING_LEN sized string (may not be null terminated) * * Return: total length of an attribute with null terminated string from @s */ static inline int ethnl_strz_size(const char *s) { return nla_total_size(strnlen(s, ETH_GSTRING_LEN) + 1); } /** * ethnl_put_strz() - put string attribute with fixed size string * @skb: skb with the message * @attrype: attribute type * @s: ETH_GSTRING_LEN sized string (may not be null terminated) * * Puts an attribute with null terminated string from @s into the message. * * Return: 0 on success, negative error code on failure */ static inline int ethnl_put_strz(struct sk_buff *skb, u16 attrtype, const char *s) { unsigned int len = strnlen(s, ETH_GSTRING_LEN); struct nlattr *attr; attr = nla_reserve(skb, attrtype, len + 1); if (!attr) return -EMSGSIZE; memcpy(nla_data(attr), s, len); ((char *)nla_data(attr))[len] = '\0'; return 0; } /** * ethnl_update_u32() - update u32 value from NLA_U32 attribute * @dst: value to update * @attr: netlink attribute with new value or null * @mod: pointer to bool for modification tracking * * Copy the u32 value from NLA_U32 netlink attribute @attr into variable * pointed to by @dst; do nothing if @attr is null. Bool pointed to by @mod * is set to true if this function changed the value of *dst, otherwise it * is left as is. */ static inline void ethnl_update_u32(u32 *dst, const struct nlattr *attr, bool *mod) { u32 val; if (!attr) return; val = nla_get_u32(attr); if (*dst == val) return; *dst = val; *mod = true; } /** * ethnl_update_u8() - update u8 value from NLA_U8 attribute * @dst: value to update * @attr: netlink attribute with new value or null * @mod: pointer to bool for modification tracking * * Copy the u8 value from NLA_U8 netlink attribute @attr into variable * pointed to by @dst; do nothing if @attr is null. Bool pointed to by @mod * is set to true if this function changed the value of *dst, otherwise it * is left as is. */ static inline void ethnl_update_u8(u8 *dst, const struct nlattr *attr, bool *mod) { u8 val; if (!attr) return; val = nla_get_u8(attr); if (*dst == val) return; *dst = val; *mod = true; } /** * ethnl_update_bool32() - update u32 used as bool from NLA_U8 attribute * @dst: value to update * @attr: netlink attribute with new value or null * @mod: pointer to bool for modification tracking * * Use the u8 value from NLA_U8 netlink attribute @attr to set u32 variable * pointed to by @dst to 0 (if zero) or 1 (if not); do nothing if @attr is * null. Bool pointed to by @mod is set to true if this function changed the * logical value of *dst, otherwise it is left as is. */ static inline void ethnl_update_bool32(u32 *dst, const struct nlattr *attr, bool *mod) { u8 val; if (!attr) return; val = !!nla_get_u8(attr); if (!!*dst == val) return; *dst = val; *mod = true; } /** * ethnl_update_binary() - update binary data from NLA_BINARY atribute * @dst: value to update * @len: destination buffer length * @attr: netlink attribute with new value or null * @mod: pointer to bool for modification tracking * * Use the u8 value from NLA_U8 netlink attribute @attr to rewrite data block * of length @len at @dst by attribute payload; do nothing if @attr is null. * Bool pointed to by @mod is set to true if this function changed the logical * value of *dst, otherwise it is left as is. */ static inline void ethnl_update_binary(void *dst, unsigned int len, const struct nlattr *attr, bool *mod) { if (!attr) return; if (nla_len(attr) < len) len = nla_len(attr); if (!memcmp(dst, nla_data(attr), len)) return; memcpy(dst, nla_data(attr), len); *mod = true; } /** * ethnl_update_bitfield32() - update u32 value from NLA_BITFIELD32 attribute * @dst: value to update * @attr: netlink attribute with new value or null * @mod: pointer to bool for modification tracking * * Update bits in u32 value which are set in attribute's mask to values from * attribute's value. Do nothing if @attr is null or the value wouldn't change; * otherwise, set bool pointed to by @mod to true. */ static inline void ethnl_update_bitfield32(u32 *dst, const struct nlattr *attr, bool *mod) { struct nla_bitfield32 change; u32 newval; if (!attr) return; change = nla_get_bitfield32(attr); newval = (*dst & ~change.selector) | (change.value & change.selector); if (*dst == newval) return; *dst = newval; *mod = true; } /** * ethnl_reply_header_size() - total size of reply header * * This is an upper estimate so that we do not need to hold RTNL lock longer * than necessary (to prevent rename between size estimate and composing the * message). Accounts only for device ifindex and name as those are the only * attributes ethnl_fill_reply_header() puts into the reply header. */ static inline unsigned int ethnl_reply_header_size(void) { return nla_total_size(nla_total_size(sizeof(u32)) + nla_total_size(IFNAMSIZ)); } /* GET request handling */ /* Unified processing of GET requests uses two data structures: request info * and reply data. Request info holds information parsed from client request * and its stays constant through all request processing. Reply data holds data * retrieved from ethtool_ops callbacks or other internal sources which is used * to compose the reply. When processing a dump request, request info is filled * only once (when the request message is parsed) but reply data is filled for * each reply message. * * Both structures consist of part common for all request types (struct * ethnl_req_info and struct ethnl_reply_data defined below) and optional * parts specific for each request type. Common part always starts at offset 0. */ /** * struct ethnl_req_info - base type of request information for GET requests * @dev: network device the request is for (may be null) * @flags: request flags common for all request types * * This is a common base for request specific structures holding data from * parsed userspace request. These always embed struct ethnl_req_info at * zero offset. */ struct ethnl_req_info { struct net_device *dev; u32 flags; }; /** * struct ethnl_reply_data - base type of reply data for GET requests * @dev: device for current reply message; in single shot requests it is * equal to &ethnl_req_info.dev; in dumps it's different for each * reply message * * This is a common base for request specific structures holding data for * kernel reply message. These always embed struct ethnl_reply_data at zero * offset. */ struct ethnl_reply_data { struct net_device *dev; }; static inline int ethnl_ops_begin(struct net_device *dev) { if (dev && dev->reg_state == NETREG_UNREGISTERING) return -ENODEV; if (dev && dev->ethtool_ops->begin) return dev->ethtool_ops->begin(dev); else return 0; } static inline void ethnl_ops_complete(struct net_device *dev) { if (dev && dev->ethtool_ops->complete) dev->ethtool_ops->complete(dev); } /** * struct ethnl_request_ops - unified handling of GET requests * @request_cmd: command id for request (GET) * @reply_cmd: command id for reply (GET_REPLY) * @hdr_attr: attribute type for request header * @req_info_size: size of request info * @reply_data_size: size of reply data * @allow_nodev_do: allow non-dump request with no device identification * @parse_request: * Parse request except common header (struct ethnl_req_info). Common * header is already filled on entry, the rest up to @repdata_offset * is zero initialized. This callback should only modify type specific * request info by parsed attributes from request message. * @prepare_data: * Retrieve and prepare data needed to compose a reply message. Calls to * ethtool_ops handlers are limited to this callback. Common reply data * (struct ethnl_reply_data) is filled on entry, type specific part after * it is zero initialized. This callback should only modify the type * specific part of reply data. Device identification from struct * ethnl_reply_data is to be used as for dump requests, it iterates * through network devices while dev member of struct ethnl_req_info * points to the device from client request. * @reply_size: * Estimate reply message size. Returned value must be sufficient for * message payload without common reply header. The callback may returned * estimate higher than actual message size if exact calculation would * not be worth the saved memory space. * @fill_reply: * Fill reply message payload (except for common header) from reply data. * The callback must not generate more payload than previously called * ->reply_size() estimated. * @cleanup_data: * Optional cleanup called when reply data is no longer needed. Can be * used e.g. to free any additional data structures outside the main * structure which were allocated by ->prepare_data(). When processing * dump requests, ->cleanup() is called for each message. * * Description of variable parts of GET request handling when using the * unified infrastructure. When used, a pointer to an instance of this * structure is to be added to &ethnl_default_requests array and generic * handlers ethnl_default_doit(), ethnl_default_dumpit(), * ethnl_default_start() and ethnl_default_done() used in @ethtool_genl_ops; * ethnl_default_notify() can be used in @ethnl_notify_handlers to send * notifications of the corresponding type. */ struct ethnl_request_ops { u8 request_cmd; u8 reply_cmd; u16 hdr_attr; unsigned int req_info_size; unsigned int reply_data_size; bool allow_nodev_do; int (*parse_request)(struct ethnl_req_info *req_info, struct nlattr **tb, struct netlink_ext_ack *extack); int (*prepare_data)(const struct ethnl_req_info *req_info, struct ethnl_reply_data *reply_data, struct genl_info *info); int (*reply_size)(const struct ethnl_req_info *req_info, const struct ethnl_reply_data *reply_data); int (*fill_reply)(struct sk_buff *skb, const struct ethnl_req_info *req_info, const struct ethnl_reply_data *reply_data); void (*cleanup_data)(struct ethnl_reply_data *reply_data); }; /* request handlers */ extern const struct ethnl_request_ops ethnl_strset_request_ops; extern const struct ethnl_request_ops ethnl_linkinfo_request_ops; extern const struct ethnl_request_ops ethnl_linkmodes_request_ops; extern const struct ethnl_request_ops ethnl_linkstate_request_ops; extern const struct ethnl_request_ops ethnl_debug_request_ops; extern const struct ethnl_request_ops ethnl_wol_request_ops; extern const struct ethnl_request_ops ethnl_features_request_ops; extern const struct ethnl_request_ops ethnl_privflags_request_ops; extern const struct ethnl_request_ops ethnl_rings_request_ops; extern const struct ethnl_request_ops ethnl_channels_request_ops; extern const struct ethnl_request_ops ethnl_coalesce_request_ops; extern const struct ethnl_request_ops ethnl_pause_request_ops; extern const struct ethnl_request_ops ethnl_eee_request_ops; extern const struct ethnl_request_ops ethnl_tsinfo_request_ops; extern const struct nla_policy ethnl_header_policy[ETHTOOL_A_HEADER_FLAGS + 1]; extern const struct nla_policy ethnl_header_policy_stats[ETHTOOL_A_HEADER_FLAGS + 1]; extern const struct nla_policy ethnl_strset_get_policy[ETHTOOL_A_STRSET_COUNTS_ONLY + 1]; extern const struct nla_policy ethnl_linkinfo_get_policy[ETHTOOL_A_LINKINFO_HEADER + 1]; extern const struct nla_policy ethnl_linkinfo_set_policy[ETHTOOL_A_LINKINFO_TP_MDIX_CTRL + 1]; extern const struct nla_policy ethnl_linkmodes_get_policy[ETHTOOL_A_LINKMODES_HEADER + 1]; extern const struct nla_policy ethnl_linkmodes_set_policy[ETHTOOL_A_LINKMODES_MASTER_SLAVE_CFG + 1]; extern const struct nla_policy ethnl_linkstate_get_policy[ETHTOOL_A_LINKSTATE_HEADER + 1]; extern const struct nla_policy ethnl_debug_get_policy[ETHTOOL_A_DEBUG_HEADER + 1]; extern const struct nla_policy ethnl_debug_set_policy[ETHTOOL_A_DEBUG_MSGMASK + 1]; extern const struct nla_policy ethnl_wol_get_policy[ETHTOOL_A_WOL_HEADER + 1]; extern const struct nla_policy ethnl_wol_set_policy[ETHTOOL_A_WOL_SOPASS + 1]; extern const struct nla_policy ethnl_features_get_policy[ETHTOOL_A_FEATURES_HEADER + 1]; extern const struct nla_policy ethnl_features_set_policy[ETHTOOL_A_FEATURES_WANTED + 1]; extern const struct nla_policy ethnl_privflags_get_policy[ETHTOOL_A_PRIVFLAGS_HEADER + 1]; extern const struct nla_policy ethnl_privflags_set_policy[ETHTOOL_A_PRIVFLAGS_FLAGS + 1]; extern const struct nla_policy ethnl_rings_get_policy[ETHTOOL_A_RINGS_HEADER + 1]; extern const struct nla_policy ethnl_rings_set_policy[ETHTOOL_A_RINGS_TX + 1]; extern const struct nla_policy ethnl_channels_get_policy[ETHTOOL_A_CHANNELS_HEADER + 1]; extern const struct nla_policy ethnl_channels_set_policy[ETHTOOL_A_CHANNELS_COMBINED_COUNT + 1]; extern const struct nla_policy ethnl_coalesce_get_policy[ETHTOOL_A_COALESCE_HEADER + 1]; extern const struct nla_policy ethnl_coalesce_set_policy[ETHTOOL_A_COALESCE_RATE_SAMPLE_INTERVAL + 1]; extern const struct nla_policy ethnl_pause_get_policy[ETHTOOL_A_PAUSE_HEADER + 1]; extern const struct nla_policy ethnl_pause_set_policy[ETHTOOL_A_PAUSE_TX + 1]; extern const struct nla_policy ethnl_eee_get_policy[ETHTOOL_A_EEE_HEADER + 1]; extern const struct nla_policy ethnl_eee_set_policy[ETHTOOL_A_EEE_TX_LPI_TIMER + 1]; extern const struct nla_policy ethnl_tsinfo_get_policy[ETHTOOL_A_TSINFO_HEADER + 1]; extern const struct nla_policy ethnl_cable_test_act_policy[ETHTOOL_A_CABLE_TEST_HEADER + 1]; extern const struct nla_policy ethnl_cable_test_tdr_act_policy[ETHTOOL_A_CABLE_TEST_TDR_CFG + 1]; extern const struct nla_policy ethnl_tunnel_info_get_policy[ETHTOOL_A_TUNNEL_INFO_HEADER + 1]; int ethnl_set_linkinfo(struct sk_buff *skb, struct genl_info *info); int ethnl_set_linkmodes(struct sk_buff *skb, struct genl_info *info); int ethnl_set_debug(struct sk_buff *skb, struct genl_info *info); int ethnl_set_wol(struct sk_buff *skb, struct genl_info *info); int ethnl_set_features(struct sk_buff *skb, struct genl_info *info); int ethnl_set_privflags(struct sk_buff *skb, struct genl_info *info); int ethnl_set_rings(struct sk_buff *skb, struct genl_info *info); int ethnl_set_channels(struct sk_buff *skb, struct genl_info *info); int ethnl_set_coalesce(struct sk_buff *skb, struct genl_info *info); int ethnl_set_pause(struct sk_buff *skb, struct genl_info *info); int ethnl_set_eee(struct sk_buff *skb, struct genl_info *info); int ethnl_act_cable_test(struct sk_buff *skb, struct genl_info *info); int ethnl_act_cable_test_tdr(struct sk_buff *skb, struct genl_info *info); int ethnl_tunnel_info_doit(struct sk_buff *skb, struct genl_info *info); int ethnl_tunnel_info_start(struct netlink_callback *cb); int ethnl_tunnel_info_dumpit(struct sk_buff *skb, struct netlink_callback *cb); #endif /* _NET_ETHTOOL_NETLINK_H */
1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Definitions for the Forwarding Information Base. * * Authors: A.N.Kuznetsov, <kuznet@ms2.inr.ac.ru> */ #ifndef _NET_IP_FIB_H #define _NET_IP_FIB_H #include <net/flow.h> #include <linux/seq_file.h> #include <linux/rcupdate.h> #include <net/fib_notifier.h> #include <net/fib_rules.h> #include <net/inetpeer.h> #include <linux/percpu.h> #include <linux/notifier.h> #include <linux/refcount.h> struct fib_config { u8 fc_dst_len; u8 fc_tos; u8 fc_protocol; u8 fc_scope; u8 fc_type; u8 fc_gw_family; /* 2 bytes unused */ u32 fc_table; __be32 fc_dst; union { __be32 fc_gw4; struct in6_addr fc_gw6; }; int fc_oif; u32 fc_flags; u32 fc_priority; __be32 fc_prefsrc; u32 fc_nh_id; struct nlattr *fc_mx; struct rtnexthop *fc_mp; int fc_mx_len; int fc_mp_len; u32 fc_flow; u32 fc_nlflags; struct nl_info fc_nlinfo; struct nlattr *fc_encap; u16 fc_encap_type; }; struct fib_info; struct rtable; struct fib_nh_exception { struct fib_nh_exception __rcu *fnhe_next; int fnhe_genid; __be32 fnhe_daddr; u32 fnhe_pmtu; bool fnhe_mtu_locked; __be32 fnhe_gw; unsigned long fnhe_expires; struct rtable __rcu *fnhe_rth_input; struct rtable __rcu *fnhe_rth_output; unsigned long fnhe_stamp; struct rcu_head rcu; }; struct fnhe_hash_bucket { struct fib_nh_exception __rcu *chain; }; #define FNHE_HASH_SHIFT 11 #define FNHE_HASH_SIZE (1 << FNHE_HASH_SHIFT) #define FNHE_RECLAIM_DEPTH 5 struct fib_nh_common { struct net_device *nhc_dev; int nhc_oif; unsigned char nhc_scope; u8 nhc_family; u8 nhc_gw_family; unsigned char nhc_flags; struct lwtunnel_state *nhc_lwtstate; union { __be32 ipv4; struct in6_addr ipv6; } nhc_gw; int nhc_weight; atomic_t nhc_upper_bound; /* v4 specific, but allows fib6_nh with v4 routes */ struct rtable __rcu * __percpu *nhc_pcpu_rth_output; struct rtable __rcu *nhc_rth_input; struct fnhe_hash_bucket __rcu *nhc_exceptions; }; struct fib_nh { struct fib_nh_common nh_common; struct hlist_node nh_hash; struct fib_info *nh_parent; #ifdef CONFIG_IP_ROUTE_CLASSID __u32 nh_tclassid; #endif __be32 nh_saddr; int nh_saddr_genid; #define fib_nh_family nh_common.nhc_family #define fib_nh_dev nh_common.nhc_dev #define fib_nh_oif nh_common.nhc_oif #define fib_nh_flags nh_common.nhc_flags #define fib_nh_lws nh_common.nhc_lwtstate #define fib_nh_scope nh_common.nhc_scope #define fib_nh_gw_family nh_common.nhc_gw_family #define fib_nh_gw4 nh_common.nhc_gw.ipv4 #define fib_nh_gw6 nh_common.nhc_gw.ipv6 #define fib_nh_weight nh_common.nhc_weight #define fib_nh_upper_bound nh_common.nhc_upper_bound }; /* * This structure contains data shared by many of routes. */ struct nexthop; struct fib_info { struct hlist_node fib_hash; struct hlist_node fib_lhash; struct list_head nh_list; struct net *fib_net; int fib_treeref; refcount_t fib_clntref; unsigned int fib_flags; unsigned char fib_dead; unsigned char fib_protocol; unsigned char fib_scope; unsigned char fib_type; __be32 fib_prefsrc; u32 fib_tb_id; u32 fib_priority; struct dst_metrics *fib_metrics; #define fib_mtu fib_metrics->metrics[RTAX_MTU-1] #define fib_window fib_metrics->metrics[RTAX_WINDOW-1] #define fib_rtt fib_metrics->metrics[RTAX_RTT-1] #define fib_advmss fib_metrics->metrics[RTAX_ADVMSS-1] int fib_nhs; bool fib_nh_is_v6; bool nh_updated; struct nexthop *nh; struct rcu_head rcu; struct fib_nh fib_nh[]; }; #ifdef CONFIG_IP_MULTIPLE_TABLES struct fib_rule; #endif struct fib_table; struct fib_result { __be32 prefix; unsigned char prefixlen; unsigned char nh_sel; unsigned char type; unsigned char scope; u32 tclassid; struct fib_nh_common *nhc; struct fib_info *fi; struct fib_table *table; struct hlist_head *fa_head; }; struct fib_result_nl { __be32 fl_addr; /* To be looked up*/ u32 fl_mark; unsigned char fl_tos; unsigned char fl_scope; unsigned char tb_id_in; unsigned char tb_id; /* Results */ unsigned char prefixlen; unsigned char nh_sel; unsigned char type; unsigned char scope; int err; }; #ifdef CONFIG_IP_MULTIPLE_TABLES #define FIB_TABLE_HASHSZ 256 #else #define FIB_TABLE_HASHSZ 2 #endif __be32 fib_info_update_nhc_saddr(struct net *net, struct fib_nh_common *nhc, unsigned char scope); __be32 fib_result_prefsrc(struct net *net, struct fib_result *res); #define FIB_RES_NHC(res) ((res).nhc) #define FIB_RES_DEV(res) (FIB_RES_NHC(res)->nhc_dev) #define FIB_RES_OIF(res) (FIB_RES_NHC(res)->nhc_oif) struct fib_rt_info { struct fib_info *fi; u32 tb_id; __be32 dst; int dst_len; u8 tos; u8 type; u8 offload:1, trap:1, unused:6; }; struct fib_entry_notifier_info { struct fib_notifier_info info; /* must be first */ u32 dst; int dst_len; struct fib_info *fi; u8 tos; u8 type; u32 tb_id; }; struct fib_nh_notifier_info { struct fib_notifier_info info; /* must be first */ struct fib_nh *fib_nh; }; int call_fib4_notifier(struct notifier_block *nb, enum fib_event_type event_type, struct fib_notifier_info *info); int call_fib4_notifiers(struct net *net, enum fib_event_type event_type, struct fib_notifier_info *info); int __net_init fib4_notifier_init(struct net *net); void __net_exit fib4_notifier_exit(struct net *net); void fib_info_notify_update(struct net *net, struct nl_info *info); int fib_notify(struct net *net, struct notifier_block *nb, struct netlink_ext_ack *extack); struct fib_table { struct hlist_node tb_hlist; u32 tb_id; int tb_num_default; struct rcu_head rcu; unsigned long *tb_data; unsigned long __data[]; }; struct fib_dump_filter { u32 table_id; /* filter_set is an optimization that an entry is set */ bool filter_set; bool dump_routes; bool dump_exceptions; unsigned char protocol; unsigned char rt_type; unsigned int flags; struct net_device *dev; }; int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp, struct fib_result *res, int fib_flags); int fib_table_insert(struct net *, struct fib_table *, struct fib_config *, struct netlink_ext_ack *extack); int fib_table_delete(struct net *, struct fib_table *, struct fib_config *, struct netlink_ext_ack *extack); int fib_table_dump(struct fib_table *table, struct sk_buff *skb, struct netlink_callback *cb, struct fib_dump_filter *filter); int fib_table_flush(struct net *net, struct fib_table *table, bool flush_all); struct fib_table *fib_trie_unmerge(struct fib_table *main_tb); void fib_table_flush_external(struct fib_table *table); void fib_free_table(struct fib_table *tb); #ifndef CONFIG_IP_MULTIPLE_TABLES #define TABLE_LOCAL_INDEX (RT_TABLE_LOCAL & (FIB_TABLE_HASHSZ - 1)) #define TABLE_MAIN_INDEX (RT_TABLE_MAIN & (FIB_TABLE_HASHSZ - 1)) static inline struct fib_table *fib_get_table(struct net *net, u32 id) { struct hlist_node *tb_hlist; struct hlist_head *ptr; ptr = id == RT_TABLE_LOCAL ? &net->ipv4.fib_table_hash[TABLE_LOCAL_INDEX] : &net->ipv4.fib_table_hash[TABLE_MAIN_INDEX]; tb_hlist = rcu_dereference_rtnl(hlist_first_rcu(ptr)); return hlist_entry(tb_hlist, struct fib_table, tb_hlist); } static inline struct fib_table *fib_new_table(struct net *net, u32 id) { return fib_get_table(net, id); } static inline int fib_lookup(struct net *net, const struct flowi4 *flp, struct fib_result *res, unsigned int flags) { struct fib_table *tb; int err = -ENETUNREACH; rcu_read_lock(); tb = fib_get_table(net, RT_TABLE_MAIN); if (tb) err = fib_table_lookup(tb, flp, res, flags | FIB_LOOKUP_NOREF); if (err == -EAGAIN) err = -ENETUNREACH; rcu_read_unlock(); return err; } static inline bool fib4_has_custom_rules(const struct net *net) { return false; } static inline bool fib4_rule_default(const struct fib_rule *rule) { return true; } static inline int fib4_rules_dump(struct net *net, struct notifier_block *nb, struct netlink_ext_ack *extack) { return 0; } static inline unsigned int fib4_rules_seq_read(struct net *net) { return 0; } static inline bool fib4_rules_early_flow_dissect(struct net *net, struct sk_buff *skb, struct flowi4 *fl4, struct flow_keys *flkeys) { return false; } #else /* CONFIG_IP_MULTIPLE_TABLES */ int __net_init fib4_rules_init(struct net *net); void __net_exit fib4_rules_exit(struct net *net); struct fib_table *fib_new_table(struct net *net, u32 id); struct fib_table *fib_get_table(struct net *net, u32 id); int __fib_lookup(struct net *net, struct flowi4 *flp, struct fib_result *res, unsigned int flags); static inline int fib_lookup(struct net *net, struct flowi4 *flp, struct fib_result *res, unsigned int flags) { struct fib_table *tb; int err = -ENETUNREACH; flags |= FIB_LOOKUP_NOREF; if (net->ipv4.fib_has_custom_rules) return __fib_lookup(net, flp, res, flags); rcu_read_lock(); res->tclassid = 0; tb = rcu_dereference_rtnl(net->ipv4.fib_main); if (tb) err = fib_table_lookup(tb, flp, res, flags); if (!err) goto out; tb = rcu_dereference_rtnl(net->ipv4.fib_default); if (tb) err = fib_table_lookup(tb, flp, res, flags); out: if (err == -EAGAIN) err = -ENETUNREACH; rcu_read_unlock(); return err; } static inline bool fib4_has_custom_rules(const struct net *net) { return net->ipv4.fib_has_custom_rules; } bool fib4_rule_default(const struct fib_rule *rule); int fib4_rules_dump(struct net *net, struct notifier_block *nb, struct netlink_ext_ack *extack); unsigned int fib4_rules_seq_read(struct net *net); static inline bool fib4_rules_early_flow_dissect(struct net *net, struct sk_buff *skb, struct flowi4 *fl4, struct flow_keys *flkeys) { unsigned int flag = FLOW_DISSECTOR_F_STOP_AT_ENCAP; if (!net->ipv4.fib_rules_require_fldissect) return false; skb_flow_dissect_flow_keys(skb, flkeys, flag); fl4->fl4_sport = flkeys->ports.src; fl4->fl4_dport = flkeys->ports.dst; fl4->flowi4_proto = flkeys->basic.ip_proto; return true; } #endif /* CONFIG_IP_MULTIPLE_TABLES */ /* Exported by fib_frontend.c */ extern const struct nla_policy rtm_ipv4_policy[]; void ip_fib_init(void); int fib_gw_from_via(struct fib_config *cfg, struct nlattr *nla, struct netlink_ext_ack *extack); __be32 fib_compute_spec_dst(struct sk_buff *skb); bool fib_info_nh_uses_dev(struct fib_info *fi, const struct net_device *dev); int fib_validate_source(struct sk_buff *skb, __be32 src, __be32 dst, u8 tos, int oif, struct net_device *dev, struct in_device *idev, u32 *itag); #ifdef CONFIG_IP_ROUTE_CLASSID static inline int fib_num_tclassid_users(struct net *net) { return atomic_read(&net->ipv4.fib_num_tclassid_users); } #else static inline int fib_num_tclassid_users(struct net *net) { return 0; } #endif int fib_unmerge(struct net *net); static inline bool nhc_l3mdev_matches_dev(const struct fib_nh_common *nhc, const struct net_device *dev) { if (nhc->nhc_dev == dev || l3mdev_master_ifindex_rcu(nhc->nhc_dev) == dev->ifindex) return true; return false; } /* Exported by fib_semantics.c */ int ip_fib_check_default(__be32 gw, struct net_device *dev); int fib_sync_down_dev(struct net_device *dev, unsigned long event, bool force); int fib_sync_down_addr(struct net_device *dev, __be32 local); int fib_sync_up(struct net_device *dev, unsigned char nh_flags); void fib_sync_mtu(struct net_device *dev, u32 orig_mtu); void fib_nhc_update_mtu(struct fib_nh_common *nhc, u32 new, u32 orig); #ifdef CONFIG_IP_ROUTE_MULTIPATH int fib_multipath_hash(const struct net *net, const struct flowi4 *fl4, const struct sk_buff *skb, struct flow_keys *flkeys); #endif int fib_check_nh(struct net *net, struct fib_nh *nh, u32 table, u8 scope, struct netlink_ext_ack *extack); void fib_select_multipath(struct fib_result *res, int hash); void fib_select_path(struct net *net, struct fib_result *res, struct flowi4 *fl4, const struct sk_buff *skb); int fib_nh_init(struct net *net, struct fib_nh *fib_nh, struct fib_config *cfg, int nh_weight, struct netlink_ext_ack *extack); void fib_nh_release(struct net *net, struct fib_nh *fib_nh); int fib_nh_common_init(struct net *net, struct fib_nh_common *nhc, struct nlattr *fc_encap, u16 fc_encap_type, void *cfg, gfp_t gfp_flags, struct netlink_ext_ack *extack); void fib_nh_common_release(struct fib_nh_common *nhc); /* Exported by fib_trie.c */ void fib_alias_hw_flags_set(struct net *net, const struct fib_rt_info *fri); void fib_trie_init(void); struct fib_table *fib_trie_table(u32 id, struct fib_table *alias); bool fib_lookup_good_nhc(const struct fib_nh_common *nhc, int fib_flags, const struct flowi4 *flp); static inline void fib_combine_itag(u32 *itag, const struct fib_result *res) { #ifdef CONFIG_IP_ROUTE_CLASSID struct fib_nh_common *nhc = res->nhc; #ifdef CONFIG_IP_MULTIPLE_TABLES u32 rtag; #endif if (nhc->nhc_family == AF_INET) { struct fib_nh *nh; nh = container_of(nhc, struct fib_nh, nh_common); *itag = nh->nh_tclassid << 16; } else { *itag = 0; } #ifdef CONFIG_IP_MULTIPLE_TABLES rtag = res->tclassid; if (*itag == 0) *itag = (rtag<<16); *itag |= (rtag>>16); #endif #endif } void fib_flush(struct net *net); void free_fib_info(struct fib_info *fi); static inline void fib_info_hold(struct fib_info *fi) { refcount_inc(&fi->fib_clntref); } static inline void fib_info_put(struct fib_info *fi) { if (refcount_dec_and_test(&fi->fib_clntref)) free_fib_info(fi); } #ifdef CONFIG_PROC_FS int __net_init fib_proc_init(struct net *net); void __net_exit fib_proc_exit(struct net *net); #else static inline int fib_proc_init(struct net *net) { return 0; } static inline void fib_proc_exit(struct net *net) { } #endif u32 ip_mtu_from_fib_result(struct fib_result *res, __be32 daddr); int ip_valid_fib_dump_req(struct net *net, const struct nlmsghdr *nlh, struct fib_dump_filter *filter, struct netlink_callback *cb); int fib_nexthop_info(struct sk_buff *skb, const struct fib_nh_common *nh, u8 rt_family, unsigned char *flags, bool skip_oif); int fib_add_nexthop(struct sk_buff *skb, const struct fib_nh_common *nh, int nh_weight, u8 rt_family, u32 nh_tclassid); #endif /* _NET_FIB_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * AEAD: Authenticated Encryption with Associated Data * * Copyright (c) 2007-2015 Herbert Xu <herbert@gondor.apana.org.au> */ #ifndef _CRYPTO_AEAD_H #define _CRYPTO_AEAD_H #include <linux/crypto.h> #include <linux/kernel.h> #include <linux/slab.h> /** * DOC: Authenticated Encryption With Associated Data (AEAD) Cipher API * * The AEAD cipher API is used with the ciphers of type CRYPTO_ALG_TYPE_AEAD * (listed as type "aead" in /proc/crypto) * * The most prominent examples for this type of encryption is GCM and CCM. * However, the kernel supports other types of AEAD ciphers which are defined * with the following cipher string: * * authenc(keyed message digest, block cipher) * * For example: authenc(hmac(sha256), cbc(aes)) * * The example code provided for the symmetric key cipher operation * applies here as well. Naturally all *skcipher* symbols must be exchanged * the *aead* pendants discussed in the following. In addition, for the AEAD * operation, the aead_request_set_ad function must be used to set the * pointer to the associated data memory location before performing the * encryption or decryption operation. In case of an encryption, the associated * data memory is filled during the encryption operation. For decryption, the * associated data memory must contain data that is used to verify the integrity * of the decrypted data. Another deviation from the asynchronous block cipher * operation is that the caller should explicitly check for -EBADMSG of the * crypto_aead_decrypt. That error indicates an authentication error, i.e. * a breach in the integrity of the message. In essence, that -EBADMSG error * code is the key bonus an AEAD cipher has over "standard" block chaining * modes. * * Memory Structure: * * The source scatterlist must contain the concatenation of * associated data || plaintext or ciphertext. * * The destination scatterlist has the same layout, except that the plaintext * (resp. ciphertext) will grow (resp. shrink) by the authentication tag size * during encryption (resp. decryption). * * In-place encryption/decryption is enabled by using the same scatterlist * pointer for both the source and destination. * * Even in the out-of-place case, space must be reserved in the destination for * the associated data, even though it won't be written to. This makes the * in-place and out-of-place cases more consistent. It is permissible for the * "destination" associated data to alias the "source" associated data. * * As with the other scatterlist crypto APIs, zero-length scatterlist elements * are not allowed in the used part of the scatterlist. Thus, if there is no * associated data, the first element must point to the plaintext/ciphertext. * * To meet the needs of IPsec, a special quirk applies to rfc4106, rfc4309, * rfc4543, and rfc7539esp ciphers. For these ciphers, the final 'ivsize' bytes * of the associated data buffer must contain a second copy of the IV. This is * in addition to the copy passed to aead_request_set_crypt(). These two IV * copies must not differ; different implementations of the same algorithm may * behave differently in that case. Note that the algorithm might not actually * treat the IV as associated data; nevertheless the length passed to * aead_request_set_ad() must include it. */ struct crypto_aead; /** * struct aead_request - AEAD request * @base: Common attributes for async crypto requests * @assoclen: Length in bytes of associated data for authentication * @cryptlen: Length of data to be encrypted or decrypted * @iv: Initialisation vector * @src: Source data * @dst: Destination data * @__ctx: Start of private context data */ struct aead_request { struct crypto_async_request base; unsigned int assoclen; unsigned int cryptlen; u8 *iv; struct scatterlist *src; struct scatterlist *dst; void *__ctx[] CRYPTO_MINALIGN_ATTR; }; /** * struct aead_alg - AEAD cipher definition * @maxauthsize: Set the maximum authentication tag size supported by the * transformation. A transformation may support smaller tag sizes. * As the authentication tag is a message digest to ensure the * integrity of the encrypted data, a consumer typically wants the * largest authentication tag possible as defined by this * variable. * @setauthsize: Set authentication size for the AEAD transformation. This * function is used to specify the consumer requested size of the * authentication tag to be either generated by the transformation * during encryption or the size of the authentication tag to be * supplied during the decryption operation. This function is also * responsible for checking the authentication tag size for * validity. * @setkey: see struct skcipher_alg * @encrypt: see struct skcipher_alg * @decrypt: see struct skcipher_alg * @ivsize: see struct skcipher_alg * @chunksize: see struct skcipher_alg * @init: Initialize the cryptographic transformation object. This function * is used to initialize the cryptographic transformation object. * This function is called only once at the instantiation time, right * after the transformation context was allocated. In case the * cryptographic hardware has some special requirements which need to * be handled by software, this function shall check for the precise * requirement of the transformation and put any software fallbacks * in place. * @exit: Deinitialize the cryptographic transformation object. This is a * counterpart to @init, used to remove various changes set in * @init. * @base: Definition of a generic crypto cipher algorithm. * * All fields except @ivsize is mandatory and must be filled. */ struct aead_alg { int (*setkey)(struct crypto_aead *tfm, const u8 *key, unsigned int keylen); int (*setauthsize)(struct crypto_aead *tfm, unsigned int authsize); int (*encrypt)(struct aead_request *req); int (*decrypt)(struct aead_request *req); int (*init)(struct crypto_aead *tfm); void (*exit)(struct crypto_aead *tfm); unsigned int ivsize; unsigned int maxauthsize; unsigned int chunksize; struct crypto_alg base; }; struct crypto_aead { unsigned int authsize; unsigned int reqsize; struct crypto_tfm base; }; static inline struct crypto_aead *__crypto_aead_cast(struct crypto_tfm *tfm) { return container_of(tfm, struct crypto_aead, base); } /** * crypto_alloc_aead() - allocate AEAD cipher handle * @alg_name: is the cra_name / name or cra_driver_name / driver name of the * AEAD cipher * @type: specifies the type of the cipher * @mask: specifies the mask for the cipher * * Allocate a cipher handle for an AEAD. The returned struct * crypto_aead is the cipher handle that is required for any subsequent * API invocation for that AEAD. * * Return: allocated cipher handle in case of success; IS_ERR() is true in case * of an error, PTR_ERR() returns the error code. */ struct crypto_aead *crypto_alloc_aead(const char *alg_name, u32 type, u32 mask); static inline struct crypto_tfm *crypto_aead_tfm(struct crypto_aead *tfm) { return &tfm->base; } /** * crypto_free_aead() - zeroize and free aead handle * @tfm: cipher handle to be freed * * If @tfm is a NULL or error pointer, this function does nothing. */ static inline void crypto_free_aead(struct crypto_aead *tfm) { crypto_destroy_tfm(tfm, crypto_aead_tfm(tfm)); } static inline struct aead_alg *crypto_aead_alg(struct crypto_aead *tfm) { return container_of(crypto_aead_tfm(tfm)->__crt_alg, struct aead_alg, base); } static inline unsigned int crypto_aead_alg_ivsize(struct aead_alg *alg) { return alg->ivsize; } /** * crypto_aead_ivsize() - obtain IV size * @tfm: cipher handle * * The size of the IV for the aead referenced by the cipher handle is * returned. This IV size may be zero if the cipher does not need an IV. * * Return: IV size in bytes */ static inline unsigned int crypto_aead_ivsize(struct crypto_aead *tfm) { return crypto_aead_alg_ivsize(crypto_aead_alg(tfm)); } /** * crypto_aead_authsize() - obtain maximum authentication data size * @tfm: cipher handle * * The maximum size of the authentication data for the AEAD cipher referenced * by the AEAD cipher handle is returned. The authentication data size may be * zero if the cipher implements a hard-coded maximum. * * The authentication data may also be known as "tag value". * * Return: authentication data size / tag size in bytes */ static inline unsigned int crypto_aead_authsize(struct crypto_aead *tfm) { return tfm->authsize; } static inline unsigned int crypto_aead_alg_maxauthsize(struct aead_alg *alg) { return alg->maxauthsize; } static inline unsigned int crypto_aead_maxauthsize(struct crypto_aead *aead) { return crypto_aead_alg_maxauthsize(crypto_aead_alg(aead)); } /** * crypto_aead_blocksize() - obtain block size of cipher * @tfm: cipher handle * * The block size for the AEAD referenced with the cipher handle is returned. * The caller may use that information to allocate appropriate memory for the * data returned by the encryption or decryption operation * * Return: block size of cipher */ static inline unsigned int crypto_aead_blocksize(struct crypto_aead *tfm) { return crypto_tfm_alg_blocksize(crypto_aead_tfm(tfm)); } static inline unsigned int crypto_aead_alignmask(struct crypto_aead *tfm) { return crypto_tfm_alg_alignmask(crypto_aead_tfm(tfm)); } static inline u32 crypto_aead_get_flags(struct crypto_aead *tfm) { return crypto_tfm_get_flags(crypto_aead_tfm(tfm)); } static inline void crypto_aead_set_flags(struct crypto_aead *tfm, u32 flags) { crypto_tfm_set_flags(crypto_aead_tfm(tfm), flags); } static inline void crypto_aead_clear_flags(struct crypto_aead *tfm, u32 flags) { crypto_tfm_clear_flags(crypto_aead_tfm(tfm), flags); } /** * crypto_aead_setkey() - set key for cipher * @tfm: cipher handle * @key: buffer holding the key * @keylen: length of the key in bytes * * The caller provided key is set for the AEAD referenced by the cipher * handle. * * Note, the key length determines the cipher type. Many block ciphers implement * different cipher modes depending on the key size, such as AES-128 vs AES-192 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 * is performed. * * Return: 0 if the setting of the key was successful; < 0 if an error occurred */ int crypto_aead_setkey(struct crypto_aead *tfm, const u8 *key, unsigned int keylen); /** * crypto_aead_setauthsize() - set authentication data size * @tfm: cipher handle * @authsize: size of the authentication data / tag in bytes * * Set the authentication data size / tag size. AEAD requires an authentication * tag (or MAC) in addition to the associated data. * * Return: 0 if the setting of the key was successful; < 0 if an error occurred */ int crypto_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize); static inline struct crypto_aead *crypto_aead_reqtfm(struct aead_request *req) { return __crypto_aead_cast(req->base.tfm); } /** * crypto_aead_encrypt() - encrypt plaintext * @req: reference to the aead_request handle that holds all information * needed to perform the cipher operation * * Encrypt plaintext data using the aead_request handle. That data structure * and how it is filled with data is discussed with the aead_request_* * functions. * * IMPORTANT NOTE The encryption operation creates the authentication data / * tag. That data is concatenated with the created ciphertext. * The ciphertext memory size is therefore the given number of * block cipher blocks + the size defined by the * crypto_aead_setauthsize invocation. The caller must ensure * that sufficient memory is available for the ciphertext and * the authentication tag. * * Return: 0 if the cipher operation was successful; < 0 if an error occurred */ int crypto_aead_encrypt(struct aead_request *req); /** * crypto_aead_decrypt() - decrypt ciphertext * @req: reference to the aead_request handle that holds all information * needed to perform the cipher operation * * Decrypt ciphertext data using the aead_request handle. That data structure * and how it is filled with data is discussed with the aead_request_* * functions. * * IMPORTANT NOTE The caller must concatenate the ciphertext followed by the * authentication data / tag. That authentication data / tag * must have the size defined by the crypto_aead_setauthsize * invocation. * * * Return: 0 if the cipher operation was successful; -EBADMSG: The AEAD * cipher operation performs the authentication of the data during the * decryption operation. Therefore, the function returns this error if * the authentication of the ciphertext was unsuccessful (i.e. the * integrity of the ciphertext or the associated data was violated); * < 0 if an error occurred. */ int crypto_aead_decrypt(struct aead_request *req); /** * DOC: Asynchronous AEAD Request Handle * * The aead_request data structure contains all pointers to data required for * the AEAD cipher operation. This includes the cipher handle (which can be * used by multiple aead_request instances), pointer to plaintext and * ciphertext, asynchronous callback function, etc. It acts as a handle to the * aead_request_* API calls in a similar way as AEAD handle to the * crypto_aead_* API calls. */ /** * crypto_aead_reqsize() - obtain size of the request data structure * @tfm: cipher handle * * Return: number of bytes */ static inline unsigned int crypto_aead_reqsize(struct crypto_aead *tfm) { return tfm->reqsize; } /** * aead_request_set_tfm() - update cipher handle reference in request * @req: request handle to be modified * @tfm: cipher handle that shall be added to the request handle * * Allow the caller to replace the existing aead handle in the request * data structure with a different one. */ static inline void aead_request_set_tfm(struct aead_request *req, struct crypto_aead *tfm) { req->base.tfm = crypto_aead_tfm(tfm); } /** * aead_request_alloc() - allocate request data structure * @tfm: cipher handle to be registered with the request * @gfp: memory allocation flag that is handed to kmalloc by the API call. * * Allocate the request data structure that must be used with the AEAD * encrypt and decrypt API calls. During the allocation, the provided aead * handle is registered in the request data structure. * * Return: allocated request handle in case of success, or NULL if out of memory */ static inline struct aead_request *aead_request_alloc(struct crypto_aead *tfm, gfp_t gfp) { struct aead_request *req; req = kmalloc(sizeof(*req) + crypto_aead_reqsize(tfm), gfp); if (likely(req)) aead_request_set_tfm(req, tfm); return req; } /** * aead_request_free() - zeroize and free request data structure * @req: request data structure cipher handle to be freed */ static inline void aead_request_free(struct aead_request *req) { kfree_sensitive(req); } /** * aead_request_set_callback() - set asynchronous callback function * @req: request handle * @flags: specify zero or an ORing of the flags * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and * increase the wait queue beyond the initial maximum size; * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep * @compl: callback function pointer to be registered with the request handle * @data: The data pointer refers to memory that is not used by the kernel * crypto API, but provided to the callback function for it to use. Here, * the caller can provide a reference to memory the callback function can * operate on. As the callback function is invoked asynchronously to the * related functionality, it may need to access data structures of the * related functionality which can be referenced using this pointer. The * callback function can access the memory via the "data" field in the * crypto_async_request data structure provided to the callback function. * * Setting the callback function that is triggered once the cipher operation * completes * * The callback function is registered with the aead_request handle and * must comply with the following template:: * * void callback_function(struct crypto_async_request *req, int error) */ static inline void aead_request_set_callback(struct aead_request *req, u32 flags, crypto_completion_t compl, void *data) { req->base.complete = compl; req->base.data = data; req->base.flags = flags; } /** * aead_request_set_crypt - set data buffers * @req: request handle * @src: source scatter / gather list * @dst: destination scatter / gather list * @cryptlen: number of bytes to process from @src * @iv: IV for the cipher operation which must comply with the IV size defined * by crypto_aead_ivsize() * * Setting the source data and destination data scatter / gather lists which * hold the associated data concatenated with the plaintext or ciphertext. See * below for the authentication tag. * * For encryption, the source is treated as the plaintext and the * destination is the ciphertext. For a decryption operation, the use is * reversed - the source is the ciphertext and the destination is the plaintext. * * The memory structure for cipher operation has the following structure: * * - AEAD encryption input: assoc data || plaintext * - AEAD encryption output: assoc data || cipherntext || auth tag * - AEAD decryption input: assoc data || ciphertext || auth tag * - AEAD decryption output: assoc data || plaintext * * Albeit the kernel requires the presence of the AAD buffer, however, * the kernel does not fill the AAD buffer in the output case. If the * caller wants to have that data buffer filled, the caller must either * use an in-place cipher operation (i.e. same memory location for * input/output memory location). */ static inline void aead_request_set_crypt(struct aead_request *req, struct scatterlist *src, struct scatterlist *dst, unsigned int cryptlen, u8 *iv) { req->src = src; req->dst = dst; req->cryptlen = cryptlen; req->iv = iv; } /** * aead_request_set_ad - set associated data information * @req: request handle * @assoclen: number of bytes in associated data * * Setting the AD information. This function sets the length of * the associated data. */ static inline void aead_request_set_ad(struct aead_request *req, unsigned int assoclen) { req->assoclen = assoclen; } #endif /* _CRYPTO_AEAD_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_NLS_H #define _LINUX_NLS_H #include <linux/init.h> /* Unicode has changed over the years. Unicode code points no longer * fit into 16 bits; as of Unicode 5 valid code points range from 0 * to 0x10ffff (17 planes, where each plane holds 65536 code points). * * The original decision to represent Unicode characters as 16-bit * wchar_t values is now outdated. But plane 0 still includes the * most commonly used characters, so we will retain it. The newer * 32-bit unicode_t type can be used when it is necessary to * represent the full Unicode character set. */ /* Plane-0 Unicode character */ typedef u16 wchar_t; #define MAX_WCHAR_T 0xffff /* Arbitrary Unicode character */ typedef u32 unicode_t; struct nls_table { const char *charset; const char *alias; int (*uni2char) (wchar_t uni, unsigned char *out, int boundlen); int (*char2uni) (const unsigned char *rawstring, int boundlen, wchar_t *uni); const unsigned char *charset2lower; const unsigned char *charset2upper; struct module *owner; struct nls_table *next; }; /* this value hold the maximum octet of charset */ #define NLS_MAX_CHARSET_SIZE 6 /* for UTF-8 */ /* Byte order for UTF-16 strings */ enum utf16_endian { UTF16_HOST_ENDIAN, UTF16_LITTLE_ENDIAN, UTF16_BIG_ENDIAN }; /* nls_base.c */ extern int __register_nls(struct nls_table *, struct module *); extern int unregister_nls(struct nls_table *); extern struct nls_table *load_nls(char *); extern void unload_nls(struct nls_table *); extern struct nls_table *load_nls_default(void); #define register_nls(nls) __register_nls((nls), THIS_MODULE) extern int utf8_to_utf32(const u8 *s, int len, unicode_t *pu); extern int utf32_to_utf8(unicode_t u, u8 *s, int maxlen); extern int utf8s_to_utf16s(const u8 *s, int len, enum utf16_endian endian, wchar_t *pwcs, int maxlen); extern int utf16s_to_utf8s(const wchar_t *pwcs, int len, enum utf16_endian endian, u8 *s, int maxlen); static inline unsigned char nls_tolower(struct nls_table *t, unsigned char c) { unsigned char nc = t->charset2lower[c]; return nc ? nc : c; } static inline unsigned char nls_toupper(struct nls_table *t, unsigned char c) { unsigned char nc = t->charset2upper[c]; return nc ? nc : c; } static inline int nls_strnicmp(struct nls_table *t, const unsigned char *s1, const unsigned char *s2, int len) { while (len--) { if (nls_tolower(t, *s1++) != nls_tolower(t, *s2++)) return 1; } return 0; } /* * nls_nullsize - return length of null character for codepage * @codepage - codepage for which to return length of NULL terminator * * Since we can't guarantee that the null terminator will be a particular * length, we have to check against the codepage. If there's a problem * determining it, assume a single-byte NULL terminator. */ static inline int nls_nullsize(const struct nls_table *codepage) { int charlen; char tmp[NLS_MAX_CHARSET_SIZE]; charlen = codepage->uni2char(0, tmp, NLS_MAX_CHARSET_SIZE); return charlen > 0 ? charlen : 1; } #define MODULE_ALIAS_NLS(name) MODULE_ALIAS("nls_" __stringify(name)) #endif /* _LINUX_NLS_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 /* SPDX-License-Identifier: GPL-2.0-only */ /* * IEEE 802.11 defines * * Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen * <jkmaline@cc.hut.fi> * Copyright (c) 2002-2003, Jouni Malinen <jkmaline@cc.hut.fi> * Copyright (c) 2005, Devicescape Software, Inc. * Copyright (c) 2006, Michael Wu <flamingice@sourmilk.net> * Copyright (c) 2013 - 2014 Intel Mobile Communications GmbH * Copyright (c) 2016 - 2017 Intel Deutschland GmbH * Copyright (c) 2018 - 2020 Intel Corporation */ #ifndef LINUX_IEEE80211_H #define LINUX_IEEE80211_H #include <linux/types.h> #include <linux/if_ether.h> #include <linux/etherdevice.h> #include <asm/byteorder.h> #include <asm/unaligned.h> /* * DS bit usage * * TA = transmitter address * RA = receiver address * DA = destination address * SA = source address * * ToDS FromDS A1(RA) A2(TA) A3 A4 Use * ----------------------------------------------------------------- * 0 0 DA SA BSSID - IBSS/DLS * 0 1 DA BSSID SA - AP -> STA * 1 0 BSSID SA DA - AP <- STA * 1 1 RA TA DA SA unspecified (WDS) */ #define FCS_LEN 4 #define IEEE80211_FCTL_VERS 0x0003 #define IEEE80211_FCTL_FTYPE 0x000c #define IEEE80211_FCTL_STYPE 0x00f0 #define IEEE80211_FCTL_TODS 0x0100 #define IEEE80211_FCTL_FROMDS 0x0200 #define IEEE80211_FCTL_MOREFRAGS 0x0400 #define IEEE80211_FCTL_RETRY 0x0800 #define IEEE80211_FCTL_PM 0x1000 #define IEEE80211_FCTL_MOREDATA 0x2000 #define IEEE80211_FCTL_PROTECTED 0x4000 #define IEEE80211_FCTL_ORDER 0x8000 #define IEEE80211_FCTL_CTL_EXT 0x0f00 #define IEEE80211_SCTL_FRAG 0x000F #define IEEE80211_SCTL_SEQ 0xFFF0 #define IEEE80211_FTYPE_MGMT 0x0000 #define IEEE80211_FTYPE_CTL 0x0004 #define IEEE80211_FTYPE_DATA 0x0008 #define IEEE80211_FTYPE_EXT 0x000c /* management */ #define IEEE80211_STYPE_ASSOC_REQ 0x0000 #define IEEE80211_STYPE_ASSOC_RESP 0x0010 #define IEEE80211_STYPE_REASSOC_REQ 0x0020 #define IEEE80211_STYPE_REASSOC_RESP 0x0030 #define IEEE80211_STYPE_PROBE_REQ 0x0040 #define IEEE80211_STYPE_PROBE_RESP 0x0050 #define IEEE80211_STYPE_BEACON 0x0080 #define IEEE80211_STYPE_ATIM 0x0090 #define IEEE80211_STYPE_DISASSOC 0x00A0 #define IEEE80211_STYPE_AUTH 0x00B0 #define IEEE80211_STYPE_DEAUTH 0x00C0 #define IEEE80211_STYPE_ACTION 0x00D0 /* control */ #define IEEE80211_STYPE_CTL_EXT 0x0060 #define IEEE80211_STYPE_BACK_REQ 0x0080 #define IEEE80211_STYPE_BACK 0x0090 #define IEEE80211_STYPE_PSPOLL 0x00A0 #define IEEE80211_STYPE_RTS 0x00B0 #define IEEE80211_STYPE_CTS 0x00C0 #define IEEE80211_STYPE_ACK 0x00D0 #define IEEE80211_STYPE_CFEND 0x00E0 #define IEEE80211_STYPE_CFENDACK 0x00F0 /* data */ #define IEEE80211_STYPE_DATA 0x0000 #define IEEE80211_STYPE_DATA_CFACK 0x0010 #define IEEE80211_STYPE_DATA_CFPOLL 0x0020 #define IEEE80211_STYPE_DATA_CFACKPOLL 0x0030 #define IEEE80211_STYPE_NULLFUNC 0x0040 #define IEEE80211_STYPE_CFACK 0x0050 #define IEEE80211_STYPE_CFPOLL 0x0060 #define IEEE80211_STYPE_CFACKPOLL 0x0070 #define IEEE80211_STYPE_QOS_DATA 0x0080 #define IEEE80211_STYPE_QOS_DATA_CFACK 0x0090 #define IEEE80211_STYPE_QOS_DATA_CFPOLL 0x00A0 #define IEEE80211_STYPE_QOS_DATA_CFACKPOLL 0x00B0 #define IEEE80211_STYPE_QOS_NULLFUNC 0x00C0 #define IEEE80211_STYPE_QOS_CFACK 0x00D0 #define IEEE80211_STYPE_QOS_CFPOLL 0x00E0 #define IEEE80211_STYPE_QOS_CFACKPOLL 0x00F0 /* extension, added by 802.11ad */ #define IEEE80211_STYPE_DMG_BEACON 0x0000 #define IEEE80211_STYPE_S1G_BEACON 0x0010 /* bits unique to S1G beacon */ #define IEEE80211_S1G_BCN_NEXT_TBTT 0x100 /* see 802.11ah-2016 9.9 NDP CMAC frames */ #define IEEE80211_S1G_1MHZ_NDP_BITS 25 #define IEEE80211_S1G_1MHZ_NDP_BYTES 4 #define IEEE80211_S1G_2MHZ_NDP_BITS 37 #define IEEE80211_S1G_2MHZ_NDP_BYTES 5 #define IEEE80211_NDP_FTYPE_CTS 0 #define IEEE80211_NDP_FTYPE_CF_END 0 #define IEEE80211_NDP_FTYPE_PS_POLL 1 #define IEEE80211_NDP_FTYPE_ACK 2 #define IEEE80211_NDP_FTYPE_PS_POLL_ACK 3 #define IEEE80211_NDP_FTYPE_BA 4 #define IEEE80211_NDP_FTYPE_BF_REPORT_POLL 5 #define IEEE80211_NDP_FTYPE_PAGING 6 #define IEEE80211_NDP_FTYPE_PREQ 7 #define SM64(f, v) ((((u64)v) << f##_S) & f) /* NDP CMAC frame fields */ #define IEEE80211_NDP_FTYPE 0x0000000000000007 #define IEEE80211_NDP_FTYPE_S 0x0000000000000000 /* 1M Probe Request 11ah 9.9.3.1.1 */ #define IEEE80211_NDP_1M_PREQ_ANO 0x0000000000000008 #define IEEE80211_NDP_1M_PREQ_ANO_S 3 #define IEEE80211_NDP_1M_PREQ_CSSID 0x00000000000FFFF0 #define IEEE80211_NDP_1M_PREQ_CSSID_S 4 #define IEEE80211_NDP_1M_PREQ_RTYPE 0x0000000000100000 #define IEEE80211_NDP_1M_PREQ_RTYPE_S 20 #define IEEE80211_NDP_1M_PREQ_RSV 0x0000000001E00000 #define IEEE80211_NDP_1M_PREQ_RSV 0x0000000001E00000 /* 2M Probe Request 11ah 9.9.3.1.2 */ #define IEEE80211_NDP_2M_PREQ_ANO 0x0000000000000008 #define IEEE80211_NDP_2M_PREQ_ANO_S 3 #define IEEE80211_NDP_2M_PREQ_CSSID 0x0000000FFFFFFFF0 #define IEEE80211_NDP_2M_PREQ_CSSID_S 4 #define IEEE80211_NDP_2M_PREQ_RTYPE 0x0000001000000000 #define IEEE80211_NDP_2M_PREQ_RTYPE_S 36 #define IEEE80211_ANO_NETTYPE_WILD 15 /* bits unique to S1G beacon */ #define IEEE80211_S1G_BCN_NEXT_TBTT 0x100 /* control extension - for IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTL_EXT */ #define IEEE80211_CTL_EXT_POLL 0x2000 #define IEEE80211_CTL_EXT_SPR 0x3000 #define IEEE80211_CTL_EXT_GRANT 0x4000 #define IEEE80211_CTL_EXT_DMG_CTS 0x5000 #define IEEE80211_CTL_EXT_DMG_DTS 0x6000 #define IEEE80211_CTL_EXT_SSW 0x8000 #define IEEE80211_CTL_EXT_SSW_FBACK 0x9000 #define IEEE80211_CTL_EXT_SSW_ACK 0xa000 #define IEEE80211_SN_MASK ((IEEE80211_SCTL_SEQ) >> 4) #define IEEE80211_MAX_SN IEEE80211_SN_MASK #define IEEE80211_SN_MODULO (IEEE80211_MAX_SN + 1) /* PV1 Layout 11ah 9.8.3.1 */ #define IEEE80211_PV1_FCTL_VERS 0x0003 #define IEEE80211_PV1_FCTL_FTYPE 0x001c #define IEEE80211_PV1_FCTL_STYPE 0x00e0 #define IEEE80211_PV1_FCTL_TODS 0x0100 #define IEEE80211_PV1_FCTL_MOREFRAGS 0x0200 #define IEEE80211_PV1_FCTL_PM 0x0400 #define IEEE80211_PV1_FCTL_MOREDATA 0x0800 #define IEEE80211_PV1_FCTL_PROTECTED 0x1000 #define IEEE80211_PV1_FCTL_END_SP 0x2000 #define IEEE80211_PV1_FCTL_RELAYED 0x4000 #define IEEE80211_PV1_FCTL_ACK_POLICY 0x8000 #define IEEE80211_PV1_FCTL_CTL_EXT 0x0f00 static inline bool ieee80211_sn_less(u16 sn1, u16 sn2) { return ((sn1 - sn2) & IEEE80211_SN_MASK) > (IEEE80211_SN_MODULO >> 1); } static inline u16 ieee80211_sn_add(u16 sn1, u16 sn2) { return (sn1 + sn2) & IEEE80211_SN_MASK; } static inline u16 ieee80211_sn_inc(u16 sn) { return ieee80211_sn_add(sn, 1); } static inline u16 ieee80211_sn_sub(u16 sn1, u16 sn2) { return (sn1 - sn2) & IEEE80211_SN_MASK; } #define IEEE80211_SEQ_TO_SN(seq) (((seq) & IEEE80211_SCTL_SEQ) >> 4) #define IEEE80211_SN_TO_SEQ(ssn) (((ssn) << 4) & IEEE80211_SCTL_SEQ) /* miscellaneous IEEE 802.11 constants */ #define IEEE80211_MAX_FRAG_THRESHOLD 2352 #define IEEE80211_MAX_RTS_THRESHOLD 2353 #define IEEE80211_MAX_AID 2007 #define IEEE80211_MAX_AID_S1G 8191 #define IEEE80211_MAX_TIM_LEN 251 #define IEEE80211_MAX_MESH_PEERINGS 63 /* Maximum size for the MA-UNITDATA primitive, 802.11 standard section 6.2.1.1.2. 802.11e clarifies the figure in section 7.1.2. The frame body is up to 2304 octets long (maximum MSDU size) plus any crypt overhead. */ #define IEEE80211_MAX_DATA_LEN 2304 /* 802.11ad extends maximum MSDU size for DMG (freq > 40Ghz) networks * to 7920 bytes, see 8.2.3 General frame format */ #define IEEE80211_MAX_DATA_LEN_DMG 7920 /* 30 byte 4 addr hdr, 2 byte QoS, 2304 byte MSDU, 12 byte crypt, 4 byte FCS */ #define IEEE80211_MAX_FRAME_LEN 2352 /* Maximal size of an A-MSDU that can be transported in a HT BA session */ #define IEEE80211_MAX_MPDU_LEN_HT_BA 4095 /* Maximal size of an A-MSDU */ #define IEEE80211_MAX_MPDU_LEN_HT_3839 3839 #define IEEE80211_MAX_MPDU_LEN_HT_7935 7935 #define IEEE80211_MAX_MPDU_LEN_VHT_3895 3895 #define IEEE80211_MAX_MPDU_LEN_VHT_7991 7991 #define IEEE80211_MAX_MPDU_LEN_VHT_11454 11454 #define IEEE80211_MAX_SSID_LEN 32 #define IEEE80211_MAX_MESH_ID_LEN 32 #define IEEE80211_FIRST_TSPEC_TSID 8 #define IEEE80211_NUM_TIDS 16 /* number of user priorities 802.11 uses */ #define IEEE80211_NUM_UPS 8 /* number of ACs */ #define IEEE80211_NUM_ACS 4 #define IEEE80211_QOS_CTL_LEN 2 /* 1d tag mask */ #define IEEE80211_QOS_CTL_TAG1D_MASK 0x0007 /* TID mask */ #define IEEE80211_QOS_CTL_TID_MASK 0x000f /* EOSP */ #define IEEE80211_QOS_CTL_EOSP 0x0010 /* ACK policy */ #define IEEE80211_QOS_CTL_ACK_POLICY_NORMAL 0x0000 #define IEEE80211_QOS_CTL_ACK_POLICY_NOACK 0x0020 #define IEEE80211_QOS_CTL_ACK_POLICY_NO_EXPL 0x0040 #define IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK 0x0060 #define IEEE80211_QOS_CTL_ACK_POLICY_MASK 0x0060 /* A-MSDU 802.11n */ #define IEEE80211_QOS_CTL_A_MSDU_PRESENT 0x0080 /* Mesh Control 802.11s */ #define IEEE80211_QOS_CTL_MESH_CONTROL_PRESENT 0x0100 /* Mesh Power Save Level */ #define IEEE80211_QOS_CTL_MESH_PS_LEVEL 0x0200 /* Mesh Receiver Service Period Initiated */ #define IEEE80211_QOS_CTL_RSPI 0x0400 /* U-APSD queue for WMM IEs sent by AP */ #define IEEE80211_WMM_IE_AP_QOSINFO_UAPSD (1<<7) #define IEEE80211_WMM_IE_AP_QOSINFO_PARAM_SET_CNT_MASK 0x0f /* U-APSD queues for WMM IEs sent by STA */ #define IEEE80211_WMM_IE_STA_QOSINFO_AC_VO (1<<0) #define IEEE80211_WMM_IE_STA_QOSINFO_AC_VI (1<<1) #define IEEE80211_WMM_IE_STA_QOSINFO_AC_BK (1<<2) #define IEEE80211_WMM_IE_STA_QOSINFO_AC_BE (1<<3) #define IEEE80211_WMM_IE_STA_QOSINFO_AC_MASK 0x0f /* U-APSD max SP length for WMM IEs sent by STA */ #define IEEE80211_WMM_IE_STA_QOSINFO_SP_ALL 0x00 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_2 0x01 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_4 0x02 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_6 0x03 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_MASK 0x03 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_SHIFT 5 #define IEEE80211_HT_CTL_LEN 4 struct ieee80211_hdr { __le16 frame_control; __le16 duration_id; u8 addr1[ETH_ALEN]; u8 addr2[ETH_ALEN]; u8 addr3[ETH_ALEN]; __le16 seq_ctrl; u8 addr4[ETH_ALEN]; } __packed __aligned(2); struct ieee80211_hdr_3addr { __le16 frame_control; __le16 duration_id; u8 addr1[ETH_ALEN]; u8 addr2[ETH_ALEN]; u8 addr3[ETH_ALEN]; __le16 seq_ctrl; } __packed __aligned(2); struct ieee80211_qos_hdr { __le16 frame_control; __le16 duration_id; u8 addr1[ETH_ALEN]; u8 addr2[ETH_ALEN]; u8 addr3[ETH_ALEN]; __le16 seq_ctrl; __le16 qos_ctrl; } __packed __aligned(2); /** * ieee80211_has_tods - check if IEEE80211_FCTL_TODS is set * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_has_tods(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_TODS)) != 0; } /** * ieee80211_has_fromds - check if IEEE80211_FCTL_FROMDS is set * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_has_fromds(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FROMDS)) != 0; } /** * ieee80211_has_a4 - check if IEEE80211_FCTL_TODS and IEEE80211_FCTL_FROMDS are set * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_has_a4(__le16 fc) { __le16 tmp = cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS); return (fc & tmp) == tmp; } /** * ieee80211_has_morefrags - check if IEEE80211_FCTL_MOREFRAGS is set * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_has_morefrags(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_MOREFRAGS)) != 0; } /** * ieee80211_has_retry - check if IEEE80211_FCTL_RETRY is set * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_has_retry(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_RETRY)) != 0; } /** * ieee80211_has_pm - check if IEEE80211_FCTL_PM is set * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_has_pm(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_PM)) != 0; } /** * ieee80211_has_moredata - check if IEEE80211_FCTL_MOREDATA is set * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_has_moredata(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_MOREDATA)) != 0; } /** * ieee80211_has_protected - check if IEEE80211_FCTL_PROTECTED is set * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_has_protected(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_PROTECTED)) != 0; } /** * ieee80211_has_order - check if IEEE80211_FCTL_ORDER is set * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_has_order(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_ORDER)) != 0; } /** * ieee80211_is_mgmt - check if type is IEEE80211_FTYPE_MGMT * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_mgmt(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) == cpu_to_le16(IEEE80211_FTYPE_MGMT); } /** * ieee80211_is_ctl - check if type is IEEE80211_FTYPE_CTL * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_ctl(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) == cpu_to_le16(IEEE80211_FTYPE_CTL); } /** * ieee80211_is_data - check if type is IEEE80211_FTYPE_DATA * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_data(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) == cpu_to_le16(IEEE80211_FTYPE_DATA); } /** * ieee80211_is_ext - check if type is IEEE80211_FTYPE_EXT * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_ext(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) == cpu_to_le16(IEEE80211_FTYPE_EXT); } /** * ieee80211_is_data_qos - check if type is IEEE80211_FTYPE_DATA and IEEE80211_STYPE_QOS_DATA is set * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_data_qos(__le16 fc) { /* * mask with QOS_DATA rather than IEEE80211_FCTL_STYPE as we just need * to check the one bit */ return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_STYPE_QOS_DATA)) == cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_QOS_DATA); } /** * ieee80211_is_data_present - check if type is IEEE80211_FTYPE_DATA and has data * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_data_present(__le16 fc) { /* * mask with 0x40 and test that that bit is clear to only return true * for the data-containing substypes. */ return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | 0x40)) == cpu_to_le16(IEEE80211_FTYPE_DATA); } /** * ieee80211_is_assoc_req - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ASSOC_REQ * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_assoc_req(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ASSOC_REQ); } /** * ieee80211_is_assoc_resp - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ASSOC_RESP * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_assoc_resp(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ASSOC_RESP); } /** * ieee80211_is_reassoc_req - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_REASSOC_REQ * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_reassoc_req(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_REASSOC_REQ); } /** * ieee80211_is_reassoc_resp - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_REASSOC_RESP * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_reassoc_resp(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_REASSOC_RESP); } /** * ieee80211_is_probe_req - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_PROBE_REQ * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_probe_req(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_PROBE_REQ); } /** * ieee80211_is_probe_resp - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_PROBE_RESP * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_probe_resp(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_PROBE_RESP); } /** * ieee80211_is_beacon - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_BEACON * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_beacon(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_BEACON); } /** * ieee80211_is_s1g_beacon - check if IEEE80211_FTYPE_EXT && * IEEE80211_STYPE_S1G_BEACON * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_s1g_beacon(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_EXT | IEEE80211_STYPE_S1G_BEACON); } /** * ieee80211_next_tbtt_present - check if IEEE80211_FTYPE_EXT && * IEEE80211_STYPE_S1G_BEACON && IEEE80211_S1G_BCN_NEXT_TBTT * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_next_tbtt_present(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_EXT | IEEE80211_STYPE_S1G_BEACON) && fc & cpu_to_le16(IEEE80211_S1G_BCN_NEXT_TBTT); } /** * ieee80211_is_s1g_short_beacon - check if next tbtt present bit is set. Only * true for S1G beacons when they're short. * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_s1g_short_beacon(__le16 fc) { return ieee80211_is_s1g_beacon(fc) && ieee80211_next_tbtt_present(fc); } /** * ieee80211_is_atim - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ATIM * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_atim(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ATIM); } /** * ieee80211_is_disassoc - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_DISASSOC * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_disassoc(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_DISASSOC); } /** * ieee80211_is_auth - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_AUTH * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_auth(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_AUTH); } /** * ieee80211_is_deauth - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_DEAUTH * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_deauth(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_DEAUTH); } /** * ieee80211_is_action - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ACTION * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_action(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ACTION); } /** * ieee80211_is_back_req - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_BACK_REQ * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_back_req(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_BACK_REQ); } /** * ieee80211_is_back - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_BACK * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_back(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_BACK); } /** * ieee80211_is_pspoll - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_PSPOLL * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_pspoll(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_PSPOLL); } /** * ieee80211_is_rts - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_RTS * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_rts(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS); } /** * ieee80211_is_cts - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_CTS * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_cts(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS); } /** * ieee80211_is_ack - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_ACK * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_ack(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_ACK); } /** * ieee80211_is_cfend - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_CFEND * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_cfend(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CFEND); } /** * ieee80211_is_cfendack - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_CFENDACK * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_cfendack(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CFENDACK); } /** * ieee80211_is_nullfunc - check if frame is a regular (non-QoS) nullfunc frame * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_nullfunc(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_NULLFUNC); } /** * ieee80211_is_qos_nullfunc - check if frame is a QoS nullfunc frame * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_qos_nullfunc(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_QOS_NULLFUNC); } /** * ieee80211_is_any_nullfunc - check if frame is regular or QoS nullfunc frame * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_any_nullfunc(__le16 fc) { return (ieee80211_is_nullfunc(fc) || ieee80211_is_qos_nullfunc(fc)); } /** * ieee80211_is_bufferable_mmpdu - check if frame is bufferable MMPDU * @fc: frame control field in little-endian byteorder */ static inline bool ieee80211_is_bufferable_mmpdu(__le16 fc) { /* IEEE 802.11-2012, definition of "bufferable management frame"; * note that this ignores the IBSS special case. */ return ieee80211_is_mgmt(fc) && (ieee80211_is_action(fc) || ieee80211_is_disassoc(fc) || ieee80211_is_deauth(fc)); } /** * ieee80211_is_first_frag - check if IEEE80211_SCTL_FRAG is not set * @seq_ctrl: frame sequence control bytes in little-endian byteorder */ static inline bool ieee80211_is_first_frag(__le16 seq_ctrl) { return (seq_ctrl & cpu_to_le16(IEEE80211_SCTL_FRAG)) == 0; } /** * ieee80211_is_frag - check if a frame is a fragment * @hdr: 802.11 header of the frame */ static inline bool ieee80211_is_frag(struct ieee80211_hdr *hdr) { return ieee80211_has_morefrags(hdr->frame_control) || hdr->seq_ctrl & cpu_to_le16(IEEE80211_SCTL_FRAG); } struct ieee80211s_hdr { u8 flags; u8 ttl; __le32 seqnum; u8 eaddr1[ETH_ALEN]; u8 eaddr2[ETH_ALEN]; } __packed __aligned(2); /* Mesh flags */ #define MESH_FLAGS_AE_A4 0x1 #define MESH_FLAGS_AE_A5_A6 0x2 #define MESH_FLAGS_AE 0x3 #define MESH_FLAGS_PS_DEEP 0x4 /** * enum ieee80211_preq_flags - mesh PREQ element flags * * @IEEE80211_PREQ_PROACTIVE_PREP_FLAG: proactive PREP subfield */ enum ieee80211_preq_flags { IEEE80211_PREQ_PROACTIVE_PREP_FLAG = 1<<2, }; /** * enum ieee80211_preq_target_flags - mesh PREQ element per target flags * * @IEEE80211_PREQ_TO_FLAG: target only subfield * @IEEE80211_PREQ_USN_FLAG: unknown target HWMP sequence number subfield */ enum ieee80211_preq_target_flags { IEEE80211_PREQ_TO_FLAG = 1<<0, IEEE80211_PREQ_USN_FLAG = 1<<2, }; /** * struct ieee80211_quiet_ie * * This structure refers to "Quiet information element" */ struct ieee80211_quiet_ie { u8 count; u8 period; __le16 duration; __le16 offset; } __packed; /** * struct ieee80211_msrment_ie * * This structure refers to "Measurement Request/Report information element" */ struct ieee80211_msrment_ie { u8 token; u8 mode; u8 type; u8 request[]; } __packed; /** * struct ieee80211_channel_sw_ie * * This structure refers to "Channel Switch Announcement information element" */ struct ieee80211_channel_sw_ie { u8 mode; u8 new_ch_num; u8 count; } __packed; /** * struct ieee80211_ext_chansw_ie * * This structure represents the "Extended Channel Switch Announcement element" */ struct ieee80211_ext_chansw_ie { u8 mode; u8 new_operating_class; u8 new_ch_num; u8 count; } __packed; /** * struct ieee80211_sec_chan_offs_ie - secondary channel offset IE * @sec_chan_offs: secondary channel offset, uses IEEE80211_HT_PARAM_CHA_SEC_* * values here * This structure represents the "Secondary Channel Offset element" */ struct ieee80211_sec_chan_offs_ie { u8 sec_chan_offs; } __packed; /** * struct ieee80211_mesh_chansw_params_ie - mesh channel switch parameters IE * * This structure represents the "Mesh Channel Switch Paramters element" */ struct ieee80211_mesh_chansw_params_ie { u8 mesh_ttl; u8 mesh_flags; __le16 mesh_reason; __le16 mesh_pre_value; } __packed; /** * struct ieee80211_wide_bw_chansw_ie - wide bandwidth channel switch IE */ struct ieee80211_wide_bw_chansw_ie { u8 new_channel_width; u8 new_center_freq_seg0, new_center_freq_seg1; } __packed; /** * struct ieee80211_tim * * This structure refers to "Traffic Indication Map information element" */ struct ieee80211_tim_ie { u8 dtim_count; u8 dtim_period; u8 bitmap_ctrl; /* variable size: 1 - 251 bytes */ u8 virtual_map[1]; } __packed; /** * struct ieee80211_meshconf_ie * * This structure refers to "Mesh Configuration information element" */ struct ieee80211_meshconf_ie { u8 meshconf_psel; u8 meshconf_pmetric; u8 meshconf_congest; u8 meshconf_synch; u8 meshconf_auth; u8 meshconf_form; u8 meshconf_cap; } __packed; /** * enum mesh_config_capab_flags - Mesh Configuration IE capability field flags * * @IEEE80211_MESHCONF_CAPAB_ACCEPT_PLINKS: STA is willing to establish * additional mesh peerings with other mesh STAs * @IEEE80211_MESHCONF_CAPAB_FORWARDING: the STA forwards MSDUs * @IEEE80211_MESHCONF_CAPAB_TBTT_ADJUSTING: TBTT adjustment procedure * is ongoing * @IEEE80211_MESHCONF_CAPAB_POWER_SAVE_LEVEL: STA is in deep sleep mode or has * neighbors in deep sleep mode */ enum mesh_config_capab_flags { IEEE80211_MESHCONF_CAPAB_ACCEPT_PLINKS = 0x01, IEEE80211_MESHCONF_CAPAB_FORWARDING = 0x08, IEEE80211_MESHCONF_CAPAB_TBTT_ADJUSTING = 0x20, IEEE80211_MESHCONF_CAPAB_POWER_SAVE_LEVEL = 0x40, }; #define IEEE80211_MESHCONF_FORM_CONNECTED_TO_GATE 0x1 /** * mesh channel switch parameters element's flag indicator * */ #define WLAN_EID_CHAN_SWITCH_PARAM_TX_RESTRICT BIT(0) #define WLAN_EID_CHAN_SWITCH_PARAM_INITIATOR BIT(1) #define WLAN_EID_CHAN_SWITCH_PARAM_REASON BIT(2) /** * struct ieee80211_rann_ie * * This structure refers to "Root Announcement information element" */ struct ieee80211_rann_ie { u8 rann_flags; u8 rann_hopcount; u8 rann_ttl; u8 rann_addr[ETH_ALEN]; __le32 rann_seq; __le32 rann_interval; __le32 rann_metric; } __packed; enum ieee80211_rann_flags { RANN_FLAG_IS_GATE = 1 << 0, }; enum ieee80211_ht_chanwidth_values { IEEE80211_HT_CHANWIDTH_20MHZ = 0, IEEE80211_HT_CHANWIDTH_ANY = 1, }; /** * enum ieee80211_opmode_bits - VHT operating mode field bits * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_MASK: channel width mask * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_20MHZ: 20 MHz channel width * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_40MHZ: 40 MHz channel width * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_80MHZ: 80 MHz channel width * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_160MHZ: 160 MHz or 80+80 MHz channel width * @IEEE80211_OPMODE_NOTIF_BW_160_80P80: 160 / 80+80 MHz indicator flag * @IEEE80211_OPMODE_NOTIF_RX_NSS_MASK: number of spatial streams mask * (the NSS value is the value of this field + 1) * @IEEE80211_OPMODE_NOTIF_RX_NSS_SHIFT: number of spatial streams shift * @IEEE80211_OPMODE_NOTIF_RX_NSS_TYPE_BF: indicates streams in SU-MIMO PPDU * using a beamforming steering matrix */ enum ieee80211_vht_opmode_bits { IEEE80211_OPMODE_NOTIF_CHANWIDTH_MASK = 0x03, IEEE80211_OPMODE_NOTIF_CHANWIDTH_20MHZ = 0, IEEE80211_OPMODE_NOTIF_CHANWIDTH_40MHZ = 1, IEEE80211_OPMODE_NOTIF_CHANWIDTH_80MHZ = 2, IEEE80211_OPMODE_NOTIF_CHANWIDTH_160MHZ = 3, IEEE80211_OPMODE_NOTIF_BW_160_80P80 = 0x04, IEEE80211_OPMODE_NOTIF_RX_NSS_MASK = 0x70, IEEE80211_OPMODE_NOTIF_RX_NSS_SHIFT = 4, IEEE80211_OPMODE_NOTIF_RX_NSS_TYPE_BF = 0x80, }; /** * enum ieee80211_s1g_chanwidth * These are defined in IEEE802.11-2016ah Table 10-20 * as BSS Channel Width * * @IEEE80211_S1G_CHANWIDTH_1MHZ: 1MHz operating channel * @IEEE80211_S1G_CHANWIDTH_2MHZ: 2MHz operating channel * @IEEE80211_S1G_CHANWIDTH_4MHZ: 4MHz operating channel * @IEEE80211_S1G_CHANWIDTH_8MHZ: 8MHz operating channel * @IEEE80211_S1G_CHANWIDTH_16MHZ: 16MHz operating channel */ enum ieee80211_s1g_chanwidth { IEEE80211_S1G_CHANWIDTH_1MHZ = 0, IEEE80211_S1G_CHANWIDTH_2MHZ = 1, IEEE80211_S1G_CHANWIDTH_4MHZ = 3, IEEE80211_S1G_CHANWIDTH_8MHZ = 7, IEEE80211_S1G_CHANWIDTH_16MHZ = 15, }; #define WLAN_SA_QUERY_TR_ID_LEN 2 #define WLAN_MEMBERSHIP_LEN 8 #define WLAN_USER_POSITION_LEN 16 /** * struct ieee80211_tpc_report_ie * * This structure refers to "TPC Report element" */ struct ieee80211_tpc_report_ie { u8 tx_power; u8 link_margin; } __packed; #define IEEE80211_ADDBA_EXT_FRAG_LEVEL_MASK GENMASK(2, 1) #define IEEE80211_ADDBA_EXT_FRAG_LEVEL_SHIFT 1 #define IEEE80211_ADDBA_EXT_NO_FRAG BIT(0) struct ieee80211_addba_ext_ie { u8 data; } __packed; /** * struct ieee80211_s1g_bcn_compat_ie * * S1G Beacon Compatibility element */ struct ieee80211_s1g_bcn_compat_ie { __le16 compat_info; __le16 beacon_int; __le32 tsf_completion; } __packed; /** * struct ieee80211_s1g_oper_ie * * S1G Operation element */ struct ieee80211_s1g_oper_ie { u8 ch_width; u8 oper_class; u8 primary_ch; u8 oper_ch; __le16 basic_mcs_nss; } __packed; /** * struct ieee80211_aid_response_ie * * AID Response element */ struct ieee80211_aid_response_ie { __le16 aid; u8 switch_count; __le16 response_int; } __packed; struct ieee80211_s1g_cap { u8 capab_info[10]; u8 supp_mcs_nss[5]; } __packed; struct ieee80211_ext { __le16 frame_control; __le16 duration; union { struct { u8 sa[ETH_ALEN]; __le32 timestamp; u8 change_seq; u8 variable[0]; } __packed s1g_beacon; struct { u8 sa[ETH_ALEN]; __le32 timestamp; u8 change_seq; u8 next_tbtt[3]; u8 variable[0]; } __packed s1g_short_beacon; } u; } __packed __aligned(2); struct ieee80211_mgmt { __le16 frame_control; __le16 duration; u8 da[ETH_ALEN]; u8 sa[ETH_ALEN]; u8 bssid[ETH_ALEN]; __le16 seq_ctrl; union { struct { __le16 auth_alg; __le16 auth_transaction; __le16 status_code; /* possibly followed by Challenge text */ u8 variable[0]; } __packed auth; struct { __le16 reason_code; } __packed deauth; struct { __le16 capab_info; __le16 listen_interval; /* followed by SSID and Supported rates */ u8 variable[0]; } __packed assoc_req; struct { __le16 capab_info; __le16 status_code; __le16 aid; /* followed by Supported rates */ u8 variable[0]; } __packed assoc_resp, reassoc_resp; struct { __le16 capab_info; __le16 status_code; u8 variable[0]; } __packed s1g_assoc_resp, s1g_reassoc_resp; struct { __le16 capab_info; __le16 listen_interval; u8 current_ap[ETH_ALEN]; /* followed by SSID and Supported rates */ u8 variable[0]; } __packed reassoc_req; struct { __le16 reason_code; } __packed disassoc; struct { __le64 timestamp; __le16 beacon_int; __le16 capab_info; /* followed by some of SSID, Supported rates, * FH Params, DS Params, CF Params, IBSS Params, TIM */ u8 variable[0]; } __packed beacon; struct { /* only variable items: SSID, Supported rates */ u8 variable[0]; } __packed probe_req; struct { __le64 timestamp; __le16 beacon_int; __le16 capab_info; /* followed by some of SSID, Supported rates, * FH Params, DS Params, CF Params, IBSS Params */ u8 variable[0]; } __packed probe_resp; struct { u8 category; union { struct { u8 action_code; u8 dialog_token; u8 status_code; u8 variable[0]; } __packed wme_action; struct{ u8 action_code; u8 variable[0]; } __packed chan_switch; struct{ u8 action_code; struct ieee80211_ext_chansw_ie data; u8 variable[0]; } __packed ext_chan_switch; struct{ u8 action_code; u8 dialog_token; u8 element_id; u8 length; struct ieee80211_msrment_ie msr_elem; } __packed measurement; struct{ u8 action_code; u8 dialog_token; __le16 capab; __le16 timeout; __le16 start_seq_num; /* followed by BA Extension */ u8 variable[0]; } __packed addba_req; struct{ u8 action_code; u8 dialog_token; __le16 status; __le16 capab; __le16 timeout; } __packed addba_resp; struct{ u8 action_code; __le16 params; __le16 reason_code; } __packed delba; struct { u8 action_code; u8 variable[0]; } __packed self_prot; struct{ u8 action_code; u8 variable[0]; } __packed mesh_action; struct { u8 action; u8 trans_id[WLAN_SA_QUERY_TR_ID_LEN]; } __packed sa_query; struct { u8 action; u8 smps_control; } __packed ht_smps; struct { u8 action_code; u8 chanwidth; } __packed ht_notify_cw; struct { u8 action_code; u8 dialog_token; __le16 capability; u8 variable[0]; } __packed tdls_discover_resp; struct { u8 action_code; u8 operating_mode; } __packed vht_opmode_notif; struct { u8 action_code; u8 membership[WLAN_MEMBERSHIP_LEN]; u8 position[WLAN_USER_POSITION_LEN]; } __packed vht_group_notif; struct { u8 action_code; u8 dialog_token; u8 tpc_elem_id; u8 tpc_elem_length; struct ieee80211_tpc_report_ie tpc; } __packed tpc_report; struct { u8 action_code; u8 dialog_token; u8 follow_up; u8 tod[6]; u8 toa[6]; __le16 tod_error; __le16 toa_error; u8 variable[0]; } __packed ftm; } u; } __packed action; } u; } __packed __aligned(2); /* Supported rates membership selectors */ #define BSS_MEMBERSHIP_SELECTOR_HT_PHY 127 #define BSS_MEMBERSHIP_SELECTOR_VHT_PHY 126 #define BSS_MEMBERSHIP_SELECTOR_HE_PHY 122 /* mgmt header + 1 byte category code */ #define IEEE80211_MIN_ACTION_SIZE offsetof(struct ieee80211_mgmt, u.action.u) /* Management MIC information element (IEEE 802.11w) */ struct ieee80211_mmie { u8 element_id; u8 length; __le16 key_id; u8 sequence_number[6]; u8 mic[8]; } __packed; /* Management MIC information element (IEEE 802.11w) for GMAC and CMAC-256 */ struct ieee80211_mmie_16 { u8 element_id; u8 length; __le16 key_id; u8 sequence_number[6]; u8 mic[16]; } __packed; struct ieee80211_vendor_ie { u8 element_id; u8 len; u8 oui[3]; u8 oui_type; } __packed; struct ieee80211_wmm_ac_param { u8 aci_aifsn; /* AIFSN, ACM, ACI */ u8 cw; /* ECWmin, ECWmax (CW = 2^ECW - 1) */ __le16 txop_limit; } __packed; struct ieee80211_wmm_param_ie { u8 element_id; /* Element ID: 221 (0xdd); */ u8 len; /* Length: 24 */ /* required fields for WMM version 1 */ u8 oui[3]; /* 00:50:f2 */ u8 oui_type; /* 2 */ u8 oui_subtype; /* 1 */ u8 version; /* 1 for WMM version 1.0 */ u8 qos_info; /* AP/STA specific QoS info */ u8 reserved; /* 0 */ /* AC_BE, AC_BK, AC_VI, AC_VO */ struct ieee80211_wmm_ac_param ac[4]; } __packed; /* Control frames */ struct ieee80211_rts { __le16 frame_control; __le16 duration; u8 ra[ETH_ALEN]; u8 ta[ETH_ALEN]; } __packed __aligned(2); struct ieee80211_cts { __le16 frame_control; __le16 duration; u8 ra[ETH_ALEN]; } __packed __aligned(2); struct ieee80211_pspoll { __le16 frame_control; __le16 aid; u8 bssid[ETH_ALEN]; u8 ta[ETH_ALEN]; } __packed __aligned(2); /* TDLS */ /* Channel switch timing */ struct ieee80211_ch_switch_timing { __le16 switch_time; __le16 switch_timeout; } __packed; /* Link-id information element */ struct ieee80211_tdls_lnkie { u8 ie_type; /* Link Identifier IE */ u8 ie_len; u8 bssid[ETH_ALEN]; u8 init_sta[ETH_ALEN]; u8 resp_sta[ETH_ALEN]; } __packed; struct ieee80211_tdls_data { u8 da[ETH_ALEN]; u8 sa[ETH_ALEN]; __be16 ether_type; u8 payload_type; u8 category; u8 action_code; union { struct { u8 dialog_token; __le16 capability; u8 variable[0]; } __packed setup_req; struct { __le16 status_code; u8 dialog_token; __le16 capability; u8 variable[0]; } __packed setup_resp; struct { __le16 status_code; u8 dialog_token; u8 variable[0]; } __packed setup_cfm; struct { __le16 reason_code; u8 variable[0]; } __packed teardown; struct { u8 dialog_token; u8 variable[0]; } __packed discover_req; struct { u8 target_channel; u8 oper_class; u8 variable[0]; } __packed chan_switch_req; struct { __le16 status_code; u8 variable[0]; } __packed chan_switch_resp; } u; } __packed; /* * Peer-to-Peer IE attribute related definitions. */ /** * enum ieee80211_p2p_attr_id - identifies type of peer-to-peer attribute. */ enum ieee80211_p2p_attr_id { IEEE80211_P2P_ATTR_STATUS = 0, IEEE80211_P2P_ATTR_MINOR_REASON, IEEE80211_P2P_ATTR_CAPABILITY, IEEE80211_P2P_ATTR_DEVICE_ID, IEEE80211_P2P_ATTR_GO_INTENT, IEEE80211_P2P_ATTR_GO_CONFIG_TIMEOUT, IEEE80211_P2P_ATTR_LISTEN_CHANNEL, IEEE80211_P2P_ATTR_GROUP_BSSID, IEEE80211_P2P_ATTR_EXT_LISTEN_TIMING, IEEE80211_P2P_ATTR_INTENDED_IFACE_ADDR, IEEE80211_P2P_ATTR_MANAGABILITY, IEEE80211_P2P_ATTR_CHANNEL_LIST, IEEE80211_P2P_ATTR_ABSENCE_NOTICE, IEEE80211_P2P_ATTR_DEVICE_INFO, IEEE80211_P2P_ATTR_GROUP_INFO, IEEE80211_P2P_ATTR_GROUP_ID, IEEE80211_P2P_ATTR_INTERFACE, IEEE80211_P2P_ATTR_OPER_CHANNEL, IEEE80211_P2P_ATTR_INVITE_FLAGS, /* 19 - 220: Reserved */ IEEE80211_P2P_ATTR_VENDOR_SPECIFIC = 221, IEEE80211_P2P_ATTR_MAX }; /* Notice of Absence attribute - described in P2P spec 4.1.14 */ /* Typical max value used here */ #define IEEE80211_P2P_NOA_DESC_MAX 4 struct ieee80211_p2p_noa_desc { u8 count; __le32 duration; __le32 interval; __le32 start_time; } __packed; struct ieee80211_p2p_noa_attr { u8 index; u8 oppps_ctwindow; struct ieee80211_p2p_noa_desc desc[IEEE80211_P2P_NOA_DESC_MAX]; } __packed; #define IEEE80211_P2P_OPPPS_ENABLE_BIT BIT(7) #define IEEE80211_P2P_OPPPS_CTWINDOW_MASK 0x7F /** * struct ieee80211_bar - HT Block Ack Request * * This structure refers to "HT BlockAckReq" as * described in 802.11n draft section 7.2.1.7.1 */ struct ieee80211_bar { __le16 frame_control; __le16 duration; __u8 ra[ETH_ALEN]; __u8 ta[ETH_ALEN]; __le16 control; __le16 start_seq_num; } __packed; /* 802.11 BAR control masks */ #define IEEE80211_BAR_CTRL_ACK_POLICY_NORMAL 0x0000 #define IEEE80211_BAR_CTRL_MULTI_TID 0x0002 #define IEEE80211_BAR_CTRL_CBMTID_COMPRESSED_BA 0x0004 #define IEEE80211_BAR_CTRL_TID_INFO_MASK 0xf000 #define IEEE80211_BAR_CTRL_TID_INFO_SHIFT 12 #define IEEE80211_HT_MCS_MASK_LEN 10 /** * struct ieee80211_mcs_info - MCS information * @rx_mask: RX mask * @rx_highest: highest supported RX rate. If set represents * the highest supported RX data rate in units of 1 Mbps. * If this field is 0 this value should not be used to * consider the highest RX data rate supported. * @tx_params: TX parameters */ struct ieee80211_mcs_info { u8 rx_mask[IEEE80211_HT_MCS_MASK_LEN]; __le16 rx_highest; u8 tx_params; u8 reserved[3]; } __packed; /* 802.11n HT capability MSC set */ #define IEEE80211_HT_MCS_RX_HIGHEST_MASK 0x3ff #define IEEE80211_HT_MCS_TX_DEFINED 0x01 #define IEEE80211_HT_MCS_TX_RX_DIFF 0x02 /* value 0 == 1 stream etc */ #define IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK 0x0C #define IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT 2 #define IEEE80211_HT_MCS_TX_MAX_STREAMS 4 #define IEEE80211_HT_MCS_TX_UNEQUAL_MODULATION 0x10 /* * 802.11n D5.0 20.3.5 / 20.6 says: * - indices 0 to 7 and 32 are single spatial stream * - 8 to 31 are multiple spatial streams using equal modulation * [8..15 for two streams, 16..23 for three and 24..31 for four] * - remainder are multiple spatial streams using unequal modulation */ #define IEEE80211_HT_MCS_UNEQUAL_MODULATION_START 33 #define IEEE80211_HT_MCS_UNEQUAL_MODULATION_START_BYTE \ (IEEE80211_HT_MCS_UNEQUAL_MODULATION_START / 8) /** * struct ieee80211_ht_cap - HT capabilities * * This structure is the "HT capabilities element" as * described in 802.11n D5.0 7.3.2.57 */ struct ieee80211_ht_cap { __le16 cap_info; u8 ampdu_params_info; /* 16 bytes MCS information */ struct ieee80211_mcs_info mcs; __le16 extended_ht_cap_info; __le32 tx_BF_cap_info; u8 antenna_selection_info; } __packed; /* 802.11n HT capabilities masks (for cap_info) */ #define IEEE80211_HT_CAP_LDPC_CODING 0x0001 #define IEEE80211_HT_CAP_SUP_WIDTH_20_40 0x0002 #define IEEE80211_HT_CAP_SM_PS 0x000C #define IEEE80211_HT_CAP_SM_PS_SHIFT 2 #define IEEE80211_HT_CAP_GRN_FLD 0x0010 #define IEEE80211_HT_CAP_SGI_20 0x0020 #define IEEE80211_HT_CAP_SGI_40 0x0040 #define IEEE80211_HT_CAP_TX_STBC 0x0080 #define IEEE80211_HT_CAP_RX_STBC 0x0300 #define IEEE80211_HT_CAP_RX_STBC_SHIFT 8 #define IEEE80211_HT_CAP_DELAY_BA 0x0400 #define IEEE80211_HT_CAP_MAX_AMSDU 0x0800 #define IEEE80211_HT_CAP_DSSSCCK40 0x1000 #define IEEE80211_HT_CAP_RESERVED 0x2000 #define IEEE80211_HT_CAP_40MHZ_INTOLERANT 0x4000 #define IEEE80211_HT_CAP_LSIG_TXOP_PROT 0x8000 /* 802.11n HT extended capabilities masks (for extended_ht_cap_info) */ #define IEEE80211_HT_EXT_CAP_PCO 0x0001 #define IEEE80211_HT_EXT_CAP_PCO_TIME 0x0006 #define IEEE80211_HT_EXT_CAP_PCO_TIME_SHIFT 1 #define IEEE80211_HT_EXT_CAP_MCS_FB 0x0300 #define IEEE80211_HT_EXT_CAP_MCS_FB_SHIFT 8 #define IEEE80211_HT_EXT_CAP_HTC_SUP 0x0400 #define IEEE80211_HT_EXT_CAP_RD_RESPONDER 0x0800 /* 802.11n HT capability AMPDU settings (for ampdu_params_info) */ #define IEEE80211_HT_AMPDU_PARM_FACTOR 0x03 #define IEEE80211_HT_AMPDU_PARM_DENSITY 0x1C #define IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT 2 /* * Maximum length of AMPDU that the STA can receive in high-throughput (HT). * Length = 2 ^ (13 + max_ampdu_length_exp) - 1 (octets) */ enum ieee80211_max_ampdu_length_exp { IEEE80211_HT_MAX_AMPDU_8K = 0, IEEE80211_HT_MAX_AMPDU_16K = 1, IEEE80211_HT_MAX_AMPDU_32K = 2, IEEE80211_HT_MAX_AMPDU_64K = 3 }; /* * Maximum length of AMPDU that the STA can receive in VHT. * Length = 2 ^ (13 + max_ampdu_length_exp) - 1 (octets) */ enum ieee80211_vht_max_ampdu_length_exp { IEEE80211_VHT_MAX_AMPDU_8K = 0, IEEE80211_VHT_MAX_AMPDU_16K = 1, IEEE80211_VHT_MAX_AMPDU_32K = 2, IEEE80211_VHT_MAX_AMPDU_64K = 3, IEEE80211_VHT_MAX_AMPDU_128K = 4, IEEE80211_VHT_MAX_AMPDU_256K = 5, IEEE80211_VHT_MAX_AMPDU_512K = 6, IEEE80211_VHT_MAX_AMPDU_1024K = 7 }; #define IEEE80211_HT_MAX_AMPDU_FACTOR 13 /* Minimum MPDU start spacing */ enum ieee80211_min_mpdu_spacing { IEEE80211_HT_MPDU_DENSITY_NONE = 0, /* No restriction */ IEEE80211_HT_MPDU_DENSITY_0_25 = 1, /* 1/4 usec */ IEEE80211_HT_MPDU_DENSITY_0_5 = 2, /* 1/2 usec */ IEEE80211_HT_MPDU_DENSITY_1 = 3, /* 1 usec */ IEEE80211_HT_MPDU_DENSITY_2 = 4, /* 2 usec */ IEEE80211_HT_MPDU_DENSITY_4 = 5, /* 4 usec */ IEEE80211_HT_MPDU_DENSITY_8 = 6, /* 8 usec */ IEEE80211_HT_MPDU_DENSITY_16 = 7 /* 16 usec */ }; /** * struct ieee80211_ht_operation - HT operation IE * * This structure is the "HT operation element" as * described in 802.11n-2009 7.3.2.57 */ struct ieee80211_ht_operation { u8 primary_chan; u8 ht_param; __le16 operation_mode; __le16 stbc_param; u8 basic_set[16]; } __packed; /* for ht_param */ #define IEEE80211_HT_PARAM_CHA_SEC_OFFSET 0x03 #define IEEE80211_HT_PARAM_CHA_SEC_NONE 0x00 #define IEEE80211_HT_PARAM_CHA_SEC_ABOVE 0x01 #define IEEE80211_HT_PARAM_CHA_SEC_BELOW 0x03 #define IEEE80211_HT_PARAM_CHAN_WIDTH_ANY 0x04 #define IEEE80211_HT_PARAM_RIFS_MODE 0x08 /* for operation_mode */ #define IEEE80211_HT_OP_MODE_PROTECTION 0x0003 #define IEEE80211_HT_OP_MODE_PROTECTION_NONE 0 #define IEEE80211_HT_OP_MODE_PROTECTION_NONMEMBER 1 #define IEEE80211_HT_OP_MODE_PROTECTION_20MHZ 2 #define IEEE80211_HT_OP_MODE_PROTECTION_NONHT_MIXED 3 #define IEEE80211_HT_OP_MODE_NON_GF_STA_PRSNT 0x0004 #define IEEE80211_HT_OP_MODE_NON_HT_STA_PRSNT 0x0010 #define IEEE80211_HT_OP_MODE_CCFS2_SHIFT 5 #define IEEE80211_HT_OP_MODE_CCFS2_MASK 0x1fe0 /* for stbc_param */ #define IEEE80211_HT_STBC_PARAM_DUAL_BEACON 0x0040 #define IEEE80211_HT_STBC_PARAM_DUAL_CTS_PROT 0x0080 #define IEEE80211_HT_STBC_PARAM_STBC_BEACON 0x0100 #define IEEE80211_HT_STBC_PARAM_LSIG_TXOP_FULLPROT 0x0200 #define IEEE80211_HT_STBC_PARAM_PCO_ACTIVE 0x0400 #define IEEE80211_HT_STBC_PARAM_PCO_PHASE 0x0800 /* block-ack parameters */ #define IEEE80211_ADDBA_PARAM_AMSDU_MASK 0x0001 #define IEEE80211_ADDBA_PARAM_POLICY_MASK 0x0002 #define IEEE80211_ADDBA_PARAM_TID_MASK 0x003C #define IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK 0xFFC0 #define IEEE80211_DELBA_PARAM_TID_MASK 0xF000 #define IEEE80211_DELBA_PARAM_INITIATOR_MASK 0x0800 /* * A-MPDU buffer sizes * According to HT size varies from 8 to 64 frames * HE adds the ability to have up to 256 frames. */ #define IEEE80211_MIN_AMPDU_BUF 0x8 #define IEEE80211_MAX_AMPDU_BUF_HT 0x40 #define IEEE80211_MAX_AMPDU_BUF 0x100 /* Spatial Multiplexing Power Save Modes (for capability) */ #define WLAN_HT_CAP_SM_PS_STATIC 0 #define WLAN_HT_CAP_SM_PS_DYNAMIC 1 #define WLAN_HT_CAP_SM_PS_INVALID 2 #define WLAN_HT_CAP_SM_PS_DISABLED 3 /* for SM power control field lower two bits */ #define WLAN_HT_SMPS_CONTROL_DISABLED 0 #define WLAN_HT_SMPS_CONTROL_STATIC 1 #define WLAN_HT_SMPS_CONTROL_DYNAMIC 3 /** * struct ieee80211_vht_mcs_info - VHT MCS information * @rx_mcs_map: RX MCS map 2 bits for each stream, total 8 streams * @rx_highest: Indicates highest long GI VHT PPDU data rate * STA can receive. Rate expressed in units of 1 Mbps. * If this field is 0 this value should not be used to * consider the highest RX data rate supported. * The top 3 bits of this field indicate the Maximum NSTS,total * (a beamformee capability.) * @tx_mcs_map: TX MCS map 2 bits for each stream, total 8 streams * @tx_highest: Indicates highest long GI VHT PPDU data rate * STA can transmit. Rate expressed in units of 1 Mbps. * If this field is 0 this value should not be used to * consider the highest TX data rate supported. * The top 2 bits of this field are reserved, the * 3rd bit from the top indiciates VHT Extended NSS BW * Capability. */ struct ieee80211_vht_mcs_info { __le16 rx_mcs_map; __le16 rx_highest; __le16 tx_mcs_map; __le16 tx_highest; } __packed; /* for rx_highest */ #define IEEE80211_VHT_MAX_NSTS_TOTAL_SHIFT 13 #define IEEE80211_VHT_MAX_NSTS_TOTAL_MASK (7 << IEEE80211_VHT_MAX_NSTS_TOTAL_SHIFT) /* for tx_highest */ #define IEEE80211_VHT_EXT_NSS_BW_CAPABLE (1 << 13) /** * enum ieee80211_vht_mcs_support - VHT MCS support definitions * @IEEE80211_VHT_MCS_SUPPORT_0_7: MCSes 0-7 are supported for the * number of streams * @IEEE80211_VHT_MCS_SUPPORT_0_8: MCSes 0-8 are supported * @IEEE80211_VHT_MCS_SUPPORT_0_9: MCSes 0-9 are supported * @IEEE80211_VHT_MCS_NOT_SUPPORTED: This number of streams isn't supported * * These definitions are used in each 2-bit subfield of the @rx_mcs_map * and @tx_mcs_map fields of &struct ieee80211_vht_mcs_info, which are * both split into 8 subfields by number of streams. These values indicate * which MCSes are supported for the number of streams the value appears * for. */ enum ieee80211_vht_mcs_support { IEEE80211_VHT_MCS_SUPPORT_0_7 = 0, IEEE80211_VHT_MCS_SUPPORT_0_8 = 1, IEEE80211_VHT_MCS_SUPPORT_0_9 = 2, IEEE80211_VHT_MCS_NOT_SUPPORTED = 3, }; /** * struct ieee80211_vht_cap - VHT capabilities * * This structure is the "VHT capabilities element" as * described in 802.11ac D3.0 8.4.2.160 * @vht_cap_info: VHT capability info * @supp_mcs: VHT MCS supported rates */ struct ieee80211_vht_cap { __le32 vht_cap_info; struct ieee80211_vht_mcs_info supp_mcs; } __packed; /** * enum ieee80211_vht_chanwidth - VHT channel width * @IEEE80211_VHT_CHANWIDTH_USE_HT: use the HT operation IE to * determine the channel width (20 or 40 MHz) * @IEEE80211_VHT_CHANWIDTH_80MHZ: 80 MHz bandwidth * @IEEE80211_VHT_CHANWIDTH_160MHZ: 160 MHz bandwidth * @IEEE80211_VHT_CHANWIDTH_80P80MHZ: 80+80 MHz bandwidth */ enum ieee80211_vht_chanwidth { IEEE80211_VHT_CHANWIDTH_USE_HT = 0, IEEE80211_VHT_CHANWIDTH_80MHZ = 1, IEEE80211_VHT_CHANWIDTH_160MHZ = 2, IEEE80211_VHT_CHANWIDTH_80P80MHZ = 3, }; /** * struct ieee80211_vht_operation - VHT operation IE * * This structure is the "VHT operation element" as * described in 802.11ac D3.0 8.4.2.161 * @chan_width: Operating channel width * @center_freq_seg0_idx: center freq segment 0 index * @center_freq_seg1_idx: center freq segment 1 index * @basic_mcs_set: VHT Basic MCS rate set */ struct ieee80211_vht_operation { u8 chan_width; u8 center_freq_seg0_idx; u8 center_freq_seg1_idx; __le16 basic_mcs_set; } __packed; /** * struct ieee80211_he_cap_elem - HE capabilities element * * This structure is the "HE capabilities element" fixed fields as * described in P802.11ax_D4.0 section 9.4.2.242.2 and 9.4.2.242.3 */ struct ieee80211_he_cap_elem { u8 mac_cap_info[6]; u8 phy_cap_info[11]; } __packed; #define IEEE80211_TX_RX_MCS_NSS_DESC_MAX_LEN 5 /** * enum ieee80211_he_mcs_support - HE MCS support definitions * @IEEE80211_HE_MCS_SUPPORT_0_7: MCSes 0-7 are supported for the * number of streams * @IEEE80211_HE_MCS_SUPPORT_0_9: MCSes 0-9 are supported * @IEEE80211_HE_MCS_SUPPORT_0_11: MCSes 0-11 are supported * @IEEE80211_HE_MCS_NOT_SUPPORTED: This number of streams isn't supported * * These definitions are used in each 2-bit subfield of the rx_mcs_* * and tx_mcs_* fields of &struct ieee80211_he_mcs_nss_supp, which are * both split into 8 subfields by number of streams. These values indicate * which MCSes are supported for the number of streams the value appears * for. */ enum ieee80211_he_mcs_support { IEEE80211_HE_MCS_SUPPORT_0_7 = 0, IEEE80211_HE_MCS_SUPPORT_0_9 = 1, IEEE80211_HE_MCS_SUPPORT_0_11 = 2, IEEE80211_HE_MCS_NOT_SUPPORTED = 3, }; /** * struct ieee80211_he_mcs_nss_supp - HE Tx/Rx HE MCS NSS Support Field * * This structure holds the data required for the Tx/Rx HE MCS NSS Support Field * described in P802.11ax_D2.0 section 9.4.2.237.4 * * @rx_mcs_80: Rx MCS map 2 bits for each stream, total 8 streams, for channel * widths less than 80MHz. * @tx_mcs_80: Tx MCS map 2 bits for each stream, total 8 streams, for channel * widths less than 80MHz. * @rx_mcs_160: Rx MCS map 2 bits for each stream, total 8 streams, for channel * width 160MHz. * @tx_mcs_160: Tx MCS map 2 bits for each stream, total 8 streams, for channel * width 160MHz. * @rx_mcs_80p80: Rx MCS map 2 bits for each stream, total 8 streams, for * channel width 80p80MHz. * @tx_mcs_80p80: Tx MCS map 2 bits for each stream, total 8 streams, for * channel width 80p80MHz. */ struct ieee80211_he_mcs_nss_supp { __le16 rx_mcs_80; __le16 tx_mcs_80; __le16 rx_mcs_160; __le16 tx_mcs_160; __le16 rx_mcs_80p80; __le16 tx_mcs_80p80; } __packed; /** * struct ieee80211_he_operation - HE capabilities element * * This structure is the "HE operation element" fields as * described in P802.11ax_D4.0 section 9.4.2.243 */ struct ieee80211_he_operation { __le32 he_oper_params; __le16 he_mcs_nss_set; /* Optional 0,1,3,4,5,7 or 8 bytes: depends on @he_oper_params */ u8 optional[]; } __packed; /** * struct ieee80211_he_spr - HE spatial reuse element * * This structure is the "HE spatial reuse element" element as * described in P802.11ax_D4.0 section 9.4.2.241 */ struct ieee80211_he_spr { u8 he_sr_control; /* Optional 0 to 19 bytes: depends on @he_sr_control */ u8 optional[]; } __packed; /** * struct ieee80211_he_mu_edca_param_ac_rec - MU AC Parameter Record field * * This structure is the "MU AC Parameter Record" fields as * described in P802.11ax_D4.0 section 9.4.2.245 */ struct ieee80211_he_mu_edca_param_ac_rec { u8 aifsn; u8 ecw_min_max; u8 mu_edca_timer; } __packed; /** * struct ieee80211_mu_edca_param_set - MU EDCA Parameter Set element * * This structure is the "MU EDCA Parameter Set element" fields as * described in P802.11ax_D4.0 section 9.4.2.245 */ struct ieee80211_mu_edca_param_set { u8 mu_qos_info; struct ieee80211_he_mu_edca_param_ac_rec ac_be; struct ieee80211_he_mu_edca_param_ac_rec ac_bk; struct ieee80211_he_mu_edca_param_ac_rec ac_vi; struct ieee80211_he_mu_edca_param_ac_rec ac_vo; } __packed; /* 802.11ac VHT Capabilities */ #define IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895 0x00000000 #define IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991 0x00000001 #define IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 0x00000002 #define IEEE80211_VHT_CAP_MAX_MPDU_MASK 0x00000003 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ 0x00000004 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ 0x00000008 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK 0x0000000C #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_SHIFT 2 #define IEEE80211_VHT_CAP_RXLDPC 0x00000010 #define IEEE80211_VHT_CAP_SHORT_GI_80 0x00000020 #define IEEE80211_VHT_CAP_SHORT_GI_160 0x00000040 #define IEEE80211_VHT_CAP_TXSTBC 0x00000080 #define IEEE80211_VHT_CAP_RXSTBC_1 0x00000100 #define IEEE80211_VHT_CAP_RXSTBC_2 0x00000200 #define IEEE80211_VHT_CAP_RXSTBC_3 0x00000300 #define IEEE80211_VHT_CAP_RXSTBC_4 0x00000400 #define IEEE80211_VHT_CAP_RXSTBC_MASK 0x00000700 #define IEEE80211_VHT_CAP_RXSTBC_SHIFT 8 #define IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE 0x00000800 #define IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE 0x00001000 #define IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT 13 #define IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK \ (7 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT) #define IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_SHIFT 16 #define IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK \ (7 << IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_SHIFT) #define IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE 0x00080000 #define IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE 0x00100000 #define IEEE80211_VHT_CAP_VHT_TXOP_PS 0x00200000 #define IEEE80211_VHT_CAP_HTC_VHT 0x00400000 #define IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT 23 #define IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK \ (7 << IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT) #define IEEE80211_VHT_CAP_VHT_LINK_ADAPTATION_VHT_UNSOL_MFB 0x08000000 #define IEEE80211_VHT_CAP_VHT_LINK_ADAPTATION_VHT_MRQ_MFB 0x0c000000 #define IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN 0x10000000 #define IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN 0x20000000 #define IEEE80211_VHT_CAP_EXT_NSS_BW_SHIFT 30 #define IEEE80211_VHT_CAP_EXT_NSS_BW_MASK 0xc0000000 /** * ieee80211_get_vht_max_nss - return max NSS for a given bandwidth/MCS * @cap: VHT capabilities of the peer * @bw: bandwidth to use * @mcs: MCS index to use * @ext_nss_bw_capable: indicates whether or not the local transmitter * (rate scaling algorithm) can deal with the new logic * (dot11VHTExtendedNSSBWCapable) * @max_vht_nss: current maximum NSS as advertised by the STA in * operating mode notification, can be 0 in which case the * capability data will be used to derive this (from MCS support) * * Due to the VHT Extended NSS Bandwidth Support, the maximum NSS can * vary for a given BW/MCS. This function parses the data. * * Note: This function is exported by cfg80211. */ int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap, enum ieee80211_vht_chanwidth bw, int mcs, bool ext_nss_bw_capable, unsigned int max_vht_nss); /* 802.11ax HE MAC capabilities */ #define IEEE80211_HE_MAC_CAP0_HTC_HE 0x01 #define IEEE80211_HE_MAC_CAP0_TWT_REQ 0x02 #define IEEE80211_HE_MAC_CAP0_TWT_RES 0x04 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_NOT_SUPP 0x00 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_LEVEL_1 0x08 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_LEVEL_2 0x10 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_LEVEL_3 0x18 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_MASK 0x18 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_1 0x00 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_2 0x20 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_4 0x40 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_8 0x60 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_16 0x80 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_32 0xa0 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_64 0xc0 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_UNLIMITED 0xe0 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_MASK 0xe0 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_UNLIMITED 0x00 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_128 0x01 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_256 0x02 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_512 0x03 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_MASK 0x03 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_0US 0x00 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_8US 0x04 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US 0x08 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_MASK 0x0c #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_1 0x00 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_2 0x10 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_3 0x20 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_4 0x30 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_5 0x40 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_6 0x50 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_7 0x60 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8 0x70 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_MASK 0x70 /* Link adaptation is split between byte HE_MAC_CAP1 and * HE_MAC_CAP2. It should be set only if IEEE80211_HE_MAC_CAP0_HTC_HE * in which case the following values apply: * 0 = No feedback. * 1 = reserved. * 2 = Unsolicited feedback. * 3 = both */ #define IEEE80211_HE_MAC_CAP1_LINK_ADAPTATION 0x80 #define IEEE80211_HE_MAC_CAP2_LINK_ADAPTATION 0x01 #define IEEE80211_HE_MAC_CAP2_ALL_ACK 0x02 #define IEEE80211_HE_MAC_CAP2_TRS 0x04 #define IEEE80211_HE_MAC_CAP2_BSR 0x08 #define IEEE80211_HE_MAC_CAP2_BCAST_TWT 0x10 #define IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP 0x20 #define IEEE80211_HE_MAC_CAP2_MU_CASCADING 0x40 #define IEEE80211_HE_MAC_CAP2_ACK_EN 0x80 #define IEEE80211_HE_MAC_CAP3_OMI_CONTROL 0x02 #define IEEE80211_HE_MAC_CAP3_OFDMA_RA 0x04 /* The maximum length of an A-MDPU is defined by the combination of the Maximum * A-MDPU Length Exponent field in the HT capabilities, VHT capabilities and the * same field in the HE capabilities. */ #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_USE_VHT 0x00 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_VHT_1 0x08 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_VHT_2 0x10 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_RESERVED 0x18 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_MASK 0x18 #define IEEE80211_HE_MAC_CAP3_AMSDU_FRAG 0x20 #define IEEE80211_HE_MAC_CAP3_FLEX_TWT_SCHED 0x40 #define IEEE80211_HE_MAC_CAP3_RX_CTRL_FRAME_TO_MULTIBSS 0x80 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_SHIFT 3 #define IEEE80211_HE_MAC_CAP4_BSRP_BQRP_A_MPDU_AGG 0x01 #define IEEE80211_HE_MAC_CAP4_QTP 0x02 #define IEEE80211_HE_MAC_CAP4_BQR 0x04 #define IEEE80211_HE_MAC_CAP4_SRP_RESP 0x08 #define IEEE80211_HE_MAC_CAP4_NDP_FB_REP 0x10 #define IEEE80211_HE_MAC_CAP4_OPS 0x20 #define IEEE80211_HE_MAC_CAP4_AMDSU_IN_AMPDU 0x40 /* Multi TID agg TX is split between byte #4 and #5 * The value is a combination of B39,B40,B41 */ #define IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39 0x80 #define IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 0x01 #define IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 0x02 #define IEEE80211_HE_MAC_CAP5_SUBCHAN_SELECVITE_TRANSMISSION 0x04 #define IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU 0x08 #define IEEE80211_HE_MAC_CAP5_OM_CTRL_UL_MU_DATA_DIS_RX 0x10 #define IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS 0x20 #define IEEE80211_HE_MAC_CAP5_PUNCTURED_SOUNDING 0x40 #define IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX 0x80 #define IEEE80211_HE_VHT_MAX_AMPDU_FACTOR 20 #define IEEE80211_HE_HT_MAX_AMPDU_FACTOR 16 /* 802.11ax HE PHY capabilities */ #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G 0x02 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G 0x04 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G 0x08 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G 0x10 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_RU_MAPPING_IN_2G 0x20 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_RU_MAPPING_IN_5G 0x40 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_MASK 0xfe #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_80MHZ_ONLY_SECOND_20MHZ 0x01 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_80MHZ_ONLY_SECOND_40MHZ 0x02 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_160MHZ_ONLY_SECOND_20MHZ 0x04 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_160MHZ_ONLY_SECOND_40MHZ 0x08 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK 0x0f #define IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A 0x10 #define IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD 0x20 #define IEEE80211_HE_PHY_CAP1_HE_LTF_AND_GI_FOR_HE_PPDUS_0_8US 0x40 /* Midamble RX/TX Max NSTS is split between byte #2 and byte #3 */ #define IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS 0x80 #define IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS 0x01 #define IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US 0x02 #define IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ 0x04 #define IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ 0x08 #define IEEE80211_HE_PHY_CAP2_DOPPLER_TX 0x10 #define IEEE80211_HE_PHY_CAP2_DOPPLER_RX 0x20 /* Note that the meaning of UL MU below is different between an AP and a non-AP * sta, where in the AP case it indicates support for Rx and in the non-AP sta * case it indicates support for Tx. */ #define IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO 0x40 #define IEEE80211_HE_PHY_CAP2_UL_MU_PARTIAL_MU_MIMO 0x80 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM 0x00 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK 0x01 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_QPSK 0x02 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_16_QAM 0x03 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_MASK 0x03 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 0x00 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_2 0x04 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM 0x00 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK 0x08 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_QPSK 0x10 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_16_QAM 0x18 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_MASK 0x18 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1 0x00 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_2 0x20 #define IEEE80211_HE_PHY_CAP3_RX_HE_MU_PPDU_FROM_NON_AP_STA 0x40 #define IEEE80211_HE_PHY_CAP3_SU_BEAMFORMER 0x80 #define IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE 0x01 #define IEEE80211_HE_PHY_CAP4_MU_BEAMFORMER 0x02 /* Minimal allowed value of Max STS under 80MHz is 3 */ #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_4 0x0c #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_5 0x10 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_6 0x14 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_7 0x18 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8 0x1c #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_MASK 0x1c /* Minimal allowed value of Max STS above 80MHz is 3 */ #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_4 0x60 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_5 0x80 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_6 0xa0 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_7 0xc0 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 0xe0 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_MASK 0xe0 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_1 0x00 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 0x01 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_3 0x02 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_4 0x03 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_5 0x04 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_6 0x05 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_7 0x06 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_8 0x07 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_MASK 0x07 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_1 0x00 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2 0x08 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_3 0x10 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_4 0x18 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_5 0x20 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_6 0x28 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_7 0x30 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_8 0x38 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_MASK 0x38 #define IEEE80211_HE_PHY_CAP5_NG16_SU_FEEDBACK 0x40 #define IEEE80211_HE_PHY_CAP5_NG16_MU_FEEDBACK 0x80 #define IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_42_SU 0x01 #define IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_75_MU 0x02 #define IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMER_FB 0x04 #define IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMER_FB 0x08 #define IEEE80211_HE_PHY_CAP6_TRIG_CQI_FB 0x10 #define IEEE80211_HE_PHY_CAP6_PARTIAL_BW_EXT_RANGE 0x20 #define IEEE80211_HE_PHY_CAP6_PARTIAL_BANDWIDTH_DL_MUMIMO 0x40 #define IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT 0x80 #define IEEE80211_HE_PHY_CAP7_SRP_BASED_SR 0x01 #define IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_AR 0x02 #define IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI 0x04 #define IEEE80211_HE_PHY_CAP7_MAX_NC_1 0x08 #define IEEE80211_HE_PHY_CAP7_MAX_NC_2 0x10 #define IEEE80211_HE_PHY_CAP7_MAX_NC_3 0x18 #define IEEE80211_HE_PHY_CAP7_MAX_NC_4 0x20 #define IEEE80211_HE_PHY_CAP7_MAX_NC_5 0x28 #define IEEE80211_HE_PHY_CAP7_MAX_NC_6 0x30 #define IEEE80211_HE_PHY_CAP7_MAX_NC_7 0x38 #define IEEE80211_HE_PHY_CAP7_MAX_NC_MASK 0x38 #define IEEE80211_HE_PHY_CAP7_STBC_TX_ABOVE_80MHZ 0x40 #define IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ 0x80 #define IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI 0x01 #define IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G 0x02 #define IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU 0x04 #define IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU 0x08 #define IEEE80211_HE_PHY_CAP8_HE_ER_SU_1XLTF_AND_08_US_GI 0x10 #define IEEE80211_HE_PHY_CAP8_MIDAMBLE_RX_TX_2X_AND_1XLTF 0x20 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242 0x00 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_484 0x40 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_996 0x80 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996 0xc0 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_MASK 0xc0 #define IEEE80211_HE_PHY_CAP9_LONGER_THAN_16_SIGB_OFDM_SYM 0x01 #define IEEE80211_HE_PHY_CAP9_NON_TRIGGERED_CQI_FEEDBACK 0x02 #define IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU 0x04 #define IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU 0x08 #define IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB 0x10 #define IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB 0x20 #define IEEE80211_HE_PHY_CAP9_NOMIMAL_PKT_PADDING_0US 0x00 #define IEEE80211_HE_PHY_CAP9_NOMIMAL_PKT_PADDING_8US 0x40 #define IEEE80211_HE_PHY_CAP9_NOMIMAL_PKT_PADDING_16US 0x80 #define IEEE80211_HE_PHY_CAP9_NOMIMAL_PKT_PADDING_RESERVED 0xc0 #define IEEE80211_HE_PHY_CAP9_NOMIMAL_PKT_PADDING_MASK 0xc0 /* 802.11ax HE TX/RX MCS NSS Support */ #define IEEE80211_TX_RX_MCS_NSS_SUPP_HIGHEST_MCS_POS (3) #define IEEE80211_TX_RX_MCS_NSS_SUPP_TX_BITMAP_POS (6) #define IEEE80211_TX_RX_MCS_NSS_SUPP_RX_BITMAP_POS (11) #define IEEE80211_TX_RX_MCS_NSS_SUPP_TX_BITMAP_MASK 0x07c0 #define IEEE80211_TX_RX_MCS_NSS_SUPP_RX_BITMAP_MASK 0xf800 /* TX/RX HE MCS Support field Highest MCS subfield encoding */ enum ieee80211_he_highest_mcs_supported_subfield_enc { HIGHEST_MCS_SUPPORTED_MCS7 = 0, HIGHEST_MCS_SUPPORTED_MCS8, HIGHEST_MCS_SUPPORTED_MCS9, HIGHEST_MCS_SUPPORTED_MCS10, HIGHEST_MCS_SUPPORTED_MCS11, }; /* Calculate 802.11ax HE capabilities IE Tx/Rx HE MCS NSS Support Field size */ static inline u8 ieee80211_he_mcs_nss_size(const struct ieee80211_he_cap_elem *he_cap) { u8 count = 4; if (he_cap->phy_cap_info[0] & IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G) count += 4; if (he_cap->phy_cap_info[0] & IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G) count += 4; return count; } /* 802.11ax HE PPE Thresholds */ #define IEEE80211_PPE_THRES_NSS_SUPPORT_2NSS (1) #define IEEE80211_PPE_THRES_NSS_POS (0) #define IEEE80211_PPE_THRES_NSS_MASK (7) #define IEEE80211_PPE_THRES_RU_INDEX_BITMASK_2x966_AND_966_RU \ (BIT(5) | BIT(6)) #define IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK 0x78 #define IEEE80211_PPE_THRES_RU_INDEX_BITMASK_POS (3) #define IEEE80211_PPE_THRES_INFO_PPET_SIZE (3) /* * Calculate 802.11ax HE capabilities IE PPE field size * Input: Header byte of ppe_thres (first byte), and HE capa IE's PHY cap u8* */ static inline u8 ieee80211_he_ppe_size(u8 ppe_thres_hdr, const u8 *phy_cap_info) { u8 n; if ((phy_cap_info[6] & IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) == 0) return 0; n = hweight8(ppe_thres_hdr & IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK); n *= (1 + ((ppe_thres_hdr & IEEE80211_PPE_THRES_NSS_MASK) >> IEEE80211_PPE_THRES_NSS_POS)); /* * Each pair is 6 bits, and we need to add the 7 "header" bits to the * total size. */ n = (n * IEEE80211_PPE_THRES_INFO_PPET_SIZE * 2) + 7; n = DIV_ROUND_UP(n, 8); return n; } /* HE Operation defines */ #define IEEE80211_HE_OPERATION_DFLT_PE_DURATION_MASK 0x00000007 #define IEEE80211_HE_OPERATION_TWT_REQUIRED 0x00000008 #define IEEE80211_HE_OPERATION_RTS_THRESHOLD_MASK 0x00003ff0 #define IEEE80211_HE_OPERATION_RTS_THRESHOLD_OFFSET 4 #define IEEE80211_HE_OPERATION_VHT_OPER_INFO 0x00004000 #define IEEE80211_HE_OPERATION_CO_HOSTED_BSS 0x00008000 #define IEEE80211_HE_OPERATION_ER_SU_DISABLE 0x00010000 #define IEEE80211_HE_OPERATION_6GHZ_OP_INFO 0x00020000 #define IEEE80211_HE_OPERATION_BSS_COLOR_MASK 0x3f000000 #define IEEE80211_HE_OPERATION_BSS_COLOR_OFFSET 24 #define IEEE80211_HE_OPERATION_PARTIAL_BSS_COLOR 0x40000000 #define IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED 0x80000000 /** * ieee80211_he_6ghz_oper - HE 6 GHz operation Information field * @primary: primary channel * @control: control flags * @ccfs0: channel center frequency segment 0 * @ccfs1: channel center frequency segment 1 * @minrate: minimum rate (in 1 Mbps units) */ struct ieee80211_he_6ghz_oper { u8 primary; #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH 0x3 #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ 0 #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ 1 #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ 2 #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ 3 #define IEEE80211_HE_6GHZ_OPER_CTRL_DUP_BEACON 0x4 u8 control; u8 ccfs0; u8 ccfs1; u8 minrate; } __packed; /* * ieee80211_he_oper_size - calculate 802.11ax HE Operations IE size * @he_oper_ie: byte data of the He Operations IE, stating from the byte * after the ext ID byte. It is assumed that he_oper_ie has at least * sizeof(struct ieee80211_he_operation) bytes, the caller must have * validated this. * @return the actual size of the IE data (not including header), or 0 on error */ static inline u8 ieee80211_he_oper_size(const u8 *he_oper_ie) { struct ieee80211_he_operation *he_oper = (void *)he_oper_ie; u8 oper_len = sizeof(struct ieee80211_he_operation); u32 he_oper_params; /* Make sure the input is not NULL */ if (!he_oper_ie) return 0; /* Calc required length */ he_oper_params = le32_to_cpu(he_oper->he_oper_params); if (he_oper_params & IEEE80211_HE_OPERATION_VHT_OPER_INFO) oper_len += 3; if (he_oper_params & IEEE80211_HE_OPERATION_CO_HOSTED_BSS) oper_len++; if (he_oper_params & IEEE80211_HE_OPERATION_6GHZ_OP_INFO) oper_len += sizeof(struct ieee80211_he_6ghz_oper); /* Add the first byte (extension ID) to the total length */ oper_len++; return oper_len; } /** * ieee80211_he_6ghz_oper - obtain 6 GHz operation field * @he_oper: HE operation element (must be pre-validated for size) * but may be %NULL * * Return: a pointer to the 6 GHz operation field, or %NULL */ static inline const struct ieee80211_he_6ghz_oper * ieee80211_he_6ghz_oper(const struct ieee80211_he_operation *he_oper) { const u8 *ret = (void *)&he_oper->optional; u32 he_oper_params; if (!he_oper) return NULL; he_oper_params = le32_to_cpu(he_oper->he_oper_params); if (!(he_oper_params & IEEE80211_HE_OPERATION_6GHZ_OP_INFO)) return NULL; if (he_oper_params & IEEE80211_HE_OPERATION_VHT_OPER_INFO) ret += 3; if (he_oper_params & IEEE80211_HE_OPERATION_CO_HOSTED_BSS) ret++; return (void *)ret; } /* HE Spatial Reuse defines */ #define IEEE80211_HE_SPR_PSR_DISALLOWED BIT(0) #define IEEE80211_HE_SPR_NON_SRG_OBSS_PD_SR_DISALLOWED BIT(1) #define IEEE80211_HE_SPR_NON_SRG_OFFSET_PRESENT BIT(2) #define IEEE80211_HE_SPR_SRG_INFORMATION_PRESENT BIT(3) #define IEEE80211_HE_SPR_HESIGA_SR_VAL15_ALLOWED BIT(4) /* * ieee80211_he_spr_size - calculate 802.11ax HE Spatial Reuse IE size * @he_spr_ie: byte data of the He Spatial Reuse IE, stating from the byte * after the ext ID byte. It is assumed that he_spr_ie has at least * sizeof(struct ieee80211_he_spr) bytes, the caller must have validated * this * @return the actual size of the IE data (not including header), or 0 on error */ static inline u8 ieee80211_he_spr_size(const u8 *he_spr_ie) { struct ieee80211_he_spr *he_spr = (void *)he_spr_ie; u8 spr_len = sizeof(struct ieee80211_he_spr); u8 he_spr_params; /* Make sure the input is not NULL */ if (!he_spr_ie) return 0; /* Calc required length */ he_spr_params = he_spr->he_sr_control; if (he_spr_params & IEEE80211_HE_SPR_NON_SRG_OFFSET_PRESENT) spr_len++; if (he_spr_params & IEEE80211_HE_SPR_SRG_INFORMATION_PRESENT) spr_len += 18; /* Add the first byte (extension ID) to the total length */ spr_len++; return spr_len; } /* S1G Capabilities Information field */ #define IEEE80211_S1G_CAPABILITY_LEN 15 #define S1G_CAP0_S1G_LONG BIT(0) #define S1G_CAP0_SGI_1MHZ BIT(1) #define S1G_CAP0_SGI_2MHZ BIT(2) #define S1G_CAP0_SGI_4MHZ BIT(3) #define S1G_CAP0_SGI_8MHZ BIT(4) #define S1G_CAP0_SGI_16MHZ BIT(5) #define S1G_CAP0_SUPP_CH_WIDTH GENMASK(7, 6) #define S1G_SUPP_CH_WIDTH_2 0 #define S1G_SUPP_CH_WIDTH_4 1 #define S1G_SUPP_CH_WIDTH_8 2 #define S1G_SUPP_CH_WIDTH_16 3 #define S1G_SUPP_CH_WIDTH_MAX(cap) ((1 << FIELD_GET(S1G_CAP0_SUPP_CH_WIDTH, \ cap[0])) << 1) #define S1G_CAP1_RX_LDPC BIT(0) #define S1G_CAP1_TX_STBC BIT(1) #define S1G_CAP1_RX_STBC BIT(2) #define S1G_CAP1_SU_BFER BIT(3) #define S1G_CAP1_SU_BFEE BIT(4) #define S1G_CAP1_BFEE_STS GENMASK(7, 5) #define S1G_CAP2_SOUNDING_DIMENSIONS GENMASK(2, 0) #define S1G_CAP2_MU_BFER BIT(3) #define S1G_CAP2_MU_BFEE BIT(4) #define S1G_CAP2_PLUS_HTC_VHT BIT(5) #define S1G_CAP2_TRAVELING_PILOT GENMASK(7, 6) #define S1G_CAP3_RD_RESPONDER BIT(0) #define S1G_CAP3_HT_DELAYED_BA BIT(1) #define S1G_CAP3_MAX_MPDU_LEN BIT(2) #define S1G_CAP3_MAX_AMPDU_LEN_EXP GENMASK(4, 3) #define S1G_CAP3_MIN_MPDU_START GENMASK(7, 5) #define S1G_CAP4_UPLINK_SYNC BIT(0) #define S1G_CAP4_DYNAMIC_AID BIT(1) #define S1G_CAP4_BAT BIT(2) #define S1G_CAP4_TIME_ADE BIT(3) #define S1G_CAP4_NON_TIM BIT(4) #define S1G_CAP4_GROUP_AID BIT(5) #define S1G_CAP4_STA_TYPE GENMASK(7, 6) #define S1G_CAP5_CENT_AUTH_CONTROL BIT(0) #define S1G_CAP5_DIST_AUTH_CONTROL BIT(1) #define S1G_CAP5_AMSDU BIT(2) #define S1G_CAP5_AMPDU BIT(3) #define S1G_CAP5_ASYMMETRIC_BA BIT(4) #define S1G_CAP5_FLOW_CONTROL BIT(5) #define S1G_CAP5_SECTORIZED_BEAM GENMASK(7, 6) #define S1G_CAP6_OBSS_MITIGATION BIT(0) #define S1G_CAP6_FRAGMENT_BA BIT(1) #define S1G_CAP6_NDP_PS_POLL BIT(2) #define S1G_CAP6_RAW_OPERATION BIT(3) #define S1G_CAP6_PAGE_SLICING BIT(4) #define S1G_CAP6_TXOP_SHARING_IMP_ACK BIT(5) #define S1G_CAP6_VHT_LINK_ADAPT GENMASK(7, 6) #define S1G_CAP7_TACK_AS_PS_POLL BIT(0) #define S1G_CAP7_DUP_1MHZ BIT(1) #define S1G_CAP7_MCS_NEGOTIATION BIT(2) #define S1G_CAP7_1MHZ_CTL_RESPONSE_PREAMBLE BIT(3) #define S1G_CAP7_NDP_BFING_REPORT_POLL BIT(4) #define S1G_CAP7_UNSOLICITED_DYN_AID BIT(5) #define S1G_CAP7_SECTOR_TRAINING_OPERATION BIT(6) #define S1G_CAP7_TEMP_PS_MODE_SWITCH BIT(7) #define S1G_CAP8_TWT_GROUPING BIT(0) #define S1G_CAP8_BDT BIT(1) #define S1G_CAP8_COLOR GENMASK(4, 2) #define S1G_CAP8_TWT_REQUEST BIT(5) #define S1G_CAP8_TWT_RESPOND BIT(6) #define S1G_CAP8_PV1_FRAME BIT(7) #define S1G_CAP9_LINK_ADAPT_PER_CONTROL_RESPONSE BIT(0) #define S1G_OPER_CH_WIDTH_PRIMARY_1MHZ BIT(0) #define S1G_OPER_CH_WIDTH_OPER GENMASK(4, 1) #define LISTEN_INT_USF GENMASK(15, 14) #define LISTEN_INT_UI GENMASK(13, 0) #define IEEE80211_MAX_USF FIELD_MAX(LISTEN_INT_USF) #define IEEE80211_MAX_UI FIELD_MAX(LISTEN_INT_UI) /* Authentication algorithms */ #define WLAN_AUTH_OPEN 0 #define WLAN_AUTH_SHARED_KEY 1 #define WLAN_AUTH_FT 2 #define WLAN_AUTH_SAE 3 #define WLAN_AUTH_FILS_SK 4 #define WLAN_AUTH_FILS_SK_PFS 5 #define WLAN_AUTH_FILS_PK 6 #define WLAN_AUTH_LEAP 128 #define WLAN_AUTH_CHALLENGE_LEN 128 #define WLAN_CAPABILITY_ESS (1<<0) #define WLAN_CAPABILITY_IBSS (1<<1) /* * A mesh STA sets the ESS and IBSS capability bits to zero. * however, this holds true for p2p probe responses (in the p2p_find * phase) as well. */ #define WLAN_CAPABILITY_IS_STA_BSS(cap) \ (!((cap) & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS))) #define WLAN_CAPABILITY_CF_POLLABLE (1<<2) #define WLAN_CAPABILITY_CF_POLL_REQUEST (1<<3) #define WLAN_CAPABILITY_PRIVACY (1<<4) #define WLAN_CAPABILITY_SHORT_PREAMBLE (1<<5) #define WLAN_CAPABILITY_PBCC (1<<6) #define WLAN_CAPABILITY_CHANNEL_AGILITY (1<<7) /* 802.11h */ #define WLAN_CAPABILITY_SPECTRUM_MGMT (1<<8) #define WLAN_CAPABILITY_QOS (1<<9) #define WLAN_CAPABILITY_SHORT_SLOT_TIME (1<<10) #define WLAN_CAPABILITY_APSD (1<<11) #define WLAN_CAPABILITY_RADIO_MEASURE (1<<12) #define WLAN_CAPABILITY_DSSS_OFDM (1<<13) #define WLAN_CAPABILITY_DEL_BACK (1<<14) #define WLAN_CAPABILITY_IMM_BACK (1<<15) /* DMG (60gHz) 802.11ad */ /* type - bits 0..1 */ #define WLAN_CAPABILITY_DMG_TYPE_MASK (3<<0) #define WLAN_CAPABILITY_DMG_TYPE_IBSS (1<<0) /* Tx by: STA */ #define WLAN_CAPABILITY_DMG_TYPE_PBSS (2<<0) /* Tx by: PCP */ #define WLAN_CAPABILITY_DMG_TYPE_AP (3<<0) /* Tx by: AP */ #define WLAN_CAPABILITY_DMG_CBAP_ONLY (1<<2) #define WLAN_CAPABILITY_DMG_CBAP_SOURCE (1<<3) #define WLAN_CAPABILITY_DMG_PRIVACY (1<<4) #define WLAN_CAPABILITY_DMG_ECPAC (1<<5) #define WLAN_CAPABILITY_DMG_SPECTRUM_MGMT (1<<8) #define WLAN_CAPABILITY_DMG_RADIO_MEASURE (1<<12) /* measurement */ #define IEEE80211_SPCT_MSR_RPRT_MODE_LATE (1<<0) #define IEEE80211_SPCT_MSR_RPRT_MODE_INCAPABLE (1<<1) #define IEEE80211_SPCT_MSR_RPRT_MODE_REFUSED (1<<2) #define IEEE80211_SPCT_MSR_RPRT_TYPE_BASIC 0 #define IEEE80211_SPCT_MSR_RPRT_TYPE_CCA 1 #define IEEE80211_SPCT_MSR_RPRT_TYPE_RPI 2 #define IEEE80211_SPCT_MSR_RPRT_TYPE_LCI 8 #define IEEE80211_SPCT_MSR_RPRT_TYPE_CIVIC 11 /* 802.11g ERP information element */ #define WLAN_ERP_NON_ERP_PRESENT (1<<0) #define WLAN_ERP_USE_PROTECTION (1<<1) #define WLAN_ERP_BARKER_PREAMBLE (1<<2) /* WLAN_ERP_BARKER_PREAMBLE values */ enum { WLAN_ERP_PREAMBLE_SHORT = 0, WLAN_ERP_PREAMBLE_LONG = 1, }; /* Band ID, 802.11ad #8.4.1.45 */ enum { IEEE80211_BANDID_TV_WS = 0, /* TV white spaces */ IEEE80211_BANDID_SUB1 = 1, /* Sub-1 GHz (excluding TV white spaces) */ IEEE80211_BANDID_2G = 2, /* 2.4 GHz */ IEEE80211_BANDID_3G = 3, /* 3.6 GHz */ IEEE80211_BANDID_5G = 4, /* 4.9 and 5 GHz */ IEEE80211_BANDID_60G = 5, /* 60 GHz */ }; /* Status codes */ enum ieee80211_statuscode { WLAN_STATUS_SUCCESS = 0, WLAN_STATUS_UNSPECIFIED_FAILURE = 1, WLAN_STATUS_CAPS_UNSUPPORTED = 10, WLAN_STATUS_REASSOC_NO_ASSOC = 11, WLAN_STATUS_ASSOC_DENIED_UNSPEC = 12, WLAN_STATUS_NOT_SUPPORTED_AUTH_ALG = 13, WLAN_STATUS_UNKNOWN_AUTH_TRANSACTION = 14, WLAN_STATUS_CHALLENGE_FAIL = 15, WLAN_STATUS_AUTH_TIMEOUT = 16, WLAN_STATUS_AP_UNABLE_TO_HANDLE_NEW_STA = 17, WLAN_STATUS_ASSOC_DENIED_RATES = 18, /* 802.11b */ WLAN_STATUS_ASSOC_DENIED_NOSHORTPREAMBLE = 19, WLAN_STATUS_ASSOC_DENIED_NOPBCC = 20, WLAN_STATUS_ASSOC_DENIED_NOAGILITY = 21, /* 802.11h */ WLAN_STATUS_ASSOC_DENIED_NOSPECTRUM = 22, WLAN_STATUS_ASSOC_REJECTED_BAD_POWER = 23, WLAN_STATUS_ASSOC_REJECTED_BAD_SUPP_CHAN = 24, /* 802.11g */ WLAN_STATUS_ASSOC_DENIED_NOSHORTTIME = 25, WLAN_STATUS_ASSOC_DENIED_NODSSSOFDM = 26, /* 802.11w */ WLAN_STATUS_ASSOC_REJECTED_TEMPORARILY = 30, WLAN_STATUS_ROBUST_MGMT_FRAME_POLICY_VIOLATION = 31, /* 802.11i */ WLAN_STATUS_INVALID_IE = 40, WLAN_STATUS_INVALID_GROUP_CIPHER = 41, WLAN_STATUS_INVALID_PAIRWISE_CIPHER = 42, WLAN_STATUS_INVALID_AKMP = 43, WLAN_STATUS_UNSUPP_RSN_VERSION = 44, WLAN_STATUS_INVALID_RSN_IE_CAP = 45, WLAN_STATUS_CIPHER_SUITE_REJECTED = 46, /* 802.11e */ WLAN_STATUS_UNSPECIFIED_QOS = 32, WLAN_STATUS_ASSOC_DENIED_NOBANDWIDTH = 33, WLAN_STATUS_ASSOC_DENIED_LOWACK = 34, WLAN_STATUS_ASSOC_DENIED_UNSUPP_QOS = 35, WLAN_STATUS_REQUEST_DECLINED = 37, WLAN_STATUS_INVALID_QOS_PARAM = 38, WLAN_STATUS_CHANGE_TSPEC = 39, WLAN_STATUS_WAIT_TS_DELAY = 47, WLAN_STATUS_NO_DIRECT_LINK = 48, WLAN_STATUS_STA_NOT_PRESENT = 49, WLAN_STATUS_STA_NOT_QSTA = 50, /* 802.11s */ WLAN_STATUS_ANTI_CLOG_REQUIRED = 76, WLAN_STATUS_FCG_NOT_SUPP = 78, WLAN_STATUS_STA_NO_TBTT = 78, /* 802.11ad */ WLAN_STATUS_REJECTED_WITH_SUGGESTED_CHANGES = 39, WLAN_STATUS_REJECTED_FOR_DELAY_PERIOD = 47, WLAN_STATUS_REJECT_WITH_SCHEDULE = 83, WLAN_STATUS_PENDING_ADMITTING_FST_SESSION = 86, WLAN_STATUS_PERFORMING_FST_NOW = 87, WLAN_STATUS_PENDING_GAP_IN_BA_WINDOW = 88, WLAN_STATUS_REJECT_U_PID_SETTING = 89, WLAN_STATUS_REJECT_DSE_BAND = 96, WLAN_STATUS_DENIED_WITH_SUGGESTED_BAND_AND_CHANNEL = 99, WLAN_STATUS_DENIED_DUE_TO_SPECTRUM_MANAGEMENT = 103, /* 802.11ai */ WLAN_STATUS_FILS_AUTHENTICATION_FAILURE = 108, WLAN_STATUS_UNKNOWN_AUTHENTICATION_SERVER = 109, WLAN_STATUS_SAE_HASH_TO_ELEMENT = 126, WLAN_STATUS_SAE_PK = 127, }; /* Reason codes */ enum ieee80211_reasoncode { WLAN_REASON_UNSPECIFIED = 1, WLAN_REASON_PREV_AUTH_NOT_VALID = 2, WLAN_REASON_DEAUTH_LEAVING = 3, WLAN_REASON_DISASSOC_DUE_TO_INACTIVITY = 4, WLAN_REASON_DISASSOC_AP_BUSY = 5, WLAN_REASON_CLASS2_FRAME_FROM_NONAUTH_STA = 6, WLAN_REASON_CLASS3_FRAME_FROM_NONASSOC_STA = 7, WLAN_REASON_DISASSOC_STA_HAS_LEFT = 8, WLAN_REASON_STA_REQ_ASSOC_WITHOUT_AUTH = 9, /* 802.11h */ WLAN_REASON_DISASSOC_BAD_POWER = 10, WLAN_REASON_DISASSOC_BAD_SUPP_CHAN = 11, /* 802.11i */ WLAN_REASON_INVALID_IE = 13, WLAN_REASON_MIC_FAILURE = 14, WLAN_REASON_4WAY_HANDSHAKE_TIMEOUT = 15, WLAN_REASON_GROUP_KEY_HANDSHAKE_TIMEOUT = 16, WLAN_REASON_IE_DIFFERENT = 17, WLAN_REASON_INVALID_GROUP_CIPHER = 18, WLAN_REASON_INVALID_PAIRWISE_CIPHER = 19, WLAN_REASON_INVALID_AKMP = 20, WLAN_REASON_UNSUPP_RSN_VERSION = 21, WLAN_REASON_INVALID_RSN_IE_CAP = 22, WLAN_REASON_IEEE8021X_FAILED = 23, WLAN_REASON_CIPHER_SUITE_REJECTED = 24, /* TDLS (802.11z) */ WLAN_REASON_TDLS_TEARDOWN_UNREACHABLE = 25, WLAN_REASON_TDLS_TEARDOWN_UNSPECIFIED = 26, /* 802.11e */ WLAN_REASON_DISASSOC_UNSPECIFIED_QOS = 32, WLAN_REASON_DISASSOC_QAP_NO_BANDWIDTH = 33, WLAN_REASON_DISASSOC_LOW_ACK = 34, WLAN_REASON_DISASSOC_QAP_EXCEED_TXOP = 35, WLAN_REASON_QSTA_LEAVE_QBSS = 36, WLAN_REASON_QSTA_NOT_USE = 37, WLAN_REASON_QSTA_REQUIRE_SETUP = 38, WLAN_REASON_QSTA_TIMEOUT = 39, WLAN_REASON_QSTA_CIPHER_NOT_SUPP = 45, /* 802.11s */ WLAN_REASON_MESH_PEER_CANCELED = 52, WLAN_REASON_MESH_MAX_PEERS = 53, WLAN_REASON_MESH_CONFIG = 54, WLAN_REASON_MESH_CLOSE = 55, WLAN_REASON_MESH_MAX_RETRIES = 56, WLAN_REASON_MESH_CONFIRM_TIMEOUT = 57, WLAN_REASON_MESH_INVALID_GTK = 58, WLAN_REASON_MESH_INCONSISTENT_PARAM = 59, WLAN_REASON_MESH_INVALID_SECURITY = 60, WLAN_REASON_MESH_PATH_ERROR = 61, WLAN_REASON_MESH_PATH_NOFORWARD = 62, WLAN_REASON_MESH_PATH_DEST_UNREACHABLE = 63, WLAN_REASON_MAC_EXISTS_IN_MBSS = 64, WLAN_REASON_MESH_CHAN_REGULATORY = 65, WLAN_REASON_MESH_CHAN = 66, }; /* Information Element IDs */ enum ieee80211_eid { WLAN_EID_SSID = 0, WLAN_EID_SUPP_RATES = 1, WLAN_EID_FH_PARAMS = 2, /* reserved now */ WLAN_EID_DS_PARAMS = 3, WLAN_EID_CF_PARAMS = 4, WLAN_EID_TIM = 5, WLAN_EID_IBSS_PARAMS = 6, WLAN_EID_COUNTRY = 7, /* 8, 9 reserved */ WLAN_EID_REQUEST = 10, WLAN_EID_QBSS_LOAD = 11, WLAN_EID_EDCA_PARAM_SET = 12, WLAN_EID_TSPEC = 13, WLAN_EID_TCLAS = 14, WLAN_EID_SCHEDULE = 15, WLAN_EID_CHALLENGE = 16, /* 17-31 reserved for challenge text extension */ WLAN_EID_PWR_CONSTRAINT = 32, WLAN_EID_PWR_CAPABILITY = 33, WLAN_EID_TPC_REQUEST = 34, WLAN_EID_TPC_REPORT = 35, WLAN_EID_SUPPORTED_CHANNELS = 36, WLAN_EID_CHANNEL_SWITCH = 37, WLAN_EID_MEASURE_REQUEST = 38, WLAN_EID_MEASURE_REPORT = 39, WLAN_EID_QUIET = 40, WLAN_EID_IBSS_DFS = 41, WLAN_EID_ERP_INFO = 42, WLAN_EID_TS_DELAY = 43, WLAN_EID_TCLAS_PROCESSING = 44, WLAN_EID_HT_CAPABILITY = 45, WLAN_EID_QOS_CAPA = 46, /* 47 reserved for Broadcom */ WLAN_EID_RSN = 48, WLAN_EID_802_15_COEX = 49, WLAN_EID_EXT_SUPP_RATES = 50, WLAN_EID_AP_CHAN_REPORT = 51, WLAN_EID_NEIGHBOR_REPORT = 52, WLAN_EID_RCPI = 53, WLAN_EID_MOBILITY_DOMAIN = 54, WLAN_EID_FAST_BSS_TRANSITION = 55, WLAN_EID_TIMEOUT_INTERVAL = 56, WLAN_EID_RIC_DATA = 57, WLAN_EID_DSE_REGISTERED_LOCATION = 58, WLAN_EID_SUPPORTED_REGULATORY_CLASSES = 59, WLAN_EID_EXT_CHANSWITCH_ANN = 60, WLAN_EID_HT_OPERATION = 61, WLAN_EID_SECONDARY_CHANNEL_OFFSET = 62, WLAN_EID_BSS_AVG_ACCESS_DELAY = 63, WLAN_EID_ANTENNA_INFO = 64, WLAN_EID_RSNI = 65, WLAN_EID_MEASUREMENT_PILOT_TX_INFO = 66, WLAN_EID_BSS_AVAILABLE_CAPACITY = 67, WLAN_EID_BSS_AC_ACCESS_DELAY = 68, WLAN_EID_TIME_ADVERTISEMENT = 69, WLAN_EID_RRM_ENABLED_CAPABILITIES = 70, WLAN_EID_MULTIPLE_BSSID = 71, WLAN_EID_BSS_COEX_2040 = 72, WLAN_EID_BSS_INTOLERANT_CHL_REPORT = 73, WLAN_EID_OVERLAP_BSS_SCAN_PARAM = 74, WLAN_EID_RIC_DESCRIPTOR = 75, WLAN_EID_MMIE = 76, WLAN_EID_ASSOC_COMEBACK_TIME = 77, WLAN_EID_EVENT_REQUEST = 78, WLAN_EID_EVENT_REPORT = 79, WLAN_EID_DIAGNOSTIC_REQUEST = 80, WLAN_EID_DIAGNOSTIC_REPORT = 81, WLAN_EID_LOCATION_PARAMS = 82, WLAN_EID_NON_TX_BSSID_CAP = 83, WLAN_EID_SSID_LIST = 84, WLAN_EID_MULTI_BSSID_IDX = 85, WLAN_EID_FMS_DESCRIPTOR = 86, WLAN_EID_FMS_REQUEST = 87, WLAN_EID_FMS_RESPONSE = 88, WLAN_EID_QOS_TRAFFIC_CAPA = 89, WLAN_EID_BSS_MAX_IDLE_PERIOD = 90, WLAN_EID_TSF_REQUEST = 91, WLAN_EID_TSF_RESPOSNE = 92, WLAN_EID_WNM_SLEEP_MODE = 93, WLAN_EID_TIM_BCAST_REQ = 94, WLAN_EID_TIM_BCAST_RESP = 95, WLAN_EID_COLL_IF_REPORT = 96, WLAN_EID_CHANNEL_USAGE = 97, WLAN_EID_TIME_ZONE = 98, WLAN_EID_DMS_REQUEST = 99, WLAN_EID_DMS_RESPONSE = 100, WLAN_EID_LINK_ID = 101, WLAN_EID_WAKEUP_SCHEDUL = 102, /* 103 reserved */ WLAN_EID_CHAN_SWITCH_TIMING = 104, WLAN_EID_PTI_CONTROL = 105, WLAN_EID_PU_BUFFER_STATUS = 106, WLAN_EID_INTERWORKING = 107, WLAN_EID_ADVERTISEMENT_PROTOCOL = 108, WLAN_EID_EXPEDITED_BW_REQ = 109, WLAN_EID_QOS_MAP_SET = 110, WLAN_EID_ROAMING_CONSORTIUM = 111, WLAN_EID_EMERGENCY_ALERT = 112, WLAN_EID_MESH_CONFIG = 113, WLAN_EID_MESH_ID = 114, WLAN_EID_LINK_METRIC_REPORT = 115, WLAN_EID_CONGESTION_NOTIFICATION = 116, WLAN_EID_PEER_MGMT = 117, WLAN_EID_CHAN_SWITCH_PARAM = 118, WLAN_EID_MESH_AWAKE_WINDOW = 119, WLAN_EID_BEACON_TIMING = 120, WLAN_EID_MCCAOP_SETUP_REQ = 121, WLAN_EID_MCCAOP_SETUP_RESP = 122, WLAN_EID_MCCAOP_ADVERT = 123, WLAN_EID_MCCAOP_TEARDOWN = 124, WLAN_EID_GANN = 125, WLAN_EID_RANN = 126, WLAN_EID_EXT_CAPABILITY = 127, /* 128, 129 reserved for Agere */ WLAN_EID_PREQ = 130, WLAN_EID_PREP = 131, WLAN_EID_PERR = 132, /* 133-136 reserved for Cisco */ WLAN_EID_PXU = 137, WLAN_EID_PXUC = 138, WLAN_EID_AUTH_MESH_PEER_EXCH = 139, WLAN_EID_MIC = 140, WLAN_EID_DESTINATION_URI = 141, WLAN_EID_UAPSD_COEX = 142, WLAN_EID_WAKEUP_SCHEDULE = 143, WLAN_EID_EXT_SCHEDULE = 144, WLAN_EID_STA_AVAILABILITY = 145, WLAN_EID_DMG_TSPEC = 146, WLAN_EID_DMG_AT = 147, WLAN_EID_DMG_CAP = 148, /* 149 reserved for Cisco */ WLAN_EID_CISCO_VENDOR_SPECIFIC = 150, WLAN_EID_DMG_OPERATION = 151, WLAN_EID_DMG_BSS_PARAM_CHANGE = 152, WLAN_EID_DMG_BEAM_REFINEMENT = 153, WLAN_EID_CHANNEL_MEASURE_FEEDBACK = 154, /* 155-156 reserved for Cisco */ WLAN_EID_AWAKE_WINDOW = 157, WLAN_EID_MULTI_BAND = 158, WLAN_EID_ADDBA_EXT = 159, WLAN_EID_NEXT_PCP_LIST = 160, WLAN_EID_PCP_HANDOVER = 161, WLAN_EID_DMG_LINK_MARGIN = 162, WLAN_EID_SWITCHING_STREAM = 163, WLAN_EID_SESSION_TRANSITION = 164, WLAN_EID_DYN_TONE_PAIRING_REPORT = 165, WLAN_EID_CLUSTER_REPORT = 166, WLAN_EID_RELAY_CAP = 167, WLAN_EID_RELAY_XFER_PARAM_SET = 168, WLAN_EID_BEAM_LINK_MAINT = 169, WLAN_EID_MULTIPLE_MAC_ADDR = 170, WLAN_EID_U_PID = 171, WLAN_EID_DMG_LINK_ADAPT_ACK = 172, /* 173 reserved for Symbol */ WLAN_EID_MCCAOP_ADV_OVERVIEW = 174, WLAN_EID_QUIET_PERIOD_REQ = 175, /* 176 reserved for Symbol */ WLAN_EID_QUIET_PERIOD_RESP = 177, /* 178-179 reserved for Symbol */ /* 180 reserved for ISO/IEC 20011 */ WLAN_EID_EPAC_POLICY = 182, WLAN_EID_CLISTER_TIME_OFF = 183, WLAN_EID_INTER_AC_PRIO = 184, WLAN_EID_SCS_DESCRIPTOR = 185, WLAN_EID_QLOAD_REPORT = 186, WLAN_EID_HCCA_TXOP_UPDATE_COUNT = 187, WLAN_EID_HL_STREAM_ID = 188, WLAN_EID_GCR_GROUP_ADDR = 189, WLAN_EID_ANTENNA_SECTOR_ID_PATTERN = 190, WLAN_EID_VHT_CAPABILITY = 191, WLAN_EID_VHT_OPERATION = 192, WLAN_EID_EXTENDED_BSS_LOAD = 193, WLAN_EID_WIDE_BW_CHANNEL_SWITCH = 194, WLAN_EID_VHT_TX_POWER_ENVELOPE = 195, WLAN_EID_CHANNEL_SWITCH_WRAPPER = 196, WLAN_EID_AID = 197, WLAN_EID_QUIET_CHANNEL = 198, WLAN_EID_OPMODE_NOTIF = 199, WLAN_EID_REDUCED_NEIGHBOR_REPORT = 201, WLAN_EID_AID_REQUEST = 210, WLAN_EID_AID_RESPONSE = 211, WLAN_EID_S1G_BCN_COMPAT = 213, WLAN_EID_S1G_SHORT_BCN_INTERVAL = 214, WLAN_EID_S1G_CAPABILITIES = 217, WLAN_EID_VENDOR_SPECIFIC = 221, WLAN_EID_QOS_PARAMETER = 222, WLAN_EID_S1G_OPERATION = 232, WLAN_EID_CAG_NUMBER = 237, WLAN_EID_AP_CSN = 239, WLAN_EID_FILS_INDICATION = 240, WLAN_EID_DILS = 241, WLAN_EID_FRAGMENT = 242, WLAN_EID_RSNX = 244, WLAN_EID_EXTENSION = 255 }; /* Element ID Extensions for Element ID 255 */ enum ieee80211_eid_ext { WLAN_EID_EXT_ASSOC_DELAY_INFO = 1, WLAN_EID_EXT_FILS_REQ_PARAMS = 2, WLAN_EID_EXT_FILS_KEY_CONFIRM = 3, WLAN_EID_EXT_FILS_SESSION = 4, WLAN_EID_EXT_FILS_HLP_CONTAINER = 5, WLAN_EID_EXT_FILS_IP_ADDR_ASSIGN = 6, WLAN_EID_EXT_KEY_DELIVERY = 7, WLAN_EID_EXT_FILS_WRAPPED_DATA = 8, WLAN_EID_EXT_FILS_PUBLIC_KEY = 12, WLAN_EID_EXT_FILS_NONCE = 13, WLAN_EID_EXT_FUTURE_CHAN_GUIDANCE = 14, WLAN_EID_EXT_HE_CAPABILITY = 35, WLAN_EID_EXT_HE_OPERATION = 36, WLAN_EID_EXT_UORA = 37, WLAN_EID_EXT_HE_MU_EDCA = 38, WLAN_EID_EXT_HE_SPR = 39, WLAN_EID_EXT_NDP_FEEDBACK_REPORT_PARAMSET = 41, WLAN_EID_EXT_BSS_COLOR_CHG_ANN = 42, WLAN_EID_EXT_QUIET_TIME_PERIOD_SETUP = 43, WLAN_EID_EXT_ESS_REPORT = 45, WLAN_EID_EXT_OPS = 46, WLAN_EID_EXT_HE_BSS_LOAD = 47, WLAN_EID_EXT_MAX_CHANNEL_SWITCH_TIME = 52, WLAN_EID_EXT_MULTIPLE_BSSID_CONFIGURATION = 55, WLAN_EID_EXT_NON_INHERITANCE = 56, WLAN_EID_EXT_KNOWN_BSSID = 57, WLAN_EID_EXT_SHORT_SSID_LIST = 58, WLAN_EID_EXT_HE_6GHZ_CAPA = 59, WLAN_EID_EXT_UL_MU_POWER_CAPA = 60, }; /* Action category code */ enum ieee80211_category { WLAN_CATEGORY_SPECTRUM_MGMT = 0, WLAN_CATEGORY_QOS = 1, WLAN_CATEGORY_DLS = 2, WLAN_CATEGORY_BACK = 3, WLAN_CATEGORY_PUBLIC = 4, WLAN_CATEGORY_RADIO_MEASUREMENT = 5, WLAN_CATEGORY_HT = 7, WLAN_CATEGORY_SA_QUERY = 8, WLAN_CATEGORY_PROTECTED_DUAL_OF_ACTION = 9, WLAN_CATEGORY_WNM = 10, WLAN_CATEGORY_WNM_UNPROTECTED = 11, WLAN_CATEGORY_TDLS = 12, WLAN_CATEGORY_MESH_ACTION = 13, WLAN_CATEGORY_MULTIHOP_ACTION = 14, WLAN_CATEGORY_SELF_PROTECTED = 15, WLAN_CATEGORY_DMG = 16, WLAN_CATEGORY_WMM = 17, WLAN_CATEGORY_FST = 18, WLAN_CATEGORY_UNPROT_DMG = 20, WLAN_CATEGORY_VHT = 21, WLAN_CATEGORY_VENDOR_SPECIFIC_PROTECTED = 126, WLAN_CATEGORY_VENDOR_SPECIFIC = 127, }; /* SPECTRUM_MGMT action code */ enum ieee80211_spectrum_mgmt_actioncode { WLAN_ACTION_SPCT_MSR_REQ = 0, WLAN_ACTION_SPCT_MSR_RPRT = 1, WLAN_ACTION_SPCT_TPC_REQ = 2, WLAN_ACTION_SPCT_TPC_RPRT = 3, WLAN_ACTION_SPCT_CHL_SWITCH = 4, }; /* HT action codes */ enum ieee80211_ht_actioncode { WLAN_HT_ACTION_NOTIFY_CHANWIDTH = 0, WLAN_HT_ACTION_SMPS = 1, WLAN_HT_ACTION_PSMP = 2, WLAN_HT_ACTION_PCO_PHASE = 3, WLAN_HT_ACTION_CSI = 4, WLAN_HT_ACTION_NONCOMPRESSED_BF = 5, WLAN_HT_ACTION_COMPRESSED_BF = 6, WLAN_HT_ACTION_ASEL_IDX_FEEDBACK = 7, }; /* VHT action codes */ enum ieee80211_vht_actioncode { WLAN_VHT_ACTION_COMPRESSED_BF = 0, WLAN_VHT_ACTION_GROUPID_MGMT = 1, WLAN_VHT_ACTION_OPMODE_NOTIF = 2, }; /* Self Protected Action codes */ enum ieee80211_self_protected_actioncode { WLAN_SP_RESERVED = 0, WLAN_SP_MESH_PEERING_OPEN = 1, WLAN_SP_MESH_PEERING_CONFIRM = 2, WLAN_SP_MESH_PEERING_CLOSE = 3, WLAN_SP_MGK_INFORM = 4, WLAN_SP_MGK_ACK = 5, }; /* Mesh action codes */ enum ieee80211_mesh_actioncode { WLAN_MESH_ACTION_LINK_METRIC_REPORT, WLAN_MESH_ACTION_HWMP_PATH_SELECTION, WLAN_MESH_ACTION_GATE_ANNOUNCEMENT, WLAN_MESH_ACTION_CONGESTION_CONTROL_NOTIFICATION, WLAN_MESH_ACTION_MCCA_SETUP_REQUEST, WLAN_MESH_ACTION_MCCA_SETUP_REPLY, WLAN_MESH_ACTION_MCCA_ADVERTISEMENT_REQUEST, WLAN_MESH_ACTION_MCCA_ADVERTISEMENT, WLAN_MESH_ACTION_MCCA_TEARDOWN, WLAN_MESH_ACTION_TBTT_ADJUSTMENT_REQUEST, WLAN_MESH_ACTION_TBTT_ADJUSTMENT_RESPONSE, }; /* Security key length */ enum ieee80211_key_len { WLAN_KEY_LEN_WEP40 = 5, WLAN_KEY_LEN_WEP104 = 13, WLAN_KEY_LEN_CCMP = 16, WLAN_KEY_LEN_CCMP_256 = 32, WLAN_KEY_LEN_TKIP = 32, WLAN_KEY_LEN_AES_CMAC = 16, WLAN_KEY_LEN_SMS4 = 32, WLAN_KEY_LEN_GCMP = 16, WLAN_KEY_LEN_GCMP_256 = 32, WLAN_KEY_LEN_BIP_CMAC_256 = 32, WLAN_KEY_LEN_BIP_GMAC_128 = 16, WLAN_KEY_LEN_BIP_GMAC_256 = 32, }; #define IEEE80211_WEP_IV_LEN 4 #define IEEE80211_WEP_ICV_LEN 4 #define IEEE80211_CCMP_HDR_LEN 8 #define IEEE80211_CCMP_MIC_LEN 8 #define IEEE80211_CCMP_PN_LEN 6 #define IEEE80211_CCMP_256_HDR_LEN 8 #define IEEE80211_CCMP_256_MIC_LEN 16 #define IEEE80211_CCMP_256_PN_LEN 6 #define IEEE80211_TKIP_IV_LEN 8 #define IEEE80211_TKIP_ICV_LEN 4 #define IEEE80211_CMAC_PN_LEN 6 #define IEEE80211_GMAC_PN_LEN 6 #define IEEE80211_GCMP_HDR_LEN 8 #define IEEE80211_GCMP_MIC_LEN 16 #define IEEE80211_GCMP_PN_LEN 6 #define FILS_NONCE_LEN 16 #define FILS_MAX_KEK_LEN 64 #define FILS_ERP_MAX_USERNAME_LEN 16 #define FILS_ERP_MAX_REALM_LEN 253 #define FILS_ERP_MAX_RRK_LEN 64 #define PMK_MAX_LEN 64 #define SAE_PASSWORD_MAX_LEN 128 /* Public action codes (IEEE Std 802.11-2016, 9.6.8.1, Table 9-307) */ enum ieee80211_pub_actioncode { WLAN_PUB_ACTION_20_40_BSS_COEX = 0, WLAN_PUB_ACTION_DSE_ENABLEMENT = 1, WLAN_PUB_ACTION_DSE_DEENABLEMENT = 2, WLAN_PUB_ACTION_DSE_REG_LOC_ANN = 3, WLAN_PUB_ACTION_EXT_CHANSW_ANN = 4, WLAN_PUB_ACTION_DSE_MSMT_REQ = 5, WLAN_PUB_ACTION_DSE_MSMT_RESP = 6, WLAN_PUB_ACTION_MSMT_PILOT = 7, WLAN_PUB_ACTION_DSE_PC = 8, WLAN_PUB_ACTION_VENDOR_SPECIFIC = 9, WLAN_PUB_ACTION_GAS_INITIAL_REQ = 10, WLAN_PUB_ACTION_GAS_INITIAL_RESP = 11, WLAN_PUB_ACTION_GAS_COMEBACK_REQ = 12, WLAN_PUB_ACTION_GAS_COMEBACK_RESP = 13, WLAN_PUB_ACTION_TDLS_DISCOVER_RES = 14, WLAN_PUB_ACTION_LOC_TRACK_NOTI = 15, WLAN_PUB_ACTION_QAB_REQUEST_FRAME = 16, WLAN_PUB_ACTION_QAB_RESPONSE_FRAME = 17, WLAN_PUB_ACTION_QMF_POLICY = 18, WLAN_PUB_ACTION_QMF_POLICY_CHANGE = 19, WLAN_PUB_ACTION_QLOAD_REQUEST = 20, WLAN_PUB_ACTION_QLOAD_REPORT = 21, WLAN_PUB_ACTION_HCCA_TXOP_ADVERT = 22, WLAN_PUB_ACTION_HCCA_TXOP_RESPONSE = 23, WLAN_PUB_ACTION_PUBLIC_KEY = 24, WLAN_PUB_ACTION_CHANNEL_AVAIL_QUERY = 25, WLAN_PUB_ACTION_CHANNEL_SCHEDULE_MGMT = 26, WLAN_PUB_ACTION_CONTACT_VERI_SIGNAL = 27, WLAN_PUB_ACTION_GDD_ENABLEMENT_REQ = 28, WLAN_PUB_ACTION_GDD_ENABLEMENT_RESP = 29, WLAN_PUB_ACTION_NETWORK_CHANNEL_CONTROL = 30, WLAN_PUB_ACTION_WHITE_SPACE_MAP_ANN = 31, WLAN_PUB_ACTION_FTM_REQUEST = 32, WLAN_PUB_ACTION_FTM = 33, WLAN_PUB_ACTION_FILS_DISCOVERY = 34, }; /* TDLS action codes */ enum ieee80211_tdls_actioncode { WLAN_TDLS_SETUP_REQUEST = 0, WLAN_TDLS_SETUP_RESPONSE = 1, WLAN_TDLS_SETUP_CONFIRM = 2, WLAN_TDLS_TEARDOWN = 3, WLAN_TDLS_PEER_TRAFFIC_INDICATION = 4, WLAN_TDLS_CHANNEL_SWITCH_REQUEST = 5, WLAN_TDLS_CHANNEL_SWITCH_RESPONSE = 6, WLAN_TDLS_PEER_PSM_REQUEST = 7, WLAN_TDLS_PEER_PSM_RESPONSE = 8, WLAN_TDLS_PEER_TRAFFIC_RESPONSE = 9, WLAN_TDLS_DISCOVERY_REQUEST = 10, }; /* Extended Channel Switching capability to be set in the 1st byte of * the @WLAN_EID_EXT_CAPABILITY information element */ #define WLAN_EXT_CAPA1_EXT_CHANNEL_SWITCHING BIT(2) /* Multiple BSSID capability is set in the 6th bit of 3rd byte of the * @WLAN_EID_EXT_CAPABILITY information element */ #define WLAN_EXT_CAPA3_MULTI_BSSID_SUPPORT BIT(6) /* TDLS capabilities in the 4th byte of @WLAN_EID_EXT_CAPABILITY */ #define WLAN_EXT_CAPA4_TDLS_BUFFER_STA BIT(4) #define WLAN_EXT_CAPA4_TDLS_PEER_PSM BIT(5) #define WLAN_EXT_CAPA4_TDLS_CHAN_SWITCH BIT(6) /* Interworking capabilities are set in 7th bit of 4th byte of the * @WLAN_EID_EXT_CAPABILITY information element */ #define WLAN_EXT_CAPA4_INTERWORKING_ENABLED BIT(7) /* * TDLS capabililites to be enabled in the 5th byte of the * @WLAN_EID_EXT_CAPABILITY information element */ #define WLAN_EXT_CAPA5_TDLS_ENABLED BIT(5) #define WLAN_EXT_CAPA5_TDLS_PROHIBITED BIT(6) #define WLAN_EXT_CAPA5_TDLS_CH_SW_PROHIBITED BIT(7) #define WLAN_EXT_CAPA8_TDLS_WIDE_BW_ENABLED BIT(5) #define WLAN_EXT_CAPA8_OPMODE_NOTIF BIT(6) /* Defines the maximal number of MSDUs in an A-MSDU. */ #define WLAN_EXT_CAPA8_MAX_MSDU_IN_AMSDU_LSB BIT(7) #define WLAN_EXT_CAPA9_MAX_MSDU_IN_AMSDU_MSB BIT(0) /* * Fine Timing Measurement Initiator - bit 71 of @WLAN_EID_EXT_CAPABILITY * information element */ #define WLAN_EXT_CAPA9_FTM_INITIATOR BIT(7) /* Defines support for TWT Requester and TWT Responder */ #define WLAN_EXT_CAPA10_TWT_REQUESTER_SUPPORT BIT(5) #define WLAN_EXT_CAPA10_TWT_RESPONDER_SUPPORT BIT(6) /* * When set, indicates that the AP is able to tolerate 26-tone RU UL * OFDMA transmissions using HE TB PPDU from OBSS (not falsely classify the * 26-tone RU UL OFDMA transmissions as radar pulses). */ #define WLAN_EXT_CAPA10_OBSS_NARROW_BW_RU_TOLERANCE_SUPPORT BIT(7) /* Defines support for enhanced multi-bssid advertisement*/ #define WLAN_EXT_CAPA11_EMA_SUPPORT BIT(3) /* TDLS specific payload type in the LLC/SNAP header */ #define WLAN_TDLS_SNAP_RFTYPE 0x2 /* BSS Coex IE information field bits */ #define WLAN_BSS_COEX_INFORMATION_REQUEST BIT(0) /** * enum ieee80211_mesh_sync_method - mesh synchronization method identifier * * @IEEE80211_SYNC_METHOD_NEIGHBOR_OFFSET: the default synchronization method * @IEEE80211_SYNC_METHOD_VENDOR: a vendor specific synchronization method * that will be specified in a vendor specific information element */ enum ieee80211_mesh_sync_method { IEEE80211_SYNC_METHOD_NEIGHBOR_OFFSET = 1, IEEE80211_SYNC_METHOD_VENDOR = 255, }; /** * enum ieee80211_mesh_path_protocol - mesh path selection protocol identifier * * @IEEE80211_PATH_PROTOCOL_HWMP: the default path selection protocol * @IEEE80211_PATH_PROTOCOL_VENDOR: a vendor specific protocol that will * be specified in a vendor specific information element */ enum ieee80211_mesh_path_protocol { IEEE80211_PATH_PROTOCOL_HWMP = 1, IEEE80211_PATH_PROTOCOL_VENDOR = 255, }; /** * enum ieee80211_mesh_path_metric - mesh path selection metric identifier * * @IEEE80211_PATH_METRIC_AIRTIME: the default path selection metric * @IEEE80211_PATH_METRIC_VENDOR: a vendor specific metric that will be * specified in a vendor specific information element */ enum ieee80211_mesh_path_metric { IEEE80211_PATH_METRIC_AIRTIME = 1, IEEE80211_PATH_METRIC_VENDOR = 255, }; /** * enum ieee80211_root_mode_identifier - root mesh STA mode identifier * * These attribute are used by dot11MeshHWMPRootMode to set root mesh STA mode * * @IEEE80211_ROOTMODE_NO_ROOT: the mesh STA is not a root mesh STA (default) * @IEEE80211_ROOTMODE_ROOT: the mesh STA is a root mesh STA if greater than * this value * @IEEE80211_PROACTIVE_PREQ_NO_PREP: the mesh STA is a root mesh STA supports * the proactive PREQ with proactive PREP subfield set to 0 * @IEEE80211_PROACTIVE_PREQ_WITH_PREP: the mesh STA is a root mesh STA * supports the proactive PREQ with proactive PREP subfield set to 1 * @IEEE80211_PROACTIVE_RANN: the mesh STA is a root mesh STA supports * the proactive RANN */ enum ieee80211_root_mode_identifier { IEEE80211_ROOTMODE_NO_ROOT = 0, IEEE80211_ROOTMODE_ROOT = 1, IEEE80211_PROACTIVE_PREQ_NO_PREP = 2, IEEE80211_PROACTIVE_PREQ_WITH_PREP = 3, IEEE80211_PROACTIVE_RANN = 4, }; /* * IEEE 802.11-2007 7.3.2.9 Country information element * * Minimum length is 8 octets, ie len must be evenly * divisible by 2 */ /* Although the spec says 8 I'm seeing 6 in practice */ #define IEEE80211_COUNTRY_IE_MIN_LEN 6 /* The Country String field of the element shall be 3 octets in length */ #define IEEE80211_COUNTRY_STRING_LEN 3 /* * For regulatory extension stuff see IEEE 802.11-2007 * Annex I (page 1141) and Annex J (page 1147). Also * review 7.3.2.9. * * When dot11RegulatoryClassesRequired is true and the * first_channel/reg_extension_id is >= 201 then the IE * compromises of the 'ext' struct represented below: * * - Regulatory extension ID - when generating IE this just needs * to be monotonically increasing for each triplet passed in * the IE * - Regulatory class - index into set of rules * - Coverage class - index into air propagation time (Table 7-27), * in microseconds, you can compute the air propagation time from * the index by multiplying by 3, so index 10 yields a propagation * of 10 us. Valid values are 0-31, values 32-255 are not defined * yet. A value of 0 inicates air propagation of <= 1 us. * * See also Table I.2 for Emission limit sets and table * I.3 for Behavior limit sets. Table J.1 indicates how to map * a reg_class to an emission limit set and behavior limit set. */ #define IEEE80211_COUNTRY_EXTENSION_ID 201 /* * Channels numbers in the IE must be monotonically increasing * if dot11RegulatoryClassesRequired is not true. * * If dot11RegulatoryClassesRequired is true consecutive * subband triplets following a regulatory triplet shall * have monotonically increasing first_channel number fields. * * Channel numbers shall not overlap. * * Note that max_power is signed. */ struct ieee80211_country_ie_triplet { union { struct { u8 first_channel; u8 num_channels; s8 max_power; } __packed chans; struct { u8 reg_extension_id; u8 reg_class; u8 coverage_class; } __packed ext; }; } __packed; enum ieee80211_timeout_interval_type { WLAN_TIMEOUT_REASSOC_DEADLINE = 1 /* 802.11r */, WLAN_TIMEOUT_KEY_LIFETIME = 2 /* 802.11r */, WLAN_TIMEOUT_ASSOC_COMEBACK = 3 /* 802.11w */, }; /** * struct ieee80211_timeout_interval_ie - Timeout Interval element * @type: type, see &enum ieee80211_timeout_interval_type * @value: timeout interval value */ struct ieee80211_timeout_interval_ie { u8 type; __le32 value; } __packed; /** * enum ieee80211_idle_options - BSS idle options * @WLAN_IDLE_OPTIONS_PROTECTED_KEEP_ALIVE: the station should send an RSN * protected frame to the AP to reset the idle timer at the AP for * the station. */ enum ieee80211_idle_options { WLAN_IDLE_OPTIONS_PROTECTED_KEEP_ALIVE = BIT(0), }; /** * struct ieee80211_bss_max_idle_period_ie * * This structure refers to "BSS Max idle period element" * * @max_idle_period: indicates the time period during which a station can * refrain from transmitting frames to its associated AP without being * disassociated. In units of 1000 TUs. * @idle_options: indicates the options associated with the BSS idle capability * as specified in &enum ieee80211_idle_options. */ struct ieee80211_bss_max_idle_period_ie { __le16 max_idle_period; u8 idle_options; } __packed; /* BACK action code */ enum ieee80211_back_actioncode { WLAN_ACTION_ADDBA_REQ = 0, WLAN_ACTION_ADDBA_RESP = 1, WLAN_ACTION_DELBA = 2, }; /* BACK (block-ack) parties */ enum ieee80211_back_parties { WLAN_BACK_RECIPIENT = 0, WLAN_BACK_INITIATOR = 1, }; /* SA Query action */ enum ieee80211_sa_query_action { WLAN_ACTION_SA_QUERY_REQUEST = 0, WLAN_ACTION_SA_QUERY_RESPONSE = 1, }; /** * struct ieee80211_bssid_index * * This structure refers to "Multiple BSSID-index element" * * @bssid_index: BSSID index * @dtim_period: optional, overrides transmitted BSS dtim period * @dtim_count: optional, overrides transmitted BSS dtim count */ struct ieee80211_bssid_index { u8 bssid_index; u8 dtim_period; u8 dtim_count; }; /** * struct ieee80211_multiple_bssid_configuration * * This structure refers to "Multiple BSSID Configuration element" * * @bssid_count: total number of active BSSIDs in the set * @profile_periodicity: the least number of beacon frames need to be received * in order to discover all the nontransmitted BSSIDs in the set. */ struct ieee80211_multiple_bssid_configuration { u8 bssid_count; u8 profile_periodicity; }; #define SUITE(oui, id) (((oui) << 8) | (id)) /* cipher suite selectors */ #define WLAN_CIPHER_SUITE_USE_GROUP SUITE(0x000FAC, 0) #define WLAN_CIPHER_SUITE_WEP40 SUITE(0x000FAC, 1) #define WLAN_CIPHER_SUITE_TKIP SUITE(0x000FAC, 2) /* reserved: SUITE(0x000FAC, 3) */ #define WLAN_CIPHER_SUITE_CCMP SUITE(0x000FAC, 4) #define WLAN_CIPHER_SUITE_WEP104 SUITE(0x000FAC, 5) #define WLAN_CIPHER_SUITE_AES_CMAC SUITE(0x000FAC, 6) #define WLAN_CIPHER_SUITE_GCMP SUITE(0x000FAC, 8) #define WLAN_CIPHER_SUITE_GCMP_256 SUITE(0x000FAC, 9) #define WLAN_CIPHER_SUITE_CCMP_256 SUITE(0x000FAC, 10) #define WLAN_CIPHER_SUITE_BIP_GMAC_128 SUITE(0x000FAC, 11) #define WLAN_CIPHER_SUITE_BIP_GMAC_256 SUITE(0x000FAC, 12) #define WLAN_CIPHER_SUITE_BIP_CMAC_256 SUITE(0x000FAC, 13) #define WLAN_CIPHER_SUITE_SMS4 SUITE(0x001472, 1) /* AKM suite selectors */ #define WLAN_AKM_SUITE_8021X SUITE(0x000FAC, 1) #define WLAN_AKM_SUITE_PSK SUITE(0x000FAC, 2) #define WLAN_AKM_SUITE_FT_8021X SUITE(0x000FAC, 3) #define WLAN_AKM_SUITE_FT_PSK SUITE(0x000FAC, 4) #define WLAN_AKM_SUITE_8021X_SHA256 SUITE(0x000FAC, 5) #define WLAN_AKM_SUITE_PSK_SHA256 SUITE(0x000FAC, 6) #define WLAN_AKM_SUITE_TDLS SUITE(0x000FAC, 7) #define WLAN_AKM_SUITE_SAE SUITE(0x000FAC, 8) #define WLAN_AKM_SUITE_FT_OVER_SAE SUITE(0x000FAC, 9) #define WLAN_AKM_SUITE_AP_PEER_KEY SUITE(0x000FAC, 10) #define WLAN_AKM_SUITE_8021X_SUITE_B SUITE(0x000FAC, 11) #define WLAN_AKM_SUITE_8021X_SUITE_B_192 SUITE(0x000FAC, 12) #define WLAN_AKM_SUITE_FT_8021X_SHA384 SUITE(0x000FAC, 13) #define WLAN_AKM_SUITE_FILS_SHA256 SUITE(0x000FAC, 14) #define WLAN_AKM_SUITE_FILS_SHA384 SUITE(0x000FAC, 15) #define WLAN_AKM_SUITE_FT_FILS_SHA256 SUITE(0x000FAC, 16) #define WLAN_AKM_SUITE_FT_FILS_SHA384 SUITE(0x000FAC, 17) #define WLAN_AKM_SUITE_OWE SUITE(0x000FAC, 18) #define WLAN_AKM_SUITE_FT_PSK_SHA384 SUITE(0x000FAC, 19) #define WLAN_AKM_SUITE_PSK_SHA384 SUITE(0x000FAC, 20) #define WLAN_MAX_KEY_LEN 32 #define WLAN_PMK_NAME_LEN 16 #define WLAN_PMKID_LEN 16 #define WLAN_PMK_LEN_EAP_LEAP 16 #define WLAN_PMK_LEN 32 #define WLAN_PMK_LEN_SUITE_B_192 48 #define WLAN_OUI_WFA 0x506f9a #define WLAN_OUI_TYPE_WFA_P2P 9 #define WLAN_OUI_MICROSOFT 0x0050f2 #define WLAN_OUI_TYPE_MICROSOFT_WPA 1 #define WLAN_OUI_TYPE_MICROSOFT_WMM 2 #define WLAN_OUI_TYPE_MICROSOFT_WPS 4 #define WLAN_OUI_TYPE_MICROSOFT_TPC 8 /* * WMM/802.11e Tspec Element */ #define IEEE80211_WMM_IE_TSPEC_TID_MASK 0x0F #define IEEE80211_WMM_IE_TSPEC_TID_SHIFT 1 enum ieee80211_tspec_status_code { IEEE80211_TSPEC_STATUS_ADMISS_ACCEPTED = 0, IEEE80211_TSPEC_STATUS_ADDTS_INVAL_PARAMS = 0x1, }; struct ieee80211_tspec_ie { u8 element_id; u8 len; u8 oui[3]; u8 oui_type; u8 oui_subtype; u8 version; __le16 tsinfo; u8 tsinfo_resvd; __le16 nominal_msdu; __le16 max_msdu; __le32 min_service_int; __le32 max_service_int; __le32 inactivity_int; __le32 suspension_int; __le32 service_start_time; __le32 min_data_rate; __le32 mean_data_rate; __le32 peak_data_rate; __le32 max_burst_size; __le32 delay_bound; __le32 min_phy_rate; __le16 sba; __le16 medium_time; } __packed; struct ieee80211_he_6ghz_capa { /* uses IEEE80211_HE_6GHZ_CAP_* below */ __le16 capa; } __packed; /* HE 6 GHz band capabilities */ /* uses enum ieee80211_min_mpdu_spacing values */ #define IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START 0x0007 /* uses enum ieee80211_vht_max_ampdu_length_exp values */ #define IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP 0x0038 /* uses IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_* values */ #define IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN 0x00c0 /* WLAN_HT_CAP_SM_PS_* values */ #define IEEE80211_HE_6GHZ_CAP_SM_PS 0x0600 #define IEEE80211_HE_6GHZ_CAP_RD_RESPONDER 0x0800 #define IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS 0x1000 #define IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS 0x2000 /** * ieee80211_get_qos_ctl - get pointer to qos control bytes * @hdr: the frame * * The qos ctrl bytes come after the frame_control, duration, seq_num * and 3 or 4 addresses of length ETH_ALEN. * 3 addr: 2 + 2 + 2 + 3*6 = 24 * 4 addr: 2 + 2 + 2 + 4*6 = 30 */ static inline u8 *ieee80211_get_qos_ctl(struct ieee80211_hdr *hdr) { if (ieee80211_has_a4(hdr->frame_control)) return (u8 *)hdr + 30; else return (u8 *)hdr + 24; } /** * ieee80211_get_tid - get qos TID * @hdr: the frame */ static inline u8 ieee80211_get_tid(struct ieee80211_hdr *hdr) { u8 *qc = ieee80211_get_qos_ctl(hdr); return qc[0] & IEEE80211_QOS_CTL_TID_MASK; } /** * ieee80211_get_SA - get pointer to SA * @hdr: the frame * * Given an 802.11 frame, this function returns the offset * to the source address (SA). It does not verify that the * header is long enough to contain the address, and the * header must be long enough to contain the frame control * field. */ static inline u8 *ieee80211_get_SA(struct ieee80211_hdr *hdr) { if (ieee80211_has_a4(hdr->frame_control)) return hdr->addr4; if (ieee80211_has_fromds(hdr->frame_control)) return hdr->addr3; return hdr->addr2; } /** * ieee80211_get_DA - get pointer to